Science.gov

Sample records for metallic rare earth

  1. Rare Earth Metals: Resourcefulness and Recovery

    NASA Astrophysics Data System (ADS)

    Wang, Shijie

    2013-10-01

    When we appreciate the digital revolution carried over from the twentieth century with mobile communication and the Internet, and when we enjoy our high-tech lifestyle filled with iDevices, hybrid cars, wind turbines, and solar cells in this new century, we should also appreciate that all of these advanced products depend on rare earth metals to function. Although there are only 136,000 tons of annual worldwide demand, (Cho, Rare Earth Metals, Will We Have Enough?)1 rare earth metals are becoming such hot commodities on international markets, due to not only to their increasing uses, including in most critical military hardware, but also to Chinese growth, which accounts for 95% of global rare earth metal production. Hence, the 2013 technical calendar topic, planned by the TMS/Hydrometallurgy and Electrometallurgy Committee, is particularly relevant, with four articles (including this commentary) contributed to the JOM October Issue discussing rare earth metals' resourcefulness and recovery.

  2. Recovering heavy rare earth metals from magnet scrap

    DOEpatents

    Ott, Ryan T.; McCallum, Ralph W.; Jones, Lawrence L.

    2017-08-08

    A method of treating rare earth metal-bearing permanent magnet scrap, waste or other material in a manner to recover the heavy rare earth metal content separately from the light rare earth metal content. The heavy rare earth metal content can be recovered either as a heavy rare earth metal-enriched iron based alloy or as a heavy rare earth metal based alloy.

  3. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOEpatents

    Ellis, Timothy W.; Schmidt, Frederick A.

    1995-08-01

    Method of treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation.

  4. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOEpatents

    Ellis, T.W.; Schmidt, F.A.

    1995-08-01

    A method is described for treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation. 2 figs.

  5. Intermultiplet transitions in rare-earth metals

    SciTech Connect

    Stirling, W.G.; McEwen, K.A.; Loong, C.K.

    1985-01-01

    We report here on direct observations of intermultiplet (IM) transitions in the rare-earth metals, Pr, Nd and Tb, made using the chopper spectrometers at the Intense Pulsed Neutron Source of Argonne National Laboratory. Despite hydrogen contamination of the polycrystalline samples, we have observed inelastic peaks at small Q arising from IM transitions in Pr (approx.260 MeV), Nd (approx.242 MeV) and Tb (approx.256 MeV) although the latter has not yet been observed unambiguously. Future work will investigate the energy level structure and dynamical properties of rare-earth ions in stoichiometric metallic systems. 5 refs., 3 figs.

  6. Effects of Rare Earth Metals on Steel Microstructures.

    PubMed

    Pan, Fei; Zhang, Jian; Chen, Hao-Long; Su, Yen-Hsun; Kuo, Chia-Liang; Su, Yen-Hao; Chen, Shin-Hau; Lin, Kuan-Ju; Hsieh, Ping-Hung; Hwang, Weng-Sing

    2016-05-27

    Rare earth metals are used in semiconductors, solar cells and catalysts. This review focuses on the background of oxide metallurgy technologies, the chemical and physical properties of rare earth (RE) metals, the background of oxide metallurgy, the functions of RE metals in steelmaking, and the influences of RE metals on steel microstructures. Future prospects for RE metal applications in steelmaking are also presented.

  7. Gyroscopic g factor of rare earth metals

    NASA Astrophysics Data System (ADS)

    Ogata, Y.; Chudo, H.; Ono, M.; Harii, K.; Matsuo, M.; Maekawa, S.; Saitoh, E.

    2017-02-01

    We develop the in situ magnetization measurement apparatus for observing the Barnett effect consisting of a fluxgate sensor, a high speed rotor with frequencies of up to 1.5 kHz, and a magnetic shield at room temperature. The effective magnetic field (Barnett field) in a sample arising from rotation magnetizes the sample and is proportional to the rotational frequency. The gyroscopic g factor, g ' , of rare earth metals, in particular, Gd, Tb, and Dy, was estimated to be 2.00 ± 0.08, 1.53 ± 0.17, and 1.15 ± 0.32, respectively, from the slopes of the rotation dependence of the Barnett field. This study provides a technique to determine the g ' factor even in samples where the spectroscopic method may not be available.

  8. Effects of Rare Earth Metals on Steel Microstructures

    PubMed Central

    Pan, Fei; Zhang, Jian; Chen, Hao-Long; Su, Yen-Hsun; Kuo, Chia-Liang; Su, Yen-Hao; Chen, Shin-Hau; Lin, Kuan-Ju; Hsieh, Ping-Hung; Hwang, Weng-Sing

    2016-01-01

    Rare earth metals are used in semiconductors, solar cells and catalysts. This review focuses on the background of oxide metallurgy technologies, the chemical and physical properties of rare earth (RE) metals, the background of oxide metallurgy, the functions of RE metals in steelmaking, and the influences of RE metals on steel microstructures. Future prospects for RE metal applications in steelmaking are also presented. PMID:28773545

  9. METHOD OF MAKING ALLOYS OF SECOND RARE EARTH SERIES METALS

    DOEpatents

    Baker, R.D.; Hayward, B.R.

    1963-01-01

    >This invention relates to a process for alloying the second rare earth series metals with Mo, Nb, or Zr. A halide of the rare earth metal is mixed with about 1 to 20 at.% of an oxide of Mo, Nb, or Zr. Iodine and an alkali or alkaline earth metal are added, and the resulting mixture is heated in an inert atmosphere to 350 deg C. (AEC)

  10. 40 CFR 421.270 - Applicability: Description of the primary rare earth metals subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... primary rare earth metals subcategory. 421.270 Section 421.270 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Rare Earth Metals Subcategory § 421.270 Applicability: Description of the primary rare... production of rare earth metals and mischmetal by primary rare earth metals facilities......

  11. Bis(hydroxylaminato)-mono(pentamethylcyclopentadienyl) rare-earth metal complexes.

    PubMed

    Venugopal, Ajay; Pape, Tania; Willner, Alexander; Mitzel, Norbert W

    2009-08-07

    Salt metathesis reactions involving the anhydrous rare-earth metal trichlorides MCl(3) (M = Y, Ho, Er and Lu) and the N,N-diethylhydroxylaminato potassium salt, KONEt(2) (1), and KC(5)Me(5) result in formation of rare-earth metal hydroxylaminato complexes of the type [(C(5)Me(5))M(mu-eta(1):eta(2)-ONEt(2))(eta(2)-ONEt(2))](2) (M = Y (2a), Ho (2b), Er (2c) and Lu (2d)). Compound 1 was characterised by elemental analysis, compounds 2a and 2d by NMR spectroscopy and compounds 2a-d by elemental analyses, mass-spectrometry and single crystal X-ray diffraction. Compounds 2a-d are isostructural in the solid state. Effective saturation of the coordination sphere of the rare-earth metal atoms by the hydroxylaminato groups is achieved by the formation of three-membered MON rings.

  12. Method for treating rare earth-transition metal scrap

    DOEpatents

    Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.; Jones, L.L.

    1992-12-29

    Rare earth-transition metal (e.g., iron) scrap (e.g., Nd-Fe-B scrap) is flux (slag) remelted to reduce tramp non-metallic impurities, such as oxygen and nitrogen, and metallic impurities, such as Li, Na, Al, etc., picked up by the scrap from previous fabrication operations. The tramp impurities are reduced to concentrations acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. The scrap is electroslag or inductoslag melted using a rare earth fluoride-bearing flux of CaF[sub 2], CaCl[sub 2] or mixtures thereof or the slag resulting from practice of the thermite reduction process to make a rare earth-iron alloy. 3 figs.

  13. Method for treating rare earth-transition metal scrap

    DOEpatents

    Schmidt, Frederick A.; Peterson, David T.; Wheelock, John T.; Jones, Lawrence L.

    1992-12-29

    Rare earth-transition metal (e.g., iron) scrap (e.g., Nd-Fe-B scrap) is flux (slag) remelted to reduce tramp non-metallic impurities, such as oxygen and nitrogen, and metallic impurities, such as Li, Na, Al, etc., picked up by the scrap from previous fabrication operations. The tramp impurities are reduced to concentrations acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. The scrap is electroslag or inductoslag melted using a prefused, rare earth fluoride-bearing flux of CaF.sub.2, CaCl.sub.2 or mixtures thereof or the slag resulting from practice of the thermite reduction process to make a rare earth-iron alloy.

  14. Trace metal and rare earth content of black precipitation events

    SciTech Connect

    Landsberger, S. . Dept. of Nuclear Engineering); Davies, T.D. . School of Environmental Sciences); Tranter, M. )

    1990-01-01

    The authors have used the techniques of non-destructive neutron activation analysis to determine trace metal and rare earth content of black precipitation events occurring in the Cairngorm Mountains in remote areas of Scotland. Thirty-one elements were determined in the particulate matter of snowpack cores that were sliced into sections. An additional analysis was performed for a black acidic snow event. Based on these results and on wind trajectories, increased loadings of many of the heavy metals and rare earth elements appeared to have originated from central Europe. Enrichment factor calculations show anthropogenic emissions for indium, arsenic, zinc, and selenium.

  15. Rare earth metal trifluoromethanesulfonates catalyzed benzyl-etherification.

    PubMed

    Kawada, Atsushi; Yasuda, Kayo; Abe, Hitoshi; Harayama, Takashi

    2002-03-01

    Rare earth metal trifluoromethanesulfonates [rare earth metal triflate, RE(OTf)3] were found to be efficient catalyst for benzyl-etherification. In the presence of a catalytic amount of RE(OTf)3, condensation of benzyl alcohols and aliphatic alcohols proceeded smoothly to afford the benzyl ethers. The condensation between benzyl alcohols and thiols also proceeded, and thio ethers were obtained in good yield. In these reactions, RE(OTf)3 could be recovered easily after the reactions were completed and could be reused without loss of activity.

  16. Charge-separated and molecular heterobimetallic rare earth-rare earth and alkaline earth-rare earth aryloxo complexes featuring intramolecular metal-pi-arene interactions.

    PubMed

    Deacon, Glen B; Junk, Peter C; Moxey, Graeme J; Ruhlandt-Senge, Karin; St Prix, Courtney; Zuniga, Maria F

    2009-01-01

    Treatment of a rare earth metal (Ln) and a potential divalent rare earth metal (Ln') or an alkaline earth metal (Ae) with 2,6-diphenylphenol (HOdpp) at elevated temperatures (200-250 degrees C) afforded heterobimetallic aryloxo complexes, which were structurally characterised. A charge-separated species [(Ln'/Ae)(2)(Odpp)(3)][Ln(Odpp)(4)] was obtained for a range of metals, demonstrating the similarities between the chemistry of the divalent rare earth metals and the alkaline earth metals. The [(Ln'/Ae)(2)(Odpp)(3)](+) cation in the heterobimetallic structures is unusual in that it consists solely of bridging aryloxide ligands. A molecular heterobimetallic species [AeEu(Odpp)(4)] (Ae = Ca, Sr, Ba) was obtained by treating an alkaline earth metal and Eu metal with HOdpp at elevated temperatures. Similarly, [BaSr(Odpp)(4)] was prepared by treating Ba metal and Sr metal with HOdpp. Treatment of [Ba(2)(Odpp)(4)] with [Mg(Odpp)(2)(thf)(2)] in toluene afforded [Ba(2)(Odpp)(3)][Mg(Odpp)(3)(thf)]. Analogous solution-based syntheses were not possible for [(Ln'/Ae)(2)(Odpp)(3)][Ln(Odpp)(4)] complexes, for which the free-metal route was essential. As a result of the absence of additional donor ligands, the crystal structures of the heterobimetallic complexes feature extensive pi-Ph-metal interactions involving the pendant phenyl groups of the Odpp ligands, thus enabling the large electropositive metal atoms to attain coordination saturation. The charge-separated heterobimetallic species were purified by extraction with toluene/thf mixtures at ambient temperature (Ba-containing compounds) or by extraction with toluene under pressure above the boiling point of the solvent (other products). In donor solvents, heterobimetallic complexes other than those containing barium were found to fragment into homometallic species.

  17. Rare earth transition metal magnesium compounds—An overview

    NASA Astrophysics Data System (ADS)

    Rodewald, Ute Ch.; Chevalier, Bernard; Pöttgen, Rainer

    2007-05-01

    Intermetallic rare earth-transition metal-magnesium compounds play an important role as precipitations in modern light weight alloys and as host materials for hydrogen storage applications. Recent results on the crystal chemistry, the chemical bonding peculiarities, physical properties, and hydrogenation behavior of these materials are reviewed.

  18. Thin Films of the Rare-Earth Metals,

    DTIC Science & Technology

    A vacuum thermal method of producing thin films (1-10 mu m) of rare earth metals (Sm, Dy, Tn, and Yb) is described and its efficiency is compared with...existing methods (which are briefly reviewed). A very effective method of obtaining the thin films in question is by reducing the corresponding

  19. Distributions of rare earths and heavy metals in field-grown maize after application of rare earth-containing fertilizer.

    PubMed

    Xu, Xingkai; Zhu, Wangzhao; Wang, Zijian; Witkamp, Geert-Jan

    2002-07-03

    Rare earths are widely applied in Chinese agriculture to improve crop nutrition through the use of fertilizers, yet little is known of their accumulation in field-grown crops. We have studied the distribution of 16 rare earths (Sc, Y and 14 lanthanide elements) in field-grown maize and the concentration of heavy metals in the grains after application of rare earth-containing fertilizer. When maize entered the vigorous vegetation growth stage (e.g. early stem-elongation stage), rare earth-containing fertilizer was applied to the soil with irrigation water. At 10 days after application of the rare earths, significantly dose-dependent accumulative effects of individual rare earth concentrations in the roots and the plant tops of maize were observed, with the exception of Sc and Lu. At the level of 2 kg rare earths ha(-1), accumulative concentrations of most light rare earths (e.g. La, Ce, Pr and Nd) and Gd in the plant tops were much larger than those in the control. Concentrations of individual rare earths in a field-grown maize after application of rare earths decreased in the order of root>leaf>stem>grain. During the maize growth period, selective accumulation of individual rare earths (e.g. La, Ce) in the roots seemed to be in dynamic equilibrium, and the distribution of these elements in the plant tops was variable. At a dosage of less than 10 kg rare earths ha(-1), no apparent accumulative concentrations of individual rare earths appeared in the maize grains. Under the experimental conditions, application of rare earth-containing fertilizer did not induce an increase in the concentrations of heavy metals in the grains. We conclude that the present dosage of rare earths (<0.23 kg ha(-1) year(-1)) currently applied in China can hardly affect the safety of maize grains in arable soil, even over a long period.

  20. Rare earth-transition metal scrap treatment method

    DOEpatents

    Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.; Jones, L.L.; Lincoln, L.P.

    1992-02-11

    Rare earth-transition metal (e.g. iron) scrap (e.g. Nd-Fe-B scrap) is melted to reduce the levels of tramp oxygen and nitrogen impurities therein. The tramp impurities are reduced in the melt by virtue of the reaction of the tramp impurities and the rare earth to form dross on the melt. The purified melt is separated from the dross for reuse. The oxygen and nitrogen of the melt are reduced to levels acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. 3 figs.

  1. Rare earth-transition metal scrap treatment method

    DOEpatents

    Schmidt, Frederick A.; Peterson, David T.; Wheelock, John T.; Jones, Lawrence L.; Lincoln, Lanny P.

    1992-02-11

    Rare earth-transition metal (e.g. iron) scrap (e.g. Nd-Fe-B scrap) is melted to reduce the levels of tramp oxygen and nitrogen impurities therein. The tramp impurities are reduced in the melt by virtue of the reaction of the tramp impurities and the rare earth to form dross on the melt. The purified melt is separated from the dross for reuse. The oxygen and nitrogen of the melt are reduced to levels acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets.

  2. Modulated magnetic phases in rare earth metallic systems

    SciTech Connect

    Chattopadhyay, T. )

    1994-04-08

    Neutron scattering has played a key role in the microscopic understanding of the static and dynamic properties of magnetic materials. Modulated magnetic structures first discovered in the late fifties can no longer be referred to as exotic; more than a hundred such phases have already been found in a variety of magnetic systems. Neutron and x-ray magnetic scattering have played a complementary role in the recent discovery and understanding of the modulated magnetic phases in rare earth metallic systems.

  3. Heterometallic rare earth/group II metal chalcogenolate clusters

    SciTech Connect

    Berardini, M.; Emge, T.; Brennan, J.G. )

    1994-07-27

    Heterometallic Group II/rare earth (RE) thiolates, selenolates, and tellurolates have a broad range of potential applications in the rapidly developing field of RE-doped semiconductor technology . Given the tendency of RE chalcogenolates to form polymetallic species with bridging chalcogenolate ligands, we reasoned that RE complexes of the heavier chalcogenolates could be stabilized by bridging the chalcogenide to a softer Group II metal to form heterometallic compounds. In this paper, we show that such stabilization is significant, and we describe the isolation and structural characterization of the first two examples of a broad class of heterometallic chalcogenolate complexes having the general formula MM[prime](EPh)[sub x](L)[sub y] [M = Zn, Cd, Hg; M[prime] = divalent (x = 4) or trivalent (x = 5) rare earth; E = S, Se, Te; L = THF, pyridine]. 9 refs., 1 fig.

  4. Correlations in rare-earth transition-metal permanent magnets

    SciTech Connect

    Skomski, R. Manchanda, P.; Kashyap, A.

    2015-05-07

    It is investigated how electron-electron correlations affect the intrinsic properties of rare-earth transition-metal magnets. Focusing on orbital moment and anisotropy, we perform model calculations for 3d-4f alloys and density-functional theory (DFT) calculations for NdCo{sub 5}. On an independent-electron level, the use of a single Slater determinant with broken spin symmetry introduces Hund's rule correlations, which govern the behavior of rare-earth ions and of alloys described by the local spin density approximation (LSDA) and LSDA + U approximations to DFT. By contrast, rare-earth ions in intermetallics involve configuration interactions between two or more Slater determinants and lead to phenomena such as spin-charge distribution. Analyzing DFT as a Legendre transformation and using Bethe's crystal-field theory, we show that the corresponding density functionals are very different from familiar LSDA-type expressions and outline the effect of spin-charge separation on the magnetocrystalline anisotropy.

  5. Correlations in rare-earth transition-metal permanent magnets

    NASA Astrophysics Data System (ADS)

    Skomski, R.; Manchanda, P.; Kashyap, A.

    2015-05-01

    It is investigated how electron-electron correlations affect the intrinsic properties of rare-earth transition-metal magnets. Focusing on orbital moment and anisotropy, we perform model calculations for 3d-4f alloys and density-functional theory (DFT) calculations for NdCo5. On an independent-electron level, the use of a single Slater determinant with broken spin symmetry introduces Hund's rule correlations, which govern the behavior of rare-earth ions and of alloys described by the local spin density approximation (LSDA) and LSDA + U approximations to DFT. By contrast, rare-earth ions in intermetallics involve configuration interactions between two or more Slater determinants and lead to phenomena such as spin-charge distribution. Analyzing DFT as a Legendre transformation and using Bethe's crystal-field theory, we show that the corresponding density functionals are very different from familiar LSDA-type expressions and outline the effect of spin-charge separation on the magnetocrystalline anisotropy.

  6. Synthesis and luminescence of some rare earth metal complexes

    NASA Astrophysics Data System (ADS)

    Bochkarev, Mikhail N.; Pushkarev, Anatoly P.

    2016-12-01

    In the present paper the synthesis, photoand electroluminescent properties of new rare earth metal complexes prepared and studied at the Razuvaev Institute of Organometallic Chemistry during the last decade are reviewed. The obtained compounds give luminescence in UV, visible and NIR regions. The substituted phenolates, naphtholates, mercaptobenzothiazolate, 8-oxyquinolinolate, polyfluorinated alcoholates and chalcogenophosphinates were used as ligands. The synthesis and structure of unusual three-nuclear sulfidenitride clusters of Nd and Dy are described. The new excitation mechanism of ytterbium phenolates and naphtholates, which includes the stage of reversible reduction of Yb to divalent state and oxidation of the ligands in the excitation process, is discussed.

  7. Metal sulfide and rare-earth phosphate nanostructures and methods of making same

    SciTech Connect

    Wong, Stanislaus; Zhang, Fen

    2016-06-28

    The present invention provides a method of producing a crystalline rare earth phosphate nanostructure. The method comprising: providing a rare earth metal precursor solution and providing a phosphate precursor solution; placing a porous membrane between the metal precursor solution and the phosphate precursor solution, wherein metal cations of the metal precursor solution and phosphate ions of the phosphate precursor solution react, thereby producing a crystalline rare earth metal phosphate nanostructure.

  8. Minerals yearbook, 1989: Rare-earth minerals and metals

    SciTech Connect

    Hedrick, J.B.; Templeton, D.A.

    1989-01-01

    Domestic consumption of the rare earths was almost double the quantity used in 1988, mine production increased sharply, and the industry performed well amid increased international competition. Traditional markets of the rare earths, such as petroleum catalysts and metallurgical additives, continued a downward trend while new and emerging markets, such as neodymium-iron-boron permanent magnets, advanced ceramics, and automotive catalysts, showed strong growth. The television and lamp phosphors market was unchanged, and glass polishing applications increased markedly. Demand for rare earths consumed in high-temperature superconductors was small; however, technologic breakthroughs in 1989 increased the prospects for commercial development of rare-earth superconductors.

  9. Homometallic rare-Earth metal phosphinidene clusters: synthesis and reactivity.

    PubMed

    Wang, Kai; Luo, Gen; Hong, Jianquan; Zhou, Xigeng; Weng, Linhong; Luo, Yi; Zhang, Lixin

    2014-01-20

    Two new trinuclear μ3 -bridged rare-earth metal phosphinidene complexes, [{L(Ln)(μ-Me)}3 (μ3 -Me)(μ3 -PPh)] (L=[PhC(NC6 H4 iPr2 -2,6)2 ](-) , Ln=Y (2 a), Lu (2 b)), were synthesized through methane elimination of the corresponding carbene precursors with phenylphosphine. Heating a toluene solution of 2 at 120 °C leads to an unprecedented ortho CH bond activation of the PhP ligand to form the bridged phosphinidene/phenyl complexes. Reactions of 2 with ketones, thione, or isothiocyanate show clear phospha-Wittig chemistry, giving the corresponding organic phosphinidenation products and oxide (sulfide) complexes. Reaction of 2 with CS2 leads to the formation of novel trinuclear rare-earth metal thione dianion clusters, for which a possible pathway was determined by DFT calculation. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Methods and devices for the separation of radioactive rare earth metal isotopes from their alkaline earth metal precursors

    SciTech Connect

    Wai, Chein M.

    1993-07-06

    A method is described for the separation of a radioactive rare earth metal isotope or a radioactive isotope of yttrium or scandium from its alkaline earth metal precursor comprising contacting a sample containing at least one of said isotopes and said precursor with an ionizable dibenzo ether derivative.

  11. [Rare-earth metals as a factor in mutagenicity].

    PubMed

    Solovykh, G N; Golinskaia, L V; Kanunikova, E A

    2012-01-01

    Both the regions of the Orenburg Region area and individual examined streams and reservoirs were shown to be characterized by a varying load index for rare earth elements. The total level of rare earth elements was directly correlated with different types of mutations.

  12. Solidification Characteristics of Wrought Magnesium Alloys Containing Rare Earth Metals

    NASA Astrophysics Data System (ADS)

    Javaid, A.; Czerwinski, F.; Zavadil, R.; Aniolek, M.; Hadadzadeh, A.

    A significant barrier preventing use of magnesium sheet in automotive light-weighting initiatives is its high manufacturing cost and very limited formability at room temperature. This barrier can be overcome by the use of twin roll casting technology and new magnesium alloys, specifically designed for twin roll casting. Recent studies have shown that magnesium, when alloyed with rare earth elements, gave rise to weakening of the basal texture resulting in improved room temperature formability. In this research, a combination of calculations using the FACTsage software and examinations using a number of experimental techniques was explored to determine the solidification characteristics of wrought magnesium alloys containing rare earth metal of neodymium: ZEK100, Mg-1Zn-0.5Nd and Mg-1Zn-1Nd. As predicted by the FACTsage software, the solidification under equilibrium and non-equilibrium conditions affects the type and volume fractions of phases formed for a given chemical composition of the alloy. The thermal analysis identified temperatures of metallurgical reactions taking place during solidification and their changes with neodymium content. As verified by controlled solidification experiments the cooling rate during solidification affected the refinement level of the alloy microstructure, a volume fraction of intermetallic precipitates and their distribution. This research will help to design new magnesium alloys, specifically optimized for twin roll casting.

  13. Rare-Earth Metal Postmetallocene Catalysts with Chelating Amido Ligands

    NASA Astrophysics Data System (ADS)

    Li, Tianshu; Jenter, Jelena; Roesky, Peter W.

    This review deals with the synthesis and the catalytic application of noncyclopentadienyl complexes of the rare-earth elements. The main topics of the review are amido metal complexes with chelating bidentate ligands, which show the most similarities to cyclopentadienyl ligands. Benzamidinates and guanidinates will be reviewed in a separate contribution within this book. Beside the synthesis of the complexes, the broad potential of these compounds in homogeneous catalysis is demonstrated. Most of the reviewed catalytic transformations are either C-C multiple bond transformation such as the hydroamination and hydrosilylation or polymerization reaction of polar and nonpolar monomers. In this area, butadiene and isoprene, ethylene, as well as lactides and lactones were mostly used as monomers.

  14. Reactive recording with rare-earth transition metal

    NASA Astrophysics Data System (ADS)

    Kim, Jooho; Kuwahara, Masashi; Atoda, Nobufumi; Tominaga, Junji

    2001-10-01

    Reactive recording was achieved with typical rare-earth transition metal (RE-TM) for magneto-optical recording. Almost the same carrier-to-noise ratio (CNR) and much higher modulation were obtained by the reactive recording, compared with conventional phase change (PC) recording. By applying this recording material to a super-resolution near-field structure for terabyte recording, CNR below 100-nm-mark length signal, readout durability, and power margin were greatly improved. To identify the recording mechanism, we examined the magnetic and thermo-optical properties, finding that the film properties of amorphous RE-TM are steeply changed at ˜773 K by crystallization and thermal-activated reaction with dielectric layers.

  15. Sonochemical synthesis of mesoporous transition metal and rare earth oxides.

    PubMed

    Wang, Yanqin; Yin, Lunxiang; Gedanken, Arahon

    2002-11-01

    Straight-extended layered mesostructures based on transItion metal (Fe, Cr) and rare earth (Y, Ce, La, Sm, Er) oxides are synthesized by sonication for 3 h. After a longer period of sonication (6 h), hexagonal mesostructures based on Y- and Er-oxides are obtained. The surface areas of the Y-based hexagonal mesophases before and after extraction are 46.5, 256 m2/g, respectively. For Er-based hexagonal mesophases, the surface areas before and after extraction are 157 and 225 m2/g. The pore sizes after extraction are 5.0 and 2.2 nm for Y- and Er-based mesophases, respectively. Hexagonal mesostructures are also obtained for Zr-based material after sonication for 3 h and the hexagonal structure is still maintained after calcinations at 400 degrees C for 4 h, although the surface area is only 35 m2/g.

  16. Minerals yearbook, 1988. Rare-earth minerals and metals

    SciTech Connect

    Hedrick, J.B.; Templeton, D.A.

    1988-01-01

    Domestic production of rare-earth concentrates decreased in 1988. Foreign sources of processed rare earths obtained a slightly larger share of the U.S. market, while domestic exports saw a marked increase compared to 1987 levels. Rare earths were used in high-technology applications such as laser crystals, high-strength permanent magnets, optical fibers, magnetic resonance imaging (MRI) scanners, and high-temperature superconductors. Topics discussed in the report include domestic data coverage, legislation and government programs, environmental issues, domestic production, consumption and uses, stocks, prices, foreign trade, world capacity, world review--Australia, Brazil, Canada, China, Egypt, Greenland, Japan, Madagascar, Malaysia, Mozambique, Sri Lanka, Thailand--and technology.

  17. Molecular rare-earth-metal hydrides in non-cyclopentadienyl environments.

    PubMed

    Fegler, Waldemar; Venugopal, Ajay; Kramer, Mathias; Okuda, Jun

    2015-02-02

    Molecular hydrides of the rare-earth metals play an important role as homogeneous catalysts and as counterparts of solid-state interstitial hydrides. Structurally well-characterized non-metallocene-type hydride complexes allow the study of elementary reactions that occur at rare-earth-metal centers and of catalytic reactions involving bonds between rare-earth metals and hydrides. In addition to neutral hydrides, cationic derivatives have now become available.

  18. Molecular nitrides with titanium and rare-earth metals.

    PubMed

    Caballo, Jorge; García-Castro, María; Martín, Avelino; Mena, Miguel; Pérez-Redondo, Adrián; Yélamos, Carlos

    2011-07-18

    A series of titanium-group 3/lanthanide metal complexes have been prepared by reaction of [{Ti(η(5)-C(5)Me(5))(μ-NH)}(3)(μ(3)-N)] (1) with halide, triflate, or amido derivatives of the rare-earth metals. Treatment of 1 with metal halide complexes [MCl(3)(thf)(n)] or metal trifluoromethanesulfonate derivatives [M(O(3)SCF(3))(3)] at room temperature affords the cube-type adducts [X(3)M{(μ(3)-NH)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (X = Cl, M = Sc (2), Y (3), La (4), Sm (5), Er (6), Lu (7); X = OTf, M = Y (8), Sm (9), Er (10)). Treatment of yttrium (3) and lanthanum (4) halide complexes with 3 equiv of lithium 2,6-dimethylphenoxido [LiOAr] produces the aryloxido complexes [(ArO)(3)M{(μ(3)-NH)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (M = Y (11), La (12)). Complex 1 reacts with 0.5 equiv of rare-earth bis(trimethylsilyl)amido derivatives [M{N(SiMe(3))(2)}(3)] in toluene at 85-180 °C to afford the corner-shared double-cube nitrido compounds [M(μ(3)-N)(3)(μ(3)-NH)(3){Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}(2)] (M = Sc (13), Y (14), La (15), Sm (16), Eu (17), Er (18), Lu (19)) via NH(SiMe(3))(2) elimination. A single-cube intermediate [{(Me(3)Si)(2)N}Sc{(μ(3)-N)(2)(μ(3)-NH)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (20) was obtained by the treatment of 1 with 1 equiv of the scandium bis(trimethylsilyl)amido derivative [Sc{N(SiMe(3))(2)}(3)]. The X-ray crystal structures of 2, 7, 11, 14, 15, and 19 have been determined. The thermal decomposition in the solid state of double-cube nitrido complexes 14, 15, and 18 has been investigated by thermogravimetric analysis (TGA) and differential thermal analysis (DTA) measurements, as well as by pyrolysis experiments at 1100 °C under different atmospheres (Ar, H(2)/N(2), NH(3)) for the yttrium complex 14.

  19. Molten metal containment vessel with rare earth oxysulfide protective coating thereon and method of making same

    DOEpatents

    Krikorian, Oscar H.; Curtis, Paul G.

    1992-01-01

    An improved molten metal containment vessel is disclosed in which wetting of the vessel's inner wall surfaces by molten metal is inhibited by coating at least the inner surfaces of the containment vessel with one or more rare earth oxysulfide or rare earth sulfide compounds to inhibit wetting and or adherence by the molten metal to the surfaces of the containment vessel.

  20. 40 CFR 421.270 - Applicability: Description of the primary rare earth metals subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... primary rare earth metals subcategory. 421.270 Section 421.270 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth Metals Subcategory § 421.270 Applicability: Description of the primary...

  1. 40 CFR 421.270 - Applicability: Description of the primary rare earth metals subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... primary rare earth metals subcategory. 421.270 Section 421.270 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth Metals Subcategory § 421.270 Applicability: Description of the primary...

  2. 40 CFR 421.270 - Applicability: Description of the primary rare earth metals subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... primary rare earth metals subcategory. 421.270 Section 421.270 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth Metals Subcategory § 421.270 Applicability: Description of the primary...

  3. 40 CFR 421.270 - Applicability: Description of the primary rare earth metals subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... primary rare earth metals subcategory. 421.270 Section 421.270 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth Metals Subcategory § 421.270 Applicability: Description of the primary...

  4. Rare earths

    SciTech Connect

    Vijayan, S.; Melnyk, A.J.; Singh, R.D.; Nuttall, K.

    1989-01-01

    For conventional applications, there is limited demand for rare earth elements as well as yttrium and scandium. But the emergence of new high technology applications such as supermagnets, lasers, and superconductors should result in significant demand for some of these elements. This article examines the anticipated applications and demands for rare earth elements over the next decade. It also looks at the implications on the use of available resources. In the context of a growing demand, process methods are reviewed for the recovery of rare earth elements from conventional and unconventional resources. And the article also discusses the challenges facing the mining industry in meeting this opportunity.

  5. The DNA-binding and bioactivity of rare earth metal complexes.

    PubMed

    Yang, Li; Wang, Bochu; Tan, Jun; Zhu, Liancai

    2013-08-01

    Recently more and more attention is paid to the rare earth metal complexes, because the properties of the rare earth metals are similar to those of the transition metals such as the similar atomic and the ionic radius. A large number of rare metal complexes were synthesized, and their bioactivities were also studied. This review highlights recent researches on the interaction of some rare earth metal complexes with DNA, analyzes how the configuration of the complexes influences the binding affinity, and focuses on the pharmacological activities of the complexes, such as anticancer, antibacterial, antioxidant, anti-inflammatory and anti-virus.

  6. XMCD investigation of Rare Earth Metal at high pressure conditions

    NASA Astrophysics Data System (ADS)

    Nataf, Lucie; Baudelet, Francois

    2013-06-01

    The X-ray Magnetic Circular Dichroism is a selective magnetic probe for high pressure studies. Nowadays, XMCD under pressure is usually employed, mainly on 3d and 5d metal systems. We will present new results on Rare Earth metals. Up to now, most of the pressure works are devoted to the structural properties of RE. However, only a few works deal with the pressure effect on their magnetic properties. RE, having high magnetic moment and large anisotropy, are commonly used for practical applications. Nevertheless, their magnetic ordering temperature is below RT. Adding transition metals solves this limitation: the alloys then present the advantages of RE and the high magnetic ordering temperature of TM. To optimize the properties of these systems, a pressure study may be a better way than an empirical investigation. Interpreting the XMCD signal at the L2,3 edges of RE is very difficult since many contributions are involved. The important role of the 4f-5d interactions has to be taken into account and the quadrupolar transitions cannot be neglected. The quadrupolar transitions can be of the same order than the dipolar ones, since the 4f orbitals carry a much larger spin and orbital moments than the 5d. Under compression, each orbital may not been affected in the same way, thus giving rise to a separation of the dipolar and quadrupolar contributions and a better understanding of these signals. Among the few works dedicated to the magnetic properties of RE under pressure, it has been shown that metallic Dysprosium is no more magnetic above 7.5 GPa. Our XMCD measurements contradict this result since a signal is still observed.

  7. Solvent extraction of rare-earth metals by carboxylic acids

    SciTech Connect

    Preez, A.C. du; Preston, J.S.

    1992-04-01

    The solvent extraction of the trivalent lanthanides and yttrium from nitrate media by solutions of carboxylic acids in xylene has been studied. Commercially available carboxylic acids such as Versatic 10 and naphthenic acids were used, as well as model compounds of known structure, such as 2-ethylhexanoic and 3-cyclohexylpropanoic acids. In a few cases, extraction of the metals from sulphate and chloride solutions was also investigated. The dependence of the extraction properties of the carboxylic acids on the atomic number of the lanthanide shows a definite relationship to the steric bulk of the carboxylic acid molecule quantified by means of the steric parameter, E{sub s}{prime} of the substituent alkyl group. The stoichiometries of the extracted complexes for representative light (La), middle (Gd) and heavy (Lu) rare-earth metals were investigated by the slope-analysis technique for a sterically hindered acid (Versatic 10 acid; -E{prime}{sub s} = 3.83) and an acid with low steric hindrance (3-cyclohexylpropanoic acid; -E{prime}{sub s} = 0.28). 14 refs., 13 figs., 3 tabs.

  8. Rare-earth metal diisopropylamide-catalyzed intramolecular hydroamination.

    PubMed

    Spallek, Tatiana; Anwander, Reiner

    2016-10-18

    Rare-earth metal diisopropylamide complexes LiLn(NiPr2)4(THF) (Ln = Sc, Y, La), [LiY(NiPr2)4]n, NaLn(NiPr2)4(THF) (Ln = Sc, Y), Sc(NiPr2)3(THF) and Ce(NiPr2)4 were screened as catalysts for the intramolecular hydroamination/cyclization (IHC) of 1-amino-2,2-dimethyl-4-pentene, 1-amino-2,2-diphenyl-4-pentene, and 1-amino-2,2-diphenyl-5-hexene at ambient and moderately increased temperature of 60 °C in C6D6. The lithium ate complexes displayed the most efficient precatalysts with high conversion rates at 60 °C for the phenyl-substituted substrates and Ln = Y and La, affording turnover frequencies Nt as high as 164 h(-1). The catalytic activity could be increased by employing THF-free complex [LiY(NiPr2)4]n (Nt = 45.8 h(-1) at 26 °C; 34.1 h(-1) for LiY(NiPr2)4(THF)). In situ generation of putative LiY(NiPr2)4(THF) from YCl3(THF)3.3 and four equivalents of LiNiPr2 (LDA) in C6D6 generated a catalyst revealing Nt comparable to pre-isolated crystallized LiY(NiPr2)4(THF) but yielding even higher substrate conversion. The IHC reactions were also examined for rare-earth metal bis(trimethylsilyl)amide catalysts Ln[N(SiMe3)2]3 (Ln = Sc, Y, La) as well as for LDA using the same reaction conditions, revealing overall superior activity of the silylamide derivatives but poor performance of LDA compared to the rare-earth metal diisopropylamide complexes LiLn(NiPr2)4(THF). Cyclization of 1-amino-2,2-diphenyl-5-hexene to the 6-membered heterocycle 2-methyl-4,4-diphenylpiperidine by lanthanum derivative LiLa(NiPr2)4(THF) was accompanied by a competitive isomerization reaction affording max. 20% of 1-amino-2,2-diphenyl-4-hexene after 2 h at 60 °C. Crystalline tetravalent Ce(NiPr2)4 showed a better IHC performance than crystalline trivalent Sc(NiPr2)3(THF) as preliminary examined for 1-amino-2,2-diphenyl-4-pentene at 26 °C (Nt = 5.6 and 0.9 h(-1), respectively), but cyclization came to a halt after 2 h, probably due to decomposition of the catalyst.

  9. Synthesis, structure and reactivity of rare-earth metal complexes containing anionic phosphorus ligands.

    PubMed

    Li, Tianshu; Kaercher, Sabrina; Roesky, Peter W

    2014-01-07

    A comprehensive review of structurally characterized rare-earth metal complexes containing anionic phosphorus ligands is presented. Since rare-earth elements form hard ions and phosphorus is considered as a soft ligand, the rare-earth metal phosphorus coordination is regarded as a less favorite combination. Three classes of phosphorus ligands, (1) the monoanionic organophosphide ligands (PR2(-)) bearing one negative charge on the phosphorus atom; (2) the dianionic phosphinidene (PR(2-)) and P(3-) ligands; and (3) the pure inorganic polyphosphide ligands (Pn(x-)), are included here. Particular attention has been paid to the synthesis, structure, and reactivity of the rare-earth metal phosphides.

  10. Yttrium and rare earth stabilized fast reactor metal fuel

    DOEpatents

    Guon, Jerold; Grantham, LeRoy F.; Specht, Eugene R.

    1992-01-01

    To increase the operating temperature of a reactor, the melting point and mechanical properties of the fuel must be increased. For an actinide-rich fuel, yttrium, lanthanum and/or rare earth elements can be added, as stabilizers, to uranium and plutonium and/or a mixture of other actinides to raise the melting point of the fuel and improve its mechanical properties. Since only about 1% of the actinide fuel may be yttrium, lanthanum, or a rare earth element, the neutron penalty is low, the reactor core size can be reduced, the fuel can be burned efficiently, reprocessing requirements are reduced, and the nuclear waste disposal volumes reduced. A further advantage occurs when yttrium, lanthanum, and/or other rare earth elements are exposed to radiation in a reactor, they produce only short half life radioisotopes, which reduce nuclear waste disposal problems through much shorter assured-isolation requirements.

  11. Rare-earth metal prices in the USA ca. 1960 to 1994

    USGS Publications Warehouse

    Hedrick, James B.

    1997-01-01

    Rare-earth metal prices were compiled from the late 1950s and early 1960s through 1994. Although commercial demand for rare-earth metals began in 1908, as the alloy mischmetal, commercial quantities of a wide range of individual rare-earth metals were not available until the late 1950s. The discovery of a large, high-grade rare-earth deposit at Mountain Pass. CA, USA, in 1949, was significant because it led to the production of commercial quantities or rare-earth elements that reduced prices and encouraged wider application of the materials. The availability of ore from Mountain Pass, and other large rare-earth deposits, especially those in Australia and China, has provided the world with abundant resources for rare-earth metal production. This availability, coupled with improved technology from Government and private-sector metallurgical research, has resulted in substantial decreases in rare-earth metal prices since the late 1950s and early 1960s. Price series for the individual rare-earth metals (except promethium) are quoted on a kilogram basis from the late 1950s and early 1960s through 1994. Prices are given in US dollars on an actual and constant dollar basis. Industrial and economic factors affecting prices during this time period are examined.

  12. Rare-earth metal prices in the USA ca. 1960 to 1994

    USGS Publications Warehouse

    Hedrick, J.B.

    1997-01-01

    Rare-earth metal prices were compiled from the late 1950s and early 1960s through 1994. Although commercial demand for rare-earth metals began in 1908, as the alloy mischmetal, commercial quantities of a wide range of individual rare-earth metals were not available until the late 1950s. The discovery of a large, high-grade rare-earth deposit at Mountain Pass, CA, USA, in 1949, was significant because it led to the production of commercial quantities of rare-earth elements that reduced prices and encouraged wider application of the materials. The availability of ore from Mountain Pass, and other large rare-earth deposits, especially those in Australia and China, has provided the world with abundant resources for rare-earth metal production. This availability, coupled with improved technology from Government and private-sector metallurgical research, has resulted in substantial decreases in rare-earth metal prices since the late 1950s and early 1960s. Price series for the individual rare-earth metals (except promethium) are quoted on a kilogram basis from the late 1950s and early 1960s through 1994. Prices are given in US dollars on an actual and constant dollar basis. Industrial and economic factors affecting prices during this time period are examined.

  13. Structural relationships in rare earth-transition metal hydrides

    SciTech Connect

    Dunlap, B. D.; Viccaro, P. J.; Shenoy, G. K.

    1980-01-01

    Several structural types of form AB/sub 2/, AB/sub 3/, A/sub 2/B/sub 7/, and AB/sub 5/ (A = rare earth, B = transition metal) are known to be closely related, with local environments which are very similar among the different compounds. Based on these relationships, we suggest that hydride phases A/sub l/B/sub m/H/sub n/ should be related according to the relationships n(AB/sub 3/) = 1/3n(AB/sub 5/) + 2/3n(AB/sub 2/) and n(A/sub 2/B/sub 7/) = n(AB/sub 5/) + n(AB/sub 2/) where the n(AB/sub m/) are observed hydrogen phase concentrations. It is shown that the phases observed in pressure-composition isotherms for AB/sub 3/ and A/sub 2/B/sub 7/ systems can be understood from this viewpoint. A discussion is given of the maximum hydrogen concentration possible in the compounds having these structure types.

  14. Shape-controlled syntheses of metal oxide nanoparticles by the introduction of rare-earth metals.

    PubMed

    Song, Hyo-Won; Kim, Na-Young; Park, Ji-Eun; Ko, Jae-Hyeon; Hickey, Robert J; Kim, Yong-Hyun; Park, So-Jung

    2017-02-23

    Here, we report the size- and shape-controlled synthesis of metal oxide nanoparticles through the introduction of rare-earth metals. The addition of gadolinium oleate in the synthesis of iron oxide nanoparticles induced sphere-to-cube shape changes of nanoparticles and generated iron oxide nanocubes coated with gadolinium. Based on experimental investigations and density functional theory (DFT) calculations, we attribute the shape change to the facet-selective binding of undecomposed gadolinium oleates. While many previous studies on the shape-controlled syntheses of nanoparticles rely on the stabilization of specific crystal facets by anionic surfactants or their decomposition products, this study shows that the interaction between growing transition metal oxide nanoparticles and rare-earth metal complexes can be used as a robust new mechanism for shape-controlled syntheses. Indeed, we demonstrated that this approach was applicable to other transition metal oxide nanoparticles (i.e., manganese oxide and manganese ferrite) and rare earth metals (i.e., gadolinium, europium, and cerium). This study also demonstrates that the nature of metal-ligand bonding can play an important role in the shape control of nanoparticles.

  15. Rare earths

    USGS Publications Warehouse

    Gambogi, J.

    2013-01-01

    Global mine production of rare earths was estimated to have declined slightly in 2012 relative to 2011 (Fig. 1). Production in China was estimated to have decreased to 95 from 105 kt (104,700 from 115,700 st) in 2011, while new mine production in the United States and Australia increased.

  16. Calculation of binary phase diagrams between the actinide elements, rare earth elements, and transition metal elements

    SciTech Connect

    Selle, J E

    1992-06-26

    Attempts were made to apply the Kaufman method of calculating binary phase diagrams to the calculation of binary phase diagrams between the rare earths, actinides, and the refractory transition metals. Difficulties were encountered in applying the method to the rare earths and actinides, and modifications were necessary to provide accurate representation of known diagrams. To calculate the interaction parameters for rare earth-rare earth diagrams, it was necessary to use the atomic volumes for each of the phases: liquid, body-centered cubic, hexagonal close-packed, and face-centered cubic. Determination of the atomic volumes of each of these phases for each element is discussed in detail. In some cases, empirical means were necessary. Results are presented on the calculation of rare earth-rare earth, rare earth-actinide, and actinide-actinide diagrams. For rare earth-refractory transition metal diagrams and actinide-refractory transition metal diagrams, empirical means were required to develop values for the enthalpy of vaporization for rare earth elements and values for the constant (C) required when intermediate phases are present. Results of using the values determined for each element are presented.

  17. Novel polymerization catalysts and hydride clusters from rare-earth metal dialkyls.

    PubMed

    Nishiura, Masayoshi; Hou, Zhaomin

    2010-04-01

    This Review gives an overview on recent progress in the synthesis and chemistry of rare-earth metal dialkyl complexes bearing monoanionic ancillary ligands, with an emphasis on novel polymerization catalysts. These structurally well-defined and highly reactive compounds are prepared either by alkane elimination reactions between trialkyl rare-earth complexes and acidic neutral ligands, or by the metathetical reactions of rare-earth trihalides with the alkali metal salts of the corresponding ligands. On treatment with an appropriate borate compound, the dialkyl complexes are converted into the corresponding cationic monoalkyl species, which serve as excellent catalysts for the polymerization and copolymerization of a variety of olefins to yield a series of new polymer materials that exhibit novel properties. Alternatively, hydrogenation of the dialkyl rare-earth complexes with H(2) affords a new class of rare-earth polyhydride complexes with unique features in terms of both their structure and reactivity.

  18. Environmental Defects And Economic Impact On Global Market Of Rare Earth Metals

    NASA Astrophysics Data System (ADS)

    Charalampides, G.; Vatalis, K.; Karayannis, V.; Baklavaridis, A.

    2016-11-01

    Rare earth elements include the 14 lanthanides as well as lanthanium and often yttrium. Actually, most of them are not very rare and occur widely dispersed in a variety of rocks. Rare earth metals are vital to some of the world's faster growing industries: catalysts, Nd-magnets, ceramics, glass, metallurgy, battery alloys, electronics and phosphors. Worldwide, the main countries for distribution of rare earths deposits include China, USA, Russia, Brasil, India, Australia, Greenland and Malaysia. The mining and processing of rare earth metals usually result in significant environmental defects. Many deposits are associated with high concentrations of radioactive elements such as uranium and thorium, which requires separate treatment and disposal. The accumulation of rare earth elements in soils has occurred due to pollution caused by the exploitation of rare earth resources and the wide use of rare earths as fertilizers in agriculture. This accumulation has a toxic effect on the soil microfauna community. However, there are large differences in market prices due to the degree of purity determined by the specifications in the applications. The main focus of this article is to overview Rare Earth Metals’ overall impact on global economy and their environmental defects on soils during processing techniques and as they are used as fertilizers.

  19. Direct experimental evidence for the Ruderman-Kittel-Kasuya-Yosida interaction in rare-earth metals.

    PubMed

    Hindmarch, A T; Hickey, B J

    2003-09-12

    We show that the ferromagnetic heavy rare-earth (RE) metals show a transport spin polarization at the Fermi level in the majority spin, whereas in ferromagnetic light rare earths it is in the minority spin. The sign of the polarization is in agreement with what is expected due to the Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling formalism. We show that magnetotransport measurements on magnetic multilayer samples containing magnetic REs provide a unique opportunity to verify the RKKY coupling scheme in pure rare-earth metals, allowing us to probe both the sign and temperature dependence of the spin-density oscillation.

  20. Preparation of enriched rare-earth metals by hydrofluorination and reduction

    NASA Astrophysics Data System (ADS)

    Brashear, D. R.; Zevenbergen, L. A.

    1999-12-01

    Enriched rare-earth metals are employed in many areas of basic and applied research. Capabilities for preparing enriched rare-earth metals at Oak Ridge National Laboratory have been limited in recent years to reduction-distillation of the oxides of Sm, Eu, and Yb, using La as a reductant. The capability for producing enriched Ce, Nd, Gd, Dy, Er, and Lu in gram quantities has recently been restored via hydrofluorination of the oxide followed by metallothermic reduction employing Ca as a reductant. Typical yields for gram-quantity conversion of rare-earth oxides have been demonstrated to be 90% or greater.

  1. Selective transformations of cyclopentadienyl ligands of transition-metal and rare-earth metal complexes.

    PubMed

    Liu, Ruiting; Zhou, Xigeng

    2013-04-21

    Cyclopentadienyl and substituted cyclopentadienyl ligands are observed in a wide range of organometallic complexes. In addition to serving as ancillary ligands, these ligands have come into their own as intermediates in organometallic reactions, and shown many unique reaction modes involving ring C-H, C-C and C=C bond cleavages. This feature article summarizes the progressive development of cyclopentadienyl-based reactions of metallocene complexes of transition metals and rare-earth metals, with the aim of further developing the fundamental modes of reactivity of such systems together with their synthetic applications.

  2. Oligomeric rare-earth metal cluster complexes with endohedral transition metal atoms

    SciTech Connect

    Steinberg, Simon; Zimmermann, Sina; Brühmann, Matthias; Meyer, Eva; Rustige, Christian; Wolberg, Marike; Daub, Kathrin; Bell, Thomas; Meyer, Gerd

    2014-11-15

    Comproportionation reactions of rare-earth metal trihalides (RX{sub 3}) with the respective rare-earth metals (R) and transition metals (T) led to the formation of 22 oligomeric R cluster halides encapsulating T, in 19 cases for the first time. The structures of these compounds were determined by single-crystal X-ray diffraction and are composed of trimers ((T{sub 3}R{sub 11})X{sub 15}-type, P6{sub 3}/m), tetramers ((T{sub 4}R{sub 16})X{sub 28}(R{sub 4}) (P-43m), (T{sub 4}R{sub 16})X{sub 20} (P4{sub 2}/nnm), (T{sub 4}R{sub 16})X{sub 24}(RX{sub 3}){sub 4} (I4{sub 1}/a) and (T{sub 4}R{sub 16})X{sub 23} (C2/m) types of structure) and pentamers ((Ru{sub 5}La{sub 14}){sub 2}Br{sub 39}, Cc) of (TR{sub r}){sub n} (n=2–5) clusters. These oligomers are further enveloped by inner (X{sup i}) as well as outer (X{sup a}) halido ligands, which possess diverse functionalities and interconnect like oligomers through i–i, i–a and/or a–i bridges. The general features of the crystal structures for these new compounds are discussed and compared to literature entries as well as different structure types with oligomeric T centered R clusters. Dimers and tetramers originating from the aggregation of (TR{sub 6}) octahedra via common edges are more frequent than trimers and pentamers, in which the (TR{sub r}) clusters share common faces. - Graphical abstract: Rare earth-metal cluster complexes with endohedral transition metal atoms (TR{sub 6}) may connect via common edges or faces to form dimers, trimers, tetramers and pentamers of which the tetramers are the most prolific. Packing effects and electron counts play an important role. - Highlights: • Rare-earth metal cluster complexes encapsulate transition metal atoms. • Oligomers are built via connection of octahedral clusters via common edges or faces. • Dimers through pentamers with closed structures are known. • Tetramers including a tetrahedron of endohedral atoms are the most prolific.

  3. Novel syntergistic agent for selective separation of yttrium from other rare earth metals

    SciTech Connect

    Miyata, Terufumi; Goto, Masahiro; Nakashio, Fumiyuki

    1995-06-01

    An oil-soluble synergistic agent has been developed for the selective separation of yttrium (Y) from the other rare earth metals. The synergistic agent is a polyaminocarboxylic acid alkylderivative and has interfacial activity like that of surfactants. Separation of yttrium from heavy rare earth metals (erbium (Er) and holmium (Ho)) in the presence of the synergistic agent was carried out with a 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester as a carrier using a hollow-fiber membrane extractor. The new agent shows a synergistic effect on the permeation rate of rare earth metals at the oil-water interface. By the addition of a small amount of the agent, the selectivity for yttrium from the two rare earth metals was enhanced remarkably, because of the permeation rate of Y was selectively decreased compared with those of Er and Ho. The synergistic effect is discussed from the viewpoint of the stability constant for rare earth metals and the interfacial activity of the synergistic agent. The difference in interaction between the synergistic agent and rare earth ions at the oil-water interface results in an increase in the separation efficiency.

  4. High Pressure Phase Transformations in Heavy Rare Earth Metals and Connections to Actinide Crystal Structures

    SciTech Connect

    Vohra, Yogesh K.; Sangala, Bagvanth Reddy; Stemshorn, Andrew K.; Hope, Kevin M.

    2008-07-01

    High-pressure studies have been performed on heavy rare earth metals Terbium (Tb) to 155 GPa and Holmium (Ho) to 134 GPa in a diamond anvil cell at room temperature. The following crystal structure sequence was observed in both metals hcp {yields} Sm-type {yields} dhcp {yields} distorted fcc (hR-24) {yields} monoclinic (C2/m) with increasing pressure. The last transformation to a low symmetry monoclinic phase is accompanied by a volume collapse of 5 % for Tb at 51 GPa and a volume collapse of 3 % for Ho at 103 GPa. This volume collapse under high pressure is reminiscent of f-shell delocalization in light rare earth metal Cerium (Ce), Praseodymium (Pr), and heavy actinide metals Americium (Am) and Curium (Cm). The orthorhombic Pnma phase that has been reported in Am and Cm after f-shell delocalization is not observed in heavy rare earth metals under high pressures. (authors)

  5. Oligomeric rare-earth metal cluster complexes with endohedral transition metal atoms

    NASA Astrophysics Data System (ADS)

    Steinberg, Simon; Zimmermann, Sina; Brühmann, Matthias; Meyer, Eva; Rustige, Christian; Wolberg, Marike; Daub, Kathrin; Bell, Thomas; Meyer, Gerd

    2014-11-01

    Comproportionation reactions of rare-earth metal trihalides (RX3) with the respective rare-earth metals (R) and transition metals (T) led to the formation of 22 oligomeric R cluster halides encapsulating T, in 19 cases for the first time. The structures of these compounds were determined by single-crystal X-ray diffraction and are composed of trimers ({T3R11}X15-type, P63/m), tetramers ({T4R16}X28{R4} (P-43m), {T4R16}X20 (P42/nnm), {T4R16}X24(RX3)4 (I41/a) and {T4R16}X23 (C2/m) types of structure) and pentamers ({Ru5La14}2Br39, Cc) of {TRr}n (n=2-5) clusters. These oligomers are further enveloped by inner (Xi) as well as outer (Xa) halido ligands, which possess diverse functionalities and interconnect like oligomers through i-i, i-a and/or a-i bridges. The general features of the crystal structures for these new compounds are discussed and compared to literature entries as well as different structure types with oligomeric T centered R clusters. Dimers and tetramers originating from the aggregation of {TR6} octahedra via common edges are more frequent than trimers and pentamers, in which the {TRr} clusters share common faces.

  6. Asymmetric Catalysis with bis(hydroxyphenyl)diamides/rare-earth metal complexes.

    PubMed

    Kumagai, Naoya; Shibasaki, Masakatsu

    2013-01-02

    A series of asymmetric catalysts composed of conformationally flexible amide-based chiral ligands and rare-earth metals was developed for proton-transfer catalysis. These ligands derived from amino acids provide an intriguing chiral platform for the formation of asymmetric catalysts upon complexation with rare-earth metals. The scope of this arsenal of catalysts was further broadened by the development of heterobimetallic catalytic systems. The cooperative function of hydrogen bonding and metal coordination resulted in intriguing substrate specificity and stereocontrol, and the dynamic nature of the catalysts led to a switch of their function. Herein, we summarize our recent exploration of this class of catalysts.

  7. Possible ferrimagnetic coupling in light-rare-earth transition-metal intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Zhao, Z. G.; de Boer, F. R.; Duijn, V. H. M.; Buschow, K. H. J.; Chuang, Y. C.

    1994-05-01

    The possibility of ferrimagnetic coupling between the magnetic moments of the light-rare-earth (Nd, Pr) ions and of the transition-metal (Fe) ions in Nd6Ga3Fe11- and Pr6Ga3Fe11-based compounds is deduced from the high-field magnetization curves measured at 4.2 K on magnetically aligned and on free-powder samples and from the temperature dependence of the magnetization. The ferrimagnetic coupling is very weak: at 4.2 K, the rare-earth moments and the transition-metal moments can be forced to ferromagnetic alignment by application of an external magnetic field of about 4 T. Generally, in intermetallic compounds, the magnetic coupling is ferromagnetic between light-rare-earth and transition-metal ions and ferrimagnetic between heavy-rare-earth and transition-metal ions. The present results suggest that in some crystal structures ferrimagnetic coupling also may exist in the compounds formed by light-rare-earth and transition-metal elements.

  8. High-temperature desulfurization of gasifier effluents with rare earth and rare earth/transition metal oxides

    SciTech Connect

    Dooley, Kerry M.; Kalakota, Vikram; Adusumilli, Sumana

    2011-02-11

    We have improved the application of mixed rare-earth oxides (REOs) as hot gas desulfurization adsorbents by impregnating them on stable high surface area supports and by the inclusion of certain transition metal oxides. We report comparative desulfurization experiments at high temperature (900 K) using a synthetic biomass gasifier effluent containing 0.1 vol % H2S, along with H2, CO2, and water. More complex REO sorbents outperform the simpler CeO2/La2O3 mixtures, in some cases significantly. Supporting REOs on Al2O3 (~20 wt % REO) or ZrO2 actually increased the sulfur capacities found after several cycles on a total weight basis. Another major increase in sulfur capacity took place when MnOx or FeOx is incorporated. Apparently most of the Mn or Fe is dispersed on or near the surface of the mixed REOs because the capacities with REOs greatly exceeded those of Al2O3-supported MnOx or FeOx alone at these conditions. In contrast, incorporating Cu has little effect on sulfur adsorption capacities. Both the REO and transition metal/REO adsorbents could be regenerated completely using air for at least five repetitive cycles.

  9. Rare-Earth Metals and Their Applications in Aviation

    DTIC Science & Technology

    1984-08-01

    promethium , samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, scandium and yttrium. Based on the...yttrium. Aside from these, promethium is an artifical element, it has radioactivity and is almost non-existent in the earth’s crust. The term "rate-earth

  10. Correlation between volatility of rare-earth metals and encapsulation of their carbides in carbon nanocapsules

    SciTech Connect

    Saito, Yahachi; Okuda, Mitsumasa; Yoshikawa, Tadanobu ); Kasuya, Atsuo; Nishina, Yuichiro )

    1994-07-07

    Encapsulation of metals in multilayered graphitic capsules has been studied for all the rare-earth elements (Sc, Y, and Ln = La, Ce, ..., Lu) excluding Pm by using electric arc discharge. Electron microscopy and X-ray diffraction of carbonaceous products revealed that most of rare-earth metals (Sc, Y, La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, and Lu) were encapsulated in the form of carbides, but the others, Sm, Eu, and Yb, were not. The metals in the former group that were encapsulated had vapor pressures definitely lower than those in the latter group. In the case of thulium (Tm), whose vapor pressure is intermediate between the two groups, only a trace amount of encapsulated carbide was formed. Correlation of volatility of metals with encapsulation was clearly found, suggesting that the volatility of a metal plays an important role in a process of the metal encapsulation. 25 refs., 4 figs., 1 tab.

  11. Metal enhanced fluorescence in rare earth doped plasmonic core-shell nanoparticles.

    PubMed

    Derom, S; Berthelot, A; Pillonnet, A; Benamara, O; Jurdyc, A M; Girard, C; Colas des Francs, G

    2013-12-13

    We theoretically and numerically investigate metal enhanced fluorescence of plasmonic core-shell nanoparticles doped with rare earth (RE) ions. Particle shape and size are engineered to maximize the average enhancement factor (AEF) of the overall doped shell. We show that the highest enhancement (11 in the visible and 7 in the near-infrared) is achieved by tuning either the dipolar or the quadrupolar particle resonance to the rare earth ion's excitation wavelength. Additionally, the calculated AEFs are compared to experimental data reported in the literature, obtained in similar conditions (plasmon mediated enhancement) or when a metal-RE energy transfer mechanism is involved.

  12. Structure of Some 4f Rare Earth Liquid Metals — A Charged Hard Sphere Approach

    NASA Astrophysics Data System (ADS)

    P. B., Thakor; P. N., Gajjar; A. R., Jani

    2006-08-01

    A well-established pseodopotential is used to study the structure of some 4f rare earth liquid metals (Ce, Pr, Eu, Gd, Tb, and Yb). The structure factor S(q), pair distribution function g(r), interatomic distance r1, and coordination number n1 are calculated using Charged Hard Sphere (CHS) reference system. To introduce the exchange and correlation effects, the local field correction due to Sarkar et al. (S) is applied. The present investigation is successful in generating the structural information of Ce, Pr, Eu, Gd, Tb, and Yb 4f rare earth liquid metals.

  13. Direct evidence of the anisotropy of magnetization in rare-earth metals and rare-earth/Fe2 alloys

    NASA Astrophysics Data System (ADS)

    Benito, L.; Dumesnil, K.; Ward, R. C. C.

    2014-08-01

    We report on the genuine origin of the anisotropy of the magnetization M in rare-earth (RE) metals and RE-based alloys. Taking Ho-based layered nanostructures as testing ground, we prove that the anisotropy of M is substantial despite that the sixfold magnetic anisotropy constant K66 vanishes, which contradicts the established wisdom [E. R. Callen and H. B. Callen, J. Phys. Chem. Solids 16, 310 (1960), 10.1016/0022-3697(60)90161-X]. Furthermore, we show that the symmetric anisotropic contributions to M and K66 vary with temperature distinctively from one another, which indicates that both anisotropic effects are unrelated and stem from dissimilar microscopic sources. Our findings are discussed according to the theory [R. J. Elliott and M. F. Thorpe, J. Appl. Phys. 39, 802 (1968), 10.1063/1.2163622] that predicts the emergence of symmetric anisotropic indirect-exchange terms under the presence of orbital moments. We show evidence that the anisotropy of M is caused by the indirect-exchange coupling among localized 4f magnetic moments mediated by spin-orbit coupled conduction electrons, which ultimately generates a spatially nonuniform spin polarization that replicates the lattice symmetry.

  14. Effect of Rare Earth Metals on the Microstructure of Al-Si Based Alloys.

    PubMed

    Alkahtani, Saleh A; Elgallad, Emad M; Tash, Mahmoud M; Samuel, Agnes M; Samuel, Fawzy H

    2016-01-13

    The present study was performed on A356 alloy [Al-7 wt %Si 0.0.35 wt %Mg]. To that La and Ce were added individually or combined up to 1.5 wt % each. The results show that these rare earth elements affect only the alloy melting temperature with no marked change in the temperature of Al-Si eutectic precipitation. Additionally, rare earth metals have no modification effect up to 1.5 wt %. In addition, La and Ce tend to react with Sr leading to modification degradation. In order to achieve noticeable modification of eutectic Si particles, the concentration of rare earth metals should exceed 1.5 wt %, which simultaneously results in the precipitation of a fairly large volume fraction of insoluble intermetallics. The precipitation of these complex intermetallics is expected to have a negative effect on the alloy performance.

  15. Shifted homologous relationships between the transplutonium and early rare-earth metals

    SciTech Connect

    Ward, J.W.

    1984-01-01

    The physico-chemical properties of the late actinide metals americium through einsteinium are compared with their rare-earth counterparts. Localization of the 5f electrons beginning at americium signals the appearance of true rare-earth-like properties, but the homologous relationship is shifted to place americium below praseodymium, einsteinium then below europium. The comparison of crystal structure, phase transitions, vapor pressures and heats of vaporization reveals remarkable similarities, especially for Sm-Cf and Eu-Es, where the stability of the divalent metal becomes established and divalent chemistry then follows. There is of course a major perturbation at the half-filled shell at curium, and it may be argued that americium is the anomaly in the so-called second rare-earth series. However, the response of americium, berkelium and californium under pressure reveals the true perturbation to be a thermodynamic one, occurring at curium.

  16. Effect of Rare Earth Metals on the Microstructure of Al-Si Based Alloys

    PubMed Central

    Alkahtani, Saleh A.; Elgallad, Emad M.; Tash, Mahmoud M.; Samuel, Agnes M.; Samuel, Fawzy H.

    2016-01-01

    The present study was performed on A356 alloy [Al-7 wt %Si 0.0.35 wt %Mg]. To that La and Ce were added individually or combined up to 1.5 wt % each. The results show that these rare earth elements affect only the alloy melting temperature with no marked change in the temperature of Al-Si eutectic precipitation. Additionally, rare earth metals have no modification effect up to 1.5 wt %. In addition, La and Ce tend to react with Sr leading to modification degradation. In order to achieve noticeable modification of eutectic Si particles, the concentration of rare earth metals should exceed 1.5 wt %, which simultaneously results in the precipitation of a fairly large volume fraction of insoluble intermetallics. The precipitation of these complex intermetallics is expected to have a negative effect on the alloy performance. PMID:28787844

  17. Rare earth metal oxazoline complexes in asymmetric catalysis.

    PubMed

    Ward, Benjamin D; Gade, Lutz H

    2012-11-07

    Polydentate oxazolines have been employed as highly effective stereodirecting ligands for asymmetric catalysis with metals from across most of the periodic table. Despite their highly versatile coordination chemistry, the use of these ligands tends to be polarised towards late transition metals; their use with early transition metals and the f-elements is significantly less developed. This current article aims to review the coordination chemistry and catalytic applications of Group 3 and lanthanide complexes supported by ligands possessing oxazoline moieties. Oxazoline-containing ligands were first employed in molecular lanthanide catalysis as early as 1997, yet there is still a significant void in the chemical literature in this respect. The ligands generally employed include bis(oxazolinyl)methane ("BOX"), 2,6-bis(oxazolinyl)pyridine ("pybox"), 1,1,1-tris(oxazolinyl)ethane ("trisox"), and others. The complexes are employed in a wide-range of catalytic applications, especially in Lewis acid catalysis, but also in the stereospecific polymerisation of olefins.

  18. Rare earth element recycling from waste nickel-metal hydride batteries.

    PubMed

    Yang, Xiuli; Zhang, Junwei; Fang, Xihui

    2014-08-30

    With an increase in number of waste nickel-metal hydride batteries, and because of the importance of rare earth elements, the recycling of rare earth elements is becoming increasingly important. In this paper, we investigate the effects of temperature, hydrochloric acid concentration, and leaching time to optimize leaching conditions and determine leach kinetics. The results indicate that an increase in temperature, hydrochloric acid concentration, and leaching time enhance the leaching rate of rare earth elements. A maximum rare earth elements recovery of 95.16% was achieved at optimal leaching conditions of 70°C, solid/liquid ratio of 1:10, 20% hydrochloric acid concentration, -74μm particle size, and 100min leaching time. The experimental data were best fitted by a chemical reaction-controlled model. The activation energy was 43.98kJ/mol and the reaction order for hydrochloric acid concentration was 0.64. The kinetic equation for the leaching process was found to be: 1-(1-x)(1/3)=A/ρr0[HCl](0.64)exp-439,8008.314Tt. After leaching and filtration, by adding saturated oxalic solution to the filtrate, rare earth element oxalates were obtained. After removing impurities by adding ammonia, filtering, washing with dilute hydrochloric acid, and calcining at 810°C, a final product of 99% pure rare earth oxides was obtained.

  19. Interaction of copper metallization with rare-earth metals and silicides

    SciTech Connect

    Molnar, G. L.; Peto, G.; Zsoldos, E.; Horvath, Z. E.

    2001-07-01

    Solid-phase reactions of copper films with underlying gadolinium, erbium, and erbium{endash}silicide layers on Si(100) substrates were investigated. For the phase analysis, x-ray diffraction and cross-sectional transmission electron microscopy were used. In the case of Cu/Gd/Si(100), an orthorhombic GdSi{sub 2} formed, and, at higher temperatures, copper aggregated into islands. Annealed Cu/Er/Si(100) samples resulted in a hexagonal Er{sub 5}Si{sub 3} phase. In the Cu/ErSi{sub 2{minus}x}/Si system, the copper catalyzes the transformation of the highly oriented hexagonal ErSi{sub 2{minus}x} phase into hexagonal Er{sub 5}Si{sub 3}. Diverse phase developments of the samples with Gd and Er are based on reactivity differences of the two rare-earth metals. {copyright} 2001 American Institute of Physics.

  20. Yttrium and rare earth stabilized fast reactor metal fuel

    SciTech Connect

    Guon, J.; Grantham, L.F.; Specht, E.R.

    1992-05-12

    This patent describes an improved metal alloy reactor fuel consisting essentially of uranium, plutonium, and at least one element from the group consisting of yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium.

  1. Rare-earth-doped bifunctional alkaline-earth metal fluoride nanocrystals via a facile microwave-assisted process.

    PubMed

    Pang, Min; Liu, Dapeng; Lei, Yongqian; Song, Shuyan; Feng, Jing; Fan, Weiqiang; Zhang, Hongjie

    2011-06-20

    Rare-earth-doped magnetic-optic bifunctional alkaline-earth metal fluoride nanocrystals have been successfully synthesized via a facile microwave-assisted process. The as-prepared nanocrystals were monodisperse and could form stable colloidal solutions in polar solvents, such as water and ethanol. They show bright-green fluorescence emisson. Furthermore, Gd(3+)-doped ones exhibit paramagnetic behavior at room temperature and superparamagnetic behavior at 2 K.

  2. Adsorption Behavior of Rare Earth Metal Cations in the Interlayer Space of γ-ZrP.

    PubMed

    Takei, Takahiro; Iidzuka, Kiyoaki; Miura, Akira; Yanagida, Sayaka; Kumada, Nobuhiro; Magome, Eisuke; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2016-10-04

    Adsorption competencies of rare earth metal cations in γ-zirconium phosphate were examined by ICP, synchrotron X-ray diffraction (SXRD), and ab initio simulation. The adsorption amounts are around 0.06-0.10 per zirconium phosphate. From the SXRD patterns of the adsorbed samples, the basal spacing estimated by c sin β increased linearly with an increasing ionic radius of rare earth metal cation, though a and b lattice constants show no change. These SXRD patterns can be classified into four groups that have different super lattices. The four superlattices have multiplicities of x131, x241, and x221 for the xabc axis, and the location of the rare earth metal cation in the original unit cell changes depending on the superlattice cell. In the x131 superlattice, Yb and Er occupied the site near the zirconium phosphate layer, though La and Ce in the x221 superlattice remained in the center position between the phosphate sheet. For the ab initio simulation of γ-ZrP with the typical rare earth metal cations (Tb, Eu, Dy, and La), the results of simulation show a similar tendency of the position estimated by SXRD refinements.

  3. Catalysis of Ugi four component coupling reactions by rare earth metal triflates.

    PubMed

    Okandeji, Babajide O; Gordon, Jonathan R; Sello, Jason K

    2008-07-18

    Substoichiometric quantities of scandium and ytterbium triflate increase the yield of Ugi four component coupling reactions of aromatic aldehydes 2- to 7-fold. These rare earth metal triflates enhance the reaction yields primarily via activation of the imine intermediate of this multicomponent reaction.

  4. Rare Earth Metal Silicides Synthesized by High Current Metal Ion Implantation

    NASA Astrophysics Data System (ADS)

    Cheng, X. Q.; Wang, R. S.; Tang, X. J.; Liu, B. X.

    2003-08-01

    The YSi2, LaSi2, CeSi2, PrSi2, NdSi2, SmSi2, GdSi2, TbSi2, DySi2, and ErSi2 layers were formed on Si wafers by respective high current metal-ion implantation using a metal vacuum vapor arc (MEVVA) ion source and the formation temperature was considerable lower than the critical temperatures (300-350°C) required for the rare earth metal silicides by solid-state reaction. It was found that the crystalline structures could be improved with increasing slightly the formation temperature as well as the implantation dose. Concerning the growth kinetics, in some cases, fractal patterns were observed on Si surfaces and the branches of the fractals consisted of the grains of respective precipitated silicides. Interestingly, the fractal dimension increased with formation temperature and eventually approached to a value of 2.0, corresponding to a continuous layer, which was required in practical application. The formation mechanism as well as the growth kinetics was discussed in terms of the far-from-equilibrium process involved in the MEVVA ion implantation.

  5. Rare earth zirconium oxide buffer layers on metal substrates

    DOEpatents

    Williams, Robert K.; Paranthaman, Mariappan; Chirayil, Thomas G.; Lee, Dominic F.; Goyal, Amit; Feenstra, Roeland

    2001-01-01

    A laminate article comprises a substrate and a biaxially textured (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer over the substrate, wherein 0metal-organic decomposition. The laminate article can include a layer of YBCO over the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer. A layer of CeO.sub.2 between the YBCO layer and the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer can also be include. Further included can be a layer of YSZ between the CeO.sub.2 layer and the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer. The substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.

  6. New technology of extracting the amount of rare earth metals from the red mud

    NASA Astrophysics Data System (ADS)

    Martoyan, G. A.; Karamyan, G. G.; Vardan, G. A.

    2016-01-01

    The paper outlined the environmental and economic problems associated with red mud - the waste generated in processing of bauxite ore for aluminum production. The chemical analysis of red mud has identified a number of useful elements including rare earth metals. The electromembrane technology of red mud processing with extraction of valuable elements is described. A possible scheme of separation of these metals through electrolysis is also given.

  7. First-principles study of He point-defects in HCP rare-earth metals

    SciTech Connect

    Li, Yang; Chen, Ru; Peng, SM; Long, XG; Wu, Z.; Gao, Fei; Zu, Xiaotao

    2011-05-01

    He defect properties in Sc, Y, Gd, Tb, Dy, Ho, Er and Lu were studied using first-principles calculations based on density functional theory. The results indicate that the formation energy of an interstitial He atom is smaller than that of a substitutional He atom in all hcp rare-earth metals considered. Furthermore, the tetrahedral interstitial position is more favorable than an octahedral position for He defects. The results are compared with those from bcc and fcc metals.

  8. Electronic structure and properties of rare earth and 3d transition metal compounds

    SciTech Connect

    Dagys, R.; Babonas, G.J. )

    1994-03-01

    Excitation energies of various electronic configurations in rare earth and 3d transition metal compounds are considered and related to the peculiarities of the observed electrical and optical properties. Intraionic excitations of 4f, 3d electrons to less localized nl states are shown to be equally important as interionic d-d or charge transfer transitions usually considered, and to be even more significant in compounds containing low valence metals.

  9. Process optimization and kinetics for leaching of rare earth metals from the spent Ni-metal hydride batteries.

    PubMed

    Meshram, Pratima; Pandey, B D; Mankhand, T R

    2016-05-01

    Nickel-metal hydride batteries (Ni-MH) contain not only the base metals, but valuable rare earth metals (REMs) viz. La, Sm, Nd, Pr and Ce as well. In view of the importance of resource recycling and assured supply of the contained metals in such wastes, the present study has focussed on the leaching of the rare earth metals from the spent Ni-MH batteries. The conditions for the leaching of REMs from the spent batteries were optimized as: 2M H2SO4, 348K temperature and 120min of time at a pulp density (PD) of 100g/L. Under this condition, the leaching of 98.1% Nd, 98.4% Sm, 95.5% Pr and 89.4% Ce was achieved. Besides the rare earth metals, more than 90% of base metals (Ni, Co, Mn and Zn) were also leached out in this condition. Kinetic data for the dissolution of all the rare earth metals showed the best fit to the chemical control shrinking core model. The leaching of metals followed the mechanism involving the chemical reaction proceeding on the surface of particles by the lixiviant, which was corroborated by the XRD phase analysis and SEM-EDS studies. The activation energy of 7.6, 6.3, 11.3 and 13.5kJ/mol was acquired for the leaching of neodymium, samarium, praseodymium and cerium, respectively in the temperature range 305-348K. From the leach liquor, the mixed rare earth metals were precipitated at pH∼1.8 and the precipitated REMs was analyzed by XRD and SEM studies to determine the phases and the morphological features.

  10. Rare earths

    SciTech Connect

    Bautista, R.G. ); Wong, M.M. )

    1988-01-01

    The symposium includes papers covering research and developments in mineral processing; extraction; reaction chemistry; high-purity separation; preparation of metals and alloys; physical properties of alloy; applications in superconductors, magnets, catalyst, phosphors, etc.; and economics and marketing. The international nature of the interest is demonstrated by the contribution of papers from six countries.

  11. Efficient separation of transition metals from rare earths by an undiluted phosphonium thiocyanate ionic liquid.

    PubMed

    Rout, Alok; Binnemans, Koen

    2016-06-21

    The ionic liquid trihexyl(tetradecyl)phosphonium thiocyanate has been used for the extraction of the transition metal ions Co(ii), Ni(ii), Zn(ii), and the rare-earth ions La(iii), Sm(iii) and Eu(iii) from aqueous solutions containing nitrate or chloride salts. The transition metal ions showed a high affinity for the ionic liquid phase and were efficiently extracted, while the extraction efficiency of the rare-earth ions was low. This difference in extraction behavior enabled separation of the pairs Co(ii)/Sm(iii), Ni(ii)/La(iii) and Zn(ii)/Eu(iii). These separations are relevant for the recycling of rare earths and transition metals from samarium cobalt permanent magnets, nickel metal hydride batteries and lamp phosphors, respectively. The extraction of metal ions from a chloride or nitrate solution with a thiocyanate ionic liquid is an example of "split-anion extraction", where different anions are present in the aqueous and ionic liquid phase. Close to 100% loading was possible for Co(ii) and Zn(ii) up to a concentration of 40 g L(-1) of the transition metal salt in the initial aqueous feed solution, whereas the extraction efficiency for Ni(ii) gradually decreased with increase in the initial feed concentration. Stripping of Co(ii), Zn(ii) and Ni(ii) from the loaded ionic liquid phase was possible by a 15 wt% NH3 solution. The ionic liquid could reused after extraction and stripping.

  12. High pressure phase transitions in the rare earth metal erbium to 151 GPa.

    PubMed

    Samudrala, Gopi K; Thomas, Sarah A; Montgomery, Jeffrey M; Vohra, Yogesh K

    2011-08-10

    High pressure x-ray diffraction studies have been performed on the heavy rare earth metal erbium (Er) in a diamond anvil cell at room temperature to a pressure of 151 GPa and Er has been compressed to 40% of its initial volume. The rare earth crystal structure sequence hcp → Sm type → dhcp → distorted fcc (hcp: hexagonal close packed; fcc: face centered cubic; dhcp: double hcp) is observed in Er below 58 GPa. We have carried out Rietveld refinement of crystal structures in the pressure range between 58 GPa and 151 GPa. We have examined various crystal structures that have been proposed for the distorted fcc (dfcc) phase and the post-dfcc phase in rare earth metals. We find that the hexagonal hR 24 structure is the best fit between 58 and 118 GPa. Above 118 GPa, a structural transformation from hR 24 phase to a monoclinic C 2/m phase is observed with a volume change of - 1.9%. We have also established a clear trend for the pressure at which a post-dfcc phase is formed in rare earth metals and show that there is a monotonic increase in this pressure with the filling of 4f shell.

  13. Fluoride technology for obtaining high-energy magnetic alloys and ligatures based on rare-earth metals

    SciTech Connect

    Buinovskii, A.S.; Sofronov, V.L.; Chizhikov, V.S.; Shtefan, Yu.P.

    1995-10-20

    Unique specific properties of rare-earth metals (REMs) are to a large extent responsible for the technical progress in many branches of industry, science, and technology. A new fluoride procedure for obtaining high-energy magnetic alloys and ligatures based on rare-earth and transition metals has been proposed.

  14. Bulk and surface electronic structure of actinide, rare earth, and transition metal elements and compounds

    SciTech Connect

    Wills, J.W.; Eriksson, O.

    1996-07-01

    This is the final report for a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to study of unusual magnetic and structural properties of rare earth, actinide, and transition metals through high-precision electronic structure calculations. Magnetic moment anisotropies in bulk and surface systems were studied, with emphasis on novel surfaces with unusual magnetic properties with possible applicability in magnetic recording. The structural stability, bonding properties, and elastic response of the actinides, as well as transition and rare earth elements and compounds, were also studied. The project sought to understand the unusual crystallographic and cohesive properties of the actinides and the importance of correlation to structural stability and the nature of the delocalization transition in these elements. Theoretical photoemission spectra, including surface effects, were calculated for rare earths and actinides.

  15. Half-metallic to insulating behavior of rare-earth nitrides

    NASA Astrophysics Data System (ADS)

    Aerts, C. M.; Strange, P.; Horne, M.; Temmerman, W. M.; Szotek, Z.; Svane, A.

    2004-01-01

    The electronic structure of the rare-earth nitrides is studied systematically using the ab initio self-interaction corrected local-spin-density approximation. This approach allows both a localized description of the rare-earth f electrons and an itinerant description of the valence electrons. Localizing different numbers of f electrons on the rare-earth atom corresponds to different valencies, and the total energies can be compared, providing a first-principles description of valence. We show that these materials have a broad range of electronic properties including forming a different class of half-metallic magnets with high magnetic moments, and are strong candidates for applications in spin-filtering devices.

  16. High-temperature corrosion of metals in the salt and metallic melts containing rare earths

    NASA Astrophysics Data System (ADS)

    Karpov, V. V.; Abramov, A. V.; Zhilyakov, A. Yu.; Belikov, S. V.; Volkovich, V. A.; Polovov, I. B.; Rebrin, O. I.

    2016-09-01

    A complex of independent methods was employed to study the corrosion resistance of molybdenum, zirconium, tantalum and tungsten in chloride, chloride-fluoride and fluoride-oxide melts based on LiCl, CaCl2, NaCl- KCl, LiF, and containing rare earths. Tests were conducted for 30 h at 750-1050 °C. The metals showed excellent corrosion resistance in fused chlorides (the corrosion rates were below 0.0005 g/(m2 h). Despite the presence of chemically active fluoride ions in the chloride-fluoride melts, the metals studied also showed very low corrosion rates, except molybdenum, for which the rate of corrosion was 0,8 g/(m2 h). The corrosion resistance of tantalum was considerably reduced in the fluoride-oxide melts; the corrosion rate was over 1 g/(m2 h) corresponding to the 8-th grade of stability and placing tantalum to the group of "low stability" materials.

  17. Pressure-induced electronic phase transitions in transition metal oxides and rare earth metals

    NASA Astrophysics Data System (ADS)

    Maddox, Brian Ross

    Electron correlation can affect profound changes in a material's bulk properties. When the degree of correlation is changed, phase transitions can sometimes result. Applying pressure can inducing changes in the degree of electron correlation by altering the interatomic distances of crystalline materials. This dissertation presents a study of a number of correlated systems at ultrahigh pressures generated by diamond-anvil cells. The Mott transition is an example of a phase transition resulting from changes in the degree of electron correlation. A sharp transition induced by pressure from a highly correlated, insulating state to a weakly correlated, metallic state was predicted for the transition metal monoxides (MnO, FeO, CoO, and NiO) some 50 years ago. Numerous studies aimed at observing this transition have been unsuccessful. We present a study of MnO designed to determine its crystal structure and magnetic properties at high pressure. Our results provide the first observance of the Mott transition in a transition metal monoxide. A high pressure study of various light rare-earth metals using similar techniques to those used to study MnO is presented. Our results show that these materials do not undergo Mott transitions at high pressure as some have suggested. A key signature of the Mott transition, i.e., a vanishing magnetic moment, was absent in the lanthanides. These results suggest that a Kondo-like model, not a Mott transition model, best describes the electron correlation behavior in the lanthanides. A number of related materials were also studied at high pressure. Among these materials, half-metallic chromium dioxide (CrO2) presents a unique opportunity to study the effects of electronic structure on a material's structural properties due to its very common rutile crystal structure. We present a high pressure structural study of CrO2 and compare our findings to other rutile-structured compounds. Strong systernatics are uncovered linking the ambient pressure

  18. Symmetric charge-transfer cross sections of IIIa rare-earth-metal elements

    SciTech Connect

    Hashida, Masaki; Sakabe, Shuji; Izawa, Yasukazu

    2011-03-15

    Symmetric charge-transfer cross sections of IIIa rare-earth-metal elements (Sc, Y, and Gd) in the impact energy range of 30 to 1000 eV were measured for the first time. The experiments were performed with a crossed-beam apparatus that featured primary ion production by photoionization with a tunable dye laser. Comparing the cross sections of IIIa rare-earth-metal elements ({sigma}{sub Sc}, {sigma}{sub Y}, and {sigma}{sub Gd}) with those of alkali metals or helium {sigma}{sub 0}, we found that {sigma}{sub 0{approx_equal}{sigma}Sc}<{sigma}{sub Y}<{sigma}{sub Gd{approx_equal}}2{sigma}{sub 0}at an impact energy of 1000 eV.

  19. Effect of rare earth metal on the spin-orbit torque in magnetic heterostructures

    SciTech Connect

    Ueda, Kohei; Pai, Chi-Feng; Tan, Aik Jun; Mann, Maxwell; Beach, Geoffrey S. D.

    2016-06-06

    We report the effect of the rare earth metal Gd on current-induced spin-orbit torques (SOTs) in perpendicularly magnetized Pt/Co/Gd heterostructures, characterized using harmonic measurements and spin-torque ferromagnetic resonance (ST-FMR). By varying the Gd metal layer thickness from 0 nm to 8 nm, harmonic measurements reveal a significant enhancement of the effective fields generated from the Slonczewski-like and field-like torques. ST-FMR measurements confirm an enhanced effective spin Hall angle and show a corresponding increase in the magnetic damping constant with increasing Gd thickness. These results suggest that Gd plays an active role in generating SOTs in these heterostructures. Our finding may lead to spin-orbitronics device application such as non-volatile magnetic random access memory, based on rare earth metals.

  20. Effect of rare earth metal on the spin-orbit torque in magnetic heterostructures

    NASA Astrophysics Data System (ADS)

    Ueda, Kohei; Pai, Chi-Feng; Tan, Aik Jun; Mann, Maxwell; Beach, Geoffrey S. D.

    2016-06-01

    We report the effect of the rare earth metal Gd on current-induced spin-orbit torques (SOTs) in perpendicularly magnetized Pt/Co/Gd heterostructures, characterized using harmonic measurements and spin-torque ferromagnetic resonance (ST-FMR). By varying the Gd metal layer thickness from 0 nm to 8 nm, harmonic measurements reveal a significant enhancement of the effective fields generated from the Slonczewski-like and field-like torques. ST-FMR measurements confirm an enhanced effective spin Hall angle and show a corresponding increase in the magnetic damping constant with increasing Gd thickness. These results suggest that Gd plays an active role in generating SOTs in these heterostructures. Our finding may lead to spin-orbitronics device application such as non-volatile magnetic random access memory, based on rare earth metals.

  1. Ground-state properties of rare-earth metals: an evaluation of density-functional theory.

    PubMed

    Söderlind, Per; Turchi, P E A; Landa, A; Lordi, V

    2014-10-15

    The rare-earth metals have important technological applications due to their magnetic properties, but are scarce and expensive. Development of high-performance magnetic materials with less rare-earth content is desired, but theoretical modeling is hampered by complexities of the rare earths electronic structure. The existence of correlated (atomic-like) 4f electrons in the vicinity of the valence band makes any first-principles theory challenging. Here, we apply and evaluate the efficacy of density-functional theory for the series of lanthanides (rare earths), investigating the influence of the electron exchange and correlation functional, spin-orbit interaction, and orbital polarization. As a reference, the results are compared with those of the so-called 'standard model' of the lanthanides in which electrons are constrained to occupy 4f core states with no hybridization with the valence electrons. Some comparisons are also made with models designed for strong electron correlations. Our results suggest that spin-orbit coupling and orbital polarization are important, particularly for the magnitude of the magnetic moments, and that calculated equilibrium volumes, bulk moduli, and magnetic moments show correct trends overall. However, the precision of the calculated properties is not at the level of that found for simpler metals in the Periodic Table of Elements, and the electronic structures do not accurately reproduce x-ray photoemission spectra.

  2. Low temperature route for the synthesis of rare earth transition metal borides and their hydrides

    SciTech Connect

    Kramp, S.; Febri, M.; Joubert, J.C.

    1997-10-01

    Synthesis of rare earth-based alloys by the ORD technique consists in the reduction of rare earth oxides in a melt of calcium under argon, and simultaneous diffusion-reaction of the just formed rare earth metal with the other elements. This method has been applied with success to numerous ternary borides containing transition metals such as the magnetic alloys Y{sub 2}Co{sub 14}B, LnCo{sub 4}B, and YCo{sub 3}B{sub 2}. By using a small excess of Ca, boride particles grow in a viscous slurry media containing unreacted (melted) Ca and nanosize CaO particles. Single phase boride alloys can be obtained at 1000{degrees}C as loose micrometer-size particles of very high crystal quality as confirmed by the sharp diffraction peaks on the corresponding X-ray diagrams. Particles can be easily recovered by gentle wishing in diluted weak acid solution, and dried under vacuum at room temperature. This rather low temperature technique is particularly adapted to the synthesis of incongruent melting phases, as well as for the alloys containing volatile rare earth elements (Sm, Yb, Tb,...).

  3. A Low Temperature Route for the Synthesis of Rare Earth Transition Metal Borides and Their Hydrides

    NASA Astrophysics Data System (ADS)

    Kramp, S.; Febri, M.; Joubert, J. C.

    1997-10-01

    Synthesis of rare earth-based alloys by the ORD technique consists in the reduction of rare earth oxides in a melt of calcium under argon, and simultaneous diffusion-reaction of the just formed rare earth metal with the other elements. This method has been applied with success to numerous ternary borides containing transition metals such as the magnetic alloys Y2Co14B, LnCo4B, and YCo3B2. By using a small excess of Ca, boride particles grow in a viscous slurry media containing unreacted (melted) Ca and nanosize CaO particles. Single phase boride alloys can be obtained at 1000°C as loose micrometer-size particles of very high crystal quality as confirmed by the sharp diffraction peaks on the corresponding X-ray diagrams. Particles can be easily recovered by gentle washing in diluted weak acid solution, and dried under vacuum at room temperature. This rather low temperature technique is particularly adapted to the synthesis of incongruent melting phases, as well as for the alloys containing volatile rare earth elements (Sm, Yb, Tb,…).

  4. Ground-state properties of rare-earth metals: an evaluation of density-functional theory

    NASA Astrophysics Data System (ADS)

    Söderlind, Per; Turchi, P. E. A.; Landa, A.; Lordi, V.

    2014-10-01

    The rare-earth metals have important technological applications due to their magnetic properties, but are scarce and expensive. Development of high-performance magnetic materials with less rare-earth content is desired, but theoretical modeling is hampered by complexities of the rare earths electronic structure. The existence of correlated (atomic-like) 4f electrons in the vicinity of the valence band makes any first-principles theory challenging. Here, we apply and evaluate the efficacy of density-functional theory for the series of lanthanides (rare earths), investigating the influence of the electron exchange and correlation functional, spin-orbit interaction, and orbital polarization. As a reference, the results are compared with those of the so-called ‘standard model’ of the lanthanides in which electrons are constrained to occupy 4f core states with no hybridization with the valence electrons. Some comparisons are also made with models designed for strong electron correlations. Our results suggest that spin-orbit coupling and orbital polarization are important, particularly for the magnitude of the magnetic moments, and that calculated equilibrium volumes, bulk moduli, and magnetic moments show correct trends overall. However, the precision of the calculated properties is not at the level of that found for simpler metals in the Periodic Table of Elements, and the electronic structures do not accurately reproduce x-ray photoemission spectra.

  5. Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system.

    PubMed

    Yang, Fan; Kubota, Fukiko; Baba, Yuzo; Kamiya, Noriho; Goto, Masahiro

    2013-06-15

    The recycling of rare earth metals from phosphor powders in waste fluorescent lamps by solvent extraction using ionic liquids was studied. Acid leaching of rare earth metals from the waste phosphor powder was examined first. Yttrium (Y) and europium (Eu) dissolved readily in the acid solution; however, the leaching of other rare earth metals required substantial energy input. Ionization of target rare earth metals from the waste phosphor powders into the leach solution was critical for their successful recovery. As a high temperature was required for the complete leaching of all rare earth metals, ionic liquids, for which vapor pressure is negligible, were used as an alternative extracting phase to the conventional organic diluent. An extractant, N, N-dioctyldiglycol amic acid (DODGAA), which was recently developed, showed a high affinity for rare earth metal ions in liquid-liquid extraction although a conventional commercial phosphonic extractant did not. An effective recovery of the rare earth metals, Y, Eu, La and Ce, from the metal impurities, Fe, Al and Zn, was achieved from the acidic leach solution of phosphor powders using an ionic liquid containing DODGAA as novel extractant system. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Thermal oxidation of the surface of binary aluminum alloys with rare-earth metals

    NASA Astrophysics Data System (ADS)

    Akashev, L. A.; Popov, N. A.; Kuznetsov, M. V.; Shevchenko, V. G.

    2015-05-01

    The kinetics of oxidation of the surface of Al alloys with 1-2.5 at % rare-earth metals (REMs) at 400-500°C in air was studied by ellipsometry and X-ray photoelectron spectroscopy (XPS). The addition (1-2.5 at % REM) of all rare-earth metals to aluminum was shown to increase the thickness of the oxide layer. The addition of surfactant and chemically active REMs (Yb, Sm, La, and Ce) increased the rate of oxidation of solid aluminum most effectively. The oxidation can be accelerated by the polymorphic transformations of the individual REM oxides in the film. The surface activity of Sm with respect to solid Al was confirmed by XRS.

  7. Neutral binuclear rare-earth metal complexes with four μ₂-bridging hydrides.

    PubMed

    Rong, Weifeng; He, Dongliang; Wang, Meiyan; Mou, Zehuai; Cheng, Jianhua; Yao, Changguang; Li, Shihui; Trifonov, Alexander A; Lyubov, Dmitrii M; Cui, Dongmei

    2015-03-25

    The first neutral rare-earth metal dinuclear dihydrido complexes [(NPNPN)LnH2]2 (2-Ln; Ln = Y, Lu; NPNPN: N[Ph2PNC6H3((i)Pr)2]2) bearing μ2-bridging hydride ligands have been synthesized. In the presence of THF, 2-Y undergoes intramolecular activation of the sp(2) C-H bond to form dinuclear aryl-hydride complex 3-Y containing three μ2-bridging hydride ligands.

  8. Properties and applications of heavy rare earth-transition metal amorphous films

    SciTech Connect

    Lachowicz, H.K.

    1984-09-01

    Properties of amorphous heavy rare earth-transition metal films are presented. Attention is concentrated on the properties which are important from the point of view of possible applications, namely: magnetic structure, perpendicular anisotropy, linear magnetostriction, and coercivity as well as the spontaneous Hall effect. Possible applications of the films considered are shown, in particular, applications as the information storage media in digital memories, as well as in surface acoustic wave devices and in devices which utilize the Hall effect are examined.

  9. Optimization of film synthesized rare earth transition metal permanent magnet systems

    SciTech Connect

    Cadieu, F.J.

    1992-01-01

    Progress is reported in three areas: high coercivity Sm-Fe-Ti-V, Sm-Fe-Zr, and two element Sm-Fe Sm{sub 5}(Fe,T){sub 17} type crystalline phases; ThMn{sub 12} type pseudobinary SmFe{sub 12-x}T{sub x}(0{le}{times}{le}1.5); and sputter process control for the synthesis of precisely textured rare earth-transition metal magnetic films. (DLC)

  10. Optimization of film synthesized rare earth transition metal permanent magnet systems

    SciTech Connect

    Cadieu, F.J.

    1990-01-01

    This report reviews work on the optimization of film synthesized rare earth transition metal permanent magnet systems. Topics include: high coercivity in Sm-Fe-Ti-V, Sm-Fe-V, and two element systems; ThMn{sub 12} type pseudobinary SmFe{sub 12 {minus} X}T{sub X}; and sputter process control for the synthesis of precisely textured RE-TM magnetic films. (JL)

  11. Rare Earth Metal-Mediated Precision Polymerization of Vinylphosphonates and Conjugated Nitrogen-Containing Vinyl Monomers.

    PubMed

    Soller, Benedikt S; Salzinger, Stephan; Rieger, Bernhard

    2016-02-24

    This review focuses on introducing and explaining the rare earth metal-mediated group transfer polymerization (REM-GTP) of polar monomers and is composed of three main sections: poly(vinylphosphonate)s, surface-initiated group transfer polymerization (SI-GTP), and extension to N-coordinating Michael-type monomers (2-vinylpridine (2VP), 2-isopropenyl-2-oxazoline (IPOx)). The poly(vinylphosphonate)s section is divided into two parts: radical, anionic, and silyl ketene acetal group transfer polymerization (SKA-GTP) of vinylphosphonates in comparison to REM-GTP, and properties of poly(vinylphosphonate)s. The mechanism of vinylphosphonate REM-GTP is discussed in detail for initiation and propagation including activation enthalpies ΔH(‡) and entropies ΔS(‡) according to the Eyring equation. SI-GTP is presented as a method for surface functionalization, and recent trends for 2VP and IPOx polymerization are summarized. This review will serve as a good resource or guideline for researchers who are currently working in the field of rare earth metal mediated polymerization catalysis as well as for those who are interested in beginning to employ rare earth metal complexes for the synthesis of new materials from polar monomers.

  12. A rule for counting neighbours in rare-earth transition metal compounds

    NASA Astrophysics Data System (ADS)

    Brommer, P. E.

    1991-09-01

    In (R, T) compounds (R: rare earth; T: 3d transition metal) such as R 2T 17, R 2T 14B, and so on, the exchange interaction between a rare-earth spin (operator) SR and the neighbouring 3d spins can be written as -2 JRTzRTSR·< ST>, where < ST> is a site average of the expectation value of the transition metal spins in the molecular field approximation. zRT is the number of nearest T neighbours of an R-atom. A more precise definition is given in the main text. Analogously, zTR, the average number of nearest R neighbours of a T atom can be defined. We stress that a consistent definition must lead to the relation zRTNR = zTRNT for a stoichiometric compound containing NR rare-earth atoms and NT transition metal atoms per formula unit. Appropriate definitions are discussed for more intricate cases, in particular for off-stoichiometric compounds.

  13. Rare earth thermoelectrics

    SciTech Connect

    Mahan, G.D.

    1997-09-01

    The author reviews the thermoelectric properties of metallic compounds which contain rare-earth atoms. They are the group of metals with the largest value ever reported of the Seebeck coefficient. An increase by 50% of the Seebeck would make these compounds useful for thermoelectric devices. The largest Seebeck coefficient is found for compounds of cerium (e.g., CePd{sub 3}) and ytterbium (e.g., YbAl{sub 3}). Theoretical predictions are in agreement with the maximum observed Seebeck. The author discusses the theoretical model which has been used to calculate the Seebeck coefficient. He is solving this model for other configurations (4f){sup n} of rare-earth ground states.

  14. The t-matrix resistivity of liquid rare earth metals using pseudopotential

    SciTech Connect

    Bhatia, Kamaldeep G.; Bhatt, N. K.; Vyas, P. R.; Gohel, V. B.

    2015-06-24

    Present theoretical study of liquid metal resistivity of some trivalent (La,Ce,Gd) and divalent (Eu,Yb) rare earth metals using pseudopotential has been carried out employing Ziman’s weak scattering and transition matrix (t-matrix) approaches. Our computed results of liquid metal resistivity using t-matrix approach are better than resistivity computed using Ziman’s approach and are also in excellent agreement with experimental results and other theoretical findings. The present study confirms that for f-shell metals pseudopotential must be determined uniquely and t-matrix approach is more physical in comparison with Ziman’s nearly free electron approach. The present pseudopotential accounts s-p-d hybridization properly. Such success encourages us to study remaining liquid state properties of these metals.

  15. The t-matrix resistivity of liquid rare earth metals using pseudopotential

    NASA Astrophysics Data System (ADS)

    Bhatia, Kamaldeep G.; Bhatt, N. K.; Vyas, P. R.; Gohel, V. B.

    2015-06-01

    Present theoretical study of liquid metal resistivity of some trivalent (La,Ce,Gd) and divalent (Eu,Yb) rare earth metals using pseudopotential has been carried out employing Ziman's weak scattering and transition matrix (t-matrix) approaches. Our computed results of liquid metal resistivity using t-matrix approach are better than resistivity computed using Ziman's approach and are also in excellent agreement with experimental results and other theoretical findings. The present study confirms that for f-shell metals pseudopotential must be determined uniquely and t-matrix approach is more physical in comparison with Ziman's nearly free electron approach. The present pseudopotential accounts s-p-d hybridization properly. Such success encourages us to study remaining liquid state properties of these metals.

  16. Theory of Transition-Metal Substitutions in High-Temperature Rare Earth-Cobalt Magnets

    NASA Astrophysics Data System (ADS)

    Kashyap, A.; Skomski, R.; Sabiryanov, R.; Jaswal, S. S.; Sellmyer, D. J.

    2003-03-01

    The effect of transition-metal substitutions in 1:5 and 2:17 intermetallics for high-temperature applications is investigated by first-principle and model calculations. Self consistent calculations of magnetic moments and exchange-coupling constants are performed for a variety of Y(Co_1-xT_x)5 and Y_2(Co_1-xT_x)17 compounds (T = Cu, Ti and Zr) using a local density functional approach. The substitutional atoms carry only a small moment and reduce the interatomic exchange of the transition-metal sublattice. However, the strength of the effect depends on the site where the substitution occurs. Furthermore, in all cases the intrasublattice exchange exhibits some anisotropy. A transparent example is pure YCo_5, where the interatomic transition-metal exchange in the rare-earth transition-metal planes is only about 155 K, as compared to the corresponding interplane exchange of 757 K. Model calculations show that the exchange reduction has a drastic effect on the finite-temperature anisotropy of the phases, because it also influences the net rare-earth transition-metal intersublattice exchange. The reduced interatomic exchange can therefore be regarded as the atomic origin of the anomalous temperature dependence of the coercivity of advanced Sm-Co based high-temperature magnets. This research is supported by AFOSR, DOE, NSF, MRSEC(DMR-0213808), and CMRA.

  17. Hydrometallurgical separation of rare earth elements, cobalt and nickel from spent nickel-metal-hydride batteries

    NASA Astrophysics Data System (ADS)

    Rodrigues, Luiz Eduardo Oliveira Carmo; Mansur, Marcelo Borges

    The separation of rare earth elements, cobalt and nickel from NiMH battery residues is evaluated in this paper. Analysis of the internal content of the NiMH batteries shows that nickel is the main metal present in the residue (around 50% in weight), as well as potassium (2.2-10.9%), cobalt (5.1-5.5%), rare earth elements (15.3-29.0%) and cadmium (2.8%). The presence of cadmium reveals that some Ni-Cd batteries are possibly labeled as NiMH ones. The leaching of nickel and cobalt from the NiMH battery powder with sulfuric acid is efficient; operating variables temperature and concentration of H 2O 2 has no significant effect for the conditions studied. A mixture of rare earth elements is separated by precipitation with NaOH. Finally, solvent extraction with D2EHPA (di-2-ethylhexyl phosphoric acid) followed by Cyanex 272 (bis-2,4,4-trimethylpentyl phosphinic acid) can separate cadmium, cobalt and nickel from the leach liquor. The effect of the main operating variables of both leaching and solvent extraction steps are discussed aiming to maximize metal separation for recycling purposes.

  18. High-pressure phase transitions in rare earth metal thulium to 195 GPa.

    PubMed

    Montgomery, Jeffrey M; Samudrala, Gopi K; Tsoi, Georgiy M; Vohra, Yogesh K

    2011-04-20

    We have performed image plate x-ray diffraction studies on a heavy rare earth metal, thulium (Tm), in a diamond anvil cell to a pressure of 195 GPa and volume compression V/V₀ = 0.38 at room temperature. The rare earth crystal structure sequence, hcp →Sm-type→ dhcp →fcc → distorted fcc, is observed in Tm below 70 GPa with the exception of a pure fcc phase. The focus of our study is on the ultrahigh-pressure phase transition and Rietveld refinement of crystal structures in the pressure range between 70 and 195 GPa. The hexagonal hR-24 phase is seen to describe the distorted fcc phase between 70 and 124 GPa. Above 124 ± 4 GPa, a structural transformation from hR 24 phase to a monoclinic C 2/m phase is observed with a volume change of -1.5%. The equation of state data shows rapid stiffening above the phase transition at 124 GPa and is indicative of participation of f-electrons in bonding. We compare the behavior of Tm to other heavy rare-earths and heavy actinide metals under extreme conditions of pressure.

  19. Rare-earth metal π-complexes of reduced arenes, alkenes, and alkynes: bonding, electronic structure, and comparison with actinides and other electropositive metals.

    PubMed

    Huang, Wenliang; Diaconescu, Paula L

    2015-09-21

    Rare-earth metal complexes of reduced π ligands are reviewed with an emphasis on their electronic structure and bonding interactions. This perspective discusses reduced carbocyclic and acyclic π ligands; in certain categories, when no example of a rare-earth metal complex is available, a closely related actinide analogue is discussed. In general, rare-earth metals have a lower tendency to form covalent interactions with π ligands compared to actinides, mainly uranium. Despite predominant ionic interactions in rare-earth chemistry, covalent bonds can be formed with reduced carbocyclic ligands, especially multiply reduced arenes.

  20. Ternary rare earth and actinoid transition metal carbides viewed as carbometalates

    SciTech Connect

    Dashjav, Enkhtsetseg; Kreiner, Guido; Schnelle, Walter; Wagner, Frank R.; Kniep, Ruediger Jeitschko, Wolfgang

    2007-02-15

    Ternary carbides A{sub x}T{sub y}C{sub z} (A=rare earth metals and actinoids; T=transition metals) with monoatomic species C{sup 4-} as structural entities are classified according to the criteria (i) metal to carbon ratio, (ii) coordination number of the transition metal by carbon atoms, and (iii) the dimensionality of the anionic network [T{sub y}C{sub z}]{sup n-}. Two groups are clearly distinguishable, depending on the metal to carbon ratio. Those where this ratio is equal to or smaller than 2 may be viewed as carbometalates, thus extending the sequence of complex anions from fluoro-, oxo-, and nitridometalates to carbometalates. The second group, metal-rich carbides with metal to carbon ratios equal to or larger than 4 is better viewed as typical intermetallics (''interstitial carbides''). The chemical bonding properties have been investigated by analyzing the Crystal Orbital Hamilton Population (COHP). The chemical bonding situation with respect to individual T-C bonds is similar in both classes. The main difference is the larger number of metal-metal bonds in the crystal structures of the metal-rich carbides.

  1. (Fundamental studies of strongly magnetic rare earth-transition metal alloys)

    SciTech Connect

    Holmes, G.

    1990-01-01

    The aim of this research is to deepen our understanding of new strongly magnetic rare earth-transition metal compounds and alloys. Such materials have high potential as hard or semi-hard permanent magnet materials with energy-related and other applications. The phases investigated generally are based on iron or cobalt, often include light rare earths, and often are ternary alloys with anisotropic hexagonal or tetragonal structures. Several types of system are studied including new Fe-rich ternary phases, melt-spun and heat treated alloys containing disorder which are reached by intermediate metastable phases, and sputtered thin films and multilayers. Our aim is to understand these relatively complex materials on the basis of fundamental electronic structure, theories of itinerant magnetism, and the microstructural effects which control the extrinsic properties. To this end a broad range of experiments and calculations are performed.

  2. Charge screening and magnetic anisotropy in metallic rare-earth systems

    NASA Astrophysics Data System (ADS)

    Irkhin, V. Yu.; Irkhin, Yu. P.

    1998-02-01

    The calculation of magnetic anisotropy constants is performed beyond the point-charge model for a continuous charge-density distribution of screening conduction electrons. An important role of the nonuniform electron density, in particular, of the Friedel oscillations, in the formation of crystal field is demonstrated. Such effects can modify strongly the effective ion (impurity) charge and even change its sign. This enables one to justify the anion model, which is often used for discussing experimental data on hydrogen-containing systems. Possible applications to the pure rare-earth metals and RCo5 (R=rare earth) compounds are discussed. The deformation of magnetic structure near the interstitial positive muon owing to the strong local anisotropy, and the corresponding contribution to the dipole field at the muon are considered.

  3. Study of electronic and structural properties of half metallic rare earth mononitrides

    NASA Astrophysics Data System (ADS)

    Pagare, Gitanjali; Srivastava, Vipul; Soni, Pooja; Sanyal, Sankar P.; Rajagopalan, M.

    2010-03-01

    In the present work we investigated theoretically the electronic, magnetic and structural properties of two rare-earth nitrides (REN: RE = Sm, Eu) by using self- consistent tight-binding linear muffin tin orbital (TBLMTO) method. Magnetically, both the rare earth nitrides (RENs) are stable in ferromagnetic (FM) state, while its ambient structure is found to be stable in NaCl-type (B1) structure. From the present study we predict the pressure induced structural phase transition in both RENs from the relatively open NaCl-type structure into more dense CsCl-type structure at 8.6 GPa and 14.6 GPa respectively. They form a new class of half-metallic magnets with high magnetic moments and are strong candidates for applications in spintronics and spinfiltering devices. We have therefore, calculated electronic band structures, equilibrium lattice constants, cohesive energies, bulk moduli and magnetic moments for REN compounds in both B1 and B2 phases.

  4. Recovery of Rare Earth Metals in Used Magnets by Molten Magnesium

    NASA Astrophysics Data System (ADS)

    Akahori, Tomohiko; Miyamoto, Yu; Saeki, Tomonori; Okamoto, Masahide; Okabe, Toru H.

    We report here Hitachi's approach to recycle rare earth (RE) metals in used magnets by using molten magnesium (Mg). The process consists of 3 steps; (1) extraction of RE metals from magnets into molten Mg, to form Mg-RE melt, (2) mechanical separation of magnets from the Mg-RE melt, (3) collection of RE metals by evaporation of Mg in the Mg-RE melt. In the step 1, extraction of RE metals proceeds rapidly and completes in about 3 h. The efficiency strongly depends on the temperature (T) and Mg/magnet ratio (r)). One of the optimal conditions is T=1273 (K) and η is 10, where the efficiencies for Nd and Dy extraction are almost 100 % and 60 %, respectively. Further increase of Dy extraction efficiency is possible by addition of Ca to suppress the oxidation of Dy.

  5. Electronic states of monatomic layers of alkali and rare earth metals adsorbed on graphene surfaces

    NASA Astrophysics Data System (ADS)

    Alisultanov, Z. Z.

    2013-02-01

    The electronic states of ordered layers of alkali and rare earth metals adsorbed on graphene surfaces are examined using an Anderson model. The behavior of the density of states of these systems is analyzed. The case of an adsorbed metallic nanolayer with a discrete energy spectrum is discussed. A system whose electronic states can be controlled by an applied electric field is proposed and is of great practical interest. The qualitative difference between the existing theoretical approach to this problem and the present paper is that the former uses a "single adatom" formalism that does not deal with the band structure of the metallic adlayer. A way of describing the electronic states of an adsorbed layer of Gd and other metallic layers which form a fractal structure on a graphene surface is also examined.

  6. Sample-free control of the mechanical properties of aluminum-based alloys with rare-earth metal additions

    NASA Astrophysics Data System (ADS)

    Matyunin, V. M.; Agafonov, R. Yu.; Zarubin, A. L.; Danilin, V. V.; Popkova, O. G.

    2015-12-01

    A technique is developed for sample-free control of the 0.2 offset yield strength and the ultimate tensile strength of aluminum alloys with rare-earth metal additions using indentation with a spherical indenter.

  7. Synthesis and styrene polymerisation catalysis of eta5- and eta1-pyrrolyl-ligated cationic rare earth metal aminobenzyl complexes.

    PubMed

    Nishiura, Masayoshi; Mashiko, Tomohiro; Hou, Zhaomin

    2008-05-07

    The cationic rare earth metal aminobenzyl complexes bearing mono(pyrrolyl) ligands are synthesised and structurally characterised, and the coordination mode of the pyrrolyl ligands is found to show significant influence on the polymerisation of styrene.

  8. Elastic Constants of Rare Earth and Transition Metal Di-Hydrides

    NASA Astrophysics Data System (ADS)

    Snow, C. S.; Knapp, J. A.; Browning, J. F.

    2007-03-01

    Determinations of the elastic constants of rare earth (RE=Er, La,) and some transition metal (TM=Sc, Ti, Zr) di-hydrides are extremely difficult. Single crystals of these di-hydrided metals can not be obtained because they break up into fine powders due to the large stresses in the materials caused by the crystallographic changes upon hydriding. However, polycrystalline thin films of these hydrided materials can be grown and are stable over a wide temperature and pressure range. In order to determine the elastic constants of thin metal di-hydride films ab-initio electronic structure calculations using the VASP code have been carried out. These calculations are then compared to bulk and shear moduli measured by a nano-indentation technique. Details and results of the calculations and measurements of the elastic constants of rare earth and transition metal di-hydride films will be presented and a discussion of future applications of this technique will be given.

  9. Speciation of rare-earth metal complexes in ionic liquids: a multiple-technique approach.

    PubMed

    Nockemann, Peter; Thijs, Ben; Lunstroot, Kyra; Parac-Vogt, Tatjana N; Görller-Walrand, Christiane; Binnemans, Koen; Van Hecke, Kristof; Van Meervelt, Luc; Nikitenko, Sergey; Daniels, John; Hennig, Christoph; Van Deun, Rik

    2009-01-01

    The dissolution process of metal complexes in ionic liquids was investigated by a multiple-technique approach to reveal the solvate species of the metal in solution. The task-specific ionic liquid betainium bis(trifluoromethylsulfonyl)imide ([Hbet][Tf(2)N]) is able to dissolve stoichiometric amounts of the oxides of the rare-earth elements. The crystal structures of the compounds [Eu(2)(bet)(8)(H(2)O)(4)][Tf(2)N](6), [Eu(2)(bet)(8)(H(2)O)(2)][Tf(2)N](6) x 2 H(2)O, and [Y(2)(bet)(6)(H(2)O)(4)][Tf(2)N](6) were found to consist of dimers. These rare-earth complexes are well soluble in the ionic liquids [Hbet][Tf(2)N] and [C(4)mim][Tf(2)N] (C(4)mim = 1-butyl-3-methylimidazolium). The speciation of the metal complexes after dissolution in these ionic liquids was investigated by luminescence spectroscopy, (1)H, (13)C, and (89)Y NMR spectroscopy, and by the synchrotron techniques EXAFS (extended X-ray absorption fine structure) and HEXS (high-energy X-ray scattering). The combination of these complementary analytical techniques reveals that the cationic dimers decompose into monomers after dissolution of the complexes in the ionic liquids. Deeper insight into the solution processes of metal compounds is desirable for applications of ionic liquids in the field of electrochemistry, catalysis, and materials chemistry.

  10. Cooperative thermodynamic control of selectivity in the self-assembly of rare earth metal-ligand helices.

    PubMed

    Johnson, Amber M; Young, Michael C; Zhang, Xing; Julian, Ryan R; Hooley, Richard J

    2013-11-27

    Metal-selective self-assembly with rare-earth cations is possible with suitable rigid, symmetrical bis-tridentate ligands. Kinetically controlled formation is initially observed, with smaller cations preferentially incorporated. Over time, the more thermodynamically favorable complexes with larger metals are formed. This thermodynamic control is a cooperative supramolecular phenomenon and only occurs upon multiple-metal-based self-assembly: single-metal ML3 analogues do not show reversible selectivity. The selectivity is dependent on small variations in lanthanide ionic radius and occurs despite identical coordination-ligand coordination geometries and minor size differences in the rare-earth metals.

  11. Synthesis, characterization and reactivity of heteroleptic rare earth metal bis(phenolate) complexes.

    PubMed

    Qi, Ruipeng; Liu, Bao; Xu, Xiaoping; Yang, Zijian; Yao, Yingming; Zhang, Yong; Shen, Qi

    2008-10-07

    The synthesis, characterization and reactivity of heteroleptic rare earth metal complexes supported by the carbon-bridged bis(phenolate) ligand 2,2'-methylene-bis(6-tert-butyl-4-methyl-phenoxo) (MBMP2-) are described. Reaction of (C5H5)3Ln(THF) with MBMPH2 in a 1:1.5 molar ratio in THF at 50 degrees C produced the heteroleptic rare earth metal bis(phenolate) complexes (C5H5)Ln(MBMP)(THF)n (Ln=La, n=3 (); Ln=Yb (), Y (), n=2) in nearly quantitative yields. The residual C5H5- groups in complexes to can be substituted by the bridged bis(phenolate) ligands at elevated temperature to give the neutral rare earth metal bis(phenolate) complexes, and the ionic radii have a profound effect on the structures of the final products. Complex reacted with MBMPH2 in a 1:0.5 molar ratio in toluene at 80 degrees C to produce a dinuclear complex (MBMP)La(THF)(micro-MBMP)2La(THF)2 () in good isolated yield; whereas complexes and reacted with MBMPH2 under the same conditions to give (MBMP)Ln(MBMPH)(THF)2 (Ln=Yb (), Y ()) as the final products, in which one hydroxyl group of the phenol is coordinated to the rare earth metal in a neutral fashion. The reactivity of complexes and with some metal alkyls was explored. Reaction of complex with 1 equiv. of AlEt3 in toluene at room temperature afforded unexpected ligand redistributed products, and a discrete ion pair ytterbium complex [(MBMP)Yb(THF)2(DME)][(MBMP)2Yb(THF)2] () was isolated in moderate yield. Furthermore, reaction of complex with 1 equiv. of ZnEt2 in toluene gave a ligand redistributed complex [(micro-MBMP)Zn(THF)]2 () in reasonable isolated yield. Similar reaction of complex with ZnEt2 also afforded complex ; whereas the reaction of complex with 1 equiv. of n-BuLi in THF afforded the heterodimetallic complex [(THF)Yb(MBMP)2Li(THF)2] (). All of these complexes were well characterized by elemental analyses, IR spectra, and single-crystal structure determination, in the cases of complexes , and -.

  12. Rare-Earth Transition-Metal Intermetallics: Structure-bonding-Property Relationships

    SciTech Connect

    Han, Mi-Kyung

    2006-01-01

    Our explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding-property relationships. Our work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe13-xSix system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn13-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides RE2-xFe4Si14-y and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi2: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb3Zn3.6Al7.4: Partially ordered structure of Tb3.6Zn13-xAl7.4 compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn39(CrxAl1-x

  13. Rare-earth transition-metal intermetallics: Structure-bonding-property relationships

    SciTech Connect

    Han, M. K.

    2006-01-01

    The explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding property relationships. The work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe13-xSix system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn{sub 13}-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides Re2-xFe4Si14-y and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi2: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb3Zn3.6Al7.4: Partially ordered structure of Tb3Zn3.6Al7.4 compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn39(CrxAl1-x)81

  14. Thermodynamic Investigation of the Reduction-Distillation Process for Rare Earth Metals Production

    NASA Astrophysics Data System (ADS)

    Judge, W. D.; Azimi, G.

    2017-10-01

    Owing to their high vapor pressure, the four rare earth metals samarium, europium, thulium, and ytterbium are produced by reduction-distillation whereby their oxides are reduced with metallic lanthanum in vacuo, and the produced metal is subsequently vaporized off. Here, we performed a thorough thermodynamic investigation to establish a fundamental understanding of the reduction-distillation process. Thermodynamic functions including vapor pressures, Gibbs free energies, and enthalpies of reaction were calculated and compared with available experimental data. Furthermore, the kinetics of the process was explored and theoretical evaporation rates were calculated from thermodynamic data. The thermodynamic model developed in this work can help optimize processing conditions to maximize the yield and improve the overall process.

  15. Thermodynamic Investigation of the Reduction-Distillation Process for Rare Earth Metals Production

    NASA Astrophysics Data System (ADS)

    Judge, W. D.; Azimi, G.

    2017-08-01

    Owing to their high vapor pressure, the four rare earth metals samarium, europium, thulium, and ytterbium are produced by reduction-distillation whereby their oxides are reduced with metallic lanthanum in vacuo, and the produced metal is subsequently vaporized off. Here, we performed a thorough thermodynamic investigation to establish a fundamental understanding of the reduction-distillation process. Thermodynamic functions including vapor pressures, Gibbs free energies, and enthalpies of reaction were calculated and compared with available experimental data. Furthermore, the kinetics of the process was explored and theoretical evaporation rates were calculated from thermodynamic data. The thermodynamic model developed in this work can help optimize processing conditions to maximize the yield and improve the overall process.

  16. Molecular heterometallic hydride clusters composed of rare-earth and d-transition metals.

    PubMed

    Shima, Takanori; Luo, Yi; Stewart, Timothy; Bau, Robert; McIntyre, Garry J; Mason, Sax A; Hou, Zhaomin

    2011-09-18

    Heteromultimetallic hydride clusters containing both rare-earth and d-transition metals are of interest in terms of both their structure and reactivity. However, such heterometallic complexes have not yet been investigated to a great extent because of difficulties in their synthesis and structural characterization. Here, we report the synthesis, X-ray and neutron diffraction studies, and hydrogen addition and release properties of a family of rare-earth/d-transition-metal heteromultimetallic polyhydride complexes of the core structure type 'Ln(4)MH(n)' (Ln = Y, Dy, Ho; M = Mo, W; n = 9, 11, 13). Monitoring of hydrogen addition to a hydride cluster such as [{(C(5)Me(4)SiMe(3))Y}(4)(μ-H)(9)Mo(C(5)Me(5))] in a single-crystal to single-crystal process by X-ray diffraction has been achieved for the first time. Density functional theory studies reveal that the hydrogen addition process is cooperatively assisted by the Y/Mo heteromultimetallic sites, thus offering unprecedented insight into the hydrogen addition and release process of a metal hydride cluster.

  17. Controlling the metal insulator transition using the ferroelectric field effect in rare earth nickelates

    NASA Astrophysics Data System (ADS)

    Marshall, Matthew; Disa, Ankit; Kumah, Divine; Chen, Hanghui; Ismail-Beigi, Sohrab; Walker, Fred; Ahn, Charles

    2013-03-01

    A ferroelectric field effect transistor (FE-FET) modulates conductivity in a non-volatile manner by electrostatically accumulating and depleting charge carriers at the interface between a conducting channel and ferroelectric gate. The rare earth nickelate LaNiO3 is metallic in bulk, while other rare earth nickelates, such as NdNiO3, exhibit metal-insulator transitions and anti-ferromagnetic behavior in the bulk. Here, we show that by coupling the ferroelectric polarization of Pb0.8Zr0.2TiO3 (PZT) to the carriers in a nickelate, we can dynamically induce a metal- insulator transition in ultra-thin films of LaNiO3, and induce large changes in the MIT transition temperature in NdNiO3. Density functional theory is used to determine changes in the physical and electronic Ni-O-Ni bond angle of the nickelate at the interface between PZT and LaNiO3. The effect of the ferroelectric polarization is to decrease the Ni-O-Ni bond angle from 180 degrees and increase the carrier effective mass. Related to this change in electronic structure, we observe a change in resistivity of approximately 80% at room temperature for an ultra-thin 3 unit cell thick film of LaNiO3. Work supported by FENA and the NSF under MRSEC DMR 1119826.

  18. Moderate pressure synthesis of rare earth nickelate with metal-insulator transition using polymeric precursors

    SciTech Connect

    Napierala, C.; Lepoittevin, C.; Edely, M.; Sauques, L.; Giovanelli, F.; Laffez, P.; VanTedeloo, G.

    2010-07-15

    Rare earth nickelates exhibit a reversible metal-semiconductor phase transition that is, in the infrared range, responsible for a thermo-optical contrast. The state of the art synthesis of these compounds usually requires high oxygen pressure to stabilize Ni in the oxidation state 3{sup +}. In this work, using polymeric precursor associated with moderate pressure annealing, we show that it is possible to obtain fully oxidized rare earth nickelate with metal-insulator transition. Using thermogravimetric analysis, X-ray diffraction and transmission electronic microscopy we compare different samples synthesized at different oxygen pressures and demonstrate their structural similarity. Thermo-optical properties were measured, in the infrared range, using reflectance measurements and confirmed the metal-insulator transition at 60 {sup o}C in both samples.TEM observations lead to the conclusion that the structure commonly obtained at 175 bar is perfectly observed in the 20 bar sample without major structural defects. The two samples exhibit a thermochromic behavior and thermo-optical properties of the two samples are equivalent. - Graphical Abstract: Thermochromic behavior of Nd{sub 0.3}Sm{sub 0.7}NiO{sub 3} samples annealed under 20 and 175 bar at 278 and 373 K.

  19. Synthesis of Chiral Aminocyclopropanes by Rare-Earth-Metal-Catalyzed Cyclopropene Hydroamination.

    PubMed

    Teng, Huai-Long; Luo, Yong; Wang, Baoli; Zhang, Liang; Nishiura, Masayoshi; Hou, Zhaomin

    2016-12-05

    The search for efficient and selective routes for the synthesis of chiral aminocyclopropane derivatives is of great interest and importance as these structures are important components of biologically active natural products and pharmaceuticals. We herein report the enantioselective intermolecular hydroamination of substituted cyclopropenes with various amines catalyzed by chiral half-sandwich rare-earth-metal complexes. This method constitutes a 100 % atom-efficient route for the synthesis of a variety of chiral α-aminocyclopropane derivatives in high yields (up to 96 %) and excellent stereoselectivity (up to >20:1 d.r. and 99 % ee) under mild reaction conditions (25 °C).

  20. Narcissistic self-sorting in self-assembled cages of rare Earth metals and rigid ligands.

    PubMed

    Johnson, Amber M; Wiley, Calvin A; Young, Michael C; Zhang, Xing; Lyon, Yana; Julian, Ryan R; Hooley, Richard J

    2015-05-04

    Highly selective, narcissistic self-sorting can be achieved in the formation of self-assembled cages of rare earth metals with multianionic salicylhydrazone ligands. The assembly process is highly sensitive to the length of the ligand and the coordination geometry. Most surprisingly, high-fidelity sorting is possible between ligands of identical coordination angle and geometry, differing only in a single functional group on the ligand core, which is not involved in the coordination. Supramolecular effects allow discrimination between pendant functions as similar as carbonyl or methylene groups in a complex assembly process.

  1. Fundamental studies of strongly magnetic rare earth-transition metal alloys

    SciTech Connect

    Sellmyer, D.J. ); Hadjipanayis, G.C. . Dept. of Physics and Astronomy)

    1992-01-01

    The goal of this project is to advance our understanding of new phases and microstructures of rare-earth and transition-metal alloys and compounds. In particular we investigate several classes of materials which are expected to have high magnetizations and coercivities, which are necessary conditions for high performance permanent magnet and related applications. Hard and semi-hard magnetic materials form the basis of much of the electric power and information storage industries and the discovery of new and less expensive materials with outstanding properties is of great interest.

  2. Quantitative aspects of rare earth metal determinations using capillary electrophoresis with indirect absorbance detection

    SciTech Connect

    Colburn, B.A.; Starnes, S.D.; Sepaniak, M.J.

    1995-04-01

    The practical utility of capillary zone electrophoresis with indirect absorbance detection is examined for the separation and quantitation of rare earth metals. Various imidazole derivatives are investigated as to their suitability as running buffer (displaceable) detection ions with {alpha}-hydroxyisobutyric acid functioning as a chelating agent to enhance separations. Parameters important for quantitative analysis, such as limits of detection, relative standard deviation of peak areas, efficiency, resolution, peak shape and linear dynamic range are presented. The influence of sample matrix, method of injection, and background ion identity on these parameters are investigated and discussed.

  3. Catalytic enantioselective construction of tetrasubstituted carbons by self-assembled poly rare earth metal complexes.

    PubMed

    Shibasaki, Masakatsu; Kanai, Motomu

    2007-07-07

    Rare earth metal-based enantioselective catalysts that can promote practical cyanation reactions of ketones and ketoimines were developed. These catalytic enantioselective tetrasubstituted carbon-forming reactions are useful platforms for the synthesis of biologically active compounds. ESI-MS and crystallographic studies of the asymmetric catalysts revealed that the active catalysts are polymetallic complexes produced through the assembly of modules. The higher-order structure of the polymetallic complexes has strong effects on catalyst activity and enantioselectivity. Controlling the higher-order structure of artificial polymetallic asymmetric catalysts is a new strategy for optimizing asymmetric catalysts. Recent progress in this approach is also described.

  4. Processing of Phosphorus Slag with Recovery of Rare Earth Metals and Obtaining Silicon Containing Cake

    NASA Astrophysics Data System (ADS)

    Karshigina, Zaure; Abisheva, Zinesh; Bochevskaya, Yelena; Akcil, Ata; Sharipova, Aynash; Sargelova, Elmira

    2016-10-01

    The present research is devoted to the processing of slag generating during the yellow phosphorus production. In this paper are presented studies on leaching of phosphorus production slag by nitric acid with recovery of rare earth metals (REMs) into solution. REMs recovery into the solution achieved 98 % during the leaching process with using 7.5 mol/L of HNO3, liquid-to-solid ratio is 2.6:1, temperature is 60°C, process duration is 1 hour and stirrer speed is 500 rpm. Behaviour during the leaching of associated components such as calcium, aluminium, and iron was studied. After the leaching cake contains ∼⃒75-85 % of SiO2 and it might be useful for obtaining of precipitated silicon dioxide. With the purpose of separation from the impurities, recovery and concentrating of REMs, the obtained solution after leaching was subjected to extraction processing methods. The influence of ratio of organic and aqueous phases (O: A) on the extraction of rare earth metals by tributyl phosphate (TBP) with concentrations from 20 up to 100 % was studied. The REMs extraction with increasing TBP concentration under changes O:A ratio from 1:20 down to 1:1 into the organic phase from the solutions after nitric acid leaching increased from 22.2 up to 99.3%. The duration effect of REMs extraction process was studied by tributyl phosphate. It is revealed that with increasing of duration of the extraction process from 10 to 30 minutes REMs recovery into the organic phase almost did not changed. The behaviour of iron in the extraction process by TBP was studied. It was found that such accompanying components as calcium and aluminium by tributyl phosphate didn't extracted. To construct isotherm of REMs extraction of by tributyl phosphate was used variable volume method. It was calculated three-step extraction is needed for REMs recovery from the solutions after nitric acid leaching of phosphorus production slag. The process of the three-steps counter current extraction of rare earth

  5. Rare earth elements and critical metal content of extracted landfilled material and potential recovery opportunities

    SciTech Connect

    Gutiérrez-Gutiérrez, Silvia C.; Coulon, Frédéric; Jiang, Ying; Wagland, Stuart

    2015-08-15

    Highlights: • Samples from multiple core drills were obtained from 4× landfill sites in the UK. • Each sample analysed for rare earth elements, critical metals and valuable metals. • Two stage microwave digestion method ensuring high yield. • High quantities of copper and aluminium were observed in the soil layers of landfill. • Across 4× landfills aluminium and copper present has a value of around $400 million. - Abstract: Rare earth elements (REEs), Platinum group metals (PGMs) and other critical metals currently attract significant interest due to the high risks of supply shortage and substantial impact on the economy. Their uses in many applications have made them present in municipal solid waste (MSW) and in commercial and industrial waste (C&I), since several industrial processes produce by-products with high content of these metals. With over 4000 landfills in the UK alone, the aim of this study was to assess the existence of these critical metals within landfills. Samples collected from four closed landfills in UK were subjected to a two-step acid digestion to extract 27 metals of interest. Concentrations across the four landfill sites were 58 ± 6 mg kg{sup −1} for REEs comprising 44 ± 8 mg kg{sup −1} for light REEs, 11 ± 2 mg kg{sup −1} for heavy REEs and 3 ± 1 mg kg{sup −1} for Scandium (Sc) and 3 ± 1.0 mg kg{sup −1} of PGMs. Compared to the typical concentration in ores, these concentrations are too low to achieve a commercially viable extraction. However, content of other highly valuable metals (Al and Cu) was found in concentrations equating to a combined value across the four landfills of around $400 million, which increases the economic viability of landfill mining. Presence of critical metals will mainly depend on the type of waste that was buried but the recovery of these metals through landfill mining is possible and is economically feasible only if additional materials (plastics, paper, metallic items and other) are

  6. Application of Freeze-Dried Powders of Genetically Engineered Microbial Strains as Adsorbents for Rare Earth Metal Ions.

    PubMed

    Moriwaki, Hiroshi; Masuda, Reiko; Yamazaki, Yuki; Horiuchi, Kaoru; Miyashita, Mari; Kasahara, Jun; Tanaka, Tatsuhito; Yamamoto, Hiroki

    2016-10-12

    The adsorption behaviors of the rare earth metal ions onto freeze-dried powders of genetically engineered microbial strains were compared. Cell powders obtained from four kinds of strains, Bacillus subtilis 168 wild type (WT), lipoteichoic acid-defective (ΔLTA), wall teichoic acid-defective (ΔWTA), and cell wall hydrolases-defective (EFKYOJLp) strains, were used as an adsorbent of the rare earth metal ions at pH 3. The adsorption ability of the rare earth metal ions was in the order of EFKYOJLp > WT > ΔLTA > ΔWTA. The order was the same as the order of the phosphorus quantity of the strains. This result indicates that the main adsorption sites for the ions are the phosphate groups and the teichoic acids, LTA and WTA, that contribute to the adsorption of the rare earth metal ions onto the cell walls. The contribution of WTA was clearly greater than that of LTA. Each microbial powder was added to a solution containing 16 kinds of rare earth metal ions, and the removals (%) of each rare earth metal ion were obtained. The scandium ion showed the highest removal (%), while that of the lanthanum ion was the lowest for all the microbial powders. Differences in the distribution coefficients between the kinds of lanthanide ions by the EFKYOJLp and ΔWTA powders were greater than those of the other strains. Therefore, the EFKYOJLp and ΔWTA powders could be applicable for the selective extraction of the lanthanide ions. The ΔLTA powder coagulated by mixing with a rare earth metal ion, although no sedimentation of the WT or ΔWTA powder with a rare earth metal ion was observed under the same conditions. The EFKYOJLp powder was also coagulated, but its flocculating activity was lower than that of ΔLTA. The ΔLTA and EFKYOJLp powders have a long shape compared to those of the WT or ΔWTA strain. The shapes of the cells will play an important role in the sedimentation of the microbial powders with rare earth metal ions. As the results, three kinds of the genetically

  7. Rare Earth Polyoxometalates.

    PubMed

    Boskovic, Colette

    2017-09-05

    Longstanding and important applications make use of the chemical and physical properties of both rare earth metals and polyoxometalates of early transition metals. The catalytic, optical, and magnetic features of rare earth metal ions are well-known, as are the reversible multielectron redox and photoredox capabilities of polyoxomolybdates and polyoxotungstates. The combination of rare earth ions and polyoxometalates in discrete molecules and coordination polymers is of interest for the unique combination of chemical and physical properties that can arise. This Account surveys our efforts to synthesize and investigate compounds with rare earth ions and polyoxometalates (RE-POMs), sometimes with carboxylate-based organic coligands. Our general synthetic approach is "bottom-up", which affords well-defined nanoscale molecules, typically in crystalline form and amenable to single-crystal X-ray diffraction for structure determination. Our particular focus is on elucidation of the physical properties conferred by the different structural components with a view to ultimately being able to tune these properties chemically. For this purpose, we employ a variety of spectroscopic, magnetochemical, electrochemical, and scattering techniques in concert with theoretical modeling and computation. Studies of RE-POM single-molecule magnets (SMMs) have utilized magnetic susceptibility, inelastic neutron scattering, and ab initio calculations. These investigations have allowed characterization of the crystal field splitting of the rare earth(III) ions that is responsible for the SMM properties of slow magnetic relaxation and magnetization quantum tunneling. Such SMMs are promising for applications in quantum computing and molecular spintronics. Photophysical measurements of a family of hybrid RE-POMs with organic ligands have afforded insights into sensitization of Tb(III) and Eu(III) emission through both organic and polyoxometalate chromophores in the same molecule. Detailed

  8. White light emission from GaN stack layers doped by different rare-earth metals

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Liu, Chang

    2015-02-01

    Experimental progress of electroluminescence devices (ELDs) employing GaN doped with rare-earth metals had been significantly made targeting RGB displays. However, reports on the theoretical models to design the devices and the applications were limited. Our previous paper proposed a device model using the quantum collision theory and Judd-Ofelt approximation to design the ELDs for white light illumination. In the present study, the model is modified by considering the light extraction efficiency and optical loss during propagating in the films. To improve the luminous efficiency, an ELD with three stack layers of GaN:Tm/GaN:Er/GaN:Eu is proposed and designed. The model predicts that the color of the integrated light can be controlled by applied voltage, thickness of each doping layer and doping concentrations of the rare earth metals. The luminous efficacy of white light emission at a bias of -100 V is calculated to be 274 lm/W, which is much higher than that of fluorescent lumps. The proposed ELD will open a door to efficient solid-state lighting.

  9. Composition dependence of magnetic properties in amorphous rare-earth-metal-based alloys

    NASA Astrophysics Data System (ADS)

    Foldeaki, M.; Giguère, A.; Gopal, B. R.; Chahine, R.; Bose, T. K.; Liu, X. Y.; Barclay, J. A.

    1997-10-01

    Magnetic refrigeration is an emerging new technology for cooling and gas liquefaction. The proper selection of magnetic working materials plays a key role in any design of a magnetic refrigerator. Properly fabricated amorphous rare-earth-metal-based alloys may be promising candidates for magnetic refrigeration applications. Their advantages include tailorable composition, low eddy current and hysteresis losses, improved corrosion resistance, and large specific area. To optimize the composition, bulk magnetic properties of selected Re70M30-xTx (with Re = Gd, Dy, Er, Ho, Tb and M, T = Ni, Fe, Cu, Al) alloys have been investigated in the 5-350 K temperature and 0-7 T DC field range. Far above the magnetic transition, all investigated alloys display a Curie-Weiss behavior consistent with the effective atomic moment of the Re-atoms present. The composition dependence of the Weiss constant reveals that although influenced by the presence of transition metals, the Resbnd Re exchange plays the main role in magnetic interactions. Gd-based alloys display a tendency to form multiple phases, which is supported by the presence of Fe and suppressed by the addition of Al. Single-phase amorphous Re70M30-xTx alloys are characterized by transition temperatures below 200 K, and in spite of their inherently broad transitions, they often display a magnetic entropy change superior or comparable to that of crystalline alloys with similar transition temperatures. Consequently, rare-earth-based amorphous alloys are promising candidates for magnetic refrigeration applications.

  10. Dehydration of fructose to 5-hydroxymethylfurfural by rare earth metal trifluoromethanesulfonates in organic solvents.

    PubMed

    Wang, Fenfen; Shi, Ai-Wu; Qin, Xiao-Xia; Liu, Chun-Ling; Dong, Wen-Sheng

    2011-05-15

    The catalytic dehydration of fructose to 5-hydroxymethylfurfural (HMF) was investigated by using various rare earth metal trifluoromethanesulfonates, that is, Yb(OTf)(3), Sc(OTf)(3), Ho(OTf)(3), Sm(OTf)(3), Nd(OTf)(3) as catalysts in DMSO. It is found that the catalytic activity increases with decreasing ionic radius of rare earth metal cations. Among the examined catalysts, Sc(OTf)(3) exhibits the highest catalytic activity. Fructose conversion of 100% and a HMF yield of 83.3% are obtained at 120°C after 2h by using Sc(OTf)(3) as the catalyst. Moreover, the catalytic dehydration of fructose was also carried out in different solvents, for example, DMA, 1,4-dioxane, and a mixture of PEG-400 and water. The results show that among the solvents DMSO is the most efficient in promoting the dehydration of fructose to HMF, and no rehydration byproducts such as levulinic acid and formic acid are detected.

  11. Structure and magnetism of epitaxial rare-earth-transition-metal films

    SciTech Connect

    Fullerton, E.E.; Sowers, C.H.; Pearson, J.P.; Bader, S.D.

    1996-10-01

    Growth of epitaxial transition-metal superlattices; has proven essential in elucidating the role of crystal orientation and structure on magnetic properties such as giant magnetoresistance, interlayer coupling, and magnetic surface anisotropies. Extending these studies to the growth of epitaxial rare earth-transition metal (RE-TM) films and superlattices promises to play an equally important role in exploring and optimizing the properties of hard magnets. For instance, Skomski and Coey predict that a giant energy product (120 MG Oe) is possible in multilayer structures consisting of aligned hard-magnet layers exchanged coupled with soft-phase layers with high magnetization. Epitaxy provides one route to synthesizing such exchange-hardened magnets on controlled length scales. Epitaxial growth also allows the magnetic properties to be tailored by controlling the crystal orientation and the anisotropies of the magnetic layers and holds the possibility of stabilizing metastable phases. This paper describes the epitaxy and magnetic properties for several alloys.

  12. Rare Earth Metal Complexes of Bidentate Nitroxide Ligands: Synthesis and Electrochemistry.

    PubMed

    Kim, Jee Eon; Bogart, Justin A; Carroll, Patrick J; Schelter, Eric J

    2016-01-19

    We report rare earth metal complexes with tri- and bidentate ligands including strongly electron-donating nitroxide groups. The tridentate ligand 1,3,5-tris(2'-tert-butylhydroxylaminoaryl)benzene (H3arene-triNOx) was complexed to cerium(IV) in a 2:1 ligand-to-metal stoichiometry as Ce(Harene-triNOx)2 (1). Cyclic voltammetry of this compound showed stabilization of the tetravalent cerium cation with a Ce(IV/III) couple at E1/2 = -1.82 V versus Fc/Fc(+). On the basis of the uninvolvement of the third nitroxide group in the coordination chemistry with the cerium(IV) cation, the ligand system was redesigned toward a simpler bidentate mode, and a series of rare earth metal-arene-diNOx complexes were prepared with La(III), Ce(IV), Pr(III), Tb(III), and Y(III), [RE(arene-diNOx)2](-) ([2-RE](-), RE = La, Pr, Y, Tb) and Ce(IV)(arene-diNOx)2, where H2arene-diNOx = 1,3-bis(2'-tert-butylhydroxylaminoaryl)benzene. The core structures were isostructural throughout the series, with three nitroxide groups in η(2) binding modes and one κ(1) nitroxide group coordinated to the metal center in the solid state. In all cases except Ce(IV)(arene-diNOx)2, electrochemical analysis described two subsequent, ligand-based, quasi-reversible redox waves, indicating that a stable [N-O•] group was generated on the electrochemical time scale. Chemical oxidation of the terbium complex was performed, and isolation of the resulting complex, Tb(arene-diNOx)2·CH2Cl2 (3·CH2Cl2), confirmed the assignment of the cyclic voltammograms. Magnetic data showed no evidence of mixing between the Tb(III) states and the states of the open-shell ligand.

  13. Rare earth elements and critical metal content of extracted landfilled material and potential recovery opportunities.

    PubMed

    Gutiérrez-Gutiérrez, Silvia C; Coulon, Frédéric; Jiang, Ying; Wagland, Stuart

    2015-08-01

    Rare earth elements (REEs), Platinum group metals (PGMs) and other critical metals currently attract significant interest due to the high risks of supply shortage and substantial impact on the economy. Their uses in many applications have made them present in municipal solid waste (MSW) and in commercial and industrial waste (C&I), since several industrial processes produce by-products with high content of these metals. With over 4000 landfills in the UK alone, the aim of this study was to assess the existence of these critical metals within landfills. Samples collected from four closed landfills in UK were subjected to a two-step acid digestion to extract 27 metals of interest. Concentrations across the four landfill sites were 58±6mgkg(-1) for REEs comprising 44±8mgkg(-1) for light REEs, 11±2mgkg(-1) for heavy REEs and 3±1mgkg(-1) for Scandium (Sc) and 3±1.0mgkg(-1) of PGMs. Compared to the typical concentration in ores, these concentrations are too low to achieve a commercially viable extraction. However, content of other highly valuable metals (Al and Cu) was found in concentrations equating to a combined value across the four landfills of around $400 million, which increases the economic viability of landfill mining. Presence of critical metals will mainly depend on the type of waste that was buried but the recovery of these metals through landfill mining is possible and is economically feasible only if additional materials (plastics, paper, metallic items and other) are also recovered for reprocessing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Rare earth lasers

    SciTech Connect

    Weber, M.J.

    1985-01-01

    In this brief survey, some of the key spectroscopic properties of rare earths are reviewed that account for their versatility, examine recent research trends and developments, and comment upon future projects for rare earth lasers. For gaseous and liquid lasers, other elements and molecules have thus far demonstrated lasing properties more attractive than those available using rare earths. Therefore, remarks shall be limited to solid state lasers.

  15. Recovery of Rare Earths, Precious Metals and Other Critical Materials from Geothermal Waters with Advanced Sorbent Structures

    DOE Data Explorer

    Pamela M. Kinsey

    2015-09-30

    The work evaluates, develops and demonstrates flexible, scalable mineral extraction technology for geothermal brines based upon solid phase sorbent materials with a specific focus upon rare earth elements (REEs). The selected organic and inorganic sorbent materials demonstrated high performance for collection of trace REEs, precious and valuable metals. The nanostructured materials typically performed better than commercially available sorbents. Data contains organic and inorganic sorbent removal efficiency, Sharkey Hot Springs (Idaho) water chemsitry analysis, and rare earth removal efficiency from select sorbents.

  16. Rare-earth metal oxide doped transparent mesoporous silica plates under non-aqueous condition as a potential UV sensor.

    PubMed

    Lee, Sang-Joon; Park, Sung Soo; Lee, Sang Hyun; Hong, Sang-Hyun; Ha, Chang-Sik

    2013-11-01

    Transparent mesoporous silica plates doped with rare-earth metal oxide were prepared using solvent-evaporation method based on the self-organization between structure-directing agent and silicate in a non-aqueous solvent. A triblock copolymer, Pluronic (F127 or P123), was used as the structure-directing agent, while tetraethyl orthosilicate (TEOS) was used as a silica source. The pore diameter and the surface area of the mesoporous silica plate prepared with the optimized conditions were ca 40 A and 600 m2 g(-1), respectively, for both structure-directing agent. Rare-earth metal oxides (Eu, Tb, Tm oxide) in mesochannel were formed via one-step synthetic route based on the preparation method of a silica plate. Optical properties of rare-earth metal oxide-doped mesoporous silica plates were investigated by UV irradiation and photoluminescence (PL) spectroscopy. Under the exitation wavelength of 254 nm, the doped mesoporous silica plates emitted red, green and blue for Eu, Tb and Tm oxides, respectively. Rare-earth metal oxide-doped mesoporous silica plates showed enhanced PL intensity compared to that of the bulk rare-earth metal oxide.

  17. Role of surface oxygen-to-metal ratio on the wettability of rare-earth oxides

    SciTech Connect

    Khan, Sami; Varanasi, Kripa K.; Azimi, Gisele; Yildiz, Bilge

    2015-02-09

    Hydrophobic surfaces that are robust can have widespread applications in drop-wise condensation, anti-corrosion, and anti-icing. Recently, it was shown that the class of ceramics comprising the lanthanide series rare-earth oxides (REOs) is intrinsically hydrophobic. The unique electronic structure of the rare-earth metal atom inhibits hydrogen bonding with interfacial water molecules resulting in a hydrophobic hydration structure where the surface oxygen atoms are the only hydrogen bonding sites. Hence, the presence of excess surface oxygen can lead to increased hydrogen bonding and thereby reduce hydrophobicity of REOs. Herein, we demonstrate how surface stoichiometry and surface relaxations can impact wetting properties of REOs. Using X-ray Photoelectron Spectroscopy and wetting measurements, we show that freshly sputtered ceria is hydrophilic due to excess surface oxygen (shown to have an O/Ce ratio of ∼3 and a water contact angle of ∼15°), which when relaxed in a clean, ultra-high vacuum environment isolated from airborne contaminants reaches close to stoichiometric O/Ce ratio (∼2.2) and becomes hydrophobic (contact angle of ∼104°). Further, we show that airborne hydrocarbon contaminants do not exclusively impact the wetting properties of REOs, and that relaxed REOs are intrinsically hydrophobic. This study provides insight into the role of surface relaxation on the wettability of REOs.

  18. Role of surface oxygen-to-metal ratio on the wettability of rare-earth oxides

    NASA Astrophysics Data System (ADS)

    Khan, Sami; Azimi, Gisele; Yildiz, Bilge; Varanasi, Kripa K.

    2015-02-01

    Hydrophobic surfaces that are robust can have widespread applications in drop-wise condensation, anti-corrosion, and anti-icing. Recently, it was shown that the class of ceramics comprising the lanthanide series rare-earth oxides (REOs) is intrinsically hydrophobic. The unique electronic structure of the rare-earth metal atom inhibits hydrogen bonding with interfacial water molecules resulting in a hydrophobic hydration structure where the surface oxygen atoms are the only hydrogen bonding sites. Hence, the presence of excess surface oxygen can lead to increased hydrogen bonding and thereby reduce hydrophobicity of REOs. Herein, we demonstrate how surface stoichiometry and surface relaxations can impact wetting properties of REOs. Using X-ray Photoelectron Spectroscopy and wetting measurements, we show that freshly sputtered ceria is hydrophilic due to excess surface oxygen (shown to have an O/Ce ratio of ˜3 and a water contact angle of ˜15°), which when relaxed in a clean, ultra-high vacuum environment isolated from airborne contaminants reaches close to stoichiometric O/Ce ratio (˜2.2) and becomes hydrophobic (contact angle of ˜104°). Further, we show that airborne hydrocarbon contaminants do not exclusively impact the wetting properties of REOs, and that relaxed REOs are intrinsically hydrophobic. This study provides insight into the role of surface relaxation on the wettability of REOs.

  19. Luminescence properties of rare earth and transition metal ions doped potassium lead borophosphate glass

    NASA Astrophysics Data System (ADS)

    Leong, P. M.; Eeu, T. Y.; Leow, T. Q.; Hussin, R.; Ibrahim, Z.

    2013-05-01

    A series of potassium lead borophosphate glass doped with rare earth and transition metal ions were fabricated using melt-quenching method without annealing process. With the composition of glass 0.15K2O-0.15PbO-0.35B2O3-0.5P2O5 as host doped with 0.01 mole % of neodymium oxide, iron oxide, yttrium oxide, and titanium oxide as activator and different composition were used to investigate the luminescence effect by using Photoluminescence Spectroscopy and UV-Vis (Ultraviolet-Visible) spectrophotometer. By exciting the samples at different wavelength (200-900 nm), the excitation and emission profile were obtained and analyzed to study the energy transfer process. By referring to the spectra obtained, selected samples were also codoped among each other to obtain desired luminescence properties. UV-Visible spectroscopy results revealed the absorption and transmission wavelength of samples for targeted application as a selected band filter. Physical properties such as chemical stability and color of the samples were also recorded to correlate with PL and UV-Vis result. Certain rare earth activated samples displayed slight coloring under the visible wavelength especially Nd2+ ions doped samples displayed slight purplish.

  20. Effects of rare earth elements on the distribution of mineral elements and heavy metals in horseradish.

    PubMed

    Wang, Lihong; Huang, Xiaohua; Zhou, Qing

    2008-09-01

    In order to investigate the effects of rare earth elements (REEs) on horseradish, the distribution of the mineral elements and heavy metals in different organs of horseradish have been studied by using inductively coupled plasma-atomic emission spectrometry (ICP-AES). Meanwhile, three variable major parameters, namely the concentration of REEs, the type of REEs, and the growth stage of plant were chosen. The results indicated that the test REEs, Ce(III) and Tb(III), could be accumulated in leaves, stems and roots of horseradish. In addition, we found that the content of mineral elements was increased in horseradish treated with 20mgl(-1) of Ce(III), but not those with the 20mgl(-1) of Tb(III). Moreover, the content of mineral elements in horseradish was decreased with the increasing concentration of REEs (100, 300mgl(-1)). Furthermore, we found that there were the opposite effects on the content of the heavy metals in horseradish treated with REEs. Finally, we found that the effect of REEs on the accumulation of REEs, and the content of mineral elements or heavy metals of horseradish during vigorous growth stage, no matter positive or negative, was more obvious than that of the other growth stages. These results demonstrated that the distribution behaviors of mineral elements and heavy metals in horseradish can be affected by the type and concentration of REEs, and the growth period of plant.

  1. Production method for making rare earth compounds

    DOEpatents

    McCallum, R.W.; Ellis, T.W.; Dennis, K.W.; Hofer, R.J.; Branagan, D.J.

    1997-11-25

    A method of making a rare earth compound, such as a earth-transition metal permanent magnet compound, without the need for producing rare earth metal as a process step, comprises carbothermically reacting a rare earth oxide to form a rare earth carbide and heating the rare earth carbide, a compound-forming reactant (e.g., a transition metal and optional boron), and a carbide-forming element (e.g., a refractory metal) that forms a carbide that is more thermodynamically favorable than the rare earth carbide whereby the rare earth compound (e.g., Nd{sub 2}Fe{sub 14}B or LaNi{sub 5}) and a carbide of the carbide-forming element are formed.

  2. Production method for making rare earth compounds

    DOEpatents

    McCallum, R. William; Ellis, Timothy W.; Dennis, Kevin W.; Hofer, Robert J.; Branagan, Daniel J.

    1997-11-25

    A method of making a rare earth compound, such as a earth-transition metal permanent magnet compound, without the need for producing rare earth metal as a process step, comprises carbothermically reacting a rare earth oxide to form a rare earth carbide and heating the rare earth carbide, a compound-forming reactant (e.g. a transition metal and optional boron), and a carbide-forming element (e.g. a refractory metal) that forms a carbide that is more thermodynamically favorable than the rare earth carbide whereby the rare earth compound (e.g. Nd.sub.2 Fe.sub.14 B or LaNi.sub.5) and a carbide of the carbide-forming element are formed.

  3. Theoretical Investigation of the M+-RG2 (m = Alkaline Earth Metal; RG = Rare Gas) Complexes

    NASA Astrophysics Data System (ADS)

    Gardner, Adrian M.; Plowright, Richard J.; Graneek, Jack; Wright, Timothy G.; Breckenridge, W. H.

    2012-06-01

    Metal cation rare gas complexes provide an expectedly simple system with which to investigate intermolecular interactions. Despite this, we have previously found the M+-RG (M = alkaline earth metal) complexes to very complicated systems, with the complexes of the heavier rare gases displaying surprisingly large degrees of chemical character. Here we extend these studies by examining the nature of these interactions with increasing degrees of solvation through investigating the M+-RG_2 complexes using high level {ab initio} techniques. Intriguing trends in the geometries and dissociation energies of these complexes have been observed and are rationalized. A. M. Gardner, C. D. Withers, J. B. Graneek, T. G. Wright, L. A. Viehland and W. H. Breckenridge, J. Phys. Chem. A, 2000, 114, 7631. A. M. Gardner, C. D. Withers, T. G. Wright, K. I. Kaplan, C. Y. N. Chapman, L. A. Viehland, E. P. F. Lee and W. H. Breckenridge, J. Chem. Phys., 2010, 132, 054302. M. F. McGuirk, L. A. Viehland, E. P. F. Lee, W. H. Breckenridge, C. D. Withers, A. M. Gardner, R. J. Plowright and T. G. Wright, J. Chem. Phys., 2009, 130, 194305.

  4. Binary rare earth element-Ni/Co metallic glasses with distinct β-relaxation behaviors

    SciTech Connect

    Zhu, Z. G.; Wang, Z.; Wang, W. H.

    2015-10-21

    We report the formation of a series of rare earth element (RE)-Ni/Co binary metallic glasses (MGs) with unusual distinct β-relaxation peak compared with that of most of the reported MGs which usually exhibit as an excess wing or a shoulder. The β-relaxation behavior of RE-Ni/Co MGs is sensitive to the composition and the atomic radii of the RE and can be tuned through changing the fraction of RE-Ni (or Co) atomic pairs. The novel RE-Ni/Co MGs with distinct β-relaxation can serve as model system to investigate the nature of the β-relaxation as well as its relations with other physical and mechanical properties of MGs.

  5. Remarkable rare-earth metal silicide oxides with planar Si6 rings.

    PubMed

    Wang, Limin; Tang, Zhongjia; Lorenz, Bernd; Guloy, Arnold M

    2008-08-27

    New rare-earth silicide oxides, La10Si8O3 (1) and Ce10Si8O3 (2), were synthesized through high-temperature reactions of the pure elements under controlled oxygen atmosphere conditions. The remarkable silicides crystallize in a unique crystal structure (space group P6/mmm; a = 10.975(3) A (La) and 10.844(1) A (Ce); c = 4.680(1) A (La) and 4.561(1) A (Ce)) that features a 3-D framework of corner-shared O-centered (La/Ce)6 octahedra, reminiscent of hexagonal tungsten bronzes, with planar Si6 rings enclosed within its hexagonal channels. Band structure calculations indicate the compounds are metallic, with optimized La-Si bonds, and a benzene-like [Si6]6- anion. Compound 1 exhibits temperature independent paramagnetism. Compound 2 exhibits Curie-Weiss paramagnetism, and an antiferromagnetic ordering below 7 K.

  6. Coordination Polymerization of Renewable 3-Methylenecyclopentene with Rare-Earth-Metal Precursors.

    PubMed

    Liu, Bo; Li, Shihui; Wang, Meiyan; Cui, Dongmei

    2017-04-10

    Coordination polymerization of renewable 3-methylenecyclopentene has been investigated for the first time using rare-earth metal-based precursors bearing various bulky ligands. All the prepared complexes catalyze controllable polymerization of 3-methylenecyclopentene into high molecular weight polymers, of which the NPN- and NSN-tridentate non-Cp ligated lutetium-based catalytic systems exhibited extremely high activities up to 11 520 kg/(molLu ⋅h) in a dilute toluene solution (3.2 g/100 mL) at room temperature. The resultant polymers have pure 1,4-regioregularity (>99 %) and tailorable number average molecular weights (1-20×10(4) ) with narrow molecular weight distributions (polydispersity index (PDI)=1.45-1.79). DFT simulations were employed to study the polymerization mechanism and stereoregularity control. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Coercivity of domain wall motion in thin films of amorphous rare earth-transition metal alloys

    NASA Technical Reports Server (NTRS)

    Mansuripur, M.; Giles, R. C.; Patterson, G.

    1991-01-01

    Computer simulations of a two dimensional lattice of magnetic dipoles are performed on the Connection Machine. The lattice is a discrete model for thin films of amorphous rare-earth transition metal alloys, which have application as the storage media in erasable optical data storage systems. In these simulations, the dipoles follow the dynamic Landau-Lifshitz-Gilbert equation under the influence of an effective field arising from local anisotropy, near-neighbor exchange, classical dipole-dipole interactions, and an externally applied field. Various sources of coercivity, such as defects and/or inhomogeneities in the lattice, are introduced and the subsequent motion of domain walls in response to external fields is investigated.

  8. Cluster Synthesis and Direct Ordering of Rare-Earth Transition-Metal Nanomagnets

    SciTech Connect

    Balasubramanian, B; Skomski, R; Li, XZ; Valloppilly, SR; Shield, JE; Hadjipanayis, GC; Sellmyer, DJ

    2011-04-01

    Rare-earth transition-metal (R-TM) alloys show superior permanent magnetic properties in the bulk, but the synthesis and application of R-TM nanoparticles remains a challenge due to the requirement of high-temperature annealing above about 800 degrees C for alloy formation and subsequent crystalline ordering. Here we report a single-step method to produce highly ordered R-TM nanoparticles such as YCo(5) and Y(2)Co(17), without high-temperature thermal annealing, by employing a cluster-deposition system and investigate their structural and magnetic properties. The direct ordering is highly desirable to create and assemble R-TM nanoparticle building blocks for future permanent-magnet and other significant applications.

  9. Binary rare earth element-Ni/Co metallic glasses with distinct β-relaxation behaviors

    NASA Astrophysics Data System (ADS)

    Zhu, Z. G.; Wang, Z.; Wang, W. H.

    2015-10-01

    We report the formation of a series of rare earth element (RE)-Ni/Co binary metallic glasses (MGs) with unusual distinct β-relaxation peak compared with that of most of the reported MGs which usually exhibit as an excess wing or a shoulder. The β-relaxation behavior of RE-Ni/Co MGs is sensitive to the composition and the atomic radii of the RE and can be tuned through changing the fraction of RE-Ni (or Co) atomic pairs. The novel RE-Ni/Co MGs with distinct β-relaxation can serve as model system to investigate the nature of the β-relaxation as well as its relations with other physical and mechanical properties of MGs.

  10. Preparation and structure of rare earth transition metal alloy thin films

    SciTech Connect

    Qui, J.F.; Taylor, K.N.R.; Russell, G.J. . Advanced Electronic Materials Physics)

    1993-01-01

    Quaternary GdTbFeCo alloy thin films with various thicknesses from 30 to 700nm have been rf-magnetron sputtered onto glass substrates, single crystal silicon wafers for SEM observations and carbon-coated 3mm diameter copper grids for TEM from the composite target made of an Fe[sub 80]Co[sub 20] powder alloy compact disk and Gd,Tb chips placed on the surface. The amorphous GdTbFeCo alloy thin films deposited by the present process are very uniform in thickness and composition. SEM and TEM observations show that the GdTbFeCo thin films are very smooth, dense and morphologically featureless. These results suggest that the sputter processing methods in the laboratory can be used to fabricate high quality rare earth-transition metal alloy thin films.

  11. Low-energy description of the metal-insulator transition in the rare-earth nickelates

    NASA Astrophysics Data System (ADS)

    Subedi, Alaska; Peil, Oleg E.; Georges, Antoine

    2015-02-01

    We propose a simple theoretical description of the metal-insulator transition of rare-earth nickelates. The theory involves only two orbitals per nickel site, corresponding to the low-energy antibonding eg states. In the monoclinic insulating state, bond-length disproportionation splits the manifold of eg bands, corresponding to a modulation of the effective on-site energy. We show that, when subject to a local Coulomb repulsion U and Hund's coupling J , the resulting bond-disproportionated state is a paramagnetic insulator for a wide range of interaction parameters. Furthermore, we find that when U -3 J is small or negative, a spontaneous instability to bond disproportionation takes place for large enough J . This minimal theory emphasizes that a small or negative charge-transfer energy, a large Hund's coupling, and a strong coupling to bond disproportionation are the key factors underlying the transition. Experimental consequences of this theoretical picture are discussed.

  12. Rare earth-transition metal compound-based MOSLM for the visible spectral range

    NASA Astrophysics Data System (ADS)

    Heo, J.; Miyazawa, T.; Kim, J.; Baryshev, A. V.; Inoue, M.

    2010-02-01

    We have demonstrated a magneto-optical spatial light modulator in which functionality is realized by (i) heating up to Curie temperature ( Tc) magneto-optical elements (pixels) with a semiconductor laser and (ii) application of a switching magnetic field. The pixels were made of films of amorphous rare earth-transition metal compounds (TbFe films with Tc=403 K and DyFe films with Tc=343 K) having good magneto-optical responses for wavelengths from the visible spectral range. We have found that the magnetization direction of pixels can be modulated with a laser radiation density of 5 mJ/cm 2 and in a switching magnetic field of 15 Oe.

  13. Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges

    NASA Astrophysics Data System (ADS)

    Ganduglia-Pirovano, M. Verónica; Hofmann, Alexander; Sauer, Joachim

    2007-06-01

    Defects at transition metal (TM) and rare earth (RE) oxide surfaces, neutral oxygen vacancies in particular, play a major role in a variety of technological applications. This is the motivation of numerous studies of partially reduced oxide surfaces. We review, discuss, and compare theoretical data for structural and electronic properties and energetic quantities related to the formation of oxygen defects at TM and RE oxide surfaces using TiO 2, ZrO 2, V 2O 5, and CeO 2 as examples. Bulk defects, as far as relevant for comparison with the properties of reduced surfaces, are briefly reviewed. Special attention is given to the fate of the electrons left in the system upon vacancy formation and the ability of state-of-the-art quantum-mechanical methods to provide reliable energies and an accurate description of the electronic structure of the partially reduced oxide systems.

  14. On the new ? (R = rare earth metals) alloys and their related hydrides and carbides

    NASA Astrophysics Data System (ADS)

    Vert, R.; Fruchart, D.; Gignoux, D.; Skolozdra, R. V.

    1999-03-01

    New interstitial hydrides 0953-8984/11/9/003/img7 and carbides 0953-8984/11/9/003/img8 (R = rare earth metal) have been synthesized. Structural characteristics and preliminary magnetic properties (0953-8984/11/9/003/img9 and 0953-8984/11/9/003/img10), together with those of the starting alloys, are presented and compared to the previously studied nitrides. Large increases of the Curie temperature and of the iron moment, particularly large in the carbides, are obtained. The evolutions of the deduced Fe-Fe and R-Fe exchange interactions are discussed. The large Curie temperature obtained with the carbides makes this series particularly attractive for permanent magnet applications, owing to the easy route proposed for the synthesis.

  15. Rare earth-transition metal-magnesium compounds-An overview

    SciTech Connect

    Rodewald, Ute Ch.; Chevalier, Bernard Poettgen, Rainer

    2007-05-15

    Intermetallic rare earth-transition metal-magnesium compounds play an important role as precipitations in modern light weight alloys and as host materials for hydrogen storage applications. Recent results on the crystal chemistry, the chemical bonding peculiarities, physical properties, and hydrogenation behavior of these materials are reviewed. - Graphical abstract: View of the Sm{sub 4}RhMg crystal structure approximately along the direction. Samarium, rhodium, and magnesium atoms are drawn as medium gray, filled (hidden in the trigonal prisms), and open circles, respectively. The three-dimensional network of corner-sharing RhSm{sub 6} trigonal prisms and the Mg{sub 4} tetrahedra are emphasized. The Sm1 atoms do not participate in the network of condensed trigonal prisms.

  16. Coherent spectroscopy of rare-earth-metal-ion-doped whispering-gallery-mode resonators

    SciTech Connect

    McAuslan, D. L.; Korystov, D.; Longdell, J. J.

    2011-06-15

    We perform an investigation into the properties of Pr{sup 3+}:Y{sub 2}SiO{sub 5} whispering-gallery-mode resonators as a first step toward achieving the strong coupling regime of cavity QED with rare-earth-metal-ion-doped crystals. Direct measurement of cavity QED parameters are made using photon echoes, giving good agreement with theoretical predictions. By comparing the ions at the surface of the resonator to those in the center, it is determined that the physical process of making the resonator does not negatively affect the properties of the ions. Coupling between the ions and resonator is analyzed through the observation of optical bistability and normal-mode splitting.

  17. Basic character of rare earth metal alkoxides. Utilization in catalytic C-C bond-forming reactions and catalytic asymmetric nitroaldol reactions

    SciTech Connect

    Sasai, H.; Suzuki, T.; Arai, S.

    1992-05-20

    In a recent paper, the authors reported that Zr(O-t-Bu){sub 4} was an efficient and convenient basic reagent in organic synthesis. However, all reactions examined were performed with stoichiometric quantities of the reagent. The authors envisioned that rare earth metal alkoxides would be stronger bases than group 4 metal alkoxides due to the lower ionization potential (ca. 5.4-6.4 eV) and the lower electronegativity (1.1-1.3) of rare earth elements; thus, the catalytic use of rare earth metal alkoxides in organic synthesis was expected. Although a variety of rare earth metal alkoxides have been prepared for the last three decades, to the authors knowledge, there have been few reports concerning the basicity of rare earth metal alkoxides. Herein, the authors report several carbon-carbon bond-forming reactions catalyzed by rare earth metal alkoxides and their application to a catalytic asymmetric nitroaldol reaction.

  18. Fundamental limits on 1/f frequency noise in rare-earth-metal-doped fiber lasers due to spontaneous emission

    NASA Astrophysics Data System (ADS)

    Foster, Scott

    2008-07-01

    It is proposed that observed 1/f laser frequency noise in rare-earth-metal-doped optical fiber lasers is caused by diffusion of local entropy fluctuations associated with random spontaneous emission events. This heat generation is directly associated with the broad emission spectrum of rare-earth-metal-doped laser glasses. Using data from a well characterized erbium-doped fiber laser, it is shown that the power spectral density of frequency fluctuations resulting from this mechanism is able to achieve excellent agreement with experiment. The proposed theory is expected to be generally applicable to broadly emitting solid-state gain media.

  19. Normal-mode coupling of rare-earth-metal ions in a crystal to a macroscopic optical cavity mode

    NASA Astrophysics Data System (ADS)

    Ichimura, Kouichi; Goto, Hayato

    2006-09-01

    We demonstrated coupling of rare-earth-metal ions in a crystal to a macroscopic cavity mode by observing optical bistability and normal-mode peaks due to sweeping-laser-induced population redistribution of the ions. The experimentally evaluated coupling constant between the individual ions and the single cavity mode is 15kHz , which is comparable with or larger than the dissipation of the ions and will exceed the cavity dissipation with a narrowing of the mode waist of the cavity to the wavelength. The results advance the application of a coupled system of rare-earth-metal ions in a crystal and an optical cavity for quantum information processing.

  20. Reactivity of functionalized indoles with rare-earth metal amides. Synthesis, characterization and catalytic activity of rare-earth metal complexes incorporating indolyl ligands.

    PubMed

    Feng, Zhijun; Wei, Yun; Zhou, Shuangliu; Zhang, Guangchao; Zhu, Xiancui; Guo, Liping; Wang, Shaowu; Mu, Xiaolong

    2015-12-21

    The reactivity of several functionalized indoles 2-(RNHCH2)C8H5NH (R = C6H5 (1), (t)Bu (2), 2,6-(i)Pr2C6H3 (3)) with rare-earth metal amides is described. Reactions of 1 or 2 with [(Me3Si)2N]3RE(μ-Cl)Li(THF)3 (RE = Eu, Yb) respectively produced the europium complexes [2-(C6H5N[double bond, length as m-dash]CH)C8H5N]2Eu[N(SiMe3)2] (4) and [2-((t)BuN[double bond, length as m-dash]CH)C8H5N]Eu[N(SiMe3)2]2 (5), and the ytterbium complex [2-((t)BuN[double bond, length as m-dash]CH)C8H5N]2Yb[N(SiMe3)2] (6), containing bidentate anionic indolyl ligands via dehydrogenation of the amine to the imine. In contrast, reactions of the more sterically bulky indole 3 with [(Me3Si)2N]3RE(μ-Cl)Li(THF)3 afforded complexes [2-(2,6-(i)Pr2C6H3NCH2)C8H5N]RE[N(SiMe3)2](THF)2 (RE = Yb (7), Y (8), Er (9), Dy (10)) with the deprotonated indolyl ligand. While reactions of 3 with yttrium and ytterbium amides in refluxing toluene respectively gave the complexes [2-(2,6-(i)Pr2C6H3N[double bond, length as m-dash]CH)C8H5N]3Y (11) and [2-(2,6-(i)Pr2C6H3N[double bond, length as m-dash]CH)C8H5N]2Yb(II)(THF)2 (12), along with transformation of the amino group to the imino group, and also with a reduction of Yb(3+) to Yb(2+) in the formation of 12. Reactions of 3 with samarium and neodymium amides provided novel dinuclear complexes {[μ-η(5):η(1):η(1)-2-(2,6-(i)Pr2C6H3NCH2)C8H5N]RE[N(SiMe3)2]}2 (RE = Sm (13), Nd (14)) having indolyl ligands in μ-η(5):η(1):η(1) hapticities. The pathway for the transformation of the amino group to the imino group is proposed on the basis of the experimental results. The new complexes displayed excellent activity in the intramolecular hydroamination of aminoalkenes.

  1. Rare earth gas laser

    DOEpatents

    Krupke, W.F.

    1975-10-31

    A high energy gas laser with light output in the infrared or visible region of the spectrum is described. Laser action is obtained by generating vapors of rare earth halides, particularly neodymium iodide or, to a lesser extent, neodymium bromide, and disposing the rare earth vapor medium in a resonant cavity at elevated temperatures; e.g., approximately 1200/sup 0/ to 1400/sup 0/K. A particularly preferred gaseous medium is one involving a complex of aluminum chloride and neodymium chloride, which exhibits tremendously enhanced vapor pressure compared to the rare earth halides per se, and provides comparable increases in stored energy densities.

  2. Spin-orbit thermal entanglement in a rare-earth-metal ion: Susceptibility witness

    NASA Astrophysics Data System (ADS)

    Duarte, O. S.; Castro, C. S.; Reis, M. S.

    2013-07-01

    In the present work, we explore the thermal entanglement between spin and orbital angular momentum in a rare-earth ion. A witness, based on the magnetic susceptibility and capable of revealing entanglement between these two angular momenta of different nature, is introduced. We found entanglement temperatures of 322 K for promethium and 715 K for samarium. These high temperatures make interesting the use of rare-earth in applications of quantum-information processes at room temperature.

  3. Strategic design and refinement of Lewis acid-base catalysis by rare-earth-metal-containing polyoxometalates.

    PubMed

    Suzuki, Kosuke; Sugawa, Midori; Kikukawa, Yuji; Kamata, Keigo; Yamaguchi, Kazuya; Mizuno, Noritaka

    2012-06-18

    Efficient polyoxometalate (POM)-based Lewis acid-base catalysts of the rare-earth-metal-containing POMs (TBA(6)RE-POM, RE = Y(3+), Nd(3+), Eu(3+), Gd(3+), Tb(3+), or Dy(3+)) were designed and synthesized by reactions of TBA(4)H(4)[γ-SiW(10)O(36)] (TBA = tetra-n-butylammonium) with RE(acac)(3) (acac = acetylacetonato). TBA(6)RE-POM consisted of two silicotungstate units pillared by two rare-earth-metal cations. Nucleophilic oxygen-enriched surfaces of negatively charged POMs and the incorporated rare-earth-metal cations could work as Lewis bases and Lewis acids, respectively. Consequently, cyanosilylation of carbonyl compounds with trimethylsilyl cyanide ((TMS)CN) was efficiently promoted in the presence of the rare-earth-metal-containing POMs via the simultaneous activation of coupling partners on the same POM molecules. POMs with larger metal cations showed higher catalytic activities for cyanosilylation because of the higher activation ability of C═O bonds (higher Lewis acidities) and sterically less hindered Lewis acid sites. Among the POM catalysts examined, the neodymium-containing POM showed remarkable catalytic performance for cyanosilylation of various kinds of structurally diverse ketones and aldehydes, giving the corresponding cyanohydrin trimethylsilyl ethers in high yields (13 substrates, 94-99%). In particular, the turnover frequency (714,000 h(-1)) and the turnover number (23,800) for the cyanosilylation of n-hexanal were of the highest level among those of previously reported catalysts.

  4. Co-doping of glasses with rare earth ions and metallic nanoparticles for frequency up-conversion

    NASA Astrophysics Data System (ADS)

    Wackerow, S.; Seifert, G.

    2010-05-01

    We explore different approaches to achieve co-doping of glasses with rare earth ions and metallic nanoparticles, and to manipulate the spectral position of the particles' surface plasmon resonance. The final goal is to find a composite material with improved efficiency of frequency up-conversion of light for photovoltaic applications. The potential for improvement has been shown by theoretical calculations predicting that absorption and emission probabilities of the ions can be enhanced when the plasmon resonance of the nanoparticles is close to the respective transition frequency of the ions. In this work we demonstrate the sequential co-doping of glasses already containing rare-earth ions with Ag nanoparticles, as well as implantation of rare-earth ions in glasses which already contained metallic nanoparticles. It could also be demonstrated that the surface plasmon resonance of the created particles can be tuned by femtosecond laser induced shape transformation of the Ag clusters.

  5. On the effects of magnetic bonding in rare earth transition metal intermetallics

    SciTech Connect

    Kumar, R.; Bentley, J. ); Yelon, W.B. . Research Reactor Facility)

    1990-01-01

    Neutron diffraction experiments on rare-earth transition metal magnetic alloys Er{sub 2}Fe{sub 14}B and Er{sub 2}Fe{sub 17} have been carried out at temperature above and below the ordering temperature ({Tc}). An anomalously large magnetic moment is observed at the crystallographic j{sub 2} site in Er{sub 2}Fe{sub 14}B which is the intersection point of the major ligand lines in the crystal structure. The interatomic Fe-Fe distances are in the range of strong ferromagnetic bonds ({ge} 2.66 {angstrom}). The analogous f site in Er{sub 2}Fe{sub 17} does not develop as large a magnetic moment. In addition, the same sites show strong preference for Fe atoms in the respective substituted compounds. Due to poor phase stability of Er{sub 2} (Co{sub x}Fe{sub 1 {minus}x}){sub 14}B compounds, iron substitution has been studied in detail in Er{sub 2}(Co{sub x}Fe{sub 1 {minus}x}){sub 17} alloys for site specific order an lattice distortion effects. However, a nonlinear change in the c lattice parameter observed in the neutron diffraction results cannot be explained on the basis of site preference alone. The neutron refinement results indicate iron rich compositions in Er{sub 2}(Co{sub x}Fe{sub 1 {minus}x}){sub 17} materials, which is related to random substitution of Fe dumbbell pairs in the rare earth sites in the lattice. However, extensive electron microscopy (selected area electron diffraction and high resolution imaging) of Er{sub 2}Fe{sub 17} and Er{sub 2}(Co{sub .40}Fe{sub .60}) {sub 17} failed to reveal any microscopic inhomogeneity. 12 refs., 5 figs., 2 tabs.

  6. Reduction of residual gas in a sputtering system by auxiliary sputter of rare-earth metal

    NASA Astrophysics Data System (ADS)

    Li, Dejie

    2002-01-01

    In film deposition by sputtering, the oxidation and nitrification of the sputtered material lead to degradation of film quality, particularly with respect to metal sulfide films. We propose to use auxiliary sputtering as a method to produce a fresh film of rare-earth metal, usually dysprosium (Dy), that absorbs the active gases in a sputtering system, greatly reducing the background pressure and protecting the film from oxidation and nitrification effectively. The influence of the auxiliary sputtering power consumption, sputtering time, and medium gas pressure on the background pressure in the vacuum chamber is investigated in detail. If the auxiliary sputtering power exceeds 120 W and the sputtering time is more than 4 min, the background pressure is only one fourth of the ultimate pressure pumped by an oil diffusion pump. The absorption activity of the sputtered Dy film continues at least an hour after completion of the auxiliary sputter. Applied to film deposition of Ti and ZnS, this technique has been proven to be effective. For the Ti film, the total content of N and O is reduced from 45% to 20% when the auxiliary sputtering power of Dy is 120 W, and the sputtering time is 20 min. In the case of ZnS, the content of O is reduced from 8% to 2%.

  7. Fenton-Like Reaction Catalyzed by the Rare Earth Inner Transition Metal Cerium

    PubMed Central

    HECKERT, ERIC G.; SEAL, SUDIPTA; SELF, WILLIAM T.

    2011-01-01

    Cerium (Ce) is a rare earth metal that is not known to have any biological role. Cerium oxide materials of several sizes and shapes have been developed in recent years as a scaffold for catalysts. Indeed even cerium oxide nanoparticles themselves have displayed catalytic activities and antioxidant properties in tissue culture and animal models. Because of ceria's ability to cycle between the +3 and +4 states at oxygen vacancy sites, we investigated whether cerium metal would catalyze a Fenton-like reaction with hydrogen peroxide. Indeed, cerium chloride did exhibit radical production in the presence of hydrogen peroxide, as assessed by relaxation of supercoiled plasmid DNA. Radical production in this reaction was also followed by production of radical cation of 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS). Radical scavengers and spin traps were capable of competing with ABTS for radicals produced in this cerium dependent Fenton-like reaction. Electron paramagnetic resonance experiments reveal both hydroxyl radical and superoxide anion in a reaction containing cerium and hydrogen peroxide. Based on these results we propose that cerium is capable of redox-cycling with peroxide to generate damaging oxygen radicals. PMID:18678042

  8. Fenton-like reaction catalyzed by the rare earth inner transition metal cerium.

    PubMed

    Heckert, Eric G; Seal, Sudipta; Self, William T

    2008-07-01

    Cerium (Ce) is a rare earth metal that is not known to have any biological role. Cerium oxide materials of several sizes and shapes have been developed in recent years as a scaffold for catalysts. Indeed even cerium oxide nanoparticles themselves have displayed catalytic activities and antioxidant properties in tissue culture and animal models. Because of ceria's ability to cycle between the +3 and +4 states at oxygen vacancy sites, we investigated whether cerium metal would catalyze a Fenton-like reaction with hydrogen peroxide. Indeed, cerium chloride did exhibit radical production in the presence of hydrogen peroxide, as assessed by relaxation of supercoiled plasmid DNA. Radical production in this reaction was also followed by production of radical cation of 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS). Radical scavengers and spin traps were capable of competing with ABTS for radicals produced in this cerium dependent Fenton-like reaction. Electron paramagnetic resonance experiments reveal both hydroxyl radical and superoxide anion in a reaction containing cerium and hydrogen peroxide. Based on these results we propose that cerium is capable of redox-cycling with peroxide to generate damaging oxygen radicals.

  9. Photon-pair source with controllable delay based on shaped inhomogeneous broadening of rare-earth-metal-doped solids

    SciTech Connect

    Sekatski, Pavel; Sangouard, Nicolas; Gisin, Nicolas; Afzelius, Mikael; Riedmatten, Hugues de

    2011-05-15

    Spontaneous Raman emission in atomic gases provides an attractive source of photon pairs with a controllable delay. We show how this technique can be implemented in solid state systems by appropriately shaping the inhomogeneous broadening. Our proposal is eminently feasible with current technology and provides a realistic solution to entangle remote rare-earth-metal-doped solids in a heralded way.

  10. Mathematical model of quasiequilibrium counter-current solvent extraction of rare-earth metals with variable feed compositions

    SciTech Connect

    Pyartman, A.K.; Puzikov, E.A.; Kopyrin, A.A.

    1995-07-01

    A mathematical model is proposed for the distribution of trivalent rare-earth metals as a function of the number of contacts in quasiequilibrium counter-current solvent extraction with variable feed compositions. An algorithm for computer calculations is given. The model is used to select the optimal conditions for separating a didymium mixture.

  11. Bis(imidazolin-2-iminato) rare earth metal complexes: synthesis, structural characterization, and catalytic application.

    PubMed

    Trambitas, Alexandra G; Melcher, Daniel; Hartenstein, Larissa; Roesky, Peter W; Daniliuc, Constantin; Jones, Peter G; Tamm, Matthias

    2012-06-18

    Reaction of anhydrous rare earth metal halides MCl(3) with 2 equiv of 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-imine (Im(Dipp)NH) and 2 equiv of trimethylsilylmethyl lithium (Me(3)SiCH(2)Li) in THF furnished the complexes [(Im(Dipp)N)(2)MCl(THF)(n)] (M = Sc, Y, Lu). The molecular structures of all three compounds were established by single-crystal X-ray diffraction analyses. The coordination spheres around the pentacoordinate metal atoms are best described as trigonal bipyramids. Reaction of YbI(2) with 2 equiv of LiCH(2)SiMe(3) and 2 equiv of the imino ligand Im(Dipp)NH in tetrahydrofuran did not result in a divalent complex, but instead the Yb(III) complex [(Im(Dipp)N)(2)YbI(THF)(2)] was obtained and structurally characterized. Treatment of [(Im(Dipp)N)(2)MCl(THF)(n)] with 1 equiv of LiCH(2)SiMe(3) resulted in the formation of [(Im(Dipp)N)(2)M(CH(2)SiMe(3))(THF)(n)]. The coordination arrangement of these compounds in the solid state at the metal atoms is similar to that found for the starting materials, although the introduction of the neosilyl ligand induces a significantly greater distortion from the ideal trigonal-bipyramidal geometry. [(Im(Dipp)N)(2)Y(CH(2)SiMe(3))(THF)(2)] was used as precatalyst in the intramolecular hydroamination/cyclization reaction of various terminal aminoalkenes and of one aminoalkyne. The complex showed high catalytic activity and selectivity. A comparison with the previously reported dialkyl yttrium complex [(Im(Dipp)N)Y(CH(2)SiMe(3))(2)(THF)(3)] showed no clear tendency in terms of activity.

  12. Pressure effects on hydrogen atoms near the metal plane in the HCP phase of rare-earth metal trihydrides

    NASA Astrophysics Data System (ADS)

    Tunghathaithip, N.; Pakornchote, T.; Phaisangittisakul, N.; Bovornratanaraks, T.; Pinsook, U.

    2016-04-01

    Rare-earth metal trihydrides, REH3 (RE=Sc, Y, La), in the hcp phase were investigated under high pressure by the ab initio method. We concentrated on the behavior of hydrogen atoms which is affected by pressure. Two-thirds of the hydrogen atoms near the metal plane (Hm) were found to displace away from the metal plane as pressure increases. The trajectory of these squeezed hydrogen atoms is from a site near the metal plane, and moves past the plane of the tetragonal sites, and heads toward the nearest octahedral site. However, the rate of displacement depends on the local environment. LaH3 exhibits the least impediment on the Hm displacement while YH3 and ScH3 exhibit stronger impediment. Furthermore, our calculated Raman and IR active modes are in general agreement with the experimental data. The displacement of Hm can be used to explain the behavior of the Ov peak in Raman spectra, where it exists at low pressure and disappears at higher pressure in YH3 and ScH3.

  13. Synthesis and structural characterization of amido scorpionate rare earth metals complexes.

    PubMed

    Márquez-Segovia, Isabel; Lara-Sánchez, Agustín; Otero, Antonio; Fernández-Baeza, Juan; Castro-Osma, José Antonio; Sánchez-Barba, Luis F; Rodríguez, Ana M

    2014-07-07

    The reactivity of hybrid scorpionate/cyclopentadienyl ligands in the form of the protio derivatives as a mixture of two regioisomers, namely bpzcpH [1-{2,2-bis(3,5-dimethylpyrazol-1-yl)-1,1-diphenylethyl}-1,3-cyclopentadiene and 2-{2,2-bis(3,5-dimethylpyrazol-1-yl)-1,1-diphenylethyl}-1,3-cyclopentadiene] and bpztcpH [1-{2,2-bis(3,5-dimethylpyrazol-1-yl)-1-tert-butylethyl}-1,3-cyclopentadiene and 2-{2,2-bis(3,5-dimethylpyrazol-1-yl)-1-tert-butylethyl}-1,3-cyclopentadiene], with the tris(silylamide) precursors [M{N(SiHMe2)2}3(thf)x] of rare earth metals (including the group 3 metals scandium and yttrium) is related to the atomic radii of the metal centres. The reaction with the precursor containing the smallest ion, [Sc{N(SiHMe2)2}3(thf)], did not proceed even heating at reflux temperature in toluene. The reaction with the precursors that contain a medium-sized metal ion, i.e., [M{N(SiHMe2)2}3(thf)2] (M = Y, Lu), proceeded only at high temperature and gave good yields of the silylenediamide-containing derivatives [M{κ(2)-NN-Me2Si(NSiHMe2)2}(bpzcp)] (M = Y , Lu ) and [M{κ(2)-NN-Me2Si(NSiHMe2)2}(bpztcp)] (M = Y , Lu ) by an double activation of Si-H and Si-N bonds. However, the reaction with the precursors that contained the largest metal ions, i.e., [M{N(SiHMe2)2}3(thf)2] (M = Nd, Sm), proceeded rapidly at room temperature to afford the bis(silylamide) complexes [M{N(SiHMe2)2}2(bpzcp)] (M = Nd , Sm ) and [M{N(SiHMe2)2}2(bpztcp)] (M = Nd , Sm ). Additionally, the alkyl heteroscorpionate yttrium and lutetium complexes [M(CH2SiMe3)2(NNCp)] (M = Y, Lu) reacted with an excess of HN(SiHMe2)2 to give the mixed alkyl/amide derivatives [M{N(SiHMe2)2}(CH2SiMe3)(bpzcp)] (M = Y , Lu ) and [M{N(SiHMe2)2}(CH2SiMe3)(bpztcp)] (M = Y , Lu ). The structures of the complexes were determined by spectroscopic methods and the X-ray crystal structures of , and were also established.

  14. Magnetic ordering temperatures in rare earth metal dysprosium under ultrahigh pressures

    SciTech Connect

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; Vohra, Yogesh K.

    2014-04-03

    Magnetic ordering temperatures in heavy rare earth metal Dysprosium (Dy) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to extreme conditions of pressure to 69 GPa and temperature to 10 K. Previous studies using magnetic susceptibility measurements at high pressures were only able to track magnetic ordering temperature till 7 GPa in the hexagonal close packed (hcp) phase of Dy. Our studies indicate that the magnetic ordering temperature shows an abrupt drop of 80 K at the hcp-Sm phase transition followed by a gradual decrease that continues till 17 GPa. This is followed by a rapid increase in the magnetic ordering temperatures in the double hexagonal close packed phase and finally leveling off in the distorted face centered cubic phase of Dy. Lastly, our studies reaffirm that 4f-shell remain localized in Dy and there is no loss of magnetic moment or 4f-shell delocalization for pressures up to 69 GPa.

  15. Rare-earth vs. heavy metal pigments and their colors from first principles.

    PubMed

    Tomczak, Jan M; Pourovskii, Leonid V; Vaugier, Loig; Georges, Antoine; Biermann, Silke

    2013-01-15

    Many inorganic pigments contain heavy metals hazardous to health and environment. Much attention has been devoted to the quest for nontoxic alternatives based on rare-earth elements. However, the computation of colors from first principles is a challenge to electronic structure methods, especially for materials with localized f-orbitals. Here, starting from atomic positions only, we compute the colors of the red pigment cerium fluorosulfide as well as mercury sulfide (classic vermilion). Our methodology uses many-body theories to compute the optical absorption combined with an intermediate length-scale modelization to assess how coloration depends on film thickness, pigment concentration, and granularity. We introduce a quantitative criterion for the performance of a pigment. While for mercury sulfide, this criterion is satisfied because of large transition matrix elements between wide bands, cerium fluorosulfide presents an alternative paradigm: the bright red color is shown to stem from the combined effect of the quasi-2D and the localized nature of states. Our work shows the power of modern computational methods, with implications for the theoretical design of materials with specific optical properties.

  16. Rare-earth vs. heavy metal pigments and their colors from first principles

    PubMed Central

    Tomczak, Jan M.; Pourovskii, Leonid V.; Vaugier, Loig; Georges, Antoine; Biermann, Silke

    2013-01-01

    Many inorganic pigments contain heavy metals hazardous to health and environment. Much attention has been devoted to the quest for nontoxic alternatives based on rare-earth elements. However, the computation of colors from first principles is a challenge to electronic structure methods, especially for materials with localized f-orbitals. Here, starting from atomic positions only, we compute the colors of the red pigment cerium fluorosulfide as well as mercury sulfide (classic vermilion). Our methodology uses many-body theories to compute the optical absorption combined with an intermediate length-scale modelization to assess how coloration depends on film thickness, pigment concentration, and granularity. We introduce a quantitative criterion for the performance of a pigment. While for mercury sulfide, this criterion is satisfied because of large transition matrix elements between wide bands, cerium fluorosulfide presents an alternative paradigm: the bright red color is shown to stem from the combined effect of the quasi-2D and the localized nature of states. Our work shows the power of modern computational methods, with implications for the theoretical design of materials with specific optical properties. PMID:23302689

  17. TOPICAL REVIEW: Ferromagnetic nitride-based semiconductors doped with transition metals and rare earths

    NASA Astrophysics Data System (ADS)

    Bonanni, A.

    2007-09-01

    This review summarizes the state-of-the-art in the search for room temperature ferromagnetic semiconductors based on transition-metal- and rare-earth-doped nitrides. The major methods of synthesis are reported, together with an overview of the magnetic, structural, electrical and optical characterization of the materials systems, where available. The controversial experimental results concerning the actual value of the apparent Curie temperature in magnetically doped nitrides are highlighted, the inadequacy of standard characterization methods alone and the necessity of a possibly exhaustive structural investigation of the systems are proven and underlined. Furthermore, the dependence on the fabrication parameters of the magnetic ions incorporation into the semiconductor matrix is discussed, with special attention to the fundamental concepts of solubility limit and spinodal decomposition. It is argued that high-temperature ferromagnetic features in magnetically doped nitrides result from the presence of nanoscale regions containing a high concentration of the magnetic constituents. Various functionalities of these multicomponent systems are listed. Moreover, we give an extensive overview on the properties of single magnetic-impurity states in the nitride host. The understanding of this limit is crucial when considering the most recent suggestions for the control of the magnetic ion distribution—and consequently of the magnetic response—through the Fermi level engineering as well as to indicate roads for achieving high-temperature ferromagnetism in the systems containing a uniform distribution of magnetic ions.

  18. In Vivo Uptake of Rare Earth Metals by Triple-Negative Breast Cancer Cells.

    PubMed

    Roncati, Luca; Gatti, Antonietta Morena; Barbolini, Giuseppe; Piscioli, Francesco; Pusiol, Teresa; Maiorana, Antonio

    2017-02-09

    Rare earth metals (REM) are a group of 17 chemical elements in the periodic table, namely scandium (Sc), yttrium (Y) and the lanthanides. In relation to atomic volume and geological behavior, the lanthanides are further subdivided into light, medium and heavy REM. They find many applications in the technological field; however, their impact on the human health is still conflicting and, for many aspects, unknown. During a research program carried on 113 cases of female breast cancer, immunohistochemically categorized in Her2-positive (29 cases), Her2-negative (57 cases) and triple negative (27 cases), aimed to evaluate the role of environmental particulate in carcinogenesis by elemental microanalysis, for the first time in literature we have detected a REM uptake, in detail europium (Eu), dysprosium (Dy) and praseodymium (Pr), inside the neoplastic cells belonging to a single triple negative breast cancer. Curiously, the woman affected by this form of malignancy had worked in the ceramic industry, a well-known source of REM, during her life, and she was the one and only patient of our series to be dedicated to this activity. The medical repercussions of our findings are here discussed: in fact, a REM detection in only 1 of 113 examined cases seems to exclude active roles in breast carcinogenesis and discloses new possibilities for therapeutic developments in triple negative breast cancer.

  19. Effect of patch borders on coercivity in amorphous rare earth-transition metal thin films

    NASA Technical Reports Server (NTRS)

    Patterson, G.; Fu, H.; Giles, R. C.; Mansuripur, M.

    1991-01-01

    The coercivity at the micron scale is a very important property of magneto-optical media. It is a key factor that determines the magnetic domain wall movement and domain reversal. How the coercivity is influenced by a special type of patch borders is discussed. Patch formation is a general phenomenon in growth processes of amorphous rare earth transition metal thin films. Different patches may stem from different seeds and the patch borders are formed when they merge. Though little is known about the exact properties of the borders, we may expect that the exchange interaction at the patch border is weaker than that within a patch, since there is usually a spatial gap between two patches. Computer simulations were performed on a 2-D hexagonal lattice consisting of 37 complete patches with random shape and size. From the series of simulations we may conclude that the domain in the patch with borders of 30 percent exchange strength can expand most easily to the whole lattice, because the exchange strength can expand most easily to the whole lattice, because the exchange strength of the border is not too high to prevent the domain from growing within the patch and it is not too low to prevent the domain from expanding beyond the patch.

  20. Magnetic ordering temperatures in rare earth metal dysprosium under ultrahigh pressures

    DOE PAGES

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; ...

    2014-04-03

    Magnetic ordering temperatures in heavy rare earth metal Dysprosium (Dy) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to extreme conditions of pressure to 69 GPa and temperature to 10 K. Previous studies using magnetic susceptibility measurements at high pressures were only able to track magnetic ordering temperature till 7 GPa in the hexagonal close packed (hcp) phase of Dy. Our studies indicate that the magnetic ordering temperature shows an abrupt drop of 80 K at the hcp-Sm phase transition followed by a gradual decrease that continues till 17 GPa. This ismore » followed by a rapid increase in the magnetic ordering temperatures in the double hexagonal close packed phase and finally leveling off in the distorted face centered cubic phase of Dy. Lastly, our studies reaffirm that 4f-shell remain localized in Dy and there is no loss of magnetic moment or 4f-shell delocalization for pressures up to 69 GPa.« less

  1. Optical properties of thin films composed of complex hexaborides of rare-earth metals

    SciTech Connect

    Bessareba, V.I.; Dudnik, E.M.; Ivanchenko, L.A.

    1995-07-01

    The range of physical properties characteristic of hexaborides of rare-earth metals (REMs), connected with features of their chemical bonding, make these compounds promising as materials for optics and electronics. In particular, according to the data in, massive specimens of MeB{sub 6} can be used to create mirrors and optical filters. Technologies have been developed to obtain thin films of MeB{sub 6} by electron-beam and cathode sputtering of the corresponding compounds, which are then used to make vacuum condensates of congruently melting hexaborides of the cerium group and incongruently melting hexaborides of the yttrium group. As do massive materials, films exhibit selective reflection (and, accordingly, selective transmission), which is related to the resonance of free charge carriers in their plasmas. Here, the energy position of the resonance depends on the chemical composition of the material and the conditions under, which the condensate is obtained. Thus, by using different methods to obtain thin films and by varying process parameters such as condensation and annealing rates and temperatures, it is possible to change the energy position of the plasma extrema in their optical spectra. The high level of reflection of MeB{sub 6} films in the infrared region, the low level of transmission in the ultraviolet region, and the extreme transmission and reflection in the visible region make it possible to use these coatings as selective optical filters.

  2. Phonon thermal transport in transition-metal and rare-earth nitride semiconductors from first principles

    NASA Astrophysics Data System (ADS)

    Li, Chunhua; Broido, David

    2017-05-01

    The thermal properties of three transition metal and rare-earth nitride compounds, ScN, YN, and LuN, have been studied using a first principles approach, in which a DFT +U treatment is guided by accurate hybrid functional calculations of electronic structure. The phonon dispersions for the three compounds show large longitudinal optic-transverse optic (LO-TO) splitting and soft TO modes. The resulting strong anharmonic scattering between acoustic and TO phonons reduces the lattice thermal conductivities, κL, of these compounds. The room temperature κL values of YN and LuN are more than an order of magnitude smaller than that found for the weakly polar III-V compound boron bismuth (350 W m-1K-1 ), in spite of the latter having much larger average atomic mass and smaller acoustic phonon velocities. This paper demonstrates the utility of first principles calculations in understanding the thermal properties of materials, and it highlights the importance of optic phonons in reducing κL.

  3. Band edge electronic structure of transition metal/rare earth oxide dielectrics

    NASA Astrophysics Data System (ADS)

    Lucovsky, Gerald

    2006-10-01

    This article addresses band edge electronic structure of transition metal/rare earth (TM/RE) non-crystalline and nano-crystalline elemental and complex oxide high- k dielectrics for advanced semiconductor devices. Experimental approaches include X-ray absorption spectroscopy (XAS) from TM, RE and oxygen core states, photoconductivity (PC), and visible/vacuum ultra-violet (UV) spectroscopic ellipsometry (SE) combined with ab initio theory is applied to small clusters. These measurements are complemented by Fourier transform infra-red absorption (FTIR), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). Two issues are highlighted: Jahn-Teller term splittings that remove d-state degeneracies of states at the bottom of the conduction band, and chemical phase separation and crystallinity in Zr and Hf silicates and ternary (Zr(Hf)O 2) x(Si 3N 4) y(SiO 2) 1- x- y alloys. Engineering solutions for optimization of both classes of high- k dielectric films, including limits imposed on the continued and ultimate scaling of the equivalent oxide thickness (EOT) are addressed.

  4. Sol-gel-derived hybrid materials multi-doped with rare-earth metal ions

    NASA Astrophysics Data System (ADS)

    Zelazowska, E.; Rysiakiewicz-Pasek, E.; Borczuch-Laczka, M.; Cholewa-Kowalska, K.

    2012-06-01

    Four different hybrid organic-inorganic materials based on TiO2-SiO2 matrices with organic additives and doped with rare-earth metal ions (III) from the group of europium, cerium, terbium, neodymium, dysprosium and samarium, were synthesized by sol-gel method. Tetraethyl orthosilicate, titanium (IV) isopropoxide and organic compounds, such as butyl acrylate, butyl methacrylate, ethyl acetoacetate, ethylene glycol dimethacrylate, ethyl acetate, propylene carbonate, organic solvents and certain inorganic salts were used in the synthesis. The inorganic part of the sols, which were used in the synthesis of all the hybrid materials, was prepared separately and then the organic parts were added. The materials obtained were aged for three weeks at room temperature and then heated in an electric oven for three hours at temperatures of 80 °C-150 °C. Scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (SEM/EDX); X-ray diffraction (XRD); Fourier transform infrared spectroscopy (KBr technique); 29Si magic-angle spinning nuclear magnetic resonance; and fluorescence spectroscopy were used for the examination of morphology, microstructure and luminescence properties, respectively. Photoluminescence properties with relatively intense narrow emission lines of Tb, Eu, Dy, Nd, Sm respectively to the RE-ions doping, were observed for all the hybrid materials.

  5. Methylene-bridged, intramolecular donor-acceptor systems based on rare-earth metals and phosphinomethanides.

    PubMed

    Pieper, Martin; Lamm, Jan-Hendrik; Neumann, Beate; Stammler, Hans-Georg; Mitzel, Norbert W

    2017-04-06

    New geminally bonded intramolecular donor-acceptor systems, Cp2LnCH2PR2 (Ln = Y, Ho, Er, R = CHMe2, CMe3), were prepared by salt elimination reactions between the dicyclopentadienyl-element chlorides (Cp2LnCl, Ln = Y, Ho, Er) and diorganylphosphinomethanides (R2PCH2Li; R = CHMe2, CMe3). These compounds, 1-6, were characterized by elemental analyses, mass spectrometry and X-ray diffraction experiments and the yttrium species additionally by NMR spectroscopy. In the solid state the molecular structures differ from each other, depending on the steric demand of the phosphorus substituents. For all iso-Pr-substituted compounds, dimers [Cp2LnCH2P(CHMe2)2]2 with six-membered Ln-C-P-Ln-C-P rings in a chair-like conformation were observed. The sterically more demanding tert-butyl groups prevent dimerization but instead lead to species that undergo complexation of LiCl units by two monomers: [Cp2LnCH2P(CMe3)2·LiCl]. The solution NMR data for the yttrium compounds are consistent with the solid-state structures. Conversion with phenylacetylene afforded heteroleptic cyclobutane-like alkynyl-rare-earth metal complexes [Cp2Ln(μ-C[triple bond, length as m-dash]CPh)]2 [Ln = Y (7), Ho (8), Er (9)]. Treatment of compounds 1-6 with 1,8-diethynylanthracene led to single metalation and dimerization and products with similar structural motifs as observed for complexes 7-9. Reactions with dihydrogen and carbon dioxide resulted in Y-C bond breaking, yielding Cp2YH/R2PCH3 and CO2 insertion products, respectively.

  6. Synthesis and catalytic activity of heterogeneous rare-earth metal catalysts coordinated with multitopic Schiff-base ligands.

    PubMed

    Sun, Yilin; Wu, Guangming; Cen, Dinghai; Chen, Yaofeng; Wang, Limin

    2012-08-28

    Four multitopic Schiff-base ligand precursors were synthesized via condensation of 4,4'-diol-3,3'-diformyl-1,1'-diphenyl or 1,3,5-tris(4-hydroxy-5-formylphenyl)benzene with 2,6-diisopropylaniline or 2,6-dimethylaniline. Amine elimination reactions of Ln[N(SiMe(3))(2)](3) (Ln = La, Nd, Sm or Y) with these multitopic ligand precursors gave ten heterogeneous rare-earth metal catalysts. These heterogeneous rare-earth metal catalysts are active for intramolecular hydroalkoxylation of alkynols, and the catalytic activities are influenced by the ligand and metal ion. The recycling experiment on the most active heterogeneous catalyst showed the catalyst has a good reusability.

  7. Metal loading effect on rare earth element binding to humic acid: Experimental and modelling evidence

    NASA Astrophysics Data System (ADS)

    Marsac, Rémi; Davranche, Mélanie; Gruau, Gérard; Dia, Aline

    2010-03-01

    The effect of metal loading on the binding of rare earth elements (REE) to humic acid (HA) was studied by combining ultrafiltration and Inductively Coupled Plasma Mass Spectrometry techniques. REE-HA complexation experiments were performed at pH 3 for REE/C molar ratios ranging from ca 4 × 10 -4 to 2.7 × 10 -2. Results show that the relative amount of REE bound to HA strongly increases with decreasing REE/C. A middle-REE (MREE) downward concavity is shown by patterns at high metal loading, whereas patterns at low metal loading display a regular increase from La to Lu. Humic Ion Model VI modelling are close to the experimental data variations, provided that (i) the ΔLK 2 parameter (i.e. the Model VI parameter taken into account the presence of strong but low density binding sites) is allowed to increase regularly from La to Lu (from 1.1 to 2.1) and (ii) the published log KMA values (i.e. the REE-HA binding constants specific to Model VI) are slightly modified, in particular with respect to heavy REE. Modelling approach provided evidence that logKdREE patterns with varying REE/C likely arises because REE binding to HA occurs through two types of binding sites in different density: (i) a few strong sites that preferentially complex the heavy REE and thus control the logKdREE atterns at low REE/C; (ii) a larger amount of weaker binding sites that preferentially complex the middle-REE and thus control the logKdREE pattern at high REE/C. Hence, metal loading exerts a major effect on HA-mediated REE binding, which could explain the diversity of published conditional constants for REE binding with HA. A literature survey suggests that the few strong sites activated at low REE/C could be multidentate carboxylic sites, or perhaps N-, or P-functional groups. Finally, an examination of the literature field data proposed that the described loading effect could account for much of the variation in REE patterns observed in natural organic-rich waters (DOC > 5 mg L -1 and 4

  8. Influence of strain and polycrystalline ordering on magnetic properties of high moment rare earth metals and alloys

    NASA Astrophysics Data System (ADS)

    Scheunert, G.; Ward, C.; Hendren, W. R.; Lapicki, A. A.; Hardeman, R.; Mooney, M.; Gubbins, M.; Bowman, R. M.

    2014-10-01

    Despite being the most suitable candidates for solenoid pole pieces in state-of-the-art superconductor-based electromagnets, the intrinsic magnetic properties of heavy rare earth metals and their alloys have gained comparatively little attention. With the potential of integration in micro and nanoscale devices, thin films of Gd, Dy, Tb, DyGd and DyTb were plasma-sputtered and investigated for their in-plane magnetic properties, with an emphasis on magnetization versus temperature profiles. Based on crystal structure analysis of the polycrystalline rare earth films, which consist of a low magnetic moment fcc layer at the seed interface topped with a higher moment hcp layer, an experimental protocol is introduced which allows the direct magnetic analysis of the individual layers. In line with the general trend of heavy lanthanides, the saturation magnetization was found to drop with increasing unit cell size. In situ annealed rare earth films exceeded the saturation magnetization of a high-moment Fe65Co35 reference film in the cryogenic temperature regime, proving their potential for pole piece applications; however as-deposited rare earth films were found completely unsuitable. In agreement with theoretical predictions, sufficiently strained crystal phases of Tb and Dy did not exhibit an incommensurate magnetic order, unlike their single-crystal counterparts which have a helical phase. DyGd and DyTb alloys followed the trends of the elemental rare earth metals in terms of crystal structure and magnetic properties. Inter-rare-earth alloys hence present a desirable blend of saturation magnetization and operating temperature.

  9. Subcell Structure and Two Different Superstructures of the Rare Earth Metal Silicide Carbides Y

    SciTech Connect

    Jeitschko, Wolfgang; Gerdes, Martin H.; Witte, Anne M.; Rodewald, Ute Ch.

    2001-01-01

    be represented by the formula (R{sup +3}){sub 3}(Si{sup {minus}3}){sub 2}(C{sub 2}){sup {minus}3}. A more detailed analysis of the interatomic distances showed that the shortest R-R distances are comparable with the R-R distances in the structures of the rare earth elements, thus indicating some R-R bonding. Therefore, the oxidation numbers of the rare earth atoms are slightly lower than +3, in agreement with the metallic conductivity of these compounds. As a consequence, considering the relatively short Si-Si bonds, the absolute value of the oxidation number of the silicon atoms may be lower than 3, resulting in a Si-Si bond order somewhat higher than 0.5.

  10. Homoleptic rare-earth metal(III) tetramethylaluminates: structural chemistry, reactivity, and performance in isoprene polymerization.

    PubMed

    Zimmermann, Melanie; Frøystein, Nils Age; Fischbach, Andreas; Sirsch, Peter; Dietrich, H Martin; Törnroos, Karl W; Herdtweck, Eberhardt; Anwander, Reiner

    2007-01-01

    The complexes [Ln(AlMe4)3] (Ln=Y, La, Ce, Pr, Nd, Sm, Ho, Lu) have been synthesized by an amide elimination route and the structures of [Lu{(micro-Me)2AlMe2}3], [Sm{(micro-Me)2AlMe2}3], [Pr{(micro-Me)2AlMe2}3], and [La{(micro-Me)2AlMe2}2{(micro-Me)3AlMe}] determined by X-ray crystallography. These structures reveal a distinct Ln3+ cation size-dependency. A comprehensive insight into the intrinsic properties and solution coordination phenomena of [Ln(AlMe4)3] complexes has been gained from extended dynamic 1H and 13C NMR spectroscopic studies, as well as 1D 89Y, 2D 1H/89Y, and 27Al NMR spectroscopic investigations. [Ce(AlMe4)3] and [Pr(AlMe4)3] have been used as alkyl precursors for the synthesis of heterobimetallic alkylated rare-earth metal complexes. Both carboxylate and siloxide ligands can be introduced by methane elimination reactions that give the heterobimetallic complexes [Ln{(O2CAriPr)2(micro-AlMe2)}2(AlMe4)(C6H14)n] and [Ln{OSi(OtBu)3}(AlMe3)(AlMe4)2], respectively. [Pr{OSi(OtBu)3}(AlMe3)(AlMe4)2] has been characterized by X-ray structure analysis. All of the cerium and praseodymium complexes are used as precatalysts in the stereospecific polymerization of isoprene (1-3 equivalents of Et2AlCl as co-catalyst) and compared to the corresponding neodymium-based initiators reported previously. The superior catalytic performance of the homoleptic complexes leads to quantitative yields of high-cis-1,4-polyisoprene (>98%) in almost all of the polymerization experiments. In the case of the binary catalyst mixtures derived from carboxylate or siloxide precatalysts quantitative formation of polyisoprene is only observed for nLn:nCl=1:2. The influence of the metal size is illustrated for the heterobimetallic lanthanum, cerium, praseodymium, neodymium, and gadolinium carboxylate complexes, and the highest activities are observed for praseodymium as a metal center in the presence of one equivalent of Et2AlCl.

  11. Synthesis of Metal Oxide Particles Using Reaction Route from Rare-Earth Metal-EDTA Complexes

    NASA Astrophysics Data System (ADS)

    Komatsu, Keiji; Tsuchiya, Takaaki; Hasebe, Yasuhiro; Sekiya, Tetsuo; Toyama, Ayumu; Nakamura, Atsushi; Akasaka, Hiroki; Saitoh, Hidetoshi

    2014-06-01

    Highly dense, spherical yttria (Y2O3) and erbia (Er2O3) particles were synthesized from their corresponding metal-ethylenediaminetetraacetic (EDTA) complexes. The EDTA·Y·H and EDTA·Er·H complexes were prepared in powdered form. These complexes were used as the staring materials for synthesis of the Y2O3 and Er2O3 particles. The particles were synthesized using an H2-O2 flame produced with a commercial flame spray apparatus. Crystalline structure, surface and cross-sectional morphologies, and elemental distribution of the synthesized particles were investigated. It was confirmed that the crystalline phases of the Y2O3 and Er2O3 particles were homogeneous. In addition, the elemental distribution of the particles was uniform. These results indicate that dense, spherical particles of Y2O3 and Er2O3 have been synthesized with EDTA·Y·H and EDTA·Er·H complexes, respectively.

  12. Features of an intermetallic n-ZrNiSn semiconductor heavily doped with atoms of rare-earth metals

    SciTech Connect

    Romaka, V. A.; Fruchart, D.; Hlil, E. K.; Gladyshevskii, R. E.; Gignoux, D.; Romaka, V. V.; Kuzhel, B. S.; Krayjvskii, R. V.

    2010-03-15

    The crystal structure, density of electron states, electron transport, and magnetic characteristics of an intermetallic n-ZrNiSn semiconductor heavily doped with atoms of rare-earth metals (R) have been studied in the ranges of temperatures 1.5-400 K, concentrations of rare-earth metal 9.5 x 10{sup 19}-9.5 x 10{sup 21} cm{sup -3}, and magnetic fields H {<=} 15 T. The regions of existence of Zr{sub 1-x}R{sub x}NiSn solid solutions are determined, criteria for solubility of atoms of rare-earth metals in ZrNiSn and for the insulator-metal transition are formulated, and the nature of 'a priori doping' of ZrNiSn is determined as a result of redistribution of Zr and Ni atoms at the crystallographic sites of Zr. Correlation between the concentration of the R impurity, the amplitude of modulation of the bands of continuous energies, and the degree of occupation of potential wells of small-scale fluctuations with charge carriers is established. The results are discussed in the context of the Shklovskii-Efros model of a heavily doped and compensated semiconductor.

  13. Toxicity of Nine (Doped) Rare Earth Metal Oxides and Respective Individual Metals to Aquatic Microorganisms Vibrio fischeri and Tetrahymena thermophila

    PubMed Central

    Kurvet, Imbi; Juganson, Katre; Sihtmäe, Mariliis; Blinova, Irina; Syvertsen-Wiig, Guttorm

    2017-01-01

    Despite the increasing use of rare earth elements (REEs) and oxides (REOs) in various technologies, the information on their ecotoxicological hazard is scarce. Here, the effects of La3+, Ce3+, Pr3+, Nd3+, Gd3+, CeO2, and eight doped REOs to marine bacteria Vibrio fischeri and freshwater protozoa Tetrahymena thermophila were studied in parallel with REO dopant metals (Co2+, Fe3+, Mn2+, Ni2+, Sr2+). The highest concentrations of REOs tested were 100 mg/L with protozoa in deionized water and 500 mg/L with bacteria in 2% NaCl. Although (i) most REOs produced reactive oxygen species; (ii) all studied soluble REEs were toxic to bacteria (half-effective concentration, EC50 3.5–21 mg metal/L; minimal bactericidal concentration, MBC 6.3–63 mg/L) and to protozoa (EC50 28–42 mg/L); and (iii) also some dopant metals (Ni2+, Fe3+) proved toxic (EC50 ≤ 3 mg/L), no toxicity of REOs to protozoa (EC50 > 100 mg/L) and bacteria (EC50 > 500 mg/L; MBC > 500 mg/L) was observed except for La2NiO4 (MBC 25 mg/L). According to kinetics of V. fischeri bioluminescence, the toxicity of REEs was triggered by disturbing cellular membrane integrity. Fortunately, as REEs and REOs are currently produced in moderate amounts and form in the environment insoluble salts and/or oxides, they apparently present no harm to aquatic bacteria and protozoa. PMID:28773114

  14. Mineral resource of the month: rare earth elements

    USGS Publications Warehouse

    ,

    2011-01-01

    The article provides information on rare earth elements, which are group of 17 natural metallic elements. The rare earth elements are scandium, yttrium and lanthanides and classified into light rare earth elements (LREE) and heavy rate earth elements (HREE). The principal ores of the rare earth elements are identified. An overview of China's production of 97 percent of the rare earths in the world is provided. Commercial applications of rare earths are described.

  15. The magnetocrystalline anisotropy properties of rare earth-transition metal single crystals and thin films

    NASA Astrophysics Data System (ADS)

    Mendoza, William Arnold

    1998-12-01

    Rare earth-transition metal magnet materials form the basis of high energy bulk and thin film permanent magnets which have desirable intrinsic properties (Curie temperature Tsb{c}, saturation magnetization Msb{s}, and anisotropy field Hsb{a}) needed for practical applications. This study focused on the intrinsic properties of two iron-rich classes of rare earth-transition metal materials, and on Sm-Co type thin film magnets which have applications where the use of bulk magnets is not optimal, as in defense and space applications where weight and size constraints exist. Research efforts focused on iron-rich, ThMnsb{12}-type crystal samples across the NdFesb{10-x}Cosb{x}Mosb2 series and a new iron-rich Rsb3(Fe,M)sb{29} series which was discovered by a group at the General Motors Company. Single crystals of NdFesb{10-x}Cosb{x}Mosb2 with x epsilon \\{0, 1, 3, 5, 7, 10\\}, and Rsb3Fesb{29-x}Tisb{x} with R epsilon\\ Ce, Nd, Pr\\ and x = 1.5 were grown by the Czochralski technique using a tri-arc furnace. Only polycrystalline samples had been available previously; single crystals are better defined and characterized and for that reason are expected to give more accurate information about the magneto-crystalline anisotropy of these magnetic alloys. Temperature-induced spin reorientations were observed in NdFesb{10-x}Cosb{x}Mosb2 for x < 5 as were field-induced spin reorientations for x ≥ 3, restricting their use for permanent magnet applications. Magnetic anisotropy in NdFesb{10-x}Cosb{x}Mosb2 was augmented by Co addition, but the anisotropy seen in Rsb3Fesb{29-x}Tisb{x} was quite low for permanent magnet applications. Aligned Smsb2Cosb{17} films usually require subsequent annealing for optimum results. Growth of in-plane aligned hard magnetic films without need for subsequent processing is desirable for device applications so composite SmCosb5 and Sm(Co,Fe,Cu,Zr)sb7 thin films were grown on Alsb2Osb3, MgO (100), Si (100), AlN, and c-plane (001) sapphire substrates to

  16. Polymerization of 1,3-Conjugated Dienes with Rare-Earth Metal Precursors

    NASA Astrophysics Data System (ADS)

    Zhang, Zhichao; Cui, Dongmei; Wang, Baoli; Liu, Bo; Yang, Yi

    This chapter surveys the publications except patents related to cis-1,4-, trans-1,4-, 3,4-regio-, and stereoselective polymerizations of 1,3-conjugated dienes with rare-earth metal-based catalytic systems during the past decade from 1999 to 2009. The concerned catalyst systems are classified into the conventional Ziegler-Natta catalysts, the modified Ziegler-Natta catalysts, and the single-site cationic systems composed of lanthanocene and noncyclopentadienyl precursors, respectively. For the conventional Ziegler-Natta catalysts of the most promising industry applicable recipe, the multicomponents based on lanthanide carboxylate or phosphate or alkoxide precursors, research works concern mainly about optimizing the catalyst preparation and polymerization techniques. Special emphases are put on the factors that influence the catalyst homogeneority, catalytic activity and efficiency, as well as cis-1,4-selectivity. Meanwhile, tailor-made lanthanide aryloxide and amide complexes are designed and fully characterized to mimic the conventional Ziegler-Natta catalysts, anticipated to elucidate the key processes, alkylation and cationization, for generating the active species. Regarding to the single-site catalytic systems generally comprising well-defined complexes containing lanthanide-carbon bonds, investigations cover their versatile catalytic activity and efficiency, and the distinguished regio- and stereoselectivity for both polymerization of dienes and copolymerization of dienes with alkenes. The correlation between the sterics and electronics of ligands and the molecular structures of the complexes and their catalytic performances are highlighted. The isolation of the probable active species in these polymerization processes from the stoichiometric reactions of the precursors with activators will be presented.

  17. Materials flow analysis of neodymium, status of rare earth metal in the Republic of Korea.

    PubMed

    Swain, Basudev; Kang, Leeseung; Mishra, Chinmayee; Ahn, JoongWoo; Hong, Hyun Seon

    2015-11-01

    Materials flow analysis of neodymium, status of rare earth elements (REEs) in the Republic of Korea has been investigated. Information from various resources like the Korean Ministry of Environment, Korea international trade association, United Nations Commodity Trade Statistics Database and from individual industry were collected and analyzed for materials flow analysis of neodymium. Demand of neodymium in the Republic of Korea for the year 2010 was 409.5 tons out of which the majority of neodymium, i.e., 68.41% was consumed by domestic electronics industry followed by medical appliances manufacturing (13.36%). The Republic Korea is one of the biggest consumer and leading exporter of these industrial products, absolutely depends on import of neodymium, as the country is lacking natural resources. The Republic of Korea has imported 325.9 tons of neodymium permanent magnet and 79.5 tons of neodymium containing equipment parts mainly for electronics, medical appliances, and heavy/light vehicles manufacturing industry. Out of which 95.4 tons of neodymium permanent magnet get exported as an intermediate product and 140.6 tons of neodymium in the form of consumable products get exported. Worldwide the neodymium is at the high end of supply chain critical metal because of increasing demand, scarcity and irreplaceable for technological application. To bring back the neodymium to supply stream the recycling of end of life neodymium-bearing waste can be a feasible option. Out of total domestic consumption, only 21.9 tons of neodymium have been collected and subsequently recycled. From material flow analysis, the requirement for an efficient recycling system and element-wise material flow management for these REEs in the Republic of Korea were realized and recommended.

  18. Ln₃FeGaQ₇: A new series of transition-metal rare-earth chalcogenides

    SciTech Connect

    Yin, Wenlong; Wang, Wendong; Kang, Lei; Lin, Zheshuai; Feng, Kai; Shi, Youguo; and others

    2013-06-01

    A new series of transition-metal rare-earth chalcogenides, Ln₃FeGaQ₇ (Ln=Nd, Sm, Gd, Dy, Q=S; Ln=Nd, Gd, Dy, Q=Se), have been synthesized by solid state reactions. They are isostructural and crystallize in the space group P6₃. They adopt a three-dimensional framework composed of LnQ₇ monocapped trigonal prisms with the interesting 1[FeS₃]⁴⁻ chains and isolated GaQ₄ tetrahedra lying in two sets of channels in the framework. Magnetic susceptibility measurements on Ln₃FeGaQ₇ (Ln=Gd, Dy; Q=S, Se) indicate that they are paramagnetic and obey the Curie–Weiss law. Based on the diffuse reflectance spectra, Ln₃FeGaQ₇ (Ln=Gd, Dy; Q=S, Se) should have band gaps smaller than 0.5 eV. Electronic conductivity measurement on Dy₃FeGaSe₇ demonstrates semiconducting behavior with σ₃₀₀=0.124 S/cm. The first-principles calculations were also performed to study the electronic structures of these compounds. - Graphical abstract: Ln₃FeGaQ₇ adopt a three-dimensional framework composed of LnQ₇ monocapped trigonal prisms with interesting 1[FeS₃]⁴⁻ chains and isolated GaQ₄ tetrahedra lying in two sets of channels in the framework. Highlights: • New compounds, Ln₃FeGaQ₇ (Ln=Nd, Sm, Gd, Dy, Q=S, Se), were synthesized. • They are isostructural and crystallize in the noncentrosymmetric space group P6₃. • They adopt a three-dimensional framework built by LnQ₇ monocapped trigonal prisms. • Ln₃FeGaQ₇ (Ln=Gd, Dy; Q=S, Se) are paramagnetic and obey the Curie–Weiss law. • Electronic conductivity of Dy₃FeGaSe₇ shows semiconducting behavior.

  19. Improved method for preparing rare earth sesquichalcogenides

    DOEpatents

    Takeshita, T.; Beaudry, B.J.; Gschneidner, K.A. Jr.

    1982-04-14

    An improved method for the preparation of high purity rare earth sesquichalcogenides is described. The rare earth, as one or more pieces of the metal, is sealed under a vacuum with a stoichiometric amount of sulfur or selenium and a small amount of iodine into a quartz reaction vessel. The sealed vessel is then heated to above the vaporization temperature of the chalcogen and below the melting temperature of the rare earth metal and maintained until the product has been formed. The iodine is then vaporized off leaving a pure product. The rare earth sulfides and selenides thus formed are useful as semiconductors and as thermoelectric generators. 3 tables.

  20. Alaska's rare earth deposits and resource potential

    USGS Publications Warehouse

    Barker, James C.; Van Gosen, Bradley S.

    2012-01-01

    Alaska’s known mineral endowment includes some of the largest and highest grade deposits of various metals, including gold, copper and zinc. Recently, Alaska has also been active in the worldwide search for sources of rare earth elements (REE) to replace exports now being limitedby China. Driven by limited supply of the rare earths, combined with their increasing use in new ‘green’ energy, lighting, transportation, and many other technological applications, the rare earth metals neodymium, europium and, in particular, the heavy rare earth elements terbium, dysprosium and yttrium are forecast to soon be in critical short supply (U.S. Department of Energy, 2010).

  1. Observation of vapor pressure enhancement of rare-earth metal-halide salts in the temperature range relevant to metal-halide lamps

    SciTech Connect

    Curry, J. J.; Henins, A.; Hardis, J. E.; Estupinan, E. G.; Lapatovich, W. P.; Shastri, S. D.

    2012-02-20

    Total vapor-phase densities of Dy in equilibrium with a DyI{sub 3}/InI condensate and Tm in equilibrium with a TmI{sub 3}/TlI condensate have been measured for temperatures between 900 K and 1400 K. The measurements show strong enhancements in rare-earth vapor densities compared to vapors in equilibrium with the pure rare-earth metal-halides. The measurements were made with x-ray induced fluorescence on the sector 1-ID beam line at the Advanced Photon Source. The temperature range and salt mixtures are relevant to the operation of metal-halide high-intensity discharge lamps.

  2. ansa-Rare-earth-metal catalysts for rapid and stereoselective polymerization of renewable methylene methylbutyrolactones.

    PubMed

    Hu, Yangjian; Miyake, Garret M; Wang, Baoli; Cui, Dongmei; Chen, Eugene Y-X

    2012-03-12

    Two ansa-half-sandwich rare-earth-metal (REM) dialkyl complexes supported by an ethylene-bridged fluorenyl (Flu)-N-heterocyclic carbene (NHC) ligand, [M{C(2)H(4)(η(5)-Flu-κ(1)-NHC)}(CH(2)SiMe(3))(2)] (M=Y, 1; Lu, 2), and a chiral ansa-sandwich samarocene incorporating a C(2) ligand, [Sm(η(5)-C(12)H(8))(2)(thf)(2)] (3), have been investigated for the coordination-addition polymerization of renewable methylene butyrolactones, α-methylene-γ-butyrolactone (MBL) and γ-methyl-α-methylene-γ-butyrolactone ((γ)MMBL). Both ansa-half-sandwich complexes 1 and 2 exhibit exceptional activity for the polymerization of (γ)MMBL at room temperature in dimethylformamide (DMF); with a 0.25 mol% catalyst loading, quantitative monomer conversion can be achieved under 1 min, giving a high turn-over frequency (TOF) of 24,000 h(-1). This TOF value represents a rate enhancement, by a factor of 8, 22, or 2400, over the polymerizations by unbridged samarocene [Sm(Cp*)(2)(thf)(2)] (Cp*=η(5) -pentamethylcyclopentadienyl), by bridged ansa-samarocene 3 with C(2) ligation, or by the corresponding REM trialkyls without the ansa-Flu-NHC ligation, respectively. Complexes 1 and 2 are also highly active for the polymerization of β-methyl-α-methylene-γ-butyrolactone ((β)MMBL), realizing the first example of the metal-mediated coordination polymerization of this monomer and its copolymerization with (γ)MMBL. More remarkably, the resulting P(β)MMBL homopolymer is highly stereoregular (91% mm) and exhibits a high T(g) of 290 °C. In sharp contrast, catalysts 1 and 2 have poor activity and efficiency in the polymerization of the parent MBL or the acyclic analog methyl methacrylate. Polymerization and kinetic studies using the most active catalyst (1) of the series have uncovered characteristics of its (γ)MMBL polymerization and yielded a unimolecular propagation mechanism. A surprising chain-initiation pathway for the polymerization in DMF by 1 has been revealed, and catalytic

  3. Heavy metals and rare earth elements source-sink in some Egyptian cigarettes as determined by neutron activation analysis.

    PubMed

    Nada, A; Abdel-Wahab, M; Sroor, A; Abdel-Haleem, A S; Abdel-Sabour, M F

    1999-07-01

    Heavy metals and rare earth elements in two types of cigarettes were studied. The contents of trace elements were determined by using delayed neutron activation analysis. In the present study 11 elements have been detected in popular and fine brand cigarettes marketed in Egypt. Evaluation of these elements with their potential hazards for smokers is briefly discussed. The material balance (source and sink) for each element was determined. Also the ratio of element recovery to the total amount was assessed.

  4. Dipolar Excitations at the L{sub III} X-Ray Absorption Edges of the Heavy Rare-Earth Metals

    SciTech Connect

    Brown, S. D.; Bouchenoire, L.; Thompson, P. B. J.; Mannix, D.; Strange, P.; Zarychta, B.; Stockton, S. J.; Horne, M.; Arola, E.; Ebert, H.; Fort, D.

    2007-12-14

    We report measured dipolar asymmetry ratios at the L{sub III} edges of the heavy rare-earth metals. The results are compared with a first-principles calculation and excellent agreement is found. A simple model of the scattering is developed, enabling us to reinterpret the resonant x-ray scattering in these materials and to identify the peaks in the asymmetry ratios with features in the spin and orbital moment densities.

  5. Demonstrating the possibility of implementing the Toffoli gate in crystals doped by rare-earth metal ions

    NASA Astrophysics Data System (ADS)

    Akhmedzhanov, R. A.; Gushchin, L. A.; Zelensky, I. V.; Malakyan, Yu. P.; Sobgaida, D. A.

    2015-07-01

    A scheme for the implementation of the Toffoli gate in inorganic crystals doped by rare-earth metal ions is proposed. A numerical analysis of the factors affecting the fidelity of the Toffoli gate implementation is carried out, and estimates for the available experimental parameters are obtained. A demonstration experiment is set up in which behavior similar to the Toffoli gate is shown for ensembles of Pr3+ ions doped into a LaF3 crystal.

  6. Optimization of film synthesized rare earth transition metal permanent magnet systems. Progress report, August 1, 1989--July 1990

    SciTech Connect

    Cadieu, F.J.

    1990-12-31

    This report reviews work on the optimization of film synthesized rare earth transition metal permanent magnet systems. Topics include: high coercivity in Sm-Fe-Ti-V, Sm-Fe-V, and two element systems; ThMn{sub 12} type pseudobinary SmFe{sub 12 {minus} X}T{sub X}; and sputter process control for the synthesis of precisely textured RE-TM magnetic films. (JL)

  7. Optimization of film synthesized rare earth transition metal permanent magnet systems. Progress report, August 1, 1991--July 31, 1992

    SciTech Connect

    Cadieu, F.J.

    1992-08-01

    Progress is reported in three areas: high coercivity Sm-Fe-Ti-V, Sm-Fe-Zr, and two element Sm-Fe Sm{sub 5}(Fe,T){sub 17} type crystalline phases; ThMn{sub 12} type pseudobinary SmFe{sub 12-x}T{sub x}(0{le}{times}{le}1.5); and sputter process control for the synthesis of precisely textured rare earth-transition metal magnetic films. (DLC)

  8. Optoelectronic properties of transition metal and rare earth doped epitaxial layers on InP for magneto-optics

    NASA Astrophysics Data System (ADS)

    Stadler, B. J. H.; Vaccaro, K.; Davis, A.; Ramseyer, G. O.; Martin, E. A.; Dauplaise, H. M.; Theodore, L. M.; Lorenzo, J. P.

    1996-05-01

    Rare earth-and transition metal-doped thin films of InP, In0.53Ga0.47As, and In0.71Ga0.29As0.58P0.42 were grown by liquid phase epitaxy and evaluated for use in integrated electro-optical and magneto-optical applications, such as waveguides and Faraday rotators. The films were lattice matched to (100) InP substrates, and the transition metal (Mn) and rare earth (Gd, Eu, and Er) doping concentra-tions were between 2.6 × 1018 and 1.5 × 1020 cm-3. The chemical profiles were generally found to be homogeneous by SIMS, although in more highly doped films the rare earths were observed to segregate toward the interfaces. The undoped films were n-type, and the net carrier concentrations in the rare earth-doped (Gd, Eu, Er) films were decreased by an order of magnitude. The Mn-doped films were p-type. Optically, the rare earth dopants were observed to raise the refractive index of the layers at 632.8 nm, and subsequent waveguiding in doped InP layers was observed at 1.3 μm. Although the Faraday rotations of our materials were much less than that of well known oxides, such as yttrium iron garnet, they were sufficient for device applications, and our materials can be much more easily integrated with InP OEIC devices. For example, a 1 cm waveguide would provide the large rotation (45°) required in isolator applica-tions.

  9. A mini-review on rare earth metal-doped TiO2 for photocatalytic remediation of wastewater.

    PubMed

    Saqib, Najm Us; Adnan, Rohana; Shah, Irfan

    2016-08-01

    Titanium dioxide (TiO2) has been considered a useful material for the treatment of wastewater due to its non-toxic character, chemical stability and excellent electrical and optical properties which contribute in its wide range of applications, particularly in environmental remediation technology. However, the wide band gap of TiO2 photocatalyst (anatase phase, 3.20 eV) limits its photocatalytic activity to the ultraviolet region of light. Besides that, the electron-hole pair recombination has been found to reduce the efficiency of the photocatalyst. To overcome these problems, tailoring of TiO2 surface with rare earth metals to improve its surface, optical and photocatalytic properties has been investigated by many researchers. The surface modifications with rare earth metals proved to enhance the efficiency of TiO2 photocatalyts by way of reducing the band gap by shifting the working wavelength to the visible region and inhibiting the anatase-to-rutile phase transformations. This review paper summarises the attempts on modification of TiO2 using rare earth metals describing their effect on the photocatalytic activities of the modified TiO2 photocatalyst.

  10. Spin-disorder resistivity of heavy rare-earth metals from Gd to Tm: An ab-initio study

    NASA Astrophysics Data System (ADS)

    Glasbrenner, James; Belashchenko, Kirill

    2010-03-01

    Electrical resistivity of heavy rare-earth metals has a dominant contribution from thermal spin disorder scattering. In the paramagnetic state, this spin-disorder resistivity (SDR) decreases through the Gd-Tm series. Models based on the assumption of fully localized 4f states treated as S or J multiplets predict that SDR is proportional to S^2 (S is the 4f shell spin) times a quantum correction (S+1)/S or (J+1)/J. The interpretation of this correction using experimental results is ambiguous. Since the 4f bandwidth is not small compared to the multiplet splitting, it is not clear whether the 4f shells in rare-earth metals behave as if they were fully localized and have a good quantum number S or J. To address this issue, in this work we calculate the paramagnetic SDR of the rare-earth metal Gd-Tm series using a non-collinear implementation of the tight-binding linear muffin-tin orbital method. The conductance is found using the Landauer-B"uttiker approach applied to the active region of a varying size, averaging the conductance over random spin-disorder configurations and fitting its size dependence to Ohm's law. The results are compared with experiment and discussed. The sensitivity to basis set and the treatment of the 4f electrons, as well as the role of exchange enhancement in the conduction band is considered. The issue of the quantum correction is examined in light of the new results.

  11. Mineral resource of the month: rare earths

    USGS Publications Warehouse

    Hedrick, James B.

    2004-01-01

    As if classified as a top-secret project, the rare earths have been shrouded in secrecy. The principal ore mineral of the group, bastnäsite, rarely appears in the leading mineralogy texts. The long names of the rare-earth elements and some unusual arrangements of letters, many Scandinavian in origin, may have intimidated even those skilled in phonics. Somewhat obscurely labeled, the rare earths are neither rare nor earths (the historical term for oxides). They are a relatively abundant group of metallic elements that occur in nature as nonmetallic compounds and have hundreds of commercial applications.

  12. Rare earths, the lanthanides, yttrium and scandium

    USGS Publications Warehouse

    Bedinger, G.; Bleiwas, D.

    2012-01-01

    In 2011, rare earths were recovered from bastnasite concentrates at the Mountain Pass Mine in California. Consumption of refined rare-earth products decreased in 2011 from 2010. U.S. rare-earth imports originated primarily from China, with lesser amounts from Austria, Estonia, France and Japan. The United States imported all of its demand for yttrium metal and yttrium compounds, with most of it originating from China. Scandium was imported in various forms and processed domestically.

  13. Uphill transport of rare-earth metals through a highly stable supported liquid membrane based on an ionic liquid.

    PubMed

    Kubota, Fukiko; Shimobori, Yousuke; Koyanagi, Yusuke; Shimojo, Kojiro; Kamiya, Noriho; Goto, Masahiro

    2010-01-01

    We have developed a highly stable supported liquid membrane based on ionic liquids (ILs) for the separation of rare-earth metals, employing N,N-dioctyldiglycol amic acid as a mobile carrier. The quantitative transport of Y and Eu through the membrane was successfully attained, and separation from metal impurities, Zn, was efficiently accomplished. A membrane stable enough for long-term operation was constructible from imidazolium-based ILs having a longer alkyl chain, such as octyl or dodecyl groups in an imidazolium cation.

  14. Electronic Stopping of Slow Protons in Transition and Rare Earth Metals: Breakdown of the Free Electron Gas Concept.

    PubMed

    Roth, D; Bruckner, B; Moro, M V; Gruber, S; Goebl, D; Juaristi, J I; Alducin, M; Steinberger, R; Duchoslav, J; Primetzhofer, D; Bauer, P

    2017-03-10

    The electronic stopping cross sections (SCS) of Ta and Gd for slow protons have been investigated experimentally. The data are compared to the results for Pt and Au to learn how electronic stopping in transition and rare earth metals correlates with features of the electronic band structures. The extraordinarily high SCS observed for protons in Ta and Gd cannot be understood in terms of a free electron gas model, but are related to the high densities of both occupied and unoccupied electronic states in these metals.

  15. Electronic Stopping of Slow Protons in Transition and Rare Earth Metals: Breakdown of the Free Electron Gas Concept

    NASA Astrophysics Data System (ADS)

    Roth, D.; Bruckner, B.; Moro, M. V.; Gruber, S.; Goebl, D.; Juaristi, J. I.; Alducin, M.; Steinberger, R.; Duchoslav, J.; Primetzhofer, D.; Bauer, P.

    2017-03-01

    The electronic stopping cross sections (SCS) of Ta and Gd for slow protons have been investigated experimentally. The data are compared to the results for Pt and Au to learn how electronic stopping in transition and rare earth metals correlates with features of the electronic band structures. The extraordinarily high SCS observed for protons in Ta and Gd cannot be understood in terms of a free electron gas model, but are related to the high densities of both occupied and unoccupied electronic states in these metals.

  16. Highly efficient hydrophosphonylation of aldehydes and unactivated ketones catalyzed by methylene-linked pyrrolyl rare earth metal amido complexes.

    PubMed

    Zhou, Shuangliu; Wu, Zhangshuan; Rong, Jiewei; Wang, Shaowu; Yang, Gaosheng; Zhu, Xiancui; Zhang, Lijun

    2012-02-27

    A series of rare earth metal amido complexes bearing methylene-linked pyrrolyl-amido ligands were prepared through silylamine elimination reactions and displayed high catalytic activities in hydrophosphonylations of aldehydes and unactivated ketones under solvent-free conditions for liquid substrates. Treatment of [(Me(3)Si)(2)N](3)Ln(μ-Cl)Li(THF)(3) with 2-(2,6-Me(2)C(6)H(3)NHCH(2))C(4)H(3)NH (1, 1 equiv) in toluene afforded the corresponding trivalent rare earth metal amides of formula {(μ-η(5):η(1)):η(1)-2-[(2,6-Me(2)C(6)H(3))NCH(2)](C(4)H(3)N)LnN(SiMe(3))(2)}(2) [Ln=Y (2), Nd (3), Sm (4), Dy (5), Yb (6)] in moderate to good yields. All compounds were fully characterized by spectroscopic methods and elemental analyses. The yttrium complex was also characterized by (1)H NMR spectroscopic analyses. The structures of complexes 2, 3, 4, and 6 were determined by single-crystal X-ray analyses. Study of the catalytic activities of the complexes showed that these rare earth metal amido complexes were excellent catalysts for hydrophosphonylations of aldehydes and unactivated ketones. The catalyzed reactions between diethyl phosphite and aldehydes in the presence of the rare earth metal amido complexes (0.1 mol%) afforded the products in high yields (up to 99%) at room temperature in short times of 5 to 10 min. Furthermore, the catalytic addition of diethyl phosphite to unactivated ketones also afforded the products in high yields of up to 99% with employment of low loadings (0.1 to 0.5 mol%) of the rare earth metal amido complexes at room temperature in short times of 20 min. The system works well for a wide range of unactivated aliphatic, aromatic or heteroaromatic ketones, especially for substituted benzophenones, giving the corresponding α-hydroxy diaryl phosphonates in moderate to high yields. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Extraction of rare earth metals with 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester in the presence of diethylenetriaminepentaacetic acid in aqueous phase

    SciTech Connect

    Kubota, Fukiko; Goto, Masahiro; Nakashio, Fumiyuki

    1993-07-01

    The extraction equilibria of rare earth metals with 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (commercial name, PC-88A, henceforth abbreviated as HR) dissolved in n-heptane were measured at 303 K. It was found that rare earth metals are extracted with the dimer of the extractant, (HR){sub 2}, as follows. M{sub aq}{sup 3+} + 3(HR){sub 2 org} MR{sub 3} {center_dot} 3HR{sub org} + 3H{sub aq}{sup +} The extraction equilibrium constants of metals were obtained and compared with the extraction equilibrium constants obtained by di(2-ethylhexyl)phosphoric acid (henceforth DZEHPA). Furthermore, the extraction equilibria of rare earth metals with PC-88A in the presence of diethylenetriaminepentaacetic acid (henceforth DTPA) in an aqueous phase were also measured to discuss the effect of DTPA on the extraction of rare earth metals. 13 refs., 8 figs., 2 tabs.

  18. Electron/phonon coupling in group-IV transition-metal and rare-earth nitrides

    NASA Astrophysics Data System (ADS)

    Mei, A. B.; Rockett, A.; Hultman, L.; Petrov, I.; Greene, J. E.

    2013-11-01

    Transport electron/phonon coupling parameters and Eliashberg spectral functions αtr2F(ℏω) are determined for group-IV transition-metal (TM) nitrides TiN, ZrN, and HfN, and the rare-earth (RE) nitride CeN using an inversion procedure based upon temperature-dependent (4 < T < 300 K) resistivity measurements of high-crystalline-quality stoichiometric epitaxial films grown on MgO(001) by magnetically-unbalanced reactive magnetron sputtering. Transport electron/phonon coupling parameters λtr vary from 1.11 for ZrN to 0.82 for HfN, 0.73 for TiN, and 0.44 for CeN. The small variation in λtr among the TM nitrides and the weak coupling in CeN are consistent with measured superconducting transition temperatures 10.4 (ZrN), 9.18 (HfN), 5.35 (TiN), and <4 K for CeN. The Eliashberg spectral function describes the strength and energy spectrum of electron/phonon coupling in conventional superconductors. Spectral peaks in α2F(ℏω), corresponding to regions in energy-space for which electrons couple to acoustic ℏωac and optical ℏωop phonon modes, are centered at ℏωac = 33 and ℏωop = 57 meV for TiN, 25 and 60 meV for ZrN, 18 and 64 meV for HfN, and 21 and 39 meV for CeN. The acoustic modes soften with increasing cation mass; optical mode energies remain approximately constant for the TM nitrides, but are significantly lower for the RE nitride due to a lower interatomic force constant. Optical/acoustic peak-intensity ratios are 1.15 ± 0.1 for all four nitrides, indicating similar electron/phonon coupling strengths αtr(ℏω) for both modes.

  19. Imidazolin-2-iminato complexes of rare earth metals with very short metal-nitrogen bonds: experimental and theoretical studies.

    PubMed

    Panda, Tarun K; Trambitas, Alexandra G; Bannenberg, Thomas; Hrib, Cristian G; Randoll, Sören; Jones, Peter G; Tamm, Matthias

    2009-06-15

    The reactions of 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-imine (Im(Dipp)NH, 1-H) with trimethylsilylmethyl lithium (LiCH(2)SiMe(3)) and anhydrous rare earth metal trichlorides MCl(3) afforded the imidazolin-2-iminato complexes [(1)MCl(2)(THF)(3)] (2a, M = Sc; 2b, M = Y; 2c, M = Lu) and [(1)GdCl(2)(THF)(2)] x [LiCl(THF)(2)] (2d). Treatment of complexes 2 with dipotassium cyclooctatetradienide, K(2)(C(8)H(8)) resulted in the formation of two- or three-legged piano-stool complexes of the type [(eta(8)-C(8)H(8))M(1)(THF)(n)] (3a, M = Sc, n = 1; 3b, M = Y, n = 2; 3c, M = Lu, n = 2; 3d, M = Gd, n = 2). X-ray diffraction analyses of all eight complexes 2 and 3 revealed the presence of very short metal-nitrogen bonds, which are among the shortest ever observed for these elements. [(eta(8)-C(8)H(8))Sc(1)(THF)] (3a) reacted with 2,6-dimethylphenyl isothiocyanate (Xy-NCS) to form the [2 + 2]-cycloaddition product 4, which contains a thioureato-N,N' moiety. The related COT-titanium complex [(eta(8)-C(8)H(8))TiCl(1)] (6) could be obtained from [(1)TiCl(3)] (5) by reaction with K(2)(C(8)H(8)) and was structurally characterized. As a theoretical analysis of the nature of the metal-nitrogen bond, density functional theory (DFT) calculations have been carried out for complexes 3a and 6 and also for the model complexes [(eta(8)-C(8)H(8))Sc(NIm(Me))] (7), [(eta(8)-C(8)H(8))Ti(NIm(Me))](+) (8), and [(eta(8)-C(8)H(8))Ti(NXy)] (9), revealing a marked similarity of the bonding in imidazolin-2-iminato and conventional imido metal complexes.

  20. Phase Characteristics of a U-20Pu-3Am-2Np-15Zr Metallic Alloy Containing Rare Earths

    SciTech Connect

    Douglas E. Burkes; J. Rory Kennedy; Thomas Hartmann; Cynthia A. Papesch

    2009-12-01

    Metallic fuel alloys consisting of uranium, plutonium, and zirconium with minor additions of americium and neptunium are under evaluation for potential use to transmute long-lived transuranic actinide isotopes in fast reactors. The current irradiation test series design, designated AFC2, includes minor additions of rare earth elements to simulate expected fission product carry-over from the electrochemical molten salt reprocessing technique. The metal fuel alloys have been fabricated by an arc casting technique. The as-cast fuel alloys have been investigated for phase and thermal properties, specifically, enthalpies of transition, transition temperatures, and room temperature phase characteristics. Results and observations related to these characteristics for the “fresh” fuel alloys are provided. The alloy compositions are based on a U-20Pu-3Am-2Np-15Zr alloy, along with additions of 1 and 1.5 wt% RE (at the expense of U) where RE denotes rare earth alloy of cerium, lanthanum, praseodymium and neodymium). Phase behavior and associated transitions have been compared to available U-Pu-Zr ternary diagrams with acceptable agreement. Enthalpies of transition were deconvoluted from heating and cooling thermal traces for relatively reliable values. The rare earth additions to the base alloy have a minimal influence on the room temperature phases present, but the room temperature phases present slightly impacted the enthalpies of transition and transition temperatures.

  1. Antimony film sensor for sensitive rare earth metal analysis in environmental samples.

    PubMed

    Makombe, Martin; van der Horst, Charlton; Silwana, Bongiwe; Iwuoha, Emmanuel; Somerset, Vernon

    2016-07-02

    A sensor for the adsorptive stripping voltammetric determination of rare earth elements has been developed. The electrochemical procedure is based on the oxidation of the rare earth elements complexed with alizarin complexone at a glassy carbon electrode that was in situ modified with an antimony film, during an anodic scan from -0.2 V to 1.1 V (vs. Ag/AgCl) and deposition potential of -0.1 V (vs. Ag/AgCl). The factors influencing the adsorptive stripping capability were optimised, including the complexing agent concentration, plating concentration of antimony and deposition time. The detection of rare earth elements (La, Ce and Pr) were realised in 0.08 M sodium acetate (pH = 5.8) solution as supporting electrolyte, with 2 × 10(-6) M alizarin complexone and 1.0 mg L(-1) antimony solution. Under the optimised conditions, a deposition time of 360 s was obtained and a linear response was observed between 1 and 25 µg L(-1). The reproducibility of the voltammetric measurements was found to be within 5.0% RSD for 12 replicate measurements of cerium(III) concentration of 5 µg L(-1) using the same electrode surface. The detection limits obtained using stripping analysis was 0.06, 0.42 and 0.71 μg L(-1) for Ce(III), La(III) and Pr(III), respectively. The developed sensor has been successfully applied for the determination of cerium, lanthanum and praseodymium in municipal tap water samples.

  2. Model calculation of the static magnetic susceptibility in light rare earth metallic systems

    NASA Astrophysics Data System (ADS)

    Hammoud, Y.; Parlebas, J. C.

    1991-05-01

    Using the impurity Anderson model in the large N_f approximation, where N_f is the orbital and spin degeneracy of the f level, we calculate the zero temperature static paramagnetic susceptibility of light rare earth metallic systems. The calculation is performed for large values of the Coulomb U_ff electron-electron interactions with respect of the V hybridization of f1 and f2 configurations with the conduction states (i.e. f0 configuration) : we only keep the leading terms in a development in successive powers of 1/U_ff and V. Our numerical results on the magnetic susceptibility start from a simple analytic expression and are discussed in terms of the f level position, the hybridization V, the shape and filling of the conduction band and also the finite U_ff effects. Finally we present calculated curves for the susceptibility versus V in connection with the αγ transition of cerium and utilizing the same parameters as those used previously to obtain core level LIII absorption spectra : also in the case of the susceptibility, the hybridization appears to be an important parameter to describe the phase change from γ to α cerium. Nous utilisons le modèle d'Anderson à une impureté dans l'approximation des grands N_f où N_f est la dégénérescence d'orbitale et de spin du niveau f et nous calculons alors la susceptibilité paramagnétique statique (à température nulle) dans les systèmes métalliques de terres rares légères. Nous effectuons notre calcul pour des valeurs de l'interaction de Coulomb U_ff grandes par rapport à l'hybridation V des configurations f1 et f2 avec les états de conduction (c.-à-d. la configuration f0): nous ne retenons que les termes les plus imporatnts dans un développement en puissances successives de 1/U_ff et V. Ensuite nous discutons nos résultats numériques à partir d'une forme analytique simple obtenue pour la susceptibilité magnétique en fonction de la position du niveau f, de l'hybridation V, de la forme et du

  3. Calculation of crystal-field parameters for rare-earth noble metal alloys

    NASA Astrophysics Data System (ADS)

    Steinbeck, L.; Richter, M.; Eschrig, H.; Nitzsche, U.

    1995-02-01

    The crystal-field (CF) parameters for 4f electrons of a series of rare earth impurities in Ag and Au have been evaluated from first-principles density functional calculations of the charge distribution which are based on an optimized LCAO scheme. The localized 4f states are treated as 'open core shell'. By including the self-interaction correction for the 4f states, artificial constraints on the 4f charge density employed in earlier density functional CF calculations are avoided. The calculated parameters are compared with recent neutron scattering data.

  4. Magnetic properties of RNi[sub 4]B (R = rare earth metal)

    SciTech Connect

    Hong, N.M.; Holubar, T.; Hilscher, G. . Inst. fuer Experimental Physik); Vybornov, M.; Rogl, P. . Inst. fuer Physikalische Chemie)

    1994-11-01

    The authors present AC-, DC-susceptibility and magnetization measurements of the RNi[sub 4]B series from which they determine the paramagnetic properties of RNi[sub 4]B (R = Y, La, Ce). The ferromagnetic order of RNi[sub 4]B (R = magnetic rare earth) is similar to those of the RNi[sub 5] series with the exception of SmNi[sub 4]B and TbNi[sub 4]B where for the former the highest ordering temperature in this series (39K) together with a spins reorientation at 31.7K occurs.

  5. Computer modelling of doped mixed metal fluorides and oxides for device applications: Rare earth, sodium and barium doped KYF 4

    NASA Astrophysics Data System (ADS)

    Jackson, Robert A.; Maddock, Elizabeth M.; Valerio, Mario E. G.

    2008-06-01

    The mixed metal fluorides and oxides have a range of important applications in optical and electronic devices. For example, rare earth doped LiCaAlF6 is used in solid state lasers; and pure and doped LiNbO3 is used in a wide range of optical and electronic applications. In attempting to develop new materials, two questions which arise include: which host lattices are most suitable, and which dopants will produce the required optical behaviour? This paper continues recent work designed to provide straightforward computational approaches to predict and assess properties of such materials, presenting the results of recent calculations on rare earth doping in KYF4, as well as sodium and barium doping, which has been prompted by experimental work in this area.

  6. Ames Lab 101: Rare Earths

    ScienceCinema

    Gschneidner, Karl

    2016-07-12

    "Mr. Rare Earth," Ames Laboratory scientist Karl Gschneidner Jr., explains the importance of rare-earth materials in many of the technologies we use today -- ranging from computers to hybrid cars to wind turbines. Gschneidner is a world renowned rare-earths expert at the U.S. Department of Energy's Ames Laboratory.

  7. Ames Lab 101: Rare Earths

    SciTech Connect

    Gschneidner, Karl

    2010-01-01

    "Mr. Rare Earth," Ames Laboratory scientist Karl Gschneidner Jr., explains the importance of rare-earth materials in many of the technologies we use today -- ranging from computers to hybrid cars to wind turbines. Gschneidner is a world renowned rare-earths expert at the U.S. Department of Energy's Ames Laboratory.

  8. Living catalyzed-chain-growth polymerization and block copolymerization of isoprene by rare-earth metal allyl precursors bearing a constrained-geometry-conformation ligand.

    PubMed

    Jian, Zhongbao; Cui, Dongmei; Hou, Zhaomin; Li, Xiaofang

    2010-05-07

    Aminophenyl functionalized cyclopentadienyl ligated rare-earth metal allyl mediated cationic systems display high cis-1,4 selectivity for the polymerization of isoprene, and living reversible and rapid chain transfer to aluminium additives.

  9. Selective separation of rare earth metals by solvent extraction in the presence on new hydrophilic chelating polymers functionalized with ethylenediaminetetraacetic acid. I. Development of new hydrophilic chelating polymers and their adsorption properties for rare earth metals

    SciTech Connect

    Matsuyama, Hideto; Miyamoto, Yoshikazu; Teramoto, Masaaki

    1996-03-01

    New hydrophilic chelating polymers were synthesized by introducing ethylenediaminetetraacetic acid (EDTA) onto water-soluble polyallylamine. The selective separation of rare earth metals by solvent extraction including these chelating polymers in the aqueous phase is the goal of this work. The polymers were characterized by IR analysis, elemental analysis, gel permeation chromatography (GPC) measurement, and pH titration. Two kinds of polymers with different solubilities in water were produced using different solvents. Both polymers were naturally precipitated in the presence of rare earth metals. This suggests that in the solvent extraction system including these chelating polymers, the recovery of the polymers is easy. Adsorption properties of Y{sup 3+} and Er{sup 3+} on these polymers were also investigated. The separation properties by adsorption on the polymers were comparable to those by EDTA. The chelating polymers had the characteristics that their separation factors decreased by adsorption and the total amount adsorbed increased with increasing pH or initial metal concentrations, although in the presence of EDTA these properties were found to be almost constant.

  10. Structure of a piperidine-modified calix[4]arene derivative and spectral resolution of its interaction with rare earth metals with chemometric methods.

    PubMed

    Wang, Li; Wang, Xiaoya; Wang, Yanmei

    2013-03-15

    A piperidine-modified calix[4]arene derivative was synthesized and its structure was confirmed with X-ray diffraction data. UV-visible spectroscopy was used to study its molecular recognition of rare earth ions. The results revealed the calix[4]arene derivative could separate tight metal picrate ion pairs by complexation with the rare earth metal ions in tetrahydrofuran. Resolution of the UV-visible spectra with chemometric methods revealed that the derivative and the rare earth ions Eu(3+), Dy(3+), and Tb(3+) formed ML(2) complexes with stability constants of 10(8.26), 10(8.29), and 10(7.41) respectively.

  11. 3,3'-Bis(trisarylsilyl)-substituted binaphtholate rare earth metal catalysts for asymmetric hydroamination.

    PubMed

    Gribkov, Denis V; Hultzsch, Kai C; Hampel, Frank

    2006-03-22

    Chiral 3,3'-bis(trisarylsilyl)-substituted binaphtholate rare earth metal complexes (R)-[Ln{Binol-SiAr3}(o-C6H4CH2NMe2)(Me2NCH2Ph)] (Ln = Sc, Lu, Y; Binol-SiAr3 = 3,3'-bis(trisarylsilyl)-2,2'-dihydroxy-1,1'-binaphthyl; Ar = Ph (2-Ln), 3,5-xylyl (3-Ln)) and (R)-[La{Binol-Si(3,5-xylyl)3}{E(SiMe3)2}(THF)2] (E = CH (4a), N (4b)) are accessible via facile arene, alkane, and amine elimination. They are efficient catalysts for the asymmetric hydroamination/cyclization of aminoalkenes, giving TOF of up to 840 h(-1) at 25 degrees C for 2,2-diphenyl-pent-4-enylamine (5c) using (R)-2-Y. Enantioselectivities of up to 95% ee were achieved in the cyclization of 5c with (R)-2-Sc. The reactions show apparently zero-order rate dependence on substrate concentration and first-order rate dependence on catalyst concentration, but rates depend on total amine concentrations. Activation parameters for the cyclization of pent-4-enylamine using (R)-2-Y (deltaH(S)(double dagger) = 57.4(0.8) kJ mol(-1) and deltaS(S)(double dagger) = -102(3) J K(-1) mol(-1); deltaH(R)(double dagger) = 61.5(0.7) kJ mol(-1) and deltaS(R)(double dagger) = -103(3) J K(-1) mol(-1)) indicate a highly organized transition state. The binaphtholate catalysts were also applied to the kinetic resolution of chiral alpha-substituted aminoalkenes with resolution factors f of up to 19. The 2,5-disubstituted aminopentenes were formed in 7:1 to > or = 50:1 trans diastereoselectivity, depending on the size of the alpha-substituent of the aminoalkene. Rate studies with (S)-1-phenyl-pent-4-enylamine ((S)-15e) gave the activation parameters for the matching (deltaH(double dagger) = 52.2(2.8) kJ mol(-1), deltaS(double dagger) = -127(8) J K(-1) mol(-1) using (S)-2-Y) and mismatching (deltaH(double dagger) = 57.7(1.3) kJ mol(-1), deltaS(double dagger) = -126(4) J K(-1) mol(-1) using (R)-2-Y) substrate/catalyst combination. The absolute configuration of the Mosher amide of (2S)-2-methyl-4,4-diphenyl-pyrrolidine and (2R)-methyl-(5S

  12. Distribution of rare-earth (Y, La, Ce) and other heavy metals in the profiles of the podzolic soil group

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.; Goryachkin, S. V.; Savichev, A. T.

    2011-05-01

    Along with Fe and Al, many heavy metals (Mn, Cr, Zn, Cu, and Ni) show a markedly pronounced eluvial-illuvial redistribution in the profiles of soils of the podzolic group. The intensity of the redistribution of the bulk forms of these metals is comparable with that of Fe and exceeds that of Al. Although the podzolic soils are depleted of rare-earth metals, the latter respond readily to soil podzolization. The inactive participation of Al is explained by an insignificant portion of the active reaction-capable fraction. Podzolization does not influence the profile distribution of Sr and Ba. The leaching degree of heavy metals such as Mn, Cr, Zn, Ni, and Zr is noticeably higher in the sandy podzols than in the loamy podzolic soils. Leaching of heavy metals from the podzolic horizons is of geochemical importance, whereas the depletion of metals participating in plant nutrition and biota development is of ecological importance. The leaching of heavy metals is related to the destruction of clay particles in the heavy-textured podzolic soils; the effect of the soil acidity on the leaching of heavy metals is less significant.

  13. Magnetocaloric effect in heavy rare-earth elements doped Fe-based bulk metallic glasses with tunable Curie temperature

    NASA Astrophysics Data System (ADS)

    Li, Jiawei; Huo, Juntao; Law, Jiayan; Chang, Chuntao; Du, Juan; Man, Qikui; Wang, Xinmin; Li, Run-Wei

    2014-08-01

    The effects of heavy rare earth (RE) additions on the Curie temperature (TC) and magnetocaloric effect of the Fe-RE-B-Nb (RE = Gd, Dy and Ho) bulk metallic glasses were studied. The type of dopping RE element and its concentration can easily tune TC in a large temperature range of 120 K without significantly decreasing the magnetic entropy change (ΔSM) and refrigerant capacity (RC) of the alloys. The observed values of ΔSM and RC of these alloys compare favorably with those of recently reported Fe-based metallic glasses with enhanced RC compared to Gd5Ge1.9Si2Fe0.1. The tunable TC and large glass-forming ability of these RE doped Fe-based bulk metallic glasses can be used in a wide temperature range with the final required shapes.

  14. Calculated crystal-field parameters for rare-earth impurities in noble metals

    NASA Astrophysics Data System (ADS)

    Steinbeck, Lutz; Richter, Manuel; Eschrig, Helmut; Nitzsche, Ulrike

    1994-06-01

    From first-principles density-functional calculations of the charge distribution the crystal-field (CF) parameters for 4f states of Er and Dy impurities in Ag and Au have been evaluated. The calculations are based on an optimized linear combination of atomic orbitals scheme, where the local-density approximation (LDA) is used for the conduction-electron states, while the localized rare-earth 4f states are treated as ``open core shell.'' As the 4f localization cannot be properly described within LDA, a self-interaction correction for the 4f states is included. In this way, any artificial constraints on the 4f charge density employed in earlier first-principles CF calculations are avoided. The calculated CF parameters agree well with recent neutron scattering data.

  15. Dielectric ceramic compositions based on magnesium, calcium and rare earth metal titanates

    SciTech Connect

    Katsube, M.; Tamura, H.

    1980-12-30

    A dielectric ceramic composition for microwave applications consists essentially of a sintered mixture represented by the general formula: (1-x)MgTiO3-x(CA1-ymey)TiO3 wherein me is at least one rare earth element selected from the group of Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, and wherein X and Y are molar fractions of respective components and take values within the following respective ranges: 0.03 < or = X < or = 0.15, 0.001 < or = Y < or = 0.06. The composition is a fine-grained, dence ceramic and enables to produce microwave devices with high permittivity, high quality factor and small temperature coefficient of resonance frequency.

  16. Electronic structure and volume magnetostriction of rare-earth metals and compounds

    NASA Astrophysics Data System (ADS)

    Turek, I.; Rusz, J.; Diviš, M.

    2005-04-01

    A first-principle theory of spontaneous volume magnetostriction is presented. It is based on self-consistent electronic structure calculations for a magnetically ordered ground state and a disordered local moment state. The effect of highly localized 4f orbitals of rare-earth (R) atoms is taken into account by an open-core treatment within the local spin-density approximation. The theory is applied to hexagonal gadolinium and to selected intermetallic compounds with the cubic C15 Laves structure: RCo2 (R=Gd, Dy, Er) and GdAl2. The results are compared to those of experiment and discussed in terms of: (i) magnitudes of the local moments and (ii) volume-dependent exchange interactions.

  17. Supramolecular structures and stereochemical versatility of azoquinoline containing novel rare earth metal complexes.

    PubMed

    El-Sonbati, A Z; Issa, R M; El-Gawad, A M Abd

    2007-09-01

    Rare earth complexes of 5-(phenylazo)-8-hydroxyquinoline (HL) of composition [M(L)(2)X.H(2)O] [where M=La, Ce, Pr, Nd and X=NO(3)(-) or NCS(-)] have been prepared and characterized on the basis of their chemical analyses, (1)H NMR, magnetic measurements, conductance, and visible and IR spectral data. Composition, conductance and IR spectral data of the complexes show that the HL acts as a bidentate monobasic ligand. The visible spectra of Pr(3+) and Nd(3+) show characteristic f-f transitions, and the nephelauxetic effect (1-beta) of these transitions has been evaluated. These data indicate the weak involvement of the 4f orbitals in complex formation.

  18. Synchrotron Diffraction Studies of Spontaneous Magnetostriction in Rare Earth Transition Metal Compounds

    SciTech Connect

    Yang, Ning

    2004-12-19

    Thermal expansion anomalies of R2Fe14B and R2Fe17Cx (x = 0,2) (R = Y, Nd, Gd, Tb, Er) stoichiometric compounds are studied with high-energy synchrotron X-ray powder diffraction using Debye-Schemer geometry in temperature range 10K to 1000K. Large spontaneous magnetostriction up to their Curie temperatures (Tc) is observed. The a-axes show relatively larger invar effects than c-axes in the R2Fe14B compounds whereas the R2Fe17Cx show the contrary anisotropies. The iron sub-lattice is shown to dominate the spontaneous magnetostriction of the compounds. The contribution of the rare earth sublattice is roughly proportional to the spin magnetic moment of the rare earth in the R2Fe14B compounds but in R2Fe17Cx, the rare earth sub-lattice contribution appears more likely to be dominated by the local bonding. The calculation of spontaneous magnetostrain of bonds shows that the bonds associated with Fe(j2) sites in R2Fe14B and the dumbbell sites in R2Fe17Cx have larger values, which is strongly related to their largest magnetic moment and Wigner-Seitz atomic cell volume. The roles of the carbon atoms in increasing the Curie temperatures of the R2Fe17 compounds are attributed to the increased separation of Fe hexagons. The R2Fe17 and R2Fe14B phases with magnetic rare earth ions also show anisotropies of thermal expansion above c. For R2Fe17 and R2Fe14B the a a/a c > 1 whereas the anisotropy is reversed with the interstitial carbon in R2Fe17. The average bond magnetostrain is shown to be a possible predictor of the magnetic moment of Fe sites in the compounds. Both of the theoretical and

  19. Fundamental studies of strongly magnetic rare earth-transition metal alloys. Technical progress report, [June 19, 1991--June 18, 1992

    SciTech Connect

    Sellmyer, D.J.; Hadjipanayis, G.C.

    1992-07-01

    The goal of this project is to advance our understanding of new phases and microstructures of rare-earth and transition-metal alloys and compounds. In particular we investigate several classes of materials which are expected to have high magnetizations and coercivities, which are necessary conditions for high performance permanent magnet and related applications. Hard and semi-hard magnetic materials form the basis of much of the electric power and information storage industries and the discovery of new and less expensive materials with outstanding properties is of great interest.

  20. Growth of metallic Ag nanoparticles in fluoroborate glasses doped with rare-earth ions and their optical characterization

    NASA Astrophysics Data System (ADS)

    Riano, L. P.; de Araujo, Cid B.; Malta, O. L.; Santa Cruz, P.; Couto dos Santos, Marcos A.

    2004-10-01

    Fluoroborate glasses have been prepared containing silver nanoparticles (NP) and rare-earth (RE) ions. Optical techniques were used for analysis of the surface plasmon (SP) band formation and to determine the influence of the NP on the RE ions luminescence. Electron microscopy was applied to measure the particles concentration and their size distributions. The techniques used allowed to identify the presence of Ag particles with diameters in the range of 5 - 200 nm. The absorption band of SP is centered at 425 nm for samples doped with Eu3+ and centered at 416 nm for samples with Pr3+. The ions luminescence shows enhancement or quenching for metallic particles of different sizes.

  1. Study of the rare-earth metals magnetic powders filling influence on the basic properties of elastomeric materials

    NASA Astrophysics Data System (ADS)

    Zhansakova, K. S.; Mitryaeva, N. S.; Russkikh, G. S.

    2017-08-01

    The work deals with the studying of technological, vulcanization and physical-mechanical properties of magnetic elastomeric compositions. Powders of rare-earth metals with different morphology of particles and different magnetic characteristics were used as fillers. Based on the results of the work performed, it was revealed that the applied technology of manufacturing magnetic elastomeric compositions based on synthetic rubber is optimal. The rationale for this is the balanced technological and physical-mechanical properties of vulcanizates. Morphology and magnetic characteristics of fillers also do not significantly change the vulcanization properties.

  2. Catalytic asymmetric ring-opening of meso-aziridines with malonates under heterodinuclear rare earth metal Schiff base catalysis.

    PubMed

    Xu, Yingjie; Lin, Luqing; Kanai, Motomu; Matsunaga, Shigeki; Shibasaki, Masakatsu

    2011-04-20

    Catalytic asymmetric ring-opening of meso-aziridines with malonates is described. The combined use of two rare earth metal sources with different properties promoted the desired ring-opening reaction. A 1:1:1 mixture of a heterobimetallic La(O-iPr)(3)/Yb(OTf)(3)/Schiff base 1a (0.25-10 mol %) efficiently promoted the reaction of five-, six-, and seven-membered ring cyclic meso-aziridines as well as acyclic meso-aziridines with dimethyl, diethyl, and dibenzyl malonates, giving chiral cyclic and acyclic γ-amino esters in 99-63% yield and >99.5-97% ee.

  3. Synthesis and reactivity of rare earth metal alkyl complexes stabilized by anilido phosphinimine and amino phosphine ligands.

    PubMed

    Liu, Bo; Cui, Dongmei; Ma, Jia; Chen, Xuesi; Jing, Xiabin

    2007-01-01

    Anilido phosphinimino ancillary ligand H(2)L(1) reacted with one equivalent of rare earth metal trialkyl [Ln{CH(2)Si(CH(3))(3)}(3)(thf)(2)] (Ln=Y, Lu) to afford rare earth metal monoalkyl complexes [L(1)LnCH(2)Si(CH(3))(3)(THF)] (1 a: Ln=Y; 1 b: Ln=Lu). In this process, deprotonation of H(2)L(1) by one metal alkyl species was followed by intramolecular C--H activation of the phenyl group of the phosphine moiety to generate dianionic species L(1) with release of two equivalnts of tetramethylsilane. Ligand L(1) coordinates to Ln(3+) ions in a rare C,N,N tridentate mode. Complex l a reacted readily with two equivalents of 2,6-diisopropylaniline to give the corresponding bis-amido complex [(HL(1))LnY(NHC(6)H(3)iPr(2)-2,6)(2)] (2) selectively, that is, the C--H activation of the phenyl group is reversible. When 1 a was exposed to moisture, the hydrolyzed dimeric complex [{(HL(1))Y(OH)}(2)](OH)(2) (3) was isolated. Treatment of [Ln{CH(2)Si(CH(3))(3)}(3)(thf)(2)] with amino phosphine ligands HL(2-R) gave stable rare earth metal bis-alkyl complexes [(L(2-R))Ln{CH(2)Si(CH(3))(3)}(2)(thf)] (4 a: Ln=Y, R=Me; 4 b: Ln=Lu, R=Me; 4 c: Ln=Y, R=iPr; 4 d: Ln=Y, R=iPr) in high yields. No proton abstraction from the ligand was observed. Amination of 4 a and 4 c with 2,6-diisopropylaniline afforded the bis-amido counterparts [(L(2-R))Y(NHC(6)H(3)iPr(2)-2,6)(2)(thf)] (5 a: R=Me; 5 b: R=iPr). Complexes 1 a,b and 4 a-d initiated the ring-opening polymerization of d,l-lactide with high activity to give atactic polylactides.

  4. Mono(boratabenzene) rare-earth metal dialkyl complexes: synthesis, structure and catalytic behaviors for styrene polymerization.

    PubMed

    Wang, Xiufang; Leng, Xuebing; Chen, Yaofeng

    2015-03-28

    Four mono(boratabenzene) rare-earth metal dialkyl complexes, [(3,5-Me2-C5H3BR)Ln(CH2SiMe3)2(THF)] (1: R = NEt2, Ln = Sc; 2: R = NEt2, Ln = Lu; 3: R = Ph, Ln = Sc; 4: R = Ph, Ln = Lu), were synthesized efficiently via a one-pot strategy with Li[3,5-Me2-C5H3BR] (R = NEt2, Ph), LnCl3(THF)x (Ln = Sc, x = 3; Ln = Lu, x = 0), and LiCH2SiMe3. The solid-state structures of 1 and 2 were determined by single-crystal X-ray diffraction. Variable-temperature NMR studies indicated that the energy barrier for the rotation of aminoboratabenzene in 1 (ΔG‡ ≈ 71 kJ mol−1) is higher than that of phenylboratabenzene in 3 (ΔG‡ ≈ 59 kJ mol−1). These mono(boratabenzene) rare-earth metal dialkyl complexes’ catalytic behaviors for styrene polymerization were investigated, and found that mono(boratabenzene) scandium dialkyl complexes show high catalytic activities for syndiotactic polymerization upon activation with cocatalysts.

  5. Review of magnetic properties and magnetocaloric effect in the intermetallic compounds of rare earth with low boiling point metals

    NASA Astrophysics Data System (ADS)

    Ling-Wei, Li

    2016-03-01

    The magnetocaloric effect (MCE) in many rare earth (RE) based intermetallic compounds has been extensively investigated during the last two decades, not only due to their potential applications for magnetic refrigeration but also for better understanding of the fundamental problems of the materials. This paper reviews our recent progress on studying the magnetic properties and MCE in some binary or ternary intermetallic compounds of RE with low boiling point metal(s) (Zn, Mg, and Cd). Some of them exhibit promising MCE properties, which make them attractive for low temperature magnetic refrigeration. Characteristics of the magnetic transition, origin of large MCE, as well as the potential application of these compounds are thoroughly discussed. Additionally, a brief review of the magnetic and magnetocaloric properties in the quaternary rare earth nickel boroncarbides RENi2B2C superconductors is also presented. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374081 and 11004044), the Fundamental Research Funds for the Central Universities, China (Grant Nos. N150905001, L1509006, and N140901001), the Japan Society for the Promotion of Science Postdoctoral Fellowships for Foreign Researchers (Grant No. P10060), and the Alexander von Humboldt (AvH) Foundation (Research stipend to L. Li).

  6. Determination of uranium and rare-earth metals separation coefficients in LiCl KCl melt by electrochemical transient techniques

    NASA Astrophysics Data System (ADS)

    Kuznetsov, S. A.; Hayashi, H.; Minato, K.; Gaune-Escard, M.

    2005-09-01

    The main step in the pyrometallurgical process of spent nuclear fuel recycling is a molten salt electrorefining. The knowledge of separation coefficients of actinides (U, Np, Pu and Am) and rare-earth metals (Y, La, Ce, Nd and Gd) is very important for this step. Usually the separation coefficients are evaluated from the formal standard potentials of metals in melts containing their own ions, values obtained by potentiometric method. Electrochemical experiments were carried out at 723-823 K in order to estimate separation coefficients in LiCl-KCl eutectic melt containing uranium and lanthanum trichlorides. It was shown that for the calculation of uranium and lanthanum separation coefficients it is necessary to determine the voltammetric peak potentials of U(III) and La(III), their concentration in the melt and the kinetic parameters relating to U(III) discharge such as transfer and diffusion coefficients, and standard rate constants of charge transfer.

  7. Regio- and Stereochemical Control in Ocimene Polymerization by Half-Sandwich Rare-Earth Metal Dialkyl Complexes.

    PubMed

    Peng, Deqian; Du, Gaixia; Zhang, Pengfei; Yao, Bo; Li, Xiaofang; Zhang, Shaowen

    2016-06-01

    The polymerization of ocimene has been first achieved by half-sandwich rare-earth metal dialkyl complexes in combination with activator and Al(i) Bu3 . The regio- and stereoselectivity in the ocimene polymerization can be controlled by tuning the cyclopentadienyl ligand and the central metal of the complex. The chiral cyclopentadienyl-ligated Sc complex 1 prepares syndiotactic cis-1,4-polyocimene (cis-1,4-selectivity up to 100%, rrrr = 100%), while the corresponding Lu, Y, and Dy complexes 2-4 and the achiral pentamethylcyclopentadienyl Sc, Lu, and Y complexes 5-7 afford isotactic trans-1,2-polyocimenes (trans-1,2-selectivity up to 100%, mm = 100%).

  8. Metal sulfide and rare-earth phosphate nanostructures and methods of making same

    SciTech Connect

    Wong, Stanislaus; Zhang, Fen

    2014-05-13

    The present invention provides a method of producing a crystalline metal sulfide nanostructure. The metal is a transitional metal or a Group IV metal. In the method, a porous membrane is placed between a metal precursor solution and a sulfur precursor solution. The metal cations of the metal precursor solution and sulfur ions of the sulfur precursor solution react, thereby producing a crystalline metal sulfide nanostructure.

  9. Rare earth metals are essential for methanotrophic life in volcanic mudpots.

    PubMed

    Pol, Arjan; Barends, Thomas R M; Dietl, Andreas; Khadem, Ahmad F; Eygensteyn, Jelle; Jetten, Mike S M; Op den Camp, Huub J M

    2014-01-01

    Growth of Methylacidiphilum fumariolicum SolV, an extremely acidophilic methanotrophic microbe isolated from an Italian volcanic mudpot, is shown to be strictly dependent on the presence of lanthanides, a group of rare earth elements (REEs) such as lanthanum (Ln), cerium (Ce), praseodymium (Pr) and neodymium (Nd). After fractionation of the bacterial cells and crystallization of the methanol dehydrogenase (MDH), it was shown that lanthanides were essential as cofactor in a homodimeric MDH comparable with one of the MDHs of Methylobacterium extorquens AM1. We hypothesize that the lanthanides provide superior catalytic properties to pyrroloquinoline quinone (PQQ)-dependent MDH, which is a key enzyme for both methanotrophs and methylotrophs. Thus far, all isolated MxaF-type MDHs contain calcium as a catalytic cofactor. The gene encoding the MDH of strain SolV was identified to be a xoxF-ortholog, phylogenetically closely related to mxaF. Analysis of the protein structure and alignment of amino acids showed potential REE-binding motifs in XoxF enzymes of many methylotrophs, suggesting that these may also be lanthanide-dependent MDHs. Our findings will have major environmental implications as metagenome studies showed (lanthanide-containing) XoxF-type MDH is much more prominent in nature than MxaF-type enzymes.

  10. A geological reconnaissance of electrical and electronic waste as a source for rare earth metals.

    PubMed

    Mueller, Sandra R; Wäger, Patrick A; Widmer, Rolf; Williams, Ian D

    2015-11-01

    The mining of material resources requires knowledge about geogenic and anthropogenic deposits, in particular on the location of the deposits with the comparatively highest concentration of raw materials. In this study, we develop a framework that allows the establishment of analogies between geological and anthropogenic processes. These analogies were applied to three selected products containing rare earth elements (REE) in order to identify the most concentrated deposits in the anthropogenic cycle. The three identified anthropogenic deposits were characterised according to criteria such as "host rock", "REE mineralisation" and "age of mineralisation", i.e. regarding their "geological" setting. The results of this characterisation demonstrated that anthropogenic deposits have both a higher concentration of REE and a longer mine life than the evaluated geogenic deposit (Mount Weld, Australia). The results were further evaluated by comparison with the geological knowledge category of the United Nations Framework Classification for Fossil Energy and Mineral Reserves and Resources 2009 (UNFC-2009) to determine the confidence level in the deposit quantities. The application of our approach to the three selected cases shows a potential for recovery of REE in anthropogenic deposits; however, further exploration of both potential and limitations is required.

  11. Metal oxide nanoparticles embedded in rare-earth matrix for low temperature thermal imaging applications

    NASA Astrophysics Data System (ADS)

    Rauwel, E.; Galeckas, A.; Rauwel, P.; Hansen, P.-A.; Wragg, D.; Nilsen, O.; Fjellvåg, H.

    2016-05-01

    We report on the synthesis and characterization of nanocomposites comprising of oxide nanoparticles (NPs) (ZnO, CaHfO3 and SrHfO3) embedded in rare-earth oxide (Eu2O3, Nd2O3) matrices by using atomic layer deposition. The different oxide surroundings allowed highlighting the role of interface defects in the recombination processes of charge carriers in the NPs. We provide a comparative analysis of optical absorption and emission properties of the constituents: thin films, free-standing and embedded NPs, and discuss the intrinsic and extrinsic nature of the luminescent sites in different nanocomposites. The photoluminescence properties of ZnO nanocomposites are clearly distinguishable from those of free-standing NPs in terms of overall quantum efficiency as well as intensity ratios of the characteristic blue and green emission bands associated with radiative transitions involving excitons and intrinsic defects, respectively. In contrast to PL enhancement due to surface-passivating effect of the surrounding media in the case of ZnO nanocomposites, the embedment of hafnia perovskites into oxide matrices generally leads to suppressed luminescence in the visible range, thus confirming its extrinsic, surface-defect related nature.

  12. Electronic structures of intermetallic borides RPd3Bx ( R= rare-earth metals)

    NASA Astrophysics Data System (ADS)

    Loison, C.; Leithe-Jasper, A.; Rosner, H.

    2007-05-01

    The electronic structure and the theoretical lattice parameters for the intermetallic antiperovskites RPd3B ( R from La to Yb) are calculated within the density-functional theory using the LSDA+U functional (LSDA is local spin density approximation) to include strong electronic correlations at the R site. Exemplarily, the electronic structure of LaPd3B is discussed and compared with the isoelectronic and isostructural superconductor MgCNi3 . The coherent potential approximation is applied to calculate the lattice parameters of RPd3Bx , where R=La and Lu, as a function of the boron content x . Contrarily to what was reported by Dhar [Mater. Res. Bull. 16, 1557 (1981)], a regular increase is observed in the whole range xɛ[0,1] . Moreover, the calculated lattice parameters obtained for the whole family RPd3B , with R from La to Yb, are much higher than the experimental lattice parameters published by Dhar , questioning their synthesis of stoichiometric compounds RPd3B . Attempts to synthesize RPd3B with R=La , Yb failed for LaPd3B . Instead, in the case of exposure to air, LaPd3Ox is obtained. On the contrary, YbPd3Bx could be obtained (0⩽x⩽0.6) . For this phase, the LSDA+U calculations indicate a valence instability. Thus, boron insertion in RPd3 seems eased by the tendency of the rare earth to become divalent.

  13. Synthesis and structure of some nano-sized rare-earth metal ions doped potassium hexacyanoferrates

    NASA Astrophysics Data System (ADS)

    Narayan, Himanshu; Alemu, Hailemichael; Nketsa, Pusetso F.; Manatha, Toka J.; Madhavi Thakurdesai, And

    2015-05-01

    Rare-earth ions doped potassium hexacyanoferrates (KR-HCF); with the general formula KRFe(CN)6 · 3H2 O [with, R≡Y, Gd and Yb] nanoparticles were synthesized through precipitation. Characterization was done through particle-size analyzer, scanning electron microscopy (SEM), Fourier Transform infra-red (FTIR) and Raman spectroscopy, and powder X-ray diffraction (XRD). The XRD data was analyzed on FullProf Software Suite program and the unit-cell structure and lattice parameters of KR-HCF samples were determined from scratch and refined further. All the three KR-HCF nanoparticles seem to crystallize in the orthorhombic primitive PMMM space-group. Reasonably good agreement was found with the previously reported lattice constants of KGd-HCF and KYb-HCF orthorhombic single-crystals, except that they assume different space-groups. The observed dissimilarity of space-groups may be attributed to the different time scales involved in the synthesis process. Moreover, the crystal structure of KYFe(CN)6 · 3H2 O nanoparticles is being reported for the very first time.

  14. Separation of rare earths from transition metals by liquid-liquid extraction from a molten salt hydrate to an ionic liquid phase.

    PubMed

    Rout, Alok; Binnemans, Koen

    2014-02-28

    The solvent extraction of trivalent rare-earth ions and their separation from divalent transition metal ions using molten salt hydrates as the feed phase and an undiluted fluorine-free ionic liquid as the extracting phase were investigated in detail. The extractant was tricaprylmethylammonium nitrate, [A336][NO3], and the hydrated melt was calcium nitrate tetrahydrate, Ca(NO3)2·4H2O. The extraction behavior of rare-earth ions was studied for solutions of individual elements, as well as for mixtures of rare earths in the hydrated melt. The influence of different extraction parameters was investigated: the initial metal loading in the feed phase, percentage of water in the feed solution, equilibration time, and the type of hydrated melt. The extraction of rare earths from Ca(NO3)2·4H2O was compared with extraction from CaCl2·4H2O by [A336][Cl] (Aliquat 336). The nitrate system was found to be the better one. The extraction and separation of rare earths from the transition metals nickel, cobalt and zinc were also investigated. Remarkably high separation factors of rare-earth ions over transition metal ions were observed for extraction from Ca(NO3)2·4H2O by the [A336][NO3] extracting phase. Furthermore, rare-earth ions could be separated efficiently from transition metal ions, even in melts with very high concentrations of transition metal ions. Rare-earth oxides could be directly dissolved in the Ca(NO3)2·4H2O phase in the presence of small amounts of Al(NO3)3·9H2O or concentrated nitric acid. The efficiency of extraction after dissolving the rare-earth oxides in the hydrated nitrate melt was identical to extraction from solutions with rare-earth nitrates dissolved in the molten phase. The stripping of the rare-earth ions from the loaded ionic liquid phase and the reuse of the recycled ionic liquid were also investigated in detail.

  15. Toxicity evaluation of high-fluorescent rare-earth metal nanoparticles for bioimaging applications.

    PubMed

    Hernandez-Adame, Luis; Cortez-Espinosa, Nancy; Portales-Pérez, Diana P; Castillo, Claudia; Zhao, Wayne; Juarez, Zaida N; Hernandez, Luis R; Bach, Horacio; Palestino, Gabriela

    2017-04-01

    Research on nanometer-sized luminescent semiconductors and their biological applications in detectors and contrasting agents is an emergent field in nanotechnology. When new nanosize technologies are developed for human health applications, their interaction with biological systems should be studied in depth. Rare-earth elements are used in medical and industrial applications, but their toxic effects are not known. In this work, the biological interaction between terbium-doped gadolinium oxysulfide nanoparticles (GOSNPs) with human peripheral blood mononuclear cells (PBMC), human-derived macrophages (THP-1), and human cervical carcinoma cell (HeLa) were evaluated. The GOSNPs were synthetized using a hydrothermal method to obtain monodisperse nanoparticles with an average size of 91 ± 9 nm. Characterization techniques showed the hexagonal phase of the Gd2 O2 S:Tb(3+) free of impurities, and a strong green emission at λemi  = 544 nm produced by Tb(3+) was observed. Toxic effects of GOSNPs were evaluated using cell viability, apoptosis, cell-cycle progression, and immunological response techniques. In addition, an Artemia model was used to assess the toxicity in vivo. Results indicated cell apoptosis in both types of cells with less sensitivity for PBMC cells compared to HeLa cells. In addition, no toxic effects were observed in the in vivo model of Artemia. Moreover, GOSNPs significantly reduced the activation and cell-cycle progression of PBMC and HeLa cells, respectively. Interestingly, an increase in proinflammatory cytokines was not observed. Our data suggest that fluorescence applications of GOSNPs for biolabeling are not toxic in primary immune cells and they may have an immunomodulatory effect. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 605-615, 2017.

  16. China's rare-earth industry

    USGS Publications Warehouse

    Tse, Pui-Kwan

    2011-01-01

    Introduction China's dominant position as the producer of over 95 percent of the world output of rare-earth minerals and rapid increases in the consumption of rare earths owing to the emergence of new clean-energy and defense-related technologies, combined with China's decisions to restrict exports of rare earths, have resulted in heightened concerns about the future availability of rare earths. As a result, industrial countries such as Japan, the United States, and countries of the European Union face tighter supplies and higher prices for rare earths. This paper briefly reviews China's rare-earth production, consumption, and reserves and the important policies and regulations regarding the production and trade of rare earths, including recently announced export quotas. The 15 lanthanide elements-lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium (atomic numbers 57-71)-were originally known as the rare earths from their occurrence in oxides mixtures. Recently, some researchers have included two other elements-scandium and yttrium-in their discussion of rare earths. Yttrium (atomic number 39), which lies above lanthanum in transition group III of the periodic table and has a similar 3+ ion with a noble gas core, has both atomic and ionic radii similar in size to those of terbium and dysprosium and is generally found in nature with lanthanides. Scandium (atomic number 21) has a smaller ionic radius than yttrium and the lanthanides, and its chemical behavior is intermediate between that of aluminum and the lanthanides. It is found in nature with the lanthanides and yttrium. Rare earths are used widely in high-technology and clean-energy products because they impart special properties of magnetism, luminescence, and strength. Rare earths are also used in weapon systems to obtain the same properties.

  17. Precious metals and rare earth elements in municipal solid waste--sources and fate in a Swiss incineration plant.

    PubMed

    Morf, Leo S; Gloor, Rolf; Haag, Olaf; Haupt, Melanie; Skutan, Stefan; Di Lorenzo, Fabian; Böni, Daniel

    2013-03-01

    In Switzerland many kinds of waste, e.g. paper, metals, electrical and electronic equipment are separately collected and recycled to a large extent. The residual amount of municipal solid waste (MSW) has to be thermally treated before final disposal. Efforts to recover valuable metals from incineration residues have recently increased. However, the resource potential of critical elements in the waste input (sources) and their partitioning into recyclable fractions and residues (fate) is unknown. Therefore, a substance flow analysis (SFA) for 31 elements including precious metals (Au, Ag), platinum metal group elements (Pt, Rh) and rare earth elements (La, Ce, etc.) has been conducted in a solid waste incinerator (SWI) with a state-of-the-art bottom ash treatment according to the Thermo-Re® concept. The SFA allowed the determination of the element partitioning in the SWI, as well as the elemental composition of the MSW by indirect analysis. The results show that the waste-input contains substantial quantities of precious metals, such as 0.4 ± 0.2mg/kg Au and 5.3 ± 0.7 mg/kg Ag. Many of the valuable substances, such as Au and Ag are enriched in specific outputs (e.g. non-ferrous metal fractions) and are therefore recoverable. As the precious metal content in MSW is expected to rise due to its increasing application in complex consumer products, the results of this study are essential for the improvement of resource recovery in the Thermo-Re® process.

  18. Hyporheic Microbial Biofilms as Indicators of Heavy and Rare Earth Metals in the Clark Fork Basin, Montana

    NASA Astrophysics Data System (ADS)

    Barnhart, E. P.; Hornberger, M.; Hwang, C.; Dror, I.; Bouskill, N.; Short, T.; Cain, D.; Fields, M. W.

    2016-12-01

    The ability to effectively monitor the impact of hard rock mining activities on rivers and streams is a growing concern given the large number of active and abandoned mines in the western United States. One such example, the Clark Fork Basin (CFB), western Montana, was extensively mined for copper in the early 20th century: it is now one of largest U.S. EPA superfund sites. Microbial biofilms are at the base of the lotic food chain and may provide a useful biomonitoring tool for the assessment of metal toxicity due to their environmental ubiquity, rapidity of response to environmental perturbation, and importance in determining metal mobility. Hyporheic microbial biofilms from the CFB were sampled in 2014, concurrent with the USGS National Research Programs (NRP) long-term site monitoring of metals in bed sediment and aquatic benthic insects. Integration of the DNA sequencing results from the hyporheic biofilms with the sediment and insect metal concentrations correlated several bacterial phyla with metal contamination. For example, the genus Lysobacter was strongly associated with copper (Cu) bioaccumulation in the aquatic insect Hydropsyche. These results support previous studies identifying Lysobacter as a bacterial genus that is resistant to Cu ions. Our analysis is the first to indicate that specific microorganisms can act as biomarkers of Cu contamination in rivers. Moreover, our work demonstrates that changes at the microbial community level in the hyporheic zone can be coupled to observed perturbations across higher trophic levels. In 2015, extensive remediation occurred at several of the sites sampled in 2014, providing an excellent opportunity to revisit the sites and examine the temporal variability of identified biomarkers and the short-term effectiveness of remediation. In addition, samples were analyzed for rare earth metals, of which little is known, and could provide additional insight into other metals that change the microbial community structure.

  19. R{sub 5}Ga{sub 3} compounds of rare-earth metals R; structures and properties

    SciTech Connect

    Zhao, Jing-Tai; Corbett, J.D.

    1993-12-31

    The chemistry of rare-earth metals with Al family elements is important in our understanding of the bonding nature of the so-called Zintl phases and regular intermetallic compounds as well as the perspective of potential new materials. The rare-earth gallides, R{sub 5}Ga{sub 3}, has been synthesized and their structure types have been clarified by single crystal structure determinations. Among them, La{sub 5}Ga{sub 3}, Gd{sub 5}B{sub 3} and Y{sub 5}Ga{sub 3}, instead of having the Cr{sub 5}B{sub 3}- or Mn{sub 5}Si{sub 3}-type as reported, crystallize with the Ba{sub 5}Si{sub 3}-type which is a deformation variant of the Cr{sub 5}B{sub 3}-type. The structural features of these phases are compared with other Cr{sub 5}B{sub 3} deformation structures. The physical property measurements of these compounds are consistent with their structural features.

  20. Radiation-enhanced thermal diffusion of transition metal and rare earth ions into II-VI semiconductors

    NASA Astrophysics Data System (ADS)

    Martinez, Alán.; Williams, Lamario; Gafarov, Ozarfar; Martyshkin, Dmitry; Fedorov, Vladimir; Mirov, Sergey

    2015-02-01

    We report on study of gamma radiation-enhanced thermal diffusion of Transition Metal and Rare Earth ions into IIVI semiconductor crystals. ZnSe and ZnS samples with of iron thin film deposited on one facet were sealed in evacuated quartz ampoules at 10-3 Torr. The crystals were annealed for 14 days at 950°C under γ-irradiation from 60Co source. The irradiation dose rates of 43.99 R/s, 1.81 R/s were varied by distance between 60Co source and furnaces. For comparison, the samples were also annealed without irradiation at the same temperature. The spatial distributions of transition metal were measured by absorption of focused laser radiation at 5T2-5E mid-IR transitions of iron ions. In addition, samples of ZnSe were similarly sealed in evacuated quartz ampoules in the presence of Praseodymium metal and annealed at 950°C under 43.99 R/s and 0 R/s and the diffusion lengths and Pr concentrations were compared. The γ-irradiation results in better intrusion of the iron ions from the metal film and increase of the diffusion length at ~25%, while Praseodymium diffusion is dramatically enhanced by γ-irradiation during the annealing process.

  1. Non-rare earth magnetic nanoparticles

    DOEpatents

    Carpenter, Everett E.; Huba, Zachary J.; Carroll, Kyler J.; Farghaly, Ahmed; Khanna, Shiv N.; Qian, Meichun; Bertino, Massimo

    2017-09-26

    Continuous flow synthetic methods are used to make single phase magnetic metal alloy nanoparticles that do not contain rare earth metals. Soft and hard magnets made from the magnetic nanoparticles are used for a variety of purposes, e.g. in electric motors, communication devices, etc.

  2. Phase stable rare earth garnets

    DOEpatents

    Kuntz, Joshua D.; Cherepy, Nerine J.; Roberts, Jeffery J.; Payne, Stephen A.

    2013-06-11

    A transparent ceramic according to one embodiment includes a rare earth garnet comprising A.sub.hB.sub.iC.sub.jO.sub.12, where h is 3.+-.10%, i is 2.+-.10%, and j is 3.+-.10%. A includes a rare earth element or a mixture of rare earth elements, B includes at least one of aluminum, gallium and scandium, and C includes at least one of aluminum, gallium and scandium, where A is at a dodecahedral site of the garnet, B is at an octahedral site of the garnet, and C is at a tetrahedral site of the garnet. In one embodiment, the rare earth garment has scintillation properties. A radiation detector in one embodiment includes a transparent ceramic as described above and a photo detector optically coupled to the rare earth garnet.

  3. Environmentally Friendly Economical Sequestration of Rare Earth Metals from Geothermal Waters

    SciTech Connect

    Stull, Dean P.

    2016-05-26

    The purpose of this work was to complete a proof of concept study to apply and validate a novel method developed by Tusaar for the capture and recovery of rare earth elements (known as REEs) and other critical and valuable elements from geothermal waters produced from deep within the earth. Geothermal water provides heat for power production at many geothermal power plants in the western United States. The target elements, the REEs, are vital to modern day electronics, batteries, motors, automobiles and many other consumer favorites and necessities. Currently there are no domestic sources of REEs while domestic and international demand for the products they are used in continues to rise. Many of the REEs are considered “strategically” important. A secure supply of REEs in the USA would benefit consumers and the country at large. A new method to recover these REEs from geothermal waters used at existing geothermal power plants around the country is a high priority and would benefit consumers and the USA. The result of this project was the successful development and demonstration of an integrated process for removal and recovery of the REEs from synthetic geothermal brines on a small laboratory scale. The work included preparation of model geothermal brines to test, selection of the most effective proprietary sorbent media to capture the REEs and testing of the media under a variety of potential operating conditions. Geothermal brines are generally very high in salt content and contain a wide range of elements and anions associated with the rock layers from which they are produced. Processing the geothermal water is difficult because it is corrosive and the dissolved minerals in the water precipitate easily once the temperature and pressure change. No commercial technologies have been shown to be effective or robust enough under these geothermal brine conditions to be commercially viable for removal of REEs. Technologies including ion exchange, traditional

  4. Anomalies in Trace Metal and Rare-Earth Loads below a Waste-Water Treatment Plant

    NASA Astrophysics Data System (ADS)

    Antweiler, R.; Writer, J. H.; Murphy, S.

    2013-12-01

    The changes in chemical loads were examined for 54 inorganic elements and compounds in a 5.4-km reach of Boulder Creek, Colorado downstream of a waste water treatment plant (WWTP) outfall. Elements were partitioned into three categories: those showing a decrease in loading downstream, those showing an increase, and those which were conservative, at least over the length of the study reach. Dissolved loads which declined - generally indicative of in-stream loss via precipitation or sorption - were typically rapid (occurring largely before the first sampling site, 2.3 km downstream); elements showing this behavior were Bi, Cr, Cs, Ga, Ge, Hg, Se and Sn. These results were as expected before the experiment was performed. However, a large group (28 elements, including all the rare-earth elements, REE, except Gd) exhibited dissolved load increases indicating in-stream gains. These gains may be due to particulate matter dissolving or disaggregating, or that desorption is occurring below the WWTP. As with the in-stream loss group, the processes tended to be rapid, typically occurring before the first sampling site. Whole-water samples collected concurrently also had a large group of elements which showed an increase in load downstream of the WWTP. Among these were most of the group which had increases in the dissolved load, including all the REE (except Gd). Because whole-water samples include both dissolved and suspended particulates within them, increases in loads cannot be accounted for by invoking desorption or disaggregation mechanisms; thus, the only source for these increases is from the bed load of the stream. Further, the difference between the whole-water and dissolved loads is a measure of the particulate load, and calculations show that not only did the dissolved and whole-water loads increase, but so did the particulate loads. This implies that at the time of sampling the bed sediment was supplying a significant contribution to the suspended load. In general

  5. Reactions of hypersilyl potassium with rare-earth metal bis(trimethylsilylamides): addition versus peripheral deprotonation.

    PubMed

    Niemeyer, Mark

    2006-10-30

    The scope of hypersilyl potassium, KHyp [Hyp = Si(SiMe3)3], as a silylation or deprotonation agent for some rare-earth bis(trimethylsilyl)amides has been explored. Thus, the reaction with Yb{N(SiMe3)2}2 affords the addition product [K][YbHyp{N(SiMe3)2}2] (2) in high yield, which contains a three-coordinate ytterbium atom, therefore representing the first example of a lanthanide silyl with a coordination number lower than 6. In contrast, deprotonation on the periphery is observed with the tris(amides) Ln{N(SiMe3)2}3 (Ln = Y, Yb) and compounds of the type [K][CH2Si(Me)2N(SiMe3)Ln{N(SiMe3)2}2] (Ln = Y (3), Yb (4)) are isolated. Crystallization of 3 from a mixture of benzene and heptane afforded the bis(benzene) solvate [(C6H6)2K][CH2Si(Me)2N(SiMe3)Y{N(SiMe3)2}2] (3a). The reaction between the strong bases nBuLi/tetramethylenediamine (TMEDA) or tBuLi with Y{N(SiMe3)2}3 or Yb{N(SiMe3)2}3 yielded the deprotonation product [(tmeda)Li][CH2Si(Me)2N(SiMe3)Y{N(SiMe3)2}2] (6) and the reduction product [LiYb{N(SiMe3)2}3] (7), respectively. Instead of the expected bimetallic product, the reaction between YbI(2) and 2 equiv of 3 gave the neutral complex [Y{CH2Si(Me)2N(SiMe3)}{N(SiMe3)2}(thf)] (8) in good yield. The compounds have been characterized by melting point, elemental analysis, IR spectroscopy, and X-ray crystallography and for selected species by 1H, 13C, 29Si, and 171Yb NMR spectroscopy. For 3a and 4, the nature of the bonding between the carbanionic centers and the lanthanide and potassium cations was studied by density functional theory calculations.

  6. The Not-So-Rare Earths.

    ERIC Educational Resources Information Center

    Muecke, Gunter K.; Moller, Peter

    1988-01-01

    Describes the characteristics of rare earth elements. Details the physical chemistry of rare earths. Reviews the history of rare earth chemistry and mineralogy. Discusses the mineralogy and crystallography of the formation of rare earth laden minerals found in the earth's crust. Characterizes the geologic history of rare earth elements. (CW)

  7. The Not-So-Rare Earths.

    ERIC Educational Resources Information Center

    Muecke, Gunter K.; Moller, Peter

    1988-01-01

    Describes the characteristics of rare earth elements. Details the physical chemistry of rare earths. Reviews the history of rare earth chemistry and mineralogy. Discusses the mineralogy and crystallography of the formation of rare earth laden minerals found in the earth's crust. Characterizes the geologic history of rare earth elements. (CW)

  8. Temperature range and conditions of stable operation of gas-discharge rare-earth metal vapor lasers

    NASA Astrophysics Data System (ADS)

    Gerasimov, V. A.; Gerasimov, V. V.; Pavlinskiy, A. V.

    2008-08-01

    We have experimentally studied the temperature range and conditions of the stable operation of rare-earth metal (REM) vapor lasers. Gas-discharge tubes made of alumina (Al2O3-GDTs) were used in the experiments. The lasing appears at the temperature when the saturated-vapor pressure of REMs reaches the value of 0.1 Torr and abruptly drops at the melting temperature of corresponding REM under any excitation conditions. The necessity of protecting film of REM aluminates LnnAlmOk and oxides Ln2O3 on the inner surface of Al2O3-GDT for stable operation of these lasers is shown. An explanation of lasing impossibility in vapors of cerium (Ce), praseodymium (Pr), neodymium (Nd), gadolinium (Gd), and terbium (Tb) under gas-discharge excitation is proposed.

  9. Production of copper-based rare earth composite metal materials by coprecipitation and applications for gaseous ammonia removal.

    PubMed

    Hung, Chang-Mao

    2011-04-01

    This study addresses the oxidation of ammonia (NH3) at temperatures between 423 and 673 K by selective catalytic oxidation (SCO) over a copper-based, rare earth composite metal material that was prepared by coprecipitating copper nitrate, lanthanum nitrate, and cerium nitrate at various molar ratios. The catalysts were characterized using Brunner, Emmett, and Teller spectroscopy, Fourier-transform infrared spectroscopy, Xray diffraction, ultraviolet-visible spectroscopy, cyclic voltammetric spectroscopy, and scanning electron microscopy. At a temperature of 673 K and an oxygen content of 4%, approximately 99.5% of the NH3 was reduced by catalytic oxidation over the 6:1:3 copper-lanthanum-cerium (molar ratio) catalyst. Nitrogen (N2) was the main product of this NH3-SCO process. Results from the activity and selectivity tests revealed that the optimal catalyst for catalytic performance had the highest possible cerium content and specific surface area (43 m2/g).

  10. General behavior of chalcogenides of rare-earth metals in transition to the intermediate valence state under high pressures

    NASA Astrophysics Data System (ADS)

    Tsiok, O. B.; Khvostantsev, L. G.; Golubkov, A. V.; Smirnov, I. A.; Brazhkin, V. V.

    2014-10-01

    High-precision measurements of the electric resistance, thermopower, and volume of TmS, TmSe, and TmTe under hydrostatic pressures up to 8.5 GPa were conducted. Comparison of the behavior of the electron-transport characteristics and volume of TmTe and SmTe in the electron transition region demonstrates a complete analogy up to the quantitative coincidence. We found that the thermopower of all samarium and thulium chalcogenides in the lattice-collapse region and during the subsequent reconstruction of the electronic spectrum obeys the universal dependence, which corresponds to the intersection of the Fermi level with the peak of the electron density of states. The results obtained testify in favor of the exciton nature of the intermediate valence state in chalcogenides of the rare-earth metals.

  11. Syntheses of rare-earth metal oxide nanotubes by the sol gel method assisted with porous anodic aluminum oxide templates

    NASA Astrophysics Data System (ADS)

    Kuang, Qin; Lin, Zhi-Wei; Lian, Wei; Jiang, Zhi-Yuan; Xie, Zhao-Xiong; Huang, Rong-Bin; Zheng, Lan-Sun

    2007-04-01

    In this paper, we report a versatile synthetic method of ordered rare-earth metal (RE) oxide nanotubes. RE (RE=Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) oxide nanotubes were successfully prepared from corresponding RE nitrate solution via the sol-gel method assisted with porous anodic aluminum oxide (AAO) templates. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM, and X-ray diffraction (XRD) have been employed to characterize the morphology and composition of the as-prepared nanotubes. It is found that as-prepared RE oxides evolve into bamboo-like nanotubes and entirely hollow nanotubes. A new possible formation mechanism of RE oxide nanotubes in the AAO channels is proposed. These high-quantity RE oxide nanotubes are expected to have promising applications in many areas such as luminescent materials, catalysts, magnets, etc.

  12. Model of thermally activated magnetization reversal in thin films of amorphous rare-earth-transition-metal alloys

    NASA Astrophysics Data System (ADS)

    Lyberatos, A.; Earl, J.; Chantrell, R. W.

    1996-03-01

    Monte Carlo simulations on a two-dimensional lattice of magnetic dipoles have been performed to investigate the magnetic reversal by thermal activation in rare-earth-transition-metal (RE-TM) alloys. Three mechanisms of magnetization reversal were observed: nucleation dominated growth, nucleation followed by the growth of magnetic domains containing no seeds of unreversed magnetization, and nucleation followed by dendritic domain growth by successive branching in the motion of the domain walls. The domain structures are not fractal; however, the fractal dimension of the domain wall was found to be a good measure of the jaggedness of the domain boundary surface during the growth process. The effects of the demagnetizing field on the hysteretic and time-dependent properties of the thin films were studied and some limitations in the application of the Fatuzzo model on magneto-optic media are identified.

  13. Rare earth metals used in biodegradable magnesium-based stents do not interfere with proliferation of smooth muscle cells but do induce the upregulation of inflammatory genes.

    PubMed

    Drynda, Andreas; Deinet, Nicole; Braun, Nicole; Peuster, Matthias

    2009-11-01

    Rare earth metals are added to corrodible magnesium-based alloys in low amounts (up to 10%) to improve their mechanical properties and to decrease the degradation rate. Cerium (Ce), neodymium (Nd), yttrium (Y), and ytterbium (Yb) are already used for degradable cardiovascular stents. Little is known about the biocompatibility of rare earth metals released during the degradation process of the implant. Therefore the biocompatibility of rare earth metals was assessed with regard to metabolic activity of human vascular smooth muscle cells (SMCs). After coincubation with the trivalent chlorides (0.5-100 microg/mL) of rare earth metals for 24, 72, 144, and 240 h metabolic activity was determined at each time point using the colometric WST-1 test. The tested rare earth metals did not lead to significant changes in metabolic activity over a wide concentration range. However, at high concentrations a decrease was observed. Apoptotic or necrotic effects were not observed. Furthermore, we analyzed the effects of Ce, Nd, Y, and Yb on the expression of genes involved in inflammatory processes. The expression of IL-6, IL-8, and ICAM-1 in SMCs after exposure to Ce, Nd, Y, and Yb (5 and 50 microg/mL) was measured using quantitative real-time PCR. Significant up-regulation of IL-6, IL-8, and ICAM-1 genes were only found after 24 h, mainly for a concentration of 50 microg/mL. Our cell culture data indicate that rare earth metals influence cellular processes of vascular cells. Whether adverse effects occur also in in vivo is the topic of further investigations.

  14. Magnetocaloric effect in heavy rare-earth elements doped Fe-based bulk metallic glasses with tunable Curie temperature

    SciTech Connect

    Li, Jiawei; Huo, Juntao; Chang, Chuntao E-mail: dujun@nimte.ac.cn; Du, Juan E-mail: dujun@nimte.ac.cn; Man, Qikui; Wang, Xinmin; Li, Run-Wei; Law, Jiayan

    2014-08-14

    The effects of heavy rare earth (RE) additions on the Curie temperature (T{sub C}) and magnetocaloric effect of the Fe-RE-B-Nb (RE = Gd, Dy and Ho) bulk metallic glasses were studied. The type of dopping RE element and its concentration can easily tune T{sub C} in a large temperature range of 120 K without significantly decreasing the magnetic entropy change (ΔS{sub M}) and refrigerant capacity (RC) of the alloys. The observed values of ΔS{sub M} and RC of these alloys compare favorably with those of recently reported Fe-based metallic glasses with enhanced RC compared to Gd{sub 5}Ge{sub 1.9}Si{sub 2}Fe{sub 0.1}. The tunable T{sub C} and large glass-forming ability of these RE doped Fe-based bulk metallic glasses can be used in a wide temperature range with the final required shapes.

  15. IUPAC-NIST Solubility Data Series. 94. Rare Earth Metal Iodides and Bromides in Water and Aqueous Systems. Part 1. Iodides

    NASA Astrophysics Data System (ADS)

    Mioduski, Tomasz; Gumiński, Cezary; Zeng, Dewen

    2012-03-01

    This work presents solubility data for rare earth metal iodides in water and in aqueous ternary systems. Compilations of all available experimental data are introduced for each rare earth metal iodide with a corresponding critical evaluation. Every such evaluation contains a tabulated collection of all solubility results in water, a selection of suggested solubility data and a brief discussion of the multicomponent systems. Because the ternary systems were almost never studied more than once, no critical evaluations of such data were possible. Only simple iodides (no complexes) are treated as the input substances in this work. The literature has been covered through the middle of 2011.

  16. IUPAC-NIST Solubility Data Series. 94. Rare Earth Metal Iodides and Bromides in Water and Aqueous Systems. Part 2. Bromides

    NASA Astrophysics Data System (ADS)

    Mioduski, Tomasz; Gumiński, Cezary; Zeng, Dewen; Voigt, Heidelore

    2013-03-01

    This work presents solubility data for rare earth metal bromides in water and in aqueous ternary systems. Compilations of all available experimental data are introduced for each rare earth metal bromide with a corresponding critical evaluation. Every such evaluation contains a collection of all solubility results in water, a selection of suggested solubility data and a brief discussion of the multicomponent systems. Because the ternary systems were almost never studied more than once, no critical evaluations of such data were possible. Only simple bromides (no complexes) are treated as the input substances in this work. The literature has been covered through the end of 2011.

  17. Mutual influence of trivalent rare-earth metal ions at their extraction from nitrate solutions by mixtures of tributyl phosphate and diisooctyl methylphosphonate

    SciTech Connect

    Pyartman, A.K.; Puzikov, E.A.; Kopyrin, A.A.

    1995-01-01

    Extraction of yttrium-group lanthanide(III) and yttrium nitrates from multicomponent solutions by mixtures of tri-n-butyl phosphate and diisooctyl methylphosphonate has been examined at 298.15 K and pH 2. A physiocochemical and mathematical model has been developed to describe distribution and mutual influence of rare-earth metal ions in multicomponent solutions as influenced by the total concentration of rare-earth metals in aqueous phase and compositions of the concentrate and of organic phase.

  18. Developments in rare earth intermetallics

    SciTech Connect

    Kirchmayr, H.R.

    1984-09-01

    The magnetic properties of rare earth intermetallics have been the subject of numerous investigations in recent years. However, while the preparation of new intermetallic compounds and the determination of their properties have been the prime concern in former years, more recently the analysis and theoretical explanation of the available data has become most important. Furthermore single crystals have now become available, which permit new experiments. Also many investigations on pseudo-binary systems have permitted the systematic determination of the primary magnetic properties. After a summary of the magnetic properties of intermetallics where the B-moment is zero and nonzero, some examples of pseudobinary systems and especially applications of R-3d multicomponent systems as the basis for advanced permanent magnets are discussed. Finally RE-3d alloys with metalloids and non-metals are discussed with emphasis on the newly developed R-Fe-B permanent magnets.

  19. Behavior and distribution of heavy metals including rare Earth elements, thorium, and uranium in sludge from industry water treatment plant and recovery method of metals by biosurfactants application.

    PubMed

    Gao, Lidi; Kano, Naoki; Sato, Yuichi; Li, Chong; Zhang, Shuang; Imaizumi, Hiroshi

    2012-01-01

    In order to investigate the behavior, distribution, and characteristics of heavy metals including rare earth elements (REEs), thorium (Th), and uranium (U) in sludge, the total and fractional concentrations of these elements in sludge collected from an industry water treatment plant were determined and compared with those in natural soil. In addition, the removal/recovery process of heavy metals (Pb, Cr, and Ni) from the polluted sludge was studied with biosurfactant (saponin and sophorolipid) elution by batch and column experiments to evaluate the efficiency of biosurfactant for the removal of heavy metals. Consequently, the following matters have been largely clarified. (1) Heavy metallic elements in sludge have generally larger concentrations and exist as more unstable fraction than those in natural soil. (2) Nonionic saponin including carboxyl group is more efficient than sophorolipid for the removal of heavy metals in polluted sludge. Saponin has selectivity for the mobilization of heavy metals and mainly reacts with heavy metals in F3 (the fraction bound to carbonates) and F5 (the fraction bound to Fe-Mn oxides). (3) The recovery efficiency of heavy metals (Pb, Ni, and Cr) reached about 90-100% using a precipitation method with alkaline solution.

  20. Behavior and Distribution of Heavy Metals Including Rare Earth Elements, Thorium, and Uranium in Sludge from Industry Water Treatment Plant and Recovery Method of Metals by Biosurfactants Application

    PubMed Central

    Gao, Lidi; Kano, Naoki; Sato, Yuichi; Li, Chong; Zhang, Shuang; Imaizumi, Hiroshi

    2012-01-01

    In order to investigate the behavior, distribution, and characteristics of heavy metals including rare earth elements (REEs), thorium (Th), and uranium (U) in sludge, the total and fractional concentrations of these elements in sludge collected from an industry water treatment plant were determined and compared with those in natural soil. In addition, the removal/recovery process of heavy metals (Pb, Cr, and Ni) from the polluted sludge was studied with biosurfactant (saponin and sophorolipid) elution by batch and column experiments to evaluate the efficiency of biosurfactant for the removal of heavy metals. Consequently, the following matters have been largely clarified. (1) Heavy metallic elements in sludge have generally larger concentrations and exist as more unstable fraction than those in natural soil. (2) Nonionic saponin including carboxyl group is more efficient than sophorolipid for the removal of heavy metals in polluted sludge. Saponin has selectivity for the mobilization of heavy metals and mainly reacts with heavy metals in F3 (the fraction bound to carbonates) and F5 (the fraction bound to Fe-Mn oxides). (3) The recovery efficiency of heavy metals (Pb, Ni, and Cr) reached about 90–100% using a precipitation method with alkaline solution. PMID:22693485

  1. Rare-earth neutral metal injection into an electron beam ion trap plasmaa)

    NASA Astrophysics Data System (ADS)

    Magee, E. W.; Beiersdorfer, P.; Brown, G. V.; Hell, N.

    2014-11-01

    We have designed and implemented a neutral metal vapor injector on the SuperEBIT high-energy electron beam ion trap at the Lawrence Livermore National Laboratory. A horizontally directed vapor of a europium metal is created using a thermal evaporation technique. The metal vapor is then spatially collimated prior to injection into the trap. The source's form and quantity constraints are significantly reduced making plasmas out of metal with vapor pressures ≤10-7 Torr at ≥1000 °C more obtainable. A long pulsed or constant feed metal vapor injection method adds new flexibility by varying the timing of injection and rate of material being introduced into the trap.

  2. Rare-earth neutral metal injection into an electron beam ion trap plasma

    SciTech Connect

    Magee, E. W. Beiersdorfer, P.; Brown, G. V.; Hell, N.

    2014-11-15

    We have designed and implemented a neutral metal vapor injector on the SuperEBIT high-energy electron beam ion trap at the Lawrence Livermore National Laboratory. A horizontally directed vapor of a europium metal is created using a thermal evaporation technique. The metal vapor is then spatially collimated prior to injection into the trap. The source's form and quantity constraints are significantly reduced making plasmas out of metal with vapor pressures ≤10{sup −7} Torr at ≥1000 °C more obtainable. A long pulsed or constant feed metal vapor injection method adds new flexibility by varying the timing of injection and rate of material being introduced into the trap.

  3. Calcium substitution in rare-earth metal germanides with the hexagonal Mn5Si3 structure type. structural characterization of the extended series RE5-xCaxGe3 (RE=Rare-earth metal)

    NASA Astrophysics Data System (ADS)

    Suen, Nian-Tzu; Broda, Matthew; Bobev, Svilen

    2014-09-01

    Reported are the synthesis and the structural characterization of an extended family of rare-earth metal-germanides with a general formula RE5-xCaxGe3 (RE=Y, Ce-Nd, Sm, Gd-Tm and Lu; x<2). All twelve phases are isotypic, crystallizing with the Mn5Si3 structure type (Pearson index hP16, hexagonal space group P63/mcm); they are the Ca-substituted variants of the corresponding RE5Ge3 binaries. Across the series, despite some small variations in the Ca-uptake, the unit cell volumes decrease monotonically, following the lanthanide contraction. Temperature dependent DC magnetization measurements reveal paramagnetic behavior in the high temperature range, and the obtained effective moments are consistent with free-ion RE3+ ground state, as expected from prior studies of the binary RE5Ge3 phases. The onset of magnetic ordering is observed in the low temperature range, and complex magnetic interactions (ferromagnetic/ferrimagnetic) can be inferred, different from the binary phases RE5Ge3, which are known as antiferromagnetic. In order to understand the role of Ca in the bonding, the electronic structures of the La5Ge3 and the hypothetical compounds La2Ca3Ge3 and La3Ca2Ge3 with ordered metal atoms are compared and discussed.

  4. Rare earth speciality inorganic compounds

    SciTech Connect

    Gschneidner, K.A. Jr.

    1981-01-01

    This paper is a comprehensive review of the rare earth elements which include the Group IIIA elements Sc, Y and the lanthanide elements La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. It covers their abundances, electronic structure, ionic radii, energy levels, thermodynamic properties, optical applications, separation chemistry, markets and statistics, electronic and magnetic applications, as well as mineral ores that contain rare earths, mixed rare earth chemical, and special uses of Y/sub 2/O/sub 3/. 30 references.

  5. Electrodeposition of rare earth metals Y, Gd, Yb in ionic liquids

    NASA Astrophysics Data System (ADS)

    Glukhov, L. M.; Greish, A. A.; Kustov, L. M.

    2010-01-01

    The possibility of yttrium, gadolinium, and ytterbium electrodeposition from solutions of their triflates in different ionic liquids at 100°C was investigated. It was shown that these metals could be deposited on the cathode from electrolytes based on ionic liquids with quaternary ammonium cations, and these metals do not deposit from 1-butyl-2,3-dimethylimidazolium triflate. It was established that, in the case of butyltrimethylamonium triflate usage, metal deposition occurs on a copper electrode, and it does not occur on a platinum electrode, and in 1-butyl-1-methylpirrolidinium triflate, the reduction process is possible on both electrodes. Yb3+ reduction occurs step by step via Yb2+ formation. It was shown that the limiting stage of the cathode process is adsorption of a metal cation on the electrode.

  6. RARE-EARTH METAL FISSION PRODUCTS FROM LIQUID U-Bi

    DOEpatents

    Wiswall, R.H.

    1960-05-10

    Fission product metals can be removed from solution in liquid bismuth without removal of an appreciable quantity of uranium by contacting the liquid metal solution with fused halides, as for example, the halides of sodium, potassium, and lithium and by adding to the contacted phases a quantity of a halide which is unstable relative to the halides of the fission products, a specific unstable halide being MgCl/sub 3/.

  7. Self-propelled droplets for extracting rare-earth metal ions.

    PubMed

    Ban, Takahiko; Tani, Kentaro; Nakata, Hiroki; Okano, Yasunori

    2014-09-07

    We have developed self-propelled droplets having the abilities to detect a chemical gradient, to move toward a higher concentration of a specific metal ion (particularly the dysprosium ion), and to extract it. Such abilities rely on the high surface activity of di(2-ethylhexyl) phosphoric acid (DEHPA) in response to pH and the affinity of DEHPA for the dysprosium ion. We used two external stimuli as chemical signals to control droplet motion: a pH signal to induce motility and metal ions to induce directional sensing. The oil droplets loaded with DEHPA spontaneously move around beyond the threshold of pH even in a homogeneous pH field. In the presence of a gel block containing metal ions, the droplets show directional sensing and their motility is biased toward higher concentrations. The metal ions investigated can be arranged in decreasing order of directional sensing as Dy(3+)≫ Nd(3+) > Y(3+) > Gd(3+). Furthermore, the analysis of components by using an atomic absorption spectrophotometer reveals that the metal ions can be extracted from the environmental media to the interiors of the droplets. This system may offer alternative self-propelled nano/microscale machines to bubble thrust engines powered by asymmetrical catalysts.

  8. Cationic rare-earth metal trimethylsilylmethyl complexes supported by THF and 12-crown-4 ligands: synthesis and structural characterization.

    PubMed

    Elvidge, Benjamin R; Arndt, Stefan; Zeimentz, Peter M; Spaniol, Thomas P; Okuda, Jun

    2005-09-19

    To expand the limited range of rare-earth metal cationic alkyl complexes known, a series of mono- and dicationic trimethylsilylmethyl complexes supported by THF and 12-crown-4 ligands with [BPh4]-, [BPh3(CH2SiMe3)]-, [B(C6F5)4]-, [B(C6F5)3(CH2SiMe3)]-, and [Al(CH2SiMe3)4]- anions were prepared from corresponding neutral precursors [Ln(CH2SiMe3)3Ln] (Ln = Sc, Y, Lu; L = THF, n = 2 or 3; L = 12-crown-4, n = 1) as solvent-separated ion pairs. The syntheses of the monocationic derivatives [Ln(CH2SiMe3)2(12-crown-4)n(THF)m]+[A]- are all high yielding and proceed rapidly in THF solution at room temperature. A "one pot" procedure using the neutral species directly for the syntheses of a number of lutetium and yttrium dicationic derivatives [Ln(CH2SiMe3)(12-crown-4)n(THF)m]2+[A]-2 with a variety of different anions, a class of compounds previously limited to just a few examples, is presented. When BPh3 is used to generate the ion triple, the presence of 12-crown-4 is required for complete conversion. Addition of a second equiv of 12-crown-4 and a third equiv of [NMe2PhH]+[B(C6F5)4]- abstracts a third alkyl group from [Ln(CH2SiMe3)(12-crown-4)2(THF)x]2+[B(C6F5)4]-2 (Ln = Y, Lu). X-ray crystallography and variable-temperature (VT) NMR spectroscopy reveal a structural diversity within the known series of neutral 12-crown-4 supported tris(trimethylsilylmethyl) complexes [Ln(CH2SiMe3)3(12-crown-4)] (Ln = Sc, Y, Sm, Gd-Lu) in the solid and solution states. The X-ray structure of [Sc(CH2SiMe3)3(12-crown-4)] exhibits incomplete 12-crown-4 coordination. VT NMR spectroscopy indicates fluxional 12-crown-4 coordination on the NMR time scale. X-ray crystallography of only the second structurally characterized dicationic rare-earth metal alkyl complex [Y(CH2SiMe3)(12-crown-4)(THF)3]2+[BPh4]-2 shows exocyclic 12-crown-4 coordination at the 8-coordinate metal center with well separated counteranions. 11B and 19F NMR spectroscopy of all mono- and dicationic rare-earth metal complexes

  9. Alkaline-Earth-Metal-Induced Liberation of Rare Allotropes of Elemental Silicon and Germanium from N-Heterocyclic Metallylenes.

    PubMed

    Blom, Burgert; Said, Amro; Szilvási, Tibor; Menezes, Prashanth W; Tan, Gengwen; Baumgartner, Judith; Driess, Matthias

    2015-09-08

    The synthesis and striking reactivity of the unprecedented N-heterocyclic silylene and germylene ("metallylene") alkaline-earth metal (Ae) complexes of the type [(η(5)-C5Me5)2Ae←:E(N(t)BuCH)2] (3, 4, and 7-9; Ae = Ca, E = Ge 3; Ae = Sr, E = Ge 4; Ae = Sr, E = Si 7; Ae = Ba, E = Si 8; Ae = Ba, E = Ge 9) are reported. All complexes have been characterized by spectroscopic means, and their bonding situations investigated by density functional theory (DFT) methods. Single-crystal X-ray diffraction analyses of examples revealed relatively long Si-Ae and Ge-Ae distances, respectively, indicative of weak E:→Ae (E = Si, Ge) dative bonds, further supported by the calculated Wiberg bond indices , which are rather low in all cases (∼0.5). Unexpectedly, the complexes undergo facile transformation to 1,4-diazabuta-1,3-diene Ae metal complexes of the type [(η(5)-C5Me5)2Ae(κ(2)-{N(t)Bu═CHCH═N(t)Bu})] (Ae = Sr 10, Ae = Ba 11) or in the case of calcium to the dinuclear complex [(η(5)-C5Me5)2Ca←:N((t)Bu)═CHCH═((t)Bu)N:→Ca(η(5)-C5Me5)2] (12) under concomitant liberation of elemental silicon and germanium. The formation of elemental silicon and germanium is proven by inductively coupled plasma atomic emission spectroscopy, transmission electron microscopy, selected area electron diffraction, and energy dispersive X-ray spectroscopy. Notably, the decomposition of the Si(II)→Ba complex 8 produces allo-silicon, a rare allotropic form of elemental silicon. Similarly, the analogous Ge(II)→Ba complex 9, upon decomposition, forms tetragonal germanium, a dense and rare allotrope of elemental germanium. The energetics of this unprecedented alkaline-earth-metal-induced liberation of elemental silicon and germanium was additionally studied by DFT methods, revealing that the transformations are pronouncedly exergonic and considerably larger for the N-heterocyclic germylene complexes than those of the corresponding silicon analogues.

  10. Rare-earth metal complexes having an unusual indolyl-1,2-dianion through C-H activation with a novel η1:(μ2-η1:η1) bonding with metals.

    PubMed

    Zhu, Xiancui; Zhou, Shuangliu; Wang, Shaowu; Wei, Yun; Zhang, Lijun; Wang, Fenhua; Wang, Shaoyin; Feng, Zhijun

    2012-12-21

    Studies on the reactions of 3-(tert-butyliminomethine)indole or 3-(tert-butylaminomethylene)indole with rare-earth metal amides [(Me(3)Si)(2)N](3)RE(III)(μ-Cl)Li(THF)(3) (RE = Y, Yb) led to the discovery of different reactivity patterns with isolation of novel rare-earth metal complexes having a unique indolyl-1,2-dianion in a novel η(1):(μ(2)-η(1):η(1)) bonding mode through C-H activation.

  11. Methylidene rare-earth-metal complex mediated transformations of C=N, N=N and N-H bonds: new routes to imido rare-earth-metal clusters.

    PubMed

    Hong, Jianquan; Zhang, Lixin; Wang, Kai; Zhang, Yin; Weng, Linhong; Zhou, Xigeng

    2013-06-10

    Three new patterns of reactivity of rare-earth metal methylidene complexes have been established and thus have resulted in access to a wide variety of imido rare-earth metal complexes [L3Ln3(μ2-Me)3(μ3-Me)(μ-NR)] (L = [PhC(NC6H3iPr2-2,6)2](-); R = Ph, Ln = Y (2 a), Lu (2 b); R = 2,6-Me2C6H3, Ln = Y (3 a), Lu (3 b); R = p-ClC6H4, Ln = Y (4 a), Lu (4 b); R = p-MeOC6H4, Ln = Y (5 a), Lu (5 b); R = Me2CHCH2CH2, Ln = Y (6 a), Lu (6 b)) and [{L3Lu3(μ2-Me)3(μ3-Me)}2(μ-NR'N)] (R' = (CH2)6 (7 b), (C6H4)2 (8 b)). Complex 2 b was treated with an excess of CO2 to give the corresponding carboxylate complex [L3Lu3(μ-η(1):η(1)-O2CCH3)3(μ-η(1):η(2)-O2C-CH3)(μ-η(1):η(1):η(2)-O2CNPh)] (9 b) easily. Complex 2 a could undergo the selective μ3-Me abstraction reaction with phenyl acetylene to give the mixed imido/alkynide complex [L3Y3(μ2-Me)3(μ3-η(1):η(1):η(3)-NPh)(μ3-C≡CPh)] (10 a) in high yield. Treatment of 2 with one equivalent of thiophenol gave the selective μ3-methyl-abstracted products [L3Ln3(μ2-Me)3(μ3-η(1):η(1):η(3)-NPh)(μ3-SPh)] (Ln = Y (11 a); Lu (11 b). All new complexes have been characterized by elemental analysis, NMR spectroscopy, and most of the structures confirmed by X-ray diffraction.

  12. Catalytic addition of amine N-H bonds to carbodiimides by half-sandwich rare-earth metal complexes: efficient synthesis of substituted guanidines through amine protonolysis of rare-earth metal guanidinates.

    PubMed

    Zhang, Wen-Xiong; Nishiura, Masayoshi; Hou, Zhaomin

    2007-01-01

    Reaction of [Ln(CH(2)SiMe(3))(3)(thf)(2)] (Ln=Y, Yb, and Lu) with one equivalent of Me(2)Si(C(5)Me(4)H)NHR' (R'=Ph, 2,4,6-Me(3)C(6)H(2), tBu) affords straightforwardly the corresponding half-sandwich rare-earth metal alkyl complexes [{Me(2)Si(C(5)Me(4))(NR')}Ln(CH(2)SiMe(3))(thf)(n)] (1: Ln = Y, R' = Ph, n=2; 2: Ln = Y, R' = C(6)H(2)Me(3)-2,4,6, n=1; 3: Ln = Y, R' = tBu, n=1; 4: Ln = Yb, R' = Ph, n=2; 5: Ln = Lu, R' = Ph, n=2) in high yields. These complexes, especially the yttrium complexes 1-3, serve as excellent catalyst precursors for the catalytic addition of various primary and secondary amines to carbodiimides, efficiently yielding a series of guanidine derivatives with a wide range of substituents on the nitrogen atoms. Functional groups such as C[triple chemical bond]N, C[triple chemical bond]CH, and aromatic C--X (X: F, Cl, Br, I) bonds can survive the catalytic reaction conditions. A primary amino group can be distinguished from a secondary one by the catalyst system, and therefore, the reaction of 1,2,3,4-tetrahydro-5-aminoisoquinoline with iPrN==C==NiPr can be achieved stepwise first at the primary amino group to selectively give the monoguanidine 38, and then at the cyclic secondary amino unit to give the biguanidine 39. Some key reaction intermediates or true catalyst species, such as the amido complexes [{Me(2)Si(C(5)Me(4))(NPh)}Y(NEt(2))(thf)(2)] (40) and [{Me(2)Si(C(5)Me(4))(NPh)}Y(NHC(6)H(4)Br-4)(thf)(2)] (42), and the guanidinate complexes [{Me(2)Si(C(5)Me(4))(NPh)}Y{iPrNC(NEt(2))(NiPr)}(thf)] (41) and [{Me(2)Si(C(5)Me(4))(NPh)}Y{iPrN}C(NC(6)H(4)Br-4)(NHiPr)}(thf)] (44) have been isolated and structurally characterized. Reactivity studies on these complexes suggest that the present catalytic formation of a guanidine compound proceeds mechanistically through nucleophilic addition of an amido species, formed by acid-base reaction between a rare-earth metal alkyl bond and an amine N--H bond, to a carbodiimide, followed by amine protonolysis of the

  13. Rare Earth Optical Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L. (Inventor); Jenkins, Phillip (Inventor)

    2004-01-01

    A rare earth optical temperature sensor is disclosed for measuring high temperatures. Optical temperature sensors exist that channel emissions from a sensor to a detector using a light pipe. The invention uses a rare earth emitter to transform the sensed thermal energy into a narrow band width optical signal that travels to a detector using a light pipe. An optical bandpass filter at the detector removes any noise signal outside of the band width of the signal from the emitter.

  14. Formation of Tsai-type 1/1 approximants in In-Pd-RE (RE: rare earth metal) alloys

    NASA Astrophysics Data System (ADS)

    So, Yeong-Gi; Saruhashi, Fukuaki; Kimoto, Koji; Tamura, Ryuji; Edagawa, Keiichi

    2014-09-01

    The formation of the 1/1 crystal approximant phase (1/1 phase) to the icosahedral phase (i phase) in In-Pd-RE (RE: rare earth metal) systems has been investigated. A new series of 1/1 phases were found in In53Pd33RE14 (RE; Y, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, and Tm) alloys. For Y, Sm, Gd, Tb, Dy, and Ho, the 1/1 phases were found in annealed alloys, indicating that they are thermodynamically stable. The atomic structure of the 1/1 phases was directly observed by high-angle annular dark-field imaging performed via scanning transmission electron microscopy, revealing that the 1/1 phases consisted of a periodic arrangement of Tsai-type icosahedral clusters. Further, the atomic size effect on i phase formation, as well as formation conditions previously reported for other Tsai-type i and 1/1 phases were examined. It was found that the ratio of the atomic radius of base metals such as In and Pd affects i phase formation. Moreover, the appropriate range of the radius ratio for i phase formation was narrower than that for 1/1 phase formation. Present address: Department of Materials Science and Engineering, Akita University, Tegata Gakuen-machi, Akita-shi, Akita 010-8502, Japan

  15. Adsorption properties of ultradispersed powders of aluminum alloys with rare-earth metals, before and after water treatment

    NASA Astrophysics Data System (ADS)

    Ryabina, A. V.; Shevchenko, V. G.; Eselevich, D. A.

    2014-10-01

    Adsorption of nitrogen on Al-3% La, Al-1.5% Sc, and Al-3% Ce powders before and after processing with water in the relative pressure range p/p s = 10˜3 to 0.999 is experimentally studied at a temperature of 78 K. It is shown that the interaction between ultradispersed powder and water depends on the properties of the original powder, including the original content and composition of the oxide-hydroxide phases in the surface layers of metal particles, and the length and conditions of storage. Results confirming that processing powders containing rare-earth metals with water at room temperature leads to the formation of new phases and affects their morphology are presented. It is shown that the nanopores formed between crystallites on the surface of the particles during oxidation with water and subsequent thermal dehydration play an important role in the properties of powders processed with water. The specific surface and the porosity of powders are calculated.

  16. Development of nanostructured magnetic materials based on high-purity rare-earth metals and study of their fundamental characteristics

    NASA Astrophysics Data System (ADS)

    Pelevin, I. A.; Tereshina, I. S.; Burkhanov, G. S.; Dobatkin, S. V.; Kaminskaya, T. P.; Karpenkov, D. Yu.; Zaleski, A.; Tereshina, E. A.

    2014-09-01

    The effect of the structural state on magnetic and hysteretic properties of compounds with high contents of a 3 d transition metal, i.e., R 2Fe14 - x Co x B and RFe11 - x Co x Ti (where R = Y, Sm; 0 ≤ x ≤ 8), was studied. Alloys were prepared using high-purity rare-earth metals by two different methods: induction melting and argon-arc melting. Severe plastic deformation and rapid melt-quenching allowed preparation of nanostructured samples. Structural studies of the samples were performed by X-ray powder diffraction and atomic-force microscopy methods. Magnetic hysteretic properties were studied using a PPMS magnetometer in the temperature range of 4.2-300 K in fields to 20 kOe. It was shown that the dependences of fundamental magnetic parameters (Curie temperature, saturation magnetization, and magnetocrystalline anisotropy constant) on the cobalt content exhibit a similarity for both systems. It was found that, depending on sample treatment, the grain size varies from 30 to 70 nm after severe plastic deformation and in wider ranges (from 10 to 100 nm) after rapid quenching, not exceeding the single-domain size. The interrelation between the microstructure and magnetic characteristics was investigated. It was revealed that the concentration dependence of the coercivity for both systems has a maximum at the same cobalt content, i.e., x = 2.

  17. Exchange Processes in Shibasaki's Rare Earth Alkali Metal BINOLate Frameworks and Their Relevance in Multifunctional Asymmetric Catalysis.

    PubMed

    Robinson, Jerome R; Gu, Jun; Carroll, Patrick J; Schelter, Eric J; Walsh, Patrick J

    2015-06-10

    Shibasaki's rare earth alkali metal BINOLate (REMB) catalysts (REMB; RE = Sc, Y, La - Lu; M = Li, Na, K; B = 1,1-bi-2-naphtholate; RE/M/B = 1/3/3) are among the most successful enantioselective catalysts and have been employed in a broad range of mechanistically diverse reactions. Despite the phenomenal success of these catalysts, several fundamental questions central to their reactivity remain unresolved. Combined reactivity and spectroscopic studies were undertaken to probe the identity of the active catalyst(s) in Lewis-acid (LA) and Lewis-acid/Brønsted-base (LA/BB) catalyzed reactions. Exchange spectroscopy provided a method to obtain rates of ligand and alkali metal self-exchange in the RE/Li frameworks, demonstrating the utility of this technique for probing solution dynamics of REMB catalysts. Isolation of the first crystallographically characterized REMB complex with substrate bound enabled stoichiometric and catalytic reactivity studies, wherein we observed that substrate deprotonation by the catalyst framework was necessary to achieve selectivity. Our spectroscopic observations in LA/BB catalysis are inconsistent with previous mechanistic proposals, which considered only tris(BINOLate) species as active catalysts. These findings significantly expand our understanding of the catalyst structure in these privileged multifunctional frameworks and identify new directions for development of new catalysts.

  18. Precious metals and rare earth elements in municipal solid waste – Sources and fate in a Swiss incineration plant

    SciTech Connect

    Morf, Leo S.; Gloor, Rolf; Haag, Olaf; Haupt, Melanie; Skutan, Stefan; Lorenzo, Fabian Di; Böni, Daniel

    2013-03-15

    Highlights: ► We carefully addressed all the very valuable comments and suggestions of the reviewers. ► We also have shortened the size of the paper and tried simplify it substantially, as requested by the reviewers (introduction 25% reduced!). ► We have decided to take the chance and have replaced the data for the “additional” elements (Cu, Cd, Zn, Pb, Sn, Cr, Ni, Fe, Al) of the earlier MFA (Morf, 2011) with data that belong to the samples of this study. ► We are convinced that with the revision the paper has significantly improved in quality and attractiveness. - Abstract: In Switzerland many kinds of waste, e.g. paper, metals, electrical and electronic equipment are separately collected and recycled to a large extent. The residual amount of municipal solid waste (MSW) has to be thermally treated before final disposal. Efforts to recover valuable metals from incineration residues have recently increased. However, the resource potential of critical elements in the waste input (sources) and their partitioning into recyclable fractions and residues (fate) is unknown. Therefore, a substance flow analysis (SFA) for 31 elements including precious metals (Au, Ag), platinum metal group elements (Pt, Rh) and rare earth elements (La, Ce, etc.) has been conducted in a solid waste incinerator (SWI) with a state-of-the-art bottom ash treatment according to the Thermo-Re® concept. The SFA allowed the determination of the element partitioning in the SWI, as well as the elemental composition of the MSW by indirect analysis. The results show that the waste-input contains substantial quantities of precious metals, such as 0.4 ± 0.2 mg/kg Au and 5.3 ± 0.7 mg/kg Ag. Many of the valuable substances, such as Au and Ag are enriched in specific outputs (e.g. non-ferrous metal fractions) and are therefore recoverable. As the precious metal content in MSW is expected to rise due to its increasing application in complex consumer products, the results of this study are

  19. Tetranuclear and Pentanuclear Compounds of the Rare-Earth Metals: Synthesis and Magnetism.

    PubMed

    Yadav, Munendra; Mondal, Abhishake; Mereacre, Valeriu; Jana, Salil Kumar; Powell, Annie K; Roesky, Peter W

    2015-08-17

    The Schiff-base proligand 4-tert-butyl-2,6-bis-[(2-hydroxy-phenylimino)methyl]phenol (H3L) was prepared in situ from 4-tert-butyl-2,6-diformylphenol and 2-aminophenol. The proligand (H3L) was used with dibenzoylmethane (DBMH) or acetylacetone (acacH) with lanthanides giving compounds with varying arrangements of metal atoms and nuclearities. The tetranuclear compound {[Dy4(L)3(DBM)4][Et3NH]} (1) and pentanuclear compound {[Dy5(μ3-OH)2(L)3(DBM)4(MeOH)4]·4(MeOH)} (2) were obtained from the ligand (L)(3-) and dibenzoylmethane. The tetranuclear compounds {[Dy4(μ4-OH)(L)2(acac)4(MeOH)2(EtOH)(H2O)]·(NO3)·2(MeOH)·3(EtOH)} (3) and {[Ln4(μ3-OH)2(L)(HL)(acac)5(H2O)] (HNEt3)(NO3)·2(Et2O)} (Ln = Tb (4), Dy (5), Ho (6), and Tm (7)) resulted when the ligand (L)(3-) was used in the presence of acetylacetone. In the solid state structures, the tetranuclear compound 1 adopts a linear arrangement of metal atoms, while tetranuclear compound 3 has a square grid arrangement of metal atoms, and tetranuclear compounds 4-7 have a seesaw-shaped arrangement of metal atoms. The composition found from single-crystal X-ray analysis of compound 1 and 3-7 is supported by electrospray ionization mass spectrometry (ESI-MS). The magnetic studies on compounds 1 suggest the presence of weak ferromagnetic interactions, whereas compounds 2-6 exhibit weak antiferromagnetic interactions between neighboring metal centers. Compounds 1, 2, and 3 also show single-molecule magnet behavior under an applied dc field.

  20. Synthesis, structure, and catalytic activity of novel trinuclear rare-earth metal amido complexes incorporating μ-η5:η1 bonding indolyl and μ3-oxo groups.

    PubMed

    Yang, Song; Zhu, Xiancui; Zhou, Shuangliu; Wang, Shaowu; Feng, Zhijun; Wei, Yun; Miao, Hui; Guo, Liping; Wang, Fenhua; Zhang, Guangchao; Gu, Xiaoxia; Mu, Xiaolong

    2014-02-14

    The reactions of different pyrrolyl-functionalized indoles with rare-earth metal(III) amides [(Me3Si)2N]3RE(III)(μ-Cl)Li(THF)3 (RE = Yb, Er, Dy, Eu, Y) produced different kinds of rare-earth metal amido complexes. Reactions of N-((1H-pyrrol-2-yl)methylene)-2-(1H-indol-3-yl)ethanamine with rare-earth metal amides [(Me3Si)2N]3RE(III)(μ-Cl)Li(THF)3 (RE = Yb, Er, Dy, Eu, Y) in toluene or THF at temperatures of 75-80 °C afforded the novel trinuclear rare-earth metal amido complexes incorporating the indolyl ligand in μ-η(5):η(1) bonding modes and a μ3-O group, which is believed to originate from cleavage of the THF ring based on experimental results. Reactions of 2-(1H-indol-3-yl)-N-((1-methyl-1H-pyrrol-2-yl)methylene)ethanamine with rare-earth metal(III) amides [(Me3Si)2N]3RE(III)(μ-Cl)Li(THF)3 (RE = Yb, Dy) produced mononuclear ytterbium and dysprosium amides having the indolyl ligand in an η(1) bonding fashion. The results indicate that substituents not only have an influence on reactivity, but also have an influence on the bonding of the indolyl ligands with metals. The catalytic activities of the novel lanthanide amido complexes for the hydrophosphonylation of both aromatic and aliphatic aldehydes and ketones were explored. The results indicate that these complexes display a high catalytic activity for the C-P bond formation under mild conditions when using low catalyst loadings (0.1 mol% for aldehydes and ketones). Thus, it provides a potential way to prepare α-hydroxy phosphonates.

  1. A tale of two metals: new cerium iron borocarbide intermetallics grown from rare-earth/transition metal eutectic fluxes.

    PubMed

    Tucker, Patricia C; Nyffeler, Jason; Chen, Banghao; Ozarowski, Andrew; Stillwell, Ryan; Latturner, Susan E

    2012-07-25

    R(33)Fe(14-x)Al(x+y)B(25-y)C(34) (R = La or Ce; x ≤ 0.9; y ≤ 0.2) and R(33)Fe(13-x)Al(x)B(18)C(34) (R = Ce or Pr; x < 0.1) were synthesized from reactions of iron with boron, carbon, and aluminum in R-T eutectic fluxes (T = Fe, Co, or Ni). These phases crystallize in the cubic space group Im3m (a = 14.617(1) Å, Z = 2, R(1) = 0.0155 for Ce(33)Fe(13.1)Al(1.1)B(24.8)C(34), and a = 14.246(8) Å, Z = 2, R(1) = 0.0142 for Ce(33)Fe(13)B(18)C(34)). Their structures can be described as body-centered cubic arrays of large Fe(13) or Fe(14) clusters which are capped by borocarbide chains and surrounded by rare earth cations. The magnetic behavior of the cerium-containing analogs is complicated by the possibility of two valence states for cerium and possible presence of magnetic moments on the iron sites. Temperature-dependent magnetic susceptibility measurements and Mössbauer data show that the boron-centered Fe(14) clusters in Ce(33)Fe(14-x)Al(x+y)B(25-y)C(34) are not magnetic. X-ray photoelectron spectroscopy data indicate that the cerium is trivalent at room temperature, but the temperature dependence of the resistivity and the magnetic susceptibility data suggest Ce(3+/4+) valence fluctuation beginning at 120 K. Bond length analysis and XPS studies of Ce(33)Fe(13)B(18)C(34) indicate the cerium in this phase is tetravalent, and the observed magnetic ordering at T(C) = 180 K is due to magnetic moments on the Fe(13) clusters.

  2. Core and shallow-core d- to f-shell excitations in rare-earth metals

    NASA Astrophysics Data System (ADS)

    Bradley, J. A.; Moore, K. T.; van der Laan, G.; Bradley, J. P.; Gordon, R. A.

    2011-11-01

    We report on the results of probing the light lanthanide metals Ce, Pr, and Nd with inelastic x-ray and electron scattering. Aberration-corrected transmission electron microscope-based electron spectroscopy and nonresonant inelastic x-ray scattering are shown to be in a high degree of accord and here serve as complementary probes of electronic structure. The high resolution and high signal-to-noise electron technique allows for the measurement of the complex and subtle excitation spectra in the lanthanide metals, validating the applicability of the screened trivalent atomic model used for these materials. In addition, the momentum transfer dependence of the x-ray scattering is extracted and compared against atomic calculations for the most tightly bound excitonic resonances, which provides a direct test of the predicted atomic radial wave functions.

  3. Trinuclear rare earth metal complexes based on 1,3,5-triamino-1,3,5-trideoxy-cis inositol as catalysts for the hydrolysis of phosphodiesters.

    PubMed

    Ramadan, Ahmed M; Calatayud Sala, José Miguel; Parac-Vogt, Tatjana N

    2011-02-14

    Trinuclear rare-earth metal complexes [M₃(taciH₋₃)₂](3+) (M = La(3+), Y(3+)), based on a rigid polyamino-polyalcohol ligand 1,3,5-triamino-1,3,5-trideoxy-cis-inositol (taci), are proven to be efficient catalysts for the hydrolysis of 2-hydroxypropyl-4-nitrophenyl phophate (HPNP), a commonly used RNA model system.

  4. Rare-earth metal hydrides supported by silicon-bridged boratabenzene fluorenyl ligands: synthesis, structure and reactivity.

    PubMed

    Wang, Chunhong; Xiang, Li; Leng, Xuebing; Chen, Yaofeng

    2017-01-24

    The reactions of rare-earth metal benzyl complexes supported by silicon-bridged boratabenzene fluorenyl ligands with PhSiH3 in toluene gave the corresponding dinuclear hydrides [{μ-[Me2Si(C13H8)(C5H4BNEt2)]}Ln(μ-H)(THF)]2 (3-Ln; Ln = La, Nd, Gd), wherein the rare-earth metal ions are linked by both silicon-bridged boratabenzene fluorenyl ligands and hydrido ligands. The reactivity of these hydrides toward unsaturated substrates was studied. Among these, alkynides [{μ-[Me2Si(C13H8)(C5H4BNEt2)]}Ln(μ-CCPh)]2 (4-Ln; Ln = La, Nd) were obtained via the σ-bond metathesis reaction, when 3-Ln (Ln = La, Nd) was treated with phenylacetylene. While reacting with 3-hexyne, the mono-addition product [{μ-[Me2Si(C13H8)(C5H4BNEt2)]}Ln]2(μ-H)[μ-C(Et)[double bond, length as m-dash]C(H)Et] (5-Ln; Ln = La, Nd) was formed. Further investigations on the reactivity of 3-La displayed that benzonitrile and tert-butyl isonitrile readily inserted into the La-H bonds, affording an azomethine complex [{μ-[Me2Si(C13H8)(C5H4BNEt2)]}La{μ-N[double bond, length as m-dash]C(H)Ph}]2 (6-La) and an N-tert-butylformimidoyl complex [{μ-[Me2Si(C13H8)(C5H4BNEt2)]}La{μ,η(2)-C(H)[double bond, length as m-dash]N(t)Bu}]2 (7-La), respectively. The reaction with N,N'-diisopropylcarbodiimide at room temperature or at 75 °C gave a dimeric complex [{μ-[Me2Si(C13H8)(C5H4BNEt2)]}La]2(μ-H)[μ-N((i)Pr)CHN((i)Pr)] (8-La) or a monomeric complex [Me2Si(C13H8)(C5H4BNEt2)]La[N((i)Pr)CHN((i)Pr)] (9-La), respectively.

  5. Determination of the Magnetic Moments of Transition Metal Complexes Using Rare Earth Magnets

    NASA Astrophysics Data System (ADS)

    de Berg, Kevin C.; Chapman, Kenneth J.

    2001-05-01

    This paper describes how powerful neodymium magnets and an electronic balance can be used to determine magnetic moments and susceptibilities of transition metal complexes. The technique is an improvement on one previously reported (J. Chem. Educ. 1998, 75, 61) and allows the effect of temperature on paramagnetism to be studied. Results consistent with the Curie law are reported and a theoretical background to the measurement of magnetic moments is given to explain why magnetic field strength and its gradient are important to the technique described.

  6. Recipe for High Moment Materials with Rare-earth and 3d Transition Metal Composites

    PubMed Central

    Autieri, Carmine; Kumar, P. Anil; Walecki, Dirk; Webers, Samira; Gubbins, Mark A.; Wende, Heiko; Sanyal, Biplab

    2016-01-01

    Materials with high volume magnetization are perpetually needed for the generation of sufficiently large magnetic fields by writer pole of magnetic hard disks, especially for achieving increased areal density in storage media. In search of suitable materials combinations for this purpose, we have employed density functional theory to predict the magnetic coupling between iron and gadolinium layers separated by one to several monolayers of 3d transition metals (Sc-Zn). We demonstrate that it is possible to find ferromagnetic coupling for many of them and in particular for the early transition metals giving rise to high moment. Cr and Mn are the only elements able to produce a significant ferromagnetic coupling for thicker spacer layers. We also present experimental results on two trilayer systems Fe/Sc/Gd and Fe/Mn/Gd. From the experiments, we confirm a ferromagnetic coupling between Fe and Gd across a 3 monolayers Sc spacer or a Mn spacer thicker than 1 monolayer. In addition, we observe a peculiar dependence of Fe/Gd magnetic coupling on the Mn spacer thickness. PMID:27381456

  7. Recipe for High Moment Materials with Rare-earth and 3d Transition Metal Composites

    NASA Astrophysics Data System (ADS)

    Autieri, Carmine; Kumar, P. Anil; Walecki, Dirk; Webers, Samira; Gubbins, Mark A.; Wende, Heiko; Sanyal, Biplab

    2016-07-01

    Materials with high volume magnetization are perpetually needed for the generation of sufficiently large magnetic fields by writer pole of magnetic hard disks, especially for achieving increased areal density in storage media. In search of suitable materials combinations for this purpose, we have employed density functional theory to predict the magnetic coupling between iron and gadolinium layers separated by one to several monolayers of 3d transition metals (Sc-Zn). We demonstrate that it is possible to find ferromagnetic coupling for many of them and in particular for the early transition metals giving rise to high moment. Cr and Mn are the only elements able to produce a significant ferromagnetic coupling for thicker spacer layers. We also present experimental results on two trilayer systems Fe/Sc/Gd and Fe/Mn/Gd. From the experiments, we confirm a ferromagnetic coupling between Fe and Gd across a 3 monolayers Sc spacer or a Mn spacer thicker than 1 monolayer. In addition, we observe a peculiar dependence of Fe/Gd magnetic coupling on the Mn spacer thickness.

  8. X-ray-absorption edge shifts in rare-earth-transition-metal compounds

    NASA Astrophysics Data System (ADS)

    Capehart, T. W.; Herbst, J. F.; Mishra, R. K.; Pinkerton, F. E.

    1995-09-01

    X-ray-absorption K-edge shifts of cobalt have been measured in Y2Co17, YCo5, and YCo3 compounds whose crystal structures are derivatives of the CaCu5 structure. The edge shifts vary monotonically with the Y:Co ratio. We compare them with Fe, Y, and Ce edge shifts determined for several other related materials, including Y2Fe17, Ce2Fe17, and CeCo2. In all cases, the shifts are the same sign, a fact that points to the absence of a significant uncompensated charge transfer from one elemental constituent to another. Identifying the edge shifts as core-level shifts, we find that the Watson-Hudis-Perlman charge-compensation model is applicable to these systems; estimates of the model parameters lead to small net charge transfers consistent with available Mössbauer effect measurements. Our results show that there is no straightforward relation between the transition-metal magnetic moment and either charge transfer or corresponding absorption edge shift, which implies that the variation of the moment with stoichiometry in these materials is not governed by the filling of rigid transition-metal bands.

  9. Rare earth elements and permanent magnets (invited)

    NASA Astrophysics Data System (ADS)

    Dent, Peter C.

    2012-04-01

    Rare earth (RE) magnets have become virtually indispensible in a wide variety of industries such as aerospace, automotive, electronics, medical, and military. RE elements are essential ingredients in these high performance magnets based on intermetallic compounds RECo5, RE2TM17 (TM: transition metal), and RE2TM14B. Rare earth magnets are known for their superior magnetic properties—high induction, and coercive force. These properties arise due to the extremely high magnetocrystalline anisotropy made possible by unique 3d-4f interactions between transition metals and rare earths. For more than 40 years, these magnets remain the number one choice in applications that require high magnetic fields in extreme operating conditions—high demagnetization forces and high temperature. EEC produces and specializes in RECo5 and RE2TM17 type sintered magnets. Samarium and gadolinium are key RE ingredients in the powder metallurgical magnet production processes which include melting, crushing, jet milling, pressing, sintering, and heat treating. The magnetic properties and applications of these magnets will be discussed. We will also briefly discuss the past, current, and future of the permanent magnet business. Currently, over 95% of all pure rare earth oxides are sourced from China, which currently controls the market. We will provide insights regarding current and potential new magnet technologies and designer choices, which may mitigate rare earth supply chain issues now and into the future.

  10. Alkali metal – yttrium borohydrides: The link between coordination of small and large rare-earth

    SciTech Connect

    Sadikin, Yolanda; Stare, Katarina; Schouwink, Pascal; Brix Ley, Morten; Jensen, Torben R.; Meden, Anton; Černý, Radovan

    2015-05-15

    The system Li–A–Y–BH{sub 4} (A=K, Rb, Cs) is found to contain five new compounds and four further ones known from previous work on the homoleptic borohydrides. Crystal structures have been solved and refined from synchrotron X-ray powder diffraction, thermal stability of new compounds have been investigated and ionic conductivity measured for selected samples. Significant coordination flexibility for Y{sup 3+} is revealed, which allows the formation of both octahedral frameworks and tetrahedral complex anions with the tetrahydroborate anion BH{sub 4} both as a linker and terminal ligand. Bi- and trimetallic cubic double-perovskites c-A{sub 3}Y(BH{sub 4}){sub 6} or c-A{sub 2}LiY(BH{sub 4}){sub 6} (A=Rb, Cs) form in all the investigated systems, with the exception of the Li–K–Y system. The compounds with the stoichiometry AY(BH{sub 4}){sub 4} crystallize in all investigated systems with a great variety of structure types which find their analog amongst metal oxides. In-situ formation of a new borohydride – closo-borane is observed during decomposition of all double perovskites. - Graphical abstract: The system Li–A–Y–BH{sub 4} (A=K, Rb, Cs) is found to contain five novel compounds and four further ones previously reported. Significant coordination flexibility of Y{sup 3+} is revealed, which can be employed to form both octahedral frameworks and tetrahedral complex anions, very different structural topologies. Versatility is also manifested in three different simultaneously occurring coordination modes of borohydrides for one metal cation, as proposed by DFT optimization of the monoclinic KY(BH{sub 4}){sub 4} structural model observed by powder diffraction. - Highlights: • The system Li-A-Y-BH{sub 4} (A=K, Rb, Cs) contains nine compounds in total. • Y{sup 3+} forms octahedral frameworks and tetrahedral complex anions. • Bi- and trimetallic double-perovskites crystallize in most systems. • Various AY(BH{sub 4}){sub 4} crystallize with

  11. A novel structure type for isolated rare-earth-metal clusters centered by transition metals: Cs{sub 4}R{sub 6}I{sub 13}Z (R = Ce, Pr; Z = Co, Os)

    SciTech Connect

    Lulei, M.; Corbett, J.D.

    1996-06-19

    The research reported here has been focused on the introduction of alkali-metal atoms into rare-earth-metal cluster structures in order to expand the variety of quaternary compounds with discrete rare-earth-metal clusters centered by transition metals. This direction was encouraged by other recent results with isolated clusters centered only by small main-group elements, such as Cs{sub 4}Pr{sub 6}I{sub 13}C{sub 2} and Cs{sub 4}Sc{sub 6}I{sub 13}C,{sup 11} and by any examples in the chemistry of reduced zirconium halides.

  12. Heteroscorpionate rare-earth metal zwitterionic complexes: syntheses, characterization, and heteroselective catalysis on the ring-opening polymerization of rac-lactide.

    PubMed

    Zhang, Zhichao; Cui, Dongmei

    2011-10-04

    Novel neutral phosphine-modified heteroscorpionate ligand (3,5-Me(2)Pz)(2)CHPPh(2) (1) and its derivatives oxophosphine (2) and iminophosphine (3) heteroscorpionates were synthesized for the first time. These neutral heteroscorpionate ligands displayed unique chemistry towards rare-earth metal tris(alkyl)s [Ln(CH(2)SiMe(3))(3)(thf)(2)] (Ln=Y, Lu, Sc). The reaction between compound 1 and [Ln(CH(2)SiMe(3))(3)(thf)(2)] afforded heteroscorpionate rare-earth metal trialkyl adduct complexes 4a-c. Compounds 2 and 3 were treated with [Ln(CH(2)SiMe(3))(3)(thf)(2)] to give the unprecedented zwitterionic heteroscorpionate rare-earth metal dialkyls 5 and 6, respectively. In the process, the heteroscorpionates transferred to the carbanions by means of methine C-H bond cleavage that was attributed to the presence of the electron-withdrawing groups. In addition the ligand and central metal showed a concerted effect on both the catalytic activity and specific selectivity of complexes 4-6 for the ring-opening polymerization (ROP) of rac-lactide (rac-LA). All the adduct complexes 4 were nonselective and gave atactic polylactide (PLA), probably due to the dissociation of ligand 1 from the active metal center during the polymerization. Strikingly, zwitterionic complexes 5 catalyzed rapid ROP of rac-LA to produce PLAs with heterotacticity up to 0.87. However, the zwitterionic complexes 6 were less active and less selective than 5, which might be on account of the stronger coordination of the tetradentate ligand. Complexes 5 represent rare examples of the selective ROP of rac-LA mediated by rare-earth metal complexes supported by non-bisphenolate ligands.

  13. Role of vacancies, light elements and rare-earth metals doping in CeO2

    NASA Astrophysics Data System (ADS)

    Shi, H.; Hussain, T.; Ahuja, R.; Kang, T. W.; Luo, W.

    2016-08-01

    The magnetic properties and electronic structures of pure, doped and defective cerium oxide (CeO2) have been studied theoretically by means of ab initio calculations based on the density function theory (DFT) with the hybrid HF/DFT technique named PBE0. Carbon (C), nitrogen (N), phosphorus (P), sulphur (S), lanthanum (La) and praseodymium (Pr) doped in CeO2 and CeO2 containing oxygen vacancies (Ov) were considered. Our spin-polarized calculations show that C, N, Pr dopants and Ov defects magnetize the non-magnetic CeO2 in different degree. The optical band gap related to photocatalysis for pure CeO2, corresponding to the ultraviolet region, is reduced obviously by C, N, S, Pr impurities and oxygen vacancies, shifting to the visible region and even further to the infrared range. Especially, N-, S- and Pr-doped CeO2 could be used to photocatalytic water splitting for hydrogen production. As the concentration of Ov increasing up to 5%, the CeO2 exhibits a half-metallic properties.

  14. Alkali metal - yttrium borohydrides: The link between coordination of small and large rare-earth

    NASA Astrophysics Data System (ADS)

    Sadikin, Yolanda; Stare, Katarina; Schouwink, Pascal; Brix Ley, Morten; Jensen, Torben R.; Meden, Anton; Černý, Radovan

    2015-05-01

    The system Li-A-Y-BH4 (A=K, Rb, Cs) is found to contain five new compounds and four further ones known from previous work on the homoleptic borohydrides. Crystal structures have been solved and refined from synchrotron X-ray powder diffraction, thermal stability of new compounds have been investigated and ionic conductivity measured for selected samples. Significant coordination flexibility for Y3+ is revealed, which allows the formation of both octahedral frameworks and tetrahedral complex anions with the tetrahydroborate anion BH4 both as a linker and terminal ligand. Bi- and trimetallic cubic double-perovskites c-A3Y(BH4)6 or c-A2LiY(BH4)6 (A=Rb, Cs) form in all the investigated systems, with the exception of the Li-K-Y system. The compounds with the stoichiometry AY(BH4)4 crystallize in all investigated systems with a great variety of structure types which find their analog amongst metal oxides. In-situ formation of a new borohydride - closo-borane is observed during decomposition of all double perovskites.

  15. Tunneling Spectroscopy of Amorphous Magnetic Rare Earth-Si Alloys near the Metal-Insulator Transition

    NASA Astrophysics Data System (ADS)

    Xiong, P.; Zink, B. L.; Tran, M. Q.; Gebala, A. E.; Wilcox, E. M.; Hellman, F.; Dynes, R. C.

    1997-03-01

    Amorphous dilute magnetic semiconductors exhibit striking differences in the electrical and magneto-transport behavior from their crystalline or nonmagnetic analogs.(F. Hellman et al., Phys. Rev. Lett. 77, 4652 (1996).) Magnetic impurities cause a large suppression of conductivity below 50 K in a-Si_xGd_1-x and a-Si_xTb_1-x relative to the nonmagnetic a-Si_xY_1-x (x ~ 0.85-0.9). Application of a magnetic field increases the conductivity by orders of magnitude. We have fabricated good quality tunnel junctions on a-Si:Gd and the nonmagnetic a-Si:Y to probe the electronic density of states in these two systems. We present the results of the tunneling spectroscopy and its magnetic field dependence for a series of the two alloys at different compositions. We will discuss the correlation between the tunneling spectra and the transport properties and its implications on the possible origin of the magnetic field tuned insulator-metal transition in a-Si:Gd. Research Supported by ONR Grant No. N000149151320 and NSF Grant No. DMR-9208599.

  16. Tritium removal from circulating helium by hydriding of rare earth metals

    SciTech Connect

    Serpekian, T.; Buchkremer, H.P.; Fischmann, K.D.; Heinen, R.; Stover, D.

    1985-09-01

    The helium coolant of a high temperature nuclear power reactor (HTR) operating in the temperature region 570 to 1220 K has to be purified from impurities such as H/sub 2/, N/sub 2/, CO, CO/sub 2/, H/sub 2/O and CH/sub 4/. Also tritium has to be removed especially in the case of the process heat reactor to minimize contamination of product gases. Cerium misch metal was investigated as getter material at 570 K under near realistic conditions. The results show that this method can become an effective, alternative gas purification system. Carbon monoxide gives some concern if it is present in high concentrations by partially passivating the material. But the getter bed can easily be reactivated by a heating process. Measurements with tritium injection showed that not all tritium is being gettered. Probably some species (possibly CH/sub 3/T) are formed which are not as readily absorbed as tritium in form of T/sub 2/, HT or HTO. Work in this field is going on to clarify this effect.

  17. Silica-lanthanum oxide: pioneer composite of rare-Earth metal oxide in selective phosphopeptides enrichment.

    PubMed

    Jabeen, Fahmida; Hussain, Dilshad; Fatima, Batool; Musharraf, S Ghulam; Huck, Christian W; Bonn, Gűnther K; Najam-ul-Haq, Muhammad

    2012-12-04

    Relying on the successful journey of metal oxides in phosphoproteomics, lanthanum oxide is employed for the engineering of an affinity material for phosphopeptide enrichment. The lanthanum oxide is chemically modified on the surface of silica and characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy (FTIR). The obtained silica-lanthanum oxide composite is applied for the selective enrichment of phosphopeptides from tryptic digest of standard protein (α-casein, β-casein, and commercially available casein mixtures from bovine milk). The enriched entities are analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The mass spectroscopy (MS) results show that the silica-lanthanum oxide composite exhibits enhanced capability for phosphopeptide enrichment with sensitivity assessed to be 50 fmol. Sequence coverage of casein is interpreted showing successful recovery. As a real sample, a protein digest of nonfat milk is applied. Also, the ability of lanthanum in different formats is checked in the selective phosphopeptides enrichment. The composite holds promising future in economic ground as it also possesses the regenerative ability for repetitive use.

  18. Role of vacancies, light elements and rare-earth metals doping in CeO2

    PubMed Central

    Shi, H.; Hussain, T.; Ahuja, R.; Kang, T. W.; Luo, W.

    2016-01-01

    The magnetic properties and electronic structures of pure, doped and defective cerium oxide (CeO2) have been studied theoretically by means of ab initio calculations based on the density function theory (DFT) with the hybrid HF/DFT technique named PBE0. Carbon (C), nitrogen (N), phosphorus (P), sulphur (S), lanthanum (La) and praseodymium (Pr) doped in CeO2 and CeO2 containing oxygen vacancies (Ov) were considered. Our spin-polarized calculations show that C, N, Pr dopants and Ov defects magnetize the non-magnetic CeO2 in different degree. The optical band gap related to photocatalysis for pure CeO2, corresponding to the ultraviolet region, is reduced obviously by C, N, S, Pr impurities and oxygen vacancies, shifting to the visible region and even further to the infrared range. Especially, N-, S- and Pr-doped CeO2 could be used to photocatalytic water splitting for hydrogen production. As the concentration of Ov increasing up to 5%, the CeO2 exhibits a half-metallic properties. PMID:27554285

  19. Role of vacancies, light elements and rare-earth metals doping in CeO2.

    PubMed

    Shi, H; Hussain, T; Ahuja, R; Kang, T W; Luo, W

    2016-08-24

    The magnetic properties and electronic structures of pure, doped and defective cerium oxide (CeO2) have been studied theoretically by means of ab initio calculations based on the density function theory (DFT) with the hybrid HF/DFT technique named PBE0. Carbon (C), nitrogen (N), phosphorus (P), sulphur (S), lanthanum (La) and praseodymium (Pr) doped in CeO2 and CeO2 containing oxygen vacancies (Ov) were considered. Our spin-polarized calculations show that C, N, Pr dopants and Ov defects magnetize the non-magnetic CeO2 in different degree. The optical band gap related to photocatalysis for pure CeO2, corresponding to the ultraviolet region, is reduced obviously by C, N, S, Pr impurities and oxygen vacancies, shifting to the visible region and even further to the infrared range. Especially, N-, S- and Pr-doped CeO2 could be used to photocatalytic water splitting for hydrogen production. As the concentration of Ov increasing up to 5%, the CeO2 exhibits a half-metallic properties.

  20. Solvent-free mechanochemical synthesis and magnetic properties of rare-earth based metal-organic frameworks

    DOE PAGES

    Singh, N. K.; Gupta, S.; Pecharsky, V. K.; ...

    2016-11-17

    Mechanical milling of benzene 1,3,5-tricarboxylic acid [C6H3(COOH)3], both with the single and mixed rare earth carbonates [R2(CO3)3·xH2O; R = Gd, Tb and Dy], leads to the formation of metal-organic frameworks [R{C6H3(COO)3}] that adopt MIL-78 type structure. M(T) data of the investigated MOFs do not show any apparent onset of long range magnetic ordering down to 2 K. The M(H) data for Gd{C6H3(COO)3}collected at 2 K show deviations from the magnetization behavior expected for non-interacting Gd3+ ions. For the Gd based MOF the temperature dependence of the isothermal magnetic entropy change (i.e. magnetocaloric effect, ΔSM) exhibits a monotonous increase with decreasingmore » temperature and at T = 3.5 K it reaches 34.1 J kg$-$1K$-$1 for a field change (ΔH) of 50 kOe. Finally, for the same ΔH the maximum values of ΔSM for R = Tb and Dy are 5.5 J kg$-$1K$-$1 and 8.5 J kg$-$1K$-$1 at 9.5 K and 4.5 K, respectively.« less

  1. Magnetic coupling at rare earth ferromagnet/transition metal ferromagnet interfaces: A comprehensive study of Gd/Ni

    PubMed Central

    Higgs, T. D. C.; Bonetti, S.; Ohldag, H.; Banerjee, N.; Wang, X. L.; Rosenberg, A. J.; Cai, Z.; Zhao, J. H.; Moler, K. A.; Robinson, J. W. A.

    2016-01-01

    Thin film magnetic heterostructures with competing interfacial coupling and Zeeman energy provide a fertile ground to study phase transition between different equilibrium states as a function of external magnetic field and temperature. A rare-earth (RE)/transition metal (TM) ferromagnetic multilayer is a classic example where the magnetic state is determined by a competition between the Zeeman energy and antiferromagnetic interfacial exchange coupling energy. Technologically, such structures offer the possibility to engineer the macroscopic magnetic response by tuning the microscopic interactions between the layers. We have performed an exhaustive study of nickel/gadolinium as a model system for understanding RE/TM multilayers using the element-specific measurement technique x-ray magnetic circular dichroism, and determined the full magnetic state diagrams as a function of temperature and magnetic layer thickness. We compare our results to a modified Stoner-Wohlfarth-based model and provide evidence of a thickness-dependent transition to a magnetic fan state which is critical in understanding magnetoresistance effects in RE/TM systems. The results provide important insight for spintronics and superconducting spintronics where engineering tunable magnetic inhomogeneity is key for certain applications. PMID:27444683

  2. Magnetic coupling at rare earth ferromagnet/transition metal ferromagnet interfaces: A comprehensive study of Gd/Ni

    SciTech Connect

    Higgs, T. D. C.; Bonetti, S.; Ohldag, H.; Banerjee, N.; Wang, X. L.; Rosenberg, A. J.; Cai, Z.; Zhao, J. H.; Moler, K. A.; Robinson, J. W. A.

    2016-07-22

    Thin film magnetic heterostructures with competing interfacial coupling and Zeeman energy provide a fertile ground to study phase transition between different equilibrium states as a function of external magnetic field and temperature. A rare-earth (RE)/transition metal (TM) ferromagnetic multilayer is a classic example where the magnetic state is determined by a competition between the Zeeman energy and antiferromagnetic interfacial exchange coupling energy. Technologically, such structures offer the possibility to engineer the macroscopic magnetic response by tuning the microscopic interactions between the layers. We have performed an exhaustive study of nickel/gadolinium as a model system for understanding RE/TM multilayers using the element-specific measurement technique x-ray magnetic circular dichroism, and determined the full magnetic state diagrams as a function of temperature and magnetic layer thickness. We compare our results to a modified Stoner-Wohlfarth-based model and provide evidence of a thickness-dependent transition to a magnetic fan state which is critical in understanding magnetoresistance effects in RE/TM systems. In conclusion, the results provide important insight for spintronics and superconducting spintronics where engineering tunable magnetic inhomogeneity is key for certain applications.

  3. Magnetic coupling at rare earth ferromagnet/transition metal ferromagnet interfaces: A comprehensive study of Gd/Ni

    DOE PAGES

    Higgs, T. D. C.; Bonetti, S.; Ohldag, H.; ...

    2016-07-22

    Thin film magnetic heterostructures with competing interfacial coupling and Zeeman energy provide a fertile ground to study phase transition between different equilibrium states as a function of external magnetic field and temperature. A rare-earth (RE)/transition metal (TM) ferromagnetic multilayer is a classic example where the magnetic state is determined by a competition between the Zeeman energy and antiferromagnetic interfacial exchange coupling energy. Technologically, such structures offer the possibility to engineer the macroscopic magnetic response by tuning the microscopic interactions between the layers. We have performed an exhaustive study of nickel/gadolinium as a model system for understanding RE/TM multilayers using themore » element-specific measurement technique x-ray magnetic circular dichroism, and determined the full magnetic state diagrams as a function of temperature and magnetic layer thickness. We compare our results to a modified Stoner-Wohlfarth-based model and provide evidence of a thickness-dependent transition to a magnetic fan state which is critical in understanding magnetoresistance effects in RE/TM systems. In conclusion, the results provide important insight for spintronics and superconducting spintronics where engineering tunable magnetic inhomogeneity is key for certain applications.« less

  4. Rapid enrichment of rare-earth metals by carboxymethyl cellulose-based open-cellular hydrogel adsorbent from HIPEs template.

    PubMed

    Zhu, Yongfeng; Wang, Wenbo; Zheng, Yian; Wang, Feng; Wang, Aiqin

    2016-04-20

    A series of monolithic open-cellular hydrogel adsorbents based on carboxymethylcellulose (CMC) were prepared through high internal phase emulsions (HIPEs) and used to enrich the rare-earth metals La(3+) and Ce(3+). The changes of pore structure, and the effects of pH, contact time, initial concentration on the adsorption performance were systematically studied. The results show that the as-prepared monolithic hydrogel adsorbents possess good open-cellular framework structure and have fast adsorption kinetics and high adsorption capacity for La(3+) and Ce(3+). The involved adsorption system can reach equilibrium within 30min and the maximal adsorption capacity is determined to be 384.62mg/g for La(3+) and 333.33mg/g for Ce(3+). Moreover, these porous hydrogel adsorbents show an excellent adsorptive reusability for La(3+) and Ce(3+) through five adsorption-desorption cycles. Such a pore hierarchy structure makes this monolithic open-cellular hydrogel adsorbent be an effective adsorbent for effective enrichment of La(3+) and Ce(3+) from aqueous solution.

  5. Magnetic coupling at rare earth ferromagnet/transition metal ferromagnet interfaces: A comprehensive study of Gd/Ni.

    PubMed

    Higgs, T D C; Bonetti, S; Ohldag, H; Banerjee, N; Wang, X L; Rosenberg, A J; Cai, Z; Zhao, J H; Moler, K A; Robinson, J W A

    2016-07-22

    Thin film magnetic heterostructures with competing interfacial coupling and Zeeman energy provide a fertile ground to study phase transition between different equilibrium states as a function of external magnetic field and temperature. A rare-earth (RE)/transition metal (TM) ferromagnetic multilayer is a classic example where the magnetic state is determined by a competition between the Zeeman energy and antiferromagnetic interfacial exchange coupling energy. Technologically, such structures offer the possibility to engineer the macroscopic magnetic response by tuning the microscopic interactions between the layers. We have performed an exhaustive study of nickel/gadolinium as a model system for understanding RE/TM multilayers using the element-specific measurement technique x-ray magnetic circular dichroism, and determined the full magnetic state diagrams as a function of temperature and magnetic layer thickness. We compare our results to a modified Stoner-Wohlfarth-based model and provide evidence of a thickness-dependent transition to a magnetic fan state which is critical in understanding magnetoresistance effects in RE/TM systems. The results provide important insight for spintronics and superconducting spintronics where engineering tunable magnetic inhomogeneity is key for certain applications.

  6. Density-Functional Theory Applied to Rare Earth Metals: Approaches Based on the Random-Phase Approximation

    NASA Astrophysics Data System (ADS)

    Casadei, Marco; Ren, Xinguo; Rinke, Patrick; Scheffler, Matthias; Rubio, Angel

    2013-03-01

    The description of the volume collapse exhibited by some rare earth metals poses a great challenge to density-functional theory (DFT) since local/semilocal functionals (LDA/GGA) fail to produce the associated phase transitions. We approach this problem by treating all electrons at the same quantum mechanical level, using both hybrid functionals (e.g. PBE0 and HSE06) and exact-exchange plus correlation in the random-phase approximation (EX+cRPA). We also assess the performance of recently developed beyond RPA schemes (e.g. rPT2). The calculations are performed for cerium and praseodymium, that display a volume collapse, and neodymium, in which the volume collapse is absent. The isostructural α- γ phase transition in cerium is the most studied. The exact exchange contribution in PBE0 and HSE06 is crucial to produce two distinct solutions that can be associated with the α and γ phases, but quantitative agreement with the extrapolated phase diagram requires EX+cRPA.

  7. Properties of microstructure on amorphous film of rare earth-transition metal alloy for ultrahigh density recording

    NASA Astrophysics Data System (ADS)

    Murakami, Motoyoshi

    2007-05-01

    Controlling the microstructure of amorphous rare earth-transition metal films via the sputtering process was found to be an effective way of controlling their magnetic properties for applications as magneto-optical storage media. This paper describes how the relationship between a TbFeCo film's magnetic properties and its microcolumnar structure depends on the sputtering conditions. An enhancement of electric resistance value was observed for the devices with a constriction columnar width in the 5-20nm range. The measured electrical resistance was over 1.0×10-5Ωm in this case. It is believed that the change of electrical resistance on the thin film is due to fluctuations in the density on the arranged microstructure or constriction of current induced by scattering because the film structure contains impurities. These same impurities are believed to be associated with the restriction of the trapped domain wall's mobility. Furthermore, we observed a significant resistance change subsequent to the application of lower Xe pressure sputtering. This paper also serves as a feasibility study for high-density magneto-optical recording on these media materials.

  8. Magnetic Resonance Imaging Distortion and Targeting Errors from Strong Rare Earth Metal Magnetic Dental Implant Requiring Revision.

    PubMed

    Seong-Cheol, Park; Chong Sik, Lee; Seok Min, Kim; Eu Jene, Choi; Do Hee, Lee; Jung Kyo, Lee

    2016-12-22

    Recently, the use of magnetic dental implants has been re-popularized with the introduction of strong rare earth metal, for example, neodymium, magnets. Unrecognized magnetic dental implants can cause critical magnetic resonance image distortions. We report a case involving surgical failure caused by a magnetic dental implant. A 62-year-old man underwent deep brain stimulation for medically insufficiently controlled Parkinson's disease. Stereotactic magnetic resonance imaging performed for the first deep brain stimulation showed that the overdenture was removed. However, a dental implant remained and contained a neodymium magnet, which was unrecognized at the time of imaging; the magnet caused localized non-linear distortions that were the largest around the dental magnets. In the magnetic field, the subthalamic area was distorted by a 4.6 mm right shift and counter clockwise rotation. However, distortions were visually subtle in the operation field and small for distant stereotactic markers, with approximately 1-2 mm distortions. The surgeon considered the distortion to be normal asymmetry or variation. Stereotactic marker distortion was calculated to be in the acceptable range in the surgical planning software. Targeting errors, approximately 5 mm on the right side and 2 mm on the left side, occurred postoperatively. Both leads were revised after the removal of dental magnets. Dental magnets may cause surgical failures and should be checked and removed before stereotactic surgery. Our findings should be considered when reviewing surgical precautions and making distortion-detection algorithm improvements.

  9. Me-Si bond cleavage of anionic bis(trimethylsilyl)amide in scorpionate-anchored rare earth metal complexes.

    PubMed

    Yi, Weiyin; Zhang, Jie; Chen, Zhenxia; Zhou, Xigeng

    2012-10-15

    A novel Tp(Me2)-supported (Tp(Me2) = tri(3,5-dimethylpyrazolyl)borate) rare earth metal complex promoted Me-Si cleavage of the bis(trimethylsilyl) amide ligand ([(Me(3)Si)(2)N](-)) was observed. Reaction of Tp(Me2)LnCl(2) with 2 equiv of K[(RN)(2)CN(SiMe(3))(2)] (KGua) gave the methylamidinate complexes Tp(Me2)Ln[(RN)(2)CMe][N(SiMe(3))(2)] (R = isopropyl, Ln = Y (1(Y)), Er (1(Er)); R = cyclohexyl, Ln = Y (2(Y))) in moderate yields. In contrast, Tp(Me2)YCl(2)(THF) reacted with 1 equiv of KGua to afford a C-N cleavage product Tp(Me2)Y(Cl)N(SiMe(3))(2)(THF) (4), indicating that this guanidinate ligand is not stable in the yttrium complex with the Tp(Me2) ligand, and a carbodiimide deinsertion takes place easily. The mechanism for the formation of complexes 1 and 2 was also studied by controlling the substrate stoichiometry and the reaction sequence and revealed that the bis(trimethylsilyl)amine anion N(SiMe(3))(2)(-) can undergo two routes of γ-methyl deprotonation and Si-Me cleavage for its functionalizations. All these new complexes were characterized by elemental analysis and spectroscopic methods, and their solid-state structures were also confirmed by single-crystal X-ray diffraction.

  10. Thermal and optical properties of rare earth metal β-Diketone Bipy complexes as optical recording materials

    NASA Astrophysics Data System (ADS)

    Ma, Dongzhe; Wu, Yiqun; Jiang, Xin; Chen, Zhimin; Zuo, Xia

    2005-09-01

    Three kinds of novel rare earth metal β-diketone bipy complexes have been synthesized. Smooth films of the complexes on K9 glass substrates and single-crystal silicon substrates were prepared by spin-coating method. The absorption spectra of these new materials were measured in solution and in film. The optical constants (complex refractive index N=n+ik ) of the films on single-crystal silicon substrates at 405nm were determined with scanning ellipsometer. The thermo-gravimetric analysis (TGA) of the materials was also carried out. It is found that the absorption spectra of these films have comparatively broad band in the wavelength region 300-400nm, the peek is at ~345nm and the absorption edge is steep in the wavelength region 350-400nm, which indicates that the absorption of the films is well matched with the wavelength of GaN semiconductor laser diode (405nm). The refractive index (n) of the films is above 1.9 and the extinction coefficient (k) of is 0.1-0.3 at 405nm. The reflection peeks are located near 405nm. And also the new materials possess excellent thermal stability (their decomposition temperatures are higher than 300°C). The results imply that these novel materials are promising candidates for the recording media of blue discs.

  11. Optical and dielectric characteristics of the rare-earth metal oxide Lu{sub 2}O{sub 3}

    SciTech Connect

    Ordin, S. V. Shelykh, A. I.

    2010-05-15

    The characteristics of the Lu{sub 2}O{sub 3} oxide and their variations controlled by compositional defects are studied. The defects are anion vacancies produced on partial reduction of the oxide. Such defects exhibit features typical of quantum objects and have a profound effect on the optical transmittance spectrum, the character of conduction (insulator or semiconductor properties) and the order of magnitude of the permittivity {epsilon} (capable of varying from 11.2 to 125). The structural features of vacancies in the oxides are considered, and the effect of vacancies on the polarization, conductivity, and lattice vibrations is studied. The studies are carried out in the temperature range 200-900 K, the wavelength range 0.03-50 {mu}m, and the current frequency range 10{sup 2}-10{sup 5} Hz. The rare-earth metal oxides attract interest for applications in microelectronics due to their high permittivity (several times higher than the permittivity of SiO{sub 2}) and, hence, the prospects for use of these oxides instead of SiO{sub 2}.

  12. Magnetic coupling at rare earth ferromagnet/transition metal ferromagnet interfaces: A comprehensive study of Gd/Ni

    NASA Astrophysics Data System (ADS)

    Higgs, T. D. C.; Bonetti, S.; Ohldag, H.; Banerjee, N.; Wang, X. L.; Rosenberg, A. J.; Cai, Z.; Zhao, J. H.; Moler, K. A.; Robinson, J. W. A.

    2016-07-01

    Thin film magnetic heterostructures with competing interfacial coupling and Zeeman energy provide a fertile ground to study phase transition between different equilibrium states as a function of external magnetic field and temperature. A rare-earth (RE)/transition metal (TM) ferromagnetic multilayer is a classic example where the magnetic state is determined by a competition between the Zeeman energy and antiferromagnetic interfacial exchange coupling energy. Technologically, such structures offer the possibility to engineer the macroscopic magnetic response by tuning the microscopic interactions between the layers. We have performed an exhaustive study of nickel/gadolinium as a model system for understanding RE/TM multilayers using the element-specific measurement technique x-ray magnetic circular dichroism, and determined the full magnetic state diagrams as a function of temperature and magnetic layer thickness. We compare our results to a modified Stoner-Wohlfarth-based model and provide evidence of a thickness-dependent transition to a magnetic fan state which is critical in understanding magnetoresistance effects in RE/TM systems. The results provide important insight for spintronics and superconducting spintronics where engineering tunable magnetic inhomogeneity is key for certain applications.

  13. Graphene oxide-rare earth metal-organic framework composites for the selective isolation of hemoglobin.

    PubMed

    Liu, Jia-Wei; Zhang, Yue; Chen, Xu-Wei; Wang, Jian-Hua

    2014-07-09

    Graphene oxide-La(BTC)(H2O)6 (H3BTC=1,3,5-benzenetricarboxylic acid) metal organic framework composites (LaMOF-GOn, n = 1-6, corresponding to the percentage of GO at 1, 2, 3, 4, 5, and 10%) are prepared through a simple and large-scale method at room temperature. The obtained composites are characterized by ATR-FTIR spectra, SEM, XRD, TGA, and N2 adsorption-desorption isotherm. The presence of GO significantly changes the morphologies of the composites from spindly rectangular rods to irregular thick blocks and increases their surface area from 14.8 cm(2) g(-1) (LaMOFs) to 26.6 cm(2) g(-1) (LaMOF-GO3), whereas at the same time, the crystalline structure of La(BTC)(H2O)6 is maintained. As a novel solid-phase adsorbent the LaMOF-GO composite exhibits outstanding adsorption properties for proteins. The strong hydrophobic interaction, especially π-π interaction between protein and the composite, is the main driving force for protein adsorption. In particular, highly selective isolation of hemoglobin (Hb) is achieved by using LaMOF-GO3 composite as sorbent in 4 mM B-R buffer containing 0.05 mol L(-1) NaCl at pH 8. The retained Hb could be effectively recovered with a 1 mM B-R buffer at pH 10, giving rise to a recovery of 63%. The practical applicability of the LaMOF-GO3 composite is demonstrated by the selective adsorption of Hb from human whole blood, and SDS-PAGE assays indicate that Hb could be selectively isolated with high purity from biological samples of complex matrixes.

  14. Frustrated Lewis Pair-Like Reactivity of Rare-Earth Metal Complexes: 1,4-Addition Reactions and Polymerizations of Conjugated Polar Alkenes.

    PubMed

    Xu, Pengfei; Yao, Yingming; Xu, Xin

    2017-01-26

    Three rare-earth aryloxide ion pairs {[L1REOAr](+) /[B(C6 F5 )4 ](-) ; L1=CH3 C(2,6-iPr2 C6 H3 N)CHC(CH3 )(NCH2 CH2 PPh2 ); RE=Sc, Y, Lu; Ar=2,6-tBu2 C6 H3 } were reported that feature rare-earth/phosphorus (RE/P) combinations exhibiting frustrated Lewis pair (FLP)-like 1,4-addition reactions towards conjugated carbonyl substrates (e.g., enone, ynone, and acrylic substrates). Furthermore, these RE/P complexes were found to be effective catalysts for the polymerization of conjugated polar alkene monomers. Mechanistic studies revealed that the rare-earth metal-catalyzed polymerizations were initiated by new FLP-type 1,4-additions rather than traditional and ubiquitous covalent RE-E (E=H, C, N, etc.) bond insertion or single-electron transfer.

  15. Upconversion of rare Earth nanomaterials.

    PubMed

    Sun, Ling-Dong; Dong, Hao; Zhang, Pei-Zhi; Yan, Chun-Hua

    2015-04-01

    Rare earth nanomaterials, which feature long-lived intermediate energy levels and intraconfigurational 4f-4f transitions, are promising supporters for photon upconversion. Owing to their unique optical properties, rare earth upconversion nanomaterials have found applications in bioimaging, theranostics, photovoltaic devices, and photochemical reactions. Here, we review recent advances in the photon upconversion processes of these nanomaterials. We start by considering energy transfer models involved in the study of upconversion emissions, as well as well-established synthesis strategies to control the size and shape of rare earth upconversion nanomaterials. Progress in engineering energy transfer pathways, which play a dominant role in determining upconversion emission outputs, is then discussed. Lastly, representative optical applications of these materials are considered. The aim of this review is to provide inspiration for researchers to explore novel upconversion nanomaterials and extended optical applications.

  16. Effect of Rare Earth Elements (Er, Ho) on Semi-Metallic Materials (ScN) in an Applied Electric Field

    NASA Technical Reports Server (NTRS)

    Kim, Hyunjung; Park, Yeonjoon; King, Glen C.; Lee, Kunik; Choi, Sang H.

    2012-01-01

    The development of materials and fabrication technology for field-controlled spectrally active optics is essential for applications such as membrane optics, filters for LIDARs, windows for sensors, telescopes, spectroscopes, cameras and flat-panel displays. The dopants of rare earth elements, in a host of optical systems, create a number of absorption and emission band structures and can easily be incorporated into many high quality crystalline and amorphous hosts. In wide band-gap semiconductors like ScN, the existing deep levels can capture or emit the mobile charges, and can be ionized with the loss or capture of the carriers which are the fundamental basis of concept for smart optic materials. The band gap shrinkage or splitting with dopants supports the possibility of this concept. In the present work, a semi-metallic material (ScN) was doped with rare earth elements (Er, Ho) and tested under an applied electric field to characterize spectral and refractive index shifts by either Stark or Zeeman Effect. These effects can be verified using the UV-Vis spectroscopy, the Hall Effect measurement and the ellipsometric spectroscopy. The optical band gaps of ScN doped with Er and doped with Ho were experimentally estimated as 2.33eV and 2.24eV ( 0.2eV) respectively. This is less than that of undoped ScN (2.5 0.2eV). The red-shifted absorption onset is a direct evidence for the decrease of band gap energy (Eg), and the broadening of valence band states is attributable to the doping cases. A decrease in refractive index with an applied field was observed as a small shift in absorption coefficient using a variable angle spectroscopic ellipsometer. In the presence of an electric field, mobile carriers are redistributed within the space charge region (SCR) to produce this electro-refractive effect. The shift in refractive index is also affected by the density and location of deep potential wells within the SCR. In addition, the microstructure change was observed by a TEM

  17. Effect of rare earth elements (Er, Ho) on semi-metallic materials (ScN) in an applied electric field

    NASA Astrophysics Data System (ADS)

    Kim, Hyunjung; Park, Yeonjoon; King, Glen C.; Lee, Kunik; Choi, Sang H.

    2012-04-01

    The development of materials and fabrication technology for field-controlled spectrally active optics is essential for applications such as membrane optics, filters for LIDARs, windows for sensors, telescopes, spectroscopes, cameras and flat-panel displays. The dopants of rare earth elements, in a host of optical systems, create a number of absorption and emission band structures and can easily be incorporated into many high quality crystalline and amorphous hosts. In wide band-gap semiconductors like ScN, the existing deep levels can capture or emit the mobile charges, and can be ionized with the loss or capture of the carriers which are the fundamental basis of concept for smart optic materials. The band gap shrinkage or splitting with dopants supports the possibility of this concept. In the present work, a semi-metallic material (ScN) was doped with rare earth elements (Er, Ho) and tested under an applied electric field to characterize spectral and refractive index shifts by either Stark or Zeeman Effect. These effects can be verified using the UV-Vis spectroscopy, the Hall Effect measurement and the ellipsometric spectroscopy. The optical band gaps of ScN doped with Er and doped with Ho were experimentally estimated as 2.33eV and 2.24eV (+/-0.2eV) respectively. This is less than that of undoped ScN (2.5+/-0.2eV). The red-shifted absorption onset is a direct evidence for the decrease of band gap energy (Eg), and the broadening of valence band states is attributable to the doping cases. A decrease in refractive index with an applied field was observed as a small shift in absorption coefficient using a variable angle spectroscopic ellipsometer. In the presence of an electric field, mobile carriers are redistributed within the space charge region (SCR) to produce this electro-refractive effect. The shift in refractive index is also affected by the density and location of deep potential wells within the SCR. In addition, the microstructure change was observed by a

  18. IUPAC-NIST Solubility Data Series. 100. Rare Earth Metal Fluorides in Water and Aqueous Systems. Part 1. Scandium Group (Sc, Y, La)

    SciTech Connect

    Mioduski, Tomasz; Gumiński, Cezary; Zeng, Dewen

    2014-03-15

    This work presents an assessment of solubility data for rare earth metal fluorides (generally of trivalent metals and of CeF{sub 4}) in water and in aqueous ternary systems. Compilations of all available experimental data are introduced for each rare earth metal fluoride with a corresponding critical evaluation. Every such evaluation contains a collection of all solubility results in water, a selection of suggested solubility data, and a brief discussion of the multicomponent systems. Because the ternary systems were seldom studied more than once, no critical evaluations of such data were possible. Only simple fluorides (no complexes or binary salts) are treated as the input substances in this report. The literature has been covered through the end of 2013.

  19. Crystalline rare-earth activated oxyorthosilicate phosphor

    DOEpatents

    McClellan, Kenneth J.; Cooke, D. Wayne

    2004-02-10

    Crystalline, transparent, rare-earth activated lutetium oxyorthosilicate phosphor. The phosphor consists essentially of lutetium yttrium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Lu(.sub.2-x-z)Y.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor also consists essentially of lutetium gadolinium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Lu(.sub.2-x-z)Gd.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor also consists essentially of gadolinium yttrium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Gd(.sub.2-x-z)Y.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor may be optically coupled to a photodetector to provide a radiation detector.

  20. Recycling of Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Lorenz, Tom; Bertau, Martin

    2017-01-01

    Any development of an effective process for rare earth (RE) recycling has become more and more challenging, especially in recent years. Since 2011, when commodity prices of REs had met their all-time maximum, prices have dropped rapidly by more than 90 %. An economic process able to offset these fluctuations has to take unconventional methods into account beside well-known strategies like acid/basic leaching or solvent extraction. The solid-state chlorination provides such an unconventional method for mobilizing RE elements from waste streams. Instead of hydrochloric acid this kind of chlorination decomposes NH4Cl thermally to release up to 400 °C hot HCl gas. After cooling the resulting solid metal chlorides may be easily dissolved in pH-adjusted water. Without producing strongly acidic wastes and with NH4Cl as cheap source for hydrogen chloride, solid-state chlorination provides various advantages in terms of costs and disposal. In the course of the SepSELSA project this method was examined, adjusted and optimized for RE recycling from fluorescent lamp scraps as well as Fe14Nd2B magnets. Thereby many surprising influences and trends required various analytic methods to examine the reasons and special mechanisms behind them.

  1. CADMIUM-RARE EARTH BORATE GLASS AS REACTOR CONTROL MATERIAL

    DOEpatents

    Ploetz, G.L.; Ray, W.E.

    1958-11-01

    A reactor control rod fabricated from a cadmiumrare earth-borate glass is presented. The rare earth component of this glass is selected from among those rare earths having large neutron capture cross sections, such as samarium, gadolinium or europium. Partlcles of this glass are then dispersed in a metal matrix by standard powder metallurgy techniques.

  2. Preparation and processing of rare earth chalcogenides

    NASA Astrophysics Data System (ADS)

    Gschneidner, K. A.

    1998-10-01

    Rare earth chalcogenides are initially prepared by a direct combination of the pure rare earth metal and the pure chalogen element with or without a catalyst. The use of iodine (10 to 100 mg) as a fluxing agent (catalyst), especially to prepare heavy lanthanide chalcogenides, greatly speeds up the formation of the rare earth chalcogenide. The resultant powders are consolidated by melting, pressure assisted sintering (PAS), or pressure assisted reaction sintering (PARS) to obtain near theoretical density solids. Mechanical alloying is a useful technique for preparing ternary alloys. In addition, mechanical alloying and mechanical milling can be used to form metastable allotropic forms of the yttrium and heavy lanthanide sulfides. Chemical analysis techniques are also described because it is strongly recommended that samples prepared by melting should have their chemical compositions verified because of chalogen losses in the melting step.

  3. Enhanced pinning in mixed rare earth-123 films

    DOEpatents

    Driscoll, Judith L [Los Alamos, NM; Foltyn, Stephen R [Los Alamos, NM

    2009-06-16

    An superconductive article and method of forming such an article is disclosed, the article including a substrate and a layer of a rare earth barium cuprate film upon the substrate, the rare earth barium cuprate film including two or more rare earth metals capable of yielding a superconductive composition where ion size variance between the two or more rare earth metals is characterized as greater than zero and less than about 10.times.10.sup.-4, and the rare earth barium cuprate film including two or more rare earth metals is further characterized as having an enhanced critical current density in comparison to a standard YBa.sub.2Cu.sub.3O.sub.y composition under identical testing conditions.

  4. Selective Emitter Pumped Rare Earth Laser

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L. (Inventor); Patton, Martin O. (Inventor)

    2001-01-01

    A selective emitter pumped rare earth laser provides an additional type of laser for use in many laser applications. Rare earth doped lasers exist which are pumped with flashtubes or laser diodes. The invention uses a rare earth emitter to transform thermal energy input to a spectral band matching the absorption band of a rare earth in the laser in order to produce lasing.

  5. Disordered electronic and magnetic systems - Transition metal (manganese) and rare earth (gadolinium) doped amorphous group IV semiconductors (carbon, silicon, germanium)

    NASA Astrophysics Data System (ADS)

    Zeng, Li

    2007-12-01

    While the physics of electrical doping of semiconductors has been well understood for decades, magnetic doping and the interactions between the carriers and the magnetic moments in semiconductors are still under active investigation for various applications, such as spintronics and quantum computing. Our systematic studies on transition-metal-doped (TM-doped) and rare-earth-doped (RE-doped) amorphous group IV elemental semiconductors provide unique insight into the rich physics of this type of materials. Our model system is the e-beam coevaporated a-GdxSi1-x films. Magnetron cosputtered a-GdxSi 1-x films, despite having very different film morphology at the 10-nm scale from the e-beam coevaporated films, are demonstrated to possess almost the same physical properties. Cosputtered a-GdxC1-x (:Hy) and Gd ion-implanted ta-C (ta-C1-x:Gd x) films are studied for Gd in different a-C matrices with different sp2/sp 3 ratio. All doped a-C films are on the insulating side of the metal-insulator transition. Very similar to a-Gd xSi1-x films, Gd possesses a large magnetic moment in a-C. The moment-moment and moment-carrier interactions lead to a spin-glass ground state and large negative magnetoresistance (MR) below a crossover temperature T' in both a-Gd xC1-x<(:Hy) and ta-C1-x:Gdx films. A small positive MR is found above T'. Transition metal Mn has always been believed to possess a large local moment in Si or Ge. However, e-beam coevaporated a-MnxSi1-x films are found to show a quenched local moment for Mn concentration as low as x=0.005 and up to x=0.175. All films are purely paramagnetic and have very small saturation moments. Unlike Gd, which provides both carriers and local moment, Mn only provides electrical carriers in a-Si. These results suggest an itinerant non-magnetic Mn states in a-Si; the insulating behavior is a result of the strong structural disorder. This quenching of the local Mn moment has not been predicted by any existing theory. Consistent with the

  6. Europium-activated phosphors containing oxides of rare-earth and group-IIIB metals and method of making the same

    DOEpatents

    Comanzo, Holly Ann; Setlur, Anant Achyut; Srivastava, Alok Mani

    2006-04-04

    Europium-activated phosphors comprise oxides of at least a rare-earth metal selected from the group consisting of gadolinium, yttrium, lanthanum, and combinations thereof and at least a Group-IIIB metal selected from the group consisting of aluminum, gallium, indium, and combinations thereof. A method for making such phosphors comprises adding at least a halide of at least one of the selected Group-IIIB metals in a starting mixture. The method further comprises firing the starting mixture in an oxygen-containing atmosphere. The phosphors produced by such a method exhibit improved absorption in the UV wavelength range and improved quantum efficiency.

  7. Europium-activated phosphors containing oxides of rare-earth and group-IIIB metals and method of making the same

    DOEpatents

    Comanzo, Holly Ann; Setlur, Anant Achyut; Srivastava, Alok Mani; Manivannan, Venkatesan

    2004-07-13

    Europium-activated phosphors comprise oxides of at least a rare-earth metal selected from the group consisting of gadolinium, yttrium, lanthanum, and combinations thereof and at least a Group-IIIB metal selected from the group consisting of aluminum, gallium, indium, and combinations thereof. A method for making such phosphors comprises adding at least a halide of at least one of the selected Group-IIIB metals in a starting mixture. The method further comprises firing the starting mixture in an oxygen-containing atmosphere. The phosphors produced by such a method exhibit improved absorption in the UV wavelength range and improved quantum efficiency.

  8. Superconductivity of metal nitride chloride β-MNCl (M = Zr, Hf) with rare-earth metal RE (RE = Eu, Yb) doped by intercalation

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Tanaka, Masashi; Onimaru, Takahiro; Takabatake, Toshiro; Isikawa, Yosikazu; Yamanaka, Shoji

    2013-04-01

    Electrons were doped into the β-form layered metal nitride chloride MNCl (M = Zr, Hf) by intercalation of rare-earth metals RE (RE = Eu, Yb) using liquid ammonia solutions. The intercalated compounds REx(NH3)yMNCl show superconductivity with transition temperatures Tc of ˜13 and 24.3 K for M = Zr and Hf, respectively, quite similar to the alkali metal intercalated analogs. The paramagnetic characteristics for Eu2+ and Yb3+ can coexist with superconductivity. The magnetic resistance measured on the uniaxially oriented Eu0.08(NH3)yHfNCl with the magnetic field parallel to the ab plane (‖ ab) and the c axis (‖ c) shows a strong anisotropic effect on the upper critical field Hc2; a large anisotropic parameter \\gamma ={H}_{{c}2}^{\\parallel a b}/{H}_{{c}2}^{\\parallel c}\\sim 4 suggests a pseudo-two-dimensional superconductivity. The Tc of Eu0.13(THF)yHfNCl is shifted toward a higher value of 25.8 K upon expansion of the interlayer spacing from 11.9 to 17.5 Å by co-intercalation of voluminous organic molecules such as tetrahydrofuran.

  9. Solvent-free mechanochemical synthesis and magnetic properties of rare-earth based metal-organic frameworks

    SciTech Connect

    Singh, N. K.; Gupta, S.; Pecharsky, V. K.; Balema, V. P.

    2016-11-17

    Mechanical milling of benzene 1,3,5-tricarboxylic acid [C6H3(COOH)3], both with the single and mixed rare earth carbonates [R2(CO3)3·xH2O; R = Gd, Tb and Dy], leads to the formation of metal-organic frameworks [R{C6H3(COO)3}] that adopt MIL-78 type structure. M(T) data of the investigated MOFs do not show any apparent onset of long range magnetic ordering down to 2 K. The M(H) data for Gd{C6H3(COO)3}collected at 2 K show deviations from the magnetization behavior expected for non-interacting Gd3+ ions. For the Gd based MOF the temperature dependence of the isothermal magnetic entropy change (i.e. magnetocaloric effect, ΔSM) exhibits a monotonous increase with decreasing temperature and at T = 3.5 K it reaches 34.1 J kg$-$1K$-$1 for a field change (ΔH) of 50 kOe. Finally, for the same ΔH the maximum values of ΔSM for R = Tb and Dy are 5.5 J kg$-$1K$-$1 and 8.5 J kg$-$1K$-$1 at 9.5 K and 4.5 K, respectively.

  10. Quest for highly connected metal-organic framework platforms: rare-earth polynuclear clusters versatility meets net topology needs.

    PubMed

    Alezi, Dalal; Peedikakkal, Abdul Malik P; Weseliński, Łukasz J; Guillerm, Vincent; Belmabkhout, Youssef; Cairns, Amy J; Chen, Zhijie; Wojtas, Łukasz; Eddaoudi, Mohamed

    2015-04-29

    Gaining control over the assembly of highly porous rare-earth (RE) based metal-organic frameworks (MOFs) remains challenging. Here we report the latest discoveries on our continuous quest for highly connected nets. The topological exploration based on the noncompatibility of a 12-connected RE polynuclear carboxylate-based cluster, points of extension matching the 12 vertices of the cuboctahedron (cuo), with 3-connected organic ligands led to the discovery of two fascinating and highly connected minimal edge-transitive nets, pek and aea. The reduced symmetry of the employed triangular tricarboxylate ligand, as compared to the prototype highly symmetrical 1,3,5-benzene(tris)benzoic acid guided the concurrent occurrence of nonanuclear [RE9(μ3-OH)12(μ3-O)2(O2C-)12] and hexanuclear [RE6(OH)8(O2C-)8] carboxylate-based clusters as 12-connected and 8-connected molecular building blocks in the structure of a 3-periodic pek-MOF based on a novel (3,8,12)-c trinodal net. The use of a tricarboxylate ligand with modified angles between carboxylate moieties led to the formation of a second MOF containing solely nonanuclear clusters and exhibiting once more a novel and a highly connected (3,12,12)-c trinodal net with aea topology. Notably, it is the first time that RE-MOFs with double six-membered ring (d6R) secondary building units are isolated, representing therefore a critical step forward toward the design of novel and highly coordinated materials using the supermolecular building layer approach while considering the d6Rs as building pillars. Lastly, the potential of these new MOFs for gas separation/storage was investigated by performing gas adsorption studies of various probe gas molecules over a wide range of pressures. Noticeably, pek-MOF-1 showed excellent volumetric CO2 and CH4 uptakes at high pressures.

  11. Full-potential linear-muffin-tin-orbital calculations of the magnetic properties of rare-earth-transition-metal intermetallics. I. Description of the formalism and application to the series RCo5 (R=rare-earth atom)

    NASA Astrophysics Data System (ADS)

    Hummler, K.; Fähnle, M.

    1996-02-01

    For the series RCo5 (R=rare-earth atom) various parameters occurring in the two-sublattice model of rare-earth-transition-metal intermetallics (local magnetic moments, intersublattice exchange fields, crystal field parameters, as well as magnetic hyperfine fields and electric field gradients) are calculated within the framework of the local-spin-density approximation (LSDA) and the full-potential linear-muffin-tin-orbital theory. Special emphasis is given to a determination of the crystal field parameter A02. It is shown that it is absolutely indispensable to include the 5p states at the R site into the valence band and to avoid any spherical approximation for the effective potential. The quantity A02 depends on the orientation of the aspherical 4f charge density, in contrast to a basic assumption of the two-sublattice model. As a result, the experiments in general yield some kind of average effective values which are different for different experiments. Application of the LSDA introduces rather large uncertainties for A02 which cannot be totally removed but at least drastically reduced by physically motivated measures.

  12. Dihydrogen addition in a dinuclear rare-earth metal hydride complex supported by a metalated TREN ligand.

    PubMed

    Venugopal, Ajay; Fegler, Waldemar; Spaniol, Thomas P; Maron, Laurent; Okuda, Jun

    2011-11-09

    The dinuclear lutetium dihydride dication supported by metalated tripodal ligands undergoes facile hydrogenolysis with H(2) to form a trihydride dication. Molecular orbital analysis shows that the LUMO is a bonding Lu···Lu orbital that is poised to activate dihydrogen.

  13. I. New Techniques for the Synthesis of Metals and Alloys. II. The Properties of Rare Earth Metals and Alloys

    DTIC Science & Technology

    1974-11-01

    Evaporation Apparatus Gas Scattering Evaporation High Rate Physical Vapor Deposition Process Hafnium Carbide *** 20. ABSTRACT (Conttnu» on r...2,500 Aluminium oxide 2 100 Tungsten carbide 1,700 Quartz 820 Metals < 800 34 ^^M ■ ’ ■ The microstructure of the deposit shows a fine

  14. Stability constants of some metal complexes of triethylenetetraminehexa-acetic acid and complexometric titration of rare earths and other metals.

    PubMed

    Soucek, D A; Cheng, K L; Droll, H A

    1968-08-01

    The stability constants of some non-protonated 1:1 metal complexes of triethylenetetraminehexa-acetic acid are reported; log K values are Cd 19.8, Co(II) 20.4, Ni 19.9, Pb 19.5, Sm(III) 24.3, Zn 20.1.

  15. Atomic and electronic structure of metals and alloys: Rare earths, ultrathin films and surface alloys. Final report, [October 1, 1988--December 31, 1993

    SciTech Connect

    Not Available

    1993-12-31

    The project has been productive: 47 refereed publications in about 5 years. While confined to the area of surfaces and thin films, the project has covered a wide range of physical properties and different materials: rare earths, bulk and surface alloys, metal surfaces, magnetism, and (especially) atomic and electronic structure of ultrathin films. Notable achievements include quantitative studies of atomic structure of clean rare-earth surfaces: Tb(0001), Tb(11{ovr 2}0), Gd(0001), and Gd(11{ovr 2}0). Surface alloys studied included Cu{l_brace}001{r_brace}c(2 {times} 2)-Au and Cu{l_brace}001{r_brace}c(2 {times} 2)-Pd. The most important achievement of the project lies in the application of quantitative low-energy electron diffraction to ultrathin films, particularly magnetic metals on nonmagnetic substrates (e.g., Fe on Ag{l_brace}001{r_brace}, etc.) (No data given.)

  16. Strong-coupling cavity QED using rare-earth-metal-ion dopants in monolithic resonators: What you can do with a weak oscillator

    SciTech Connect

    McAuslan, D. L.; Longdell, J. J.; Sellars, M. J.

    2009-12-15

    We investigate the possibility of achieving the strong coupling regime of cavity quantum electrodynamics using rare-earth-metal-ions as impurities in monolithic optical resonators. We conclude that due to the weak oscillator strengths of the rare-earth-metals, it may be possible but difficult to reach the regime where the single photon Rabi frequency is large compared to both the cavity and atom decay rates. However, reaching the regime where the saturation photon and atom numbers are less than one should be much more achievable. We show that in this 'bad cavity' regime, transfer of quantum states and an optical phase shift conditional on the state of the atom is still possible and suggest a method for coherent detection of single dopants.

  17. Tutorial on the Role of Cyclopentadienyl Ligands in the Discovery of Molecular Complexes of the Rare-Earth and Actinide Metals in New Oxidation States

    DOE PAGES

    Evans, William J.

    2016-09-15

    A fundamental aspect of any element is the range of oxidation states accessible for useful chemistry. This tutorial describes the recent expansion of the number of oxidation states available to the rare-earth and actinide metals in molecular complexes that has resulted through organometallic chemistry involving the cyclopentadienyl ligand. These discoveries demonstrate that the cyclopentadienyl ligand, which has been a key component in the development of organometallic chemistry since the seminal discovery of ferrocene in the 1950s, continues to contribute to the advancement of science. Lastly, we present background information on the rare-earth and actinide elements, as well as the sequencemore » of events that led to these unexpected developments in the oxidation state chemistry of these metals.« less

  18. Tetrad effect in rare earth element distribution patterns: a method of quantification with application to rock and mineral samples from granite-related rare metal deposits

    NASA Astrophysics Data System (ADS)

    Monecke, T.; Kempe, U.; Monecke, J.; Sala, M.; Wolf, D.

    2002-04-01

    In some geological environments, the tetrad effect can be observed as a split of rare earth element (REE) patterns into four rounded segments. A new method is proposed to quantify the sizes of the individual segments, and for the first time, the significance of observed tetrad effects is evaluated by taking analytical errors into account. The outlined method was applied to lanthanide patterns of whole-rock and fluorite samples collected from granite-related rare metal deposits. The REE patterns of the granite and greisen samples investigated exhibit significant tetrad effects that may not be accounted for by analytical uncertainties. It is shown that the study of whole-rock samples is insufficient to determine whether this effect is developed during fractional crystallization or is due to other processes such as fluid-rock interaction. A concave tetrad effect mirroring the pattern of the whole-rock samples was not observed in the REE patterns of related vein fluorite samples. Therefore, it is unlikely that the convex tetrad effect in the samples from the magmatic environment can be explained by removal of a respective complementary REE pattern by a coexisting hydrothermal fluid, as previously suggested. It is proposed that the tetrad effect formed within the magma-fluid system before emplacement in the subvolcanic environment where phase separation caused a split of this system into fluid and magma subsystems. Alternatively, the tetrad effect may also be inherited from an external fluid influencing the system during or after the emplacement of the magma. On the basis of the fluorite data, it is shown that the behavior of Eu in the fluids is not related to the tetrad effect. Consequently, different physico-chemical factors control the occurrence of both phenomena. Y was found to be strongly enriched in samples precipitating from hydrothermal fluids that experienced prolonged interaction with the wall-rocks, whereas the tetrad effect in the fluids vanished with time

  19. Neutral ligand induced methane elimination from rare-earth metal tetramethylaluminates up to the six-coordinate carbide state.

    PubMed

    Venugopal, Ajay; Kamps, Ina; Bojer, Daniel; Berger, Raphael J F; Mix, Andreas; Willner, Alexander; Neumann, Beate; Stammler, Hans-Georg; Mitzel, Norbert W

    2009-08-07

    The reaction of 1,3,5-trimethyl-1,3,5-triazacyclohexane (TMTAC) with [La{Al(CH(3))(4)}(3)] resulted in C-H activation, leading to the formation of [(TMTAC)La{Al(CH(3))(4)}{(mu(3)-CH(2))[Al(CH(3))(2)(mu(2)-CH(3))](2)}] (1) containing a bis(aluminate) dianion and subsequent extrusion of methane. A similar reaction with [Y{Al(CH(3))(4)}(3)] led to the formation of CH(4), [TMTAC{Al(CH(3))(3)}(2)] (2) and {[(TMTAC)Y][Y(2)(mu(2)-CH(3))][{(mu(6)-C)[Al(mu(2)-CH(3))(2)(CH(3))](3)}{(mu(3)-CH(2))(mu(2)-CH(3))Al(CH(3))(2)}(2)] (3), containing a six-coordinate carbide ion and two [CH(2)Al(CH(3))(3)](2)(-) anions. Compound 3 is a product of multiple C-H activation. This reaction was monitored by in situ(1)H NMR spectroscopy. The analogous reaction with [Sm{Al(CH(3))(4)}(3)] led to the formation of 2, of [(TMTAC)Sm{(mu(2)-CH(3))(CH(3))(2)Al}(2){(mu(3)-CH(2))(2)Al(CH(3))(2)}(2)] (4), which contains a tris(aluminate) trianion, and [{(TMTAC)Sm}{Sm(2)(mu(2)-CH(3))}{(mu(6)-C)[Al(mu(2)-CH(3))(2)(CH(3))](3)}{(mu(3)-CH(2))(mu(2)-CH(3))Al(CH(3))(2)}(2)] (5), which is isostructural to 3. The products were characterised by elemental analyses (except 4, 5), 1 by multinuclear NMR spectroscopy and compounds 1, 2, 3, 4 and 5 by X-ray crystallography. Quantumchemical calculations were undertaken to support the crystallographic data analysis and confirm the structure of 3 and to compare it with an analogous compound where the central six-coordinate carbon has been replaced by oxygen. The investigations point to a mechanism of sterically induced condensation of [Al(CH(3))(4)](-) groups in close proximity in the coordination spheres of the rare-earth metal atoms, which is dependent on the size of these metal atoms.

  20. Rare Earth Garnet Selective Emitter

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approx. = 0.75, sup 4)|(sub 15/2) - (sup 4)|(sub 13/2),for Er-YAG and epsilon(sub lambda) approx. = 0.65, (sup 5)|(sub 7) - (sup 5)|(sub 8) for Ho-YAG) at 1500 K. In addition, low out-of-band spectral emittance, epsilon(sub lambda) less than 0.2, suggest these materials would be excellent candidates for high efficiency selective emitters in thermophotovoltaic (TPV) systems operating at moderate temperatures (1200-1500 K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. Selective emitters in the near IR are of special interest for thermophotovoltaic (TPV) energy conversion. The most promising solid selective emitters for use in a TPV system are rare earth oxides. Early spectral emittance work on rare earth oxides showed strong emission bands in the infrared (0.9 - 3 microns). However, the emittance outside the emission band was also significant and the efficiency of these emitters was low. Recent improvements in efficiency have been made with emitters fabricated from fine (5 - 10 microns) rare earth oxide fibers similar to the Welsbach mantle used in gas lanterns. However, the rare earth garnet emitters are more rugged than the mantle type emitters. A thin film selective emitter on a low emissivity substrate such as gold, platinum etc., is rugged and easily adapted to a wide variety of thermal sources. The garnet structure and its many subgroups have been successfully used as hosts for rare earth ions, introduced as substitutional

  1. Optimization of a Molten Salt Electrolytic Bath Geometry for Rare Earth Metal Recovery using a Finite Element Method

    NASA Astrophysics Data System (ADS)

    Numata, Hiroo; Akatsuka, Hiroshi; Matsuura, Haruaki

    2013-02-01

    For a recycling procedure for rare earths from spent hydrogen absorbing alloys by rare earths electrodeposition in a molten salt, the electrolytic bath and the cathode accessories have been optimized by evaluating the appropriate secondary current distribution using finite element method (FEM) computer simulation. The desirable cathode dish as an accessory was designed to prevent drops of less adherent electrodeposits, which improved the current density distribution compared with an a priori determined one. In the bath optimization, a reciprocal proportionality of the difference between the maximum and minimum current densities vs. the ratio of volume to surface area (or electrolyte volume) was found. It was found by FEM that if a resistive floating mass is assumed on the electrolyte surface, the observed necking in the electrodeposit near the electrolyte surface can be analyzed.

  2. Antibacterial, Antifungal and Nematicidal Activities of Rare Earth Ions.

    PubMed

    Wakabayashi, Tokumitsu; Ymamoto, Ayumi; Kazaana, Akira; Nakano, Yuta; Nojiri, Yui; Kashiwazaki, Moeko

    2016-12-01

    Despite the name, rare earth elements are relatively abundant in soil. Therefore, these elements might interact with biosphere during the history of life. In this study, we have examined the effect of rare earth ions on the growth of bacteria, fungi and soil nematode. All rare earth ions, except radioactive promethium that we have not tested, showed antibacterial and antifungal activities comparable to that of copper ions, which is widely used as antibacterial metals in our daily life. Rare earth ions also have nematicidal activities as they strongly perturb the embryonic development of the nematode, Caenorhabditis elegans. Interestingly, the nematicidal activity increased with increasing atomic number of lanthanide ions. Since the rare earth ions did not show high toxicity to the human lymphoblastoid cell line or even stimulate the growth of the cultured cells at 1 mM, it raised the possibility that we can substitute rare earth elements for the antibacterial metals usually used because of their safety.

  3. Concentration-Discharge Relationships of Al, Transition Metals, and Rare Earth Elements in the Santa Catalina Mountains- Jemez River Basin Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Redfield, S.; Chorover, J.; Trostle, K.

    2015-12-01

    The Concentration-Discharge relationships of solutes in stream waters during high-volume storm events are of interest when studying influencing factors of weathering. While base cations (Na, K, Mg, Ca) have been widely characterized in terms of concentration-discharge relationships, little is known in regards to Al, transition metals, and rare earth elements, which typically demonstrate a positive concentration-discharge relationship, unlike their cation counterparts. We performed a cascade-filtration (at 1.2μm, 0.4μm, and 0.025μm) of stream water samples collected during a monsoon storm event at the Marshall Gulch site of the Santa Catalina Mountains-Jemez River Basin Critical Zone Observatory and used standard stream water analytical techniques to determine concentration-discharge relationships. This yielded positive concentration-discharge relationships for Al, transition metals, and rare earth elements. Additionally, using the ratio of 0.025um-filtered samples to 0.4um-filtered samples, we find that these species (Al, transition metals, rare earth elements) were not completely dissolved in stream water. This partial dissolution, in conjunction with the positive concentration-discharge relationship, implies the complexation of these species to colloids or dissolved organic matter during stream-water transport.

  4. Selective separation of rare earth metals by solvent extraction in the presence of new hyrophilic chelating polymers functionalized with ethylenediaminetetraacetic acid. II. Separation properties by solvent extraction

    SciTech Connect

    Matsuyama, Hideto; Miyamoto, Yoshikazu; Teramoto, Masaaki

    1996-03-01

    The selective separation of rare earth metals by solvent extraction including chelating polymers in the aqueous phase was investigated. The chelating polymers were synthesized in this laboratory by introducing ethylenediaminetetraacetic acid (EDTA) onto water-soluble polyallylamine. The highest selectivity obtained for the Y/Er separation system was 14.7, which was much higher than that in extraction including EDTA (about 5.0). This means that the number of extraction stages required can be considerably reduced by the addition of chelating polymers. The effects of several experimental conditions such as pH, extractant concentrations, chelating polymer concentrations, and initial total rare earth metal concentrations, chelating polymer concentrations, and initial total rare earth metal concentrations on the separation factors and the distribution ratios for the Y/Er system were studied in detail. Furthermore, this extraction method was applied to other separation systems (Y/Dy, Y/Ho, Y/Tm). A remarkably high separation factor (12.6) was obtained for the Y/Tm system and the Y/Er system, although the separation factors were comparable to those in the presence of EDTA in the Y/Dy and Y/Ho systems.

  5. Novel Fiber Preforms: Rare Earth Doping.

    DTIC Science & Technology

    1987-03-31

    proposed by the group at Southampton, and future experiments with axial laser heating of terbium metal are planned. As noted, much of the effort during...been doped with terbium , in our learning to control the doping concentration, we have observed bands of undesired microcrystailinity in some terbium ...preforms with terbium (not yet pulled into fibers), and rare earth glasses formed by sol-gel tech- niques. Future efforts will be to prepare fibers

  6. Nitrite complexes of the rare earth elements.

    PubMed

    Pouessel, Jacky; Thuéry, Pierre; Berthet, Jean-Claude; Cantat, Thibault

    2014-03-21

    The coordination chemistry of the nitrite anion has been investigated with rare earth elements, and the resulting complexes were structurally characterized. Among them, the first homoleptic examples of nitrite complexes of samarium, ytterbium and yttrium are described. The coordination behavior of the nitrite ion is directly controlled by the ionic radius of the metal cation. While the nitrito ligand is stable in the coordination sphere of cerium(iii), it is readily reduced by SmI2.

  7. Heterobimetallic transition metal/rare earth metal bifunctional catalysis: a Cu/Sm/Schiff base complex for syn-selective catalytic asymmetric nitro-Mannich reaction.

    PubMed

    Handa, Shinya; Gnanadesikan, Vijay; Matsunaga, Shigeki; Shibasaki, Masakatsu

    2010-04-07

    The full details of a catalytic asymmetric syn-selective nitro-Mannich reaction promoted by heterobimetallic Cu/Sm/dinucleating Schiff base complexes are described, demonstrating the effectiveness of the heterobimetallic transition metal/rare earth metal bifunctional catalysis. The first-generation system prepared from Cu(OAc)(2)/Sm(O-iPr)(3)/Schiff base 1a = 1:1:1 with an achiral phenol additive was partially successful for achieving the syn-selective catalytic asymmetric nitro-Mannich reaction. The substrate scope and limitations of the first-generation system remained problematic. After mechanistic studies on the catalyst prepared from Sm(O-iPr)(3), we reoptimized the catalyst preparation method, and a catalyst derived from Sm(5)O(O-iPr)(13) showed broader substrate generality as well as higher reactivity and stereoselectivity compared to Sm(O-iPr)(3). The optimal system with Sm(5)O(O-iPr)(13) was applicable to various aromatic, heteroaromatic, and isomerizable aliphatic N-Boc imines, giving products in 66-99% ee and syn/anti = >20:1-13:1. Catalytic asymmetric synthesis of nemonapride is also demonstrated using the catalyst derived from Sm(5)O(O-iPr)(13).

  8. Rare Earth Optical Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Wolford, David S.

    2000-01-01

    A new optical temperature sensor suitable for high temperatures (greater than 1700 K) and harsh environments is introduced. The key component of the sensor is the rare earth material contained at the end of a sensor that is in contact with the sample being measured. The measured narrow wavelength band emission from the rare earth is used to deduce the sample temperature. A simplified relation between the temperature and measured radiation was verified experimentally. The upper temperature limit of the sensor is determined by material limits to be approximately 2000 C. The lower limit, determined by the minimum detectable radiation, is found to be approximately 700 K. At high temperatures 1 K resolution is predicted. Also, millisecond response times are calculated.

  9. Laboratory calibration and field testing of the Chemcatcher-Metal for trace levels of rare earth elements in estuarine waters.

    PubMed

    Petersen, Jördis; Pröfrock, Daniel; Paschke, Albrecht; Broekaert, Jose A C; Prange, Andreas

    2015-10-01

    Little knowledge is available about water concentrations of rare earth elements (REEs) in the marine environment. The direct measurement of REEs in coastal waters is a challenging task due to their ultra-low concentrations as well as the high salt content in the water samples. To quantify these elements at environmental concentrations (pg L(-1) to low ng L(-1)) in coastal waters, current analytical techniques are generally expensive and time consuming, and require complex chemical preconcentration procedures. Therefore, an integrative passive sampler was tested as a more economic alternative sampling approach for REE analysis. We used a Chemcatcher-Metal passive sampler consisting of a 3M Empore Chelating Disk as the receiving phase, as well as a cellulose acetate membrane as the diffusion-limiting layer. The effect of water turbulence and temperature on the uptake rates of REEs was analyzed during 14-day calibration experiments by a flow-through exposure tank system. The sampling rates were in the range of 0.42 mL h(-1) (13 °C; 0.25 m s(-1)) to 4.01 mL h(-1) (13 °C; 1 m s(-1)). Similar results were obtained for the different REEs under investigation. The water turbulence was the most important influence on uptake. The uptake rates were appropriate to ascertain time-weighted average concentrations of REEs during a field experiment in the Elbe Estuary near Cuxhaven Harbor (exposure time 4 weeks). REE concentrations were determined to be in the range 0.2 to 13.8 ng L(-1), where the highest concentrations were found for neodymium and samarium. In comparison, most of the spot samples measured along the Chemcatcher samples had REE concentrations below the limit of detection, in particular due to necessary dilution to minimize the analytical problems that arise with the high salt content in marine water samples. This study was among the first efforts to measure REE levels in the field using a passive sampling approach. Our results suggest that passive samplers could be

  10. Water-free rare-earth-metal ionic liquids/ionic liquid crystals based on hexanitratolanthanate(III) anion.

    PubMed

    Ji, Shun-Ping; Tang, Meng; He, Ling; Tao, Guo-Hong

    2013-04-02

    The hexanitratolanthanate anion (La(NO(3))(6)(3-)) is an interesting symmetric anion suitable to construct the component of water-free rare-earth-metal ionic liquids. The syntheses and structural characterization of eleven lanthanum nitrate complexes, [C(n)mim](3)[La(NO(3))(6)] (n=1, 2, 4, 6, 8, 12, 14, 16, 18), including 1,3-dimethylimidazolium hexanitratolanthanate ([C(1)mim](3)[La(NO(3))(6)], 1), 1-ethyl-3-methylimidazolium hexanitratolanthanate ([C(2)mim](3)[La(NO(3))(6)], 2), 1-butyl-3-methylimidazolium hexanitratolanthanate ([C(4)mim](3)[La(NO(3))(6)], 3), 1-isobutyl-3-methylimidazolium hexanetratolanthanate ([isoC(4)mim](3)[La(NO(3))(6)], 4), 1-methyl-3-(3'-methylbutyl)imidazolium hexanitratolanthanate ([MC(4)mim](3)[La(NO(3))(6)], 5), 1-hexyl-3-methylimidazolium hexanitratolanthanate ([C(6)mim](3)[La(NO(3))(6)], 6), 1-methyl-3-octylimidazolium hexanitratolanthanate ([C(8)mim](3)[La(NO(3))(6)], 7), 1-dodecyl-3-methylimidazolium hexanitratolanthanate ([C(12)mim](3)[La(NO(3))(6)], 8), 1-methyl-3-tetradecylimidazolium hexanitratolanthanate ([C(14)mim](3)[La-(NO(3))(6)], 9), 1-hexadecyl-3-methylimid-azolium hexanitratolanthanum ([C(16)dmim](3)[La(NO(3))(6)], 10), and 1-methyl-3-octadecylimidazolium hexanitratolanthanate ([C(18)mim](3)[La(NO(3))(6)], 11) are reported. All new compounds were characterized by (1)H and (13)C NMR, and IR spectroscopy as well as elemental analysis. The crystal structure of compound 1 was determined by using single-crystal X-ray diffraction, giving the following crystallographic information: monoclinic; P2(1)/c; a=15.3170 (3), b=14.2340 (2), c=13.8954(2) Å; β=94.3453(15)°, V=3020.80(9) Å(3), Z=4, ρ=1.764 g cm(-3). The coordination polyhedron around the lanthanum ion is rationalized by six nitrate anions with twelve oxygen atoms. No hydrogen-bonding network or water molecule was found in 1. The thermodynamic stability of the new complexes was investigated by using thermogravimetric analysis (TGA). The water

  11. Potency of (doped) rare earth oxide particles and their constituent metals to inhibit algal growth and induce direct toxic effects.

    PubMed

    Joonas, Elise; Aruoja, Villem; Olli, Kalle; Syvertsen-Wiig, Guttorm; Vija, Heiki; Kahru, Anne

    2017-09-01

    Use of rare earth elements (REEs) has increased rapidly in recent decades due to technological advances. It has been accompanied by recurring rare earth element anomalies in water bodies. In this work we (i) studied the effects of eight novel doped and one non-doped rare earth oxide (REO) particles (aimed to be used in solid oxide fuel cells and gas separation membranes) on algae, (ii) quantified the individual adverse effects of the elements that constitute the (doped) REO particles and (iii) attempted to find a discernible pattern to relate REO particle physicochemical characteristics to algal growth inhibitory properties. Green algae Raphidocelis subcapitata (formerly Pseudokirchneriella subcapitata) were used as a test species in two different formats: a standard OECD201 algal growth inhibition assay and the algal viability assay (a 'spot test') that avoids nutrient removal effects. In the 24h 'spot' test that demonstrated direct toxicity, algae were not viable at REE concentrations above 1mgmetal/L. 72-hour algal growth inhibition EC50 values for four REE salts (Ce, Gd, La, Pr) were between 1.2 and 1.4mg/L, whereas the EC50 for REO particles ranged from 1 to 98mg/L. The growth inhibition of REEs was presumably the result of nutrient sequestration from the algal growth medium. The adverse effects of REO particles were at least in part due to the entrapment of algae within particle agglomerates. Adverse effects due to the dissolution of constituent elements from (doped) REO particles and the size or specific surface area of particles were excluded, except for La2NiO4. However, the structure of the particles and/or the varying effects of oxide composition might have played a role in the observed effects. As the production rates of these REO particles are negligible compared to other forms of REEs, there is presumably no acute risk for aquatic unicellular algae. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Combining emission and absorption spectroscopy at rare earth spectral lines: plasma temperature measurements in ceramic metal halide lamps

    NASA Astrophysics Data System (ADS)

    Ruhrmann, C.; Westermeier, M.; Höbing, T.; Bergner, A.; Denissen, C.; Suijker, J.; Awakowicz, P.; Mentel, J.

    2013-07-01

    Presently, most high intensity discharge (HID) lamps contain mercury to generate a high pressure buffer gas and thereby an appropriate power input into the arc. Due to its toxicity, the replacement of Hg is of particular interest in recent research on HID lamps. Up to now, the emission coefficient of an atomic Hg double line is widely used to determine the plasma temperature Tpl in HID lamps. Tpl is needed to calculate the total density of atoms and ions of elements inside these lamps. A combination of optical emission and broadband absorption spectroscopy allows us to evaluate Tpl independently of Hg emission lines. The method is required for a determination of Tpl if the Hg line intensity within the investigated lamp is too low, is superimposed by other lines or if environmental-friendly Hg-free lamps are developed. Within this work, phase-resolved plasma temperatures are determined in front of the electrode of Hg-containing MH lamps by emission spectroscopy at atomic Hg lines. Above all, temperatures are measured by a combination of emission and absorption spectroscopy at atomic rare earth lines, namely Dy and Tm. A comparison of Tpl determined by both methods agree within an error margin of <10%. Total phase-resolved rare earth atom densities are obtained by means of the measured ground state densities and Tpl. The combination of emission and absorption spectroscopy is also applied to the bulk plasma of lamps where the intensity of the Hg emission lines is too low for plasma temperature measurements or Hg is absent. It provides the partial rare earth pressure and by comparison with thermodynamic data cold spot temperatures within the lamps.

  13. 4f-3d interaction and magnetic anisotropy in ThMn12-type rare-earth transition-metal compounds

    NASA Astrophysics Data System (ADS)

    de Boer, F. R.; Zhao, Z. G.; Buschow, K. H. J.

    1996-05-01

    Rare-earth (R) transition-metal (T) compounds of the R(T,M)12-type with R=Y or one of the heavy-rare-earth elements, T=Fe or Co and M=Ti, V, Mo or Si, have been studied at 4.2 K in the Amsterdam High-Field Installation in magnetic fields up to 38 T and at temperatures between 4.2 and 1000 K in other magnetometers. The 4f-3d interaction is derived from magnetization measurements on single-crystalline particles that are free to rotate in the applied fields. The stabilizing element M is shown to have a pronounced influence on the 4f-3d interaction strength in these compounds. The large variation in Curie temperatures of the Y compounds and the different types of magnetic anisotropy found in the Y compounds demonstrate that the element M plays an important role in establishing these properties as well.

  14. Scarcity of rare earth elements.

    PubMed

    de Boer, M A; Lammertsma, K

    2013-11-01

    Rare earth elements (REEs) are important for green and a large variety of high-tech technologies and are, therefore, in high demand. As a result, supply with REEs is likely to be disrupted (the degree of depends on the REE) in the near future. The 17 REEs are divided into heavy and light REEs. Other critical elements besides REEs, identified by the European Commission, are also becoming less easily available. Although there is no deficiency in the earth's crust of rare earth oxides, the economic accessibility is limited. The increased demand for REEs, the decreasing export from China, and geopolitical concerns on availability contributed to the (re)opening of mines in Australia and the USA and other mines are slow to follow. As a result, short supply of particularly terbium, dysprosium, praseodymium, and neodymium is expected to be problematic for at least the short term, also because they cannot be substituted. Recycling REEs from electronic waste would be a solution, but so far there are hardly any established REE recycling methods. Decreasing the dependency on REEs, for example, by identifying possible replacements or increasing their efficient use, represents another possibility.

  15. Anthropogenic Cycles of Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Du, X.; Graedel, T. E.

    2009-12-01

    This research will develop quantitatively resolved anthropogenic cycles and in-use stocks for the rare earth metals specifically cerium, lanthanum and dysprosium in Japan, China, and the U.S. for the year of 2007. Rare earth elements (REE) is a group of 17 scare metals widely used in a growing number of emerging technologies and have been in high demand for emerging technologies as raw materials during past the three decades. New market participants from newly industrializing countries, primarily China, have had strong impacts on the demand of share. Consequently, the importance to sustain a reliable, steady, uninterrupted supply on global market triggered comprehensive research to recognize and understand the life cycles of rare earths. Moreover, because China plays a dominant role in mining production since 1990, it requires the assessment for the countries, which are almost completely dependent on imports from China with respect to rare earth resources. The study aims to analyze the flows and stocks of rare earth elements individually as elemental form in spite of their natural geological co-occurrence and mixed composition in applications. By applying the method of Material Flow Analysis (MFA) work has been done on evaluating current and historical flows of specific technologically significant materials, for example, copper, zinc, nickel, etc., determining the stocks available in different types of reservoirs (e.g., lithosphere, in-use) and the flows among the reservoirs, developing scenarios of possible futures of metal use, and assessing the environmental and policy implications of the results. Therefore, REE as a new target deserves inclusion because of its potential demand-supply conflict and importance to secure the competitive advantage of technical innovation in future. This work will generate a quantitatively resolved anthropogenic life cycle and in-use stocks for REE for the main target countries for a chosen year, 2007, providing flows and stocks from

  16. Rare earth metal bis(amide) complexes bearing amidinate ancillary ligands: synthesis, characterization, and performance as catalyst precursors for cis-1,4 selective polymerization of isoprene.

    PubMed

    Luo, Yunjie; Fan, Shimin; Yang, Jianping; Fang, Jianghua; Xu, Ping

    2011-03-28

    A family of rare earth metal bis(amide) complexes bearing monoanionic amidinate [RC(N-2,6-Me(2)C(6)H(3))(2)](-) (R = cyclohexyl (Cy), phenyl (Ph)) as ancillary ligands were synthesized and characterized. One-pot salt metathesis reaction of anhydrous LnCl(3) with one equivalent of amidinate lithium [RC(N-2,6-Me(2)C(6)H(3))(2)]Li, following the introduction of two equivalents of NaN(SiMe(3))(2) in THF at room temperature afforded the neutral and unsolvated mono(amidinate) rare earth metal bis(amide) complexes [RC(N-2,6-Me(2)C(6)H(3))(2)]Y[N(SiMe(3))(2)](2) (R = Cy (1); R = Ph (2)), and the "ate" mono(amidinate) rare earth metal bis(amide) complex [CyC(N-2,6-Me(2)C(6)H(3))(2)]Lu[N(SiMe(3))(2)](2)(μ-Cl)Li(THF)(3) (3) in 61-72% isolated yields. These complexes were characterized by elemental analysis, NMR spectroscopy, FT-IR spectroscopy, and X-ray single crystal diffraction. Single crystal structural determination revealed that the central metal in complexes 1 and 2 adopts a distorted tetrahedral geometry, and in complex 3 forms a distorted trigonal bipyramidal geometry. In the presence of AlMe(3), and in combination with one equimolar amount of [Ph(3)C][B(C(6)F(5))(4)], complexes 1 and 2 showed high activity towards isoprene polymerization to give high molecular weight polyisoprene (M(n) > 10(4)) with good cis-1,4 selectivity (>90%).

  17. Biosorption of metal and salt tolerant microbial isolates from a former uranium mining area. Their impact on changes in rare earth element patterns in acid mine drainage.

    PubMed

    Haferburg, Götz; Merten, Dirk; Büchel, Georg; Kothe, Erika

    2007-12-01

    The concentration of metals in microbial habitats influenced by mining operations can reach enormous values. Worldwide, much emphasis is placed on the research of resistance and biosorptive capacities of microorganisms suitable for bioremediation purposes. Using a collection of isolates from a former uranium mining area in Eastern Thuringia, Germany, this study presents three Gram-positive bacterial strains with distinct metal tolerances. These strains were identified as members of the genera Bacillus, Micrococcus and Streptomyces. Acid mine drainage (AMD) originating from the same mining area is characterized by high metal concentrations of a broad range of elements and a very low pH. AMD was analyzed and used as incubation solution. The sorption of rare earth elements (REE), aluminum, cobalt, copper, manganese, nickel, strontium, and uranium through selected strains was studied during a time course of four weeks. Biosorption was investigated after one hour, one week and four weeks by analyzing the concentrations of metals in supernatant and biomass. Additionally, dead biomass was investigated after four weeks of incubation. The maximum of metal removal was reached after one week. Up to 80% of both Al and Cu, and more than 60% of U was shown to be removed from the solution. High concentrations of metals could be bound to the biomass, as for example 2.2 mg/g U. The strains could survive four weeks of incubation. Distinct and different patterns of rare earth elements of the inoculated and non-inoculated AMD water were observed. Changes in REE patterns hint at different binding types of heavy metals regarding incubation time and metabolic activity of the cells.

  18. Rare-earth metal complexes stabilized by amino-phosphine ligand. Reaction with mesityl azide and catalysis of the cycloaddition of organic azides and aromatic alkynes.

    PubMed

    Liu, Bo; Cui, Dongmei

    2009-01-21

    Stoichiometric reactions between mesityl azide (MesN3, Mes = 2,4,6-C6H2Me3) and amino-phosphine ligated rare-earth metal alkyl, LLn(CH2SiMe3)2(THF) (L = (2,6-C6H3Me2)NCH2C6H4P(C6H5)2; Ln = Lu (1a), Sc (1b)), amide, LLu(NH(2,6-C6H3iPr2))2(THF) (2) and acetylide at room temperature gave the amino-phosphazide ligated rare-earth metal bis(triazenyl) complexes, [L(MesN3)]Ln[(MesN3)(CH2SiMe3)]2 (Ln = Lu (3a); Sc (3b)), bis(amido) complex [L(MesN3)]Lu[NH(2,6-C6H3iPr2)]2 (4), and bis(alkynyl) complex (5) (L(MesN3)Lu (C[triple bond, length as m-dash]CPh)2)2, respectively. The triazenyl group in coordinates to the metal ion in a rare eta2-mode via N(beta) and N(gamma) atoms, generating a triangular metallocycle. The amino-phosphazide ligand, L(MesN3), in , and chelates to the metal ion in a eta3-mode via N(alpha) and N(gamma) atoms. In the presence of excess phenylacetylene, complex isomerized to , where the triazenyl group coordinates to the metal ion in a eta3 mode via N(alpha) and N(gamma) atoms. Complexes , , and have shown an unprecedented catalytic activity towards the cycloaddition of organic azides and aromatic alkynes to afford 1,5-disubstituted 1,2,3-triazoles selectively.

  19. Replacing the Rare Earth Intellectual Capital

    SciTech Connect

    Gschneidner, Jr., Karl

    2011-04-01

    The rare earth crisis slowly evolved during a 10 to 15 year period beginning in the mid-1980s, when the Chinese began to export mixed rare earth concentrates. In the early 1990s, they started to move up the supply chain and began to export the individual rare earth oxides and metals. By the late 1990s the Chinese exported higher value products, such as magnets, phosphors, polishing compounds, catalysts; and in the 21st century they supplied finished products including electric motors, computers, batteries, liquid-crystal displays (LCDs), TVs and monitors, mobile phones, iPods and compact fluorescent lamp (CFL) light bulbs. As they moved to higher value products, the Chinese slowly drove the various industrial producers and commercial enterprises in the US, Europe and Japan out of business by manipulating the rare earth commodity prices. Because of this, the technically trained rare earth engineers and scientists who worked in areas from mining to separations, to processing to production, to manufacturing of semifinished and final products, were laid-off and moved to other fields or they retired. However, in the past year the Chinese have changed their philosophy of the 1970s and 1980s of forming a rare earth cartel to control the rare earth markets to one in which they will no longer supply the rest of the world (ROW) with their precious rare earths, but instead will use them internally to meet the growing demand as the Chinese standard of living increases. To this end, they have implemented and occasionally increased export restrictions and added an export tariff on many of the high demand rare earth elements. Now the ROW is quickly trying to start up rare earth mines, e.g. Molycorp Minerals in the US and Lynas Corp. in Australia, to cover this shortfall in the worldwide market, but it will take about five years for the supply to meet the demand, even as other mines in the ROW become productive. Unfortunately, today there is a serious lack of technically trained

  20. Rare earths, the lanthanides, yttrium and scandium

    USGS Publications Warehouse

    Hedrick, J.B.

    2006-01-01

    In 2005, rare earths were not mined in the United States. The major supplier, Molycorp, continued to maintain a large stockpile of rare-earth concentrates and compounds. Consumption decreased of refined rare-earth products. The United States remained a major importer and exporter of rare earths in 2005. During the same period, yttrium was not mined or refined in the US. Hence, supply of yttrium compounds for refined yttrium products came from China, France and Japan. Scandium was not also mined. World production was primarily in China, Russia and Ukraine. Demand for rare earths in 2006 is expected to be closely tied to economic conditions in the US.

  1. Material efficiency: rare and critical metals.

    PubMed

    Ayres, Robert U; Peiró, Laura Talens

    2013-03-13

    In the last few decades, progress in electronics, especially, has resulted in important new uses for a number of geologically rare metals, some of which were mere curiosities in the past. Most of them are not mined for their own sake (gold, the platinum group metals and the rare Earth elements are exceptions) but are found mainly in the ores of the major industrial metals, such as aluminium, copper, zinc and nickel. We call these major metals 'attractors' and the rare accompanying metals 'hitch-hikers'. The key implication is that rising prices do not necessarily call forth greater output because that would normally require greater output of the attractor metal. We trace the geological relationships and the functional uses of these metals. Some of these metals appear to be irreplaceable in the sense that there are no known substitutes for them in their current functional uses. Recycling is going to be increasingly important, notwithstanding a number of barriers.

  2. Neutron Diffraction Studies of Hydrogen Adsorption in a Highly Stable Porous Rare-Earth Metal-Organic Framework

    NASA Astrophysics Data System (ADS)

    Luo, Junhua; Zhao, Yusheng; Xu, Hongwu; Daemen, Luc L.

    2008-10-01

    Gas sorption measurements show that a highly stable porous lanthanide metal-organic framework can take up hydrogen of about 2.1 wt. % at 77 K and 10 bar. Difference Fourier analysis of neutron powder diffraction data revealed four distinct D2 sites that are progressively filled within the nanoporous framework. Interestingly, the strongest adsorption sites identified are associated with the aromatic organic linkers rather than the open metal sites, as occurred in previously reported MOFs. Our results provide for the first time direct structural evidence demonstrating that optimal pore size (around 6 å, twice the kinetic diameter of hydrogen) strengthens the interactions between H2 molecules and pore walls and increases the heat of adsorption, which thus allows for enhancing hydrogen adsorption from the interaction between hydrogen molecules with the pore walls rather than with the normally stronger adsorption sites (the open metal sites) within the framework. At high concentration H2-loadings (5.5 H2 molecules (3.7 wt. %) per Y(BTC) formula), H2 molecules form highly symmetric novel nanoclusters with relatively short H2-H2 distances compared to solid H2. These observations are important and hold the key to optimizing this new class of rare metal-organic frameworks (RMOFs) materials for practical hydrogen storage applications.

  3. Rare earth garnet selective emitter

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approximately equal to 0.74, ((4)l(sub 15/2)) - ( (4)l(sub13/2)), for Er-YAG and epsilon(sub lambda) approximately equal to 0.65, ((5)l(sub 7))-((5)l(sub 8)) for Ho-YAG) at excellent candidates for high efficiency selective emitters in the thermophotovoltaics (TPV) systems operating at moderate temperatures (1200-1500K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. This paper presents normal spectral emittance, epsilon(sub lambda), measurements of holmium (Ho), and erbium (Er) doped YAG thin film selective emitters at 1500 K, and compares those results with the theoretical spectral emittance.

  4. Dehydrogenation of secondary amines: synthesis, and characterization of rare-earth metal complexes incorporating imino- or amido-functionalized pyrrolyl ligands.

    PubMed

    Li, Qinghai; Zhou, Shuangliu; Wang, Shaowu; Zhu, Xiancui; Zhang, Lijun; Feng, Zhijun; Guo, Liping; Wang, Fenhua; Wei, Yun

    2013-02-28

    The dehydrogenation of pyrrolyl-functionalized secondary amines initiated by rare-earth metal amides was systematically studied. Reactions of the rare-earth metal amides [(Me(3)Si)(2)N](3)RE(μ-Cl)Li(THF)(3) with pyrrolyl-functionalized secondary amines 2-(t)BuNHCH(2)-5-R-C(4)H(2)NH (R = H (1), R = (t)Bu (2)) led to dehydrogenation of the secondary amines with isolation of imino-functionalized pyrrolyl rare-earth metal complexes [2-(t)BuN=CH-5-R-C(4)H(2)N](2)REN(SiMe(3))(2) (R = H, RE = Y (3a), Dy (3b), Yb (3c), Eu (3d); R = (t)Bu, RE = Y (4a), Dy (4b), Er (4c)). The mixed ligands erbium complex [2-(t)BuNCH(2)-5-(t)Bu-C(4)H(2)N]Er[2-(t)BuN=CH-5-(t)BuC(4)H(2)N](2)ClLi(2)(THF) (4c') was isolated in a short reaction time for the synthesis of complex 4c. Reaction of the deuterated pyrrolyl-functionalized secondary amine 2-((t)BuNHCHD)C(4)H(3)NH with yttrium amide [(Me(3)Si)(2)N](3)Y(μ-Cl)Li(THF)(3) further proved that pyrrolyl-amino ligands were transferred to pyrrolyl-imino ligands. Treatment of 2-((t)BuNHCH(2))C(4)H(3)NH (1) with excess (Me(3)Si)(2)NLi gave the only pyrrole deprotonated product {[η(5):η(2):η(1)-2-((t)BuNHCH(2))C(4)H(3)N]Li(2)N(SiMe(3))(2)}(2) (5), indicating that LiN(SiMe(3))(2) could not dehydrogenate the secondary amines to imines and rare-earth metal ions had a decisive effect on the dehydrogenation. The reaction of the rare-earth metal amides [(Me(3)Si)(2)N](3)RE(μ-Cl)Li(THF)(3) with 1 equiv. of more bulky pyrrolyl-functionalized secondary amine 2-[(2,6-(i)Pr(2)C(6)H(3))NHCH(2)](C(4)H(3)NH) (6) in toluene afforded the only amine and pyrrole deprotonated dinuclear rare-earth metal amido complexes {(μ-η(5):η(1)):η(1)-2-[(2,6-(i)Pr(2)C(6)H(3))NCH(2)]C(4)H(3)N]LnN(SiMe(3))(2)}(2) (RE = Nd (7a), Sm (7b), Er (7c)), no dehydrogenation of secondary amine to imine products were observed. On the basis of experimental results, a plausible mechanism for the dehydrogenation of secondary amines to imines was proposed.

  5. Rare Earth Element Mines, Deposits, and Occurrences

    USGS Publications Warehouse

    Orris, Greta J.; Grauch, Richard I.

    2002-01-01

    Data on rare earth (including yttrium) mines, deposits, and occurrences were compiled as part of an effort by the USGS and the University of Arizona Center for Mineral Resources to summarize current knowledge on the supply and demand outlook and related topics for this group of elements. Economic competition and environmental concerns are increasingly constraining the mining and processing of rare earths from the Mountain Pass mine in California. For many years, the deposit at Mountain Pass was the world's dominant source of rare earth elements and the United States was essentially self-sufficient. Starting approximately 10 years ago, the U.S. has become increasingly dependent (> 90 percent of separated rare earths) upon imports from China, now the dominant source of rare earths. A knowledge of the known economic and noneconomic sources of rare earths is basic to evaluating the outlook for rare earth supply and associated issues.

  6. Rare earth elements: end use and recyclability

    USGS Publications Warehouse

    Goonan, Thomas G.

    2011-01-01

    Rare earth elements are used in mature markets (such as catalysts, glassmaking, lighting, and metallurgy), which account for 59 percent of the total worldwide consumption of rare earth elements, and in newer, high-growth markets (such as battery alloys, ceramics, and permanent magnets), which account for 41 percent of the total worldwide consumption of rare earth elements. In mature market segments, lanthanum and cerium constitute about 80 percent of rare earth elements used, and in new market segments, dysprosium, neodymium, and praseodymium account for about 85 percent of rare earth elements used. Regardless of the end use, rare earth elements are not recycled in large quantities, but could be if recycling became mandated or very high prices of rare earth elements made recycling feasible.

  7. Highly efficient stabilisation of meta-ethynylpyridine polymers with amide side chains in water by coordination of rare-earth metals.

    PubMed

    Makida, Hiroki; Abe, Hajime; Inouye, Masahiko

    2015-02-14

    An amphiphilic meta-ethynylpyridine polymer with chiral amide side chains was developed. The polymer was prepared by sequential Sonogashira reactions, and the product was soluble in polar and apolar solvents. The additive effects of metal salts on the polymer were examined in water and aqueous EtOH on the basis of UV-vis and CD spectra. The enhancement of the positive Cotton effect and hypochromism around 360 nm occurred by the addition of various metal salts, indicating the coordination of the cations to the amide side chains of the polymer to stabilise the helical structure. Among them, rare-earth metal salts, especially Sc(OTf)3 showed more efficient additive effects probably because of its strong coordination ability even in water. Positive cooperativity was observed for the coordination of Sc(OTf)3 to the polymer in aqueous EtOH.

  8. Synthesis and characterization of anionic rare-earth metal amides stabilized by phenoxy-amido ligands and their catalytic behavior for the polymerization of lactide.

    PubMed

    Lu, Min; Yao, Yingming; Zhang, Yong; Shen, Qi

    2010-10-28

    A dianionic phenoxyamido ligand was the first to be used to stabilize organo-rare-earth metal amido complexes. Amine elimination reaction of Nd[N(TMS)(2)](3)(μ-Cl)Li(THF)(3) (TMS = SiMe(3)) with aminophenol [HNOH] {[HNOH] = N-p-methylphenyl(2-hydroxy-3,5-di-tert-butyl)benzylamine} in a 1 : 1 molar-ratio gave the anionic phenoxyamido neodymium amide [NO](2)Nd[N(TMS)(2)][Li(THF)](2) (2) in a low isolated yield. A further study revealed that the stoichiometric reactions of Ln[N(TMS)(2)](3)(μ-Cl)Li(THF)(3) with the lithium aminophenoxy [HNOLi(THF)](2) (1) in tetrahydrofuran (THF) gave the anionic rare-earth metal amido complexes [NO](2)Ln[N(TMS)(2)][Li(THF)](2) [Ln = Nd (2), Sm (3), Yb (4), Y (5)] in high isolated yields. All of these complexes are fully characterized. X-Ray structure determination revealed that complex 1 has a solvated dimeric structure, and complexes 2-5 are isostructural, and have solvated monomeric structures. Each of the rare-earth metal ions is coordinated by two oxygen atoms and two nitrogen atoms from two phenoxyamido ligands and one nitrogen atom from the N(TMS)(2) group to form a distorted trigonal bipyramidal geometry. Each of the lithium atoms in complexes 2-5 is coordinated with one oxygen atom and one nitrogen atom from two different phenoxyamido groups, and one oxygen atom from one THF molecule to form a trigonal planar geometry. Furthermore, the catalytic behavior of complexes 2-5 for the ring-opening polymerization of l-lactide was explored.

  9. Transition metal and rare earth-doped ZnO: a comparison of optical, magnetic, and structural behavior of bulk and thin films

    NASA Astrophysics Data System (ADS)

    Fenwick, W. E.; Kane, M. H.; Varatharajan, R.; Zaidi, T.; Fang, Z.; Nemeth, B.; Keeble, D. J.; El-Mkami, H.; Smith, G. M.; Nause, J.; Summers, C. J.; Ferguson, I. T.

    2007-02-01

    Recent theoretical predictions of ferromagnetic behavior in transition metal (TM)-doped ZnO have focused significant attention on these materials for use as spintronic materials. Moreover, rare earth (RE) elements in wide bandgap semiconductors would be useful not only in spintronics but also in optoelectronic applications. This work presents results obtained from an investigation into the optical, magnetic, and structural properties of transition-metal (TM)- doped ZnO and rare earth (RE) doped ZnO (TM = Mn, Co, Ni, and Fe; RE = Gd, Eu, and Tb) bulk crystals and thin films. Properties of TM- and RE-doped ZnO bulk crystals and thin films were studied and compared in order to better understand the nature of these dopant centers and their effects on the properties of the host crystal. Optical properties confirm the incorporation of substitutional transition metal ions on cation sites. While most thin film samples show ferromagnetic behavior, the magnetic response of the bulk crystals varies. This suggests that the magnetic behavior of TM-doped ZnO is highly dependent on growth conditions, and growth conditions which favor the formation of grain boundaries and interfaces may be more likely to result in ferromagnetic behavior. Origins of this ferromagnetic behavior are still under investigation. Defect luminescence observed in the RE-doped samples suggests that these materials may prove useful in optoelectonic applications as well.

  10. Phase characteristics of rare earth elements in metallic fuel for a sodium-cooled fast reactor by injection casting

    NASA Astrophysics Data System (ADS)

    Kuk, Seoung Woo; Kim, Ki Hwan; Kim, Jong Hwan; Song, Hoon; Oh, Seok Jin; Park, Jeong-Yong; Lee, Chan Bock; Youn, Young-Sang; Kim, Jong-Yun

    2017-04-01

    Uranium-zirconium-rare earth (U-Zr-RE) fuel slugs for a sodium-cooled fast reactor were manufactured using a modified injection casting method, and investigated with respect to their uniformity, distribution, composition, and phase behavior according to RE content. Nd, Ce, Pr, and La were chosen as four representative lanthanide elements because they are considered to be major RE components of fuel ingots after pyroprocessing. Immiscible layers were found on the top layers of the melt-residue commensurate with higher fuel slug RE content. Scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) data showed that RE elements in the melt-residue were distributed uniformly throughout the fuel slugs. RE element agglomeration did not contaminate the fuel slugs but strongly affected the RE content of the slugs.

  11. Quantitative moment study and coupling of 4 f rare earth and 3 d metal by transmitted electrons

    NASA Astrophysics Data System (ADS)

    Fu, X.; Warot-Fonrose, B.; Arras, R.; Dumesnil, K.; Serin, V.

    2016-10-01

    We report a simultaneous investigation of 3 d and 4 f magnetic moments by exploring the Fe -L2 ,3 and Dy -M4 ,5 electron energy-loss edges of a DyF e2/YF e2 superlattice using the energy-loss magnetic chiral dichroism (EMCD) technique. Specific EMCD sum rules for M4 ,5 edges were established and carefully applied to the dichroic signal at Dy -M4 ,5 edges, giving an orbital to the effective spin moment ratio of 5.1 ±1.8 . With dynamic diffraction effects considered, the opposite signs of Fe -L3 and Dy -M5 dichroic peaks unambiguously indicate the antiparallel alignment of net Fe 3 d and Dy 4 f moments. The EMCD technique is shown to be an effective tool to locally characterize the 4 f moment of rare earth elements and study 3 d -4 f moment coupling.

  12. Phonon spectroscopy of the low-energy excitations in the solid solutions of yttrium-rare-earth metal-aluminum garnets

    NASA Astrophysics Data System (ADS)

    Khazanov, E. N.; Taranov, A. V.; Shevchenko, E. V.; Charnaya, E. V.

    2015-07-01

    The transport characteristics of thermal-frequency phonons and the specific heat of a series of single crystals of yttrium-rare-earth metal-aluminum garnet solid solutions are studied at the helium temperatures. It is found that the existence of low-energy levels of various origins, which are responsible for an increase in the specific heat, retards phonon transport by one-three orders of magnitude. The temperature dependences of specific heat and the kinetic characteristics of phonons have a similar character.

  13. Magnetic properties and structural transitions of orthorhombic fluorite-related compounds Ln{sub 3}MO{sub 7} (Ln=rare earths, M=transition metals)

    SciTech Connect

    Wakeshima, Makoto; Hinatsu, Yukio

    2010-11-15

    Magnetic properties and structural transitions of ternary rare-earth transition-metal oxides Ln{sub 3}MO{sub 7} (Ln=rare earths, M=transition metals) were investigated. In this study, we prepared a series of molybdates Ln{sub 3}MoO{sub 7} (Ln=La-Gd). They crystallize in an orthorhombic superstructure of cubic fluorite with space group P2{sub 1}2{sub 1}2{sub 1}, in which Ln{sup 3+} ions occupy two different crystallographic sites (the 8-coordinated and 7-coordinated sites). All of these compounds show a phase transition from the space group P2{sub 1}2{sub 1}2{sub 1} to Pnma in the temperature range between 370 and 710 K. Their magnetic properties were characterized by magnetic susceptibility measurements from 1.8 to 400 K and specific heat measurements from 0.4 to 400 K. Gd{sub 3}MoO{sub 7} shows an antiferromagnetic transition at 1.9 K. Measurements of the specific heat for Sm{sub 3}MoO{sub 7} and the analysis of the magnetic specific heat indicate a 'two-step' antiferromagnetic transition due to the ordering of Sm magnetic moments in different crystallographic sites, i.e., with decreasing temperature, the antiferromagnetic ordering of the 7-coordinated Sm ions occur at 2.5 K, and then the 8-coordinated Sm ions order at 0.8 K. The results of Ln{sub 3}MoO{sub 7} were compared with the magnetic properties and structural transitions of Ln{sub 3}MO{sub 7} (M=Nb, Ru, Sb, Ta, Re, Os, or Ir). -- Graphical Abstract: Magnetic properties and structural transitions of ternary rare-earth transition-metal oxides Ln{sub 3}MO{sub 7} (Ln=rare earths, M=transition metals) were investigated. In this study, we prepared a series of molybdates Ln{sub 3}MoO{sub 7} (Ln=La{approx}Gd). These compounds show a phase transition from the space group P2{sub 1}2{sub 1}2{sub 1} to Pnma in the temperature range between 370 and 710 K. Their magnetic properties were characterized by magnetic susceptibility and specific heat measurements from 0.4 to 400 K. The results of Ln{sub 3}MoO{sub 7} were

  14. Synthesis, structural characterization and magnetic properties of RE{sub 2}MgGe{sub 2} (RE=rare-earth metal)

    SciTech Connect

    Suen, Nian-Tzu; Tobash, Paul H.; Bobev, Svilen

    2011-11-15

    A series of rare-earth metal-magnesium-germanides RE{sub 2}MgGe{sub 2} (RE=Y, Nd, Sm, Gd-Tm, Lu) has been synthesized by reactions of the corresponding elements at high temperature. Their structures have been established by single-crystal and powder X-ray diffraction and belong to the Mo{sub 2}FeB{sub 2} structure type (space group P4/mbm (No. 127), Z=2; Pearson symbol tP10). Temperature dependent DC magnetization measurements indicate Curie-Weiss paramagnetism in the high-temperature regime for all members of the family, excluding Y{sub 2}MgGe{sub 2}, Sm{sub 2}MgGe{sub 2}, and Lu{sub 2}MgGe{sub 2}. At cryogenic temperatures (ca. 60 K and below), most RE{sub 2}MgGe{sub 2} phases enter into an antiferromagnetic ground-state, except for Er{sub 2}MgGe{sub 2} and Tm{sub 2}MgGe{sub 2}, which do not undergo magnetic ordering down to 5 K. The structural variations as a function of the decreasing size of the rare-earth metals, following the lanthanide contraction, and the changes in the magnetic properties across the series are discussed as well. - Graphical Abstract: The structure of RE{sub 2}MgGe{sub 2} (RE=Y, Nd, Sm, Gd-Tm, Lu) can be best viewed as 2-dimensional slabs of Mg and Ge atoms (anionic sub-lattice), and layers of rare-earth metal atoms (cationic sub-lattice) between them. Within this description, one should consider the Ge-Ge dumbbells (formally Ge{sup 6-}{sub 2}), interconnected with square-planar Mg atom as forming flat [MgGe{sub 2}] layers (z=0), stacked along the c-axis with the layers at z=1/2, made of rare-earth metal cations (formally RE{sup 3+}). Highlights: > RE{sub 2}MgGe{sub 2} (RE=Y, Nd, Sm, Gd-Tm, Lu) are new ternary germanides. > Their structures can be recognized as a 1:1 intergrowth of CsCl- and AlB{sub 2}-like slabs. > Ge atoms are covalently bound into Ge{sub 2} dumbbells. > Most RE{sub 2}MgGe{sub 2} phases are antiferromagnetically ordered at cryogenic temperatures.

  15. Synthesis and Characterization of Organo-Rare-Earth Metal Monoalkyl Complexes Supported by Carbon σ-Bonded Indolyl Ligands: High Specific Isoprene 1,4-Cis Polymerization Catalysts.

    PubMed

    Guo, Liping; Zhu, Xiancui; Zhang, Guangchao; Wei, Yun; Ning, Lixin; Zhou, Shuangliu; Feng, Zhijun; Wang, Shaowu; Mu, Xiaolong; Chen, Jun; Jiang, Yuzhe

    2015-06-15

    A series of N-protected 3-imino-functionalized indolyl ligands 1-R-3-(R'N═CH)C8H5N [R = Bn, R' = 2,6-(i)Pr2C6H3 (HL(1)); R = CH3, R' = 2,6-(i)Pr2C6H3 (HL(2)); R = Bn, R' = (t)Bu (HL(3))] and 1-CH3-2-(2,6-(i)Pr2C6H3N═CH)C8H5N (HL(4)) was prepared via reactions of N-protected indolyl aldehydes with corresponding amines. The C-H σ-bond metathesis followed by alkane elimination reactions between RE(CH2SiMe3)3(thf)2 and HL(1)-HL(3) afforded the carbon σ-bonded indolyl-ligated rare-earth metal monoalkyl complexes. Reactions of RE(CH2SiMe3)3(thf)2 with 2 equiv of HL(1) or HL(2) gave the carbon σ-bonded indolyl-ligated rare-earth metal monoalkyl complexes L(1)2RECH2SiMe3 (RE = Y(1), Er(2), Dy(3)) and L(2)2RECH2SiMe3 (RE = Y(5), Er(6), Dy(7), Yb(8)), while reaction of Yb(CH2SiMe3)3(thf)2 with 2 equiv of HL(1) afforded the ytterbium dialkyl complex L(1)Yb(CH2SiMe3)2(thf)2 (4). Reactions of RE(CH2SiMe3)3(thf)2 with HL(3) gave the tris(heteroaryl) rare-earth metal complexes L(3)3RE (RE = Y(9), Er(10)). In the presence of cocatalysts, the rare-earth metal monoalkyl complexes initiated isoprene polymerization with a high activity (90% conversion of 1000 equiv of isoprene in 25 min) producing polymers with high regio- and stereoselectivity (1,4-cis polymers up to 99%).

  16. Synthesis and Characterization of Alkaline-Earth Metal (Ca, Sr, and Ba) Doped Nanodimensional LaMnO3 Rare-Earth Manganites

    NASA Astrophysics Data System (ADS)

    Asma, Khalid; Saadat, Anwar Siddiqi; Affia, Aslam

    2013-07-01

    The substitution of divalent cations of alkaline-earth elements in nanodimensional structures of rare-earth manganites produces advanced materials with potential electrical and magnetic functionalities. A systematic investigation of La0.65A0.35MnO3 (A = Ca, Sr, Ba) materials synthesized with a modified citrate route adopting ethanol dehydration has been undertaken. The structural and morphological analyses are carried out by using x-ray diffraction and scanning electron microscopy, respectively. Resistivity measurements are performed in variation with temperature to study the electrical transport properties which are found to vary with the size of the A-site cationic radius. Room temperature magnetic measurements are carried out to investigate the type of magnetic phase present in materials. The stability of the magnetic phase and coercivity are found to be dependent on the size of nanocrystallites.

  17. Laminated rare earth structure and method of making

    DOEpatents

    Senor, David J [West Richland, WA; Johnson, Roger N [Richland, WA; Reid, Bruce D [Pasco, WA; Larson, Sandra [Richland, WA

    2002-07-30

    A laminated structure having two or more layers, wherein at least one layer is a metal substrate and at least one other layer is a coating comprising at least one rare earth element. For structures having more than two layers, the coating and metal substrate layers alternate. In one embodiment of the invention, the structure is a two-layer laminate having a rare earth coating electrospark deposited onto a metal substrate. In another embodiment of the invention, the structure is a three-layer laminate having the rare earth coating electrospark deposited onto a first metal substrate and the coating subsequently abonded to a second metal substrate. The bonding of the coating to the second metal substrate may be accomplished by hot pressing, hot rolling, high deformation rate processing, or combinations thereof. The laminated structure may be used in nuclear components where reactivity control or neutron absorption is desired and in non-nuclear applications such as magnetic and superconducting films.

  18. Hydrogen adsorption in a highly stable porous rare-earth metal-organic framework: sorption properties and neutron diffraction studies.

    PubMed

    Luo, Junhua; Xu, Hongwu; Liu, Yun; Zhao, Yusheng; Daemen, Luke L; Brown, Craig; Timofeeva, Tatiana V; Ma, Shengqian; Zhou, Hong-Cai

    2008-07-30

    A highly stable porous lanthanide metal-organic framework, Y(BTC)(H2O).4.3H2O (BTC = 1,3,5-benzenetricarboxylate), with pore size of 5.8 A has been constructed and investigated for hydrogen storage. Gas sorption measurements show that this porous MOF exhibits highly selective sorption behaviors of hydrogen over nitrogen gas molecules and can take up hydrogen of about 2.1 wt % at 77 K and 10 bar. Difference Fourier analysis of neutron powder diffraction data revealed four distinct D2 sites that are progressively filled within the nanoporous framework. Interestingly, the strongest adsorption sites identified are associated with the aromatic organic linkers rather than the open metal sites, as occurred in previously reported MOFs. Our results provide for the first time direct structural evidence demonstrating that optimal pore size (around 6 A, twice the kinetic diameter of hydrogen) strengthens the interactions between H2 molecules and pore walls and increases the heat of adsorption, which thus allows for enhancing hydrogen adsorption from the interaction between hydrogen molecules with the pore walls rather than with the normally stronger adsorption sites (the open metal sites) within the framework. At high concentration H2 loadings (5.5 H2 molecules (3.7 wt %) per Y(BTC) formula), H2 molecules form highly symmetric novel nanoclusters with relatively short H2-H2 distances compared to solid H2. These observations are important and hold the key to optimizing this new class of rare metal-organic framework (RMOF) materials for practical hydrogen storage applications.

  19. Absorption spectroscopy of heavy alkaline earth metals Ba and Sr in rare gas matrices—CCSD(T) calculations and atomic site occupancies

    NASA Astrophysics Data System (ADS)

    Davis, Barry M.; McCaffrey, John G.

    2016-01-01

    Isolation of the heavier alkaline earth metals Ba and Sr in the solid rare gases (RGs) Ar, Kr, and Xe is analysed with absorption spectroscopy and interpreted partly with the assistance of ab initio calculations of the diatomic M ṡ RG ground state interaction potentials. The y1P←a1S resonance transitions in the visible spectral region are used to compare the isolation conditions of these two metal atom systems and calcium. Complex absorption bands were recorded in all three metal atom systems even after extensive sample annealing. Coupled cluster calculations conducted on the ground states of the nine M ṡ RG diatomics (M = Ca, Sr, and Ba; RG = Ar, Kr, and Xe) at the coupled cluster single, double, and non-iterative triple level of theory revealed long bond lengths (>5 Å) and shallow bound regions (<130 cm-1). All of the M ṡ RG diatomics have bond lengths considerably longer than those of the rare gas dimers, with the consequence that isolation of these metal atoms in a single substitutional site of the solid rare gas is unlikely, with the possible exception of Ca/Xe. The luminescence of metal dimer bands has been recorded for Ba and Sr revealing very different behaviours. Resonance fluorescence with a lifetime of 15 ns is observed for the lowest energy transition of Sr2 while this transition is quenched in Ba2. This behaviour is consistent with the absence of vibrational structure on the dimer absorption band in Ba2 indicating lifetime broadening arising from efficient relaxation to low-lying molecular states. More extensive 2D excitation-emission data recorded for the complex site structures present on the absorption bands of the atomic Ba and Sr systems will be presented in future publications.

  20. Absorption spectroscopy of heavy alkaline earth metals Ba and Sr in rare gas matrices—CCSD(T) calculations and atomic site occupancies

    SciTech Connect

    Davis, Barry M.; McCaffrey, John G.

    2016-01-28

    Isolation of the heavier alkaline earth metals Ba and Sr in the solid rare gases (RGs) Ar, Kr, and Xe is analysed with absorption spectroscopy and interpreted partly with the assistance of ab initio calculations of the diatomic M ⋅ RG ground state interaction potentials. The y{sup 1}P←a{sup 1}S resonance transitions in the visible spectral region are used to compare the isolation conditions of these two metal atom systems and calcium. Complex absorption bands were recorded in all three metal atom systems even after extensive sample annealing. Coupled cluster calculations conducted on the ground states of the nine M ⋅ RG diatomics (M = Ca, Sr, and Ba; RG = Ar, Kr, and Xe) at the coupled cluster single, double, and non-iterative triple level of theory revealed long bond lengths (>5 Å) and shallow bound regions (<130 cm{sup −1}). All of the M ⋅ RG diatomics have bond lengths considerably longer than those of the rare gas dimers, with the consequence that isolation of these metal atoms in a single substitutional site of the solid rare gas is unlikely, with the possible exception of Ca/Xe. The luminescence of metal dimer bands has been recorded for Ba and Sr revealing very different behaviours. Resonance fluorescence with a lifetime of 15 ns is observed for the lowest energy transition of Sr{sub 2} while this transition is quenched in Ba{sub 2}. This behaviour is consistent with the absence of vibrational structure on the dimer absorption band in Ba{sub 2} indicating lifetime broadening arising from efficient relaxation to low-lying molecular states. More extensive 2D excitation-emission data recorded for the complex site structures present on the absorption bands of the atomic Ba and Sr systems will be presented in future publications.

  1. Absorption spectroscopy of heavy alkaline earth metals Ba and Sr in rare gas matrices--CCSD(T) calculations and atomic site occupancies.

    PubMed

    Davis, Barry M; McCaffrey, John G

    2016-01-28

    Isolation of the heavier alkaline earth metals Ba and Sr in the solid rare gases (RGs) Ar, Kr, and Xe is analysed with absorption spectroscopy and interpreted partly with the assistance of ab initio calculations of the diatomic M ⋅ RG ground state interaction potentials. The y(1)P ← a(1)S resonance transitions in the visible spectral region are used to compare the isolation conditions of these two metal atom systems and calcium. Complex absorption bands were recorded in all three metal atom systems even after extensive sample annealing. Coupled cluster calculations conducted on the ground states of the nine M ⋅ RG diatomics (M = Ca, Sr, and Ba; RG = Ar, Kr, and Xe) at the coupled cluster single, double, and non-iterative triple level of theory revealed long bond lengths (>5 Å) and shallow bound regions (<130 cm(-1)). All of the M ⋅ RG diatomics have bond lengths considerably longer than those of the rare gas dimers, with the consequence that isolation of these metal atoms in a single substitutional site of the solid rare gas is unlikely, with the possible exception of Ca/Xe. The luminescence of metal dimer bands has been recorded for Ba and Sr revealing very different behaviours. Resonance fluorescence with a lifetime of 15 ns is observed for the lowest energy transition of Sr2 while this transition is quenched in Ba2. This behaviour is consistent with the absence of vibrational structure on the dimer absorption band in Ba2 indicating lifetime broadening arising from efficient relaxation to low-lying molecular states. More extensive 2D excitation-emission data recorded for the complex site structures present on the absorption bands of the atomic Ba and Sr systems will be presented in future publications.

  2. Developments in the use of rare earth metal complexes as efficient catalysts for ring-opening polymerization of cyclic esters used in biomedical applications

    NASA Astrophysics Data System (ADS)

    Cota, Iuliana

    2017-04-01

    Biodegradable polymers represent a class of particularly useful materials for many biomedical and pharmaceutical applications. Among these types of polyesters, poly(ɛ-caprolactone) and polylactides are considered very promising for controlled drug delivery devices. These polymers are mainly produced by ring-opening polymerization of their respective cyclic esters, since this method allows a strict control of the molecular parameters (molecular weight and distribution) of the obtained polymers. The most widely used catalysts for ring-opening polymerization of cyclic esters are tin- and aluminium-based organometallic complexes; however since the contamination of the aliphatic polyesters by potentially toxic metallic residues is particularly of concern for biomedical applications, the possibility of replacing organometallic initiators by novel less toxic or more efficient organometallic complexes has been intensively studied. Thus, in the recent years, the use of highly reactive rare earth initiators/catalysts leading to lower polymer contamination has been developed. The use of rare earth complexes is considered a valuable strategy to decrease the polyester contamination by metallic residues and represents an attractive alternative to traditional organometallic complexes.

  3. Levels of rare earth elements, heavy metals and uranium in a population living in Baiyun Obo, Inner Mongolia, China: a pilot study.

    PubMed

    Hao, Zhe; Li, Yonghua; Li, Hairong; Wei, Binggan; Liao, Xiaoyong; Liang, Tao; Yu, Jiangping

    2015-06-01

    The Baiyun Obo deposit is the world's largest rare earth elements (REE) deposit. We aimed to investigate levels of REE, heavy metals (HMs) and uranium (U) based on morning urine samples in a population in Baiyun Obo and to assess the possible influence of rare earth mining processes on human exposure. In the mining area, elevated levels were found for the sum of the concentrations of light REE (LREE) and heavy REE (HREE) with mean values at 3.453 and 1.151 μg g(-1) creatinine, which were significantly higher than those in the control area. Concentrations of HMs and U in the population increased concomitantly with increasing REE levels. The results revealed that besides REE, HMs and U were produced with REE exploitation. Gender, age, educational level, alcohol and smoking habit were major factors contributing to inter-individual variation. Males were more exposed to these metals than females. Concentrations in people in the senior age group and those with only primary education were low. Drinking and smoking were associated with the levels of LREE, Cr, Cu, Cd and Pb in morning urine. Hence this study provides basic and useful information when addressing public and environmental health challenges in the areas where REE are mined and processed.

  4. Synthesis and characterization of bridged bis(amidato) rare earth metal amides and their applications in C-N bond formation reactions.

    PubMed

    Zhao, Bei; Xiao, Yang; Yuan, Dan; Lu, Chengrong; Yao, Yingming

    2016-03-07

    Based on three bisamide proligands H2Ln (n = 1–3) (H2L1 = [(Me3C6H2CONHCH2)2CH2], H2L2 = [(Me3C6H2CONHCH2)2C(CH3)2], H2L3 = [Me3C6H2CONH(CH2)2]2NCH3), eight bis(amidato) trivalent rare-earth metal amides {LnRE[N(TMS)2]}2 (n = 1, RE = La (1), Sm (2), Nd (3), Y (4); n = 2, RE = La (5), Nd (6);n = 3, RE = La (7), Nd (8); TMS = SiMe3) were successfully synthesized by treatment of H2Ln with RE[N(TMS)2]3 in a 1 : 1 molar ratio. Complexes 3, and 5–8 were characterized by single-crystal X-ray diffraction, and NMR characterization was carried out for the La complexes 1, 5, 7 and the Y complex 4. These complexes exhibited high catalytic activities in both the direct amidation of aldehydes and the addition of amines with carbodiimine. It was found that the bis(amidato) rare earth metal amides bearing different linkers have different effects on the transformations and lanthanum and neodymium complexes performed better than others.

  5. Ground-state oxygen holes and the metal-insulator transition in the negative charge-transfer rare-earth nickelates

    NASA Astrophysics Data System (ADS)

    Bisogni, Valentina; Catalano, Sara; Green, Robert J.; Gibert, Marta; Scherwitzl, Raoul; Huang, Yaobo; Strocov, Vladimir N.; Zubko, Pavlo; Balandeh, Shadi; Triscone, Jean-Marc; Sawatzky, George; Schmitt, Thorsten

    2016-10-01

    The metal-insulator transition and the intriguing physical properties of rare-earth perovskite nickelates have attracted considerable attention in recent years. Nonetheless, a complete understanding of these materials remains elusive. Here we combine X-ray absorption and resonant inelastic X-ray scattering (RIXS) spectroscopies to resolve important aspects of the complex electronic structure of rare-earth nickelates, taking NdNiO3 thin film as representative example. The unusual coexistence of bound and continuum excitations observed in the RIXS spectra provides strong evidence for abundant oxygen holes in the ground state of these materials. Using cluster calculations and Anderson impurity model interpretation, we show that distinct spectral signatures arise from a Ni 3d8 configuration along with holes in the oxygen 2p valence band, confirming suggestions that these materials do not obey a conventional positive charge-transfer picture, but instead exhibit a negative charge-transfer energy in line with recent models interpreting the metal-insulator transition in terms of bond disproportionation.

  6. Ground-state oxygen holes and the metal-insulator transition in the negative charge-transfer rare-earth nickelates.

    PubMed

    Bisogni, Valentina; Catalano, Sara; Green, Robert J; Gibert, Marta; Scherwitzl, Raoul; Huang, Yaobo; Strocov, Vladimir N; Zubko, Pavlo; Balandeh, Shadi; Triscone, Jean-Marc; Sawatzky, George; Schmitt, Thorsten

    2016-10-11

    The metal-insulator transition and the intriguing physical properties of rare-earth perovskite nickelates have attracted considerable attention in recent years. Nonetheless, a complete understanding of these materials remains elusive. Here we combine X-ray absorption and resonant inelastic X-ray scattering (RIXS) spectroscopies to resolve important aspects of the complex electronic structure of rare-earth nickelates, taking NdNiO3 thin film as representative example. The unusual coexistence of bound and continuum excitations observed in the RIXS spectra provides strong evidence for abundant oxygen holes in the ground state of these materials. Using cluster calculations and Anderson impurity model interpretation, we show that distinct spectral signatures arise from a Ni 3d(8) configuration along with holes in the oxygen 2p valence band, confirming suggestions that these materials do not obey a conventional positive charge-transfer picture, but instead exhibit a negative charge-transfer energy in line with recent models interpreting the metal-insulator transition in terms of bond disproportionation.

  7. Cysteine-Functionalized Chitosan Magnetic Nano-Based Particles for the Recovery of Light and Heavy Rare Earth Metals: Uptake Kinetics and Sorption Isotherms.

    PubMed

    Galhoum, Ahmed A; Mafhouz, Mohammad G; Abdel-Rehem, Sayed T; Gomaa, Nabawia A; Atia, Asem A; Vincent, Thierry; Guibal, Eric

    2015-02-04

    Cysteine-functionalized chitosan magnetic nano-based particles were synthesized for the sorption of light and heavy rare earth (RE) metal ions (La(III), Nd(III) and Yb(III)). The structural, surface, and magnetic properties of nano-sized sorbent were investigated by elemental analysis, FTIR, XRD, TEM and VSM (vibrating sample magnetometry). Experimental data show that the pseudo second-order rate equation fits the kinetic profiles well, while sorption isotherms are described by the Langmuir model. Thermodynamic constants (ΔG°, ΔH°) demonstrate the spontaneous and endothermic nature of sorption. Yb(III) (heavy RE) was selectively sorbed while light RE metal ions La(III) and Nd(III) were concentrated/enriched in the solution. Cationic species RE(III) in aqueous solution can be adsorbed by the combination of chelating and anion-exchange mechanisms. The sorbent can be efficiently regenerated using acidified thiourea.

  8. Cysteine-Functionalized Chitosan Magnetic Nano-Based Particles for the Recovery of Light and Heavy Rare Earth Metals: Uptake Kinetics and Sorption Isotherms

    PubMed Central

    Galhoum, Ahmed A.; Mafhouz, Mohammad G.; Abdel-Rehem, Sayed T.; Gomaa, Nabawia A.; Atia, Asem A.; Vincent, Thierry; Guibal, Eric

    2015-01-01

    Cysteine-functionalized chitosan magnetic nano-based particles were synthesized for the sorption of light and heavy rare earth (RE) metal ions (La(III), Nd(III) and Yb(III)). The structural, surface, and magnetic properties of nano-sized sorbent were investigated by elemental analysis, FTIR, XRD, TEM and VSM (vibrating sample magnetometry). Experimental data show that the pseudo second-order rate equation fits the kinetic profiles well, while sorption isotherms are described by the Langmuir model. Thermodynamic constants (ΔG°, ΔH°) demonstrate the spontaneous and endothermic nature of sorption. Yb(III) (heavy RE) was selectively sorbed while light RE metal ions La(III) and Nd(III) were concentrated/enriched in the solution. Cationic species RE(III) in aqueous solution can be adsorbed by the combination of chelating and anion-exchange mechanisms. The sorbent can be efficiently regenerated using acidified thiourea. PMID:28347004

  9. Nucleation of ReBa2Cu3Ox (Re = rare-earth) during high-rate metal-organic chemical vapor deposition growth

    NASA Astrophysics Data System (ADS)

    Solovyov, Vyacheslav F.; Li, Qiang; Chen, Y.; Guevara, A.; Shi, T.; Selvamanickam, V.

    2011-12-01

    Large-scale, high-rate epitaxial growth technology for the second-generation superconducting wire brings unique technological challenges for the thin-film coating industry. One of the most difficult steps of the process is controlling nucleation of a complex compound over a km-long low-cost oxide template. Here, we analyze early stages of industrial-scale epitaxial metal organic chemical vapor deposition (MOCVD) growth of ReBa2Cu3Ox (REBCO, Re = rare-earth) on buffered metal substrates. The nucleation event is detected by high-flux synchrotron X-ray diffraction and confirmed by atomic force microscopy. REBCO nuclei exhibit a strong preference for edges of the buffer grain, indicating that (001) steps of the buffer grains are preferred nucleation sites. It is concluded that random nucleation of REBCO is caused by agglomerates of small buffer grains.

  10. Extraction kinetics of rare earth metals with 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester using a hollow fiber membrane extractor

    SciTech Connect

    Kubota, Fukiko; Goto, Masahiro; Nakashio, Fumiyuki; Hano, Tadashi

    1995-03-01

    A kinetic study concerning chemical complexation-based solvent extraction of rare earth metals with 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester dissolved as an extractant in n-heptane was carried out using a microporous hydrophobic hollow fiber membrane extractor. The effects of concentration of chemical species in aqueous and organic feed solutions on the apparent permeabilities of metal species for extraction and stripping, respectively, were investigated to clarify the permeation mechanism. From the experimental results it was predicted that the permeation rate is controlled by diffusion of the chemical species in aqueous and organic phases and by interfacial chemical reaction. The experimental data were analyzed by the diffusion model accompanied with an interfacial reaction, taking into account the velocity distributions of the aqueous and organic phases through the inner and outer sides of the hollow fiber.

  11. Controlled synthesis of racemic indenyl rare-earth metal complexes via the cooperation between the intramolecular coordination of donor atoms and a bridge.

    PubMed

    Zhou, Shuangliu; Wu, Zhangshuan; Zhou, Lingmin; Wang, Shaowu; Zhang, Lijun; Zhu, Xiancui; Wei, Yun; Zhai, Jinhua; Wu, Jie

    2013-06-03

    The reactions of Me2Si(C9H6CH2CH2-DG)2 (DG = NMe2 (1), CH2NMe2 (2), OMe (3), and N(CH2CH2)2O (4)) with [(Me3Si)2N]3RE(μ-Cl)Li(THF)3 in toluene afforded a series of racemic divalent rare-earth metal complexes: {η(5):η(1):η(5):η(1)-Me2Si(C9H5CH2CH2-DG)2}RE (DG = NMe2, RE = Yb (6) and Eu (7); DG = CH2NMe2, RE = Yb (8), Eu (9), and Sm (10); DG = OMe, RE = Yb (11) and Eu (12); DG = N(CH2CH2)2O, RE = Yb (13) and Eu (14)). Similarly, the racemic divalent rare-earth metal complexes {η(5):η(1):η(5):η(1)-Me2Si(C9H5CH2CH2CH2NMe2)(C9H5CH2CH2OMe)}RE (RE = Yb (15) and Eu (16)) were also obtained. The reaction of Me2Si(C9H5CH2CH2OMe)2Li2 with NdCl3 gave a racemic dimeric neodymium chloride {η(5):η(1):η(5)-Me2Si(C9H5CH2CH2OMe)2NdCl}2 (17), whereas the reaction of Me2Si(C9H5CH2CH2NMe2)2Li2 with SmCl3 afforded a racemic dinuclear samarium chloride bridged by lithium chloride {η(5):η(1):η(5):η(1)-Me2Si(C9H5CH2CH2NMe2)2SmCl}2(μ-LiCl) (18). Further reaction of complex 18 with LiCH2SiMe3 provided an unexpected rare-earth metal alkyl complex {η(5):η(1):η(5):η(1):σ-Me2Si(C9H5CH2CH2NMe2)[(C9H5CH2CH2N(CH2)Me]}Sm (19) through the activation of an sp(3) C-H bond α-adjacent to the nitrogen atom. Complexes 19 and {η(5):η(1):η(5):η(1):σ-Me2Si(C9H5CH2CH2NMe2)[(C9H5CH2CH2N(CH2)Me]}Y (20) were also obtained by one-pot reactions of Me2Si(C9H5CH2CH2NMe2)2Li2 with RECl3 followed by treatment with LiCH2SiMe3. All compounds were fully characterized by spectroscopic methods and elemental analysis. Complexes 6-10 and 14-20 were further characterized by single-crystal X-ray diffraction analysis. All of the prepared rare-earth metal complexes were racemic, suggesting that racemic organo rare-earth metal complexes could be controllably synthesized by the cooperation between a bridge and the intramolecular coordination of donor atoms.

  12. Metals and Rare Earth Elements in polar aerosol as specific markers of natural and anthropogenic aerosol sources areas and atmospheric transport processes

    NASA Astrophysics Data System (ADS)

    Giardi, Fabio; Becagli, Silvia; Caiazzo, Laura; Cappelletti, David; Grotti, Marco; Malandrino, Mery; Salzano, Roberto; Severi, Mirko; Traversi, Rita; Udisti, Roberto

    2016-04-01

    Metals and Rare Earth Elements (REEs) in the aerosol have conservative properties from the formation to the deposition and can be useful to identify and quantify their natural and anthropic sources and to study the atmospheric transport processes. In spite of their importance relatively little is known about metals and especially REEs in the Artic atmosphere due to their low concentration in such environment. The present work reports the first attempt to determine and interpret the behaviour of metals and REEs in polar aerosol at high temporal resolution. Daily PM10 samples of arctic atmospheric particulate were collected on Teflon filters, during six spring-summer campaigns, since 2010, in the laboratory of Gruvebadet in Ny Ålesund (78°56' N, 11°56' E, Svalbard Islands, Norway). Chemical analyses were carried out through Inductively Coupled Plasma Mass Spectrometer provided with a desolvation nebulizer inlet system, allowing to reduce isobaric interferences and thus to quantify trace and ultra-trace metals in very low concentration in the Arctic aerosol samples. The results are useful in order to study sources areas, transport processes and depositional effects of natural and anthropic atmospheric particulate reaching the Arctic from southern industrialized areas; moreover, the observed seasonal trends give information about the different impact of natural and anthropic emissions driven by phenomena such as the Arctic Haze and the melting of the snow. In particular Rare Earth Elements (often in the ppt range) can be considered as soil's fingerprints of the particulate source areas and their determination, together with air-mass backtrajectory analysis, allow to identify dust source areas for the arctic mineral aerosol.

  13. Research into processes of production of hydrides of materials containing rare-earth metals and their corrosion

    NASA Astrophysics Data System (ADS)

    Sofronov, V. L.; Kartashov, E. Y.; Molokov, P. B.; Zhiganov, A. N.; Kalaev, M. E.

    2017-01-01

    Production of permanent magnets on basis of rare earth elements (REE) is implemented by means of powder metallurgy, therefore a technologically important operation is the multistage mechanical crushing of materials to the extent of domains. The promising technique of crushing of magnetic materials is their consistent hydrogenation-dehydrogenation that allows obtaining nano-dispersed powders which are stable enough in air. Hydrogenation apparatuses, as opposed to conventional grinding machines, do not comprise motion works and their producing capacity is much higher. Hydrogenation process does not require any additional preparation of materials and it excludes undermilling and overmilling as well as material oxidation. The paper presents the results of investigation on the temperature effect on the hydrogenation process of Nd-Fe alloys. The study results on the corrosion stability of ligature hydrides under various conditions are also given. Kinetic parameters of the hydrogenation process of ligatures are determined. The phase composition of corrosion products is detected. Guidelines on hydride powder storage are given.

  14. Effect of rare earth metal Ce addition to Sn-Ag solder on interfacial reactions with Cu substrate

    NASA Astrophysics Data System (ADS)

    Yoon, Jeong-Won; Noh, Bo-In; Jung, Seung-Boo

    2014-05-01

    The effect of adding a small amount of rare earth cerium (Ce) element to low Ag containing Sn-1wt%Ag Pb-free solder on its interfacial reactions with Cu substrate was investigated. The growth of intermetallic compounds (IMCs) between three Sn-1Ag-xCe solders with different Ce contents and a Cu substrate was studied and the results were compared to those obtained for the Ce-free Sn-1Ag/Cu systems. In the solid-state reactions of the Sn-1Ag(-xCe)/Cu solder joints, the two IMC layers, Cu6Sn5 and Cu3Sn, grew as aging time increased. Compared to the Sn-1Ag/Cu joint, the growth of the Cu6Sn5 and Cu3Sn layers was depressed for the Ce-containing Sn-1Ag-xCe/Cu joint. The addition of Ce to the Sn-Ag solder reduced the growth of the interfacial Cu-Sn IMCs and prevented the IMCs from spalling from the interface. The evenly-distributed Ce elements in the solder region blocked the diffusion of Sn atoms to the interface and retarded the growth of the interfacial IMC layer.

  15. Rare-earth ions doped heavy metal germanium tellurite glasses for fiber lighting in minimally invasive surgery.

    PubMed

    Yang, D L; Gong, H; Pun, E Y B; Zhao, X; Lin, H

    2010-08-30

    In Er(3+)/Yb(3+) codoped Na(2)O-ZnO-PbO-GeO(2)-TeO(2) (NZPGT) glass fiber, a clear and compact green upconversion amplified spontaneous emission (ASE) trace is observed, and the NZPGT glasses are proved to be a desirable candidate in fabricating low-phonon energy fiber. Intense green upconversion luminescence of Er(3+), balanced green and red upconversion emissions of Ho(3+), and dominant three-photon blue upconversion fluorescence of Tm(3+) have been represented. By varying the excitation power of 974 nm wavelength laser diode, a series of green and white fluorescences have been achieved in Tm(3+)/Er(3+)/Yb(3+) and Tm(3+)/Ho(3+)/Yb(3+) triply doped glass systems, respectively. These results reveal that high-intensity blue, green, and white upconversion ASE fluorescences, which can be adopted for lighting in minimally invasive photodynamic therapy and minimally invasive surgery, are reasonable to be expected in rare-earth doped NZPGT glass fibers.

  16. Recent developments of rare-earth-free hard-magnetic materials

    NASA Astrophysics Data System (ADS)

    Li, Da; Pan, DeSheng; Li, ShaoJie; Zhang, ZhiDong

    2016-01-01

    Recent advances in rare-earth-free hard-magnetic materials including magnetic bulk, thin films, nanocomposites and nanostructures are introduced. Since the costs of the rare-earth metals boosts up the price of the high-performance rare-earth permanent magnets, there is a much revived interest in various types of hard-magnetic materials based on rare-earth-free compounds. The 3d transition metals and their alloys with large coercivity and high Curie temperatures (working temperatures) are expected to overcome the disadvantages of rare-earth magnets. Making rare-earth-free magnets with a large energy product to meet tomorrow's energy needs is still a challenge.

  17. Behaviour of Rare Earth Elements during the Earth's core formation

    NASA Astrophysics Data System (ADS)

    Faure, Pierre; Bouhifd, Mohamed Ali; Boyet, Maud; Hammouda, Tahar; Manthilake, Geeth

    2017-04-01

    Rare Earth Elements (REE) are classified in the refractory group, which means that they have a high temperature condensation and their volatility-controlled fractionation is limited to high-temperature processes. Anomalies have been measured for Eu, Yb and Sm, which are the REE with the lowest condensation temperatures in CAIs and chondrules (e.g. [1]). REE are particularly abundant in the sulfides of enstatite chondrites, 100 to 1000 times the CI value [e.g. 2,3], proving that these elements are not strictly lithophile under extremely reducing conditions. However by investigating experimentally the impact of Earth's core formation on the behavior of Sm and Nd, we have shown the absence of fractionation between Sm and Nd during the segregation of the metallic phase [4]. Recently, Wohlers and Wood [5] proposed that Nd and Sm could be fractionated in presence of a S-rich alloy phase. However, their results were obtained at pressure and temperature conditions below the plausible conditions of the Earth's core formation. Clearly, large pressure range needs to be covered before well-constrained model can be expected. Furthermore, our preliminary metal-silicate partitioning results show that Ce and Eu have higher metal/silicate partition coefficients than their neighboring elements, and that the presence of sulphur enhances the relative difference between partition coefficients. In this presentation, we will present and discuss new metal-silicate partition coefficients of all REE at a deep magma ocean at pressures ranging from those of the uppermost upper mantle ( 5 GPa) to a maximum pressure expected in the range of 20 GPa, temperatures ranging from 2500 to about 3000 K, and oxygen fugacities within IW-1 to IW-5 (1 to 5 orders of magnitude lower than the iron-wüstite buffer). We will discuss the effect of S, as well as the effect of H2O on the behaviour of REE during the Earth's core formation: recent models suggest that contrary to currently accepted beliefs, the

  18. Rare-earth metal bis(alkyl)s that bear a 2-pyridinemethanamine ligand: dual catalysis of the polymerizations of both isoprene and ethylene.

    PubMed

    Jian, Zhongbao; Cui, Dongmei

    2012-02-28

    New pyridinemethanamido-ligated rare-earth metal bis(alkyl) complexes [C(5)H(4)N-CH(Me)-NC(6)H(3)((i)Pr)(2)]Ln(CH(2)SiMe(3))(2)(THF) (Ln = Sc (1), Y (2), Lu (3)) have been prepared at 0 °C via a protonolysis reaction between rare-earth metal tris(alkyl)s and the corresponding 2-pyridinemethanamine ligand and fully characterized by NMR and X-ray diffraction analysis. Bis(alkyl) complexes 1-3 are analogous monomers of THF solvate, where the ligand bonds to the metal center in a κN:κN-bidentate mode. Complexes 1-3, in combination with [Ph(3)C][B(C(6)F(5))(4)], showed a good activity towards isoprene polymerization to give polyisoprene with a main 3,4-selectivity (60%-66%); in particular the yttrium catalyst system, 2/[Ph(3)C][B(C(6)F(5))(4)], displayed a living mode. By contrast, only the precatalyst 2 exhibited activity for isoprene polymerization in the presence of [PhNMe(2)H][B(C(6)F(5))(4)]. The influence of alkylaluminium (AlR(3), R = Me, Et, (i)Bu) and the metal center on the polymerization of isoprene was also studied, and it was found that addition of AlMe(3) to the catalyst systems could lead to a dramatic change in the microstructure of the polymer from 3,4-specific to 1,4-selective (89%-95%), but the ionic radius of the central metal had little influence on the selectivity. In addition, by using the 1(Sc)/[Ph(3)C][B(C(6)F(5))(4)]/10 Al(i)Bu(3), the polymerization of ethylene was also achieved with moderate activity (up to 3.2× 10(5) g (PE) mol(Sc)(-1) h(-1) bar(-1)) and narrow polydispersity (M(w)/M(n) = 1.19-1.28); while the effect of temperature on the activity was discussed. Such dual catalysis for the polymerizations of both isoprene and ethylene is rare.

  19. Ames Lab 101: Rare-Earth Recycling

    ScienceCinema

    Ryan Ott

    2016-07-12

    Recycling keeps paper, plastics, and even jeans out of landfills. Could recycling rare-earth magnets do the same? Perhaps, if the recycling process can be improved. Scientists at the U.S. Department of Energy's Ames Laboratory are working to more effectively remove the neodymium, a rare earth, from the mix of other materials in a magnet.

  20. Ames Lab 101: Rare-Earth Recycling

    SciTech Connect

    Ryan Ott

    2012-09-05

    Recycling keeps paper, plastics, and even jeans out of landfills. Could recycling rare-earth magnets do the same? Perhaps, if the recycling process can be improved. Scientists at the U.S. Department of Energy's Ames Laboratory are working to more effectively remove the neodymium, a rare earth, from the mix of other materials in a magnet.

  1. Ternary rare earth-lanthanide sulfides

    DOEpatents

    Takeshita, Takuo; Gschneidner JR., Karl A.; Beaudry, Bernard J.

    1987-01-06

    A new ternary rare earth sulfur compound having the formula: where M is a rare earth element selected from the group europium, samarium and ytterbium and x=0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to 1000.degree. C.

  2. Advances in rare earth spectroscopy and applications.

    PubMed

    Dwivedi, Y; Zilio, S C

    2014-02-01

    Rare earth (RE) elements are prime constituents in a large amount of innovative materials and several technological advances would not be possible without their contribution. In this review, recent progress in the field of rare earth spectroscopy is highlighted, with a special emphasis on clean energy, sensors and telecommunications, providing a broad view on past and recent developments.

  3. Raman scattering investigation across the magnetic and metal-insulator transition in rare earth nickelate RNiO3 ( R=Sm , Nd) thin films

    NASA Astrophysics Data System (ADS)

    Girardot, C.; Kreisel, J.; Pignard, S.; Caillault, N.; Weiss, F.

    2008-09-01

    We report a temperature-dependent Raman scattering investigation of thin-film rare earth nickelates SmNiO3 , NdNiO3 , and Sm0.60Nd0.40NiO3 which present a metal-to-insulator (MI) transition at TMI and an antiferromagnetic-paramagnetic Néel transition at TN . Our results provide evidence that all investigated samples present a structural phase transition at TMI but the Raman signature across TMI is significantly different for NdNiO3 (TMI=TN) compared to SmNiO3 and Sm0.60Nd0.40NiO3 (TMI≠TN) . It is namely observed that the paramagnetic-insulator phase (TNrare earth nickelates with TMI≠TN and illustrates intriguing coupling mechanism in the TN

  4. Syntheses of rare-earth metal oxide nanotubes by the sol-gel method assisted with porous anodic aluminum oxide templates

    SciTech Connect

    Kuang Qin; Lin Zhiwei; Lian Wei; Jiang Zhiyuan; Xie Zhaoxiong Huang Rongbin; Zheng Lansun

    2007-04-15

    In this paper, we report a versatile synthetic method of ordered rare-earth metal (RE) oxide nanotubes. RE (RE=Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) oxide nanotubes were successfully prepared from corresponding RE nitrate solution via the sol-gel method assisted with porous anodic aluminum oxide (AAO) templates. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM, and X-ray diffraction (XRD) have been employed to characterize the morphology and composition of the as-prepared nanotubes. It is found that as-prepared RE oxides evolve into bamboo-like nanotubes and entirely hollow nanotubes. A new possible formation mechanism of RE oxide nanotubes in the AAO channels is proposed. These high-quantity RE oxide nanotubes are expected to have promising applications in many areas such as luminescent materials, catalysts, magnets, etc. - Graphical abstract: A versatile synthetic method for the preparation of ordered rare-earth (RE) oxide nanotubes is reported, by which RE (RE=Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) oxide nanotubes were successfully prepared from corresponding RE nitrate solution via the sol-gel method assisted with porous anodic aluminum oxide (AAO) templates.

  5. Di and trinuclear rare-earth metal complexes supported by 3-amido appended indolyl ligands: synthesis, characterization and catalytic activity towards isoprene 1,4-cis polymerization.

    PubMed

    Zhang, Guangchao; Deng, Baojia; Wang, Shaowu; Wei, Yun; Zhou, Shuangliu; Zhu, Xiancui; Huang, Zeming; Mu, Xiaolong

    2016-10-21

    Different di and trinuclear rare-earth metal complexes supported by 3-amido appended indolyl ligands were synthesized and their catalytic activities towards isoprene polymerization were investigated. Treatment of [RE(CH2SiMe3)3(thf)2] with 1 equiv. of 3-(CyN[double bond, length as m-dash]CH)C8H5NH in toluene or in THF afforded dinuclear rare-earth metal alkyl complexes having indolyl ligands in different hapticities with central metals {[η(2):η(1)-μ-η(1)-3-(CyNCH(CH2SiMe3))Ind]RE-(thf)(CH2SiMe3)}2 (Cy = cyclohexyl, Ind = Indolyl, RE = Yb (1), Er (2), Y (3)) or {[η(1)-μ-η(1)-3-(CyNCH(CH2SiMe3))Ind]RE-(thf)2(CH2SiMe3)}2 (RE = Yb (4), Er (5), Y (6), Gd (7)), respectively. These two series of dinuclear complexes could be transferred to each other easily by only changing the solvents in the process. Reaction of [Er(CH2SiMe3)3(thf)2] with 1 equiv. of 3-t-butylaminomethylindole 3-((t)BuNHCH2)C8H5NH in THF afforded the unexpected trinuclear erbium alkyl complex [η(2):η(1)-μ-η(1)-3-((t)BuNCH2)Ind]4Er3(thf)5(CH2SiMe3) (8), which can also be prepared by reaction of 3 equiv. of [Er(CH2SiMe3)3(thf)2] with 4 equiv. of 3-((t)BuNHCH2)C8H5NH in THF. Accordingly, complexes [η(2):η(1)-μ-η(1)-3-((t)BuNCH2)Ind]4RE3(thf)5(CH2SiMe3) (RE = Y (9), Dy (10)) were prepared by reactions of 3 equiv. of [RE(CH2SiMe3)3(thf)2] with 4 equiv. of 3-((t)BuNHCH2)C8H5NH in THF. Reactions of [RE(CH2SiMe3)3(thf)2] with 1 equiv. of 3-t-butylaminomethylindole 3-((t)BuNHCH2)C8H5NH in THF, followed by treatment with 1 equiv. of [(2,6-(i)Pr2C6H3)N[double bond, length as m-dash]CHNH(C6H3(i)Pr2-2,6)] afforded, after workup, the dinuclear rare-earth metal complexes [η(1)-μ-η(1):η(1)-3-((t)BuNCH2)Ind][η(1)-μ-η(1):η(3)-3-((t)BuNCH2)Ind]RE2(thf)[(η(3)-2,6-(i)Pr2C6H3)NCHN(C6H3(i)Pr2-2,6)]2(RE = Er (11), Y (12)) having the indolyl ligands bonded with the rare-earth metal in different ligations. All new complexes 1-12 were fully characterized by spectroscopic methods and elemental analyses, and

  6. Biosorption and desorption of lanthanum(III) and neodymium(III) in fixed-bed columns with Sargassum sp.: perspectives for separation of rare earth metals.

    PubMed

    Oliveira, Robson C; Guibal, Eric; Garcia, Oswaldo

    2012-01-01

    Rare earth (RE) metals are essentials for the manufacturing of high-technology products. The separation of RE is complex and expensive; biosorption is an alternative to conventional processes. This work focuses on the biosorption of monocomponent and bicomponent solutions of lanthanum(III) and neodymium(III) in fixed-bed columns using Sargassum sp. biomass. The desorption of metals with HCl 0.10 mol L(-1) from loaded biomass is also carried out with the objective of increasing the efficiency of metal separation. Simple models have been successfully used to model breakthrough curves (i.e., Thomas, Bohart-Adams, and Yoon-Nelson equations) for the biosorption of monocomponent solutions. From biosorption and desorption experiments in both monocomponent and bicomponent solutions, a slight selectivity of the biomass for Nd(III) over La(III) is observed. The experiments did not find an effective separation of the RE studied, but their results indicate a possible partition between the metals, which is the fundamental condition for separation perspectives.

  7. Enhanced separation of rare earth elements

    SciTech Connect

    Lyon, K.; Greenhalgh, M.; Herbst, R. S.; Garn, T.; Welty, A.; Soderstrom, M. D.; Jakovljevic, B.

    2016-09-01

    Industrial rare earth separation processes utilize PC88A, a phosphonic acid ligand, for solvent extraction separations. The separation factors of the individual rare earths, the equipment requirements, and chemical usage for these flowsheets are well characterized. Alternative ligands such as Cyanex® 572 and the associated flowsheets are being investigated at the pilot scale level to determine if significant improvements to the current separation processes can be realized. These improvements are identified as higher separation factors, reduced stage requirements, or reduced chemical consumption. Any of these improvements can significantly affect the costs associated with these challenging separation proccesses. A mid/heavy rare earth element (REE) separations flowsheet was developed and tested for each ligand in a 30 stage mixer-settler circuit to compare the separation performance of PC88A and Cyanex® 572. The ligand-metal complex strength of Cyanex® 572 provides efficient extraction of REE while significantly reducing the strip acid requirements. Reductions in chemical consumption have a significant impact on process economics for REE separations. Partitioning results summarized Table 1 indicate that Cyanex® 572 offers the same separation performance as PC88A while reducing acid consumption by 30% in the strip section for the mid/heavy REE separation. Flowsheet Effluent Compositions PC88A Cyanex® 572 Raffinate Mid REE Heavy REE 99.40% 0.60% 99.40% 0.60% Rich Mid REE Heavy REE 2.20% 97.80% 0.80% 99.20% Liquor Strip Acid Required 3.4 M 2.3 M Table 1 – Flowsheet results comparing separation performance of PC88A and Cyanex® 572 for a mid/heavy REE separation.

  8. Features and regularities in behavior of thermoelectric properties of rare-earth, transition, and other metals under high pressure up to 20 GPa

    SciTech Connect

    Morozova, Natalia V.; Shchennikov, Vladimir V.; Ovsyannikov, Sergey V. E-mail: sergey2503@gmail.com

    2015-12-14

    We report results of systematic investigations of the thermoelectric properties of a number of rare-earth metals, transition metals, and other metals under high pressure up to 20 GPa at room temperature. We studied an effect of applied pressure on the Seebeck effect of scandium (Sc), yttrium (Y), lanthanum (La), europium (Eu), ytterbium (Yb), iron (Fe), manganese (Mn), chromium (Cr), gold (Au), tin (Sn), and CeNi alloy. We found that the high-pressure behavior of the thermopower of three rare-earth metals, namely, Sc, Y, and La, follows a general trend that has been established earlier in lanthanides, and addressed to a s → d electron transfer. Europium and ytterbium, on the contrary, showed a peculiar high-pressure behavior of the thermopower with peaks at near 0.7–1 GPa for Eu and 1.7–2.5 GPa for Yb. Chromium, manganese, and tin demonstrated a gradual and pronounced lowering of the absolute value of the thermopower with pressure. Above 9–11 GPa, the Seebeck coefficients of Mn and Sn were inverted, from n- to p-type for Mn and from p- to n-type for Sn. The Seebeck effect in iron was rather high as ∼16 μV/K and weakly varied with pressure up to ∼11 GPa. Above ∼11 GPa, it started to drop dramatically with pressure to highest pressure achieved 18 GPa. Upon decompression cycle the thermopower of iron returned to the original high values but demonstrated a wide hysteresis loop. We related this behavior in iron to the known bcc (α-Fe) → hcp (ε-Fe) phase transition, and proposed that the thermoelectricity of the α-Fe phase is mainly contributed by the spin Seebeck effect, likewise, the thermoelectricity of the ε-Fe phase—by the conventional diffusion thermopower. We compare the pressure dependencies of the thermopower for different groups of metals and figure out some general trends in the thermoelectricity of metals under applied stress.

  9. Features and regularities in behavior of thermoelectric properties of rare-earth, transition, and other metals under high pressure up to 20 GPa

    NASA Astrophysics Data System (ADS)

    Morozova, Natalia V.; Shchennikov, Vladimir V.; Ovsyannikov, Sergey V.

    2015-12-01

    We report results of systematic investigations of the thermoelectric properties of a number of rare-earth metals, transition metals, and other metals under high pressure up to 20 GPa at room temperature. We studied an effect of applied pressure on the Seebeck effect of scandium (Sc), yttrium (Y), lanthanum (La), europium (Eu), ytterbium (Yb), iron (Fe), manganese (Mn), chromium (Cr), gold (Au), tin (Sn), and CeNi alloy. We found that the high-pressure behavior of the thermopower of three rare-earth metals, namely, Sc, Y, and La, follows a general trend that has been established earlier in lanthanides, and addressed to a s → d electron transfer. Europium and ytterbium, on the contrary, showed a peculiar high-pressure behavior of the thermopower with peaks at near 0.7-1 GPa for Eu and 1.7-2.5 GPa for Yb. Chromium, manganese, and tin demonstrated a gradual and pronounced lowering of the absolute value of the thermopower with pressure. Above 9-11 GPa, the Seebeck coefficients of Mn and Sn were inverted, from n- to p-type for Mn and from p- to n-type for Sn. The Seebeck effect in iron was rather high as ˜16 μV/K and weakly varied with pressure up to ˜11 GPa. Above ˜11 GPa, it started to drop dramatically with pressure to highest pressure achieved 18 GPa. Upon decompression cycle the thermopower of iron returned to the original high values but demonstrated a wide hysteresis loop. We related this behavior in iron to the known bcc (α-Fe) → hcp (ɛ-Fe) phase transition, and proposed that the thermoelectricity of the α-Fe phase is mainly contributed by the spin Seebeck effect, likewise, the thermoelectricity of the ɛ-Fe phase—by the conventional diffusion thermopower. We compare the pressure dependencies of the thermopower for different groups of metals and figure out some general trends in the thermoelectricity of metals under applied stress.

  10. The Rare Earth Magnet Industry and Rare Earth Price in China

    NASA Astrophysics Data System (ADS)

    Ding, Kaihong

    2014-07-01

    In the past four years, the price of rare earth metal fluctuates sharply for many reasons. Currently, it has become more stable and more reasonable. This presentation is focused on the effect about the rare earth metal price. Some motor manufacturers have shifted from rare earth permanent magnet to ferrite magnet. Many motor manufacturers changed the design for the motor cooling system to make the motor function at a lower temperature. Thus the consumption of Dy can be markedly reduced. As for manufacturer of NdFeB magnet, we are also trying to optimize our process to reduce to dependence of HREE such as Dy and Tb. HS process have been introduced to solve the problem. With more and more people focusing and engaging on the REE industry, the price of REE will be more transparent without too many fluctuations. China is considering the problems of balancing the environment, energy sources, and labor sources. The application field about NdFeB such as wind turbine generator, HEV/EV, FA /OA is flourishing.

  11. On-line collection/concentration and determination of transition and rare-earth metals in water samples using Multi-Auto-Pret system coupled with inductively coupled plasma-atomic emission spectrometry.

    PubMed

    Katarina, Rosi Ketrin; Oshima, Mitsuko; Motomizu, Shoji

    2009-05-15

    On-line preconcentration and determination of transition and rare-earth metals in water samples was performed using a Multi-Auto-Pret system coupled with inductively coupled plasma-atomic emission spectrometry (ICP-AES). The Multi-Auto-Pret AES system proposed here consists of three Auto-Pret systems with mini-columns that can be used for the preconcentration of trace metals sequentially or simultaneously, and can reduce analysis time to one-third and running cost of argon gas and labor. A newly synthesized chelating resin, ethylenediamine-N,N,N'-triacetate-type chitosan (EDTriA-type chitosan), was employed in the Multi-Auto-Pret system for the collection of trace metals prior to their measurement by ICP-AES. The proposed resin showed very good adsorption ability for transition and rare-earth metal ions without any interference from alkali and alkaline-earth metal ions in an acidic media. For the best result, pH 5 was adopted for the collection of metal ions. Only 5 mL of samples could be used for the determination of transition metals, while 20 mL of samples was necessary for the determination of rare-earth metals. Metal ions adsorbed on the resin were eluted using 1.5 M nitric acid, and were measured by ICP-AES. The proposed method was evaluated by the analysis of SLRS-4 river water reference materials for trace metals. Good agreement with certified and reference values was obtained for most of the metals examined; it indicates that the proposed method using the newly synthesized resin could be favorably used for the determination of transition and rare-earth metals in water samples by ICP-AES.

  12. Universal behavior of chalcogenides of rare-earth metals in the transition to a state with intermediate valence at high pressures

    SciTech Connect

    Tsiok, O. B.; Khvostantsev, L. G.; Brazhkin, V. V.

    2015-06-15

    Precision measurements of resistivity, thermopower, and volume are performed for TmS, TmSe, and TmTe under a hydrostatic pressure up to 8 GPa. Comparison of the transport properties and volume of TmTe and SmTe in the valence transition region demonstrates a complete analogy up to quantitative coincidence. It is shown that the thermopower of all thulium and samarium chalcogenides in the lattice collapse region and in subsequent rearrangement of the electron spectrum in a wide range of pressures follow a universal dependence corresponding the passage of the Fermi level through the peak of the density of states (DOS). The results are considered in the context of ideas about the exciton nature of the intermediate valence in chalcogenides of rare-earth metals.

  13. Transition metal and rare earth quad-doped photovoltaic phosphate glasses toward raising a-SiC:H solar cell performance

    NASA Astrophysics Data System (ADS)

    Song, P.; Zhang, C. M.; Zhu, P. F.

    2016-01-01

    Efficiency enhancement of a hydrogenated amorphous-silicon carbide (a-SiC:H) solar cell using downshifting and upconversion of photovoltaic (PV) glasses doped with transition metal (TM) ions and rare earth (RE) ions are investigated. P2O5-Li2O-Al2O3-Sb2O3-MnO-Yb2O3-Er2O3 glass doped with Sb3+-Mn2+-Yb3+-Er3+ ions is prepared and the PV glass is placed on an a-SiC:H solar cell. The performance of the cell in combination with the PV glass is simulated and measured, and the results show that the theoretical and experimental efficiencies are both enhanced compared to the bare one. The potential of TM-RE quad-doped glasses for improving the efficiency of a-SiC:H PV modules are explored.

  14. IUPAC-NIST Solubility Data Series. 100. Rare Earth Metal Fluorides in Water and Aqueous Systems. Part 2. Light Lanthanides (Ce-Eu)

    NASA Astrophysics Data System (ADS)

    Mioduski, Tomasz; Gumiński, Cezary; Zeng, Dewen

    2015-03-01

    This is the second part of the volume devoted to the evaluation of experimental solubility data for rare earth metal (REM) fluorides in water as well as in aqueous ternary and multicomponent systems. Fluorides of Ce, Pr, Nd, Pm, Sm, and Eu (so-called light lanthanides), as the main solutes, are covered in the present part, which has thorough coverage of the experimental literature through the end of 2012. The experimentally unknown solubility value for PmF3 in water was predicted by an interpolation of the solubility values for NdF3 and SmF3 at 298 K. General features of the systems, such as the nature of the equilibrium solid phases, solubility as a function of temperature, influence of ionic strength, pH, mixed solvent medium on the solubility, quality of the solubility results, and solubility as a function of REM atomic number, have already been presented in Part 1 of the volume.

  15. Universal behavior of chalcogenides of rare-earth metals in the transition to a state with intermediate valence at high pressures

    NASA Astrophysics Data System (ADS)

    Tsiok, O. B.; Khvostantsev, L. G.; Brazhkin, V. V.

    2015-06-01

    Precision measurements of resistivity, thermopower, and volume are performed for TmS, TmSe, and TmTe under a hydrostatic pressure up to 8 GPa. Comparison of the transport properties and volume of TmTe and SmTe in the valence transition region demonstrates a complete analogy up to quantitative coincidence. It is shown that the thermopower of all thulium and samarium chalcogenides in the lattice collapse region and in subsequent rearrangement of the electron spectrum in a wide range of pressures follow a universal dependence corresponding the passage of the Fermi level through the peak of the density of states (DOS). The results are considered in the context of ideas about the exciton nature of the intermediate valence in chalcogenides of rare-earth metals.

  16. Ground states of an Ising model on an extended Shastry-Sutherland lattice and the 1/2-magnetization plateau in some rare-earth-metal tetraborides

    NASA Astrophysics Data System (ADS)

    Dublenych, Yu. I.

    2013-08-01

    A complete solution of the ground-state problem for an Ising model on the Shastry-Sutherland lattice with an additional interaction along the diagonals of “empty” squares in an applied magnetic field is presented. A rigorous proof is given that this interaction gives rise to a plateau at one-half of the saturation magnetization. Such a fractional plateau has been observed in some rare-earth-metal tetraborides, in particular in strong Ising magnets ErB4 (where it is the only one) and TmB4 (where it is the broadest one), but its origin has remained unclear. Our study sheds new light on the solution of this problem.

  17. Ground States of the Ising Model on the Shastry-Sutherland Lattice and the Origin of the Fractional Magnetization Plateaus in Rare-Earth-Metal Tetraborides

    NASA Astrophysics Data System (ADS)

    Dublenych, Yu. I.

    2012-10-01

    A complete and exact solution of the ground-state problem for the Ising model on the Shastry-Sutherland lattice in an applied magnetic field is found. The magnetization plateau at one third of the saturation value is shown to be the only possible fractional plateau in this model. However, stripe magnetic structures with 1/2 and 1/n (n>3) magnetization, observed in the rare-earth-metal tetraborides RB4, occur at the boundaries of the three-dimensional regions of the ground-state phase diagram. These structures give rise to new magnetization plateaus if interactions of longer range are taken into account. For instance, an additional third-neighbor interaction is shown to produce a 1/2 plateau. The results obtained significantly refine the understanding of the magnetization process in RB4 compounds, especially in TmB4 and ErB4, which are strong Ising magnets.

  18. Effect of Rare Earth Oxide Content on Nanograined Base Metal Electrode Multilayer Ceramic Capacitor Powder Prepared by Aqueous Chemical Coating Method

    NASA Astrophysics Data System (ADS)

    Zhang, Yichi; Wang, Xiaohui; Kim, Jinyong; Li, Longtu

    2013-02-01

    The aqueous chemical coating route is highly effective in preparing BaTiO3 nanoparticles uniformly coated with additives. Such nanoparticles can be used to produce nano-grained temperature stable BaTiO3 ceramics with core-shell structure, fulfilling the need of next-generation ultrathin layer base metal electrode (BME) multilayer ceramic capacitors (MLCCs). Rare earth oxides are an important class of additives owing to their ability to fulfill both donor and acceptor roles. In this paper, the effects of Y2O3 and Ho2O3 co-dopant content on dielectric and microstructural properties were investigated. By applying chemical coating, BaTiO3-based high performance temperature stabilized ceramics with the average grain size of about 130 nm, which met the requirement of next generation BME MLCCs, were obtained.

  19. Ground states of an Ising model on an extended Shastry-Sutherland lattice and the 1/2-magnetization plateau in some rare-earth-metal tetraborides.

    PubMed

    Dublenych, Yu I

    2013-08-01

    A complete solution of the ground-state problem for an Ising model on the Shastry-Sutherland lattice with an additional interaction along the diagonals of "empty" squares in an applied magnetic field is presented. A rigorous proof is given that this interaction gives rise to a plateau at one-half of the saturation magnetization. Such a fractional plateau has been observed in some rare-earth-metal tetraborides, in particular in strong Ising magnets ErB(4) (where it is the only one) and TmB(4) (where it is the broadest one), but its origin has remained unclear. Our study sheds new light on the solution of this problem.

  20. Research progress on polyoxometalate-based transition-metal-rare-earth heterometallic derived materials: synthetic strategies, structural overview and functional applications.

    PubMed

    Zhao, Jun-Wei; Li, Yan-Zhou; Chen, Li-Juan; Yang, Guo-Yu

    2016-03-25

    With the rapid development of science and technology and the trend of multidisciplinary pervasion, POM-based TM-RE heterometallic chemistry (POM = polyoxometalate, TM = transition-metal, RE = rare-earth) has become one of the most rapidly growing and challengeable areas of inorganic chemistry due to the impressive structural diversities, various chemical compositions and potential applications of these materials in magnetism, optics, electrochemistry, electrocatalysis and materials science. Over the past several years, continuous interest and persisting efforts have been dedicated to the preparation and exploration of POM-based TM-RE heterometallic derived materials (PTRHDMs), which have led to more than two hundred PTRHDMs. In this review, we summarize the structural types of reported PTRHDMs together with synthetic strategies, structural motifs and relevant functional applications. The exciting array of this emerging research theme presages continuous growth and great vitality. In the last section, some prospects of this branch are also presented and possible guidance for future work is outlined.

  1. Spectroscopic studies of metal high-k dielectrics: transition metal oxides and silicates, and complex rare earth/transition metal oxides

    NASA Astrophysics Data System (ADS)

    Lucovsky, G.; Hong, J. G.; Fulton, C. C.; Zou, Y.; Nemanich, R. J.; Ade, H.; Scholm, D. G.; Freeouf, J. L.

    2004-08-01

    This paper uses X-ray absorption spectroscopy to the study of electronic structure of the transition metal oxides TiO2, ZrO2 and HfO2, Zr and Hf silicate alloys, and the complex oxides, GdScO3, DyScO3 and HfTiO4. Qualitative and quantitative differences are identified between dipole allowed intra-atomic transitions from core p-states to empty d*- and s*-states, and inter-atomic transitions from transition metal and oxide 1s states to O 2p* that are mixed with transition metal d*- and s*-states for transition metal oxides and silicate alloys. The complex oxide studies have focused on the O K1 edge spectra. Differences between the spectral peak energies of the lowest d*-features in the respective O K1 spectra are demonstrated to scale with optical band gap differences for TiO2, ZrO2 and HfO2, as well as the complex oxides providing important information relevant to applications of TM oxides as high-k gate dielectrics in advanced Si devices. This is demonstrated through scaling relationships between (i) conduction band offset energies between Si and the respective dielectrics, and the optical band gaps, and (ii) the optical band gaps, the conduction band offset energies, and the electron tunneling masses as functions of the atomic d-state energies of the transition metal atoms.

  2. Purification of rare-earth metals as the approach to improving properties of hard magnetic Nd2Fe14B-based materials

    NASA Astrophysics Data System (ADS)

    Kolchugina, N. B.; Burkhanov, G. S.; Dormidontov, A. G.; Lukin, A. A.; Koshkid'ko, Yu S.; Skotnicová, K.; Drulis, H.; Smetana, B.

    2016-01-01

    Purification of rare-earth metals, namely, Nd, Pr, Tb, Dy used in manufacturing Nd2Fe14B-based magnets was realized. The metals were purified by vacuum distillation/sublimation. Conditions of the process were optimized and the structure of distilled metals was studied. Distilled terbium and dysprosium were used to prepare hydrides TbH2 and DyH2. Peculiarities of the decomposition of terbium and dysprosium hydrides were studied with the view of the use of the compounds as efficient additions, which allow the high- coercivity state of sintered magnets to be formed. Terbium hydride additions (to 4 wt %) favor the marked increase in the magnetization coercive force without excessive attenuation of the remanence (j H c = 1940 kA/m, (BH max) = 292 kJ/m3). Dysprosium hydride additions increase the stability of high-coercivity state (j H c = 1310 kA/m, (BH max) = 322 kJ/m3 at 2 wt% DyH2).

  3. Surface Disturbance Analysis in Rare Earth Mining

    NASA Astrophysics Data System (ADS)

    Li, H. K.; Yang, L.; Liu, Z. W.

    2017-02-01

    Mining ion-type rare-earth ore made the landscape and ecological environment degraded in mining area, and the tailing produced by rare-earth mining also led large areas land desertification, which resulted in surface temperature variations and significant differences in other types of mining disturbances. In order to analyse surface disturbance of rare-earth mining area, this paper applied the methods based on Normalized Difference Vegetation Index (NDVI) and Temperature different Coefficient (TDC) as the ecological disturbance indicator, compared and validated their applicability in Lingbei rare-earth mining area of Southern China. The results illustrated that, compared to NDVI, the TDC which reflected the characteristic of rare-earth mining technology has better discrimination of disturbance, especially for in-situ leach mining area. The places of tailing and the in-situ leach mining plants were the most dramatic mining disturbance. They had the biggest TDC value, followed by orchards and farmlands, reclamation plants, they had relatively small disturbance. And the last was the plant with the smallest TDC value. TDC in rare-earth mining could better correspond to the level of surface ecological disturbance. Therefore, TDC as the indicator of ecological disturbance factor had better performance than NDVI in rare-earth mining area.

  4. Improved Rare-Earth Emitter Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Goebel, Dan M.

    2011-01-01

    An improvement has been made to the design of the hollow cathode geometry that was created for the rare-earth electron emitter described in Compact Rare Earth Emitter Hollow Cathode (NPO-44923), NASA Tech Briefs, Vol. 34, No. 3 (March 2010), p. 52. The original interior assembly was made entirely of graphite in order to be compatible with the LaB6 material, which cannot be touched by metals during operation due to boron diffusion causing embrittlement issues in high-temperature refractory materials. Also, the graphite tube was difficult to machine and was subject to vibration-induced fracturing. This innovation replaces the graphite tube with one made out of refractory metal that is relatively easy to manufacture. The cathode support tube is made of molybdenum or molybdenum-rhenium. This material is easily gun-bored to near the tolerances required, and finish machined with steps at each end that capture the orifice plate and the mounting flange. This provides the manufacturability and robustness needed for flight applications, and eliminates the need for expensive e-beam welding used in prior cathodes. The LaB6 insert is protected from direct contact with the refractory metal tube by thin, graphite sleeves in a cup-arrangement around the ends of the insert. The sleeves, insert, and orifice plate are held in place by a ceramic spacer and tungsten spring inserted inside the tube. To heat the cathode, an insulating tube is slipped around the refractory metal hollow tube, which can be made of high-temperature materials like boron nitride or aluminum nitride. A screw-shaped slot, or series of slots, is machined in the outside of the ceramic tube to constrain a refractory metal wire wound inside the slot that is used as the heater. The screw slot can hold a single heater wire that is then connected to the front of the cathode tube by tack-welding to complete the electrical circuit, or it can be a double slot that takes a bifilar wound heater with both leads coming out

  5. Tuning bad metal and non-Fermi liquid behavior in a Mott material: Rare-earth nickelate thin films

    PubMed Central

    Mikheev, Evgeny; Hauser, Adam J.; Himmetoglu, Burak; Moreno, Nelson E.; Janotti, Anderson; Van de Walle, Chris G.; Stemmer, Susanne

    2015-01-01

    Resistances that exceed the Mott-Ioffe-Regel limit (known as bad metal behavior) and non-Fermi liquid behavior are ubiquitous features of the normal state of many strongly correlated materials. We establish the conditions that lead to bad metal and non-Fermi liquid phases in NdNiO3, which exhibits a prototype bandwidth-controlled metal-insulator transition. We show that resistance saturation is determined by the magnitude of Ni eg orbital splitting, which can be tuned by strain in epitaxial films, causing the appearance of bad metal behavior under certain conditions. The results shed light on the nature of a crossover to a non-Fermi liquid metal phase and provide a predictive criterion for Anderson localization. They elucidate a seemingly complex phase behavior as a function of film strain and confinement and provide guidelines for orbital engineering and novel devices. PMID:26601140

  6. Tuning bad metal and non-Fermi liquid behavior in a Mott material: Rare-earth nickelate thin films.

    PubMed

    Mikheev, Evgeny; Hauser, Adam J; Himmetoglu, Burak; Moreno, Nelson E; Janotti, Anderson; Van de Walle, Chris G; Stemmer, Susanne

    2015-11-01

    Resistances that exceed the Mott-Ioffe-Regel limit (known as bad metal behavior) and non-Fermi liquid behavior are ubiquitous features of the normal state of many strongly correlated materials. We establish the conditions that lead to bad metal and non-Fermi liquid phases in NdNiO3, which exhibits a prototype bandwidth-controlled metal-insulator transition. We show that resistance saturation is determined by the magnitude of Ni eg orbital splitting, which can be tuned by strain in epitaxial films, causing the appearance of bad metal behavior under certain conditions. The results shed light on the nature of a crossover to a non-Fermi liquid metal phase and provide a predictive criterion for Anderson localization. They elucidate a seemingly complex phase behavior as a function of film strain and confinement and provide guidelines for orbital engineering and novel devices.

  7. Novel Fiber Preforms: Rare Earth Doping.

    DTIC Science & Technology

    1988-01-21

    measurements were made on a Digilab FTS-15B as KBr While there are many complex multicomponent rare pellets from 3800-4(0cm and as low density poivethvene...earth glasses, phosphates hold special interest as binary pellets t50-500cm ). Spectral resolution was 2 cm- cr rare earth glasses of variable composition...SiO- the glasses have compositions in the range x = 0.009 to 0052. w.hich corresponds to 0.9 to 5.2 molo or up to 23 wt% rare earth oxide as determruned

  8. Protecting the environment and public health from rare earth mining

    NASA Astrophysics Data System (ADS)

    Huang, Xiang; Zhang, Guochun; Pan, An; Chen, Fengying; Zheng, Chunli

    2016-11-01

    As increasing demand for green energy and high-tech devices grows, so does the rising prospecting of rare earth metals required for their production. Protecting the environment and public health from rare earth element (REE) mining as well as emerging pollutants is urgently required to achieve sustainable development. This study mapped Earth's hidden REE deposits to identify potential contamination hotspots with the aim of preventing its deleterious effects on the environment. We worry that there would be widespread tailing facilities concomitant with serious pollutions, such as the Bayan Obo tailings site, and argue that a tradeoff between the underground REE exploration and environment conservation should be reached as soon as possible.

  9. High mobilization of arsenic, metals and rare earth elements in seepage waters driven by respiration of old allochthonous organic carbon.

    PubMed

    Weiske, Arndt; Schaller, Jörg; Hegewald, Tilo; Machill, Susanne; Werner, Ingo; Dudel, E Gert

    2013-12-01

    Metal and metalloid mobilization processes within seepage water are of major concern in a range of water reservoir systems. The mobilization process of arsenic and heavy metals within a dam and sediments of a drinking water reservoir was investigated. Principle component analysis (PCA) on time series data of seepage water showed a clear positive correlation of arsenic with iron and DOC (dissolved organic carbon), and a negative correlation with nitrate due to respiratory processes. A relationship of reductive metal and metalloid mobilization with respiration of old carbon was shown. The system is influenced by sediment layers as well as a recent DOC input from degraded ombrotrophic peatbogs in the catchment area. The isotopic composition ((12)C, (13)C and (14)C) of DOC is altered along the path from basin to seepage water, but no significant changes in structural parameters (LC-OCD-OND, FT-IR) could be seen. DIC (dissolved inorganic carbon) in seepage water partly originates from respiratory processes, and a higher relationship of it with sediment carbon than with the DOC inventory of infiltrating water was found. This study revealed the interaction of respiratory processes with metal and metalloid mobilization in sediment water flows. In contrast to the presumption that emerging DOC via respiratory processes mainly controls arsenic and metal mobilization it could be shown that the presence of aged carbon compounds is essential. The findings emphasize the importance of aged organic carbon for DOC, DIC, arsenic and metal turnover.

  10. Effects of rare earth metal substituents on the high power piezoelectric properties in lead zirconate titanate-lead (antimony,manganese)O(3) ceramics

    NASA Astrophysics Data System (ADS)

    Gao, Yongkang

    Improved piezoelectric materials with higher vibrational velocities are needed to meet the demands of advanced high power electromechanical applications. In this thesis, the effects of the rare earth (RE) metal substituents on the vibrational velocity, the piezoelectric properties and polarization behavior of Pb(Zr,Ti)O3-Pb(Sb,Mn)O3 ceramics have been investigated. Under high drive levels, the mechanical quality factor and the vibrational velocity were both significantly improved by RE substitution. For a longitudinal vibrator, driven under the d31 mode, root mean square value (rms value) of vibration velocity as high as 0.9 m/s under an electric field of 10 kV/m (rms value) has been found for Yb-substituted specimens, which is 1.5 times higher than that of base Pb(Zr,Ti)O3-Pb(Sb,Mn)O 3 ceramics. For most of rare earth substituents investigated in this system, regardless of the species ionic radii, the piezoelectric properties were observed to have combinative "hard" and "soft" characteristics. "Hard" piezoelectrics have higher Qm values, but lower k31 values. On the other hand, "soft" piezoelectrics have lower Qm values, but higher k31 values. The increased mechanical quality factor Qm (typical of "hard" piezoelectrics) and increased electromechanical coupling coefficient k31 (typical of "soft" ones) were both achieved by RE substitution. With increasing rare earth substituent ionic size, there was no absolute proportional relationship between k31/Qm and dopant ionic size observed. Polarization-electric field (P-E) measurements revealed a significant relaxational polarization similar to a "soft" piezoelectric, in addition to an internal dipolar field similar to a "hard" piezoelectric. A possible explanation for the combinative "hardening" and "softening" effects is the coexistence of randomly quenched and mobile defects. The time dependences after poling of the mechanical quality factor Q m, electromechanical coupling coefficient k31 and dielectric constant K have

  11. Ternary rare earth-lanthanide sulfides

    DOEpatents

    Takeshita, Takuo; Gschneidner, Jr., Karl A.; Beaudry, Bernard J.

    1987-01-06

    A new ternary rare earth sulfur compound having the formula: La.sub.3-x M.sub.x S.sub.4 where M is a rare earth element selected from the group europium, samarium and ytterbium and x=0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to 1000.degree. C.

  12. Charge Disproportionation without Charge Transfer in the Rare-Earth-Element Nickelates as a Possible Mechanism for the Metal-Insulator Transition

    NASA Astrophysics Data System (ADS)

    Johnston, Steve; Mukherjee, Anamitra; Elfimov, Ilya; Berciu, Mona; Sawatzky, George A.

    2014-03-01

    We study a model for the metal-insulator (M-I) transition in the rare-earth-element nickelates RNiO3, based upon a negative charge transfer energy and coupling to a rocksaltlike lattice distortion of the NiO6 octahedra. Using exact diagonalization and the Hartree-Fock approximation we demonstrate that electrons couple strongly to these distortions. For small distortions the system is metallic, with a ground state of predominantly d8L character, where L_ denotes a ligand hole. For sufficiently large distortions (δdNi-O˜0.05-0.10 Å), however, a gap opens at the Fermi energy as the system enters a periodically distorted state alternating along the three crystallographic axes, with (d8L_2)S =0(d8)S=1 character, where S is the total spin. Thus the M-I transition may be viewed as being driven by an internal volume "collapse" where the NiO6 octahedra with two ligand holes shrink around their central Ni, while the remaining octahedra expand accordingly, resulting in the (1/2, 1/2, 1/2) superstructure observed in x-ray diffraction in the insulating phase. This insulating state is an example of charge ordering achieved without any actual movement of the charge.

  13. Charge disproportionation without charge transfer in the rare-earth nickelates as a possible mechanism for the metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Johnston, Steven; Mukherjee, Anamitra; Elfimov, Ilya; Berciu, Mona; Sawatzky, George

    2014-03-01

    We study a model for the metal-insulator (MI) transition in the rare-earth nickelates RNiO3, based upon a negative charge transfer energy and coupling to a rock-salt like lattice distortion of the NiO6 octahedra. Using exact diagonalization and the Hartree-Fock approximation we demonstrate that electrons couple strongly to these distortions. For small distortions the system is metallic, with ground state of predominantly d8 ligand character, where ligand denotes a ligand hole. For sufficiently large distortions (δdNi - O ~ 0 . 05 - 0 . 10 Å), however, a gap opens at the Fermi energy as the system enters a periodically distorted state alternating along the three crystallographic axes, with (d8 ligand2) S = 0(d8) S = 1 character, where S is the total spin. Thus the MI transition may be viewed as being driven by an internal volume ``collapse'' where the NiO6 octahedra with two ligand holes shrink around their central Ni, while the remaining octahedra expand accordingly, resulting in the superstructure observed in x-ray diffraction in the insulating phase. This insulating state is an example of charge ordering achieved without any actual movement of the charge, similar to that reported in a prior DMFT study.

  14. Current Status on Resource and Recycling Technology for Rare Earths

    NASA Astrophysics Data System (ADS)

    Takeda, Osamu; Okabe, Toru H.

    2014-06-01

    The development of recycling technologies for rare earths is essential for resource security and supply stability because high-quality rare earth mines are concentrated in China and the demand for rare earth metals such as neodymium and dysprosium, used as raw materials in permanent magnets (neodymium magnet), is expected to increase rapidly in the near future. It is also important to establish a recycling-based society from the perspective of the conservation of finite and valuable mineral resources and the reduction of the environmental load associated with mining and smelting. In this article, the current status of rare earth resource as well as that of recycling technology for the magnets is reviewed. The importance of establishing an efficient recycling process for rare earths is discussed from the characteristics of supply chain of rare earths, and the technological bases of the recycling processes for the magnet are introduced. Further, some fundamental researches on the development of new recycling processes based on pyrometallurgical process are introduced, and the features of the recycling processes are evaluated.

  15. New rare earth metal-rich indides RE14Ni 3In 3 ( RE=Sc, Y, Gd-Tm, Lu)—synthesis and crystal chemistry

    NASA Astrophysics Data System (ADS)

    Lukachuk, Mar'yana; Galadzhun, Yaroslav V.; Zaremba, Roman I.; Dzevenko, Mariya V.; Kalychak, Yaroslav M.; Zaremba, Vasyl I.; Rodewald, Ute Ch.; Pöttgen, Rainer

    2005-09-01

    The rare earth-nickel-indides RE14Ni 3In 3 ( RE=Sc, Y, Gd-Tm, Lu) were synthesized from the elements by arc-melting and subsequent annealing. The compounds were investigated on the basis of X-ray powder and single crystal data: Lu 14Co 2In 3 type, P4 2/ nmc, Z=4, a=888.1(1), c=2134.7(4), wR2=0.0653, 1381 F2 values, 63 variables for Sc 13.89Ni 3.66In 2.45; a=961.2(1), c=2316.2(5), wR2=0.0633, 1741 F2 values, 64 variables for Y 13.84Ni 3.19In 2.97; a=965.3(1), c=2330.5(5), wR2=0.0620, 1765 F2 values, 63 variables for Gd 14Ni 3.29In 2.71; a=956.8(1), c=2298.4(5), wR2=0.0829, 1707 F2 values, 64 variables for Tb 13.82Ni 3.36In 2.82; a=951.7(1), c=2289.0(5), wR2=0.0838, 1794 F2 values, 64 variables for Dy 13.60Ni 3.34In 3.06; a=948.53(7), c=2270.6(1), wR2=0.1137, 1191 F2 values, 64 variables for Ho 13.35Ni 3.17In 3.48; a=943.5(1), c=2269.1(5), wR2=0.0552, 1646 F2 values, 64 variables for Er 13.53Ni 3.14In 3.33; a=938.42(7), c=2250.8(1), wR2=0.1051, 1611 F2 values, 64 variables for Tm 13.47Ni 3.28In 3.25; a=937.3(1), c=2249.6(5), wR2=0.0692, 1604 F2 values, 64 variables for Tm 13.80Ni 3.49In 2.71; and a=933.4(1), c=2263.0(5), wR2=0.0709, 1603 F2 values, 64 variables for Lu 13.94Ni 3.07In 2.99. The RE14Ni 3In 3 indides show significant Ni/In mixing on the 4 c In1 site. Except the gadolinium compound, the RE14Ni 3In 3 intermetallics also reveal RE/In mixing on the 4 c RE1 site, leading to the refined compositions. Due to the high rare earth metal content, the seven crystallographically independent RE sites have between 9 and 10 nearest RE neighbors. The RE14Ni 3In 3 structures can be described as a complex intergrowth of rare earth-based polyhedra. Both nickel sites have a distorted trigonal-prismatic rare earth coordination. An interesting feature is the In2-In2 dumb-bell at an In2-In2 distance of 304 pm (for Gd 14Ni 3.29In 2.71). The crystal chemical peculiarities of the RE14Ni 3In 3 indides are briefly discussed.

  16. Rare earth element scavenging in seawater

    NASA Astrophysics Data System (ADS)

    Byrne, Robert H.; Kim, Ki-Hyun

    1990-10-01

    Examinations of rare earth element (REE) adsorption in seawater, using a variety of surface-types, indicated that, for most surfaces, light rare earth elements (LREEs) are preferentially adsorbed compared to the heavy rare earths (HREEs). Exceptions to this behavior were observed only for silica phases (glass surfaces, acid-cleaned diatomaceous earth, and synthetic SiO 2). The affinity of the rare earths for surfaces can be strongly affected by thin organic coatings. Glass surfaces which acquired an organic coating through immersion in Tampa Bay exhibited adsorptive behavior typical of organic-rich, rather than glass, surfaces. Models of rare earth distributions between seawater and carboxylate-rich surfaces indicate that scavenging processes which involve such surfaces should exhibit a strong dependence on pH and carbonate complexation. Scavenging models involving carboxylate surfaces produce relative REE abundance patterns in good general agreement with observed shale-normalized REE abundances in seawater. Scavenging by carboxylate-rich surfaces should produce HREE enrichments in seawater relative to the LREEs and may produce enrichments of lanthanum relative to its immediate trivalent neighbors. Due to the origin of distribution coefficients as a difference between REE solution complexation (which increases strongly with atomic number) and surface complexation (which apparently also increases with atomic number) the relative solution abundance patterns of the REEs produced by scavenging reactions can be quite complex.

  17. Rare-earth transition-metal gallium chalcogenides RE{sub 3}MGaCh{sub 7} (M=Fe, Co, Ni; Ch=S, Se)

    SciTech Connect

    Rudyk, Brent W.; Stoyko, Stanislav S.; Oliynyk, Anton O.; Mar, Arthur

    2014-02-15

    Six series of quaternary rare-earth transition-metal chalcogenides RE{sub 3}MGaCh{sub 7} (M=Fe, Co, Ni; Ch=S, Se), comprising 33 compounds in total, have been prepared by reactions of the elements at 1050 °C (for the sulphides) or 900 °C (for the selenides). They adopt noncentrosymmetric hexagonal structures (ordered Ce{sub 3}Al{sub 1.67}S{sub 7}-type, space group P6{sub 3}, Z=2) with cell parameters in the ranges of a=9.5–10.2 Å and c=6.0–6.1 Å for the sulphides and a=10.0–10.5 Å and c=6.3–6.4 Å for the selenides as refined from powder X-ray diffraction data. Single-crystal structures were determined for five members of the sulphide series RE{sub 3}FeGaS{sub 7} (RE=La, Pr, Tb) and RE{sub 3}CoGaS{sub 7} (RE=La, Tb). The highly anisotropic crystal structures consist of one-dimensional chains of M-centred face-sharing octahedra and stacks of Ga-centred tetrahedra all pointing in the same direction. Magnetic measurements on the sulphides reveal paramagnetic behaviour in some cases and long-range antiferromagnetic behaviour with low Néel temperatures (15 K or lower) in others. Ga L-edge XANES spectra support the presence of highly cationic Ga tetrahedral centres with a tendency towards more covalent Ga–Ch character on proceeding from the sulphides to the selenides. Band structure calculations on La{sub 3}FeGaS{sub 7} indicate that the electronic structure is dominated by Fe 3d-based states near the Fermi level. - Graphical abstract: The series of chalcogenides RE{sub 3}MGaS{sub 7}, which form for a wide range of rare-earth and transition metals (M=Fe, Co, Ni), adopt highly anisotropic structures containing chains of M-centred octahedra and stacks of Ga-centred tetrahedra. Display Omitted - Highlights: • Six series (comprising 33 compounds) of chalcogenides RE{sub 3}MGaCh{sub 7} were prepared. • They adopt noncentrosymmetric hexagonal structures with high anisotropy. • Most compounds are paramagnetic; some show antiferromagnetic ordering. • Ga L

  18. Growth, characterization and luminescence and optical properties of rare-earth elements and transition metals doped in wide bandgap nitride semiconductors

    NASA Astrophysics Data System (ADS)

    Maqbool, Muhammad

    Rare-earth element and transition metals doped AlN, GaN and BN films were successfully grown using reactive magnetron sputtering. The structural, optical and luminescence properties of these nitride films were then studied using Scanning Electron Microscopy, X-rays diffraction, Cathodoluminescence and Tube furnace. Both amorphous and crystalline films were obtained depending on the substrate temperature during the deposition. Cryogenically grown amorphous films were the principal focus of this research. The substrate were cooled using liquid nitrogen during the growth and pure amorphous films were obtained. Crystalline films were also obtained using an electric heater to keep substrates at high temperature. X-ray diffraction analysis was used to confirm the structure of films. Rare-earth elements Ho, Gd, Pr, Tm and Sm and transition metals W and Y were doped into the nitride films by co-sputtering. The optical and luminescence properties of these nitride materials were studied using Cathodoluminescence. Characteristic light emissions related to these Ho+3, Gd +3, Pr+3, Tm+3, Sm+3, W+3 and Y+3 ions were observed. The results show the suitability of these materials for potential applications of light-emitting devices. Luminescence enhancement in the nitride materials was studied by co-doping Gd with Ho, Pr, Sm and W in nitride materials. Stripes of these materials were also prepared and studied for luminescence enhancement. It was observed that not only the presence of Gd but also some interference phenomena enhance luminescence in these materials. More than 100% enhancement in luminescence shows that these techniques used for luminescence enhancement are successful and useful for future applications. Stopping power of AlN for electrons and depth penetration of electron were studied by making bilayers of AlN doped with Tm+3 and Ho+3 ions. Electron beams of different energies were allowed to penetrate in the known thickness of the AlN:Tm/AlN:Ho bilayer. Stopping power

  19. Rare-earth metal methylidene complexes with Ln3(μ3-CH2)(μ3-Me)(μ2-Me)3 core structure.

    PubMed

    Schädle, Dorothea; Meermann-Zimmermann, Melanie; Maichle-Mössmer, Cäcilia; Schädle, Christoph; Törnroos, Karl W; Anwander, Reiner

    2015-11-07

    Trinuclear rare-earth metal methylidene complexes with a Ln3(μ3-CH2)(μ3-Me)(μ2-Me)3 structural motif were synthesized by applying three protocols. Polymeric [LuMe3]n (1-Lu) reacts with the sterically demanding amine H[NSiMe3(Ar)] (Ar = C6H3iPr2-2,6) in tetrahydrofuran via methane elimination to afford isolable monomeric [NSiMe3(Ar)]LuMe2(thf)2 (4-Lu). The formation of trinuclear rare-earth metal tetramethyl methylidene complexes [NSiMe3(Ar)]3Ln3(μ3-CH2)(μ3-Me)(μ2-Me)3(thf)3 (7-Ln; Ln = Y, Ho, Lu) via reaction of [LnMe3]n (1-Ln; Ln = Y, Ho, Lu) with H[NSiMe3(Ar)] is proposed to occur via an "intermediate" species of the type [NSiMe3(Ar)]LnMe2(thf)x and subsequent C-H bond activation. Applying Lappert's concept of Lewis base-induced methylaluminate cleavage, compounds [NSiMe3(Ar)]Ln(AlMe4)2 (5-Ln; Ln = Y, La, Nd, Ho) were converted into methylidene complexes 7-Ln (Ln = Y, Nd, Ho) in the presence of tetrahydrofuran. Similarly, tetramethylgallate complex [NSiMe3(Ar)]Y(GaMe4)2 (6-Y) could be employed as a synthesis precursor for 7-Y. The molecular composition of complexes 4-Ln, 5-Ln, 6-Y and 7-Ln was confirmed by elemental analyses, FTIR spectroscopy, (1)H and (13)C NMR spectroscopy (except for holmium derivatives) and single-crystal X-ray diffraction. The Tebbe-like reactivity of methylidene complex 7-Nd with 9-fluorenone was assessed affording oxo complex [NSiMe3(Ar)]3Nd3(μ3-O)(μ2-Me)4(thf)3 (8-Nd). The synthesis of 5-Ln yielded [NSiMe3(Ar)]2Ln(AlMe4) (9-Ln; Ln = La, Nd) as minor side-products, which could be obtained in moderate yields when homoleptic Ln(AlMe4)3 were treated with two equivalents of K[NSiMe3(Ar)].

  20. Rare-earth metal halogenide encapsulation-induced modifications in Raman spectra of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kharlamova, M. V.

    2015-01-01

    In the present work, a detailed Raman spectroscopy investigation on the single-walled carbon nanotubes (SWCNTs) filled with praseodymium chloride, terbium chloride and thulium chloride was performed. The salts were incorporated inside the SWCNTs by a capillary filling method using melts, and the high-resolution transmission electron microscopy data proved the high filling degree of the nanotube channels. A thorough analysis of the radial breathing mode and G-band of the Raman spectra of the pristine and filled SWCNTs showed that the encapsulated salts cause acceptor doping of the host nanotubes, and the doping efficiency depends on the compound. The incorporated thulium chloride has the strongest doping effect on the SWCNTs, whereas praseodymium chloride has the weakest effect. It was found that the encapsulated salts modify more significantly the electronic structure of metallic nanotubes than semiconducting SWCNTs.

  1. Electric-field-induced insulator-metal transitions in thin films of charge-ordered rare-earth manganates

    NASA Astrophysics Data System (ADS)

    Ponnambalam, V.; Parashar, Sachin; Raju, A. R.; Rao, C. N. R.

    1999-01-01

    Thin films of charge-ordered Nd0.5Ca0.5MnO3, Y0.5Ca0.5MnO3, and Nd0.5Sr0.5MnO3 have been prepared on Si(100) and LaAlO3(100) substrates by the nebulized spray pyrolysis of organometallic precursors. Small electric fields induce insulator-metal transitions in the films with the resistivity decreasing with increasing current. The current-voltage characteristics are non-ohmic and show some hysteresis. The current-induced negative differential resistance found in these manganate films could have potential technological applications.

  2. X-ray-scattering study of higher harmonic satellites near the antiferromagnetic phase transitions in rare-earth metals

    SciTech Connect

    Helgesen, G. |; Hill, J.P.; Thurston, T.R.; Gibbs, D.

    1995-10-01

    We present resonant x-ray magnetic scattering studies of the temperature dependence of the magnetic order parameters of Dy, Ho, Er, and Tm single crystals near their antiferromagnetic phase transitions. The experimentally determined values of the critical exponent {beta} of Er and Tm, which have {ital c}-axis modulated structures, are nearly equal and consistent with the mean-field value ({beta}=0.47{plus_minus}0.05 and {beta}=0.49{plus_minus}0.06, respectively). The measured values of Dy and Ho, which have spiral magnetic structures, are lower ({beta}=0.36{plus_minus}0.04 and {beta}=0.41{plus_minus}0.04, respectively). In addition to the primary magnetic order parameters, we have measured the temperature dependence of the intensities of up to four higher harmonics. The exponents of the higher harmonic satellites of Er and Tm exhibit mean-field-like scaling, while those of Ho do not. We discuss these results within the context of simple corrections to mean-field scaling, based on the three-dimensional {ital XY} model. We also report measurements of the temperature dependence of the {ital c}-axis lattice constants and magnetic wave vectors of all four metals. It is found that the magnetic correlation lengths are reduced near transitions to ferrimagnetic and ferromagnetic phases.

  3. Mechanistic Investigations of the Stereoselective Rare Earth Metal-Mediated Ring-Opening Polymerization of β-Butyrolactone.

    PubMed

    Altenbuchner, Peter T; Kronast, Alexander; Kissling, Stefan; Vagin, Sergei I; Herdtweck, Eberhardt; Pöthig, Alexander; Deglmann, Peter; Loos, Robert; Rieger, Bernhard

    2015-09-21

    Poly(3-hydroxybutyrate) (PHB) is produced by numerous bacteria as carbon and energy reserve storage material. Whereas nature only produces PHB in its strictly isotactic (R) form, homogeneous catalysis, when starting from racemic (rac) β-butyrolactone (BL) as monomer, can in fact produce a wide variety of tacticities. The variation of the metal center and the surrounding ligand structure enable activity as well as tacticity tuning. However, no homogeneous catalyst exists to date that is easy to modify, highly active, and able to produce PHB with high isotacticities from rac-β-BL. Therefore, in this work, the reaction kinetics of various 2-methoxyethylamino-bis(phenolate) lanthanide (Ln=Sm, Tb, Y, Lu) catalysts are examined in detail. The order in monomer and catalyst are determined to elucidate the reaction mechanism and the results are correlated with DFT calculations of the catalytic cycle. Furthermore, the enthalpies and entropies of the rate-determining steps are determined through temperature-dependent in situ IR measurements. Experimental and computational results converge in one specific mechanism for the ring-opening polymerization of BL and even allow us to rationalize the preference for syndiotactic PHB.

  4. Byproduct metals and rare-earth elements used in the production of light-emitting diodes—Overview of principal sources of supply and material requirements for selected markets

    USGS Publications Warehouse

    Wilburn, David R.

    2012-01-01

    The use of light-emitting diodes (LEDs) is expanding because of environmental issues and the efficiency and cost savings achieved compared with use of traditional incandescent lighting. The longer life and reduced power consumption of some LEDs have led to annual energy savings, reduced maintenance costs, and lower emissions of carbon dioxide, sulfur dioxide, and nitrogen oxides from powerplants because of the resulting decrease in energy consumption required for lighting applications when LEDs are used to replace less-energy-efficient sources. Metals such as arsenic, gallium, indium, and the rare-earth elements (REEs) cerium, europium, gadolinium, lanthanum, terbium, and yttrium are important mineral materials used in LED semiconductor technology. Most of the world's supply of these materials is produced as byproducts from the production of aluminum, copper, lead, and zinc. Most of the rare earths required for LED production in 2011 came from China, and most LED production facilities were located in Asia. The LED manufacturing process is complex and is undergoing much change with the growth of the industry and the changes in demand patterns of associated commodities. In many respects, the continued growth of the LED industry, particularly in the general lighting sector, is tied to its ability to increase LED efficiency and color uniformity while decreasing the costs of producing, purchasing, and operating LEDs. Research is supported by governments of China, the European Union, Japan, the Republic of Korea, and the United States. Because of the volume of ongoing research in this sector, it is likely that the material requirements of future LEDs may be quite different than LEDs currently (2011) in use as industry attempts to cut costs by reducing material requirements of expensive heavy rare-earth phosphors and increasing the sizes of wafers for economies of scale. Improved LED performance will allow customers to reduce the number of LEDs in automotive, electronic

  5. Co-based alloys design based on first-principles calculations: Influence of transition metal and rare-earth alloying element on stacking fault energy

    NASA Astrophysics Data System (ADS)

    Achmad, Tria Laksana; Fu, Wenxiang; Chen, Hao; Zhang, Chi; Yang, Zhi-Gang

    2017-01-01

    The main idea of alloy design is to reduce costs and time required by the traditional (trial and error) method, then finding a new way to develop the efficiency of the alloy design is necessary. In this study, we proposed a new approach to the design of Co-based alloys. It is based on the concept that lowering the ratio of stable and unstable stacking fault energy (SFE) could bring a significant increase in the tendency of partial dislocation accumulation and FCC to HCP phase transformation then enhance mechanical properties. Through the advance development of the computing techniques, first-principles density-functional-theory (DFT) calculations are capable of providing highly accurate structural modeling at the atomic scale without any experimental data. The first-principles calculated results show that the addition of some transition metal (Cr, Mo, W, Re, Os, Ir) and rare-earth (Sc, Y, La, Sm) alloying elements would decrease both stable and unstable SFE of pure Co. The dominant deformation mechanism of binary Co-4.5 at.% X (X = alloying element) is extended partial dislocation. Our study reveals Re, W, Mo and La as the most promising alloying additions for the Co-based alloys design with superior performances. Furthermore, the underlying mechanisms for the SFE reduction can be explained regarding the electronic structure.

  6. Chiral 2,6-bis(oxazolinyl)pyridine-rare earth metal complexes as catalysts for highly enantioselective 1,3-dipolar cycloaddition reactions of 2-benzopyrylium-4-olates.

    PubMed

    Suga, Hiroyuki; Inoue, Kei; Inoue, Shuichi; Kakehi, Akikazu; Shiro, Motoo

    2005-01-07

    Significant levels of enantioselectivity were obtained in 1,3-dipolar cycloadditions of 2-benzopyrylium-4-olate generated from the Rh(2)(OAc)(4)-catalyzed decomposition of o-methoxycarbonyl-alpha-diazoacetophenone. This reaction utilized chiral 2,6-bis(oxazolinyl)pyridine (Pybox)--rare earth metal triflate complexes as chiral Lewis acid catalysts. The reactions with several benzyloxyacetaldehyde derivatives catalyzed by a Sc(III)--Pybox-i-Pr complex (10 mol %) proceeded smoothly to yield endo-adducts selectively with high enantioselectivity (up to 93% ee). For the reaction with benzyl pyruvate, the Sc(III)-Pybox-i-Pr complex (10 mol %) catalyzed the reaction effectively in the presence of trifluoroacetic acid (10 mol %) to yield an exo-adduct with both high diastereo- and enantioselectivity (94% ee). This catalytic system was efficiently applied to the reactions with several other alpha-keto esters with high exo- and enantioselectivities (up to 95% ee). In contrast to the reaction with carbonyl compounds, Yb(III)--Pybox-Ph complex (10 mol %) was found to be effective to obtain high enantioselectivity (96% ee) of diastereoselectively produced exo-cycloadduct in the reaction with 3-acryloyl-2-oxazolidinone.

  7. IUPAC-NIST Solubility Data Series. 100. Rare Earth Metal Fluorides in Water and Aqueous Systems. Part 2. Light Lanthanides (Ce–Eu)

    SciTech Connect

    Mioduski, Tomasz; Gumiński, Cezary; Zeng, Dewen

    2015-03-15

    This is the second part of the volume devoted to the evaluation of experimental solubility data for rare earth metal (REM) fluorides in water as well as in aqueous ternary and multicomponent systems. Fluorides of Ce, Pr, Nd, Pm, Sm, and Eu (so-called light lanthanides), as the main solutes, are covered in the present part, which has thorough coverage of the experimental literature through the end of 2012. The experimentally unknown solubility value for PmF{sub 3} in water was predicted by an interpolation of the solubility values for NdF{sub 3} and SmF{sub 3} at 298 K. General features of the systems, such as the nature of the equilibrium solid phases, solubility as a function of temperature, influence of ionic strength, pH, mixed solvent medium on the solubility, quality of the solubility results, and solubility as a function of REM atomic number, have already been presented in Part 1 of the volume.

  8. 2-[(8-Hydroxyquinolinyl)methylene]hydrazinecarboxamide: expanding the coordination sphere of 8-hydroxyquinoline for coordination of rare-earth metal(III) ions.

    PubMed

    Albrecht, Markus; Osetska, Olga; Fröhlich, Roland

    2005-12-07

    The semicarbazone of 8-hydroxyquinoline-2-carbaldehyde can be easily synthesized and is an effective tetradentate ligand for the coordination of rare-earth(III) ions. Investigations with yttrium(III) and lanthanum(III) in solution and in the solid state show, that the small yttrium ion can form 2 : 2 (1 : 1 stoichiometry) and 2 : 1 ligand to metal complexes (X-ray structures: [LY(NO3)(DMF)2]2Cl2 x 2DMF and [LL'Y] x 3MeOH x Et2O). With the larger lanthanum(III) ion only a well defined 1 : 1 complex (X-ray structure: [LLa(NO3)(MeOH)2]2(NO3)2) can be observed but probably 2 : 1 complexes are also formed. The X-ray structure analyses of [(L-H)MCl3] x MeOH (M = Er, Ho) and Na[(micro-NO3){LEu(NO3)2}2] x 2DMF show different coordination modes of the ligand. It can coordinate in its deprotonated but also in the protonated form.

  9. IUPAC-NIST Solubility Data Series. 100. Rare Earth Metal Fluorides in Water and Aqueous Systems. Part 3. Heavy Lanthanides (Gd–Lu)

    SciTech Connect

    Mioduski, Tomasz; Gumiński, Cezary; Zeng, Dewen

    2015-06-15

    This is the third part of the volume devoted to solubility data for the rare earth metal (REM) fluorides in water and in aqueous ternary and multicomponent systems. It covers experimental results of trivalent fluorides of Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu (so-called heavy lanthanides), since no quantitative data on solubilities of TbF{sub 4} and YbF{sub 2} (the most stable compounds at these valencies) are available. The related literature has been covered through the end of 2014. Compilations of all available papers with the solubility data are introduced for each REM fluoride with a corresponding critical evaluation. Every such assessment contains a collection of all solubility results in aqueous solution, a selection of suggested solubility data, a solubility equation, and a brief discussion of the multicomponent systems. Only simple fluorides (no complexes or double salts) are treated as the input substances in this report. General features of the systems, such as nature of the equilibrium solid phases, solubility as a function of temperature, influence of ionic strength, solution pH, mixed solvent medium on the solubility, quality of the solubility results, and the solubility as a function of REM atomic number, have already been presented in Part 1 of the volume.

  10. IUPAC-NIST Solubility Data Series. 100. Rare Earth Metal Fluorides in Water and Aqueous Systems. Part 3. Heavy Lanthanides (Gd-Lu)

    NASA Astrophysics Data System (ADS)

    Mioduski, Tomasz; Gumiński, Cezary; Zeng, Dewen

    2015-06-01

    This is the third part of the volume devoted to solubility data for the rare earth metal (REM) fluorides in water and in aqueous ternary and multicomponent systems. It covers experimental results of trivalent fluorides of Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu (so-called heavy lanthanides), since no quantitative data on solubilities of TbF4 and YbF2 (the most stable compounds at these valencies) are available. The related literature has been covered through the end of 2014. Compilations of all available papers with the solubility data are introduced for each REM fluoride with a corresponding critical evaluation. Every such assessment contains a collection of all solubility results in aqueous solution, a selection of suggested solubility data, a solubility equation, and a brief discussion of the multicomponent systems. Only simple fluorides (no complexes or double salts) are treated as the input substances in this report. General features of the systems, such as nature of the equilibrium solid phases, solubility as a function of temperature, influence of ionic strength, solution pH, mixed solvent medium on the solubility, quality of the solubility results, and the solubility as a function of REM atomic number, have already been presented in Part 1 of the volume.

  11. Cross sections of collisional excitation transfer in collisions of rare-earth metal atoms in screened excited states with atoms of inert gases

    NASA Astrophysics Data System (ADS)

    Gerasimov, V. A.; Gerasimov, V. V.

    2011-10-01

    We present and apply a method to determine the collisional excitation transfer (CET) cross sections in collisions of rare-earth metal (REM) atoms in the screened excited states 4fN - 15d6s2 with ground-state atoms of inert gases. The method is based on the fact that the upper laser levels are collisionally populated from the close-lying resonant levels, which are excited by electron impact, in REM vapour lasers. An experimental measurement of only one laser parameter (average lasing power) is required to determine the cross sections. The CET cross sections from the screened level 4f12(3H5)5d3/26s2, with energy E = 22 791.176 cm-1, to the unscreened 4f12(3H6)6s26p1/2 (E = 22 468.046 cm-1) and screened 4f13(2F07/2)5d6s(3D) (E = 22 559.502 cm-1) levels of thulium atoms in the collisions with helium atoms are estimated as an example.

  12. High resistive nanocrystalline Fe-M-O (M=Hf, Zr, rare-earth metals) soft magnetic films for high-frequency applications (invited)

    NASA Astrophysics Data System (ADS)

    Hayakawa, Y.; Makino, A.; Fujimori, H.; Inoue, A.

    1997-04-01

    Microstructure, soft magnetic properties, and applications of high resistive Fe-M-O (M=Hf, Zr, rare-earth metals) were studied. The Fe-M-O films are composed of bcc nanograins and amorphous phases with larger amounts of M and O elements which chemically combine each other. Consequently, the amorphous phases have high electrical resistivity. The compositional dependence of magnetic properties, electrical resistivity, and structure have been almost clarified. For example, the high magnetization of 1.3 T, high permeability of 1400 at 100 MHz and the high electrical resistivity of 4.1 μΩ m are simultaneously obtained for as-deposited Fe62Hf11O27 nanostructured film fabricated by rf reactive sputtering in a static magnetic field. Furthermore, Co addition to Fe-M-O films improves the frequency characteristics mainly by the increase in the crystalline anisotropy of the nanograins. The Co44.3Fe19.1Hf14.5O22.1 film exhibits the quality factor (Q=μ'/μ'') of 61 and the μ' of 170 at 100 MHz as well as the high Is of 1.1 T. This frequency characteristics is considered to be superior to the other films already reported. The films also exhibit high corrosion resistance in an isotonic sodium chloride solution. Therefore, these films enable us to realize the high-frequency magnetic devices, such as thin-film inductors and transformers for microswitching converters and ultrahigh-density recording heads.

  13. Local magnetic moment formation at 119Sn Mössbauer impurity in RFe2 ( R=rare-earth metals) Laves phases compounds

    NASA Astrophysics Data System (ADS)

    de Oliveira, A. L.; de Oliveira, N. A.; Troper, A.

    2010-05-01

    The purpose of the present work is to theoretically study the local magnetic moment formation and the systematics of the magnetic hyperfine fields at a non-magnetic s-p Mössbauer 119Sn impurity diluted on R sites ( R=rare-earth metals) of the cubic Laves phases intermetallic compounds RFe2. One considers that the magnetic hyperfine field has two contributions (i) the contribution from R ions, calculated via an extended Daniel-Friedel [J. Phys. Chem. Solids 24 (1963) 1601] model and (ii) the contribution from the induced magnetic moments arising from the Fe neighboring sites. We have in this case a two-center Blandin-Campbell-like [Phys. Rev. Lett. 31 (1973) 51; J. Magn. Magn. Mater. 1 (1975) 1] problem, where a magnetic 3d-element located at a distance from the 119Sn impurity gives an extra magnetization to a polarized electron gas which is strongly charge perturbed at the 119Sn impurity site. We also include in the model, the nearest-neighbor perturbation due to the translational invariance breaking introduced by the impurity. Our self-consistent total magnetic hyperfine field calculations are in a very good agreement with recent experimental data.

  14. Rare-earth metal allyl and hydrido complexes supported by an (NNNN)-type macrocyclic ligand: synthesis, structure, and reactivity toward biomass-derived furanics.

    PubMed

    Abinet, Elise; Martin, Daniel; Standfuss, Sabine; Kulinna, Heiko; Spaniol, Thomas P; Okuda, Jun

    2011-12-23

    The preparation and characterization of a series of neutral rare-earth metal complexes [Ln(Me(3)TACD)(η(3)-C(3)H(5))(2)] (Ln=Y, La, Ce, Pr, Nd, Sm) supported by the 1,4,7-trimethyl-1,4,7,10-tetraazacyclododecane anion (Me(3)TACD(-)) are reported. Upon treatment of the neutral allyl complexes [Ln(Me(3)TACD)(η(3)-C(3)H(5))(2)] with Brønsted acids, monocationic allyl complexes [Ln(Me(3)TACD)(η(3)-C(3)H(5))(thf)(2)][B(C(6)X(5))(4)] (Ln=La, Ce, Nd, X=H, F) were isolated and characterized. Hydrogenolysis gave the hydride complexes [Ln(Me(3)TACD)H(2)](n) (Ln=Y, n=3; La, n=4; Sm). X-ray crystallography showed the lanthanum hydride to be tetranuclear. Reactivity studies of [Ln(Me(3)TACD)R(2)](n) (R=η(3)-C(3)H(5), n=0; R=H, n=3,4) towards furan derivatives includes hydrosilylation and deoxygenation under ring-opening conditions.

  15. Rare-earth-metal alkylaluminates supported by N-donor-functionalized cyclopentadienyl ligands: C-H bond activation and performance in isoprene polymerization.

    PubMed

    Jende, Lars N; Maichle-Mössmer, Cäcilia; Anwander, Reiner

    2013-11-25

    Homoleptic tetramethylaluminate complexes [Ln(AlMe4)3] (Ln=La, Nd, Y) reacted with HCp(NMe2) (Cp(NMe2) =1-[2-(N,N-dimethylamino)-ethyl]-2,3,4,5-tetramethyl-cyclopentadienyl) in pentane at -35 °C to yield half-sandwich rare-earth-metal complexes, [{C5 Me4CH2CH2NMe2 (AlMe3)}Ln(AlMe4)2]. Removal of the N-donor-coordinated trimethylaluminum group through donor displacement by using an equimolar amount of Et2O at ambient temperature only generated the methylene-bridged complexes [{C5Me4CH2CH2NMe(μ-CH2)AlMe3}Ln(AlMe4)] with the larger rare-earth-metal ions lanthanum and neodymium. X-ray diffraction analysis revealed the formation of isostructural complexes and the C-H bond activation of one aminomethyl group. The formation of Ln(μ-CH2)Al moieties was further corroborated by (13)C and (1)H-(13)C HSQC NMR spectroscopy. In the case of the largest metal center, lanthanum, this C-H bond activation could be suppressed at -35 °C, thereby leading to the isolation of [(Cp(NMe2))La(AlMe4)2], which contains an intramolecularly coordinated amino group. The protonolysis reaction of [Ln(AlMe4)3] (Ln=La, Nd) with the anilinyl-substituted cyclopentadiene HCp(AMe2) (Cp(AMe2) =1-[1-(N,N-dimethylanilinyl)]-2,3,4,5-tetramethylcyclopentadienyl) at -35 °C generated the half-sandwich complexes [(Cp(AMe2))Ln(AlMe4)2]. Heating these complexes at 75 °C resulted in the C-H bond activation of one of the anilinium methyl groups and the formation of [{C5Me4C6H4NMe(μ-CH2)AlMe3}Ln(AlMe4)] through the elimination of methane. In contrast, the smaller yttrium metal center already gave the aminomethyl-activated complex at -35 °C, which is isostructural to those of lanthanum and neodymium. The performance of complexes [{C5Me4CH2CH2NMe(μ-CH2 )AlMe3}-Ln(AlMe4)], [(Cp(AMe2))Ln(AlMe4)2], and [{C5Me4C6H4NMe(μ-CH2)AlMe3}Ln(AlMe4)] in the polymerization of isoprene was investigated upon activation with [Ph3C][B(C6F5)4], [PhNMe2 H][B(C6F5)4], and B(C6F5)3. The highest stereoselectivities were observed

  16. Rare earth phosphors and phosphor screens

    DOEpatents

    Buchanan, Robert A.; Maple, T. Grant; Sklensky, Alden F.

    1981-01-01

    This invention relates to rare earth phosphor screens for converting image carrying incident radiation to image carrying visible or near-visible radiation and to the rare earth phosphor materials utilized in such screens. The invention further relates to methods for converting image carrying charged particles to image carrying radiation principally in the blue and near-ultraviolet region of the spectrum and to stabilized rare earth phosphors characterized by having a continuous surface layer of the phosphors of the invention. More particularly, the phosphors of the invention are oxychlorides and oxybromides of yttrium, lanthanum and gadolinium activated with trivalent cerium and the conversion screens are of the type illustratively including x-ray conversion screens, image amplifier tube screens, neutron imaging screens, cathode ray tube screens, high energy gamma ray screens, scintillation detector screens and screens for real-time translation of image carrying high energy radiation to image carrying visible or near-visible radiation.

  17. Mn 5Si 3-type host-interstitial boron rare-earth metal silicide compounds RE5Si 3: Crystal structures, physical properties and theoretical considerations

    NASA Astrophysics Data System (ADS)

    Roger, Jérome; Ben Yahia, Mouna; Babizhetskyy, Volodymyr; Bauer, Joseph; Cordier, Stéphane; Guérin, Roland; Hiebl, Kurt; Rocquefelte, Xavier; Saillard, Jean-Yves; Halet, Jean-François

    2006-08-01

    A series of binary rare-earth metal silicides RE5Si 3 and ternary boron-interstitial phases RE5Si 3B x ( RE=Gd, Dy, Ho, Lu, and Y) adopting the Mn 5Si 3-type structure, have been prepared from the elemental components by arc melting. Boron "stuffed" phases were subsequently heated at 1750 K within a high-frequency furnace. Crystal structures were determined for both binary and ternary series of compounds from single-crystal X-ray data: hexagonal symmetry, space group P6 3/ mcm, Z=2. Boron insertion in the host binary silicides results in a very small decrease of the unit cell parameters with respect to those of the binaries. According to X-ray data, partial or nearly full boron occupancy of the interstitial octahedral sites in the range 0.6-1 is found. The magnetic properties of these compounds were characterized by the onset of magnetic ordering below 100 K. Boron insertion induces a modification of the transition temperature and θp values in most of the antiferromagnetic binary silicides, with the exception of the ternary phase Er 5Si 3B x which was found to undergo a ferromagnetic transition at 14 K. The electrical resistivities for all binary silicides and ternary boron-interstitial phases resemble the temperature dependence of metals, with characteristic changes of slope in the resistivity curves due to the reduced electron scattering in the magnetically ordered states. Zintl-Klemm concept would predict a limiting composition RE5Si 3B 0.6 for a valence compound and should then preclude the stoichiometric formula RE 5Si 3B. Density functional theory calculations carried out on some RE5Si 3Z x systems for different interstitial heteroatoms Z and different x contents from 0 to 1 give some support to this statement.

  18. Synergistic effects in solvent-extraction systems based on alkylsalicylic acids. I. Extraction of trivalent rare-earth metals in the presence of aliphatic amides

    SciTech Connect

    Preston, J.S.; Preez, A.C. du

    1995-07-01

    Aliphatic carboxylic acid amides were found to cause synergistic shifts in the pH{sub 50} values for the extraction of the trivalent rare-earth metals from chloride media by solutions of alkylsalicylic acids in xylene. For the different types of amide examined, the synergistic shifts for the extraction of neodymium by 3,5-diisopropylsalicylic acid (DIPSA) generally decrease in the order: R.CO.NR{sub 2}` > R.CO.NHR` > R.CO.NH{sub 2}, where R and R` are alkyl groups. With the N,N-dialkyl amides (R.CO.NR{sub 2}`) and the N-alkyl amides (R.CO.NHR`), the extent of the synergistic effect decreases with increasing chain-branching in either of the alkyl groups R and R`. For additions to 0.25 M alkylsalicylic acid, the synergistic effect increases with concentrations of up to 0.1 M amide, and decreases with higher concentrations. The extent of the synergistic shift produced by a given amide, as well as the separation in pH{sub 50} values from lanthanum to lutetium, increases with increasing steric bulk of the alkylsalicylic acid used. The separations between adjacent lanthanides are too small to be of any practical interest, however. Measurement of the solubility of salicylic acids (HA) in xylene containing various amounts of N,N-dialkyl amide (L) indicate that essentially complete formation of the HA.L adduct takes place. Treatment of metal-distribution data by slope analysis, and measurement of the solubility of the neodymium-DIPSA complex in xylene in the presence of amide suggest that the mixed-ligand complex has the stoichiometry NdA{sub 3}L{sub 2}. 18 refs., 6 figs., 3 refs.

  19. Gold derivatives of eight rare-earth-metal-rich tellurides: monoclinic R7Au2Te2 and orthorhombic R6AuTe2 types.

    PubMed

    Chai, Ping; Corbett, John D

    2012-03-19

    Two series of rare-earth-metal (R) compounds, R(7)Au(2)Te(2) (R = Tb, Dy, Ho) and R(6)AuTe(2) (R = Sc, Y, Dy, Ho, Lu), have been synthesized by high-temperature techniques and characterized by X-ray diffraction analyses as monoclinic Er(7)Au(2)Te(2)-type and orthorhombic Sc(6)PdTe(2)-type structures, respectively. Single-crystal diffraction results are reported for Ho(7)Au(2)Te(2), Lu(6)AuTe(2), Sc(6)Au(0.856(2))Te(2), and Sc(6)Au(0.892(3))Te(2). The structure of Ho(7)Au(2)Te(2) consists of columns of Au-centered tricapped trigonal prisms (TCTPs) of Ho condensed into 2D zigzag sheets that are interbridged by Te and additional Ho to form the 3D network. The structure of Lu(6)AuTe(2) is built of pairs of Au-centered Lu TCTP chains condensed with double Lu octahedra in chains into 2D zigzag sheets that are separated by Te atoms. Tight binding-linear muffin-tin orbital-atomic sphere approximation electronic structure calculations on Lu(6)AuTe(2) indicate a metallic property. The principal polar Lu-Au and Lu-Te interactions constitute 75% of the total Hamilton populations, in contrast to the small values for Lu-Lu bonding even though these comprise the majority of the atoms. A comparison of the theoretical results for Lu(6)AuTe(2) with those for isotypic Lu(6)AgTe(2) and Lu(6)CuTe(2) provides clear evidence of the greater relativistic effects in the bonding of Au. The parallels and noteworthy contrasts between Ho(7)Au(2)Te(2) (35 valence electrons) and the isotypic but much electron-richer Nb(7)P(4) (55 valence electrons) are analyzed and discussed. © 2012 American Chemical Society

  20. Rare-earth metal complexes supported by 1,omega-dithiaalkanediyl-bridged bis(phenolato) ligands: synthesis, structure, and heteroselective ring-opening polymerization of rac-lactide.

    PubMed

    Ma, Haiyan; Spaniol, Thomas P; Okuda, Jun

    2008-04-21

    Monomeric yttrium and lutetium bis(phenolato) complexes [Ln(OSSO){N(SiHMe 2) 2}(THF)] (Ln = Y, Lu) were prepared from the reaction of silylamido complexes [Ln{N(SiHMe 2) 2} 3(THF) 2] with 1 equiv of tetradentate 1,omega-dithiaalkanediyl-bridged bis(phenol) (OSSO)H 2 1- 9 in moderate to high yields. In contrast to the rigid configuration of scandium analogues, the yttrium complexes 2b and 3b and the lutetium complex 3c that contain a C 2 bridge between the two sulfur donors of the ligand are symmetric in solution. The monomeric nature of these complexes was indicated by an X-ray diffraction study of the yttrium complex 6b. The yttrium center in 6b is coordinated to the tetradentate [OSSO]-type ligand, one silylamido group and one THF ligand with the two oxygen donors of the [OSSO]-type ligand located trans. Corresponding bis(phenolato) silylamido complexes of larger rare-earth metals could not be obtained from similar reactions: Reaction of [La{N(SiHMe 2) 2} 3(THF) 2] with 1,2-xylylene-linked bis(phenol) gave a dinuclear lanthanum complex 6d of the formula [La 2(OSSO) 3] with two inequivalent eight-coordinate metal centers. The yttrium and lutetium complexes efficiently initiated the ring-opening polymerization (ROP) of lactides in THF. The heteroselectivity during the ROP of rac-lactide was enhanced when the steric demand of the bis(phenolato) ligand was increased, either by extending the bridge length or by introducing bulky ortho-substituents in the phenoxy units. A C 3 bridge within the ligand backbone is essential to allow configurational interconversion of the active site between Lambda and Delta configuration during polymerization, allowing accommodation of both enantiomers of the monomer in an alternating fashion.