Sample records for metallic rare earth

  1. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOEpatents

    Ellis, Timothy W.; Schmidt, Frederick A.

    1995-08-01

    Method of treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation.

  2. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOEpatents

    Ellis, T.W.; Schmidt, F.A.

    1995-08-01

    A method is described for treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation. 2 figs.

  3. Recovering heavy rare earth metals from magnet scrap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ott, Ryan T.; McCallum, Ralph W.; Jones, Lawrence L.

    A method of treating rare earth metal-bearing permanent magnet scrap, waste or other material in a manner to recover the heavy rare earth metal content separately from the light rare earth metal content. The heavy rare earth metal content can be recovered either as a heavy rare earth metal-enriched iron based alloy or as a heavy rare earth metal based alloy.

  4. Rare Earth Metals: Resourcefulness and Recovery

    NASA Astrophysics Data System (ADS)

    Wang, Shijie

    2013-10-01

    When we appreciate the digital revolution carried over from the twentieth century with mobile communication and the Internet, and when we enjoy our high-tech lifestyle filled with iDevices, hybrid cars, wind turbines, and solar cells in this new century, we should also appreciate that all of these advanced products depend on rare earth metals to function. Although there are only 136,000 tons of annual worldwide demand, (Cho, Rare Earth Metals, Will We Have Enough?)1 rare earth metals are becoming such hot commodities on international markets, due to not only to their increasing uses, including in most critical military hardware, but also to Chinese growth, which accounts for 95% of global rare earth metal production. Hence, the 2013 technical calendar topic, planned by the TMS/Hydrometallurgy and Electrometallurgy Committee, is particularly relevant, with four articles (including this commentary) contributed to the JOM October Issue discussing rare earth metals' resourcefulness and recovery.

  5. Rare earth metal-containing ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prodius, Denis; Mudring, Anja-Verena

    As an innovative tool, ionic liquids (ILs) are widely employed as an alternative, smart, reaction media (vs. traditional solvents) offering interesting technology solutions for dissolving, processing and recycling of metal-containing materials. The costly mining and refining of rare earths (RE), combined with increasing demand for high-tech and energy-related applications around the world, urgently requires effective approaches to improve the efficiency of rare earth separation and recovery. In this context, ionic liquids appear as an attractive technology solution. Finally, this paper addresses the structural and coordination chemistry of ionic liquids comprising rare earth metals with the aim to add to understandingmore » prospects of ionic liquids in the chemistry of rare earths.« less

  6. Rare earth metal-containing ionic liquids

    DOE PAGES

    Prodius, Denis; Mudring, Anja-Verena

    2018-03-07

    As an innovative tool, ionic liquids (ILs) are widely employed as an alternative, smart, reaction media (vs. traditional solvents) offering interesting technology solutions for dissolving, processing and recycling of metal-containing materials. The costly mining and refining of rare earths (RE), combined with increasing demand for high-tech and energy-related applications around the world, urgently requires effective approaches to improve the efficiency of rare earth separation and recovery. In this context, ionic liquids appear as an attractive technology solution. Finally, this paper addresses the structural and coordination chemistry of ionic liquids comprising rare earth metals with the aim to add to understandingmore » prospects of ionic liquids in the chemistry of rare earths.« less

  7. Charge-separated and molecular heterobimetallic rare earth-rare earth and alkaline earth-rare earth aryloxo complexes featuring intramolecular metal-pi-arene interactions.

    PubMed

    Deacon, Glen B; Junk, Peter C; Moxey, Graeme J; Ruhlandt-Senge, Karin; St Prix, Courtney; Zuniga, Maria F

    2009-01-01

    Treatment of a rare earth metal (Ln) and a potential divalent rare earth metal (Ln') or an alkaline earth metal (Ae) with 2,6-diphenylphenol (HOdpp) at elevated temperatures (200-250 degrees C) afforded heterobimetallic aryloxo complexes, which were structurally characterised. A charge-separated species [(Ln'/Ae)(2)(Odpp)(3)][Ln(Odpp)(4)] was obtained for a range of metals, demonstrating the similarities between the chemistry of the divalent rare earth metals and the alkaline earth metals. The [(Ln'/Ae)(2)(Odpp)(3)](+) cation in the heterobimetallic structures is unusual in that it consists solely of bridging aryloxide ligands. A molecular heterobimetallic species [AeEu(Odpp)(4)] (Ae = Ca, Sr, Ba) was obtained by treating an alkaline earth metal and Eu metal with HOdpp at elevated temperatures. Similarly, [BaSr(Odpp)(4)] was prepared by treating Ba metal and Sr metal with HOdpp. Treatment of [Ba(2)(Odpp)(4)] with [Mg(Odpp)(2)(thf)(2)] in toluene afforded [Ba(2)(Odpp)(3)][Mg(Odpp)(3)(thf)]. Analogous solution-based syntheses were not possible for [(Ln'/Ae)(2)(Odpp)(3)][Ln(Odpp)(4)] complexes, for which the free-metal route was essential. As a result of the absence of additional donor ligands, the crystal structures of the heterobimetallic complexes feature extensive pi-Ph-metal interactions involving the pendant phenyl groups of the Odpp ligands, thus enabling the large electropositive metal atoms to attain coordination saturation. The charge-separated heterobimetallic species were purified by extraction with toluene/thf mixtures at ambient temperature (Ba-containing compounds) or by extraction with toluene under pressure above the boiling point of the solvent (other products). In donor solvents, heterobimetallic complexes other than those containing barium were found to fragment into homometallic species.

  8. Effects of Rare Earth Metals on Steel Microstructures

    PubMed Central

    Pan, Fei; Zhang, Jian; Chen, Hao-Long; Su, Yen-Hsun; Kuo, Chia-Liang; Su, Yen-Hao; Chen, Shin-Hau; Lin, Kuan-Ju; Hsieh, Ping-Hung; Hwang, Weng-Sing

    2016-01-01

    Rare earth metals are used in semiconductors, solar cells and catalysts. This review focuses on the background of oxide metallurgy technologies, the chemical and physical properties of rare earth (RE) metals, the background of oxide metallurgy, the functions of RE metals in steelmaking, and the influences of RE metals on steel microstructures. Future prospects for RE metal applications in steelmaking are also presented. PMID:28773545

  9. Rare-earth metal prices in the USA ca. 1960 to 1994

    USGS Publications Warehouse

    Hedrick, James B.

    1997-01-01

    Rare-earth metal prices were compiled from the late 1950s and early 1960s through 1994. Although commercial demand for rare-earth metals began in 1908, as the alloy mischmetal, commercial quantities of a wide range of individual rare-earth metals were not available until the late 1950s. The discovery of a large, high-grade rare-earth deposit at Mountain Pass. CA, USA, in 1949, was significant because it led to the production of commercial quantities or rare-earth elements that reduced prices and encouraged wider application of the materials. The availability of ore from Mountain Pass, and other large rare-earth deposits, especially those in Australia and China, has provided the world with abundant resources for rare-earth metal production. This availability, coupled with improved technology from Government and private-sector metallurgical research, has resulted in substantial decreases in rare-earth metal prices since the late 1950s and early 1960s. Price series for the individual rare-earth metals (except promethium) are quoted on a kilogram basis from the late 1950s and early 1960s through 1994. Prices are given in US dollars on an actual and constant dollar basis. Industrial and economic factors affecting prices during this time period are examined.

  10. Rare-earth metal prices in the USA ca. 1960 to 1994

    USGS Publications Warehouse

    Hedrick, J.B.

    1997-01-01

    Rare-earth metal prices were compiled from the late 1950s and early 1960s through 1994. Although commercial demand for rare-earth metals began in 1908, as the alloy mischmetal, commercial quantities of a wide range of individual rare-earth metals were not available until the late 1950s. The discovery of a large, high-grade rare-earth deposit at Mountain Pass, CA, USA, in 1949, was significant because it led to the production of commercial quantities of rare-earth elements that reduced prices and encouraged wider application of the materials. The availability of ore from Mountain Pass, and other large rare-earth deposits, especially those in Australia and China, has provided the world with abundant resources for rare-earth metal production. This availability, coupled with improved technology from Government and private-sector metallurgical research, has resulted in substantial decreases in rare-earth metal prices since the late 1950s and early 1960s. Price series for the individual rare-earth metals (except promethium) are quoted on a kilogram basis from the late 1950s and early 1960s through 1994. Prices are given in US dollars on an actual and constant dollar basis. Industrial and economic factors affecting prices during this time period are examined.

  11. Method for treating rare earth-transition metal scrap

    DOEpatents

    Schmidt, Frederick A.; Peterson, David T.; Wheelock, John T.; Jones, Lawrence L.

    1992-12-29

    Rare earth-transition metal (e.g., iron) scrap (e.g., Nd-Fe-B scrap) is flux (slag) remelted to reduce tramp non-metallic impurities, such as oxygen and nitrogen, and metallic impurities, such as Li, Na, Al, etc., picked up by the scrap from previous fabrication operations. The tramp impurities are reduced to concentrations acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. The scrap is electroslag or inductoslag melted using a prefused, rare earth fluoride-bearing flux of CaF.sub.2, CaCl.sub.2 or mixtures thereof or the slag resulting from practice of the thermite reduction process to make a rare earth-iron alloy.

  12. Method for treating rare earth-transition metal scrap

    DOEpatents

    Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.; Jones, L.L.

    1992-12-29

    Rare earth-transition metal (e.g., iron) scrap (e.g., Nd-Fe-B scrap) is flux (slag) remelted to reduce tramp non-metallic impurities, such as oxygen and nitrogen, and metallic impurities, such as Li, Na, Al, etc., picked up by the scrap from previous fabrication operations. The tramp impurities are reduced to concentrations acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. The scrap is electroslag or inductoslag melted using a rare earth fluoride-bearing flux of CaF[sub 2], CaCl[sub 2] or mixtures thereof or the slag resulting from practice of the thermite reduction process to make a rare earth-iron alloy. 3 figs.

  13. Thermophysical properties of liquid rare earth metals

    NASA Astrophysics Data System (ADS)

    Thakor, P. B.; Sonvane, Y. A.; Patel, H. P.; Jani, A. R.

    2013-06-01

    The thermodynamical properties like long wavelength limit S(0), iso-thermal compressibility (χT), thermal expansion coefficient (αV), thermal pressure coefficient (γV), specific heat at constant volume (CV) and specific heat at constant pressure (CP) are calculated for liquid rare earth metals. Our newly constructed parameter free model potential is used to describe the electron ion interaction due to Sarkar et al (S) local field correction function. Lastly, we conclude that our newly constructed model potential is capable to explain the thermophysical properties of liquid rare earth metals.

  14. METHOD OF MAKING ALLOYS OF SECOND RARE EARTH SERIES METALS

    DOEpatents

    Baker, R.D.; Hayward, B.R.

    1963-01-01

    >This invention relates to a process for alloying the second rare earth series metals with Mo, Nb, or Zr. A halide of the rare earth metal is mixed with about 1 to 20 at.% of an oxide of Mo, Nb, or Zr. Iodine and an alkali or alkaline earth metal are added, and the resulting mixture is heated in an inert atmosphere to 350 deg C. (AEC)

  15. Metal sulfide and rare-earth phosphate nanostructures and methods of making same

    DOEpatents

    Wong, Stanislaus; Zhang, Fen

    2016-06-28

    The present invention provides a method of producing a crystalline rare earth phosphate nanostructure. The method comprising: providing a rare earth metal precursor solution and providing a phosphate precursor solution; placing a porous membrane between the metal precursor solution and the phosphate precursor solution, wherein metal cations of the metal precursor solution and phosphate ions of the phosphate precursor solution react, thereby producing a crystalline rare earth metal phosphate nanostructure.

  16. Rare-Earth Metals and Their Applications in Aviation

    DTIC Science & Technology

    1984-08-01

    metals are not as common as iron and steel which are visible everywhere, yet they are not unfamiliar to us. We often encounter them in everyday life...the flint of a lighter. It is an alloy of rare-earth metal and iron . It contains about 30% iron and the remainder is a composite rare-earth alloy...used to manufacture the detonators of bullets and shells as well as the pyrophoric alloys of firing devices. This type of alloy has a 49.5% content of

  17. 40 CFR 421.270 - Applicability: Description of the primary rare earth metals subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... primary rare earth metals subcategory. 421.270 Section 421.270 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Rare Earth Metals Subcategory § 421.270 Applicability: Description of the primary rare earth metals subcategory. The provisions of this subpart are applicable to discharges resulting from the...

  18. 40 CFR 421.270 - Applicability: Description of the primary rare earth metals subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... primary rare earth metals subcategory. 421.270 Section 421.270 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Rare Earth Metals Subcategory § 421.270 Applicability: Description of the primary rare earth metals subcategory. The provisions of this subpart are applicable to discharges resulting from the...

  19. 40 CFR 421.270 - Applicability: Description of the primary rare earth metals subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... primary rare earth metals subcategory. 421.270 Section 421.270 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Rare Earth Metals Subcategory § 421.270 Applicability: Description of the primary rare earth metals subcategory. The provisions of this subpart are applicable to discharges resulting from the...

  20. 40 CFR 421.270 - Applicability: Description of the primary rare earth metals subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... primary rare earth metals subcategory. 421.270 Section 421.270 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Rare Earth Metals Subcategory § 421.270 Applicability: Description of the primary rare earth metals subcategory. The provisions of this subpart are applicable to discharges resulting from the...

  1. 40 CFR 421.270 - Applicability: Description of the primary rare earth metals subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... primary rare earth metals subcategory. 421.270 Section 421.270 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Rare Earth Metals Subcategory § 421.270 Applicability: Description of the primary rare earth metals subcategory. The provisions of this subpart are applicable to discharges resulting from the...

  2. Crystallographic phases in heavy rare earth metals under megabar pressures

    NASA Astrophysics Data System (ADS)

    Samudrala, G. K.; Vohra, Y. K.

    2012-07-01

    Experiments aimed at understanding the crystallographic phases of heavy rare earth metals were carried out in a diamond anvil cell at the Advanced Photon Source, Argonne National Laboratory. Heavy rare earth metals dysprosium (Dy), holmium (Ho), erbium (Er) and thulium (Tm) were compressed to multi-megabar pressures. The rare earth crystal sequence hcp→Sm-type→dhcp→distorted-fcc (dfcc) is observed in all four elements. Upon further compression, a structural transformation to a monoclinic C2/m phase has been observed. We summarize the results from these experiments and present Rietveld structural refinements on high pressure phases for the specific case of dysprosium.

  3. Rare earth-transition metal scrap treatment method

    DOEpatents

    Schmidt, Frederick A.; Peterson, David T.; Wheelock, John T.; Jones, Lawrence L.; Lincoln, Lanny P.

    1992-02-11

    Rare earth-transition metal (e.g. iron) scrap (e.g. Nd-Fe-B scrap) is melted to reduce the levels of tramp oxygen and nitrogen impurities therein. The tramp impurities are reduced in the melt by virtue of the reaction of the tramp impurities and the rare earth to form dross on the melt. The purified melt is separated from the dross for reuse. The oxygen and nitrogen of the melt are reduced to levels acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets.

  4. Rare earth-transition metal scrap treatment method

    DOEpatents

    Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.; Jones, L.L.; Lincoln, L.P.

    1992-02-11

    Rare earth-transition metal (e.g. iron) scrap (e.g. Nd-Fe-B scrap) is melted to reduce the levels of tramp oxygen and nitrogen impurities therein. The tramp impurities are reduced in the melt by virtue of the reaction of the tramp impurities and the rare earth to form dross on the melt. The purified melt is separated from the dross for reuse. The oxygen and nitrogen of the melt are reduced to levels acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. 3 figs.

  5. Environmental Defects And Economic Impact On Global Market Of Rare Earth Metals

    NASA Astrophysics Data System (ADS)

    Charalampides, G.; Vatalis, K.; Karayannis, V.; Baklavaridis, A.

    2016-11-01

    Rare earth elements include the 14 lanthanides as well as lanthanium and often yttrium. Actually, most of them are not very rare and occur widely dispersed in a variety of rocks. Rare earth metals are vital to some of the world's faster growing industries: catalysts, Nd-magnets, ceramics, glass, metallurgy, battery alloys, electronics and phosphors. Worldwide, the main countries for distribution of rare earths deposits include China, USA, Russia, Brasil, India, Australia, Greenland and Malaysia. The mining and processing of rare earth metals usually result in significant environmental defects. Many deposits are associated with high concentrations of radioactive elements such as uranium and thorium, which requires separate treatment and disposal. The accumulation of rare earth elements in soils has occurred due to pollution caused by the exploitation of rare earth resources and the wide use of rare earths as fertilizers in agriculture. This accumulation has a toxic effect on the soil microfauna community. However, there are large differences in market prices due to the degree of purity determined by the specifications in the applications. The main focus of this article is to overview Rare Earth Metals’ overall impact on global economy and their environmental defects on soils during processing techniques and as they are used as fertilizers.

  6. Asymmetric Catalysis with bis(hydroxyphenyl)diamides/rare-earth metal complexes.

    PubMed

    Kumagai, Naoya; Shibasaki, Masakatsu

    2013-01-02

    A series of asymmetric catalysts composed of conformationally flexible amide-based chiral ligands and rare-earth metals was developed for proton-transfer catalysis. These ligands derived from amino acids provide an intriguing chiral platform for the formation of asymmetric catalysts upon complexation with rare-earth metals. The scope of this arsenal of catalysts was further broadened by the development of heterobimetallic catalytic systems. The cooperative function of hydrogen bonding and metal coordination resulted in intriguing substrate specificity and stereocontrol, and the dynamic nature of the catalysts led to a switch of their function. Herein, we summarize our recent exploration of this class of catalysts. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Process optimization and kinetics for leaching of rare earth metals from the spent Ni-metal hydride batteries.

    PubMed

    Meshram, Pratima; Pandey, B D; Mankhand, T R

    2016-05-01

    Nickel-metal hydride batteries (Ni-MH) contain not only the base metals, but valuable rare earth metals (REMs) viz. La, Sm, Nd, Pr and Ce as well. In view of the importance of resource recycling and assured supply of the contained metals in such wastes, the present study has focussed on the leaching of the rare earth metals from the spent Ni-MH batteries. The conditions for the leaching of REMs from the spent batteries were optimized as: 2M H2SO4, 348K temperature and 120min of time at a pulp density (PD) of 100g/L. Under this condition, the leaching of 98.1% Nd, 98.4% Sm, 95.5% Pr and 89.4% Ce was achieved. Besides the rare earth metals, more than 90% of base metals (Ni, Co, Mn and Zn) were also leached out in this condition. Kinetic data for the dissolution of all the rare earth metals showed the best fit to the chemical control shrinking core model. The leaching of metals followed the mechanism involving the chemical reaction proceeding on the surface of particles by the lixiviant, which was corroborated by the XRD phase analysis and SEM-EDS studies. The activation energy of 7.6, 6.3, 11.3 and 13.5kJ/mol was acquired for the leaching of neodymium, samarium, praseodymium and cerium, respectively in the temperature range 305-348K. From the leach liquor, the mixed rare earth metals were precipitated at pH∼1.8 and the precipitated REMs was analyzed by XRD and SEM studies to determine the phases and the morphological features. Copyright © 2015. Published by Elsevier Ltd.

  8. Production method for making rare earth compounds

    DOEpatents

    McCallum, R.W.; Ellis, T.W.; Dennis, K.W.; Hofer, R.J.; Branagan, D.J.

    1997-11-25

    A method of making a rare earth compound, such as a earth-transition metal permanent magnet compound, without the need for producing rare earth metal as a process step, comprises carbothermically reacting a rare earth oxide to form a rare earth carbide and heating the rare earth carbide, a compound-forming reactant (e.g., a transition metal and optional boron), and a carbide-forming element (e.g., a refractory metal) that forms a carbide that is more thermodynamically favorable than the rare earth carbide whereby the rare earth compound (e.g., Nd{sub 2}Fe{sub 14}B or LaNi{sub 5}) and a carbide of the carbide-forming element are formed.

  9. Production method for making rare earth compounds

    DOEpatents

    McCallum, R. William; Ellis, Timothy W.; Dennis, Kevin W.; Hofer, Robert J.; Branagan, Daniel J.

    1997-11-25

    A method of making a rare earth compound, such as a earth-transition metal permanent magnet compound, without the need for producing rare earth metal as a process step, comprises carbothermically reacting a rare earth oxide to form a rare earth carbide and heating the rare earth carbide, a compound-forming reactant (e.g. a transition metal and optional boron), and a carbide-forming element (e.g. a refractory metal) that forms a carbide that is more thermodynamically favorable than the rare earth carbide whereby the rare earth compound (e.g. Nd.sub.2 Fe.sub.14 B or LaNi.sub.5) and a carbide of the carbide-forming element are formed.

  10. Rare earth element and rare metal inventory of central Asia

    USGS Publications Warehouse

    Mihalasky, Mark J.; Tucker, Robert D.; Renaud, Karine; Verstraeten, Ingrid M.

    2018-03-06

    Rare earth elements (REE), with their unique physical and chemical properties, are an essential part of modern living. REE have enabled development and manufacture of high-performance materials, processes, and electronic technologies commonly used today in computing and communications, clean energy and transportation, medical treatment and health care, glass and ceramics, aerospace and defense, and metallurgy and chemical refining. Central Asia is an emerging REE and rare metals (RM) producing region. A newly compiled inventory of REE-RM-bearing mineral occurrences and delineation of areas-of-interest indicate this region may have considerable undiscovered resources.

  11. Application of Freeze-Dried Powders of Genetically Engineered Microbial Strains as Adsorbents for Rare Earth Metal Ions.

    PubMed

    Moriwaki, Hiroshi; Masuda, Reiko; Yamazaki, Yuki; Horiuchi, Kaoru; Miyashita, Mari; Kasahara, Jun; Tanaka, Tatsuhito; Yamamoto, Hiroki

    2016-10-12

    The adsorption behaviors of the rare earth metal ions onto freeze-dried powders of genetically engineered microbial strains were compared. Cell powders obtained from four kinds of strains, Bacillus subtilis 168 wild type (WT), lipoteichoic acid-defective (ΔLTA), wall teichoic acid-defective (ΔWTA), and cell wall hydrolases-defective (EFKYOJLp) strains, were used as an adsorbent of the rare earth metal ions at pH 3. The adsorption ability of the rare earth metal ions was in the order of EFKYOJLp > WT > ΔLTA > ΔWTA. The order was the same as the order of the phosphorus quantity of the strains. This result indicates that the main adsorption sites for the ions are the phosphate groups and the teichoic acids, LTA and WTA, that contribute to the adsorption of the rare earth metal ions onto the cell walls. The contribution of WTA was clearly greater than that of LTA. Each microbial powder was added to a solution containing 16 kinds of rare earth metal ions, and the removals (%) of each rare earth metal ion were obtained. The scandium ion showed the highest removal (%), while that of the lanthanum ion was the lowest for all the microbial powders. Differences in the distribution coefficients between the kinds of lanthanide ions by the EFKYOJLp and ΔWTA powders were greater than those of the other strains. Therefore, the EFKYOJLp and ΔWTA powders could be applicable for the selective extraction of the lanthanide ions. The ΔLTA powder coagulated by mixing with a rare earth metal ion, although no sedimentation of the WT or ΔWTA powder with a rare earth metal ion was observed under the same conditions. The EFKYOJLp powder was also coagulated, but its flocculating activity was lower than that of ΔLTA. The ΔLTA and EFKYOJLp powders have a long shape compared to those of the WT or ΔWTA strain. The shapes of the cells will play an important role in the sedimentation of the microbial powders with rare earth metal ions. As the results, three kinds of the genetically

  12. Rare earth element recycling from waste nickel-metal hydride batteries.

    PubMed

    Yang, Xiuli; Zhang, Junwei; Fang, Xihui

    2014-08-30

    With an increase in number of waste nickel-metal hydride batteries, and because of the importance of rare earth elements, the recycling of rare earth elements is becoming increasingly important. In this paper, we investigate the effects of temperature, hydrochloric acid concentration, and leaching time to optimize leaching conditions and determine leach kinetics. The results indicate that an increase in temperature, hydrochloric acid concentration, and leaching time enhance the leaching rate of rare earth elements. A maximum rare earth elements recovery of 95.16% was achieved at optimal leaching conditions of 70°C, solid/liquid ratio of 1:10, 20% hydrochloric acid concentration, -74μm particle size, and 100min leaching time. The experimental data were best fitted by a chemical reaction-controlled model. The activation energy was 43.98kJ/mol and the reaction order for hydrochloric acid concentration was 0.64. The kinetic equation for the leaching process was found to be: 1-(1-x)(1/3)=A/ρr0[HCl](0.64)exp-439,8008.314Tt. After leaching and filtration, by adding saturated oxalic solution to the filtrate, rare earth element oxalates were obtained. After removing impurities by adding ammonia, filtering, washing with dilute hydrochloric acid, and calcining at 810°C, a final product of 99% pure rare earth oxides was obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system.

    PubMed

    Yang, Fan; Kubota, Fukiko; Baba, Yuzo; Kamiya, Noriho; Goto, Masahiro

    2013-06-15

    The recycling of rare earth metals from phosphor powders in waste fluorescent lamps by solvent extraction using ionic liquids was studied. Acid leaching of rare earth metals from the waste phosphor powder was examined first. Yttrium (Y) and europium (Eu) dissolved readily in the acid solution; however, the leaching of other rare earth metals required substantial energy input. Ionization of target rare earth metals from the waste phosphor powders into the leach solution was critical for their successful recovery. As a high temperature was required for the complete leaching of all rare earth metals, ionic liquids, for which vapor pressure is negligible, were used as an alternative extracting phase to the conventional organic diluent. An extractant, N, N-dioctyldiglycol amic acid (DODGAA), which was recently developed, showed a high affinity for rare earth metal ions in liquid-liquid extraction although a conventional commercial phosphonic extractant did not. An effective recovery of the rare earth metals, Y, Eu, La and Ce, from the metal impurities, Fe, Al and Zn, was achieved from the acidic leach solution of phosphor powders using an ionic liquid containing DODGAA as novel extractant system. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. High pressure phase transitions in the rare earth metal erbium to 151 GPa.

    PubMed

    Samudrala, Gopi K; Thomas, Sarah A; Montgomery, Jeffrey M; Vohra, Yogesh K

    2011-08-10

    High pressure x-ray diffraction studies have been performed on the heavy rare earth metal erbium (Er) in a diamond anvil cell at room temperature to a pressure of 151 GPa and Er has been compressed to 40% of its initial volume. The rare earth crystal structure sequence hcp → Sm type → dhcp → distorted fcc (hcp: hexagonal close packed; fcc: face centered cubic; dhcp: double hcp) is observed in Er below 58 GPa. We have carried out Rietveld refinement of crystal structures in the pressure range between 58 GPa and 151 GPa. We have examined various crystal structures that have been proposed for the distorted fcc (dfcc) phase and the post-dfcc phase in rare earth metals. We find that the hexagonal hR 24 structure is the best fit between 58 and 118 GPa. Above 118 GPa, a structural transformation from hR 24 phase to a monoclinic C 2/m phase is observed with a volume change of - 1.9%. We have also established a clear trend for the pressure at which a post-dfcc phase is formed in rare earth metals and show that there is a monotonic increase in this pressure with the filling of 4f shell.

  15. High pressure phase transitions in the rare earth metal erbium to 151 GPa

    NASA Astrophysics Data System (ADS)

    Samudrala, Gopi K.; Thomas, Sarah A.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2011-08-01

    High pressure x-ray diffraction studies have been performed on the heavy rare earth metal erbium (Er) in a diamond anvil cell at room temperature to a pressure of 151 GPa and Er has been compressed to 40% of its initial volume. The rare earth crystal structure sequence {hcp} \\to {Sm}~ {type} \\to {dhcp} \\to {distorted} fcc (hcp: hexagonal close packed; fcc: face centered cubic; dhcp: double hcp) is observed in Er below 58 GPa. We have carried out Rietveld refinement of crystal structures in the pressure range between 58 GPa and 151 GPa. We have examined various crystal structures that have been proposed for the distorted fcc (dfcc) phase and the post-dfcc phase in rare earth metals. We find that the hexagonal hR 24 structure is the best fit between 58 and 118 GPa. Above 118 GPa, a structural transformation from hR 24 phase to a monoclinic C 2/m phase is observed with a volume change of - 1.9%. We have also established a clear trend for the pressure at which a post-dfcc phase is formed in rare earth metals and show that there is a monotonic increase in this pressure with the filling of 4f shell.

  16. Enhanced pinning in mixed rare earth-123 films

    DOEpatents

    Driscoll, Judith L [Los Alamos, NM; Foltyn, Stephen R [Los Alamos, NM

    2009-06-16

    An superconductive article and method of forming such an article is disclosed, the article including a substrate and a layer of a rare earth barium cuprate film upon the substrate, the rare earth barium cuprate film including two or more rare earth metals capable of yielding a superconductive composition where ion size variance between the two or more rare earth metals is characterized as greater than zero and less than about 10.times.10.sup.-4, and the rare earth barium cuprate film including two or more rare earth metals is further characterized as having an enhanced critical current density in comparison to a standard YBa.sub.2Cu.sub.3O.sub.y composition under identical testing conditions.

  17. Molten metal containment vessel with rare earth oxysulfide protective coating thereon and method of making same

    DOEpatents

    Krikorian, Oscar H.; Curtis, Paul G.

    1992-01-01

    An improved molten metal containment vessel is disclosed in which wetting of the vessel's inner wall surfaces by molten metal is inhibited by coating at least the inner surfaces of the containment vessel with one or more rare earth oxysulfide or rare earth sulfide compounds to inhibit wetting and or adherence by the molten metal to the surfaces of the containment vessel.

  18. Metallic rare-earth silicide nanowires on silicon surfaces.

    PubMed

    Dähne, Mario; Wanke, Martina

    2013-01-09

    The formation, atomic structure, and electronic properties of self-assembled rare-earth silicide nanowires on silicon surfaces were studied by scanning tunneling microscopy and angle-resolved photoelectron spectroscopy. Metallic dysprosium and erbium silicide nanowires were observed on both the Si(001) and Si(557) surfaces. It was found that they consist of hexagonal rare-earth disilicides for both surface orientations. On Si(001), the nanowires are characterized by a one-dimensional band structure, while the electronic dispersion is two-dimensional for the nanowires formed on Si(557). This behavior is explained by the different orientations of the hexagonal c axis of the silicide leading to different conditions for the carrier confinement. By considering this carrier confinement it is demonstrated how the one-dimensional band structure of the nanowires on Si(001) can be derived from the two-dimensional one of the silicide monolayer on Si(111).

  19. Adsorption Behavior of Rare Earth Metal Cations in the Interlayer Space of γ-ZrP.

    PubMed

    Takei, Takahiro; Iidzuka, Kiyoaki; Miura, Akira; Yanagida, Sayaka; Kumada, Nobuhiro; Magome, Eisuke; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2016-10-04

    Adsorption competencies of rare earth metal cations in γ-zirconium phosphate were examined by ICP, synchrotron X-ray diffraction (SXRD), and ab initio simulation. The adsorption amounts are around 0.06-0.10 per zirconium phosphate. From the SXRD patterns of the adsorbed samples, the basal spacing estimated by c sin β increased linearly with an increasing ionic radius of rare earth metal cation, though a and b lattice constants show no change. These SXRD patterns can be classified into four groups that have different super lattices. The four superlattices have multiplicities of x131, x241, and x221 for the xabc axis, and the location of the rare earth metal cation in the original unit cell changes depending on the superlattice cell. In the x131 superlattice, Yb and Er occupied the site near the zirconium phosphate layer, though La and Ce in the x221 superlattice remained in the center position between the phosphate sheet. For the ab initio simulation of γ-ZrP with the typical rare earth metal cations (Tb, Eu, Dy, and La), the results of simulation show a similar tendency of the position estimated by SXRD refinements.

  20. High Pressure Phase Transformations in Heavy Rare Earth Metals and Connections to Actinide Crystal Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vohra, Yogesh K.; Sangala, Bagvanth Reddy; Stemshorn, Andrew K.

    2008-07-01

    High-pressure studies have been performed on heavy rare earth metals Terbium (Tb) to 155 GPa and Holmium (Ho) to 134 GPa in a diamond anvil cell at room temperature. The following crystal structure sequence was observed in both metals hcp {yields} Sm-type {yields} dhcp {yields} distorted fcc (hR-24) {yields} monoclinic (C2/m) with increasing pressure. The last transformation to a low symmetry monoclinic phase is accompanied by a volume collapse of 5 % for Tb at 51 GPa and a volume collapse of 3 % for Ho at 103 GPa. This volume collapse under high pressure is reminiscent of f-shell delocalizationmore » in light rare earth metal Cerium (Ce), Praseodymium (Pr), and heavy actinide metals Americium (Am) and Curium (Cm). The orthorhombic Pnma phase that has been reported in Am and Cm after f-shell delocalization is not observed in heavy rare earth metals under high pressures. (authors)« less

  1. Rare-earth metal oxide doped transparent mesoporous silica plates under non-aqueous condition as a potential UV sensor.

    PubMed

    Lee, Sang-Joon; Park, Sung Soo; Lee, Sang Hyun; Hong, Sang-Hyun; Ha, Chang-Sik

    2013-11-01

    Transparent mesoporous silica plates doped with rare-earth metal oxide were prepared using solvent-evaporation method based on the self-organization between structure-directing agent and silicate in a non-aqueous solvent. A triblock copolymer, Pluronic (F127 or P123), was used as the structure-directing agent, while tetraethyl orthosilicate (TEOS) was used as a silica source. The pore diameter and the surface area of the mesoporous silica plate prepared with the optimized conditions were ca 40 A and 600 m2 g(-1), respectively, for both structure-directing agent. Rare-earth metal oxides (Eu, Tb, Tm oxide) in mesochannel were formed via one-step synthetic route based on the preparation method of a silica plate. Optical properties of rare-earth metal oxide-doped mesoporous silica plates were investigated by UV irradiation and photoluminescence (PL) spectroscopy. Under the exitation wavelength of 254 nm, the doped mesoporous silica plates emitted red, green and blue for Eu, Tb and Tm oxides, respectively. Rare-earth metal oxide-doped mesoporous silica plates showed enhanced PL intensity compared to that of the bulk rare-earth metal oxide.

  2. Theoretical Study of pKa Values for Trivalent Rare-Earth Metal Cations in Aqueous Solution.

    PubMed

    Yu, Donghai; Du, Ruobing; Xiao, Ji-Chang; Xu, Shengming; Rong, Chunying; Liu, Shubin

    2018-01-18

    Molecular acidity of trivalent rare-earth metal cations in aqueous solution is an important factor dedicated to the efficiency of their extraction and separation processes. In this work, the aqueous acidity of these metal ions has been quantitatively investigated using a few theoretical approaches. Our computational results expressed in terms of pK a values agree well with the tetrad effect of trivalent rare-earth ions extensively reported in the extraction and separation of these elements. Strong linear relationships have been observed between the acidity and quantum electronic descriptors such as the molecular electrostatic potential on the acidic nucleus and the sum of the valence natural atomic orbitals energies of the dissociating proton. Making use of the predicted pK a values, we have also predicted the major ionic forms of these species in the aqueous environment with different pH values, which can be employed to rationalize the behavior difference of different rare-earth metal cations during the extraction process. Our present results should provide needed insights not only for the qualitatively understanding about the extraction and separation between yttrium and lanthanide elements but also for the prediction of novel and more efficient rare-earth metal extractants in the future.

  3. Rare Earths; The Fraternal Fifteen (Rev.)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gschneidner, Jr., Karl A.

    1966-01-01

    Rare earths are a set of 15 elements: lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium. They are not rare and not earths; they are metals and quite abundant. They are studied to develop commercial products which are beneficial to mankind, and because some rare earths are important to fission products.

  4. Voltage Control of Rare-Earth Magnetic Moments at the Magnetic-Insulator-Metal Interface

    NASA Astrophysics Data System (ADS)

    Leon, Alejandro O.; Cahaya, Adam B.; Bauer, Gerrit E. W.

    2018-01-01

    The large spin-orbit interaction in the lanthanides implies a strong coupling between their internal charge and spin degrees of freedom. We formulate the coupling between the voltage and the local magnetic moments of rare-earth atoms with a partially filled 4 f shell at the interface between an insulator and a metal. The rare-earth-mediated torques allow the power-efficient control of spintronic devices by electric-field-induced ferromagnetic resonance and magnetization switching.

  5. Effect of rare earth metal on the spin-orbit torque in magnetic heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueda, Kohei; Pai, Chi-Feng; Tan, Aik Jun

    2016-06-06

    We report the effect of the rare earth metal Gd on current-induced spin-orbit torques (SOTs) in perpendicularly magnetized Pt/Co/Gd heterostructures, characterized using harmonic measurements and spin-torque ferromagnetic resonance (ST-FMR). By varying the Gd metal layer thickness from 0 nm to 8 nm, harmonic measurements reveal a significant enhancement of the effective fields generated from the Slonczewski-like and field-like torques. ST-FMR measurements confirm an enhanced effective spin Hall angle and show a corresponding increase in the magnetic damping constant with increasing Gd thickness. These results suggest that Gd plays an active role in generating SOTs in these heterostructures. Our finding may lead tomore » spin-orbitronics device application such as non-volatile magnetic random access memory, based on rare earth metals.« less

  6. Mineral resource of the month: rare earth elements

    USGS Publications Warehouse

    ,

    2011-01-01

    The article provides information on rare earth elements, which are group of 17 natural metallic elements. The rare earth elements are scandium, yttrium and lanthanides and classified into light rare earth elements (LREE) and heavy rate earth elements (HREE). The principal ores of the rare earth elements are identified. An overview of China's production of 97 percent of the rare earths in the world is provided. Commercial applications of rare earths are described.

  7. High-pressure phase transitions in rare earth metal thulium to 195 GPa.

    PubMed

    Montgomery, Jeffrey M; Samudrala, Gopi K; Tsoi, Georgiy M; Vohra, Yogesh K

    2011-04-20

    We have performed image plate x-ray diffraction studies on a heavy rare earth metal, thulium (Tm), in a diamond anvil cell to a pressure of 195 GPa and volume compression V/V₀ = 0.38 at room temperature. The rare earth crystal structure sequence, hcp →Sm-type→ dhcp →fcc → distorted fcc, is observed in Tm below 70 GPa with the exception of a pure fcc phase. The focus of our study is on the ultrahigh-pressure phase transition and Rietveld refinement of crystal structures in the pressure range between 70 and 195 GPa. The hexagonal hR-24 phase is seen to describe the distorted fcc phase between 70 and 124 GPa. Above 124 ± 4 GPa, a structural transformation from hR 24 phase to a monoclinic C 2/m phase is observed with a volume change of -1.5%. The equation of state data shows rapid stiffening above the phase transition at 124 GPa and is indicative of participation of f-electrons in bonding. We compare the behavior of Tm to other heavy rare-earths and heavy actinide metals under extreme conditions of pressure.

  8. High-pressure phase transitions in rare earth metal thulium to 195 GPa

    NASA Astrophysics Data System (ADS)

    Montgomery, Jeffrey M.; Samudrala, Gopi K.; Tsoi, Georgiy M.; Vohra, Yogesh K.

    2011-04-01

    We have performed image plate x-ray diffraction studies on a heavy rare earth metal, thulium (Tm), in a diamond anvil cell to a pressure of 195 GPa and volume compression V/Vo = 0.38 at room temperature. The rare earth crystal structure sequence, {hcp}\\to {Sm {-}type} \\to {dhcp} \\to {fcc} \\to distorted fcc, is observed in Tm below 70 GPa with the exception of a pure fcc phase. The focus of our study is on the ultrahigh-pressure phase transition and Rietveld refinement of crystal structures in the pressure range between 70 and 195 GPa. The hexagonal hR- 24 phase is seen to describe the distorted fcc phase between 70 and 124 GPa. Above 124 ± 4 GPa, a structural transformation from hR 24 phase to a monoclinic C 2/m phase is observed with a volume change of - 1.5%. The equation of state data shows rapid stiffening above the phase transition at 124 GPa and is indicative of participation of f-electrons in bonding. We compare the behavior of Tm to other heavy rare-earths and heavy actinide metals under extreme conditions of pressure.

  9. The Rare Earth Magnet Industry and Rare Earth Price in China

    NASA Astrophysics Data System (ADS)

    Ding, Kaihong

    2014-07-01

    In the past four years, the price of rare earth metal fluctuates sharply for many reasons. Currently, it has become more stable and more reasonable. This presentation is focused on the effect about the rare earth metal price. Some motor manufacturers have shifted from rare earth permanent magnet to ferrite magnet. Many motor manufacturers changed the design for the motor cooling system to make the motor function at a lower temperature. Thus the consumption of Dy can be markedly reduced. As for manufacturer of NdFeB magnet, we are also trying to optimize our process to reduce to dependence of HREE such as Dy and Tb. HS process have been introduced to solve the problem. With more and more people focusing and engaging on the REE industry, the price of REE will be more transparent without too many fluctuations. China is considering the problems of balancing the environment, energy sources, and labor sources. The application field about NdFeB such as wind turbine generator, HEV/EV, FA /OA is flourishing.

  10. Improved method for preparing rare earth sesquichalcogenides

    DOEpatents

    Takeshita, T.; Beaudry, B.J.; Gschneidner, K.A. Jr.

    1982-04-14

    An improved method for the preparation of high purity rare earth sesquichalcogenides is described. The rare earth, as one or more pieces of the metal, is sealed under a vacuum with a stoichiometric amount of sulfur or selenium and a small amount of iodine into a quartz reaction vessel. The sealed vessel is then heated to above the vaporization temperature of the chalcogen and below the melting temperature of the rare earth metal and maintained until the product has been formed. The iodine is then vaporized off leaving a pure product. The rare earth sulfides and selenides thus formed are useful as semiconductors and as thermoelectric generators. 3 tables.

  11. Alaska's rare earth deposits and resource potential

    USGS Publications Warehouse

    Barker, James C.; Van Gosen, Bradley S.

    2012-01-01

    Alaska’s known mineral endowment includes some of the largest and highest grade deposits of various metals, including gold, copper and zinc. Recently, Alaska has also been active in the worldwide search for sources of rare earth elements (REE) to replace exports now being limitedby China. Driven by limited supply of the rare earths, combined with their increasing use in new ‘green’ energy, lighting, transportation, and many other technological applications, the rare earth metals neodymium, europium and, in particular, the heavy rare earth elements terbium, dysprosium and yttrium are forecast to soon be in critical short supply (U.S. Department of Energy, 2010).

  12. Rare Earth Polyoxometalates.

    PubMed

    Boskovic, Colette

    2017-09-19

    Longstanding and important applications make use of the chemical and physical properties of both rare earth metals and polyoxometalates of early transition metals. The catalytic, optical, and magnetic features of rare earth metal ions are well-known, as are the reversible multielectron redox and photoredox capabilities of polyoxomolybdates and polyoxotungstates. The combination of rare earth ions and polyoxometalates in discrete molecules and coordination polymers is of interest for the unique combination of chemical and physical properties that can arise. This Account surveys our efforts to synthesize and investigate compounds with rare earth ions and polyoxometalates (RE-POMs), sometimes with carboxylate-based organic coligands. Our general synthetic approach is "bottom-up", which affords well-defined nanoscale molecules, typically in crystalline form and amenable to single-crystal X-ray diffraction for structure determination. Our particular focus is on elucidation of the physical properties conferred by the different structural components with a view to ultimately being able to tune these properties chemically. For this purpose, we employ a variety of spectroscopic, magnetochemical, electrochemical, and scattering techniques in concert with theoretical modeling and computation. Studies of RE-POM single-molecule magnets (SMMs) have utilized magnetic susceptibility, inelastic neutron scattering, and ab initio calculations. These investigations have allowed characterization of the crystal field splitting of the rare earth(III) ions that is responsible for the SMM properties of slow magnetic relaxation and magnetization quantum tunneling. Such SMMs are promising for applications in quantum computing and molecular spintronics. Photophysical measurements of a family of hybrid RE-POMs with organic ligands have afforded insights into sensitization of Tb(III) and Eu(III) emission through both organic and polyoxometalate chromophores in the same molecule. Detailed

  13. Composite nanoparticles containing rare earth metal and methods of preparation thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandapallil, Binil Itty Ipe; Krishnan, Lakshmi; Johnson, Francis

    The present invention is directed to composite nanoparticles comprising a metal, a rare earth element, and, optionally, a complexing ligand. The invention is also directed to composite nanoparticles having a core-shell structure and to processes for preparation of composite nanoparticles of the invention.

  14. Separation of rare earths from transition metals by liquid-liquid extraction from a molten salt hydrate to an ionic liquid phase.

    PubMed

    Rout, Alok; Binnemans, Koen

    2014-02-28

    The solvent extraction of trivalent rare-earth ions and their separation from divalent transition metal ions using molten salt hydrates as the feed phase and an undiluted fluorine-free ionic liquid as the extracting phase were investigated in detail. The extractant was tricaprylmethylammonium nitrate, [A336][NO3], and the hydrated melt was calcium nitrate tetrahydrate, Ca(NO3)2·4H2O. The extraction behavior of rare-earth ions was studied for solutions of individual elements, as well as for mixtures of rare earths in the hydrated melt. The influence of different extraction parameters was investigated: the initial metal loading in the feed phase, percentage of water in the feed solution, equilibration time, and the type of hydrated melt. The extraction of rare earths from Ca(NO3)2·4H2O was compared with extraction from CaCl2·4H2O by [A336][Cl] (Aliquat 336). The nitrate system was found to be the better one. The extraction and separation of rare earths from the transition metals nickel, cobalt and zinc were also investigated. Remarkably high separation factors of rare-earth ions over transition metal ions were observed for extraction from Ca(NO3)2·4H2O by the [A336][NO3] extracting phase. Furthermore, rare-earth ions could be separated efficiently from transition metal ions, even in melts with very high concentrations of transition metal ions. Rare-earth oxides could be directly dissolved in the Ca(NO3)2·4H2O phase in the presence of small amounts of Al(NO3)3·9H2O or concentrated nitric acid. The efficiency of extraction after dissolving the rare-earth oxides in the hydrated nitrate melt was identical to extraction from solutions with rare-earth nitrates dissolved in the molten phase. The stripping of the rare-earth ions from the loaded ionic liquid phase and the reuse of the recycled ionic liquid were also investigated in detail.

  15. Ground-state properties of rare-earth metals: an evaluation of density-functional theory.

    PubMed

    Söderlind, Per; Turchi, P E A; Landa, A; Lordi, V

    2014-10-15

    The rare-earth metals have important technological applications due to their magnetic properties, but are scarce and expensive. Development of high-performance magnetic materials with less rare-earth content is desired, but theoretical modeling is hampered by complexities of the rare earths electronic structure. The existence of correlated (atomic-like) 4f electrons in the vicinity of the valence band makes any first-principles theory challenging. Here, we apply and evaluate the efficacy of density-functional theory for the series of lanthanides (rare earths), investigating the influence of the electron exchange and correlation functional, spin-orbit interaction, and orbital polarization. As a reference, the results are compared with those of the so-called 'standard model' of the lanthanides in which electrons are constrained to occupy 4f core states with no hybridization with the valence electrons. Some comparisons are also made with models designed for strong electron correlations. Our results suggest that spin-orbit coupling and orbital polarization are important, particularly for the magnitude of the magnetic moments, and that calculated equilibrium volumes, bulk moduli, and magnetic moments show correct trends overall. However, the precision of the calculated properties is not at the level of that found for simpler metals in the Periodic Table of Elements, and the electronic structures do not accurately reproduce x-ray photoemission spectra.

  16. Dual Functionalization of White Phosphorus: Formation, Characterization, and Reactivity of Rare-Earth-Metal Cyclo-P3 Complexes.

    PubMed

    Du, Shanshan; Yin, Jianhao; Chi, Yue; Xu, Ling; Zhang, Wen-Xiong

    2017-12-11

    The [3+1] fragmentation reaction of rare-earth metallacyclopentadienes 1 a-c with 0.5 equivalents of P 4 affords a series of rare-earth metal cyclo-P 3 complexes 2 a-c and a phospholyl anion 3. 2 a-c demonstrate an unusual η 3 coordination mode with one P-P bond featuring partial π-bonding character. 2 a-c are the first cyclo-P 3 complexes of rare-earth metals, and also the first organo-substituted polyphosphides in the category of Group 3 and f-block elements. Rare-earth metallacyclopentadienes play a dual role in the combination of aromatization and Diels-Alder reaction. Compounds 2 a-c can coordinate to one or two [W(CO) 5 ] units, yielding 4 a-c or 5 c, respectively. Furthermore, oxidation of 2 a with p-benzoquinone produces its corresponding phospholyllithium and regenerated P 4 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Mineral resource of the month: rare earths

    USGS Publications Warehouse

    Hedrick, James B.

    2004-01-01

    As if classified as a top-secret project, the rare earths have been shrouded in secrecy. The principal ore mineral of the group, bastnäsite, rarely appears in the leading mineralogy texts. The long names of the rare-earth elements and some unusual arrangements of letters, many Scandinavian in origin, may have intimidated even those skilled in phonics. Somewhat obscurely labeled, the rare earths are neither rare nor earths (the historical term for oxides). They are a relatively abundant group of metallic elements that occur in nature as nonmetallic compounds and have hundreds of commercial applications.

  18. Half-sandwich rare-earth-catalyzed olefin polymerization, carbometalation, and hydroarylation.

    PubMed

    Nishiura, Masayoshi; Guo, Fang; Hou, Zhaomin

    2015-08-18

    The search for new catalysts for more efficient, selective chemical transformations and for the synthesis of new functional materials has been a long-standing research subject in both academia and industry. To develop new generations of catalysts that are superior or complementary to the existing ones, exploring the potential of untapped elements is an important strategy. Rare-earth elements, including scandium, yttrium, and the lanthanides (La-Lu), constitute one important frontier in the periodic table. Rare-earth elements possess unique chemical and physical properties that are different from those of main-group and late-transition metals. The development of rare-earth-based catalysts by taking the advantage of these unique properties is of great interest and importance. The most stable oxidation state of rare-earth metals is 3+, which is difficult to change under many reaction conditions. The oxidative addition and reductive elimination processes often observed in catalytic cycles involving late transition metals are generally difficult in the case of rare-earth complexes. The 18-electron rule that is applicable to late-transition-metal complexes does not fit rare-earth complexes, whose structures are mainly governed by the sterics (rather than the electron numbers) of the ligands. In the lanthanide series (La-Lu), the ionic radius gradually decreases with increasing atomic number because of the influence of the 4f electrons, which show poor shielding of nuclear charge. Rare-earth metal ions generally show strong Lewis acidity and oxophilicity. Rare-earth metal alkyl and hydride species are highly reactive, showing both nucleophilicity and basicity. The combination of these features, such as the strong nucleophilicity and moderate basicity of the alkyl and hydride species and the high stability, strong Lewis acidity, and unsaturated C-C bond affinity of the 3+ metal ions, can make rare-earth metals unique candidates for the formation of excellent single

  19. Neutron Diffraction Studies of Some Rare Earth-Transition Metal Deuterides.

    DTIC Science & Technology

    1986-05-01

    RD-A168 M NEUTRON DIFFRACTION STUDIES OF SONE RARE EARTH-TRANSITION METAL DEUTERIDES(U) MISSOURI UNIV-ROLLR MATERIALS RESEARCH CENTER N J JAMES MY 86...REPORT William J. James OTtO -il May 1986 ZLECTEJU U. S. Army Research Office DAAG29-83-K-01 59 ".;’ Graduate Center for Materials Research ...9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK AREA & WORK UNIT NUMBERS 2* Graduate Center for Materials Research

  20. The Electronic Structure and Optical Properties of Anatase TiO₂ with Rare Earth Metal Dopants from First-Principles Calculations.

    PubMed

    Xie, Kefeng; Jia, Qiangqiang; Wang, Yizhe; Zhang, Wenxue; Xu, Jingcheng

    2018-01-24

    The electronic and optical properties of the rare earth metal atom-doped anatase TiO₂ have been investigated systematically via density functional theory calculations. The results show that TiO₂ doped by Ce or Pr is the optimal choice because of its small band gap and strong optical absorption. Rare earth metal atom doping induces several impurity states that tune the location of valence and conduction bands and an obvious lattice distortion that should reduce the probability of electron-hole recombination. This effect of band change originates from the 4 f electrons of the rare earth metal atoms, which leads to an improved visible light absorption. This finding indicates that the electronic structure of anatase TiO₂ is tuned by the introduction of impurity atoms.

  1. Rare earths, the lanthanides, yttrium and scandium

    USGS Publications Warehouse

    Bedinger, G.; Bleiwas, D.

    2012-01-01

    In 2011, rare earths were recovered from bastnasite concentrates at the Mountain Pass Mine in California. Consumption of refined rare-earth products decreased in 2011 from 2010. U.S. rare-earth imports originated primarily from China, with lesser amounts from Austria, Estonia, France and Japan. The United States imported all of its demand for yttrium metal and yttrium compounds, with most of it originating from China. Scandium was imported in various forms and processed domestically.

  2. Thermodynamic Considerations of Direct Oxygen Removal from Titanium by Utilizing the Deoxidation Capability of Rare Earth Metals

    NASA Astrophysics Data System (ADS)

    Okabe, Toru H.; Zheng, Chenyi; Taninouchi, Yu-ki

    2018-06-01

    Oxygen removal from metallic Ti is extremely difficult and, currently, there is no commercial process for effectively deoxidizing Ti or its alloys. The oxygen concentration in Ti scraps is normally higher than that in virgin metals such as in Ti sponges produced by the Kroll process. When scraps are remelted with virgin metals for producing primary ingots of Ti or its alloys, the amount of scrap that can be used is limited owing to the accumulation of oxygen impurities. Future demands of an increase in Ti production and of mitigating environmental impacts require that the amount of scrap recycled as a feed material of Ti ingots should also increase. Therefore, it is important to develop methods for removing oxygen directly from Ti scraps. In this study, we evaluated the deoxidation limit for β-Ti using Y or light rare earth metals (La, Ce, Pr, or Nd) as a deoxidant. Thermodynamic considerations suggest that extra-low-oxygen Ti, with an oxygen concentration of 100 mass ppm or less can be obtained using a molten salt equilibrating with rare earth metals. The results presented herein also indicate that methods based on molten salt electrolysis for producing rare earth metals can be utilized for effectively and directly deoxidizing Ti scraps.

  3. Laminated rare earth structure and method of making

    DOEpatents

    Senor, David J [West Richland, WA; Johnson, Roger N [Richland, WA; Reid, Bruce D [Pasco, WA; Larson, Sandra [Richland, WA

    2002-07-30

    A laminated structure having two or more layers, wherein at least one layer is a metal substrate and at least one other layer is a coating comprising at least one rare earth element. For structures having more than two layers, the coating and metal substrate layers alternate. In one embodiment of the invention, the structure is a two-layer laminate having a rare earth coating electrospark deposited onto a metal substrate. In another embodiment of the invention, the structure is a three-layer laminate having the rare earth coating electrospark deposited onto a first metal substrate and the coating subsequently abonded to a second metal substrate. The bonding of the coating to the second metal substrate may be accomplished by hot pressing, hot rolling, high deformation rate processing, or combinations thereof. The laminated structure may be used in nuclear components where reactivity control or neutron absorption is desired and in non-nuclear applications such as magnetic and superconducting films.

  4. Antibacterial, Antifungal and Nematicidal Activities of Rare Earth Ions.

    PubMed

    Wakabayashi, Tokumitsu; Ymamoto, Ayumi; Kazaana, Akira; Nakano, Yuta; Nojiri, Yui; Kashiwazaki, Moeko

    2016-12-01

    Despite the name, rare earth elements are relatively abundant in soil. Therefore, these elements might interact with biosphere during the history of life. In this study, we have examined the effect of rare earth ions on the growth of bacteria, fungi and soil nematode. All rare earth ions, except radioactive promethium that we have not tested, showed antibacterial and antifungal activities comparable to that of copper ions, which is widely used as antibacterial metals in our daily life. Rare earth ions also have nematicidal activities as they strongly perturb the embryonic development of the nematode, Caenorhabditis elegans. Interestingly, the nematicidal activity increased with increasing atomic number of lanthanide ions. Since the rare earth ions did not show high toxicity to the human lymphoblastoid cell line or even stimulate the growth of the cultured cells at 1 mM, it raised the possibility that we can substitute rare earth elements for the antibacterial metals usually used because of their safety.

  5. Crystalline rare-earth activated oxyorthosilicate phosphor

    DOEpatents

    McClellan, Kenneth J.; Cooke, D. Wayne

    2004-02-10

    Crystalline, transparent, rare-earth activated lutetium oxyorthosilicate phosphor. The phosphor consists essentially of lutetium yttrium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Lu(.sub.2-x-z)Y.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor also consists essentially of lutetium gadolinium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Lu(.sub.2-x-z)Gd.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor also consists essentially of gadolinium yttrium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Gd(.sub.2-x-z)Y.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor may be optically coupled to a photodetector to provide a radiation detector.

  6. Non-rare earth magnetic nanoparticles

    DOEpatents

    Carpenter, Everett E.; Huba, Zachary J.; Carroll, Kyler J.; Farghaly, Ahmed; Khanna, Shiv N.; Qian, Meichun; Bertino, Massimo

    2017-09-26

    Continuous flow synthetic methods are used to make single phase magnetic metal alloy nanoparticles that do not contain rare earth metals. Soft and hard magnets made from the magnetic nanoparticles are used for a variety of purposes, e.g. in electric motors, communication devices, etc.

  7. A mini-review on rare earth metal-doped TiO2 for photocatalytic remediation of wastewater.

    PubMed

    Saqib, Najm Us; Adnan, Rohana; Shah, Irfan

    2016-08-01

    Titanium dioxide (TiO2) has been considered a useful material for the treatment of wastewater due to its non-toxic character, chemical stability and excellent electrical and optical properties which contribute in its wide range of applications, particularly in environmental remediation technology. However, the wide band gap of TiO2 photocatalyst (anatase phase, 3.20 eV) limits its photocatalytic activity to the ultraviolet region of light. Besides that, the electron-hole pair recombination has been found to reduce the efficiency of the photocatalyst. To overcome these problems, tailoring of TiO2 surface with rare earth metals to improve its surface, optical and photocatalytic properties has been investigated by many researchers. The surface modifications with rare earth metals proved to enhance the efficiency of TiO2 photocatalyts by way of reducing the band gap by shifting the working wavelength to the visible region and inhibiting the anatase-to-rutile phase transformations. This review paper summarises the attempts on modification of TiO2 using rare earth metals describing their effect on the photocatalytic activities of the modified TiO2 photocatalyst.

  8. Formation of an integrated holding company to produce rare-earth metal articles

    NASA Astrophysics Data System (ADS)

    Bogdanov, S. V.; Grishaev, S. I.

    2013-12-01

    The possibility of formation of a Russian holding company for the production of rare-earth metal articles under conditions of its increasing demand on the world market is considered. It is reasonable to ensure stable business operation on the market under conditions of state-private partnership after the fraction of soled products is determined and supported by the competitive advantages of Russian products.

  9. Hydrometallurgical separation of rare earth elements, cobalt and nickel from spent nickel-metal-hydride batteries

    NASA Astrophysics Data System (ADS)

    Rodrigues, Luiz Eduardo Oliveira Carmo; Mansur, Marcelo Borges

    The separation of rare earth elements, cobalt and nickel from NiMH battery residues is evaluated in this paper. Analysis of the internal content of the NiMH batteries shows that nickel is the main metal present in the residue (around 50% in weight), as well as potassium (2.2-10.9%), cobalt (5.1-5.5%), rare earth elements (15.3-29.0%) and cadmium (2.8%). The presence of cadmium reveals that some Ni-Cd batteries are possibly labeled as NiMH ones. The leaching of nickel and cobalt from the NiMH battery powder with sulfuric acid is efficient; operating variables temperature and concentration of H 2O 2 has no significant effect for the conditions studied. A mixture of rare earth elements is separated by precipitation with NaOH. Finally, solvent extraction with D2EHPA (di-2-ethylhexyl phosphoric acid) followed by Cyanex 272 (bis-2,4,4-trimethylpentyl phosphinic acid) can separate cadmium, cobalt and nickel from the leach liquor. The effect of the main operating variables of both leaching and solvent extraction steps are discussed aiming to maximize metal separation for recycling purposes.

  10. The Electronic Structure and Optical Properties of Anatase TiO2 with Rare Earth Metal Dopants from First-Principles Calculations

    PubMed Central

    Xie, Kefeng; Jia, Qiangqiang; Wang, Yizhe; Zhang, Wenxue; Xu, Jingcheng

    2018-01-01

    The electronic and optical properties of the rare earth metal atom-doped anatase TiO2 have been investigated systematically via density functional theory calculations. The results show that TiO2 doped by Ce or Pr is the optimal choice because of its small band gap and strong optical absorption. Rare earth metal atom doping induces several impurity states that tune the location of valence and conduction bands and an obvious lattice distortion that should reduce the probability of electron–hole recombination. This effect of band change originates from the 4f electrons of the rare earth metal atoms, which leads to an improved visible light absorption. This finding indicates that the electronic structure of anatase TiO2 is tuned by the introduction of impurity atoms. PMID:29364161

  11. New technology of extracting the amount of rare earth metals from the red mud

    NASA Astrophysics Data System (ADS)

    Martoyan, G. A.; Karamyan, G. G.; Vardan, G. A.

    2016-01-01

    The paper outlined the environmental and economic problems associated with red mud - the waste generated in processing of bauxite ore for aluminum production. The chemical analysis of red mud has identified a number of useful elements including rare earth metals. The electromembrane technology of red mud processing with extraction of valuable elements is described. A possible scheme of separation of these metals through electrolysis is also given.

  12. Highly efficient hydrophosphonylation of aldehydes and unactivated ketones catalyzed by methylene-linked pyrrolyl rare earth metal amido complexes.

    PubMed

    Zhou, Shuangliu; Wu, Zhangshuan; Rong, Jiewei; Wang, Shaowu; Yang, Gaosheng; Zhu, Xiancui; Zhang, Lijun

    2012-02-27

    A series of rare earth metal amido complexes bearing methylene-linked pyrrolyl-amido ligands were prepared through silylamine elimination reactions and displayed high catalytic activities in hydrophosphonylations of aldehydes and unactivated ketones under solvent-free conditions for liquid substrates. Treatment of [(Me(3)Si)(2)N](3)Ln(μ-Cl)Li(THF)(3) with 2-(2,6-Me(2)C(6)H(3)NHCH(2))C(4)H(3)NH (1, 1 equiv) in toluene afforded the corresponding trivalent rare earth metal amides of formula {(μ-η(5):η(1)):η(1)-2-[(2,6-Me(2)C(6)H(3))NCH(2)](C(4)H(3)N)LnN(SiMe(3))(2)}(2) [Ln=Y (2), Nd (3), Sm (4), Dy (5), Yb (6)] in moderate to good yields. All compounds were fully characterized by spectroscopic methods and elemental analyses. The yttrium complex was also characterized by (1)H NMR spectroscopic analyses. The structures of complexes 2, 3, 4, and 6 were determined by single-crystal X-ray analyses. Study of the catalytic activities of the complexes showed that these rare earth metal amido complexes were excellent catalysts for hydrophosphonylations of aldehydes and unactivated ketones. The catalyzed reactions between diethyl phosphite and aldehydes in the presence of the rare earth metal amido complexes (0.1 mol%) afforded the products in high yields (up to 99%) at room temperature in short times of 5 to 10 min. Furthermore, the catalytic addition of diethyl phosphite to unactivated ketones also afforded the products in high yields of up to 99% with employment of low loadings (0.1 to 0.5 mol%) of the rare earth metal amido complexes at room temperature in short times of 20 min. The system works well for a wide range of unactivated aliphatic, aromatic or heteroaromatic ketones, especially for substituted benzophenones, giving the corresponding α-hydroxy diaryl phosphonates in moderate to high yields. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Blending Non-Group-3 Transition Metal and Rare-Earth Metal into a C80 Fullerene Cage with D5h Symmetry.

    PubMed

    Wei, Tao; Jin, Fei; Guan, Runnan; Huang, Jing; Chen, Muqing; Li, Qunxiang; Yang, Shangfeng

    2018-02-11

    Rare-earth metals have been mostly entrapped into fullerene cages to form endohedral clusterfullerenes, whereas non-Group-3 transition metals that can form clusterfullerenes are limited to titanium (Ti) and vanadium (V), and both are exclusively entrapped within an I h -C 80 cage. Non-Group-3 transition-metal-containing endohedral fullerenes based on a C 80 cage with D 5h symmetry, V x Sc 3-x N@D 5h -C 80 (x=1, 2), have now been synthesized, which exhibit two variable cluster compositions. The molecular structure of VSc 2 N@D 5h -C 80 was unambiguously determined by X-ray crystallography. According to a comparative study with the reported Ti- and V-containing clusterfullerenes based on a I h -C 80 cage and the analogous D 5h -C 80 -based metal nitride clusterfullerenes containing rare-earth metals only, the decisive role of the non-Group-3 transition metal on the formation of the corresponding D 5h -C 80 -based clusterfullerenes is unraveled. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Pore-Environment Engineering with Multiple Metal Sites in Rare-Earth Porphyrinic Metal-Organic Frameworks.

    PubMed

    Zhang, Liangliang; Yuan, Shuai; Feng, Liang; Guo, Bingbing; Qin, Jun-Sheng; Xu, Ben; Lollar, Christina; Sun, Daofeng; Zhou, Hong-Cai

    2018-04-23

    Multi-component metal-organic frameworks (MOFs) with precisely controlled pore environments are highly desired owing to their potential applications in gas adsorption, separation, cooperative catalysis, and biomimetics. A series of multi-component MOFs, namely PCN-900(RE), were constructed from a combination of tetratopic porphyrinic linkers, linear linkers, and rare-earth hexanuclear clusters (RE 6 ) under the guidance of thermodynamics. These MOFs exhibit high surface areas (up to 2523 cm 2  g -1 ) and unlimited tunability by modification of metal nodes and/or linker components. Post-synthetic exchange of linear linkers and metalation of two organic linkers were realized, allowing the incorporation of a wide range of functional moieties. Two different metal sites were sequentially placed on the linear linker and the tetratopic porphyrinic linker, respectively, giving rise to an ideal platform for heterogeneous catalysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Rare earth elements and permanent magnets (invited)

    NASA Astrophysics Data System (ADS)

    Dent, Peter C.

    2012-04-01

    Rare earth (RE) magnets have become virtually indispensible in a wide variety of industries such as aerospace, automotive, electronics, medical, and military. RE elements are essential ingredients in these high performance magnets based on intermetallic compounds RECo5, RE2TM17 (TM: transition metal), and RE2TM14B. Rare earth magnets are known for their superior magnetic properties—high induction, and coercive force. These properties arise due to the extremely high magnetocrystalline anisotropy made possible by unique 3d-4f interactions between transition metals and rare earths. For more than 40 years, these magnets remain the number one choice in applications that require high magnetic fields in extreme operating conditions—high demagnetization forces and high temperature. EEC produces and specializes in RECo5 and RE2TM17 type sintered magnets. Samarium and gadolinium are key RE ingredients in the powder metallurgical magnet production processes which include melting, crushing, jet milling, pressing, sintering, and heat treating. The magnetic properties and applications of these magnets will be discussed. We will also briefly discuss the past, current, and future of the permanent magnet business. Currently, over 95% of all pure rare earth oxides are sourced from China, which currently controls the market. We will provide insights regarding current and potential new magnet technologies and designer choices, which may mitigate rare earth supply chain issues now and into the future.

  16. Thermodynamic Investigation of the Reduction-Distillation Process for Rare Earth Metals Production

    NASA Astrophysics Data System (ADS)

    Judge, W. D.; Azimi, G.

    2017-10-01

    Owing to their high vapor pressure, the four rare earth metals samarium, europium, thulium, and ytterbium are produced by reduction-distillation whereby their oxides are reduced with metallic lanthanum in vacuo, and the produced metal is subsequently vaporized off. Here, we performed a thorough thermodynamic investigation to establish a fundamental understanding of the reduction-distillation process. Thermodynamic functions including vapor pressures, Gibbs free energies, and enthalpies of reaction were calculated and compared with available experimental data. Furthermore, the kinetics of the process was explored and theoretical evaporation rates were calculated from thermodynamic data. The thermodynamic model developed in this work can help optimize processing conditions to maximize the yield and improve the overall process.

  17. Characterization of metal binding sites onto biochar using rare earth elements as a fingerprint.

    PubMed

    Pourret, Olivier; Houben, David

    2018-02-01

    The ability of biochar to immobilize metals relies on the amount of functional groups at its surface but the contribution of each functional groups (e.g. carboxylic, phenolic) to metal bonding is poorly known. Using a new approach based on previous works on rare earth element (REE) interactions with humic substances, we aim at elucidating the relative contribution of these binding sites to metal sorption under various conditions (i.e. pH and ionic strengths, IS). Using batch experiments, REE sorption onto biochar was analyzed from pH 3 to 9 and IS 10 -1 mol/L to 10 -3 mol/L. Rare earth element patterns show a Middle REE (MREE) downward concavity at acidic pH and low ionic strength. These patterns are in good agreement with existing datasets quantifying REE binding with humic substances. Indeed, the MREE downward concavity displayed by REE-biochar complexation pattern compares well with REE patterns with various organic compounds. This similarity in the REE complexation pattern shapes suggests that carboxylic groups are the main binding sites of REE in biochar. Overall, our results indicate that the strength of the metal bonding with biochar increases when pH and IS increase, suggesting that biochar is more efficient for long-term metal immobilization at near neutral pH and high ionic strength.

  18. Distribution behavior of uranium, neptunium, rare-earth elements ( Y, La, Ce, Nd, Sm, Eu, Gd) and alkaline-earth metals (Sr,Ba) between molten LiClKCI eutectic salt and liquid cadmium or bismuth

    NASA Astrophysics Data System (ADS)

    Kurata, M.; Sakamura, Y.; Hijikata, T.; Kinoshita, K.

    1995-12-01

    Distribution coefficients of uranium neptunium, eight rare-earth elements (Y, La, Ce, Pr, Nd, Sm, Eu and Gd) and two alkaline-earth metals (Sr and Ba) between molten LiCl-KCI eutectic salt and either liquid cadmium or bismuth were measured at 773 K. Separation factors of trivalent rare-earth elements to uranium or neptunium in the LiCl-KCl/Bi system were by one or two orders of magnitude larger than those in the LiCl-KCl/Cd system. On the contrary, the separation factors of alkaline-earth metals and divalent rare-earth elements to trivalent rare-earth elements were by one or two orders of magnitude smaller in the LiCl-KCl/Bi system.

  19. CADMIUM-RARE EARTH BORATE GLASS AS REACTOR CONTROL MATERIAL

    DOEpatents

    Ploetz, G.L.; Ray, W.E.

    1958-11-01

    A reactor control rod fabricated from a cadmiumrare earth-borate glass is presented. The rare earth component of this glass is selected from among those rare earths having large neutron capture cross sections, such as samarium, gadolinium or europium. Partlcles of this glass are then dispersed in a metal matrix by standard powder metallurgy techniques.

  20. [Effects of arbuscular mycorrhizal fungi on the growth and rare earth elements uptake of soybean grown in rare earth mine tailings].

    PubMed

    Guo, Wei; Zhao, Ren-xin; Zhao, Wen-jing; Fu, Rui-ying; Guo, Jiang-yuan; Zhang, Jun

    2013-05-01

    A greenhouse pot experiment was conducted to investigate the influence of arbuscular mycorrhizal (AM) fungi Glomus versiforme on the plant growth, nutrient uptake, C: N: P stoichiometric, uptake of heavy metals and rare earth elements by soybean (Glycine max) grown in rare earth mine tailings. The aim was to provide a basis for the revegetation of rare earth mine tailings. The results indicated that soybean had a high mycorrhizal colonization and symbiotic associations were successfully established with G. versiforme, with an average rate of approximately 67%. The colonization of G. versiforme significantly promoted the growth of soybean, increased P, K contents, and decreased C: N: P ratios, supporting the growth rate hypothesis. Inoculation with G. versiforme significantly decreased shoots and roots La, Ce, Pr and Nd concentrations of soybean compared to the control treatment. However, inoculation with G. versiforme had no significant effect on the heavy metal concentrations, except for significantly decreased shoot Fe and Cr concentrations and increased root Cd concentrations. The experiment demonstrates that AM fungi have a potential role for soybean to adapt the composite adversity of rare earth tailings and play a positive role in revegetation of rare earth mine tailings. Further studies on the role of AM fungi under natural conditions should be conducted.

  1. Recovery of Rare Earths, Precious Metals and Other Critical Materials from Geothermal Waters with Advanced Sorbent Structures

    DOE Data Explorer

    Pamela M. Kinsey

    2015-09-30

    The work evaluates, develops and demonstrates flexible, scalable mineral extraction technology for geothermal brines based upon solid phase sorbent materials with a specific focus upon rare earth elements (REEs). The selected organic and inorganic sorbent materials demonstrated high performance for collection of trace REEs, precious and valuable metals. The nanostructured materials typically performed better than commercially available sorbents. Data contains organic and inorganic sorbent removal efficiency, Sharkey Hot Springs (Idaho) water chemsitry analysis, and rare earth removal efficiency from select sorbents.

  2. Magnetic Partitioning Nanofluid for Rare Earth Extraction from Geothermal Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGrail, Bernard P.; Thallapally, Praveen K.; Liu, Jian

    Rare earth metals are critical materials in a wide variety of applications in generating and storing renewable energy and in designing more energy efficient devices. Extracting rare earth metals from geothermal brines is a very challenging problem due to the low concentrations of these elements and engineering challenges with traditional chemical separations methods involving packed sorbent beds or membranes that would impede large volumetric flow rates of geothermal fluids transitioning through the plant. We are demonstrating a simple and highly cost-effective nanofluid-based method for extracting rare earth metals from geothermal brines. Core-shell composite nanoparticles are produced that contain a magneticmore » iron oxide core surrounded by a shell made of silica or metal-organic framework (MOF) sorbent functionalized with chelating ligands selective for the rare earth elements. By introducing the nanoparticles at low concentration (≈0.05 wt%) into the geothermal brine after it passes through the plant heat exchanger, the brine is exposed to a very high concentration of chelating sites on the nanoparticles without need to pass through a large and costly traditional packed bed or membrane system where pressure drop and parasitic pumping power losses are significant issues. Instead, after a short residence time flowing with the brine, the particles are effectively separated out with an electromagnet and standard extraction methods are then applied to strip the rare earth metals from the nanoparticles, which are then recycled back to the geothermal plant. Recovery efficiency for the rare earths at ppm level has now been measured for both silica and MOF sorbents functionalized with a variety of chelating ligands. A detailed preliminary techno-economic performance analysis of extraction systems using both sorbents showed potential to generate a promising internal rate of return (IRR) up to 20%.« less

  3. An Operationally Simple Method for Separating the Rare-Earth Elements Neodymium and Dysprosium.

    PubMed

    Bogart, Justin A; Lippincott, Connor A; Carroll, Patrick J; Schelter, Eric J

    2015-07-06

    Rare-earth metals are critical components of electronic materials and permanent magnets. Recycling of consumer materials is a promising new source of rare earths. To incentivize recycling there is a clear need for simple methods for targeted separations of mixtures of rare-earth metal salts. Metal complexes of a tripodal nitroxide ligand [{(2-(t) BuNO)C6 H4 CH2 }3 N](3-) (TriNOx(3-) ), feature a size-sensitive aperture formed of its three η(2) -(N,O) ligand arms. Exposure of metal cations in the aperture induces a self-associative equilibrium comprising [M(TriNOx)thf]/ [M(TriNOx)]2 (M=rare-earth metal). Differences in the equilibrium constants (Keq ) for early and late metals enables simple Nd/Dy separations through leaching with a separation ratio SNd/Dy =359. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Dehydrogenation of secondary amines: synthesis, and characterization of rare-earth metal complexes incorporating imino- or amido-functionalized pyrrolyl ligands.

    PubMed

    Li, Qinghai; Zhou, Shuangliu; Wang, Shaowu; Zhu, Xiancui; Zhang, Lijun; Feng, Zhijun; Guo, Liping; Wang, Fenhua; Wei, Yun

    2013-02-28

    The dehydrogenation of pyrrolyl-functionalized secondary amines initiated by rare-earth metal amides was systematically studied. Reactions of the rare-earth metal amides [(Me(3)Si)(2)N](3)RE(μ-Cl)Li(THF)(3) with pyrrolyl-functionalized secondary amines 2-(t)BuNHCH(2)-5-R-C(4)H(2)NH (R = H (1), R = (t)Bu (2)) led to dehydrogenation of the secondary amines with isolation of imino-functionalized pyrrolyl rare-earth metal complexes [2-(t)BuN=CH-5-R-C(4)H(2)N](2)REN(SiMe(3))(2) (R = H, RE = Y (3a), Dy (3b), Yb (3c), Eu (3d); R = (t)Bu, RE = Y (4a), Dy (4b), Er (4c)). The mixed ligands erbium complex [2-(t)BuNCH(2)-5-(t)Bu-C(4)H(2)N]Er[2-(t)BuN=CH-5-(t)BuC(4)H(2)N](2)ClLi(2)(THF) (4c') was isolated in a short reaction time for the synthesis of complex 4c. Reaction of the deuterated pyrrolyl-functionalized secondary amine 2-((t)BuNHCHD)C(4)H(3)NH with yttrium amide [(Me(3)Si)(2)N](3)Y(μ-Cl)Li(THF)(3) further proved that pyrrolyl-amino ligands were transferred to pyrrolyl-imino ligands. Treatment of 2-((t)BuNHCH(2))C(4)H(3)NH (1) with excess (Me(3)Si)(2)NLi gave the only pyrrole deprotonated product {[η(5):η(2):η(1)-2-((t)BuNHCH(2))C(4)H(3)N]Li(2)N(SiMe(3))(2)}(2) (5), indicating that LiN(SiMe(3))(2) could not dehydrogenate the secondary amines to imines and rare-earth metal ions had a decisive effect on the dehydrogenation. The reaction of the rare-earth metal amides [(Me(3)Si)(2)N](3)RE(μ-Cl)Li(THF)(3) with 1 equiv. of more bulky pyrrolyl-functionalized secondary amine 2-[(2,6-(i)Pr(2)C(6)H(3))NHCH(2)](C(4)H(3)NH) (6) in toluene afforded the only amine and pyrrole deprotonated dinuclear rare-earth metal amido complexes {(μ-η(5):η(1)):η(1)-2-[(2,6-(i)Pr(2)C(6)H(3))NCH(2)]C(4)H(3)N]LnN(SiMe(3))(2)}(2) (RE = Nd (7a), Sm (7b), Er (7c)), no dehydrogenation of secondary amine to imine products were observed. On the basis of experimental results, a plausible mechanism for the dehydrogenation of secondary amines to imines was proposed.

  5. Anthropogenic Cycles of Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Du, X.; Graedel, T. E.

    2009-12-01

    This research will develop quantitatively resolved anthropogenic cycles and in-use stocks for the rare earth metals specifically cerium, lanthanum and dysprosium in Japan, China, and the U.S. for the year of 2007. Rare earth elements (REE) is a group of 17 scare metals widely used in a growing number of emerging technologies and have been in high demand for emerging technologies as raw materials during past the three decades. New market participants from newly industrializing countries, primarily China, have had strong impacts on the demand of share. Consequently, the importance to sustain a reliable, steady, uninterrupted supply on global market triggered comprehensive research to recognize and understand the life cycles of rare earths. Moreover, because China plays a dominant role in mining production since 1990, it requires the assessment for the countries, which are almost completely dependent on imports from China with respect to rare earth resources. The study aims to analyze the flows and stocks of rare earth elements individually as elemental form in spite of their natural geological co-occurrence and mixed composition in applications. By applying the method of Material Flow Analysis (MFA) work has been done on evaluating current and historical flows of specific technologically significant materials, for example, copper, zinc, nickel, etc., determining the stocks available in different types of reservoirs (e.g., lithosphere, in-use) and the flows among the reservoirs, developing scenarios of possible futures of metal use, and assessing the environmental and policy implications of the results. Therefore, REE as a new target deserves inclusion because of its potential demand-supply conflict and importance to secure the competitive advantage of technical innovation in future. This work will generate a quantitatively resolved anthropogenic life cycle and in-use stocks for REE for the main target countries for a chosen year, 2007, providing flows and stocks from

  6. Yttrium and rare earth stabilized fast reactor metal fuel

    DOEpatents

    Guon, Jerold; Grantham, LeRoy F.; Specht, Eugene R.

    1992-01-01

    To increase the operating temperature of a reactor, the melting point and mechanical properties of the fuel must be increased. For an actinide-rich fuel, yttrium, lanthanum and/or rare earth elements can be added, as stabilizers, to uranium and plutonium and/or a mixture of other actinides to raise the melting point of the fuel and improve its mechanical properties. Since only about 1% of the actinide fuel may be yttrium, lanthanum, or a rare earth element, the neutron penalty is low, the reactor core size can be reduced, the fuel can be burned efficiently, reprocessing requirements are reduced, and the nuclear waste disposal volumes reduced. A further advantage occurs when yttrium, lanthanum, and/or other rare earth elements are exposed to radiation in a reactor, they produce only short half life radioisotopes, which reduce nuclear waste disposal problems through much shorter assured-isolation requirements.

  7. Processing of Phosphorus Slag with Recovery of Rare Earth Metals and Obtaining Silicon Containing Cake

    NASA Astrophysics Data System (ADS)

    Karshigina, Zaure; Abisheva, Zinesh; Bochevskaya, Yelena; Akcil, Ata; Sharipova, Aynash; Sargelova, Elmira

    2016-10-01

    The present research is devoted to the processing of slag generating during the yellow phosphorus production. In this paper are presented studies on leaching of phosphorus production slag by nitric acid with recovery of rare earth metals (REMs) into solution. REMs recovery into the solution achieved 98 % during the leaching process with using 7.5 mol/L of HNO3, liquid-to-solid ratio is 2.6:1, temperature is 60°C, process duration is 1 hour and stirrer speed is 500 rpm. Behaviour during the leaching of associated components such as calcium, aluminium, and iron was studied. After the leaching cake contains ∼⃒75-85 % of SiO2 and it might be useful for obtaining of precipitated silicon dioxide. With the purpose of separation from the impurities, recovery and concentrating of REMs, the obtained solution after leaching was subjected to extraction processing methods. The influence of ratio of organic and aqueous phases (O: A) on the extraction of rare earth metals by tributyl phosphate (TBP) with concentrations from 20 up to 100 % was studied. The REMs extraction with increasing TBP concentration under changes O:A ratio from 1:20 down to 1:1 into the organic phase from the solutions after nitric acid leaching increased from 22.2 up to 99.3%. The duration effect of REMs extraction process was studied by tributyl phosphate. It is revealed that with increasing of duration of the extraction process from 10 to 30 minutes REMs recovery into the organic phase almost did not changed. The behaviour of iron in the extraction process by TBP was studied. It was found that such accompanying components as calcium and aluminium by tributyl phosphate didn't extracted. To construct isotherm of REMs extraction of by tributyl phosphate was used variable volume method. It was calculated three-step extraction is needed for REMs recovery from the solutions after nitric acid leaching of phosphorus production slag. The process of the three-steps counter current extraction of rare earth

  8. Enrichment of rare earth metal ions by the highly selective adsorption of phytate intercalated layered double hydroxide.

    PubMed

    Jin, Cheng; Liu, Huimin; Kong, Xianggui; Yan, Hong; Lei, Xiaodong

    2018-02-27

    Phytate intercalated MgAl layered double hydroxide (MgAl-LDH) was prepared by an anion exchange method with the precursor NO 3 - containing MgAl-LDH. The final as-synthesized product [Mg 0.69 Al 0.31 (OH) 2 ] (phytateNa 6 ) 0.05 (NO 3 ) 0.01 ·mH 2 O (phytate-LDH) has highly selective adsorption ability for some metal ions and can be used to enrich rare earth metal ions in mixed solution, such as Pr 3+ and Ce 3+ from a mixed solution of them with Pb 2+ and Co 2+ . At first, phytate-LDH has good adsorption performance for these ions in single metal ion solutions. At low concentration (below 10 mg L -1 ), all the capture rates of the four metal ions were more than 97%, for highly toxic Pb 2+ it was even up to nearly 100%, and a high capture rate (99.87%) was maintained for Pb 2+ at a high concentration (100 mg L -1 ). When all the four metal ions are co-existing in aqueous solution, the selectivity order is Pb 2+ ≫ Pr 3+ ≈ Ce 3+ > Co 2+ . In a solution containing mixtures of the three metal ions of Pr 3+ , Ce 3+ , and Co 2+ , the selectivity order is Pr 3+ ≈ Ce 3+ ≫ Co 2+ , and in a solution containing mixtures of Pr 3+ with Co 2+ and Ce 3+ with Co 2+ , the selectivity orders are Pr 3+ ≫ Co 2+ and Ce 3+ ≫ Co 2+ , respectively. The high selectivity and adsorption capacities for Pb 2+ , Co 2+ , Pr 3+ , and Ce 3+ result in the efficient removal of Pb 2+ and enrichment of the rare earth metal ions Pr 3+ and Ce 3+ by phytate-LDH. Based on the elemental analysis, it is found that the difference of the adsorption capacities is mainly due to the different coordination number of them with phytate-LDH. With molecular simulation, we believe that the adsorption selectivity is due to the difference of the binding energy between the metal ion and phytate-LDH. Therefore, the phytate-LDH is promising for the enrichment and/or purification of the rare earth metal ions and removal of toxic metal ions from waste water.

  9. High-temperature corrosion of metals in the salt and metallic melts containing rare earths

    NASA Astrophysics Data System (ADS)

    Karpov, V. V.; Abramov, A. V.; Zhilyakov, A. Yu.; Belikov, S. V.; Volkovich, V. A.; Polovov, I. B.; Rebrin, O. I.

    2016-09-01

    A complex of independent methods was employed to study the corrosion resistance of molybdenum, zirconium, tantalum and tungsten in chloride, chloride-fluoride and fluoride-oxide melts based on LiCl, CaCl2, NaCl- KCl, LiF, and containing rare earths. Tests were conducted for 30 h at 750-1050 °C. The metals showed excellent corrosion resistance in fused chlorides (the corrosion rates were below 0.0005 g/(m2 h). Despite the presence of chemically active fluoride ions in the chloride-fluoride melts, the metals studied also showed very low corrosion rates, except molybdenum, for which the rate of corrosion was 0,8 g/(m2 h). The corrosion resistance of tantalum was considerably reduced in the fluoride-oxide melts; the corrosion rate was over 1 g/(m2 h) corresponding to the 8-th grade of stability and placing tantalum to the group of "low stability" materials.

  10. Extraction of trivalent rare-earth metal nitrates by solutions of tributyl phosphate and diisooctylmethylphosphonate in kerosene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyartman, A.K.; Puzikov, E.A.; Kopyrin, A.A.

    1995-01-01

    Isotherms of extraction of trivalent rare-earth metal nitrates in the series lanthanum-lutetium, yttrium by 0.5-2.5 M solutions of tri-n-buty1 phosphate and diisooctyl methylphosphonate in kerosene at 298.15 K, pH 2 are presented. The influence of the ionic strength of aqueous phase and extractant concentration on the concentration extraction constants in the case of formation of metal(III) trisolvates in organic phase is given by equation.

  11. Cluster synthesis and direct ordering of rare-earth transition-metal nanomagnets.

    PubMed

    Balasubramanian, Balamurugan; Skomski, Ralph; Li, Xingzhong; Valloppilly, Shah R; Shield, Jeffrey E; Hadjipanayis, George C; Sellmyer, David J

    2011-04-13

    Rare-earth transition-metal (R-TM) alloys show superior permanent magnetic properties in the bulk, but the synthesis and application of R-TM nanoparticles remains a challenge due to the requirement of high-temperature annealing above about 800 °C for alloy formation and subsequent crystalline ordering. Here we report a single-step method to produce highly ordered R-TM nanoparticles such as YCo(5) and Y(2)Co(17), without high-temperature thermal annealing by employing a cluster-deposition system and investigate their structural and magnetic properties. The direct ordering is highly desirable to create and assemble R-TM nanoparticle building blocks for future permanent-magnet and other significant applications.

  12. Lattice vibrations and electronic transitions in the rare-earth metals: yttrium, gadolinium and lutetium.

    PubMed

    Olijnyk, Helmut

    2005-01-12

    Lattice vibrations in high-pressure phases of Y, Gd and Lu were studied by Raman spectroscopy. The observed phonon frequencies decrease towards the transitions to the dhcp and fcc phases. There is evidence that the entire structural sequence [Formula: see text] under pressure for the individual regular rare-earth metals and along the lanthanide series at ambient pressure involve softening of certain acoustic and optical phonon modes and of the elastic shear modulus C(44). Comparison is made to transitions between close-packed lattices in other metals, and possible correlations to s-d electron transfer are discussed.

  13. Squeezing clathrate cages to host trivalent rare-earth guests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jian; He, Yuping; Mordvinova, Natalia E.

    Strike difference of the trivalent rare-earth cations from their alkali and alkaline-earth peers is in the presence of localized 4f-electrons and strong spin-orbit coupling. Placing trivalent rare-earth cations inside the fullerene molecules or in between the blocks of itinerant magnetic intermetallics gave rise to plethora of fascinating properties and materials. A long-time missing but hardly desired piece is the semiconducting or metallic compound where rare-earth cations are situated inside the oversized polyhedral cages of three-dimensional framework. In this work we present a synthesis of such compounds, rare-earth containing clathrates Ba 8-xR xCu 16P 30. The unambiguous proofs of their compositionmore » and crystal structure were achieved by a combination of synchrotron powder diffraction, time-of-flight neutron powder diffraction, scanning-transmission electron microscopy, and electron energy-loss spectroscopy. Our quantum-mechanical calculations and experimental characterizations show that the incorporation of the rare-earth cations significantly enhances the hole mobility and concentration which results in the drastic increase in the thermoelectric performance.« less

  14. The Not-So-Rare Earths.

    ERIC Educational Resources Information Center

    Muecke, Gunter K.; Moller, Peter

    1988-01-01

    Describes the characteristics of rare earth elements. Details the physical chemistry of rare earths. Reviews the history of rare earth chemistry and mineralogy. Discusses the mineralogy and crystallography of the formation of rare earth laden minerals found in the earth's crust. Characterizes the geologic history of rare earth elements. (CW)

  15. Material efficiency: rare and critical metals.

    PubMed

    Ayres, Robert U; Peiró, Laura Talens

    2013-03-13

    In the last few decades, progress in electronics, especially, has resulted in important new uses for a number of geologically rare metals, some of which were mere curiosities in the past. Most of them are not mined for their own sake (gold, the platinum group metals and the rare Earth elements are exceptions) but are found mainly in the ores of the major industrial metals, such as aluminium, copper, zinc and nickel. We call these major metals 'attractors' and the rare accompanying metals 'hitch-hikers'. The key implication is that rising prices do not necessarily call forth greater output because that would normally require greater output of the attractor metal. We trace the geological relationships and the functional uses of these metals. Some of these metals appear to be irreplaceable in the sense that there are no known substitutes for them in their current functional uses. Recycling is going to be increasingly important, notwithstanding a number of barriers.

  16. China's rare-earth industry

    USGS Publications Warehouse

    Tse, Pui-Kwan

    2011-01-01

    Introduction China's dominant position as the producer of over 95 percent of the world output of rare-earth minerals and rapid increases in the consumption of rare earths owing to the emergence of new clean-energy and defense-related technologies, combined with China's decisions to restrict exports of rare earths, have resulted in heightened concerns about the future availability of rare earths. As a result, industrial countries such as Japan, the United States, and countries of the European Union face tighter supplies and higher prices for rare earths. This paper briefly reviews China's rare-earth production, consumption, and reserves and the important policies and regulations regarding the production and trade of rare earths, including recently announced export quotas. The 15 lanthanide elements-lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium (atomic numbers 57-71)-were originally known as the rare earths from their occurrence in oxides mixtures. Recently, some researchers have included two other elements-scandium and yttrium-in their discussion of rare earths. Yttrium (atomic number 39), which lies above lanthanum in transition group III of the periodic table and has a similar 3+ ion with a noble gas core, has both atomic and ionic radii similar in size to those of terbium and dysprosium and is generally found in nature with lanthanides. Scandium (atomic number 21) has a smaller ionic radius than yttrium and the lanthanides, and its chemical behavior is intermediate between that of aluminum and the lanthanides. It is found in nature with the lanthanides and yttrium. Rare earths are used widely in high-technology and clean-energy products because they impart special properties of magnetism, luminescence, and strength. Rare earths are also used in weapon systems to obtain the same properties.

  17. Lattice vibrations and electronic transitions in the rare-earth metals: yttrium, gadolinium and lutetium

    NASA Astrophysics Data System (ADS)

    Olijnyk, Helmut

    2005-01-01

    Lattice vibrations in high-pressure phases of Y, Gd and Lu were studied by Raman spectroscopy. The observed phonon frequencies decrease towards the transitions to the dhcp and fcc phases. There is evidence that the entire structural sequence {\\mathrm {hcp \\to Sm\\mbox {-}type \\to dhcp \\to fcc}} under pressure for the individual regular rare-earth metals and along the lanthanide series at ambient pressure involve softening of certain acoustic and optical phonon modes and of the elastic shear modulus C44. Comparison is made to transitions between close-packed lattices in other metals, and possible correlations to s-d electron transfer are discussed.

  18. Energetic Ionic Liquids Based on Anionic Rare Earth Nitrate Complexes (Preprint)

    DTIC Science & Technology

    2008-07-10

    a glass transition temperature (Tg) at -46 oC. However, it is only stable in dry air, and thus must be protected from water. At 75 oC, clear weight...involved highly toxic and corrosive chemicals, N2O4 and NOCl. Ligands which coordinate via oxygen atoms to a rare earth metal ion give rise to stable...complexes. Thus higher air and thermal stabilities may be obtained by introducing rare earth metal nitrates as main components of ionic liquids. We

  19. Versatile reactivities of rare-earth metal dialkyl complexes supported by a neutral pyrrolyl-functionalized β-diketiminato ligand.

    PubMed

    Zhu, Xiancui; Li, Yang; Guo, Dianjun; Wang, Shaowu; Wei, Yun; Zhou, Shuangliu

    2018-03-12

    Herein, rare-earth metal dialkyl complexes supported by a neutral pyrrolyl-functionalized β-diketiminato ligand with the formula LRE(CH 2 SiMe 3 ) 2 (thf) (RE = Y (1a), Dy (1b), Er (1c), Yb (1d); L = MeC(NDipp)CHC(Me)NCH 2 CH 2 NC 4 H 2 -2,5-Me 2 , Dipp = 2,6- i Pr 2 C 6 H 3 ) were synthesized via the reactions of the β-diketimine HL with the rare-earth metal trialkyl complexes RE(CH 2 SiMe 3 ) 3 (thf) 2 in high yields. The reactivities of 1 with pyridine derivatives, unsaturated substrates, and elemental sulfur were investigated, and some interesting chemical transformations were observed. Ligand exchange and activation of sp 2 and sp 3 C-H bonds occurred during the reactions with pyridine derivatives to afford different types of mononuclear rare-earth metal pyridyl complexes, namely, LEr(CH 2 SiMe 3 ) 2 (η 1 -NC 5 H 4 ) (2c), LRE(η 3 -CH 2 -2-NC 5 H 2 -4,6-Me 2 ) 2 (RE = Y (3a), Er (3c)), and LRE(CH 2 SiMe 3 )(η 2 -(C,N)-2-(2-C 6 H 4 NC 5 H 4 )) (RE = Er (4c), Yb = (4d)). Similarly, activation of the sp C-H bond occurred during the reaction of phenylacetylene with 1c to produce the dinuclear erbium alkynyl complex [LEr(CH 2 SiMe 3 )(μ-C[triple bond, length as m-dash]CPh)] 2 (5c). The mixed amidinate-β-diketiminato ytterbium complex LYb[(Dipp)NC(CH 2 SiMe 3 )N(Dipp)](CH 2 SiMe 3 ) (6d) was obtained by the insertion of bis(2,6-diisopropylphenyl)carbodiimide into a Yb-alkyl bond, as well as via the direct alkane elimination of a CH 2 SiMe 3 moiety with bis(2,6-diisopropylphenyl)formamidine to afford the erbium complex LEr(DippNCHNDipp)(CH 2 SiMe 3 ) (7c). A rare sp 2 C-H bond oxidation of the β-diketiminato backbone with elemental sulfur insertion was detected to provide the unprecedented dinuclear rare-earth metal thiolate complexes (LRE) 2 (μ-SCH 2 SiMe 3 ) 2 (μ-SCC(Me)(NDipp)C(Me)NCH 2 CH 2 NC 4 H 2 Me 2 -2,5) (RE = Y (8a), Er (8c)) in the reactions of S 8 with 1a and 1c, respectively. The molecular structures of the complexes 1-8 were determined by

  20. Rare-earth-free high energy product manganese-based magnetic materials.

    PubMed

    Patel, Ketan; Zhang, Jingming; Ren, Shenqiang

    2018-06-14

    The constant drive to replace rare-earth metal magnets has initiated great interest in an alternative. Manganese (Mn) has emerged to be a potential candidate as a key element in rare-earth-free magnets. Its five unpaired valence electrons give it a large magnetocrystalline energy and the ability to form several intermetallic compounds. These factors have led Mn-based magnets to be a potential replacement for rare-earth permanent magnets for several applications, such as efficient power electronics, energy generators, magnetic recording and tunneling applications, and spintronics. For past few decades, Mn-based magnets have been explored in many different forms, such as bulk magnets, thin films, and nanoparticles. Here, we review the recent progress in the synthesis and structure-magnetic property relationships of Mn-based rare-earth-free magnets (MnBi, MnAl and MnGa). Furthermore, we discuss their potential to replace rare-earth magnetic materials through the control of their structure and composition to achieve the theoretically predicted magnetic properties.

  1. IUPAC-NIST Solubility Data Series. 100. Rare Earth Metal Fluorides in Water and Aqueous Systems. Part 1. Scandium Group (Sc, Y, La)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mioduski, Tomasz; Gumiński, Cezary, E-mail: cegie@chem.uw.edu.pl; Zeng, Dewen, E-mail: dewen-zeng@hotmail.com

    2014-03-15

    This work presents an assessment of solubility data for rare earth metal fluorides (generally of trivalent metals and of CeF{sub 4}) in water and in aqueous ternary systems. Compilations of all available experimental data are introduced for each rare earth metal fluoride with a corresponding critical evaluation. Every such evaluation contains a collection of all solubility results in water, a selection of suggested solubility data, and a brief discussion of the multicomponent systems. Because the ternary systems were seldom studied more than once, no critical evaluations of such data were possible. Only simple fluorides (no complexes or binary salts) aremore » treated as the input substances in this report. The literature has been covered through the end of 2013.« less

  2. Synthesis, structure, and catalytic activity of novel trinuclear rare-earth metal amido complexes incorporating μ-η5:η1 bonding indolyl and μ3-oxo groups.

    PubMed

    Yang, Song; Zhu, Xiancui; Zhou, Shuangliu; Wang, Shaowu; Feng, Zhijun; Wei, Yun; Miao, Hui; Guo, Liping; Wang, Fenhua; Zhang, Guangchao; Gu, Xiaoxia; Mu, Xiaolong

    2014-02-14

    The reactions of different pyrrolyl-functionalized indoles with rare-earth metal(III) amides [(Me3Si)2N]3RE(III)(μ-Cl)Li(THF)3 (RE = Yb, Er, Dy, Eu, Y) produced different kinds of rare-earth metal amido complexes. Reactions of N-((1H-pyrrol-2-yl)methylene)-2-(1H-indol-3-yl)ethanamine with rare-earth metal amides [(Me3Si)2N]3RE(III)(μ-Cl)Li(THF)3 (RE = Yb, Er, Dy, Eu, Y) in toluene or THF at temperatures of 75-80 °C afforded the novel trinuclear rare-earth metal amido complexes incorporating the indolyl ligand in μ-η(5):η(1) bonding modes and a μ3-O group, which is believed to originate from cleavage of the THF ring based on experimental results. Reactions of 2-(1H-indol-3-yl)-N-((1-methyl-1H-pyrrol-2-yl)methylene)ethanamine with rare-earth metal(III) amides [(Me3Si)2N]3RE(III)(μ-Cl)Li(THF)3 (RE = Yb, Dy) produced mononuclear ytterbium and dysprosium amides having the indolyl ligand in an η(1) bonding fashion. The results indicate that substituents not only have an influence on reactivity, but also have an influence on the bonding of the indolyl ligands with metals. The catalytic activities of the novel lanthanide amido complexes for the hydrophosphonylation of both aromatic and aliphatic aldehydes and ketones were explored. The results indicate that these complexes display a high catalytic activity for the C-P bond formation under mild conditions when using low catalyst loadings (0.1 mol% for aldehydes and ketones). Thus, it provides a potential way to prepare α-hydroxy phosphonates.

  3. Quantum Theory of Rare-Earth Magnets

    NASA Astrophysics Data System (ADS)

    Miyake, Takashi; Akai, Hisazumi

    2018-04-01

    Strong permanent magnets mainly consist of rare earths (R) and transition metals (T). The main phase of the neodymium magnet, which is the strongest magnet, is Nd2Fe14B. Sm2Fe17N3 is another magnet compound having excellent magnetic properties comparable to those of Nd2Fe14B. Their large saturation magnetization, strong magnetocrystalline anisotropy, and high Curie temperature originate from the interaction between the T-3d electrons and R-4f electrons. This article discusses the magnetism of rare-earth magnet compounds. The basic theory and first-principles calculation approaches for quantitative description of the magnetic properties are presented, together with applications to typical compounds such as Nd2Fe14B, Sm2Fe17N3, and the recently synthesized NdFe12N.

  4. Calculating the Magnetic Anisotropy of Rare-Earth-Transition-Metal Ferrimagnets

    NASA Astrophysics Data System (ADS)

    Patrick, Christopher E.; Kumar, Santosh; Balakrishnan, Geetha; Edwards, Rachel S.; Lees, Martin R.; Petit, Leon; Staunton, Julie B.

    2018-03-01

    Magnetocrystalline anisotropy, the microscopic origin of permanent magnetism, is often explained in terms of ferromagnets. However, the best performing permanent magnets based on rare earths and transition metals (RE-TM) are in fact ferrimagnets, consisting of a number of magnetic sublattices. Here we show how a naive calculation of the magnetocrystalline anisotropy of the classic RE-TM ferrimagnet GdCo5 gives numbers that are too large at 0 K and exhibit the wrong temperature dependence. We solve this problem by introducing a first-principles approach to calculate temperature-dependent magnetization versus field (FPMVB) curves, mirroring the experiments actually used to determine the anisotropy. We pair our calculations with measurements on a recently grown single crystal of GdCo5 , and find excellent agreement. The FPMVB approach demonstrates a new level of sophistication in the use of first-principles calculations to understand RE-TM magnets.

  5. Calculating the Magnetic Anisotropy of Rare-Earth-Transition-Metal Ferrimagnets.

    PubMed

    Patrick, Christopher E; Kumar, Santosh; Balakrishnan, Geetha; Edwards, Rachel S; Lees, Martin R; Petit, Leon; Staunton, Julie B

    2018-03-02

    Magnetocrystalline anisotropy, the microscopic origin of permanent magnetism, is often explained in terms of ferromagnets. However, the best performing permanent magnets based on rare earths and transition metals (RE-TM) are in fact ferrimagnets, consisting of a number of magnetic sublattices. Here we show how a naive calculation of the magnetocrystalline anisotropy of the classic RE-TM ferrimagnet GdCo_{5} gives numbers that are too large at 0 K and exhibit the wrong temperature dependence. We solve this problem by introducing a first-principles approach to calculate temperature-dependent magnetization versus field (FPMVB) curves, mirroring the experiments actually used to determine the anisotropy. We pair our calculations with measurements on a recently grown single crystal of GdCo_{5}, and find excellent agreement. The FPMVB approach demonstrates a new level of sophistication in the use of first-principles calculations to understand RE-TM magnets.

  6. Electro-kinetic Separation of Rare Earth Elements Using a Redox-Active Ligand.

    PubMed

    Fang, Huayi; Cole, Bren E; Qiao, Yusen; Bogart, Justin A; Cheisson, Thibault; Manor, Brian C; Carroll, Patrick J; Schelter, Eric J

    2017-10-16

    Purification of rare earth elements is challenging due to their chemical similarities. All of the deployed separation methods rely on thermodynamic properties, such as distribution equilibria in solvent extraction. Rare-earth-metal separations based on kinetic differences have not been examined. Herein, we demonstrate a new approach for rare-earth-element separations by exploiting differences in the oxidation rates within a series of rare earth compounds containing the redox-active ligand [{2-(tBuN(O))C 6 H 4 CH 2 } 3 N] 3- . Using this method, a single-step separation factor up to 261 was obtained for the separation of a 50:50 yttrium-lutetium mixture. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Separation of the rare-earth fission product poisons from spent nuclear fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, Jerry D.; Sterbentz, James W.

    A method for the separation of the rare-earth fission product poisons comprising providing a spent nuclear fuel. The spent nuclear fuel comprises UO.sub.2 and rare-earth oxides, preferably Sm, Gd, Nd, Eu oxides, with other elements depending on the fuel composition. Preferably, the provided nuclear fuel is a powder, preferably formed by crushing the nuclear fuel or using one or more oxidation-reduction cycles. A compound comprising Th or Zr, preferably metal, is provided. The provided nuclear fuel is mixed with the Th or Zr, thereby creating a mixture. The mixture is then heated to a temperature sufficient to reduce the UO.sub.2more » in the nuclear fuel, preferably to at least to 850.degree. C. for Th and up to 600.degree. C. for Zr. Rare-earth metals are then extracted to form the heated mixture thereby producing a treated nuclear fuel. The treated nuclear fuel comprises the provided nuclear fuel having a significant reduction in rare-earths.« less

  8. Labile rhizosphere soil solution fraction for prediction of bioavailability of heavy metals and rare earth elements to plants.

    PubMed

    Shan, Xiao-Quan; Wang, Zhongwen; Wang, Weisheng; Zhang, Shuzhen; Wen, Bei

    2003-02-01

    A labile rhizosphere soil solution fraction has been recommended to predict the bioavailability of heavy metals and rare earth elements to plants. This method used moist rhizosphere soil in combination with a mixture of 0.01 mol L(-1) of low-molecular-weight organic acids (LMWOAs) as extractant. The extracted soil solutions were fractionated into two colloidal fractions of <0.45 microm (F(3)) and <0.2 microm (F(2)), and one truly dissolved fraction including free metal ions and inorganic and organic complexes (fractionmetals and rare earth elements in F(2) and F(3) were quite similar. However, the mean concentrations of Cr, Ni, Zn, Cu, Pb, Cd, La, Ce, Pr, and Nd in F(lrss) accounted for 79.9%, 91.3%, 90.8%, 60.1%, 77.5%, 75.3%, 81.2%, 77.2%, 80.3%, and 79.5%, respectively, of their concentrations in F(2). In contrast, there were no differences in the extractable metal concentrations between the three fractions while the first step of the method recommended by the European Community of Reference (BCR), where 0.1 mol L(-1) acetic acid was used as an extractant. The single correlation analysis was made between metal concentrations in the different fractions of soil solutions and their concentrations in wheat. If the first step of BCR method was used there was no good correlation between heavy metals in soil pools and that in wheat shoots and roots. When LMWAOs were used a good correlation was obtained between the concentrations of heavy metals in soil pools and that in wheat roots, which followed a general order of r(1 kD, LMWOAs) >r(0.2 microm, LMWOAs) approximately r(0.45 microm, LMWOAs). In the case of rare earth elements the good correlation was obtained for both the wheat roots and shoots. Generally, the correlation coefficients

  9. Replacing the Rare Earth Intellectual Capital

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gschneidner, Jr., Karl

    2011-04-01

    The rare earth crisis slowly evolved during a 10 to 15 year period beginning in the mid-1980s, when the Chinese began to export mixed rare earth concentrates. In the early 1990s, they started to move up the supply chain and began to export the individual rare earth oxides and metals. By the late 1990s the Chinese exported higher value products, such as magnets, phosphors, polishing compounds, catalysts; and in the 21st century they supplied finished products including electric motors, computers, batteries, liquid-crystal displays (LCDs), TVs and monitors, mobile phones, iPods and compact fluorescent lamp (CFL) light bulbs. As they movedmore » to higher value products, the Chinese slowly drove the various industrial producers and commercial enterprises in the US, Europe and Japan out of business by manipulating the rare earth commodity prices. Because of this, the technically trained rare earth engineers and scientists who worked in areas from mining to separations, to processing to production, to manufacturing of semifinished and final products, were laid-off and moved to other fields or they retired. However, in the past year the Chinese have changed their philosophy of the 1970s and 1980s of forming a rare earth cartel to control the rare earth markets to one in which they will no longer supply the rest of the world (ROW) with their precious rare earths, but instead will use them internally to meet the growing demand as the Chinese standard of living increases. To this end, they have implemented and occasionally increased export restrictions and added an export tariff on many of the high demand rare earth elements. Now the ROW is quickly trying to start up rare earth mines, e.g. Molycorp Minerals in the US and Lynas Corp. in Australia, to cover this shortfall in the worldwide market, but it will take about five years for the supply to meet the demand, even as other mines in the ROW become productive. Unfortunately, today there is a serious lack of technically

  10. Regio- and Stereochemical Control in Ocimene Polymerization by Half-Sandwich Rare-Earth Metal Dialkyl Complexes.

    PubMed

    Peng, Deqian; Du, Gaixia; Zhang, Pengfei; Yao, Bo; Li, Xiaofang; Zhang, Shaowen

    2016-06-01

    The polymerization of ocimene has been first achieved by half-sandwich rare-earth metal dialkyl complexes in combination with activator and Al(i) Bu3 . The regio- and stereoselectivity in the ocimene polymerization can be controlled by tuning the cyclopentadienyl ligand and the central metal of the complex. The chiral cyclopentadienyl-ligated Sc complex 1 prepares syndiotactic cis-1,4-polyocimene (cis-1,4-selectivity up to 100%, rrrr = 100%), while the corresponding Lu, Y, and Dy complexes 2-4 and the achiral pentamethylcyclopentadienyl Sc, Lu, and Y complexes 5-7 afford isotactic trans-1,2-polyocimenes (trans-1,2-selectivity up to 100%, mm = 100%). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Byproduct metals and rare-earth elements used in the production of light-emitting diodes—Overview of principal sources of supply and material requirements for selected markets

    USGS Publications Warehouse

    Wilburn, David R.

    2012-01-01

    The use of light-emitting diodes (LEDs) is expanding because of environmental issues and the efficiency and cost savings achieved compared with use of traditional incandescent lighting. The longer life and reduced power consumption of some LEDs have led to annual energy savings, reduced maintenance costs, and lower emissions of carbon dioxide, sulfur dioxide, and nitrogen oxides from powerplants because of the resulting decrease in energy consumption required for lighting applications when LEDs are used to replace less-energy-efficient sources. Metals such as arsenic, gallium, indium, and the rare-earth elements (REEs) cerium, europium, gadolinium, lanthanum, terbium, and yttrium are important mineral materials used in LED semiconductor technology. Most of the world's supply of these materials is produced as byproducts from the production of aluminum, copper, lead, and zinc. Most of the rare earths required for LED production in 2011 came from China, and most LED production facilities were located in Asia. The LED manufacturing process is complex and is undergoing much change with the growth of the industry and the changes in demand patterns of associated commodities. In many respects, the continued growth of the LED industry, particularly in the general lighting sector, is tied to its ability to increase LED efficiency and color uniformity while decreasing the costs of producing, purchasing, and operating LEDs. Research is supported by governments of China, the European Union, Japan, the Republic of Korea, and the United States. Because of the volume of ongoing research in this sector, it is likely that the material requirements of future LEDs may be quite different than LEDs currently (2011) in use as industry attempts to cut costs by reducing material requirements of expensive heavy rare-earth phosphors and increasing the sizes of wafers for economies of scale. Improved LED performance will allow customers to reduce the number of LEDs in automotive, electronic

  12. Coordination Polymerization of Renewable 3-Methylenecyclopentene with Rare-Earth-Metal Precursors.

    PubMed

    Liu, Bo; Li, Shihui; Wang, Meiyan; Cui, Dongmei

    2017-04-10

    Coordination polymerization of renewable 3-methylenecyclopentene has been investigated for the first time using rare-earth metal-based precursors bearing various bulky ligands. All the prepared complexes catalyze controllable polymerization of 3-methylenecyclopentene into high molecular weight polymers, of which the NPN- and NSN-tridentate non-Cp ligated lutetium-based catalytic systems exhibited extremely high activities up to 11 520 kg/(mol Lu ⋅h) in a dilute toluene solution (3.2 g/100 mL) at room temperature. The resultant polymers have pure 1,4-regioregularity (>99 %) and tailorable number average molecular weights (1-20×10 4 ) with narrow molecular weight distributions (polydispersity index (PDI)=1.45-1.79). DFT simulations were employed to study the polymerization mechanism and stereoregularity control. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Hybridization wave as the cause of the metal-insulator transition in rare earth nickelates

    NASA Astrophysics Data System (ADS)

    Park, Hyowon; Marianetti, Chris A.; Millis, Andrew J.

    2012-02-01

    The metal-insulator transition driven by varying rare earth (Re) ion in ReNiO3 has been a longstanding challenge to materials theory. Experimental evidence suggesting charge order is seemingly incompatible with the strong Mott-Hubbard correlations characteristic of transition metals. We present density functional, Hartree-Fock and Dynamical Mean field calculations showing that the origin of the insulating phase is a hybridization wave, in which a two sublattice ordering of the oxygen breathing mode produces two Ni sites with almost identical Ni d-charge densities but very different magnetic moments and other properties. The high temperature crystal structure associated with smaller Re ions such as Lu is shown to be more susceptible to the distortion than the high temperature structure associated with larger Re ions such as La.

  14. A miniature single element effusion cell for the vacuum deposition of transition-metal and rare-earth elements

    NASA Astrophysics Data System (ADS)

    Harris, V. G.; Koon, N. C.

    1997-08-01

    A miniature single element effusion cell has been fabricated and tested that allows for the high-vacuum deposition of a variety of transition-metal and rare-earth elements. The cell is designed to operate under high-vacuum conditions, ≈10-9 Torr, with low power demands, <200 W. The virtues of this evaporator are the simplicity of design and ease of fabrication, assembly, maintenance, and operation.

  15. Europium-activated phosphors containing oxides of rare-earth and group-IIIB metals and method of making the same

    DOEpatents

    Comanzo, Holly Ann; Setlur, Anant Achyut; Srivastava, Alok Mani

    2006-04-04

    Europium-activated phosphors comprise oxides of at least a rare-earth metal selected from the group consisting of gadolinium, yttrium, lanthanum, and combinations thereof and at least a Group-IIIB metal selected from the group consisting of aluminum, gallium, indium, and combinations thereof. A method for making such phosphors comprises adding at least a halide of at least one of the selected Group-IIIB metals in a starting mixture. The method further comprises firing the starting mixture in an oxygen-containing atmosphere. The phosphors produced by such a method exhibit improved absorption in the UV wavelength range and improved quantum efficiency.

  16. Europium-activated phosphors containing oxides of rare-earth and group-IIIB metals and method of making the same

    DOEpatents

    Comanzo, Holly Ann; Setlur, Anant Achyut; Srivastava, Alok Mani; Manivannan, Venkatesan

    2004-07-13

    Europium-activated phosphors comprise oxides of at least a rare-earth metal selected from the group consisting of gadolinium, yttrium, lanthanum, and combinations thereof and at least a Group-IIIB metal selected from the group consisting of aluminum, gallium, indium, and combinations thereof. A method for making such phosphors comprises adding at least a halide of at least one of the selected Group-IIIB metals in a starting mixture. The method further comprises firing the starting mixture in an oxygen-containing atmosphere. The phosphors produced by such a method exhibit improved absorption in the UV wavelength range and improved quantum efficiency.

  17. Ames Lab 101: Rare Earths

    ScienceCinema

    Gschneidner, Karl

    2017-12-11

    "Mr. Rare Earth," Ames Laboratory scientist Karl Gschneidner Jr., explains the importance of rare-earth materials in many of the technologies we use today -- ranging from computers to hybrid cars to wind turbines. Gschneidner is a world renowned rare-earths expert at the U.S. Department of Energy's Ames Laboratory.

  18. Equilibrium distribution of rare earth elements between molten KCl-LiCl eutectic salt and liquid cadmium

    NASA Astrophysics Data System (ADS)

    Sakata, Masahiro; Kurata, Masaki; Hijikata, Takatoshi; Inoue, Tadashi

    1991-11-01

    Distribution experiments for several rare earth elements (La, Ce, Pr, Nd and Y) between molten KCl-LiCl eutectic salt and liquid Cd were carried out at 450, 500 and 600°C. The material balance of rare earth elements after reaching the equilibrium and their distribution and chemical states in a Cd sample frozen after the experiment were examined. The results suggested the formation of solid intermetallic compounds at the lower concentrations of rare earth metals dissolved in liquid Cd than those solubilities measured in the binary alloy system. The distribution coefficients of rare earth elements between two phases (mole fraction in the Cd phase divided by mole fraction in the salt phase) were determined at each temperature. These distribution coefficients were explained satisfactorily by using the activity coefficients of chlorides and metals in salt and Cd. Both the activity coefficients of metal and chloride caused a much smaller distribution coefficient of Y relative to those of other elements.

  19. Method for preparing high cure temperature rare earth iron compound magnetic material

    DOEpatents

    Huang, Yuhong; Wei, Qiang; Zheng, Haixing

    2002-01-01

    Insertion of light elements such as H,C, or N in the R.sub.2 Fe.sub.17 (R=rare earth metal) series has been found to modify the magnetic properties of these compounds, which thus become prospective candidates for high performance permanent magnets. The most spectacular changes are increases of the Curie temperature, T.sub.c, of the magnetization, M.sub.s, and of coercivity, H.sub.c, upon interstitial insertion. A preliminary product having a component R--Fe--C,N phase is produced by a chemical route. Rare earth metal and iron amides are synthesized followed by pyrolysis and sintering in an inert or reduced atmosphere, as a result of which, the R--Fe--C,N phases are formed. Fabrication of sintered rare earth iron nitride and carbonitride bulk magnet is impossible via conventional process due to the limitation of nitridation method.

  20. Influence of rare earth content on Mm-based AB 5 metal hydride alloys for Ni-MH batteries-An X-ray fluorescence study

    NASA Astrophysics Data System (ADS)

    Ananth, M. V.; Raju, M.; Manimaran, K.; Balachandran, G.; Nair, Lekshmi M.

    AB 5-type MH alloys with Mm (Misch metal) as the A part (with varied rare earth contents in Mm) were investigated for rare earth by XRF analysis and battery performance by life cycle tests with an objective of understanding the influence of rare earth content on electrochemical hydrogen storage. The La/Ce ratio was found to vary from 0.51 to 18.73. The capacity output varied between 179 and 266 mAh g -1. The results show that the La/Ce ratio has a strong influence on the performance, with the best performance realized with samples having an La/Ce ratio of around 12. La enhancement facilitates easy activation due to refinement in grain size and interstitial dimensions. Also, an orderly influence on crystalline structure could be seen. The study demonstrates that the rare earth content is an essential factor in determining the maximum capacity output because of its influence on crystal orientation as well as an increase in the radius of the interstitials, lattice constants and cell volumes.

  1. Raman scattering of rare earth hexaborides

    NASA Astrophysics Data System (ADS)

    Ogita, Norio; Hasegawa, Takumi; Udagawa, Masayuki; Iga, Fumitoshi; Kunii, Satoru

    2009-06-01

    Raman scattering spectra were measured for the rare-earth hexaborides RB6 (R = Ce, Gd, or Dy). All Raman-active phonons due to B6 vibrations were observed in the range 600 - 1400 cm-1. Anomalous peaks were detected below 200 cm-1, which correspond to vibrations of rare-earth ion excited by second-order Raman scattering process. The intensity and energy of the rare-earth mode decrease with decreasing temperature. This suggests that the rare-earth ion vibrates in a shallow and anharmonic potential due to the boron cage. Using the reported values of mean square displacement of rare-earth ion, we estimated the anharmonic contribution for the rare-earth vibrations.

  2. Anomalous positive flatband voltage shifts in metal gate stacks containing rare-earth oxide capping layers

    NASA Astrophysics Data System (ADS)

    Caraveo-Frescas, J. A.; Hedhili, M. N.; Wang, H.; Schwingenschlögl, U.; Alshareef, H. N.

    2012-03-01

    It is shown that the well-known negative flatband voltage (VFB) shift, induced by rare-earth oxide capping in metal gate stacks, can be completely reversed in the absence of the silicon overlayer. Using TaN metal gates and Gd2O3-doped dielectric, we measure a ˜350 mV negative shift with the Si overlayer present and a ˜110 mV positive shift with the Si overlayer removed. This effect is correlated to a positive change in the average electrostatic potential at the TaN/dielectric interface which originates from an interfacial dipole. The dipole is created by the replacement of interfacial oxygen atoms in the HfO2 lattice with nitrogen atoms from TaN.

  3. Phase stable rare earth garnets

    DOEpatents

    Kuntz, Joshua D.; Cherepy, Nerine J.; Roberts, Jeffery J.; Payne, Stephen A.

    2013-06-11

    A transparent ceramic according to one embodiment includes a rare earth garnet comprising A.sub.hB.sub.iC.sub.jO.sub.12, where h is 3.+-.10%, i is 2.+-.10%, and j is 3.+-.10%. A includes a rare earth element or a mixture of rare earth elements, B includes at least one of aluminum, gallium and scandium, and C includes at least one of aluminum, gallium and scandium, where A is at a dodecahedral site of the garnet, B is at an octahedral site of the garnet, and C is at a tetrahedral site of the garnet. In one embodiment, the rare earth garment has scintillation properties. A radiation detector in one embodiment includes a transparent ceramic as described above and a photo detector optically coupled to the rare earth garnet.

  4. Rare Earth Doped GaN Laser Structures Using Metal Modulated Epitaxy

    DTIC Science & Technology

    2015-03-30

    from Eu-doped GaN,” Appl. Phys. Lett., vol. 75, pp. 1189–1191, 1999. 24. D. S . Lee and A. J. Steckl, “Room-temperature-grown rare- earth -doped GaN...luminescent thin films,” Appl. Phys. Lett., vol. 79, pp. 1962–1964,2001. 25. D. S . Lee and A. J. Steckl, “Lateral color integration on rare- earth doped... s . 0.259nm/ s =1.14E13cm-2/ s =1 ML/ s .Our plasma source was optimized to work at 1.5 sccm and 230 W RF power and it provides a growth rate of 0.8 ML/ s

  5. Selective Emitter Pumped Rare Earth Laser

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L. (Inventor); Patton, Martin O. (Inventor)

    2001-01-01

    A selective emitter pumped rare earth laser provides an additional type of laser for use in many laser applications. Rare earth doped lasers exist which are pumped with flashtubes or laser diodes. The invention uses a rare earth emitter to transform thermal energy input to a spectral band matching the absorption band of a rare earth in the laser in order to produce lasing.

  6. Rare earth gas laser

    DOEpatents

    Krupke, W.F.

    1975-10-31

    A high energy gas laser with light output in the infrared or visible region of the spectrum is described. Laser action is obtained by generating vapors of rare earth halides, particularly neodymium iodide or, to a lesser extent, neodymium bromide, and disposing the rare earth vapor medium in a resonant cavity at elevated temperatures; e.g., approximately 1200/sup 0/ to 1400/sup 0/K. A particularly preferred gaseous medium is one involving a complex of aluminum chloride and neodymium chloride, which exhibits tremendously enhanced vapor pressure compared to the rare earth halides per se, and provides comparable increases in stored energy densities.

  7. Multicomponent, Rare-Earth-Doped Thermal-Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Zhu, Dongming

    2005-01-01

    Multicomponent, rare-earth-doped, perovskite-type thermal-barrier coating materials have been developed in an effort to obtain lower thermal conductivity, greater phase stability, and greater high-temperature capability, relative to those of the prior thermal-barrier coating material of choice, which is yttria-partially stabilized zirconia. As used here, "thermal-barrier coatings" (TBCs) denotes thin ceramic layers used to insulate air-cooled metallic components of heat engines (e.g., gas turbines) from hot gases. These layers are generally fabricated by plasma spraying or physical vapor deposition of the TBC materials onto the metal components. A TBC as deposited has some porosity, which is desirable in that it reduces the thermal conductivity below the intrinsic thermal conductivity of the fully dense form of the material. Undesirably, the thermal conductivity gradually increases because the porosity gradually decreases as a consequence of sintering during high-temperature service. Because of these and other considerations such as phase transformations, the maximum allowable service temperature for yttria-partially stabilized zirconia TBCs lies in the range of about 1,200 to 1,300 C. In contrast, the present multicomponent, rare-earth-doped, perovskite-type TBCs can withstand higher temperatures.

  8. Magnetic ordering temperatures in rare earth metal dysprosium under ultrahigh pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.

    Magnetic ordering temperatures in heavy rare earth metal Dysprosium (Dy) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to extreme conditions of pressure to 69 GPa and temperature to 10 K. Previous studies using magnetic susceptibility measurements at high pressures were only able to track magnetic ordering temperature till 7 GPa in the hexagonal close packed ( hcp) phase of Dy. Our studies indicate that the magnetic ordering temperature shows an abrupt drop of 80 K at the hcp-Sm phase transition followed by a gradual decrease that continues till 17 GPa. Thismore » is followed by a rapid increase in the magnetic ordering temperatures in the double hexagonal close packed phase and finally leveling off in the distorted face centered cubic phase of Dy. Lastly, our studies reaffirm that 4f-shell remain localized in Dy and there is no loss of magnetic moment or 4f-shell delocalization for pressures up to 69 GPa.« less

  9. Magnetic ordering temperatures in rare earth metal dysprosium under ultrahigh pressures

    DOE PAGES

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; ...

    2014-04-03

    Magnetic ordering temperatures in heavy rare earth metal Dysprosium (Dy) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to extreme conditions of pressure to 69 GPa and temperature to 10 K. Previous studies using magnetic susceptibility measurements at high pressures were only able to track magnetic ordering temperature till 7 GPa in the hexagonal close packed ( hcp) phase of Dy. Our studies indicate that the magnetic ordering temperature shows an abrupt drop of 80 K at the hcp-Sm phase transition followed by a gradual decrease that continues till 17 GPa. Thismore » is followed by a rapid increase in the magnetic ordering temperatures in the double hexagonal close packed phase and finally leveling off in the distorted face centered cubic phase of Dy. Lastly, our studies reaffirm that 4f-shell remain localized in Dy and there is no loss of magnetic moment or 4f-shell delocalization for pressures up to 69 GPa.« less

  10. Rare-Earth-compound nanowires, nanotubes, and fullerene-like nanoparticles: synthesis, characterization, and properties.

    PubMed

    Wang, Xun; Li, Yadong

    2003-11-21

    Various low-dimensional nanostructures, such as nanowires, nanotubes, nanosheets, and fullerene-like nanoparticles have been selectively synthesized from rare-earth compounds (hydroxides, fluorides) based on a facile hydrothermal method. The subsequent dehydration, sulfidation, and fluoridation processes lead to the formation of rare-earth oxide, oxysulfide, and oxyhalide nanostructures, which can be functionalized further by doping with other rare-earth ions or by coating with metal nanoparticles. Owing to the interesting combination of novel nanostructures and functional compounds, these nanostructures can be expected to bring new opportunities in the vast research areas of and application in biology, catalysts, and optoelectronic devices.

  11. Binary rare earth element-Ni/Co metallic glasses with distinct β-relaxation behaviors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Z. G.; Wang, Z.; Wang, W. H., E-mail: whw@iphy.ac.cn

    2015-10-21

    We report the formation of a series of rare earth element (RE)-Ni/Co binary metallic glasses (MGs) with unusual distinct β-relaxation peak compared with that of most of the reported MGs which usually exhibit as an excess wing or a shoulder. The β-relaxation behavior of RE-Ni/Co MGs is sensitive to the composition and the atomic radii of the RE and can be tuned through changing the fraction of RE-Ni (or Co) atomic pairs. The novel RE-Ni/Co MGs with distinct β-relaxation can serve as model system to investigate the nature of the β-relaxation as well as its relations with other physical andmore » mechanical properties of MGs.« less

  12. Rare earth elements: end use and recyclability

    USGS Publications Warehouse

    Goonan, Thomas G.

    2011-01-01

    Rare earth elements are used in mature markets (such as catalysts, glassmaking, lighting, and metallurgy), which account for 59 percent of the total worldwide consumption of rare earth elements, and in newer, high-growth markets (such as battery alloys, ceramics, and permanent magnets), which account for 41 percent of the total worldwide consumption of rare earth elements. In mature market segments, lanthanum and cerium constitute about 80 percent of rare earth elements used, and in new market segments, dysprosium, neodymium, and praseodymium account for about 85 percent of rare earth elements used. Regardless of the end use, rare earth elements are not recycled in large quantities, but could be if recycling became mandated or very high prices of rare earth elements made recycling feasible.

  13. Diversification of the rare-earth business in the existing enterprises

    NASA Astrophysics Data System (ADS)

    Bogdanov, S. V.; Grishaev, S. I.; Yazev, V. A.

    2013-12-01

    The development of the modern rare-earth business is analyzed, and the possibilities of using a mathematical description of the prospects of this business on the basis of nonlinear evolution equations are estimated. The well-known methods of describing the life cycle of the economic activity of a commercial company in the closed multisector model of market economics is used to determine the boundaries of changing the average labor productivity during the diversification of business on operating Russian enterprises that produce a wide range of products and are intended to manufacture new types of high-technology rare-earth metal products.

  14. Tutorial on the Role of Cyclopentadienyl Ligands in the Discovery of Molecular Complexes of the Rare-Earth and Actinide Metals in New Oxidation States

    DOE PAGES

    Evans, William J.

    2016-09-15

    A fundamental aspect of any element is the range of oxidation states accessible for useful chemistry. This tutorial describes the recent expansion of the number of oxidation states available to the rare-earth and actinide metals in molecular complexes that has resulted through organometallic chemistry involving the cyclopentadienyl ligand. These discoveries demonstrate that the cyclopentadienyl ligand, which has been a key component in the development of organometallic chemistry since the seminal discovery of ferrocene in the 1950s, continues to contribute to the advancement of science. Lastly, we present background information on the rare-earth and actinide elements, as well as the sequencemore » of events that led to these unexpected developments in the oxidation state chemistry of these metals.« less

  15. Tutorial on the Role of Cyclopentadienyl Ligands in the Discovery of Molecular Complexes of the Rare-Earth and Actinide Metals in New Oxidation States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, William J.

    A fundamental aspect of any element is the range of oxidation states accessible for useful chemistry. This tutorial describes the recent expansion of the number of oxidation states available to the rare-earth and actinide metals in molecular complexes that has resulted through organometallic chemistry involving the cyclopentadienyl ligand. These discoveries demonstrate that the cyclopentadienyl ligand, which has been a key component in the development of organometallic chemistry since the seminal discovery of ferrocene in the 1950s, continues to contribute to the advancement of science. Lastly, we present background information on the rare-earth and actinide elements, as well as the sequencemore » of events that led to these unexpected developments in the oxidation state chemistry of these metals.« less

  16. Complete phase diagram of rare-earth nickelates from first-principles

    NASA Astrophysics Data System (ADS)

    Varignon, Julien; Grisolia, Mathieu N.; Íñiguez, Jorge; Barthélémy, Agnès; Bibes, Manuel

    2017-12-01

    The structural, electronic and magnetic properties of AMO3 perovskite oxides, where M is a 3d transition metal, are highly sensitive to the geometry of the bonds between the metal-d and oxygen-p ions (through octahedra rotations and distortions) and to their level of covalence. This is particularly true in rare-earth nickelates RNiO3 that display a metal-insulator transition with complex spin orders tunable by the rare-earth size, and are on the border line between dominantly ionic (lighter elements) and covalent characters (heavier elements). Accordingly, computing their ground state is challenging and a complete theoretical description of their rich phase diagram is still missing. Here, using first-principles simulations, we successfully describe the electronic and magnetic experimental ground state of nickelates. We show that the insulating phase is characterized by a split of the electronic states of the two Ni sites (i.e., resembling low-spin 4+ and high-spin 2+) with a concomitant shift of the oxygen-2p orbitals toward the depleted Ni cations. Therefore, from the point of view of the charge, the two Ni sites appear nearly identical whereas they are in fact distinct. Performing such calculations for several nickelates, we built a theoretical phase diagram that reproduces all their key features, namely a systematic dependence of the metal-insulator transition with the rare-earth size and the crossover between a second to first order transition for R = Pr and Nd. Finally, our results hint at strategies to control the electronic and magnetic phases of perovskite oxides by fine tuning of the level of covalence.

  17. The Effect of Rare Earth on the Structure and Performance of Laser Clad Coatings

    NASA Astrophysics Data System (ADS)

    Bao, Ruiliang; Yu, Huijun; Chen, Chuanzhong; Dong, Qing

    Laser cladding is one kind of advanced surface modification technology and has the abroad prospect in making the wear-resistant coating on metal substrates. However, the application of laser cladding technology does not achieve the people's expectation in the practical production because of many defects such as cracks, pores and so on. The addiction of rare earth can effectively reduce the number of cracks in the clad coating and enhance the coating wear-resistance. In the paper, the effects of rare earth on metallurgical quality, microstructure, phase structure and wear-resistance are analyzed in turns. The preliminary discussion is also carried out on the effect mechanism of rare earth. At last, the development tendency of rare earth in the laser cladding has been briefly elaborated.

  18. Rare Earth Element Mines, Deposits, and Occurrences

    USGS Publications Warehouse

    Orris, Greta J.; Grauch, Richard I.

    2002-01-01

    Data on rare earth (including yttrium) mines, deposits, and occurrences were compiled as part of an effort by the USGS and the University of Arizona Center for Mineral Resources to summarize current knowledge on the supply and demand outlook and related topics for this group of elements. Economic competition and environmental concerns are increasingly constraining the mining and processing of rare earths from the Mountain Pass mine in California. For many years, the deposit at Mountain Pass was the world's dominant source of rare earth elements and the United States was essentially self-sufficient. Starting approximately 10 years ago, the U.S. has become increasingly dependent (> 90 percent of separated rare earths) upon imports from China, now the dominant source of rare earths. A knowledge of the known economic and noneconomic sources of rare earths is basic to evaluating the outlook for rare earth supply and associated issues.

  19. Coercivity of domain wall motion in thin films of amorphous rare earth-transition metal alloys

    NASA Technical Reports Server (NTRS)

    Mansuripur, M.; Giles, R. C.; Patterson, G.

    1991-01-01

    Computer simulations of a two dimensional lattice of magnetic dipoles are performed on the Connection Machine. The lattice is a discrete model for thin films of amorphous rare-earth transition metal alloys, which have application as the storage media in erasable optical data storage systems. In these simulations, the dipoles follow the dynamic Landau-Lifshitz-Gilbert equation under the influence of an effective field arising from local anisotropy, near-neighbor exchange, classical dipole-dipole interactions, and an externally applied field. Various sources of coercivity, such as defects and/or inhomogeneities in the lattice, are introduced and the subsequent motion of domain walls in response to external fields is investigated.

  20. The Effect of Rare-Earth Metals on Cast Steels

    DTIC Science & Technology

    1954-04-01

    as the 1-inch section is also illustrated in Figure 23 and consists of tempered bainite and tempered martensite. Both of the control steels (AE-1...section Tempered bainite and tempered martensite 4 inch section Figure 23 Microstructure ol the Mn-Cr-Mo base control steels . Etched with... bainite 4-inch Section Figure 25—Microstructures of the MnCr-Mo + Rare Earths f B cast steels . Etched with picral, SOOX - .1 €. Figure 26

  1. Value analysis of neodymium content in shredder feed: toward enabling the feasibility of rare earth magnet recycling.

    PubMed

    Bandara, H M Dhammika; Darcy, Julia W; Apelian, Diran; Emmert, Marion H

    2014-06-17

    In order to facilitate the development of recycling technologies for rare earth magnets from postconsumer products, we present herein an analysis of the neodymium (Nd) content in shredder scrap. This waste stream has been chosen on the basis of current business practices for the recycling of steel, aluminum, and copper from cars and household appliances, which contain significant amounts of rare earth magnets. Using approximations based on literature data, we have calculated the average Nd content in the ferrous shredder product stream to be between 0.13 and 0.29 kg per ton of ferrous scrap. A value analysis considering rare earth metal prices between 2002 and 2013 provides values between $1.32 and $145 per ton of ferrous scrap for this material, if recoverable as pure Nd metal. Furthermore, we present an analysis of the content and value of other rare earths (Pr, Dy, Tb).

  2. Nickel(0)-Catalyzed Inert C-O Bond Functionalization: Organo Rare-Earth Metal Complex as the Coupling Partner.

    PubMed

    Yan, Xiangqian; Yang, Fanzhi; Cai, Guilong; Meng, Qingwei; Li, Xiaofang

    2018-02-02

    An organo rare-earth metal complex has been employed as a highly efficient nucleophile in Ni(0)-catalyzed C-O bond functionalization. The optimized catalytic system which consists of Ni(cod) 2 , PCy 3 , and t-BuONa could smoothly convert 1 equiv of naphthyl ethers to alkylated naphthalene analogues with 0.4 equiv of Ln(CH 2 SiMe 3 ) 3 (THF) 2 , delivering good to excellent yields. The reaction system could also activate the ArCH 2 -O bond with mild base.

  3. Accumulation of rare earth elements by siderophore-forming Arthrobacter luteolus isolated from rare earth environment of Chavara, India.

    PubMed

    Emmanuel, E S Challaraj; Ananthi, T; Anandkumar, B; Maruthamuthu, S

    2012-03-01

    In this study, Arthrobacter luteolus, isolated from rare earth environment of Chavara (Quilon district, Kerala, India), were found to produce catechol-type siderophores. The bacterial strain accumulated rare earth elements such as samarium and scandium. The siderophores may play a role in the accumulation of rare earth elements. Catecholate siderophore and low-molecular-weight organic acids were found to be present in experiments with Arthrobacter luteolus. The influence of siderophore on the accumulation of rare earth elements by bacteria has been extensively discussed.

  4. Controlled synthesis of racemic indenyl rare-earth metal complexes via the cooperation between the intramolecular coordination of donor atoms and a bridge.

    PubMed

    Zhou, Shuangliu; Wu, Zhangshuan; Zhou, Lingmin; Wang, Shaowu; Zhang, Lijun; Zhu, Xiancui; Wei, Yun; Zhai, Jinhua; Wu, Jie

    2013-06-03

    The reactions of Me2Si(C9H6CH2CH2-DG)2 (DG = NMe2 (1), CH2NMe2 (2), OMe (3), and N(CH2CH2)2O (4)) with [(Me3Si)2N]3RE(μ-Cl)Li(THF)3 in toluene afforded a series of racemic divalent rare-earth metal complexes: {η(5):η(1):η(5):η(1)-Me2Si(C9H5CH2CH2-DG)2}RE (DG = NMe2, RE = Yb (6) and Eu (7); DG = CH2NMe2, RE = Yb (8), Eu (9), and Sm (10); DG = OMe, RE = Yb (11) and Eu (12); DG = N(CH2CH2)2O, RE = Yb (13) and Eu (14)). Similarly, the racemic divalent rare-earth metal complexes {η(5):η(1):η(5):η(1)-Me2Si(C9H5CH2CH2CH2NMe2)(C9H5CH2CH2OMe)}RE (RE = Yb (15) and Eu (16)) were also obtained. The reaction of Me2Si(C9H5CH2CH2OMe)2Li2 with NdCl3 gave a racemic dimeric neodymium chloride {η(5):η(1):η(5)-Me2Si(C9H5CH2CH2OMe)2NdCl}2 (17), whereas the reaction of Me2Si(C9H5CH2CH2NMe2)2Li2 with SmCl3 afforded a racemic dinuclear samarium chloride bridged by lithium chloride {η(5):η(1):η(5):η(1)-Me2Si(C9H5CH2CH2NMe2)2SmCl}2(μ-LiCl) (18). Further reaction of complex 18 with LiCH2SiMe3 provided an unexpected rare-earth metal alkyl complex {η(5):η(1):η(5):η(1):σ-Me2Si(C9H5CH2CH2NMe2)[(C9H5CH2CH2N(CH2)Me]}Sm (19) through the activation of an sp(3) C-H bond α-adjacent to the nitrogen atom. Complexes 19 and {η(5):η(1):η(5):η(1):σ-Me2Si(C9H5CH2CH2NMe2)[(C9H5CH2CH2N(CH2)Me]}Y (20) were also obtained by one-pot reactions of Me2Si(C9H5CH2CH2NMe2)2Li2 with RECl3 followed by treatment with LiCH2SiMe3. All compounds were fully characterized by spectroscopic methods and elemental analysis. Complexes 6-10 and 14-20 were further characterized by single-crystal X-ray diffraction analysis. All of the prepared rare-earth metal complexes were racemic, suggesting that racemic organo rare-earth metal complexes could be controllably synthesized by the cooperation between a bridge and the intramolecular coordination of donor atoms.

  5. A Liquid Chromatography Detector for Transition and Rare-Earth Metal Ions Based on a Cupric Ion-Selective Electrode

    DTIC Science & Technology

    1981-05-01

    RARE-EARTH METAL IONS BASED ON A CUPRIC ION-SELECTIVE ELECTRODE By - 4 R. CAMERON DOREY TECHNICAL REPORT FJSRL-TR-81-0005 MAY 1981 Approved for public...FORM . REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER FJSRL-TR-81-0005BO CO ENGO 4 . TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD...common anions, including halide ions, is shown, and the advantages and limitations of the system are discussed. II ’ 4 UNCLASSIFIED SECURITY

  6. Rare earths, the lanthanides, yttrium and scandium

    USGS Publications Warehouse

    Hedrick, J.B.

    2006-01-01

    In 2005, rare earths were not mined in the United States. The major supplier, Molycorp, continued to maintain a large stockpile of rare-earth concentrates and compounds. Consumption decreased of refined rare-earth products. The United States remained a major importer and exporter of rare earths in 2005. During the same period, yttrium was not mined or refined in the US. Hence, supply of yttrium compounds for refined yttrium products came from China, France and Japan. Scandium was not also mined. World production was primarily in China, Russia and Ukraine. Demand for rare earths in 2006 is expected to be closely tied to economic conditions in the US.

  7. Tunable magnetic and magnetocaloric properties in heavy rare-earth based metallic glasses through the substitution of similar elements

    NASA Astrophysics Data System (ADS)

    Zhang, Huiyan; Li, Ran; Zhang, Leilei; Zhang, Tao

    2014-04-01

    The influence of interchangeable substitution of similar heavy rare-earth-elements (HRE), i.e., Gd-Ho, Gd-Er, and Ho-Er, on the magnetic and magnetocaloric properties of HRE55Al27.5Co17.5 metallic glasses was evaluated. The magnetic transition temperature (TC) can be tuned in a wide temperature range from 8 K to 93 K by adjusting the substitutional concentration in the resulting metallic glasses. A roughly linear correlation between peak value of magnetic entropy change (|ΔSMpk|) and TC-2/3 was obtained in the three systems. This kind of substitutional adjustment provides a useful method for designing desirable candidates in metallic glasses with high magnetic entropy change, large magnetic cooling efficiency, and tunable TC for magnetic refrigerant in nitrogen and hydrogen liquefaction temperature ranges.

  8. Electronic and structural properties of Lu under pressure: Relation to structural phases of the rare-earth metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Min, B.I.; Oguchi, T.; Jansen, H.J.F.

    1986-07-15

    Ground-state electronic and structural properties of Lu under pressure are investigated with use of the self-consistent all-electron total-energy linear muffin-tin orbital band-structure method within a local-density-functional approximation. Pressure-induced structural transitions are found to occur in the following sequence: hcp--(Sm-type)--dhcp--fcc, which is the same as that observed in the crystal structures of the trivalent rare-earth metals with decreasing atomic number. This structural transition is correlated with the increase in the number of d-italic electrons under pressure.

  9. Ternary rare earth-lanthanide sulfides

    DOEpatents

    Takeshita, Takuo; Gschneidner JR., Karl A.; Beaudry, Bernard J.

    1987-01-06

    A new ternary rare earth sulfur compound having the formula: where M is a rare earth element selected from the group europium, samarium and ytterbium and x=0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to 1000.degree. C.

  10. Dinuclear rare-earth metal alkyl complexes supported by indolyl ligands in μ-η(2) :η(1) :η(1) hapticities and their high catalytic activity for isoprene 1,4-cis-polymerization.

    PubMed

    Zhang, Guangchao; Wei, Yun; Guo, Liping; Zhu, Xiancui; Wang, Shaowu; Zhou, Shuangliu; Mu, Xiaolong

    2015-02-02

    Two series of new dinuclear rare-earth metal alkyl complexes supported by indolyl ligands in novel μ-η(2) :η(1) :η(1) hapticities are synthesized and characterized. Treatment of [RE(CH2 SiMe3 )3 (thf)2 ] with 1 equivalent of 3-(tBuN=CH)C8 H5 NH (L1 ) in THF gives the dinuclear rare-earth metal alkyl complexes trans-[(μ-η(2) :η(1) :η(1) -3-{tBuNCH(CH2 SiMe3 )}Ind)RE(thf)(CH2 SiMe3 )]2 (Ind=indolyl, RE=Y, Dy, or Yb) in good yields. In the process, the indole unit of L1 is deprotonated by the metal alkyl species and the imino C=N group is transferred to the amido group by alkyl CH2 SiMe3 insertion, affording a new dianionic ligand that bridges two metal alkyl units in μ-η(2) :η(1) :η(1) bonding modes, forming the dinuclear rare-earth metal alkyl complexes. When L1 is reduced to 3-(tBuNHCH2 )C8 H5 NH (L2 ), the reaction of [Yb(CH2 SiMe3 )3 (thf)2 ] with 1 equivalent of L2 in THF, interestingly, generated the trans-[(μ-η(2) :η(1) :η(1) -3-{tBuNCH2 }Ind)Yb(thf)(CH2 SiMe3 )]2 (major) and cis-[(μ-η(2) :η(1) :η(1) -3-{tBuNCH2 }Ind)Yb(thf)(CH2 SiMe3 )]2 (minor) complexes. The catalytic activities of these dinuclear rare-earth metal alkyl complexes for isoprene polymerization were investigated; the yttrium and dysprosium complexes exhibited high catalytic activities and high regio- and stereoselectivities for isoprene 1,4-cis-polymerization. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Positive magnetoresistance effect in rare earth cobaltites

    NASA Astrophysics Data System (ADS)

    Troyanchuk, I. O.; Bushinskii, M. V.; Karpinsky, D. V.; Dobryanskii, V. M.; Sikolenko, V. V.; Balagurov, A. M.

    2009-06-01

    The structure, magnetic, and magnetotransport properties of the Pr0.5Sr0.5Co1 - x Fe x O3 system have been studied. The ferromagnet-spin glass ( x = 0.5)- G-type antiferromagnet ( x = 0.7) transitions and the metal—insulator transitions ( x = 0.25) have been revealed. It has been established that the magnetoresistance of the metallic ferromagnetic cobaltites changes sign from positive to negative as the external magnetic field increases. The positive component increases and the negative component decreases with decreasing temperature. The negative magnetoresistance increases sharply in the insulating spinglass phase. Possible causes of the low-magnetic-field positive magnetoresistance in the rare earth metallic cobaltites are discussed.

  12. A Physicochemical Method for Separating Rare Earths: Addressing an Impending Shortfall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schelter, Eric

    2017-03-14

    There are currently zero operating suppliers of critical rare earth elements La–Lu, Sc, Y (REs), in the western hemisphere. REs are critical materials due to their importance in clean energy and defense applications, including permanent magnets in wind turbines and phosphors in energy efficient lighting. It is not economically viable to produce pure REs in the U.S. given current separations technology. REs production is dominated by suppliers in the People’s Republic of China (PRC) because of their capacity in liquid­liquid solvent extraction (SX) used to purify mixtures. Weak environmental regulations in the PRC also contribute to a competitive advantage. SXmore » is a cost, time, solvent and waste intensive process but is highly optimized and scalable. The low efficiency of SX derives from the small thermodynamic differences in solvation enthalpy between the RE3+ cations. To foster stable domestic RE production there is a critical need for fundamentally new REs chemistry that contributes to disruptive technologies in RE separations. The overall goal of this project was to develop new thermodynamic bases, and apply them, for the solution separation of rare earth metals. We have developed the chemistry of rare earth metals: La–Lu, Sc and Y, with redox active ligands. Our hypothesis for the project was that electron­hole coupling in complexes of certain lanthanide metals with redox active ligands can be used to manifest chemical distinctiveness and affect separations. We also developed separations based on unique solution equilibria from tailored ligands.« less

  13. Improved Rare-Earth Emitter Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Goebel, Dan M.

    2011-01-01

    An improvement has been made to the design of the hollow cathode geometry that was created for the rare-earth electron emitter described in Compact Rare Earth Emitter Hollow Cathode (NPO-44923), NASA Tech Briefs, Vol. 34, No. 3 (March 2010), p. 52. The original interior assembly was made entirely of graphite in order to be compatible with the LaB6 material, which cannot be touched by metals during operation due to boron diffusion causing embrittlement issues in high-temperature refractory materials. Also, the graphite tube was difficult to machine and was subject to vibration-induced fracturing. This innovation replaces the graphite tube with one made out of refractory metal that is relatively easy to manufacture. The cathode support tube is made of molybdenum or molybdenum-rhenium. This material is easily gun-bored to near the tolerances required, and finish machined with steps at each end that capture the orifice plate and the mounting flange. This provides the manufacturability and robustness needed for flight applications, and eliminates the need for expensive e-beam welding used in prior cathodes. The LaB6 insert is protected from direct contact with the refractory metal tube by thin, graphite sleeves in a cup-arrangement around the ends of the insert. The sleeves, insert, and orifice plate are held in place by a ceramic spacer and tungsten spring inserted inside the tube. To heat the cathode, an insulating tube is slipped around the refractory metal hollow tube, which can be made of high-temperature materials like boron nitride or aluminum nitride. A screw-shaped slot, or series of slots, is machined in the outside of the ceramic tube to constrain a refractory metal wire wound inside the slot that is used as the heater. The screw slot can hold a single heater wire that is then connected to the front of the cathode tube by tack-welding to complete the electrical circuit, or it can be a double slot that takes a bifilar wound heater with both leads coming out

  14. Spin-orbit qubits of rare-earth-metal ions in axially symmetric crystal fields.

    PubMed

    Bertaina, S; Shim, J H; Gambarelli, S; Malkin, B Z; Barbara, B

    2009-11-27

    Contrary to the well-known spin qubits, rare-earth-metal qubits are characterized by a strong influence of crystal field due to large spin-orbit coupling. At low temperature and in the presence of resonance microwaves, it is the magnetic moment of the crystal-field ground state which nutates (for several micros) and the Rabi frequency Omega(R) is anisotropic. Here, we present a study of the variations of Omega(R)(H(0)) with the magnitude and direction of the static magnetic field H(0) for the odd 167Er isotope in a single crystal CaWO(4):Er(3+). The hyperfine interactions split the Omega(R)(H(0)) curve into eight different curves which are fitted numerically and described analytically. These "spin-orbit qubits" should allow detailed studies of decoherence mechanisms which become relevant at high temperature and open new ways for qubit addressing using properly oriented magnetic fields.

  15. Fate and transport of trace metals and rare earth elements in the Snake River, an AMD/ARD-impacted watershed. Montezuma, Colorado USA.

    NASA Astrophysics Data System (ADS)

    McKnight, D. M.; Rue, G.

    2017-12-01

    Recent research in Snake River Watershed, located near the historic boomtown of Montezuma and adjacent the Continental Divide in the Colorado Rocky Mountains, has revealed the distinctive occurrence of rare earth elements (REE) at high concentrations. Here the weathering of the mineralized lithology naturally generates acid rock drainage (ARD) in addition to drainage recieved from abandoned mine adits throughout the area, results in aqueous REE concentrations three orders of magnitude higher than in most major rivers. The dominant mechanism responsible for this enrichment; their dissolution from secondary and accessory mineral stocks, abundant in REEs, promoted by the low pH waters generated from geochemical weathering of disseminated sulfide minerals. While REEs behave conservatively in acidic conditions, as well as in the presence of stabilizing ligands such as sulfate, downstream circumneutral inputs from pristine streams and a rising pH are resulting in observed fractional losses of heavy rare earth elements as well as partitioning towards colloidal and solid phases. These finding in combination with the established role of dissolved organic matter (DOM) in binding with both trace metals and REEs, suggest that competitive interactions, complexation, and scavenging are likely contributing to these proportional losses. However, outstanding questions yet remain regarding the effects of an increasing flux of trace metals as well as REEs from the Snake River Watershed into Dillon Reservoir, a major drinking water supply for the City of Denver, in part due to hydroclimatological drivers that are enhancing geochemical weathering and reducing groundwater recharge in alpine areas across the Colorado Rockies. Based on these findings also we seek to broaden this body of work to further investigate the behavior of rare earth elements (REE) in other aquatic environment as well the influence of trace metals, DOM, and pH in altering their reactivity and subsequent watershed

  16. Behaviour of Rare Earth Elements during the Earth's core formation

    NASA Astrophysics Data System (ADS)

    Faure, Pierre; Bouhifd, Mohamed Ali; Boyet, Maud; Hammouda, Tahar; Manthilake, Geeth

    2017-04-01

    Rare Earth Elements (REE) are classified in the refractory group, which means that they have a high temperature condensation and their volatility-controlled fractionation is limited to high-temperature processes. Anomalies have been measured for Eu, Yb and Sm, which are the REE with the lowest condensation temperatures in CAIs and chondrules (e.g. [1]). REE are particularly abundant in the sulfides of enstatite chondrites, 100 to 1000 times the CI value [e.g. 2,3], proving that these elements are not strictly lithophile under extremely reducing conditions. However by investigating experimentally the impact of Earth's core formation on the behavior of Sm and Nd, we have shown the absence of fractionation between Sm and Nd during the segregation of the metallic phase [4]. Recently, Wohlers and Wood [5] proposed that Nd and Sm could be fractionated in presence of a S-rich alloy phase. However, their results were obtained at pressure and temperature conditions below the plausible conditions of the Earth's core formation. Clearly, large pressure range needs to be covered before well-constrained model can be expected. Furthermore, our preliminary metal-silicate partitioning results show that Ce and Eu have higher metal/silicate partition coefficients than their neighboring elements, and that the presence of sulphur enhances the relative difference between partition coefficients. In this presentation, we will present and discuss new metal-silicate partition coefficients of all REE at a deep magma ocean at pressures ranging from those of the uppermost upper mantle ( 5 GPa) to a maximum pressure expected in the range of 20 GPa, temperatures ranging from 2500 to about 3000 K, and oxygen fugacities within IW-1 to IW-5 (1 to 5 orders of magnitude lower than the iron-wüstite buffer). We will discuss the effect of S, as well as the effect of H2O on the behaviour of REE during the Earth's core formation: recent models suggest that contrary to currently accepted beliefs, the

  17. U.S. trade dispute with China over rare earth elements

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-03-01

    The U.S. government has brought a new trade case against China over rare earth elements (REE) as well as tungsten and molybdenum, President Barack Obama announced on 13 March. Japan and the European Union also have taken similar actions against China about REEs, which are a group of 17 chemically similar metallic elements that are used in a variety of electronic, optical, magnetic, and catalytic applications. REEs are plentiful in the Earth's crust, although China currently has about 37% of the world's reserves and accounts for more than 95% of the world's production of the elements, according to the British Geological Survey. The United States has requested consultations with China at the World Trade Organization (WTO) concerning "China's unfair export restraints on rare earths, as well as tungsten and molybdenum," the Office of the United States Trade Representative announced in a 13 March statement.

  18. Effects of rare earth doping on multi-core iron oxide nanoparticles properties

    NASA Astrophysics Data System (ADS)

    Petran, Anca; Radu, Teodora; Borodi, Gheorghe; Nan, Alexandrina; Suciu, Maria; Turcu, Rodica

    2018-01-01

    New multi-core iron oxide magnetic nanoparticles doped with rare earth metals (Gd, Eu) were obtained by a one step synthesis procedure using a solvothermal method for potential biomedical applications. The obtained clusters were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray microanalysis (EDX), X-ray photoelectron spectroscopy (XPS) and magnetization measurements. They possess high colloidal stability, a saturation magnetization of up to 52 emu/g, and nearly spherical shape. The presence of rare earth ions in the obtained samples was confirmed by EDX and XPS. XRD analysis proved the homogeneous distribution of the trivalent rare earth ions in the inverse-spinel structure of magnetite and the increase of crystal strain upon doping the samples. XPS study reveals the valence state and the cation distribution on the octahedral and tetrahedral sites of the analysed samples. The observed shift of the XPS valence band spectra maximum in the direction of higher binding energies after rare earth doping, as well as theoretical valence band calculations prove the presence of Gd and Eu ions in octahedral sites. The blood protein adsorption ability of the obtained samples surface, the most important factor of the interaction between biomaterials and body fluids, was assessed by interaction with bovine serum albumin (BSA). The rare earth doped clusters surface show higher afinity for binding BSA. In vitro cytotoxicity test results for the studied samples showed no cytotoxicity in low and medium doses, establishing a potential perspective for rare earth doped MNC to facilitate multiple therapies in a single formulation for cancer theranostics.

  19. Rare Earth Garnet Selective Emitter

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approx. = 0.75, sup 4)|(sub 15/2) - (sup 4)|(sub 13/2),for Er-YAG and epsilon(sub lambda) approx. = 0.65, (sup 5)|(sub 7) - (sup 5)|(sub 8) for Ho-YAG) at 1500 K. In addition, low out-of-band spectral emittance, epsilon(sub lambda) less than 0.2, suggest these materials would be excellent candidates for high efficiency selective emitters in thermophotovoltaic (TPV) systems operating at moderate temperatures (1200-1500 K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. Selective emitters in the near IR are of special interest for thermophotovoltaic (TPV) energy conversion. The most promising solid selective emitters for use in a TPV system are rare earth oxides. Early spectral emittance work on rare earth oxides showed strong emission bands in the infrared (0.9 - 3 microns). However, the emittance outside the emission band was also significant and the efficiency of these emitters was low. Recent improvements in efficiency have been made with emitters fabricated from fine (5 - 10 microns) rare earth oxide fibers similar to the Welsbach mantle used in gas lanterns. However, the rare earth garnet emitters are more rugged than the mantle type emitters. A thin film selective emitter on a low emissivity substrate such as gold, platinum etc., is rugged and easily adapted to a wide variety of thermal sources. The garnet structure and its many subgroups have been successfully used as hosts for rare earth ions, introduced as substitutional

  20. Magnetocaloric effect in heavy rare-earth elements doped Fe-based bulk metallic glasses with tunable Curie temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jiawei; Huo, Juntao; Chang, Chuntao, E-mail: ctchang@nimte.ac.cn, E-mail: dujun@nimte.ac.cn

    2014-08-14

    The effects of heavy rare earth (RE) additions on the Curie temperature (T{sub C}) and magnetocaloric effect of the Fe-RE-B-Nb (RE = Gd, Dy and Ho) bulk metallic glasses were studied. The type of dopping RE element and its concentration can easily tune T{sub C} in a large temperature range of 120 K without significantly decreasing the magnetic entropy change (ΔS{sub M}) and refrigerant capacity (RC) of the alloys. The observed values of ΔS{sub M} and RC of these alloys compare favorably with those of recently reported Fe-based metallic glasses with enhanced RC compared to Gd{sub 5}Ge{sub 1.9}Si{sub 2}Fe{sub 0.1}. The tunable T{submore » C} and large glass-forming ability of these RE doped Fe-based bulk metallic glasses can be used in a wide temperature range with the final required shapes.« less

  1. Ternary rare earth-lanthanide sulfides

    DOEpatents

    Takeshita, Takuo; Gschneidner, Jr., Karl A.; Beaudry, Bernard J.

    1987-01-06

    A new ternary rare earth sulfur compound having the formula: La.sub.3-x M.sub.x S.sub.4 where M is a rare earth element selected from the group europium, samarium and ytterbium and x=0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to 1000.degree. C.

  2. Catalytic asymmetric ring-opening of meso-aziridines with malonates under heterodinuclear rare earth metal Schiff base catalysis.

    PubMed

    Xu, Yingjie; Lin, Luqing; Kanai, Motomu; Matsunaga, Shigeki; Shibasaki, Masakatsu

    2011-04-20

    Catalytic asymmetric ring-opening of meso-aziridines with malonates is described. The combined use of two rare earth metal sources with different properties promoted the desired ring-opening reaction. A 1:1:1 mixture of a heterobimetallic La(O-iPr)(3)/Yb(OTf)(3)/Schiff base 1a (0.25-10 mol %) efficiently promoted the reaction of five-, six-, and seven-membered ring cyclic meso-aziridines as well as acyclic meso-aziridines with dimethyl, diethyl, and dibenzyl malonates, giving chiral cyclic and acyclic γ-amino esters in 99-63% yield and >99.5-97% ee.

  3. Physics of Ultrathin Films and Heterostructures of Rare-Earth Nickelates

    DOE PAGES

    Middey, Srimanta; Chakhalian, J.; Mahadevan, P.; ...

    2016-04-06

    The electronic structure of transition metal oxides featuring correlated electrons can be rationalized within the Zaanen-Sawatzky-Allen framework. Following a brief description of the present paradigms of electronic behavior, we focus on the physics of rare-earth nickelates as an archetype of complexity emerging within the charge transfer regime. The intriguing prospect of realizing the physics of high- Tc cuprates through heterostructuring resulted in a massive endeavor to epitaxially stabilize these materials in ultrathin form. A plethora of new phenomena unfolded in such artificial structures due to the effect of epitaxial strain, quantum confinement, and interfacial charge transfer. Here we review themore » present status of artificial rare-earth nickelates in an effort to uncover the interconnection between the electronic and magnetic behavior and the underlying crystal structure. Here, we conclude by discussing future directions to disentangle the puzzle regarding the origin of the metal-insulator transition, the role of oxygen holes, and the true nature of the antiferromagnetic spin configuration in the ultrathin limit.« less

  4. Rare earths

    USGS Publications Warehouse

    Gambogi, J.

    2013-01-01

    Global mine production of rare earths was estimated to have declined slightly in 2012 relative to 2011 (Fig. 1). Production in China was estimated to have decreased to 95 from 105 kt (104,700 from 115,700 st) in 2011, while new mine production in the United States and Australia increased.

  5. Enantioselective Reduction of Ketones Catalyzed by Rare-Earth Metals Complexed with Phenoxy Modified Chiral Prolinols.

    PubMed

    Song, Peng; Lu, Chengrong; Fei, Zenghui; Zhao, Bei; Yao, Yingming

    2018-06-01

    Enantioselective reduction of ketones and α,β-unsaturated ketones by pinacolborane (HBpin) has been well-established by using chiral rare-earth metal catalysts with phenoxy modified prolinols. A number of highly optically active alcohols were obtained from reduction of simple ketones catalyzed by ytterbium complex 1 [L 4 Yb(L 4 H)] (H 2 L 4 = ( S)-2- tert-butyl-6-((2-(hydroxydiphenylmethyl)pyrrolidin-1-yl)methyl)phenol). Moreover, α,β-unsaturated ketones were selectively reduced to a wide range of chiral allylic alcohols with excellent yields, high enantioselectivity, and complete chemoselectivity, catalyzed by a single component chiral ytterbium complex 2 [L 1 Yb(L 1 H)] (H 2 L 1 = ( S)-2,4-di- tert-butyl-6-((2-(hydroxydiphenylmethyl)pyrrolidin-1-yl)methyl)phenol).

  6. Recovery of rare earths from spent NdFeB magnets of wind turbine: Leaching and kinetic aspects.

    PubMed

    Kumari, Aarti; Sinha, Manish Kumar; Pramanik, Swati; Sahu, Sushanta Kumar

    2018-05-01

    Increasing demands of rare earth (RE) metals for advanced technological applications coupled with the scarcity of primary resources have led to the development of processes to treat secondary resources like scraps or end of life products that are often rich in such metals. Spent NdFeB magnet may serve as a potential source of rare earths containing around ∼30% of neodymium and other rare earths. In the present investigation, a pyro-hydrometallurgical process has been developed to recover rare earth elements (Nd, Pr and Dy) from the spent wind turbine magnet. The spent magnet is demagnetized and roasted at 1123 K to convert rare earths and iron to their respective oxides. Roasting of the magnet not only provides selectivity, but enhances the leaching efficiency also. The leaching of the roasted sample with 0.5 M hydrochloric acid at 368 K, 100 g/L pulp density and 500 rpm for 300 min selectively recovers the rare earth elements almost quantitatively leaving iron oxide in the residue. Leaching of rare earth elements with hydrochloric acid follows the mixed controlled kinetic model with activation energy (E a ) of 30.1 kJ/mol in the temperature range 348-368 K. The leaching mechanism is further established by characterizing the leach residues obtained at different time intervals by scanning electron microscopy- energy dispersive X-ray spectroscopy (SEM-EDS) and X-ray diffraction (XRD). Individual rare earth elements from the leach solution containing 16.8 g/L of Nd, 3.8 g/L Pr, 0.28 g/L of Dy and other minor impurity elements could be separated by solvent extraction. However, mixed rare earth oxide of 99% purity was produced by oxalate precipitation followed by roasting. The leach residue comprising of pure hematite has a potential to be used as pigment or can find other applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Not all Rare Earths are the Same to Microbes

    NASA Astrophysics Data System (ADS)

    Fujita, Y.; Reed, D. W.; St Jeor, J.; Das, G.; Anderko, A.

    2017-12-01

    Rare earth elements (REE) are important for modern technologies including smart phones and energy efficient lighting, electric and hybrid vehicles, and advanced wind turbines. Greater demand and usage of REE leads to increased potential for ecosystem impacts, as human activities generate higher concentrations of these metals through mining, industrial processing and waste generation than are normally present in natural environments. Biological modules in wastewater treatment plants are among the ecosystems likely to be impacted by higher REE loads because these poorly soluble metals often accumulate in sludges. We have been examining the effects of adding REE to laboratory cultures of Sporacetigenium mesophilum, a fermenting bacterium originally isolated from an anaerobic sludge digester. We observed that the addition of 60 µM ( 9 ppm) europium stimulated growth and hydrogen production by S. mesophilum. The addition of the equivalent amount of samarium, separately, appeared to be even more beneficial to S. mesophilum. However, when we measured soluble metal concentrations in the cultures, we found strikingly different results. After 24 hours, essentially all of the added Eu remained in the aqueous phase, but 60-65% of the added Sm was no longer soluble. To better understand the relationship between the solubility of REE and their impact on microbiological processes, a thermodynamic model was established for Eu and Sm species in simulated aqueous environments. The model was calibrated to reproduce the solubility of both crystalline and amorphous rare earth hydroxides, which control the availability of rare earths in solution. The primary factors influencing solubility are the solution pH, crystallinity of the hydroxide mineral and redox conditions. In the case of Eu, transition between trivalent and divalent cations occurs at moderate potentials and, therefore, it is possible that divalent cations contribute to the solubilization of Eu. In the case of Sm, divalent

  8. Rare earth elements and critical metal content of extracted landfilled material and potential recovery opportunities.

    PubMed

    Gutiérrez-Gutiérrez, Silvia C; Coulon, Frédéric; Jiang, Ying; Wagland, Stuart

    2015-08-01

    Rare earth elements (REEs), Platinum group metals (PGMs) and other critical metals currently attract significant interest due to the high risks of supply shortage and substantial impact on the economy. Their uses in many applications have made them present in municipal solid waste (MSW) and in commercial and industrial waste (C&I), since several industrial processes produce by-products with high content of these metals. With over 4000 landfills in the UK alone, the aim of this study was to assess the existence of these critical metals within landfills. Samples collected from four closed landfills in UK were subjected to a two-step acid digestion to extract 27 metals of interest. Concentrations across the four landfill sites were 58±6mgkg(-1) for REEs comprising 44±8mgkg(-1) for light REEs, 11±2mgkg(-1) for heavy REEs and 3±1mgkg(-1) for Scandium (Sc) and 3±1.0mgkg(-1) of PGMs. Compared to the typical concentration in ores, these concentrations are too low to achieve a commercially viable extraction. However, content of other highly valuable metals (Al and Cu) was found in concentrations equating to a combined value across the four landfills of around $400 million, which increases the economic viability of landfill mining. Presence of critical metals will mainly depend on the type of waste that was buried but the recovery of these metals through landfill mining is possible and is economically feasible only if additional materials (plastics, paper, metallic items and other) are also recovered for reprocessing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Rare earth element scavenging in seawater

    NASA Astrophysics Data System (ADS)

    Byrne, Robert H.; Kim, Ki-Hyun

    1990-10-01

    Examinations of rare earth element (REE) adsorption in seawater, using a variety of surface-types, indicated that, for most surfaces, light rare earth elements (LREEs) are preferentially adsorbed compared to the heavy rare earths (HREEs). Exceptions to this behavior were observed only for silica phases (glass surfaces, acid-cleaned diatomaceous earth, and synthetic SiO 2). The affinity of the rare earths for surfaces can be strongly affected by thin organic coatings. Glass surfaces which acquired an organic coating through immersion in Tampa Bay exhibited adsorptive behavior typical of organic-rich, rather than glass, surfaces. Models of rare earth distributions between seawater and carboxylate-rich surfaces indicate that scavenging processes which involve such surfaces should exhibit a strong dependence on pH and carbonate complexation. Scavenging models involving carboxylate surfaces produce relative REE abundance patterns in good general agreement with observed shale-normalized REE abundances in seawater. Scavenging by carboxylate-rich surfaces should produce HREE enrichments in seawater relative to the LREEs and may produce enrichments of lanthanum relative to its immediate trivalent neighbors. Due to the origin of distribution coefficients as a difference between REE solution complexation (which increases strongly with atomic number) and surface complexation (which apparently also increases with atomic number) the relative solution abundance patterns of the REEs produced by scavenging reactions can be quite complex.

  10. Spin-Orbit Qubits of Rare-Earth-Metal Ions in Axially Symmetric Crystal Fields

    NASA Astrophysics Data System (ADS)

    Bertaina, S.; Shim, J. H.; Gambarelli, S.; Malkin, B. Z.; Barbara, B.

    2009-11-01

    Contrary to the well-known spin qubits, rare-earth-metal qubits are characterized by a strong influence of crystal field due to large spin-orbit coupling. At low temperature and in the presence of resonance microwaves, it is the magnetic moment of the crystal-field ground state which nutates (for several μs) and the Rabi frequency ΩR is anisotropic. Here, we present a study of the variations of ΩR(H→0) with the magnitude and direction of the static magnetic field H→0 for the odd Er167 isotope in a single crystal CaWO4:Er3+. The hyperfine interactions split the ΩR(H→0) curve into eight different curves which are fitted numerically and described analytically. These “spin-orbit qubits” should allow detailed studies of decoherence mechanisms which become relevant at high temperature and open new ways for qubit addressing using properly oriented magnetic fields.

  11. Recovery of rare earth elements from the sulfothermophilic red alga Galdieria sulphuraria using aqueous acid.

    PubMed

    Minoda, Ayumi; Sawada, Hitomi; Suzuki, Sonoe; Miyashita, Shin-ichi; Inagaki, Kazumi; Yamamoto, Takaiku; Tsuzuki, Mikio

    2015-02-01

    The demand for rare earth elements has increased dramatically in recent years because of their numerous industrial applications, and considerable research efforts have consequently been directed toward recycling these materials. The accumulation of metals in microorganisms is a low-cost and environmentally friendly method for the recovery of metals present in the environment at low levels. Numerous metals, including rare earth elements, can be readily dissolved in aqueous acid, but the efficiency of metal biosorption is usually decreased under the acidic conditions. In this report, we have investigated the use of the sulfothermophilic red alga Galdieria sulphuraria for the recovery of metals, with particular emphasis on the recovery of rare earth metals. Of the five different growth conditions investigated where G. sulphuraria could undergo an adaptation process, Nd(III), Dy(III), and Cu(II) were efficiently recovered from a solution containing a mixture of different metals under semi-anaerobic heterotrophic condition at a pH of 2.5. G. sulphuraria also recovered Nd(III), Dy(III), La(III), and Cu(II) with greater than 90% efficiency at a concentration of 0.5 ppm. The efficiency remained unchanged at pH values in the range of 1.5-2.5. Furthermore, at pH values in the range of 1.0-1.5, the lanthanoid ions were collected much more efficiently into the cell fractions than Cu(II) and therefore successfully separated from the Cu(II) dissolved in the aqueous acid. Microscope observation of the cells using alizarin red suggested that the metals were accumulating inside of the cells. Experiments using dead cells suggested that this phenomenon was a biological process involving specific activities within the cells.

  12. Structural and Crystal Chemical Properties of Alkali Rare-earth Double Phosphates

    DOE PAGES

    Farmer, James Matthew; Boatner, Lynn A.; Chakoumakos, Bryan C.; ...

    2016-01-01

    When appropriately activated, alkali rare-earth double phosphates of the form: M 3RE(PO 4) 2 (where M denotes an alkali metal and RE represents either a rare-earth element or Y or Sc) are of interest for use as inorganic scintillators for radiation detection at relatively long optical emission wavelengths. These compounds exhibit layered crystal structures whose symmetry properties depend on the relative sizes of the rare-earth and alkali-metal cations. Single-crystal X-ray and powder neutron diffraction methods were used here to refine the structures of the series of rare-earth double phosphate compounds: K 3RE(PO 4) 2 with RE = Lu, Er, Ho,more » Dy, Gd, Nd, Ce, plus Y and Sc - as well as the compounds: A 3Lu(PO 4) 2, with A = Rb, and Cs. The double phosphate K 3Lu(PO 4) 2 was reported and structurally refined previously. This material had a hexagonal unit cell at room temperature with the Lu ion six-fold coordinated with oxygen atoms of the surrounding phosphate groups. Additionally two lower-temperature phases were observed for K 3Lu(PO 4) 2. The first phase transition to a monoclinic P21/m phase occurred at ~230 K, and the Lu ion retained its six-fold coordination. The second K 3Lu(PO 4) 2 phase transition occurred at ~130 K. The P21/m space group symmetry was retained, however, one of the phosphate groups rotated to increase the oxygen coordination number of Lu from six to seven. This structure then became isostructural with the room-temperature form of the compound K 3Yb(PO 4) 2 reported here that also exhibits an additional high-temperature phase which occurs at T = 120 °C with a transformation to hexagonal P-3 space group symmetry and a Yb-ion coordination number reduction from seven to six. This latter result was confirmed using EXAFS. The single-crystal growth methods structural systematics, and thermal expansion properties of the present series of alkali rare-earth double phosphates, as determined by X-ray and neutron diffraction methods, are treated

  13. Structural and Crystal Chemical Properties of Alkali Rare-earth Double Phosphates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, James Matthew; Boatner, Lynn A.; Chakoumakos, Bryan C.

    When appropriately activated, alkali rare-earth double phosphates of the form: M 3RE(PO 4) 2 (where M denotes an alkali metal and RE represents either a rare-earth element or Y or Sc) are of interest for use as inorganic scintillators for radiation detection at relatively long optical emission wavelengths. These compounds exhibit layered crystal structures whose symmetry properties depend on the relative sizes of the rare-earth and alkali-metal cations. Single-crystal X-ray and powder neutron diffraction methods were used here to refine the structures of the series of rare-earth double phosphate compounds: K 3RE(PO 4) 2 with RE = Lu, Er, Ho,more » Dy, Gd, Nd, Ce, plus Y and Sc - as well as the compounds: A 3Lu(PO 4) 2, with A = Rb, and Cs. The double phosphate K 3Lu(PO 4) 2 was reported and structurally refined previously. This material had a hexagonal unit cell at room temperature with the Lu ion six-fold coordinated with oxygen atoms of the surrounding phosphate groups. Additionally two lower-temperature phases were observed for K 3Lu(PO 4) 2. The first phase transition to a monoclinic P21/m phase occurred at ~230 K, and the Lu ion retained its six-fold coordination. The second K 3Lu(PO 4) 2 phase transition occurred at ~130 K. The P21/m space group symmetry was retained, however, one of the phosphate groups rotated to increase the oxygen coordination number of Lu from six to seven. This structure then became isostructural with the room-temperature form of the compound K 3Yb(PO 4) 2 reported here that also exhibits an additional high-temperature phase which occurs at T = 120 °C with a transformation to hexagonal P-3 space group symmetry and a Yb-ion coordination number reduction from seven to six. This latter result was confirmed using EXAFS. The single-crystal growth methods structural systematics, and thermal expansion properties of the present series of alkali rare-earth double phosphates, as determined by X-ray and neutron diffraction methods, are treated

  14. Developments in the use of rare earth metal complexes as efficient catalysts for ring-opening polymerization of cyclic esters used in biomedical applications

    NASA Astrophysics Data System (ADS)

    Cota, Iuliana

    2017-04-01

    Biodegradable polymers represent a class of particularly useful materials for many biomedical and pharmaceutical applications. Among these types of polyesters, poly(ɛ-caprolactone) and polylactides are considered very promising for controlled drug delivery devices. These polymers are mainly produced by ring-opening polymerization of their respective cyclic esters, since this method allows a strict control of the molecular parameters (molecular weight and distribution) of the obtained polymers. The most widely used catalysts for ring-opening polymerization of cyclic esters are tin- and aluminium-based organometallic complexes; however since the contamination of the aliphatic polyesters by potentially toxic metallic residues is particularly of concern for biomedical applications, the possibility of replacing organometallic initiators by novel less toxic or more efficient organometallic complexes has been intensively studied. Thus, in the recent years, the use of highly reactive rare earth initiators/catalysts leading to lower polymer contamination has been developed. The use of rare earth complexes is considered a valuable strategy to decrease the polyester contamination by metallic residues and represents an attractive alternative to traditional organometallic complexes.

  15. Extraction of rare earth elements from low-grade Bauxite via precipitation reaction

    NASA Astrophysics Data System (ADS)

    Kusrini, E.; Nurani, Y.; Bahari, ZJ

    2018-03-01

    The aim of this research was to determine the optimum hydrometallurgical parameters to extract the rare earth elements (REE) from low-grade bauxite through acid leaching and precipitation reaction. REE or lanthanide recovery by a precipitation method with sodium sulphate and sodium phosphate as precipitation agents is reported where the effect of pH and recovery of REE are described. The metal composition of REE in low-grade bauxite after treatment were analyzed by ICP-OES. The total recovery values of REE elements at the first precipitation reaction using sodium sulphate as the precipitation agent at pH 3.5 showed ~68.2% of lanthanum, ~18.9% cerium, and ~7.8% yttrium. Lanthanum was the rare-earth element present at the highest concentration in the low-grade bauxite after the series treatments. An optimum pH of 3.5 for precipitation of rare-earth elements using sodium sulphate was demonstrated where this method is recommended for the extraction of REE elements from low-grade bauxite.

  16. Rare Earth Elements | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    - Mineral Resources main content Rare Earth Elements Rare earth elements and the supply and demand of these deposits containing rare earth elements to meet the perceived future demand. High prices for rare earth earth element occurrences in the DGGS publications catalog. Department of Natural Resources, Division of

  17. Antimony film sensor for sensitive rare earth metal analysis in environmental samples.

    PubMed

    Makombe, Martin; van der Horst, Charlton; Silwana, Bongiwe; Iwuoha, Emmanuel; Somerset, Vernon

    2016-07-02

    A sensor for the adsorptive stripping voltammetric determination of rare earth elements has been developed. The electrochemical procedure is based on the oxidation of the rare earth elements complexed with alizarin complexone at a glassy carbon electrode that was in situ modified with an antimony film, during an anodic scan from -0.2 V to 1.1 V (vs. Ag/AgCl) and deposition potential of -0.1 V (vs. Ag/AgCl). The factors influencing the adsorptive stripping capability were optimised, including the complexing agent concentration, plating concentration of antimony and deposition time. The detection of rare earth elements (La, Ce and Pr) were realised in 0.08 M sodium acetate (pH = 5.8) solution as supporting electrolyte, with 2 × 10(-6) M alizarin complexone and 1.0 mg L(-1) antimony solution. Under the optimised conditions, a deposition time of 360 s was obtained and a linear response was observed between 1 and 25 µg L(-1). The reproducibility of the voltammetric measurements was found to be within 5.0% RSD for 12 replicate measurements of cerium(III) concentration of 5 µg L(-1) using the same electrode surface. The detection limits obtained using stripping analysis was 0.06, 0.42 and 0.71 μg L(-1) for Ce(III), La(III) and Pr(III), respectively. The developed sensor has been successfully applied for the determination of cerium, lanthanum and praseodymium in municipal tap water samples.

  18. 40 CFR 721.6005 - Rare earth phosphate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Rare earth phosphate (generic). 721... Substances § 721.6005 Rare earth phosphate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as rare earth phophate (PMNs P-99...

  19. 40 CFR 721.6005 - Rare earth phosphate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Rare earth phosphate (generic). 721... Substances § 721.6005 Rare earth phosphate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as rare earth phophate (PMNs P-99...

  20. 40 CFR 721.6005 - Rare earth phosphate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Rare earth phosphate (generic). 721... Substances § 721.6005 Rare earth phosphate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as rare earth phophate (PMNs P-99...

  1. 40 CFR 721.6005 - Rare earth phosphate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Rare earth phosphate (generic). 721... Substances § 721.6005 Rare earth phosphate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as rare earth phophate (PMNs P-99...

  2. 40 CFR 721.6005 - Rare earth phosphate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Rare earth phosphate (generic). 721... Substances § 721.6005 Rare earth phosphate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as rare earth phophate (PMNs P-99...

  3. METHOD OF SEPARATING TETRAVALENT PLUTONIUM VALUES FROM CERIUM SUB-GROUP RARE EARTH VALUES

    DOEpatents

    Duffield, R.B.; Stoughton, R.W.

    1959-02-01

    A method is presented for separating plutonium from the cerium sub-group of rare earths when both are present in an aqueous solution. The method consists in adding an excess of alkali metal carbonate to the solution, which causes the formation of a soluble plutonium carbonate precipitate and at the same time forms an insoluble cerium-group rare earth carbonate. The pH value must be adjusted to bctween 5.5 and 7.5, and prior to the precipitation step the plutonium must be reduced to the tetravalent state since only tetravalent plutonium will form the soluble carbonate complex.

  4. Distribution of rare-earth (Y, La, Ce) and other heavy metals in the profiles of the podzolic soil group

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.; Goryachkin, S. V.; Savichev, A. T.

    2011-05-01

    Along with Fe and Al, many heavy metals (Mn, Cr, Zn, Cu, and Ni) show a markedly pronounced eluvial-illuvial redistribution in the profiles of soils of the podzolic group. The intensity of the redistribution of the bulk forms of these metals is comparable with that of Fe and exceeds that of Al. Although the podzolic soils are depleted of rare-earth metals, the latter respond readily to soil podzolization. The inactive participation of Al is explained by an insignificant portion of the active reaction-capable fraction. Podzolization does not influence the profile distribution of Sr and Ba. The leaching degree of heavy metals such as Mn, Cr, Zn, Ni, and Zr is noticeably higher in the sandy podzols than in the loamy podzolic soils. Leaching of heavy metals from the podzolic horizons is of geochemical importance, whereas the depletion of metals participating in plant nutrition and biota development is of ecological importance. The leaching of heavy metals is related to the destruction of clay particles in the heavy-textured podzolic soils; the effect of the soil acidity on the leaching of heavy metals is less significant.

  5. Metal Amorphous Nanocomposite Soft Magnetic Material-Enabled High Power Density, Rare Earth Free Rotational Machines [Metal Amorphous Nanocomposite (MANC) Soft Magnetic Material (SMM) Enabled High Power Density, Rare Earth Free Rotational Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simizu, Satoru; Ohodnicki, Paul R.; McHenry, Michael E.

    Metal amorphous nanocomposites (MANCs) are promising soft magnetic materials (SMMs) for power electronic applications offering low power loss at high frequency and maintaining a relatively high flux density. While applications in certain motor designs have been recently modeled, their widespread application awaits scaled manufacturing of MANC materials and proliferation of new higher speed motor designs. A hybrid motor design based on permanent magnets and doubly salient stator and rotor is reported here to develop a compact (a factor of 10 smaller than currently possible in Si steels), high-speed (>1 kHz, electrical), high-power (>2.5 kW) motor by incorporating low loss (<10more » W/kg at 1 kHz) MANCs such as recently reported Fe-Ni-based alloys. A feature of this motor design is flux focusing from the permanent magnet allowing use of lower energy permanent magnet chosen from among non-rare earth containing compositions and attractive due to constraints posed by rare earth criticality. A 2-D finite element analysis model reported here indicates that a 2.5 kW hybrid motor may be built with a permanent magnet with a 0.4 T remanence at a rotor speed of 6000 rpm. At a magnetic switching frequency of 1.4 kHz, the core loss may be limited to <3 W by selecting an appropriate MANC SMM. The projected efficiency exceeds 96% not including power loss in the controller. Under full load conditions, the flux density distributions for the SMM stay predominantly <1.3 T, the saturation magnetization of optimized FeNi-based MANC alloys. As a result, the maximum demagnetizing field in the permanent magnet is less than 2.2 × 10 5 A/m sustainable, for example, with a high-grade hard ferrite magnet.« less

  6. Metal Amorphous Nanocomposite Soft Magnetic Material-Enabled High Power Density, Rare Earth Free Rotational Machines [Metal Amorphous Nanocomposite (MANC) Soft Magnetic Material (SMM) Enabled High Power Density, Rare Earth Free Rotational Machines

    DOE PAGES

    Simizu, Satoru; Ohodnicki, Paul R.; McHenry, Michael E.

    2018-02-27

    Metal amorphous nanocomposites (MANCs) are promising soft magnetic materials (SMMs) for power electronic applications offering low power loss at high frequency and maintaining a relatively high flux density. While applications in certain motor designs have been recently modeled, their widespread application awaits scaled manufacturing of MANC materials and proliferation of new higher speed motor designs. A hybrid motor design based on permanent magnets and doubly salient stator and rotor is reported here to develop a compact (a factor of 10 smaller than currently possible in Si steels), high-speed (>1 kHz, electrical), high-power (>2.5 kW) motor by incorporating low loss (<10more » W/kg at 1 kHz) MANCs such as recently reported Fe-Ni-based alloys. A feature of this motor design is flux focusing from the permanent magnet allowing use of lower energy permanent magnet chosen from among non-rare earth containing compositions and attractive due to constraints posed by rare earth criticality. A 2-D finite element analysis model reported here indicates that a 2.5 kW hybrid motor may be built with a permanent magnet with a 0.4 T remanence at a rotor speed of 6000 rpm. At a magnetic switching frequency of 1.4 kHz, the core loss may be limited to <3 W by selecting an appropriate MANC SMM. The projected efficiency exceeds 96% not including power loss in the controller. Under full load conditions, the flux density distributions for the SMM stay predominantly <1.3 T, the saturation magnetization of optimized FeNi-based MANC alloys. As a result, the maximum demagnetizing field in the permanent magnet is less than 2.2 × 10 5 A/m sustainable, for example, with a high-grade hard ferrite magnet.« less

  7. Reversing Conventional Reactivity of Mixed Oxo/Alkyl Rare-Earth Complexes: Non-Redox Oxygen Atom Transfer.

    PubMed

    Hong, Jianquan; Tian, Haiwen; Zhang, Lixin; Zhou, Xigeng; Del Rosal, Iker; Weng, Linhong; Maron, Laurent

    2018-01-22

    The preferential substitution of oxo ligands over alkyl ones of rare-earth complexes is commonly considered as "impossible" due to the high oxophilicity of metal centers. Now, it has been shown that simply assembling mixed methyl/oxo rare-earth complexes to a rigid trinuclear cluster framework cannot only enhance the activity of the Ln-oxo bond, but also protect the highly reactive Ln-alkyl bond, thus providing a previously unrecognized opportunity to selectively manipulate the oxo ligand in the presence of numerous reactive functionalities. Such trimetallic cluster has proved to be a suitable platform for developing the unprecedented non-redox rare-earth-mediated oxygen atom transfer from ketones to CS 2 and PhNCS. Controlled experiments and computational studies shed light on the driving force for these reactions, emphasizing the importance of the sterical accessibility and multimetallic effect of the cluster framework in promoting reversal of reactivity of rare-earth oxo complexes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Effect of Destined High-Pressure Torsion on the Structure and Mechanical Properties of Rare Earth-Based Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Cheng, H.; Jiang, X.; Wu, M. L.; Li, G.

    2018-03-01

    Changes in the atomic structure and mechanical properties of rare earth-based metallic glasses caused by destined high-pressure torsion (HPT) were studied by X-ray diffraction synchrotron radiation and nanoindentation. Results showed that destined HPT improved nanohardness and wear resistance, which indicated the significant contributions of this technique. The diffraction patterns showed that the contents of pairs between solvent and solute atoms with a large negative mixing enthalpy increased, whereas those of pairs between solvent atoms and between solute atoms decreased after destined HPT. Thus, the process was improved by increasing the proportion of high-intensity pairs between solvent and solute atoms.

  9. An Overview of Rare Earth Science and Technology

    NASA Astrophysics Data System (ADS)

    Gschneidner, Karl, Jr.

    2012-02-01

    Currently rare earth science and technology is robust: this includes all the major branches of science -- biochemistry, chemistry, materials and physics. There are, however, currently some anomalies and distortions especially in the technology and applications sector of the rare earth field, which is caused by the dominance of China on the sales of rare earths and rare earth containing products. For the past 5 to 10 years ˜95% of rare earths utilized in commerce came from China. Although Chinese actions have lead to sudden and large price spikes and export embargoes, the rare earths are still available but at a higher cost. The start up of production in 2011 at mines in the USA and Australia will alleviate this situation in about two years. Basic and applied research on the condensed matter physics/materials science has hardly been impacted by these events, but new research opportunities are opening up especially with regard to the USA's military and energy security. Magnets seems to be the hottest topic, but research on battery materials, phosphors and catalysts are also (or should be) strongly considered.

  10. Magnetomigration of rare-earth ions in inhomogeneous magnetic fields.

    PubMed

    Franczak, Agnieszka; Binnemans, Koen; Jan Fransaer

    2016-10-05

    The effects of external inhomogenous (gradient) magnetic fields on the movement of the rare-earth ions: Dy 3+ , Gd 3+ and Y 3+ , in initially homogeneous aqueous solutions have been investigated. Differences in the migration of rare-earth ions in gradient magnetic fields were observed, depending on the magnetic character of the ions: paramagnetic ions of Dy 3+ and Gd 3+ move towards regions of the sample where the magnetic field gradient is the strongest, while diamagnetic ions of Y 3+ move in the opposite direction. It has been showed that the low magnetic field gradients, such the ones generated by permanent magnets, are sufficient to observe the magnetomigration effects of the ions in solution. The present work clearly establishes the behavior of magnetically different ions in initially homogeneous aqueous solutions exposed to magnetic field gradients. To this avail, a methodology for measuring the local concentration differences of metal ions in liquid samples was developed.

  11. Utility of Lithium in Rare-Earth Metal Reduction Reactions to Form Nontraditional Ln2+ Complexes and Unusual [Li(2.2.2-cryptand)]1+ Cations.

    PubMed

    Huh, Daniel N; Darago, Lucy E; Ziller, Joseph W; Evans, William J

    2018-02-19

    The utility of lithium compared to other alkali metals in generating Ln 2+ rare-earth metal complexes via reduction of Ln 3+ precursors in reactions abbreviated as LnA 3 /M (Ln = rare-earth metal; A = anionic ligand; M = alkali metal) is described. Lithium reduction of Cp' 3 Ln (Cp' = C 5 H 4 SiMe 3 ; Ln = Y, Tb, Dy, Ho) under Ar in the presence of 2.2.2-cryptand (crypt) forms new examples of crystallographically characterizable Ln 2+ complexes of these metals, [Li(crypt)][Cp' 3 Ln]. In each complex, lithium is found in an N 2 O 4 donor atom coordination geometry that is unusual for the cryptand ligand. Magnetic susceptibility data on these new examples of nontraditional divalent lanthanide complexes are consistent with 4f n 5d 1 electronic configurations. The Dy and Ho complexes have exceptionally high single-ion magnetic moments, 11.35 and 11.67 μ B , respectively. Lithium reduction of Cp' 3 Y under N 2 at -35 °C forms the Y 2+ complex (Cp' 3 Y) 1- , which reduces dinitrogen upon warming to room temperature to generate the (N 2 ) 2- complex [Cp' 2 Y(THF)] 2 (μ-η 2 :η 2 -N 2 ). These results provide insight on the factors that lead to reduced dinitrogen complexes and/or stable divalent lanthanide complexes as a function of the specific reducing agent and conditions.

  12. Ames Lab 101: Rare-Earth Recycling

    ScienceCinema

    Ryan Ott

    2017-12-22

    Recycling keeps paper, plastics, and even jeans out of landfills. Could recycling rare-earth magnets do the same? Perhaps, if the recycling process can be improved. Scientists at the U.S. Department of Energy's Ames Laboratory are working to more effectively remove the neodymium, a rare earth, from the mix of other materials in a magnet.

  13. Rare Earth Optical Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L. (Inventor); Jenkins, Phillip (Inventor)

    2004-01-01

    A rare earth optical temperature sensor is disclosed for measuring high temperatures. Optical temperature sensors exist that channel emissions from a sensor to a detector using a light pipe. The invention uses a rare earth emitter to transform the sensed thermal energy into a narrow band width optical signal that travels to a detector using a light pipe. An optical bandpass filter at the detector removes any noise signal outside of the band width of the signal from the emitter.

  14. Bioleaching of rare earth elements from monazite sand.

    PubMed

    Brisson, Vanessa L; Zhuang, Wei-Qin; Alvarez-Cohen, Lisa

    2016-02-01

    Three fungal strains were found to be capable of bioleaching rare earth elements from monazite, a rare earth phosphate mineral, utilizing the monazite as a phosphate source and releasing rare earth cations into solution. These organisms include one known phosphate solubilizing fungus, Aspergillus niger ATCC 1015, as well as two newly isolated fungi: an Aspergillus terreus strain ML3-1 and a Paecilomyces spp. strain WE3-F. Although monazite also contains the radioactive element Thorium, bioleaching by these fungi preferentially solubilized rare earth elements over Thorium, leaving the Thorium in the solid residual. Adjustments in growth media composition improved bioleaching performance measured as rare earth release. Cell-free spent medium generated during growth of A. terreus strain ML3-1 and Paecilomyces spp. strain WE3-F in the presence of monazite leached rare earths to concentrations 1.7-3.8 times those of HCl solutions of comparable pH, indicating that compounds exogenously released by these organisms contribute substantially to leaching. Organic acids released by the organisms included acetic, citric, gluconic, itaconic, oxalic, and succinic acids. Abiotic leaching with laboratory prepared solutions of these acids was not as effective as bioleaching or leaching with cell-free spent medium at releasing rare earths from monazite, indicating that compounds other than the identified organic acids contribute to leaching performance. © 2015 Wiley Periodicals, Inc.

  15. Enhanced separation of rare earth elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyon, K.; Greenhalgh, M.; Herbst, R. S.

    2016-09-01

    Industrial rare earth separation processes utilize PC88A, a phosphonic acid ligand, for solvent extraction separations. The separation factors of the individual rare earths, the equipment requirements, and chemical usage for these flowsheets are well characterized. Alternative ligands such as Cyanex® 572 and the associated flowsheets are being investigated at the pilot scale level to determine if significant improvements to the current separation processes can be realized. These improvements are identified as higher separation factors, reduced stage requirements, or reduced chemical consumption. Any of these improvements can significantly affect the costs associated with these challenging separation proccesses. A mid/heavy rare earthmore » element (REE) separations flowsheet was developed and tested for each ligand in a 30 stage mixer-settler circuit to compare the separation performance of PC88A and Cyanex® 572. The ligand-metal complex strength of Cyanex® 572 provides efficient extraction of REE while significantly reducing the strip acid requirements. Reductions in chemical consumption have a significant impact on process economics for REE separations. Partitioning results summarized Table 1 indicate that Cyanex® 572 offers the same separation performance as PC88A while reducing acid consumption by 30% in the strip section for the mid/heavy REE separation. Flowsheet Effluent Compositions PC88A Cyanex® 572 Raffinate Mid REE Heavy REE 99.40% 0.60% 99.40% 0.60% Rich Mid REE Heavy REE 2.20% 97.80% 0.80% 99.20% Liquor Strip Acid Required 3.4 M 2.3 M Table 1 – Flowsheet results comparing separation performance of PC88A and Cyanex® 572 for a mid/heavy REE separation.« less

  16. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements

    NASA Astrophysics Data System (ADS)

    Kato, Yasuhiro; Fujinaga, Koichiro; Nakamura, Kentaro; Takaya, Yutaro; Kitamura, Kenichi; Ohta, Junichiro; Toda, Ryuichi; Nakashima, Takuya; Iwamori, Hikaru

    2011-08-01

    World demand for rare-earth elements and the metal yttrium--which are crucial for novel electronic equipment and green-energy technologies--is increasing rapidly. Several types of seafloor sediment harbour high concentrations of these elements. However, seafloor sediments have not been regarded as a rare-earth element and yttrium resource, because data on the spatial distribution of these deposits are insufficient. Here, we report measurements of the elemental composition of over 2,000 seafloor sediments, sampled at depth intervals of around one metre, at 78 sites that cover a large part of the Pacific Ocean. We show that deep-sea mud contains high concentrations of rare-earth elements and yttrium at numerous sites throughout the eastern South and central North Pacific. We estimate that an area of just one square kilometre, surrounding one of the sampling sites, could provide one-fifth of the current annual world consumption of these elements. Uptake of rare-earth elements and yttrium by mineral phases such as hydrothermal iron-oxyhydroxides and phillipsite seems to be responsible for their high concentration. We show that rare-earth elements and yttrium are readily recovered from the mud by simple acid leaching, and suggest that deep-sea mud constitutes a highly promising huge resource for these elements.

  17. Prospective analysis of the flows of certain rare earths in Europe at the 2020 horizon.

    PubMed

    Rollat, Alain; Guyonnet, Dominique; Planchon, Mariane; Tuduri, Johann

    2016-03-01

    This paper proposes a forecast of certain rare earth flows in Europe at the 2020 horizon, based on an analysis of trends influencing various actors of the rare earth industry along the value chain. While 2020 is indicated as the forecast horizon, the analysis should be considered as more representative of the next decade. The rare earths considered here are used in applications that are important for a low-carbon energy transition and/or have a significant recycling potential: NdFeB magnets (Pr, Nd, Dy), NiMH batteries (Pr, Nd) and fluorescent lamp phosphors (Eu, Tb, Y). An analysis of major trends affecting the rare earth industry in Europe along the value chain (including extraction, separation, fabrication, manufacture, use and recycling), helps to build a scenario for a material flow analysis of these rare earths in Europe. The scenario assumes in particular that during the next decade, there exists a rare earth mine in production in Europe (with Norra Kärr in Sweden as a most likely candidate) and also that recycling is in line with targets proposed in recent European legislation. Results are presented in the form of Sankey diagrams which help visualize the various flows for the three applications. For example, calculations forecast flows from extraction to separation of Pr, Nd and Dy for magnet applications in Europe, on the order of 310 tons, 980 tons and 80 tons rare earth metal resp., while recycled flows are 35 tons, 110 tons and 30 tons resp. Calculations illustrate how the relative contribution of recycling to supply strongly depends on the situation with respect to demand. Considering the balance between supply and demand, it is not anticipated any significant shortage of rare earth supply in Europe at the 2020 horizon, barring any new geopolitical crisis involving China. For some heavy rare earths, supply will in fact largely outweigh demand, as for example Europium due to the phasing out of fluorescent lights by LEDs. Copyright © 2016 Elsevier Ltd

  18. Effect of rare-earth doping on the thermoelectric and electrical transport properties of the transition metal pentatelluride hafnium pentatelluride

    NASA Astrophysics Data System (ADS)

    Lowhorn, Nathan Dane

    The transition metal pentatellurides HfTe5 and ZrTe5 have been observed to possess interesting electrical transport properties. High thermopower and low resistivity values result in high thermoelectric power factors. In addition, they possess anomalous transport behavior. The temperature dependence of the resistivity is semimetallic except for a large resistive peak as a function of temperature at around 75 K for HfTe5 and 145 K for ZrTe5. At a temperature corresponding to this peak, the thermopower crosses zero as it moves from large positive values to large negative values. This behavior has been found to be extremely sensitive to changes in the energetics of the system through influences such as magnetic field, stress, pressure, microwave radiation, and substitutional doping. This behavior has yet to be fully explained. Previous doping studies have shown profound and varied effects on the anomalous transport behavior. In this study we investigate the effect on the electrical resistivity, thermopower, and magnetoresistance of doping HfTe5 with rare-earth elements. We have grown single crystals of nominal Hf0.75RE 0.25Te5 where RE = Ce, Pr, Nd, Sm, Gd, Tb, Dy, and Ho. Electrical resistivity and thermopower data from about 10 K to room temperature are presented and discussed in terms of the thermoelectric properties. Doping with rare-earth elements of increasing atomic number leads to a systematic suppression of the anomalous transport behavior. Rare-earth doping also leads to an enhancement of the thermoelectric power factor over that of previously studied pentatellurides and the commonly used thermoelectric material Bi2Te3. For nominal Hf0.75Nd0.25Te5 and Hf0.75 Sm0.25Te5, values more than a factor of 2 larger than that Bi2Te3 are observed. In addition, suppression of the anomalous transport behavior leads to a suppression of the large magnetoresistive effect observed in the parent compounds. Rare-earth doping of HfTe5 has a profound impact on the anomalous

  19. Micromagnetics of rare-earth efficient permanent magnets

    NASA Astrophysics Data System (ADS)

    Fischbacher, Johann; Kovacs, Alexander; Gusenbauer, Markus; Oezelt, Harald; Exl, Lukas; Bance, Simon; Schrefl, Thomas

    2018-05-01

    The development of permanent magnets containing less or no rare-earth elements is linked to profound knowledge of the coercivity mechanism. Prerequisites for a promising permanent magnet material are a high spontaneous magnetization and a sufficiently high magnetic anisotropy. In addition to the intrinsic magnetic properties the microstructure of the magnet plays a significant role in establishing coercivity. The influence of the microstructure on coercivity, remanence, and energy density product can be understood by using micromagnetic simulations. With advances in computer hardware and numerical methods, hysteresis curves of magnets can be computed quickly so that the simulations can readily provide guidance for the development of permanent magnets. The potential of rare-earth reduced and rare-earth free permanent magnets is investigated using micromagnetic simulations. The results show excellent hard magnetic properties can be achieved in grain boundary engineered NdFeB, rare-earth magnets with a ThMn12 structure, Co-based nano-wires, and L10-FeNi provided that the magnet’s microstructure is optimized.

  20. Infrared spectra of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes. Part 3. The effects of substituents and molecular symmetry on the infrared characteristics of phthalocyanine in bis(phthalocyaninato) rare earth complexes.

    PubMed

    Lu, Fanli; Bao, Meng; Ma, Changqin; Zhang, Xianxi; Arnold, Dennis P; Jiang, Jianzhuang

    2003-12-01

    The infra-red (IR) spectroscopic data for a series of 45 homoleptic unsubstituted and substituted bis(phthalocyaninato) rare earth complexes M(Pc)2 and M(Pc*)2 [M=Y, La...Lu except Pm; H2Pc=phthalocyanine; H2Pc*=2,3,9,10,16,17,24,25-octakis(octyloxy)phthalocyanine (H2OOPc) and 2(3),9(10),16(17),24(25)-tetra(tert-butyl)phthalocyanine (H2TBPc)] have been collected with resolution of 2 cm(-1). The IR spectra for M(Pc)2 and M(OOPc)2 are much simpler than those of M(TBPc)2, revealing the relatively higher symmetry of the former two compounds. For M(Pc)2 the Pc-* marker band at 1312-1323 cm(-1), attributed to the pyrrole stretching, and the isoindole stretching band at 1439-1454 cm(-1) are found to be dependent on the central rare earth size, shifting slightly to the higher energy along with the decrease of rare earth radius. The frequency of the vibration at 876-887 cm(-1) is also dependent on the rare earth ionic size. The metal size-sensitivity of this band and theoretical studies render it possible to re-assign it to the coupling of isoindole deformation and aza vibration. The nature of another metal-sensitive vibration mode at 1110-1116 cm(-1), which was previously assigned to the C-H bending, is now re-assigned as an isoindole breathing mode with some small contribution also from C-H in-plane bending. These assignments are supported by comparative studies of the IR spectra of substituted bis(phthalocyaninato) analogues M(OOPc)2 and M(TBPc)2. By comparison between the IR spectra of unsubstituted and substituted bis(phthalocyaninato) rare earth analogues and according to the IR characteristics of alkyl groups, some characteristic vibrational fundamentals due to the Pc rings and the substituents can be separately identified. In conclusion, all the metal size-dependent IR absorptions are composed primarily of the vibrations of pyrrole or isoindole stretching, breathing or deformation or aza stretching of the Pc ring.

  1. Tunable, rare earth-doped solid state lasers

    DOEpatents

    Emmett, John L.; Jacobs, Ralph R.; Krupke, William F.; Weber, Marvin J.

    1980-01-01

    Laser apparatus comprising combinations of an excimer pump laser and a rare earth-doped solid matrix, utilizing the 5d-4f radiative transition in a rare earth ion to produce visible and ultra-violet laser radiation with high overall efficiency in selected cases and relatively long radiative lifetimes.

  2. The formation of crystals in glasses containing rare earth oxides

    NASA Astrophysics Data System (ADS)

    Fadzil, Syazwani Mohd; Hrma, Pavel; Crum, Jarrod; Siong, Khoo Kok; Ngatiman, Mohammad Fadzlee; Said, Riduan Mt

    2014-02-01

    Korean spent nuclear fuel will reach the capacity of the available temporary storage by 2016. Pyroprocessing and direct disposal seems to be an alternative way to manage and reuse spent nuclear fuel while avoiding the wet reprocessing technology. Pyroprocessing produces several wastes streams, including metals, salts, and rare earths, which must be converted into stabilized form. A suitable form for rare earth immobilization is borosilicate glass. The borosilicate glass form exhibits excellent durability, allows a high waste loading, and is easy to process. In this work, we combined the rare earths waste of composition (in wt%) 39.2Nd2O3-22.7CeO2-11.7La2O3-10.9PrO2-1.3Eu2O3-1.3Gd2O3-8.1Sm2O3-4.8Y2O3 with a baseline glass of composition 60.2SiO2-16.0B2O3-12.6Na2O-3.8Al2O3-5.7CaO-1.7ZrO2. Crystallization in waste glasses occurs as the waste loading increases. It may produce complicate glass processing and affect the product quality. To study crystal formation, we initially made glasses containing 5%, 10% and 15% of La2O3 and then glasses with 5%, 10% and 15% of the complete rare earth mix. Samples were heat-treated for 24 hours at temperatures 800°C to 1150°C in 50°C increments. Quenched samples were analyzed using an optical microscope, scanning electron microscope with energy dispersive spectroscopy, and x-ray diffraction. Stillwellite (LaBSiO5) and oxyapatite (Ca2La8Si6O26) were found in glasses containing La2O3, while oxyapatite (Ca2La8Si6O26 and NaNd9Si6O26) precipitated in glasses with additions of mixed rare earths. The liquidus temperature (TL) of the glasses containing 5%, 10% and 15% La2O3 were 800°C, 959°C and 986°C, respectively; while TL was 825°C, 1059°C and 1267°C for glasses with 5%, 10% and 15% addition of mixed rare earth oxides. The component coefficients TB2O3, TSiO2, TCaO, and TRE2O3 were also evaluated using a recently published study.

  3. Rare Earth Doped High Temperature Ceramic Selective Emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Pal, AnnaMarie; Patton, Martin O.; Jenkins, Phillip P.

    1999-01-01

    As a result of their electron structure, rare earth ions in crystals at high temperature emit radiation in several narrow bands rather than in a continuous blackbody manner. This study develops a spectral emittance model for films of rare earth containing materials. Although there are several possible rare earth doped high temperature materials, this study was confined to rare earth aluminum garnets. Good agreement between experimental and theoretical spectral emittances was found for erbium, thulium and erbium-holmium aluminum garnets. Spectral emittances of these films are sensitive to temperature differences across the film. Emitter efficiency is also a sensitive function of temperature. For thulium aluminum garnet the efficiency is 0.38 at 1700 K but only 0.19 at 1262 K.

  4. SALICYLATE PROCESS FOR THORIUM SEPARATION FROM RARE EARTHS

    DOEpatents

    Cowan, G.A.

    1959-08-25

    The separation of thorium from rare earths is accomplished by forming an aqueous solution of salts of thorium and rare earths and sufficient acetate buffer to provide a pH of between 2 and 5, adding an ammonium salicylate to the aqueous buffered solution, contacting the resultant solution with a substantially water-immiscible organic solvent mixture of an ether and an ester, and separating the solvent extract phase containing thorium salicylate from the aqueous phase containing the rare earths.

  5. Sol-gel-derived hybrid materials multi-doped with rare-earth metal ions

    NASA Astrophysics Data System (ADS)

    Zelazowska, E.; Rysiakiewicz-Pasek, E.; Borczuch-Laczka, M.; Cholewa-Kowalska, K.

    2012-06-01

    Four different hybrid organic-inorganic materials based on TiO2-SiO2 matrices with organic additives and doped with rare-earth metal ions (III) from the group of europium, cerium, terbium, neodymium, dysprosium and samarium, were synthesized by sol-gel method. Tetraethyl orthosilicate, titanium (IV) isopropoxide and organic compounds, such as butyl acrylate, butyl methacrylate, ethyl acetoacetate, ethylene glycol dimethacrylate, ethyl acetate, propylene carbonate, organic solvents and certain inorganic salts were used in the synthesis. The inorganic part of the sols, which were used in the synthesis of all the hybrid materials, was prepared separately and then the organic parts were added. The materials obtained were aged for three weeks at room temperature and then heated in an electric oven for three hours at temperatures of 80 °C-150 °C. Scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (SEM/EDX); X-ray diffraction (XRD); Fourier transform infrared spectroscopy (KBr technique); 29Si magic-angle spinning nuclear magnetic resonance; and fluorescence spectroscopy were used for the examination of morphology, microstructure and luminescence properties, respectively. Photoluminescence properties with relatively intense narrow emission lines of Tb, Eu, Dy, Nd, Sm respectively to the RE-ions doping, were observed for all the hybrid materials.

  6. Effects of rare-earth co-doping on the local structure of rare-earth phosphate glasses using high and low energy X-ray diffraction.

    PubMed

    Cramer, Alisha J; Cole, Jacqueline M; FitzGerald, Vicky; Honkimaki, Veijo; Roberts, Mark A; Brennan, Tessa; Martin, Richard A; Saunders, George A; Newport, Robert J

    2013-06-14

    Rare-earth co-doping in inorganic materials has a long-held tradition of facilitating highly desirable optoelectronic properties for their application to the laser industry. This study concentrates specifically on rare-earth phosphate glasses, (R2O3)x(R'2O3)y(P2O5)(1-(x+y)), where (R, R') denotes (Ce, Er) or (La, Nd) co-doping and the total rare-earth composition corresponds to a range between metaphosphate, RP3O9, and ultraphosphate, RP5O14. Thereupon, the effects of rare-earth co-doping on the local structure are assessed at the atomic level. Pair-distribution function analysis of high-energy X-ray diffraction data (Q(max) = 28 Å(-1)) is employed to make this assessment. Results reveal a stark structural invariance to rare-earth co-doping which bears testament to the open-framework and rigid nature of these glasses. A range of desirable attributes of these glasses unfold from this finding; in particular, a structural simplicity that will enable facile molecular engineering of rare-earth phosphate glasses with 'dial-up' lasing properties. When considered together with other factors, this finding also demonstrates additional prospects for these co-doped rare-earth phosphate glasses in nuclear waste storage applications. This study also reveals, for the first time, the ability to distinguish between P-O and P[double bond, length as m-dash]O bonding in these rare-earth phosphate glasses from X-ray diffraction data in a fully quantitative manner. Complementary analysis of high-energy X-ray diffraction data on single rare-earth phosphate glasses of similar rare-earth composition to the co-doped materials is also presented in this context. In a technical sense, all high-energy X-ray diffraction data on these glasses are compared with analogous low-energy diffraction data; their salient differences reveal distinct advantages of high-energy X-ray diffraction data for the study of amorphous materials.

  7. Anomalous Hall Effect in a Feromagnetic Rare-Earth Cobalite

    NASA Technical Reports Server (NTRS)

    Samoilov, A. V.; Yeh, N. C.; Vasquez, R. P.

    1996-01-01

    Rare-Earth manganites and cobalites with the perovskite structure have been a subject of great recent interest because their electrical resistance changes significantly when a magnetic field is applied...we have studied the Hall effect in thin film La(sub 0.5)Ca(sub 0.5)CoO(sub 3) material and have obtained convincing evidence fo the so called anomalous Hall effect, typical for magnetic metals...Our results suggest that near the ferromagnetic ordering temperature, the dominant electron scattering mechanism is the spin fluctuation.

  8. METHOD OF SEPARATING RARE EARTHS BY ION EXCHANGE

    DOEpatents

    Spedding, F.H.; Powell, J.E.

    1960-10-18

    A process is given for separating yttrium and rare earth values having atomic numbers of from 57 through 60 and 68 through 71 from an aqueous solution whose pH value can range from 1 to 9. All rare earths and yttrium are first adsorbed on a cation exchange resin, and they are then eluted with a solution of N-hydroxyethylethylenediaminetriacetic acid (HEDTA) in the order of decreasing atomic number, yttrium behaving like element 61; the effluents are collected in fractions. The HEDTA is recovered by elution with ammonia solution and the resin is regenerated with sulfuric acid. Rare earths are precipitated from the various effluents with oxalic acid, and each supernatant is passed over cation exchange resin for adsorption of HEDTA and nonprecipitated rare earths: the oxalic acid is not retained by the resin.

  9. Syntheses of new rare earth complexes with carboxymethylated polysaccharides and evaluation of their in vitro antifungal activities.

    PubMed

    Sun, Xiaobo; Jin, Xiaozhe; Pan, Wei; Wang, Jinping

    2014-11-26

    In the present paper, La, Eu and Yb were selected to represent light, middle and heavy rare earths to form complexes with polysaccharides through chelating coordination of carboxyl groups, which were added into polysaccharide chains by means of carboxymethylation. Their antifungal activities against plant pathogenic fungi were evaluated using growth rate method. These rare earth complexes exhibited various antifungal activities against the tested fungi, depending on rare earth elements, polysaccharide types and fungal species. Among these three metal elements (i.e. La, Eu and Yb), Yb formed the complexes with the most effective antifungal properties. Furthermore, the results showed that ligands of carboxymethylated polysaccharides played a key role in promoting cytotoxicity of the rare earth complexes. Carboxymethylated Ganoderma applanatum polysaccharide (CGAP) was found to be the most effective ligand to form complexes with antifungal activities, followed by carboxymethylated lentinan (CLNT) and carboxymethylated Momordica charantia polysaccharide (CMCP). Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Replacing critical rare earth materials in high energy density magnets

    NASA Astrophysics Data System (ADS)

    McCallum, R. William

    2012-02-01

    High energy density permanent magnets are crucial to the design of internal permanent magnet motors (IPM) for hybride and electric vehicles and direct drive wind generators. Current motor designs use rare earth permanent magnets which easily meet the performance goals, however, the rising concerns over cost and foreign control of the current supply of rare earth resources has motivated a search for non-rare earth based permanent magnets alloys with performance metrics which allow the design of permanent magnet motors and generators without rare earth magnets. This talk will discuss the state of non-rare-earth permanent magnets and efforts to both improve the current materials and find new materials. These efforts combine first principles calculations and meso-scale magnetic modeling with advance characterization and synthesis techniques in order to advance the state of the art in non rare earth permanent magnets. The use of genetic algorithms in first principle structural calculations, combinatorial synthesis in the experimental search for materials, atom probe microscopy to characterize grain boundaries on the atomic level, and other state of the art techniques will be discussed. In addition the possibility of replacing critical rare earth elements with the most abundant rare earth Ce will be discussed.

  11. Levels of rare earth elements, heavy metals and uranium in a population living in Baiyun Obo, Inner Mongolia, China: a pilot study.

    PubMed

    Hao, Zhe; Li, Yonghua; Li, Hairong; Wei, Binggan; Liao, Xiaoyong; Liang, Tao; Yu, Jiangping

    2015-06-01

    The Baiyun Obo deposit is the world's largest rare earth elements (REE) deposit. We aimed to investigate levels of REE, heavy metals (HMs) and uranium (U) based on morning urine samples in a population in Baiyun Obo and to assess the possible influence of rare earth mining processes on human exposure. In the mining area, elevated levels were found for the sum of the concentrations of light REE (LREE) and heavy REE (HREE) with mean values at 3.453 and 1.151 μg g(-1) creatinine, which were significantly higher than those in the control area. Concentrations of HMs and U in the population increased concomitantly with increasing REE levels. The results revealed that besides REE, HMs and U were produced with REE exploitation. Gender, age, educational level, alcohol and smoking habit were major factors contributing to inter-individual variation. Males were more exposed to these metals than females. Concentrations in people in the senior age group and those with only primary education were low. Drinking and smoking were associated with the levels of LREE, Cr, Cu, Cd and Pb in morning urine. Hence this study provides basic and useful information when addressing public and environmental health challenges in the areas where REE are mined and processed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Absorption spectroscopy of heavy alkaline earth metals Ba and Sr in rare gas matrices—CCSD(T) calculations and atomic site occupancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Barry M.; McCaffrey, John G., E-mail: john.mccaffrey@nuim.ie

    2016-01-28

    Isolation of the heavier alkaline earth metals Ba and Sr in the solid rare gases (RGs) Ar, Kr, and Xe is analysed with absorption spectroscopy and interpreted partly with the assistance of ab initio calculations of the diatomic M ⋅ RG ground state interaction potentials. The y{sup 1}P←a{sup 1}S resonance transitions in the visible spectral region are used to compare the isolation conditions of these two metal atom systems and calcium. Complex absorption bands were recorded in all three metal atom systems even after extensive sample annealing. Coupled cluster calculations conducted on the ground states of the nine M ⋅more » RG diatomics (M = Ca, Sr, and Ba; RG = Ar, Kr, and Xe) at the coupled cluster single, double, and non-iterative triple level of theory revealed long bond lengths (>5 Å) and shallow bound regions (<130 cm{sup −1}). All of the M ⋅ RG diatomics have bond lengths considerably longer than those of the rare gas dimers, with the consequence that isolation of these metal atoms in a single substitutional site of the solid rare gas is unlikely, with the possible exception of Ca/Xe. The luminescence of metal dimer bands has been recorded for Ba and Sr revealing very different behaviours. Resonance fluorescence with a lifetime of 15 ns is observed for the lowest energy transition of Sr{sub 2} while this transition is quenched in Ba{sub 2}. This behaviour is consistent with the absence of vibrational structure on the dimer absorption band in Ba{sub 2} indicating lifetime broadening arising from efficient relaxation to low-lying molecular states. More extensive 2D excitation-emission data recorded for the complex site structures present on the absorption bands of the atomic Ba and Sr systems will be presented in future publications.« less

  13. Metal Based Synthetic Strategies and the Examination of Structure Determining Factors in Alkaline Earth Metal Compounds

    NASA Astrophysics Data System (ADS)

    Takahashi, Yuriko

    Last decades have witnessed a large expansion of the organometallic heavier alkaline earth metal species. However, continued growth of this promising area of chemistry has been slowed by severe restrictions and limitations in viable synthetic methodologies leading to difficulties in preparing and characterizing the target compounds. There is clearly a need for the further development of synthetic methodologies and detailed structure function analysis that will promote the further advancement of organoalkaline earth metal chemistry in applications as diverse as materials chemistry and catalysis. This thesis work greatly extends the synthetic options currently available towards organoalkaline earth metal species by introducing redox transmetallation protolysis (RTP), a reaction based on the readily available Ph3Bi as a non-toxic transmetallation agent. Based on a straightforward one-pot procedure and work-up, Ph3Bi based RTP presents a powerful synthetic alternative for the facile preparation of a large variety of heavy alkaline earth metal compounds. The second part of the thesis explores the effect of secondary non covalent interactions on the coordination chemistry as well as thermal properties of a series of novel alkali, alkaline earth, rare earth as well as heterobimetallic alkali/alkaline earth fluoroalkoxides. These compounds showcase the significance of non-covalent M···F-C and agostic interactions on metal stabilization and structural features, providing critical input on ligand design for the design of advanced metal organic vapor deposition (MOCVD) precursor materials. This work also showcases the impact of M···F-C interactions over M---co-ligand coordination, a critical precursor design element as well.

  14. The tremendous potential of deep-sea mud as a source of rare-earth elements.

    PubMed

    Takaya, Yutaro; Yasukawa, Kazutaka; Kawasaki, Takehiro; Fujinaga, Koichiro; Ohta, Junichiro; Usui, Yoichi; Nakamura, Kentaro; Kimura, Jun-Ichi; Chang, Qing; Hamada, Morihisa; Dodbiba, Gjergj; Nozaki, Tatsuo; Iijima, Koichi; Morisawa, Tomohiro; Kuwahara, Takuma; Ishida, Yasuyuki; Ichimura, Takao; Kitazume, Masaki; Fujita, Toyohisa; Kato, Yasuhiro

    2018-04-10

    Potential risks of supply shortages for critical metals including rare-earth elements and yttrium (REY) have spurred great interest in commercial mining of deep-sea mineral resources. Deep-sea mud containing over 5,000 ppm total REY content was discovered in the western North Pacific Ocean near Minamitorishima Island, Japan, in 2013. This REY-rich mud has great potential as a rare-earth metal resource because of the enormous amount available and its advantageous mineralogical features. Here, we estimated the resource amount in REY-rich mud with Geographical Information System software and established a mineral processing procedure to greatly enhance its economic value. The resource amount was estimated to be 1.2 Mt of rare-earth oxide for the most promising area (105 km 2  × 0-10 mbsf), which accounts for 62, 47, 32, and 56 years of annual global demand for Y, Eu, Tb, and Dy, respectively. Moreover, using a hydrocyclone separator enabled us to recover selectively biogenic calcium phosphate grains, which have high REY content (up to 22,000 ppm) and constitute the coarser domain in the grain-size distribution. The enormous resource amount and the effectiveness of the mineral processing are strong indicators that this new REY resource could be exploited in the near future.

  15. Mother Lode: The Untapped Rare Earth Mineral Resources of Vietnam

    DTIC Science & Technology

    2013-11-01

    Library of Congress, Congressional Research Service. Rare Earth Elements: The Global Supply Chain, 4. 14 Tse , Pui-Kwan. China’s Rare-Earth Industry...U.S. Geological Survey Open-File Report 2011–1042, 2. Figure 2. Global REO production, 1960-2011. Source: Tse , Pui-Kwan. China’s Rare-Earth...3 compiled from three sources: Tse , Pui-Kwan. China’s Rare-Earth Industry: U.S. Geological Survey Open-File Report 2011–1042, 4; Areddy, James T

  16. A reactive distillation process for the treatment of LiCl-KCl eutectic waste salt containing rare earth chlorides

    NASA Astrophysics Data System (ADS)

    Eun, H. C.; Choi, J. H.; Kim, N. Y.; Lee, T. K.; Han, S. Y.; Lee, K. R.; Park, H. S.; Ahn, D. H.

    2016-11-01

    The pyrochemical process, which recovers useful resources (U/TRU metals) from used nuclear fuel using an electrochemical method, generates LiCl-KCl eutectic waste salt containing radioactive rare earth chlorides (RECl3). It is necessary to develop a simple process for the treatment of LiCl-KCl eutectic waste salt in a hot-cell facility. For this reason, a reactive distillation process using a chemical agent was achieved as a method to separate rare earths from the LiCl-KCl waste salt. Before conducting the reactive distillation, thermodynamic equilibrium behaviors of the reactions between rare earth (Nd, La, Ce, Pr) chlorides and the chemical agent (K2CO3) were predicted using software. The addition of the chemical agent was determined to separate the rare earth chlorides into an oxide form using these equilibrium results. In the reactive distillation test, the rare earth chlorides in LiCl-KCl eutectic salt were decontaminated at a decontamination factor (DF) of more than 5000, and were mainly converted into oxide (Nd2O3, CeO2, La2O3, Pr2O3) or oxychloride (LaOCl, PrOCl) forms. The LiCl-KCl was purified into a form with a very low concentration (<1 ppm) for the rare earth chlorides.

  17. Rare earth phosphors and phosphor screens

    DOEpatents

    Buchanan, Robert A.; Maple, T. Grant; Sklensky, Alden F.

    1981-01-01

    This invention relates to rare earth phosphor screens for converting image carrying incident radiation to image carrying visible or near-visible radiation and to the rare earth phosphor materials utilized in such screens. The invention further relates to methods for converting image carrying charged particles to image carrying radiation principally in the blue and near-ultraviolet region of the spectrum and to stabilized rare earth phosphors characterized by having a continuous surface layer of the phosphors of the invention. More particularly, the phosphors of the invention are oxychlorides and oxybromides of yttrium, lanthanum and gadolinium activated with trivalent cerium and the conversion screens are of the type illustratively including x-ray conversion screens, image amplifier tube screens, neutron imaging screens, cathode ray tube screens, high energy gamma ray screens, scintillation detector screens and screens for real-time translation of image carrying high energy radiation to image carrying visible or near-visible radiation.

  18. PROCESS FOR SEPARATING AMERICIUM AND CURIUM FROM RARE EARTH ELEMENTS

    DOEpatents

    Baybarz, R.D.; Lloyd, M.H.

    1963-02-26

    This invention relates to methods of separating americium and curium values from rare earth values. In accordance with the invention americium, curium, and rare earth values are sorbed on an anion exchange resin. A major portion of the rare earth values are selectively stripped from the resin with a concentrated aqueous solution of lithium chloride, and americium, curium, and a minor portion of rare earth values are then stripped from the resin with a dilute aqueous solution of lithium chloride. The americium and curium values are further purified by increasing the concentration of lithium chloride in the solution to at least 8 molar and selectively extracting rare earth values from the resulting solution with a monoalkylphosphoric acid. (AEC)

  19. Determination of thorium and of rare earth elements in cerium earth minerals and ores

    USGS Publications Warehouse

    Carron, M.K.; Skinner, D.L.; Stevens, R.E.

    1955-01-01

    The conventional oxalate method for precipitating thorium and the rare earth elements in acid solution exhibits definite solubilities of these elements. The present work was undertaken to establish conditions overcoming these solubilities and to find optimum conditions for precipitating thorium and the rare earth elements as hydroxides and sebacates. The investigations resulted in a reliable procedure applicable to samples in which the cerium group elements predominate. The oxalate precipitations are made from homogeneous solution at pH 2 by adding a prepared solution of anhydrous oxalic acid in methanol instead of the more expensive crystalline methyl oxalate. Calcium is added as a carrier. Quantitative precipitation of thorium and the rare earth elements is ascertained by further small additions of calcium to the supernatant liquid, until the added calcium precipitates as oxalate within 2 minutes. Calcium is removed by precipitating the hydroxides of thorium and rare earths at room temperature by adding ammonium hydroxide to pH > 10. Thorium is separated as the sebacate at pH 2.5, and the rare earths are precipitated with ammonium sebacate at pH 9. Maximum errors for combined weights of thorium and rare earth oxides on synthetic mixtures are ??0.6 mg. Maximum error for separated thoria is ??0.5 mg.

  20. Bacterial Cell Surface Adsorption of Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Jiao, Y.; Park, D.; Reed, D.; Fujita, Y.; Yung, M.; Anderko, A.; Eslamimanesh, A.

    2015-12-01

    Rare earth elements (REE) play a critical role in many emerging clean energy technologies, including high-power magnets, wind turbines, solar panels, hybrid/electric vehicle batteries and lamp phosphors. In order to sustain demand for such technologies given current domestic REE shortages, there is a need to develop new approaches for ore processing/refining and recycling of REE-containing materials. To this end, we have developed a microbially-mediated bioadsorption strategy with application towards enrichment of REE from complex mixtures. Specifically, the bacterium Caulobacter crescentus was genetically engineered to display lanthanide binding tags (LBTs), short peptides that possess high affinity and specificity for rare earth elements, on its cell surface S-layer protein. Under optimal conditions, LBT-displayed cells adsorbed greater than 5-fold more REE than control cells lacking LBTs. Competition binding experiments with a selection of REEs demonstrated that our engineered cells could facilitate separation of light- from heavy- REE. Importantly, binding of REE onto our engineered strains was much more favorable compared to non-REE metals. Finally, REE bound to the cell surface could be stripped off using citrate, providing an effective and non-toxic REE recovery method. Together, this data highlights the potential of our approach for selective REE enrichment from REE containing mixtures.

  1. Rare earth niobate coordination polymers

    NASA Astrophysics Data System (ADS)

    Muniz, Collin N.; Patel, Hiral; Fast, Dylan B.; Rohwer, Lauren E. S.; Reinheimer, Eric W.; Dolgos, Michelle; Graham, Matt W.; Nyman, May

    2018-03-01

    Rare-earth (RE) coordination polymers are infinitely tailorable to yield luminescent materials for various applications. Here we described the synthesis of a heterometallic rare-earth coordination compound ((CH3)2SO)3(RE)NbO(C2O4)3((CH3)2SO) = dimethylsulfoxide, DMSO, (C2O2= oxalate), (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb). The structure was obtained from single crystal X-ray diffraction of the La analogue. The Nb˭O and DMSO terminal-bonding character guides assembly of an open framework structure with noncentrosymmetric RE-coordination geometry, and large spacing between the RE centers. A second structure was observed by PXRD for the smaller rare earths (Dy, Ho, Er, Yb); this structure has not yet been determined. The materials were further characterized using FTIR, and photoluminescence measurements. Characteristic excitation and emission transitions were observed for RE = Nd, Sm, Eu, and Tb. Quantum yield (QY) measurements were performed by exciting Eu and Tb analoges at 394 nm (QY 66%) and 464 nm (QY 71%) for Eu; and 370 nm (QY=40%) for Tb. We attribute the high QY and bright luminescence to two main structure-function properties of the system; namely the absence of water in the structure, and absence of concentration quenching.

  2. Unique magnetism and structural transformation in rare earth dialumindes

    NASA Astrophysics Data System (ADS)

    Pathak, Arjun; Mudryk, Yaroslav; Paudyal, Durga; Pecharsky, Vitalij

    Rare earth metallic alloys play a critical yet often obscure role in numerous technological applications, including but not limited to sensors, actuators, permanent magnets, and rechargeable batteries; therefore, understanding their fundamental properties is of utmost importance. We study structural behavior, specific heat, and magnetism of various binary and pseudobinary rare earth dialumindes by means of temperature-dependent x-ray powder diffraction, heat capacity and magnetization measurements, and first principles calculations. Here, we focus on our recent understanding of low temperature magnetism, and crystal structure of DyAl2, TbAl2, PrAl2, ErAl2, and discuss magnetic and structural instabilities in the pseudobinary PrAl2 - ErAl2 system. Unique among other mixed heavy lanthanide dialumindes, the substitution of Er in Pr1-xErxAl2 results in unusual ferrimagnetic behavior, and the ferrimagnetic interactions become strongest around x = 0.25. The Ames Laboratory is operated for the U. S. DOE by Iowa State University of Science and Technology under contract No. DE-AC02-07CH11358. This work was supported by the Department of Energy, Office of Basic Energy Sciences, Materials Sciences Division.

  3. Syntheses and crystal structures of the rare-earth metal(III) bromide ortho-oxidotungstates(VI) with the formula REBr[WO4] (RE = Y, Gd-Yb)

    NASA Astrophysics Data System (ADS)

    Schustereit, Tanja; Schleid, Thomas; Hartenbach, Ingo

    2015-10-01

    The rare-earth metal(III) bromide ortho-oxidotungstates(VI) with the formula REBr[WO4] crystallize triclinically in space group P 1 bar (a = 689-693, b = 715-728, c = 1074-1107 pm, α = 103-106, β ≈ 108 and γ = 93-95°, Z = 4) for RE = Y, Gd-Yb. Their crystal structure is isotypic with the most examples of the formally analogous lanthanoid(III) bromide oxidomolybdates(VI) REBr[MoO4] with RE = Y, Pr, Nd, Sm, Gd-Lu. It contains two crystallographically different rare-earth metal(III) cations with coordination numbers of seven plus one for (RE1)3+ and seven for (RE2)3+. The (RE1)3+ cations are surrounded by three Br- and four plus one O2- anions forming distorted trigonal dodecahedra, while the (RE2)3+ cations exhibit a coordination environment of one Br- and six O2- anions in the shape of a monocapped trigonal prism. Furthermore, the structure contains two crystallographically independent, isolated tetrahedral [WO4]2- units. All these polyhedra are fused together to form 1 ∞ {REBr[WO4]} chains running along [012]. Since the title compounds, synthesized by solid-state reactions from the underlying binaries, emerge as pure phases according to X-ray powder diffractometry, spectroscopic and magnetic measurements were performed.

  4. Multilayer Thermal Barrier Coating (TBC) Architectures Utilizing Rare Earth Doped YSZ and Rare Earth Pyrochlores

    NASA Technical Reports Server (NTRS)

    Schmitt, Michael P.; Rai, Amarendra K.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    To allow for increased gas turbine efficiencies, new insulating thermal barrier coatings (TBCs) must be developed to protect the underlying metallic components from higher operating temperatures. This work focused on using rare earth doped (Yb and Gd) yttria stabilized zirconia (t' Low-k) and Gd2Zr2O7 pyrochlores (GZO) combined with novel nanolayered and thick layered microstructures to enable operation beyond the 1200 C stability limit of current 7 wt% yttria stabilized zirconia (7YSZ) coatings. It was observed that the layered system can reduce the thermal conductivity by approximately 45 percent with respect to YSZ after 20 hr of testing at 1316 C. The erosion rate of GZO is shown to be an order to magnitude higher than YSZ and t' Low-k, but this can be reduced by almost 57 percent when utilizing a nanolayered structure. Lastly, the thermal instability of the layered system is investigated and thought is given to optimization of layer thickness.

  5. Google Earth locations of USA and seafloor hydrothermal vents with associated rare earth element data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrew Fowler

    Google Earth .kmz files that contain the locations of geothermal wells and thermal springs in the USA, and seafloor hydrothermal vents that have associated rare earth element data. The file does not contain the actual data, the actual data is available through the GDR website in two tier 3 data sets entitled "Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge (MOR) Hydrothermal Vents" and "Rare earth element content of thermal fluids from Surprise Valley, California"

  6. Behavior and Distribution of Heavy Metals Including Rare Earth Elements, Thorium, and Uranium in Sludge from Industry Water Treatment Plant and Recovery Method of Metals by Biosurfactants Application

    PubMed Central

    Gao, Lidi; Kano, Naoki; Sato, Yuichi; Li, Chong; Zhang, Shuang; Imaizumi, Hiroshi

    2012-01-01

    In order to investigate the behavior, distribution, and characteristics of heavy metals including rare earth elements (REEs), thorium (Th), and uranium (U) in sludge, the total and fractional concentrations of these elements in sludge collected from an industry water treatment plant were determined and compared with those in natural soil. In addition, the removal/recovery process of heavy metals (Pb, Cr, and Ni) from the polluted sludge was studied with biosurfactant (saponin and sophorolipid) elution by batch and column experiments to evaluate the efficiency of biosurfactant for the removal of heavy metals. Consequently, the following matters have been largely clarified. (1) Heavy metallic elements in sludge have generally larger concentrations and exist as more unstable fraction than those in natural soil. (2) Nonionic saponin including carboxyl group is more efficient than sophorolipid for the removal of heavy metals in polluted sludge. Saponin has selectivity for the mobilization of heavy metals and mainly reacts with heavy metals in F3 (the fraction bound to carbonates) and F5 (the fraction bound to Fe-Mn oxides). (3) The recovery efficiency of heavy metals (Pb, Ni, and Cr) reached about 90–100% using a precipitation method with alkaline solution. PMID:22693485

  7. Environmental impacts of heavy metals, rare earth elements and natural radionuclides in marine sediment from Ras Tanura, Saudi Arabia along the Arabian Gulf.

    PubMed

    El-Taher, Atef; Alshahri, Fatimh; Elsaman, Reda

    2018-02-01

    Ras Tanura city is one of the most important cities in Saudi Arabia because of the presence of the largest and oldest oil refinery in the Middle East which was began operations in September 1945. Also its contains gas plant and two ports. The concentration of natural radionuclides, heavy metals and rare earth elements were measured in marine sediment samples collected from Ras Tanura. The specific activities of 238 U, 226 Ra, 232 Th, 40 K and 137 Cs (Bq/kg) were measured using A hyper-pure Germanium detector (HPGe), and ranged from (20.4 ± 4.0-55.1 ± 9.9), (6.71 ± 0.7-46.1 ± 4.5), (3.51 ± 0.5-18.2 ± 1.5), (105 ± 4.4-492 ± 13) and from (0.33 ± 0.04-2.10 ± 0.4) for 238 U, 226 Ra, 232 Th, 40 K and 137 Cs respectively. Heavy metals and rare earth elements were measured using ICPE-9820 Plasma Atomic Emission Spectrometer. Also the frequency distributions for all radioactive variables in sediment samples were analyzed. Finally the radiological hazards due to natural radionuclides in marine sediment were calculated to the public and it's diagramed by Surfer program in maps. Comparing with the international recommended values, its values found to be within the international level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A combined calorimetric and computational study of the energetics of rare earth substituted UO 2 systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lei; Solomon, Jonathan M.; Asta, Mark

    2015-09-01

    The energetics of rare earth substituted UO2 solid solutions (U1-xLnxO2-0.5x+y, where Ln = La, Y, and Nd) are investigated employing a combination of calorimetric measurements and density functional theory based computations. Calculated and measured formation enthalpies agree within 10 kJ/mol for stoichiometric oxygen/metal compositions. To better understand the factors governing the stability and defect binding in rare earth substituted urania solid solutions, systematic trends in the energetics are investigated based on the present results and previous computational and experimental thermochemical studies of rare earth substituted fluorite oxides (A1-xLnxO2-0.5x, where A = Hf, Zr, Ce, and Th). A consistent trend towardsmore » increased energetic stability with larger size mismatch between the smaller host tetravalent cation and the larger rare earth trivalent cation is found for both actinide and non-actinide fluorite oxide systems where aliovalent substitution of Ln cations is compensated by oxygen vacancies. However, the large exothermic oxidation enthalpy in the UO2 based systems favors oxygen rich compositions where charge compensation occurs through the formation of uranium cations with higher oxidation states.« less

  9. Rare Earth Optical Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Wolford, David S.

    2000-01-01

    A new optical temperature sensor suitable for high temperatures (greater than 1700 K) and harsh environments is introduced. The key component of the sensor is the rare earth material contained at the end of a sensor that is in contact with the sample being measured. The measured narrow wavelength band emission from the rare earth is used to deduce the sample temperature. A simplified relation between the temperature and measured radiation was verified experimentally. The upper temperature limit of the sensor is determined by material limits to be approximately 2000 C. The lower limit, determined by the minimum detectable radiation, is found to be approximately 700 K. At high temperatures 1 K resolution is predicted. Also, millisecond response times are calculated.

  10. Exposure, metabolism, and toxicity of rare earths and related compounds.

    PubMed

    Hirano, S; Suzuki, K T

    1996-03-01

    For the past three decades, most attention in heavy metal toxicology has been paid to cadmium, mercury, lead, chromium, nickel, vanadium, and tin because these metals widely polluted the environment. However, with the development of new materials in the last decade, the need for toxicological studies on those new materials has been increasing. A group of rare earths (RE) is a good example. Although some RE have been used for superconductors, plastic magnets, and ceramics, few toxicological data are available compared to other heavy metals described above. Because chemical properties of RE are very similar, it is plausible that their binding affinities to biomolecules, metabolism, and toxicity in the living system are also very similar. In this report, we present an overview of the metabolism and health hazards of RE and related compounds, including our recent studies.

  11. Radioactive rare-earth deposit at Scrub Oaks mine, Morris County, New Jersey

    USGS Publications Warehouse

    Klemic, Harry; Heyl, A.V.; Taylor, Audrey R.; Stone, Jerome

    1959-01-01

    A deposit of rare-earth minerals in the Scrub Oaks iron mine, Morris County, N. J., was mapped and sampled in 1955. The rare-earth minerals are mainly in coarse-grained magnetite ore and in pegmatite adjacent to it. Discrete bodies of rare-earth-bearing magnetite ore apparently follow the plunge of the main magnetite ore body at the north end of the mine. Radioactivity of the ore containing rare earths is about 0.2 to 0.6 mllliroentgens per hour. The principal minerals of the deposit are quartz, magnetite, hematite, albiteoligoclase, perthite and antiperthite. Xenotime and doverite aggregates and bastnaesite with intermixed leucoxene are the most abundant rare-earth minerals, and zircon, sphene, chevkinite, apatite, and monazite are of minor abundance in the ore. The rare-earth elements are partly differentiated into cerium-rich bastnaesite, chevkinite, and monazite, and yttrium-rich xenotime and doverite. Apatite, zircon, and sphene contain both cerium and yttrium group earths. Eleven samples of radioactive ore and rock average 0.009 percent uranium, 0.062 percent thorium, 1.51 percent combined rare-earth oxides including yttrium oxide and 24.8 percent iron. Scatter diagrams of sample data show a direct correlation between equivalent uranium, uranium, thorium, and combined rare^ earth oxides. Both cerium- and yttrium-group earths are abundant in the rare-earth minerals. Radioactive magnetite ore containing rare-earth minerals probably formed as a variant of the magnetite mineralization that produced the main iron ore of the Scrub Oaks deposit. The rare-earth minerals and the iron ore were deposited contemporaneously. Zircon crystals, probably deposited at the same time, have been determined by the Larsen method to be about 550 to 600 million years old (late Precambrian age). Uranium, thorium, and rare-earth elements are potential byproducts of iron in the coarse-grained magnetite ore.

  12. Biosorption of metal and salt tolerant microbial isolates from a former uranium mining area. Their impact on changes in rare earth element patterns in acid mine drainage.

    PubMed

    Haferburg, Götz; Merten, Dirk; Büchel, Georg; Kothe, Erika

    2007-12-01

    The concentration of metals in microbial habitats influenced by mining operations can reach enormous values. Worldwide, much emphasis is placed on the research of resistance and biosorptive capacities of microorganisms suitable for bioremediation purposes. Using a collection of isolates from a former uranium mining area in Eastern Thuringia, Germany, this study presents three Gram-positive bacterial strains with distinct metal tolerances. These strains were identified as members of the genera Bacillus, Micrococcus and Streptomyces. Acid mine drainage (AMD) originating from the same mining area is characterized by high metal concentrations of a broad range of elements and a very low pH. AMD was analyzed and used as incubation solution. The sorption of rare earth elements (REE), aluminum, cobalt, copper, manganese, nickel, strontium, and uranium through selected strains was studied during a time course of four weeks. Biosorption was investigated after one hour, one week and four weeks by analyzing the concentrations of metals in supernatant and biomass. Additionally, dead biomass was investigated after four weeks of incubation. The maximum of metal removal was reached after one week. Up to 80% of both Al and Cu, and more than 60% of U was shown to be removed from the solution. High concentrations of metals could be bound to the biomass, as for example 2.2 mg/g U. The strains could survive four weeks of incubation. Distinct and different patterns of rare earth elements of the inoculated and non-inoculated AMD water were observed. Changes in REE patterns hint at different binding types of heavy metals regarding incubation time and metabolic activity of the cells. (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Hyporheic Microbial Biofilms as Indicators of Heavy and Rare Earth Metals in the Clark Fork Basin, Montana

    NASA Astrophysics Data System (ADS)

    Barnhart, E. P.; Hornberger, M.; Hwang, C.; Dror, I.; Bouskill, N.; Short, T.; Cain, D.; Fields, M. W.

    2016-12-01

    The ability to effectively monitor the impact of hard rock mining activities on rivers and streams is a growing concern given the large number of active and abandoned mines in the western United States. One such example, the Clark Fork Basin (CFB), western Montana, was extensively mined for copper in the early 20th century: it is now one of largest U.S. EPA superfund sites. Microbial biofilms are at the base of the lotic food chain and may provide a useful biomonitoring tool for the assessment of metal toxicity due to their environmental ubiquity, rapidity of response to environmental perturbation, and importance in determining metal mobility. Hyporheic microbial biofilms from the CFB were sampled in 2014, concurrent with the USGS National Research Programs (NRP) long-term site monitoring of metals in bed sediment and aquatic benthic insects. Integration of the DNA sequencing results from the hyporheic biofilms with the sediment and insect metal concentrations correlated several bacterial phyla with metal contamination. For example, the genus Lysobacter was strongly associated with copper (Cu) bioaccumulation in the aquatic insect Hydropsyche. These results support previous studies identifying Lysobacter as a bacterial genus that is resistant to Cu ions. Our analysis is the first to indicate that specific microorganisms can act as biomarkers of Cu contamination in rivers. Moreover, our work demonstrates that changes at the microbial community level in the hyporheic zone can be coupled to observed perturbations across higher trophic levels. In 2015, extensive remediation occurred at several of the sites sampled in 2014, providing an excellent opportunity to revisit the sites and examine the temporal variability of identified biomarkers and the short-term effectiveness of remediation. In addition, samples were analyzed for rare earth metals, of which little is known, and could provide additional insight into other metals that change the microbial community structure.

  14. Electronic Characteristics of Rare Earth Doped GaN Schottky Diodes

    DTIC Science & Technology

    2013-03-21

    REPORT TYPE Master’s Thesis 3. DATES COVERED (From – To) 04 Sep 2011 - Mar 2013 4. TITLE AND SUBTITLE ELECTRONIC CHARACTERISTICS OF RARE EARTH ...ELECTRONIC CHARACTERISTICS OF RARE EARTH DOPED GaN SCHOTTKY DIODES THESIS Aaron B. Blanning...United States. AFIT-ENP-13-M-03 Electronic Characteristics of Rare Earth Doped GaN Schottky Diodes THESIS Presented to the Faculty

  15. Rare earth niobate coordination polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muniz, Collin N.; Patel, Hiral; Fast, Dylan B.

    Rare-earth (RE) coordination polymers are infinitely tailorable to yield luminescent materials for various applications. In this paper we described the synthesis of a heterometallic rare-earth coordination compound ((CH 3) 2SO) 3(RE)NbO(C 2O 4) 3 ((CH 3) 2SO) = dimethylsulfoxide, DMSO, (C 2O 2 = oxalate), (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb). The structure was obtained from single crystal X-ray diffraction of the La analogue. The Nb =O and DMSO terminal-bonding character guides assembly of an open framework structure with noncentrosymmetric RE-coordination geometry, and large spacing between the RE centers. A second structure was observed by PXRD for themore » smaller rare earths (Dy, Ho, Er, Yb); this structure has not yet been determined. The materials were further characterized using FTIR, and photoluminescence measurements. Characteristic excitation and emission transitions were observed for RE = Nd, Sm, Eu, and Tb. Quantum yield (QY) measurements were performed by exciting Eu and Tb analoges at 394 nm (QY 66%) and 464 nm (QY 71%) for Eu; and 370 nm (QY=40%) for Tb. Finally, we attribute the high QY and bright luminescence to two main structure-function properties of the system; namely the absence of water in the structure, and absence of concentration quenching.« less

  16. Rare earth niobate coordination polymers

    DOE PAGES

    Muniz, Collin N.; Patel, Hiral; Fast, Dylan B.; ...

    2018-01-03

    Rare-earth (RE) coordination polymers are infinitely tailorable to yield luminescent materials for various applications. In this paper we described the synthesis of a heterometallic rare-earth coordination compound ((CH 3) 2SO) 3(RE)NbO(C 2O 4) 3 ((CH 3) 2SO) = dimethylsulfoxide, DMSO, (C 2O 2 = oxalate), (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb). The structure was obtained from single crystal X-ray diffraction of the La analogue. The Nb =O and DMSO terminal-bonding character guides assembly of an open framework structure with noncentrosymmetric RE-coordination geometry, and large spacing between the RE centers. A second structure was observed by PXRD for themore » smaller rare earths (Dy, Ho, Er, Yb); this structure has not yet been determined. The materials were further characterized using FTIR, and photoluminescence measurements. Characteristic excitation and emission transitions were observed for RE = Nd, Sm, Eu, and Tb. Quantum yield (QY) measurements were performed by exciting Eu and Tb analoges at 394 nm (QY 66%) and 464 nm (QY 71%) for Eu; and 370 nm (QY=40%) for Tb. Finally, we attribute the high QY and bright luminescence to two main structure-function properties of the system; namely the absence of water in the structure, and absence of concentration quenching.« less

  17. Rare Earth Element Concentration of Wyoming Thermal Waters Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quillinan, Scott; Nye, Charles; Neupane, Hari

    Updated version of data generated from rare earth element investigation of produced waters. These data represent major, minor, trace, isotopes, and rare earth element concentrations in geologic formations and water associated with oil and gas production.

  18. Heterobimetallic transition metal/rare earth metal bifunctional catalysis: a Cu/Sm/Schiff base complex for syn-selective catalytic asymmetric nitro-Mannich reaction.

    PubMed

    Handa, Shinya; Gnanadesikan, Vijay; Matsunaga, Shigeki; Shibasaki, Masakatsu

    2010-04-07

    The full details of a catalytic asymmetric syn-selective nitro-Mannich reaction promoted by heterobimetallic Cu/Sm/dinucleating Schiff base complexes are described, demonstrating the effectiveness of the heterobimetallic transition metal/rare earth metal bifunctional catalysis. The first-generation system prepared from Cu(OAc)(2)/Sm(O-iPr)(3)/Schiff base 1a = 1:1:1 with an achiral phenol additive was partially successful for achieving the syn-selective catalytic asymmetric nitro-Mannich reaction. The substrate scope and limitations of the first-generation system remained problematic. After mechanistic studies on the catalyst prepared from Sm(O-iPr)(3), we reoptimized the catalyst preparation method, and a catalyst derived from Sm(5)O(O-iPr)(13) showed broader substrate generality as well as higher reactivity and stereoselectivity compared to Sm(O-iPr)(3). The optimal system with Sm(5)O(O-iPr)(13) was applicable to various aromatic, heteroaromatic, and isomerizable aliphatic N-Boc imines, giving products in 66-99% ee and syn/anti = >20:1-13:1. Catalytic asymmetric synthesis of nemonapride is also demonstrated using the catalyst derived from Sm(5)O(O-iPr)(13).

  19. The formation of crystals in glasses containing rare earth oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fadzil, Syazwani Mohd; Hrma, Pavel; Crum, Jarrod

    Korean spent nuclear fuel will reach the capacity of the available temporary storage by 2016. Pyroprocessing and direct disposal seems to be an alternative way to manage and reuse spent nuclear fuel while avoiding the wet reprocessing technology. Pyroprocessing produces several wastes streams, including metals, salts, and rare earths, which must be converted into stabilized form. A suitable form for rare earth immobilization is borosilicate glass. The borosilicate glass form exhibits excellent durability, allows a high waste loading, and is easy to process. In this work, we combined the rare earths waste of composition (in wt%) 39.2Nd{sub 2}O{sub 3}–22.7CeO{sub 2}–11.7La{submore » 2}O{sub 3}–10.9PrO{sub 2}–1.3Eu{sub 2}O{sub 3}–1.3Gd{sub 2}O{sub 3}–8.1Sm{sub 2}O{sub 3}–4.8Y{sub 2}O{sub 3} with a baseline glass of composition 60.2SiO{sub 2}–16.0B{sub 2}O{sub 3}–12.6Na{sub 2}O–3.8Al{sub 2}O{sub 3}–5.7CaO–1.7ZrO{sub 2}. Crystallization in waste glasses occurs as the waste loading increases. It may produce complicate glass processing and affect the product quality. To study crystal formation, we initially made glasses containing 5%, 10% and 15% of La{sub 2}O{sub 3} and then glasses with 5%, 10% and 15% of the complete rare earth mix. Samples were heat-treated for 24 hours at temperatures 800°C to 1150°C in 50°C increments. Quenched samples were analyzed using an optical microscope, scanning electron microscope with energy dispersive spectroscopy, and x-ray diffraction. Stillwellite (LaBSiO{sub 5}) and oxyapatite (Ca{sub 2}La{sub 8}Si{sub 6}O{sub 26}) were found in glasses containing La{sub 2}O{sub 3}, while oxyapatite (Ca{sub 2}La{sub 8}Si{sub 6}O{sub 26} and NaNd{sub 9}Si{sub 6}O{sub 26}) precipitated in glasses with additions of mixed rare earths. The liquidus temperature (T{sub L}) of the glasses containing 5%, 10% and 15% La{sub 2}O{sub 3} were 800°C, 959°C and 986°C, respectively; while T{sub L} was 825°C, 1059°C and 1267°C for

  20. Interactions of microorganisms with rare earth ions and their utilization for separation and environmental technology.

    PubMed

    Moriwaki, Hiroshi; Yamamoto, Hiroki

    2013-01-01

    In recent years, rare earth elements (REEs) have been widely used in various modern technological devices and the global demand for REE has been increasing. The increased demand for REEs has led to environmental exposure or water pollution from rare earth metal mines and various commercial products. Therefore, the development of a safe technology for the separation and adsorption of REEs is very important from the perspective of green chemistry and environmental pollution. In this review, the application and mechanisms of microorganisms for the removal and extraction of REEs from aqueous solutions are described. In addition, the advantages in using microorganisms for REE adsorption and future studies on this topic are discussed.

  1. Condensation and fractionation of rare earths in the solar nebula

    NASA Technical Reports Server (NTRS)

    Davis, A. M.; Grossman, L.

    1979-01-01

    The condensation behavior of the rare earth elements in the solar nebula is calculated on the basis of the most recent thermodynamic data in order to construct a model explaining group II rare earth element patterns in Allende inclusions. Models considered all involve the removal of large fractions of the more refractory heavy rare earth elements in an early condensate, followed by the condensation of the remainder at a lower temperature. It is shown that the model of Boynton (1975) in which one rare earth element component is dissolved nonideally in perovskite according to relative activity coefficients can not reasonably be made to fit the observed group II patterns. A model in which two rare earth components control the patterns and dissolve ideally in perovskite is proposed and shown to be able to account for the 20 patterns by variations of the perovskite removal temperature and the relative proportions of the two components.

  2. Theoretical studies of the nitrogen containing compounds adsorption behavior on Na(I)Y and rare earth exchanged RE(III)Y zeolites.

    PubMed

    Geng, Wei; Zhang, Haitao; Zhao, Xuefei; Zan, Wenyan; Gao, Xionghou; Yao, Xiaojun

    2015-01-01

    In this work, the adsorption behavior of nitrogen containing compounds including NH3, pyridine, quinoline, and carbazole on Na(I)Y and rare earth exchanged La(III)Y, Pr(III)Y, Nd(III)Y zeolites was investigated by density functional theory (DFT) calculations. The calculation results demonstrate that rare earth exchanged zeolites have stronger adsorption ability for nitrogen containing compounds than Na(I)Y. Rare earth exchanged zeolites exhibit strongest interaction with quinoline while weakest with carbazole. Nd(III)Y zeolites are found to have strongest adsorption to all the studied nitrogen containing compounds. The analysis of the electronic total charge density and electron orbital overlaps show that nitrogen containing compounds interact with zeolites by π-electrons of the compounds and the exchanged metal atom. Mulliken charge population analysis also proves that adsorption energies are strongly dependent on the charge transfer between the nitrogen containing molecules and exchanged metal atom in the zeolites.

  3. Exposure, metabolism, and toxicity of rare earths and related compounds.

    PubMed Central

    Hirano, S; Suzuki, K T

    1996-01-01

    For the past three decades, most attention in heavy metal toxicology has been paid to cadmium, mercury, lead, chromium, nickel, vanadium, and tin because these metals widely polluted the environment. However, with the development of new materials in the last decade, the need for toxicological studies on those new materials has been increasing. A group of rare earths (RE) is a good example. Although some RE have been used for superconductors, plastic magnets, and ceramics, few toxicological data are available compared to other heavy metals described above. Because chemical properties of RE are very similar, it is plausible that their binding affinities to biomolecules, metabolism, and toxicity in the living system are also very similar. In this report, we present an overview of the metabolism and health hazards of RE and related compounds, including our recent studies. Images Figure 1. A Figure 1. B Figure 1. C PMID:8722113

  4. Resistivity and magnetoresistivity of amorphous rare-earth alloys

    NASA Astrophysics Data System (ADS)

    Borchi, E.; Poli, M.; De Gennaro, S.

    1982-05-01

    The resistivity and magnetoresistivity of amorphous rare-earth alloys are studied starting from the general approach of Van Peski-Tinbergen and Dekker. The random axial crystal-field and the magnetic correlations between the rare-earth ions are consistently taken into account. The characteristic features of the available experimental data are explained both of the case of random ferromagnetic and antiferromagnetic order.

  5. Rare Earth Elements in Alberta Oil Sand Process Streams

    DOE PAGES

    Roth, Elliot; Bank, Tracy; Howard, Bret; ...

    2017-04-05

    The concentrations of rare earth elements in Alberta, Canada oil sands and six oil sand waste streams were determined using inductively coupled plasma mass spectrometry (ICP–MS). The results indicate that the rare earth elements (REEs) are largely concentrated in the tailings solvent recovery unit (TSRU) sample compared to the oil sand itself. The concentration of lanthanide elements is ~1100 mg/kg (1100 ppm or 0.11 weight %), which represents a >20× increase in the concentration compared to the oil sand itself and a >7× increase compared to the North American Shale Composite (NASC). The process water, which is used to extractmore » the oil from oil sands, and the water fraction associated with the different waste streams had very low concentrations of REEs that were near or below the detection limits of the instrument, with the highest total concentration of REEs in the water fraction being less than 10 μg/L (ppb). Size and density separations were completed, and the REEs and other potentially interesting and valuable metals, such as Ti and Zr, were concentrated in different fractions. These results give insights into the possibility of recovering REEs from waste streams generated from oil sand processing.« less

  6. Rare Earth Elements in Alberta Oil Sand Process Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Elliot; Bank, Tracy; Howard, Bret

    The concentrations of rare earth elements in Alberta, Canada oil sands and six oil sand waste streams were determined using inductively coupled plasma mass spectrometry (ICP–MS). The results indicate that the rare earth elements (REEs) are largely concentrated in the tailings solvent recovery unit (TSRU) sample compared to the oil sand itself. The concentration of lanthanide elements is ~1100 mg/kg (1100 ppm or 0.11 weight %), which represents a >20× increase in the concentration compared to the oil sand itself and a >7× increase compared to the North American Shale Composite (NASC). The process water, which is used to extractmore » the oil from oil sands, and the water fraction associated with the different waste streams had very low concentrations of REEs that were near or below the detection limits of the instrument, with the highest total concentration of REEs in the water fraction being less than 10 μg/L (ppb). Size and density separations were completed, and the REEs and other potentially interesting and valuable metals, such as Ti and Zr, were concentrated in different fractions. These results give insights into the possibility of recovering REEs from waste streams generated from oil sand processing.« less

  7. Ferroelectricity of domain walls in rare earth iron garnet films.

    PubMed

    Popov, A I; Zvezdin, K A; Gareeva, Z V; Mazhitova, F A; Vakhitov, R M; Yumaguzin, A R; Zvezdin, A K

    2016-11-16

    In this paper, we report on electric polarization arising in a vicinity of Bloch-like domain walls in rare-earth iron garnet films. The domain walls generate an intrinsic magnetic field that breaks an antiferroelectric structure formed in the garnets due to an exchange interaction between rare earth and iron sublattices. We explore 180° domain walls whose formation is energetically preferable in the films with perpendicular magnetic anisotropy. Magnetic and electric structures of the 180° quasi-Bloch domain walls have been simulated at various relations between system parameters. Singlet, doublet ground states of rare earth ions and strongly anisotropic rare earth Ising ions have been considered. Our results show that electric polarization appears in rare earth garnet films at Bloch domain walls, and the maximum of magnetic inhomogeneity is not always linked to the maximum of electric polarization. A number of factors including the temperature, the state of the rare earth ion and the type of a wall influence magnetically induced electric polarization. We show that the value of polarization can be enhanced by the shrinking of the Bloch domain wall width, decreasing the temperature, and increasing the deviations of magnetization from the Bloch rotation that are regulated by impacts given by magnetic anisotropies of the films.

  8. Rare-earth metal gallium silicides via the gallium self-flux method. Synthesis, crystal structures, and magnetic properties of RE(Ga 1–xSi x)₂ (RE=Y, La–Nd, Sm, Gd–Yb, Lu)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darone, Gregory M.; Hmiel, Benjamin; Zhang, Jiliang

    Fifteen ternary rare-earth metal gallium silicides have been synthesized using molten Ga as a molten flux. They have been structurally characterized by single-crystal and powder X-ray diffraction to form with three different structures—the early to mid-late rare-earth metals RE=La–Nd, Sm, Gd–Ho, Yb and Y form compounds with empirical formulae RE(Ga xSi 1–x)₂ (0.38≤x≤0.63), which crystallize with the tetragonal α-ThSi₂ structure type (space group I4₁/amd, No. 141; Pearson symbol tI12). The compounds of the late rare-earth crystallize with the orthorhombic α-GdSi₂ structure type (space group Imma, No. 74; Pearson symbol oI12), with refined empirical formula REGa xSi 2–x–y (RE=Ho, Er, Tm;more » 0.33≤x≤0.40, 0.10≤y≤0.18). LuGa₀.₃₂₍₁₎Si₁.₄₃₍₁₎ crystallizes with the orthorhombic YbMn₀.₁₇Si₁.₈₃ structure type (space group Cmcm, No. 63; Pearson symbol oC24). Structural trends are reviewed and analyzed; the magnetic susceptibilities of the grown single-crystals are presented. - Graphical abstract: This article details the exploration of the RE–Ga–Si ternary system with the aim to systematically investigate the structural “boundaries” between the α-ThSi₂ and α-GdSi₂-type structures, and studies of the magnetic properties of the newly synthesized single-crystalline materials. Highlights: • Light rare-earth gallium silicides crystallize in α-ThSi₂ structure type. • Heavy rare-earth gallium silicides crystallize in α-GdSi₂ structure type. • LuGaSi crystallizes in a defect variant of the YbMn₀.₁₇Si₁.₈₃ structure type.« less

  9. China’s Rare Earth Policies: Economic Statecraft or Interdependence?

    DTIC Science & Technology

    2012-12-01

    statecraft. As evident towards the beginning of the 21st century, China’s policies associated with the rare earths market (e.g., resource quotas...controls approximately 97% of the world’s REE market . These rare earths, which are not widely known because they are so low on the production chain...rare earths as well as access to the developing Chinese market . Additionally, safety and environmental factors will likely raise the cost of

  10. Membrane assisted solvent extraction for rare earth element recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhave, Ramesh R.; Kim, Daejin; Peterson, Eric S.

    Systems and methods for the recovery of rare earth elements are provided. The systems and methods generally include membrane assisted solvent extraction using permeable hollow fibers having an immobilized organic phase within the pores of the hollow fibers. The permeable hollow fibers are generally in contact with an acidic aqueous feed on one side thereof and a strip solution on another side thereof. The systems and methods generally include the simultaneous extraction and stripping of rare earth elements as a continuous recovery process that is well suited for post-consumer products, end-of-life products, and other recovery sources of rare earth elements.

  11. Computational search for rare-earth free hard-magnetic materials

    NASA Astrophysics Data System (ADS)

    Flores Livas, José A.; Sharma, Sangeeta; Dewhurst, John Kay; Gross, Eberhard; MagMat Team

    2015-03-01

    It is difficult to over state the importance of hard magnets for human life in modern times; they enter every walk of our life from medical equipments (NMR) to transport (trains, planes, cars, etc) to electronic appliances (for house hold use to computers). All the known hard magnets in use today contain rare-earth elements, extraction of which is expensive and environmentally harmful. Rare-earths are also instrumental in tipping the balance of world economy as most of them are mined in limited specific parts of the world. Hence it would be ideal to have similar characteristics as a hard magnet but without or at least with reduced amount of rare-earths. This is the main goal of our work: search for rare-earth-free magnets. To do so we employ a combination of density functional theory and crystal prediction methods. The quantities which define a hard magnet are magnetic anisotropy energy (MAE) and saturation magnetization (Ms), which are the quantities we maximize in search for an ideal magnet. In my talk I will present details of the computation search algorithm together with some potential newly discovered rare-earth free hard magnet. J.A.F.L. acknowledge financial support from EU's 7th Framework Marie-Curie scholarship program within the ``ExMaMa'' Project (329386).

  12. Rare earth fluoride nano-/microstructures: hydrothermal synthesis, luminescent properties and applications.

    PubMed

    Zhao, Qian; Xu, Zhenhe; Sun, Yaguang

    2014-02-01

    Rare earth fluoride materials have attracted wide interest and come to the forefront in nanophotonics due to their distinct electrical, optical and magnetic properties as well as their potential applications in diverse fields such as optical telecommunication, lasers, biochemical probes, infrared quantum counters, and medical diagnostics. This review presents a comprehensive overview of the flourishing field of rare earth fluorides materials in the past decade. We summarize the recent research progress on the preparation, morphology, luminescent properties and application of rare earth fluoride-based luminescent materials by hydrothermal systems. Various rare earth fluoride materials are obtained by fine-tuning of experimental conditions, such as capping agents, fluoride source, acidity, temperature and reaction time. The controlled morphology, luminescent properties and application of the rare earth fluorides are briefly discussed with typical examples.

  13. The Hall Effect in Hydrided Rare Earth Films

    NASA Astrophysics Data System (ADS)

    Koon, D. W.; Azofeifa, D. E.; Clark, N.

    We describe two new techniques for measuring the Hall effect in capped rare earth films during hydriding. In one, we simultaneously measure resistivity and the Hall coefficient for a rare earth film covered with four different thicknesses of Pd, recovering the charge transport quantities for both materials. In the second technique, we replace Pd with Mn as the covering layer. We will present results from both techniques.

  14. How PNNL Extracts Rare Earth Elements from Geothermal Brine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-07-12

    By looking at a problem at a nanoscale level, PNNL researchers are developing an economic way to extract valuable rare earth elements from geothermal fluids. This novel approach may help meet the high demand for rare earth elements that are used in many clean energy technologies.

  15. Combinatorial search of rare-earth free permanent magnets

    NASA Astrophysics Data System (ADS)

    Gao, Tieren; Takeuchi, Ichiro; Fackler, Sean; Fang, Lei; Zhang, Ying; Krammer, Matthew; Anderson, Iver; McCallum, Bill; University of Maryland Collaboration; Ames Laboratory Collaboration

    2013-03-01

    Permanent magnets play important roles in modern technologies such as in generators, motors, speakers, and relays. Today's high performance permanent magnets contain at least one rare earth element such as Nd, Sm, Pr and Dy. However, rare earth elements are increasingly rare and expensive, and alternative permanent magnet materials which do not contain them are needed by the industry. We are using the thin film composition spread technique to explore novel compositions of permanent magnets without rare-earth. Ternary co-sputtering is used to generate composition spreads. We have thus far looked at Mo doped Fe-Co as one of the initial systems to search for possible compounds with enhanced coercive fields. The films were deposited on Si (100) substrates and annealed at different temperatures. The structural properties of films are mapped by synchrotron diffraction. We find that there is a structural transition from a crystalline to an amorphous state at about 20% atomic Mo. With increasing annealing temperature, the Mo onset concentration of the structural transition increases from 25% for 600°C to 35% for 700°C. We find that some of compounds display enhanced coercive field. With increasing Mo concentration, the magnetization of Fe-Co-Mo begins to switch from in-plane to out-of-plane direction. This work is funded by the BREM (Beyond Rare-earth Magnet) project (DOE EERE).

  16. Rare Earth Element Partition Coefficients from Enstatite/Melt Synthesis Experiments

    NASA Technical Reports Server (NTRS)

    Schwandt, Craig S.; McKay, Gordon A.

    1997-01-01

    Enstatite (En(80)Fs(19)Wo(01)) was synthesized from a hypersthene normative basaltic melt doped at the same time with La, Ce, Nd, Sm, Eu, Dy, Er, Yb and Lu. The rare earth element concentrations were measured in both the basaltic glass and the enstatite. Rare earth element concentrations in the glass were determined by electron microprobe analysis with uncertainties less than two percent relative. Rare earth element concentrations in enstatite were determined by secondary ion mass spectrometry with uncertainties less than five percent relative. The resulting rare earth element partition signature for enstatite is similar to previous calculated and composite low-Ca pigeonite signatures, but is better defined and differs in several details. The partition coefficients are consistent with crystal structural constraints.

  17. Thermal stability and temperature coefficients of four rare-earth-cobalt matrix magnets heated in dry air

    NASA Astrophysics Data System (ADS)

    Strnat, R. M. W.; Liu, S.; Strnat, K. J.

    1982-03-01

    Flux-loss characteristics during long-term air aging of four rare-earth-cobalt matrix magnet types were measured. Irreversible losses and reversible temperature coefficients on heating above room temperature are reported. Purely magnetic and permanent microstructure-related changes during aging were differentiated by measuring hysteresis curves before and after long-term exposure. Three commercial polymer-bonded magnets using different rare-earth-cobalt-transition metal alloys and a solder-matrix magnet with Sm(Co, Cu, Fe, Zr)7.4 were studied. They were cycled between 25 °C and maximum temperatures to 150 °C (25 ° intervals) as applicable. Aging data at 50 and 125 °C for an exposure time of 3300 h are reported. The 2-17 samples have a stability far superior to bonded 1-5. The soft metal binder imparts significantly better aging behavior on precipitation-hardened 2-17 magnet alloys above 100 °C than an epoxy resin matrix.

  18. Rare earths: Market disruption, innovation, and global supply chains

    USGS Publications Warehouse

    Eggert, Roderick; Wadia, Cyrus; Anderson, Corby; Bauer, Diana; Fields, Fletcher; Meinert, Lawrence D.; Taylor, Patrick

    2016-01-01

    Rare earths, sometimes called the vitamins of modern materials, captured public attention when their prices increased more than ten-fold in 2010 and 2011. As prices fell between 2011 and 2016, rare earths receded from public view—but less visibly they became a major focus of innovative activity in companies, government laboratories and universities. Geoscientists worked to better understand the resource base and improve our knowledge about mineral deposits that will be mines in the future. Process engineers carried out research that is making primary production and recycling more efficient. Materials scientists and engineers searched for substitutes that will require fewer or no rare earths while providing properties comparable or superior to those of existing materials. As a result, even though global supply chains are not significantly different now than they were before the market disruption, the innovative activity motivated by the disruption likely will have far-reaching, if unpredictable, consequences for supply chains of rare earths in the future.

  19. Comparative Analysis of Processes for Recovery of Rare Earths from Bauxite Residue

    NASA Astrophysics Data System (ADS)

    Borra, Chenna Rao; Blanpain, Bart; Pontikes, Yiannis; Binnemans, Koen; Van Gerven, Tom

    2016-11-01

    Environmental concerns and lack of space suggest that the management of bauxite residue needs to be re-adressed. The utilization of the residue has thus become a topic high on the agenda for both academia and industry, yet, up to date, it is only rarely used. Nonetheless, recovery of rare earth elements (REEs) with or without other metals from bauxite residue, and utilization of the left-over residue in other applications like building materials may be a viable alternative to storage. Hence, different processes developed by the authors for recovery of REEs and other metals from bauxite residue were compared. In this study, preliminary energy and cost analyses were carried out to assess the feasibility of the processes. These analyses show that the combination of alkali roasting-smelting-quenching-leaching is a promising process for the treatment of bauxite residue and that it is justified to study this process at a pilot scale.

  20. Effect of patch borders on coercivity in amorphous rare earth-transition metal thin films

    NASA Technical Reports Server (NTRS)

    Patterson, G.; Fu, H.; Giles, R. C.; Mansuripur, M.

    1991-01-01

    The coercivity at the micron scale is a very important property of magneto-optical media. It is a key factor that determines the magnetic domain wall movement and domain reversal. How the coercivity is influenced by a special type of patch borders is discussed. Patch formation is a general phenomenon in growth processes of amorphous rare earth transition metal thin films. Different patches may stem from different seeds and the patch borders are formed when they merge. Though little is known about the exact properties of the borders, we may expect that the exchange interaction at the patch border is weaker than that within a patch, since there is usually a spatial gap between two patches. Computer simulations were performed on a 2-D hexagonal lattice consisting of 37 complete patches with random shape and size. From the series of simulations we may conclude that the domain in the patch with borders of 30 percent exchange strength can expand most easily to the whole lattice, because the exchange strength can expand most easily to the whole lattice, because the exchange strength of the border is not too high to prevent the domain from growing within the patch and it is not too low to prevent the domain from expanding beyond the patch.

  1. Solvent-free mechanochemical synthesis and magnetic properties of rare-earth based metal-organic frameworks

    DOE PAGES

    Singh, N. K.; Gupta, S.; Pecharsky, V. K.; ...

    2016-11-17

    Mechanical milling of benzene 1,3,5-tricarboxylic acid [C 6H 3(COOH) 3], both with the single and mixed rare earth carbonates [R 2(CO 3) 3·xH 2O; R = Gd, Tb and Dy], leads to the formation of metal-organic frameworks [R{C 6H 3(COO) 3}] that adopt MIL-78 type structure. M(T) data of the investigated MOFs do not show any apparent onset of long range magnetic ordering down to 2 K. The M(H) data for Gd{C 6H 3(COO) 3}collected at 2 K show deviations from the magnetization behavior expected for non-interacting Gd 3+ ions. For the Gd based MOF the temperature dependence of themore » isothermal magnetic entropy change (i.e. magnetocaloric effect, ΔS M) exhibits a monotonous increase with decreasing temperature and at T = 3.5 K it reaches 34.1 J kg $-$1K $-$1 for a field change (ΔH) of 50 kOe. Finally, for the same ΔH the maximum values of ΔS M for R = Tb and Dy are 5.5 J kg $-$1K $-$1 and 8.5 J kg $-$1K $-$1 at 9.5 K and 4.5 K, respectively.« less

  2. New data on the substantial composition of Kalba rare metal deposits

    NASA Astrophysics Data System (ADS)

    Oitseva, T. A.; Dyachkov, B. A.; Vladimirov, A. G.; Kuzmina, O. N.; Ageeva, O. V.

    2017-12-01

    , Bernik Lake, etc.). New results of the investigation of the material composition of ore-bearing granites, pegmatites and typomorphic minerals using electron microscopy reflecting the distribution of rare-earth, rare-metal, chalcophile and other elements in them are presented. Indicators of rare metal ore formation are rock-forming minerals of granites (quartz, microcline, biotite, muscovite), ore and associated minerals (cleavelandite, lepidolite, cassiterite, etc.). The most informative minerals include mica (muscovite, giltbertite, lepidolite), colored tourmalines and beryls of different composition and color. Identified typomorphic minerals and geochemical elements-indicators of rare metal pegmatite formation are considered as a leading search criterion in assessing the prospects of the territory of East Kazakhstan.

  3. Methods for preparation of nanocrystalline rare earth phosphates for lighting applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comanzo, Holly Ann; Manoharan, Mohan; Martins Loureiro, Sergio Paulo

    Disclosed here are methods for the preparation of optionally activated nanocrystalline rare earth phosphates. The optionally activated nanocrystalline rare earth phosphates may be used as one or more of quantum-splitting phosphor, visible-light emitting phosphor, vacuum-UV absorbing phosphor, and UV-emitting phosphor. Also disclosed herein are discharge lamps comprising the optionally activated nanocrystalline rare earth phosphates provided by these methods.

  4. A divalent rare earth oxide semiconductor: Yttrium monoxide

    NASA Astrophysics Data System (ADS)

    Kaminaga, Kenichi; Sei, Ryosuke; Hayashi, Kouichi; Happo, Naohisa; Tajiri, Hiroo; Oka, Daichi; Fukumura, Tomoteru; Hasegawa, Tetsuya

    Rare earth sesquioxides like Y2O3 are known as widegap insulators with the highly stable closed shell trivalent rare earth ions. On the other hand, rare earth monoxides such as YO have been recognized as gaseous phase, and only EuO and YbO were thermodynamically stable solid-phase rock salt monoxides. In this study, solid-phase rock salt yttrium monoxide, YO, was synthesized in a form of epitaxial thin film by pulsed laser deposition method. YO possesses unusual valence of Y2+ ([Kr] 4d1) . In contrast with Y2O3, YO was narrow gap semiconductor with dark-brown color. The electrical conductivity was tunable from 10-1 to 103 Ω-1 cm-1 by introducing oxygen vacancies as electron donor. Weak antilocalization behavior was observed indicating significant spin-orbit coupling owing to 4 d electron carrier. The absorption spectral shape implies the Mott-Hubbard insulator character of YO. Rare earth monoixdes will be new platform of functional oxides. This work was supported by JST-CREST, the Japan Society for the Promotion of Science (JSPS) with Grant-in-Aid for Scientific Research on Innovative Areas (Nos. 26105002 and 26105006), and Nanotechnology Platform (Project No.12024046) of MEXT, Japan.

  5. Cysteine-Functionalized Chitosan Magnetic Nano-Based Particles for the Recovery of Light and Heavy Rare Earth Metals: Uptake Kinetics and Sorption Isotherms

    PubMed Central

    Galhoum, Ahmed A.; Mafhouz, Mohammad G.; Abdel-Rehem, Sayed T.; Gomaa, Nabawia A.; Atia, Asem A.; Vincent, Thierry; Guibal, Eric

    2015-01-01

    Cysteine-functionalized chitosan magnetic nano-based particles were synthesized for the sorption of light and heavy rare earth (RE) metal ions (La(III), Nd(III) and Yb(III)). The structural, surface, and magnetic properties of nano-sized sorbent were investigated by elemental analysis, FTIR, XRD, TEM and VSM (vibrating sample magnetometry). Experimental data show that the pseudo second-order rate equation fits the kinetic profiles well, while sorption isotherms are described by the Langmuir model. Thermodynamic constants (ΔG°, ΔH°) demonstrate the spontaneous and endothermic nature of sorption. Yb(III) (heavy RE) was selectively sorbed while light RE metal ions La(III) and Nd(III) were concentrated/enriched in the solution. Cationic species RE(III) in aqueous solution can be adsorbed by the combination of chelating and anion-exchange mechanisms. The sorbent can be efficiently regenerated using acidified thiourea. PMID:28347004

  6. Carbonatite and alkaline intrusion-related rare earth element deposits–A deposit model

    USGS Publications Warehouse

    Verplanck, Philip L.; Van Gosen, Bradley S.

    2011-01-01

    The rare earth elements are not as rare in nature as their name implies, but economic deposits with these elements are not common and few deposits have been large producers. In the past 25 years, demand for rare earth elements has increased dramatically because of their wide and diverse use in high-technology applications. Yet, presently the global production and supply of rare earth elements come from only a few sources. China produces more than 95 percent of the world's supply of rare earth elements. Because of China's decision to restrict exports of these elements, the price of rare earth elements has increased and industrial countries are concerned about supply shortages. As a result, understanding the distribution and origin of rare earth elements deposits, and identifying and quantifying our nation's rare earth elements resources have become priorities. Carbonatite and alkaline intrusive complexes, as well as their weathering products, are the primary sources of rare earth elements. The general mineral deposit model summarized here is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. Carbonatite and alkaline intrusion-related REE deposits are discussed together because of their spatial association, common enrichment in incompatible elements, and similarities in genesis. A wide variety of commodities have been exploited from carbonatites and alkaline igneous rocks, such as rare earth elements, niobium, phosphate, titanium, vermiculite, barite, fluorite, copper, calcite, and zirconium. Other enrichments include manganese, strontium, tantalum, thorium, vanadium, and uranium.

  7. P/M Processing of Rare Earth Modified High Strength Steels.

    DTIC Science & Technology

    1980-12-01

    AA094 165 TRW INC CLEVELAND OH MATERIALS TECHNOLOGY F 6 P/N PROCESSING OF RARE EARTH MODIFIED HIGH STRENGTH STEELS DEC So A A SHEXM(ER NOOŕT76-C...LEVEL’ (7 PIM PROCESSING OF RARE EARTH MODIFIED HIGH STRENGTH STEELS By A. A. SHEINKER 00 TECHNICAL REPORT Prepared for Office of Naval Research...Processing of Rare Earth Modified High 1 Technical -’ 3t eC"Strength Steels * 1dc4,093Se~ 9PEFRIGOGNZTONAEADADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

  8. Self-assemblies of luminescent rare earth compounds in capsules and multilayers.

    PubMed

    Zhang, Renjie; Shang, Juanjuan; Xin, Jing; Xie, Beibei; Li, Ya; Möhwald, Helmuth

    2014-05-01

    This review addresses luminescent rare earth compounds assembled in microcapsules as well as in planar films fabricated by the layer-by-layer (LbL) technique, the Langmuir-Blodgett (LB) method and in self-assembled monolayers. Chemical precipitation, electrostatic, van der Waals interactions and covalent bonds are involved in the assembly of these compounds. Self-organized ring patterns of rare earth complexes in Langmuir monolayers and on planar surfaces with stripe patterns, as well as fluorescence enhancement due to donor-acceptor pairs, microcavities, enrichment of rare earth compounds, and shell protection against water are described. Recent information on the tuning of luminescence intensity and multicolors by the excitation wavelength and the ratio of rare earth ions, respectively, are also reviewed. Potential applications of luminescent rare earth complex assemblies serving as biological probes, temperature and gas sensors are pointed out. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. A review on the synthesis, crystal growth, structure and physical properties of rare earth based quaternary intermetallic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mumbaraddi, Dundappa; Sarkar, Sumanta; Peter, Sebastian C., E-mail: sebastiancp@jncasr.ac.in

    2016-04-15

    This review highlights the synthesis and crystal growth of quaternary intermetallic compounds based on rare earth metals. In the first part of this review, we highlight briefly about intermetallics and their versatile properties in comparison to the constituent elements. In the next part, we have discussed about various synthesis techniques with more focus on the metal flux technique towards the well shaped crystal growth of novel compounds. In the subsequent parts, several disordered quaternary compounds have been reviewed and then outlined most known ordered quaternary compounds with their complex structure. A special attention has been given to the ordered compoundsmore » with structural description and relation to the parent binary and ternary compounds. The importance of electronic and structural feature is highlighted as the key roles in designing these materials for emerging applications. - Graphical abstract: Rare earth based quaternary intermetallic compounds crystallize in complex novel crystal structures. The diversity in the crystal structure may induce unique properties and can be considered them as future materials. - Highlights: • Crystal growth and crystal structure of quaternary rare earth based intermetallics. • Structural complexity of quaternary compounds in comparison to the parent compounds. • Novel quaternary compounds display unique crystal structure.« less

  10. Di and trinuclear rare-earth metal complexes supported by 3-amido appended indolyl ligands: synthesis, characterization and catalytic activity towards isoprene 1,4-cis polymerization.

    PubMed

    Zhang, Guangchao; Deng, Baojia; Wang, Shaowu; Wei, Yun; Zhou, Shuangliu; Zhu, Xiancui; Huang, Zeming; Mu, Xiaolong

    2016-10-21

    Different di and trinuclear rare-earth metal complexes supported by 3-amido appended indolyl ligands were synthesized and their catalytic activities towards isoprene polymerization were investigated. Treatment of [RE(CH 2 SiMe 3 ) 3 (thf) 2 ] with 1 equiv. of 3-(CyN[double bond, length as m-dash]CH)C 8 H 5 NH in toluene or in THF afforded dinuclear rare-earth metal alkyl complexes having indolyl ligands in different hapticities with central metals {[η 2 :η 1 -μ-η 1 -3-(CyNCH(CH 2 SiMe 3 ))Ind]RE-(thf)(CH 2 SiMe 3 )} 2 (Cy = cyclohexyl, Ind = Indolyl, RE = Yb (1), Er (2), Y (3)) or {[η 1 -μ-η 1 -3-(CyNCH(CH 2 SiMe 3 ))Ind]RE-(thf) 2 (CH 2 SiMe 3 )} 2 (RE = Yb (4), Er (5), Y (6), Gd (7)), respectively. These two series of dinuclear complexes could be transferred to each other easily by only changing the solvents in the process. Reaction of [Er(CH 2 SiMe 3 ) 3 (thf) 2 ] with 1 equiv. of 3-t-butylaminomethylindole 3-( t BuNHCH 2 )C 8 H 5 NH in THF afforded the unexpected trinuclear erbium alkyl complex [η 2 :η 1 -μ-η 1 -3-( t BuNCH 2 )Ind] 4 Er 3 (thf) 5 (CH 2 SiMe 3 ) (8), which can also be prepared by reaction of 3 equiv. of [Er(CH 2 SiMe 3 ) 3 (thf) 2 ] with 4 equiv. of 3-( t BuNHCH 2 )C 8 H 5 NH in THF. Accordingly, complexes [η 2 :η 1 -μ-η 1 -3-( t BuNCH 2 )Ind] 4 RE 3 (thf) 5 (CH 2 SiMe 3 ) (RE = Y (9), Dy (10)) were prepared by reactions of 3 equiv. of [RE(CH 2 SiMe 3 ) 3 (thf) 2 ] with 4 equiv. of 3-( t BuNHCH 2 )C 8 H 5 NH in THF. Reactions of [RE(CH 2 SiMe 3 ) 3 (thf) 2 ] with 1 equiv. of 3-t-butylaminomethylindole 3-( t BuNHCH 2 )C 8 H 5 NH in THF, followed by treatment with 1 equiv. of [(2,6- i Pr 2 C 6 H 3 )N[double bond, length as m-dash]CHNH(C 6 H 3 i Pr 2 -2,6)] afforded, after workup, the dinuclear rare-earth metal complexes [η 1 -μ-η 1 :η 1 -3-( t BuNCH 2 )Ind][η 1 -μ-η 1 :η 3 -3-( t BuNCH 2 )Ind]RE 2 (thf)[(η 3 -2,6- i Pr 2 C 6 H 3 )NCHN(C 6 H 3 i Pr 2 -2,6)] 2 (RE = Er (11), Y (12)) having the indolyl ligands bonded with the

  11. Scarcity of rare earth elements.

    PubMed

    de Boer, M A; Lammertsma, K

    2013-11-01

    Rare earth elements (REEs) are important for green and a large variety of high-tech technologies and are, therefore, in high demand. As a result, supply with REEs is likely to be disrupted (the degree of depends on the REE) in the near future. The 17 REEs are divided into heavy and light REEs. Other critical elements besides REEs, identified by the European Commission, are also becoming less easily available. Although there is no deficiency in the earth's crust of rare earth oxides, the economic accessibility is limited. The increased demand for REEs, the decreasing export from China, and geopolitical concerns on availability contributed to the (re)opening of mines in Australia and the USA and other mines are slow to follow. As a result, short supply of particularly terbium, dysprosium, praseodymium, and neodymium is expected to be problematic for at least the short term, also because they cannot be substituted. Recycling REEs from electronic waste would be a solution, but so far there are hardly any established REE recycling methods. Decreasing the dependency on REEs, for example, by identifying possible replacements or increasing their efficient use, represents another possibility. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Hydrothermal method of synthesis of rare-earth tantalates and niobates

    DOEpatents

    Nyman, May D; Rohwer, Lauren E.S.; Martin, James E

    2012-10-16

    A hydrothermal method of synthesis of a family of rare-earth Group 5 oxides, where the Group 5 oxide is a niobate or tantalate. The rare-earth Group 5 oxides can be doped with suitable emitter ions to form nanophosphors.

  13. 40 CFR 721.10423 - Complex strontium aluminate, rare earth doped (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... earth doped (generic). 721.10423 Section 721.10423 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10423 Complex strontium aluminate, rare earth doped... substances identified generically as complex strontium aluminate, rare earth doped (PMNs P-12-22, P-12-23, P...

  14. Rare earths and other trace elements in Luna 16 soil.

    NASA Technical Reports Server (NTRS)

    Helmke, P. A.; Haskin, L. A.

    1972-01-01

    An analysis has been made of four small samples of material brought to earth by the Luna 16 mission, with the aim to determine rare earths and other trace elements in these samples. The analytical results are tabulated, and the rare earth abundances are compared with the average for chondrites. A comparison is also made with the results of similar analyses of Apollo samples.

  15. Rare-earth Nanoparticle-induced Cytotoxicity on Spatial Cognition Memory of Mouse Brain.

    PubMed

    Lin, Cai-Hou; Liu, Gui-Fen; Chen, Jing; Chen, Yan; Lin, Ru-Hui; He, Hong-Xing; Chen, Jian-Ping

    2017-11-20

    Luminescent rare-earth-based nanoparticles have been increasingly used in nanomedicine due to their excellent physicochemical properties, such as biomedical imaging agents, drug carriers, and biomarkers. However, biological safety of the rare-earth-based nanomedicine is of great significance for future development in practical applications. In particular, biological effects of rare-earth nanoparticles on human's central nervous system are still unclear. This study aimed to investigate the potential toxicity of rare-earth nanoparticles in nervous system function in the case of continuous exposure. Adult ICR mice were randomly divided into seven groups, including control group (receiving 0.9% normal saline) and six experimental groups (10 mice in each group). Luminescent rare-earth-based nanoparticles were synthesized by a reported co-precipitation method. Two different sizes of the nanoparticles were obtained, and then exposed to ICR mice through caudal vein injection at 0.5, 1.0, and 1.5 mg/kg body weight in each day for 7 days. Next, a Morris water maze test was employed to evaluate impaired behaviors of their spatial recognition memory. Finally, histopathological examination was implemented to study how the nanoparticles can affect the brain tissue of the ICR mice. Two different sizes of rare-earth nanoparticles have been successfully obtained, and their physical properties including luminescence spectra and nanoparticle sizes have been characterized. In these experiments, the rare-earth nanoparticles were taken up in the mouse liver using the magnetic resonance imaging characterization. Most importantly, the experimental results of the Morris water maze tests and histopathological analysis clearly showed that rare-earth nanoparticles could induce toxicity on mouse brain and impair the behaviors of spatial recognition memory. Finally, the mechanism of adenosine triphosphate quenching by the rare-earth nanoparticles was provided to illustrate the toxicity on the

  16. Rare earth and zinc layered hydroxide salts intercalated with the 2-aminobenzoate anion as organic luminescent sensitizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cursino, Ana Cristina Trindade, E-mail: anacursino@ufpr.br; Rives, Vicente, E-mail: vrives@usal.es; Arizaga, Gregorio Guadalupe Carbajal, E-mail: gregoriocarbajal@yahoo.com.mx

    2015-10-15

    Rare earth (RE = Eu, Y and Tb) and zinc layered hydroxide salts intercalated with nitrate anions were synthesized, followed by exchange with 2-aminobenzoate. The UV absorption ability was improved after intercalation/grafting in relation to that shown by the parent material. - Highlights: • Rare earth (RE = Eu, Y and Tb) and zinc layered hydroxide were synthesized. • Intercalated nitrate anions were exchanged by 2-aminobenzoate. • In all the 2-aminobenzoate containing compounds, the grafting reaction was detected. • The UV absorption ability was improved after the exchange reactions. • Rare earth hydroxide salts are potential matrixes to produce luminescentmore » materials. - Abstract: Rare earth (RE = Eu, Y and Tb) and zinc layered hydroxide salts intercalated with nitrate anions were synthesized, followed by exchange with 2-aminobenzoate. The obtained compounds were characterized by powder X-ray diffraction (PXRD), Fourier transform infrared (FTIR) and ultraviolet visible (UV–vis) spectroscopies, fluorescence measurements and thermal analysis (TGA/DTA). The results from FTIR spectroscopy suggest a direct coordination of 2-aminobenzoate to the metal cations of the inorganic layered structure. The organic derivative products from the intercalation reactions absorb a broader range of UV-light in relation to that shown by the parent material; the photoluminescence measurements present a strong violet, blue and green luminescence under UV-light excitation for layered compounds with, Zn, Y and Tb, respectively. Rare earth hydroxide salts (RE-LHS) are potential alternative matrices for the immobilization of organic species to produce luminescent materials.« less

  17. Systematic variation of rare earths in monazite

    USGS Publications Warehouse

    Murata, K.J.; Rose, H.J.; Carron, M.K.

    1953-01-01

    Ten monazites from widely scattered localities have been analyzed for La, Ce, Pr, Nd, Sm, Gd, Y and Th by means of a combined chemical and emission spectrographic method. The analytical results, calculated to atomic percent of total rare earths (thorium excluded), show a considerable variation in the proportions of every element except praseodymium, which is relatively constant. The general variation trends of the elements may be calculated by assuming that the monazites represent different stages in a fractional precipitation process, and by assuming that there is a gradational increase in the precipitability of rare earth elements with decreasing ionic radius. Fractional precipitation brings about an increase in lanthanum and cerium, little change in praseodymium, and a decrease in neodymium, samarium, gadolinium, and yttrium. Deviations from the calculated lines of variation consist of a simultaneous, abnormal increase or decrease in the proportions of cerium, praseodymium, and neodymium with antipathetic decrease or increase in the proportions of the other elements. These deviations are ascribed to abnormally high or low temperatures that affect the precipitability of the central trio of elements (Ce, Pr, Nd) relatively more than that of the other elements. The following semiquantitative rules have been found useful in describing the composition of rare earths from monazite: 1. 1. The sum of lanthanum and neodymium is very nearly a constant at 42 ?? 2 atomic percent. 2. 2. Praseodymium is very nearly constant at 5 ?? 1 atomic percent. 3. 3. The sum of Ce, Sm, Gd, and Y is very nearly a constant at 53 ?? 3 atomic percent. No correlation could be established between the content of Th and that of any of the rare earth elements. ?? 1953.

  18. Biogeochemistry of the rare-earth elements with particular reference to hickory trees

    USGS Publications Warehouse

    Robinson, W.O.; Bastron, H.; Murata, K.J.

    1958-01-01

    Hickory trees concentrate the rare-earth elements in their leaves to a phenomenal degree and may contain as much as 2300 p.p.m. of total rare earths based on the dry weight of the leaves. The average proportions of the individual elements (atomic percent of the total rare-earth elements) in the leaves are: Y 36, La 16, Ce 14, Pr 2, Nd 20, Sm 1, Eu 0.7, Gd 3, Tb 0.6, Dy 3, Ho 0.7, Er 2, Tm 0.2, Yb 1, and Lu 0.2. The similarity in the proportions of the rare-earth elements in the leaves and in the exchange complex of the soil on which the hickory trees grow indicates that the trees do not fractionate the rare earths appreciably. The variation of the rare-earth elements in the leaves and soils can be explained generally in terms of the relative abundance of the cerium group and the yttrium group, except for the element cerium. The large fluctuations in the proportion of cerium [Ce/(La + Nd) atomic ratios of 0.16 to 0.86] correlate with oxidation-reduction conditions in the soil profile. The substitution of dilute H2SO3 for dilute HC1 in the determination of available rare-earth elements brings about a large increase in the proportion of cerium that is extracted from an oxygenated subsoil. These relationships strongly suggest that quadrivalent cerium is present in oxygenated subsoil and is less available to plants than the other rare-earth elements that do not undergo such a change in valence. A few parts per billion of rare-earth elements have been detected in two samples of ground water. ?? 1958.

  19. 40 CFR 721.10550 - Rare earth salt of a carboxylic acid (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Rare earth salt of a carboxylic acid... Specific Chemical Substances § 721.10550 Rare earth salt of a carboxylic acid (generic). (a) Chemical... as rare earth salt of a carboxylic acid (PMN P-05-324) is subject to reporting under this section for...

  20. 40 CFR 721.10550 - Rare earth salt of a carboxylic acid (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Rare earth salt of a carboxylic acid... Specific Chemical Substances § 721.10550 Rare earth salt of a carboxylic acid (generic). (a) Chemical... as rare earth salt of a carboxylic acid (PMN P-05-324) is subject to reporting under this section for...

  1. Rationally designed mineralization for selective recovery of the rare earth elements

    NASA Astrophysics Data System (ADS)

    Hatanaka, Takaaki; Matsugami, Akimasa; Nonaka, Takamasa; Takagi, Hideki; Hayashi, Fumiaki; Tani, Takao; Ishida, Nobuhiro

    2017-05-01

    The increasing demand for rare earth (RE) elements in advanced materials for permanent magnets, rechargeable batteries, catalysts and lamp phosphors necessitates environmentally friendly approaches for their recovery and separation. Here, we propose a mineralization concept for direct extraction of RE ions with Lamp (lanthanide ion mineralization peptide). In aqueous solution containing various metal ions, Lamp promotes the generation of RE hydroxide species with which it binds to form hydrophobic complexes that accumulate spontaneously as insoluble precipitates, even under physiological conditions (pH ~6.0). This concept for stabilization of an insoluble lanthanide hydroxide complex with an artificial peptide also works in combination with stable scaffolds like synthetic macromolecules and proteins. Our strategy opens the possibility for selective separation of target metal elements from seawater and industrial wastewater under mild conditions without additional energy input.

  2. Rationally designed mineralization for selective recovery of the rare earth elements.

    PubMed

    Hatanaka, Takaaki; Matsugami, Akimasa; Nonaka, Takamasa; Takagi, Hideki; Hayashi, Fumiaki; Tani, Takao; Ishida, Nobuhiro

    2017-05-26

    The increasing demand for rare earth (RE) elements in advanced materials for permanent magnets, rechargeable batteries, catalysts and lamp phosphors necessitates environmentally friendly approaches for their recovery and separation. Here, we propose a mineralization concept for direct extraction of RE ions with Lamp (lanthanide ion mineralization peptide). In aqueous solution containing various metal ions, Lamp promotes the generation of RE hydroxide species with which it binds to form hydrophobic complexes that accumulate spontaneously as insoluble precipitates, even under physiological conditions (pH ∼6.0). This concept for stabilization of an insoluble lanthanide hydroxide complex with an artificial peptide also works in combination with stable scaffolds like synthetic macromolecules and proteins. Our strategy opens the possibility for selective separation of target metal elements from seawater and industrial wastewater under mild conditions without additional energy input.

  3. Optical Properties of Nd Doped Rare Earth Vanadates (Preprint)

    DTIC Science & Technology

    2010-07-01

    Rare earth orthovanadates are being used as substitute for traditional solid state laser hosts such as yttrium aluminium garnet (YAG). While the most...common of these is yttrium orthovanadate, other rare earth vanadates such as lutetium vanadate and gadolinium vanadate are being used for their... gadolinium vanadate are being used for their special properties in certain applications. We report new measurements of the refractive indices and thermo

  4. International strategic minerals inventory summary report; rare-earth oxides

    USGS Publications Warehouse

    Jackson, W.D.; Christiansen, Grey

    1993-01-01

    Bastnaesite, monazite, and xenotime are currently the most important rare-earth minerals. Bastnaesite occurs as a primary mineral in carbonatites. Monazite and xenotime also can be found in primary deposits but are recovered principally from heavy-mineral placers that are mined for titanium or tin. Each of these minerals has a different composition of the 15 rare-earth elements. World resources of economically exploitable rare-earth oxides (REO) are estimated at 93.4 million metric tons in place, composed of 93 percent in primary deposits and 7 percent in placers. The average mineral composition is 83 percent bastnaesite, 13 percent monazite, and 4 percent of 10 other minerals. Annual global production is about 67,000 metric tons of which 41 percent is from placers and 59 percent is from primary deposits; mining methods consist of open pits (94 percent) and dredging (6 percent). This output could be doubled if the operations that do not currently recover rare earths would do so. Resources are more than sufficient to meet the demand for the predictable future. About 52 percent of the world's REO resources are located in China. Ranking of other countries is as follows: Namibia (22 percent), the United States (15 percent), Australia (6 percent), and India (3 percent); the remainder is in several other countries. Conversely, 38 percent of the production is in China, 33 percent in the United States, 12 percent in Australia, and 5 percent each in Malaysia and India. Several other countries, including Brazil, Canada, South Africa, Sri Lanka, and Thailand, make up the remainder. Markets for rare earths are mainly in the metallurgical, magnet, ceramic, electronic, chemical, and optical industries. Rare earths improve the physical and rolling properties of iron and steel and add corrosion resistance and strength to structural members at high temperatures. Samarium and neodymium are used in lightweight, powerful magnets for electric motors. Cerium and yttrium increase the

  5. Evaluation Of Ion Exchange For Fabrication Of Rare-Earth Doped Waveguides

    NASA Astrophysics Data System (ADS)

    Howell, Brian P.; Beerling, Timothy

    1987-01-01

    Rare earth ions are frequently incorporated into lasers by doping common glasses with the ions in the glass melt. This paper describes the potential of using diffusion of the rare earth ion from molten salt baths to incorporate it in the glass. The paper discusses the molten salts, the rare earths as a group, the diffusion phenomena, the glasses, and finally the interaction of all these to produce the process. General predictions of the waveguide profile and potential problems are presented.

  6. Evaluation of Rare Earth Element Extraction from North Dakota Coal-Related Feed Stocks

    NASA Astrophysics Data System (ADS)

    Laudal, Daniel A.

    The rare earth elements consist of the lanthanide series of elements with atomic numbers from 57-71 and also include yttrium and scandium. Due to their unique properties, rare earth elements are crucial materials in an incredible array of consumer goods, energy system components and military defense applications. However, the global production and entire value chain for rare earth elements is dominated by China, with the U.S. currently 100% import reliant for these critical materials. Traditional mineral ores including previously mined deposits in the U.S., however, have several challenges. Chief among these is that the content of the most critical and valuable of the rare earths are deficient, making mining uneconomical. Further, the supply of these most critical rare earths is nearly 100% produced in China from a single resource that is only projected to last another 10 to 20 years. The U.S. currently considers the rare earths market an issue of national security. It is imperative that alternative domestic sources of rare earths be identified and methods developed to produce them. Recently, coal and coal byproducts have been identified as one of these promising alternative resources. This dissertation details a study on evaluation of the technical and economic feasibility of rare earth element recovery from North Dakota lignite coal and lignite-related feedstocks. There were four major goals of this study: i) identify lignite or lignite-related feedstocks with total rare earth element content above 300 parts per million, a threshold dictated by the agency who funded this research as the minimum for economic viability, ii) determine the geochemistry of the feedstocks and understand the forms and modes of occurrence of the rare earth elements, information necessary to inform the development of extraction and concentration methods, iii) identify processing methods to concentrate the rare earth elements from the feedstocks to a target of two weight percent, a value

  7. NETL’s Rare Earth Elements Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The National Energy Technology Laboratory has established a Rare Earth Elements (REE) program. REEs are a series of 17 chemical elements found in the Earth’s crust. They are an essential component to technology, health care, transportation and national defense.

  8. Rapid enrichment of rare-earth metals by carboxymethyl cellulose-based open-cellular hydrogel adsorbent from HIPEs template.

    PubMed

    Zhu, Yongfeng; Wang, Wenbo; Zheng, Yian; Wang, Feng; Wang, Aiqin

    2016-04-20

    A series of monolithic open-cellular hydrogel adsorbents based on carboxymethylcellulose (CMC) were prepared through high internal phase emulsions (HIPEs) and used to enrich the rare-earth metals La(3+) and Ce(3+). The changes of pore structure, and the effects of pH, contact time, initial concentration on the adsorption performance were systematically studied. The results show that the as-prepared monolithic hydrogel adsorbents possess good open-cellular framework structure and have fast adsorption kinetics and high adsorption capacity for La(3+) and Ce(3+). The involved adsorption system can reach equilibrium within 30min and the maximal adsorption capacity is determined to be 384.62mg/g for La(3+) and 333.33mg/g for Ce(3+). Moreover, these porous hydrogel adsorbents show an excellent adsorptive reusability for La(3+) and Ce(3+) through five adsorption-desorption cycles. Such a pore hierarchy structure makes this monolithic open-cellular hydrogel adsorbent be an effective adsorbent for effective enrichment of La(3+) and Ce(3+) from aqueous solution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Magnetic coupling at rare earth ferromagnet/transition metal ferromagnet interfaces: A comprehensive study of Gd/Ni.

    PubMed

    Higgs, T D C; Bonetti, S; Ohldag, H; Banerjee, N; Wang, X L; Rosenberg, A J; Cai, Z; Zhao, J H; Moler, K A; Robinson, J W A

    2016-07-22

    Thin film magnetic heterostructures with competing interfacial coupling and Zeeman energy provide a fertile ground to study phase transition between different equilibrium states as a function of external magnetic field and temperature. A rare-earth (RE)/transition metal (TM) ferromagnetic multilayer is a classic example where the magnetic state is determined by a competition between the Zeeman energy and antiferromagnetic interfacial exchange coupling energy. Technologically, such structures offer the possibility to engineer the macroscopic magnetic response by tuning the microscopic interactions between the layers. We have performed an exhaustive study of nickel/gadolinium as a model system for understanding RE/TM multilayers using the element-specific measurement technique x-ray magnetic circular dichroism, and determined the full magnetic state diagrams as a function of temperature and magnetic layer thickness. We compare our results to a modified Stoner-Wohlfarth-based model and provide evidence of a thickness-dependent transition to a magnetic fan state which is critical in understanding magnetoresistance effects in RE/TM systems. The results provide important insight for spintronics and superconducting spintronics where engineering tunable magnetic inhomogeneity is key for certain applications.

  10. Magnetic coupling at rare earth ferromagnet/transition metal ferromagnet interfaces: A comprehensive study of Gd/Ni

    DOE PAGES

    Higgs, T. D. C.; Bonetti, S.; Ohldag, H.; ...

    2016-07-22

    Thin film magnetic heterostructures with competing interfacial coupling and Zeeman energy provide a fertile ground to study phase transition between different equilibrium states as a function of external magnetic field and temperature. A rare-earth (RE)/transition metal (TM) ferromagnetic multilayer is a classic example where the magnetic state is determined by a competition between the Zeeman energy and antiferromagnetic interfacial exchange coupling energy. Technologically, such structures offer the possibility to engineer the macroscopic magnetic response by tuning the microscopic interactions between the layers. We have performed an exhaustive study of nickel/gadolinium as a model system for understanding RE/TM multilayers using themore » element-specific measurement technique x-ray magnetic circular dichroism, and determined the full magnetic state diagrams as a function of temperature and magnetic layer thickness. We compare our results to a modified Stoner-Wohlfarth-based model and provide evidence of a thickness-dependent transition to a magnetic fan state which is critical in understanding magnetoresistance effects in RE/TM systems. In conclusion, the results provide important insight for spintronics and superconducting spintronics where engineering tunable magnetic inhomogeneity is key for certain applications.« less

  11. Magnetic coupling at rare earth ferromagnet/transition metal ferromagnet interfaces: A comprehensive study of Gd/Ni

    NASA Astrophysics Data System (ADS)

    Higgs, T. D. C.; Bonetti, S.; Ohldag, H.; Banerjee, N.; Wang, X. L.; Rosenberg, A. J.; Cai, Z.; Zhao, J. H.; Moler, K. A.; Robinson, J. W. A.

    2016-07-01

    Thin film magnetic heterostructures with competing interfacial coupling and Zeeman energy provide a fertile ground to study phase transition between different equilibrium states as a function of external magnetic field and temperature. A rare-earth (RE)/transition metal (TM) ferromagnetic multilayer is a classic example where the magnetic state is determined by a competition between the Zeeman energy and antiferromagnetic interfacial exchange coupling energy. Technologically, such structures offer the possibility to engineer the macroscopic magnetic response by tuning the microscopic interactions between the layers. We have performed an exhaustive study of nickel/gadolinium as a model system for understanding RE/TM multilayers using the element-specific measurement technique x-ray magnetic circular dichroism, and determined the full magnetic state diagrams as a function of temperature and magnetic layer thickness. We compare our results to a modified Stoner-Wohlfarth-based model and provide evidence of a thickness-dependent transition to a magnetic fan state which is critical in understanding magnetoresistance effects in RE/TM systems. The results provide important insight for spintronics and superconducting spintronics where engineering tunable magnetic inhomogeneity is key for certain applications.

  12. Reverse engineering nuclear properties from rare earth abundances in the r process

    NASA Astrophysics Data System (ADS)

    Mumpower, M. R.; McLaughlin, G. C.; Surman, R.; Steiner, A. W.

    2017-03-01

    The bulk of the rare earth elements are believed to be synthesized in the rapid neutron capture process or r process of nucleosynthesis. The solar r-process residuals show a small peak in the rare earths around A∼ 160, which is proposed to be formed dynamically during the end phase of the r process by a pileup of material. This abundance feature is of particular importance as it is sensitive to both the nuclear physics inputs and the astrophysical conditions of the main r process. We explore the formation of the rare earth peak from the perspective of an inverse problem, using Monte Carlo studies of nuclear masses to investigate the unknown nuclear properties required to best match rare earth abundance sector of the solar isotopic residuals. When nuclear masses are changed, we recalculate the relevant β-decay properties and neutron capture rates in the rare earth region. The feedback provided by this observational constraint allows for the reverse engineering of nuclear properties far from stability where no experimental information exists. We investigate a range of astrophysical conditions with this method and show how these lead to different predictions in the nuclear properties influential to the formation of the rare earth peak. We conclude that targeted experimental campaigns in this region will help to resolve the type of conditions responsible for the production of the rare earth nuclei, and will provide new insights into the longstanding problem of the astrophysical site(s) of the r process.

  13. Addressing Rare-Earth Element Criticality: An Example from the Aviation Industry

    NASA Astrophysics Data System (ADS)

    Ku, Anthony Y.; Dosch, Christopher; Grossman, Theodore R.; Herzog, Joseph L.; Maricocchi, Antonio F.; Polli, Drew; Lipkin, Don M.

    2014-11-01

    Rare-earth (RE) elements are enablers for a wide range of technologies, including high-strength permanent magnets, energy-efficient lighting, high-temperature thermal barrier coatings, and catalysts. While direct material substitution is difficult in many of these applications because of the specific electronic, optical, or electrochemical properties imparted by the individual rare-earth elements, we describe an example from the aviation industry where supply chain optimization may be an option. Ceramic matrix composite engine components require environmental barrier coatings (EBCs) to protect them from extreme temperatures and adverse reactions with water vapor in the hot gas path. EBC systems based on rare-earth silicates offer a unique combination of environmental resistance, thermal expansion matching, thermal conductivity, and thermal stability across the service temperature window. Several pure rare-earth silicates and solid solutions have been demonstrated in EBC applications. However, all rely on heavy rare-earth elements (HREEs) for phase stability. This article considers the possibility of using separation tailings containing a mixture of HREEs as a source material in lieu of using the high-purity HREE oxides. This option arises because the desired properties of RE-silicate EBCs derive from the average cation size rather than the electronic properties of the individual rare-earth cations. Because separation tailings have not incurred the costs associated with the final stages of separation, they offer an economical alternative to high-purity oxides for this emerging application.

  14. Geology and market-dependent significance of rare earth element resources

    NASA Astrophysics Data System (ADS)

    Simandl, G. J.

    2014-12-01

    China started to produce rare earth elements (REEs) in the 1980s, and since the mid-1990s, it has become the dominant producer. Rare earth element export quotas first introduced by the Chinese government in the early 2000s were severely reduced in 2010 and 2011. This led to strong government-created disparity between prices within China and the rest of the world. Industrialized countries identified several REEs as strategic metals. Because of rapid price increases of REE outside of China, we have witnessed a world-scale REE exploration rush. The REE resources are concentrated in carbonatite-related deposits, peralkaline igneous rocks, pegmatites, monazite ± apatite veins, ion adsorption clays, placers, and some deep ocean sediments. REE could also be derived as a by-product of phosphate fertilizer production, U processing, mining of Ti-Zr-bearing placers, and exploitation of Olympic Dam subtype iron oxide copper gold (IOCG) deposits. Currently, REEs are produced mostly from carbonatite-related deposits, but ion adsorption clay deposits are an important source of heavy REE (HREE). Small quantities of REE are derived from placer deposits and one peralkaline intrusion-related deposit. The ideal REE development targets would be located in a politically stable jurisdiction with a pro-mining disposition such as Canada and Australia. REE grade, HREE/light REE (LREE) ratio of the mineralization, tonnage, mineralogy, and permissive metallurgy are some of the key technical factors that could be used to screen potential development projects. As REEs are considered strategic metals from economic, national security, and environmental points of view, technical and economic parameters alone are unlikely to be used in REE project development decision-making. Recycling of REE is in its infancy and unless legislated, in the short term, it is not expected to contribute significantly to the supply of REE.

  15. Leaching behavior of rare earth elements in Fort Union lignite coals of North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laudal, Daniel A.; Benson, Steven A.; Addleman, Raymond Shane

    Rare earth elements are crucial materials in an incredible array of consumer goods, energy system components and military defense applications. However, the global production and entire value chain for rare earth elements is dominated by China, with the U.S. currently 100% import reliant for these critical materials. Traditional mineral ores including those previously mined in the U.S., however, have several challenges. Chief among these is that the content of the most critical and valuable of the rare earths are deficient, making mining uneconomical. Further, the supply of these most critical rare earths is nearly 100% produced in China from amore » single resource that is only projected to last another 10 to 20 years. The U.S. currently considers the rare earths market an issue of national security. It is imperative that alternative domestic sources of rare earths be identified and methods developed to produce them. Recently, coal and coal byproducts have been identified as one of these promising alternative resources. This paper details the results of a study on characterization of North Dakota lignite and lignite-related feedstocks as an assessment of their feasibility for rare earth element recovery. The abundance, distribution and modes of occurrence of the rare earth elements in the samples collected were determined in this initial study to inform the selection of appropriate extraction and concentration methods to recover the rare earth elements. Materials investigated include the lignite coals, clay-rich sediments associated with the coal seams, and materials associated with a lignite beneficiation system and power plant. The results show that high rare earth element levels exist both in lignite coals and associated sediments. The form of the rare earth elements in the clay materials is primarily as ultra-fine mineral grains. In the lignite coals, approximately 80-95% of the rare earths content is organically associated, primarily as coordination

  16. Material and Energy Requirement for Rare Earth Production

    NASA Astrophysics Data System (ADS)

    Talens Peiró, Laura; Villalba Méndez, Gara

    2013-10-01

    The use of rare earth metals (REMs) for new applications in renewable and communication technologies has increased concern about future supply as well as environmental burdens associated with the extraction, use, and disposal (losses) of these metals. Although there are several reports describing and quantifying the production and use of REM, there is still a lack of quantitative data about the material and energy requirements for their extraction and refining. Such information remains difficult to acquire as China is still supplying over 95% of the world REM supply. This article attempts to estimate the material and energy requirements for the production of REM based on the theoretical chemical reactions and thermodynamics. The results show the material and energy requirement varies greatly depending on the type of mineral ore, production facility, and beneficiation process selected. They also show that the greatest loss occurs during mining (25-50%) and beneficiation (10-30%) of RE minerals. We hope that the material and energy balances presented in this article will be of use in life cycle analysis, resource accounting, and other industrial ecology tools used to quantify the environmental consequences of meeting REM demand for new technology products.

  17. Synthesis and characterization of rare-earth-doped calcium tungstate nanocrystals

    NASA Astrophysics Data System (ADS)

    Suneeta, P.; Rajesh, Ch.; Ramana, M. V.

    2018-02-01

    In this paper, we report synthesis and characterization of rare-earth-ion-doped calcium tungstate (CaWO4) nanocrystals (NCs). Rare-earth ions, such as gadolinium (Gd), neodymium (Nd), praseodymium (Pr), samarium (Sm) and holmium (Ho), were successfully doped in the CaWO4 NCs by changing the synthesis conditions. The adopted synthesis route was found to be fast and eco-friendly. Structural characterizations, such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and compositional analysis, were performed using energy dispersive analysis of X-rays (EDAX) on as-synthesized NCs. The results indicate the size of the NCs ranging between 47 to 68nm and incorporation of rare-earth ions in CaWO4 NCs.

  18. Rationally designed mineralization for selective recovery of the rare earth elements

    PubMed Central

    Hatanaka, Takaaki; Matsugami, Akimasa; Nonaka, Takamasa; Takagi, Hideki; Hayashi, Fumiaki; Tani, Takao; Ishida, Nobuhiro

    2017-01-01

    The increasing demand for rare earth (RE) elements in advanced materials for permanent magnets, rechargeable batteries, catalysts and lamp phosphors necessitates environmentally friendly approaches for their recovery and separation. Here, we propose a mineralization concept for direct extraction of RE ions with Lamp (lanthanide ion mineralization peptide). In aqueous solution containing various metal ions, Lamp promotes the generation of RE hydroxide species with which it binds to form hydrophobic complexes that accumulate spontaneously as insoluble precipitates, even under physiological conditions (pH ∼6.0). This concept for stabilization of an insoluble lanthanide hydroxide complex with an artificial peptide also works in combination with stable scaffolds like synthetic macromolecules and proteins. Our strategy opens the possibility for selective separation of target metal elements from seawater and industrial wastewater under mild conditions without additional energy input. PMID:28548098

  19. Ground-state oxygen holes and the metal–insulator transition in the negative charge-transfer rare-earth nickelates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisogni, Valentina; Catalano, Sara; Green, Robert J.

    The metal-insulator transitions and the intriguing physical properties of rare-earth perovskite nickelates have attracted considerable attention in recent years. However, a complete understanding of these materials remains elusive. Here, taking a NdNiO 3 thin film as a representative example, we utilize a combination of x-ray absorption (XAS) and resonant inelastic x-ray scattering (RIXS) spectroscopies to resolve important aspects of the complex electronic structure of the rare-earth nickelates. The unusual coexistence of bound and continuum excitations observed in the RIXS spectra provides strong evidence for the abundance of oxygen 2p holes in the ground state of these materials. Using cluster calculationsmore » and Anderson impurity model interpretation, we show that these distinct spectral signatures arise from a Ni 3d 8 configuration along with holes in the oxygen 2p valence band, confirming suggestions that these materials do not obey a “conventional” positive charge-transfer picture, but instead exhibit a negative charge-transfer energy, in line with recent models interpreting the metal to insulator transition in terms of bond disproportionation.« less

  20. Ground-state oxygen holes and the metal–insulator transition in the negative charge-transfer rare-earth nickelates

    DOE PAGES

    Bisogni, Valentina; Catalano, Sara; Green, Robert J.; ...

    2016-10-11

    The metal-insulator transitions and the intriguing physical properties of rare-earth perovskite nickelates have attracted considerable attention in recent years. However, a complete understanding of these materials remains elusive. Here, taking a NdNiO 3 thin film as a representative example, we utilize a combination of x-ray absorption (XAS) and resonant inelastic x-ray scattering (RIXS) spectroscopies to resolve important aspects of the complex electronic structure of the rare-earth nickelates. The unusual coexistence of bound and continuum excitations observed in the RIXS spectra provides strong evidence for the abundance of oxygen 2p holes in the ground state of these materials. Using cluster calculationsmore » and Anderson impurity model interpretation, we show that these distinct spectral signatures arise from a Ni 3d 8 configuration along with holes in the oxygen 2p valence band, confirming suggestions that these materials do not obey a “conventional” positive charge-transfer picture, but instead exhibit a negative charge-transfer energy, in line with recent models interpreting the metal to insulator transition in terms of bond disproportionation.« less

  1. Recycling of Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Lorenz, Tom; Bertau, Martin

    2017-01-01

    Any development of an effective process for rare earth (RE) recycling has become more and more challenging, especially in recent years. Since 2011, when commodity prices of REs had met their all-time maximum, prices have dropped rapidly by more than 90 %. An economic process able to offset these fluctuations has to take unconventional methods into account beside well-known strategies like acid/basic leaching or solvent extraction. The solid-state chlorination provides such an unconventional method for mobilizing RE elements from waste streams. Instead of hydrochloric acid this kind of chlorination decomposes NH4Cl thermally to release up to 400 °C hot HCl gas. After cooling the resulting solid metal chlorides may be easily dissolved in pH-adjusted water. Without producing strongly acidic wastes and with NH4Cl as cheap source for hydrogen chloride, solid-state chlorination provides various advantages in terms of costs and disposal. In the course of the SepSELSA project this method was examined, adjusted and optimized for RE recycling from fluorescent lamp scraps as well as Fe14Nd2B magnets. Thereby many surprising influences and trends required various analytic methods to examine the reasons and special mechanisms behind them.

  2. Assessment of Bioavailable Concentrations of Germanium and Rare Earth Elements in the Rhizosphere of White Lupin (Lupinus albus L.)

    NASA Astrophysics Data System (ADS)

    Wiche, Oliver; Fischer, Ronny; Moschner, Christin; Székely, Balázs

    2015-04-01

    Concentrations of Germanium (Ge) and Rare Earth Elements in soils are estimated at 1.5 mg kg -1 (Ge), 25 mg kg -1 (La) and 20 mg kg -1 (Nd), which are only roughly smaller than concentrations of Pb and Zn. Germanium and rare earth elements are thus not rare but widely dispersed in soils and therefore up to date, only a few minable deposits are available. An environmental friendly and cost-effective way for Ge and rare earth element production could be phytomining. However, the most challenging part of a phytomining of these elements is to increase bioavailable concentrations of the elements in soils. Recent studies show, that mixed cultures with white lupine or other species with a high potential to mobilize trace metals in their rhizosphere due to an acidification of the soil and release of organic acids in the root zone could be a promising tool for phytomining. Complexation of Ge and rare earth elements by organic acids might play a key role in controlling bioavailability to plants as re-adsorption on soil particles and precipitation is prevented and thus, concentrations in the root zone of white lupine increase. This may also allow the complexes to diffuse along a concentration gradient to the roots of mixed culture growing species leading to enhanced plant uptake. However, to optimize mixed cultures it would be interesting to know to which extend mobilization of trace metals is dependent from chemical speciation of elements in soil due to the interspecific interaction of roots. A method for the identification of complexes of germanium and rare earth elements with organic acids, predominantly citric acid in the rhizosphere of white lupine was developed and successfully tested. The method is based on coupling of liquid chromatography with ICP-MS using a zic-philic column (SeQuant). As a preliminary result, we were able to show that complexes of germanium with citric acid exist in the rhizosphere of white lupin, what may contribute to the bioavailability of this

  3. Pressure-induced structural modifications of rare-earth hafnate pyrochlore

    NASA Astrophysics Data System (ADS)

    Turner, Katlyn M.; Rittman, Dylan R.; Heymach, Rachel A.; Tracy, Cameron L.; Turner, Madison L.; Fuentes, Antonio F.; Mao, Wendy L.; Ewing, Rodney C.

    2017-06-01

    Complex oxides with the pyrochlore (A2B2O7) and defect-fluorite ((A,B)4O7) structure-types undergo structural transformations under high-pressure. Rare-earth hafnates (A2Hf2O7) form the pyrochlore structure for A  =  La-Tb and the defect-fluorite structure for A  =  Dy-Lu. High-pressure transformations in A2Hf2O7 pyrochlore (A  =  Sm, Eu, Gd) and defect-fluorite (A  =  Dy, Y, Yb) were investigated up to ~50 GPa and characterized by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Raman spectra at ambient pressure revealed that all compositions, including the defect-fluorites, have some pyrochlore-type short-range order. In situ high-pressure synchrotron XRD showed that all of the rare earth hafnates investigated undergo a pressure-induced phase transition to a cotunnite-like (orthorhombic) structure that begins between 18 and 25 GPa. The phase transition to the cotunnite-like structure is not complete at 50 GPa, and upon release of pressure, the hafnates transform to defect-fluorite with an amorphous component. For all compositions, in situ Raman spectroscopy showed that disordering occurs gradually with increasing pressure. Pyrochlore-structured hafnates retain their short-range order to a higher pressure (30 GPa vs.  <10 GPa) than defect-fluorite-structured hafnates. Rare earth hafnates quenched from 50 GPa show Raman spectra consistent with weberite-type structures, as also reported for irradiated rare-earth stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of ~250 GPa for hafnates with the pyrochlore structure, and ~400 GPa for hafnates with the defect-fluorite structure. Dy2Hf2O7 is intermediate in its response, with some pyrochlore-type ordering, based on Raman spectroscopy and the equation of state, with a bulk modulus of ~300 GPa. As predicted based on the similar ionic radius of Zr4+ and Hf4+, rare-earth hafnates show similar behavior to that

  4. Pressure-induced structural modifications of rare-earth hafnate pyrochlore.

    PubMed

    Turner, Katlyn M; Rittman, Dylan R; Heymach, Rachel A; Tracy, Cameron L; Turner, Madison L; Fuentes, Antonio F; Mao, Wendy L; Ewing, Rodney C

    2017-06-28

    Complex oxides with the pyrochlore (A 2 B 2 O 7 ) and defect-fluorite ((A,B) 4 O 7 ) structure-types undergo structural transformations under high-pressure. Rare-earth hafnates (A 2 Hf 2 O 7 ) form the pyrochlore structure for A  =  La-Tb and the defect-fluorite structure for A  =  Dy-Lu. High-pressure transformations in A 2 Hf 2 O 7 pyrochlore (A  =  Sm, Eu, Gd) and defect-fluorite (A  =  Dy, Y, Yb) were investigated up to ~50 GPa and characterized by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Raman spectra at ambient pressure revealed that all compositions, including the defect-fluorites, have some pyrochlore-type short-range order. In situ high-pressure synchrotron XRD showed that all of the rare earth hafnates investigated undergo a pressure-induced phase transition to a cotunnite-like (orthorhombic) structure that begins between 18 and 25 GPa. The phase transition to the cotunnite-like structure is not complete at 50 GPa, and upon release of pressure, the hafnates transform to defect-fluorite with an amorphous component. For all compositions, in situ Raman spectroscopy showed that disordering occurs gradually with increasing pressure. Pyrochlore-structured hafnates retain their short-range order to a higher pressure (30 GPa vs.  <10 GPa) than defect-fluorite-structured hafnates. Rare earth hafnates quenched from 50 GPa show Raman spectra consistent with weberite-type structures, as also reported for irradiated rare-earth stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of ~250 GPa for hafnates with the pyrochlore structure, and ~400 GPa for hafnates with the defect-fluorite structure. Dy 2 Hf 2 O 7 is intermediate in its response, with some pyrochlore-type ordering, based on Raman spectroscopy and the equation of state, with a bulk modulus of ~300 GPa. As predicted based on the similar ionic radius of Zr 4+ and Hf 4+ , rare-earth hafnates show

  5. Process to remove rare earth from IFR electrolyte

    DOEpatents

    Ackerman, John P.; Johnson, Terry R.

    1994-01-01

    The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner.

  6. Process to remove rare earth from IFR electrolyte

    DOEpatents

    Ackerman, J.P.; Johnson, T.R.

    1992-01-01

    The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner.

  7. Process to remove rare earth from IFR electrolyte

    DOEpatents

    Ackerman, J.P.; Johnson, T.R.

    1994-08-09

    The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner. 1 fig.

  8. Reverse engineering nuclear properties from rare earth abundances in the r process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mumpower, Matthew Ryan; McLaughlin, G. C.; Surman, R.

    The bulk of the rare earth elements are believed to be synthesized in the rapid neutron capture process or r process of nucleosynthesis. The solar r-process residuals show a small peak in the rare earths aroundmore » $$A\\sim 160$$, which is proposed to be formed dynamically during the end phase of the r process by a pileup of material. This abundance feature is of particular importance as it is sensitive to both the nuclear physics inputs and the astrophysical conditions of the main r process. Here, we explore the formation of the rare earth peak from the perspective of an inverse problem, using Monte Carlo studies of nuclear masses to investigate the unknown nuclear properties required to best match rare earth abundance sector of the solar isotopic residuals. When nuclear masses are changed, we recalculate the relevant β-decay properties and neutron capture rates in the rare earth region. The feedback provided by this observational constraint allows for the reverse engineering of nuclear properties far from stability where no experimental information exists. We investigate a range of astrophysical conditions with this method and show how these lead to different predictions in the nuclear properties influential to the formation of the rare earth peak. Finally, we conclude that targeted experimental campaigns in this region will help to resolve the type of conditions responsible for the production of the rare earth nuclei, and will provide new insights into the longstanding problem of the astrophysical site(s) of the r process.« less

  9. Reverse engineering nuclear properties from rare earth abundances in the r process

    DOE PAGES

    Mumpower, Matthew Ryan; McLaughlin, G. C.; Surman, R.; ...

    2017-02-01

    The bulk of the rare earth elements are believed to be synthesized in the rapid neutron capture process or r process of nucleosynthesis. The solar r-process residuals show a small peak in the rare earths aroundmore » $$A\\sim 160$$, which is proposed to be formed dynamically during the end phase of the r process by a pileup of material. This abundance feature is of particular importance as it is sensitive to both the nuclear physics inputs and the astrophysical conditions of the main r process. Here, we explore the formation of the rare earth peak from the perspective of an inverse problem, using Monte Carlo studies of nuclear masses to investigate the unknown nuclear properties required to best match rare earth abundance sector of the solar isotopic residuals. When nuclear masses are changed, we recalculate the relevant β-decay properties and neutron capture rates in the rare earth region. The feedback provided by this observational constraint allows for the reverse engineering of nuclear properties far from stability where no experimental information exists. We investigate a range of astrophysical conditions with this method and show how these lead to different predictions in the nuclear properties influential to the formation of the rare earth peak. Finally, we conclude that targeted experimental campaigns in this region will help to resolve the type of conditions responsible for the production of the rare earth nuclei, and will provide new insights into the longstanding problem of the astrophysical site(s) of the r process.« less

  10. Health risk assessment of rare earth elements in cereals from mining area in Shandong, China.

    PubMed

    Zhuang, Maoqiang; Wang, Liansen; Wu, Guangjian; Wang, Kebo; Jiang, Xiaofeng; Liu, Taibin; Xiao, Peirui; Yu, Lianlong; Jiang, Ying; Song, Jian; Zhang, Junli; Zhou, Jingyang; Zhao, Jinshan; Chu, Zunhua

    2017-08-29

    To investigate the concentrations of rare earth elements in cereals and assess human health risk through cereal consumption, a total of 327 cereal samples were collected from rare earth mining area and control area in Shandong, China. The contents of 14 rare earth elements were determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The medians of total rare earth elements in cereals from mining and control areas were 74.22 μg/kg and 47.83 μg/kg, respectively, and the difference was statistically significant (P < 0.05). The wheat had the highest rare earth elements concentrations (109.39 μg/kg and 77.96 μg/kg for mining and control areas, respectively) and maize had the lowest rare earth elements concentrations (42.88 μg/kg and 30.25 μg/kg for mining and control areas, respectively). The rare earth elements distribution patterns for both areas were characterized by enrichment of light rare earth elements. The health risk assessment demonstrated that the estimated daily intakes of rare earth elements through cereal consumption were considerably lower than the acceptable daily intake (70 μg/kg bw). The damage to adults can be neglected, but more attention should be paid to the effects of continuous exposure to rare earth elements on children.

  11. Rare earth garnet selective emitter

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approximately equal to 0.74, ((4)l(sub 15/2)) - ( (4)l(sub13/2)), for Er-YAG and epsilon(sub lambda) approximately equal to 0.65, ((5)l(sub 7))-((5)l(sub 8)) for Ho-YAG) at excellent candidates for high efficiency selective emitters in the thermophotovoltaics (TPV) systems operating at moderate temperatures (1200-1500K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. This paper presents normal spectral emittance, epsilon(sub lambda), measurements of holmium (Ho), and erbium (Er) doped YAG thin film selective emitters at 1500 K, and compares those results with the theoretical spectral emittance.

  12. Rare earth-doped materials with enhanced thermoelectric figure of merit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkatasubramanian, Rama; Cook, Bruce Allen; Levin, Evgenii M.

    A thermoelectric material and a thermoelectric converter using this material. The thermoelectric material has a first component including a semiconductor material and a second component including a rare earth material included in the first component to thereby increase a figure of merit of a composite of the semiconductor material and the rare earth material relative to a figure of merit of the semiconductor material. The thermoelectric converter has a p-type thermoelectric material and a n-type thermoelectric material. At least one of the p-type thermoelectric material and the n-type thermoelectric material includes a rare earth material in at least one ofmore » the p-type thermoelectric material or the n-type thermoelectric material.« less

  13. Tuning Frustration in Rare Earth Pyrochlores by Platinum Substitution

    NASA Astrophysics Data System (ADS)

    Hallas, Alannah; Gaudet, Jonathan; Sharma, Arzoo; Wilson, Murray; Cai, Yipeng; Tachibana, Makoto; Wiebe, Chris; Gaulin, Bruce; Luke, Graeme

    A successful mechanism for exploring the rich physics of rare earth pyrochlores, R2B2O7, is to substitute the non-magnetic B-site. Varying the ionic radius of the B-site induces an internal chemical pressure. Some rare earths are robust to substitutions; for example, the holmium-based pyrochlores all exhibit a dipolar spin ice state. In the case of other rare earths such as ytterbium, the ground states are remarkably fragile to chemical pressure. In this talk, I will introduce two materials with a new non-magnetic B-site: platinum. The ionic radius of platinum is comparable to that of titanium, which occupies the B-site in the most well-studied family of pyrochlores. Thus, platinum does not induce a strong chemical pressure on the lattice. Nevertheless, using Gd2Pt2O7 and Er2Pt2O7 as examples, I will show that platinum does affect a dramatic change on the magnetic properties. We trace this effect to platinum's empty eg orbitals, which mediate superexchange pathways not available in other rare earth pyrochlores. In Gd2Pt2O7, this results in a striking 160% enhancement of TN as compared to other Gd-based pyrochlores. In Er2Pt2O7, the ordering temperature is strongly suppressed and the ground state is altered.

  14. Method of forming magnetostrictive rods from rare earth-iron alloys

    DOEpatents

    McMasters, O.D.

    1986-09-02

    Rods of magnetostrictive alloys of iron with rare earth elements are formed by flowing a body of rare earth-iron alloy in a crucible enclosed in a chamber maintained under an inert gas atmosphere, forcing such molten rare-earth-iron alloy into a hollow mold tube of refractory material positioned with its lower end portion within the molten body by means of a pressure differential between the chamber and mold tube and maintaining a portion of the molten alloy in the crucible extending to a level above the lower end of the mold tube so that solid particles of higher melting impurities present in the alloy collect at the surface of the molten body and remain within the crucible as the rod is formed in the mold tube. 5 figs.

  15. Method of forming magnetostrictive rods from rare earth-iron alloys

    DOEpatents

    McMasters, O. Dale

    1986-09-02

    Rods of magnetrostructive alloys of iron with rare earth elements are formed by flowing a body of rare earth-iron alloy in a crucible enclosed in a chamber maintained under an inert gas atmosphere, forcing such molten rare-earth-iron alloy into a hollow mold tube of refractory material positioned with its lower end portion within the molten body by means of a pressure differential between the chamber and mold tube and maintaining a portion of the molten alloy in the crucible extending to a level above the lower end of the mold tube so that solid particles of higher melting impurities present in the alloy collect at the surface of the molten body and remain within the crucible as the rod is formed in the mold tube.

  16. Thermal Expansion and Thermal Conductivity of Rare Earth Silicates

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Lee, Kang N.; Bansal, Narottam P.

    2006-01-01

    Rare earth silicates are considered promising candidate materials for environmental barrier coatings applications at elevated temperature for ceramic matrix composites. High temperature thermophysical properties are of great importance for coating system design and development. In this study, the thermal expansion and thermal conductivity of hot-pressed rare earth silicate materials were characterized at temperatures up to 1400 C. The effects of specimen porosity, composition and microstructure on the properties were also investigated. The materials processing and testing issues affecting the measurements will also be discussed.

  17. [Physiological effects of rare earth elements and their application in traditional Chinese medicine].

    PubMed

    Zhou, Jie; Guo, Lanping; Xiao, Wenjuan; Geng, Yanling; Wang, Xiao; Shi, Xin'gang; Dan, Staerk

    2012-08-01

    The process in the studies on physiological effects of rare earth elements in plants and their action mechanisms were summarized in the aspects of seed germination, photosynthesis, mineral metabolism and stress resistance. And the applications of rare earth elements in traditional Chinese medicine (TCM) in recent years were also overviewed, which will provide reference for further development and application of rare earth elements in TCM.

  18. Selective Tuning of Gilbert Damping in Spin-Valve Trilayer by Insertion of Rare-Earth Nanolayers.

    PubMed

    Zhang, Wen; Zhang, Dong; Wong, Ping Kwan Johnny; Yuan, Honglei; Jiang, Sheng; van der Laan, Gerrit; Zhai, Ya; Lu, Zuhong

    2015-08-12

    Selective tuning of the Gilbert damping constant, α, in a NiFe/Cu/FeCo spin-valve trilayer has been achieved by inserting different rare-earth nanolayers adjacent to the ferromagnetic layers. Frequency dependent analysis of the ferromagnetic resonances shows that the initially small magnitude of α in the NiFe and FeCo layers is improved by Tb and Gd insertions to various amounts. Using the element-specific technique of X-ray magnetic circular dichroism, we find that the observed increase in α can be attributed primarily to the orbital moment enhancement of Ni and Co, rather than that of Fe. The amplitude of the enhancement depends on the specific rare-earth element, as well as on the lattice and electronic band structure of the transition metals. Our results demonstrate an effective way for individual control of the magnetization dynamics in the different layers of the spin-valve sandwich structures, which will be important for practical applications in high-frequency spintronic devices.

  19. Thiophenic compounds adsorption on Na(I)Y and rare earth exchanged Y zeolites: a density functional theory study.

    PubMed

    Gao, Xionghou; Geng, Wei; Zhang, Haitao; Zhao, Xuefei; Yao, Xiaojun

    2013-11-01

    We have theoretically investigated the adsorption of thiophene, benzothiophene, dibenzothiophene on Na(I)Y and rare earth exchanged La(III)Y, Ce(III)Y, Pr(III)Y Nd(III)Y zeolites by density functional theory calculations. The calculated results show that except benzothiophene adsorbed on Na(I)Y with a stand configuration, the stable adsorption structures of other thiophenic compounds on zeolites exhibit lying configurations. Adsorption energies of thiophenic compounds on the Na(I)Y are very low, and decrease with the increase of the number of benzene rings in thiophenic compounds. All rare earth exchanged zeolites exhibit strong interaction with thiophene. La(III)Y and Nd(III)Y zeolites are found to show enhanced adsorption energies to benzothiophene and Pr(III)Y zeolites are favorable for dibenzothiophene adsorption. The analysis of the electronic total charge density and electron orbital overlaps show that the thiophenic compounds interact with zeolites by π-electrons of thiophene ring and exchanged metal atom. Mulliken charge populations analysis reveals that adsorption energies are strongly dependent on the charge transfer of thiophenic molecule and exchanged metal atom.

  20. Relationship between domestic smoking and metals and rare earth elements concentration in indoor PM2.5.

    PubMed

    Drago, Gaspare; Perrino, Cinzia; Canepari, Silvia; Ruggieri, Silvia; L'Abbate, Luca; Longo, Valeria; Colombo, Paolo; Frasca, Daniele; Balzan, Martin; Cuttitta, Giuseppina; Scaccianoce, Gianluca; Piva, Giuseppe; Bucchieri, Salvatore; Melis, Mario; Viegi, Giovanni; Cibella, Fabio; Balzan, Martin; Bilocca, David; Borg, Charles; Montefort, Stephen; Zammit, Christopher; Bucchieri, Salvatore; Cibella, Fabio; Colombo, Paolo; Cuttitta, Giuseppina; Drago, Gaspare; Ferrante, Giuliana; L'Abbate, Luca; Grutta, Stefania La; Longo, Valeria; Melis, Mario R; Ruggieri, Silvia; Viegi, Giovanni; Minardi, Remo; Piva, Giuseppe; Ristagno, Rosaria; Rizzo, Gianfranco; Scaccianoce, Gianluca

    2018-04-16

    Cigarette smoke is the main source of indoor chemical and toxic elements. Cadmium (Cd), Thallium (Tl), Lead (Pb) and Antimony (Sb) are important contributors to smoke-related health risks. Data on the association between Rare Earth Elements (REE) Cerium (Ce) and Lanthanum (La) and domestic smoking are scanty. To evaluate the relationship between cigarette smoke, indoor levels of PM 2.5 and heavy metals, 73 children were investigated by parental questionnaire and skin prick tests. The houses of residence of 41 "cases" and 32 "controls" (children with and without respiratory symptoms, respectively) were evaluated by 48-h PM 2.5 indoor/outdoor monitoring. PM 2.5 mass concentration was determined by gravimetry; the extracted and mineralized fractions of elements (As, Cd, Ce, La, Mn, Pb, Sb, Sr, Tl) were evaluated by ICP-MS. PM 2.5 and Ce, La, Cd, and Tl indoor concentrations were higher in smoker dwellings. When corrected for confounding factors, PM 2.5 , Ce, La, Cd, and Tl were associated with more likely presence of respiratory symptoms in adolescents. We found that: i) indoor smoking is associated with increased levels of PM 2.5 , Ce, La, Cd, and Tl and ii) the latter with increased presence of respiratory symptoms in children. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Multi-objective optimization of chromatographic rare earth element separation.

    PubMed

    Knutson, Hans-Kristian; Holmqvist, Anders; Nilsson, Bernt

    2015-10-16

    The importance of rare earth elements in modern technological industry grows, and as a result the interest for developing separation processes increases. This work is a part of developing chromatography as a rare earth element processing method. Process optimization is an important step in process development, and there are several competing objectives that need to be considered in a chromatographic separation process. Most studies are limited to evaluating the two competing objectives productivity and yield, and studies of scenarios with tri-objective optimizations are scarce. Tri-objective optimizations are much needed when evaluating the chromatographic separation of rare earth elements due to the importance of product pool concentration along with productivity and yield as process objectives. In this work, a multi-objective optimization strategy considering productivity, yield and pool concentration is proposed. This was carried out in the frame of a model based optimization study on a batch chromatography separation of the rare earth elements samarium, europium and gadolinium. The findings from the multi-objective optimization were used to provide with a general strategy for achieving desirable operation points, resulting in a productivity ranging between 0.61 and 0.75 kgEu/mcolumn(3), h(-1) and a pool concentration between 0.52 and 0.79 kgEu/m(3), while maintaining a purity above 99% and never falling below an 80% yield for the main target component europium. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Magnetic Nanofluid Rare Earth Element Extraction Process Report, Techno Economic Analysis, and Results for Geothermal Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pete McGrail

    This GDR submission is an interim technical report and raw data files from the first year of testing on functionalized nanoparticles for rare earth element extraction from geothermal fluids. The report contains Rare Earth Element uptake results (percent removal, mg Rare Earth Element/gram of sorbent, distribution coefficient) for the elements of Neodymium, Europium, Yttrium, Dysprosium, and Cesium. A detailed techno economic analysis is also presented in the report for a scaled up geothermal rare earth element extraction process. All rare earth element uptake testing was done on simulated geothermal brines with one rare earth element in each brine. The raremore » earth element uptake testing was conducted at room temperature.« less

  3. Rare-earth elements

    USGS Publications Warehouse

    Van Gosen, Bradley S.; Verplanck, Philip L.; Seal, Robert R.; Long, Keith R.; Gambogi, Joseph; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    The rare-earth elements (REEs) are 15 elements that range in atomic number from 57 (lanthanum) to 71 (lutetium); they are commonly referred to as the “lanthanides.” Yttrium (atomic number 39) is also commonly regarded as an REE because it shares chemical and physical similarities and has affinities with the lanthanides. Although REEs are not rare in terms of average crustal abundance, the concentrated deposits of REEs are limited in number.Because of their unusual physical and chemical properties, the REEs have diverse defense, energy, industrial, and military technology applications. The glass industry is the leading consumer of REE raw materials, which are used for glass polishing and as additives that provide color and special optical properties to the glass. Lanthanum-based catalysts are used in petroleum refining, and cerium-based catalysts are used in automotive catalytic converters. The use of REEs in magnets is a rapidly increasing application. Neodymium-iron-boron magnets, which are the strongest known type of magnets, are used when space and weight are restrictions. Nickel-metal hydride batteries use anodes made of a lanthanum-based alloys.China, which has led the world production of REEs for decades, accounted for more than 90 percent of global production and supply, on average, during the past decade. Citing a need to retain its limited REE resources to meet domestic requirements as well as concerns about the environmental effects of mining, China began placing restrictions on the supply of REEs in 2010 through the imposition of quotas, licenses, and taxes. As a result, the global rare-earth industry has increased its stockpiling of REEs; explored for deposits outside of China; and promoted new efforts to conserve, recycle, and substitute for REEs. New mine production began at Mount Weld in Western Australia, and numerous other exploration and development projects noted in this chapter are ongoing throughout the world.The REE-bearing minerals are

  4. Potential synergy: the thorium fuel cycle and rare earths processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ault, T.; Wymer, R.; Croff, A.

    2013-07-01

    The use of thorium in nuclear power programs has been evaluated on a recurring basis. A concern often raised is the lack of 'thorium infrastructure'; however, for at least a part of a potential thorium fuel cycle, this may less of a problem than previously thought. Thorium is frequently encountered in association with rare earth elements and, since the U.S. last systematically evaluated the large-scale use of thorium (the 1970's,) the use of rare earth elements has increased ten-fold to approximately 200,000 metric tons per year. Integration of thorium extraction with rare earth processing has been previously described and top-levelmore » estimates have been done on thorium resource availability; however, since ores and mining operations differ markedly, what is needed is process flowsheet analysis to determine whether a specific mining operation can feasibly produce thorium as a by-product. Also, the collocation of thorium with rare earths means that, even if a thorium product stream is not developed, its presence in mining waste streams needs to be addressed and there are previous instances where this has caused issues. This study analyzes several operational mines, estimates the mines' ability to produce a thorium by-product stream, and discusses some waste management implications of recovering thorium. (authors)« less

  5. Theoretical study of mixed MLaX(4) (M = Na, K, Cs; X = F, Cl, Br, I) rare earth/alkali metal halide complexes.

    PubMed

    Groen, Cornelis Petrus; Oskam, Ad; Kovács, Attila

    2003-02-10

    The structure, bonding, and vibrational properties of the mixed MLaX(4) (M = Na, K, Cs; X = F, Cl, Br, I) rare earth/alkali metal halide complexes have been studied using the MP2 method in conjunction with polarized triple-zeta valence basis sets and quasi-relativistic effective core potentials for the heavy atoms. From the three characteristic structures, possessing 1- (C(3)(v)), 2- (C(2)(v)), or 3-fold coordination (C(3)(v)) between the alkali metal and the bridging halide atoms, the bi- and tridentate forms are stable isomers with close dissociation energies. In general, for the complexes existing of lighter alkali metals and halogens, the bidentate structure corresponds to the global minimum of the potential energy surface, while the heavier analogues favor the tridentate structure. At experimentally relevant temperatures (T > 800 K), however, the isomerization entropy leads to a domination of the bidentate structures over the tridentate forms for all complexes. An important effect of the size of the alkali metal is manifested in the larger stabilities of the K and Cs complexes. The natural atomic charges are in agreement with strong electrostatic interactions in the title complexes. The marginal covalent contributions show a slight increasing trend in the heavier analogues. The calculated vibrational data indicate that infrared spectroscopy may be an effective tool for experimental investigation and characterization of MLaX(4) molecules.

  6. Refining and Mutual Separation of Rare Earths Using Biomass Wastes

    NASA Astrophysics Data System (ADS)

    Inoue, Katsutoshi; Alam, Shafiq

    2013-10-01

    Two different types of adsorption gels were prepared from biomass wastes. The first gel was produced from astringent persimmon peel rich in persimmon tannin, a polyphenol compound, which was prepared by means of simple dehydration condensation reaction using concentrated sulfuric acid for crosslinking. This adsorption gel was intended to be employed for the removal of radioactive elements, uranium (U(VI)) and thorium (Th(IV)), from rare earths. The second gel was prepared from chitosan, a basic polysaccharide, produced from shells of crustaceans such as crabs, shrimps, prawns, and other biomass wastes generated in marine product industry, by immobilizing functional groups of complexanes such as ethylendiaminetetraacetic acid and diethylentriaminepentaacetic acid (DTPA). This gel was developed for the mutual separation of rare earths. Of the two adsorption gels evaluated, the DTPA immobilized chitosan exhibited the most effective mutual separation among light rare earths.

  7. China’s Ace in the Hole Rare Earth Elements

    DTIC Science & Technology

    2010-01-01

    before losing magnetism. 11 Europium sesquioxide (Eu203) has been tested as neutron absorbers for control rods in (fast breeder ) nuclear reactors ...sources of rare earth around the world, it could take anywhere from 10 to 15 years from the time of discovery to begin a full- scale rare earth...television/computer screens, it is being studied for possible use in nuclear reactors .11 Erbium is used as an amplifier for fiber optic data

  8. Uncovering the end uses of the rare earth elements.

    PubMed

    Du, Xiaoyue; Graedel, T E

    2013-09-01

    The rare earth elements (REE) are a group of fifteen elements with unique properties that make them indispensable for a wide variety of emerging and conventional established technologies. However, quantitative knowledge of REE remains sparse, despite the current heightened interest in future availability of the resources. Mining is heavily concentrated in China, whose monopoly position and potential restriction of exports render primary supply vulnerable to short term disruption. We have drawn upon the published literature and unpublished materials in different languages to derive the first quantitative annual domestic production by end use of individual rare earth elements from 1995 to 2007. The information is illustrated in Sankey diagrams for the years 1995 and 2007. Other years are available in the supporting information. Comparing 1995 and 2007, the production of the rare earth elements in China, Japan, and the US changed dramatically in quantities and structure. The information can provide a solid foundation for industries, academic institutions and governments to make decisions and develop strategies. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Experimental Investigations into U/TRU Recovery using a Liquid Cadmium Cathode and Salt Containing High Rare Earth Concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelly X. Li; Steven D. Herrmann; Michael F. Simpson

    2009-09-01

    Experimental Investigations into U/TRU Recovery using a Liquid Cadmium Cathode and Salt Containing High Rare Earth Concentrations Shelly X. Li, Steven D. Herrmann, and Michael F. Simpson Pyroprocessing Technology Department Idaho National Laboratory P.O. Box 1625, Idaho Falls, ID 83415 USA Abstract - A series of six bench-scale liquid cadmium cathode (LCC) tests was performed to obtain basic separation data with focus on the behavior of rare earth elements. The electrolyte used for the tests was a mixed salt from the Mk-IV and Mk-V electrorefiners, in which spent metal fuels from Experimental Breeder Reactor-II (EBR-II) had been processed. Rare earthmore » (RE) chlorides, such as NdCl3, CeCl3, LaCl3, PrCl3, SmCl3, and YCl3, were spiked into the salt prior to the first test to create an extreme case for investigating rare earth contamination of the actinides collected by a LCC. For the first two LCC tests, an alloy with the nominal composition of 41U-30Pu-5Am-3Np-20Zr-1RE was loaded into the anode baskets as the feed material. The anode feed material for Runs 3 to 6 was spent ternary fuel (U-19Pu-10Zr). The Pu/U ratio in the salt varied from 0.6 to 1.3. Chemical and radiochemical analytical results confirmed that U and transuranics can be collected into the LCC as a group under the given run conditions. The RE contamination level in the LCC product was up to 6.7 wt% of the total metal collected. The detailed data for partitioning of actinides and REs in the salt and Cd phases are reported in the paper.« less

  10. Superconductivity achieved at over liquid nitrogen temperature by (mixed rare earths)-Ba-Cu oxides

    NASA Astrophysics Data System (ADS)

    Kishio, Kohji; Kuwahara, Kazuyuki; Kitazawa, Koichi; Fueki, Kazuo; Nakamura, Osamu

    1987-05-01

    Superconducting oxides were fabricated by reaction of powders of BaCO3, CuO and mixed rare earth (RE) carbonates at compositions expressed as (RE)1Ba2Cu3O(9-y). Two types of incompletely separated raw materials of mixed rare earths, namely, heavy rare earths (HRE) and medium rare earths (MRE), were examined. The zero-resistivity critical temperatures were observed at 92.5 K for the (HRE)-Ba-Cu-O and 85.0 K for the (MRE)-Ba-Cu-O systems, respectively, both of which were well above the boiling point of liquid nitrogen.

  11. Accomplishing simple, solubility-based separations of rare earth elements with complexes bearing size-sensitive molecular apertures

    PubMed Central

    Bogart, Justin A.; Cole, Bren E.; Boreen, Michael A.; Lippincott, Connor A.; Manor, Brian C.; Carroll, Patrick J.; Schelter, Eric J.

    2016-01-01

    Rare earth (RE) metals are critical components of electronic materials and permanent magnets. Recycling of consumer materials is a promising new source of rare REs. To incentivize recycling, there is a clear need for the development of simple methods for targeted separations of mixtures of RE metal salts. Metal complexes of a tripodal hydroxylaminato ligand, TriNOx3–, featured a size-sensitive aperture formed of its three η2-(N,O) ligand arms. Exposure of cations in the aperture induced a self-associative equilibrium comprising RE(TriNOx)THF and [RE(TriNOx)]2 species. Differences in the equilibrium constants Kdimer for early and late metals enabled simple separations through leaching. Separations were performed on RE1/RE2 mixtures, where RE1 = La–Sm and RE2 = Gd–Lu, with emphasis on Eu/Y separations for potential applications in the recycling of phosphor waste from compact fluorescent light bulbs. Using the leaching method, separations factors approaching 2,000 were obtained for early–late RE combinations. Following solvent optimization, >95% pure samples of Eu were obtained with a 67% recovery for the technologically relevant Eu/Y separation. PMID:27956636

  12. Accomplishing simple, solubility-based separations of rare earth elements with complexes bearing size-sensitive molecular apertures.

    PubMed

    Bogart, Justin A; Cole, Bren E; Boreen, Michael A; Lippincott, Connor A; Manor, Brian C; Carroll, Patrick J; Schelter, Eric J

    2016-12-27

    Rare earth (RE) metals are critical components of electronic materials and permanent magnets. Recycling of consumer materials is a promising new source of rare REs. To incentivize recycling, there is a clear need for the development of simple methods for targeted separations of mixtures of RE metal salts. Metal complexes of a tripodal hydroxylaminato ligand, TriNOx 3- , featured a size-sensitive aperture formed of its three η 2 -(N,O) ligand arms. Exposure of cations in the aperture induced a self-associative equilibrium comprising RE(TriNOx)THF and [RE(TriNOx)] 2 species. Differences in the equilibrium constants K dimer for early and late metals enabled simple separations through leaching. Separations were performed on RE1/RE2 mixtures, where RE1 = La-Sm and RE2 = Gd-Lu, with emphasis on Eu/Y separations for potential applications in the recycling of phosphor waste from compact fluorescent light bulbs. Using the leaching method, separations factors approaching 2,000 were obtained for early-late RE combinations. Following solvent optimization, >95% pure samples of Eu were obtained with a 67% recovery for the technologically relevant Eu/Y separation.

  13. Electronic transport on the Shastry-Sutherland lattice in Ising-type rare-earth tetraborides

    NASA Astrophysics Data System (ADS)

    Ye, Linda; Suzuki, Takehito; Checkelsky, Joseph G.

    2017-05-01

    In the presence of a magnetic field frustrated spin systems may exhibit plateaus at fractional values of saturation magnetization. Such plateau states are stabilized by classical and quantum mechanisms including order by disorder, triplon crystallization, and various competing order effects. In the case of electrically conducting systems, free electrons represent an incisive probe for the plateau states. Here we study the electrical transport of Ising-type rare-earth tetraborides R B4 (R =Er , Tm), a metallic Shastry-Sutherland lattice showing magnetization plateaus. We find that the longitudinal and transverse resistivities reflect scattering with both the static and the dynamic plateau structure. We model these results consistently with the expected strong uniaxial anisotropy on a quantitative level, providing a framework for the study of plateau states in metallic frustrated systems.

  14. SEPARATION OF METAL SALTS BY ADSORPTION

    DOEpatents

    Gruen, D.M.

    1959-01-20

    It has been found that certain metal salts, particularly the halides of iron, cobalt, nickel, and the actinide metals, arc readily absorbed on aluminum oxide, while certain other salts, particularly rare earth metal halides, are not so absorbed. Use is made of this discovery to separate uranium from the rare earths. The metal salts are first dissolved in a molten mixture of alkali metal nitrates, e.g., the eutectic mixture of lithium nitrate and potassium nitrate, and then the molten salt solution is contacted with alumina, either by slurrying or by passing the salt solution through an absorption tower. The process is particularly valuable for the separation of actinides from lanthanum-group rare earths.

  15. Novel online security system based on rare-earth-doped glass microbeads

    NASA Astrophysics Data System (ADS)

    Officer, Simon; Prabhu, G. R.; Pollard, Pat; Hunter, Catherine; Ross, Gary A.

    2004-06-01

    A novel fluorescent security label has been produced that could replace numerous conventional fluorescent dyes in document security. This label utilizes rare earth ions doped in a borosilicate glass matrix to produce sharp spectral fluorescence peaks with characteristic long lifetimes due to the rare earth ions. These are subsequently detected by an online detection system based on fluorescence and the long lifetimes to avoid any interference from other fluorophores present in the background. Security is further enhanced by the interaction of the rare earth ions with each other and the effect of the host on the emission spectra and therefore the number of permutations that could be produced. This creates a very secure label with various applications for the security market.

  16. Nano rare-earth oxides induced size-dependent vacuolization: an independent pathway from autophagy.

    PubMed

    Zhang, Ying; Yu, Chenguang; Huang, Guanyi; Wang, Changli; Wen, Longping

    2010-09-07

    Four rare earth oxides have been shown to induce autophagy. Interestingly, we often noticed plentiful vacuolization, which was not always involved in this autophagic process. In this study, we investigated three other rare-earth elements, including Yttrium (Y), Ytterbium (Yb), and Lanthanum (La). Autophagic effect could be induced by all of them but only Y(2)O(3) and Yb(2)O(3) could cause massive vacuolization. Y(2)O(3) and Yb(2)O(3) treated by sonication or centrifugation to reduce particle size were used to test vacuolization level in HeLa cell lines. The results showed that rare earth oxides-induced vacuolization is size-dependent and differs from autophagic pathway. To further clarify the characteristics of this autophagic process, we used MEF Atg-5 (autophagy associated gene 5) knockout cell line, and the result showed that the autophagic process induced by rare earth oxides is Atg-5-dependent and the observed vacuolization was independent from autophagy. Similar results could also be observed in our tests on 3-methyladenine(3-MA), a well-known autophagy inhibitor. In conclusion, for the first time, we clarified the relationship between massive vacuolization and autophagic process induced by rare earth oxides and pointed out the size effect of rare earth oxides on the formation of vacuoles, which give clues to further investigation on the mechanisms underlying their biological effects.

  17. Nano rare-earth oxides induced size-dependent vacuolization: an independent pathway from autophagy

    PubMed Central

    Zhang, Ying; Yu, Chenguang; Huang, Guanyi; Wang, Changli; Wen, Longping

    2010-01-01

    Four rare earth oxides have been shown to induce autophagy. Interestingly, we often noticed plentiful vacuolization, which was not always involved in this autophagic process. In this study, we investigated three other rare-earth elements, including Yttrium (Y), Ytterbium (Yb), and Lanthanum (La). Autophagic effect could be induced by all of them but only Y2O3 and Yb2O3 could cause massive vacuolization. Y2O3 and Yb2O3 treated by sonication or centrifugation to reduce particle size were used to test vacuolization level in HeLa cell lines. The results showed that rare earth oxides-induced vacuolization is size-dependent and differs from autophagic pathway. To further clarify the characteristics of this autophagic process, we used MEF Atg-5 (autophagy associated gene 5) knockout cell line, and the result showed that the autophagic process induced by rare earth oxides is Atg-5-dependent and the observed vacuolization was independent from autophagy. Similar results could also be observed in our tests on 3-methyladenine(3-MA), a well-known autophagy inhibitor. In conclusion, for the first time, we clarified the relationship between massive vacuolization and autophagic process induced by rare earth oxides and pointed out the size effect of rare earth oxides on the formation of vacuoles, which give clues to further investigation on the mechanisms underlying their biological effects. PMID:20856835

  18. A family of rare earth molybdenum bronzes: Oxides consisting of periodic arrays of interacting magnetic units

    DOE PAGES

    Schneemeyer, L. F.; Siegrist, T.; Besara, T.; ...

    2015-04-06

    The family of rare earth molybdenum bronzes, reduced ternary molybdates of composition LnMo 16O 44, was synthesized and a detailed structural study carried out. Bond valence sum (BVS) calculations clearly show that the molybdenum ions in tetrahedral coordination are hexavalent while the electron count in the primitive unit cell is odd. Yet, measurements show that the phases are semiconductors. The temperature dependence of the magnetic susceptibility of samples containing several different rare earth elements was measured. These measurements verified the presence of a 6.5 K magnetic phase transition not arising from the rare earth constituent, but likely associated with themore » unique isolated ReO 3-type Mo 8O 36 structural subunits in this phase. To better understand the behavior of these materials, electronic structure calculations were performed within density functional theory. Results suggest a magnetic state in which these structural moieties have an internal ferromagnetic arrangement, with small ~1/8 μ B moments on each Mo. We suggest that the Mo 8O 36 units behave like pseudoatoms with spin ½ derived from a single hole distributed over the eight Mo atoms that are strongly hybridized with the O atoms of the subunit. As a result, while the compound is antiferromagnetic, our calculations suggest that a field-stabilized ferromagnetic state, if achievable, will be a narrow band half-metal.« less

  19. Problems with the thermogravimetric determination of oxygen stoichiometries in pure and rare-earth substituted La2RuO5

    NASA Astrophysics Data System (ADS)

    Riegg, S.; Müller, T.; Ebbinghaus, S. G.

    2013-06-01

    The oxygen stoichiometries of pure and rare-earth substituted La2RuO5 have been investigated by thermogravimetry (TG) in reducing atmosphere. Assuming that the observed total weight loss is caused by the reduction of Ru4+ to Ru-metal, remarkable oxygen deficiencies were calculated. These would correspond to ruthenium oxidation states significantly lower than the ones experimentally observed by XANES. To explain this discrepancy we investigated the reduction products by X-ray absorption spectroscopy (XAS). EXAFS measurements at the Ru-K edge revealed the presence of an X-ray amorphous ruthenium oxide, indicating an incomplete reduction. The apparent oxygen deficiencies obtained for pure and rare-earth substituted samples correlate with the amount of remaining ruthenium oxide. The presence of a ruthenium oxide species was furthermore verified by Ru-LIII XANES investigations. Our results show that the determination of oxygen contents by thermogravimetry might fail even for the easily reducable nobel metal oxides and therefore has to be applied with caution if the reaction products cannot be identified unambiguously.

  20. Two main and a new type rare earth elements in Mg alloys: A review

    NASA Astrophysics Data System (ADS)

    Kong, Linghang

    2017-09-01

    Magnesium (Mg) alloys stand for the lightest structure engineering materials. Moreover, the strengthening of Mg alloys in ductility, toughness and corrosion predominates their wide applications. With adding rare earth elements in Mg, the mechanical properties will be improved remarkably, especially their plasticity and strength. A brief overview of the addition of rare earth elements for Mg alloys is shown. The basic mechanisms of strengthening Mg alloys with rare earth elements are reviewed, including the solid solution strengthening, grain refinement and long period stacking ordered (LPSO) phase. Furthermore, the available rare earth elements are summarized by type, chemical or physical effects and other unique properties. Finally, some challenge problems that the research is facing and future expectations of ra-re-earth Mg alloys are stated and discussed.

  1. Catalytic Graphitization of Coal-Based Carbon Materials with Light Rare Earth Elements.

    PubMed

    Wang, Rongyan; Lu, Guimin; Qiao, Wenming; Yu, Jianguo

    2016-08-30

    The catalytic graphitization mechanism of coal-based carbon materials with light rare earth elements was investigated using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, selected-area electron diffraction, and high-resolution transmission electron microscopy. The interface between light rare earth elements and carbon materials was carefully observed, and two routes of rare earth elements catalyzing the carbon materials were found: dissolution-precipitation and carbide formation-decomposition. These two simultaneous processes certainly accelerate the catalytic graphitization of carbon materials, and light rare earth elements exert significant influence on the microstructure and thermal conductivity of graphite. Moreover, by virtue of praseodymium (Pr), it was found that a highly crystallographic orientation of graphite was induced and formed, which was reasonably attributed to the similar arrangements of the planes perpendicular to (001) in both graphite and Pr crystals. The interface between Pr and carbon was found to be an important factor for the orientation of graphite structure.

  2. Unveiling the control of quenched disorder in rare earth nickelates

    NASA Astrophysics Data System (ADS)

    Das, Sarmistha; Phanindra, V. Eswara; Philip, Sharon S.; Rana, D. S.

    2017-10-01

    The role of quenched disorder, a key control to obtain novel phases and functionalities, has not yet been determined in the complex phase diagram of RNi O3 (R = rare-earth ion) perovskites. Here we present such a study by investigating (L a0.5E u0.5 ) Ni O3 (LENO) having large R-site cation disorder. We show that in the presence of quenched disorder, (i) the resistivity drops by a few orders of magnitude across the metal-insulator transition (MIT) but the MIT shows only a subtle decrease, (ii) compressive films are completely metallic while largely tensile films are completely insulating sans a MIT, (iii) orthorhombic distortion promotes sharp MIT, and (iv) a Fermi liquid behavior even as high temperature resistivity exceeds the Mott-Ioffe-Regel limit with a bad metallic state. The low-energy terahertz conductivity dynamics obey Drude and Drude-Smith models for compressive and tensile films, respectively. All these features of disordered LENO, which are not typical of prototype ordered NdNi O3 , reveal an extraordinary sensitivity to slight structural perturbations. This study depicts the ease with which a variety of electronic phases can be tuned in disordered nickelates and emphasize the need to incorporate quenched disorder as a key control in the phase diagram of nickelates.

  3. Structural, electronic, mechanical and magnetic properties of rare earth nitrides REN (RE= Pm, Eu and Yb)

    NASA Astrophysics Data System (ADS)

    Murugan, A.; Rajeswarapalanichamy, R.; Santhosh, M.; Iyakutti, K.

    2015-07-01

    The structural, electronic and mechanical properties of rare earth nitrides REN (RE=Pm, Eu and Yb) are investigated in NaCl and CsCl, and zinc blende structures using first principles calculations based on density functional theory. The calculated lattice parameters are in good agreement with the available results. Among the considered structures, these nitrides are most stable in NaCl structure. A pressure induced structural phase transition from NaCl to CsCl phase is observed in all these nitrides. The electronic structure reveals that these rare earth nitrides are half metallic at normal pressure. These nitrides are found to be covalent and ionic in the stable phase. The computed elastic constants indicate that these nitrides are mechanically stable and elastically anisotropic. Our results confirm that these nitrides are ferromagnetic in nature. A ferromagnetic to non-magnetic phase transition is observed at the pressures of 21.5 GPa and 46.1 GPa in PmN and YbN respectively.

  4. Influence of rare earth elements (Nd, Sm, Gd) on the physicochemical properties of ges crystal

    NASA Astrophysics Data System (ADS)

    Madatov, R. S.; Alekperov, A. S.; Magerramova, Dzh. A.

    2015-11-01

    Layered semiconductors (including GeS), which are widely used in modern electronics, are of great interest for researchers. New GeS-based devices have been developed for holographic recording, optical processing, and storage of information. In the last few years, American scientists have developed a unique GeS-based device that makes it possible to accumulate an immense amount of solar energy. The introduction of rare earth elements (REEs) facilitates the healing of metal and chalcogenide vacancies, removes polytypism, and enhances interlayer interaction.

  5. Application of solid phase extraction procedures for rare earth elements determination in environmental samples.

    PubMed

    Pyrzynska, Krystyna; Kubiak, Anna; Wysocka, Irena

    2016-07-01

    Determination of rare earth elements in environmental samples requires often pre-concentration and separation step due to a low metal content and high concentration of the interfering matrix components. A solid phase extraction technique with different kind of solid sorbents offers a high enrichment factor, rapid phase separation and the possibility of its combination with various detection techniques used either in on-line or off-line mode. The recent developments in this area published over the last five years are presented and discussed in this paper. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Method for determination of small amounts of rare earths and thorium in phosphate rocks

    USGS Publications Warehouse

    Waring, C.L.; Mela, H.

    1953-01-01

    In laboratory investigations, interest developed in the possible rare-earth content of phosphate samples from Florida and the northwestern United States. Because of the difficulty of making chemical determinations of traces of individual rare earths, a combined chemical-spectrographic method was investigated. After removal of iron by the extraction of the chloride with ether, the rare earths and thorium are concentrated by double oxalate precipitation, using calcium as a carrier. The rare earths are freed from calcium by an ammonium hydroxide precipitation with a fixed amount of aluminum as a carrier. The aluminum also serves as an internal standard in the final spectrographic analysis. The method will determine from 0.02 to 2 mg. of each rare earth with an error no greater than 10%. The investigation has resulted in a fairly rapid and precise procedure, involving no special spectrographic setup. The method could be applied to other types of geologic materials with the same expected accuracy.

  7. Magneto-Optical Experiments on Rare Earth Garnet Films.

    ERIC Educational Resources Information Center

    Tanner, B. K.

    1980-01-01

    Describes experiments in which inexpensive or standard laboratory equipment is used to measure several macroscopic magnetic properties of thin rare earth garnet films used in the manufacture of magnetic bubble devices. (Author/CS)

  8. China's Rare Earth Supply Chain: Illegal Production, and Response to new Cerium Demand

    NASA Astrophysics Data System (ADS)

    Nguyen, Ruby Thuy; Imholte, D. Devin

    2016-07-01

    As the demand for personal electronic devices, wind turbines, and electric vehicles increases, the world becomes more dependent on rare earth elements. Given the volatile, Chinese-concentrated supply chain, global attempts have been made to diversify supply of these materials. However, the overall effect of supply diversification on the entire supply chain, including increasing low-value rare earth demand, is not fully understood. This paper is the first attempt to shed some light on China's supply chain from both demand and supply perspectives, taking into account different Chinese policies such as mining quotas, separation quotas, export quotas, and resource taxes. We constructed a simulation model using Powersim Studio that analyzes production (both legal and illegal), production costs, Chinese and rest-of-world demand, and market dynamics. We also simulated new demand of an automotive aluminum-cerium alloy in the US market starting from 2018. Results showed that market share of the illegal sector has grown since 2007-2015, ranging between 22% and 25% of China's rare earth supply, translating into 59-65% illegal heavy rare earths and 14-16% illegal light rare earths. There will be a shortage in certain light and heavy rare earths given three production quota scenarios and constant demand growth rate from 2015 to 2030. The new simulated Ce demand would require supply beyond that produced in China. Finally, we illustrate revenue streams for different ore compositions in China in 2015.

  9. Rare Earth Element Geochemistry for Produced Waters, WY

    DOE Data Explorer

    Quillinan, Scott; Nye, Charles; McLing, Travis; Neupane, Hari

    2016-06-30

    These data represent major, minor, trace, isotopes, and rare earth element concentrations in geologic formations and water associated with oil and gas production. *Note - Link below contains updated version of spreadsheet (6/14/2017)

  10. Review of rare earth element concentrations in oil shales of the Eocene Green River Formation

    USGS Publications Warehouse

    Birdwell, Justin E.

    2012-01-01

    Concentrations of the lanthanide series or rare earth elements and yttrium were determined for lacustrine oil shale samples from the Eocene Green River Formation in the Piceance Basin of Colorado and the Uinta Basin of Utah. Unprocessed oil shale, post-pyrolysis (spent) shale, and leached shale samples were examined to determine if oil-shale processing to generate oil or the remediation of retorted shale affects rare earth element concentrations. Results for unprocessed Green River oil shale samples were compared to data published in the literature on reference materials, such as chondritic meteorites, the North American shale composite, marine oil shale samples from two sites in northern Tibet, and mined rare earth element ores from the United States and China. The Green River oil shales had lower rare earth element concentrations (66.3 to 141.3 micrograms per gram, μg g-1) than are typical of material in the upper crust (approximately 170 μg g-1) and were also lower in rare earth elements relative to the North American shale composite (approximately 165 μg g-1). Adjusting for dilution of rare earth elements by organic matter does not account for the total difference between the oil shales and other crustal rocks. Europium anomalies for Green River oil shales from the Piceance Basin were slightly lower than those reported for the North American shale composite and upper crust. When compared to ores currently mined for rare earth elements, the concentrations in Green River oil shales are several orders of magnitude lower. Retorting Green River oil shales led to a slight enrichment of rare earth elements due to removal of organic matter. When concentrations in spent and leached samples were normalized to an original rock basis, concentrations were comparable to those of the raw shale, indicating that rare earth elements are conserved in processed oil shales.

  11. Rare Earth Oxide Fluoride Nanoparticles And Hydrothermal Method For Forming Nanoparticles

    DOEpatents

    Fulton, John L.; Hoffmann, Markus M.

    2003-12-23

    A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.

  12. Rare earth oxide fluoride nanoparticles and hydrothermal method for forming nanoparticles

    DOEpatents

    Fulton, John L [Richland, WA; Hoffmann, Markus M [Richland, WA

    2001-11-13

    A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.

  13. Near-Earth asteroids: Metals occurrence, extraction, and fabrication

    NASA Astrophysics Data System (ADS)

    Westfall, Richard

    Near-earth asteroids occur in three principle types of orbits: Amor, Apollo, and Aten. Amor asteroids make relatively close (within 0.3 AU) approaches to the earth's orbit, but do not actually overlap it. Apollo asteroids spend most of their time outside the earth's orbital path, but at some point of close approach to the sun, they cross the orbit of the earth. Aten asteroids are those whose orbits remain inside the earth's path for the majority of their time, with semi-major axes less than 0.1 AU. Near-earth orbit asteroids include: stones, stony-irons, irons, carbonaceous, and super-carbonaceous. Metals within these asteroids include: iron, nickel, cobalt, the platinum group, aluminum, titanium, and others. Focus is on the extraction of ferrous and platinum group metals from the stony-iron asteroids, and the iron asteroids. Extraction of the metal fraction can be accomplished through the use of tunnel-boring-machines (TBM) in the case of the stony-irons. The metals within the story-iron asteroids occur as dispersed granules, which can be separated from the stony fraction through magnetic and gaseous digestion separation techniques. The metal asteroids are processes by drilling and gaseous digestion or by gaseous digestion alone. Manufacturing of structures, housings, framing networks, pressure vessels, mirrors, and other products is accomplished through the chemical vapor deposition (CVD) of metal coating on advanced composites and on the inside of contour-defining inflatables (CDI). Metal coatings on advanced composites provide: resistance to degradation in the hostile environments of space; superior optical properties; superior heat dissipation; service as wear coatings; and service as evidential coatings. Metal coatings on the inside of CDI produce metal load-bearing products. Fibers such as graphite, kevlar, glass, ceramic, metal, etc., can be incorporated in the metal coatings on the inside of CDI producing metal matrix products which exhibit high strength

  14. Near-Earth asteroids: Metals occurrence, extraction, and fabrication

    NASA Technical Reports Server (NTRS)

    Westfall, Richard

    1991-01-01

    Near-earth asteroids occur in three principle types of orbits: Amor, Apollo, and Aten. Amor asteroids make relatively close (within 0.3 AU) approaches to the earth's orbit, but do not actually overlap it. Apollo asteroids spend most of their time outside the earth's orbital path, but at some point of close approach to the sun, they cross the orbit of the earth. Aten asteroids are those whose orbits remain inside the earth's path for the majority of their time, with semi-major axes less than 0.1 AU. Near-earth orbit asteroids include: stones, stony-irons, irons, carbonaceous, and super-carbonaceous. Metals within these asteroids include: iron, nickel, cobalt, the platinum group, aluminum, titanium, and others. Focus is on the extraction of ferrous and platinum group metals from the stony-iron asteroids, and the iron asteroids. Extraction of the metal fraction can be accomplished through the use of tunnel-boring-machines (TBM) in the case of the stony-irons. The metals within the story-iron asteroids occur as dispersed granules, which can be separated from the stony fraction through magnetic and gaseous digestion separation techniques. The metal asteroids are processes by drilling and gaseous digestion or by gaseous digestion alone. Manufacturing of structures, housings, framing networks, pressure vessels, mirrors, and other products is accomplished through the chemical vapor deposition (CVD) of metal coating on advanced composites and on the inside of contour-defining inflatables (CDI). Metal coatings on advanced composites provide: resistance to degradation in the hostile environments of space; superior optical properties; superior heat dissipation; service as wear coatings; and service as evidential coatings. Metal coatings on the inside of CDI produce metal load-bearing products. Fibers such as graphite, kevlar, glass, ceramic, metal, etc., can be incorporated in the metal coatings on the inside of CDI producing metal matrix products which exhibit high strength

  15. Electrical Transport on the Shastry-Sutherland Lattice in Ising-type Rare Earth Tetraborides

    NASA Astrophysics Data System (ADS)

    Ye, Linda; Suzuki, Takehito; Checkelsky, Joseph. G.

    In the presence of a magnetic field, frustrated spin systems may exhibit plateaus at fractional values of their saturation magnetization. Study of the magnetic ordering and excitations at such plateaus are key to understanding the nature of the underlying ground states in these systems. Here we study the magnetization plateaus in metallic rare earth tetraborides RB4 with Ising-type anisotropy (R = Er, Tm) in which R resides on a Shastry-Sutherland lattice. We focus on electrical transport and find that the response reflects scattering of charge carriers with the static and dynamic plateau structure. Modeling of these results is consistent with the expected strong uniaxial anisotropy and provides a framework for the study of plateau states in metallic frustrated systems. We thank NSF Grant No. DMR-1231319, Tsinghua Education Foundation, Moore foundation Grant No. GBMF3848 for support.

  16. Synthesis, structure and properties of bimetallic sodium rare-earth (RE) borohydrides, NaRE(BH4)4, RE = Ce, Pr, Er or Gd.

    PubMed

    Payandeh GharibDoust, SeyedHosein; Ravnsbæk, Dorthe B; Černý, Radovan; Jensen, Torben R

    2017-10-10

    Formation, stability and properties of new metal borohydrides within RE(BH 4 ) 3 -NaBH 4 , RE = Ce, Pr, Er or Gd is investigated. Three new bimetallic sodium rare-earth borohydrides, NaCe(BH 4 ) 4 , NaPr(BH 4 ) 4 and NaEr(BH 4 ) 4 are formed based on an addition reaction between NaBH 4 and halide free rare-earth metal borohydrides RE(BH 4 ) 3 , RE = Ce, Pr, Er. All the new compounds crystallize in the orthorhombic crystal system. NaCe(BH 4 ) 4 has unit cell parameters of a = 6.8028(5), b = 17.5181(13), c = 7.2841(5) Å and space group Pbcn. NaPr(BH 4 ) 4 is isostructural to NaCe(BH 4 ) 4 with unit cell parameters of a = 6.7617(2), b = 17.4678(7), c = 7.2522(3) Å. NaEr(BH 4 ) 4 crystallizes in space group Cmcm with unit cell parameters of a = 8.5379(2), b = 12.1570(4), c = 9.1652(3) Å. The structural relationships, also to the known RE(BH 4 ) 3 , are discussed in detail and related to the stability and synthesis conditions. Heat treatment of NaBH 4 -Gd(BH 4 ) 3 mixture forms an unstable amorphous phase, which decomposes after one day at RT. NaCe(BH 4 ) 4 and NaPr(BH 4 ) 4 show reversible hydrogen storage capacity of 1.65 and 1.04 wt% in the fourth H 2 release, whereas that of NaEr(BH 4 ) 4 continuously decreases. This is mainly assigned to formation of metal hydrides and possibly slower formation of sodium borohydride. The dehydrogenated state clearly contains rare-earth metal borides, which stabilize boron in the dehydrogenated state.

  17. Leach of the weathering crust elution-deposited rare earth ore for low environmental pollution with a combination of (NH4)2SO4 and EDTA.

    PubMed

    Tang, Jie; Qiao, Jiyang; Xue, Qiang; Liu, Fei; Chen, Honghan; Zhang, Guochen

    2018-05-01

    High concentration of ammonium sulfate, a typical leaching agent, was often used in the mining process of the weathering crust elution-deposited rare earth ore. After mining, a lot of ammonia nitrogen and labile heavy metal fractions were residual in tailings, which may result in a huge potential risk to the environment. In this study, in order to achieve the maximum extraction of rare earth elements and reduce the labile heavy metal, extraction effect and fraction changes of lanthanum (La) and lead (Pb) in the weathering crust elution-deposited rare earth ore were studied by using a compound agent of (NH 4 ) 2 SO 4 -EDTA. The extraction efficiency of La was more than 90% by using 0.2% (NH 4 ) 2 SO 4 -0.005 M EDTA, which was almost same with that by using 2.0% (NH 4 ) 2 SO 4 solution. In contrast, the extraction efficiency of Pb was 62.3% when use 0.2% (NH 4 ) 2 SO 4 -0.005 M EDTA, which is much higher than that (16.16%) achieved by using 2.0% (NH 4 ) 2 SO 4 solution. The released Pb fractions were mainly acid extractable and reducible fractions, and the content of reducible fraction being leached accounted for 70.45% of the total reducible fraction. Therefore, the use of 0.2% (NH 4 ) 2 SO 4 -0.005 M EDTA can not only reduce the amount of (NH 4 ) 2 SO 4 , but also decrease the labile heavy metal residues in soil, which provides a new way for efficient La extraction with effective preventing and controlling environmental pollution in the process of mining the weathering crust elution-deposited rare earth ore. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Combinatorial investigation of rare-earth free permanent magnets

    NASA Astrophysics Data System (ADS)

    Fackler, Sean Wu

    The combinatorial high throughput method allows one to rapidly study a large number of samples with systematically changing parameters. We apply this method to study Fe-Co-V alloys as alternatives to rare-earth permanent magnets. Rare-earth permanent magnets derive their unmatched magnetic properties from the hybridization of Fe and Co with the f-orbitals of rare-earth elements, which have strong spin-orbit coupling. It is predicted that Fe and Co may also have strong hybridization with 4d and 5d refractory transition metals with strong spin-orbit coupling. Refractory transition metals like V also have the desirable property of high temperature stability, which is important for permanent magnet applications in traction motors. In this work, we focus on the role of crystal structure, composition, and secondary phases in the origin of competitive permanent magnetic properties of a particular Fe-Co-V alloy. Fe38Co52V10, compositions are known as Vicalloys. Fe-CoV composition spreads were sputtered onto three-inch silicon wafers and patterned into discrete sample pads forming a combinatorial library. We employed highthroughput screening methods using synchrotron X-rays, wavelength dispersive spectroscopy, and magneto-optical Kerr effect (MOKE) to rapidly screen crystal structure, composition, and magnetic properties, respectively. We found that in-plane magnetic coercive fields of our Vicalloy thin films agree with known bulk values (300 G), but found a remarkable eight times increase of the out-of-plane coercive fields (˜2,500 G). To explain this, we measured the switching fields between in-plane and out-of-plane thin film directions which revealed that the Kondorsky model of 180° domain wall reversal was responsible for Vicalloy's enhanced out-of-plane coercive field and possibly its permanent magnetic properties. The Kondorsky model suggests that domain-wall pinning is the origin of Vicalloy's permanent magnetic properties, in contrast to strain, shape, or

  19. Alkali metal and alkali earth metal gadolinium halide scintillators

    DOEpatents

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  20. Rare Earth Elements in National Defense: Background, Oversight Issues, and Options for Congress

    DTIC Science & Technology

    2011-03-31

    12 U.S. Department of Energy Report on Critical Mineral Strategy...17 Institute a New Critical Minerals Program...exports of rare earth minerals by 72%. In September 2010, China temporarily cut rare earth exports to Japan apparently over a maritime dispute. This

  1. Rare-earth gate oxides for GaAs MOSFET application

    NASA Astrophysics Data System (ADS)

    Kwon, Kwang-Ho; Yang, Jun-Kyu; Park, Hyung-Ho; Kim, Jongdae; Roh, Tae Moon

    2006-08-01

    Rare-earth oxide films for gate dielectric on n-GaAs have been investigated. The oxide films were e-beam evaporated on S-passivated GaAs, considering interfacial chemical bonding state and energy band structure. Rare-earth oxides such as Gd 2O 3, (Gd xLa 1- x) 2O 3, and Gd-silicate were employed due to high resistivity and no chemical reaction with GaAs. Structural and bonding properties were characterized by X-ray photoemission, absorption, and diffraction. The electrical characteristics of metal-oxide-semiconductor (MOS) diodes were correlated with material properties and energy band structures to guarantee the feasibility for MOS field effect transistor (FET) application. Gd 2O 3 films were grown epitaxially on S-passivated GaAs (0 0 1) at 400 °C. The passivation induced a lowering of crystallization temperature with an epitaxial relationship of Gd 2O 3 (4 4 0) and GaAs (0 0 1). A better lattice matching relation between Gd 2O 3 and GaAs substrate was accomplished by the substitution of Gd with La, which has larger ionic radius. The in-plane relationship of (Gd xLa 1- x) 2O 3 (4 4 0) with GaAs (0 0 1) was found and the epitaxial films showed an improved crystalline quality. Amorphous Gd-silicate film was synthesized by the incorporation of SiO 2 into Gd 2O 3. These amorphous Gd-silicate films excluded defect traps or current flow path due to grain boundaries and showed a relatively larger energy band gap dependent on the contents of SiO 2. Energy band parameters such as Δ EC, Δ EV, and Eg were effectively controlled by the film composition.

  2. Effect of Rare Earth Elements (Er, Ho) on Semi-Metallic Materials (ScN) in an Applied Electric Field

    NASA Technical Reports Server (NTRS)

    Kim, Hyunjung; Park, Yeonjoon; King, Glen C.; Lee, Kunik; Choi, Sang H.

    2012-01-01

    The development of materials and fabrication technology for field-controlled spectrally active optics is essential for applications such as membrane optics, filters for LIDARs, windows for sensors, telescopes, spectroscopes, cameras and flat-panel displays. The dopants of rare earth elements, in a host of optical systems, create a number of absorption and emission band structures and can easily be incorporated into many high quality crystalline and amorphous hosts. In wide band-gap semiconductors like ScN, the existing deep levels can capture or emit the mobile charges, and can be ionized with the loss or capture of the carriers which are the fundamental basis of concept for smart optic materials. The band gap shrinkage or splitting with dopants supports the possibility of this concept. In the present work, a semi-metallic material (ScN) was doped with rare earth elements (Er, Ho) and tested under an applied electric field to characterize spectral and refractive index shifts by either Stark or Zeeman Effect. These effects can be verified using the UV-Vis spectroscopy, the Hall Effect measurement and the ellipsometric spectroscopy. The optical band gaps of ScN doped with Er and doped with Ho were experimentally estimated as 2.33eV and 2.24eV ( 0.2eV) respectively. This is less than that of undoped ScN (2.5 0.2eV). The red-shifted absorption onset is a direct evidence for the decrease of band gap energy (Eg), and the broadening of valence band states is attributable to the doping cases. A decrease in refractive index with an applied field was observed as a small shift in absorption coefficient using a variable angle spectroscopic ellipsometer. In the presence of an electric field, mobile carriers are redistributed within the space charge region (SCR) to produce this electro-refractive effect. The shift in refractive index is also affected by the density and location of deep potential wells within the SCR. In addition, the microstructure change was observed by a TEM

  3. Thermochemistry of rare earth doped uranium oxides LnxU1-xO2-0.5x+y (Ln = La, Y, Nd)

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Navrotsky, Alexandra

    2015-10-01

    Lanthanum, yttrium, and neodymium doped uranium dioxide samples in the fluorite structure have been synthesized, characterized in terms of metal ratio and oxygen content, and their enthalpies of formation measured by high temperature oxide melt solution calorimetry. For oxides doped with 10-50 mol % rare earth (Ln) cations, the formation enthalpies from constituent oxides (LnO1.5, UO2 and UO3 in a reaction not involving oxidation or reduction) become increasingly exothermic with increasing rare earth content, while showing no significant dependence on the varying uranium oxidation state. The oxidation enthalpy of LnxU1-xO2-0.5x+y is similar to that of UO2 to UO3 for all three rare earth doped systems. Though this may suggest that the oxidized uranium in these systems is energetically similar to that in the hexavalent state, thermochemical data alone can not constrain whether the uranium is present as U5+, U6+, or a mixture of oxidation states. The formation enthalpies from elements calculated from the calorimetric data are generally consistent with those from free energy measurements.

  4. 77 FR 58578 - Certain Sintered Rare Earth Magnets, Methods of Making Same and Products Containing Same...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-855] Certain Sintered Rare Earth Magnets... importation of certain sintered rare earth magnets, methods of making same and products containing same by... importation of certain sintered rare earth magnets, methods of making same and products containing same that...

  5. Source and path identification of metals pollution in a mining area by PMF and rare earth element patterns in road dust.

    PubMed

    Tian, Shuhan; Liang, Tao; Li, Kexin; Wang, Lingqing

    2018-08-15

    To better assess pollution and offer efficient protection for local residents, it is necessary to both conduct an exhaustive investigation into pollution levels and quantify its contributing sources and paths. As it is the biggest light rare earth element (REE) reserve in the world, Bayan Obo deposit releases large amounts of heavy metals into the surrounding environment. In this study, road dust from zones located at different distances to the mining area was collected and sieved using seven sizes. This allowed for subsequent analysis of size-dependent influences of mining activities. A receptor model was used to quantitatively assess mine contributions. REE distribution patterns and other REE parameters were compared with those in airborne particulates and the surrounding soil to analyze pollution paths. Results showed that 27 metals were rated as moderately to extremely polluted (2metals in residential area road dust originated directly from the mine. The provenance index (PI) calculated using the REE parameters confirmed this result. While the REE distribution pattern showed that airborne particulates may not be the path for mining-derived particles, they may be one for other sources. Copyright © 2018. Published by Elsevier B.V.

  6. Lattice distortions and local compressibility around trivalent rare-earth impurities in fluorites

    NASA Astrophysics Data System (ADS)

    Tovar, M.; Ramos, C. A.; Fainstein, C.

    1983-10-01

    We have calculated the lattice distortions around trivalent rare-earth dilute impurities, occupying substitutionally metal sites in fluorites. Explicit results are given for the equilibrium positions of the nearest fluorine ligands, R, the induced electric dipole moments, and the local hydrostatic strains for MF2 (M=Cd, Ca, Sr, Pb, and Ba). These results are used to study the impurity-ligand distance dependence of the fourth-order cubic-crystal-field parameter, b4, for Gd3+ and the isoelectronic ion Eu2+. Comparison is made with the change of b4 with hydrostatic stress using the calculated local compressibility of the lattice. A consistent description of the experimental data is obtained assuming b4~R-m with m~10.

  7. A novel sequential process for remediating rare-earth wastewater.

    PubMed

    Cui, Mingcan; Jang, Min; Kang, Kyounglim; Kim, Dukmin; Snyder, Shane A; Khim, Jeehyeong

    2016-02-01

    A novel and economic sequential process consisting of precipitation, adsorption, and oxidation was developed to remediate actual rare-earth (RE) wastewater containing various toxic pollutants, including radioactive species. In the precipitation step, porous air stones (PAS) containing waste oyster shell (WOS), PASWOS, was prepared and used to precipitate most heavy metals with >97% removal efficiencies. The SEM-EDS analysis revealed that PAS plays a key role in preventing the surface coating of precipitants on the surface of WOS and in releasing the dissolved species of WOS successively. For the adsorption step, a polyurethane (PU) impregnated by coal mine drainage sludge (CMDS), PUCMDS, was synthesized and applied to deplete fluoride (F), arsenic (As), uranium (U), and thorium (Th) that remained after precipitation. The continuous-mode sequential process using PAS(WOS), PU(CMDS), and ozone (O3) had 99.9-100% removal efficiencies of heavy metals, 99.3-99.9% of F and As, 95.8-99.4% of U and Th, and 92.4% of COD(Cr) for 100 days. The sequential process can treat RE wastewater economically and effectively without stirred-tank reactors, pH controller, continuous injection of chemicals, and significant sludge generation, as well as the quality of the outlet met the EPA recommended limits. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. [An investigation of lanthanum and other metals levels in blood, urine and hair among residents in the rare earth mining area of a city in China].

    PubMed

    Bao, T M; Tian, Y; Wang, L X; Wu, T; Lu, L N; Ma, H Y; Wang, L

    2018-02-20

    Objective: To investigate the levels of lanthanum, cerium, praseodymium, and neodymium in the blood, urine, and hair samples from residents in the rare earth mining area of a city in China, and to provide a scientific basis for the control of rare earth pollution and the protection of population health. Methods: A total of 147 residents who had lived in the rare earth mining area of a city for a long time were selected as the exposure group, and 108 residents in Guyang County of this city who lived 91 km away from the rare earth mining area were selected as the control group. Blood, urine, and hair samples were collected from the residents in both groups. Inductively coupled plasma mass spectrometry was used to determine the content of lanthanum, cerium, praseodymium, and neodymium in blood, urine, and hair samples. Results: In the exposure group, the median levels of lanthanum, cerium, praseodymium, and neodymium were 0.854, 1.724, 0.132, and 0.839 μg/L, respectively, in blood samples, 0.420, 0.920, 0.055, and 0.337 μg/L, respectively, in urine samples, and 0.052, 0.106, 0.012, and 0.045 μg/g, respectively, in hair samples. The exposure group had significantly higher levels of the four rare earth elements in blood, urine, and hair samples than the control group ( P <0.01) . Conclusion: The residents in the rare earth mining area of this city have higher content of lanthanum, cerium, praseodymium, and neodymium in blood, urine, and hair than those in the non-mining area; the content of cerium is highest, followed by lanthanum, neodymium, and praseodymium.

  9. Evolution of electronic structure across the rare-earth RNiO 3 series

    DOE PAGES

    Freeland, John W.; van Veenendaal, Michel; Chakhalian, Jak

    2015-07-31

    Here, the perovksite rare-earth nickelates, RNiO 3 (R = La… Lu), are a class of materials displaying a rich phase-diagram of metallic and insulating phases associated with charge and magnetic order. Being in the charge transfer regime, Ni 3+ in octahedral coordination displays a strong hybridization with oxygen to form 3d-2p mixed states, which results in a strong admixture of 3d 8L_ into 3d 7, where L_ denotes a hole on the oxygen. To understand the nature of this strongly hybridized ground state, we present a detailed study of the Ni and O electronic structure using high-resolution soft X-ray absorptionmore » spectroscopy (XAS). Through a comparison of the evolution of the XAS line-shape at Ni L- and O K-edges across the phase diagram, we explore the changes in the electronic signatures in connection with the insulating and metallic phases that support the idea of hybridization playing a fundamental role.« less

  10. Uptake and effect of rare earth elements on gene expression in Methylosinus trichosporium OB3b

    DOE PAGES

    Gu, Wenyu; Farhan Ul Haque, Muhammad; DiSpirito, Alan A.; ...

    2016-05-12

    It is well-known that M. trichosporium OB3b has two forms of methane monooxygenase responsible for the initial conversion of methane to methanol, a cytoplasmic (soluble) methane monooxygenase (sMMO) and a membrane-associated (particulate) methane monooxygenase (pMMO) and that copper strongly regulates expression of these alternative forms of MMO. More recently, it has been discovered that M. trichosporium OB3b has multiple types of the methanol dehydrogenase (MeDH), i.e. the Mxa-MeDH and Xox-MeDH, and the expression of these two forms is regulated by the availability of the rare earth element, cerium. Here we extend these studies and show that lanthanum, praseodymium, neodymium andmore » samarium also regulate expression of alternative forms of MeDH. The effect of these rare earth elements on MeDH expression, however, was only observed in the absence of copper. Further, a mutant of M. trichosporium OB3b where the Mxa-MeDH was knocked out was able to grow in the presence of lanthanum, praseodymium and neodymium, but was not able to grow in the presence of samarium. In conclusion, collectively these data suggest that multiple levels of gene regulation by metals exist in M. trichosporium OB3b but that copper overrides the effect of other metals by an as yet unknown mechanism.« less

  11. Real World of Industrial Chemistry: Technology of the Rare Earths.

    ERIC Educational Resources Information Center

    Kremers, Howard E.

    1985-01-01

    The 17 rare earth elements account for one-fifth of the 83 naturally occurring elements and collectively rank as the 22nd most abundant "element." Properties of these elements (including their chemical similarity), their extraction from the earth, and their uses are discussed. (JN)

  12. Magnetic strength and corrosion of rare earth magnets.

    PubMed

    Ahmad, Khalid A; Drummond, James L; Graber, Thomas; BeGole, Ellen

    2006-09-01

    Rare earth magnets have been used in orthodontics, but their corrosion tendency in the oral cavity limits long-term clinical application. The aim of this project was to evaluate several; magnet coatings and their effects on magnetic flux density. A total of 60 neodymium-iron-boron magnets divided into 6 equal groups--polytetrafluoroethylene-coated (PTFE), parylene-coated, and noncoated--were subjected to 4 weeks of aging in saline solution, ball milling, and corrosion testing. A significant decrease in magnet flux density was recorded after applying a protective layer of parylene, whereas a slight decrease was found after applying a protective layer of PTFE. After 4 weeks of aging, the coated magnets were superior to the noncoated magnets in retaining magnetism. The corrosion-behavior test showed no significant difference between the 2 types of coated magnets, and considerable amounts of iron-leached ions were seen in all groups. Throughout the processes of coating, soaking, ball milling, and corrosion testing, PTFE was a better coating material than parylene for preserving magnet flux density. However, corrosion testing showed significant metal leaching in all groups.

  13. Exchange interactions in two-state systems: rare earth pyrochlores.

    PubMed

    Curnoe, S H

    2018-06-13

    The general form of the nearest neighbour exchange interaction for rare earth pyrochlores is derived based on symmetry. Generally, the rare earth angular momentum degeneracy is lifted by the crystal electric field (CEF) into singlets and doublets. When the CEF ground state is a doublet that is well-separated from the first excited state the CEF ground state doublet can be treated as a pseudo-spin of some kind. The general form of the nearest neighbour exchange interaction for pseudo-spins on the pyrochlore lattice is derived for three different types of pseudo-spins. The methodology presented in this paper can be applied to other two-state spin systems with a high space group symmetry.

  14. Exchange interactions in two-state systems: rare earth pyrochlores

    NASA Astrophysics Data System (ADS)

    Curnoe, S. H.

    2018-06-01

    The general form of the nearest neighbour exchange interaction for rare earth pyrochlores is derived based on symmetry. Generally, the rare earth angular momentum degeneracy is lifted by the crystal electric field (CEF) into singlets and doublets. When the CEF ground state is a doublet that is well-separated from the first excited state the CEF ground state doublet can be treated as a pseudo-spin of some kind. The general form of the nearest neighbour exchange interaction for pseudo-spins on the pyrochlore lattice is derived for three different types of pseudo-spins. The methodology presented in this paper can be applied to other two-state spin systems with a high space group symmetry.

  15. IUPAC-NIST Solubility Data Series. 100. Rare Earth Metal Fluorides in Water and Aqueous Systems. Part 2. Light Lanthanides (Ce-Eu)

    NASA Astrophysics Data System (ADS)

    Mioduski, Tomasz; Gumiński, Cezary; Zeng, Dewen

    2015-03-01

    This is the second part of the volume devoted to the evaluation of experimental solubility data for rare earth metal (REM) fluorides in water as well as in aqueous ternary and multicomponent systems. Fluorides of Ce, Pr, Nd, Pm, Sm, and Eu (so-called light lanthanides), as the main solutes, are covered in the present part, which has thorough coverage of the experimental literature through the end of 2012. The experimentally unknown solubility value for PmF3 in water was predicted by an interpolation of the solubility values for NdF3 and SmF3 at 298 K. General features of the systems, such as the nature of the equilibrium solid phases, solubility as a function of temperature, influence of ionic strength, pH, mixed solvent medium on the solubility, quality of the solubility results, and solubility as a function of REM atomic number, have already been presented in Part 1 of the volume.

  16. IUPAC-NIST Solubility Data Series. 100. Rare Earth Metal Fluorides in Water and Aqueous Systems. Part 2. Light Lanthanides (Ce–Eu)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mioduski, Tomasz; Gumiński, Cezary, E-mail: cegie@chem.uw.edu.pl; Zeng, Dewen, E-mail: dewen-zeng@hotmail.com

    This is the second part of the volume devoted to the evaluation of experimental solubility data for rare earth metal (REM) fluorides in water as well as in aqueous ternary and multicomponent systems. Fluorides of Ce, Pr, Nd, Pm, Sm, and Eu (so-called light lanthanides), as the main solutes, are covered in the present part, which has thorough coverage of the experimental literature through the end of 2012. The experimentally unknown solubility value for PmF{sub 3} in water was predicted by an interpolation of the solubility values for NdF{sub 3} and SmF{sub 3} at 298 K. General features of themore » systems, such as the nature of the equilibrium solid phases, solubility as a function of temperature, influence of ionic strength, pH, mixed solvent medium on the solubility, quality of the solubility results, and solubility as a function of REM atomic number, have already been presented in Part 1 of the volume.« less

  17. Observation of a Rare Earth Ion–Extractant Complex Arrested at the Oil–Water Interface During Solvent Extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bu, Wei; Yu, Hao; Luo, Guangming

    2014-09-11

    Selective extraction of metal ions from a complex aqueous mixture into an organic phase is used to separate toxic or radioactive metals from polluted environments and nuclear waste, as well as to produce industrially relevant metals, such as rare earth ions. Selectivity arises from the choice of an extractant amphiphile, dissolved in the organic phase, which interacts preferentially with the target metal ion. The extractant-mediated process of ion transport from an aqueous to an organic phase takes place at the aqueous–organic interface; nevertheless, little is known about the molecular mechanism of this process despite its importance. Although state-of-the-art X-ray scatteringmore » is uniquely capable of probing molecular ordering at a liquid–liquid interface with subnanometer spatial resolution, utilizing this capability to investigate interfacial dynamical processes of short temporal duration remains a challenge. We show that a temperature-driven adsorption transition can be used to turn the extraction on and off by controlling adsorption and desorption of extractants at the oil–water interface. Lowering the temperature through this transition immobilizes a supramolecular ion–extractant complex at the interface during the extraction of rare earth erbium ions. Under the conditions of these experiments, the ion–extractant complexes condense into a two-dimensional inverted bilayer, which is characterized on the molecular scale with synchrotron X-ray reflectivity and fluorescence measurements. Raising the temperature above the transition leads to Er ion extraction as a result of desorption of ion–extractant complexes from the interface into the bulk organic phase. XAFS measurements of the ion–extractant complexes in the bulk organic phase demonstrate that they are similar to the interfacial complexes.« less

  18. Giant magnetic anisotropy of rare-earth adatoms and dimers adsorbed by graphene oxide.

    PubMed

    Zhang, Kai-Cheng; Li, Yong-Feng; Liu, Yong; Zhu, Yan; Shi, Li-Bin

    2017-05-24

    Nowadays, transition-metal adatoms and dimers with giant magnetic anisotropy have attracted much attention due to their potential applications in data storage, spintronics and quantum computations. Using density-functional calculations, we investigated the magnetic anisotropy of the rare-earth adatoms and dimers adsorbed by graphene oxide. Our calculations reveal that the adatoms of Tm, Er and Sm possess giant magnetic anisotropy, typically larger than 40 meV. When the dimers of (Tm,Er,Sm)-Ir are adsorbed onto graphene oxide, the magnetic anisotropy even exceeds 200 meV. The magnetic anisotropy can be tuned by the external electric field as well as the environment.

  19. The impact of rare earth cobalt permanent magnets on electromechanical device design

    NASA Technical Reports Server (NTRS)

    Fisher, R. L.; Studer, P. A.

    1979-01-01

    Specific motor designs which employ rare earth cobalt magnets are discussed with special emphasis on their unique properties and magnetic field geometry. In addition to performance improvements and power savings, high reliability devices are attainable. Both the mechanism and systems engineering should be aware of the new performance levels which are currently becoming available as a result of the rare earth cobalt magnets.

  20. Geochemical characteristics of rare earth elements in different types of soil: A chemometric approach.

    PubMed

    Khan, Aysha Masood; Behkami, Shima; Yusoff, Ismail; Md Zain, Sharifuddin Bin; Bakar, Nor Kartini Abu; Bakar, Ahmad Farid Abu; Alias, Yatimah

    2017-10-01

    Rare earth elements (REEs) are becoming significant due to their huge applications in many industries, large-scale mining and refining activities. Increasing usage of such metals pose negative environmental impacts. In this research ICP-MS has been used to analyze soil samples collected from former ex-mining areas in the depths of 0-20 cm, 21-40 cm, and 41-60 cm of residential, mining, natural, and industrial areas of Perak. Principal component analysis (PCA) revealed that soil samples taken from different mining, industrial, residential, and natural areas are separated into four clusters. It was observed that REEs were abundant in most of the samples from mining areas. Concentration of the rare elements decrease in general as we move from surface soil to deeper soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Assessment of trading partners for China's rare earth exports using a decision analytic approach.

    PubMed

    He, Chunyan; Lei, Yalin; Ge, Jianping

    2014-01-01

    Chinese rare earth export policies currently result in accelerating its depletion. Thus adopting an optimal export trade selection strategy is crucial to determining and ultimately identifying the ideal trading partners. This paper introduces a multi-attribute decision-making methodology which is then used to select the optimal trading partner. In the method, an evaluation criteria system is established to assess the seven top trading partners based on three dimensions: political relationships, economic benefits and industrial security. Specifically, a simple additive weighing model derived from an additive utility function is utilized to calculate, rank and select alternatives. Results show that Japan would be the optimal trading partner for Chinese rare earths. The criteria evaluation method of trading partners for China's rare earth exports provides the Chinese government with a tool to enhance rare earth industrial policies.

  2. [Application of ICP-MS to Detect Rare Earth Elements in Three Economic Macroalgaes in China].

    PubMed

    Zhao, Yan-fang; Shang, De-rong; Zhai, Yu-xiu; Ning, Jin-song; Ding, Hai-yan; Sheng, Xiao-feng

    2015-11-01

    In order to investigate the content and distribution of rare earth elements (REE) in main economic macroalgaes in our country, fifteen rare earth elements in three economic macroalgaes (including 30 samples of kelp, 30 samples of laver and 15 samples of Enteromorpha) were detected using ICP-MS method. Results showed that the total content of REE in different species of macroalgaes was different. The highest total content of REE was in Enteromorpha (16,012.0 ng · g⁻¹), while in kelp and laver, the total REE was similar for two macroalgaes (3887.4 and 4318.1 ng · g⁻¹ respectively). The content of fifteen rare earth elements in kelp ranged from 7.9 to 1496.4 ng · g⁻¹; in laver, it ranged from 8.2 to 1836.6 ng · g⁻¹. For Enteromorpha, the concentration of 15 rare earth elements were between 19.2 and 6014.5 ng · g⁻¹. In addition, the content and distribution of different rare earth elements in different macroalgaes was also different. For kelp, the highest content of REE was Ce (1 496.4 ng · g⁻¹), and the second was La (689.1 ng · g⁻¹). For laver, the highest was Y (1836.6 ng · g⁻¹), and the second was Ce (682.2 ng · g⁻¹). For Enteromorpha, the highest was Ce (6014.5 ng · g⁻¹), and the second was La (2902.9 ng · g⁻¹). Present results also showed that three macroalgaes accumulated the light rare earth elements much more than the high rare earth elements. The light rare earth elements occupied 90.9%, 87.3% and 91.1% for kelp, laver and Enteromorpha respectively. The result that the Enteromorpha had high content of rare earth elements could provide important support for opening new research directions for the utilization of Enteromorpha.

  3. Trivalent Rare-Earth-Metal Bis(trimethylsilyl)amide Halide Complexes by Targeted Oxidations.

    PubMed

    Bienfait, André M; Wolf, Benjamin M; Törnroos, Karl W; Anwander, Reiner

    2018-05-07

    In contrast to previously applied salt metathesis protocols the targeted rare-earth-metal compounds Ln[N(SiMe 3 ) 2 ] 2 (halogenido) were accessed by oxidation of Ln(II) silylamide precursors. Treatment of Sm[N(SiMe 3 ) 3 ] 2 (thf) 2 with 0.5 equiv of C 2 Cl 6 or 0.25 equiv of TeBr 4 in thf and crystallization thereof gave [Sm{N(SiMe 3 ) 2 } 2 (μ-X)(thf)] 2 (X = Cl, Br). A similar reaction/crystallization procedure performed with 0.5 equiv of 1,2-diiodoethane gave monomeric Sm[N(SiMe 3 ) 2 ] 2 I(thf) 2 . Switching to Yb[N(SiMe 3 ) 2 ] 2 (thf) 2 , the aforementioned oxidants generated monomeric five-coordinate complexes Yb[N(SiMe 3 ) 2 ] 2 X(thf) 2 (X = Cl, Br, I). The reaction of Eu[N(SiMe 3 ) 2 ] 2 (thf) 2 with 0.5 equiv of C 2 Cl 6 in thf yielded the separated ion pair [Eu{N(SiMe 3 ) 2 } 3 Cl][(thf) 5 Eu(μ-Cl) 2 Eu(thf) 5 ]. Performing the chlorination in n-hexane led to oxidation followed by rapid disproportionation into EuCl 3 (thf) x and Eu[N(SiMe 3 ) 2 ] 3 . The bromination reaction did not afford crystalline material, while the iodination gave crystals of divalent EuI 2 (thf) 5 . Use of trityl chloride (Ph 3 CCl) as the oxidant in thf accomplished the Eu(III) species [Eu{N(SiMe 3 ) 2 } 2 (μ-Cl)(thf)] 2 . In situ oxidation of putative [Tm{N(SiMe 3 ) 2 } 2 (thf) x ] using 0.5 equiv of C 2 Cl 6 in thf followed by crystallization from n-hexane led to the formation of a mixture of [Tm{N(SiMe 3 ) 2 } 2 (μ-Cl)(thf)] 2 and Tm[N(SiMe 3 ) 2 ] 3 . Switching the oxidant to 0.5 equiv of 1,2-diiodoethane and crystallizing from thf repeatedly afforded the bis-halogenated complex Tm[N(SiMe 3 ) 2 ]I 2 (thf) 3 .

  4. Analysis of “Favorable Growth Element” Based on Rare Earth-aluminum Composite Mechanism of Compound Process

    NASA Astrophysics Data System (ADS)

    Hao, Baohong; Zeng, Qihui; Zhao, Jin

    2018-01-01

    Under the background that failure resulted in by high temperature once only aluminum oxide is used as the gasoline additive. This paper, with the purpose to solve this problem, is to synthesize AcAl oxide for gasoline additive. In order to get the rare-earth-aluminum oxide, first, a complex model of rare earth oxide based on theories about ion coordination is established. Then, by the complex model, the type of “compound growth unit” when rare earth elements join the hydrothermal conditions and the inclination that “diversification” might probably happen are deduced. Depending on the results got by complex model, this paper introduces the type of compound and its existence conditions of “Compound growth unit” owned by stable rare-earth-aluminum oxide. By adjusting the compositions of modifier, compound materials of rare earth-aluminum oxide used for gasoline additive is made. By XRD test, aperture test, adsorption test and desorption test, the theoretical deduction is proved to be right. From the experiment, it is concluded that: a dense environment is the pre-condition to form rare-earth-aluminum polymer, which is also an essential condition for the polymer to update to a favorable growth unit and produce mesoporous rare-earth-aluminum oxide with high activity.

  5. [Effects of rare earth compounds on human peripheral mononuclear cell telomerase and apoptosis].

    PubMed

    Yu, Li; Dai, Yu-Cheng; Yuan, Zhao-Kang; Li, Jie

    2004-07-01

    To study the effects of rare earth exposure on human telomerase and apoptosis of human peripheral mononuclear cells (PBMNs). Rare earth mine lot in Xunwu county, the biggest ion absorptive rare earth mine lot of China, was selected as the study site. Another village of Xunwu county, with comparable geological structure and social environment was selected as the control site. Thirty healthy adults were randomly selected from the study site as exposure group and another 30 healthy adults randomly selected from the control site as control group. The blood content of 15 rare earth elements, including La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y, were determined by inductive coupled plasma-source mass spectrometry (ICP-MS). The total contents of rare earth elements in the blood were calculated. The TRAP and FCM assays were carried out to analyse the telomerase and apoptosis of human PBMNCs respectively. In the exposure group, the concentration of La, Ce, Dy and Y were significantly higher (P<0.001), and Pr, Nd, Sm, Gd and Yb were higher than those in the control group (P<0.05). The total content of rare earth in the blood of exposure group showed significant difference compared with control group (P<0.001). Telomerase activity in PBMNs of the exposure group was higher than that in the control group (P<0.05); there were 11 adults in the exposure group (30 adults) and 5 adults in control group (30 adults) showed positive telomerase activity. The average age of the exposure group was (38.69 +/- 8.02) years-old, while the control group was (40.45 +/- 9.02) years-old (P >0.05). It was found that there was a significant relationship between telomerase activity and the total content of rare earth elements (P <0.01). 3. The proportion of apoptosis was not different between the two groups (P >0.05), but the cells in the S-phase and G2-M phase were increased (P <0.01) in the exposed group. The telomerase activity of PBMNs in the rare earth elements exposed group

  6. Rare Earth Element Concentrations in Submarine Hydrothermal Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Andrew; Zierenberg, Robert

    Rare earth element concentrations in submarine hydrothermal fluids from Alarcon Rise, East Pacific Rise, REE concentrations in submarine hydrothermal fluids from Pescadero Basin, Gulf of California, and the Cleft vent field, southern Juan de Fuca Ridge. Data are not corrected to zero Mg.

  7. China’s rare earth supply chain: Illegal production, and response to new cerium demand

    DOE PAGES

    Nguyen, Ruby Thuy; Imholte, D. Devin

    2016-03-29

    As the demand for personal electronic devices, wind turbines, and electric vehicles increases, the world becomes more dependent on rare earth elements. Given the volatile, Chinese-concentrated supply chain, global attempts have been made to diversify supply of these materials. However, the overall effect of supply diversification on the entire supply chain, including increasing low-value rare earth demand, is not fully understood. This paper is the first attempt to shed some light on China’s supply chain from both demand and supply perspectives, taking into account different Chinese policies such as mining quotas, separation quotas, export quotas, and resource taxes. We constructedmore » a simulation model using Powersim Studio that analyzes production (both legal and illegal), production costs, Chinese and rest-of-world demand, and market dynamics. We also simulated new demand of an automotive aluminum-cerium alloy in the U.S. market starting from 2018. Results showed that market share of the illegal sector has grown since 2007 to 2015, ranging between 22% and 25% of China’s rare earth supply, translating into 59–65% illegal heavy rare earths and 14–16% illegal light rare earths. There would be a shortage in certain light and heavy rare earths given three production quota scenarios and constant demand growth rate from 2015 to 2030. The new simulated Ce demand would require supply beyond that produced in China. Lastly, we illustrated revenue streams for different ore compositions in China in 2015.« less

  8. China’s rare earth supply chain: Illegal production, and response to new cerium demand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ruby Thuy; Imholte, D. Devin

    As the demand for personal electronic devices, wind turbines, and electric vehicles increases, the world becomes more dependent on rare earth elements. Given the volatile, Chinese-concentrated supply chain, global attempts have been made to diversify supply of these materials. However, the overall effect of supply diversification on the entire supply chain, including increasing low-value rare earth demand, is not fully understood. This paper is the first attempt to shed some light on China’s supply chain from both demand and supply perspectives, taking into account different Chinese policies such as mining quotas, separation quotas, export quotas, and resource taxes. We constructedmore » a simulation model using Powersim Studio that analyzes production (both legal and illegal), production costs, Chinese and rest-of-world demand, and market dynamics. We also simulated new demand of an automotive aluminum-cerium alloy in the U.S. market starting from 2018. Results showed that market share of the illegal sector has grown since 2007 to 2015, ranging between 22% and 25% of China’s rare earth supply, translating into 59–65% illegal heavy rare earths and 14–16% illegal light rare earths. There would be a shortage in certain light and heavy rare earths given three production quota scenarios and constant demand growth rate from 2015 to 2030. The new simulated Ce demand would require supply beyond that produced in China. Lastly, we illustrated revenue streams for different ore compositions in China in 2015.« less

  9. A divalent rare earth oxide semiconductor: Yttrium monoxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaminaga, Kenichi; Sei, Ryosuke; Department of Chemistry, Tohoku University, Sendai 980-8578

    Rare earth oxides are usually widegap insulators like Y{sub 2}O{sub 3} with closed shell trivalent rare earth ions. In this study, solid phase rock salt structure yttrium monoxide, YO, with unusual valence of Y{sup 2+} (4d{sup 1}) was synthesized in a form of epitaxial thin film by pulsed laser deposition method. YO has been recognized as gaseous phase in previous studies. In contrast with Y{sub 2}O{sub 3}, YO was dark-brown colored and narrow gap semiconductor. The tunable electrical conductivity ranging from 10{sup −1} to 10{sup 3} Ω{sup −1 }cm{sup −1} was attributed to the presence of oxygen vacancies serving as electron donor.more » Weak antilocalization behavior observed in magnetoresistance indicated significant role of spin-orbit coupling as a manifestation of 4d electron carrier.« less

  10. Rare Earth Doped Yttrium Aluminum Garnet (YAG) Selective Emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Pal, AnnaMarie T.; Patton, Martin O.; Jenkins, Phillip P.

    1999-01-01

    As a result of their electron structure, rare earth ions in crystals at high temperature emit radiation in several narrow bands rather than in a continuous blackbody manner. This study presents a spectral emittance model for films and cylinders of rare earth doped yttrium aluminum garnets. Good agreement between experimental and theoretical film spectral emittances was found for erbium and holmium aluminum garnets. Spectral emittances of films are sensitive to temperature differences across the film. For operating conditions of interest, the film emitter experiences a linear temperature variation whereas the cylinder emitter has a more advantageous uniform temperature. Emitter efficiency is also a sensitive function of temperature. For holminum aluminum garnet film the efficiency is 0.35 at 1446K but only 0.27 at 1270 K.

  11. Thermochemistry of Rare Earth Silicates for Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Costa, Gustavo; Jacobson, Nathan

    2015-01-01

    Rare earth silicates are promising candidates as environmental protective coatings (EBCs) for silica-forming ceramics and composites in combustion environments since they are predicted to have lower reactivity with the water vapor combustion products. The reactivity of rare earth silicates is assessed by the thermodynamic activity of the silica component which is best measured by Knudsen effusion mass spectrometry (KEMS). Here, we discuss a novel method based on a reducing agent to increase the partial pressure of SiO(g) which is then used to calculate thermodynamic activity of silica in Y2O3-SiO2 and Yb2O3-SiO2 systems. After the KEMS measurements, samples were probed by X-ray diffraction and their phase content was calculated from Rietveld refinement.

  12. Assessment of Trading Partners for China's Rare Earth Exports Using a Decision Analytic Approach

    PubMed Central

    He, Chunyan; Lei, Yalin; Ge, Jianping

    2014-01-01

    Chinese rare earth export policies currently result in accelerating its depletion. Thus adopting an optimal export trade selection strategy is crucial to determining and ultimately identifying the ideal trading partners. This paper introduces a multi-attribute decision-making methodology which is then used to select the optimal trading partner. In the method, an evaluation criteria system is established to assess the seven top trading partners based on three dimensions: political relationships, economic benefits and industrial security. Specifically, a simple additive weighing model derived from an additive utility function is utilized to calculate, rank and select alternatives. Results show that Japan would be the optimal trading partner for Chinese rare earths. The criteria evaluation method of trading partners for China's rare earth exports provides the Chinese government with a tool to enhance rare earth industrial policies. PMID:25051534

  13. Superposition-model analysis of rare-earth doped BaY2F8

    NASA Astrophysics Data System (ADS)

    Magnani, N.; Amoretti, G.; Baraldi, A.; Capelletti, R.

    The energy level schemes of four rare-earth dopants (Ce3+ , Nd3+ , Dy3+ , and Er3+) in BaY2 F-8 , as determined by optical absorption spectra, were fitted with a single-ion Hamiltonian and analysed within Newman's Superposition Model for the crystal field. A unified picture for the four dopants was obtained, by assuming a distortion of the F- ligand cage around the RE site; within the framework of the Superposition Model, this distortion is found to have a marked anisotropic behaviour for heavy rare earths, while it turns into an isotropic expansion of the nearest-neighbours polyhedron for light rare earths. It is also inferred that the substituting ion may occupy an off-center position with respect to the original Y3+ site in the crystal.

  14. Characteristics and genesis of Rare Earth Element (REE) in western Indonesia

    NASA Astrophysics Data System (ADS)

    Handoko, A. D.; Sanjaya, E.

    2018-02-01

    Rare Earth Element (REE) has unique properties that have been used in many hightech applications. The demand of REE increased recently in the world due to its special properties. Although REE concentration in the crust is higher than gold, economically viable deposits are still rare. Reduction of REE exports by China cause increased prices of REE. Due to this condition, exploration of potential REE mines emerged. Indonesia also participates in this phenomenon, and explore the possibility of REE mines in its area. This review will discuss the characteristics and genesis of REE and its occurrence in western Indonesia; focused in Sumatera, Tin Island, and Kalimantan. The review is done based on literature research from several resources about characteristics of rare earth element in general and in the given area. The research shows that the potential REE mines can be found in several different locations in Indonesia, such as Tin Island, Sumatera, and Kalimantan. Most of them are composed of monazite, zircon, and xenotime as rare earth minerals. Monazite iss known for its elevated number of radioactive elements, so study about radioactive content and more environment friendly ore processing becomes compulsory.

  15. Rare Earth Geochemistry of Rock Core form WY Reservoirs

    DOE Data Explorer

    Quillinan, Scott; Bagdonnas, Davin; McLaughlin, J. Fred; Nye, Charles

    2016-10-01

    These data include major, minor, trace and rare earth element concentration of geologic formations in Wyoming oil and gas fields. *Note - Link below contains updated version of spreadsheet (6/14/2017)

  16. Alkaline and alkaline earth metal phosphate halides and phosphors

    DOEpatents

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  17. A novel fluorescent probe (dtpa-bis(cytosine)) for detection of Eu(III) in rare earth metal ions

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Ren, Peipei; Liu, Guanhong; Song, Youtao; Bu, Naishun; Wang, Jun

    2018-03-01

    In this paper, a novel fluorescent probe, dtpa-bis(cytosine), was designed and synthesized for detecting europium (Eu3 +) ion. Upon addition of Eu3 + ions into the dtpa-bis(cytosine) solution, the fluorescence intensity can strongly be enhanced. Conversely, adding other rare earth metal ions, such as Y3 +, Ce3 +, Pr3 +, Nd3 +, Sm3 +, Gd3 +, Tb3 +, Dy3 +, Ho3 +, Er3 +, Yb3 + and Lu3 +, into dtpa-bis(cytosine) solution, the fluorescence intensity is decreased slightly. Some parameters affecting the fluorescence intensity of dtpa-bis(cytosine) solution in the presence of Eu3 + ions were investigated, including solution pH value, Eu3 + ion concentration and interfering substances. The detection mechanism of Eu3 + ion using dtpa-bis(cytosine) as fluorescent probe was proposed. Under optimum conditions, the fluorescence emission intensities of EuIII-dtpa-bis(cytosine) at 375 nm in the concentration range of 0.50 × 10- 5 mol • L- 1-5.00 × 10- 5 mol • L- 1 of Eu3 + ion display a better linear relationship. The limit of detection (LOD) was determined as 8.65 × 10- 7 mol • L- 1 and the corresponding correlation coefficient (R2) of the linear equation is 0.9807. It is wished that the proposed method could be applied for sensitively and selectively detecting Eu3 + ion.

  18. Concentrations and health risk assessment of rare earth elements in vegetables from mining area in Shandong, China.

    PubMed

    Zhuang, Maoqiang; Zhao, Jinshan; Li, Suyun; Liu, Danru; Wang, Kebo; Xiao, Peirui; Yu, Lianlong; Jiang, Ying; Song, Jian; Zhou, Jingyang; Wang, Liansen; Chu, Zunhua

    2017-02-01

    To investigate the concentrations of rare earth elements in vegetables and assess human health risk through vegetable consumption, a total of 301 vegetable samples were collected from mining area and control area in Shandong, China. The contents of 14 rare earth elements were determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The total rare earth elements in vegetables from mining and control areas were 94.08 μg kg -1 and 38.67 μg kg -1 , respectively, and the difference was statistically significant (p < 0.05). The leaf vegetable had the highest rare earth elements concentration (984.24 μg kg -1 and 81.24 μg kg -1 for mining and control areas, respectively) and gourd vegetable had the lowest rare earth elements concentration (37.34 μg kg -1 and 24.63 μg kg -1 for mining and control areas, respectively). For both areas, the rare earth elements concentration in vegetables declined in the order of leaf vegetable > taproot vegetable > alliaceous vegetable > gourd vegetable. The rare earth elements distribution patterns for both areas were characterized by enrichment of light rare earth elements. The health risk assessment demonstrated that the estimated daily intakes (0.69 μg kg -1 d -1 and 0.28 μg kg -1 d -1 for mining and control areas, respectively) of rare earth elements through vegetable consumption were significantly lower than the acceptable daily intake (70 μg kg -1 d -1 ). The damage to adults can be neglected, but more attention should be paid to the effects of continuous exposure to low levels of rare earth elements on children. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Hydrogels dispersed by doped rare earth fluoride nanocrystals: ionic liquid dispersion and down/up-conversion luminescence.

    PubMed

    Yan, Zhi-Yuan; Jia, Li-Ping; Yan, Bing

    2014-01-01

    Two typical kinds of rare earth fluoride nanocrystals codoped with rare earth ions (Eu(3+) and Tm(3+)/Er(3+),Yb(3+)) are synthesized and dispersed in ionic liquid compound (1-chlorohexane-3-methylimidazolium chloride, abbreviated as [C6mim][Cl]). Assisted by agarose, the luminescent hydrogels are prepared homogeneously. The down/up-conversion luminescence of these hydrogels can be realized for the dispersed rare earth fluoride nanocrystals. The results provide a strategy to prepare luminescent (especially up-conversion luminescent) hydrogels with ionic liquid to disperse rare earth fluoride nanocrystals. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Antiferromagnetic coupling between rare earth ions and semiquinones in a series of 1:1 complexes.

    PubMed

    Caneschi, Andrea; Dei, Andrea; Gatteschi, Dante; Poussereau, Sandrine; Sorace, Lorenzo

    2004-04-07

    We use the strategy of diamagnetic substitution for obtaining information on the crystal field effects in paramagnetic rare earth ions using the homologous series of compounds with the diamagnetic tropolonato ligand, Ln(Trp)(HBPz(3))(2), and the paramagnetic semiquinone ligand, Ln(DTBSQ)(HBPz(3))(2), (DTBSQ = 3,5-di-tert-butylsemiquinonato, Trp = tropolonate, HBPz(3)= hydrotrispyrazolylborate) for Ln = Sm(iii), Eu(iii), Gd(iii), Tb(iii), Dy(iii), Ho(iii), Er(iii) or Yb(iii). The X-ray crystal structure of a new form of tropolonate derivative is presented, which shows, as expected, a marked similarity with the structure of the semiquinonate derivative. The Ln(Trp)(HBPz(3))(2) derivatives were then used as a reference for the qualitative determination of crystal field effects in the exchange coupled semiquinone derivatives. Through magnetisation and susceptibility measurements this empirical diamagnetic substitution method evidenced for Er(iii), Tb(iii), Dy(iii) and Yb(iii) derivatives a dominating antiferromagnetic coupling. The increased antiferromagnetic contribution compared to other radical-rare earth metal complexes formed by nitronyl nitroxide ligands may be related to the increased donor strength of the semiquinone ligand.

  1. Endothelialization of Novel Magnesium-Rare Earth Alloys with Fluoride and Collagen Coating

    PubMed Central

    Zhao, Nan; Workman, Benjamin; Zhu, Donghui

    2014-01-01

    Magnesium (Mg) alloys are promising scaffolds for the next generation of cardiovascular stents because of their better biocompatibility and biodegradation compared to traditional metals. However, insufficient mechanical strength and high degradation rate are still the two main limitations for Mg materials. Hydrofluoric acid (HF) treatment and collagen coating were used in this research to improve the endothelialization of two rare earth-based Mg alloys. Results demonstrated that a nanoporous film structure of fluoride with thickness of ~20 μm was formed on the Mg material surface, which improved the corrosion resistance. Primary human coronary artery endothelial cells (HCAECs) had much better attachment, spreading, growth and proliferation (the process of endothelialization) on HF-treated Mg materials compared to bare- or collagen-coated ones. PMID:24670478

  2. 77 FR 51046 - Certain Sintered Rare Earth Magnets, Methods of Making Same and Products Containing Same; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-23

    ... INTERNATIONAL TRADE COMMISSION [Docket No. 2908] Certain Sintered Rare Earth Magnets, Methods of... Certain Sintered Rare Earth Magnets, Methods of Making Same and Products Containing Same, DN 2908; the... importation, and the sale within the United States after importation of certain sintered rare earth magnets...

  3. Rare earth elements minimal harvest year variation facilitates robust geographical origin discrimination: The case of PDO "Fava Santorinis".

    PubMed

    Drivelos, Spiros A; Danezis, Georgios P; Haroutounian, Serkos A; Georgiou, Constantinos A

    2016-12-15

    This study examines the trace and rare earth elemental (REE) fingerprint variations of PDO (Protected Designation of Origin) "Fava Santorinis" over three consecutive harvesting years (2011-2013). Classification of samples in harvesting years was studied by performing discriminant analysis (DA), k nearest neighbours (κ-NN), partial least squares (PLS) analysis and probabilistic neural networks (PNN) using rare earth elements and trace metals determined using ICP-MS. DA performed better than κ-NN, producing 100% discrimination using trace elements and 79% using REEs. PLS was found to be superior to PNN, achieving 99% and 90% classification for trace and REEs, respectively, while PNN achieved 96% and 71% classification for trace and REEs, respectively. The information obtained using REEs did not enhance classification, indicating that REEs vary minimally per harvesting year, providing robust geographical origin discrimination. The results show that seasonal patterns can occur in the elemental composition of "Fava Santorinis", probably reflecting seasonality of climate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Synthesis of rare earth doped TiO2 nanorods as photocatalysts for lignin degradation.

    PubMed

    Song, Liang; Zhao, Xueyuan; Cao, Lixin; Moon, Ji-Won; Gu, Baohua; Wang, Wei

    2015-10-28

    A two-step process is developed to synthesize rare earth doped titania nanorods (RE-TiO2 NRs) as photocatalysts for efficient degradation of lignin under simulated sunlight irradiation. In this approach, protonated titanate nanotubes with layered structures were first prepared by a hydrothermal approach, and rare earth metal ions were subsequently bound to the negatively charged surface of the synthesized titanate via electrostatic incorporation. The as-synthesized RE-TiO2 NRs after calcination generally showed much higher photocatalytic efficiencies than those of undoped TiO2 NRs or the commercial P25 TiO2 photocatalyst. Using methyl orange (MO) as a probing molecule, we demonstrate that Eu-TiO2 NRs are among the best for degrading MO, with an observed rate constant of 4.2 × 10(-3) s(-1). The La(3+), Sm(3+), Eu(3+) and Er(3+) doped TiO2 NRs also showed higher photocatalytic efficiencies in degrading MO than the commercial P25 TiO2. We further demonstrate that lignin can be photodegraded effectively and rapidly at room temperature under simulated sunlight through two reaction routes, which could be important in controlling ways of lignin depolymerization or the formation of reaction products.

  5. Synthesis of rare earth doped TiO 2 nanorods as photocatalysts for lignin degradation

    DOE PAGES

    Song, Liang; Zhao, Xueyuan; Cao, Lixin; ...

    2015-09-10

    In this paper, a two-step process is developed to synthesize rare earth doped titania nanorods (RE–TiO 2 NRs) as photocatalysts for efficient degradation of lignin under simulated sunlight irradiation. In this approach, protonated titanate nanotubes with layered structures were first prepared by a hydrothermal approach, and rare earth metal ions were subsequently bound to the negatively charged surface of the synthesized titanate via electrostatic incorporation. The as-synthesized RE–TiO 2 NRs after calcination generally showed much higher photocatalytic efficiencies than those of undoped TiO 2 NRs or the commercial P25 TiO 2 photocatalyst. Using methyl orange (MO) as a probing molecule,more » we demonstrate that Eu–TiO 2 NRs are among the best for degrading MO, with an observed rate constant of 4.2 × 10 -3 s -1. The La 3+, Sm 3+, Eu 3+ and Er 3+ doped TiO 2 NRs also showed higher photocatalytic efficiencies in degrading MO than the commercial P25 TiO 2. Finally, we further demonstrate that lignin can be photodegraded effectively and rapidly at room temperature under simulated sunlight through two reaction routes, which could be important in controlling ways of lignin depolymerization or the formation of reaction products.« less

  6. Charge transfer in rare earth oxide hybrid solar cells revealed through ultrafast spectroscopic measurement

    NASA Astrophysics Data System (ADS)

    Pandit, Bill; Fernando, Kasun; Alphenaar, Bruce; Liu, Jinjun

    2014-03-01

    Hybrid inorganic-organic solar cells typically combine a transition metal oxide (such as TiO2) and organic dye or polymer absorber to form the donor acceptor pair. Here, Oxidized neodymium (Nd2O3) particles are combined with [6,6]-Phenyl C61 butyric acid methyl ester (PCBM) to form the active layer of a bulk heterojunction solar cell. The addition of the Nd2O3 results in an enhancement in the short circuit current and open circuit voltage compared to pure PCBM. We also studied the ultrafast dynamics of photoexcitation in pristine PCBM film, and their blends with the rare earth oxide neodymium particles using the pump-probe photomodulation (PM) spectroscopy with ~30 fs time resolution. Our transient PM spectrum covers spectral range of 430 nm to 730 nm. Although the spectra of Nd2O3/PCBM are very similar with pristine PCBM, the recombination kinetics of photogenerated excitons decay rate increases with the addition of Nd2O3, and ground state photobleaching is also observed. Taken together this provides evidence for the charge transfer between the organic and rare earth inorganic components. Supported by the DOE-EPSCoR fund DOE BES (DE-FG02-07ER46375) at University of Louisville.

  7. Acquisition and Early Losses of Rare Gases from the Deep Earth

    NASA Technical Reports Server (NTRS)

    Porcelli, D.; Cassen, P.; Woolum, D.; Wasserburg, G. J.

    1998-01-01

    Direct observations show that the deep Earth contains rare gases of solar composition distinct from those in the atmosphere. We examine the implications of mantle rare gas characteristics on acquisition of rare gases from the solar nebula and subsequent losses due to a large impact. Deep mantle rare gas concentrations and isotopic compositions can be obtained from a model of transport and distribution of mantle rare gases. This model assumes the lower mantle closed early, while the upper mantle is open to subduction from the atmosphere and mass transfer from the lower mantle. Constraints are derived that can be incorporated into models for terrestrial volatile acquisition: (1) Calculated lower-mantle Xe-isotopic ratios indicate that the fraction of radiogenic Xe produced by I-129 and Pu-244 during the first about 10(exp 8) yr was lost, a conclusion also drawn for atmospheric Xe. Thus, either the Earth was made from materials that had lost >99% of rare gases about (0.7-2) x 10(exp 8) yr after the solar system formed, or gases were then lost from the fully formed Earth. (2) Concentrations of 3He and 20Ne in the lower mantle were established after these losses. (3) Neon-isotopic data indicates that mantle Ne has solar composition. The model allows for solar Ar/Ne and Xe/Ne in the lower mantle if a dominant fraction of upper mantle Ar and Xe are subduction-derived. If Earth formed in the presence of the solar nebula, it could have been melted by accretional energy and the blanketing effect of a massive, nebula-derived atmosphere. Gases from this atmosphere would have been sequestered within the molten Earth by dissolution at the surface and downward mixing. It was found that too much Ne would be dissolved in the Earth unless the atmosphere began to escape when the Earth was only partially assembled. Here we consider conditions required to initially dissolve sufficient rare gases to account for the present lower mantle concentrations after subsequent losses at 10(exp 8

  8. Spectroscopic identification of rare earth elements in phosphate glass

    NASA Astrophysics Data System (ADS)

    Devangad, Praveen; Tamboli, Maktum; Muhammed Shameem, K. M.; Nayak, Rajesh; Patil, Ajeetkumar; Unnikrishnan, V. K.; Santhosh, C.; Kumar, G. A.

    2018-01-01

    In this work, rare earth-doped phosphate glasses were synthesized and characterized using three different spectroscopic techniques. The absorption spectra of the prepared praseodymium (Pr) and samarium (Sm) doped glasses, recorded by a UV-VIS-NIR spectrophotometer, show the characteristic absorption bands of these elements. To confirm this inference, laser-induced fluorescence spectra of Pr and Sm were obtained at a laser excitation of 442 nm. Their emission bands are reported here. The elemental analysis of these samples was carried out using a laser-induced breakdown spectroscopy (LIBS) system. Characteristic emission lines of Pr and Sm have been identified and reported by the recorded LIBS spectra of glass samples. Results prove that using these three complimentary spectroscopic techniques (absorption, fluorescence and LIBS), we can meaningfully characterize rare earth-doped glass samples.

  9. 75 FR 25293 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Rare Earth...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ... Production Act of 1993--Rare Earth Industry and Technology Association Notice is hereby given that, on March..., 15 U.S.C. 4301 et seq. (``the Act''), the Rare Earth Technology Consortium (``RETC'') has filed..., the identities of the parties to the venture are: Rare Earth Industry and Tecimology Association...

  10. Rare earth elements in weathering profiles and sediments of Minnesota: Implications for provenance studies

    USGS Publications Warehouse

    Morey, G.B.; Setterholm, D.R.

    1997-01-01

    The relative abundance of rare earth elements in sediments has been suggested as a tool for determining their source rocks. This correlation requires that weathering, erosion, and sedimentation do not alter the REE abundances, or do so in a predictable manner. We find that the rare earth elements are mobilized and fractionated by weathering, and that sediments derived from the weathered materials can display modifications of the original pattern of rare earth elements of some due to grain-size sorting of the weathered material. However, the REE distribution pattern of the provenance terrane can be recognized in the sediments.

  11. Rare Earth Extraction from NdFeB Magnet Using a Closed-Loop Acid Process.

    PubMed

    Kitagawa, Jiro; Uemura, Ryohei

    2017-08-14

    There is considerable interest in extraction of rare earth elements from NdFeB magnets to enable recycling of these elements. In practical extraction methods using wet processes, the acid waste solution discharge is a problem that must be resolved to reduce the environmental impact of the process. Here, we present an encouraging demonstration of rare earth element extraction from a NdFeB magnet using a closed-loop hydrochloric acid (HCl)-based process. The extraction method is based on corrosion of the magnet in a pretreatment stage and a subsequent ionic liquid technique for Fe extraction from the HCl solution. The rare earth elements are then precipitated using oxalic acid. Triple extraction has been conducted and the recovery ratio of the rare earth elements from the solution is approximately 50% for each extraction process, as compared to almost 100% recovery when using a one-shot extraction process without the ionic liquid but with sufficient oxalic acid. Despite its reduced extraction efficiency, the proposed method with its small number of procedures at almost room temperature is still highly advantageous in terms of both cost and environmental friendliness. This study represents an initial step towards realization of a closed-loop acid process for recycling of rare earth elements.

  12. GROWTH AND CHARACTERIZATION OF SINGLE CRYSTALS OF RARE EARTH COMPOUNDS.

    DTIC Science & Technology

    SINGLE CRYSTALS, CRYSTAL GROWTH), (*CRYSTAL GROWTH, SINGLE CRYSTALS), (*RARE EARTH COMPOUNDS, SINGLE CRYSTALS), EPITAXIAL GROWTH, SODIUM COMPOUNDS, CHLORIDES, VAPOR PLATING, ELECTROSTATIC FIELDS, ENERGY, ATOMIC PROPERTIES , BONDING

  13. A study on artificial rare earth (RE2O3) based neutron absorber.

    PubMed

    Kim, Kyung-O; Kyung Kim, Jong

    2015-11-01

    A new concept of a neutron absorption material (i.e., an artificial rare earth compound) was introduced for criticality control in a spent fuel storage system. In particular, spent nuclear fuels were considered as a potential source of rare earth elements because the nuclear fission of uranium produces a full range of nuclides. It was also found that an artificial rare earth compound (RE2O3) as a High-Level Waste (HLW) was naturally extracted from pyroprocessing technology developed for recovering uranium and transuranic elements (TRU) from spent fuels. In this study, various characteristics (e.g., activity, neutron absorption cross-section) were analyzed for validating the application possibility of this waste compound as a neutron absorption material. As a result, the artificial rare earth compound had a higher neutron absorption probability in the entire energy range, and it can be used for maintaining sub-criticality for more than 40 years on the basis of the neutron absorption capability of Boral™. Therefore, this approach is expected to vastly improve the efficiency of radioactive waste management by simultaneously keeping HLW and spent nuclear fuel in a restricted space. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Some metal-graphite and metal-ceramic composites for use as high energy brake lining materials

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1974-01-01

    Materials were studied as candidates for development as potential new aircraft brake lining materials. These families were (1) copper-graphite composites; (2) nickel-graphite composites; (3) copper - rare-earth-oxide (gadolinium oxide (Gd2O3) or lanthanum oxide (La2O3)) composites and copper - rare-earth-oxide (La2O3) - rare-earth-fluoride (lanthanum fluoride (LaF3)) composites; (4) nickel - rare-earth-oxide composites and nickel - rare-earth-oxide - rare-earth-fluoride composites. For comparison purposes, a currently used metal-ceramic composite was also studied. Results showed that the nickel-Gd2O3 and nickel-La2O3-LaF3 composites were comparable or superior in friction and wear performance to the currently used composite and therefore deserve to be considered for further development.

  15. Crystallographic X-ray analyses of Yb@C(2v)(3)-C80 reveal a feasible rule that governs the location of a rare earth metal inside a medium-sized fullerene.

    PubMed

    Lu, Xing; Lian, Yongfu; Beavers, Christine M; Mizorogi, Naomi; Slanina, Zdenek; Nagase, Shigeru; Akasaka, Takeshi

    2011-07-20

    Single crystal X-ray diffraction studies of Yb@C(2v)(3)-C(80)·Ni(II)(OEP)·CS(2)·1.5C(6)H(6) (OEP = octaethylporphinate) reveal that a relatively flat region of the fullerene interacts with the Ni(II)(OEP) molecule, featuring shape-matching interactions. Surprisingly, it is found that the internal metal is located under a hexagonal carbon ring apart from the 2-fold axis of the C(2v)(3)-C(80) cage, presenting the first example of metallofullerenes with an asymmetrically positioned metal. Such an anomalous location of Yb(2+) is associated with its strong ability to pursue a large coordination number and the lack of hexagon along the C(2) axis of C(2v)(3)-C(80). It is accordingly assumed that a suitable cage hexagon is most likely to be preferred by the single rare earth metal to stay behind inside a medium-sized fullerene, such as C(80) and C(82).

  16. Production yield of rare-earth ions implanted into an optical crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kornher, Thomas, E-mail: t.kornher@physik.uni-stuttgart.de; Xia, Kangwei; Kolesov, Roman

    2016-02-01

    Rare-earth (RE) ions doped into desired locations of optical crystals might enable a range of novel integrated photonic devices for quantum applications. With this aim, we have investigated the production yield of cerium and praseodymium by means of ion implantation. As a measure, the collected fluorescence intensity from both implanted samples and single centers was used. With a tailored annealing procedure for cerium, a yield up to 53% was estimated. Praseodymium yield amounts up to 91%. Such high implantation yield indicates a feasibility of creation of nanopatterned rare-earth doping and suggests strong potential of RE species for on-chip photonic devices.

  17. High Performance High Temperature Thermoelectric Composites with Metallic Inclusions

    NASA Technical Reports Server (NTRS)

    Firdosy, Samad A. (Inventor); Kaner, Richard B. (Inventor); Ma, James M. (Inventor); Fleurial, Jean-Pierre (Inventor); Star, Kurt (Inventor); Bux, Sabah K. (Inventor); Ravi, Vilupanur A. (Inventor)

    2017-01-01

    The present invention provides a composite thermoelectric material. The composite thermoelectric material can include a semiconductor material comprising a rare earth metal. The atomic percent of the rare earth metal in the semiconductor material can be at least about 20%. The composite thermoelectric material can further include a metal forming metallic inclusions distributed throughout the semiconductor material. The present invention also provides a method of forming this composite thermoelectric material.

  18. CONDUCTION ELECTRON-MAGNETIC ION INTERACTION IN RARE EARTHS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, G.S.; Legvold, S.

    1958-11-01

    The proposal is maade that there is an additional effective electron- electron interaction in the rare earths which results from the conduction electron-magnetic ion exchange. The strength of the net electron-electron interaction should tnen be expected to be a function of spin as well as solute concentrations. (W.D.M.)

  19. A comprehensive analysis of the content of heavy rare-earth elements and platinum in snow samples to assess the ecological hazard of air pollution in urban areas

    NASA Astrophysics Data System (ADS)

    Vinokurov, S. F.; Tarasova, N. P.; Trunova, A. N.; Sychkova, V. A.

    2017-07-01

    Snow samples from the territory of the Setun River Valley Wildlife Sanctuary are analyzed for the content of rare-earth elements, heavy metals, and other hazardous elements by the inductively coupled plasma mass-spectrometry method. The changes in the concentrations of rare-earth elements, Pt, Pd, and indicator ratios of elements in the solid fractions of snow are revealed. A trend toward a decrease in the content of several elements northeastward of the Moscow Ring Road (MRR) is established. The level of seasonal atmospheric contamination of the area under study is assessed, and a possible source is identified.

  20. Magnetic Resonance Imaging Distortion and Targeting Errors from Strong Rare Earth Metal Magnetic Dental Implant Requiring Revision.

    PubMed

    Seong-Cheol, Park; Chong Sik, Lee; Seok Min, Kim; Eu Jene, Choi; Do Hee, Lee; Jung Kyo, Lee

    2016-12-22

    Recently, the use of magnetic dental implants has been re-popularized with the introduction of strong rare earth metal, for example, neodymium, magnets. Unrecognized magnetic dental implants can cause critical magnetic resonance image distortions. We report a case involving surgical failure caused by a magnetic dental implant. A 62-year-old man underwent deep brain stimulation for medically insufficiently controlled Parkinson's disease. Stereotactic magnetic resonance imaging performed for the first deep brain stimulation showed that the overdenture was removed. However, a dental implant remained and contained a neodymium magnet, which was unrecognized at the time of imaging; the magnet caused localized non-linear distortions that were the largest around the dental magnets. In the magnetic field, the subthalamic area was distorted by a 4.6 mm right shift and counter clockwise rotation. However, distortions were visually subtle in the operation field and small for distant stereotactic markers, with approximately 1-2 mm distortions. The surgeon considered the distortion to be normal asymmetry or variation. Stereotactic marker distortion was calculated to be in the acceptable range in the surgical planning software. Targeting errors, approximately 5 mm on the right side and 2 mm on the left side, occurred postoperatively. Both leads were revised after the removal of dental magnets. Dental magnets may cause surgical failures and should be checked and removed before stereotactic surgery. Our findings should be considered when reviewing surgical precautions and making distortion-detection algorithm improvements.

  1. A novel fluorescent probe (dtpa-bis(cytosine)) for detection of Eu(III) in rare earth metal ions.

    PubMed

    Yang, Fan; Ren, Peipei; Liu, Guanhong; Song, Youtao; Bu, Naishun; Wang, Jun

    2018-03-15

    In this paper, a novel fluorescent probe, dtpa-bis(cytosine), was designed and synthesized for detecting europium (Eu 3+ ) ion. Upon addition of Eu 3+ ions into the dtpa-bis(cytosine) solution, the fluorescence intensity can strongly be enhanced. Conversely, adding other rare earth metal ions, such as Y 3+ , Ce 3+ , Pr 3+ , Nd 3+ , Sm 3+ , Gd 3+ , Tb 3+ , Dy 3+ , Ho 3+ , Er 3+ , Yb 3+ and Lu 3+ , into dtpa-bis(cytosine) solution, the fluorescence intensity is decreased slightly. Some parameters affecting the fluorescence intensity of dtpa-bis(cytosine) solution in the presence of Eu 3+ ions were investigated, including solution pH value, Eu 3+ ion concentration and interfering substances. The detection mechanism of Eu 3+ ion using dtpa-bis(cytosine) as fluorescent probe was proposed. Under optimum conditions, the fluorescence emission intensities of Eu III -dtpa-bis(cytosine) at 375nm in the concentration range of 0.50×10 -5 mol∙L -1 -5.00×10 -5 mol∙L -1 of Eu 3+ ion display a better linear relationship. The limit of detection (LOD) was determined as 8.65×10 -7 mol∙L -1 and the corresponding correlation coefficient (R 2 ) of the linear equation is 0.9807. It is wished that the proposed method could be applied for sensitively and selectively detecting Eu 3+ ion. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Numerical simulations of the optical gain of crystalline fiber doped by rare earth and transition ion

    NASA Astrophysics Data System (ADS)

    Daoui, A. K.; Boubir, B.; Adouane, A.; Demagh, N.; Ghoumazi, M.

    2015-02-01

    A fiber laser is a laser whose gain medium is a doped fiber, although lasers whose cavity is made wholly of fibers have also been called fiber lasers. The gain media in a fiber laser is usually fiber doped with rare-earth ions, such as erbium (Er), neodymium (Nd), ytterbium (Yb), thulium (Tm), or praseodymium (Pr), which is doped into the core of the optical fiber, similar to those used to transmit telecommunications signals. Fiber lasers find many applications in materials processing, including cutting, welding, drilling, and marking metal. To maximize their market penetration, it is necessary to increase their output power. In this work, we present a detailed study based on the numerical simulation using MATLAB, of one of the principal characteristics of a fiber laser doped with rare earth ions and transition ion. The gain depends on several parameters such as the length of the doped fiber, the density, the pump power, noise, etc.). The used program resolves the state equations in this context together with those governing the light propagation phenomena. The developed code can also be used to study the dynamic operating modes of a doped fiber laser.

  3. Local magnetic moment formation at 119Sn Mössbauer impurity in RFe2 ( R=rare-earth metals) Laves phases compounds

    NASA Astrophysics Data System (ADS)

    de Oliveira, A. L.; de Oliveira, N. A.; Troper, A.

    2010-05-01

    The purpose of the present work is to theoretically study the local magnetic moment formation and the systematics of the magnetic hyperfine fields at a non-magnetic s-p Mössbauer 119Sn impurity diluted on R sites ( R=rare-earth metals) of the cubic Laves phases intermetallic compounds RFe2. One considers that the magnetic hyperfine field has two contributions (i) the contribution from R ions, calculated via an extended Daniel-Friedel [J. Phys. Chem. Solids 24 (1963) 1601] model and (ii) the contribution from the induced magnetic moments arising from the Fe neighboring sites. We have in this case a two-center Blandin-Campbell-like [Phys. Rev. Lett. 31 (1973) 51; J. Magn. Magn. Mater. 1 (1975) 1] problem, where a magnetic 3d-element located at a distance from the 119Sn impurity gives an extra magnetization to a polarized electron gas which is strongly charge perturbed at the 119Sn impurity site. We also include in the model, the nearest-neighbor perturbation due to the translational invariance breaking introduced by the impurity. Our self-consistent total magnetic hyperfine field calculations are in a very good agreement with recent experimental data.

  4. Topology optimization of reduced rare-earth permanent magnet arrays with finite coercivity

    NASA Astrophysics Data System (ADS)

    Teyber, R.; Trevizoli, P. V.; Christiaanse, T. V.; Govindappa, P.; Rowe, A.

    2018-05-01

    The supply chain risk of rare-earth permanent magnets has yielded research efforts to improve both materials and magnetic circuits. While a number of magnet optimization techniques exist, literature has not incorporated the permanent magnet failure process stemming from finite coercivity. To address this, a mixed-integer topology optimization is formulated to maximize the flux density of a segmented Halbach cylinder while avoiding permanent demagnetization. The numerical framework is used to assess the efficacy of low-cost (rare-earth-free ferrite C9), medium-cost (rare-earth-free MnBi), and higher-cost (Dy-free NdFeB) permanent magnet materials. Novel magnet designs are generated that produce flux densities 70% greater than the segmented Halbach array, albeit with increased magnet mass. Three optimization formulations are then explored using ferrite C9 that demonstrates the trade-off between manufacturability and design sophistication, generating flux densities in the range of 0.366-0.483 T.

  5. Critical Rare Earths, National Security, and U.S.-China Interactions: A Portfolio Approach to Dysprosium Policy Design

    DTIC Science & Technology

    2015-01-01

    by the graduate fellow’s faculty committee. C O R P O R A T I O N Dissertation Critical Rare Earths, National Security, and U.S.-China Interactions A...Portfolio Approach to Dysprosium Policy Design David L. An Dissertation Critical Rare Earths, National Security, and U.S.-China Interactions A...Permanent Magnet ................................................ xxiv Dysprosium, the Most Critical Rare Earth

  6. Materials flow analysis of neodymium, status of rare earth metal in the Republic of Korea.

    PubMed

    Swain, Basudev; Kang, Leeseung; Mishra, Chinmayee; Ahn, JoongWoo; Hong, Hyun Seon

    2015-11-01

    Materials flow analysis of neodymium, status of rare earth elements (REEs) in the Republic of Korea has been investigated. Information from various resources like the Korean Ministry of Environment, Korea international trade association, United Nations Commodity Trade Statistics Database and from individual industry were collected and analyzed for materials flow analysis of neodymium. Demand of neodymium in the Republic of Korea for the year 2010 was 409.5 tons out of which the majority of neodymium, i.e., 68.41% was consumed by domestic electronics industry followed by medical appliances manufacturing (13.36%). The Republic Korea is one of the biggest consumer and leading exporter of these industrial products, absolutely depends on import of neodymium, as the country is lacking natural resources. The Republic of Korea has imported 325.9 tons of neodymium permanent magnet and 79.5 tons of neodymium containing equipment parts mainly for electronics, medical appliances, and heavy/light vehicles manufacturing industry. Out of which 95.4 tons of neodymium permanent magnet get exported as an intermediate product and 140.6 tons of neodymium in the form of consumable products get exported. Worldwide the neodymium is at the high end of supply chain critical metal because of increasing demand, scarcity and irreplaceable for technological application. To bring back the neodymium to supply stream the recycling of end of life neodymium-bearing waste can be a feasible option. Out of total domestic consumption, only 21.9 tons of neodymium have been collected and subsequently recycled. From material flow analysis, the requirement for an efficient recycling system and element-wise material flow management for these REEs in the Republic of Korea were realized and recommended. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Pressure and temperature induced elastic properties of rare earth chalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shriya, S.; Sapkale, R., E-mail: sapkale.raju@rediffmail.com; Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com

    2016-05-06

    The pressure and temperature dependent mechanical properties as Young modulus, Thermal expansion coefficient of rare earth REX (RE = La, Pr, Eu; X = O, S, Se, and Te) chalcogenides are studied. The rare earth chalcogenides showed a structural phase transition (B1–B2). Pressure dependence of Young modulus discerns an increase in pressure inferring the hardening or stiffening of the lattice as a consequence of bond compression and bond strengthening. Suppressed Young modulus as functions of temperature infers the weakening of the lattice results in bond weakening in REX. Thermal expansion coefficient demonstrates that REX (RE = La, Pr, Eu; Xmore » = O, S, Se, and Te) chalcogenides is mechanically stiffened, and thermally softened on applied pressure and temperature.« less

  8. Rare-Earth Activated Nitride Phosphors: Synthesis, Luminescence and Applications

    PubMed Central

    Xie, Rong-Jun; Hirosaki, Naoto; Li, Yuanqiang; Takeda, Takashi

    2010-01-01

    Nitridosilicates are structurally built up on three-dimensional SiN4 tetrahedral networks, forming a very interesting class of materials with high thermomechanical properties, hardness, and wide band gap. Traditionally, nitridosilicates are often used as structural materials such as abrasive particles, cutting tools, turbine blade, etc. Recently, the luminescence of rare earth doped nitridosilicates has been extensively studied, and a novel family of luminescent materials has been developed. This paper reviews the synthesis, luminescence and applications of nitridosilicate phosphors, with emphasis on rare earth nitrides in the system of M-Si-Al-O-N (M = Li, Ca, Sr, Ba, La) and their applications in white LEDs. These phosphors exhibit interesting luminescent properties, such as red-shifted excitation and emission, small Stokes shift, small thermal quenching, and high conversion efficiency, enabling them to use as down-conversion luminescent materials in white LEDs with tunable color temperature and high color rendering index.

  9. Rare-earth magnet ingestion: a childhood danger reaches adolescence.

    PubMed

    Agha, Beesan Shalabi; Sturm, Jesse J; Costello, Brian E

    2013-10-01

    Ingestion of multiple magnets may cause serious gastrointestinal morbidity, such as pressure necrosis, perforation, fistula formation, or intestinal obstruction due to forceful attraction across bowel wall. Although the consequences of multiple magnet ingestion are well documented in young children, the current popularity of small, powerful rare-earth magnets marketed as "desk toys" has heightened this safety concern in all pediatric age groups. A recent US Consumer Product Safety Commission product-wide warning additionally reports the adolescent practice of using toy high-powered, ball-bearing magnets to simulate tongue and lip piercings, a behavior that may increase risk of inadvertent ingestion. We describe 2 cases of older children (male; aged 10 and 13 years, respectively) with unintentional ingestion of multiple rare-earth magnets. Health care providers should be alerted to the potential for misuse of these high-powered, ball-bearing magnets among older children and adolescents.

  10. Magnetic interactions in new fluorite-related rare earth oxides LnLn’{sub 2}RuO{sub 7} (Ln, Ln’=rare earths)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinatsu, Yukio, E-mail: hinatsu@sci.hokudai.ac.jp; Doi, Yoshihiro

    2016-07-15

    New fluorite-related quaternary rare earth oxides Pr{sub 2}YRuO{sub 7} and La{sub 2}TbRuO{sub 7} have been prepared. They crystallize in an orthorhombic superstructure of cubic fluorite with space group Cmcm. Through magnetic susceptibility and specific heat measurements, Pr{sub 2}YRuO{sub 7} shows an antiferromagnetic transition at 27 K, which is considerably lowered compared with that for Pr{sub 3}RuO{sub 7}. Analysis of the magnetic specific heat indicates that the magnetic behavior observed at 27 K for Pr{sub 2}YRuO{sub 7} is predominantly due to the magnetic interactions between Ru ions, and that the interactions between the Pr{sup 3+} and Ru{sup 5+} ions are alsomore » important. La{sub 2}TbRuO{sub 7} shows magnetic ordering at 9.0 K, which is ascribed to the magnetic ordering between Ru{sup 5+} ions from the analysis of the magnetic specific heat data. - Graphical abstract: New fluorite-related quaternary rare earth oxides Pr{sub 2}YRuO{sub 7} and La{sub 2}TbRuO{sub 7} have been prepared. Through magnetic susceptibility and specific heat measurements, Pr{sub 2}YRuO{sub 7} and La{sub 2}TbRuO{sub 7} show an antiferromagnetic transition at 27 and 9.0 K, respectively. Display Omitted - Highlights: • New fluorite-related quaternary rare earth oxides LnLn’{sub 2}RuO{sub 7} have been prepared. • Pr{sub 2}YRuO{sub 7} shows an antiferromagnetic transition at 27 K. • La{sub 2}TbRuO{sub 7} shows magnetic ordering at 9.0 K. • Their magnetic exchange mechanism has been elucidated by the magnetic entropy change.« less

  11. 2nd International Symposium on Fundamental Aspects of Rare-earth Elements Mining and Separation and Modern Materials Engineering (REES-2015)

    NASA Astrophysics Data System (ADS)

    Tavadyan, Levon, Prof; Sachkov, Viktor, Prof; Godymchuk, Anna, Dr.; Bogdan, Anna

    2016-01-01

    The 2nd International Symposium «Fundamental Aspects of Rare-earth Elements Mining and Separation and Modern Materials Engineering» (REES2015) was jointly organized by Tomsk State University (Russia), National Academy of Science (Armenia), Shenyang Polytechnic University (China), Moscow Institute of Physics and Engineering (Russia), Siberian Physical-technical Institute (Russia), and Tomsk Polytechnic University (Russia) in September, 7-15, 2015, Belokuriha, Russia. The Symposium provided a high quality of presentations and gathered engineers, scientists, academicians, and young researchers working in the field of rare and rare earth elements mining, modification, separation, elaboration and application, in order to facilitate aggregation and sharing interests and results for a better collaboration and activity visibility. The goal of the REES2015 was to bring researchers and practitioners together to share the latest knowledge on rare and rare earth elements technologies. The Symposium was aimed at presenting new trends in rare and rare earth elements mining, research and separation and recent achievements in advanced materials elaboration and developments for different purposes, as well as strengthening the already existing contacts between manufactures, highly-qualified specialists and young scientists. The topics of the REES2015 were: (1) Problems of extraction and separation of rare and rare earth elements; (2) Methods and approaches to the separation and isolation of rare and rare earth elements with ultra-high purity; (3) Industrial technologies of production and separation of rare and rare earth elements; (4) Economic aspects in technology of rare and rare earth elements; and (5) Rare and rare earth based materials (application in metallurgy, catalysis, medicine, optoelectronics, etc.). We want to thank the Organizing Committee, the Universities and Sponsors supporting the Symposium, and everyone who contributed to the organization of the event and to

  12. New examples of ternary rare-earth metal boride carbides containing finite boron carbon chains: The crystal and electronic structure of RE15B6C20 (RE=Pr, Nd)

    NASA Astrophysics Data System (ADS)

    Babizhetskyy, Volodymyr; Mattausch, Hansjürgen; Simon, Arndt; Hiebl, Kurt; Ben Yahia, Mouna; Gautier, Régis; Halet, Jean-François

    2008-08-01

    The ternary rare-earth metal boride carbides RE15B6C20 (RE=Pr, Nd) were synthesized by co-melting the elements. They exist above 1270 K. Their crystal structures were determined from single-crystal X-ray diffraction data. Both crystallize in the space group P1¯, Z=1, a=8.3431(8) Å, b=9.2492(9) Å, c=8.3581(8) Å, α=84.72(1)°, β=89.68(1)°, γ =84.23(1)° (R1=0.041 (wR2=0.10) for 3291 reflections with Io>2σ(Io)) for Pr15B6C20, and a=8.284(1) Å, b=9.228(1) Å, c=8.309(1) Å, α=84.74(1)°, β=89.68(1)°, γ=84.17(2)° (R1=0.033 (wR2=0.049) for 2970 reflections with Io>2σ(Io)) for Nd15B6C20. Their structure consists of a three-dimensional framework of rare-earth metal atoms resulting from the stacking of slightly corrugated and distorted square nets, leading to cavities filled with unprecedented B2C4 finite chains, disordered C3 entities and isolated carbon atoms, respectively. Structural and theoretical analyses suggest the ionic formulation (RE3+)15([B2C4]6-)3([C3]4-)2(C4-)2·11ē. Accordingly, density functional theory calculations indicate that the compounds are metallic. Both structural arguments as well as energy calculations on different boron vs. carbon distributions in the B2C4 chains support the presence of a CBCCBC unit. Pr15B6C18 exhibits antiferromagnetic order at TN=7.9 K, followed by a meta-magnetic transition above a critical external field B>0.03 T. On the other hand, Nd15B6C18 is a ferromagnet below TC≈40 K.

  13. [Spectroscopic Research on Slag Nanocrystal Glass Ceramics Containing Rare Earth Elements].

    PubMed

    Ouyang, Shun-li; Li, Bao-wei; Zhang, Xue-feng; Jia, Xiao-lin; Zhao, Ming; Deng, Lei-bo

    2015-08-01

    The research group prepared the high-performance slag nanocrystal glass ceramics by utilizing the valuable elements of the wastes in the Chinese Bayan Obo which are characterized by their symbiotic or associated existence. In this paper, inductively coupled plasma emission spectroscopy (ICP), X-ray diffraction (XRD), Raman spectroscopy (Raman) and scanning electron microscopy (SEM) are all used in the depth analysis for the composition and structure of the samples. The experiment results of ICP, XRD and SEM showed that the principal crystalline phase of the slag nanocrystal glass ceramics containing rare earth elements is diopside, its grain size ranges from 45 to 100 nm, the elements showed in the SEM scan are basically in consistent with the component analysis of ICP. Raman analysis indicated that its amorphous phase is a three-dimensional network structure composed by the structural unit of silicon-oxy tetrahedron with different non-bridging oxygen bonds. According to the further analysis, we found that the rare earth microelement has significant effect on the network structure. Compared the nanocrystal slag glass ceramic with the glass ceramics of similar ingredients, we found that generally, the Raman band wavenumber for the former is lower than the later. The composition difference between the glass ceramics and the slag nanocrystal with the similar ingredients mainly lies on the rare earth elements and other trace elements. Therefore, we think that the rare earth elements and other trace elements remains in the slag nanocrystal glass ceramics have a significant effect on the network structure of amorphous phase. The research method of this study provides an approach for the relationship among the composition, structure and performance of the glass ceramics.

  14. Rare Earth Element Biomining from the Great Salt Lake Brine Using Engineered E. Coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Yongqin; Park, Dan; Brewer, Aaron

    This data describes rare earth element adsorption onto E. coli cells engineered to express a lanthanide binding tag (LBT). We used a Great Salt Lake synthetic solution as the background matrix with Tb added to 1-10,000 ppb, concentrations much lower than the competing ions present. Our results showed that Tb binds to LBT, even in the presence of high concentrations of competing metals. We also tested REE adsorption at elevated temperatures (up to 100 degrees Celsius), and observed that Tb adsorption increases with temperature of to 70 degrees Celsius, and then remains constant until 100 degrees Celsius. Data analyses weremore » performed using an ICP-MS at UCSC.« less

  15. Crystal-field splittings in rare-earth-based hard magnets: An ab initio approach

    NASA Astrophysics Data System (ADS)

    Delange, Pascal; Biermann, Silke; Miyake, Takashi; Pourovskii, Leonid

    2017-10-01

    We apply the first-principles density functional theory + dynamical mean-field theory framework to evaluate the crystal-field splitting on rare-earth sites in hard magnetic intermetallics. An atomic (Hubbard-I) approximation is employed for local correlations on the rare-earth 4 f shell and self-consistency in the charge density is implemented. We reduce the density functional theory self-interaction contribution to the crystal-field splitting by properly averaging the 4 f charge density before recalculating the one-electron Kohn-Sham potential. Our approach is shown to reproduce the experimental crystal-field splitting in the prototypical rare-earth hard magnet SmCo5. Applying it to R Fe12 and R Fe12X hard magnets (R =Nd , Sm and X =N , Li), we obtain in particular a large positive value of the crystal-field parameter A20〈r2〉 in NdFe12N resulting in a strong out-of-plane anisotropy observed experimentally. The sign of A20〈r2〉 is predicted to be reversed by substituting N with Li, leading to a strong out-of-plane anisotropy in SmFe12Li . We discuss the origin of this strong impact of N and Li interstitials on the crystal-field splitting on rare-earth sites.

  16. The Link Between Rare-Earth Peak Formation and the Astrophysical Site of the R Process

    DOE PAGES

    Mumpower, Matthew R.; McLaughlin, Gail C.; Surman, Rebecca; ...

    2016-12-20

    The primary astrophysical source of the rare-earth elements is the rapid neutron capture process (r process). The rare-earth peak that is seen in the solar r-process residuals has been proposed to originate as a pile-up of nuclei during the end of the r process. Here, we introduce a new method utilizing Monte Carlo studies of nuclear masses in the rare-earth region, that includes self-consistently adjusting β-decay rates and neutron capture rates, to find the mass surfaces necessary for the formation of the rare-earth peak. We demonstrate our method with two types of astrophysical scenario, one corresponding to conditions typical ofmore » hot winds from core-collapse supernovae and stellar-mass accretion disks, and one corresponding to conditions typical of the ejection of the material from the tidal tails of neutron star mergers. In each type of astrophysical condition, this method successfully locates a region of enhanced stability in the mass surface that is responsible for the rare-earth peak. Finally, for each scenario, we find that the change in the mass surface has qualitatively different features, thus future measurements can shed light on the type of environment in which the r process occurred.« less

  17. Improvement Photocatalytic Activity of P25 by Modification with a Rare Earth-Free Upconversion Nanocrystal.

    PubMed

    Yin, Dongguang; Liu, Yumin; Zhao, Feifei; Zhang, Xinyu; Zhang, Tingting; Wu, Chenglong; Chang, Na; Chen, Zhiwen

    2018-05-01

    It has been reported that coupling TiO2 with rare earth upconversion nanocrystals (UCNCs) is an efficient strategy to significantly improve photocatalytic activity of TiO2. However, the rare earth materials are scarcity and cost, and the synthesis process of UCNCs using the rare earth materials is complicated. In the present study, we have designed a new approach using a rare earth-free upconversion nanocrystal (REF-UCNCs) as upconversion luminescent material to replace the rare earth UCNCs. A novel nanocomposite photocatalyst of REF-UCNCs@P25: Mo/GN was developed for the first time. Based on the designed structure, the REF-UCNCs, Mo-doping, and GN (graphene) have a synergistic effect that can improve catalytic activity of P25 significantly. The results of photocatalytic experiments using RhB as a model pollutant under simulated solar light irradiation show that the photocatalytic efficiency of the as-prepared catalyst is 3-folds higher than that of benchmark substance P25. This work provides a new strategy for efficiently improving catalytic activity of semiconductor photocatalysts by coupling with REF-UCNCs. This approach is facile and low-cost which can be widely applied for modification of semiconductor photocatalysts and facilitates their applications in environmental protection issues using solar light.

  18. The Link Between Rare-Earth Peak Formation and the Astrophysical Site of the R Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mumpower, Matthew R.; McLaughlin, Gail C.; Surman, Rebecca

    The primary astrophysical source of the rare-earth elements is the rapid neutron capture process (r process). The rare-earth peak that is seen in the solar r-process residuals has been proposed to originate as a pile-up of nuclei during the end of the r process. Here, we introduce a new method utilizing Monte Carlo studies of nuclear masses in the rare-earth region, that includes self-consistently adjusting β-decay rates and neutron capture rates, to find the mass surfaces necessary for the formation of the rare-earth peak. We demonstrate our method with two types of astrophysical scenario, one corresponding to conditions typical ofmore » hot winds from core-collapse supernovae and stellar-mass accretion disks, and one corresponding to conditions typical of the ejection of the material from the tidal tails of neutron star mergers. In each type of astrophysical condition, this method successfully locates a region of enhanced stability in the mass surface that is responsible for the rare-earth peak. Finally, for each scenario, we find that the change in the mass surface has qualitatively different features, thus future measurements can shed light on the type of environment in which the r process occurred.« less

  19. THE LINK BETWEEN RARE-EARTH PEAK FORMATION AND THE ASTROPHYSICAL SITE OF THE R PROCESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mumpower, Matthew R.; McLaughlin, Gail C.; Surman, Rebecca

    The primary astrophysical source of the rare-earth elements is the rapid neutron capture process ( r process). The rare-earth peak that is seen in the solar r -process residuals has been proposed to originate as a pile-up of nuclei during the end of the r process. We introduce a new method utilizing Monte Carlo studies of nuclear masses in the rare-earth region, that includes self-consistently adjusting β -decay rates and neutron capture rates, to find the mass surfaces necessary for the formation of the rare-earth peak. We demonstrate our method with two types of astrophysical scenario, one corresponding to conditionsmore » typical of hot winds from core-collapse supernovae and stellar-mass accretion disks, and one corresponding to conditions typical of the ejection of the material from the tidal tails of neutron star mergers. In each type of astrophysical condition, this method successfully locates a region of enhanced stability in the mass surface that is responsible for the rare-earth peak. For each scenario, we find that the change in the mass surface has qualitatively different features, thus future measurements can shed light on the type of environment in which the r process occurred.« less

  20. Morphological, Raman, electrical and dielectric properties of rare earth doped X-type hexagonal ferrites

    NASA Astrophysics Data System (ADS)

    Majeed, Abdul; Khan, Muhammad Azhar; ur Raheem, Faseeh; Ahmad, Iftikhar; Akhtar, Majid Niaz; Warsi, Muhammad Farooq

    2016-12-01

    The influence of rare-earth metals (La, Nd, Gd, Tb, Dy) on morphology, Raman, electrical and dielectric properties of Ba2NiCoRExFe28-xO46 ferrites were studied. The scanning electron microscopy (SEM) exhibited the platelet like structure of these hexagonal ferrites. The surface morphology indicated the formation of ferrite grains in the nano-regime scale. The bands obtained at lower wave number may be attributed to the metal-oxygen vibration at octahedral site which confirm the development of hexagonal phase of these ferrites. The resonance peaks were observed in dielectric constant, dielectric loss factor and quality factor versus frequency graphs. These dielectric parameters indicate that these ferrites nano-materials are potential candidates in the high frequency applications. The enhancement in DC electric resistivity from 2.48×108 to 1.20×109 Ω cm indicates that the prepared materials are beneficial for decreasing the eddy current losses at high frequencies and for the fabrication of multilayer chip inductor (MLCI) devices.

  1. Restoration of rare earth mine areas: organic amendments and phytoremediation.

    PubMed

    Zhou, Lingyan; Li, Zhaolong; Liu, Wen; Liu, Shenghong; Zhang, Limin; Zhong, Liyan; Luo, Ximei; Liang, Hong

    2015-11-01

    Overexploitation of rare earth mine has caused serious desertification and various environmental issues, and ecological restoration of a mining area is an important concern in China. In this study, experiments involving dry grass landfilling, chicken manure broadcasting, and plant cultivation were carried out to reclaim a rare earth mine area located in Heping County, Guangdong Province, China. The prime focus was to improve soil quality in terms of nutrients, microbial community, enzyme activity, and physicochemical properties so as to reclaim the land. After 2 years of restoration, an increase of organic matter (OM), available potassium (K), available phosphorus (P) levels, and acid phosphatase (ACP) activity and a reduction of the available nitrogen (N) level and urease (URE) activity in soil were achieved compared to the original mined land. The nutrients and enzyme activities in soil with 5 years of restoration were close to or surpass those in the unexploited land as control. The bulk density, total porosity, water holding capacity, pH, and electrical conductivity (EC) of soil were improved, and the number of cultivable microorganisms and the bacterial diversity in soil were greatly increased with time during ecological restoration, especially for surface soil. Furthermore, the artificial vegetation stably grew at the restored mining sites. The results indicated that organic amendments and phytoremediation could ecologically restore the rare earth mining sites and the mined land could finally be planted as farmland.

  2. Mimicking the magnetic properties of rare earth elements using superatoms.

    PubMed

    Cheng, Shi-Bo; Berkdemir, Cuneyt; Castleman, A W

    2015-04-21

    Rare earth elements (REs) consist of a very important group in the periodic table that is vital to many modern technologies. The mining process, however, is extremely damaging to the environment, making them low yield and very expensive. Therefore, mimicking the properties of REs in a superatom framework is especially valuable but at the same time, technically challenging and requiring advanced concepts about manipulating properties of atom/molecular complexes. Herein, by using photoelectron imaging spectroscopy, we provide original idea and direct experimental evidence that chosen boron-doped clusters could mimic the magnetic characteristics of REs. Specifically, the neutral LaB and NdB clusters are found to have similar unpaired electrons and magnetic moments as their isovalent REs (namely Nd and Eu, respectively), opening up the great possibility in accomplishing rare earth mimicry. Extension of the superatom concept into the rare earth group not only further shows the power and advance of this concept but also, will stimulate more efforts to explore new superatomic clusters to mimic the chemistry of these heavy atoms, which will be of great importance in designing novel building blocks in the application of cluster-assembled nanomaterials. Additionally, based on these experimental findings, a novel "magic boron" counting rule is proposed to estimate the numbers of unpaired electrons in diatomic LnB clusters.

  3. Contributed Review: A review of the investigation of rare-earth dopant profiles in optical fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidiroglou, F.; Baxter, G.; Roberts, A.

    Rare-earth doped optical fibers have captivated the interest of many researchers around the world across the past three decades. The growth of this research field has been stimulated primarily through their application in optical communications as fiber lasers and amplifiers, although rare-earth doped optical fiber based devices are now finding important uses in many other scientific and industrial areas (for example, medicine, sensing, the military, and material processing). Such wide commercial interest has provided a strong incentive for innovative fiber designs, alternative glass compositions, and novel fabrication processes. A prerequisite for the ongoing progress of this research field is developingmore » the capacity to provide high resolution information about the rare-earth dopant distribution profiles within the optical fibers. This paper constitutes a comprehensive review of the imaging techniques that have been utilized in the analysis of the distribution of the rare-earth ion erbium within the core of optical fibers.« less

  4. Contributed Review: A review of the investigation of rare-earth dopant profiles in optical fibers.

    PubMed

    Sidiroglou, F; Roberts, A; Baxter, G

    2016-04-01

    Rare-earth doped optical fibers have captivated the interest of many researchers around the world across the past three decades. The growth of this research field has been stimulated primarily through their application in optical communications as fiber lasers and amplifiers, although rare-earth doped optical fiber based devices are now finding important uses in many other scientific and industrial areas (for example, medicine, sensing, the military, and material processing). Such wide commercial interest has provided a strong incentive for innovative fiber designs, alternative glass compositions, and novel fabrication processes. A prerequisite for the ongoing progress of this research field is developing the capacity to provide high resolution information about the rare-earth dopant distribution profiles within the optical fibers. This paper constitutes a comprehensive review of the imaging techniques that have been utilized in the analysis of the distribution of the rare-earth ion erbium within the core of optical fibers.

  5. RARE-EARTH METAL FISSION PRODUCTS FROM LIQUID U-Bi

    DOEpatents

    Wiswall, R.H.

    1960-05-10

    Fission product metals can be removed from solution in liquid bismuth without removal of an appreciable quantity of uranium by contacting the liquid metal solution with fused halides, as for example, the halides of sodium, potassium, and lithium and by adding to the contacted phases a quantity of a halide which is unstable relative to the halides of the fission products, a specific unstable halide being MgCl/sub 3/.

  6. Petrography and geochemistry of the primary ore zone of the Kenticha rare metal granite-pegmatite field, Adola Belt, Southern Ethiopia: Implications for ore genesis and tectonic setting

    NASA Astrophysics Data System (ADS)

    Mohammedyasin, Mohammed Seid; Desta, Zerihun; Getaneh, Worash

    2017-10-01

    The aim of this work is to evaluate the genesis and tectonic setting of the Kenticha rare metal granite-pegmatite deposit using petrography and whole-rock geochemical analysis. The samples were analysed for major elements, and trace and rare earth elements by ICP-AES and ICP-MS, respectively. The Kenticha rare metal granite-pegmatite deposit is controlled by the N-S deep-seated normal fault that allow the emplacement of the granite-pegmatite in the study area. Six main mineral assemblages have been identified: (a) alaskitic granite (quartz + microcline + albite with subordinate muscovite), (b) aplitic layer (quartz + albite), (c) muscovite-quartz-microcline-albite pegmatite, (d) spodumene-microcline-albite pegmatite, partly albitized or greisenized, (e) microcline-albite-green and pink spodumene pegmatite with quartz-microcline block, which is partly albitized and greisenized, and (f) quartz core. This mineralogical zonation is also accompanied by variation in Ta ore concentration and trace and rare earth elements content. The Kenticha granite-pegmatite is strongly differentiated with high SiO2 (72-84 wt %) and enriched with Rb (∼689 ppm), Be (∼196 ppm), Nb (∼129 ppm), Ta (∼92 ppm) and Cs (∼150 ppm) and depleted in Ba and Sr. The rare earth element (REE) patterns of the primary ore zone (below 60 m depth) shows moderate enrichment in light REE ((La/Yb)N = ∼8, and LREE/HREE = ∼9.96) and negative Eu-anomaly (Eu/Eu* = ∼0.4). The whole-rock geochemical data display the Within Plate Granite (WPG) and syn-Collisional Granite (syn-COLG) suites and interpret as its formation is crustal related melting. The mineralogical assemblage, tectonic setting and geochemical signatures implies that the Kenticha rare metal bearing granite pegmatite is formed by partial melting of metasedimentary rocks during post-Gondwana assembly and further tantalite enrichment through later hydrothermal-metasomatic processes.

  7. Rapid Evaluation of Radioactive Contamination in Rare Earth Mine Mining

    NASA Astrophysics Data System (ADS)

    Wang, N.

    2017-12-01

    In order to estimate the current levels of environmental radioactivity in Bayan Obo rare earth mine and to study the rapid evaluation methods of radioactivity contamination in the rare earth mine, the surveys of the in-situ gamma-ray spectrometry and gamma dose rate measurement were carried out around the mining area and living area. The in-situ gamma-ray spectrometer was composed of a scintillation detector of NaI(Tl) (Φ75mm×75mm) and a multichannel analyzer. Our survey results in Bayan Obo Mine display: (1) Thorium-232 is the radioactive contamination source of this region, and uranium-238 and potassium - 40 is at the background level. (2) The average content of thorium-232 in the slag of the tailings dam in Bayan Obo is as high as 276 mg/kg, which is 37 times as the global average value of thorium content. (3) We found that the thorium-232 content in the soil in the living area near the mining is higher than that in the local soil in Guyang County. The average thorium-232 concentrations in the mining areas of the Bayan Obo Mine and the living areas of the Bayan Obo Town were 18.7±7.5 and 26.2±9.1 mg/kg, respectively. (4) It was observed that thorium-232 was abnormal distributed in the contaminated area near the tailings dam. Our preliminary research results show that the in-situ gamma-ray spectrometry is an effective approach of fast evaluating rare earths radioactive pollution, not only can the scene to determine the types of radioactive contamination source, but also to measure the radioactivity concentration of thorium and uranium in soil. The environmental radioactive evaluation of rare earth ore and tailings dam in open-pit mining is also needed. The research was supported by National Natural Science Foundation of China (No. 41674111).

  8. Syntheses and structures of alkaline earth metal bis(diphenylamides).

    PubMed

    Gärtner, Martin; Fischer, Reinald; Langer, Jens; Görls, Helmar; Walther, Dirk; Westerhausen, Matthias

    2007-06-11

    Various preparative procedures are employed in order to synthesize alkaline earth metal bis(diphenylamides) such as (i) metalation of HNPh2 with the alkaline earth metal M, (ii) metalation of HNPh2 with MPh2, (iii) metathesis reaction of MI2 with KNPh2, (iv) metalation of HNPh2 with PhMI in THF, and (v) metathesis reaction of PhMI with KNPh2 followed by a dismutation reaction yielding MPh2 and M(NPh2)2. The magnesium compounds [(diox)MgPh2]infinity (1) and (thf)2Mg(NPh2)2 (2) show tetracoordinate metal atoms, whereas in (dme)2Ca(NPh2)2 (3), (thf)4Sr(NPh2)2 (4), and (thf)4Ba(NPh2)2 (5) the metals are 6-fold coordinated. Additional agostic interactions between an ipso-carbon of one of the phenyl groups of the amide ligand and the alkaline earth metal atom lead to unsymmetric coordination of the NPh2 anions with two strongly different M-N-C angles in 3-5.

  9. Micro structural analysis and magnetic characteristics of rare earth substituted cobalt ferrite

    NASA Astrophysics Data System (ADS)

    Tapdiya, Swati; Singh, Sarika; Kulshrestha, Shobha; Shrivastava, A. K.

    2018-05-01

    A series of ultrafine nanoparticles of Gd3+ doped Co-ferrites CoGdxFe2-xO4 (x=0.0, 0.05 and 0.10) were prepared by wet chemical co-precipitation method using nitrates of respective metal ions. Structural and morphology studies were performed using XRD, SEM and EDAX. Indexed XRD patterns confirm the formation of cubic spinel phase. Average crystallite sizes found to be decreases with trivalent rare earth ion substitution. Lattice constant (a) and lattice strain increases with increase in Gd3+ concentration due to large ionic radii (0.94nm) of Gd3+ replacing Fe3+ (0.64nm). SEM images show the spherical morphology and uniform growth of nanoparticles. Magnetic studies show that magnetization (Ms), decreases with increase in Gd3+ concentration from 50.16 emu/gm to 31.26 emu/gm.

  10. Coal fly ash as a resource for rare earth elements.

    PubMed

    Franus, Wojciech; Wiatros-Motyka, Małgorzata M; Wdowin, Magdalena

    2015-06-01

    Rare earth elements (REE) have been recognised as critical raw materials, crucial for many clean technologies. As the gap between their global demand and supply increases, the search for their alternative resources becomes more and more important, especially for the countries which depend highly on their import. Coal fly ash (CFA), which when not utilised is considered waste, has been regarded as the possible source of many elements, including REE. Due to the increase in the energy demand, CFA production is expected to grow, making research into the use of this material a necessity. As Poland is the second biggest coal consumer in the European Union, the authors have studied different coal fly ashes from ten Polish power plants for their rare earth element content. All the fly ashes have a broadly similar distribution of rear earth elements, with light REE being dominant. Most of the samples have REE content relatively high and according to Seredin and Dai (Int J Coal Geol 94: 67-93, 2012) classification can be considered promising REE raw materials.

  11. Assessing rare earth elements in quartz rich geological samples.

    PubMed

    Santoro, A; Thoss, V; Ribeiro Guevara, S; Urgast, D; Raab, A; Mastrolitti, S; Feldmann, J

    2016-01-01

    Sodium peroxide (Na2O2) fusion coupled to Inductively Coupled Plasma Tandem Mass Spectrometry (ICP-MS/MS) measurements was used to rapidly screen quartz-rich geological samples for rare earth element (REE) content. The method accuracy was checked with a geological reference material and Instrumental Neutron Activation Analysis (INAA) measurements. The used mass-mode combinations presented accurate results (only exception being (157)Gd in He gas mode) with recovery of the geological reference material QLO-1 between 80% and 98% (lower values for Lu, Nd and Sm) and in general comparable to INAA measurements. Low limits of detection for all elements were achieved, generally below 10 pg g(-1), as well as measurement repeatability below 15%. Overall, the Na2O2/ICP-MS/MS method proved to be a suitable lab-based method to quickly and accurately screen rock samples originating from quartz-rich geological areas for rare earth element content; particularly useful if checking commercial viability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Sources of Extraterrestrial Rare Earth Elements:To the Moon and Beyond

    NASA Astrophysics Data System (ADS)

    McLeod, C. L.; Krekeler, M. P. S.

    2017-08-01

    The resource budget of Earth is limited. Rare-earth elements (REEs) are used across the world by society on a daily basis yet several of these elements have <2500 years of reserves left, based on current demand, mining operations, and technologies. With an increasing population, exploration of potential extraterrestrial REE resources is inevitable, with the Earth's Moon being a logical first target. Following lunar differentiation at 4.50-4.45 Ga, a late-stage (after 99% solidification) residual liquid enriched in Potassium (K), Rare-earth elements (REE), and Phosphorus (P), (or "KREEP") formed. Today, the KREEP-rich region underlies the Oceanus Procellarum and Imbrium Basin region on the lunar near-side (the Procellarum KREEP Terrain, PKT) and has been tentatively estimated at preserving 2.2 × 10^8 km^3 of KREEP-rich lithologies. The majority of lunar samples (Apollo, Luna, or meteoritic samples) contain REE-bearing minerals as trace phases, e.g., apatite and/or merrillite, with merrillite potentially contributing up to 3% of the PKT. Other lunar REE-bearing lunar phases include monazite, yittrobetafite (up to 94,500 ppm yttrium), and tranquillityite (up to 4.6 wt % yttrium, up to 0.25 wt % neodymium), however, lunar sample REE abundances are low compared to terrestrial ores. At present, there is no geological, mineralogical, or chemical evidence to support REEs being present on the Moon in concentrations that would permit their classification as ores. However, the PKT region has not yet been mapped at high resolution, and certainly has the potential to yield higher REE concentrations at local scales (<10s of kms). Future lunar exploration and mapping efforts may therefore reveal new REE deposits. Beyond the Moon, Mars and other extraterrestrial materials are host to REEs in apatite, chevkinite-perrierite, merrillite, whitlockite, and xenotime. These phases are relatively minor components of the meteorites studied to date, constituting <0.6% of the total sample

  13. Origin of middle rare earth element enrichments in acid waters of a Canadian high Arctic lake.

    NASA Astrophysics Data System (ADS)

    Johannesson, Kevin H.; Zhou, Xiaoping

    1999-01-01

    -Middle rare earth element (MREE) enriched rock-normalized rare earth element (REE) patterns of a dilute acidic lake (Colour Lake) in the Canadian High Arctic, were investigated by quantifying whole-rock REE concentrations of rock samples collected from the catchment basin, as well as determining the acid leachable REE fraction of these rocks. An aliquot of each rock sample was leached with 1 N HNO 3 to examine the readily leachable REE fraction of each rock, and an additional aliquot was leached with a 0.04 M NH 2OH · HCl in 25% (v/v) CH 3COOH solution, designed specifically to reduce Fe-Mn oxides/oxyhydroxides. Rare earth elements associated with the leachates that reacted with clastic sedimentary rock samples containing petrographically identifiable Fe-Mn oxide/oxyhydroxide cements and/or minerals/amorphous phases, exhibited whole-rock-normalized REE patterns similar to the lake waters, whereas whole-rock-normalized leachates from mafic igneous rocks and other clastic sedimentary rocks from the catchment basin differed substantially from the lake waters. The whole-rock, leachates, and lake water REE data support acid leaching or dissolution of MREE enriched Fe-Mn oxides/oxyhydroxides contained and identified within some of the catchment basin sedimentary rocks as the likely source of the unique lake water REE patterns. Solution complexation modelling of the REEs in the inflow streams and lake waters indicate that free metal ions (e.g., Ln 3+, where Ln = any REE) and sulfate complexes (LnSO 4+) are the dominant forms of dissolved REEs. Consequently, solution complexation reactions involving the REEs during weathering, transport to the lake, or within the lake, cannot be invoked to explain the MREE enrichments observed in the lake waters.

  14. An overview of the association between lamprophyric intrusions and rare-metal mineralization

    NASA Astrophysics Data System (ADS)

    Štemprok, Miroslav; Seifert, Thomas

    2011-01-01

    Granite-related rare metal districts in orogenic settings are occasionally associated with lamprophyre dikes. We recorded 63 occurrences of lamprophyres in bimodal dike suites of about 200 granite bodies related to rare metal deposits. Most lamprophyres occur in Paleozoic and Mesozoic metallogenic provinces in the northern hemisphere. Lamprophyres which are associated with rare metal deposits are calc-alkaline (kersantites, minettes, spessartites) or more rarely alkaline lamprophyres (camptonites, monchiquites) which occur in the roof zone of complex granitic bodies as pre-granitic, intra-granitic, intra-ore or post-ore dikes. Most lamprophyres are spatially associated with dominant felsic dikes and/or with mafic dikes represented by diorites or diabases. Diorites and lamprophyres occasionally exhibit transitional compositions from one to another. Lamprophyres share common geochemical characteristics of highly evolved granitoids such as enrichment in K and F, increased abundances of Li, Rb, and Cs and enrichment in some HFSE (e.g. Zr, U, Th, Mo, Sn, W). Lamprophyres in rare metal districts testify to accessibility of the upper crust to mantle products at the time of rare metal mineralization and possible influence of mantle melts or mantle-derived fluids in the differentiation of granitic melts in the lower crust.

  15. First-principles study of crystal and electronic structure of rare-earth cobaltites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Topsakal, M.; Leighton, C.; Wentzcovitch, R. M.

    Using density functional theory plus self-consistent Hubbard U (DFT + U{sub sc}) calculations, we have investigated the structural and electronic properties of the rare-earth cobaltites RCoO{sub 3} (R = Pr – Lu). Our calculations show the evolution of crystal and electronic structure of the insulating low-spin RCoO{sub 3} with increasing rare-earth atomic number (decreasing ionic radius), including the invariance of the Co-O bond distance (d{sub Co–O}), the decrease of the Co-O-Co bond angle (Θ), and the increase of the crystal field splitting (Δ{sub CF}) and band gap energy (E{sub g}). Agreement with experiment for the latter improves considerably with the use of DFT + U{sub sc}more » and all trends are in good agreement with the experimental data. These trends enable a direct test of prior rationalizations of the trend in spin-gap associated with the spin crossover in this series, which is found to expose significant issues with simple band based arguments. We also examine the effect of placing the rare-earth f-electrons in the core region of the pseudopotential. The effect on lattice parameters and band structure is found to be small, but distinct for the special case of PrCoO{sub 3} where some f-states populate the middle of the gap, consistent with the recent reports of unique behavior in Pr-containing cobaltites. Overall, this study establishes a foundation for future predictive studies of thermally induced spin excitations in rare-earth cobaltites and similar systems.« less

  16. Study of rare earth local moment magnetism and strongly correlated phenomena in various crystal structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Tai

    Benefiting from unique properties of 4f electrons, rare earth based compounds are known for offering a versatile playground for condensed matter physics research as well as industrial applications. This thesis focuses on three specific examples that further explore the rare earth local moment magnetism and strongly correlated phenomena in various crystal structures.

  17. Intermediate phases in some rare earth-ruthenium systems

    NASA Technical Reports Server (NTRS)

    Sharifrazi, P.; Raman, A.; Mohanty, R. C.

    1984-01-01

    The phase equilibria and crystal structures of intermediate phases were investigated in eight representative RE-Ru systems using powder X-ray diffraction and metallographic techniques. The Fe3C, Mn5C2 and Er5Ru3 structures occur in all but the Ce-Ru systems. Phases analogous to Er5Ru3 possess an unknown crystal structure similar to Er5Rh3(I). MgCu2 and MgZn2 type Laves phases are encountered in the light rare earth and heavy rare earth systems, respectively, and RERu2 phases, where RE = Nd and Sm, possess both the Laves phase structures. An intermediate phase, NdRu, with an unknown structure, occurs only in the Nd-Ru system. A bcc structure with 40 atoms per unit cell is encountered in the phases Er3Ru2 and Y3Ru2. The behavior of cerium in Ce-Ru alloys is unique in that four unidentified structures, not encountered in other RE-Ru systems, have been encountered. Also a phase designated as Ce3Ru is found with the Th7Fe3 type structure.

  18. [Rare earth elements contents and distribution characteristics in nasopharyngeal carcinoma tissue].

    PubMed

    Zhang, Xiangmin; Lan, Xiaolin; Zhang, Lingzhen; Xiao, Fufu; Zhong, Zhaoming; Ye, Guilin; Li, Zong; Li, Shaojin

    2016-03-01

    To investigate the rare earth elements(REEs) contents and distribution characteristics in nasopharyngeal carcinoma( NPC) tissue in Gannan region. Thirty patients of NPC in Gannan region were included in this study. The REEs contents were measured by tandem mass spectrometer inductively coupled plasma(ICP-MS/MS) in 30 patients, and the REEs contents and distribution were analyzed. The average standard deviation value of REEs in lung cancer and normal lung tissues was the minimum mostly. Light REEs content was higher than the medium REEs, and medium REEs content was higher than the heavy REEs content. REEs contents changes in nasopharyngeal carcinoma were variable obviously, the absolute value of Nd, Ce, Pr, Gd and other light rare earth elements were variable widely. The degree of changes on Yb, Tb, Ho and other heavy rare earth elements were variable widely, and there was presence of Eu, Ce negative anomaly(δEu=0. 385 5, δCe= 0. 523 4). The distribution characteristic of REEs contents in NPC patients is consistent with the parity distribution. With increasing atomic sequence, the content is decline wavy. Their distribution patterns were a lack of heavy REEs and enrichment of light REEs, and there was Eu , Ce negative anomaly.

  19. Techno-Economic Assessment for Integrating Biosorption into Rare Earth Recovery Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Yongqin; Sutherland, John; Jin, Hongyue

    The current uncertainty in the global supply of rare earth elements (REEs) necessitates the development of novel extraction technologies that utilize a variety of REE source materials. Herein, we examined the techno-economic performance of integrating a biosorption approach into a large-scale process for producing salable total rare earth oxides (TREOs) from various feedstocks. An airlift bioractor is proposed to carry out a biosorption process mediated by bioengineered rare earth-adsorbing bacteria. Techno-econmic asssements were compared for three distinctive categories of REE feedstocks requiring different pre-processing steps. Key parameters identified that affect profitability include REE concentration, composition of the feedstock, and costsmore » of feedstock pretreatment and waste management. Among the 11 specific feedstocks investigated, coal ash from the Appalachian Basin was projected to be the most profitable, largely due to its high-value REE content. Its cost breakdown includes pre-processing (primarily leaching) (8077.71%), biosorption (1619.04%), and oxalic acid precipitation and TREO roasting (3.35%). Surprisingly, biosorption from the high-grade Bull Hill REE ore is less profitable due to high material cost and low production revenue. Overall, our results confirmed that the application of biosorption to low-grade feedstocks for REE recovery is economically viable.« less

  20. Spectral analysis of rare earth elements using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Martin, Madhavi Z.; Fox, Robert V.; Miziolek, Andrzej W.; DeLucia, Frank C.; André, Nicolas

    2015-06-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.

  1. Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Madhavi Z; Fox, Dr. Richard V; Miziolek, Andrzej W

    2015-01-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to bemore » able to quantify the concentrations of various REEs in real-world complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.« less

  2. Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Madhavi Z; Fox, Dr. Richard V; Miziolek, Andrzej W

    2015-01-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to bemore » able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.« less

  3. Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madhavi Z. Martin; Robert V. Fox; Andrzej W. Miziolek

    2001-05-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to bemore » able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.« less

  4. Interfacing superconducting qubits and telecom photons via a rare-earth-doped crystal.

    PubMed

    O'Brien, Christopher; Lauk, Nikolai; Blum, Susanne; Morigi, Giovanna; Fleischhauer, Michael

    2014-08-08

    We propose a scheme to couple short single photon pulses to superconducting qubits. An optical photon is first absorbed into an inhomogeneously broadened rare-earth doped crystal using controlled reversible inhomogeneous broadening. The optical excitation is then mapped into a spin state using a series of π pulses and subsequently transferred to a superconducting qubit via a microwave cavity. To overcome the intrinsic and engineered inhomogeneous broadening of the optical and spin transitions in rare-earth doped crystals, we make use of a special transfer protocol using staggered π pulses. We predict total transfer efficiencies on the order of 90%.

  5. Alternatives to Rare Earth Permanent Magnets for Energy Harvesting Applications

    NASA Astrophysics Data System (ADS)

    Khazdozian, Helena; Hadimani, Ravi; Jiles, David

    Direct-drive permanent magnet generators (DDPMGs) offer increased reliability and efficiency over the more commonly used geared doubly-fed induction generator, yet are only employed in less than 1 percent of utility scale wind turbines in the U.S. One major barrier to increased deployment of DDPMGs in the U.S. wind industry is NdFeB permanent magnets (PMs), which contain critical rare earth elements Nd and Dy. To allow for the use of rare earth free PMs, the magnetic loading, defined as the average magnetic flux density over the rotor surface, must be maintained. Halbach cylinders are employed in 3.5kW Halbach PMGs (HPMGs) of varying slot-to-pole ratio to concentrate the magnetic flux output by a lower energy density PM over the rotor surface. We found that for high pole and slot number, the increase in magnetic loading is sufficient to allow for the use of strontium iron oxide hard ferrite PMs and achieved rated performance. Joule losses in the stator windings were found to increase for the hard ferrite PMs due to increased inductance in the stator windings. However, for scaling of the HPMG designs to 3MW, rated performance and high efficiency were achieved, demonstrating the potential for elimination for rare earth PMs in commercial scale wind turbines. This work was supported by the National Science Foundation under Grant No. 1069283 and a Barbara and James Palmer Endowment at Iowa State University.

  6. SEPARATION OF TRANSURANIC ELEMENTS FROM RARE EARTH COMPOUNDS

    DOEpatents

    Kohman, T.P.

    1961-11-21

    A process of separating neptunium and plutonium values from rare earths and alkaline earth fission products present on a solid mixed actinide carrier (Th or U(IV) oxalate or fluoride) --fission product carrier (LaF/sub 3/, CeF/sub 3/, SrF/sub 2/, CaF/sub 2/, YF/sub 3/, La oxalate, cerous oxalate, Sr oxalate, Ca oxalate or Y oxalate) by extraction of the actinides at elevated temperature with a solution of ammonium fluoride and/or ammonium oxalate is described. Separation of the fission-product-containing carriers from the actinide solution formed and precipitation of the neptunium and plutonium from the solution with mineral acid are also accomplished. (AEC)

  7. A first report of rare earth elements in northwestern Mediterranean seaweeds.

    PubMed

    Squadrone, Stefania; Brizio, Paola; Battuello, Marco; Nurra, Nicola; Sartor, Rocco Mussat; Benedetto, Alessandro; Pessani, Daniela; Abete, Maria Cesarina

    2017-09-15

    The concentrations of rare earth elements (REE) were determined by ICP-MS in dominant seaweed species, collected from three locations of the northwestern Mediterranean Sea. This is the first study to define levels and patterns of REE in macro algae from these coastal areas. Rare elements are becoming emerging inorganic contaminants in marine ecosystems, due to their worldwide increasing applications in industry, technology, medicine and agriculture. Significant inter-site and interspecies differences were registered, with higher levels of REE in brown and green macro algae than in red seaweeds. Levels of light REE were also observed to be greater compared to heavy REE in all samples. One of the investigated locations (Bergeggi, SV) had higher REE and ΣREE concentrations, probably due to its proximity to an important commercial and touristic harbor, while the other two sites were less affected by anthropogenic contaminations, and showed comparable REE patterns and lower concentrations. Rare earth elements in seaweeds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Loparite, a rare-earth ore (Ce, Na, Sr, Ca)(Ti, Nb, Ta, Fe+3)O3

    USGS Publications Warehouse

    Hedrick, James B.; Sinha, Shyama P.; Kosynkin, Valery D.

    1997-01-01

    The mineral loparite (Ce, NA, Sr, Ca)(Ti, Nb, Ta, Fe+3)O3 is the principal ore of the light-group rare-earth elements (LREE) in Russia. The complex oxide has a perovskite (ABO3) structure with coupled substitutions, polymorphism, defect chemistry and a tendency to become metamict. The A site generally contains weakly bonded, easily exchanged cations of the LREE, Na and Ca. The B site generally contains smaller, highly charged cations of Ti, Nb or Fe+3. Mine production is from Russia's Kola Peninsula. Ore is beneficiated to produce a 95% loparite concentrate containing 30% rare-earth oxides. Loparite concentrate is refined by either a chlorination process or acid decomposition process to recover rare-earths, titanium, niobium and tantalum. Rare-earths are separated by solvent extraction and selective precipitation/dissolution. The concentrate is processed at plants in Russia, Estonia and Kazakstan.

  9. Study of phonon modes and elastic properties of Sc36Al24Co20Y20 and Gd36Al24Co20Y20 rare-earth bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Suthar, P. H.; Gajjar, P. N.; Thakore, B. Y.; Jani, A. R.

    2013-04-01

    A phonon modes and elastic properties of two different rare-earth based bulk metallic glasses Sc36Al24Co20Y20 and Gd36Al24Co20Y20 are computed using Hubbard-Beeby approach and our well established model potential. The local field correlation functions due to Hartree (H), Taylor (T), Ichimaru and Utsumi (IU), Farid et al (F) and Sarkar Sen et al (S) are employed to investigate the influence of the screening effects on the vibrational dynamics of Sc36Al24Co20Y20 and Gd36Al24Co20Y20 bulk metallic glasses. The results for bulk modulus BT, modulus of rigidity G, Poisson's ratio ξ, Young's modulus Y, Debye temperature ΘD, propagation velocity of elastic waves and dispersion curves are reported. The computed elastic properties are found to be in good agreement with experimental and other available data.

  10. Fabrication of novel metal ion imprinted xanthan gum-layered double hydroxide nanocomposite for adsorption of rare earth elements.

    PubMed

    Iftekhar, Sidra; Srivastava, Varsha; Hammouda, Samia Ben; Sillanpää, Mika

    2018-08-15

    The work focus to enhance the properties of xanthan gum (XG) by anchoring metal ions (Fe, Zr) and encapsulating inorganic matrix (M@XG-ZA). The fabricated nanocomposite was characterized by Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDX), Fourier Transform Infrared Spectroscopy (FTIR), surface area (BET) and zeta potential analysis. The adsorption of Sc, Nd, Tm and Yb was investigated after screening of synthesized materials in detail to understand the influence of pH, contact time, temperature and initial REE (rare earth element) concentration both in single and multicomponent system via batch adsorption. The adsorption mechanism was verified by FTIR, SEM and elemental mapping. The SEM images of Zr@XG-ZA demonstrate scutes structure, which disappeared after adsorption of REEs. The maximum adsorption capacities were 132.30, 14.01, 18.15 and 25.73 mg/g for Sc, Nd, Tm and Yb, respectively. The adsorption efficiency over Zr@XG-ZA in multicomponent system was higher than single system and the REEs followed the order: Sc > Yb > Tm > Nd. The Zr@XG-ZA demonstrate good adsorption behavior for REEs up to five cycles and then it can be used as photocatalyst for the degradation of tetracycline. Thus, the work adds a new insight to design and preparation of efficient bifunctional adsorbents from sustainable materials for water purification. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Rare-earth nickelates RNiO3: thin films and heterostructures

    NASA Astrophysics Data System (ADS)

    Catalano, S.; Gibert, M.; Fowlie, J.; Íñiguez, J.; Triscone, J.-M.; Kreisel, J.

    2018-04-01

    This review stands in the larger framework of functional materials by focussing on heterostructures of rare-earth nickelates, described by the chemical formula RNiO3 where R is a trivalent rare-earth R  =  La, Pr, Nd, Sm, …, Lu. Nickelates are characterized by a rich phase diagram of structural and physical properties and serve as a benchmark for the physics of phase transitions in correlated oxides where electron–lattice coupling plays a key role. Much of the recent interest in nickelates concerns heterostructures, that is single layers of thin film, multilayers or superlattices, with the general objective of modulating their physical properties through strain control, confinement or interface effects. We will discuss the extensive studies on nickelate heterostructures as well as outline different approaches to tuning and controlling their physical properties and, finally, review application concepts for future devices.

  12. Rare-earth nickelates RNiO3: thin films and heterostructures.

    PubMed

    Catalano, S; Gibert, M; Fowlie, J; Íñiguez, J; Triscone, J-M; Kreisel, J

    2018-04-01

    This review stands in the larger framework of functional materials by focussing on heterostructures of rare-earth nickelates, described by the chemical formula RNiO 3 where R is a trivalent rare-earth R  =  La, Pr, Nd, Sm, …, Lu. Nickelates are characterized by a rich phase diagram of structural and physical properties and serve as a benchmark for the physics of phase transitions in correlated oxides where electron-lattice coupling plays a key role. Much of the recent interest in nickelates concerns heterostructures, that is single layers of thin film, multilayers or superlattices, with the general objective of modulating their physical properties through strain control, confinement or interface effects. We will discuss the extensive studies on nickelate heterostructures as well as outline different approaches to tuning and controlling their physical properties and, finally, review application concepts for future devices.

  13. All-optical control of long-lived nuclear spins in rare-earth doped nanoparticles.

    PubMed

    Serrano, D; Karlsson, J; Fossati, A; Ferrier, A; Goldner, P

    2018-05-29

    Nanoscale systems that coherently couple to light and possess spins offer key capabilities for quantum technologies. However, an outstanding challenge is to preserve properties, and especially optical and spin coherence lifetimes, at the nanoscale. Here, we report optically controlled nuclear spins with long coherence lifetimes (T 2 ) in rare-earth-doped nanoparticles. We detect spins echoes and measure a spin coherence lifetime of 2.9 ± 0.3 ms at 5 K under an external magnetic field of 9 mT, a T 2 value comparable to those obtained in bulk rare-earth crystals. Moreover, we achieve spin T 2 extension using all-optical spin dynamical decoupling and observe high fidelity between excitation and echo phases. Rare-earth-doped nanoparticles are thus the only nano-material in which optically controlled spins with millisecond coherence lifetimes have been reported. These results open the way to providing quantum light-atom-spin interfaces with long storage time within hybrid architectures.

  14. Application of far infrared rare earth mineral composite materials to liquefied petroleum gas.

    PubMed

    Zhu, Dongbin; Liang, Jinsheng; Ding, Yan; Xu, Anping

    2010-03-01

    Far infrared rare earth mineral composite materials were prepared by the coprecipitation method using tourmaline, cerium acetate, and lanthanum acetate as raw materials. The results of Fourier transform infrared spectroscopy show that tourmaline modified with the rare earths La and Ce has a better far infrared emitting performance. Through XRD analysis, we attribute the improved far infrared emission properties of the tourmaline to the unit cell shrinkage of the tourmaline arising from La enhancing the redox properties of nano-CeO2. The effect of the composite materials on the combustion of liquefied petroleum gas (LPG) was studied by the flue gas analysis and water boiling test. Based on the results, it was found that the composite materials could accelerate the combustion of LPG, and that the higher the emissivity of the rare earth mineral composite materials, the better the effects on combustion of LPG. In all activation styles, both air and LPG to be activated has a best effect, indicating the activations having a cumulative effect.

  15. Interplay of rare-earth and transition-metal subsystems in C u3Yb (SeO3) 2O2Cl

    NASA Astrophysics Data System (ADS)

    Markina, M. M.; Zakharov, K. V.; Ovchenkov, E. A.; Berdonosov, P. S.; Dolgikh, V. A.; Kuznetsova, E. S.; Olenev, A. V.; Klimin, S. A.; Kashchenko, M. A.; Budkin, I. V.; Yatsyk, I. V.; Demidov, A. A.; Zvereva, E. A.; Vasiliev, A. N.

    2017-10-01

    We present the synthesis and the experimental and theoretical study of the new member of the francisite family, C u3Yb (SeO3) 2O2Cl . The compound reaches an antiferromagnetic order at TN=36.7 K and experiences first-order spin-reorientation transition to weakly ferromagnetic phase at TR=8.7 K evidenced in specific heat Cp and magnetic susceptibility χ measurements. Distinctly different magnetization loops in T rare-earth and transition-metal subsystems. At low temperatures, the saturation magnetization Ms˜5.2 μB is reached in pulsed magnetic-field measurements. The electron spin resonance data reveal the complicated character of the absorption line attributed to response from both copper and ytterbium ions. Critical broadening of the linewidth at the phase transitions points to quasi-two-dimensional character of the magnetic correlations. The spectroscopy of Y b3 + ions evidences splitting of the lowest-energy Kramers doublet of 2F5 /2 excited multiplet at TR

  16. Selective liquid chromatographic separation of yttrium from heavier rare earth elements using acetic acid as a novel eluent.

    PubMed

    Kifle, Dejene; Wibetoe, Grethe

    2013-09-13

    One of the major difficulties in the rare earth elements separation is purification of yttrium from heavy rare earth elements. Thus, an HPLC method using acetic acid as novel eluent was explored for selective separation of yttrium form the heavy rare earth elements. When acetic acid is used as a mobile phase yttrium eluted with the lighter lanthanides. This is contrary to its relative position amongst heavier lanthanides when eluents commonly used for separation of rare earth elements were employed. The shift in elution position of yttrium with acetic acid as eluent may reflect a relatively lower stability constant of the yttrium-AcOH complex (in the same order as for the lighter lanthanides) compared to the corresponding AcOH complexes with heavy lanthanides, enabling selective separation of yttrium from the latter. The method was successfully used for selective separation of yttrium in mixed rare earth sample containing about 80% of yttrium and about 20% of heavy rare earth oxides. Thus, the use of AcOH as eluent is an effective approach for separating and determining the trace amounts of heavy rare earth elements in large amounts of yttrium matrix. Separation was performed on C18 column by running appropriate elution programs. The effluent from the column was monitored with diode array detector at absorbance wavelength of 658nm after post column derivatization with Arsenazo III. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Processing of spent Ni-MH batteries for the recovery of cobalt, nickel and rare earth elements bearing materials by means of a chemical and electrochemical sequential process

    NASA Astrophysics Data System (ADS)

    Delvasto, P.; Orta Rodríguez, R.; Blanco, S.

    2016-02-01

    Rechargeable Ni-MH batteries contain strategic metal values which are worth to be recovered. In the present work, a preliminary sequential chemical and electrochemical procedure is proposed, in order to reclaim materials bearing Ni, Co and rare earth elements (REE) from Ni-MH spent batteries. Initially, spent batteries are disassembled to separate the electrode materials (anode and cathode), which are then leached with an aqueous solution of 5w% sulphuric acid. The metal content of this solution is checked by atomic absorption spectrometry techniques. The obtained solution is pH-adjusted (with NaOH), until pH is between 4.0 and 4.3; then, it is heated up to 70°C to precipitate a rare earth elements sulphate (Nd, La, Pr, Ce), as determined by means of x-ray fluorescence techniques. The solids-free solution is then electrolyzed, in order to recover a Ni-Co alloy. The electrolysis conditions were established through a cyclic voltammetry technique.

  18. A LOW-COST RARE EARTH ELEMENTS RECOVERY TECHNOLOGY - PHASE I

    EPA Science Inventory

    Physical Sciences, Inc., and the University of Kentucky Center for Applied Energy Research propose to develop a unique enabling technology to significantly reduce U.S. dependency for Rare Earth Elements (REE) on foreign suppliers and our global competitors. Our innovation...

  19. Anomalies of the electronic structure and physical properties of rare-earth cobaltites near spin crossover

    NASA Astrophysics Data System (ADS)

    Dudnikov, V. A.; Orlov, Yu. S.; Kazak, N. V.; Platunov, M. S.; Ovchinnikov, S. G.

    2016-10-01

    The features of the characteristics of LnCoO3 cobaltites, where Ln is a rare-earth element, are discussed. Both experiment and theory demonstrate that their essentials are related to the low-spin ground state of cobalt ions. The thermally induced occupation of the excited high-spin state gives rise to peaks in the magnetic susceptibility, specific heat, and thermal expansion, as well as to a smooth insulator-metal transition. The analysis is based both on the data from the current literature concerning LaCoO3 and in many aspects on our own studies of GdCoO3 and La1- x Gd x CoO3 solid solutions.

  20. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting under...

  1. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting under...

  2. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting under...

  3. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting under...

  4. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting under...

  5. Rare-earth doped polymer waveguides and light emitting diodes

    NASA Astrophysics Data System (ADS)

    Slooff, L. H.

    2000-11-01

    Polymer-based optical waveguide amplifiers offer a low-cost alternative for inorganic waveguide amplifiers. Due to the fact that their refractive index is almost similar to that of standard optical fibers, they can be easily coupled with existing fibers at low coupling losses. Doping the polymer with rare-earth ions that can yield optical gain is not straightforward, as the rare-earth salts are poorly soluble in the polymer matrix. This thesis studies two different approaches to dope a polymer waveguide with rare-earth ions. The first one is based on organic cage-like complexes that encapsulate the rare-earth ion and are designed to provide enough coordination sites to bind the rare-earth ion and to shield it from the surrounding matrix. Chapter 2 describes the optical properties of Er-doped organic polydentate cage complexes. The complexes show clear photoluminescence at 1.54 mm with a bandwidth of 70 nm, the highest reported for an erbium-doped material so far. The luminescence lifetime is very short (~1 ms) due to coupling to vibrational overtones of O-H and C-H bonds. Due to this short luminescence lifetime, high pump powers (~1 W) are needed for optical gain in a waveguide amplifier based on these complexes. The pump power can be reduced if the Er is excited via the aromatic part of the complex, which has a higher absorption cross section. In Chapter 3 a lissamine-functionalised neodymium complex is studied in which the highly absorbing lissamine acts as a sensitiser. The lissamine is first excited into the singlet state from which intersystem crossing to the triplet state can take place. From there it can transfer its energy to the Nd ion by a Dexter transfer mechanism. Room-temperature photoluminescence at 890, 1060, and 1340 nm from Nd is observed, together with luminescence from the lissamine sensitiser at 600 nm. Photodegradation of the lissamine sensitiser is observed, which is studied in more detail in Chapter 4. The observed change in time of the

  6. Rare earth doped zinc oxide varistors

    DOEpatents

    McMillan, A.D.; Modine, F.A.; Lauf, R.J.; Alim, M.A.; Mahan, G.D.; Bartkowiak, M.

    1998-12-29

    A varistor includes a Bi-free, essentially homogeneous sintered body of a ceramic composition including, expressed as nominal weight %, 0.2--4.0% oxide of at least one rare earth element, 0.5--4.0% Co{sub 3}O{sub 4}, 0.05--0.4% K{sub 2}O, 0.05--0.2% Cr{sub 2}O{sub 3}, 0--0.2% CaO, 0.00005--0.01% Al{sub 2}O{sub 3}, 0--2% MnO, 0--0.05% MgO, 0--0.5% TiO{sub 3}, 0--0.2% SnO{sub 2}, 0--0.02% B{sub 2}O{sub 3}, balance ZnO. 4 figs.

  7. Thermoelectric properties of rare earth chalcogenides

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Raag, V.; Wood, C.

    1985-01-01

    The rare earth chalcogenides are important thermoelectric materials due to their high melting points, self-doping capabilities, and low thermal conductivities. Lanthanum sulfides and lanthanum tellurides have been synthesized in quartz ampules, hot-pressed into samples, and measured. The n-type Seebeck coefficients, electrical resistivities, and power factors generally all increased as the temperature increased from 200 to 1000 C. The figure-of-merit for nonstoichiometric lanthanum telluride was 0.001/deg C at 1000 C, considerably higher than for silicon-germanium. Thermoelectric measurements were made for LaTe(2) and YbS(1.4), and p-type behavior was observed for these compounds from 300 to 1100 C.

  8. Rare earth doped zinc oxide varistors

    DOEpatents

    McMillan, April D.; Modine, Frank A.; Lauf, Robert J.; Alim, Mohammad A.; Mahan, Gerald D.; Bartkowiak, Miroslaw

    1998-01-01

    A varistor includes a Bi-free, essentially homogeneous sintered body of a ceramic composition including, expressed as nominal weight %, 0.2-4.0% oxide of at least one rare earth element, 0.5-4.0% Co.sub.3 O.sub.4, 0.05-0.4% K.sub.2 O, 0.05-0.2% Cr.sub.2 O.sub.3, 0-0.2% CaO, 0.00005-0.01% Al.sub.2 O.sub.3, 0-2% MnO, 0-0.05% MgO, 0-0.5% TiO.sub.3, 0-0.2% SnO.sub.2, 0-0.02% B.sub.2 O.sub.3, balance ZnO.

  9. Research of green emitting rare-earth doped materials as potential quantum-cutter

    NASA Astrophysics Data System (ADS)

    Moine, Bernard; Beauzamy, Lena; Gredin, Patrick; Wallez, Gilles; Labeguerie, Jessica

    2008-03-01

    Because the energy of vacuum ultraviolet (VUV) photons emitted by xenon plasma discharge is more than twice that of visible photons, quantum cutting appears to be a promising process in rare-earth doped materials in order to obtain efficient phosphors for mercury free lighting devices as well as for plasma display panels. With an aim of application, it is important to take into account the emitting color of the developed new phosphors. Most of the time, this leads to use systems with at least two kinds of rare earth ions: one of them playing the role of energy sensitizer, and the other one being in charge of emitting the light of the suitable color. We focus our attention on green rare-earth doped materials. In order to get very efficient phosphors, it is not only necessary to get the highest possible quantum yield, but also to have a material characterized by a strong absorption in the VUV range. Borate and fluoride matrices doped with Dy 3+/Tb 3+ couples of ions are selected according to the position of the 5d band of dysprosium as green emitters.

  10. Temperature-dependent Sellmeier equations for rare-earth sesquioxides.

    PubMed

    Zelmon, David E; Northridge, Jessica M; Haynes, Nicholas D; Perlov, Dan; Petermann, Klaus

    2013-06-01

    High-power lasers are making increasing demands on laser hosts especially in the area of thermal management. Traditional hosts, such as YAG, are unsuitable for many high-power applications and therefore, new hosts are being developed including rare-earth sesquioxides. We report new measurements of the refractive indices of these materials as functions of wavelength and temperature, which will aid in the design of laser cavities and other nonlinear optical elements.

  11. Structure of rare-earth chalcogenide glasses by neutron and x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drewitt, James W. E.; Salmon, Philip S.; Zeidler, Anita

    The method of neutron diffraction with isomorphic substitution was used to measure the structure of the rare-earth chalcogenide glasses (R 2X 3) 0.07(Ga 2X 3) 0.33(GeX 2) 0.60 with R = La or Ce and X = S or Se. X-ray diffraction was also used to measure the structure of the sulphide glass. The results are consistent with networks that are built from GeX 4 and GaX 4 tetrahedra, and give R-S and R-Se coordination numbers of 8.0(2) and 8.5(4), respectively. The minimum nearest-neighbour R-R distance associated with rare-earth clustering is discussed.

  12. Structure of rare-earth chalcogenide glasses by neutron and x-ray diffraction

    DOE PAGES

    Drewitt, James W. E.; Salmon, Philip S.; Zeidler, Anita; ...

    2017-04-28

    The method of neutron diffraction with isomorphic substitution was used to measure the structure of the rare-earth chalcogenide glasses (R 2X 3) 0.07(Ga 2X 3) 0.33(GeX 2) 0.60 with R = La or Ce and X = S or Se. X-ray diffraction was also used to measure the structure of the sulphide glass. The results are consistent with networks that are built from GeX 4 and GaX 4 tetrahedra, and give R-S and R-Se coordination numbers of 8.0(2) and 8.5(4), respectively. The minimum nearest-neighbour R-R distance associated with rare-earth clustering is discussed.

  13. Physical and electrochemical properties of alkaline earth doped, rare earth vanadates

    NASA Astrophysics Data System (ADS)

    Adijanto, Lawrence; Balaji Padmanabhan, Venu; Holmes, Kevin J.; Gorte, Raymond J.; Vohs, John M.

    2012-06-01

    The effect of partial substitution of alkaline earth (AE) ions, Sr2+ and Ca2+, for the rare earth (RE) ions, La3+, Ce3+, Pr3+, and Sm3+, on the physical properties of REVO4 compounds were investigated. The use of the Pechini method to synthesize the vanadates allowed for high levels of AE substitution to be obtained. Coulometric titration was used to measure redox isotherms for these materials and showed that the addition of the AE ions increased both reducibility and electronic conductivity under typical solid oxide fuel cell (SOFC) anode conditions, through the formation of compounds with mixed vanadium valence. In spite of their high electronic conductivity, REVO4-yttira stabilized zirconia (YSZ) composite anodes exhibited only modest performance when used in SOFCs operating with H2 fuel at 973 K due to their low catalytic activity. High performance was obtained, however, after the addition of a small amount of catalytically active Pd to the anode.

  14. Adiabatically describing rare earths using microscopic deformations

    NASA Astrophysics Data System (ADS)

    Nobre, Gustavo; Dupuis, Marc; Herman, Michal; Brown, David

    2017-09-01

    Recent works showed that reactions on well-deformed nuclei in the rare-earth region are very well described by an adiabatic method. This assumes a spherical optical potential (OP) accounting for non-rotational degrees of freedom while the deformed configuration is described by couplings to states of the g.s. rotational band. This method has, apart from the global OP, only the deformation parameters as inputs, with no additional fit- ted variables. For this reason, it has only been applied to nuclei with well-measured deformations. With the new computational capabilities, microscopic large-scale calculations of deformation parameters within the HFB method based on the D1S Gogny force are available in the literature. We propose to use such microscopic deformations in our adi- abatic method, allowing us to reproduce the cross sections agreements observed in stable nuclei, and to reliably extend this description to nuclei far from stability, describing the whole rare-earth region. Since all cross sections, such as capture and charge exchange, strongly depend on the correct calculation of absorption from the incident channel (from direct reaction mechanisms), this approach significantly improves the accuracy of cross sections and transitions relevant to astrophysical studies. The work at BNL was sponsored by the Office of Nuclear Physics, Office of Science of the US Department of Energy, under Contract No. DE-AC02-98CH10886 with Brookhaven Science Associates, LLC.

  15. Adsorption of Salicylhydroxamic Acid on Selected Rare Earth Oxides and Carbonates

    NASA Astrophysics Data System (ADS)

    Galt, Greer Elaine

    Adsorption behavior of the anionic collector salicylhydroxamic acid (SHA) on a selected group of rare earth oxides (REOs) and carbonates (RECs) was studied via experimental methods and modelling software. Synthetic oxide and carbonate powders of the rare earth elements cerium (Ce), praseodymium (Pr), europium (Eu), and terbium (Tb) were tested for this research. Studies were conducted at different pH levels to analyze the kinetics of collector adsorption onto the oxide and carbonate surfaces in attempts to optimize recovery parameters for commercial flotation processes using SHA. In addition, thermodynamic software StabCal was implemented to compare theoretical adsorption behavior of collectors SHA and octylhydroxamic acid (OHA) on these four rare earth oxides and carbonates. Theoretical points of zero charge were also estimated via StabCal and compared to experimental values to establish validity. Results for oxides indicate that both the amount and rate of SHA adsorption are highest for lighter REOs, decreasing as ionic diameter increases, a chelation phenomenon common with hydroxamates. However, results for the carbonates exhibit the opposite trend: strongest SHA adsorption was seen in the heavy RECs. This pattern correlates to the increasing stability of the carbonate such that ionic diameter of the REs becomes more amenable to chelation due to differences in bonding chemistry. Overall, adsorption kinetics appear dependent on pH, coordination chemistry, and cation size.

  16. Scanning Electron Microscope-Cathodoluminescence Analysis of Rare-Earth Elements in Magnets.

    PubMed

    Imashuku, Susumu; Wagatsuma, Kazuaki; Kawai, Jun

    2016-02-01

    Scanning electron microscope-cathodoluminescence (SEM-CL) analysis was performed for neodymium-iron-boron (NdFeB) and samarium-cobalt (Sm-Co) magnets to analyze the rare-earth elements present in the magnets. We examined the advantages of SEM-CL analysis over conventional analytical methods such as SEM-energy-dispersive X-ray (EDX) spectroscopy and SEM-wavelength-dispersive X-ray (WDX) spectroscopy for elemental analysis of rare-earth elements in NdFeB magnets. Luminescence spectra of chloride compounds of elements in the magnets were measured by the SEM-CL method. Chloride compounds were obtained by the dropwise addition of hydrochloric acid on the magnets followed by drying in vacuum. Neodymium, praseodymium, terbium, and dysprosium were separately detected in the NdFeB magnets, and samarium was detected in the Sm-Co magnet by the SEM-CL method. In contrast, it was difficult to distinguish terbium and dysprosium in the NdFeB magnet with a dysprosium concentration of 1.05 wt% by conventional SEM-EDX analysis. Terbium with a concentration of 0.02 wt% in an NdFeB magnet was detected by SEM-CL analysis, but not by conventional SEM-WDX analysis. SEM-CL analysis is advantageous over conventional SEM-EDX and SEM-WDX analyses for detecting trace rare-earth elements in NdFeB magnets, particularly dysprosium and terbium.

  17. Progress towards Growth and Characterization of Rare-Earth Nanoparticles using the Inverse Micelle Method

    NASA Astrophysics Data System (ADS)

    Romero, Dulce G.; Ho, Pei-Chun

    2008-03-01

    Nano-sized particles and clusters have promising electrical, chemical, and magnetic properties as compared to the bulk materials. Due to their reduced dimensionality, it makes their physical properties significantly different from the bulk material. The nano-sized materials have great potential for technical applications, such as, magnetic information storage, imaging, medical devices, and magnetic refrigeration. In this report, we will present the preliminary results on the growth and characterization of rare-earth metallic nanoparticles of Gd and Nd synthesized by the inverse micelle method [1]. These results will be compared to the bulk properties of Gd and Nd, as well as, to those exhibited by metallic nanoparticles, such as Co (by inverse micelle), and Gd (by laser evaporation cluster source), which have been found to show superparamagnetic behavior, enhanced magnetization, and self-organization [2-4]. [1] X.M. Lin, et al. Langmuir. 14, 7140 (1998). [2] D.C. Douglass, et al. Phys. Rev. B. 47, 19 (1993). [3] C. Petit, et al. Advanced Materials. 10, 259 (1998). [4] J.P. Chen, et al. Phys. Rev. B. 51, 11527 (1995).

  18. Characterization and Recovery of Rare Earths from Coal and By-Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granite, Evan J.; Roth, Elliot; Alvin, Mary Anne

    Coal is a precious resource, both in the United States and around the world. The United States has a 250-year supply of coal, and generates between 30 - 40% of its electricity through coal combustion. Approximately 1 Gt of coal has been mined annually in the US, although the 2015 total will likely be closer to 900 Mt (http://www.eia.gov/coal/production/quarterly/). Most of the coal is burned for power generation, but substantial quantities are also employed in the manufacture of steel, chemicals, and activated carbons. Coal has a positive impact upon many industries, including mining, power, rail transportation, manufacturing, chemical, steel, activatedmore » carbon, and fuels. Everything that is in the earth’s crust is also present within coal to some extent, and the challenge is always to utilize abundant domestic coal in clean and environmentally friendly manners. In the case of the rare earths, these valuable and extraordinarily useful elements are present within the abundant coal and coal by-products produced domestically and world-wide. These materials include the coals, as well as the combustion by-products such as ashes, coal preparation wastes, gasification slags, and mining by-products. All of these materials can be viewed as potential sources of rare earth elements. Most of the common inorganic lanthanide compounds, such as the phosphates found in coal, have very high melting, boiling, and thermal decomposition temperatures, allowing them to concentrate in combustion and gasification by-products. Furthermore, rare earths have been found in interesting concentrations in the strata above and below certain coal seams. Much of the recent research on coal utilization in the United States has focused upon the capture of pollutants such as acid gases, particulates, and mercury, and the greenhouse gas carbon dioxide. The possible recovery of rare earth and other critical elements from abundant coal and by-products is an exciting new research area

  19. Metal sulfide and rare-earth phosphate nanostructures and methods of making same

    DOEpatents

    Wong, Stanislaus; Zhang, Fen

    2014-05-13

    The present invention provides a method of producing a crystalline metal sulfide nanostructure. The metal is a transitional metal or a Group IV metal. In the method, a porous membrane is placed between a metal precursor solution and a sulfur precursor solution. The metal cations of the metal precursor solution and sulfur ions of the sulfur precursor solution react, thereby producing a crystalline metal sulfide nanostructure.

  20. Self-interaction-corrected local-spin-density calculations for rare earth materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svane, A.; Temmerman, W.M.; Szotek, Z.

    2000-04-20

    The ab initio self-interaction-corrected (SIC) local-spin-density (LSD) approximation is discussed with emphasis on the ability to describe localized f-electron states in rare earth solids. Two methods for minimizing the SIC-LSD total energy functional are discussed, one using a unified Hamiltonian for all electron states, thus having the advantages of Bloch's theorem, the other one employing an iterative scheme in real space. Results for cerium and cerium compounds as well as other rare earths are presented. For the cerium compounds the onset of f-electron delocalization can be accurately described, including the intricate isostructural phase transitions in elemental cerium and CeP. Inmore » Pr and Sm the equilibrium lattice constant and zero temperature equation of state is greatly improved in comparison with the LSD results.« less