Science.gov

Sample records for metallic target theory

  1. The metal ion theory of ageing: dietary target hazard quotients beyond radicals

    PubMed Central

    Naughton, Declan P; Petróczi, Andrea

    2008-01-01

    Numerous theories of ageing exist and many are interconnected when viewed through a modern integrative biology perspective. Diet provides a link to a large number of the theories that prevail at the molecular levels. In particular, metal ions form key elements of the radical theory along with having established roles in several age-related neurodegenerative disorders. Lifetime exposure to metals has been linked to ageing by contributions to oxidative stress and neurodegenerative disorders. As many foodstuffs contain high levels and diverse profiles of metals, their cumulative effect on ageing warrants investigation. The cumulative level of concern from environmental exposure can be expressed as a dimensionless index of target hazard quotient (THQ) or for known carcinogens, the target cancer risk (TR). This paper posits that a quantifiable relationship exists between ageing and level of concern resulting from cumulated metal exposure; and that this relationship can be used to develop an ageing-related index of concern from chronic metal ion exposure. As individual differences may facilitate or moderate this cumulated exposure, the potential influence on ageing or on the development of neurodegenerative disorders should be included into the model. PMID:18492242

  2. Targeting the Teaching of Theory.

    ERIC Educational Resources Information Center

    Walton, Charles W.

    1981-01-01

    Suggests that six target areas in the teaching of theory and musicianship need more attention and emphasis: listening, analysis, music reading, creativity, music writing, and keyboard harmony. Discusses content and sequence in music theory and presents two sample applications. (SJL)

  3. Alkali Metal Cluster Theory.

    NASA Astrophysics Data System (ADS)

    Chen, Jian

    Available from UMI in association with The British Library. Requires signed TDF. In this thesis, we apply the tight-binding Hubbard model to alkali metal clusters with Hartree-Fock self-consistent methods and perturbation methods for the numerical calculations. We have studied the relation between the equilibrium structures and the range of the hopping matrix elements in the Hubbard Hamiltonian. The results show that the structures are not sensitive to the interaction range but are determined by the number of valence electrons each atom has. Inertia tensors are used to analyse the symmetries of the clusters. The principal axes of the clusters are determined and they are the axes of rotational symmetries of clusters if the clusters have any. The eigenvalues of inertia tensors which are the indication of the deformation of clusters are compared between our model and the ellipsoidal jellium model. The agreement is good for large clusters. At a finite temperature, the thermal motion fluctuates the structures. We defined a fluctuation function with the distance matrix of a cluster. The fluctuation has been studied with the Monte-Carlo simulation method. Our studies show that the clusters remain in the solid state when temperature is low. The small values of fluctuation functions indicates the thermal vibration of atoms around their equilibrium positions. If the temperature is high, the atoms are delocalized. The cluster melts and enters the liquid region. The cluster melting is simulated by the Monte-Carlo simulation with the fluctuation function we defined. Energy levels of clusters are calculated from the Hubbard model. Ionization potentials and magic numbers are also obtained from these energy levels. The results confirm that the Hubbard model is a good approximation for a small cluster. The excitation energy is presented by the difference between the original level and excited level, and the electron-hole interactions. We also have studied cooling of clusters

  4. String theory in target space

    NASA Astrophysics Data System (ADS)

    Boels, Rutger H.; Hansen, Tobias

    2014-06-01

    It is argued that the complete S-matrix of string theory at tree level in a flat background can be obtained from a small set of target space properties, without recourse to the worldsheet description. The main non-standard inputs are (generalised) Britto-Cachazo-Feng-Witten shifts, as well as the monodromy relations for open string theory and the Kawai-Lewellen-Tye relations for closed string theory. The roots of the scattering amplitudes and especially their appearance in the residues at the kinematic poles are central to the story. These residues determine the amplitudes through on-shell recursion relations. Several checks of the formalism are presented, including a computation of the Koba-Nielsen amplitude in the bosonic string. Furthermore the question of target space unitarity is (re-)investigated. For the Veneziano amplitude this question is reduced by Poincaré invariance, unitarity and locality to that of positivity of a particular numerical sum. Interestingly, this analysis produces the main conditions of the no-ghost theorem on dimension and intercept from the first three poles of this amplitude.

  5. Metal-mediated targeting in the body.

    PubMed

    Tang, Xuan; Liang, Xiangyang

    2013-03-01

    Metal ions are important for many biological processes and are steadily available in the human body. Metal concentrations can be extremely high in diseased areas of various pathological conditions. Some synthetic and natural drugs need to be activated by metal ions as prodrugs. In this review, we provide a few examples to illustrate how metal ions activate and mediate drug targeting in the body. This knowledge may be helpful for the development of more effective drugs and pharmaceutical formulations.

  6. Group target tracking using game theory

    NASA Astrophysics Data System (ADS)

    Sadjadi, Firooz A.; Kober, Wolfgang

    2001-10-01

    The problem of tracking of a group of targets is considered in this paper. We will present an overview of an investigation into this problem by first using the targets velocity state vectors covariance matrix to establish target grouping and then by exploiting concepts derived from game theory, in particular the leader-follower techniques, and graph theory to represent and establish relationships that influence the tracking of objects that belong to a group formation.

  7. Automatic target recognition via classical detection theory

    NASA Astrophysics Data System (ADS)

    Morgan, Douglas R.

    1995-07-01

    Classical Bayesian detection and decision theory applies to arbitrary problems with underlying probabilistic models. When the models describe uncertainties in target type, pose, geometry, surround, scattering phenomena, sensor behavior, and feature extraction, then classical theory directly yields detailed model-based automatic target recognition (ATR) techniques. This paper reviews options and considerations arising under a general Bayesian framework for model- based ATR, including approaches to the major problems of acquiring probabilistic models and of carrying out the indicated Bayesian computations.

  8. Advances in target normal sheath acceleration theory

    SciTech Connect

    Passoni, M.; Sgattoni, A.; Perego, C.; Batani, D.

    2013-06-15

    A theoretical model of the Target Normal Sheath Acceleration (TNSA) process, able to go beyond the limits of available descriptions, is developed. It allows to achieve a more satisfactory interpretation of TNSA. The theory, also supported by two dimensional particle-in-cell simulations, elucidates the role played by the main laser and target parameters. Comparison between model predictions and experimental data related to the target thickness dependence of the maximum ion energy is discussed, showing satisfactory agreement. The model can be used as a simple but effective tool to guide the design of future experiments.

  9. Fuel cells and the theory of metals.

    NASA Technical Reports Server (NTRS)

    Bocciarelli, C. V.

    1972-01-01

    Metal theory is used to study the role of metal catalysts in electrocatalysis, with particular reference to alkaline hydrogen-oxygen fuel cells. Use is made of a simple model, analogous to that used to interpret field emission in vacuum. Theoretical values for all the quantities in the Tafel equation are obtained in terms of bulk properties of the metal catalysts (such as free electron densities and Fermi level). The reasons why some processes are reversible (H-electrodes) and some irreversible (O-electrodes) are identified. Selection rules for desirable properties of catalytic materials are established.

  10. Fuel cells and the theory of metals.

    NASA Technical Reports Server (NTRS)

    Bocciarelli, C. V.

    1972-01-01

    Metal theory is used to study the role of metal catalysts in electrocatalysis, with particular reference to alkaline hydrogen-oxygen fuel cells. Use is made of a simple model, analogous to that used to interpret field emission in vacuum. Theoretical values for all the quantities in the Tafel equation are obtained in terms of bulk properties of the metal catalysts (such as free electron densities and Fermi level). The reasons why some processes are reversible (H-electrodes) and some irreversible (O-electrodes) are identified. Selection rules for desirable properties of catalytic materials are established.

  11. Optical transmission theory for metal-insulator-metal periodic nanostructures

    NASA Astrophysics Data System (ADS)

    Blanchard-Dionne, Andre-Pierre; Meunier, Michel

    2017-01-01

    A semi-analytical formalism for the optical properties of a metal-insulator-metal periodic nanostructure using coupled-mode theory is presented. This structure consists in a dielectric layer in between two metallic layers with periodic one-dimensional nanoslit corrugation. The model is developed using multiple-scattering formalism, which defines transmission and reflection coefficients for each of the interface as a semi-infinite medium. Total transmission is then calculated using a summation of the multiple paths of light inside the structure. This method allows finding an exact solution for the transmission problem in every dimension regime, as long as a sufficient number of diffraction orders and guided modes are considered for the structure. The resonant modes of the structure are found to be related to the metallic slab only and to a combination of both the metallic slab and dielectric layer. This model also allows describing the resonant behavior of the system in the limit of a small dielectric layer, for which discontinuities in the dispersion curves are found. These discontinuities result from the out-of-phase interference of the different diffraction orders of the system, which account for field interaction for both inner interfaces of the structure.

  12. Optical transmission theory for metal-insulator-metal periodic nanostructures

    NASA Astrophysics Data System (ADS)

    Blanchard-Dionne, Andre-Pierre; Meunier, Michel

    2016-11-01

    A semi-analytical formalism for the optical properties of a metal-insulator-metal periodic nanostructure using coupled-mode theory is presented. This structure consists in a dielectric layer in between two metallic layers with periodic one-dimensional nanoslit corrugation. The model is developed using multiple-scattering formalism, which defines transmission and reflection coefficients for each of the interface as a semi-infinite medium. Total transmission is then calculated using a summation of the multiple paths of light inside the structure. This method allows finding an exact solution for the transmission problem in every dimension regime, as long as a sufficient number of diffraction orders and guided modes are considered for the structure. The resonant modes of the structure are found to be related to the metallic slab only and to a combination of both the metallic slab and dielectric layer. This model also allows describing the resonant behavior of the system in the limit of a small dielectric layer, for which discontinuities in the dispersion curves are found. These discontinuities result from the out-of-phase interference of the different diffraction orders of the system, which account for field interaction for both inner interfaces of the structure.

  13. Theory of spin relaxation at metallic interfaces

    NASA Astrophysics Data System (ADS)

    Belashchenko, K. D.; Kovalev, Alexey A.; van Schilfgaarde, Mark

    Spin-flip scattering at metallic interfaces affects transport phenomena in nanostructures, such as magnetoresistance, spin injection, spin pumping, and spin torques. It has been characterized for many material combinations by an empirical parameter δ, which is obtained by matching magnetoresistance data for multilayers to the Valet-Fert model [J. Bass and W. P. Pratt, J. Phys.: Condens. Matter 19, 183201 (2007)]. However, the relation of the parameter δ to the scattering properties of the interface remains unclear. Here we establish this relation using the scattering theory approach and confirm it using a generalization of the magnetoelectronic circuit theory, which includes interfacial spin relaxation. The results of first-principles calculations of spin-flip scattering at the Cu/Pd and Cu/Pt interfaces are found to be in reasonable agreement with experimental data. Supported by NSF Grant DMR-1308751.

  14. Weak crystallization theory of metallic alloys

    NASA Astrophysics Data System (ADS)

    Martin, Ivar; Gopalakrishnan, Sarang; Demler, Eugene A.

    2016-06-01

    Crystallization is one of the most familiar, but hardest to analyze, phase transitions. The principal reason is that crystallization typically occurs via a strongly first-order phase transition, and thus rigorous treatment would require comparing energies of an infinite number of possible crystalline states with the energy of liquid. A great simplification occurs when crystallization transition happens to be weakly first order. In this case, weak crystallization theory, based on unbiased Ginzburg-Landau expansion, can be applied. Even beyond its strict range of validity, it has been a useful qualitative tool for understanding crystallization. In its standard form, however, weak crystallization theory cannot explain the existence of a majority of observed crystalline and quasicrystalline states. Here we extend the weak crystallization theory to the case of metallic alloys. We identify a singular effect of itinerant electrons on the form of weak crystallization free energy. It is geometric in nature, generating strong dependence of free energy on the angles between ordering wave vectors of ionic density. That leads to stabilization of fcc, rhombohedral, and icosahedral quasicrystalline (iQC) phases, which are absent in the generic theory with only local interactions. As an application, we find the condition for stability of iQC that is consistent with the Hume-Rothery rules known empirically for the majority of stable iQC; namely, the length of the primary Bragg-peak wave vector is approximately equal to the diameter of the Fermi sphere.

  15. Weak crystallization theory of metallic alloys

    SciTech Connect

    Martin, Ivar; Gopalakrishnan, Sarang; Demler, Eugene A.

    2016-06-20

    Crystallization is one of the most familiar, but hardest to analyze, phase transitions. The principal reason is that crystallization typically occurs via a strongly first-order phase transition, and thus rigorous treatment would require comparing energies of an infinite number of possible crystalline states with the energy of liquid. A great simplification occurs when crystallization transition happens to be weakly first order. In this case, weak crystallization theory, based on unbiased Ginzburg-Landau expansion, can be applied. Even beyond its strict range of validity, it has been a useful qualitative tool for understanding crystallization. In its standard form, however, weak crystallization theory cannot explain the existence of a majority of observed crystalline and quasicrystalline states. Here we extend the weak crystallization theory to the case of metallic alloys. In this paper, we identify a singular effect of itinerant electrons on the form of weak crystallization free energy. It is geometric in nature, generating strong dependence of free energy on the angles between ordering wave vectors of ionic density. That leads to stabilization of fcc, rhombohedral, and icosahedral quasicrystalline (iQC) phases, which are absent in the generic theory with only local interactions. Finally, as an application, we find the condition for stability of iQC that is consistent with the Hume-Rothery rules known empirically for the majority of stable iQC; namely, the length of the primary Bragg-peak wave vector is approximately equal to the diameter of the Fermi sphere.

  16. Theory of Metal Surface Field Evaporation.

    NASA Astrophysics Data System (ADS)

    McMullen, Edward Richard

    This work addresses the effects of intense positive electric fields applied to two metal surfaces. In particular, the outward shifting of the surface layer in response to the fields, the redistribution of electronic charge within the metal initiated by the fields, and prediction of the minimum field strength which will produce evaporation of the surface monolayer of positive charge and attendant electrons are investigated. Density functional theory, a powerful method of treating the inhomogeneous electron gas, is the theoretical approach taken in this work. Its utility and success within the local density approximation have been proven for many systems, diverse in size and nature, including the metal surface. By positioning the surface monolayer at a particular separation measured along the surface normal and calculating the surface energy from the semi-self-consistent electronic density generated via the Schrodinger equation with a one -electron effective potential, and repeating the procedure for other separations, an energy-displacement curve for a particular applied field can be mapped. A minimum in the curve for fields less than the least required for field evaporation locates the equilibrium position of the surface layer. The minimum will just disappear for the critical field. In this way, the critical field for the uniform positive-background-charge metal, herein named sodium-jellium (NaJ), is found to be 1.8 V/(ANGSTROM); that for Al (lll) is found to be 4.5 V/(ANGSTROM). The zero-field energies for both metals are found to map onto a curve obtained from a universal binding energy expression. This expression, which scales according to two parameters which can be related to known empirical quantities, is extended by a simple method to predict the critical fields for surface layer evaporation of a range of metals. Comparison is made of the predicted values with experimentally available critical fields for field evaporating atoms/ions singly from rounded

  17. Air Force, Cyberpower, Targeting: Airpower Lessons for an Air Force Cyberpower Targeting Theory

    DTIC Science & Technology

    2013-06-01

    AIR FORCE, CYBERPOWER, TARGETING: Airpower Lessons for an Air Force Cyberpower Targeting Theory BY STEVEN J. ANDERSON, LIEUTENANT COLONEL...Targeting:Airpower Lessons for an Air Force Cyberpower Targeting Theory 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT This thesis examines historical targeting theories for airpower and their effects on the Air Force organize

  18. Weak crystallization theory of metallic alloys

    DOE PAGES

    Martin, Ivar; Gopalakrishnan, Sarang; Demler, Eugene A.

    2016-06-20

    Crystallization is one of the most familiar, but hardest to analyze, phase transitions. The principal reason is that crystallization typically occurs via a strongly first-order phase transition, and thus rigorous treatment would require comparing energies of an infinite number of possible crystalline states with the energy of liquid. A great simplification occurs when crystallization transition happens to be weakly first order. In this case, weak crystallization theory, based on unbiased Ginzburg-Landau expansion, can be applied. Even beyond its strict range of validity, it has been a useful qualitative tool for understanding crystallization. In its standard form, however, weak crystallization theorymore » cannot explain the existence of a majority of observed crystalline and quasicrystalline states. Here we extend the weak crystallization theory to the case of metallic alloys. In this paper, we identify a singular effect of itinerant electrons on the form of weak crystallization free energy. It is geometric in nature, generating strong dependence of free energy on the angles between ordering wave vectors of ionic density. That leads to stabilization of fcc, rhombohedral, and icosahedral quasicrystalline (iQC) phases, which are absent in the generic theory with only local interactions. Finally, as an application, we find the condition for stability of iQC that is consistent with the Hume-Rothery rules known empirically for the majority of stable iQC; namely, the length of the primary Bragg-peak wave vector is approximately equal to the diameter of the Fermi sphere.« less

  19. Generalized pseudopotential theory of d-band metals

    SciTech Connect

    Moriarty, J.A.

    1983-01-01

    The generalized pseudopotential theory (GPT) of metals is reviewed with emphasis on recent developments. This theory, which attempts to rigorously extend to d-band metals the spirit of conventional simple-metal pseudopotential perturbation theory, has now been optimized and fully integrated with the Kohn-Sham local-density-functional formalism, allowing for systematic first-principles calculations. Recent work on the problems of cohesion, lattice dynamics, structural phase stability, pressure- and temperature-induced phase transitions, and melting is discussed.

  20. Theory of Spin Loss at Metallic Interfaces

    NASA Astrophysics Data System (ADS)

    Belashchenko, K. D.; Kovalev, Alexey A.; van Schilfgaarde, M.

    2016-11-01

    Interfacial spin-flip scattering plays an important role in magnetoelectronic devices. Spin loss at metallic interfaces is usually quantified by matching the magnetoresistance data for multilayers to the Valet-Fert model, while treating each interface as a fictitious bulk layer whose thickness is δ times the spin-diffusion length. By employing the properly generalized circuit theory and the scattering matrix approaches, we derive the relation of the parameter δ to the spin-flip transmission and reflection probabilities at an individual interface. It is found that δ is proportional to the square root of the probability of spin-flip scattering. We calculate the spin-flip scattering probabilities for flat and rough Cu /Pd interfaces using the Landauer-Büttiker method based on the first-principles electronic structure and find δ to be in reasonable agreement with experiment.

  1. Theory of spoof plasmons in real metals

    NASA Astrophysics Data System (ADS)

    Rusina, Anastasia; Durach, Maxim; Stockman, Mark I.

    2010-08-01

    In this Letter we develop a theory of spoof plasmons propagating on real metals perforated with planar periodic grooves. Deviation from the spoof plasmons on perfect conductor due to finite skin depth has been analytically described. This allowed us to investigate important propagation characteristics of spoof plasmons such as quality factor and propagation length as the function of the geometrical parameters of the structure. We have also considered THz field confinement by adiabatic increase of the depth of the grooves. It is shown that the finite skin depth limits the propagation length of spoof plasmons as well as a possibility to localize THz field. Geometrical parameters of the structure are found which provide optimal guiding and localization of THz energy.

  2. Liquid Metal Target for NLC Positron Source

    SciTech Connect

    Sheppard, John C.

    2002-08-19

    Possibility of creating the liquid lead target with parameters, optimum for the NLC positron source, is investigated. Target has a form of titanium vessel, filled with liquid lead, pumped through. The energy deposition in target is characterized by 35 kW average power and up to 250 J/g specific energy at optimum beam sigma 0.6 mm. The use of pumped through liquid lead as target material solves both the problems of power evacuation and target survival. The window for beam exit is made of both temperature and pressure resistive material--the diamond-like ceramic BN.

  3. Theory of Magnetotransport Anomalies in Alkali Metals

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaodong

    The galvanomagnetic properties of alkali metals, especially those of potassium, are studied taking into account the existence of an incommensurate change-density wave (CDW) structure. Occurrence of the CDW broken symmetry truncates the Fermi surface with a large number of energy gaps. Furthermore, any macroscopic crystal is likely divided into CDW (')Q-domains. An orientational (')Q-texture leads to a preferred direction in the crystal. For such an exotic system the effective magnetoresistivity tensor is anomalous and is derived for various magnetic fields. The residual (zero-field) resistance is also anisotropic. For fields 0.5 - 3T, Hall coefficients are found to be anisotropic, and a longitudinal-transverse mixing effect is discovered. The diagonal elements of the magnetoresistivity tensor are found to have a linear magnetoresistance. When the field is increased above 4T sharp open-orbit magnetoresistance spectrum develops. From the theoretical magnetoresistivity tensor, the induced-torque amplitude and phase patterns for potassium spheres are calculated. The theory quantitatively explains all of the induced-torque anomalies found experimentally in the last fourteen years. An interacting electron system, which is free of the CDW instabilities, is also studied by considering its spin response to a weak sinusoidal magnetic field. The many-body correction G(,-)((')q,(omega)) caused by exchange and correlation is introduced to describe the correct wave -vector- and frequency-dependent spin susceptibility. The exact behavior of G(,-)((')q,(omega)) in the large-q limit is shown to be related to the pair distribution function g((')r) at r = 0. G(,-)((')q,(omega)) (--->) 4g(0)-1 /3, as q (--->) (INFIN).At metallic densities this value is negative, opposite in sign to the limit at small wave vectors. Thus the spin susceptibility for large wave vectors is suppressed, rather than enhanced, by many-body effects.

  4. Webinar Presentation: The MATCH Study (Metals Assessment Targeting Community Health)

    EPA Pesticide Factsheets

    This presentation, The MATCH Study (Metals Assessment Targeting Community Health), was given at the NIEHS/EPA Children's Centers 2015 Webinar Series: Historical Perspectives and Research Updates from Previously Funded Children's Centers held on 11/18/15.

  5. TOPICS IN THE THEORY OF MAGNETIC METALS,

    DTIC Science & Technology

    transition metals is reviewed. (3) Antiferromagnetic in simple metals is discussed. (4) The distribution of magnetism and superconductivity in the periodic ... table is treated qualitatively. (5) The electronic configuration of the alkali metals is discussed in relation to their optical properties, phase diagrams and the possibility of magnetism. (Author)

  6. Mitochondrial metals as a potential therapeutic target in neurodegeneration

    PubMed Central

    Grubman, A; White, A R; Liddell, J R

    2014-01-01

    Transition metals are critical for enzyme function and protein folding, but in excess can mediate neurotoxic oxidative processes. As mitochondria are particularly vulnerable to oxidative damage due to radicals generated during ATP production, mitochondrial biometal homeostasis must therefore be tightly controlled to safely harness the redox potential of metal enzyme cofactors. Dysregulation of metal functions is evident in numerous neurological disorders including Alzheimer's disease, stroke, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and Friedrich's ataxia. This review describes the mitochondrial metal defects in these disorders and highlights novel metal-based therapeutic approaches that target mitochondrial metal homeostasis in neurological disorders. Linked Articles This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:24206195

  7. Magnetism of metals in the dynamic spin-fluctuation theory

    NASA Astrophysics Data System (ADS)

    Melnikov, N. B.; Reser, B. I.

    2016-12-01

    We overview new developments in spin-fluctuation theory, which describes magnetic properties of ferromagnetic metals at finite temperatures. We present a detailed analysis of the underlying techniques and compare numerical results with experiment.

  8. Metal complexes and metalloproteases: targeting conformational diseases.

    PubMed

    Grasso, Giuseppe; Bonnet, Sylvestre

    2014-08-01

    In recent years many metalloproteases (MPs) have been shown to play important roles in the development of various pathological conditions. Although most of the literature is focused on matrix MPs (MMPs), many other MPs have been demonstrated to be involved in the degradation of peptides or proteins whose accumulation and dyshomeostasis are considered as being responsible for the development of conformational diseases, i.e., diseases where non-native protein conformations lead to protein aggregation. It seems clear that, at least in principle, it must be possible to control the levels of many aggregation-prone proteins not only by reducing their production, but also by enhancing their catabolism. Metal complexes that can perform this function were designed and tested according to at least two different strategies: (i) intervening on the endogenous MPs by directly or indirectly modulating their activity; (ii) acting as artificial MPs, replacing or synergistically functioning with endogenous MPs. These two different bioinorganic approaches are widely represented in the current literature and the aim of this review is to rationally organize and discuss both of them so as to give a critical insight into these approaches and highlighting their limitations and future perspectives.

  9. Metallic and nonmetallic coatings for ICF targets

    SciTech Connect

    Hendricks, C.D.; Crane, J.K.; Hsieh, E.J.; Meyer, S.F.

    1981-04-17

    Some fusion targets designed to be driven by 0.35 to 1 ..mu..m laser light are glass spheres coated with layers of various materials such as hydrocarbons, fluorocarbons, beryllium, copper, gold, platinum, etc. The glass shell, which is filled with gas, liquid or solid deuterium-tritium fuel, must have remarkably good surface and wall thickness uniformity. Methods for depositing the various materials will be discussed. They include plasma polymerization, electro-deposition, sputtering and evaporation. Many of the difficulties encountered in the coating processes are the result of coating on free spheres with very small radii - 35 to 500 micrometers. Several means of overcoming the problems will be described and experimental results presented.

  10. Analytical theory of extraordinary optical transmission through realistic metallic screens.

    PubMed

    Delgado, V; Marqués, R; Jelinek, L

    2010-03-29

    An analytical theory of extraordinary optical transmission (EOT) through realistic metallic screens perforated by a periodic array of subwavelength holes is presented. The theory is based on our previous work on EOT through perfect conducting screens and on the surface impedance concept. The proposed theory is valid for the complete frequency range where EOT has been reported, including microwaves and optics. A reasonably good agreement with electromagnetic simulations is shown in all this frequency range. We feel that the proposed theory may help to clarify the physics underlying EOT and serve as a first step to more accurate analysis.

  11. Dislocation Theory of the Fatigue of Metals

    NASA Technical Reports Server (NTRS)

    Machlin, E S

    1949-01-01

    A dislocation theory of fatigue failure for annealed solid solutions is presented. On the basis of this theory, an equation giving the dependence of the number of cycles for failure on the stress, the temperature, the material parameters, and the frequency is derived for uniformly stressed specimens. The equation is in quantitative agreement with the data. Inasmuch as one material parameter is indicated to be temperature-dependent and its temperature dependence is unknown, it is impossible to predict the temperature dependence of the number of cycles for failure. A predicted quantitative correlation between fatigue and creep was found to exist, which suggests the practical possibility of obtaining fatigue data for annealed solid solutions and elements from steady-state creep-rate data for these materials. As a result of this investigation, a modification of the equation for the steady-state creep rate previously developed on the basis of the dislocation theory is suggested. Additional data are required to verify completely the dislocation theory of fatigue.

  12. New electron correlation theories for transition metal chemistry.

    PubMed

    Marti, Konrad H; Reiher, Markus

    2011-04-21

    Electronic structure theory faces many computational challenges in transition metal chemistry. Usually, density functional theory is the method of choice for theoretical studies on transition metal complexes and clusters mostly because it is the only feasible one, although its results are not systematically improvable. By contrast, multireference ab initio methods could provide a correct description of the electronic structure, but are limited to small molecules because of the tremendous computational resources required. In recent years, conceptually new ab initio methods emerged that turned out to be promising for theoretical coordination chemistry. We review and discuss two efficient parametrization schemes for the electronic wave function, the matrix product states and the complete-graph tensor network states. Their advantages are demonstrated at example transition metal complexes. Especially, tensor network states might provide the key to accurately describe strongly correlated and magnetic molecular systems in transition metal chemistry.

  13. Incorporating metal into polarized 3He target cells

    NASA Astrophysics Data System (ADS)

    Katugampola, Sumudu K.; Matyas, Daniel J.; Wang, Yunxiao; Tobias, William A.; Nelyubin, Vladimir; Cates, Gordon D.

    2017-01-01

    An upcoming measurement at Jefferson Laboratory (JLab) of the electric form factor of the neutron will utilize a polarized 3He target at high luminosity. While polarized 3He targets at JLab have previously been made entirely of glass, we describe progress toward incorporating metal windows for the electron beam. Under the conditions of our targets, very few studies have been done on the spin-relaxation of nuclear-polarized 3He on metal surfaces. We have found good performance by using Oxygen Free High Conductivity (OFHC) copper substrates electroplated with gold. The glass-to-metal transitions within our test cells were based on Housekeeper seals. We have further established that Uranium glass (Canary glass) has excellent spin-relaxation properties, and can serve as a transition glass from Pyrex to Aluminosilicate glass (GE180). Another finding was that spin-relaxation properties were sensitive to the manner in which cells were annealed, an important issue because of constraints when annealing cells containing both metal and glass.

  14. Thermodynamic perturbation theory in studies of metal melts

    NASA Astrophysics Data System (ADS)

    Dubinin, N. E.; Vatolin, N. A.; Filippov, V. V.

    2014-11-01

    The review concerns methods of the thermodynamic perturbation theory (TPT) used to study liquid metals and alloys. Basic relations of the TPT are presented. Various reference systems are analyzed, their advantages and drawbacks are described. The results of calculations of the structure and thermodynamic properties of metal melts by various methods are discussed. Promising avenues of research in the title field are outlined. The bibliography includes 272 references.

  15. Generalized theory of smallest diameter of metallic nanorods

    NASA Astrophysics Data System (ADS)

    Du, Feng; Elliott, Paul R.; Huang, Hanchen

    2017-08-01

    This paper reports a generalized theory of the smallest diameter of metallic nanorods from physical vapor deposition. The generalization incorporates the effects of nanorod separation and those of van der Waals interactions on geometrical shadowing. The generalized theory relies on approximations to be in closed form. Numerical solutions of governing equations with no approximations verify the accuracy of the closed-form theory. Further, experiments of physical vapor deposition validate the theory in terms of the diameter as a function of the separation of nanorods. In contrast, the previous theory for idealized geometrical shadowing [X. B. Niu et al., Phys. Rev. Lett. 110, 136102 (2013), 10.1103/PhysRevLett.110.136102] excludes any dependence on nanorod separation and predicts the diameter to be about ½ to ⅓ of what the generalized theory does.

  16. Infrared small target detection based on Danger Theory

    NASA Astrophysics Data System (ADS)

    Lan, Jinhui; Yang, Xiao

    2009-11-01

    To solve the problem that traditional method can't detect the small objects whose local SNR is less than 2 in IR images, a Danger Theory-based model to detect infrared small target is presented in this paper. First, on the analog with immunology, the definition is given, in this paper, to such terms as dangerous signal, antigens, APC, antibodies. Besides, matching rule between antigen and antibody is improved. Prior to training the detection model and detecting the targets, the IR images are processed utilizing adaptive smooth filter to decrease the stochastic noise. Then at the training process, deleting rule, generating rule, crossover rule and the mutation rule are established after a large number of experiments in order to realize immediate convergence and obtain good antibodies. The Danger Theory-based model is built after the training process, and this model can detect the target whose local SNR is only 1.5.

  17. Laser backwriting process on glass via ablation of metal targets

    NASA Astrophysics Data System (ADS)

    Castelo, A.; Nieto, D.; Bao, C.; Flores-Arias, M. T.; Pérez, M. V.; Gómez-Reino, C.; López-Gascón, C.; de la Fuente, G. F.

    2007-05-01

    Ablation of metal targets onto pyrex glass substrates, using a Q-switched Nd:YAG laser working at 355 nm, was used to study the potential of a laser backwriting process for the fabrication of optical waveguides via an index of refraction change. Metal foils of stainless steel, aluminum, copper, brass and gold have been used as blanks and irradiated by focusing the laser beam through a cylindrical lens under continuous movement in a direction perpendicular to the irradiation. An horizontal setup was found suitable to improve the effect of the plume in the sample. Results were obtained for two different configurations. Transversal profiles were analysed using a contact profilometer, comparing results obtained for the different configurations, traverse speeds and metal targets used. Two ablation regimes were identified, which are related to a critical laser fluence value of 2.7 J/cm 2. Surface micrographs obtained by scanning electron microscopy are discussed, together with the characteristics of the structures attained, taking into account the optical and thermal properties of the ablated metal blanks.

  18. Scaling theory of phase-coherent metallic conductors

    NASA Astrophysics Data System (ADS)

    Macêdo, A. M.

    2002-07-01

    We present a scaling theory for describing the smooth crossover from ballistic to diffusive transport in phase-coherent metallic conductors. The theory confirms a recent conjecture by Beenakker [Rev. Mod. Phys. 69, 731 (1997)], and represents a substantial improvement in the two-terminal version of Nazarov's circuit theory [Phys. Rev. Lett. 73, 134 (1994); 73, 1420 (1994)]. In addition, our approach allows for the explicit inclusion of interfaces of arbitrary transparency, which are described using the supersymmetric nonlinear σ model. The problem of two identical barriers separated by a diffusive conductor is solved exactly, and expressions for both the normal and Andreev conductances are presented.

  19. Circuit theory of transport in ferromagnet - normal metal systems

    NASA Astrophysics Data System (ADS)

    Brataas, Arne

    2001-03-01

    Electrons have spin as well as charge. At low-temperatures the spin relaxation time can be much longer than other time scales. Non-equilibrium spins may therefore affect the transport properties of small ferromagnet-normal metal systems. Unlike the scalar charge, the spin has a direction. The electron transport properties can be manipulated by the magnetization direction of the ferromagnets. We will demonstrate how the transport through hybrid ferromagnet-normal metal devices can be understood in terms of a circuit theory in the spirit of the conventional analysis of conventional electronic circuits. This spin-circuit theory is based on elements like spin-resistance and spin-capacitance and simplifies the understanding of transport through complicated ferromagnet-normal metal systems.

  20. Compatibility of materials with liquid metal targets for SNS

    SciTech Connect

    DiStefano, J.R.; Pawel, S.J.; DeVan, J.H.

    1996-06-01

    Several heavy liquid metals are candidates as the target in a spallation neutron source: Hg, Pb, Bi, and Pb-Bi eutectic. Systems with these liquid metals have been used in the past and a data-base on compatibility already exists. Two major compatibility issues have been identified when selecting a container material for these liquid metals: temperature gradient mass transfer and liquid metal embrittlement or LME. Temperature gradient mass transfer refers to dissolution of material from the high temperature portions of a system and its deposition in the lower temperature areas. Solution and deposition rate constants along with temperature, {Delta}T, and velocity are usually the most important parameters. For most candidate materials mass transfer corrosion has been found to be proportionately worse in Bi compared with Hg and Pb. For temperatures to {approx}550{degrees}C, ferritic/martensitic steels have been satisfactory in Pb or Hg systems and the maximum temperature can be extended to {approx}650{degrees}C with additions of inhibitors to the liquid metal, e.g. Mg, Ti, Zr. Above {approx}600{degrees}C, austenitic stainless steels have been reported to be unsatisfactory, largely because of the mass transfer of nickel. Blockage of flow from deposition of material is usually the life-limiting effect of this type of corrosion. However, mass transfer corrosion at lower temperatures has not been studied. At low temperatures (usually < 150{degrees}C), LME has been reported for some liquid metal/container alloy combinations. Liquid metal embrittlement, like hydrogen embrittlement, results in brittle fracture of a normally ductile material.

  1. Biological metals and metal-targeting compounds in major neurodegenerative diseases.

    PubMed

    Barnham, Kevin J; Bush, Ashley I

    2014-10-07

    Multiple abnormalities occur in the homeostasis of essential endogenous brain biometals in age-related neurodegenerative disorders, Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. As a result, metals both accumulate in microscopic proteinopathies, and can be deficient in cells or cellular compartments. Therefore, bulk measurement of metal content in brain tissue samples reveal only the "tip of the iceberg", with most of the important changes occurring on a microscopic and biochemical level. Each of the major proteins implicated in these disorders interacts with biological transition metals. Tau and the amyloid protein precursor have important roles in normal neuronal iron homeostasis. Changes in metal distribution, cellular deficiencies, or sequestration in proteinopathies all present abnormalities that can be corrected in animal models by small molecules. These biochemical targets are more complex than the simple excess of metals that are targeted by chelators. In this review we illustrate some of the richness in the science that has developed in the study of metals in neurodegeneration, and explore its novel pharmacology.

  2. Nanostructured target fabrication with metal and semiconductor nanoparticles

    NASA Astrophysics Data System (ADS)

    Barberio, M.; Antici, P.

    2015-10-01

    The development of ultra-intense high-energy (≫1 J) short (<1 ps) laser pulses in the last decade has enabled the acceleration of high-energy short-pulse proton beams. A key parameter for enhancing the acceleration regime is the laser-to-target absorption, which heavily depends on the target structure and material. In this work, we present the realization of a nanostructured target with a sub-laser wavelength nano-layer in the front surface as a possible candidate for improving the absorption. The nanostructured film was realized by a simpler and cheaper method than using conventional lithographic techniques: A colloidal solution of metallic or semiconductor nanoparticles (NPs) was produced by laser ablation and, after a heating and sonication process, was spray-dried on the front surface of an aluminum target. The obtained nanostructured film with a thickness of 1 μm appears, at morphological and chemical analysis, uniformly nanostructured and distributed on the target surface without the presence of oxides or external contaminants. Finally, the size of the NPs can be tuned from tens to hundreds of nanometers simply by varying the growth parameters (i.e., irradiation time, fluence, and laser beam energy).

  3. Nonlocal microscopic theory of quantum friction between parallel metallic slabs

    SciTech Connect

    Despoja, Vito

    2011-05-15

    We present a new derivation of the friction force between two metallic slabs moving with constant relative parallel velocity, based on T=0 quantum-field theory formalism. By including a fully nonlocal description of dynamically screened electron fluctuations in the slab, and avoiding the usual matching-condition procedure, we generalize previous expressions for the friction force, to which our results reduce in the local limit. Analyzing the friction force calculated in the two local models and in the nonlocal theory, we show that for physically relevant velocities local theories using the plasmon and Drude models of dielectric response are inappropriate to describe friction, which is due to excitation of low-energy electron-hole pairs, which are properly included in nonlocal theory. We also show that inclusion of dissipation in the nonlocal electronic response has negligible influence on friction.

  4. Applications of superatom theory in metal cluster chemistry

    NASA Astrophysics Data System (ADS)

    Tofanelli, Marcus A.

    One of the largest modern scientific debates is understanding the size dependent properties of a metal. While much effort has been performed on understanding metal particles from the top down to much less work has been accomplished from the bottom up. This has lead to a great deal of interest in metal clusters. Metal clusters containing 20 to 200 metal atoms are similar yet strikingly different to both to normal coordination chemistry and continuous bulk systems, therefore neither a classical understanding for bulk or molecular systems appears to be appropriate. Superatom theory has emerged as a useful concept for describing the properties of a metal cluster in this size range. In this model a new set of 'superatomic' orbitals arises from the valence electrons of all the metals in a cluster. From superatom theory the properties of a metal cluster, such as stability, ionization energy, reactivity, and magnetism, should depend on valence of the superatomic orbitals, similar to a normal atom. However superatom theory has largely been used to describe the high stabilities of metal clusters with completed electronic configurations. Thus many features of superatom theory have remained largely untested and the extent that the superatom model truly applies has remained in question for many years. Over the past decade increases in synthetic and analytical techniques have allowed for the isolation of a series of stable monodisperse gold thiolate monolayer protected clusters (MPCs) containing from 10 to 500 gold atoms. The wide range in sizes and high stability of gold thiolate clusters provides an instrumental system for understanding superatom theory and the transition from molecular-like cluster to bulk-like system. In the first part of this thesis the effects of the superatomic valence is investigated under superatomic assumptions. Au25(SR)18 (where SR= any thiolate) can be synthesized in 3 different oxidation states without any major distortions to the geometry of the

  5. Shock Compression of Metal Crystals: A Comparison of Eulerian and Lagrangian Elastic-Plastic Theories

    DTIC Science & Technology

    2014-11-01

    Shock Compression of Metal Crystals: A Comparison of Eulerian and Lagrangian Elastic- Plastic Theories by JD Clayton ARL-RP-0513...of Metal Crystals: A Comparison of Eulerian and Lagrangian Elastic- Plastic Theories JD Clayton Weapons and Materials Research Directorate, ARL...SUBTITLE Shock Compression of Metal Crystals: A Comparison of Eulerian and Lagrangian Elastic- Plastic Theories 5a. CONTRACT NUMBER 5b. GRANT

  6. Investigation of G4 theory for tansition metal thermochemistry.

    SciTech Connect

    Mayhall, N. J.; Raghavachari, K.; Redfern, P. C.; Curtiss, L. A.; Indiana Univ.

    2009-01-01

    An investigation of the performance of Gaussian-4 (G4) methods for the prediction of 3d transition metal thermochemistry is presented. Using the recently developed G3Large basis sets for atoms Sc-Zn, the G4 and G4(MP2) methods with scalar relativistic effects included are evaluated on a test set of 20 enthalpies of formation of transition metal-containing molecules. The G4(MP2) method is found to perform significantly better than the G4 method. The G4 method fails due to the poor convergence of the Moeller-Plesset perturbation theory at fourth-order in one case. The overall error for G4(MP2) of 2.84 kcal/mol is significantly larger than its previously reported performance for molecules containing main-group elements in the G3/05 test set. However, considering the relatively large uncertainties in the experimental enthalpies, the G4(MP2) method performs reasonably well. The performance of other composite methods based on G3 theory [G3(CCSD)//B3LYP and G3(MP2,CCSD)//B3LYP], as well as several density functional methods, are also presented in this paper. The results presented here will assist future development of composite model techniques suitable for use in transition metal-containing systems.

  7. Theory for plasticity of face-centered cubic metals.

    PubMed

    Jo, Minho; Koo, Yang Mo; Lee, Byeong-Joo; Johansson, Börje; Vitos, Levente; Kwon, Se Kyun

    2014-05-06

    The activation of plastic deformation mechanisms determines the mechanical behavior of crystalline materials. However, the complexity of plastic deformation and the lack of a unified theory of plasticity have seriously limited the exploration of the full capacity of metals. Current efforts to design high-strength structural materials in terms of stacking fault energy have not significantly reduced the laborious trial and error works on basic deformation properties. To remedy this situation, here we put forward a comprehensive and transparent theory for plastic deformation of face-centered cubic metals. This is based on a microscopic analysis that, without ambiguity, reveals the various deformation phenomena and elucidates the physical fundaments of the currently used phenomenological correlations. We identify an easily accessible single parameter derived from the intrinsic energy barriers, which fully specifies the potential diversity of metals. Based entirely on this parameter, a simple deformation mode diagram is shown to delineate a series of convenient design criteria, which clarifies a wide area of material functionality by texture control.

  8. Energy balance in laser ablation of metal targets

    SciTech Connect

    Sobral, H.; Villagran-Muniz, M.; Bredice, F.

    2005-10-15

    Laser-generated plasma was induced on metallic targets glued to a piezoelectric microphone and placed between the plates of a planar charged capacitor. The plasma generates a temporal redistribution of electric charge on the plates that can easily be measured by a resistor connected to the ground plate; this signal is proportional to the total number of ions removed by breakdown. Both the absorbed and scattered energies were simultaneously monitored by the photoacoustic signal and an energy meter. From these signals it was possible to determine the energy involved in each of the processes. Just above the ablation threshold most of the delivered energy is absorbed and the acoustic signal prevails compared to other contributions. Above this region, the electric signal, which is proportional to the energy involved in the ablation process, becomes dominant.

  9. Theory of the pairbreaking superconductor-metal transition in nanowires

    NASA Astrophysics Data System (ADS)

    Del Maestro, Adrian; Rosenow, Bernd; Sachdev, Subir

    2009-03-01

    We present a detailed description of a zero temperature phase transition between superconducting and diffusive metallic states in very thin wires due to a Cooper pair breaking mechanism. The dissipative critical theory contains current reducing fluctuations in the guise of both quantum and thermally activated phase slips. A full cross-over phase diagram is computed via an expansion in the inverse number of complex components of the superconducting order parameter (one in the physical case). The fluctuation corrections to the electrical ( σ) and thermal ( κ) conductivities are determined, and we find that σ has a non-monotonic temperature dependence in the metallic phase which may be consistent with recent experimental results on ultra-narrow wires. In the quantum critical regime, the ratio of the thermal to electrical conductivity displays a linear temperature dependence and thus the Wiedemann-Franz law is obeyed, with a new universal experimentally verifiable Lorenz number.

  10. The photochemistry of transition metal complexes using density functional theory.

    PubMed

    Garino, Claudio; Salassa, Luca

    2013-07-28

    The use of density functional theory (DFT) and time-dependent DFT (TD-DFT) to study the photochemistry of metal complexes is becoming increasingly important among chemists. Computational methods provide unique information on the electronic nature of excited states and their atomic structure, integrating spectroscopy observations on transient species and excited-state dynamics. In this contribution, we present an overview on photochemically active transition metal complexes investigated by DFT. In particular, we discuss a representative range of systems studied up to now, which include CO- and NO-releasing inorganic and organometallic complexes, haem and haem-like complexes dissociating small diatomic molecules, photoactive anti-cancer Pt and Ru complexes, Ru polypyridyls and diphosphino Pt derivatives.

  11. Localized Plasmon resonance in metal nanoparticles using Mie theory

    NASA Astrophysics Data System (ADS)

    Duque, J. S.; Blandón, J. S.; Riascos, H.

    2017-06-01

    In this work, scattering light by colloidal metal nanoparticles with spherical shape was studied. Optical properties such as diffusion efficiencies of extinction and absorption Q ext and Q abs were calculated using Mie theory. We employed a MATLAB program to calculate the Mie efficiencies and the radial dependence of electric field intensities emitted for colloidal metal nanoparticles (MNPs). By UV-Vis spectroscopy we have determined the LSPR for Cu nanoparticles (CuNPs), Ni nanoparticles (NiNPs) and Co nanoparticles (CoNPs) grown by laser ablation technique. The peaks of resonances appear in 590nm, 384nm and 350nm for CuNPs, NiNPs and CoNPs respectively suspended in water. Changing the medium to acetone and ethanol we observed a shift of the resonance peaks, these values agreed with our simulations results.

  12. Application of Density Functional Theory to Systems Containing Metal Atoms

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.

    2006-01-01

    The accuracy of density functional theory (DFT) for problems involving metal atoms is considered. The DFT results are compared with experiment as well as results obtained using the coupled cluster approach. The comparisons include geometries, frequencies, and bond energies. The systems considered include MO2, M(OH)+n, MNO+, and MCO+2. The DFT works well for frequencies and geometries, even in case with symmetry breaking; however, some examples have been found where the symmetry breaking is quite severe and the DFT methods do not work well. The calculation of bond energies is more difficult and examples of successes as well as failures of DFT will be given.

  13. Theory of half-metallic ferrimagnetism in double perovskites.

    PubMed

    Erten, Onur; Meetei, O Nganba; Mukherjee, Anamitra; Randeria, Mohit; Trivedi, Nandini; Woodward, Patrick

    2011-12-16

    Double perovskites such as Sr(2)FeMoO(6) are rare examples of materials with half-metallic ground states and a ferrimagnetic T(c) above room temperature. We present a comprehensive theory of the temperature and disorder dependence of their magnetic properties by deriving and validating a new effective spin Hamiltonian for these materials, amenable to large-scale three-dimensional simulations. We show how disorder, ubiquitous in these materials, affects T(c), the magnetization, and the conduction electron polarization. We conclude with a novel proposal to enhance T(c) without sacrificing polarization.

  14. Application of Density Functional Theory to Systems Containing Metal Atoms

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.

    2006-01-01

    The accuracy of density functional theory (DFT) for problems involving metal atoms is considered. The DFT results are compared with experiment as well as results obtained using the coupled cluster approach. The comparisons include geometries, frequencies, and bond energies. The systems considered include MO2, M(OH)+n, MNO+, and MCO+2. The DFT works well for frequencies and geometries, even in case with symmetry breaking; however, some examples have been found where the symmetry breaking is quite severe and the DFT methods do not work well. The calculation of bond energies is more difficult and examples of successes as well as failures of DFT will be given.

  15. Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets

    DOEpatents

    Makowiecki, Daniel M.; Ramsey, Philip B.; Juntz, Robert S.

    1995-01-01

    An improved method for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite's high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding.

  16. Industrial recovered-materials-utilization targets for the metals and metal-products industry

    SciTech Connect

    1980-03-01

    The National Energy Conservation Policy Act of 1978 directs DOE to set targets for increased utilization of energy-saving recovered materials for certain industries. These targets are to be established at levels representing the maximum feasible increase in utilization of recovered materials that can be achieved progressively by January 1, 1987 and is consistent with technical and economic factors. A benefit to be derived from the increased use of recoverable materials is in energy savings, as state in the Act. Therefore, emhasis on different industries in the metals sector has been related to their energy consumption. The ferrous industry (iron and steel, ferrour foundries and ferralloys), as defined here, accounts for approximately 3%, and all others for the remaining 3%. Energy consumed in the lead and zinc segments is less than 1% each. Emphasis is placed on the ferrous scrap users, followed by the aluminum and copper industries. A bibliography with 209 citations is included.

  17. Theory of the pairbreaking superconductor-metal transition in nanowires

    NASA Astrophysics Data System (ADS)

    Sachdev, Subir

    2009-03-01

    We present a detailed description of a zero temperature phase transition between superconducting and diffusive metallic states in very thin wires due to a Cooper pair breaking mechanism. The dissipative critical theory contains current reducing fluctuations in the guise of both quantum and thermally activated phase slips. A full cross-over phase diagram is computed via an expansion in the inverse number of complex components of the superconducting order parameter (one in the physical case). The fluctuation corrections to the electrical (σ) and thermal (κ) conductivities are determined, and we find that σ has a non-monotonic temperature dependence in the metallic phase which may be consistent with recent experimental results on ultra-narrow wires. In the quantum critical regime, the ratio of the thermal to electrical conductivity displays a linear temperature dependence and thus the Wiedemann-Franz law is obeyed, with a new universal experimentally verifiable Lorenz number. We also examined the influence of quenched disorder on the superconductor-metal transition. The self-consistent pairing eigenmodes of a quasi-one dimensional wire were determined numerically. Our results support the proposal by Hoyos et al./ (Phys. Rev. Lett. 99, 230601 (2007)) that the transition is described by the same strong disorder fixed point describing the onset of ferromagnetism in the quantum Ising model in a transverse field.

  18. Growing Fixed With Age: Lay Theories of Malleability Are Target Age-Specific.

    PubMed

    Neel, Rebecca; Lassetter, Bethany

    2015-11-01

    Beliefs about whether people can change ("lay theories" of malleability) are known to have wide-ranging effects on social motivation, cognition, and judgment. Yet rather than holding an overarching belief that people can or cannot change, perceivers may hold independent beliefs about whether different people are malleable-that is, lay theories may be target-specific. Seven studies demonstrate that lay theories are target-specific with respect to age: Perceivers hold distinct, uncorrelated lay theories of people at different ages, and younger targets are considered to be more malleable than older targets. Both forms of target-specificity are consequential, as target age-specific lay theories predict policy support for learning-based senior services and the rehabilitation of old and young drug users. The implications of target age-specific lay theories for a number of psychological processes, the social psychology of aging, and theoretical frameworks of malleability beliefs are discussed.

  19. Nonlinear hyperbolic theory of thermal waves in metals

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.; Choi, S. H.

    1975-01-01

    A closed-form solution for cylindrical thermal waves in metals is given based on the nonlinear hyperbolic system of energy-conservation and heat-flux relaxation equations. It is shown that heat released from a line source propagates radially outward with finite speed in the form of a thermal wave which exhibits a discontinuous wave front. Unique nonlinear thermal-wave solutions exist up to a critical amount of driving energy, i.e., for larger energy releases, the thermal flow becomes multivalued (occurrence of shock waves). By comparison, it is demonstrated that the parabolic thermal-wave theory gives, in general, a misleading picture of the profile and propagation of thermal waves and leads to physical (infinite speed of heat propagation) and mathematical (divergent energy integrals) difficulties. Attention is drawn to the importance of temporal heat-flux relaxation for the physical understanding of fast transient processes such as thermal waves and more general explosions and implosions.

  20. Theory of the spin-1 bosonic liquid metal - Equilibrium properties of liquid metallic deuterium

    NASA Technical Reports Server (NTRS)

    Oliva, J.; Ashcroft, N. W.

    1984-01-01

    The theory of a two-component quantum fluid comprised of spin-1/2 fermions and nonzero spin bosons is examined. This system is of interest because it embodies a possible quantum liquid metallic phase of highly compressed deuterium. Bose condensation is assumed present and the two cases of nuclear-spin-polarized and -unpolarized systems are considered. A significant feature in the unpolarized case is the presence of a nonmagnetic mode with quadratic dispersion owing its existence to nonzero boson spin. The physical character of this mode is examined in detail within a Bogoliubov approach. The specific heat, bulk modulus, spin susceptibility, and thermal expansion are all determined. Striking contrasts in the specific heats and thermal-expansion coefficients of the liquid and corresponding normal solid metallic phase are predicted.

  1. Theory of the spin-1 bosonic liquid metal - Equilibrium properties of liquid metallic deuterium

    NASA Technical Reports Server (NTRS)

    Oliva, J.; Ashcroft, N. W.

    1984-01-01

    The theory of a two-component quantum fluid comprised of spin-1/2 fermions and nonzero spin bosons is examined. This system is of interest because it embodies a possible quantum liquid metallic phase of highly compressed deuterium. Bose condensation is assumed present and the two cases of nuclear-spin-polarized and -unpolarized systems are considered. A significant feature in the unpolarized case is the presence of a nonmagnetic mode with quadratic dispersion owing its existence to nonzero boson spin. The physical character of this mode is examined in detail within a Bogoliubov approach. The specific heat, bulk modulus, spin susceptibility, and thermal expansion are all determined. Striking contrasts in the specific heats and thermal-expansion coefficients of the liquid and corresponding normal solid metallic phase are predicted.

  2. Investigation of metallic and metallic glass hollow spheres for fusion target application

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Kendall, J. M.; Wang, T. G.; Johnson, W. L.

    1982-01-01

    The first successful formation of submillimeter and millimeter spherical shells of tin and of a gold-lead-antimony alloy by means of the hollow-jet instability technique developed by Kendall is reported. Examination of tin specimens by SEM reveals that surface quality varies from poor to excellent. Whereas the metal is employed only as a convenient and inexpensive material, the gold alloy is important in that it is hard, has a high atomic number, and may be solidified into the amorphous state through the provision of a modest cooling rate. AuPbSb spherules up to 1.5 mm in diameter are produced using LN2 or chilled methanol as a coolant. It is found that these amorphous samples possess a superb surface smoothness compatible with fusion target requirements. It is noted that hollow spheres currently made of this alloy have an average outside diameter of 2000 microns.

  3. Uranium fluoride and metallic uranium as target materials for heavy-element experiments at SHIP

    NASA Astrophysics Data System (ADS)

    Kindler, Birgit; Ackermann, Dieter; Hartmann, Willi; Heßberger, Fritz Peter; Hofmann, Sigurd; Hübner, Annett; Lommel, Bettina; Mann, Rido; Steiner, Jutta

    2008-06-01

    In this contribution we describe the production and application of uranium targets for synthesis of heavy elements. The targets are prepared from uranium fluoride (UF 4) and from metallic uranium with thin carbon foils as backing. Targets of UF 4 were produced by thermal evaporation in a similar way as the frequently applied targets out of Bi, Bi 2O 3, Pb, PbS, SmF 3, and NdF 3, prepared mostly from isotopically enriched material [Birgit Kindler, et al., Nucl. Instr. and Meth. A 561 (2006) 107; Bettina Lommel, et al., Nucl. Instr. and Meth. A 561 (2006) 100]. In order to use more intensive beams and to avoid scattering of the reaction products in the target, metallic uranium is favorable. However, evaporation of metallic uranium is not feasible at a sustainable yield. Therefore, we established magnetron sputtering of metallic uranium. We describe production and properties of these targets. First irradiation tests show promising results.

  4. A Theory of Eye Movements during Target Acquisition

    ERIC Educational Resources Information Center

    Zelinsky, Gregory J.

    2008-01-01

    The gaze movements accompanying target localization were examined via human observers and a computational model (target acquisition model [TAM]). Search contexts ranged from fully realistic scenes to toys in a crib to Os and Qs, and manipulations included set size, target eccentricity, and target-distractor similarity. Observers and the model…

  5. Assessing the performance of density functional theory for the electronic structure of metal-salens: the 3d(0)-metals.

    PubMed

    Sears, John S; Sherrill, C David

    2008-04-17

    A series of metal-salen complexes of the 3d(0) metals Sc(III), Ti(IV), V(V), Cr(VI), and Mn(VII) have been explored using high-level electronic structure methods including coupled-cluster theory with singles, doubles, and perturbative triples as well as complete active-space third-order perturbation theory. The performance of three common density functional theory approaches has been assessed for both the geometries and the relative energies of the low-lying electronic states. The nondynamical correlation effects are demonstrated to be extremely large in all of the systems examined. Although density functional theory provides reasonable results for some of the systems, the overall agreement is quite poor. This said, the density functional theory approaches are shown to outperform the single-reference perturbation theory and coupled-cluster theory approaches for cases of strong nondynamical correlation.

  6. The Contributions of Felix Bloch and W. V. Houston to the Electron Theory of Metals

    ERIC Educational Resources Information Center

    Rorschach, H. E., Jr.

    1970-01-01

    Discusses the contributions of Bloch and Houston to the electron theory of metals. Contains (1) a biographical note on W. V. Houston, (2) a review of the development of the electron theory of metals, and (3) a discussion of gravitationally induced electric fields. Bibliography. (LC)

  7. The Contributions of Felix Bloch and W. V. Houston to the Electron Theory of Metals

    ERIC Educational Resources Information Center

    Rorschach, H. E., Jr.

    1970-01-01

    Discusses the contributions of Bloch and Houston to the electron theory of metals. Contains (1) a biographical note on W. V. Houston, (2) a review of the development of the electron theory of metals, and (3) a discussion of gravitationally induced electric fields. Bibliography. (LC)

  8. A Theory of Eye Movements during Target Acquisition

    PubMed Central

    Zelinsky, Gregory J.

    2008-01-01

    The gaze movements accompanying target localization were examined via human observers and a computational model (Target Acquisition Model, TAM). Search contexts ranged from fully realistic scenes, to toys in a crib, to Os and Qs, and manipulations included set size, target eccentricity, and target-distractor similarity. Observers and the model always previewed the same targets and searched the identical displays. Behavioral and simulated eye movements were analyzed for acquisition accuracy, efficiency, and target guidance. TAM's behavior generally fell within the behavioral mean's 95% confidence interval for all measures in each experiment/condition. This agreement suggests that a fixed-parameter model using spatio-chromatic filters and a simulated retina, when driven by the correct visual routines, can be a good general purpose predictor of human target acquisition behavior. PMID:18954205

  9. Theory and modeling of light interactions with metallic nanostructures.

    SciTech Connect

    Montgomery, J. M.; Lee, T.-W.; Gray, S. K.; Louisiana State Univ.

    2008-08-13

    Metallic nanostructures such as systems containing metal nanoparticles or nanostructured metal films are intriguing systems of much current interest. Surface plasmons, i.e., special electronic excitations near the metallic surfaces, can then be excited in these systems. Surface plasmons can be intense and localized, and correctly describing their behavior in complex systems can require numerically rigorous modeling techniques. The finite-difference time-domain (FDTD) method is one such technique. This review discusses results obtained mostly with the FDTD method concerning (1) local surface plasmon excitations of metal nanoparticles, (2) surface plasmon polariton propagation on layered structures, and (3) periodic hole arrays in metal films.

  10. Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets

    DOEpatents

    Makowiecki, D.M.; Ramsey, P.B.; Juntz, R.S.

    1995-07-04

    An improved method is disclosed for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite`s high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding. 11 figs.

  11. KNN classification of metallic targets using the magnetic polarizability tensor

    NASA Astrophysics Data System (ADS)

    Makkonen, J.; Marsh, L. A.; Vihonen, J.; Järvi, A.; Armitage, D. W.; Visa, A.; Peyton, A. J.

    2014-05-01

    Walk-through metal detectors are used at check points for preventing personnel and passengers from carrying threatening metallic objects, such as knives and guns, into a secure area. These systems are capable of detecting small metallic items, such as handcuff keys and blades, but are unable to distinguish accurately between threatening objects and innocuous items. This paper studies the extent to which a K-nearest-neighbour classifier can distinguish various kinds of metallic objects, such as knives, shoe shanks, belts and containers. The classifier uses features extracted from the magnetic polarizability tensor, which represents the electromagnetic properties of the object. The tests include distinguishing threatening objects from innocuous ones, classifying a set of objects into 13 classes, and distinguishing between several similar objects within an object class. A walk-through metal detection system is used as source for the test data, which consist of 835 scans and 67 objects. The results presented show a typical success rate of over 95% for recognizing threats, and over 85% for correct classification. In addition, we have shown that the system is capable of distinguishing between similar objects reliably. Overall, the method shows promise for the field of security screening and suggests the need for further research.

  12. Analysis of Laser-Target Interaction. Volume 1. Theory

    DTIC Science & Technology

    1979-03-01

    Previously, a model was constructed to describe energy transfer to an aluminum alloy target A12024 by a plasma ignited over the target surface. 1,2 The...intensity absorbed by the three non- aluminum alloys is shown as a function of time. A similar plot for oxidized steel is given in Fig. 3. 5. Typical...such as aluminum or copper cover poorly con- ducting targets such as SS304 and Ti6Al4V. 347 For an aluminum target over an aluminum alloy , the substrate

  13. Three-Dimensional Steerable Magnetic Field (3DSMF) Sensor System for Classification of Buried Metal Targets

    DTIC Science & Technology

    2006-07-01

    complex spatial magnetic field distributions With a conventional pulsed EMI metal detector , a current loop transmitter is placed in the vicinity of the...transmitter via a data acquisition and control system. The direction of the magnetic field and the field strength generated by a conventional loop EMI metal ... detector are a complex function of the distance of the antenna to the target. As the antenna is moved over the target, data are collected from

  14. Sensory Perception: An Overlooked Target of Occupational Exposure to Metals

    PubMed Central

    Gobba, Fabriziomaria

    2003-01-01

    The effect of exposure to industrial metals on sensory perception of workers has received only modest interest from the medical community to date. Nevertheless, some experimental and epidemiological data exist showing that industrial metals can affect vision, hearing and olfactory function, and a similar effect is also suggested for touch and taste. In this review the main industrial metals involved are discussed. An important limit in available knowledge is that, to date, the number of chemicals studied is relatively small. Another is that the large majority of the studies have evaluated the effect of a single chemical on a single sense. As an example, we know that mercury can impair hearing, smell, taste, touch and also vision, but we have scant idea if, in the same worker, a relation exists between impairments in different senses, or if impairments are independent. Moreover, workers are frequently exposed to different chemicals; a few available results suggest that a co-exposure may have no effect, or result in both an increase and a decrease of the effect, as observed for hearing loss, but this aspect certainly deserves much more study. As a conclusion, exposure to industrial metals can affect sensory perception, but knowledge of this effect is yet incomplete, and is largely inadequate especially for an estimation of “safe” thresholds of exposure. These data support the desirability of further good quality studies in this field. PMID:18365054

  15. Radiochemical Determination of Polonium in Liquid Metal Spallation Targets

    NASA Astrophysics Data System (ADS)

    Hammer, B.; Schumann, D.; Neuhausen, J.; Wohlmuther, M.; Türler, A.

    2014-05-01

    The MEGAPIE target, consisting of 82 litres of lead-bismuth eutectic (LBE), was irradiated close to the megawatt range (0.8 MW) from August to December 2006 in the SINQ facility at PSI. After a cooling period of 5 years, a post-irradiation examination (PIE) program was started and samples were taken from different positions in the target. In this paper we focus on the measurement of α-emitting 208-210Po in the MEGAPIE target. The experimental results are compared with theoretical predictions obtained by FLUKA and MCNPX calculations.

  16. Theory and Simulation of Warm Dense Matter Targets

    SciTech Connect

    Barnard, J J; Armijo, J; More, R M; Friedman, A; Kaganovich, I; Logan, B G; Marinak, M M; Penn, G E; Sefkow, A B; Santhanam, P; Wurtele, J S

    2006-07-13

    We present simulations and analysis of the heating of warm dense matter foils by ion beams with ion energy less than one MeV per nucleon to target temperatures of order one eV. Simulations were carried out using the multi-physics radiation hydrodynamics code HYDRA and comparisons are made with analysis and the code DPC. We simulate possible targets for a proposed experiment at LBNL (the so-called Neutralized Drift Compression Experiment, NDCXII) for studies of warm dense matter. We compare the dynamics of ideally heated targets, under several assumed equation of states, exploring dynamics in the two-phase (fluid-vapor) regime.

  17. Airpower Lessons for an Air Force Cyber Power Targeting Theory

    DTIC Science & Technology

    2016-09-01

    tautology remained throughout the Cold War era until a new airpower strategist emerged. John Warden, a Vietnam combat veteran, learned early in his career...struggling for dominance in cyberspace—the newest war-fighting domain. Perhaps the pursuit of cyber dominance today is comparable to the Cold War, in...cyber-power targeting if the ob- jectives of targeting are to have a focus. At the same time, a common under- standing of war helps readers delineate

  18. Study of Ion Dynamics by Electron Transfer Dissociation: Alkali Metals as Targets

    PubMed Central

    Hayakawa, Shigeo

    2017-01-01

    High energy collision processes for singly charged positive ions using an alkali metal target are confirmed, as a charge inversion mass spectrometry, to occur by electron transfers in successive collisions and the dissociation processes involve the formation of energy-selected neutral species from near-resonant neutralization with alkali metal targets. A doubly charged thermometer molecule was made to collide with alkali metal targets to give singly and doubly charged positive ions. The internal energy resulting from the electron transfer with the alkali metal target was very narrow and centered at a particular energy. This narrow internal energy distribution can be attributed to electron transfer by Landau–Zener potential crossing between the precursor ion and an alkali metal atom, and the coulombic repulsion between singly charged ions in the exit channel. A large cross section of more than 10−14 cm2 was estimated for high-energy electron transfer dissociation (HE-ETD). Doubly protonated phosphorylated peptides obtained by electrospray ionization were collided with Xe and Cs targets to give singly and doubly charged positive ions. Whereas doubly charged fragment ions resulting from CAD were dominant in the case of the Xe target, singly charged fragment ions resulting from ETD were dominant with the Cs target. HE-ETD using the Cs target provided all of the z-type ions by N–Cα bond cleavage without the loss of the phosphate groups. The results demonstrate that HE-ETD with an alkali metal target allowed the position of phosphorylation and the amino acid sequence of peptides with post translational modifications (PTM) to be determined. PMID:28966899

  19. Study of Ion Dynamics by Electron Transfer Dissociation: Alkali Metals as Targets.

    PubMed

    Hayakawa, Shigeo

    2017-01-01

    High energy collision processes for singly charged positive ions using an alkali metal target are confirmed, as a charge inversion mass spectrometry, to occur by electron transfers in successive collisions and the dissociation processes involve the formation of energy-selected neutral species from near-resonant neutralization with alkali metal targets. A doubly charged thermometer molecule was made to collide with alkali metal targets to give singly and doubly charged positive ions. The internal energy resulting from the electron transfer with the alkali metal target was very narrow and centered at a particular energy. This narrow internal energy distribution can be attributed to electron transfer by Landau-Zener potential crossing between the precursor ion and an alkali metal atom, and the coulombic repulsion between singly charged ions in the exit channel. A large cross section of more than 10(-14) cm(2) was estimated for high-energy electron transfer dissociation (HE-ETD). Doubly protonated phosphorylated peptides obtained by electrospray ionization were collided with Xe and Cs targets to give singly and doubly charged positive ions. Whereas doubly charged fragment ions resulting from CAD were dominant in the case of the Xe target, singly charged fragment ions resulting from ETD were dominant with the Cs target. HE-ETD using the Cs target provided all of the z-type ions by N-Cα bond cleavage without the loss of the phosphate groups. The results demonstrate that HE-ETD with an alkali metal target allowed the position of phosphorylation and the amino acid sequence of peptides with post translational modifications (PTM) to be determined.

  20. Three-Dimensional Steerable Magnetic Field (3DSMF)Sensor System for Classification of Buried Metal Targets

    DTIC Science & Technology

    2006-07-01

    metallic anomalies. A commonly used sensor for UXO detection is the EMI metal detector . Conventional EMI metal detectors , using either frequency-domain...spatial magnetic field distributions [1]. With a conventional pulsed EMI metal detector , a current loop transmitter is placed in the vicinity of the...loop EMI metal detector are a complex function of the distance of the antenna to the target. As the antenna is moved over the target, data are

  1. Postsynthetic Tuning of Metal-Organic Frameworks for Targeted Applications.

    PubMed

    Islamoglu, Timur; Goswami, Subhadip; Li, Zhanyong; Howarth, Ashlee J; Farha, Omar K; Hupp, Joseph T

    2017-04-18

    Metal-organic frameworks (MOFs) are periodic, hybrid, atomically well-defined porous materials that typically form by self-assembly and consist of inorganic nodes (metal ions or clusters) and multitopic organic linkers. MOFs as a whole offer many intriguing properties, including ultrahigh porosity, tunable chemical functionality, and low density. These properties point to numerous potential applications, including gas storage, chemical separations, catalysis, light harvesting, and chemical sensing, to name a few. Reticular chemistry, or the linking of molecular building blocks into predetermined network structures, has been employed to synthesize thousands of MOFs. Given the vast library of candidate nodes and linkers, the number of potentially synthetically accessible MOFs is enormous. Nevertheless, a powerful complementary approach to obtain specific structures with desired chemical functionality is to modify known MOFs after synthesis. This approach is particularly useful when incorporation of particular chemical functionalities via direct synthesis is challenging or impossible. The challenges may stem from limited stability or solubility of precursors, unwanted secondary reactivity of precursors, or incompatibility of functional groups with the conditions needed for direct synthesis. MOFs can be postsynthetically modified by replacing the metal nodes and/or organic linkers or via functionalization of the metal nodes and/or organic linkers. Here we describe some of our efforts toward the development and application of postsynthetic strategies for imparting desired chemical functionalities in MOFs of known topology. The techniques include methods for functionalizing MOF nodes, i.e., solvent-assisted ligand incorporation (SALI) and atomic layer deposition in MOFs (AIM) as well as a method to replace structural linkers, termed solvent-assisted linker exchange (SALE), also known as postsynthethic exchange (PSE). For each functionalization strategy, we first describe

  2. Precision Sheet Metal. Progress Record and Theory Outline.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational-Technical Schools.

    This combination progress record and course outline is designed for use by individuals teaching a course in precision sheet metal. Included among the topics addressed in the course are the following: employment opportunities in metalworking, measurement and layout, orthographic projection, precision sheet metal drafting, simple layout, hand tools,…

  3. Modelling of Surfaces. Part 1: Monatomic Metallic Surfaces Using Equivalent Crystal Theory

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John; Rodriguez, Agustin M.

    1994-01-01

    We present a detailed description of equivalent crystal theory focusing on its application to the study of surface structure. While the emphasis is in the structure of the algorithm and its computational aspects, we also present a comprehensive discussion on the calculation of surface energies of metallic systems with equivalent crystal theory and other approaches. Our results are compared to experiment and other semiempirical as well as first-principles calculations for a variety of fcc and bcc metals.

  4. Targeted Structural Optimization with Additive Manufacturing of Metals

    NASA Technical Reports Server (NTRS)

    Burt, Adam; Hull, Patrick

    2015-01-01

    The recent advances in additive manufacturing (AM) of metals have now improved the state-of-the-art such that traditionally non-producible parts can be readily produced in a cost-effective way. Because of these advances in manufacturing technology, structural optimization techniques are well positioned to supplement and advance this new technology. The goal of this project is to develop a structural design, analysis, and optimization framework combined with AM to significantly light-weight the interior of metallic structures while maintaining the selected structural properties of the original solid. This is a new state-of-the-art capability to significantly reduce mass, while maintaining the structural integrity of the original design, something that can only be done with AM. In addition, this framework will couple the design, analysis, and fabrication process, meaning that what has been designed directly represents the produced part, thus closing the loop on the design cycle and removing human iteration between design and fabrication. This fundamental concept has applications from light-weighting launch vehicle components to in situ resource fabrication.

  5. Simultaneous detection of multiple DNA targets based on encoding metal ions.

    PubMed

    Zheng, Lichun; Li, Xiaoyan; Liu, Panpan; Wu, Guofan; Lu, Xiaoquan; Liu, Xiuhui

    2014-02-15

    We present a novel strategy for simultaneous electrochemical detection of multiple DNA targets based on the use of different encoding metal ions as tags. The principle of this scheme is that metal ions bound to metallothionein (MT) molecules can be released down after hybridization with DNA targets and then be detected by stripping voltammetry. The novel detection probes, ssDNA/MT conjugates, covered with different metal ions were synthesized for the first time, then three encoding metal ions (Zn(2+), Cd(2+), and Pb(2+)) were used to differentiate the signals of three virus DNA due to their well-defined anodic stripping peaks at -1.13 V (Zn), -0.78 V (Cd), and -0.52 V (Pb) at BiFE, respectively. The anodic peak currents increased linearly with the concentrations of DNA targets in the range from 0.1 nM to 10nM with a detection limit of 33 pM. In addition, the one-base mismatched target was effectively discriminated from the complementary target. The described results demonstrated that this method possesses high sensitivity and selectivity for multi-target DNA assay and has great potential in applications for detection of even more targets in biological assays, particularly immunoassays. © 2013 Elsevier B.V. All rights reserved.

  6. Targeted Removal of Bioavailable Metal as a Detoxification Strategy for Carbon Nanotubes

    PubMed Central

    Liu, Xinyuan; Guo, Lin; Morris, Daniel; Kane, Agnes B.; Hurt, Robert H.

    2008-01-01

    There is substantial evidence for toxicity and/or carcinogenicity upon inhalation of pure transition metals in fine particulate form. Carbon nanotube catalyst residues may trigger similar metal-mediated toxicity, but only if the metal is bioavailable and not fully encapsulated within fluid-protective carbon shells. Recent studies have documented the presence of bioavailable iron and nickel in a variety of commercial as-produced and vendor “purified” nanotubes, and the present article examines techniques to avoid or remove this bioavailable metal. First, data are presented on the mechanisms potentially responsible for free metal in “purified” samples, including kinetic limitations during metal dissolution, the re-deposition or adsorption of metal on nanotube outer surfaces, and carbon shell damage during last-step oxidation or one-pot purification. Optimized acid treatment protocols are presented for targeting the free metal, considering the effects of acid strength, composition, time, and conditions for post-treatment water washing. Finally, after optimized acid treatment, it is shown that the remaining, non-bioavailable (encapsulated) metal persists in a stable and biologically unavailable form up to two months in an in vitro biopersistence assay, suggesting that simple removal of bioavailable (free) metal is a promising strategy for reducing nanotube health risks. PMID:19255622

  7. The dynamics of molecular interactions and chemical reactions at metal surfaces: testing the foundations of theory.

    PubMed

    Golibrzuch, Kai; Bartels, Nils; Auerbach, Daniel J; Wodtke, Alec M

    2015-04-01

    We review studies of molecular interactions and chemical reactions at metal surfaces, emphasizing progress toward a predictive theory of surface chemistry and catalysis. For chemistry at metal surfaces, a small number of central approximations are typically made: (a) the Born-Oppenheimer approximation of electronic adiabaticity, (b) the use of density functional theory at the generalized gradient approximation level, (c) the classical approximation for nuclear motion, and (d) various reduced-dimensionality approximations. Together, these approximations constitute a provisional model for surface chemical reactivity. We review work on some carefully studied examples of molecules interacting at metal surfaces that probe the validity of various aspects of the provisional model.

  8. The Dynamics of Molecular Interactions and Chemical Reactions at Metal Surfaces: Testing the Foundations of Theory

    NASA Astrophysics Data System (ADS)

    Golibrzuch, Kai; Bartels, Nils; Auerbach, Daniel J.; Wodtke, Alec M.

    2015-04-01

    We review studies of molecular interactions and chemical reactions at metal surfaces, emphasizing progress toward a predictive theory of surface chemistry and catalysis. For chemistry at metal surfaces, a small number of central approximations are typically made: (a) the Born-Oppenheimer approximation of electronic adiabaticity, (b) the use of density functional theory at the generalized gradient approximation level, (c) the classical approximation for nuclear motion, and (d) various reduced-dimensionality approximations. Together, these approximations constitute a provisional model for surface chemical reactivity. We review work on some carefully studied examples of molecules interacting at metal surfaces that probe the validity of various aspects of the provisional model.

  9. Targeted manipulation of metal-organic frameworks to direct sorption properties.

    PubMed

    Schneemann, Andreas; Henke, Sebastian; Schwedler, Inke; Fischer, Roland A

    2014-04-04

    Metal-organic frameworks are promising materials for manifold applications. This Minireview highlights approaches for the fine-tuning of specific sorption properties (e.g. capacity, selectivity, and breathing behavior) of this interesting class of materials. Central aspects covered are the control over the crystal morphology, the targeted tuning of sorption properties by judicious choice of metal centers and linkers, and the preparation of host-guest systems. We want to introduce the reader to these topics on the basis of the manipulation of a handful of outstanding prototypical metal-organic frameworks. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Results of thermal test of metallic molybdenum disk target and fast-acting valve testing

    SciTech Connect

    Virgo, M.; Chemerisov, S.; Gromov, R.; Jonah, C.; Vandegrift, G. F.

    2016-12-01

    This report describes the irradiation conditions for thermal testing of helium-cooled metallic disk targets that was conducted on March 9, 2016, at the Argonne National Laboratory electron linac. The four disks in this irradiation were pressed and sintered by Oak Ridge National Laboratory from molybdenum metal powder. Two of those disks were instrumented with thermocouples. Also reported are results of testing a fast-acting-valve system, which was designed to protect the accelerator in case of a target-window failure.

  11. Statistical theory of slip channels in neutron-irradiated metals

    NASA Astrophysics Data System (ADS)

    Zaiser, M.

    The microstructure of high-dose neutron-irradiated metals is characterized by a large density of point-defect agglomerates. During plastic deformation, these agglomerates are swept up by the glide dislocations. This goes along with a strong localization of slip within lamellar regions that correspond, on the microstructural level, to almost defect-free slip channels. In close analogy with previous work, where slip channels in low-temperature predeformed bcc metals have been studied, a statistical model of the microstructural evolution is formulated. Theoretical expressions for the geometrical characteristics and the deformation properties of the microstructure are derived. The theoretical results are compared to experimental findings.

  12. On the estimation of target depth using the single transmit multiple receive metal detector array

    NASA Astrophysics Data System (ADS)

    Ho, K. C.; Gader, P. D.

    2012-06-01

    This paper investigates the use of the Single Transmit Multiple Receive (STMR) metal detector (MD) array to estimate the depth of metal targets, such as 155mm shells. The depth estimation problem using MD has been investigated by a number of researchers and the processing was performed along the down-track. The proposed method takes a different approach by exploring the MD responses in cross-track to achieve the depth estimation. It is found that the normalized energy spread of the MD output is narrower for shallow targets and wider for deeper targets. Based on this observation, a method is derived to estimate the depth of a target. Experimental results from the data collected at an U.S. Army test site validate the performance of the proposed depth estimator.

  13. Control of Structure in Conventional Friction Stir Welds through a Kinematic Theory of Metal Flow

    NASA Technical Reports Server (NTRS)

    Rubisoff, H.A.; Schneider, J.A.; Nunes, A.C.

    2009-01-01

    In friction stir welding (FSW), a rotating pin is translated along a weld seam so as to stir the sides of the seam together. Metal is prevented from flowing up the pin, which would result in plowing/cutting instead of welding, by a shoulder on the pin. In conventional FSW, the weld metal rests on an "anvil", which supports the heavy "plunge" load on the tool. In this study, both embedded tungsten wires along and copper plating on the faying surfaces were used to trace the flow of AA2219 weld metal around the C-FSW tool. The effect of tool rotational speed, travel speed, plunge load, and pin thread pitch on the resulting weld metal flow was evaluated. Plan, longitudinal, and transverse section x-ray radiographs were examined to trace the metal flow paths. The results are interpreted in terms of a kinematic theory of metal flow in FSW.

  14. Propane decomposition and conversion into other hydrocarbons using metal target assisted laser induced plasma

    NASA Astrophysics Data System (ADS)

    Moosakhani, A.; Parvin, P.; Reyhani, A.; Mortazavi, S. Z.

    2017-01-01

    It is shown that the propane molecules are strongly decomposed in the metal assisted laser induced plasma based on the nano-catalytic adsorption. A Q-Switched Nd:YAG laser is employed to irradiate the propane gas filled in the control chamber in the presence of the reactive metals such as Ni, Fe, Pd, and Cu in order to study the effect of catalysts during the decomposition. The catalytic targets simultaneously facilitate the plasma formation and the decomposition events leading to generate a wide distribution of the light and heavy hydrocarbon molecules, mainly due to the recombination processes. Fourier transform infrared spectroscopy and gas chromatography instruments support the findings by detecting the synthetic components. Furthermore, the optical emission spectroscopy of the laser induced plasma emissions realizes the real time monitoring of the reactions taking place during each laser shot. The subsequent recombination events give rise to the generation of a variety of the hydrocarbon molecules. The dissociation rate, conversion ratio, selectivity, and yield as well as the performance factor arise mainly from the catalytic effects of the metal species. Moreover, the ablation rate of the targets of interest is taken into account as a measure of the catalytic reactivity due to the abundance of the metal species ablated from the target. This leads to assess the better performance factor for Pd among four metal catalysts of interest during propane decomposition. Finally, the molecules such as ethane and ethylene are identified as the stable abundant species created during the successive molecular recombination processes.

  15. Molecular orbital (SCF-Xα-SW) theory of metal-metal charge transfer processes in minerals

    USGS Publications Warehouse

    Sherman, David M.

    1987-01-01

    Electronic transitions between the Fe-Fe bonding and Fe-Fe antibonding orbitals results in the optically-induced intervalence charge transfer bands observed in the electronic spectra of mixed valence minerals. Such transitions are predicted to be polarized along the metal-metal bond direction, in agreement with experimental observations.

  16. Ion-induced electron emission from cold metal targets covered by rare gases

    NASA Astrophysics Data System (ADS)

    Soszka, W.

    1990-03-01

    The energy and angular distributions of secondary electrons emitted upon ion bombardment of cold metal targets covered by rare gases in different states (two-dimensional gas layer, stationary adsorbed layer or solid film) are examined. The state of noble gas on the metal surface influences the yield of electrons from the metal (bulk electron emission) and from the adsorbed layer. A change of density of surface electrons which become localized near the positions of adsorbed particles is supposed to be responsible for the observed differences in electron emission from the targets covered by physi- or chemisorbed noble-gas layers. This is confirmed by analysis of the reflected ions which has been carried out additionally to the electron measurements.

  17. Multi-orbital cluster perturbation theory for transition metal oxides.

    PubMed

    Manghi, F

    2014-01-08

    We present an extension of cluster perturbation theory to include many-body correlations associated with local e-e repulsion in real materials. We show that this approach can describe the physics of complex correlated materials where different atomic species and different orbitals coexist. The prototypical case of MnO is considered.

  18. Formation of periodic structures upon laser ablation of metal targets in liquids

    SciTech Connect

    Kazakevich, Pavel V; Simakin, Aleksandr V; Shafeev, Georgii A

    2005-09-30

    Experimental data on the formation of ordered microstructures produced upon ablation of metal targets in liquids irradiated by a copper vapour laser or a pulsed Nd:YAG laser are presented. The structures were obtained on brass, bronze, copper, and tungsten substrates immersed in distilled water or ethanol. As a result of multiple-pulse laser ablation by a scanning beam, ordered microcones with pointed vertexes are formed on the target surface. The structures are separated by deep narrow channels. The structure period was experimentally shown to increase linearly with diameter of the laser spot on the target surface. (interaction of laser radiation with matter)

  19. Progress in alkaline peroxide dissolution of low-enriched uranium metal and silicide targets

    SciTech Connect

    Chen, L.; Dong, D.; Buchholz, B.A.; Vandegrift, G.F.; Wu, D.

    1996-12-31

    This paper reports recent progress on two alkaline peroxide dissolution processes: the dissolution of low-enriched uranium metal and silicide (U{sub 3}Si{sub 2}) targets. These processes are being developed to substitute low-enriched for high-enriched uranium in targets used for production of fission-product {sup 99}Mo. Issues that are addressed include (1) dissolution kinetics of silicide targets, (2) {sup 99}Mo lost during aluminum dissolution, (3) modeling of hydrogen peroxide consumption, (4) optimization of the uranium foil dissolution process, and (5) selection of uranium foil barrier materials. Future work associated with these two processes is also briefly discussed.

  20. Ab Initio Theory of Coherent Laser-Induced Magnetization in Metals

    NASA Astrophysics Data System (ADS)

    Berritta, Marco; Mondal, Ritwik; Carva, Karel; Oppeneer, Peter M.

    2016-09-01

    We present the first materials specific ab initio theory of the magnetization induced by circularly polarized laser light in metals. Our calculations are based on nonlinear density matrix theory and include the effect of absorption. We show that the induced magnetization, commonly referred to as inverse Faraday effect, is strongly materials and frequency dependent, and demonstrate the existence of both spin and orbital induced magnetizations which exhibit a surprisingly different behavior. We show that for nonmagnetic metals (such as Cu, Au, Pd, Pt) and antiferromagnetic metals the induced magnetization is antisymmetric in the light's helicity, whereas for ferromagnetic metals (Fe, Co, Ni, FePt) the imparted magnetization is only asymmetric in the helicity. We compute effective optomagnetic fields that correspond to the induced magnetizations and provide guidelines for achieving all-optical helicity-dependent switching.

  1. Topological Fermi-liquid theory for interacting Weyl metals with time reversal symmetry breaking

    NASA Astrophysics Data System (ADS)

    Jho, Yong-Soo; Han, Jae-Ho; Kim, Ki-Seok

    2017-05-01

    Introducing both the Berry curvature and the chiral anomaly into Landau's Fermi-liquid theory, we construct a topological Fermi-liquid theory, applicable to interacting Weyl metals in the absence of time reversal symmetry. Following the Landau's Fermi-liquid theory, we obtain an effective free-energy functional in terms of the density field of chiral fermions, where the band structure is modified, involved with an emergent magnetic dipole moment due to the Berry curvature. The density field of chiral fermions is determined by a self-consistent equation, minimizing the effective free-energy functional with respect to the order-parameter field. Beyond these thermodynamic properties, we construct a Boltzmann transport theory to encode both the Berry curvature and the chiral anomaly in the presence of forward scattering of a Fermi-liquid state, essential for understanding dynamic correlations in interacting Weyl metals. This generalizes the Boltzmann transport theory for the Landau's Fermi-liquid state in the respect of incorporating the topological structure and extends that for noninteracting Weyl metals in the sense of introducing the forward scattering. Finally, we justify this topological Fermi-liquid theory, generalizing the first-quantization description for noninteracting Weyl metals into the second-quantization representation for interacting Weyl metals. First, we introduce a topological Fermi-gas theory, integrating over high-energy electronic degrees of freedom deep inside a pair of chiral Fermi surfaces. As a result, we reproduce a topologically modified Drude model with both the Berry curvature and the chiral anomaly, given by the first-quantization description. Second, we take into account interactions between such low-energy chiral fermions on the pair of chiral Fermi surfaces. Following the Landau's Fermi-liquid theory, we perform the renormalization group analysis. We find that only forward scattering turns out to be marginal above possible

  2. High heat flux accelerator targets cooling with liquid-metal jet impingement

    NASA Astrophysics Data System (ADS)

    Silverman, I.; Arenshtam, A.; Kijel, D.; Nagler, A.

    2005-12-01

    Accelerator targets for radioisotope production generate very high density of thermal energy in the target material, which absorbs the particles beam. The design of these targets requires efficient heat removal techniques in order to preserve the integrity of the target. Normal average heat fluxes from these targets are around 1 kW/cm2 and may reach order of magnitude higher values at hot spots. Few techniques exist to deal with such high heat fluxes. One of them is jet impingement that has been proved to be able to deal with heat fluxes as high as 40 kW/cm2 using water as coolant. However, this requires very high jet velocities of more than 100 m/s. A few theoretical and experimental studies indicate that liquid-metal coolants (e.g., gallium or gallium alloys) can improve the heat transfer efficiency in this configuration. Experimental cooling loops based on water and liquid-metal jet impingement have been designed and built at Soreq to evaluate this method. For the current liquid-metal system an eutectic alloy of gallium and indium (GaIn) is used. Initial experiments demonstrate that the GaIn cooling system can deal with heat flux of about 2 kW/cm2 over an area of 1 cm2. The jet velocity is less than 4 m/s and the required differential pressure from the pump is less than 1 bar.

  3. Peptide-Metal Organic Framework Swimmers that Direct the Motion toward Chemical Targets.

    PubMed

    Ikezoe, Yasuhiro; Fang, Justin; Wasik, Tomasz L; Shi, Menglu; Uemura, Takashi; Kitagawa, Susumu; Matsui, Hiroshi

    2015-06-10

    Highly efficient and robust chemical motors are expected for the application in microbots that can selectively swim toward targets and accomplish their tasks in sensing, labeling, and delivering. However, one of major issues for such development is that current artificial swimmers have difficulty controlling their directional motion toward targets like bacterial chemotaxis. To program synthetic motors with sensing capability for the target-directed motion, we need to develop swimmers whose motions are sensitive to chemical gradients in environments. Here we create a new intelligent biochemical swimmer by integrating metal organic frameworks (MOFs) and peptides that can sense toxic heavy metals in solution and swim toward the targets. With the aid of Pb-binding enzymes, the peptide-MOF motor can directionally swim toward PbSe quantum dots (QD) by sensing pH gradient and eventually complete the motion as the swimmer reaches the highest gradient point at the target position in solution. This type of technology could be evolved to miniaturize chemical robotic systems that sense target chemicals and swim toward target locations.

  4. Steam Reforming on Transition-metal Carbides from Density-functional Theory

    SciTech Connect

    Vojvodic, Aleksandra

    2012-05-11

    A screening study of the steam reforming reaction on clean and oxygen covered early transition-metal carbides surfaces is performed by means of density-functional theory calculations. It is found that carbides provide a wide spectrum of reactivities, from too reactive via suitable to too inert. Several molybdenum-based systems are identified as possible steam reforming catalysts. The findings suggest that carbides provide a playground for reactivity tuning, comparable to the one for pure metals.

  5. Modification of base-side {sup 99}MO production processes for LEU metal-foil targets.

    SciTech Connect

    Vandegrift, G. F.; Leonard, R. A.; Aase, S.; Sedlet, J.; Koma, Y.; Conner, C.; Clark, C. R.; Meyer, M. K.

    1999-09-30

    Argonne National Laboratory is cooperating with the National Atomic Energy Commission of the Argentine Republic (CNEA) to convert their {sup 99}Mo production process, which uses high enriched uranium (HEU), to low-enriched uranium (LEU), The program is multifaceted; however, discussed in this paper are (1) results of laboratory experiments to develop means for substituting LEU metal-foil targets into the current process and (2) preparation of uranium-alloy or uranium-metal/aluminum-dispersion targets. Although {sup 99}Mo production is a multi-step process, the first two steps (target dissolution and primary molybdenum recovery) are by far the most important in the conversion. Commonly, once molybdenum is separated from the bulk of the uranium, the remainder of the process need not be modified. Our results show that up to this point in our study, conversion of the CNEA process to LEU appears viable.

  6. Targeted cleavage of HIV RRE RNA by Rev-coupled transition metal chelates.

    PubMed

    Joyner, Jeff C; Cowan, J A

    2011-06-29

    A series of compounds that target reactive metal chelates to the HIV-1 Rev response element (RRE) mRNA have been synthesized. Dissociation constants and chemical reactivity toward HIV RRE RNA have been determined and evaluated in terms of reduction potential, coordination unsaturation, and overall charge associated with the metal-chelate-Rev complex. Ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), diethylenetriaminepentaacetic acid (DTPA), and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) were linked to a lysine side chain of a Rev-derived peptide by either EDC/NHS or isothiocyanate coupling. The resulting chelate-Rev (EDTA-Rev, DTPA-Rev, NTA-Rev, and DOTA-Rev) conjugates were used to form coordination complexes with Fe(2+), Co(2+), Ni(2+), and Cu(2+) such that the arginine-rich Rev peptide could mediate localization of the metal chelates to the Rev peptide's high-affinity mRNA binding partner, RRE stem loop IIB. Metal complexes of the extended peptides GGH-Rev and KGHK-Rev, which also contain N-terminal peptidic chelators (ATCUN motifs), were studied for comparison. A fluorescence titration assay revealed high-affinity RRE RNA binding by all 22 metal-chelate-Rev species, with K(D) values ranging from ~0.2 to 16 nM, indicating little to no loss of RNA affinity due to the coupling of the metal chelates to the Rev peptide. Dissociation constants for binding at a previously unobserved low-affinity site are also reported. Rates of RNA modification by each metal-chelate-Rev species were determined and varied from ~0.28 to 4.9 nM/min but were optimal for Cu(2+)-NTA-Rev. Metal-chelate reduction potentials were determined and varied from -228 to +1111 mV vs NHE under similar solution conditions, allowing direct comparison of reactivity with redox thermodynamics. Optimal activity was observed when the reduction potential for the metal center was poised between those of the two principal co-reagents for metal-promoted formation of

  7. Theory of the negative magnetoresistance in magnetic metallic multilayers

    SciTech Connect

    Hood, R.Q.; Falicov, L.M. |

    1993-04-01

    The Boltzman equation is solved for a system consisting of alternating ferromagnetic normal metallic layers. The in-plane conductance of the film is calculated for two configurations: successive ferromagnetic layers aligned parallel and antiparallel to each other. Results explain the giant negative magnetoresistance encountered in these systems when an initial antiparallel arrangement is changed into a parallel configuration by application of an extemal magnetic field. The calculation depends on geometric parameters (the thicknesses of the layers); intrinsic metal parameters (number of conduction electrons, magnetization and effective masses in the layers); bulk sample properties (conductivity relaxation times); and interface scattering properties (diffuse scattering versus potential scattering at the interfaces). It is found that a large negative magnetoresistance requires, in general, considerable asymmetry in the interface scattering for the two spin orienmtions. All qualitative features of the experiments are reproduced. Quantitative agreement can be achieved with sensible values of the parameters. The effect can be conceptually explained based on considerations of phase-space availability for an electron of a given spin orientation as it travels through the multilayer sample in the various configurations and traverses the interfaces.

  8. A study on target recognition fusion algorithm based on fuzzy theory

    NASA Astrophysics Data System (ADS)

    Han, Feng; Yang, WanHai

    2008-03-01

    In the process of the multi-sensors target recognition fusion, focused on the problem that it is difficult to determine the reliability of each sensor and how the data measured by different sensors are fused, a multi-sensor target recognition fusion method based on fuzzy theory is proposed. The mutual supportability of multiple sensors is obtained from the correlation function. Then by the membership function, the reliability of information provide by each sensor is gained. Finally, the supposed fusion result of multi-sensors target recognition can be produced on the basis of fuzzy integration function. The method is simple computationally and can objectively reflect the reliability of each sensor and interrelationship between these sensors. By applying the method to the target recognition, the simulation experiment shows that it can identify the target accurately and is an effective and feasible multi-sensors target recognition fusion method.

  9. Analysis of metal-matrix composite structures. I - Micromechanics constitutive theory. II - Laminate analyses

    NASA Technical Reports Server (NTRS)

    Arenburg, R. T.; Reddy, J. N.

    1991-01-01

    The micromechanical constitutive theory is used to examine the nonlinear behavior of continuous-fiber-reinforced metal-matrix composite structures. Effective lamina constitutive relations based on the Abouli micromechanics theory are presented. The inelastic matrix behavior is modeled by the unified viscoplasticity theory of Bodner and Partom. The laminate constitutive relations are incorporated into a first-order deformation plate theory. The resulting boundary value problem is solved by utilizing the finite element method. Attention is also given to computational aspects of the numerical solution, including the temporal integration of the inelastic strains and the spatial integration of bending moments. Numerical results the nonlinear response of metal matrix composites subjected to extensional and bending loads are presented.

  10. Analysis of metal-matrix composite structures. I - Micromechanics constitutive theory. II - Laminate analyses

    NASA Technical Reports Server (NTRS)

    Arenburg, R. T.; Reddy, J. N.

    1991-01-01

    The micromechanical constitutive theory is used to examine the nonlinear behavior of continuous-fiber-reinforced metal-matrix composite structures. Effective lamina constitutive relations based on the Abouli micromechanics theory are presented. The inelastic matrix behavior is modeled by the unified viscoplasticity theory of Bodner and Partom. The laminate constitutive relations are incorporated into a first-order deformation plate theory. The resulting boundary value problem is solved by utilizing the finite element method. Attention is also given to computational aspects of the numerical solution, including the temporal integration of the inelastic strains and the spatial integration of bending moments. Numerical results the nonlinear response of metal matrix composites subjected to extensional and bending loads are presented.

  11. Resonances and circuit theory for the interaction of metallic disks and annuli with an electromagnetic field

    NASA Astrophysics Data System (ADS)

    Chui, S. T.; Du, J. J.; Yau, S. T.

    2014-11-01

    To understand the nature of the electromagnetic resonances of finite metallic surfaces, we formulate a rigorous and rapidly convergent circuit theory for the interaction of a metallic disk and a metallic annulus with an electromagnetic field. Expressions for the current induced and the resonance condition are derived. A new understanding of the nature of the resonances is obtained. For half of the resonances we find a divergent electric field at the edge of the disk, even though it is smooth in shape. For the disk, we compare with previous results using vector spheroidal wave functions and found good agreement for the resonance condition. Our approach can be generalized to other finite surfaces.

  12. Theory for self-consistent interplay between light and nanomaterials strongly modified by metallic nanostructures.

    PubMed

    Ishikawa, Akira; Osono, Katsuya; Nobuhiro, Atsushi; Mizumoto, Yoshihiko; Torimoto, Tsukasa; Ishihara, Hajime

    2013-03-28

    The design of the interplay between light and nanomaterials by the effect of localized-surface-plasmon resonance in metallic nanostructures is a fascinating subject, and recently, a lot of research has been carried out from both fundamental and applicational points of view. In this paper, we demonstrate the theories for describing the self-consistent interplay between the electronic states in the nanomaterials, the localized surface plasmons in the metallic nanostructures, and the light field, which provides insight into how the photoexcitation processes are modified through microscopic energy exchanges. As examples of such demonstrations, we show two cases, i.e., the interaction between a single metallic nanosphere and a quantum dot, and that between metallic nanostructures forming a nanogap and dimer molecules, where a peculiar dependence of photoexcitation processes on the distance between the metallic nanostructure and the absorbers arises depending on the respective characteristics of their interplay.

  13. Critical quasiparticle theory applied to heavy fermion metals near an antiferromagnetic quantum phase transition

    PubMed Central

    Abrahams, Elihu; Wölfle, Peter

    2012-01-01

    We use the recently developed critical quasiparticle theory to derive the scaling behavior associated with a quantum critical point in a correlated metal. This is applied to the magnetic-field induced quantum critical point observed in YbRh2Si2, for which we also derive the critical behavior of the specific heat, resistivity, thermopower, magnetization and susceptibility, the Grüneisen coefficient, and the thermal expansion coefficient. The theory accounts very well for the available experimental results. PMID:22331893

  14. Perturbation theory of solid-liquid interfacial free energies of bcc metals.

    PubMed

    Warshavsky, Vadim B; Song, Xueyu

    2012-09-01

    A perturbation theory is used to calculate bcc solid-liquid interfacial free energies of metallic systems with embedded-atom model potentials. As a reference system for bcc crystals we used a single-occupancy cell, hard-sphere bcc system. Good agreements between the perturbation theory results and the corresponding results from simulations are found. The strategy to extract hard-sphere bcc solid-liquid interfacial free energies may have broader applications for other crystal lattices.

  15. Critical quasiparticle theory applied to heavy fermion metals near an antiferromagnetic quantum phase transition.

    PubMed

    Abrahams, Elihu; Wölfle, Peter

    2012-02-28

    We use the recently developed critical quasiparticle theory to derive the scaling behavior associated with a quantum critical point in a correlated metal. This is applied to the magnetic-field induced quantum critical point observed in YbRh(2)Si(2), for which we also derive the critical behavior of the specific heat, resistivity, thermopower, magnetization and susceptibility, the Grüneisen coefficient, and the thermal expansion coefficient. The theory accounts very well for the available experimental results.

  16. Thermally induced breakup of metallic nanowires: experiment and theory.

    PubMed

    Schnedlitz, Martin; Lasserus, Maximilian; Knez, Daniel; Hauser, Andreas W; Hofer, Ferdinand; Ernst, Wolfgang E

    2017-04-05

    We present time-resolved transmission electron microscopy studies of the degradation of Au, Ag, Cu and Ni nanowires deposited on a heated support. The wires are grown under fully inert conditions in superfluid helium droplets and deposited onto amorphous carbon. The inherent stability of these pristine metal nanowires with diameters below 10 nm is investigated in the absence of any stabilizers, templates or solvents. The phenomenon of Rayleigh-breakup, a consequence of diffusion processes along the wire surfaces, is analysed in situ via scans over time and support temperature. Our experimental efforts are combined with simulations based on a novel model featuring a cellular automaton to emulate surface diffusion. Based on this model, correlations between the material parameters and actual breakup behaviour are studied.

  17. Theory of strain in single-layer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Rostami, Habib; Roldán, Rafael; Cappelluti, Emmanuele; Asgari, Reza; Guinea, Francisco

    2015-11-01

    Strain engineering has emerged as a powerful tool to modify the optical and electronic properties of two-dimensional crystals. Here we perform a systematic study of strained semiconducting transition metal dichalcogenides. The effect of strain is considered within a full Slater-Koster tight-binding model, which provides us with the band structure in the whole Brillouin zone (BZ). From this, we derive an effective low-energy model valid around the K point of the BZ, which includes terms up to second order in momentum and strain. For a generic profile of strain, we show that the solutions for this model can be expressed in terms of the harmonic oscillator and double quantum well models, for the valence and conduction bands respectively. We further study the shift of the position of the electron and hole band edges due to uniform strain. Finally, we discuss the importance of spin-strain coupling in these 2D semiconducting materials.

  18. Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties.

    PubMed

    Linic, Suljo; Christopher, Phillip; Xin, Hongliang; Marimuthu, Andiappan

    2013-08-20

    Heterogeneous catalysis by metals was among the first enabling technologies that extensively relied on nanoscience. The early intersections of catalysis and nanoscience focused on the synthesis of catalytic materials with high surface to volume ratio. These synthesis strategies mainly involved the impregnation of metal salts on high surface area supports. This would usually yield quasi-spherical nanoparticles capped by low-energy surface facets, typically with closely packed metal atoms. These high density areas often function as the catalytically active surface sites. Unfortunately, strategies to control the functioning surface facet (i.e., the geometry of active sites that performs catalytic turnover) are rare and represent a significant challenge in our ability to fine-tune and optimize the reactive surfaces. Through recent developments in colloidal chemistry, chemists have been able to synthesize metallic nanoparticles of both targeted size and desired shape. This has opened new possibilities for the design of heterogeneous catalytic materials, since metal nanoparticles of different shapes are terminated with different surface facets. By controlling the surface facet exposed to reactants, we can start affecting the chemical transformations taking place on the metal particles and changing the outcome of catalytic processes. Controlling the size and shape of metal nanoparticles also allows us to control the optical properties of these materials. For example, noble metals nanoparticles (Au, Ag, Cu) interact with UV-vis light through an excitation of localized surface plasmon resonance (LSPR), which is highly sensitive to the size and shape of the nanostructures. This excitation is accompanied by the creation of short-lived energetic electrons on the surface of the nanostructure. We showed recently that these energetic electrons could drive photocatalytic transformations on these nanostructures. The photocatalytic, electron-driven processes on metal nanoparticles

  19. Reactor target from metal chromium for "pure" high-intensive artificial neutrino source

    NASA Astrophysics Data System (ADS)

    Gavrin, V. N.; Kozlova, Yu. P.; Veretenkin, E. P.; Logachev, A. V.; Logacheva, A. I.; Lednev, I. S.; Okunkova, A. A.

    2017-01-01

    The paper presents the first results of development of manufacturing technology of metallic chromium targets from highly enriched isotope 50Cr for irradiation in a high flux nuclear reactor to obtain a compact high intensity neutrino source with low content of radionuclide impurities and minimum losses of enriched isotope. The main technological stages are the hydrolysis of chromyl fluoride, the electrochemical reduction of metallic chromium, the hot isostatic pressing of chromium powder and the electrical discharge machining of chromium bars. The technological stages of hot isostatic pressing of chromium powder and of electrical discharge machining of Cr rods have been tested.

  20. Metal/dendrimer nanocomposites for enhanced optical breakdown: acoustic characterization and initial targeted cell uptake study

    NASA Astrophysics Data System (ADS)

    Tse, Christine; Lesniak, Wojciech; Balogh, Lajos P.; Ye, Jing Yong; O'Donnell, Matthew

    2007-02-01

    Metal/dendrimer nanocomposites (DNCs) uniquely combine the properties of metallic clusters and the biofriendly polymer host in a nanosized hybrid particle. DNCs can biochemically target tissues and locally reduce femtosecond optical breakdown thresholds, making highly precise and selective photodisruption possible. In this study, we have used high-frequency acoustic monitoring of bubble production dynamics to investigate how DNC properties, solution concentration, and optical parameters affect threshold reduction, actual waiting time, and mechanical characteristics of breakdown. Breakdown is defined here as bubble production with an onset of less than 20 seconds after laser exposure. DNC properties varied include metal content (silver, gold) and terminal group (amino-NH II, glycidol-OH, and carboxyl- COOH) which determine pH values. Results indicate that DNC metal content markedly influences solution threshold reduction, while DNC terminal group (and thus net surface charge) and solution concentration influence the details of breakdown at these reduced threshold fluences. {Ag(0)} DNCs reduce breakdown threshold fluence 1-2 orders of magnitude more than {Au(0)} DNCs. Furthermore, concentrated DNC solutions and DNCs carrying a net negative charge (carboxyl terminal groups) increase bubble production up to four times and shorten waiting time for breakdown from seconds to milliseconds. Increasing laser fluence for a given DNC solution concentration also shortens breakdown waiting time. Lastly, utilizing the fluorescence properties of silver nanocomposites, we use confocal microscopy to examine KB cell uptake of folate targeted silver DNCs. Cells incubated with folate targeted silver DNCs exhibit a measurable increase of intracellular fluorescence compared to control cells (no DNC incubation). However, while we observe a threshold reduction in KB cells incubated with 500nM folate-targeted DNC solution, there is no threshold reduction in cells incubated with 50nM folate-targeted

  1. Theory of unidirectional spin Hall magnetoresistance in heavy-metal/ferromagnetic-metal bilayers

    NASA Astrophysics Data System (ADS)

    Zhang, Steven S.-L.; Vignale, Giovanni

    2016-10-01

    Recent experiments have revealed nonlinear features of the magnetoresistance in metallic bilayers consisting of a heavy metal (HM) and a ferromagnetic metal (FM). A small change in the longitudinal resistance of the bilayer has been observed when reversing the direction of either the applied in-plane current or the magnetization. We attribute such nonlinear transport behavior to the spin-polarization dependence of the electron mobility in the FM layer acting in concert with the spin accumulation induced in that layer by the spin Hall current originating in the bulk of the HM layer. An explicit expression for the nonlinear magnetoresistance is derived based on a simple drift-diffusion model, which shows that the nonlinear magnetoresistance appears at the first order of the spin Hall angle, and changes sign when the current is reversed, in agreement with the experimental observations. We also discuss possible ways to control sign of the nonlinear magnetoresistance and to enhance the magnitude of the effect.

  2. Generalized Rate Theory for Void and Bubble Swelling and its Application to Plutonium Metal Alloys

    SciTech Connect

    Allen, P. G.; Wolfer, W. G.

    2015-10-16

    In the classical rate theory for void swelling, vacancies and self-interstitials are produced by radiation in equal numbers, and in addition, thermal vacancies are also generated at the sinks, primarily at edge dislocations, at voids, and at grain boundaries. In contrast, due to the high formation energy of self-interstitials for normal metals and alloys, their thermal generation is negligible, as pointed out by Bullough and Perrin [1]. However, recent DFT calculations of the formation energy of self-interstitial atoms in bcc metals [2,3] have revealed that the sum of formation and migration energies for self-interstitials atoms (SIA) is of the same order of magnitude as for vacancies. This is illustrated in Fig. 1 that shows the ratio of the activation energies for thermal generation of SIA and vacancies. For fcc metals, this ratio is around three, but for bcc metals it is around 1.5. Reviewing theoretical predictions of point defect properties in δ-Pu [4], this ratio could possibly be less than one. As a result, thermal generation of SIA in bcc metals and in plutonium must be taken into considerations when modeling the growth of voids and of helium bubbles, and the classical rate theory (CRT) for void and bubble swelling must be extended to a generalized rate theory (GRT).

  3. Contribution to the theory of positive muon diffusion in metals at low temperature

    SciTech Connect

    Yaouanc, A.

    1983-01-01

    We study the temperature dependence of the ..mu../sup +/ diffusion in a metal within the small polaron theory. The geometry of the strain field due to an impurity is shown to strongly influence the ..mu../sup +/ diffusion properties. We reanalyzed part of the Al data.

  4. Multilayer Relaxation and Surface Energies of FCC and BCC Metals Using Equivalent Crystal Theory

    NASA Technical Reports Server (NTRS)

    Rodriguez, Agustin M.; Bozzolo, Guillermo; Ferrante, John

    1993-01-01

    The multilayer relaxation of fcc and bcc metal surfaces is calculated using equivalent crystal theory. The results for changes in interplanar spacings of planes close to the surface and the ensuing surface energies are discussed in reference to other theoretical results and compared to available experimental data. The calculation includes high-index surfaces for which no other theoretical results are known.

  5. A ROTATING METAL BAND TARGET FOR PION PRODUCTION AT MUON COLLIDERS.

    SciTech Connect

    KING,B.J.; SIMOS,N.; WEGGEL,R.V.; MOKHOV,N.V.

    2002-01-18

    A conceptual design is presented for a high power pion production target for muon colliders that is based on a rotating metal band. Three candidate materials are considered for the target band: inconel alloy 718, titanium alloy 6Al-4V grade 5 and nickel. A pulsed proton beam tangentially intercepts a chord of the target band that is inside a 20 Tesla tapered solenoidal magnetic pion capture channel similar to designs previously considered for muon colliders and neutrino factories. The target band has a radius of 2.5 meters and is continuously rotated at approximately 1 m/s to carry heat away from the production region and through a water cooling tank. The mechanical layout and cooling setup of the target are described, including the procedure for the routine replacement of the target band. A rectangular band cross section is assumed, optionally with I-beam struts to enhance stiffness and minimize mechanical vibrations. Results are presented from realistic MARS Monte Carlo computer simulations of the pion yield and energy deposition in the target and from ANSYS finite element calculations for the corresponding shock heating stresses. The target scenario is found to perform satisfactorily and with conservative safety margins for multi-MW pulsed proton beams.

  6. Ab initio theory of perpendicular magnetotransport in metallic multilayers

    NASA Astrophysics Data System (ADS)

    Kudrnovský, J.; Drchal, V.; Blaas, C.; Weinberger, P.; Turek, I.; Bruno, P.

    2000-12-01

    The current-perpendicular-to-plane (CPP) magnetotransport of a metallic sample sandwiched by two ideal leads is described at an ab initio level. The so-called ``active'' part of the system is either a trilayer consisting of two magnetic slabs of finite thickness separated by a nonmagnetic spacer or a multilayer formed by alternating magnetic and nonmagnetic layers. We use a transmission matrix formulation of the conductance based on surface Green's functions as formulated by means of the tight-binding linear muffin-tin orbital method. The formalism is extended to the case of lateral supercells with random arrangements of atoms of two types, which in turn allows to deal with specular and diffusive scattering on equal footing, and which is applicable also to the case of noncollinear alignments of the magnetization in the layers. Applications refer to fcc-based Co/Cu/Co(001) trilayers and multilayers, considering in detail the effect of substitutional alloying in the spacer and in the magnetic layers, as well as interdiffusion at the interfaces.

  7. Theory of ordering transformations in metals and minerals

    SciTech Connect

    Lindsey, T.F. . Dept. of Materials Science and Mineral Engineering Lawrence Berkeley Lab., CA )

    1991-07-01

    This dissertation presents an investigation of ordering in FCC based systems using the pair potential approximation in the ground state and mean field limits. The theoretical approach is used to explain the occurrence of observed equilibrium phases and characteristics of thermodynamic instabilities, in particular, spinodal ordering and decomposition. It is shown that the stability of non-integer domain sizes in long period superstructures such as Al{sub 3}Ti and Ag{sub 3}Mg may result from the tendency of a system to reduce the number of non-dominant ordering waves, thus producing domain sizes that have rational fraction form n/m. This conclusion is used to explain the domain size stability with respect to variations in temperature and electron concentration. The cation ordering in the precipitate phases in calcite and dolomite is analyzed by analogy with ordering in FCC based metals. The ordered phases in calcite and dolomite are shown to be consistent with pair potential minima at {l brace}100{r brace} and {l brace}1/2, 1/2, 1/2{r brace} positions in reciprocal space respectively. 32 refs., 6 figs.

  8. Quantitative treatment of the creep of metals by dislocation and rate-process theories

    NASA Technical Reports Server (NTRS)

    Nowick, A S; Machlin, E S

    1946-01-01

    An equation for the steady-state rate of creep has been derived by applying the theory of dislocations to the creep of pure metals. The form of this equation is in agreement with empirical equations describing creep rates. The theory was also used to predict the dependence of steady-state rate of creep on physical constants of the material and good agreement was obtained with data in the literature for pure annealed metals. The rate of creep was found to decrease with increasing modulus of rigidity. This relation suggest that one of the requirements for a heat-resisting alloy is that its matrix be a metal that has a high modulus of rigidity and therefore a high modulus of elasticity.

  9. Morphology of meteoroid and space debris craters on LDEF metal targets

    NASA Astrophysics Data System (ADS)

    Love, S. G.; Brownlee, D. E.; King, N. L.; Hoerz, F.

    1994-03-01

    We measured the depths, average diameters, and circularity indices of over 600 micrometeoroid and space debris craters on various metal surfaces exposed to space on the Long Duration Exposure Facility (LDEF) satellite, as a test of some of the formalisms used to convert the diameters of craters on space-exposed surfaces into penetration depths for the purpose of calculating impactor sizes or masses. The topics covered include the following: targe materials orientation; crater measurements and sample populations; effects of oblique impacts; effects of projectile velocity; effects of crater size; effects of target hardness; effects of target density; and effects of projectile properties.

  10. Morphology of meteoroid and space debris craters on LDEF metal targets

    NASA Technical Reports Server (NTRS)

    Love, S. G.; Brownlee, D. E.; King, N. L.; Hoerz, F.

    1994-01-01

    We measured the depths, average diameters, and circularity indices of over 600 micrometeoroid and space debris craters on various metal surfaces exposed to space on the Long Duration Exposure Facility (LDEF) satellite, as a test of some of the formalisms used to convert the diameters of craters on space-exposed surfaces into penetration depths for the purpose of calculating impactor sizes or masses. The topics covered include the following: targe materials orientation; crater measurements and sample populations; effects of oblique impacts; effects of projectile velocity; effects of crater size; effects of target hardness; effects of target density; and effects of projectile properties.

  11. Engineered Metal-Phenolic Capsules Show Tunable Targeted Delivery to Cancer Cells.

    PubMed

    Ju, Yi; Cui, Jiwei; Sun, Huanli; Müllner, Markus; Dai, Yunlu; Guo, Junling; Bertleff-Zieschang, Nadja; Suma, Tomoya; Richardson, Joseph J; Caruso, Frank

    2016-06-13

    We engineered metal-phenolic capsules with both high targeting and low nonspecific cell binding properties. The capsules were prepared by coating phenolic-functionalized hyaluronic acid (HA) and poly(ethylene glycol) (PEG) on calcium carbonate templates, followed by cross-linking the phenolic groups with metal ions and removing the templates. The incorporation of HA significantly enhanced binding and association with a CD44 overexpressing (CD44+) cancer cell line, while the incorporation of PEG reduced nonspecific interactions with a CD44 minimal-expressing (CD44-) cell line. Moreover, high specific targeting to CD44+ cells can be balanced with low nonspecific binding to CD44- cells simply by using an optimized feed-ratio of HA and PEG to vary the content of HA and PEG incorporated into the capsules. Loading an anticancer drug (i.e., doxorubicin) into the obtained capsules resulted in significantly higher cytotoxicity to CD44+ cells but lower cytotoxicity to CD44- cells.

  12. Changes in the emission properties of metallic targets upon exposure to repetitively pulsed laser radiation

    NASA Astrophysics Data System (ADS)

    Konov, V. I.; Pimenov, S. M.; Prokhorov, A. M.; Chapliev, N. I.

    1988-02-01

    A scanning electron microscope and a repetitively pulsed CO2 laser are used to reveal the relationships which govern the correlation of the transforming metal surface microrelief with the emission of charged particles and the surface luminescence upon exposure to multipulse laser focusing. It is shown that the effect of sorption and laser-stimulated desorption on the emission signals can manifest itself in different ways depending on the current oscillation mode in the target-vacuum chamber circuit.

  13. Optical steering of thermally generated microbubbles in a liquid for targeted metallic nanoparticle delivery

    NASA Astrophysics Data System (ADS)

    Krishnappa, Arjun; Abeywickrema, Ujitha; Banerjee, Partha

    2016-09-01

    A novel mathematical model is developed to investigate the behavior of thermally generated microbubbles in the presence of optical radiation to understand the mechanism of their steering. Forces acting on a bubble are studied in detail using a general force model. It has been proposed that these microbubbles with agglomerated metallic nanoparticles can be used for targeted drug delivery. The model can be extended to include the steering of bubbles with agglomerated silver or gold nanoparticles on their surface.

  14. Review of Grain Refinement of Cast Metals Through Inoculation: Theories and Developments

    NASA Astrophysics Data System (ADS)

    Liu, Zhilin

    2017-10-01

    The inoculation method of grain refinement is widely used in research and industry. Because of its commercial and engineering importance, extensive research on the mechanisms/theories of grain refinement and development of effective grain refiners for diverse cast metals/alloys has been conducted. In 1999, Easton and St. John reviewed the mechanisms of grain refinement of cast Al alloys. Since then, grain refinement in alloys of Al, Mg, Fe, Ti, Cu, and Zn has evolved a lot. However, there is still no full consensus on the mechanisms/theories of grain refinement. Moreover, some new grain refiners developed based on the theories do not ensure efficient grain refinement. Thus, the factors that contribute to grain refinement are still not fully understood. Clarification of the prerequisite issues that occur in grain refinement is required using recent theories. This review covers multiple metals/alloys and developments in grain refinement from the last twenty years. The characteristics of effective grain refiners are considered from four perspectives: effective particle/matrix wetting configuration, sufficiently powerful segregating elements, preferential crystallographic matching, and geometrical features of effective nucleants. Then, recent mechanisms/theories on the grain refinement of cast metals/alloys are reviewed, including the peritectic-related, hypernucleation, inert nucleant, and constitutional supercooling-driven theories. Further, developments of deterministic and probabilistic modeling and nucleation crystallography in the grain refinement of cast metals are reviewed. Finally, the latest progress in the grain refinement of cast Zn and its alloys is described, and future work on grain refinement is summarized.

  15. Toward understanding metal-binding specificity of porphyrin: a conceptual density functional theory study.

    PubMed

    Feng, Xin-Tian; Yu, Jian-Guo; Lei, Ming; Fang, Wei-Hai; Liu, Shubin

    2009-10-08

    Porphyrin is a key cofactor of hemoproteins. The complexes it forms with divalent metal cations such as Fe, Mg, and Mn compose an important category of compounds in biological systems, serving as a reaction center for a number of essential life processes. Employing density functional theory (DFT) and conceptual DFT approaches, the structural properties and reactivity of (pyridine)(n)-M-porphyrin complexes were systematically studied for the following selection of divalent metal cations: Mg, Ca, Cr, Mn, Co, Ni, Cu, Zn, Ru, and Cd with n varying from 0, 1, to 2. Metal selectivity and porphyrin specificity were investigated from the perspective of both structural and reactivity properties. Quantitative structural and reactivity relationships have been discovered between bonding interactions, charge distributions, and DFT chemical reactivity descriptors. These results are beneficial to our understanding of the chemical reactivity and metal cation specificity for heme-containing enzymes and other metalloproteins alike.

  16. Screening of active metals for reactive adsorption desulfurization adsorbent using density functional theory

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Zhao, Liang; Xu, Chunming; Wang, Yuxian; Gao, Jinsen

    2017-03-01

    To explore characteristics of active metals for reactive adsorption desulfurization (RADS) technology, the adsorption of thiophene on M (100) (M = Cr, Mo, Co, Ni, Cu, Au, and Ag) surfaces was systematically studied by density functional theory with vdW correction (DFT + D3). We found that, in all case, the most stable molecular adsorption site was the hollow site and adsorptive capabilities of thiophene followed the order: Cr > Mo > Co ≈ Ni > Cu > Au ≈ Ag. By analyzing the nature of binding between thiophene and corresponding metals and the electronic structure of metals, the excessive activities of Cr and Mo were found to have a negative regeneration, the passive activities of Au and Ag were found to have an inactive adsorption for RADS adsorbent alone, while Ni and Co have appropriate characteristics as the active metals for RADS, followed by Cu.

  17. Asymmetric partitioning of metals among cluster anions and cations generated via laser ablation of mixed aluminum/Group 6 transition metal targets.

    PubMed

    Waller, Sarah E; Mann, Jennifer E; Jarrold, Caroline Chick

    2013-02-28

    While high-power laser ablation of metal alloys indiscriminately produces gas-phase atomic ions in proportion to the abundance of the various metals in the alloy, gas-phase ions produced by moderate-power laser ablation sources coupled with molecular beams are formed by more complicated mechanisms. A mass spectrometric study that directly compares the mass distributions of cluster anions and cations generated from laser ablation of pure aluminum, an aluminum/molybdenum mixed target, and an aluminum/tungsten mixed target is detailed. Mass spectra of anionic species generated from the mixed targets showed that both tungsten and molybdenum were in higher abundance in the negatively charged species than in the target material. Mass spectra of the cationic species showed primarily Al(+) and aluminum oxide and hydroxide cluster cations. No molybdenum- or tungsten-containing cluster cations were definitively assigned. The asymmetric distribution of aluminum and Group 6 transition metals in cation and anion cluster composition is attributed to the low ionization energy of atomic aluminum and aluminum suboxide clusters. In addition, the propensity of both molybdenum and tungsten to form metal oxide cluster anions under the same conditions that favor metallic aluminum cluster anions is attributed to differences in the optical properties of the surface oxide that is present in the metal powders used to prepare the ablation targets. Mechanisms of mixed metal oxide clusters are considered.

  18. Theory of transmission of light by sub-wavelength cylindrical holes in metallic films.

    PubMed

    García, N; Bai, Ming

    2006-10-16

    This paper presents theory and finite-difference time-domain (FDTD) calculations for a single and arrays of sub-wavelength cylindrical holes in metallic films presenting large transmission. These calculations are in excellent agreement with experimental measurements. This effect has to be understood in terms of the properties exhibited by the dielectric constant of metals which cannot be treated as ideal metals for the purpose of transmission and diffraction of light. We discuss the cases of well-differentiated metals silver and tungsten. It is found that the effect of surface plasmons or other surface wave excitations due to a periodical set of holes or other roughness at the surface is marginal. The effect can enhance but also can depress the transmission of the arrays as shown by theory and experiments. The peak structure observed in experiments is a consequence of the interference of the wavefronts transmitted by each hole and is determined by the surface array period independently of the material. Without large transmission through a single hole there is no large transmission through the array. We found that in the case of Ag which at the discussed frequencies is a metal there are cylindrical plasmons at the wall of the hole, as reported by Economu et al 30 years ago, that enhanced the transmission. But it turns out, as will be explained, that for the case of W which behaves as a dielectric, there is also a large transmission when compared with that of an ideal metal waveguide at large wavelengths. To deal with this problem one has to use the measured dielectric function of the metals. We discuss thoroughly all these cases and compare with the data. We notice that to discuss these data, for a single hole's transmission, in terms of the Bethe approximation of ideal metals is misleading. Therefore, the extraordinary enhancement of the transmission for the holes arrays versus the single hole does not exist.

  19. Thermophysical properties of simple liquid metals: A brief review of theory

    NASA Technical Reports Server (NTRS)

    Stroud, David

    1993-01-01

    In this paper, we review the current theory of the thermophysical properties of simple liquid metals. The emphasis is on thermodynamic properties, but we also briefly discuss the nonequilibrium properties of liquid metals. We begin by defining a 'simple liquid metal' as one in which the valence electrons interact only weakly with the ionic cores, so that the interaction can be treated by perturbation theory. We then write down the equilibrium Hamiltonian of a liquid metal as a sum of five terms: the bare ion-ion interaction, the electron-electron interaction, the bare electron-ion interaction, and the kinetic energies of electrons and ions. Since the electron-ion interaction can be treated by perturbation, the electronic part contributes in two ways to the Helmholtz free energy: it gives a density-dependent term which is independent of the arrangement of ions, and it acts to screen the ion-ion interaction, giving rise to effective ion-ion pair potentials which are density-dependent, in general. After sketching the form of a typical pair potential, we briefly enumerate some methods for calculating the ionic distribution function and hence the Helmholtz free energy of the liquid: monte Carlo simulations, molecular dynamics simulations, and thermodynamic perturbation theory. The final result is a general expression for the Helmholtz free energy of the liquid metal. It can be used to calculate a wide range of thermodynamic properties of simple metal liquids, which we enumerate. They include not only a range of thermodynamic coefficients of both metals and alloys, but also many aspects of the phase diagram, including freezing curves of pure elements and phase diagrams of liquid alloys (including liquidus and solidus curves). We briefly mention some key discoveries resulting from previous applications of this method, and point out that the same methods work for other materials not normally considered to be liquid metals (such as colloidal suspensions, in which the

  20. Electron-hole spectra created by adsorption on metals from density-functional theory

    NASA Astrophysics Data System (ADS)

    Timmer, M.; Kratzer, P.

    2008-10-01

    Non-adiabaticity in adsorption on metal surfaces gives rise to a number of measurable effects, such as chemicurrents and exo-electron emission. Here we present a quantitative theory of chemicurrents on the basis of ground-state density-functional theory (DFT) calculations of the effective electronic potential and the Kohn-Sham band structure. Excitation probabilities are calculated both for electron-hole pairs and for electrons and holes separately from first-order time-dependent perturbation theory. This is accomplished by evaluating the matrix elements (between Kohn-Sham states) of the rate of change of the effective electronic potential between subsequent (static) DFT calculations. Our approach is related to the theory of electronic friction, but allows for direct access to the excitation spectra. The method is applied to adsorption of atomic hydrogen isotopes on the Al(111) surface. The results are compatible with the available experimental data (for noble metal surfaces); in particular, the observed isotope effect in H versus D adsorption is described by the present theory. Moreover, the results are in qualitative agreement with computationally elaborate calculations of the full dynamics within time-dependent density-functional theory, with the notable exception of effects due to the spin dynamics. Being a perturbational approach, the method proposed here is simple enough to be applied to a wide class of adsorbates and surfaces, while at the same time allowing us to extract system-specific information.

  1. Theory of a 3+1D fractional chiral metal: Interacting variant of the Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Meng, Tobias; Grushin, Adolfo G.; Shtengel, Kirill; Bardarson, Jens H.

    2016-10-01

    Formulating consistent theories describing strongly correlated metallic topological phases is an outstanding problem in condensed-matter physics. In this work, we derive a theory defining a fractionalized analog of the Weyl semimetal state: the fractional chiral metal. Our approach is to construct a 4+1D quantum Hall insulator by stacking 3+1D Weyl semimetals in a magnetic field. In a strong enough field, the low-energy physics is determined by the lowest Landau level of each Weyl semimetal, which is highly degenerate and chiral, motivating us to use a coupled-wire approach. The one-dimensional dispersion of the lowest Landau level allows us to model the system as a set of degenerate 1+1D quantum wires that can be bosonized in the presence of electron-electron interactions and coupled such that a gapped phase is obtained whose response to an electromagnetic field is given in terms of a Chern-Simons field theory. At the boundary of this phase, we obtain the field theory of a 3+1D gapless fractional chiral state, which we show is consistent with a previous theory for the surface of a 4+1D Chern-Simons theory. The boundary's response to an external electromagnetic field is determined by a chiral anomaly with a fractionalized coefficient. We suggest that such an anomalous response can be taken as a working definition of a fractionalized strongly correlated analog of the Weyl semimetal state.

  2. CO adsorption on transition metal clusters: Trends from density functional theory

    NASA Astrophysics Data System (ADS)

    Zeinalipour-Yazdi, Constantinos D.; Cooksy, Andrew L.; Efstathiou, Angelos M.

    2008-05-01

    This work reports for the first time the trends for carbon monoxide (CO) chemisorption on transition metal clusters present in supported metal catalysts. In particular, the energetic, structural and infrared adsorption characteristics of linearly (atop) CO adsorbed on transition metal nano-clusters of less than 10 Å in size were explored. Spin-unrestricted density functional theory (DFT) calculations were employed to explore the trends of CO adsorption energy (AM-CO) and C-O vibrational frequency (νCO) for clusters composed of Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt and Au. The effects of the transition metal electronic structure onto the adsorption energy of CO and the vibrational stretching frequency of C-O, and how these chemical parameters can be correlated to the catalytic activity of transition supported metal catalysts that involve the adsorption, surface diffusion, and C-O bond dissociation elementary steps in heterogeneous catalytic surface reactions, are discussed. Our findings show that an increase of the electronic d-shell occupancy and the principal quantum number (n) in transition metals causes an increase in the vibrational stretching frequency of the C-O bond. This trend is inconsistent with the classical Blyholder model for the metal-carbonyl bond.

  3. Processing of LEU targets for {sup 99}Mo production -- Dissolution of metal foil targets by alkaline hydrogen peroxide

    SciTech Connect

    Dong, D.; Vandegrift, G.F.; Amini, S.; Hersubeno, J.B.; Nasution, H.; Nampira, Y.

    1995-09-01

    In FY 1995, the authors started studies on a new process for dissolution of low-enriched uranium (LEU) targets for {sup 99}Mo production. In this process, an LEU metal foil target is dissolved in a mixture of sodium hydroxide and hydrogen peroxide, then {sup 99}Mo is recovered from the dissolved solution. They focused on the dissolution kinetics to develop a mechanistic model for predicting the products and the rate of uranium dissolution under process conditions. They thoroughly studied the effects of hydrogen peroxide concentration, sodium hydroxide concentration, and temperature on the rate of uranium dissolution. It was found that uranium dissolution can be classified into a low-base (< 0.2M) and a high-base (> 0.2M) process. In the low-base process, both the equilibrium hydrogen peroxide and hydroxide concentrations affect the rate of uranium dissolution; in the high base process, uranium dissolution is a 0.25th order reaction with respect to the equilibrium hydrogen peroxide. The dissolution activation energy was experimentally determined to be 48.8 kJ/mol. Generally, the rate of uranium dissolution increases to a maximum as the hydroxide concentration is increased from 0.01 to about 1.5M, then it decreases as the hydroxide concentration is further increased. The alkalinity of the dissolution solution is an important factor that affects not only the dissolution rate, but also the amount of radioactive waste.

  4. Demonstration of {sup 99}MO production using LEU metal-foil targets in the cintichem process.

    SciTech Connect

    Vandegrift, G. F.; Conner, C.; Hofman, G. L.; Snelgrove, J. L.; Mutalib, A.; Purwadi, B.; Adang, H. G.; Hotman, L.; Kadarisman, Sukmana, A.; Dicky, T. J.; Sriyono, Suripto, A.; Lutfi, D.; Amin; Basiran, A.; Gogo, A.; Sarwani; Taryo, T.

    1999-09-30

    In March and September 1999, demonstrations of the irradiation, disassembly, and processing of LEU metal foil targets were performed in the Indonesian BATAN PUSPIPTEK Facilities. These demonstrations showed that (1) irradiation and disassembly can be performed so that the uranium foil can be easily removed from the target body, and (2) with only minor changes to the current process, the LEU foil can produce yield and purity of the {sup 99}Mo product at least as great as that obtained with the HEU target. Further, because of these modifications, two hours are cut from the processing time, and the liquid waste volume is reduced. Results of these demonstrations will be presented along with conclusions and plans for future work.

  5. Preparation of mixed metal thin films by a PVD method using several kinds of powder targets

    NASA Astrophysics Data System (ADS)

    Suda, Yoshiaki; Kawasaki, Hiroharu; Ohshima, Tamiko; Yagyu, Yoshihito; Ihara, Takeshi; Yamauchi, Makiko; Plasma process; application Team

    2015-09-01

    Bismuth iron garnet (Bi3Fe5O12) and aluminum doped zinc oxide (AZO) thin films were prepared by a physical vapor deposition method using mixed metal powder targets. The X-ray powder diffraction and X-ray photoelectron spectroscopy results suggest that crystalline thin films can be prepared using powder targets with quality similar to that of the films prepared using bulk targets. Bi3Fe5O12 films prepared using the pulsed laser deposition method were Bi rich, which may be due to the lower melting temperature of Bi (544 K) compared with that of Fe (1811 K). The mean transparency and resistivity of the AZO films prepared by the sputtering method were approximately 79%-84% and 0.5 - 1.4 ohm/cm, respectively.

  6. Photoactivatable metal complexes: from theory to applications in biotechnology and medicine.

    PubMed

    Smith, Nichola A; Sadler, Peter J

    2013-07-28

    This short review highlights some of the exciting new experimental and theoretical developments in the field of photoactivatable metal complexes and their applications in biotechnology and medicine. The examples chosen are based on some of the presentations at the Royal Society Discussion Meeting in June 2012, many of which are featured in more detail in other articles in this issue. This is a young field. Even the photochemistry of well-known systems such as metal-carbonyl complexes is still being elucidated. Striking are the recent developments in theory and computation (e.g. time-dependent density functional theory) and in ultrafast-pulsed radiation techniques which allow photochemical reactions to be followed and their mechanisms to be revealed on picosecond/nanosecond time scales. Not only do some metal complexes (e.g. those of Ru and Ir) possess favourable emission properties which allow functional imaging of cells and tissues (e.g. DNA interactions), but metal complexes can also provide spatially controlled photorelease of bioactive small molecules (e.g. CO and NO)--a novel strategy for site-directed therapy. This extends to cancer therapy, where metal-based precursors offer the prospect of generating excited-state drugs with new mechanisms of action that complement and augment those of current organic photosensitizers.

  7. Sorption of H2 to open metal sites in a metal-organic framework: a symmetry-adapted perturbation theory analysis.

    PubMed

    Goings, Joshua J; Ohlsen, Suzanna M; Blaisdell, Kara M; Schofield, Daniel P

    2014-09-04

    Metal-organic frameworks (MOFs) show considerable promise as materials for gas storage and separation. Many MOF structures have open metal sites, which allow for coordination of gas molecules to the metal centers. In this work, we use coupled-cluster and symmetry-adapted perturbation theory to probe the interaction between hydrogen gas and unsaturated metal sites in mimic structures based on the MOF HKUST-1. The interactions are of a mixed electrostatic/dispersive nature, with the relative magnitudes of these components dependent on the metal center. The strongest binding was found for magnesium- and zinc-containing MOFs, with an overall interaction energy of -4.5 kcal mol(-1).

  8. Robust method for infrared small-target detection based on Boolean map visual theory.

    PubMed

    Qi, Shengxiang; Ming, Delie; Ma, Jie; Sun, Xiao; Tian, Jinwen

    2014-06-20

    In this paper, we present an infrared small target detection method based on Boolean map visual theory. The scheme is inspired by the phenomenon that small targets can often attract human attention due to two characteristics: brightness and Gaussian-like shape in the local context area. Motivated by this observation, we perform the task under a visual attention framework with Boolean map theory, which reveals that an observer's visual awareness corresponds to one Boolean map via a selected feature at any given instant. Formally, the infrared image is separated into two feature channels, including a color channel with the original gray intensity map and an orientation channel with the orientation texture maps produced by a designed second order directional derivative filter. For each feature map, Boolean maps delineating targets are computed from hierarchical segmentations. Small targets are then extracted from the target enhanced map, which is obtained by fusing the weighted Boolean maps of the two channels. In experiments, a set of real infrared images covering typical backgrounds with sky, sea, and ground clutters are tested to verify the effectiveness of our method. The results demonstrate that it outperforms the state-of-the-art methods with good performance.

  9. The Individual Practice Development Theory: an individually focused practice development theory that helps target practice development resources.

    PubMed

    Melton, Jane; Forsyth, Kirsty; Freeth, Della

    2012-06-01

    Research indicates that multifaceted practice development (PD) interventions are more effective than single strategies. However, models of education in health care need to consider cost-effectiveness. This paper presents a research-based, PD theory called the Individual Practice Development Theory. It argues that programmes that use the Individual Practice Development Theory to tailor PD support to the learning needs of practitioners will result in more engagement in PD and will target PD resources efficiently. The in-depth qualitative, multi-method realistic evaluation was of a multifaceted, organization-wide PD programme in one National Health Service Mental Health and Learning Disabilities Trust. Semi-structured interviews, practice observation and documentation audit were used to gather data from occupational therapists. Results indicated that environmental contexts, particularly the support of the immediate team, and the participant's personal circumstances affected PD behaviour change. Six mechanisms acted as catalysts. These were: Building Confidence, Finding Flow, Accumulating Reward, Conferring with Others, Constructing Knowledge Know-how and Channelling Time. Four stages of PD characterized as: 'In the Hangar', 'On the Runway', 'Take-off' and 'In the Air' were identified. The research also illustrated the interconnectivity between outcome levels, contextual circumstances and activating mechanisms. The findings suggested that PD interventions need to be more individually tailored to achieve optimum learning outcomes. The identification of four discernable stages permits rapid understanding of PD support needs in order to focus PD support. With a systematic and individualized approach to PD in health care, more target PD supports can be put in place. © 2011 Blackwell Publishing Ltd.

  10. Targeted catalytic inactivation of angiotensin converting enzyme by lisinopril-coupled transition-metal chelates.

    PubMed

    Joyner, Jeff C; Hocharoen, Lalintip; Cowan, J A

    2012-02-22

    A series of compounds that target reactive transition-metal chelates to somatic angiotensin converting enzyme (sACE-1) have been synthesized. Half-maximal inhibitory concentrations (IC(50)) and rate constants for both inactivation and cleavage of full-length sACE-1 have been determined and evaluated in terms of metal chelate size, charge, reduction potential, coordination unsaturation, and coreactant selectivity. Ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), and tripeptide GGH were linked to the lysine side chain of lisinopril by 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride/N-hydroxysuccinimide coupling. The resulting amide-linked chelate-lisinopril (EDTA-lisinopril, NTA-lisinopril, DOTA-lisinopril, and GGH-lisinopril) conjugates were used to form coordination complexes with iron, cobalt, nickel, and copper, such that lisinopril could mediate localization of the reactive metal chelates to sACE-1. ACE activity was assayed by monitoring cleavage of the fluorogenic substrate Mca-RPPGFSAFK(Dnp)-OH, a derivative of bradykinin, following preincubation with metal chelate-lisinopril compounds. Concentration-dependent inhibition of sACE-1 by metal chelate-lisinopril complexes revealed IC(50) values ranging from 44 to 4500 nM for Ni-NTA-lisinopril and Ni-DOTA-lisinopril, respectively, versus 1.9 nM for lisinopril. Stronger inhibition was correlated with smaller size and lower negative charge of the attached metal chelates. Time-dependent inactivation of sACE-1 by metal chelate-lisinopril complexes revealed a remarkable range of catalytic activities, with second-order rate constants as high as 150,000 M(-1) min(-1) (Cu-GGH-lisinopril), while catalyst-mediated cleavage of sACE-1 typically occurred at much lower rates, indicating that inactivation arose primarily from side chain modification. Optimal inactivation of sACE-1 was observed when the reduction potential for the

  11. Targeted Catalytic Inactivation of Angiotensin Converting Enzyme by Lisinopril-Coupled Transition Metal Chelates

    PubMed Central

    Joyner, Jeff C.; Hocharoen, Lalintip; Cowan, J. A.

    2012-01-01

    A series of compounds that target reactive transition metal chelates to somatic Angiotensin Converting Enzyme (sACE-1) have been synthesized. Half maximal inhibitory concentrations (IC50) and rate constants for both inactivation and cleavage of full length sACE-1 have been determined and evaluated in terms of metal-chelate size, charge, reduction potential, coordination unsaturation, and coreactant selectivity. Ethylenediamine-tetraacetic acid (EDTA), nitrilotriacetic acid (NTA), 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid (DOTA), and tripeptide GGH were linked to the lysine sidechain of lisinopril by EDC/NHS coupling. The resulting amide-linked chelate-lisinopril (EDTA-lisinopril, NTA-lisinopril, DOTA-lisinopril, and GGH-lisinopril) conjugates were used to form coordination complexes with iron, cobalt, nickel and copper, such that lisinopril could mediate localization of the reactive metal chelates to sACE-1. ACE activity was assayed by monitoring cleavage of the fluorogenic substrate Mca-RPPGFSAFK(Dnp)-OH, a derivative of bradykinin, following pre-incubation with metal-chelate-lisinopril compounds. Concentration-dependent inhibition of sACE-1 by metal-chelate-lisinopril complexes revealed IC50 values ranging from 44 nM to 4,500 nM for Ni-NTA-lisinopril and Ni-DOTA-lisinopril, respectively, versus 1.9 nM for lisinopril. Stronger inhibition was correlated with smaller size and lower negative charge of the attached metal chelates. Time-dependent inactivation of sACE-1 by metal-chelate-lisinopril complexes revealed a remarkable range of catalytic activities, with second order rate constants as high as 150,000 M−1min−1 (Cu-GGH-lisinopril), while catalyst-mediated cleavage of sACE-1 typically occurred at much lower rates, indicating that inactivation arose primary from sidechain modification. Optimal inactivation of sACE-1 was observed when the reduction potential for the metal center was poised near 1000 mV, reflecting the difficulty of protein

  12. Fusion of Imperfect Information in the Unified Framework of Random Sets Theory: Application to Target Identification

    DTIC Science & Technology

    2007-11-01

    Informatique WGZ Anne-Laure Jousselme Éloi Bossé DRDC Valcartier Defence R&D Canada – Valcartier Technical Report DRDC Valcartier TR 2003-319 November 2007...Fusion of imperfect information in the unified framework of random sets theory Application to target identification Mihai Cristian Florea Informatique ...Cell CFB Esquimalt P.O. Box 17000 Stn Forces Victoria, British Columbia, V9A 7N2 Attn: Commanding Officer 1 M. C. Florea (author) Informatique WGZ inc

  13. Mott Multiferroics and Ferroelectric Metals from Dynamical Mean-Field Theory combined with Density-Functional Theory

    NASA Astrophysics Data System (ADS)

    Capone, Massimo

    2015-03-01

    Multiferroic materials, in which ferroelectricity and long-range magnetic ordering coexist, are natural candidates for applications. In this perspective, the most promising compounds are those in which the two phenomena do not simply coexist, but they influence each other through a magnetoelectric coupling. We present different applications of Density Functional Theory combined with Dynamical Mean-Field Theory in which electron-electron correlation effects are crucial in the stabilization of multiferroic behavior and in the magnetoelectric coupling. Within this wide family we can distinguish different cases. In Sr0.5Ba0.5MnO3 the multiferroic behavior is associated with a Mott insulating state in which the Mn half-filled t2g orbitals are responsible of the magnetic properties and the value of the polarization is strongly affected by the magnetic state. LiOsO3 shares the same electronic configuration with half-filled Os t2g orbitals. Despite this configuration enhances the effect of electron-electron interactions, the material remains metallic and represents a peculiar ferroelectric metal. We propose however how to turn this non-magnetic polar metal into a multiferroic through the design of a superlattice, which increases the degree of correlation, leading to Mott localization of the Os orbitals. In completely different systems, such as organic crystals like (TMTTF)2-X, strong correlations can lead to multiferroicity in organic crystals such as (TMTTF)2-X, where charge ordering promotes a polarization which is favored by an antiferromagnetic ordering. We finally discuss how strong correlations can play a major role away from half-filling when the Hund's coupling is sizable in compounds with a nominal valence of, e.g., two electrons in the three t2g orbitals. Such ``Hund's metals'' are correlated despite being far from Mott localization. This physical regime can be a fertile ground to obtain other ferroelectric metals. This work is supported by ERC/FP7 through the

  14. Metal-containing plasma-polymerized coatings for laser-fusion targets

    SciTech Connect

    Letts, S.A.; Jordan, C.W.

    1981-09-14

    Addition of metal to plastic layers in some direct drive laser fusion targets is needed to reduce electron induced fuel preheat. A plasma polymerization coating system was constructed to produce a metal seeded polymer by adding an organometallic gas to the usual trans-2-butene and hydrogen feedstocks. Since organometallic gases are highly reactive and toxic, safety is a major concern in the design of a coating system. Our coating apparatus was designed with three levels of containment to assure protection of the operator. The gas handling system has redundant valves and was designed to fail safe. Several sensor controlled interlocks assure safe operating conditions. Waste materials are collected on a specially designed cold trap. Waste disposal is accomplished by heating the traps and purging volatile products through a reactor vessel. The design, operating procedure, and safety interlocks of this novel coating system are described.

  15. Melt layer behavior of metal targets irradiatead by powerful plasma streams

    NASA Astrophysics Data System (ADS)

    Bandura, A. N.; Byrka, O. V.; Chebotarev, V. V.; Garkusha, I. E.; Makhlaj, V. A.; Solyakov, D. G.; Tereshin, V. I.; Wuerz, H.

    2002-12-01

    In this paper melt layer erosion of metal targets under pulsed high-heat loads is studied. Experiments with steel, copper, aluminum and titanium samples were carried out in two plasma accelerator devices with different time durations of the heat load. The surfaces of the resolidified melt layers show a considerable roughness with microcraters and ridge like relief on the surface. For each material the mass loss was determined. Melt layer erosion by melt motion was clearly identified. However it is masked by boiling, bubble expansion and bubble collapse and by formation of a Kelvin-Helmholtz instability. The experimental results can be used for validation of numerical codes which model melt layer erosion of metallic armour materials in off-normal events, in tokamaks.

  16. Bifunctional Coupling Agents for Radiolabeling of Biomolecules and Target-Specific Delivery of Metallic Radionuclides

    PubMed Central

    Liu, Shuang

    2008-01-01

    Receptor-based radiopharmaceuticals are of great current interest in early molecular imaging and radiotherapy of cancers, and provide a unique tool for target-specific delivery of radionuclides to the diseased tissues. In general, a target-specific radiopharmaceutical can be divided into four parts: targeting biomolecule (BM), pharmacokinetic modifying (PKM) linker, bifunctional coupling or chelating agent (BFC), and radionuclide. The targeting biomolecule serves as a “carrier” for specific delivery of the radionuclide. PKM linkers are used to modify radiotracer excretion kinetics. BFC is needed for radiolabeling of biomolecules with a metallic radionuclide. Different radiometals have significant difference in their coordination chemistry, and require BFCs with different donor atoms and chelator frameworks. Since the radiometal chelate can have a significant impact on physical and biological properties of the target-specific radiopharmaceutical, its excretion kinetics can be altered by modifying the coordination environment with various chelators or coligand, if needed. This review will focus on the design of BFCs and their coordination chemistry with technetium, copper, gallium, indium, yttrium and lanthanide radiometals. PMID:18538888

  17. Fast approximate EM induction modeling of metallic and UXO targets using a permeable prism

    NASA Astrophysics Data System (ADS)

    Asten, Michael W.; Duncan, Andrew C.

    2007-03-01

    The time-domain EM induction response of non-magnetic and magnetic targets can be approximated using a conductive permeable prism composed of six faces of conductive plates, each face being composed of a set of conductive ribbons. The effect of magnetic permeability is included by the use of two "apparent flux gathering" coefficients, and two "effective magnetic permeability" coefficients, in the axial and transverse directions. These four magnetic property coefficients are a function of physical properties and geometry of the target, but are independent of prism orientation relative to a transmitter. The approximation algorithm is computationally fast, allowing inversions for target parameters to be achieved in seconds. The model is tested on profiles acquired with a Geonics EM63 time-domain EM metal detector over a non-magnetic copper pipe target, and a steel artillery shell in horizontal and vertical orientations. Results show that this approximation to a permeable prism has a capability of fitting geometric, conductivity and magnetic parameters at both early and late sample times. The magnetic parameters show strong change from early to late times on the EMI decay curve, indicating that the magnetic properties of the target have non-linear characteristics. It is proposed that these magnetic parameters and the nature of their non-linearity may carry additional discrimination information for distinguishing between intact munitions and scrap in UXO studies.

  18. Irving Langmuir Prize Lecture - A predictive theory of transition metal surface catalysis

    NASA Astrophysics Data System (ADS)

    Norskov, Jens

    2015-03-01

    The lecture will outline a theory of heterogeneous catalysis that allows a detailed understanding of elementary chemical processes at transition metal surfaces and singles out the most important parameters determining catalytic activity and selectivity. It will be shown how scaling relations allow the identification of descriptors of catalytic activity and how they can be used to construct activity and selectivity maps. The maps can be used to define catalyst design rules and examples of their use will be given.

  19. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals.

    PubMed

    Bernardi, Marco; Mustafa, Jamal; Neaton, Jeffrey B; Louie, Steven G

    2015-06-02

    Hot carriers (HC) generated by surface plasmon polaritons (SPPs) in noble metals are promising for application in optoelectronics, plasmonics and renewable energy. However, existing models fail to explain key quantitative details of SPP-to-HC conversion experiments. Here we develop a quantum mechanical framework and apply first-principles calculations to study the energy distribution and scattering processes of HCs generated by SPPs in Au and Ag. We find that the relative positions of the s and d bands of noble metals regulate the energy distribution and mean free path of the HCs, and that the electron-phonon interaction controls HC energy loss and transport. Our results prescribe optimal conditions for HC generation and extraction, and invalidate previously employed free-electron-like models. Our work combines density functional theory, GW and electron-phonon calculations to provide microscopic insight into HC generation and ultrafast dynamics in noble metals.

  20. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals

    NASA Astrophysics Data System (ADS)

    Bernardi, Marco; Mustafa, Jamal; Neaton, Jeffrey B.; Louie, Steven G.

    2015-06-01

    Hot carriers (HC) generated by surface plasmon polaritons (SPPs) in noble metals are promising for application in optoelectronics, plasmonics and renewable energy. However, existing models fail to explain key quantitative details of SPP-to-HC conversion experiments. Here we develop a quantum mechanical framework and apply first-principles calculations to study the energy distribution and scattering processes of HCs generated by SPPs in Au and Ag. We find that the relative positions of the s and d bands of noble metals regulate the energy distribution and mean free path of the HCs, and that the electron-phonon interaction controls HC energy loss and transport. Our results prescribe optimal conditions for HC generation and extraction, and invalidate previously employed free-electron-like models. Our work combines density functional theory, GW and electron-phonon calculations to provide microscopic insight into HC generation and ultrafast dynamics in noble metals.

  1. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals

    PubMed Central

    Bernardi, Marco; Mustafa, Jamal; Neaton, Jeffrey B.; Louie, Steven G.

    2015-01-01

    Hot carriers (HC) generated by surface plasmon polaritons (SPPs) in noble metals are promising for application in optoelectronics, plasmonics and renewable energy. However, existing models fail to explain key quantitative details of SPP-to-HC conversion experiments. Here we develop a quantum mechanical framework and apply first-principles calculations to study the energy distribution and scattering processes of HCs generated by SPPs in Au and Ag. We find that the relative positions of the s and d bands of noble metals regulate the energy distribution and mean free path of the HCs, and that the electron–phonon interaction controls HC energy loss and transport. Our results prescribe optimal conditions for HC generation and extraction, and invalidate previously employed free-electron-like models. Our work combines density functional theory, GW and electron–phonon calculations to provide microscopic insight into HC generation and ultrafast dynamics in noble metals. PMID:26033445

  2. Sensor reliability evaluation scheme for target classification using belief function theory.

    PubMed

    Zhu, Jing; Luo, Yupin; Zhou, Jianjun

    2013-12-13

    In the target classification based on belief function theory, sensor reliability evaluation has two basic issues: reasonable dissimilarity measure among evidences, and adaptive combination of static and dynamic discounting. One solution to the two issues has been proposed here. Firstly, an improved dissimilarity measure based on dualistic exponential function has been designed. We assess the static reliability from a training set by the local decision of each sensor and the dissimilarity measure among evidences. The dynamic reliability factors are obtained from each test target using the dissimilarity measure between the output information of each sensor and the consensus. Secondly, an adaptive combination method of static and dynamic discounting has been introduced. We adopt Parzen-window to estimate the matching degree of current performance and static performance for the sensor. Through fuzzy theory, the fusion system can realize self-learning and self-adapting with the sensor performance changing. Experiments conducted on real databases demonstrate that our proposed scheme performs better in target classification under different target conditions compared with other methods.

  3. Sensor Reliability Evaluation Scheme for Target Classification Using Belief Function Theory

    PubMed Central

    Zhu, Jing; Luo, Yupin; Zhou, Jianjun

    2013-01-01

    In the target classification based on belief function theory, sensor reliability evaluation has two basic issues: reasonable dissimilarity measure among evidences, and adaptive combination of static and dynamic discounting. One solution to the two issues has been proposed here. Firstly, an improved dissimilarity measure based on dualistic exponential function has been designed. We assess the static reliability from a training set by the local decision of each sensor and the dissimilarity measure among evidences. The dynamic reliability factors are obtained from each test target using the dissimilarity measure between the output information of each sensor and the consensus. Secondly, an adaptive combination method of static and dynamic discounting has been introduced. We adopt Parzen-window to estimate the matching degree of current performance and static performance for the sensor. Through fuzzy theory, the fusion system can realize self-learning and self-adapting with the sensor performance changing. Experiments conducted on real databases demonstrate that our proposed scheme performs better in target classification under different target conditions compared with other methods. PMID:24351632

  4. Multiconfiguration pair-density functional theory: barrier heights and main group and transition metal energetics.

    PubMed

    Carlson, Rebecca K; Li Manni, Giovanni; Sonnenberger, Andrew L; Truhlar, Donald G; Gagliardi, Laura

    2015-01-13

    Kohn-Sham density functional theory, resting on the representation of the electronic density and kinetic energy by a single Slater determinant, has revolutionized chemistry, but for open-shell systems, the Kohn-Sham Slater determinant has the wrong symmetry properties as compared to an accurate wave function. We have recently proposed a theory, called multiconfiguration pair-density functional theory (MC-PDFT), in which the electronic kinetic energy and classical Coulomb energy are calculated from a multiconfiguration wave function with the correct symmetry properties, and the rest of the energy is calculated from a density functional, called the on-top density functional, that depends on the density and the on-top pair density calculated from this wave function. We also proposed a simple way to approximate the on-top density functional by translation of Kohn-Sham exchange-correlation functionals. The method is much less expensive than other post-SCF methods for calculating the dynamical correlation energy starting with a multiconfiguration self-consistent-field wave function as the reference wave function, and initial tests of the theory were quite encouraging. Here, we provide a broader test of the theory by applying it to bond energies of main-group molecules and transition metal complexes, barrier heights and reaction energies for diverse chemical reactions, proton affinities, and the water dimerization energy. Averaged over 56 data points, the mean unsigned error is 3.2 kcal/mol for MC-PDFT, as compared to 6.9 kcal/mol for Kohn-Sham theory with a comparable density functional. MC-PDFT is more accurate on average than complete active space second-order perturbation theory (CASPT2) for main-group small-molecule bond energies, alkyl bond dissociation energies, transition-metal-ligand bond energies, proton affinities, and the water dimerization energy.

  5. Photoactivatable metal complexes: from theory to applications in biotechnology and medicine

    PubMed Central

    Smith, Nichola A.; Sadler, Peter J.

    2013-01-01

    This short review highlights some of the exciting new experimental and theoretical developments in the field of photoactivatable metal complexes and their applications in biotechnology and medicine. The examples chosen are based on some of the presentations at the Royal Society Discussion Meeting in June 2012, many of which are featured in more detail in other articles in this issue. This is a young field. Even the photochemistry of well-known systems such as metal–carbonyl complexes is still being elucidated. Striking are the recent developments in theory and computation (e.g. time-dependent density functional theory) and in ultrafast-pulsed radiation techniques which allow photochemical reactions to be followed and their mechanisms to be revealed on picosecond/nanosecond time scales. Not only do some metal complexes (e.g. those of Ru and Ir) possess favourable emission properties which allow functional imaging of cells and tissues (e.g. DNA interactions), but metal complexes can also provide spatially controlled photorelease of bioactive small molecules (e.g. CO and NO)—a novel strategy for site-directed therapy. This extends to cancer therapy, where metal-based precursors offer the prospect of generating excited-state drugs with new mechanisms of action that complement and augment those of current organic photosensitizers. PMID:23776303

  6. Phase stability in heavy f-electron metals from first-principles theory

    SciTech Connect

    Soderlind, P

    2005-11-17

    The structural phase stability of heavy f-electron metals is studied by means of density-functional theory (DFT). These include temperature-induced transitions in plutonium metal as well as pressure-induced transitions in the trans-plutonium metals Am, Cm, Bk, and Cf. The early actinides (Th-Np) display phases that could be rather well understood from the competition of a crystal-symmetry breaking mechanism (Peierls distortion) of the 5f states and electrostatic forces, while for the trans-plutonium metals (Am-Cf) the ground-state structures are governed by 6d bonding. We show in this paper that new physics is needed to understand the phases of the actinides in the volume range of about 15-30 {angstrom}{sup 3}. At these volumes one would expect, from theoretical arguments made in the past, to encounter highly complex crystal phases due to a Peierls distortion. Here we argue that the symmetry reduction associated with spin polarization can make higher symmetry phases competitive. Taking this into account, DFT is shown to describe the well-known phase diagram of plutonium and also the recently discovered complex and intriguing high-pressure phase diagrams of Am and Cm. The theory is further applied to investigate the behaviors of Bk and Cf under compression.

  7. Characteristics of flows of energetic atoms reflected from metal targets during ion bombardment

    NASA Astrophysics Data System (ADS)

    Kuzmichev, A.; Perevertaylo, V.; Tsybulsky, L.; Volpian, O.

    2016-07-01

    Particle number and energy reflection coefficients for energetic neutralized gas ions (Ar and O atoms) backscattered from metal targets during ion bombardment have been calculated using TRIM code. The energy distributions of reflected atoms are computed, too, and their dependence on the primary ion energy and the angle of ion incidence is determined. The obtained data confirm the possibility of employing energetic atoms reflection for generation of high energy neutral beams and point out to take this phenomenon into account under analysis of the ion technology for coating deposition.

  8. Coarse-grained density functional theories for metallic alloys: Generalized coherent-potential approximations and charge-excess functional theory

    NASA Astrophysics Data System (ADS)

    Bruno, Ezio; Mammano, Francesco; Fiorino, Antonino; Morabito, Emanuela V.

    2008-04-01

    The class of the generalized coherent-potential approximations (GCPAs) to the density functional theory (DFT) is introduced within the multiple scattering theory formalism with the aim of dealing with ordered or disordered metallic alloys. All GCPA theories are based on a common ansatz for the kinetic part of the Hohenberg-Kohn functional and each theory of the class is specified by an external model concerning the potential reconstruction. Most existing DFT implementations of CPA-based theories belong to the GCPA class. The analysis of the formal properties of the density functional defined by GCPA theories shows that it consists of marginally coupled local contributions. Furthermore, it is shown that the GCPA functional does not depend on the details of the charge density and that it can be exactly rewritten as a function of the appropriate charge multipole moments to be associated with each lattice site. A general procedure based on the integration of the qV laws is described that allows for the explicit construction of the same function. The coarse-grained nature of the GCPA density functional implies a great deal of computational advantages and is connected with the O(N) scalability of GCPA algorithms. Moreover, it is shown that a convenient truncated series expansion of the GCPA functional leads to the charge-excess functional (CEF) theory [E. Bruno , Phys. Rev. Lett. 91, 166401 (2003)], which here is offered in a generalized version that includes multipolar interactions. CEF and the GCPA numerical results are compared with status of art linearized augmented plane wave (LAPW) full-potential density functional calculations for 62 bcc- and fcc-based ordered CuZn alloys, in all the range of concentrations. Two facts clearly emerge from these extensive tests. In the first place, the discrepancies between GCPA and CEF results are always within the numerical accuracy of the calculations, both for the site charges and the total energies. In the second place, the

  9. Release from ISOLDE molten metal targets under pulsed proton beam conditions

    NASA Astrophysics Data System (ADS)

    Lettry, J.; Catherall, R.; Cyvoct, G.; Evensen, A. H. M.; Lindroos, M.; Jonsson, O. C.; Kugler, E.; Schindl, K.; Ravn, H.; Wildner, E.; Drumm, P.; Obert, J.; Putaux, J. C.; Sauvage, J.

    1996-04-01

    By moving the ISOLDE mass separators from the 600 MeV Synchrocyclotron (SC) to the 1 GeV Proton-Synchrotron-Booster (PS) the instantaneous energy density of the proton beam went up by 3 orders of magnitude. The developments of the molten metal target units and the optimization of the PS proton beam to cope with the effects of the thermal shocks induced by the proton beam are described. The energy density of the PS proton beam was reduced by spatial defocusing and time staggered extraction of the four PS-accelerators. The release from lanthanum, lead and tin targets is discussed for different settings of the proton beam and compared to the release observed at ISOLDE-SC. The yields of Hg isotopes are presented.

  10. Metal complexes of curcumin for cellular imaging, targeting, and photoinduced anticancer activity.

    PubMed

    Banerjee, Samya; Chakravarty, Akhil R

    2015-07-21

    damaging the cancer cells on photoactivation in visible light while being minimally toxic in darkness. In this Account, we have made an attempt to review the current status of the chemistry of metal curcumin complexes and present results from our recent studies on curcumin complexes showing remarkable in vitro photocytotoxicity. The undesirable dark toxicity of the complexes can be reduced with suitable choice of the metal and the ancillary ligands in a ternary structure. The complexes can be directed to specific subcellular organelles. Selectivity by targeting cancer cells over normal cells can be achieved with suitable ligand design. We expect that this methodology is likely to provide an impetus toward developing curcumin-based photochemotherapeutics for anticancer treatment and cure.

  11. Adsorptive desulfurization with metal-organic frameworks: A density functional theory investigation

    NASA Astrophysics Data System (ADS)

    Chen, Zhiping; Ling, Lixia; Wang, Baojun; Fan, Huiling; Shangguan, Ju; Mi, Jie

    2016-11-01

    The contribution of each fragment of metal-organic frameworks (MOFs) to the adsorption of sulfur compounds were investigated using density functional theory (DFT). The involved sulfur compounds are dimethyl sulfide (CH3SCH3), ethyl mercaptan (CH3CH2SH) and hydrogen sulfide (H2S). MOFs with different organic ligands (NH2-BDC, BDC and NDC), metal centers structures (M, M-M and M3O) and metal ions (Zn, Cu and Fe) were used to study their effects on sulfur species adsorption. The results revealed that, MOFs with coordinatively unsaturated sites (CUS) have the strongest binding strength with sulfur compounds, MOFs with NH2-BDC substituent group ligand comes second, followed by that with saturated metal center, and the organic ligands without substituent group has the weakest adsorption strength. Moreover, it was also found that, among different metal ions (Fe, Zn and Cu), MOFs with unsaturated Fe has the strongest adsorption strength for sulfur compounds. These results are consistent with our previous experimental observations, and therefore provide insights on the better design of MOFs for desulfurization application.

  12. Theory of quantum metal to superconductor transitions in highly conducting systems

    SciTech Connect

    Spivak, B.

    2010-04-06

    We derive the theory of the quantum (zero temperature) superconductor to metal transition in disordered materials when the resistance of the normal metal near criticality is small compared to the quantum of resistivity. This can occur most readily in situations in which 'Anderson's theorem' does not apply. We explicitly study the transition in superconductor-metal composites, in an swave superconducting film in the presence of a magnetic field, and in a low temperature disordered d-wave superconductor. Near the point of the transition, the distribution of the superconducting order parameter is highly inhomogeneous. To describe this situation we employ a procedure which is similar to that introduced by Mott for description of the temperature dependence of the variable range hopping conduction. As the system approaches the point of the transition from the metal to the superconductor, the conductivity of the system diverges, and the Wiedemann-Franz law is violated. In the case of d-wave (or other exotic) superconductors we predict the existence of (at least) two sequential transitions as a function of increasing disorder: a d-wave to s-wave, and then an s-wave to metal transition.

  13. Application of kinetic theory to the analysis of high-temperature creep rupture of metals under complex stress (review)

    NASA Astrophysics Data System (ADS)

    Lokoshchenko, A. M.

    2012-07-01

    This paper gives an analytical review of the results obtained using the kinetic theory of creep and creep rupture to analyze the creep rupture of metals under complex stress. Special note is made of the outstanding contribution of Soviet scientists L. M. Kachanov and Yu. N. Rabotnov, who introduced the concept of material damage and developed the fundamentals of the kinetic theory. Different versions of this theory are used in studies of Russian and foreign scientists. The possibility of applying the kinetic theory to model the deformation and fracture of metals under creep conditions using scalar, vector, and tensor damage parameters and their combinations is considered.

  14. Advancing towards constitutive equations for the metal industry via the LEDS theory

    NASA Astrophysics Data System (ADS)

    Kuhlmann-Wilsdorf, Doris

    2004-02-01

    A prime objective in the development of crystal dislocation theory has been, and at any rate should be, constitutive equations for practical use in the metal forming industry. Protracted controversies regarding workhardening theory have frustrated this goal for the past seven decades. The are fueled by the paradox that plastic deformation is a prime example for the second law of thermodynamics in converting mechanical work into heat with good efficiency, even while in seeming opposition to the second law it typically raises the internal energy of the deformed material. The low-energy dislocation structures (LEDS) theory resolves this difficulty by showing that, as always in inanimate nature, so also plastic deformation proceeds close to minimum free energy. Indeed recent evidence based on deformation band structures proves that plastic deformation typically proceeds very close to minimum energy among the accessible configurations. White plastic strain raises the flow stress, in ductile crystalline materials mostly through generating dislocation structures, but also through twins, kink bands, microcracks and others, Newton’s third law, i.e., force equilibrium, is always stringently obeyed. Therefore, deformation dislocation structures are in thermal equilibrium as long as the stress that generated them remains in place. Based on this concept of free energy minimization, the LEDS theory has long since explained, at least semiquantitatively, all significant aspects of metal strength and deformation, as well as the effects of heat treatments. The LEDS theory is the special case, namely, as pertaining to dislocation structures, of the more general low-energy structures (LEDS) theory that governs all types of deformation independent of the deformation mechanism, and that operates in all types of materials, including plastics.

  15. Advancing towards constitutive equations for the metal industry via the LEDS theory

    NASA Astrophysics Data System (ADS)

    Kuhlmann-Wilsdorf, Doris

    2004-02-01

    A prime objective in the development of crystal dislocation theory has been, and at any rate should be, constitutive equations for practical use in the metal forming industry. Protracted controversies regarding workhardening theory have frustrated this goal for the past seven decades. They are fueled by the paradox that plastic deformation is a prime example for the second law of thermodynamics in converting mechanical work into heat with good efficiency, even while in seeming opposition to the second law it typically raises the internal energy of the deformed material. The low-energy dislocation structures (LEDS) theory resolves this difficulty by showing that, as always in inanimate nature, so also plastic deformation proceeds close to minimum free energy. Indeed recent evidence based on deformation band structures proves that plastic deformation typically proceeds very close to minimum energy among the accessible configurations. While plastic strain raises the flow stress, in ductile crystalline materials mostly through generating dislocation structures, but also through twins, kink bands, microcracks and others, Newton’s third law, i.e., force equilibrium, is always stringently obeyed. Therefore, deformation dislocation structures are in thermal equilibrium as long as the stress that generated them remains in place. Based on this concept of free energy minimization, the LEDS theory has long since explained, at least semiquantitatively, all significant aspects of metal strength and deformation, as well as the effects of heat treatments. The LEDS theory is the special case, namely, as pertaining to dislocation structures, of the more general low-energy structures (LEDS) theory that governs all types of deformation independent of the deformation mechanism, and that operates in all types of materials, including plastics.

  16. Chemical fractionation resulting from the hypervelocity impact process on metallic targets

    NASA Astrophysics Data System (ADS)

    Libourel, Guy; Ganino, Clément; Michel, Patrick; Nakamura, Akiko

    2016-10-01

    In a regime of hypervelocity impact cratering, the internal energy deposited in target + projectile region is large enough to melt and/or vaporize part of the material involved, which expands rapidly away from the impact site. Fast and energetic impact processes have therefore important chemical consequences on the projectile and target rock transformations during major impact events. Several physical and chemical processes occurred indeed in the short duration of the impact, e.g., melting, coating, mixing, condensation, crystallization, redox reactions, quenching, etc., all concurring to alter both projectile and target composition on the irreversible way.In order to document such hypervelocity impact chemical fractionation, we have started a program of impact experiments by shooting doped (27 trace elements) millimeter-sized basalt projectiles on metallic target using a two stages light gas gun. With impact velocity in the range from 0.25 to 7 km.s-1, these experiments are aimed i) to characterize chemically and texturally all the post-mortem materials (e.g., target, crater, impact melt, condensates, and ejectas), in order ii) to make a chemical mass balance budget of the process, and iii) to relate it to the kinetic energy involved in the hypervelocity impacts for scaling law purpose. Irrespective of the incident velocities, our preliminary results show the importance of redox processes, the significant changes in the ejecta composition (e.g., iron enrichment) and the systematic coating of the crater by the impact melt [1]. On the target side, characterizations of the microstructure of the shocked iron alloys to better constrain the shielding processes. We also show how these results have great implications in our understanding on the current surface properties of small bodies, and chiefly in the case of M-type asteroids. [1] Ganino C, Libourel G, Nakamura AM & Michel P (2015) Goldschmidt Abstracts, 2015 990.

  17. Targeted Single-Site MOF Node Modification: Trivalent Metal Loading via Atomic Layer Deposition

    SciTech Connect

    Kim, In Soo; Borycz, Joshua; Platero-Prats, Ana E.; Tussupbayev, Samat; Wang, Timothy C.; Farha, Omar K.; Hupp, Joseph T.; Gagliardi, Laura; Chapman, Karena W.; Cramer, Christopher J.; Martinson, Alex B. F.

    2015-07-02

    Postsynthetic functionalization of metal organic frameworks (MOFs) enables the controlled, high-density incorporation of new atoms on a crystallographically precise framework. Leveraging the broad palette of known atomic layer deposition (ALD) chemistries, ALD in MOFs (AIM) is one such targeted approach to construct diverse, highly functional, few-atom clusters. In this paper, we demonstrate the saturating reaction of trimethylindium (InMe3) with the node hydroxyls and ligated water of NU-1000, which takes place without significant loss of MOF crystallinity or internal surface area. We computationally identify the elementary steps by which trimethylated trivalent metal compounds (ALD precursors) react with this Zr-based MOF node to generate a uniform and well characterized new surface layer on the node itself, and we predict a final structure that is fully consistent with experimental X-ray pair distribution function (PDF) analysis. Finally, we further demonstrate tunable metal loading through controlled number density of the reactive handles (–OH and –OH2) achieved through node dehydration at elevated temperatures.

  18. Convection in molten pool created by a concentrated energy flux on a solid metal target

    SciTech Connect

    Dikshit, B.; Zende, G. R.; Bhatia, M. S.; Suri, B. M.

    2009-08-15

    During surface evaporation of metals by use of a concentrated energy flux such as electron beam or lasers, a liquid metal pool having a very high temperature gradient is formed around the hot zone created by the beam. Due to temperature dependence of surface tension, density, and depression of the evaporating surface caused by back pressure of the emitted vapor in this molten pool, a strong convective current sets in the molten pool. A proposition is made that this convection may pass through three different stages during increase in the electron beam power depending upon dominance of the various driving forces. To confirm this, convective heat transfer is quantified in terms of dimensionless Nusselt number and its evolution with power is studied in an experiment using aluminum, copper, and zirconium as targets. These experimentally determined values are also compared to the theoretical values predicted by earlier researchers to test the validity of their assumptions and to know about the type of flow in the melt pool. Thus, conclusion about the physical characteristics of flow in the molten pool of metals could be drawn by considering the roles of surface tension and curvature of the evaporating surface on the evolution of convective heat transfer.

  19. Targeted Single-Site MOF Node Modification: Trivalent Metal Loading via Atomic Layer Deposition

    DOE PAGES

    Kim, In Soo; Borycz, Joshua; Platero-Prats, Ana E.; ...

    2015-07-02

    Postsynthetic functionalization of metal organic frameworks (MOFs) enables the controlled, high-density incorporation of new atoms on a crystallographically precise framework. Leveraging the broad palette of known atomic layer deposition (ALD) chemistries, ALD in MOFs (AIM) is one such targeted approach to construct diverse, highly functional, few-atom clusters. In this paper, we demonstrate the saturating reaction of trimethylindium (InMe3) with the node hydroxyls and ligated water of NU-1000, which takes place without significant loss of MOF crystallinity or internal surface area. We computationally identify the elementary steps by which trimethylated trivalent metal compounds (ALD precursors) react with this Zr-based MOF nodemore » to generate a uniform and well characterized new surface layer on the node itself, and we predict a final structure that is fully consistent with experimental X-ray pair distribution function (PDF) analysis. Finally, we further demonstrate tunable metal loading through controlled number density of the reactive handles (–OH and –OH2) achieved through node dehydration at elevated temperatures.« less

  20. Fighting Cancer with Transition Metal Complexes: From Naked DNA to Protein and Chromatin Targeting Strategies

    PubMed Central

    Palermo, Giulia; Magistrato, Alessandra; Riedel, Tina; von Erlach, Thibaud; Davey, Curt A.; Dyson, Paul J.

    2015-01-01

    Abstract Many transition metal complexes have unique physicochemical properties that can be efficiently exploited in medicinal chemistry for cancer treatment. Traditionally, double‐stranded DNA has been assumed to be the main binding target; however, recent studies have shown that nucleosomal DNA as well as proteins can act as dominant molecular binding partners. This has raised new questions about the molecular determinants that govern DNA versus protein binding selectivity, and has offered new ways to rationalize their biological activity and possible side effects. To address these questions, molecular simulations at an atomistic level of detail have been used to complement, support, and rationalize experimental data. Herein we review some relevant studies—focused on platinum and ruthenium compounds—to illustrate the power of state‐of‐the‐art molecular simulation techniques and to demonstrate how the interplay between molecular simulations and experiments can make important contributions to elucidating the target preferences of some promising transition metal anticancer agents. This contribution aims at providing relevant information that may help in the rational design of novel drug‐discovery strategies. PMID:26634638

  1. Fighting Cancer with Transition Metal Complexes: From Naked DNA to Protein and Chromatin Targeting Strategies.

    PubMed

    Palermo, Giulia; Magistrato, Alessandra; Riedel, Tina; von Erlach, Thibaud; Davey, Curt A; Dyson, Paul J; Rothlisberger, Ursula

    2016-06-20

    Many transition metal complexes have unique physicochemical properties that can be efficiently exploited in medicinal chemistry for cancer treatment. Traditionally, double-stranded DNA has been assumed to be the main binding target; however, recent studies have shown that nucleosomal DNA as well as proteins can act as dominant molecular binding partners. This has raised new questions about the molecular determinants that govern DNA versus protein binding selectivity, and has offered new ways to rationalize their biological activity and possible side effects. To address these questions, molecular simulations at an atomistic level of detail have been used to complement, support, and rationalize experimental data. Herein we review some relevant studies-focused on platinum and ruthenium compounds-to illustrate the power of state-of-the-art molecular simulation techniques and to demonstrate how the interplay between molecular simulations and experiments can make important contributions to elucidating the target preferences of some promising transition metal anticancer agents. This contribution aims at providing relevant information that may help in the rational design of novel drug-discovery strategies. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  2. Evaluation of target power supplies for krypton storage in sputter-deposited metals

    SciTech Connect

    Greenwell, E.N.; McClanahan, E.D.; Moss, R.W.

    1986-04-01

    Implantation of /sup 85/Kr in a growing sputtered metal deposit has been studied for the containment of /sup 85/Kr recovered from the reprocessing of spent nuclear fuel. PNL, as part of DOE's research program for /sup 85/Kr storage, has developed krypton trapping storage devices (KTSDs) in a range of sizes for ''cold'' and radioactive testing. The KTSD is a stainless steel canister that contains a sputtering target for depositing an amorphous rare-earth transition metal on the inner wall and simultaneously implanting low-energy krypton ions in the growing deposit. This report covers the design requirements for the target power supply and the description, testing and evaluation of three basic designs. The designs chosen for evaluation were: (1) a standard commercial power supply with an external PNL-designed current interrupter, (2) a commercially manufactured power supply with an integral series-type interrupter, and (3) a commercially manufactured power supply with an integral shunt-type interrupter. The units were compared on the basis of performance, reliability, and life-cycle cost. 8 refs., 9 figs., 2 tabs.

  3. Phishing for suitable targets in the Netherlands: routine activity theory and phishing victimization.

    PubMed

    Leukfeldt, E Rutger

    2014-08-01

    This article investigates phishing victims, especially the increased or decreased risk of victimization, using data from a cybercrime victim survey in the Netherlands (n=10,316). Routine activity theory provides the theoretical perspective. According to routine activity theory, several factors influence the risk of victimization. A multivariate analysis was conducted to assess which factors actually lead to increased risk of victimization. The model included background and financial data of victims, their Internet activities, and the degree to which they were "digitally accessible" to an offender. The analysis showed that personal background and financial characteristics play no role in phishing victimization. Among eight Internet activities, only "targeted browsing" led to increased risk. As for accessibility, using popular operating systems and web browsers does not lead to greater risk, while having up-to-date antivirus software as a technically capable guardian has no effect. The analysis showed no one, clearly defined group has an increased chance of becoming a victim. Target hardening may help, but opportunities for prevention campaigns aimed at a specific target group or dangerous online activities are limited. Therefore, situational crime prevention will have to come from a different angle. Banks could play the role of capable guardian.

  4. Advantageous use of metallic cobalt in the target for pulsed laser deposition of cobalt-doped ZnO films

    SciTech Connect

    Ying, Minju E-mail: g.gehring@sheffield.ac.uk; Blythe, Harry J.; Gerriu, Fatma M.; Fox, A. Mark; Gehring, Gillian A. E-mail: g.gehring@sheffield.ac.uk; Dizayee, Wala; Heald, Steve M.

    2016-08-15

    We investigate the magnetic properties of ZnCoO thin films grown by pulsed laser deposition (PLD) from targets made containing metallic Co or CoO precursors instead of the usual Co{sub 3}O{sub 4}. We find that the films grown from metallic Co precursors in an oxygen rich environment contain negligible amounts of Co metal and have a large magnetization at room temperature. Structural analysis by X-ray diffraction and magneto-optical measurements indicate that the enhanced magnetism is due, in part, from Zn vacancies that partially compensate the naturally occurring n-type defects. We conclude that strongly magnetic films of Zn{sub 0.95}Co{sub 0.05}O that do not contain metallic cobalt can be grown by PLD from Co-metal-precursor targets if the films are grown in an oxygen atmosphere.

  5. Effective field theory of an anomalous Hall metal from interband quantum fluctuations

    NASA Astrophysics Data System (ADS)

    Chua, Victor; Assawasunthonnet, Wathid; Fradkin, Eduardo

    2017-07-01

    We construct an effective field theory, a two-dimensional two-component metallic system described by a model with two Fermi surfaces ("pockets"). This model describes a translationally invariant metallic system with two types of fermions, each with its own Fermi surface, with forward scattering interactions. This model, in addition to the O (2 ) rotational invariance, has a U (1 )×U (1 ) symmetry of separate charge conservation for each Fermi surface. For sufficiently attractive interactions in the d -wave (quadrupolar) channel, this model has an interesting phase diagram that includes a spontaneously generated anomalous Hall metal phase. We derive the Landau-Ginzburg effective action of quadrupolar order parameter fields which enjoys an O (2 )×U (1 ) global symmetry associated to spatial isotropy and the internal U (1 ) relative phase symmetries, respectively. We show that the order parameter theory is dynamically local with a dynamical scaling of z =2 and perform a one-loop renormalization group analysis of the Landau-Ginzburg theory. The electronic liquid crystal phases that result from spontaneous symmetry breaking are studied and we show the presence of Landau damped Nambu-Goldstone modes at low momenta that is a signature of non-Fermi-liquid behavior. Electromagnetic linear response is also analyzed in both the normal and symmetry broken phases from the point of view of the order parameter theory. The nature of the coupling of electromagnetism to the order parameter fields in the normal phase is non-minimal and decidedly contains a precursor to the anomalous Hall response in the form of a order-parameter-dependent Chern-Simons term in the effective action.

  6. Design of antibody-functionalized carbon nanotubes filled with radioactivable metals towards a targeted anticancer therapy

    NASA Astrophysics Data System (ADS)

    Spinato, Cinzia; Perez Ruiz de Garibay, Aritz; Kierkowicz, Magdalena; Pach, Elzbieta; Martincic, Markus; Klippstein, Rebecca; Bourgognon, Maxime; Wang, Julie Tzu-Wen; Ménard-Moyon, Cécilia; Al-Jamal, Khuloud T.; Ballesteros, Belén; Tobias, Gerard; Bianco, Alberto

    2016-06-01

    In the present work we have devised the synthesis of a novel promising carbon nanotube carrier for the targeted delivery of radioactivity, through a combination of endohedral and exohedral functionalization. Steam-purified single-walled carbon nanotubes (SWCNTs) have been initially filled with radioactive analogues (i.e. metal halides) and sealed by high temperature treatment, affording closed-ended CNTs with the filling material confined in the inner cavity. The external functionalization of these filled CNTs was then achieved by nitrene cycloaddition and followed by the derivatization with a monoclonal antibody (Cetuximab) targeting the epidermal growth factor receptor (EGFR), overexpressed by several cancer cells. The targeting efficiency of the so-obtained conjugate was evaluated by immunostaining with a secondary antibody and by incubation of the CNTs with EGFR positive cells (U87-EGFR+), followed by flow cytometry, confocal microscopy or elemental analyses. We demonstrated that our filled and functionalized CNTs can internalize more efficiently in EGFR positive cancer cells.In the present work we have devised the synthesis of a novel promising carbon nanotube carrier for the targeted delivery of radioactivity, through a combination of endohedral and exohedral functionalization. Steam-purified single-walled carbon nanotubes (SWCNTs) have been initially filled with radioactive analogues (i.e. metal halides) and sealed by high temperature treatment, affording closed-ended CNTs with the filling material confined in the inner cavity. The external functionalization of these filled CNTs was then achieved by nitrene cycloaddition and followed by the derivatization with a monoclonal antibody (Cetuximab) targeting the epidermal growth factor receptor (EGFR), overexpressed by several cancer cells. The targeting efficiency of the so-obtained conjugate was evaluated by immunostaining with a secondary antibody and by incubation of the CNTs with EGFR positive cells (U87

  7. Live Site Demonstrations: Former Pole Mountain Target and Maneuver Area, Laramie, WY. MetalMapper Data Analysis for Pole Mountain Target and Maneuver Area

    DTIC Science & Technology

    2012-03-08

    FINAL REPORT Live Site Demonstrations: Former Pole Mountain Target and Maneuver Area, Laramie, WY MetalMapper Data Analysis for Pole...Mountain Target and Maneuver Area ESTCP Project MR-201157 March 2012 John Baptiste Parsons Standard Form 298 (Rev. 8/98) REPORT ...DOCUMENTATION PAGE Prescribed by ANSI Std. Z39.18 Form Approved OMB No. 0704-0188 The public reporting burden for this collection of information is

  8. Surveillance theory applied to virus detection: a case for targeted discovery

    USGS Publications Warehouse

    Bogich, Tiffany L.; Anthony, Simon J.; Nichols, James D.

    2013-01-01

    Virus detection and mathematical modeling have gone through rapid developments in the past decade. Both offer new insights into the epidemiology of infectious disease and characterization of future risk; however, modeling has not yet been applied to designing the best surveillance strategies for viral and pathogen discovery. We review recent developments and propose methods to integrate viral and pathogen discovery and mathematical modeling through optimal surveillance theory, arguing for a more targeted approach to novel virus detection guided by the principles of adaptive management and structured decision-making.

  9. A brief perspective on the diverging theories of lymphatic targeting with colloids

    PubMed Central

    Siram, Karthik; Marslin, Gregory; Raghavan, Chellan Vijaya; Balakumar, Krishnamoorthy; Rahman, Habibur; Franklin, Gregory

    2016-01-01

    For targeted delivery of colloids to the lymphatic system, the colloids should efficiently reach and remain in the lymphatics for a considerable period of time. As per the current knowledge, diffusion and phagocytosis are the two mechanisms through which colloids reach the lymphatic system. Several parameters including particle size and charge have been shown to affect the direct uptake of colloids by the lymphatic system. Although many researchers attached ligands on the surface of colloids to promote phagocytosis-mediated lymphatic delivery, another school of thought suggests avoidance of phagocytosis by use of carriers like polyethylene glycol (PEG)ylated colloids to impart stealth attributes and evade phagocytosis. In this perspective, we weigh up the paradoxical theories and approaches available in the literature to draw conclusions on the conditions favorable for achieving efficient lymphatic targeting of colloids. PMID:27366065

  10. A brief perspective on the diverging theories of lymphatic targeting with colloids.

    PubMed

    Siram, Karthik; Marslin, Gregory; Raghavan, Chellan Vijaya; Balakumar, Krishnamoorthy; Rahman, Habibur; Franklin, Gregory

    2016-01-01

    For targeted delivery of colloids to the lymphatic system, the colloids should efficiently reach and remain in the lymphatics for a considerable period of time. As per the current knowledge, diffusion and phagocytosis are the two mechanisms through which colloids reach the lymphatic system. Several parameters including particle size and charge have been shown to affect the direct uptake of colloids by the lymphatic system. Although many researchers attached ligands on the surface of colloids to promote phagocytosis-mediated lymphatic delivery, another school of thought suggests avoidance of phagocytosis by use of carriers like polyethylene glycol (PEG)ylated colloids to impart stealth attributes and evade phagocytosis. In this perspective, we weigh up the paradoxical theories and approaches available in the literature to draw conclusions on the conditions favorable for achieving efficient lymphatic targeting of colloids.

  11. Michel Borghini as a Mentor and Father of the Theory of Polarization in Polarized Targets

    NASA Astrophysics Data System (ADS)

    de Boer, Wim

    2016-02-01

    This paper is a contribution to the memorial session for Michel Borghini at the Spin 2014 conference in Bejing, honoring his pivotal role for the development of polarized targets in high energy physics. Borghini proposed for the first time the correct mechanism for dynamic polarization in polarized targets using organic materials doped with free radicals. In these amorphous materials the spin levels are broadened by spin-spin interactions and g-factor anisotropy, which allows a high dynamic polarization of nuclei by cooling of the spin-spin interaction reservoir. In this contribution I summarize the experimental evidence for this mechanism. These pertinent experiments were done at CERN in the years 1971 - 1974, when I was a graduate student under the guidance of Michel Borghini. I finish by shortly describing how Borghini’s spin temperature theory is now applied in cancer therapy.

  12. Theory of the reaction dynamics of small molecules on metal surfaces

    SciTech Connect

    Jackson, Bret

    2016-09-09

    The objective of this project has been to develop realistic theoretical models for gas-surface interactions, with a focus on processes important in heterogeneous catalysis. The dissociative chemisorption of a molecule on a metal is a key step in many catalyzed reactions, and is often the rate-limiting step. We have explored the dissociative chemisorption of H2, H2O and CH4 on a variety of metal surfaces. Most recently, our extensive studies of methane dissociation on Ni and Pt surfaces have fully elucidated its dependence on translational energy, vibrational state and surface temperature, providing the first accurate comparisons with experimental data. We have explored Eley-Rideal and hot atom reactions of H atoms with H- and C-covered metal surfaces. H atom interactions with graphite have also been explored, including both sticking and Eley-Rideal recombination processes. Again, our methods made it possible to explain several experiments studying these reactions. The sticking of atoms on metal surfaces has also been studied. To help elucidate the experiments that study these processes, we examine how the reaction dynamics depend upon the nature of the molecule-metal interaction, as well as experimental variables such as substrate temperature, beam energy, angle of impact, and the internal states of the molecules. Electronic structure methods based on Density Functional Theory are used to compute each molecule-metal potential energy surface. Both time-dependent quantum scattering techniques and quasi-classical methods are used to examine the reaction or scattering dynamics. Much of our effort has been directed towards developing improved quantum methods that can accurately describe reactions, as well as include the effects of substrate temperature (lattice vibration).

  13. Theory and Modeling of RNA Structure and Interactions with Metal Ions and Small Molecules.

    PubMed

    Sun, Li-Zhen; Zhang, Dong; Chen, Shi-Jie

    2017-03-15

    In addition to continuous rapid progress in RNA structure determination, probing, and biophysical studies, the past decade has seen remarkable advances in the development of a new generation of RNA folding theories and models. In this article, we review RNA structure prediction models and models for ion-RNA and ligand-RNA interactions. These new models are becoming increasingly important for a mechanistic understanding of RNA function and quantitative design of RNA nanotechnology. We focus on new methods for physics-based, knowledge-based, and experimental data-directed modeling for RNA structures and explore the new theories for the predictions of metal ion and ligand binding sites and metal iondependent RNA stabilities. The integration of these new methods with theories about the cellular environment effects in RNA folding, such as molecular crowding and cotranscriptional kinetic effects, may ultimately lead to an all-encompassing RNA folding model. Expected final online publication date for the Annual Review of Biophysics Volume 46 is May 20, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  14. Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells.

    PubMed

    Setzler, Brian P; Zhuang, Zhongbin; Wittkopf, Jarrid A; Yan, Yushan

    2016-12-06

    Fuel cells are the zero-emission automotive power source that best preserves the advantages of gasoline automobiles: low upfront cost, long driving range and fast refuelling. To make fuel-cell cars a reality, the US Department of Energy has set a fuel cell system cost target of US$30 kW(-1) in the long-term, which equates to US$2,400 per vehicle, excluding several major powertrain components (in comparison, a basic, but complete, internal combustion engine system costs approximately US$3,000). To date, most research for automotive applications has focused on proton exchange membrane fuel cells (PEMFCs), because these systems have demonstrated the highest power density. Recently, however, an alternative technology, hydroxide exchange membrane fuel cells (HEMFCs), has gained significant attention, because of the possibility to use stable platinum-group-metal-free catalysts, with inherent, long-term cost advantages. In this Perspective, we discuss the cost profile of PEMFCs and the advantages offered by HEMFCs. In particular, we discuss catalyst development needs for HEMFCs and set catalyst activity targets to achieve performance parity with state-of-the-art automotive PEMFCs. Meeting these targets requires careful optimization of nanostructures to pack high surface areas into a small volume, while maintaining high area-specific activity and favourable pore-transport properties.

  15. Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Setzler, Brian P.; Zhuang, Zhongbin; Wittkopf, Jarrid A.; Yan, Yushan

    2016-12-01

    Fuel cells are the zero-emission automotive power source that best preserves the advantages of gasoline automobiles: low upfront cost, long driving range and fast refuelling. To make fuel-cell cars a reality, the US Department of Energy has set a fuel cell system cost target of US$30 kW-1 in the long-term, which equates to US$2,400 per vehicle, excluding several major powertrain components (in comparison, a basic, but complete, internal combustion engine system costs approximately US$3,000). To date, most research for automotive applications has focused on proton exchange membrane fuel cells (PEMFCs), because these systems have demonstrated the highest power density. Recently, however, an alternative technology, hydroxide exchange membrane fuel cells (HEMFCs), has gained significant attention, because of the possibility to use stable platinum-group-metal-free catalysts, with inherent, long-term cost advantages. In this Perspective, we discuss the cost profile of PEMFCs and the advantages offered by HEMFCs. In particular, we discuss catalyst development needs for HEMFCs and set catalyst activity targets to achieve performance parity with state-of-the-art automotive PEMFCs. Meeting these targets requires careful optimization of nanostructures to pack high surface areas into a small volume, while maintaining high area-specific activity and favourable pore-transport properties.

  16. Flow Measurement of Liquid Metal Flow in Spallation Target Model of ADS by using Ultrasound.

    NASA Astrophysics Data System (ADS)

    Obayashi, Hironari; Kikuchi, Kenji

    2007-11-01

    Measurement of Lead Bismuth Eutectic (LBE) flow by Ultrasonic Velocity Profiler (UVP) technique was successfully realized in the mockup loop of shield annular tube type spallation target, JLBL-2 (JAEA Lead-Bismuth Loop-2), for Accelerator Driven System (ADS) target test facility in J-PARC (Japan Proton Accelerator Research Complex). UVP is a powerful tool to measure an instantaneous space-time velocity profile especially on a velocity measurement of an opaque liquid flow, such as liquid metal. However, it has not yet been done well because both of its poor wetting property with stainless steel and of the difficulty in manufacturing probe at high temperature. At lower temperature, wetting of LBE to stainless steel that is a material of target loop is too poor. Therefore, the surface of the test section was treated by polishing, flatting and finally coating with nickel and solder. And we performed velocity measurement along the centerline of the loop and confirmed basic performance of the loop. It was found that there were periodical releases of eddy from the re-circulation region formed near the wall surface of the inner cylinder. We made then a measurement for non-parallel directions with the centerline and observed 3-dimensional structure of LBE flow configuration.

  17. Plasma and liquid-metal resistivity calculations using the Ziman theory

    NASA Astrophysics Data System (ADS)

    Nardi, Eran

    1996-08-01

    Liquid-metal and dense plasma resistivities are calculated for some transition metals and for Al using the Ziman theory together with the self-consistent average atom INFERNO code. The hypernetted-chain equation is used for calculating the structure factors when no experimental data are available. Attempts are made to improve upon previous calculations by including more accurate electron densities of states as well as the second and third order terms in the multiple scattering expansion of the T matrix. Calculated resistivities with the exception of low density Cu plasma are up to a factor of 4 higher than the experiment for transition metals and between three to four times smaller for Al liquid metal and plasma. The results of the model used in this paper do not seem to agree with the recent experimental data for Cu at a density of the order of a gram and temperatures of several eV as recently obtained by DeSilva and Kunze [Phys. Rev. E 49, 4448 (1994)].

  18. Time-domain response of a metal detector to a target buried in soil with frequency-dependent magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Das, Y.

    2006-05-01

    The work reported in this paper is a part of on-going studies to clarify how and to what extent soil electromagnetic properties affect the performance of induction metal detectors widely used in humanitarian demining. This paper studies the specific case of the time-domain response of a small metallic sphere buried in a non-conducting soil half-space with frequency-dependent complex magnetic susceptibility. The sphere is chosen as a simple prototype for the small metal parts in low-metal landmines, while soil with dispersive magnetic susceptibility is a good model for some soils that are known to adversely affect the performance of metal detectors. The included analysis and computations extend previous work which has been done mostly in the frequency domain. Approximate theoretical expressions for weakly magnetic soils are found to fit the experimental data very well, which allowed the estimation of soil model parameters, albeit in an ad hoc manner. Soil signal is found to exceed target signal (due to an aluminum sphere of radius 0.0127 m) in many cases, even for the weakly magnetic Cambodian laterite used in the experiments. How deep a buried target is detected depends on many other factors in addition to the relative strength of soil and target signals. A general statement cannot thus be made regarding detectability of a target in soil based on the presented results. However, computational results complemented with experimental data extend the understanding of the effect that soil has on metal detectors.

  19. Two-component Fermi-liquid theory - Equilibrium properties of liquid metallic hydrogen

    NASA Technical Reports Server (NTRS)

    Oliva, J.; Ashcroft, N. W.

    1981-01-01

    It is reported that the transition of condensed hydrogen from an insulating molecular crystal phase to a metallic liquid phase, at zero temperature and high pressure, appears possible. Liquid metallic hydrogen (LMH), comprising interpenetrating proton and electron fluids, would constitute a two-component Fermi liquid with both a very high component-mass ratio and long-range, species-dependent bare interactions. The low-temperature equilibrium properties of LMH are examined by means of a generalization to the case of two components of the phenomenological Landau Fermi-liquid theory, and the low-temperature specific heat, compressibility, thermal expansion coefficient and spin susceptibility are given. It is found that the specific heat and the thermal expansion coefficient are vastly greater in the liquid than in the corresponding solid, due to the presence of proton quasiparticle excitations in the liquid.

  20. Density-functional theory for the dynamical response of molecules adsorbed on metal surfaces

    NASA Astrophysics Data System (ADS)

    Gies, Peter; Gerhardts, Rolf R.

    1988-06-01

    The electromagnetic interaction between an oscillating point dipole and different metallic surfaces, described within the self-consistent jellium model, is calculated microscopically for frequencies up to the bulk plasma frequency, using the dynamical density-functional approach. For dipole-jellium distances smaller than 5 Å, the induced field at the position of the dipole is mainly determined by the nonlocal optical effects, and classical image-field theory fails completely. We further calculate the surface-induced renormalization of the molecular polarizability, which is caused by electron-hole pair and, above the surface-plasmon frequency, collective plasma excitations. The relevance of these findings for surface-enhanced Raman scattering, for adsorption of organic molecules, and for metallic impurities immediately below the surface is discussed.

  1. Two-component Fermi-liquid theory - Equilibrium properties of liquid metallic hydrogen

    NASA Technical Reports Server (NTRS)

    Oliva, J.; Ashcroft, N. W.

    1981-01-01

    It is reported that the transition of condensed hydrogen from an insulating molecular crystal phase to a metallic liquid phase, at zero temperature and high pressure, appears possible. Liquid metallic hydrogen (LMH), comprising interpenetrating proton and electron fluids, would constitute a two-component Fermi liquid with both a very high component-mass ratio and long-range, species-dependent bare interactions. The low-temperature equilibrium properties of LMH are examined by means of a generalization to the case of two components of the phenomenological Landau Fermi-liquid theory, and the low-temperature specific heat, compressibility, thermal expansion coefficient and spin susceptibility are given. It is found that the specific heat and the thermal expansion coefficient are vastly greater in the liquid than in the corresponding solid, due to the presence of proton quasiparticle excitations in the liquid.

  2. Peierls potential of screw dislocations in bcc transition metals: Predictions from density functional theory

    SciTech Connect

    Weinberger, Christopher R.; Tucker, Garritt J.; Foiles, Stephen M.

    2013-02-01

    It is well known that screw dislocation motion dominates the plastic deformation in body-centered-cubic metals at low temperatures. The nature of the nonplanar structure of screw dislocations gives rise to high lattice friction, which results in strong temperature and strain rate dependence of plastic flow. Thus the nature of the Peierls potential, which is responsible for the high lattice resistance, is an important physical property of the material. However, current empirical potentials give a complicated picture of the Peierls potential. Here, we investigate the nature of the Peierls potential using density functional theory in the bcc transition metals. The results show that the shape of the Peierls potential is sinusoidal for every material investigated. Furthermore, we show that the magnitude of the potential scales strongly with the energy per unit length of the screw dislocation in the material.

  3. Density functional theory study on Herzberg-Teller contribution in Raman scattering from 4-aminothiophenol-metal complex and metal-4-aminothiophenol-metal junction

    NASA Astrophysics Data System (ADS)

    Liu, Shasha; Zhao, Xiuming; Li, Yuanzuo; Zhao, Xiaohong; Chen, Maodu

    2009-06-01

    Density functional theory (DFT) and time-dependent DFT calculations have been performed to investigate the Raman scattering spectra of metal-molecule complex and metal-molecule-metal junction architectures interconnected with 4-aminothiophenol (PATP) molecule. The simulated profiles of normal Raman scattering (NRS) spectra for the two complexes (Ag2-PATP and PATP-Au2) and the two junctions (Ag2-PATP-Au2 and Au2-PATP-Ag2) are similar to each other, but exhibit obviously different Raman intensities. Due to the lager static polarizabilities of the two junctions, which directly influence the ground state chemical enhancement in NRS spectra, the calculated normal Raman intensities of them are stronger than those of two complexes by the factor of 102. We calculate preresonance Raman scattering (RRS) spectra with incident light at 1064 nm, which is much lower than the S1 electronic transition energy of complexes and junctions. Ag2-PATP-Au2 and Au2-PATP-Ag2 junctions yield higher Raman intensities than those of Ag2-PATP and PATP-Au2 complexes, especially for b2 modes. This effect is mainly attributed to charge transfer (CT) between the metal gap and the PAPT molecule which results in the occurrence of CT resonance enhancement. The calculated pre-RRS spectra strongly depend on the electronic transition state produced by new structures. With excitation at 514.5 nm, the calculated pre-RRS spectra of two complexes and two junctions are stronger than those of with excitation at 1064 nm. A charge difference densities methodology has been used to visually describe chemical enhancement mechanism of RRS spectrum. This methodology aims at visualizing intermolecular CT which provides direct evidence of the Herzberg-Teller mechanism.

  4. Density functional theory study on Herzberg-Teller contribution in Raman scattering from 4-aminothiophenol-metal complex and metal-4-aminothiophenol-metal junction.

    PubMed

    Liu, Shasha; Zhao, Xiuming; Li, Yuanzuo; Zhao, Xiaohong; Chen, Maodu

    2009-06-21

    Density functional theory (DFT) and time-dependent DFT calculations have been performed to investigate the Raman scattering spectra of metal-molecule complex and metal-molecule-metal junction architectures interconnected with 4-aminothiophenol (PATP) molecule. The simulated profiles of normal Raman scattering (NRS) spectra for the two complexes (Ag(2)-PATP and PATP-Au(2)) and the two junctions (Ag(2)-PATP-Au(2) and Au(2)-PATP-Ag(2)) are similar to each other, but exhibit obviously different Raman intensities. Due to the lager static polarizabilities of the two junctions, which directly influence the ground state chemical enhancement in NRS spectra, the calculated normal Raman intensities of them are stronger than those of two complexes by the factor of 10(2). We calculate preresonance Raman scattering (RRS) spectra with incident light at 1064 nm, which is much lower than the S(1) electronic transition energy of complexes and junctions. Ag(2)-PATP-Au(2) and Au(2)-PATP-Ag(2) junctions yield higher Raman intensities than those of Ag(2)-PATP and PATP-Au(2) complexes, especially for b(2) modes. This effect is mainly attributed to charge transfer (CT) between the metal gap and the PAPT molecule which results in the occurrence of CT resonance enhancement. The calculated pre-RRS spectra strongly depend on the electronic transition state produced by new structures. With excitation at 514.5 nm, the calculated pre-RRS spectra of two complexes and two junctions are stronger than those of with excitation at 1064 nm. A charge difference densities methodology has been used to visually describe chemical enhancement mechanism of RRS spectrum. This methodology aims at visualizing intermolecular CT which provides direct evidence of the Herzberg-Teller mechanism.

  5. Density Functional Theory Study on the Interactions of Metal Ions with Long Chain Deprotonated Carboxylic Acids.

    PubMed

    Mehandzhiyski, Aleksandar Y; Riccardi, Enrico; van Erp, Titus S; Koch, Henrik; Åstrand, Per-Olof; Trinh, Thuat T; Grimes, Brian A

    2015-10-08

    In this work, interactions between carboxylate ions and calcium or sodium ions are investigated via density functional theory (DFT). Despite the ubiquitous presence of these interactions in natural and industrial chemical processes, few DFT studies on these systems exist in the literature. Special focus has been placed on determining the influence of the multibody interactions (with up to 4 carboxylates and one metal ion) on an effective pair-interaction potential, such as those used in molecular mechanics (MM). Specifically, DFT calculations are employed to quantify an effective pair-potential that implicitly includes multibody interactions to construct potential energy curves for carboxylate-metal ion pairs. The DFT calculated potential curves are compared to a widely used molecular mechanics force field (OPLS-AA). The calculations indicate that multibody effects do influence the energetic behavior of these ionic pairs and the extent of this influence is determined by a balance between (a) charge transfer from the carboxylate to the metal ions which stabilizes the complex and (b) repulsion between carboxylates, which destabilizes the complex. Additionally, the potential curves of the complexes with 1 and 2 carboxylates and one counterion have been examined to higher separation distance (20 Å) by the use of relaxed scan optimization and constrained density functional theory (CDFT). The results from the relaxed scan optimization indicate that near the equilibrium distance, the charge transfer between the metal ion and the deprotonated carboxylic acid group is significant and leads to non-negligible differences between the DFT and MM potential curves, especially for calcium. However, at longer separation distances the MM calculated interaction potential functions converge to those calculated with CDFT, effectively indicating the approximate domain of the separation distance coordinate where charge transfer between the ions is occurring.

  6. Reliable Energy Level Alignment at Physisorbed Molecule–Metal Interfaces from Density Functional Theory

    PubMed Central

    2015-01-01

    A key quantity for molecule–metal interfaces is the energy level alignment of molecular electronic states with the metallic Fermi level. We develop and apply an efficient theoretical method, based on density functional theory (DFT) that can yield quantitatively accurate energy level alignment information for physisorbed metal–molecule interfaces. The method builds on the “DFT+Σ” approach, grounded in many-body perturbation theory, which introduces an approximate electron self-energy that corrects the level alignment obtained from conventional DFT for missing exchange and correlation effects associated with the gas-phase molecule and substrate polarization. Here, we extend the DFT+Σ approach in two important ways: first, we employ optimally tuned range-separated hybrid functionals to compute the gas-phase term, rather than rely on GW or total energy differences as in prior work; second, we use a nonclassical DFT-determined image-charge plane of the metallic surface to compute the substrate polarization term, rather than the classical DFT-derived image plane used previously. We validate this new approach by a detailed comparison with experimental and theoretical reference data for several prototypical molecule–metal interfaces, where excellent agreement with experiment is achieved: benzene on graphite (0001), and 1,4-benzenediamine, Cu-phthalocyanine, and 3,4,9,10-perylene-tetracarboxylic-dianhydride on Au(111). In particular, we show that the method correctly captures level alignment trends across chemical systems and that it retains its accuracy even for molecules for which conventional DFT suffers from severe self-interaction errors. PMID:25741626

  7. Reliable Energy Level Alignment at Physisorbed Molecule–Metal Interfaces from Density Functional Theory

    DOE PAGES

    Egger, David A.; Liu, Zhen-Fei; Neaton, Jeffrey B.; ...

    2015-03-05

    We report a key quantity for molecule–metal interfaces is the energy level alignment of molecular electronic states with the metallic Fermi level. We develop and apply an efficient theoretical method, based on density functional theory (DFT) that can yield quantitatively accurate energy level alignment information for physisorbed metal–molecule interfaces. The method builds on the “DFT+Σ” approach, grounded in many-body perturbation theory, which introduces an approximate electron self-energy that corrects the level alignment obtained from conventional DFT for missing exchange and correlation effects associated with the gas-phase molecule and substrate polarization. Here, we extend the DFT+Σ approach in two important ways:more » first, we employ optimally tuned range-separated hybrid functionals to compute the gas-phase term, rather than rely on GW or total energy differences as in prior work; second, we use a nonclassical DFT-determined image-charge plane of the metallic surface to compute the substrate polarization term, rather than the classical DFT-derived image plane used previously. We validate this new approach by a detailed comparison with experimental and theoretical reference data for several prototypical molecule–metal interfaces, where excellent agreement with experiment is achieved: benzene on graphite (0001), and 1,4-benzenediamine, Cu-phthalocyanine, and 3,4,9,10-perylene-tetracarboxylic-dianhydride on Au(111). In particular, we show that the method correctly captures level alignment trends across chemical systems and that it retains its accuracy even for molecules for which conventional DFT suffers from severe self-interaction errors.« less

  8. A continuum deformation theory for metal-matrix composites at high temperature

    NASA Technical Reports Server (NTRS)

    Robinson, D. N.

    1987-01-01

    A continuum theory is presented for representing the high temperature, time dependent, hereditary deformation behavior of metallic composites that can be idealized as pseudohomogeneous continua with locally definable directional characteristics. Homogenization of textured materials (molecular, granular, fibrous) and applicability of continuum mechanics in structural applications depends on characteristic body dimensions, the severity of gradients (stress, temperature, etc.) in the structure and the relative size of the internal structure (cell size) of the material. The point of view taken here is that the composite is a material in its own right, with its own properties that can be measured and specified for the composite as a whole.

  9. Theory and experiment of submonolayer quantum-dot metal-cavity surface-emitting microlasers.

    PubMed

    Qiao, Pengfei; Lu, Chien-Yao; Bimberg, Dieter; Chuang, Shun Lien

    2013-12-16

    We present a theoretical model for metal-cavity submonolayer quantum-dot surface-emitting microlasers, which operate at room temperature under electrical injection. Size-dependent lasing characteristics are investigated experimentally and theoretically with device radius ranging from 5 μm to 0.5 μm. The quantum dot emission and cavity optical properties are used in a rate-equation model to study the laser light output power vs. current behavior. Our theory explains the observed size-dependent physics and provides a guide for future device size reduction.

  10. Theory of charge transport in diffusive normal metal/conventional superconductor point contacts

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Golubov, A. A.; Kashiwaya, S.

    2003-08-01

    Tunneling conductance in diffusive normal (DN) metal/insulator/s-wave superconductor junctions is calculated for various situations by changing the magnitudes of the resistance and Thouless energy in DN and the transparency of the insulating barrier. The generalized boundary condition introduced by Nazarov [Superlattices and Microstructures 25, 1221 (1999)] is applied, where the ballistic theory by Blonder, Tinkham, and Klapwijk and the diffusive theory by Volkov, Zaitsev, and Klapwijk based on the boundary condition of Kupriyanov and Lukichev are naturally reproduced. It is shown that the proximity effect can enhance (reduce) the tunneling conductance for junctions with a low (high) transparency. A wide variety of dependencies of tunneling conductance on voltage bias is demonstrated including a U-shaped gap like structure, a zero-bias conductance peak, and a zero-bias conductance dip. The temperature dependence of tunneling conductance is also calculated, and the conditions for the reentrance effect are studied.

  11. [Speculations regarding electric conductivity, the development of an electron theory of metals and the beginning of solid body physics].

    PubMed

    Wiederkehr, Karl Heinrich

    2010-01-01

    The development of an electron-theory of metals is closely connected with early speculation in the period before Maxwell (W Weber and others) regarding electrical conductivity in metals. These Speculations were in contrast with Faraday's view of an all-embracing molecular dielectric polarisation, and a subsequent passage of charges in metallic conductors. In terms of the empirical law of Wiedemann-Franz-Lorenz, the conductivity of electricity and heat had to be treated commonly. The classical electron-theory of metals (Riecke, Drude, H.A. Lorentz) reached a dead end on account of problems concerned with specific heat capacity. Sommerfeld, by means of the Quantum theory and the Fermi-Statistic, could find the solution.

  12. Supersonic Propagation of a K-Shell Ionization Front in Metal Targets

    NASA Astrophysics Data System (ADS)

    Nilson, P. M.; Fiksel, G.; Solodov, A. A.; Stoeckl, C.; Mileham, C.; Theobald, W.; Davies, J. R.; Froula, D. H.; Betti, R.; Meyerhofer, D. D.

    2015-11-01

    The supersonic propagation of a K-shell ionization front has been measured in high-energy-density metal targets using 1-D monochromatic streaked x-ray imaging. The ionization front was driven by hot electrons generated by a 10-ps laser pulse focused to an intensity of 1018 W/cm2. The data show the ionization front travelling at 0 . 11 c +/- 0 . 02 c . The measurements are in good agreement with implicit-hybrid particle-in-cell and collisional-radiative code calculations that predict the hot-electron transport and the K-shell ionization front dynamics. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  13. s-wave elastic scattering of antihydrogen off atomic alkali-metal targets

    SciTech Connect

    Sinha, Prabal K.; Ghosh, A. S.

    2006-03-15

    We have investigated the s-wave elastic scattering of antihydrogen atoms off atomic alkali-metal targets (Li, Na, K, and Rb) at thermal energies (10{sup -16}-10{sup -4} a.u.) using an atomic orbital expansion technique. The elastic cross sections of these systems at thermal energies are found to be very high compared to H-H and H-He systems. The theoretical models employed in this study are so chosen to consider long-range forces dynamically in the calculation. The mechanism of cooling suggests that Li may be considered to be a good candidate as a buffer gas for enhanced cooling of antihydrogen atoms to ultracold temperature.

  14. Application of the strain invariant failure theory (SIFT) to metals and fiber-polymer composites

    NASA Astrophysics Data System (ADS)

    Hart-Smith, L. J.

    2010-11-01

    The strain invariant failure theory (SIFT) model, developed to predict the onset of irreversible damage of fiber-polymer composite laminates, may be also applied to metals. Indeed, it can be applied to all solid materials. Two initial failure mechanisms are considered - distortion and dilatation. The author's experiences are confined to the structures of transport aircraft; phase changes in metals and self-destruction of laminates during curing are not covered. Doing so would need additional material properties, and probably a different failure theory. SIFT does not cover environmental attack on the interface between fibers and resin; it covers only cohesive failures within the fibers or resin, or within a homogeneous piece of metal. In the SIFT model, each damage mechanism is characterized by its own critical value of a strain invariant. Each mechanism dominates its own portion of the strain domain; there is no interaction between them. Application of SIFT to metals is explained first. Fiber-polymer composites contain two discrete constituents; each material must be characterized independently by its own two invariants. This is why fiber-polymer composites need four invariants whereas metals require only two. There is no such thing as a composite material, only composites of materials. The "composite materials" must not be modeled as homogeneous anisotropic solids because it is then not even possible to differentiate between fiber and matrix failures. The SIFT model uses measured material properties; it does not require that half of them be arbitrarily replaced by unmeasurable properties to fit laminate test data, as so many earlier composite failure criteria have. The biggest difference in using SIFT for metals and fiber-reinforced materials is internal residual thermal and moisture absorption stresses created by the gross dissimilarity in properties between embedded fibers and thermoset resin matrices. These residual stresses consume so much of the strength of

  15. Paddy soil — A suitable target for monitoring heavy metal pollution by magnetic proxies

    NASA Astrophysics Data System (ADS)

    Yan, H. T.; Hu, S. Y.; Blaha, U.; Rösler, W.; Duan, X. M.; Appel, E.

    2011-10-01

    A preliminary magnetic study around Meishan steel mill in Nanjing (SE China) was carried out combining geochemical analysis with scanning electron microscopy (SEM) to prove that paddy soil can be a suitable target for environmental study on heavy metal pollution. Magnetic background investigation showed a strong variation in this area due to different land uses and soil types. Magnetic susceptibilities (MS) measured on forest soils are much higher than in paddy fields, and values below 20 cm of the soil surface in forest with parent material of Xiashu loess are several times higher than in paddy soil with parent material of fluvisol. Measurements on vertical profiles show that paddy soil has a very low and stable magnetic background with mass-specific MS around 15 × 10 - 8 m 3 kg - 1 . A strong enhancement of MS values is found in the upper ~ 20 cm of paddy soil predominated by multidomain and pseudo single domain magnetite. However, relatively low S-ratios (0.57 to 0.85) reveal a significant contribution of imperfect anti-ferromagnetic minerals. Detailed research on a paddy soil core at site C719 near the steel mill indicates strong correlation between magnetic mineral concentration-related parameters (χ, ARM, SIRM) and heavy metal concentrations of Cu, Pb and Zn. In addition, typical anthropogenic Fe-spherules are detected in top paddy soil by means of SEM, which indicates that the increase of susceptibility in upper soil is mainly caused by steel mill emission. Mapping of MS in paddy fields across the steel mill area shows a decrease of MS with the distance to the major emission zone. Positive correlation between χ and Zn is found by measuring surface soil samples around the steel mill. Because of low background and high homogeneity of the ~ 20 cm uppermost mixing layer paddy fields are especially suitable for magnetic surface mapping of heavy metal pollution.

  16. A multifunctional metal-organic framework based tumor targeting drug delivery system for cancer therapy

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Dong, Zhi-Yue; Cheng, Hong; Wan, Shuang-Shuang; Chen, Wei-Hai; Zou, Mei-Zhen; Huo, Jia-Wei; Deng, He-Xiang; Zhang, Xian-Zheng

    2015-09-01

    Drug delivery systems (DDSs) with biocompatibility and precise drug delivery are eagerly needed to overcome the paradox in chemotherapy that high drug doses are required to compensate for the poor biodistribution of drugs with frequent dose-related side effects. In this work, we reported a metal-organic framework (MOF) based tumor targeting DDS developed by a one-pot, and organic solvent-free ``green'' post-synthetic surface modification procedure, starting from the nanoscale MOF MIL-101. Owing to the multifunctional surface coating, premature drug release from this DDS was prevented. Due to the pH responsive benzoic imine bond and the redox responsive disulfide bond at the modified surface, this DDS exhibited tumor acid environment enhanced cellular uptake and intracellular reducing environment triggered drug release. In vitro and in vivo results showed that DOX loaded into this DDS exhibited effective cancer cell inhibition with much reduced side effects.Drug delivery systems (DDSs) with biocompatibility and precise drug delivery are eagerly needed to overcome the paradox in chemotherapy that high drug doses are required to compensate for the poor biodistribution of drugs with frequent dose-related side effects. In this work, we reported a metal-organic framework (MOF) based tumor targeting DDS developed by a one-pot, and organic solvent-free ``green'' post-synthetic surface modification procedure, starting from the nanoscale MOF MIL-101. Owing to the multifunctional surface coating, premature drug release from this DDS was prevented. Due to the pH responsive benzoic imine bond and the redox responsive disulfide bond at the modified surface, this DDS exhibited tumor acid environment enhanced cellular uptake and intracellular reducing environment triggered drug release. In vitro and in vivo results showed that DOX loaded into this DDS exhibited effective cancer cell inhibition with much reduced side effects. Electronic supplementary information (ESI) available

  17. Bone as target organ for metals: the case of f-elements.

    PubMed

    Vidaud, Claude; Bourgeois, Damien; Meyer, Daniel

    2012-06-18

    The skeleton is a target organ for most metals. This leads to their bioaccumulation, either as storage of useful oligoelements or as a protection against damage by toxic elements. The different events leading to their accumulation in this organ, under constant remodeling, are not fully understood, nor the full subsequent impact on bone metabolism. This lack of knowledge is particularly true for lanthanides and actinides, whose use has been increasing over recent decades. These metals, known as f-elements, present chemical similarities and differences. After a comparison of the biologically relevant physicochemical properties of lanthanides and actinides, and a brief reminder of the main events of bone metabolism, this review considers the results published over the past decade regarding the interaction between bones and f-elements. Emphasis will be given to the molecular events, which constitute the basis of the most recent toxicological studies in this domain but still need further investigation. Ionic exchanges with the inorganic matrix, interactions with bone proteins, and cellular mechanism disturbances are mainly considered in this review.

  18. A simple laminate theory using the orthotropic viscoplasticity theory based on overstress. I - In-plane stress-strain relationships for metal matrix composites

    NASA Technical Reports Server (NTRS)

    Krempl, Erhard; Hong, Bor Zen

    1989-01-01

    A macromechanics analysis is presented for the in-plane, anisotropic time-dependent behavior of metal matrix laminates. The small deformation, orthotropic viscoplasticity theory based on overstress represents lamina behavior in a modified simple laminate theory. Material functions and constants can be identified in principle from experiments with laminae. Orthotropic invariants can be repositories for tension-compression asymmetry and for linear elasticity in one direction while the other directions behave in a viscoplastic manner. Computer programs are generated and tested for either unidirectional or symmetric laminates under in-plane loading. Correlations with the experimental results on metal matrix composites are presented.

  19. A simple laminate theory using the orthotropic viscoplasticity theory based on overstress. I - In-plane stress-strain relationships for metal matrix composites

    NASA Technical Reports Server (NTRS)

    Krempl, Erhard; Hong, Bor Zen

    1989-01-01

    A macromechanics analysis is presented for the in-plane, anisotropic time-dependent behavior of metal matrix laminates. The small deformation, orthotropic viscoplasticity theory based on overstress represents lamina behavior in a modified simple laminate theory. Material functions and constants can be identified in principle from experiments with laminae. Orthotropic invariants can be repositories for tension-compression asymmetry and for linear elasticity in one direction while the other directions behave in a viscoplastic manner. Computer programs are generated and tested for either unidirectional or symmetric laminates under in-plane loading. Correlations with the experimental results on metal matrix composites are presented.

  20. APPLICATION OF THE HARD AND SOFT, ACIDS AND BASES (HSAB) THEORY TO TOXICANT-TARGET INTERACTIONS

    PubMed Central

    LoPachin, Richard M.; Gavin, Terrence; DeCaprio, Anthony; Barber, David S.

    2011-01-01

    Many chemical toxicants and/or their active metabolites are electrophiles that cause cell injury by forming covalent bonds with nucleophilic targets on biological macromolecules. Covalent reactions between nucleophilic and electrophilic reagents are however discriminatory, since there is a significant degree of selectivity associated with these interactions. Over the course of the past few decades, the theory of Hard and Soft, Acid and Bases (HSAB) has proven to be a useful tool in predicting the outcome of such reactions. This concept utilizes the inherent electronic characteristic of polarizability to define, for example, reacting electrophiles and nucleophiles as either hard or soft. These HSAB definitions have been successfully applied to chemical-induced toxicity in biological systems. Thus, according to this principle, a toxic electrophile reacts preferentially with biological targets of similar hardness or softness. The soft/hard classification of a xenobiotic electrophile has obvious utility in discerning plausible biological targets and molecular mechanisms of toxicity. The purpose of this Perspective is to discuss the HSAB theory of electrophiles and nucleophiles within a toxicological framework. In principle, covalent bond formation can be described by using the properties of their outermost or frontier orbitals. Because these orbital energies for most chemicals can be calculated using quantum mechanical models, it is possible to quantify the relative softness (σ) or hardness (η) of electrophiles or nucleophiles and to subsequently convert this information into useful indices of reactivity. This atomic level information can provide insight into the design of corroborative laboratory research and thereby help investigators discern corresponding molecular sites and mechanisms of toxicant action. The use of HSAB parameters has also been instrumental in the development and identification of potential nucleophilic cytoprotectants that can scavenge toxic

  1. Application of the Hard and Soft, Acids and Bases (HSAB) theory to toxicant--target interactions.

    PubMed

    Lopachin, Richard M; Gavin, Terrence; Decaprio, Anthony; Barber, David S

    2012-02-20

    Many chemical toxicants and/or their active metabolites are electrophiles that cause cell injury by forming covalent bonds with nucleophilic targets on biological macromolecules. Covalent reactions between nucleophilic and electrophilic reagents are, however, discriminatory since there is a significant degree of selectivity associated with these interactions. Over the course of the past few decades, the theory of Hard and Soft, Acids and Bases (HSAB) has proven to be a useful tool in predicting the outcome of such reactions. This concept utilizes the inherent electronic characteristic of polarizability to define, for example, reacting electrophiles and nucleophiles as either hard or soft. These HSAB definitions have been successfully applied to chemical-induced toxicity in biological systems. Thus, according to this principle, a toxic electrophile reacts preferentially with biological targets of similar hardness or softness. The soft/hard classification of a xenobiotic electrophile has obvious utility in discerning plausible biological targets and molecular mechanisms of toxicity. The purpose of this perspective is to discuss the HSAB theory of electrophiles and nucleophiles within a toxicological framework. In principle, covalent bond formation can be described by using the properties of their outermost or frontier orbitals. Because these orbital energies for most chemicals can be calculated using quantum mechanical models, it is possible to quantify the relative softness (σ) or hardness (η) of electrophiles or nucleophiles and to subsequently convert this information into useful indices of reactivity. This atomic level information can provide insight into the design of corroborative laboratory research and thereby help investigators discern corresponding molecular sites and mechanisms of toxicant action. The use of HSAB parameters has also been instrumental in the development and identification of potential nucleophilic cytoprotectants that can scavenge toxic

  2. Theory of Quantum Hopping In Metallic Polymers and Applications in Electronics

    NASA Astrophysics Data System (ADS)

    Prigodin, Vladimir

    2005-03-01

    The low frequency electromagnetic response of highly conducting polymers (e.g., polyaniline and polypyrrole) in a metallic state^1, when analyzed within the standard theory of metals, is provided by an extremely small fraction of the total number of available electrons ˜ 0.1 % (in contrast to ˜ 100 % for common metals such as Cu, Ag, or Ni) but with anomalous long scattering time > 10-13 s (˜ 100 times longer than for common metals). We show that a chain-linked network of metallic grains (the polymer's crystalline domains) connected by resonance quantum tunneling through strongly localized states in surrounding disordered medium produces this behavior. The small fraction of electrons is assigned to the low density of resonance states and the long scattering time is related to the narrow width of energy levels in resonance. Recently a new interesting phenomenon, an electric field effect, was reported for the doped highly conducting polymers. Upon applying the gate voltage of a few volts the conductivity of the polymer film drops by a several orders of magnitude^2. This observation is in conflict with the fact that the electric field cannot penetrate into a conductor further that the `lattice constant', and therefore its effect on the polymer film of ˜ 100 nm thickness should be negligible. We suggest that the field effect in doped conducting polymers is an electric field induced conductor-nonconductor transition described by the chain-linked granular model in the presence of mobile ions. The ion motion under the gate voltage is breaking the interdot percolation network by removing critical hoping sites and as a result producing the conductor-nonconductor transition. The experimental evidences for the present mechanism of field effect in conducting polymers are presented. *R.S. Kohlman et al., Phys. Rev. Lett. 78, 3915 (1997). *A.J. Epstein et al., Curr. Appl. Phys. 2, 339 (2002).

  3. Preparation of {sup 82}Sr from a metallic Rb target in a 100 MeV proton beam

    SciTech Connect

    Zhuikov, B.L.; Kokhanyuk, V.M.; Glushchenko, V.N. |||

    1995-07-01

    The medical radioisotope {sup 82}Sr was obtained by irradiating a metallic Rb target with protons accelerated to an energy of 100 MeV. The yield of {sup 82}Sr was chemically isolated by dissolving metallic Rb in isobutanol with subsequent conversion to the chloride, distillation of the organic phase, and removal of Rb{sup +} on cation exchanger. The product has high radionuclidic purity.

  4. Neuroanatomical target theory as a predictive model for radiation-induced cognitive decline.

    PubMed

    Peiffer, Ann M; Leyrer, C Marc; Greene-Schloesser, Dana M; Shing, Elaine; Kearns, William T; Hinson, William H; Tatter, Stephen B; Ip, Edward H; Rapp, Stephen R; Robbins, Mike E; Shaw, Edward G; Chan, Michael D

    2013-02-19

    In a retrospective review to assess neuroanatomical targets of radiation-induced cognitive decline, dose volume histogram (DVH) analyses of specific brain regions of interest (ROI) are correlated to neurocognitive performance in 57 primary brain tumor survivors. Neurocognitive assessment at baseline included Trail Making Tests A/B, a modified Rey-Osterreith Complex Figure, California or Hopkins Verbal Learning Test, Digit Span, and Controlled Oral Word Association. DVH analysis was performed for multiple neuroanatomical targets considered to be involved in cognition. The %v10 (percent of ROI receiving 10 Gy), %v40, and %v60 were calculated for each ROI. Factor analysis was used to estimate global cognition based on a summary of performance on individual cognitive tests. Stepwise regression was used to determine which dose volume predicted performance on global factors and individual neurocognitive tests for each ROI. Regions that predicted global cognitive outcomes at doses <60 Gy included the corpus callosum, left frontal white matter, right temporal lobe, bilateral hippocampi, subventricular zone, and cerebellum. Regions of adult neurogenesis primarily predicted cognition at %v40 except for the right hippocampus which predicted at %v10. Regions that did not predict global cognitive outcomes at any dose include total brain volume, frontal pole, anterior cingulate, right frontal white matter, and the right precentral gyrus. Modeling of radiation-induced cognitive decline using neuroanatomical target theory appears to be feasible. A prospective trial is necessary to validate these data.

  5. Application of the theory of optimal experiments to adaptive electromagnetic-induction sensing of buried targets.

    PubMed

    Liao, Xuejun; Carin, Lawrence

    2004-08-01

    A mobile electromagnetic-induction (EMI) sensor is considered for detection and characterization of buried conducting and/or ferrous targets. The sensor may be placed on a robot and, here, we consider design of an optimal adaptive-search strategy. A frequency-dependent magnetic-dipole model is used to characterize the target at EMI frequencies. The goal of the search is accurate characterization of the dipole-model parameters, denoted bythe vector theta; the target position and orientation are a subset of theta. The sensor position and operating frequency are denoted by the parameter vector p and a measurement is represented by the pair (p, O), where O denotes the observed data. The parametersp are fixed for a given measurement, but, in the context of a sequence of measurements p may be changed adaptively. In a locally optimal sequence of measurements, we desire the optimal sensor parameters, P(N+1) for estimation of theta, based on the previous measurements (p(n), On)n=1,N. The search strategy is based on the theory of optimal experiments, as discussed in detail and demonstrated via several numerical examples.

  6. Binding Energy of d¹º Transition Metals to Alkenes By Wave Function Theory and Density Functional Theory

    SciTech Connect

    Averkiev, Boris B; Zhao, Yan; Truhlar, Donald G

    2010-06-01

    The structures of Pd(PH₃)₂ and Pt(PH₃)₂ complexes with ethene and conjugated CnHn+2 systems (n=4, 6, 8, and 10) were studied. Their binding energies were calculated using both wave function theory (WFT) and density functional theory (DFT). Previously it was reported that the binding energy of the alkene to the transition metal does not depend strongly on the size of the conjugated CnHn+2 ligand, but that DFT methods systematically underestimate the binding energy more and more significantly as the size of the conjugated system is increased. Our results show that recently developed density functionals predict the binding energy for these systems much more accurately. New benchmark calculations carried out by the coupled cluster method based on Brueckner orbitals with double excitations and a quasiperturbative treatment of connected triple excitations (BCCD(T)) with a very large basis set agree even better with the DFT predictions than do the previous best estimates. The mean unsigned error in absolute and relative binding energies of the alkene ligands to Pd(PH₃)₂ is 2.5 kcal/mol for the ωB97 and M06 density functionals and 2.9 kcal/mol for the M06-L functional. Adding molecular mechanical damped dispersion yields even smaller mean unsigned errors: 1.3 kcal/mol for the M06-D functional, 1.5 kcal/mol for M06- L-D, and 1.8 kcal/mol for B97-D and ωB97X-D. The new functionals also lead to improved accuracy for the analogous Pt complexes. These results show that recently developed density functionals may be very useful for studying catalytic systems involving Pd d¹º centers and alkenes.

  7. Ground-state properties of rare-earth metals: an evaluation of density-functional theory.

    PubMed

    Söderlind, Per; Turchi, P E A; Landa, A; Lordi, V

    2014-10-15

    The rare-earth metals have important technological applications due to their magnetic properties, but are scarce and expensive. Development of high-performance magnetic materials with less rare-earth content is desired, but theoretical modeling is hampered by complexities of the rare earths electronic structure. The existence of correlated (atomic-like) 4f electrons in the vicinity of the valence band makes any first-principles theory challenging. Here, we apply and evaluate the efficacy of density-functional theory for the series of lanthanides (rare earths), investigating the influence of the electron exchange and correlation functional, spin-orbit interaction, and orbital polarization. As a reference, the results are compared with those of the so-called 'standard model' of the lanthanides in which electrons are constrained to occupy 4f core states with no hybridization with the valence electrons. Some comparisons are also made with models designed for strong electron correlations. Our results suggest that spin-orbit coupling and orbital polarization are important, particularly for the magnitude of the magnetic moments, and that calculated equilibrium volumes, bulk moduli, and magnetic moments show correct trends overall. However, the precision of the calculated properties is not at the level of that found for simpler metals in the Periodic Table of Elements, and the electronic structures do not accurately reproduce x-ray photoemission spectra.

  8. Ground-state properties of rare-earth metals: an evaluation of density-functional theory

    NASA Astrophysics Data System (ADS)

    Söderlind, Per; Turchi, P. E. A.; Landa, A.; Lordi, V.

    2014-10-01

    The rare-earth metals have important technological applications due to their magnetic properties, but are scarce and expensive. Development of high-performance magnetic materials with less rare-earth content is desired, but theoretical modeling is hampered by complexities of the rare earths electronic structure. The existence of correlated (atomic-like) 4f electrons in the vicinity of the valence band makes any first-principles theory challenging. Here, we apply and evaluate the efficacy of density-functional theory for the series of lanthanides (rare earths), investigating the influence of the electron exchange and correlation functional, spin-orbit interaction, and orbital polarization. As a reference, the results are compared with those of the so-called ‘standard model’ of the lanthanides in which electrons are constrained to occupy 4f core states with no hybridization with the valence electrons. Some comparisons are also made with models designed for strong electron correlations. Our results suggest that spin-orbit coupling and orbital polarization are important, particularly for the magnitude of the magnetic moments, and that calculated equilibrium volumes, bulk moduli, and magnetic moments show correct trends overall. However, the precision of the calculated properties is not at the level of that found for simpler metals in the Periodic Table of Elements, and the electronic structures do not accurately reproduce x-ray photoemission spectra.

  9. Diagrammatic theory of random scattering matrices for normal-metal{endash}superconducting mesoscopic junctions

    SciTech Connect

    Argaman, N.; Zee, A.

    1996-09-01

    The planar-diagrammatic technique of large-{ital N} random matrices is extended to evaluate averages over the circular ensemble of unitary matrices. It is then applied to study transport through a disordered metallic {open_quote}{open_quote}grain{close_quote}{close_quote} attached through ideal leads to a normal electrode and to a superconducting electrode. The latter enforces boundary conditions which coherently couple electrons and holes at the Fermi energy through Andreev scattering. Consequently, the {ital leading} {ital order} of the conductance is altered, and thus changes much larger than {ital e}{sup 2}/{ital h} are observed when, e.g., a weak magnetic field is applied. This is in agreement with existing theories. The approach developed here is intermediate between the theory of dirty superconductors (the Usadel equations) and the random-matrix approach involving transmission eigenvalues (e.g.,the Dorokhov-Mello-Pereyra-Kumar equation) in the following sense: Even though one starts from a scattering formalism, a quantity analogous to the superconducting order parameter within the system naturally arises. The method can be applied to a variety of mesoscopic normal-metal{endash}superconducting ({ital N}-{ital S}) structures, but for brevity we consider here only the case of a simple disordered {ital N}-{ital S} junction. {copyright} {ital 1996 The American Physical Society.}

  10. Thermohydraulic behavior of the liquid metal target of a spallation neutron source

    SciTech Connect

    Takeda, Y.

    1996-06-01

    The author presents work done on three main problems. (1) Natural circulation in double coaxial cylindircal container: The thermohydraulic behaviour of the liquid metal target of the spallation neutron source at PSI has been investigated. The configuration is a natural-circulation loop in a concentric double-tube-type container. The results show that the natural-circulation loop concept is valid for the design phase of the target construction, and the current specified design criteria will be fulfilled with the proposed parameter values. (2) Flow around the window: Water experiments were performed for geometry optimisation of the window shape of the SINQ container for avoiding generating recirculation zones at peripheral area and the optimal cooling of the central part of the beam entrance window. Flow visualisation technique was mainly used for various window shapes, gap distance between the window and the guide tube edge. (3) Flow in window cooling channels: Flows in narrow gaps of cooling channels of two different types of windows were studied by flow visualisation techniques. One type is a slightly curved round cooling channel and the other is hemispherical shape, both of which have only 2 mm gap distance and the water inlet is located on one side and flows out from the opposite side. In both cases, the central part of the flow area has lower velocity than peripheral area.

  11. CO{sub 2} laser pulse shortening by laser ablation of a metal target

    SciTech Connect

    Donnelly, T.; Mazoyer, M.; Lynch, A.; O'Sullivan, G.; O'Reilly, F.; Dunne, P.; Cummins, T.

    2012-03-15

    A repeatable and flexible technique for pulse shortening of laser pulses has been applied to transversely excited atmospheric (TEA) CO{sub 2} laser pulses. The technique involves focusing the laser output onto a highly reflective metal target so that plasma is formed, which then operates as a shutter due to strong laser absorption and scattering. Precise control of the focused laser intensity allows for timing of the shutter so that different temporal portions of the pulse can be reflected from the target surface before plasma formation occurs. This type of shutter enables one to reduce the pulse duration down to {approx}2 ns and to remove the low power, long duration tails that are present in TEA CO{sub 2} pulses. The transmitted energy is reduced as the pulse duration is decreased but the reflected power is {approx}10 MW for all pulse durations. A simple laser heating model verifies that the pulse shortening depends directly on the plasma formation time, which in turn is dependent on the applied laser intensity. It is envisaged that this plasma shutter will be used as a tool for pulse shaping in the search for laser pulse conditions to optimize conversion efficiency from laser energy to useable extreme ultraviolet (EUV) radiation for EUV source development.

  12. CO2 laser pulse shortening by laser ablation of a metal target.

    PubMed

    Donnelly, T; Mazoyer, M; Lynch, A; O'Sullivan, G; O'Reilly, F; Dunne, P; Cummins, T

    2012-03-01

    A repeatable and flexible technique for pulse shortening of laser pulses has been applied to transversely excited atmospheric (TEA) CO(2) laser pulses. The technique involves focusing the laser output onto a highly reflective metal target so that plasma is formed, which then operates as a shutter due to strong laser absorption and scattering. Precise control of the focused laser intensity allows for timing of the shutter so that different temporal portions of the pulse can be reflected from the target surface before plasma formation occurs. This type of shutter enables one to reduce the pulse duration down to ~2 ns and to remove the low power, long duration tails that are present in TEA CO(2) pulses. The transmitted energy is reduced as the pulse duration is decreased but the reflected power is ~10 MW for all pulse durations. A simple laser heating model verifies that the pulse shortening depends directly on the plasma formation time, which in turn is dependent on the applied laser intensity. It is envisaged that this plasma shutter will be used as a tool for pulse shaping in the search for laser pulse conditions to optimize conversion efficiency from laser energy to useable extreme ultraviolet (EUV) radiation for EUV source development.

  13. CO2 laser pulse shortening by laser ablation of a metal target

    NASA Astrophysics Data System (ADS)

    Donnelly, T.; Mazoyer, M.; Lynch, A.; O'Sullivan, G.; O'Reilly, F.; Dunne, P.; Cummins, T.

    2012-03-01

    A repeatable and flexible technique for pulse shortening of laser pulses has been applied to transversely excited atmospheric (TEA) CO2 laser pulses. The technique involves focusing the laser output onto a highly reflective metal target so that plasma is formed, which then operates as a shutter due to strong laser absorption and scattering. Precise control of the focused laser intensity allows for timing of the shutter so that different temporal portions of the pulse can be reflected from the target surface before plasma formation occurs. This type of shutter enables one to reduce the pulse duration down to ˜2 ns and to remove the low power, long duration tails that are present in TEA CO2 pulses. The transmitted energy is reduced as the pulse duration is decreased but the reflected power is ˜10 MW for all pulse durations. A simple laser heating model verifies that the pulse shortening depends directly on the plasma formation time, which in turn is dependent on the applied laser intensity. It is envisaged that this plasma shutter will be used as a tool for pulse shaping in the search for laser pulse conditions to optimize conversion efficiency from laser energy to useable extreme ultraviolet (EUV) radiation for EUV source development.

  14. Understanding the NMR shifts in paramagnetic transition metal oxides using density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Carlier, D.; Ménétrier, M.; Grey, C. P.; Delmas, C.; Ceder, G.

    2003-05-01

    The 6,7Li MAS NMR spectra of lithium ions in paramagnetic host materials are extremely sensitive to number and nature of the paramagnetic cations in the Li local environments and large shifts (Fermi contact shifts) are often observed. The work presented in this paper aims to provide a rational basis for the interpretation of the 6,7Li NMR shifts, as a function of the lithium local environment and electronic configuration of the transition metal ions. We focus on the layered rocksalts often found for LiMO2 compounds and on materials that are isostructural with the K2NiF4 structure. In order to understand the spin-density transfer mechanism from the transition metal ion to the lithium nucleus, which gives rise to the hyperfine shifts observed by NMR, we have performed density functional theory (DFT) calculations in the generalized gradient approximation. For each compound, we calculate the spin densities values on the transition metal, oxygen and lithium ions and map the spin density in the M-O-Li plane. Predictions of the calculations are in good agreement with several experimental results. We show that DFT calculations are a useful tool with which to interpret the observed paramagnetic shifts in layered oxides and to understand the major spin-density transfer processes. This information should help us to predict the magnitudes and signs of the Li hyperfine shifts for different Li local environments and t2g vs eg electrons in other compounds.

  15. Density functional theory based study of chlorine doped WS{sub 2}-metal interface

    SciTech Connect

    Chanana, Anuja; Mahapatra, Santanu

    2016-03-07

    Investigation of a transition metal dichalcogenide (TMD)-metal interface is essential for the effective functioning of monolayer TMD based field effect transistors. In this work, we employ the Density Functional Theory calculations to analyze the modulation of the electronic structure of monolayer WS{sub 2} with chlorine doping and the relative changes in the contact properties when interfaced with gold and palladium. We initially examine the atomic and electronic structures of pure and doped monolayer WS{sub 2} supercell and explore the formation of midgap states with band splitting near the conduction band edge. Further, we analyze the contact nature of the pure supercell with Au and Pd. We find that while Au is physiosorbed and forms n-type contact, Pd is chemisorped and forms p-type contact with a higher valence electron density. Next, we study the interface formed between the Cl-doped supercell and metals and observe a reduction in the Schottky barrier height (SBH) in comparison to the pure supercell. This reduction found is higher for Pd in comparison to Au, which is further validated by examining the charge transfer occurring at the interface. Our study confirms that Cl doping is an efficient mechanism to reduce the n-SBH for both Au and Pd, which form different types of contact with WS{sub 2}.

  16. Designing mixed metal halide ammines for ammonia storage using density functional theory and genetic algorithms.

    PubMed

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich J; Vegge, Tejs

    2014-09-28

    Metal halide ammines have great potential as a future, high-density energy carrier in vehicles. So far known materials, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, are not suitable for automotive, fuel cell applications, because the release of ammonia is a multi-step reaction, requiring too much heat to be supplied, making the total efficiency lower. Here, we apply density functional theory (DFT) calculations to predict new mixed metal halide ammines with improved storage capacities and the ability to release the stored ammonia in one step, at temperatures suitable for system integration with polymer electrolyte membrane fuel cells (PEMFC). We use genetic algorithms (GAs) to search for materials containing up to three different metals (alkaline-earth, 3d and 4d) and two different halides (Cl, Br and I) - almost 27,000 combinations, and have identified novel mixtures, with significantly improved storage capacities. The size of the search space and the chosen fitness function make it possible to verify that the found candidates are the best possible candidates in the search space, proving that the GA implementation is ideal for this kind of computational materials design, requiring calculations on less than two percent of the candidates to identify the global optimum.

  17. Density-Functional Theory Studies of Correlation Energy Effects at Metallic Surfaces.

    NASA Astrophysics Data System (ADS)

    Mohammed, Abdel-Raouf Eid

    In this thesis we study the effects of correlation in the inhomogeneous electron gas at metallic surfaces. These studies are performed within the context of density-functional theory (DFT). Using accurate representations of the electronic density profile, we have estimated variationally the surface correlation energy of jellium metal. The accuracy of these estimates is founded in the assumption that the exchange -correlation energy functional of the density is approximated accurately by the wave-vector analysis method, and by the fact that the non-local exchange energy contributions are treated exactly. In contrast to the previously accepted conclusion that for surfaces correlation effects are as significant as exchange, our results indicate the ratio of these energies to lie between 34% - 97% over the metallic density range, the smaller ratios corresponding to the higher density metals. In this work we have also examined the local density (LDA) and gradient expansion approximations (GEA) (to O((DEL)('2))) for the correlation energy. We have demonstrated for realistic metal surface densities the cancellation of the errors in the LDA for exchange and correlation, and shown that the density profiles at surfaces would have to be unphysically slowly varying for the correlation energy GEA to converge. We have also studied the effects of correlation at surfaces by screening the exchange, and observe that the surface exchange energy for screened-Coulomb interaction decreases as the screening length is reduced. Thus, the more short-ranged the interaction, the easier it is to split the crystal in two. In addition we have derived the DFT first gradient correction coefficient in the GEA for the screened-Coulomb exchange energy, and shown it to be the same as that obtained within Hartree -Fock theory (HFT) for finite screening. This coefficient reduces to the DFT bare-Coulomb interaction value in the limit of no screening in which limit the HFT coefficient is singular. The GEA

  18. "Complex" Targeting: A Complexity-Based Theory of Targeting and Its Application to Radical Islamic Terrorism

    DTIC Science & Technology

    2002-06-01

    Lilienfeld, The Rise of Systems Theory: An Ideological Analysis (New York: John Wiley & Sons, Inc., 1978), 247-280. 8 Power Journal4 with the current...Theory: An Ideological Analysis . New York: John Wiley & Sons, Inc., 1978. Luchsinger, Vincent P. and V. Thomas Dock. The Systems Approach: A

  19. Dim target detection in IR image sequences based on fractal and rough set theory

    NASA Astrophysics Data System (ADS)

    Yan, Xiaoke; Shi, Caicheng; He, Peikun

    2005-11-01

    This paper addresses the problem of detecting small, moving, low amplitude in image sequences that also contain moving nuisance objects and background noise. Rough sets (RS) theory is applied in similarity relation instead of equivalence relation to solve clustering issue. We propose fractal-based texture analysis to describe texture coarseness and locally adaptive threshold technique to seek latent object point. Finally, according to temporal and spatial correlations between different frames, the singular points can be filtered. We demonstrate the effectiveness of the technique by applying it to real infrared image sequences containing targets of opportunity and evolving cloud clutter. The experimental results show that the algorithm can effectively increase detection probability and has robustness.

  20. THE DEPENDENCE OF BROWN DWARF RADII ON ATMOSPHERIC METALLICITY AND CLOUDS: THEORY AND COMPARISON WITH OBSERVATIONS

    SciTech Connect

    Burrows, Adam; Nampaisarn, Thane; Heng, Kevin E-mail: tnampais@astro.princeton.edu

    2011-07-20

    Employing realistic and consistent atmosphere boundary conditions, we have generated evolutionary models for brown dwarfs and very low mass stars (VLMs) for different atmospheric metallicities ([Fe/H]), with and without clouds. We find that the spread in radius at a given mass and age can be as large as {approx}10% to {approx}25%, with higher-metallicity, higher-cloud-thickness atmospheres resulting quite naturally in larger radii. For each 0.1 dex increase in [Fe/H], radii increase by {approx}1% to {approx}2.5%, depending upon the age and mass. We also find that, while for smaller masses and older ages brown dwarf radii decrease with increasing helium fraction (Y, as expected), for more massive brown dwarfs and a wide range of ages they increase with helium fraction. The increase in radius in going from Y = 0.25 to Y = 0.28 can be as large as {approx}0.025 R{sub J} ({approx}2.5%). Furthermore, we find that for VLMs an increase in atmospheric metallicity from 0.0 to 0.5 dex, increases radii by {approx}4%, and from -0.5 to 0.5 dex by {approx}10%. Therefore, we suggest that opacity due to higher metallicity might naturally account for the apparent radius anomalies in some eclipsing VLM systems. Ten to twenty-five percent variations in radius exceed errors stemming from uncertainties in the equation of state alone. This serves to emphasize that transit and eclipse measurements of brown dwarf radii constrain numerous effects collectively, importantly including the atmosphere and condensate cloud models, and not just the equation of state. At all times, one is testing a multi-parameter theory, and not a universal radius-mass relation.

  1. A computational theory for the classification of natural biosonar targets based on a spike code.

    PubMed

    Müller, Rolf

    2003-08-01

    A computational theory for the classification of natural biosonar targets is developed based on the properties of an example stimulus ensemble. An extensive set of echoes (84 800) from four different foliages was transcribed into a spike code using a parsimonious model (linear filtering, half-wave rectification, thresholding). The spike code is assumed to consist of time differences (interspike intervals) between threshold crossings. Among the elementary interspike intervals flanked by exceedances of adjacent thresholds, a few intervals triggered by disjoint half-cycles of the carrier oscillation stand out in terms of resolvability, visibility across resolution scales and a simple stochastic structure (uncorrelatedness). They are therefore argued to be a stochastic analogue to edges in vision. A three-dimensional feature vector representing these interspike intervals sustained a reliable target classification performance (0.06% classification error) in a sequential probability ratio test, which models sequential processing of echo trains by biological sonar systems. The dimensions of the representation are the first moments of duration and amplitude location of these interspike intervals as well as their number. All three quantities are readily reconciled with known principles of neural signal representation, since they correspond to the centre of gravity of excitation on a neural map and the total amount of excitation.

  2. Covalency in Metal-Oxygen Multiple Bonds Evaluated Using Oxygen K-edge Spectroscopy and Electronic Structure Theory

    SciTech Connect

    Minasian, Stefan G.; Keith, Jason M.; Batista, Enrique R.; Boland, Kevin S.; Bradley, Joseph A.; Daly, Scott R.; Kozimor, Stosh A.; Lukens, Wayne W.; Martin, Richard L.; Nordlund, Dennis; Seidler, Gerald T.; Shuh, David K.; Sokaras, Dimosthenis; Tyliszczak, Tolek; Wagner, Gregory L.; Weng, Tsu-Chein; Yang, Ping

    2014-01-01

    Advancing theories of how metal oxygen bonding influences metal oxo properties can expose new avenues for innovation in materials science, catalysis, and biochemistry. Historically, spectroscopic analyses of the transition metal peroxyanions, MO4x-, have formed the basis for new M O bonding theories. Herein, relative changes in M O orbital mixing in MO42- (M = Cr, Mo, W) and MO41- (M = Mn, Tc, Re) are evaluated for the first time by non-resonant inelastic X-ray scattering, X-ray absorption spectroscopy using fluorescence and transmission (via a scanning transmission X-ray microscope), and linear-response density functional theory. The results suggest that moving from Group 6 to Group 7 or down the triads increases M O e () mixing. Meanwhile, t2 mixing ( + ) remains relatively constant within the same Group. These unexpected changes in frontier orbital energy and composition are evaluated in terms of periodic trends in d orbital energy and radial extension.

  3. Evaluation of metal biouptake from the analysis of bulk metal depletion kinetics at various cell concentrations: theory and application.

    PubMed

    Rotureau, Elise; Billard, Patrick; Duval, Jérôme F L

    2015-01-20

    Bioavailability of trace metals is a key parameter for assessment of toxicity on living organisms. Proper evaluation of metal bioavailability requires monitoring the various interfacial processes that control metal partitioning dynamics at the biointerface, which includes metal transport from solution to cell membrane, adsorption at the biosurface, internalization, and possible excretion. In this work, a methodology is proposed to quantitatively describe the dynamics of Cd(II) uptake by Pseudomonas putida. The analysis is based on the kinetic measurement of Cd(II) depletion from bulk solution at various initial cell concentrations using electroanalytical probes. On the basis of a recent formalism on the dynamics of metal uptake by complex biointerphases, the cell concentration-dependent depletion time scales and plateau values reached by metal concentrations at long exposure times (>3 h) are successfully rationalized in terms of limiting metal uptake flux, rate of excretion, and metal affinity to internalization sites. The analysis shows the limits of approximate depletion models valid in the extremes of high and weak metal affinities. The contribution of conductive diffusion transfer of metals from the solution to the cell membrane in governing the rate of Cd(II) uptake is further discussed on the basis of estimated resistances for metal membrane transfer and extracellular mass transport.

  4. Nano-fabrication of molecular electronic junctions by targeted modification of metal-molecule bonds.

    PubMed

    Jafri, S Hassan M; Löfås, Henrik; Blom, Tobias; Wallner, Andreas; Grigoriev, Anton; Ahuja, Rajeev; Ottosson, Henrik; Leifer, Klaus

    2015-09-23

    Reproducibility, stability and the coupling between electrical and molecular properties are central challenges in the field of molecular electronics. The field not only needs devices that fulfill these criteria but they also need to be up-scalable to application size. In this work, few-molecule based electronics devices with reproducible electrical characteristics are demonstrated. Our previously reported 5 nm gold nanoparticles (AuNP) coated with ω-triphenylmethyl (trityl) protected 1,8-octanedithiol molecules are trapped in between sub-20 nm gap spacing gold nanoelectrodes forming AuNP-molecule network. When the trityl groups are removed, reproducible devices and stable Au-thiol junctions are established on both ends of the alkane segment. The resistance of more than 50 devices is reduced by orders of magnitude as well as a reduction of the spread in the resistance histogram is observed. By density functional theory calculations the orders of magnitude decrease in resistance can be explained and supported by TEM observations thus indicating that the resistance changes and strongly improved resistance spread are related to the establishment of reproducible and stable metal-molecule bonds. The same experimental sequence is carried out using 1,6-hexanedithiol functionalized AuNPs. The average resistances as a function of molecular length, demonstrated herein, are comparable to the one found in single molecule devices.

  5. INTERACTION OF LASER RADIATION WITH MATTER: Formation of periodic structures upon laser ablation of metal targets in liquids

    NASA Astrophysics Data System (ADS)

    Kazakevich, Pavel V.; Simakin, Aleksandr V.; Shafeev, Georgii A.

    2005-09-01

    Experimental data on the formation of ordered microstructures produced upon ablation of metal targets in liquids irradiated by a copper vapour laser or a pulsed Nd:YAG laser are presented. The structures were obtained on brass, bronze, copper, and tungsten substrates immersed in distilled water or ethanol. As a result of multiple-pulse laser ablation by a scanning beam, ordered microcones with pointed vertexes are formed on the target surface. The structures are separated by deep narrow channels. The structure period was experimentally shown to increase linearly with diameter of the laser spot on the target surface.

  6. Density functional theory investigation of 3d, 4d, and 5d 13-atom metal clusters

    SciTech Connect

    Piotrowski, Mauricio J.; Piquini, Paulo; Da Silva, Juarez L. F.

    2010-04-15

    The knowledge of the atomic structure of clusters composed by few atoms is a basic prerequisite to obtain insights into the mechanisms that determine their chemical and physical properties as a function of diameter, shape, surface termination, as well as to understand the mechanism of bulk formation. Due to the wide use of metal systems in our modern life, the accurate determination of the properties of 3d, 4d, and 5d metal clusters poses a huge problem for nanoscience. In this work, we report a density functional theory study of the atomic structure, binding energies, effective coordination numbers, average bond lengths, and magnetic properties of the 3d, 4d, and 5d metal (30 elements) clusters containing 13 atoms, M{sub 13}. First, a set of lowest-energy local minimum structures (as supported by vibrational analysis) were obtained by combining high-temperature first-principles molecular-dynamics simulation, structure crossover, and the selection of five well-known M{sub 13} structures. Several new lower energy configurations were identified, e.g., Pd{sub 13}, W{sub 13}, Pt{sub 13}, etc., and previous known structures were confirmed by our calculations. Furthermore, the following trends were identified: (i) compact icosahedral-like forms at the beginning of each metal series, more opened structures such as hexagonal bilayerlike and double simple-cubic layers at the middle of each metal series, and structures with an increasing effective coordination number occur for large d states occupation. (ii) For Au{sub 13}, we found that spin-orbit coupling favors the three-dimensional (3D) structures, i.e., a 3D structure is about 0.10 eV lower in energy than the lowest energy known two-dimensional configuration. (iii) The magnetic exchange interactions play an important role for particular systems such as Fe, Cr, and Mn. (iv) The analysis of the binding energy and average bond lengths show a paraboliclike shape as a function of the occupation of the d states and hence

  7. Exploring the surface reactivity of 3d metal endofullerenes: a density-functional theory study.

    PubMed

    Estrada-Salas, Rubén E; Valladares, Ariel A

    2009-09-24

    Changes in the preferential sites of electrophilic, nucleophilic, and radical attacks on the pristine C60 surface with endohedral doping using 3d transition metal atoms were studied via two useful reactivity indices, namely the Fukui functions and the molecular electrostatic potential. Both of these were calculated at the density functional BPW91 level of theory with the DNP basis set. Our results clearly show changes in the preferential reactivity sites on the fullerene surface when it is doped with Mn, Fe, Co, or Ni atoms, whereas there are no significant changes in the preferential reactivity sites on the C60 surface upon endohedral doping with Cu and Zn atoms. Electron affinities (EA), ionization potentials (IP), and HOMO-LUMO gaps (Eg) were also calculated to complete the study of the endofullerene's surface reactivity. These findings provide insight into endofullerene functionalization, an important issue in their application.

  8. Self-interaction correction in multiple scattering theory: application to transition metal oxides

    SciTech Connect

    Daene, Markus W; Lueders, Martin; Ernst, Arthur; Diemo, Koedderitzsch; Temmerman, Walter M; Szotek, Zdzislawa; Wolfam, Hergert

    2009-01-01

    We apply to transition metal monoxides the self-interaction corrected (SIC) local spin density (LSD) approximation, implemented locally in the multiple scattering theory within the Korringa-Kohn-Rostoker (KKR) band structure method. The calculated electronic structure and in particular magnetic moments and energy gaps are discussed in reference to the earlier SIC results obtained within the LMTO-ASA band structure method, involving transformations between Bloch and Wannier representations to solve the eigenvalue problem and calculate the SIC charge and potential. Since the KKR can be easily extended to treat disordered alloys, by invoking the coherent potential approximation (CPA), in this paper we compare the CPA approach and supercell calculations to study the electronic structure of NiO with cation vacancies.

  9. A micromechanical theory of grain-size dependence in metal plasticity

    NASA Astrophysics Data System (ADS)

    Weng, G. J.

    T HE EFFECT of grain-size on the elastoplastic behavior of metals is investigated from the micromechanics standpoint. First, based on the observations that dislocation pile-ups, formation of cell structures, and other inelastic activities influenced by the presence of grain boundary actually take place transcrystallinely, a grain-size dependent constitutive equation is proposed for the slip deformation of slip systems. By means of a modified Hill's self-consistent relation the local stress of a grain is calculated, and used in conjunction with this constitutive equation to evaluate the plastic strain of each constituent grain. The grain-size effect on the plastic flow of polycrystals then can be determined by an averaging process. To check the validity of the proposed theory it was finally applied to predict the stress-strain curves and flow stresses of a copper at various grain-sizes. The obtained results were found to be in good agreement with experimental data.

  10. Face-centered-cubic B80 metal: Density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Yan, Qing-Bo; Zheng, Qing-Rong; Su, Gang

    2008-06-01

    By means of ab initio calculations within the density functional theory, we have found that B80 fullerenes can condense to form stable face-centered-cubic (fcc) solids. It is shown that when forming a crystal, B80 cages are geometrically distorted, the Ih symmetry is lowered to Th , and four boron-boron chemical bonds are formed between every two nearest neighbor B80 cages. The cohesive energy of B80 fcc solid is 0.23 eV/atom with respect to the isolated B80 fullerene. The calculated electronic structure reveals that the fcc B80 solid is a metal. The predicted solid phase would constitute a form of pure boron and might have diverse implications. In addition, a simple electron counting rule is proposed, which could explain the stability of B80 fullerene and the recently predicted stable boron sheet.

  11. Mitochondria as an important target in heavy metal toxicity in rat hepatoma AS-30D cells.

    PubMed

    Belyaeva, Elena A; Dymkowska, Dorota; Wieckowski, Mariusz R; Wojtczak, Lech

    2008-08-15

    The mechanisms of toxic effects of divalent cations of three heavy metals Hg, Cd and Cu in rat ascites hepatoma AS-30D cells cultivated in vitro were compared. It was found that the toxicity of these ions, applied in the micromolar range (10-500 microM), decreased from Hg(2+) (most toxic) to Cu(2+) (least toxic). Hg(2+) and Cd(2+) produced a high percentage of cell death by both necrosis and apoptosis, whereas Cu(2+) at concentrations up to 500 microM was weakly effective. Hg(2+) at concentration of 10 microM appeared slightly uncoupling (i.e., stimulated resting state respiration and decreased the mitochondrial transmembrane potential), whereas it exerted a strong inhibitory effect on the respiratory chain and rapid dissipation of the membrane potential at higher concentrations. Cu(2+) had inhibitory effect on cell respiration only at 500 microM concentration and after incubation of 48 h but produced a significant uncoupling effect at lower concentrations. Cu(2+) induced an early and sharp increase of intracellular production of reactive oxygen species (ROS). The action of Hg(2+) and Cd(2+) on ROS generation was biphasic. They stimulated ROS generation within the cells at low concentrations and at short incubation times but decreased ROS generation at higher concentrations and at longer incubation. It is concluded that mitochondria are an important target for toxic effects of Hg(2+), Cd(2+) and Cu(2+) in AS-30D rat hepatoma cells.

  12. Influence of electronic stopping on sputtering induced by cluster impact on metallic targets

    SciTech Connect

    Sandoval, Luis; Urbassek, Herbert M.

    2009-04-01

    Using molecular-dynamics simulation, we model the sputtering of a Au (111) crystallite induced by the impact of Au{sub 13} projectiles with total energies up to 500 keV. Due to the uncertainty of the electronic stopping of Au moving in particular at small velocities, we performed several simulations, in which the electronic stopping parameters are systematically changed. Our results demonstrate the dominating influence of the cut-off energy E{sub c}, below which the high-velocity electronic stopping of atoms is switched off in the simulation. If E{sub c} is smaller than roughly one half the cohesive energy of the target, sputtering ceases after a few ps; the spike contribution to sputtering (also called phase explosion or gas-flow contribution) is entirely quenched and the sputtering yield is up to an order of magnitude smaller than when electronic stopping is taken into account only at higher atom energies. Our results demonstrate the importance of a careful modeling of electronic stopping in simulations of spike sputtering from metals.

  13. Theory of passive mode locking of solid-state lasers using metal nanocomposites as slow saturable absorbers.

    PubMed

    Kim, Kwang-Hyon; Griebner, Uwe; Herrmann, Joachim

    2012-05-01

    Mode locking of solid-state lasers using metal nanocomposites as slow saturable absorbers (SAs) is studied theoretically. The derived equation for the transient nonlinear response of metal nanocomposites is based on the semiclassical two-temperature model. The model is confirmed experimentally by pump-probe measurements on Au nanoparticles (NPs). The theory was applied to study passive mode locking of a solid-state laser containing Au NPs as SA in the green spectral range. Pulse durations as short as 100 fs are predicted, and design criteria of metal NP SAs are derived.

  14. Atomic collisions in suprafluid helium-nanodroplets: timescales for metal-cluster formation derived from He-density functional theory

    PubMed Central

    Volk, Alexander; Thaler, Philipp

    2015-01-01

    Collision times for the coinage metal atoms Cu, Ag and Au in He-droplets are derived from helium density functional theory and molecular dynamics simulations. The strength of the attractive interaction between the metal atoms turns out to be less important than the mass of the propagating metal atoms. Even for small droplets consisting of a few thousand helium atoms, the collision times are shortest for Cu, followed by Ag and Au, despite the higher binding energy of Au2 compared to Cu2. PMID:25812719

  15. Atomic collisions in suprafluid helium-nanodroplets: timescales for metal-cluster formation derived from He-density functional theory.

    PubMed

    Hauser, Andreas W; Volk, Alexander; Thaler, Philipp; Ernst, Wolfgang E

    2015-04-28

    Collision times for the coinage metal atoms Cu, Ag and Au in He-droplets are derived from helium density functional theory and molecular dynamics simulations. The strength of the attractive interaction between the metal atoms turns out to be less important than the mass of the propagating metal atoms. Even for small droplets consisting of a few thousand helium atoms, the collision times are shortest for Cu, followed by Ag and Au, despite the higher binding energy of Au2 compared to Cu2.

  16. Adsorption structures and energetics of molecules on metal surfaces: Bridging experiment and theory

    NASA Astrophysics Data System (ADS)

    Maurer, Reinhard J.; Ruiz, Victor G.; Camarillo-Cisneros, Javier; Liu, Wei; Ferri, Nicola; Reuter, Karsten; Tkatchenko, Alexandre

    2016-05-01

    Adsorption geometry and stability of organic molecules on surfaces are key parameters that determine the observable properties and functions of hybrid inorganic/organic systems (HIOSs). Despite many recent advances in precise experimental characterization and improvements in first-principles electronic structure methods, reliable databases of structures and energetics for large adsorbed molecules are largely amiss. In this review, we present such a database for a range of molecules adsorbed on metal single-crystal surfaces. The systems we analyze include noble-gas atoms, conjugated aromatic molecules, carbon nanostructures, and heteroaromatic compounds adsorbed on five different metal surfaces. The overall objective is to establish a diverse benchmark dataset that enables an assessment of current and future electronic structure methods, and motivates further experimental studies that provide ever more reliable data. Specifically, the benchmark structures and energetics from experiment are here compared with the recently developed van der Waals (vdW) inclusive density-functional theory (DFT) method, DFT + vdWsurf. In comparison to 23 adsorption heights and 17 adsorption energies from experiment we find a mean average deviation of 0.06 Å and 0.16 eV, respectively. This confirms the DFT + vdWsurf method as an accurate and efficient approach to treat HIOSs. A detailed discussion identifies remaining challenges to be addressed in future development of electronic structure methods, for which the here presented benchmark database may serve as an important reference.

  17. A generalized equivalent circuit theory for the electric and magnetic resonances of metallic wire networks

    NASA Astrophysics Data System (ADS)

    Zhang, Weiyi; Chui, S. T.

    2009-06-01

    We generalize Kirchoff's law for multiply connected wire networks to finite frequencies. We focus on the boundary conditions not present in the conventional Kirchoff's law at joints when more than three wires come together, which is absent in our previous "circuit theory" for the finite frequency properties of metallic wire networks for singly connected structures. These boundary conditions at the joints involve introducing localized boundary electric fields, in addition to the electric fields of inductive and capacitive origins. The boundary fields act as natural "Lagrange multipliers" for imposing the boundary conditions on the circuit currents. In this way the number of equations is the same as the number of unknowns. The eigenmodes determine not only the circuit current and charge profiles, but also the boundary electric fields which supplement such profiles. The application to T- and H-shape metallic wire networks suggests that the basic types of resonances are mainly controlled by the symmetry and the wire dimensions of the networks. The low frequency modes form along the longest connected paths of the wire network while the high frequency modes can be generated via succeedingly adding more nodes along these various wire paths. The characteristic behavior of the electric and magnetic responses can be inferred from the circuit current profile of a given mode, which offers a simple physical picture on circuit design with particular electromagnetic parameters.

  18. Trends in Formic Acid Decomposition on Model Transition Metal Surfaces: A Density Functional Theory Study

    SciTech Connect

    Herron, Jeffrey A.; Scaranto, Jessica; Ferrin, Peter A.; Li, Sha; Mavrikakis, Manos

    2014-12-05

    We present a first-principles, self-consistent periodic density functional theory (PW91-GGA) study of formic acid (HCOOH) decomposition on model (111) and (100) facets of eight fcc metals (Au, Ag, Cu, Pt, Pd, Ni, Ir, and Rh) and (0001) facets of four hcp (Co, Os, Ru, and Re) metals. The calculated binding energies of key formic acid decomposition intermediates including formate (HCOO), carboxyl (COOH), carbon monoxide (CO), water (H2O), carbon dioxide (CO2), hydroxyl (OH), carbon (C), oxygen (O), and hydrogen (H; H2) are presented. Using these energetics, we develop thermochemical potential energy diagrams for both the carboxyl-mediated and the formate-mediated dehydrogenation mechanisms on each surface. We evaluate the relative stability of COOH, HCOO, and other isomeric intermediates (i.e., CO + OH, CO2 + H, CO + O + H) on these surfaces. These results provide insights into formic acid decomposition selectivity (dehydrogenation versus dehydration), and in conjunction with calculated vibrational frequency modes, the results can assist with the experimental search for the elusive carboxyl (COOH) surface intermediate. Results are compared against experimental reports in the literature.

  19. A variational method for density functional theory calculations on metallic systems with thousands of atoms.

    PubMed

    Ruiz-Serrano, Álvaro; Skylaris, Chris-Kriton

    2013-08-07

    A new method for finite-temperature density functional theory calculations which significantly increases the number of atoms that can be simulated in metallic systems is presented. A self-consistent, direct minimization technique is used to obtain the Helmholtz free energy of the electronic system, described in terms of a set of non-orthogonal, localized functions which are optimized in situ using a periodic-sinc basis set, equivalent to plane waves. Most parts of the calculation, including the demanding operation of building the Hamiltonian matrix, have a computational cost that scales linearly with the number of atoms in the system. Also, this approach ensures that the Hamiltonian matrix has a minimal size, which reduces the computational overhead due to diagonalization, a cubic-scaling operation that is still required. Large basis set accuracy is retained via the optimization of the localized functions. This method allows accurate simulations of entire metallic nanostructures, demonstrated with calculations on a supercell of bulk copper with 500 atoms and on gold nanoparticles with up to 2057 atoms.

  20. Cyclotron production of ⁹⁹mTc: recycling of enriched ¹⁰⁰Mo metal targets.

    PubMed

    Gagnon, K; Wilson, J S; Holt, C M B; Abrams, D N; McEwan, A J B; Mitlin, D; McQuarrie, S A

    2012-08-01

    There is growing interest in the large scale cyclotron production of (99m)Tc via the (100)Mo(p,2n)(99m)Tc reaction. While the use and recycling of cyclotron-irradiated enriched molybdenum targets has been reported previously in the context of (94m)Tc production, to the best of our knowledge, previous recycling studies have been limited to the use of oxide targets. To facilitate reuse of high-power enriched (100)Mo targets, this work presents and evaluates a strategy for recycling of enriched metallic molybdenum. For the irradiated (100)Mo targets in this study, an overall metal to metal recovery of 87% is reported. Evaluation of "new" and "recycled" (100)Mo revealed no changes in the molybdenum isotopic composition (as measured via ICP-MS). For similar irradiation conditions of "new" and "recycled" (100)Mo, (i.e. target thicknesses, irradiation time, and energy), comparable levels of (94g)Tc, (95g)Tc, and (96g)Tc contaminants were observed. Comparable QC specifications (i.e. aluminum ion concentration, pH, and radiochemical purity) were also reported. We finally note that [(99m)Tc]-MDP images obtained by comparing MDP labelled with generator-based (99m)Tc vs. (99m)Tc obtained following the irradiation of recycled (100)Mo demonstrated comparable biodistribution. With the goal of producing large quantities of (99m)Tc, the proposed methodology demonstrates that efficient recycling of enriched metallic (100)Mo targets is feasible and effective.

  1. Selective pressures for accurate altruism targeting: evidence from digital evolution for difficult-to-test aspects of inclusive fitness theory.

    PubMed

    Clune, Jeff; Goldsby, Heather J; Ofria, Charles; Pennock, Robert T

    2011-03-07

    Inclusive fitness theory predicts that natural selection will favour altruist genes that are more accurate in targeting altruism only to copies of themselves. In this paper, we provide evidence from digital evolution in support of this prediction by competing multiple altruist-targeting mechanisms that vary in their accuracy in determining whether a potential target for altruism carries a copy of the altruist gene. We compete altruism-targeting mechanisms based on (i) kinship (kin targeting), (ii) genetic similarity at a level greater than that expected of kin (similarity targeting), and (iii) perfect knowledge of the presence of an altruist gene (green beard targeting). Natural selection always favoured the most accurate targeting mechanism available. Our investigations also revealed that evolution did not increase the altruism level when all green beard altruists used the same phenotypic marker. The green beard altruism levels stably increased only when mutations that changed the altruism level also changed the marker (e.g. beard colour), such that beard colour reliably indicated the altruism level. For kin- and similarity-targeting mechanisms, we found that evolution was able to stably adjust altruism levels. Our results confirm that natural selection favours altruist genes that are increasingly accurate in targeting altruism to only their copies. Our work also emphasizes that the concept of targeting accuracy must include both the presence of an altruist gene and the level of altruism it produces.

  2. The Elastic Behaviour of Sintered Metallic Fibre Networks: A Finite Element Study by Beam Theory

    PubMed Central

    Bosbach, Wolfram A.

    2015-01-01

    Background The finite element method has complimented research in the field of network mechanics in the past years in numerous studies about various materials. Numerical predictions and the planning efficiency of experimental procedures are two of the motivational aspects for these numerical studies. The widespread availability of high performance computing facilities has been the enabler for the simulation of sufficiently large systems. Objectives and Motivation In the present study, finite element models were built for sintered, metallic fibre networks and validated by previously published experimental stiffness measurements. The validated models were the basis for predictions about so far unknown properties. Materials and Methods The finite element models were built by transferring previously published skeletons of fibre networks into finite element models. Beam theory was applied as simplification method. Results and Conclusions The obtained material stiffness isn’t a constant but rather a function of variables such as sample size and boundary conditions. Beam theory offers an efficient finite element method for the simulated fibre networks. The experimental results can be approximated by the simulated systems. Two worthwhile aspects for future work will be the influence of size and shape and the mechanical interaction with matrix materials. PMID:26569603

  3. Theory of metal/rare-gas clusters: aspects of open-shell atomic dopants

    NASA Astrophysics Data System (ADS)

    Boatz, J. A.; Hinde, R. J.; Sheehy, J. A.; Langhoff, P. W.

    2003-05-01

    Studies are reported of the structures and vibronic spectra of metal/rare-gas clusters and their ions employing new theoretical methods devised recently for these purposes. Particular attention is addressed to open-shell atomic dopants (B, Al,...), in which cases the theory must include anisotropic (M-Rg) and spin-orbit interactions in the ground states, the avoided crossings of nearly degenerate electronically excited potential energy surfaces, and significant fragmentation following the cluster ionization commonly employed in experimental detection schemes. Detailed computational applications of the theory are reported of AlArN clusters (N = 2 to 54), and comparisons made with the results of multi-photon excitation and ionization measurements. The significantly different structures of the neutral and ionic clusters predicted in these cases, in which Al is largely external to the Ar cluster and the Al^+ ion is inside the cluster, indicates that fragmentation plays a central role in the interpretation of the experiments. The cluster spectra are seen to be highly sensitive to the details of the atomic Ar arrangements around the Al chromophore, and, accordingly, the measurements provide useful spectroscopic probes of the nature and evolution of the Al trapping sites with increasing degree of solvation when the complex electronic and vibrational phenomena underlying the data are appropriately interpreted theoretically.

  4. Density functional perturbational orbital theory of spin polarization in electronic systems. II. Transition metal dimer complexes.

    PubMed

    Seo, Dong-Kyun

    2007-11-14

    We present a theoretical scheme for a semiquantitative analysis of electronic structures of magnetic transition metal dimer complexes within spin density functional theory (DFT). Based on the spin polarization perturbational orbital theory [D.-K. Seo, J. Chem. Phys. 125, 154105 (2006)], explicit spin-dependent expressions of the spin orbital energies and coefficients are derived, which allows to understand how spin orbitals form and change their energies and shapes when two magnetic sites are coupled either ferromagnetically or antiferromagnetically. Upon employment of the concept of magnetic orbitals in the active-electron approximation, a general mathematical formula is obtained for the magnetic coupling constant J from the analytical expression for the electronic energy difference between low-spin broken-symmetry and high-spin states. The origin of the potential exchange and kinetic exchange terms based on the one-electron picture is also elucidated. In addition, we provide a general account of the DFT analysis of the magnetic exchange interactions in compounds for which the active-electron approximation is not appropriate.

  5. Atomic theory of viscoelastic response and memory effects in metallic glasses

    NASA Astrophysics Data System (ADS)

    Cui, Bingyu; Yang, Jie; Qiao, Jichao; Jiang, Minqiang; Dai, Lanhong; Wang, Yun-Jiang; Zaccone, Alessio

    2017-09-01

    An atomic-scale theory of the viscoelastic response of metallic glasses is derived from first principles, using a Zwanzig-Caldeira-Leggett system-bath Hamiltonian as a starting point within the framework of nonaffine linear response to mechanical deformation. This approach provides a generalized Langevin equation (GLE) as the average equation of motion for an atom or ion in the material, from which non-Markovian nonaffine viscoelastic moduli are extracted. These can be evaluated using the vibrational density of states (DOS) as input, where the boson peak plays a prominent role in the mechanics. To compare with experimental data for binary ZrCu alloys, a numerical DOS was obtained from simulations of this system, which also take electronic degrees of freedom into account via the embedded-atom method for the interatomic potential. It is shown that the viscoelastic α -relaxation, including the α -wing asymmetry in the loss modulus, can be very well described by the theory if the memory kernel (the non-Markovian friction) in the GLE is taken to be a stretched-exponential decaying function of time. This finding directly implies strong memory effects in the atomic-scale dynamics and suggests that the α -relaxation time is related to the characteristic time scale over which atoms retain memory of their previous collision history. This memory time grows dramatically below the glass transition.

  6. Targeting triple negative breast cancer cells by N3-substituted 9,10-Phenanthrenequinone thiosemicarbazones and their metal complexes

    NASA Astrophysics Data System (ADS)

    Afrasiabi, Zahra; Stovall, Preston; Finley, Kristen; Choudhury, Amitava; Barnes, Charles; Ahmad, Aamir; Sarkar, Fazlul; Vyas, Alok; Padhye, Subhash

    2013-10-01

    Novel N3-substituted 9,10-Phenanthrenequinone thiosemicarbazones and their copper, nickel and palladium complexes are structurally characterized and reported along with the single crystal X-ray structures of three ligands and one nickel complex. All compounds were evaluated for their antiproliferative potential against Triple Negative Breast Cancer (TNBC) cells which have poor prognosis and no effective drugs to treat with. All compounds exhibited antiproliferative activity against these cells. Among the metal complexes evaluated, redox active copper complexes were found to be more potent. The possible mechanism for such enhanced activity can be attributed to the generation of oxidative stress, which was amenable for targeting through metal complexation.

  7. Predictive modeling of Time-Temperature-Transformation diagram of metallic glasses based on atomistically-informed classical nucleation theory.

    PubMed

    Sato, Yuji; Nakai, Chiaki; Wakeda, Masato; Ogata, Shigenobu

    2017-08-03

    Theoretical prediction of glass forming ability (GFA) of metallic alloys is a key process in exploring metallic alloy compositions with excellent GFA and thus with the ability to form a large-sized bulk metallic glass. Molecular dynamics (MD) simulation is a promising tool to achieve a theoretical prediction. However, direct MD prediction continues to be challenging due to the time-scale limitation of MD. With respect to practical bulk metallic glass alloys, the time necessary for quenching at a typical cooling rate is five or more orders of magnitude higher than that at the MD time-scale. To overcome the time-scale issue, this study proposes a combined method of classical nucleation theory and MD simulations. The method actually allows to depict the time-temperature-transformation (TTT) diagram of the bulk metallic glass alloys. The TTT directly provides a prediction of the critical cooling rate and GFA. Although the method assumes conventional classical nucleation theory, all the material parameters appearing in the theory were determined by MD simulations using realistic interatomic potentials. The method is used to compute the TTT diagrams and critical cooling rates of two Cu-Zr alloy compositions (Cu50Zr50 and Cu20Zr80). The results indicate that the proposed method reasonably predicts the critical cooling rate based on the computed TTT.

  8. Scattering from extended targets in range-dependent fluctuating ocean-waveguides with clutter from theory and experiments.

    PubMed

    Jagannathan, Srinivasan; Küsel, Elizabeth T; Ratilal, Purnima; Makris, Nicholas C

    2012-08-01

    Bistatic, long-range measurements of acoustic scattered returns from vertically extended, air-filled tubular targets were made during three distinct field experiments in fluctuating continental shelf waveguides. It is shown that Sonar Equation estimates of mean target-scattered intensity lead to large errors, differing by an order of magnitude from both the measurements and waveguide scattering theory. The use of the Ingenito scattering model is also shown to lead to significant errors in estimating mean target-scattered intensity in the field experiments because they were conducted in range-dependent ocean environments with large variations in sound speed structure over the depth of the targets, scenarios that violate basic assumptions of the Ingenito model. Green's theorem based full-field modeling that describes scattering from vertically extended tubular targets in range-dependent ocean waveguides by taking into account nonuniform sound speed structure over the target's depth extent is shown to accurately describe the statistics of the targets' scattered field in all three field experiments. Returns from the man-made targets are also shown to have a very different spectral dependence from the natural target-like clutter of the dominant fish schools observed, suggesting that judicious multi-frequency sensing may often provide a useful means of distinguishing fish from man-made targets.

  9. Nondestructive evaluation of metal and composite targets using an infrared line-scanning technique

    NASA Astrophysics Data System (ADS)

    Smith, Christopher; Rowley, Matthew; Dvonch, Curt; Fulton, Mary

    2005-03-01

    A thermal, non-destructive evaluation (NDE) technique has been employed by ThermTech Services, Inc. in cooperation with NASA Langley Research Center that allows for quantitative measurements of wall thickness in steam boilers. By determining the thickness of the walls, one can easily determine how much thinning has occurred due to corrosion. This type of NDE can be applied to the inspection of wings and fuselages on aircraft and spaceflight vehicles including the shuttle. The NDE technique employs the linear movement of a heat source (lamp) and an infrared imager that is situated at a fixed distance behind the heat source. The instruments are aligned on a platform that moves up and down across the outer surface of a test sample. By analyzing the induced surface temperature variations, and processing images collected with the infrared imager, it can be determined where material loss of the tubes has occurred. After an image sequence has been collected, a line-by-line subtraction methodology is utilized to discard irrelevant information so that defects are displayed in a re-created image. The overall goal of this project is to provide a proof of concept for a portable, hand-operated thermographic line scanner that would provide an alternative to the existing mass- and power-intensive instrument that utilizes a cooled infrared imager. In this project, two different microbolometers are first analyzed using different metal- and carbon epoxy-based targets to determine which provides better resolution for detection of subsurface, manufactured defects. The feasibility of using uncooled bolometer technology to support the development of a portable instrument to conduct this type of NDE technique was proven.

  10. Mitochondria as an important target in heavy metal toxicity in rat hepatoma AS-30D cells

    SciTech Connect

    Belyaeva, Elena A. Dymkowska, Dorota; Wieckowski, Mariusz R.; Wojtczak, Lech

    2008-08-15

    The mechanisms of toxic effects of divalent cations of three heavy metals Hg, Cd and Cu in rat ascites hepatoma AS-30D cells cultivated in vitro were compared. It was found that the toxicity of these ions, applied in the micromolar range (10-500 {mu}M), decreased from Hg{sup 2+} (most toxic) to Cu{sup 2+} (least toxic). Hg{sup 2+} and Cd{sup 2+} produced a high percentage of cell death by both necrosis and apoptosis, whereas Cu{sup 2+} at concentrations up to 500 {mu}M was weakly effective. Hg{sup 2+} at concentration of 10 {mu}M appeared slightly uncoupling (i.e., stimulated resting state respiration and decreased the mitochondrial transmembrane potential), whereas it exerted a strong inhibitory effect on the respiratory chain and rapid dissipation of the membrane potential at higher concentrations. Cu{sup 2+} had inhibitory effect on cell respiration only at 500 {mu}M concentration and after incubation of 48 h but produced a significant uncoupling effect at lower concentrations. Cu{sup 2+} induced an early and sharp increase of intracellular production of reactive oxygen species (ROS). The action of Hg{sup 2+} and Cd{sup 2+} on ROS generation was biphasic. They stimulated ROS generation within the cells at low concentrations and at short incubation times but decreased ROS generation at higher concentrations and at longer incubation. It is concluded that mitochondria are an important target for toxic effects of Hg{sup 2+}, Cd{sup 2+} and Cu{sup 2+} in AS-30D rat hepatoma cells.

  11. Experimental and computational results for 1054-nm laser-induced shock effects in confined meteorite and metallic targets

    NASA Astrophysics Data System (ADS)

    Remo, John L.; Hammerling, Peter X.

    2000-08-01

    When a single-pulse high-power laser irradiates a surface at atmospheric pressure, a laser supported detonation (LSD) wave can form above the target surface. The high-pressure gas behind the LSD wave transfers momentum to the target. The laser target coupling is substantially reduced in vacuum, the coupling coefficient typically being an order of magnitude less than that when an atmosphere is present. Another pressure enhancement technique is to confine the laser-target interface. Confinement or 'tamping' also can substantially increase the momentum coupling to the target. Experiments tend to differ from one another based on the target size (thickness) and confinement geometry. This work describes and compares some experimental results for metallic targets irradiated by 1054 nm radiation in the GW/cm2 range and interprets them in terms of simple models. As will be discussed in this paper, such models predict a weak sensitivity to target materials but results are likely to be different for inhomogeneous materials as has been seen in recent experiments on iron-nickel and stony meteorites.

  12. Studies of craters’ dimension for long-pulse laser ablation of metal targets at various experimental conditions

    NASA Astrophysics Data System (ADS)

    Margarone, D.; Láska, L.; Torrisi, L.; Gammino, S.; Krása, J.; Krouský, E.; Parys, P.; Pfeifer, M.; Rohlena, K.; Rosiñski, M.; Ryc, L.; Skála, J.; Ullschmied, J.; Velyhan, A.; Wolowski, J.

    2008-02-01

    Long pulse laser shots of the PALS iodine laser in Prague have been used to obtain metal target ablation at various experimental conditions. Attention is paid mainly to the dependencies of the crater diameter on the position of minimum laser-focus spot with regard to the target surface, by using different laser wavelengths and laser energies. Not only a single one, but two minima, independently of the wavelength, of the target irradiation angle and of the target material, were recorded. Significant asymmetries, ascribed to the non-linear effects of intense laser beam with pre-formed plasma, were found, too. Estimations of ejected mass per laser pulse are reported and used to calculate the efficiency of laser-driven loading. Results on metal target ablation and crater formation at high intensities (from 2 × 10 13 to 3 × 10 16 W/cm 2) are presented and compared. Crater depth, crater diameter and etching yield are reported versus the laser energy, in order to evaluate the ablation threshold fluence.

  13. Mechanical properties of lightweight metals from first principles orbital-free density functional theory

    NASA Astrophysics Data System (ADS)

    Shin, Ilgyou

    Accurate quantum mechanics theory and a fast linear-scaling algorithm that OFDFT adopts can create a great synergy to understand underlying atomic-scale physics of material properties and to provide accurate predictions of mesoscale properties for novel materials. We employ OFDFT simulations to study mechanical properties of lightweight metals: FCC Al, HCP Mg, and BCC Mg-Li alloys. The accuracy of OFDFT is mainly governed by two approximations: an electron kinetic energy density functional (KEDF) and a local electron-ion pseudopotential (LPS). We propose and validate a new KEDF for semiconductors and a new LPS for Mg-Li alloys. First, we investigate dislocation structures in Al. OFDFT-optimized dislocation structures are consistent with an experimental estimation. We then calculate the Peierls stress (sigmap) of Al dislocations. We discover two possible screw dislocation structures (dissociated and undissociated), whose sigmaps differ by two orders of magnitude. This result may resolve the decades-long mystery in FCC metals regarding the two orders of magnitude discrepancy in sigmap measurements. Next, we investigate plastic properties of various slip systems in Mg. We propose that strong anisotropies in stacking fault energy surfaces, cross-slip of screw dislocations to basal planes, and the compact nature of edge dislocations on non-basal planes are responsible for Mg's limited ductility. We then explicitly calculate the sigma p of Mg dislocations on the basal and prismatic slip planes. OFDFT-calculated sigma ps are in excellent agreement with experiments. We predict a basal edge dislocation can move 59 times more readily than a prismatic one, which gives rise to the characteristically large anisotropy in Mg's plasticity. Next, we study plasticity of novel BCC Mg-Li alloys as potential lightweight metals. We propose alloys with 31-50 at.% Li can maximize potential strength while increasing ductility compared to Mg, with their sigmaps predicted to be ~0.3 GPa

  14. Metal complex mediated conjugation of peptides to nucleus targeting acridine orange: a modular concept for dual-modality imaging agents.

    PubMed

    Zelenka, Karel; Borsig, Lubor; Alberto, Roger

    2011-05-18

    To target the nucleus of specific cells, trifunctional radiopharmaceuticals are required. We have synthesized acridine orange derivatives which comprise an imidazole-2-carbaldehyde function for coordination to the [Re(CO)₃](+) or [(99m)Tc(CO)₃](+) core. Upon coordination, this aldehyde is activated and rapidly forms imines with amines from biological molecules. This metal-mediated imine formation allows for the conjugation of a nuclear targeting portion with a specific cell receptor binding function directly on the metal. With this concept, we have conjugated the acridine orange part to a bombesin peptide directly on the (99m)Tc core and in one step. In addition, a linker containing an integrated disulfide has been coupled to bombesin. LC/MS study showed that the disulfide was reductively cleaved with a 60 min half-life time. This concept enables the combination of a nucleus targeting agent with a specific cell receptor molecule directly on the metal without the need of separate conjugation prior to labeling, thus, a modular approach. High uptake of the BBN conjugate into PC-3 cells was detected by fluorescence microscopy, whereas uptake into B16BL6 cells was negligible.

  15. Understanding human papillomavirus vaccination intentions: comparative utility of the theory of reasoned action and the theory of planned behavior in vaccine target age women and men.

    PubMed

    Fisher, William A; Kohut, Taylor; Salisbury, Claire M A; Salvadori, Marina I

    2013-10-01

    Human papillomavirus (HPV) is an exceedingly prevalent sexually transmitted infection with serious medical, sexual, and relationship consequences. HPV vaccine protection is available but vaccine uptake is very inconsistent. This research applies two major theories of health behavior uptake, the Theory of Reasoned Action and the Theory of Planned Behavior, in an effort to understand intentions to receive HPV vaccine among vaccine target age women and men. The Theory of Reasoned Action asserts that attitudes toward HPV vaccination and perceptions of social support for HPV vaccination are the determinants of intentions to be vaccinated, whereas the Theory of Planned Behavior holds that attitudes toward vaccination, perceptions of social support for vaccination, and perceived ability to get vaccinated are the determinants of intentions to be vaccinated. Canadian university men (N=118) and women (N=146) in the HPV vaccine target age range took part in this correlational study online. Participants completed standard measures of attitudes toward HPV vaccination, perceptions of social support for vaccination, perceived ability to get vaccinated, beliefs about vaccination, and intentions to be vaccinated in the coming semester. Findings confirmed the propositions of the Theory of Reasoned Action and indicated that attitudes toward undergoing HPV vaccination and perceptions of social support for undergoing HPV vaccination contributed uniquely to the prediction of women's (R2=0.53) and men's (R2=0.44) intentions to be vaccinated in the coming semester. Clinical and public health education should focus on strengthening attitudes and perceptions of social support for HPV vaccination, and on the basic beliefs that appear to underlie attitudes and perceptions of social support for HPV vaccination, in efforts to promote HPV vaccine uptake. © 2013 International Society for Sexual Medicine.

  16. FY2014 FES (Fusion Energy Sciences) Theory & Simulation Performance Target, Final Report

    SciTech Connect

    Fu, Guoyong; Budny, Robert; Gorelenkov, Nikolai; Poli, Francesca; Chen, Yang; McClenaghan, Joseph; Lin, Zhihong; Spong, Don; Bass, Eric; Waltz, Ron

    2014-10-14

    We report here the work done for the FY14 OFES Theory Performance Target as given below: "Understanding alpha particle confinement in ITER, the world's first burning plasma experiment, is a key priority for the fusion program. In FY 2014, determine linear instability trends and thresholds of energetic particle-driven shear Alfven eigenmodes in ITER for a range of parameters and profiles using a set of complementary simulation models (gyrokinetic, hybrid, and gyrofluid). Carry out initial nonlinear simulations to assess the effects of the unstable modes on energetic particle transport". In the past year (FY14), a systematic study of the alpha-driven Alfven modes in ITER has been carried out jointly by researchers from six institutions involving seven codes including the transport simulation code TRANSP (R. Budny and F. Poli, PPPL), three gyrokinetic codes: GEM (Y. Chen, Univ. of Colorado), GTC (J. McClenaghan, Z. Lin, UCI), and GYRO (E. Bass, R. Waltz, UCSD/GA), the hybrid code M3D-K (G.Y. Fu, PPPL), the gyro-fluid code TAEFL (D. Spong, ORNL), and the linear kinetic stability code NOVA-K (N. Gorelenkov, PPPL). A range of ITER parameters and profiles are specified by TRANSP simulation of a hybrid scenario case and a steady-state scenario case. Based on the specified ITER equilibria linear stability calculations are done to determine the stability boundary of alpha-driven high-n TAEs using the five initial value codes (GEM, GTC, GYRO, M3D-K, and TAEFL) and the kinetic stability code (NOVA-K). Both the effects of alpha particles and beam ions have been considered. Finally, the effects of the unstable modes on energetic particle transport have been explored using GEM and M3D-K.

  17. Weight Gain Prevention: Identifying Theory-Based Targets for Health Behavior Change in Young Adults

    PubMed Central

    Strong, Kathryn A.; Parks, Serena L.; Anderson, Eileen; Winett, Richard; Davy, Brenda M.

    2008-01-01

    Young adults attending college are more vulnerable to weight gain than the general population. We sought to identify health behavior change targets related to weight management in college students. Based on the social cognitive theory model for health behavior change, we investigated the health-related lifestyle behaviors and physiological characteristics of this population. Forty-three college students (18.3±0.1 years) completed a series of quantitative assessments (body weight and composition, cardiorespiratory fitness, diet and activity habits) and structured qualitative assessments (structured interview or focus group). Participants were predominantly normal-weight (mean BMI=22.2±0.4 kg/m2) and fit (VO2max = 50.5±1.5 ml/kg/min). However, healthy eating and physical activity were not considered high priorities, despite having ample free time, high exercise self-efficacy, positive outcome expectations for exercise, and a desire to exercise more. Participants reported that regularly engaging in exercise was difficult. This may have been due to poor planning/time management, satisfaction with body image, lack of accountability and feelings of laziness. Dietary patterns generally met recommendations but were low in fruits, vegetables and whole grains. Social support for exercise and healthy dietary habits were important factors associated with health behaviors. Students reported a decline in exercise and dietary habits relative to high school, which may contribute to college weight gain. Our results suggest that this population may not have adequate self-regulatory skills, such as planning and self-monitoring, to maintain healthy behaviors in the college environment. Dietitians working with young adults attending college may use these findings to guide the behavioral therapy component of their weight management medical nutrition therapy goals and outcomes. PMID:18926139

  18. Automatic system of production, transfer and processing of coin targets for the production of metallic radioisotopes

    NASA Astrophysics Data System (ADS)

    Pellicioli, M.; Ouadi, A.; Marchand, P.; Foehrenbacher, T.; Schuler, J.; Dick-Schuler, N.; Brasse, D.

    2017-05-01

    The work presented in this paper gathers three main technical developments aiming at 1) optimizing nuclide production by the mean of solid targets 2) automatically transferring coin targets from vault to hotcell without human intervention 3) processing target dilution and purification in hotcell automatically. This system has been installed on a ACSI TR24 cyclotron in Strasbourg France.

  19. Density functional theory study of CO2 capture with transition metal oxides and hydroxides

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Duan, Yuhua; Johnson, Karl

    2012-02-01

    We have used density functional theory (DFT) employing several different exchange-correlation functionals (PW91, PBE, PBEsol, TPSS, and revTPSS) coupled with lattice dynamics calculations to compute the thermodynamics of CO2 absorption/desorption reactions for selected transition metal oxides, (TMO), and hydroxides, TM(OH)2, where TM = Mn, Ni, Zn, and Cd. The van't Hoff plots, which describe the reaction equilibrium as a function of the partial pressures of CO2 and H2O as well as temperature, were computed from DFT total energies, complemented by the free energy contribution of solids and gases from lattice dynamics and statistical mechanics, respectively. We find that the PBEsol functional calculations are generally in better agreement with experimental phase equilibrium data compared with the other functionals we tested. In contrast, the formation enthalpies of the compounds are better computed with the TPSS and revTPSS functionals. The PBEsol functional gives better equilibrium properties due to a partial cancellation of errors in the enthalpies of formation. We have identified all CO2 capture reactions that lie on the Gibbs free energy convex hull as a function of temperature and the partial pressures of CO2 and H2O for all TMO and TM(OH)2 systems studied here.

  20. Electrolyte decomposition on Li-metal surfaces from first-principles theory.

    PubMed

    Ebadi, Mahsa; Brandell, Daniel; Araujo, C Moyses

    2016-11-28

    An important feature in Li batteries is the formation of a solid electrolyte interphase (SEI) on the surface of the anode. This film can have a profound effect on the stability and the performance of the device. In this work, we have employed density functional theory combined with implicit solvation models to study the inner layer of SEI formation from the reduction of common organic carbonate electrolyte solvents (ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate) on a Li metal anode surface. Their stability and electronic structure on the Li surface have been investigated. It is found that the CO producing route is energetically more favorable for ethylene and propylene carbonate decomposition. For the two linear solvents, dimethyl and diethyl carbonates, no significant differences are observed between the two considered reduction pathways. Bader charge analyses indicate that 2 e(-) reductions take place in the decomposition of all studied solvents. The density of states calculations demonstrate correlations between the degrees of hybridization between the oxygen of adsorbed solvents and the upper Li atoms on the surface with the trend of the solvent adsorption energies.

  1. Electrolyte decomposition on Li-metal surfaces from first-principles theory

    NASA Astrophysics Data System (ADS)

    Ebadi, Mahsa; Brandell, Daniel; Araujo, C. Moyses

    2016-11-01

    An important feature in Li batteries is the formation of a solid electrolyte interphase (SEI) on the surface of the anode. This film can have a profound effect on the stability and the performance of the device. In this work, we have employed density functional theory combined with implicit solvation models to study the inner layer of SEI formation from the reduction of common organic carbonate electrolyte solvents (ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate) on a Li metal anode surface. Their stability and electronic structure on the Li surface have been investigated. It is found that the CO producing route is energetically more favorable for ethylene and propylene carbonate decomposition. For the two linear solvents, dimethyl and diethyl carbonates, no significant differences are observed between the two considered reduction pathways. Bader charge analyses indicate that 2 e- reductions take place in the decomposition of all studied solvents. The density of states calculations demonstrate correlations between the degrees of hybridization between the oxygen of adsorbed solvents and the upper Li atoms on the surface with the trend of the solvent adsorption energies.

  2. Theory of molecule metal nano-particle interaction: Quantum description of plasmonic lasing.

    PubMed

    Zhang, Yuan; May, Volkhard

    2015-06-14

    The recent quantum description of a few molecules interacting with plasmon excitations of a spherical metal nano-particle (MNP) as presented in the work of Zhang and May [Phys. Rev. B 89, 245441 (2014)] is extended to systems with up to 100 molecules. We demonstrate the possibility of multiple plasmon excitation and describe their conversion into far-field photons. The calculation of the steady-state photon emission spectrum results in an emission line-narrowing with an increasing number of molecules coupled to the MNP. This is considered as an essential criterion for the action of the molecule-MNP system as a nano-laser. To have exact results for systems with up to 20 molecules, we proceed as recently described by Richter et al. [Phys. Rev. B 91, 035306 (2015)] and study a highly symmetric system. It assumes an equatorial and regular position of identical molecules in such a way that their coupling is dominated by that to a single MNP dipole-plasmon excitation. Changing from the exact computation of the system's complete density matrix to an approximate theory based on the reduced plasmon density matrix, systems with more than 100 molecules can be described. Finally, nonlinear rate equations are proposed which reproduce the mean number of excited plasmons in their dependence of the number of molecules and of the used pump rate. The second order intensity correlation function of emitted photons is related to the respective plasmon correlation function which approaches unity when the system starts lasing.

  3. Metallic magnetism at finite temperatures studied by relativistic disordered moment description: Theory and applications

    NASA Astrophysics Data System (ADS)

    Deák, A.; Simon, E.; Balogh, L.; Szunyogh, L.; dos Santos Dias, M.; Staunton, J. B.

    2014-06-01

    We develop a self-consistent relativistic disordered local moment (RDLM) scheme aimed at describing finite-temperature magnetism of itinerant metals from first principles. Our implementation in terms of the Korringa-Kohn-Rostoker multiple-scattering theory and the coherent potential approximation allows us to relate the orientational distribution of the spins to the electronic structure, thus a self-consistent treatment of the distribution is possible. We present applications for bulk bcc Fe, L10-FePt, and FeRh ordered in the CsCl structure. The calculations for Fe show significant variation of the local moments with temperature, whereas according to the mean-field treatment of the spin fluctuations the Curie temperature is overestimated. The magnetic anisotropy of FePt alloys is found to depend strongly on intermixing between nominally Fe and Pt layers, and it shows a power-law behavior as a function of magnetization for a broad range of chemical disorder. In the case of FeRh we construct a lattice constant vs temperature phase diagram and determine the phase line of metamagnetic transitions based on self-consistent RDLM free-energy curves.

  4. Theory of molecule metal nano-particle interaction: Quantum description of plasmonic lasing

    SciTech Connect

    Zhang, Yuan May, Volkhard

    2015-06-14

    The recent quantum description of a few molecules interacting with plasmon excitations of a spherical metal nano-particle (MNP) as presented in the work of Zhang and May [Phys. Rev. B 89, 245441 (2014)] is extended to systems with up to 100 molecules. We demonstrate the possibility of multiple plasmon excitation and describe their conversion into far-field photons. The calculation of the steady-state photon emission spectrum results in an emission line-narrowing with an increasing number of molecules coupled to the MNP. This is considered as an essential criterion for the action of the molecule-MNP system as a nano-laser. To have exact results for systems with up to 20 molecules, we proceed as recently described by Richter et al. [Phys. Rev. B 91, 035306 (2015)] and study a highly symmetric system. It assumes an equatorial and regular position of identical molecules in such a way that their coupling is dominated by that to a single MNP dipole-plasmon excitation. Changing from the exact computation of the system’s complete density matrix to an approximate theory based on the reduced plasmon density matrix, systems with more than 100 molecules can be described. Finally, nonlinear rate equations are proposed which reproduce the mean number of excited plasmons in their dependence of the number of molecules and of the used pump rate. The second order intensity correlation function of emitted photons is related to the respective plasmon correlation function which approaches unity when the system starts lasing.

  5. Interactions between copper and transition metal dichalcogenides: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Helfrecht, Benjamin A.; Guzman, David M.; Onofrio, Nicolas; Strachan, Alejandro H.

    2017-08-01

    We characterized the interface between fcc Cu and various single-layer transition metal dichalcogenides (TMDs) using density functional theory calculations. We found that monolayer Mo, W, Nb, Ti, and V disulfides, diselenides, and ditellurides are stable on Cu(111) with binding energies higher than those of h -BN and graphene. An analysis of the electronic structure of the interfaces indicates partial covalent bonding and a complex redistribution of electronic density, consisting of electron accumulation in the gap region, depletion near the Cu and TMD surfaces, and charge density oscillations within both materials. The resulting net electric dipoles significantly alter the electron work function of the Cu surface. Interestingly, capping Cu(111) surfaces with group-IV and -V TMDs leads to an increase in the work function of up to 1 eV, while group-VI TMDs can decrease the work function by up to 1 eV. Finally, the complex charge distributions at the Cu/TMD interfaces include opposing dipoles and explain the fact that net dipoles associated with Cu/TMD interfaces are comparable to or smaller than those of Cu/graphene and Cu/h -BN, even though the Cu/TMD binding energies are significantly higher.

  6. Theory-guided design of nanoscale multi-metallic catalysts for fuel cells

    SciTech Connect

    Balbuena, Perla B; Seminario, Jorge M

    2007-04-30

    Research goals This project aims to address the following aspects of the oxygen reduction reaction on multimetallic nanocatalysts: 1. Elucidate physical and chemical aspects of electron and proton transfer 2. Incorporate local and nonlocal field effects to the analysis 3. Investigate the performance of bimetallic and multimetallic nanocatalytic ensembles a. Explore combinations of Pt with other non-precious metals b. Explore theoretically the performance of active catalytic sites/substrate/proton-carrier systems towards maximizing oxygen reduction currents. c. Explore compatibility catalyst/substrate/ionic carrier. 4. Investigate nanocatalyst stability under the reaction conditions, effects of pH and overall composition; surface segregation phenomena in nanoclusters. 5. Carry out theory-guided experiments involving electron transfer as proof of concept. Specific objectives for the previous year: Determine trends for catalytic activity towards the oxygen reduction reaction and stability against dissolution of Pt-based alloy nanocatalysts exposed to acid medium. Reactivity and stability trends are sought as a function of surface composition and atomic distribution in the first 2-3 surface layers. Investigate possible mechanisms for metal dissolution. Developing and testing new computational approaches to characterize the catalytic interface. Significant achievements and results for the previous year: Catalytic activity: Variations in atomic distribution (mixed vs. ordered structures) analyzed in small clusters and extended surfaces of PtxPdy at fixed overall composition revealed polarization effects caused by specific electronic density distributions determining trends in reactivity. We studied other bimetallic and trimetallic systems to characterize the ability of various alloy elements for modifying Pt reactivity. We found an interesting parallelism between metalloenzymes and bimetallic nanocatalysts for the oxygen reduction reaction. Along the same lines, we are

  7. Methods of studying the composition of the low-energy ion beams and the surface of deuterated-metal targets

    NASA Astrophysics Data System (ADS)

    Kuznetsov, S. I.; Dudkin, G. N.; Nechaev, B. A.; Bystritsky, I. D.

    2016-06-01

    To study the reactions between the light nuclei (dd, pd, d3He, d4He) with ultralow collision energies, there is a need to obtain the high-precision experimental results on the purity of the target surface saturated with the hydrogen isotopes (protium, deuterium) and on the number and composition of the accelerated particles falling on the target. To solve this problem, a method has been developed and tested for operational testing the quality of the vacuum system and the cleaning of the metal target surface saturated with deuterium. The paper also presents the measurement results for the true flow of the accelerated ions and neutrals of hydrogen (deuterium), using a multigrid electrostatic energy analyzer. The values of the ion and neutral components of the accelerated particle flow were received for the Hall ion source. The values of the secondary electron emission coefficients were determined for a number of the metal targets (Cu, Ti, Ta, Zr) in the range of the accelerated ion energies of 3-12 keV.

  8. Proceedings of Soil Decon `93: Technology targeting radionuclides and heavy metals

    SciTech Connect

    Not Available

    1993-09-01

    The principal objective for convening this workshop was to exchange ideas and discuss with scientists and engineers methods for removing radionuclides and/or toxic metals from soils. Over the years there have been numerous symposia, conferences, and workshops directed at soil remediation. However, this may be the first where the scope was narrowed to the removal of radionuclides and toxic metals from soils. The intent was to focus on the separation processes controlling the removal of the radionuclide and/or metal from soil. Its purpose was not intended to be a soil washing/leaching workshop, but rather to identify a variety or combination of processes (chemical, physical, and biological) that can be used in concert with the applicable engineering approaches to decontaminate soils of radionuclides and toxic metals. Abstracts and visual aids used by the speakers of the workshop are presented in this document.

  9. Microjet formation and hard x-ray production from a liquid metal target irradiated by intense femtosecond laser pulses

    SciTech Connect

    Lar'kin, A. Uryupina, D.; Ivanov, K.; Savel'ev, A.; Bonnet, T.; Gobet, F.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Spohr, K.; Breil, J.; Chimier, B.; Dorchies, F.; Fourment, C.; Leguay, P.-M.; Tikhonchuk, V. T.

    2014-09-15

    By using a liquid metal as a target one may significantly enhance the yield of hard x-rays with a sequence of two intense femtosecond laser pulses. The influence of the time delay between the two pulses is studied experimentally and interpreted with numerical simulations. It was suggested that the first arbitrary weak pulse produces microjets from the target surface, while the second intense pulse provides an efficient electron heating and acceleration along the jet surface. These energetic electrons are the source of x-ray emission while striking the target surface. The microjet formation is explained based on the results given by both optical diagnostics and hydrodynamic modeling by a collision of shocks originated from two distinct zones of laser energy deposition.

  10. Theory of catalytic dissociation of hydrogen atoms on a metal surface

    SciTech Connect

    Konstantinov, O. V. Dymnikov, V. D.; Mittsev, M. A.

    2008-08-15

    The model of hydrogen atom ionization near a metal surface is discussed on the basis of a comparison between the metal work function and the atom ionization energy. In the theoretical calculation, it is shown that the hydrogen atom ionization energy decreases when the atom approaches the metal surface. The ionization energy vanishes when the distance between proton and the metal surface is somewhat less than the Bohr radius.

  11. Crystal structure of the pressure-induced metallic phase of SiH4 from ab initio theory.

    PubMed

    Kim, D Y; Scheicher, R H; Lebègue, S; Prasongkit, J; Arnaud, B; Alouani, M; Ahuja, R

    2008-10-28

    Metallization of pure solid hydrogen is of great interest, not least because it could lead to high-temperature superconductivity, but it continues to be an elusive goal because of great experimental challenges. Hydrogen-rich materials, in particular, CH(4), SiH(4), and GeH(4), provide an opportunity to study related phenomena at experimentally achievable pressures, and they too are expected to be high-temperature superconductors. Recently, the emergence of a metallic phase has been observed in silane for pressures just above 60 GPa. However, some uncertainty exists about the crystal structure of the discovered metallic phase. Here, we show by way of elimination, that a single structure that possesses all of the required characteristics of the experimentally observed metallic phase of silane from a pool of plausible candidates can be identified. Our density functional theory and GW calculations show that a structure with space group P4/nbm is metallic at pressures >60 GPa. Based on phonon calculations, we furthermore demonstrate that the P4/nbm structure is dynamically stable at >43 GPa and becomes the ground state at 97 GPa when zero-point energy contributions are considered. These findings could lead the way for further theoretical analysis of metallic phases of hydrogen-rich materials and stimulate experimental studies.

  12. The electrostatic interaction of an external charged system with a metal surface: a simplified density functional theory approach

    NASA Astrophysics Data System (ADS)

    Scivetti, Iván; Persson, Mats

    2013-09-01

    As a first step to meet the challenge to calculate the electronic structure and total energy of charged states of atoms and molecules adsorbed on ultrathin insulating films supported by a metallic substrate using density functional theory (DFT), we have developed a simplified new DFT scheme that only describes the electrostatic interaction of an external charged system with a metal surface. This purely electrostatic interaction is obtained from the assumption that the electron densities of the two fragments (charged system and metal surface) are non-overlapping and by neglecting non-local exchange-correlation effects such as the van der Waals interactions between the two fragments. In addition, the response of the metal surface to the electrostatic potential from the charged system is treated to linear order, whereas the charged system is treated fully within DFT. In particular, we consider the classical perfect conductor model for the metal response, although our formalism is not limited to this approximation. To test the computational implementation of this new scheme, we have considered the case of a Na+ cation interacting with a perfect conductor. The application of this new methodology to realistic problems involving charged systems adsorbed on insulating films supported by a metal surface are deferred to a separate following publication.

  13. Electronic Structure of Semiconducting and Metallic Tubes in TiO2/Carbon Nanotube Heterojunctions: Density Functional Theory Calculations.

    PubMed

    Long, Run

    2013-04-18

    The electronic structure of the TiO2(110) surface interfaced with both a semiconducting and metallic carbon nanotube (CNT) was investigated by density functional theory. Our simulations rationalized visible light photocatalytic activity of CNT/TiO2 hybrid materials higher than that under ultraviolent irradiation and showed that the photoactivity of a semiconducting CNT decorating TiO2 is better than that of the metallic CNT/TiO2 system due to efficient charge separation across the interface. This suggests that semiconducting CNT/TiO2 could be a potential photovoltaic material. In contrast, strong interaction between a metallic CNT and TiO2 leads to large charge transfer. Such charge transfer reduces the built-in potential, in turn resulting in inefficient charge separation. Functionalizing the metallic CNT with a small platinum cluster can increase the built-in potential and drive charge separation. These observations indicate that the CNT/TiO2 interface can be a potential photovoltaic material by a metal cluster decorating a CNT despite a real tube being composed of the mixture of metallic and semiconducting CNTs.

  14. Classification of processes for the atomic layer deposition of metals based on mechanistic information from density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Elliott, S. D.; Dey, G.; Maimaiti, Y.

    2017-02-01

    Reaction cycles for the atomic layer deposition (ALD) of metals are presented, based on the incomplete data that exist about their chemical mechanisms, particularly from density functional theory (DFT) calculations. ALD requires self-limiting adsorption of each precursor, which results from exhaustion of adsorbates from previous ALD pulses and possibly from inactivation of the substrate through adsorption itself. Where the latter reaction does not take place, an "abbreviated cycle" still gives self-limiting ALD, but at a much reduced rate of deposition. Here, for example, ALD growth rates are estimated for abbreviated cycles in H2-based ALD of metals. A wide variety of other processes for the ALD of metals are also outlined and then classified according to which a reagent supplies electrons for reduction of the metal. Detailed results on computing the mechanism of copper ALD by transmetallation are summarized and shown to be consistent with experimental growth rates. Potential routes to the ALD of other transition metals by using complexes of non-innocent diazadienyl ligands as metal sources are also evaluated using DFT.

  15. Classification of processes for the atomic layer deposition of metals based on mechanistic information from density functional theory calculations.

    PubMed

    Elliott, S D; Dey, G; Maimaiti, Y

    2017-02-07

    Reaction cycles for the atomic layer deposition (ALD) of metals are presented, based on the incomplete data that exist about their chemical mechanisms, particularly from density functional theory (DFT) calculations. ALD requires self-limiting adsorption of each precursor, which results from exhaustion of adsorbates from previous ALD pulses and possibly from inactivation of the substrate through adsorption itself. Where the latter reaction does not take place, an "abbreviated cycle" still gives self-limiting ALD, but at a much reduced rate of deposition. Here, for example, ALD growth rates are estimated for abbreviated cycles in H2-based ALD of metals. A wide variety of other processes for the ALD of metals are also outlined and then classified according to which a reagent supplies electrons for reduction of the metal. Detailed results on computing the mechanism of copper ALD by transmetallation are summarized and shown to be consistent with experimental growth rates. Potential routes to the ALD of other transition metals by using complexes of non-innocent diazadienyl ligands as metal sources are also evaluated using DFT.

  16. Targeted therapy in the treatment of solid tumors: practice contradicts theory.

    PubMed

    Zhukov, N V; Tjulandin, S A

    2008-05-01

    The basic principle of targeted therapy formulated about ten years ago consists in the design and application of drugs specifically directed against well-defined targets that are critical for tumor survival and not compromising for normal organs and tissues. The past decade has been marked by the appearance of an immense diversity of novel antitumor agents with claimed targeted action. Unfortunately, despite indisputable progress in clinical settings, some popular drugs against solid tumors (e.g. bevacizumab, trastuzumab, erlotinib, gefitinib) nominally assigned to targeted-action drugs, cannot actually be classified with this group being nonconforming to a priori stated goals of targeted therapy. The state-of-the-art and current problems in targeted therapy of solid tumors are reviewed.

  17. Actinide chelation: biodistribution and in vivo complex stability of the targeted metal ions.

    PubMed

    Kullgren, Birgitta; Jarvis, Erin E; An, Dahlia D; Abergel, Rebecca J

    2013-01-01

    Because of the continuing use of nuclear fuel sources and heightened threats of nuclear weapon use, the amount of produced and released radionuclides is increasing daily, as is the risk of larger human exposure to fission product actinides. A rodent model was used to follow the in vivo distribution of representative actinides, administered as free metal ions or complexed with chelating agents including diethylenetriamine pentaacetic acid (DTPA) and the hydroxypyridinonate ligands 3,4,3-LI(1,2-HOPO) and 5-LIO(Me-3,2-HOPO). Different metabolic pathways for the different metal ions were evidenced, resulting in intricate ligand- and metal-dependent decorporation mechanisms. While the three studied chelators are known for their unrivaled actinide decorporation efficiency, the corresponding metal complexes may undergo in vivo decomposition and release metal ions in various biological pools. This study sets the basis to further explore the metabolism and in vivo coordination properties of internalized actinides for the future development of viable therapeutic chelating agents.

  18. Cognitive Targeting: A Coercive Air Power Theory for Conventional Escalation Control Against Nuclear Armed Adversaries

    DTIC Science & Technology

    2016-06-01

    knowledge of the subject guided my efforts and focused my attention toward the correct framing of the problem. Additionally, his experience and...This study analyses the applicability of three operational targeting paradigms to coerce a nuclear-armed adversary in a regional crisis, while...principles and elements of war and understand the coercive ability of utility targeting (a capabilities-based targeting paradigm , CBTP), axiological

  19. Modeling of remelting processes of metal targets using pulses of continuous laser with pre-impulses

    NASA Astrophysics Data System (ADS)

    Jach, Karol; Marczak, Jan; Świerczyński, Robert; Strzelec, Marek; Ostrowski, Roman; Sarzyński, Antoni; Skrzeczanowski, Wojciech; Rycyk, Antoni; CzyŻ, Krzysztof

    2016-12-01

    The study presents preliminary results of theoretical analyses concerning interaction of quasi-cw laser radiation with an aluminium target. The range of laser power the authors were interested in was from 1 to 10 kW, and target thicknesses from 0.1 to 1 cm. It was also assumed that a laser beam diameter on the target (Al) was around 0.5 cm. A mathematicalphysical model of the phenomenon was based on the equation of conservation of energy (spatially one-dimensional model - (z,t)) taking into account: radiation absorption and transport inside the target, heat conduction, reflection of part of radiation from the target's surface, and heat losses in the processes of melting and evaporation. Coefficients of light absorption and reflection from the target's surface were described with semi-empirical expressions, which took into account their dependence on the temperature and density. Initially, a case of target static during heating was considered. Subsequently, the problem of enhancement of radiation interaction with the target (decrease of reflection coefficient) by the use of short (< 20 ns), high power pre-impulse was analyzed. The last case needed expansion of a set of equations with the continuity equation and the equation of motion, to take into account evaporation of target's surface under influence of the pre-impulse. It was shown that thermal effect of the pre-impulse is practically not influencing final depths of target remelting. On the other hand, damage (matting) of the target's surface by the pre-impulse, causing the decrease of reflection coefficient can have a substantial influence on the remelting depth.

  20. Scaling Theory of a Compressibility-Driven Metal-Insulator Transition in a Two-Dimensional Electron Fluid.

    PubMed

    Belitz, D; Kirkpatrick, T R

    2016-12-02

    We present a scaling description of a metal-insulator transition in two-dimensional electron systems that is driven by a vanishing compressibility rather than a vanishing diffusion coefficient. A small set of basic assumptions leads to a consistent theoretical framework that is compatible with existing transport and compressibility measurements, and allows us to make predictions for other observables. We also discuss connections between these ideas and other theories of transitions to an incompressible quantum fluid.

  1. A Density Functional Theory Analysis of Trends in Glycerol Decomposition on Close-Packed Transition Metal Surfaces

    SciTech Connect

    Liu, Bin; Greeley, Jeffrey P.

    2013-05-07

    We describe an accelerated density functional theory (DFT)-based computational strategy to determine trends in the decomposition of glycerol via elementary dehydrogenation, C–C, and C–O bond scission reactions on close-packed transition metal surfaces. Beginning with periodic DFT calculations on Pt(111), the thermochemistry of glycerol dehydrogenation on Pd(111), Rh(111), Cu(111) and Ni(111) is determined using a parameter-free, bond order-based scaling relationship. By combining the results with Brønsted–Evans–Polanyi (BEP) relationships to estimate elementary reaction barriers, free energy diagrams are developed on the respective metal surfaces, and trends concerning the relative selectivity and activity for C–C and C–O bond scission in glycerol on the various metals are obtained. The results are consistent with available theoretical and experimental literature and demonstrate that scaling relationships are capable of providing powerful insights into the catalytic chemistry of complex biomolecules.

  2. Polymer-based metal nano-coated disposable target for matrix-assisted and matrix-free laser desorption/ionization mass spectrometry.

    PubMed

    Bugovsky, Stefan; Winkler, Wolfgang; Balika, Werner; Koranda, Manfred; Allmaier, Günter

    2016-07-15

    The ideal MALDI/LDI mass spectrometry sample target for an axial TOF instrument possesses a variety of properties. Primarily, it should be chemically inert to the sample, i.e. analyte, matrix and solvents, highly planar across the whole target, without any previous chemical contact and provide a uniform surface to facilitate reproducible measurements without artifacts from previous sample or matrix compounds. This can be hard to achieve with a metal target, which has to be extensively cleaned every time after use. Any cleaning step may leave residues behind, may change the surface properties due to the type of cleaning method used or even cause microscopic scratches over time hence altering matrix crystallization behavior. Alternatively, use of disposable targets avoids these problems. As each possesses the same surface they therefore have the potential to replace the conventional full metal targets so commonly employed. Furthermore, low cost single-use targets with high planarity promise an easier compliance with GLP guidelines as they alleviate the problem of low reproducibility due to inconsistent sample/matrix crystallization and changes to the target surface properties. In our tests, polymeric metal nano-coated targets were compared to a stainless steel reference. The polymeric metal nano-coated targets exhibited all the performance characteristics for a MALDI MS sample support, and even surpassed the - in our lab commonly used - reference in some aspects like limit of detection. The target exhibits all necessary features such as electrical conductivity, vacuum, laser and solvent compatibility.

  3. Enantioselectivity of (321) chiral noble metal surfaces: A density functional theory study of lactate adsorption

    SciTech Connect

    Franke, J.-H.; Kosov, D. S.

    2013-12-14

    The adsorption of the chiral molecule lactate on the intrinsically chiral noble metal surfaces Pt(321), Au(321), and Ag(321) is studied by density functional theory calculations. We use the oPBE-vdW functional which includes van der Waals forces on an ab initio level. It is shown that the molecule binds via its carboxyl and the hydroxyl oxygen atoms to the surface. The binding energy is larger on Pt(321) and Ag(321) than on Au(321). An analysis of the contributions to the binding energy of the different molecular functional groups reveals that the deprotonated carboxyl group contributes most to the binding energy, with a much smaller contribution of the hydroxyl group. The Pt(321) surface shows considerable enantioselectivity of 0.06 eV. On Au(321) and Ag(321) it is much smaller if not vanishing. The chiral selectivity of the Pt(321) surface can be explained by two factors. First, it derives from the difference in van der Waals attraction of L- and D-lactate to the surface that we trace to differences in the binding energy of the methyl group. Second, the multi-point binding pattern for lactate on the Pt(321) surface is sterically more sensitive to surface chirality and also leads to large binding energy contributions of the hydroxyl group. We also calculate the charge transfer to the molecule and the work function to gauge changes in electronic structure of the adsorbed molecule. The work function is lowered by 0.8 eV on Pt(321) with much smaller changes on Au(321) and Ag(321)

  4. Detection of Metallic and Electronic Radar Targets by Acoustic Modulation of Electromagnetic Waves

    DTIC Science & Technology

    2017-07-01

    translational motion in the target, the electric -field intensity reflected by the target Erefl may be written as a sinusoid with a phase that is linearly...Rx radar receiver SCPI Standard Commands for Programmable Instruments Tx radar transmitter USB universal serial bus Approved for public

  5. Covalency in metal-oxygen multiple bonds evaluated using oxygen K-edge spectroscopy and electronic structure theory.

    PubMed

    Minasian, Stefan G; Keith, Jason M; Batista, Enrique R; Boland, Kevin S; Bradley, Joseph A; Daly, Scott R; Kozimor, Stosh A; Lukens, Wayne W; Martin, Richard L; Nordlund, Dennis; Seidler, Gerald T; Shuh, David K; Sokaras, Dimosthenis; Tyliszczak, Tolek; Wagner, Gregory L; Weng, Tsu-Chein; Yang, Ping

    2013-02-06

    Advancing theories of how metal-oxygen bonding influences metal oxo properties can expose new avenues for innovation in materials science, catalysis, and biochemistry. Historically, spectroscopic analyses of the transition metal MO(4)(x-) anions have formed the basis for new M-O bonding theories. Herein, relative changes in M-O orbital mixing in MO(4)(2-) (M = Cr, Mo, W) and MO(4)(-) (M = Mn, Tc, Re) are evaluated for the first time by nonresonant inelastic X-ray scattering, X-ray absorption spectroscopy using fluorescence and transmission (via a scanning transmission X-ray microscope), and time-dependent density functional theory. The results suggest that moving from Group 6 to Group 7 or down the triads increases M-O e* (π*) mixing; for example, it more than doubles in ReO(4)(-) relative to CrO(4)(2-). Mixing in the t(2)* orbitals (σ* + π*) remains relatively constant within the same Group, but increases on moving from Group 6 to Group 7. These unexpected changes in orbital energy and composition for formally isoelectronic tetraoxometalates are evaluated in terms of periodic trends in d orbital energy and radial extension.

  6. Perturbation theory of structure in classical liquid mixtures: Application to metallic systems near phase separation. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Henderson, R. L.

    1974-01-01

    The partial structure factors of classical simple liquid mixtures near phase separation are dicussed. The theory is developed for particles interacting through pair potentials, and is thus appropriate both to insulating fluids, and also to metallic systems if these may be described by an effective ion-ion pair interaction. The motivation arose from consideration of metallic liquid mixtures, in which resistive anomalies have been observed near phase separation. A mean field theory correction appropriate to 3 pair potential for the effects of correlated motions in the reference fluid is studied. The work is cast in terms of functions which are closely related to the direct correlation functions of Ornstein and Zernike. The results are qualitatively in accord with physical expectations. Quantitative agreement with experiment seems to turn on the selection of the hard core reference potential in terms of the metallic effective pair potential. It is suggested that the present effective pair potentials are perhaps not properly used to calculate the metallic structure factors at long wavelength.

  7. Localization of metal targets by time reversal of electromagnetic waves . 3D-numerical and experimental study

    NASA Astrophysics Data System (ADS)

    Benhamouche, Mehdi; Bernard, Laurent; Serhir, Mohammed; Pichon, Lionel; Lesselier, Dominique

    2013-11-01

    This paper proposes a criterion for locating obstacles by time reversal (TR) of electromagnetic (EM) waves based on the analysis of the density of EM energy map in time domain. Contrarily to a monochromatic study of the TR, the wide-band approach requires to determine the instant of the wave focus. This enables us to locate the focal spots that are indicative of the positions. The criterion proposed is compared to the inverse of the minimum entropy criterion as used in the literature [X. Xu, E.L. Miller, C.M. Rappaport, IEEE Trans. Geosci. Remote Sens. 41, 1804 (2003)]. An application for the localization of 3D metal targets is proposed using finite integration technique (FIT) as computational tool at the modeling stage. An experimental validation is presented for canonical three-dimensional configurations with two kinds of metal objects. Contribution to the Topical Issue "Numelec 2012", Edited by Adel Razek.

  8. A multi-element screening method to identify metal targets for blood biomonitoring in green sea turtles (Chelonia mydas).

    PubMed

    Villa, C A; Finlayson, S; Limpus, C; Gaus, C

    2015-04-15

    Biomonitoring of blood is commonly used to identify and quantify occupational or environmental exposure to chemical contaminants. Increasingly, this technique has been applied to wildlife contaminant monitoring, including for green turtles, allowing for the non-lethal evaluation of chemical exposure in their nearshore environment. The sources, composition, bioavailability and toxicity of metals in the marine environment are, however, often unknown and influenced by numerous biotic and abiotic factors. These factors can vary considerably across time and space making the selection of the most informative elements for biomonitoring challenging. This study aimed to validate an ICP-MS multi-element screening method for green turtle blood in order to identify and facilitate prioritisation of target metals for subsequent fully quantitative analysis. Multi-element screening provided semiquantitative results for 70 elements, 28 of which were also determined through fully quantitative analysis. Of the 28 comparable elements, 23 of the semiquantitative results had an accuracy between 67% and 112% relative to the fully quantified values. In lieu of any available turtle certified reference materials (CRMs), we evaluated the use of human blood CRMs as a matrix surrogate for quality control, and compared two commonly used sample preparation methods for matrix related effects. The results demonstrate that human blood provides an appropriate matrix for use as a quality control material in the fully quantitative analysis of metals in turtle blood. An example for the application of this screening method is provided by comparing screening results from blood of green turtles foraging in an urban and rural region in Queensland, Australia. Potential targets for future metal biomonitoring in these regions were identified by this approach. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. A HIGH FIELD PULSED SOLENOID MAGNET FOR LIQUID METAL TARGET STUDIES.

    SciTech Connect

    KIRK,H.G.IAROCCI,M.SCADUTO,J.WEGGEL,R.J.MULHOLLAND,G.MCDONALD,K.T.

    2003-05-12

    The target system for a muon collider/neutrino factory requires the conjunction of an intense proton beam, a high-Z liquid target and a high-field solenoid magnet. We describe here the design parameters for a pulsed solenoid, including the magnet cryogenic system and power supply, that can generate transient fields of greater than 10T with a flat-tops on the order of 1 second. It is envisioned to locate this device at the Brookhaven AGS for proof-of-principle testing of a liquid-jet target system with pulses of le13 protons.

  10. Viscosity contribution to the impurity resistivity of metals by means of the current-density functional theory

    NASA Astrophysics Data System (ADS)

    Nazarov, Vladimir U.; Vignale, Giovanni

    2008-03-01

    Within the time-dependent density functional theory formalism we relate the impurity resistivity ρ of a metal to the friction coefficient Q of the metal for the same impurity moving with the infinitesimally small velocity, i.e., ρ=niQ / ne^2 ,1), where ni and ne are the concentrations of the randomly distributed impurities and the valence electrons, respectively. While Eq.(1) occurs trivial within the single-particle theory with the scattering at the statically screened impurities, its general validity within the many-body theory with the dynamical exchange and correlation included presents a progress. We utilize results [1,2] on Q of the electron liquid to put the electron-electron scattering contribution into the terms of the viscosity coefficients [3]. Calculations of the residual resistivity of aluminum as a function of the atomic number of the impurity are performed, improving the agreement with experiment compared to the single- particle theory [4]. [1].V. U. Nazarov, J. M. Pitarke, C. S. Kim, and Y. Takada, Phys. Rev. B 71, 121106(R) (2005). [2].V. U. Nazarov, J. M. Pitarke, Y. Takada, G. Vignale, and Y.-C. Chang, Phys. Rev. B 76, 205103 (2007). [3].G. Vignale, C. A. Ullrich, and S. Conti, Phys. Rev. Lett. 79, 4878 (1997). [4].M. J. Puska and R. M. Nieminen, Phys. Rev. B 27, 6121 (1983).

  11. Inside HOLMES experiment: 163Ho metallic target production for the micro-calorimeter absorber

    NASA Astrophysics Data System (ADS)

    Pizzigoni, G.; Alpert, B.; Balata, M.; Bennett, D.; Biasotti, M.; Boragno, C.; Brofferio, C.; De Gerone, M.; Dressler, R.; Faverazani, M.; Ferri, E.; Folwer, J.; Gatti, F.; Giachero, A.; Heinitz, S.; Hilton, G.; Köster, U.; Lusignoli, M.; Maino, M.; Mates, J.; Nisi, S.; Nizzolo, R.; Nucciotti, A.; Pessina, G.; Puiu, A.; Ragazzi, S.; Reintsema, C.; Ribeiro Gomes, M.; Shmidt, D.; Schumann, D.; Sisti, M.; Swetz, D.; Terranova, F.; Ullom, J.; Day, P. K.

    2016-07-01

    The main goal in the HOLMES experiment is the neutrino mass measurement using an array of 1000 micro-calorimeters with standard metallic absorber. A good isotope for such measurement is the 163Ho, those isotopes embedded in the metallic absorber will be 1011-1013. Since 163Ho is not available in nature, a dedicated process must be set up to produce the amount needed for this neutrino mass experiment. The process with the highest born-up cross-section is the neutron irradiation of Er2O3 enriched in 162Er: 162Er(n,γ)163Er →163Ho+νe, where the decay is an EC with half-life of about 75 min and the (n,γ) is about 20 barns for thermal neutron. After the neutron irradiation in the oxide powder there are several radioactive isotopes which are potentially disturbing because of the background that they cause below 5 keV. The chemical separation of holmium from the irradiation enriched Er2O3 powder is therefore mandatory and will be performed by means of ion exchange chromatography. On the end of those processes the oxide powder enriched in 162Er will have the 163Ho isotope number required. The holmium chemical state influences the end point of the EC spectrum, in order to avoid such effect it is necessary to embed in the absorber only the metallic isotope. Reduction and distillation technique allowed us to obtain a pure metallic holmium, starting from natural oxide holmium. This technique will be applied on the irradiated oxide powder to obtain the metallic 163Ho, ready to be embedded in the micro-calorimeter absorber.

  12. Simple theory of elastically deformed metals: Surface energy, stress, and work function

    NASA Astrophysics Data System (ADS)

    Kiejna, Adam; Pogosov, Valentin V.

    2000-10-01

    The effect of uniaxial strain on surface properties of simple metals is considered within the stabilized jellium model. The modified equations for the stabilization energy of the deformed Wigner-Seitz cells are derived as a function of the bulk electron density and the given deformation. The model requires as input the density parameter rs, the Poisson ratio, and Young's modulus of the metal. The results for surface energy, surface stress, and work function of simple metals calculated within the self-consistent Kohn-Sham method are also presented and discussed. A consistent explanation of the independent experiments on stress-induced contact potential difference at metal surfaces is given.

  13. Physics of laser fusion. Vol. I. Theory of the coronal plasma in laser-fusion targets

    SciTech Connect

    Max, C.E.

    1981-12-01

    This monograph deals with the physics of the coronal region in laser fusion targets. The corona consists of hot plasma which has been evaporated from the initially solid target during laser heating. It is in the corona that the laser light is absorbed by the target, and the resulting thermal energy is conducted toward cold high-density regions, where ablation occurs. The topics to be discussed are theoretical mechanisms for laser light absorption and reflection, hot-electron production, and the physics of heat conduction in laser-produced plasmas. An accompanying monograph by H. Ahlstrom (Vol.II) reviews the facilities, diagnostics, and data from recent laser fusion experiments.

  14. Interaction Of CO2 Laser Nanosecond Pulse Train With The Metallic Targets In Optical Breakdown Regime

    NASA Astrophysics Data System (ADS)

    Apollonov, V. V.; Firsov, K. N.; Konov, V. I.; Nikitin, P. I.; Prokhorov, A. M.; Silenok, A. S.; Sorochenko, V. R.

    1986-11-01

    In the present paper the electric field and currents in the air-breakdown plasma, produced by the train of nanosecond pulses of TEA-002 - regenerative amplifier near the un-charged targets are studied. The breakdown thresholds and the efficiency of plasma-target heat transmission are also measured. The results of numerical calculations made for increasing of the pulse train contrast with respect to the background in a regenerative amplifier are advanced.

  15. Hypoxia-inducible factor prolyl hydroxylases as targets for neuroprotection by "antioxidant" metal chelators: From ferroptosis to stroke.

    PubMed

    Speer, Rachel E; Karuppagounder, Saravanan S; Basso, Manuela; Sleiman, Sama F; Kumar, Amit; Brand, David; Smirnova, Natalya; Gazaryan, Irina; Khim, Soah J; Ratan, Rajiv R

    2013-09-01

    Neurologic conditions including stroke, Alzheimer disease, Parkinson disease, and Huntington disease are leading causes of death and long-term disability in the United States, and efforts to develop novel therapeutics for these conditions have historically had poor success in translating from bench to bedside. Hypoxia-inducible factor (HIF)-1α mediates a broad, evolutionarily conserved, endogenous adaptive program to hypoxia, and manipulation of components of the HIF pathway is neuroprotective in a number of human neurological diseases and experimental models. In this review, we discuss molecular components of one aspect of hypoxic adaptation in detail and provide perspective on which targets within this pathway seem to be ripest for preventing and repairing neurodegeneration. Further, we highlight the role of HIF prolyl hydroxylases as emerging targets for the salutary effects of metal chelators on ferroptosis in vitro as well in animal models of neurological diseases.

  16. Hypoxia inducible factor prolyl hydroxylases as targets for neuroprotection by “antioxidant” metal chelators: from ferroptosis to stroke

    PubMed Central

    Speer, Rachel E.; Karuppagounder, Saravanan S.; Basso, Manuela; Sleiman, Sama; Kumar, Amit; Brand, David; Smirnova, Natalya; Gazaryan, Irina; Khim, Soah J.; Ratan, Rajiv R.

    2015-01-01

    Neurologic conditions including stroke, Alzheimer’s disease, Parkinson’s disease and Huntington’s disease are leading causes of death and long-term disability in the United States, and efforts to develop novel therapeutics for these conditions have historically had poor success in translating from bench to bedside. Hypoxia Inducible Factor-1alpha (HIF-1α) mediates a broad, evolutionarily conserved, endogenous adaptive program to hypoxia, and manipulation of components of the HIF pathway are neuroprotective in a number of human neurological diseases and experimental models. In this review, we discuss molecular components of one aspect of hypoxic adpatation in detail, and provide perspective on which targets within this pathway appear to be ripest for preventing and repairing neurodegeneration. Further, we highlight the role of HIF prolyl hydroxylases as emerging targets for the salutary effects of metal chelators on ferroptosis in vitro as well in animal models of neurological diseases. PMID:23376032

  17. Note: study of extreme ultraviolet and soft x-ray emission of metal targets produced by laser-plasma-interaction.

    PubMed

    Mantouvalou, I; Jung, R; Tuemmler, J; Legall, H; Bidu, T; Stiel, H; Malzer, W; Kanngiesser, B; Sandner, W

    2011-06-01

    Different metal targets were investigated as possible source material for tailored laser-produced plasma-sources. In the wavelength range from 1 to 20 nm, x-ray spectra were collected with a calibrated spectrometer with a resolution of λ/Δλ = 150 at 1 nm up to λ/Δλ = 1100 at 15 nm. Intense line emission features of highly ionized species as well as continuum-like spectra from unresolved transitions are presented. With this knowledge, the optimal target material can be identified for the envisioned application of the source in x-ray spectrometry on the high energy side of the spectra at about 1 keV. This energy is aimed for because 1 keV-radiation is ideally suited for L-shell x-ray spectroscopy with nm-depth resolution.

  18. Metal concentrations in selected brands of canned fish in Nigeria: estimation of dietary intakes and target hazard quotients.

    PubMed

    Iwegbue, Chukwujindu M A

    2015-03-01

    The concentrations of metals (Cd, Pb, Ni, Cr, Cu, Co, Fe, Mn, and Zn) were determined in selected brands of canned mackerel, sardine, and tuna in Nigeria with a view to providing information on the dietary intakes of metals and lifelong health hazards associated with the consumption of these products. The concentrations of metals were determined by using atomic absorption spectrometry after acid digestion. The mean concentrations of metals in canned mackerel, sardine, and tuna were found as 0.04-0.58, 0.06-0.44, 0.32-0.83 μg/g for Cd; 0.05-2.82, 0.70-2.98, 0.23-2.56 μg/g for Pb, 1.33-11.33, <0.20-17.53, nd-34.2 μg/g for Ni, 0.49-3.79, 0.22-1.89, 0.66-14.39 μg/g for Cr, 0.33-0.92, 0.03-1.51, <0.08-1.31 μg/g for Cu, 0.11-2.17, nd-0.75, 0.14-0.50 μg/g for Co, 6.45-26.90, 6.06-53.54, 3.06-95.78 μg/g for Fe, 2.30-3.84, 0.95-21.78, 1.65-2.33 μg/g for Mn, 1.15-7.19, 3.60-17.88, 1.21-5.35 μg/g for Zn, respectively. The mean concentrations of Cd, Pb, and Fe in some of these brands of canned fish were above their permissible limits while other metals occurred at levels below their permissible limits. The estimated daily intakes of metals from consumption of 20.8 g fish per day by a 60 kg body weight adult were below the provisional tolerable daily intakes for Cd, Pb, Ni, Cr, and Cu and recommended daily intakes for Co, Fe, Mn, and Zn. The estimated target hazard quotients of the examined metals were less than 1 in the majority of the samples indicating no long-term health hazard at the present circumstance.

  19. Recent developments in human biomonitoring: non-invasive assessment of target tissue dose and effects of pneumotoxic metals

    PubMed Central

    Mutti, A.; Corradi, M.

    2006-01-01

    Summary Tobacco smoke and polluted environments substantially increase the lung burden of pneumotoxic chemicals, particularly pneumotoxic metallic elements. To achieve a better understanding of the early events between exposure to inhaled toxicants and the onset of adverse effects on the lung, the characterization of dose at the target organ would be extremely useful. Exhaled breath condensate (EBC), obtained by cooling exhaled air under conditions of spontaneous breathing, is a novel technique that could provide a non-invasive assessment of pulmonary pathobiology. Considering that EBC is water practically free of interfering solutes, it represents an ideal biological matrix for elemental characterization. Published data show that several toxic metals and trace elements are detectable in EBC, raising the possibility of using this medium to quantify the lung tissue dose of pneumotoxic substances. This novel approach may represent a significant advance over the analysis of alternative media (blood, serum, urine, hair), which are not as reliable (owing to interfering substances in the complex matrix) and reflect systemic rather than lung (target tissue) levels of both toxic metals and essential trace elements. Data obtained among workers occupationally exposed to either hard metals or chromium (VI) and in smokers with or without chronic obstructive pulmonary disease (COPD) are reviewed to show that – together with biomarkers of exposure – EBC also allows the simultaneous quantification of biomarkers of effect directly sampled from the epithelial lining fluid, thus providing novel insights on both kinetic and dynamic aspects of metal toxicology. Riassunto «Recenti sviluppi nel biomonitoraggio umano: valutazione non invasiva della dose a livello dell’organo bersaglio e degli effetti pneumotossici». L’esposizione cronica a fumo di tabacco ed ad altri inquinati ambientali determina un accumulo polmonare di sostanze pneumotossiche, soprattutto metalli. Allo scopo

  20. Charge transfer between sensing and targeted metal nanoparticles in indirect nanoplasmonic sensors

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.; Langhammer, Christoph

    2017-03-01

    In indirect nanoplasmonic sensors, the plasmonic metal nanoparticles are adjacent to the material of interest, and the material-related changes of their optical properties are used to probe that material. If the latter itself represents another metal in the form of nanoparticles, its deposition is accompanied by charge transfer to or from the plasmonic nanoparticles in order to equalize the Fermi levels. We estimate the value of the transferred charge and show on the two examples, nanoparticle sintering and hydride formation, that the charge transfer has negligible influence on the probed processes, because the effect of charge transfer is less important than that of nanoparticle surface energy. This further corroborates the non-invasive nature of nanoplasmonic sensors.

  1. Liquid nanodroplet formation through phase explosion mechanism in laser-irradiated metal targets

    NASA Astrophysics Data System (ADS)

    Mazzi, Alberto; Gorrini, Federico; Miotello, Antonio

    2015-09-01

    Some quantitative aspects of laser-irradiated pure metals, while approaching phase explosion, are still not completely understood. Here, we develop a model that describes the main quantities regulating the liquid-vapor explosive phase transition and the expulsion of liquid nanodroplets that, by solidifying, give rise to nanoparticle formation. The model combines both a thermodynamics description of the explosive phase change and a Monte Carlo simulation of the randomly generated critical vapor bubbles. The calculation is performed on a set of seven metals (Al, Fe, Co, Ni, Cu, Ag, and Au) which are frequently used in pulsed laser ablation experiments. Our final predictions about the size distribution of the liquid nanodroplets and the number ratio of liquid/vapor ejected atoms are compared, whenever possible, with available molecular dynamics simulations and experimental data.

  2. Melt layer erosion of metallic armour targets during off-normal events in tokamaks

    NASA Astrophysics Data System (ADS)

    Bazylev, B.; Wuerz, H.

    2002-12-01

    Melt layer erosion by melt motion is the dominating erosion mechanism for metallic armours under high heat loads. A 1-D fluid dynamics simulation model for calculation of melt motion was developed and validated against experimental results for tungsten from the e-beam facility JEBIS and beryllium from the e-beam facility JUDITH. The driving force in each case is the gradient of the surface tension. Due to the high velocity which develops in the Be melt considerable droplet splashing occurs.

  3. Interaction of carbon monoxide with transition metals: evolutionary insights into drug target discovery.

    PubMed

    Foresti, Roberta; Motterlini, Roberto

    2010-12-01

    The perception that carbon monoxide (CO) is poisonous and life-threatening for mammalian organisms stems from its intrinsic propensity to bind iron in hemoglobin, a reaction that ultimately leads to impaired oxygen delivery to tissues. From evolutionary and chemical perspectives, however, CO is one of the most essential molecules in the formation of biological components and its interaction with transition metals is at the origin of primordial cell signaling. Not surprisingly, mammals have gradually evolved systems to finely control the synthesis and the sensing of this gaseous molecule. Cells are indeed continuously exposed to small quantities of CO produced endogenously during the degradation of heme by constitutive and inducible heme oxygenase enzymes. We have gradually learnt that heme oxygenase-derived carbon monoxide (CO) serves as a ubiquitous signaling mediator which could be exploited for therapeutic purposes. The development of transition metal carbonyls as prototypic carbon monoxide-releasing molecules (CO-RMs) represents a novel stratagem for a safer delivery of CO-based pharmaceuticals in the treatment of various pathological disorders. This review will look back at evolution to analyze and argue that a dynamic interaction of CO with specific intracellular metal centers is the common denominator for the diversified beneficial effects mediated by this gaseous molecule.

  4. Theoretical investigation of the thermal hydraulic behaviour of a slab-type liquid metal target

    SciTech Connect

    Dury, T.V.; Smith, B.L.

    1996-06-01

    The thermal hydraulics codes CFDS-FLOW3D and ASTEC have been used to simulate a slabtype design of ESS spallation target. This design is single-skinned, and of tapering form (in the beam direction), with rounded sides in a cross-section through a plane normal to the beam. The coolant fluid used is mercury, under forced circulation, with an inlet temperature of 180{degrees}C. The goal of these computer studies was to understand the behaviour of the coolant flow, and hence to arrive at a design which optimises the heat extraction for a given beam power - in the sense of: (1) minimising the peak local fluid temperature within the target, (2) maintaining an acceptable temperature level and distribution over and through the target outer wall, (3) keeping the overall fluid pressure loss through the complete target to a minimum, (4) staying within the physical limits of overall size required, particularly in the region of primary spallation. Two- and three-dimensional models have been used, with different arrangements and design of internal baffles, and different coolant flow distributions at the target inlet. Nominal total inlet mass flow was 245 kg/s, and a heat deposition profile used which was based on the proton beam energy distribution. This gave a nominal total heat load of 3.23 MW - of which 8.2kW were deposited in the window steel.

  5. Thin-film preparation by back-surface irradiation pulsed laser deposition using metal powder targets

    NASA Astrophysics Data System (ADS)

    Kawasaki, Hiroharu; Ohshima, Tamiko; Yagyu, Yoshihito; Ihara, Takeshi; Yamauchi, Makiko; Suda, Yoshiaki

    2017-01-01

    Several kinds of functional thin films were deposited using a new thin-film preparation method named the back-surface irradiation pulsed laser deposition (BIPLD) method. In this BIPLD method, powder targets were used as the film source placed on a transparent target holder, and then a visible-wavelength pulsed laser was irradiated from the holder side to the substrate. Using this new method, titanium oxide and boron nitride thin films were deposited on the silicon substrate. Surface scanning electron microscopy (SEM) images suggest that all of the thin films were deposited on the substrate with some large droplets irrespective of the kind of target used. The deposition rate of the films prepared by using this method was calculated from film thickness and deposition time to be much lower than that of the films prepared by conventional PLD. X-ray diffraction (XRD) measurement results suggest that rutile and anatase TiO2 crystal peaks were formed for the films prepared using the TiO2 rutile powder target. Crystal peaks of hexagonal boron nitride were observed for the films prepared using the boron nitride powder target. The crystallinity of the prepared films was changed by annealing after deposition.

  6. Shock Ignition in Non-Cryogenic Metal-Gas Targets on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Perkins, L. John; Cerjan, C.; Smalyuk, V.; Bailey, D.; Comley, A.; Garbett, W.; McKenty, P.; Cheng, B.

    2011-10-01

    Shock ignition offers the possibility of volumetric ignition and burn in single-shell, room-temperature gas targets on the National Ignition Facility. We are investigating whether the high fusion energy gains potentially available with shock ignition in cryogenic DT targets on NIF (L.J.Perkins et al, PRL 103 (2009)) can be traded for modest gains and yields in such platforms. If so, being non-cryogenic with simple single-shell construction and medium-pressure gas fill, they should easier to field and diagnose. The targets are characterized by a thick, graded-density Be-Au ablator-pusher shell with low in-flight-aspect-ratios. Because the high-Z Au shell reflects Bremsstrahlung, such targets are capable of volumetric ignition at temperatures of around 4 keV with low shell velocities around 1.5e7cm/s. Gas targets are inherently low gain (<=10) so they are probably not IFE relevant. The ultimate performance will be determined by degree and control of high-Z mix in the gas. Simulations indicate that we can potentially trade fusion yield for good ignition fall-line behavior by tuning gas pressure and shock launch time. This work performed under the auspices of U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  7. A Theory for the RF Surface Field for Various Metals at the Destructive Breakdown Limit

    SciTech Connect

    Wilson, Perry B.; /SLAC

    2007-03-06

    By destructive breakdown we mean a breakdown event that results in surface melting over a macroscopic area in a high E-field region of an accelerator structure. A plasma forms over the molten area, bombarding the surface with an intense ion current ({approx} 10{sup 8} A/cm{sup 2}), equivalent to a pressure of about a thousand Atmospheres. This pressure in turn causes molten copper to migrate away from the iris tip, resulting in measurable changes in the iris shape. The breakdown process can be roughly divided into four stages: (1) the formation of ''plasma spots'' at field emission sites, each spot leaving a crater-like footprint; (2) crater clustering, and the formation of areas with hundreds of overlapping craters; (3) surface melting in the region of a crater cluster; (4) the process after surface melting that leads to destructive breakdown. The physics underlying each of these stages is developed, and a comparison is made between the theory and experimental evidence whenever possible. The key to preventing breakdown lies in stage (3). A single plasma spot emits a current of several amperes, a portion of which returns to impact the surrounding area with a power density on the order 10{sup 7} Watt/cm{sup 2}. This power density is not quite adequate to melt the surrounding surface on a time scale short compared to the rf pulse length. In a crater field, however, the impact areas from multiple plasma spots overlap to provide sufficient power density for surface melting over an area on the order of 0.1 mm{sup 2} or more. The key to preventing breakdown is to choose an iris tip material that requires the highest power density (proportional to the square of the rf surface field) for surface melting, taking into account the penetration depth of the impacting electrons. The rf surface field required for surface melting (relative to copper) has been calculated for a large number elementary metals, plus stainless-steel and carbon.

  8. Errors inherent in reconstruction of obscured targets from multilook imagery: I. Background and theory

    NASA Astrophysics Data System (ADS)

    Schmalz, Mark S.

    1998-09-01

    Automated target recognition has benefited from cross- fertilization of development in related subdisciplines of image processing such as medical imaging. For example, the application of computerized tomography to synthetic aperture radar (SAR) imaging has produced 3-D reconstructions of ground targets on an experimental basis. In practice, by acquiring multiple views of a target (also called multi-look imaging -- MLI) that are subsequently merged mathematically, one can obtain reasonable approximations to higher-dimensional reconstructions of a target of interest. For example, multiple two-dimensional airborne images of ground objects can be merged via the Fourier transform (FT) to obtain one or more approximate three-dimensional object reconstructions. Additional methods of 3D model construction (e.g., from affine structure) present advantages of computational efficiency, but are sensitive to positioning errors. In this series of papers, analysis of MLI is presented that applies to various scenarios of nadir, near-nadir, or off-nadir viewing with a small or large number of narrow-or wide-angle views. A model of imaging through cover describes the visibility of a given target under various viewing conditions. The model can be perturbed to obtain theoretical and simulated predictions of target reconstruction error due to (1) geometric projection error, (2) focal-plane quantization error and camera noise, (3) possible sensor platform errors, and (4) coverage of looks. In this paper, an imaging model is presented that can facilitate prediction of limiting sensor geometry and view redundancy under various imaging constraints (e.g., target and cover geometry, available range of look angles, etc.). Study notation is a subset of image algebra, a rigorous, concise, computationally complete notation that unifies linear and nonlinear mathematics in the image domain. Image algebra was developed at University of Florida over the past decade under the sponsorship of DARPA and

  9. Electron-band theory inspired design of magnesium-precious metal bulk metallic glasses with high thermal stability and extended ductility.

    PubMed

    Laws, Kevin J; Shamlaye, Karl F; Granata, Davide; Koloadin, Leah S; Löffler, Jörg F

    2017-06-13

    Magnesium-based bulk metallic glasses (BMGs) exhibit high specific strengths and excellent glass-forming ability compared to other metallic systems, making them suitable candidates for next-generation materials. However, current Mg-based BMGs tend to exhibit low thermal stability and are prone to structural relaxation and brittle failure. This study presents a range of new magnesium-precious metal-based BMGs from the ternary Mg-Ag-Ca, Mg-Ag-Yb, Mg-Pd-Ca and Mg-Pd-Yb alloy systems with Mg content greater than 67 at.%. These alloys were designed for high ductility by utilising atomic bond-band theory and a topological efficient atomic packing model. BMGs from the Mg-Pd-Ca alloy system exhibit high glass-forming ability with critical casting sizes of up to 3 mm in diameter, the highest glass transition temperatures (>200 °C) of any reported Mg-based BMG to date, and sustained compressive ductility. Alloys from the Mg-Pd-Yb family exhibit critical casting sizes of up to 4 mm in diameter, and the highest compressive plastic (1.59%) and total (3.78%) strain to failure of any so far reported Mg-based glass. The methods and theoretical approaches presented here demonstrate a significant step forward in the ongoing development of this extraordinary class of materials.

  10. Design strategies to improve the sensitivity of photoactive metal carbonyl complexes (photoCORMs) to visible light and their potential as CO-donors to biological targets.

    PubMed

    Chakraborty, Indranil; Carrington, Samantha J; Mascharak, Pradip K

    2014-08-19

    The recent surprising discovery of the beneficial effects of carbon monoxide (CO) in mammalian physiology has drawn attention toward site-specific delivery of CO to biological targets. To avoid difficulties in handling of this noxious gas in hospital settings, researchers have focused their attention on metal carbonyl complexes as CO-releasing molecules (CORMs). Because further control of such CO delivery through light-triggering can be achieved with photoactive metal carbonyl complexes (photoCORMs), we and other groups have attempted to isolate such complexes in the past few years. Typical metal carbonyl complexes release CO when exposed to UV light, a fact that often deters their use in biological systems. From the very beginning, our effort therefore was directed toward identifying design principles that could lead to photoCORMs that release CO upon illumination with low-power (5-15 mW/cm(2)) visible and near-IR light. In our work, we have utilized Mn(I), Re(I), and Ru(II) centers (all d(6) ground state configuration) to ensure overall stability of the carbonyl complexes. We also hypothesized that transfer of electron density from the electron-rich metal centers to π* MOs of the ligand frame via strong metal-to-ligand charge transfer (MLCT) transitions in the visible/near-IR region would weaken metal-CO back-bonding and promote rapid CO photorelease. This expectation has been realized in a series of carbonyl complexes derived from a variety of designed ligands and smart choice of ligand/coligand combinations. Several principles have emerged from our systematic approach to the design of principal ligands and the choice of auxiliary ligands (in addition to the number of CO) in synthesizing these photoCORMs. In each case, density functional theory (DFT) and time-dependent DFT (TDDFT) study afforded insight into the dependence of the CO photorelease from a particular photoCORM on the wavelength of light. Results of these theoretical studies indicate that extended

  11. Targeting high value metals in lithium-ion battery recycling via shredding and size-based separation.

    PubMed

    Wang, Xue; Gaustad, Gabrielle; Babbitt, Callie W

    2016-05-01

    Development of lithium-ion battery recycling systems is a current focus of much research; however, significant research remains to optimize the process. One key area not studied is the utilization of mechanical pre-recycling steps to improve overall yield. This work proposes a pre-recycling process, including mechanical shredding and size-based sorting steps, with the goal of potential future scale-up to the industrial level. This pre-recycling process aims to achieve material segregation with a focus on the metallic portion and provide clear targets for subsequent recycling processes. The results show that contained metallic materials can be segregated into different size fractions at different levels. For example, for lithium cobalt oxide batteries, cobalt content has been improved from 35% by weight in the metallic portion before this pre-recycling process to 82% in the ultrafine (<0.5mm) fraction and to 68% in the fine (0.5-1mm) fraction, and been excluded in the larger pieces (>6mm). However, size fractions across multiple battery chemistries showed significant variability in material concentration. This finding indicates that sorting by cathode before pre-treatment could reduce the uncertainty of input materials and therefore improve the purity of output streams. Thus, battery labeling systems may be an important step towards implementation of any pre-recycling process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Nanostructured europium oxide thin films deposited by pulsed laser ablation of a metallic target in a He buffer atmosphere

    SciTech Connect

    Luna, H.; Franceschini, D. F.; Prioli, R.; Guimaraes, R. B.; Sanchez, C. M.; Canal, G. P.; Barbosa, M. D. L.; Galvao, R. M. O.

    2010-09-15

    Nanostrucured europium oxide and hydroxide films were obtained by pulsed Nd:YAG (532 nm) laser ablation of a europium metallic target, in the presence of a 1 mbar helium buffer atmosphere. Both the produced film and the ambient plasma were characterized. The plasma was monitored by an electrostatic probe, for plume expansion in vacuum or in the presence of the buffer atmosphere. The time evolution of the ion saturation current was obtained for several probe to substrate distances. The results show the splitting of the plume into two velocity groups, being the lower velocity profile associated with metal cluster formation within the plume. The films were obtained in the presence of helium atmosphere, for several target-to-substrate distances. They were analyzed by Rutherford backscattering spectrometry, x-ray diffraction, and atomic force microscopy, for as-deposited and 600 deg. C treated-in-air samples. The results show that the as-deposited samples are amorphous and have chemical composition compatible with europium hydroxide. The thermally treated samples show x-ray diffraction peaks of Eu{sub 2}O{sub 3}, with chemical composition showing excess oxygen. Film nanostructuring was shown to be strongly correlated with cluster formation, as shown by velocity splitting in probe current versus time plots.

  13. Metal vapor target for precise studies of ion-atom collisions

    SciTech Connect

    Chen, W. Vorobyev, G.; Herfurth, F.; Hillenbrand, P.-M.; Spillmann, U.; Guo, D.; Trotsenko, S.; Gumberidze, A.; Stöhlker, Th.

    2014-05-15

    Although different ion-atom collisions have been studied in various contexts, precise values of cross-sections for many atomic processes were seldom obtained. One of the main uncertainties originates from the value of target densities. In this paper, we describe a unique method to measure a target density precisely with a combination of physical vapor deposition and inductively coupled plasma optical emission spectrometry. This method is preliminarily applied to a charge transfer cross-section measurement in collisions between highly charged ions and magnesium vapor. The final relative uncertainty of the target density is less than 2.5%. This enables the precise studies of atomic processes in ion-atom collisions, even though in the trial test the deduction of precise capture cross-sections was limited by other systematic errors.

  14. Assessment of the lifetime of the beam window of MEGAPIE target liquid metal container

    NASA Astrophysics Data System (ADS)

    Dai, Y.; Henry, J.; Auger, T.; Vogt, J.-B.; Almazouzi, A.; Glasbrenner, H.; Groeschel, F.

    2006-09-01

    The lifetime of the beam window of the T91 liquid Pb-Bi container in the MEGAPIE target is discussed based on the present knowledge of lead bismuth eutectic (LBE) corrosion, embrittlement and radiation effects in relevant conditions. In the MEGAPIE target, since the high hydrogen production will likely reduce the oxygen content to a low level, LBE corrosion may reduce the wall thickness up to 2%. In addition, the corrosion induced grain boundary dissolution will promote LBE embrittlement on the T91 steel in the beam window. The DBTT data and fracture toughness values of T91 specimens tested in contact with LBE suggest a lower bound of the lifetime of the T91 beam window to be limited to a dose of 6 dpa, corresponding to 2.4 Ah proton charge to be received by the target in about 20 weeks in the normal operation condition.

  15. Target organs of the Manila clam Ruditapes philippinarum for studying metal accumulation and biomarkers in pollution monitoring: laboratory and in-situ transplantation experiments.

    PubMed

    Won, Eun-Ji; Kim, Kyung-Tae; Choi, Jin-Young; Kim, Eun-Soo; Ra, Kongtae

    2016-08-01

    To characterize the target organs of the Manila clam Ruditapes philippinarum for use in environmental study, the accumulation of trace metals and three biomarkers was measured in different organs. Exposure with Cu and Pb carried out under laboratory conditions revealed a linear uptake of metals throughout the experimental period in each tissue. In particular, significant increase was observed in gills and mantle. The increase of intracellular reactive oxygen species showed the great potential of gills as a target tissue for both Cu and Pb exposure. The highest activity of glutathione S-transferase and their relative increase in activity were also observed in gills. Metallothionein-like protein levels, however, increased greatly in the digestive gland and mantle during Cu and Pb exposure, respectively, although all tissues, except the foot, showed significant changes after 24 h of metal exposure. In the field study, the highest concentration of metals was recorded in the gills and mantle, accounting for over 50 % of the total accumulated metal in all sites. Additionally, Cu and Pb increased significantly in these two organs, respectively. However, the order of accumulation rate in laboratory exposure was not concomitant with those of the lab-based study, suggesting that different routes of metal uptake and exposure duration induce distinct partitioning of metals and regulating system in R. philippinarum. These series of exposure studies demonstrated that gills, mantle, and digestive gland in R. philippinarum are potential target tissues in environmental monitoring study using metal concentrations and biomarkers.

  16. Applying Theory of Mind Concepts When Designing Interventions Targeting Social Cognition among Youth Offenders

    ERIC Educational Resources Information Center

    Noel, Kristine K.; Westby, Carol

    2014-01-01

    This study employed a multiple baseline, across-participants, single-subject design to investigate the feasibility of an individual, narrative-based, social problem-solving intervention on the social problem-solving, narrative, and theory of mind (ToM) abilities of 3 incarcerated adolescent youth offenders identified as having emotional…

  17. Applying Theory of Mind Concepts When Designing Interventions Targeting Social Cognition among Youth Offenders

    ERIC Educational Resources Information Center

    Noel, Kristine K.; Westby, Carol

    2014-01-01

    This study employed a multiple baseline, across-participants, single-subject design to investigate the feasibility of an individual, narrative-based, social problem-solving intervention on the social problem-solving, narrative, and theory of mind (ToM) abilities of 3 incarcerated adolescent youth offenders identified as having emotional…

  18. The Case of Invented Spelling: How Theory Becomes Target Practice. The Politics of Literacy.

    ERIC Educational Resources Information Center

    Miller, Edward

    1996-01-01

    Of all the developments in reading research during the past 30 years, few have provided as much fodder for the wars over whole language as "invented spelling." Research on invented spelling led to a developmental theory of how children experiment with phonemic rules and patterns, and scholars urged teachers to allow children to spell…

  19. General atomistic approach for modeling metal-semiconductor interfaces using density functional theory and nonequilibrium Green's function

    NASA Astrophysics Data System (ADS)

    Stradi, Daniele; Martinez, Umberto; Blom, Anders; Brandbyge, Mads; Stokbro, Kurt

    2016-04-01

    Metal-semiconductor contacts are a pillar of modern semiconductor technology. Historically, their microscopic understanding has been hampered by the inability of traditional analytical and numerical methods to fully capture the complex physics governing their operating principles. Here we introduce an atomistic approach based on density functional theory and nonequilibrium Green's function, which includes all the relevant ingredients required to model realistic metal-semiconductor interfaces and allows for a direct comparison between theory and experiments via I -Vbias curve simulations. We apply this method to characterize an Ag/Si interface relevant for photovoltaic applications and study the rectifying-to-Ohmic transition as a function of the semiconductor doping. We also demonstrate that the standard "activation energy" method for the analysis of I -Vbias data might be inaccurate for nonideal interfaces as it neglects electron tunneling, and that finite-size atomistic models have problems in describing these interfaces in the presence of doping due to a poor representation of space-charge effects. Conversely, the present method deals effectively with both issues, thus representing a valid alternative to conventional procedures for the accurate characterization of metal-semiconductor interfaces.

  20. Estimating the parameters of the microheterogeneous structure of metal melts according to viscometric experimental data in terms of the absolute reaction rate theory

    NASA Astrophysics Data System (ADS)

    Chikova, O. A.; Tsepelev, V. S.; Moskovskikh, O. P.

    2017-06-01

    The temperature dependences of the viscosity of microheterogeneous metal melts are analyzed in terms of the Frenkel-Eyring theory. Using viscometric experimental data, the sizes of dispersed particles in metal melts whose components undergo eutectic and monotectic interactions are numerically estimated.

  1. Theory of Monte Carlo simulations of the magnetic circular dichroism spectra of alkali metal/rare gas systems

    NASA Astrophysics Data System (ADS)

    Kenney, John W.; Boatz, Jerry A.; Terrill Vosbein, Heidi A.

    The history of magnetic circular dichroism (MCD) spectroscopy in the study of alkali metal/rare gas (M/Rg) cryogenic systems is reviewed in the context of developing a better understanding of alkali metal/hydrogen systems of current interest to the U.S. Air Force as enhanced-performance cryogenic rocket propellants. A new theory for simulating the MCD spectra of M/Rg systems is presented together with a careful discussion of the theory's implicit and explicit approximations and their implications. This theory uses a classical Monte Carlo (MC) simulation scheme to model the perturbing effects of the Rg environment on the 2S → 2P MCD-active transition of the M atom. The theory sets up the MC-MCD simulation as a 6 × 6 matrix eigenvalue/eigenvector problem in the 2P manifold in which are included the effects of M-Rg interactions, metal atom spin-orbit coupling in the 2P manifold, magnetic Zeeman perturbations of the 2S and 2P manifolds, Boltzmann temperature factors, and electric dipole transition moment integrals for left circularly polarized (LCP) and right circularly polarized (RCP) light. The theory may be applied to any type of trapping site of the host M in the guest Rg matrix; a single atom substitutional metal atom trapping site (one host Rg atom is replaced by one guest M atom) is modeled in this study for M = Na and Rg = Ar. Two temperature factors are used in these simulations; a lattice temperature to model the mobility of the Rg lattice and a magnetic temperature to model Boltzmann factors in the 2S ground manifold. The 6 × 6 eigenvalue/eigenvector problem is solved for a number of randomly generated and suitably averaged Rg configurations to yield the simulated MC-MCD spectrum for the single substitutional Na/Ar system. The MC-MCD simulations of Na/Ar give the characteristic triplet MCD spectrum with the correct Boltzmann temperature dependence. The simulated MC-MCD spectrum correctly inverts when the direction of the applied magnetic field is

  2. Thermal effects in the shear-transformation-zone theory of amorphous plasticity: comparisons to metallic glass data.

    PubMed

    Falk, M L; Langer, J S; Pechenik, L

    2004-07-01

    We extend our earlier shear-transformation-zone theory of amorphous plasticity to include the effects of thermally assisted molecular rearrangements. This version of our theory is a substantial revision and generalization of conventional theories of flow in noncrystalline solids. As in our earlier work, it predicts a dynamic transition between jammed and flowing states at a yield stress. Below that yield stress, it now describes thermally assisted creep. We show that this theory accounts for the experimentally observed strain-rate dependence of the viscosity of metallic glasses, and that it also captures many of the details of the transient stress-strain behavior of those materials during loading. In particular, it explains the apparent onset of superplasticity at sufficiently high stress as a transition between creep at low stresses and plastic flow near the yield stress. We also argue that there are internal inconsistencies in the conventional theories of these deformation processes, and suggest ways in which further experimentation as well as theoretical analysis may lead to better understanding of a broad range of nonequilibrium phenomena.

  3. Structural-hydraulic test of the liquid metal EURISOL target mock-up

    NASA Astrophysics Data System (ADS)

    Milenković, Rade Ž.; Dementjevs, Sergejs; Samec, Karel; Platacis, Ernests; Zik, Anatolij; Flerov, Aleksej; Manfrin, Enzo; Thomsen, Knud

    2009-08-01

    Structural-hydraulic tests of the European Isotope Separation On-Line (EURISOL) neutron converter target mock-up, named MErcury Target EXperiment 1 (METEX 1), have been conducted by Paul Scherrer Institut (PSI, Switzerland) in cooperation with Institute of Physics of the University of Latvia (IPUL, Latvia). PSI proceeded with extensive thermal-hydraulic and structural computational studies, followed by the target mock-up tests carried out on the mercury loop at IPUL. One of the main goals of the METEX 1 test is to investigate the hydraulic and structural behaviour of the EURISOL target mock-up for various inlet flow conditions (i.e. mass flow rates) and, in particular, for nominal operating flow rate and pressure in the system. The experimental results were analysed by advanced time-frequency methods such as Short-Time Fourier Transform in order to check the vibration characteristics of the mock-up and the resonance risk. The experimental results (obtained in METEX 1), which include inlet flow rate, pressure of the cover gas, total pressure loss, structural acceleration, sound and strain data, were jointly analysed together with numerical data obtained from Computational Fluid Dynamics (CFD).

  4. Why iron? A spin-polarized conceptual density functional theory study on metal-binding specificity of porphyrin.

    PubMed

    Feng, Xin-Tian; Yu, Jian-Guo; Liu, Ruo-Zhuang; Lei, Ming; Fang, Wei-Hai; De Proft, Frank; Liu, Shubin

    2010-06-03

    Heme is a key cofactor of hemoproteins in which porphyrin is often found to be preferentially metalated by the iron cation. In our previous work [Feng, X. T.; Yu, J. G.; Lei, M.; Fang, W. H.; Liu, S. B. J. Phys. Chem. B 2009, 113, 13381], conceptual density functional theory (CDFT) descriptors have been applied to understand the metal-binding specificity of porphyrin. We found that the iron-porphyrin complex significantly differs in many aspects from porphyrin complexes with other metal cations except Ru, for which similar behaviors for the reactivity descriptors were discovered. In this study, we employ the spin-polarized version of CDFT to investigate the reactivity for a series of (pyridine)(n)-M(ll)-porphyrin complexes-where M = Mg, Ca, Cr, Mn, Co, Ni, Cu, Zn, Ru, and Cd, and n = 0, 1, and 2-to further appreciate the metal-binding specificity of porphyrin. Both global and local descriptors were examined within this framework. We found that, within the spin resolution, not only chemical reactivity descriptors from CDFT of the iron complex are markedly different from that of other metal complexes, but we also discovered substantial differences in reactivity descriptors between Fe and Ru complexes. These results confirm that spin properties play a highly important role in physiological functions of hemoproteins. Quantitative reactivity relationships have been revealed between global and local spin-polarized reactivity descriptors. These results contribute to our better understanding of the metal binding specificity and reactivity for heme-containing enzymes and other metalloproteins alike.

  5. Size effects and charge transport in metals: Quantum theory of the resistivity of nanometric metallic structures arising from electron scattering by grain boundaries and by rough surfaces

    NASA Astrophysics Data System (ADS)

    Munoz, Raul C.; Arenas, Claudio

    2017-03-01

    We discuss recent progress regarding size effects and their incidence upon the coefficients describing charge transport (resistivity, magnetoresistance, and Hall effect) induced by electron scattering from disordered grain boundaries and from rough surfaces on metallic nanostructures; we review recent measurements of the magneto transport coefficients that elucidate the electron scattering mechanisms at work. We review as well theoretical developments regarding quantum transport theories that allow calculating the increase in resistivity induced by electron-rough surface scattering (in the absence of grain boundaries) from first principles—from the parameters that describe the surface roughness that can be measured with a Scanning Tunnelling Microscope (STM). We evaluate the predicting power of the quantum version of the Fuchs-Sondheimer theory and of the model proposed by Calecki, abandoning the method of parameter fitting used for decades, but comparing instead theoretical predictions with resistivity measured in thin films where surface roughness has also been measured with a STM, and where electron-grain boundary scattering can be neglected. We also review the theory of Mayadas and Shatzkes (MS) [Phys. Rev. B 1, 1382 (1970)] used for decades, and discuss its severe conceptual difficulties that arise out of the fact that: (i) MS employed plane waves to describe the electronic states within the metal sample having periodic grain boundaries, rather than the Bloch states known since the thirties to be the solutions of the Schrödinger equation describing electrons propagating through a Krönig-Penney [Proc. R. Soc. London Ser. A 130, 499 (1931)] periodic potential; (ii) MS ignored the fact that the wave functions describing electrons propagating through a 1-D disordered potential are expected to decay exponentially with increasing distance, a fact known since the work of Anderson [Phys. Rev. 109, 1492 (1958)] in 1958 for which he was awarded the Nobel Prize in

  6. Transport properties and metal-insulator transition in oxygen deficient LaNiO3: a density functional theory study

    NASA Astrophysics Data System (ADS)

    Misra, D.; Kundu, T. K.

    2016-09-01

    Density functional theory with appropriate functional has been employed to investigate the metal to insulator transition in oxygen deficient LaNiO3-x (x = 0.0, 0.25, 0.5, 1.0) compounds. While the metallic nature of LaNiO3 is characterized by the low temperature Fermi liquid behavior of resistivity and a finite density of states at the Fermi level, the density of states and the transport properties clearly identify LaNiO2.75 as a semiconductor, and LaNiO2.5 as an insulator, which is followed by another insulator to semiconductor transition with further increase of x to ‘1’ in LaNiO2. This oxygen vacancy controlled metal to insulator transition is explained on the basis of non-adiabatic polaronic transport. From the covalency metric calculation of the chemical bonding and the Bader charge transfer analysis, this metal to insulator transition is attributed to the enhanced covalent part in the chemical bonding and reduced charge transfer from Ni to O atoms in LaNiO3-x compounds.

  7. Probing Adsorption Interactions In Metal-Organic Frameworks Using X-ray Spectroscopy and Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Drisdell, Walter; Poloni, Roberta; McDonald, Thomas; Long, Jeffrey; Smit, Berend; Neaton, Jeffrey; Prendergast, David; Kortright, Jeffrey

    2014-03-01

    Metal-organic frameworks (MOFs) are currently among the most promising materials for gas separation applications such as carbon capture. We explore the local electronic signatures of molecular adsorption at coordinatively unsaturated binding sites in the metal-organic framework Mg-MOF-74 using X-ray spectroscopy and first principles calculations. In situ measurements at the Mg K-edge reveal distinct pre-edge absorption features associated with the unique, open coordination of the Mg sites. These spectral features are suppressed upon adsorption of CO2 and N ,N' -dimethylformamide. Density functional theory shows that these spectral changes arise from modifications of local symmetry around the Mg sites upon gas uptake and are strongly dependent on the metal-adsorbate binding strength. Similar sensitivity to local symmetry is expected for any open metal site, making X-ray spectroscopy an ideal tool for examining adsorption in such MOFs. This work was supported by the Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001015

  8. Toxic effects of different charged metal ions on the target--bovine serum albumin.

    PubMed

    Zhang, Hao; Liu, Rutao; Chi, Zhenxing; Gao, Canzhu

    2011-01-01

    In this work, the toxic influence of metallic ions (Na+, Cu2+, Al3+) on the serum albumin were studied by fluorescence, resonance light scattering (RLS), synchronous fluorescence, UV-vis absorption and circular dichroism (CD) spectroscopy. The experimental results indicated that ion electric charge is not the main factor affecting the structure of bovine serum albumin (BSA). Na+ made the structure of BSA tighter and hydrophobicity enhanced, which improved fluorescence intensity, while Cu2+ could react with some functional groups of BSA, making the structure of BSA looser, so that the internal hydrophobic groups such as tryptophan (Trp) and other aromatic residues were gradually exposed. When we observed them with fluorescence spectra, we found fluorescence quenching with increasing Cu2+ dose. Al3+ is shown as little significant influence on the BSA, but BSA was found to aggregate with the dose of Al3+ by means of RLS because of the hydrolysis and ion strength effect of Al3+. The results also proved normal saline could keep lives healthy and good-working as a biological humour, however, heavy metals made harmful effects to the body when they exceeded the minimal effect level (MEL), such as Cu2+ chosen in our work. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Control of Structure in Conventional Friction Stir Welds Through a Kinematic Theory of Metal Flow

    DTIC Science & Technology

    2009-02-01

    suggested a “chaotic-dynamic mixing” in the material [2]. Later tracer studies, using steel shot [3], aluminum shims [4], copper foil [5], bi-metallic...35812 Keywords: friction stir welding, AA2219, material flow Abstract In friction stir welding ( FSW ), a rotating pin is translated along a...welding, by a shoulder on the pin. In conventional FSW , the weld metal rests on an “anvil”, which supports the heavy “plunge” load on the tool. In

  10. Efficacy of surface error corrections to density functional theory calculations of vacancy formation energy in transition metals.

    PubMed

    Nandi, Prithwish Kumar; Valsakumar, M C; Chandra, Sharat; Sahu, H K; Sundar, C S

    2010-09-01

    We calculate properties like equilibrium lattice parameter, bulk modulus and monovacancy formation energy for nickel (Ni), iron (Fe) and chromium (Cr) using Kohn-Sham density functional theory (DFT). We compare the relative performance of local density approximation (LDA) and generalized gradient approximation (GGA) for predicting such physical properties for these metals. We also make a relative study between two different flavors of GGA exchange correlation functional, namely PW91 and PBE. These calculations show that there is a discrepancy between DFT calculations and experimental data. In order to understand this discrepancy in the calculation of vacancy formation energy, we introduce a correction for the surface intrinsic error corresponding to an exchange correlation functional using the scheme implemented by Mattsson et al (2006 Phys. Rev. B 73 195123) and compare the effectiveness of the correction scheme for Al and the 3d transition metals.

  11. Effects study on the thermal stresses in a LEU metal foil annular target.

    PubMed

    Govindarajan, Srisharan G; Solbrekken, Gary L

    2015-09-01

    The effects of fission gas pressure, uranium swelling and thermal contact conductance on the thermal-mechanical behavior of an annular target containing a low-enriched uranium foil (LEU) encapsulated in a nickel foil have been presented in this paper. The draw-plug assembly method is simulated to obtain the residual stresses, which are applied to the irradiation model as initial inputs, and the integrated assembly-irradiation process is simulated as an axisymmetric problem using the commercial finite element code Abaqus FEA. Parametric studies were performed on the LEU heat generation rate and the results indicate satisfactory irradiation performance of the annular target. The temperature and stress margins have been provided along with a discussion of the results.

  12. Channels of energy redistribution in short-pulse laser interactions with metal targets

    NASA Astrophysics Data System (ADS)

    Zhigilei, Leonid V.; Ivanov, Dmitriy S.

    2005-07-01

    The kinetics and channels of laser energy redistribution in a target irradiated by a short, 1 ps, laser pulse is investigated in computer simulations performed with a model that combines molecular dynamics (MD) simulations with a continuum description of the laser excitation and relaxation of the conduction band electrons, based on the two-temperature model (TTM). The energy transferred from the excited electrons to the lattice splits into several parts, namely the energy of the thermal motion of the atoms, the energy of collective atomic motions associated with the relaxation of laser-induced stresses, the energy carried away from the surface region of the target by a stress wave, the energy of quasi-static anisotropic stresses, and, at laser fluences above the melting threshold, the energy transferred to the latent heat of melting and then released upon recrystallization. The presence of the non-thermal channels of energy redistribution (stress wave and quasi-static stresses), not accounted for in the conventional TTM model, can have important implications for interpretation of experimental results on the kinetics of thermal and mechanical relaxation of a target irradiated by a short laser pulse as well as on the characteristics of laser-induced phase transformations. The fraction of the non-thermal energy in the total laser energy partitioning increases with increasing laser fluence.

  13. R&D-needs and opportunities to broaden the data base on materials and technology for liquid metal spallation targets

    SciTech Connect

    Bauer, G.S.

    1996-06-01

    Liquid metals have so far only been used to a very limited extent as spallation targets, notably at the ISOLDE-facility at CERN (Pb and La) to produce radioactive isotopes. Virtually no systematic studies have been carried out so far. The available data base is by no means sufficient to answer conclusively very important questions such as predicting reliably the service time of medium-to-high power target systems or determining precisely what technological measures are required and appropriate to maintain an optimum coolant quality, to mitigate the effects of pressure waves in short pulse sources and others. During the workshop several areas have been identified, where there exists an urgent need for improved knowledge and reliable data, and opportunities have been presented to acquire such knowledge and to generate such data. Opportunities to do such research and pertinent know-how, although scarce, are spread over institutions in several countries, and efforts to use these opportunities often require substantial resources both in man power and money. The workshop participants therefore unanimously supported the view that a coordinated and internationally concerted effort should be undertaken to make the best possible use of existing opportunities and available resources in order to develop the knowledge and technology necessary for the deployment and safe operation of target systems suitable for pulsed spallation neutron sources in the multi-megawatt range of beam power.

  14. On the limitation of density functional theory (DFT) for the treatment of the anharmonicity in FCC metals

    NASA Astrophysics Data System (ADS)

    Seifitokaldani, Ali; Gheribi, Aïmen E.; Dollé, Mickael

    2016-12-01

    It has been already shown that the density functional theory (DFT) combined with the quasi-harmonic approximation (QHA) overestimates the specific heat capacity (and in general the thermal properties) of fcc metals. DFT + QHA seemingly shows a large anharmonic contribution to the heat capacity. However, in this article we show that this anharmonicity has no physical origin and it is a consequence of the deviation of the QHA from the Maxwell relations. We show that one can simply avoid this overestimation by enforcing the QHA method to obey the Maxwell relations throughout the thermodynamically self-consistent (TSC) method, instead of considering non-real local anharmonic effects.

  15. Theory of the electron spin resonance in the heavy fermion metal β-YbAlB4.

    PubMed

    Ramires, Aline; Coleman, Piers

    2014-03-21

    The heavy fermion metal β-YbAlB4 exhibits a bulk room temperature conduction electron spin resonance (ESR) signal which evolves into an Ising-anisotropic f-electron signal exhibiting hyperfine features at low temperatures. We develop a theory for this phenomenon based on the development of resonant scattering off a periodic array of Kondo centers. We show that the hyperfine structure arises from the scattering off the Yb atoms with nonzero nuclear spin, while the constancy of the ESR intensity is a consequence of the presence of crystal electric field excitations of the order of the hybridization strength.

  16. Nonlinear absorption of surface plasmons and emission of electrons from metallic targets

    SciTech Connect

    Singh, D. B.; Kumar, Gagan; Tripathi, V. K.

    2007-10-15

    A large-amplitude surface plasma wave (SPW) over a metal-vacuum interface Ohmically heats the electrons and undergoes nonlinear absorption. The attenuation rate increases with the local SPW amplitude. The enhanced electron temperature leads to stronger thermionic emission of electrons. At typical Nd:glass laser intensity I{sub L}=7 GW/cm{sup 2}, if one takes the amplitude of the SPW to be {approx_equal}6 times the amplitude of the laser, one obtains the thermionic electron emission current density J=200 A/cm{sup 2}. However, the emission current density decreases with propagation distance at a much faster rate than the SPW amplitude and electron temperature.

  17. Molecular design of specific metal-binding peptide sequences from protein fragments: theory and experiment.

    PubMed

    Kozísek, Milan; Svatos, Ales; Budesínský, Milos; Muck, Alexander; Bauer, Mikael C; Kotrba, Pavel; Ruml, Tomás; Havlas, Zdenek; Linse, Sara; Rulísek, Lubomír

    2008-01-01

    A novel strategy is presented for designing peptides with specific metal-ion chelation sites, based on linking computationally predicted ion-specific combinations of amino acid side chains coordinated at the vertices of the desired coordination polyhedron into a single polypeptide chain. With this aim, a series of computer programs have been written that 1) creates a structural combinatorial library containing Zi-(X)n-Zj sequences (n=0-14; Z: amino acid that binds the metal through the side chain; X: any amino acid) from the existing protein structures in the non-redundant Protein Data Bank; 2) merges these fragments into a single Z1-(X)n1 -Z2-(X)n2 -Z3-(X)n3 -...-Zj polypeptide chain; and 3) automatically performs two simple molecular mechanics calculations that make it possible to estimate the internal strain in the newly designed peptide. The application of this procedure for the most M2+-specific combinations of amino acid side chains (M: metal; see L. Rulísek, Z. Havlas J. Phys. Chem. B 2003, 107, 2376-2385) yielded several peptide sequences (with lengths of 6-20 amino acids) with the potential for specific binding with six metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+). The gas-phase association constants of the studied metal ions with these de novo designed peptides were experimentally determined by MALDI mass spectrometry by using 3,4,5-trihydroxyacetophenone as a matrix, whereas the thermodynamic parameters of the metal-ion coordination in the condensed phase were measured by isothermal titration calorimetry (ITC), chelatometry and NMR spectroscopy methods. The data indicate that some of the computationally predicted peptides are potential M2+-specific metal-ion chelators.

  18. Theory of a continuous stripe melting transition in a two-dimensional metal: a possible application to cuprate superconductors.

    PubMed

    Mross, David F; Senthil, T

    2012-06-29

    We construct a theory of continuous stripe melting quantum phase transitions in two-dimensional metals and the associated Fermi surface reconstruction. Such phase transitions are strongly coupled but yet theoretically tractable in situations where the stripe ordering is destroyed by proliferating doubled dislocations of the charge stripe order. The resulting non-Landau quantum critical point has strong stripe fluctuations which we show decouple dynamically from the Fermi surface even though static stripe ordering reconstructs the Fermi surface. We discuss connections to various stripe phenomena in the cuprates. We point out several puzzling aspects of old experimental results [G. Aeppli et al., Science 278, 1432 (1997)] on singular stripe fluctuations in the cuprates, and provide a possible explanation within our theory. These results may thus have been the first observation of non-Landau quantum criticality in an experiment.

  19. Electronic and optical properties of a metal-organic framework with ab initio many-body perturbation theory

    NASA Astrophysics Data System (ADS)

    Berland, Kristian; Lee, Kyuho; Sharifzadeh, Sahar; Neaton, Jeffrey B.

    2015-03-01

    With their unprecedented surface area, and their structural and chemical tunability, metal-organic frameworks (MOFs) are being thoroughly explored for applications related to gas storage. Less studied are their electronic, excited-state, and optical properties. Here we explored such properties of Mg-MOF-74 using a combination of density functional theory (DFT) and many-body perturbation theory (MBPT) within the GW approximation and the Bethe-Salpeter equation (BSE) approach. The near-gap electronic conduction states were found to fall into two distinct categories: molecular-like and 1d-dispersive. Further, using the BSE approach, we predict a strongly anisotropic absorption spectrum, which we link to the nature of its strongly-bound excitons. Our calculations are found to be in good agreement with experimental absorption spectra, validating our theoretical approach. This work is supported by Chalmers Area of Advance: Materials, Vetenskapsradet, DOE, and computational resources provided by NERSC.

  20. Theory of Transition-Metal Substitutions in High-Temperature Rare Earth-Cobalt Magnets

    NASA Astrophysics Data System (ADS)

    Kashyap, A.; Skomski, R.; Sabiryanov, R.; Jaswal, S. S.; Sellmyer, D. J.

    2003-03-01

    The effect of transition-metal substitutions in 1:5 and 2:17 intermetallics for high-temperature applications is investigated by first-principle and model calculations. Self consistent calculations of magnetic moments and exchange-coupling constants are performed for a variety of Y(Co_1-xT_x)5 and Y_2(Co_1-xT_x)17 compounds (T = Cu, Ti and Zr) using a local density functional approach. The substitutional atoms carry only a small moment and reduce the interatomic exchange of the transition-metal sublattice. However, the strength of the effect depends on the site where the substitution occurs. Furthermore, in all cases the intrasublattice exchange exhibits some anisotropy. A transparent example is pure YCo_5, where the interatomic transition-metal exchange in the rare-earth transition-metal planes is only about 155 K, as compared to the corresponding interplane exchange of 757 K. Model calculations show that the exchange reduction has a drastic effect on the finite-temperature anisotropy of the phases, because it also influences the net rare-earth transition-metal intersublattice exchange. The reduced interatomic exchange can therefore be regarded as the atomic origin of the anomalous temperature dependence of the coercivity of advanced Sm-Co based high-temperature magnets. This research is supported by AFOSR, DOE, NSF, MRSEC(DMR-0213808), and CMRA.

  1. A simplified density functional theory method for investigating charged adsorbates on an ultrathin, insulating film supported by a metal substrate.

    PubMed

    Scivetti, Ivan; Persson, Mats

    2014-04-02

    A simplified density functional theory (DFT) method for investigating charged adsorbates on an ultrathin, insulating film supported by a metal substrate is developed and presented. This new method is based on a previous DFT development that uses a perfect conductor (PC) model to approximate the electrostatic response of the metal substrate, while the film and the adsorbate are both treated fully within DFT (Scivetti and Persson 2013 J. Phys.: Condens. Matter 25 355006). The missing interactions between the metal substrate and the insulating film in the PC approximation are modelled by a simple force field (FF). The parameters of the PC model and the force field are obtained from DFT calculations of the film and the substrate, here shown explicitly for a NaCl bilayer supported by a Cu(100) surface. In order to obtain some of these parameters and the polarizability of the force field, we have to include an external, uniformly charged plane in the DFT calculations, which has required the development of a periodic DFT formalism to include such a charged plane in the presence of a metal substrate. This extension and implementation should be of more general interest and applicable to other challenging problems, for instance, in electrochemistry. As illustrated for the gold atom on the NaCl bilayer supported by a Cu(100) surface, our new DFT-PC-FF method allows us to handle different charge states of adsorbates in a controlled and accurate manner with a considerable reduction of the computational time. In addition, it is now possible to calculate vertical transition and reorganization energies for the charging and discharging of adsorbates that cannot be obtained by current DFT methodologies that include the metal substrate. We find that the computed vertical transition energy for charging of the gold adatom is in good agreement with experiments.

  2. Increasing organizational energy conservation behaviors: Comparing the theory of planned behavior and reasons theory for identifying specific motivational factors to target for change

    NASA Astrophysics Data System (ADS)

    Finlinson, Scott Michael

    Social scientists frequently assess factors thought to underlie behavior for the purpose of designing behavioral change interventions. Researchers commonly identify these factors by examining relationships between specific variables and the focal behaviors being investigated. Variables with the strongest relationships to the focal behavior are then assumed to be the most influential determinants of that behavior, and therefore often become the targets for change in a behavioral change intervention. In the current proposal, multiple methods are used to compare the effectiveness of two theoretical frameworks for identifying influential motivational factors. Assessing the relative influence of all factors and sets of factors for driving behavior should clarify which framework and methodology is the most promising for identifying effective change targets. Results indicated each methodology adequately predicted the three focal behaviors examined. However, the reasons theory approach was superior for predicting factor influence ratings compared to the TpB approach. While common method variance contamination had minimal impact on the results or conclusions derived from the present study's findings, there were substantial differences in conclusions depending on the questionnaire design used to collect the data. Examples of applied uses of the present study are discussed.

  3. Complex Behavior of Forces Influencing Molten Weld Metal Flow based on Static Force Balance Theory

    NASA Astrophysics Data System (ADS)

    Achebo, Joseph I.

    This study is aimed at investigating the forces responsible for the detachment of molten metal droplets formed at an electrode tip, which imminently and eventually drop into the weld pool during the welding process. The Equations used by Kim and Eagar in 1993 were applied to this study. It was found that the different detaching forces which are the gravitational force, the electromagnetic force, and the drag force, were determined to be 7.154 x 10-6N, 0.05N and 1.736N respectively. Whereas, the primary retaining force, which is the surface tension force, was calculated to be 0.0195N. From the findings, since the combination of the detaching forces taken together is greater than the retaining force, detachment of the molten metal droplet must inevitably occur. The combined effect of these forces on the behaviour of molten metal during the droplet detachment process was adequately investigated in this study.

  4. Study of the dissociation of a charge-reduced phosphopeptide formed by electron transfer from an alkali metal target.

    PubMed

    Hayakawa, Shigeo; Hashimoto, Mami; Nagao, Hirofumi; Awazu, Kunio; Toyoda, Michisato; Ichihara, Toshio; Shigeri, Yasushi

    2008-01-01

    Doubly protonated phosphopeptide (YGGMHRQET(p)VDC) ions obtained by electrospray ionization were collided with Xe and Cs targets to give singly and doubly charged positive ions via collision-induced dissociation (CID). The resulting ions were analyzed and detected by using an electrostatic analyzer (ESA). Whereas doubly charged fragment ions resulting from collisionally activated dissociation (CAD) were dominant in the CID spectrum with the Xe target, singly charged fragment ions resulting from electron transfer dissociation (ETD) were dominant in the CID spectrum with the Cs target. The most intense peak resulting from ETD was estimated to be associated with the charge-reduced ion with H2 lost from the precursor. Five c-type fragment ions with amino acid residues detached consecutively from the C-terminal were clearly observed without a loss of the phosphate group. These ions must be formed by N--Calpha bond cleavage, in a manner similar to the cases of electron capture dissociation (ECD) and ETD from negative ions. Although the accuracy in m/z of the CID spectra was about +/-1 Th because of the mass analysis using the ESA, it is supposed from the m/z values of the c-type ions that these ions were accompanied by the loss of a hydrogen atom. Four z-type (or y--NH3, or y--H2O) ions analogously detached consecutively from the N-terminal were also observed. The fragmentation processes took place within the time scale of 4.5 micros in the high-energy collision. The present results demonstrated that high-energy ETD with the alkali metal target allowed determination of the position of phosphorylation and the amino acid sequence of post-translational peptides.

  5. Comments on the possibility of cavitation in liquid metal targets for pulsed spallation neutron sources

    SciTech Connect

    Carpenter J.M.

    1996-06-01

    When short pulses of protons strike the volume of a liquid target, the rapid heating produces a pressurized region which relaxes as the pressure wave propagates outward. Skala and Bauer have modeled the effects of the pressure wave impinging on the container walls of a liquid mercury target under ESS conditions. They find that high pressures and high wall stresses result if the medium is uniform, nearly incompressible liquid. The pressure and the stresses are much reduced if the liquid contains bubbles of helium, due to their high compressibility. However, according to the calculation, the pressure still reaches an atmosphere or so at the surface, which reflects the compressive wave as a rarefaction wave of the same magnitude. Even such modest underpressures can lead to the growth of bubbles (cavitation) at or near the surface, which can collapse violently and erode the container surface. It is necessary to avoid this. Leighton provides a wide ranging discussion of pressure waves in bubbly media, which may provide insights into the nature and control of cavitation phenomena. The paper surveys some of the relevant information from that source.

  6. An Estimation Theory Approach to Detection and Ranging of Obscured Targets in 3-D LADAR Data

    DTIC Science & Technology

    2006-03-01

    set consists of 100 laser pulse returns. The first set was collected as a control set using the target shown in figure 2.2. The second set was...containing 2 surfaces. 36 0 2 4 6 8 10 12 14 16 18 0 500 1000 1500 2000 2500 3000 3500 Pixel (99,107) Control # of P ho to ns Sample # Figure 4.4...show the first pulse return of control data from a pixel corresponding to the front surface and back surface respectively. 37 0 2 4 6 8 10

  7. Density-Functional Theory of Elastically Deformed Finite Metallic System: Work Function and Surface Stress

    NASA Astrophysics Data System (ADS)

    Pogosov, V. V.; Kurbatsky, V. P.

    2001-02-01

    The effect of external strain on surface properties of simple metals is considered within the modified stabilized jellium model. The equations for the stabilization energy of the deformed Wigner-Seitz cells are derived as a function of the bulk electron density and the given deformation. The results for surface stress and work function of aluminium calculated within the self-consistent Kohn-Sham method are also given. The problem of anisotropy of the work function of finite system is discussed. A clear explanation of independent experiments on stress-induced contact potential difference at metal surfaces is presented.

  8. Design of mid-infrared ultra-wideband metallic absorber based on circuit theory

    NASA Astrophysics Data System (ADS)

    Arik, Kamalodin; Abdollahramezani, Sajjad; Farajollahi, Saeed; Khavasi, Amin; Rejaei, Behzad

    2016-12-01

    An ultra-broadband absorber of light is proposed by using periodic array of ultra-thin metallic ribbons on top of a lossless quarter-wavelength dielectric spacer placed on a metallic reflector. We propose a fully analytical circuit model for the structure, and then the absorber is duly designed based on the impedance matching concept. As a result, normalized bandwidth of 99.5% is realized by the proposed absorbing structure in mid-infrared regime. Performing a numerical optimization algorithm, we could also reach to normalized bandwidth of 103%.

  9. Overcoming target-mediated quinolone resistance in topoisomerase IV by introducing metal-ion-independent drug-enzyme interactions.

    PubMed

    Aldred, Katie J; Schwanz, Heidi A; Li, Gangqin; McPherson, Sylvia A; Turnbough, Charles L; Kerns, Robert J; Osheroff, Neil

    2013-12-20

    Quinolones, which target gyrase and topoisomerase IV, are the most widely prescribed antibacterials worldwide. Unfortunately, their use is threatened by the increasing prevalence of target-mediated drug resistance. Greater than 90% of mutations that confer quinolone resistance act by disrupting enzyme-drug interactions coordinated by a critical water-metal ion bridge. Quinazolinediones are quinolone-like drugs but lack the skeletal features necessary to support the bridge interaction. These compounds are of clinical interest, however, because they retain activity against the most common quinolone resistance mutations. We utilized a chemical biology approach to determine how quinazolinediones overcome quinolone resistance in Bacillus anthracis topoisomerase IV. Quinazolinediones that retain activity against quinolone-resistant topoisomerase IV do so primarily by establishing novel interactions through the C7 substituent, rather than the drug skeleton. Because some quinolones are highly active against human topoisomerase IIα, we also determined how clinically relevant quinolones discriminate between the bacterial and human enzymes. Clinically relevant quinolones display poor activity against topoisomerase IIα because the human enzyme cannot support drug interactions mediated by the water-metal ion bridge. However, the inclusion of substituents that allow quinazolinediones to overcome topoisomerase IV-mediated quinolone resistance can cause cross-reactivity against topoisomerase IIα. Therefore, a major challenge in designing drugs that overcome quinolone resistance lies in the ability to identify substituents that mediate strong interactions with the bacterial, but not the human, enzymes. On the basis of our understanding of quinolone-enzyme interactions, we have identified three compounds that display high activity against quinolone-resistant B. anthracis topoisomerase IV but low activity against human topoisomerase IIα.

  10. Overcoming Target-Mediated Quinolone Resistance in Topoisomerase IV by Introducing Metal Ion-Independent Drug-Enzyme Interactions

    PubMed Central

    Aldred, Katie J.; Schwanz, Heidi A.; Li, Gangqin; McPherson, Sylvia A.; Turnbough, Charles L.; Kerns, Robert J.; Osheroff, Neil

    2013-01-01

    Quinolones, which target gyrase and topoisomerase IV, are the most widely prescribed antibacterials worldwide. Unfortunately, their use is threatened by the increasing prevalence of target-mediated drug resistance. Greater than 90% of mutations that confer quinolone resistance act by disrupting enzyme-drug interactions coordinated by a critical water-metal ion bridge. Quinazolinediones are quinolone-like drugs, but lack the skeletal features necessary to support the bridge interaction. These compounds are of clinical interest, however, because they retain activity against the most common quinolone resistance mutations. We utilized a chemical biology approach to determine how quinazolinediones overcome quinolone resistance in Bacillus anthracis topoisomerase IV. Quinazolinediones that retain activity against quinolone-resistant topoisomerase IV do so primarily by establishing novel interactions through the C7 substituent, rather than the drug skeleton. Because some quinolones are highly active against human topoisomerase IIα, we also determined how clinically relevant quinolones discriminate between the bacterial and human enzymes. Clinically relevant quinolones display poor activity against topoisomerase IIα because the human enzyme cannot support drug interactions mediated by the water-metal ion bridge. However, the inclusion of substituents that allow quinazolinediones to overcome topoisomerase IV-mediated quinolone resistance can cause cross-reactivity against topoisomerase IIα. Therefore, a major challenge in designing drugs that overcome quinolone resistance lies in the ability to identify substituents that mediate strong interactions with the bacterial, but not the human, enzymes. Based on our understanding of quinolone-enzyme interactions, we have identified three compounds that display high activity against quinolone-resistant B. anthracis topoisomerase IV but low activity against human topoisomerase IIα. PMID:24047414

  11. Large-signal model of the bilayer graphene field-effect transistor targeting radio-frequency applications: Theory versus experiment

    SciTech Connect

    Pasadas, Francisco Jiménez, David

    2015-12-28

    Bilayer graphene is a promising material for radio-frequency transistors because its energy gap might result in a better current saturation than the monolayer graphene. Because the great deal of interest in this technology, especially for flexible radio-frequency applications, gaining control of it requires the formulation of appropriate models for the drain current, charge, and capacitance. In this work, we have developed them for a dual-gated bilayer graphene field-effect transistor. A drift-diffusion mechanism for the carrier transport has been considered coupled with an appropriate field-effect model taking into account the electronic properties of the bilayer graphene. Extrinsic resistances have been included considering the formation of a Schottky barrier at the metal-bilayer graphene interface. The proposed model has been benchmarked against experimental prototype transistors, discussing the main figures of merit targeting radio-frequency applications.

  12. Folate-targeted single-wall metal-organic nanotubes used as multifunctional drug carriers

    NASA Astrophysics Data System (ADS)

    Yang, Linyan; Liu, Min; Huang, Kebin; Ai, Xia; Li, Cun; Ma, Jifei; Jin, Tianming; Liu, Xin

    2017-01-01

    Doxorubicin (DOX) is a member of the anthracycline class of chemotherapeutic agents that are used for the treatment of many common human cancers. A self-assembled functionalized metal-organic nanotubes, SWMONTs could be loaded with the anticancer drug DOX. Via the modification of SWMONTs, DOX/SWMONTs-SiO2, DOX/SWMONTs-SiO2-NH2, DOX/SWMONTs-SiO2-NH2-FA samples could be obtained. The SEM characterization of the samples indicated that the particle size of DOX/SWMONTs-SiO2NH2 samples were smaller than 200 nm. Drug-release experiments implied that DOX from the DOX/SWMONTs-SiO2-NH2-FA samples could be released faster at acidic tumor tissue than at normal body fluid (pH7.4). DOX has strong cytotoxicity, and at 20 μg/mL dosage of DOX large amount of apoptotic cells could be seen. Cellular uptaking experiments were used to study the apoptotic mechanism, while for DOX/SWMONTs-SiO2-NH2-FA samples, the strong drug fluorescence was found in the cytoplasm rather than in the nucleus.

  13. A formative approach to strategic message targeting through soap operas: using selective processing theories.

    PubMed

    Dutta-Bergman, Mohan J

    2006-01-01

    In the past 2 decades, soap operas have been used extensively to attain prosocial change in other parts of the world. The role of the soap opera in achieving social change has become of special interest to strategic health message designers and planners in the United States. Before a strategic approach is implemented, however, researchers need to conduct formative research to interrogate the viability of soap operas and guide communication strategies. This article constructs a profile of the soap opera user who is younger, less educated, and earns less than the nonuser. Using selective processing theory, I argue that the health-oriented individual is most likely to remember health content from soap operas and incorporate the content in future behavior. Strategic media planning and message construction guidelines are provided for the use of soap operas as vehicles for reinforcing positive health behaviors and introducing new behaviors in the health oriented segment.

  14. Development of a density functional theory in three-dimensional nanoconfined space: H2 storage in metal-organic frameworks.

    PubMed

    Liu, Yu; Liu, Honglai; Hu, Ying; Jiang, Jianwen

    2009-09-10

    A density functional theory (DFT) is developed in three-dimensional nanoconfined space and applied for H(2) storage in metal-organic frameworks. Two different weighting functions based on the weighted density approximation (WDA) are adopted, respectively, for the repulsive and attractive contributions to the excess free energy. The Carnahan-Starling equation and a modified Benedicit-Webb-Rubin equation are used to calculate the excess free energy of uniform fluid. To compare with DFT predictions, grand canonical Monte Carlo simulations are carried out separately. For H(2) adsorption in MOF-5 and ZIF-8, the isotherms predicted from the DFT agree well with simulation and experiment results, and the DFT is found to be superior to the mean-field-approximation (MFA)-based theory. The adsorption energies and isosteric heats predicted are also in accord with simulation results. From the predicted density contours, the DFT shows that the preferential adsorption sites are the corners of metal clusters in MOF-5 and the top of organic linkers in ZIF-8, consistent with simulation and experimental observations.

  15. The Metallicity Distribution and Hot Jupiter Rate of the Kepler Field: Hectochelle High-resolution Spectroscopy for 776 Kepler Target Stars

    NASA Astrophysics Data System (ADS)

    Guo, Xueying; Johnson, John A.; Mann, Andrew W.; Kraus, Adam L.; Curtis, Jason L.; Latham, David W.

    2017-03-01

    The occurrence rate of hot Jupiters from the Kepler transit survey is roughly half that of radial velocity surveys targeting solar neighborhood stars. One hypothesis to explain this difference is that the two surveys target stars with different stellar metallicity distributions. To test this hypothesis, we measure the metallicity distribution of the Kepler targets using the Hectochelle multi-fiber, high-resolution spectrograph. Limiting our spectroscopic analysis to 610 dwarf stars in our sample with {log}g > 3.5, we measure a metallicity distribution characterized by a mean of {[{{M}}/{{H}}]}{mean}=-0.045+/- 0.009, in agreement with previous studies of the Kepler field target stars. In comparison, the metallicity distribution of the California Planet Search radial velocity sample has a mean of {[{{M}}/{{H}}]}{CPS,{mean}}=-0.005+/- 0.006, and the samples come from different parent populations according to a Kolmogorov-Smirnov test. We refit the exponential relation between the fraction of stars hosting a close-in giant planet and the host star metallicity using a sample of dwarf stars from the California Planet Search with updated metallicities. The best-fit relation tells us that the difference in metallicity between the two samples is insufficient to explain the discrepant hot Jupiter occurrence rates; the metallicity difference would need to be ≃0.2-0.3 dex for perfect agreement. We also show that (sub)giant contamination in the Kepler sample cannot reconcile the two occurrence calculations. We conclude that other factors, such as binary contamination and imperfect stellar properties, must also be at play.

  16. The metallicity distribution and hot Jupiter rate of the Kepler field: Hectochelle High-resolution spectroscopy for 776 Kepler target stars

    NASA Astrophysics Data System (ADS)

    Guo, Xueying; Johnson, John A.; Mann, Andrew W.; Kraus, Adam L.; Curtis, Jason L.; Latham, David W.

    2017-01-01

    The occurrence rate of hot Jupiters from the Kepler transit survey is roughly half that of radial velocity surveys targeting solar neighborhood stars. One hypothesis to explain this difference is that the two surveys target stars with different stellar metallicity distributions. To test this hypothesis, we measure the metallicity distribution of the Kepler targets using the Hectochelle multi-fiber, high-resolution spectrograph. Limiting our spectroscopic analysis to 610 dwarf stars in our sample with log(g) > 3.5, we measure a metallicity distribution characterized by a mean of [M/H]_{mean} = -0.045 +/- 0.009, in agreement with previous studies of the Kepler field target stars. In comparison, the metallicity distribution of the California Planet Search radial velocity sample has a mean of [M/H]_{CPS, mean} = -0.005 +\\- 0.006, and the samples come from different parent populations according to a Kolmogorov-Smirnov test. We refit the exponential relation between the fraction of stars hosting a close-in giant planet and the host star metallicity using a sample of dwarf stars from the California Planet Search with updated metallicities. The best-fit relation tells us that the difference in metallicity between the two samples is insufficient to explain the discrepant Hot Jupiter occurrence rates; the metallicity difference would need to be 0.2-0.3 dex for perfect agreement. We also show that (sub)giant contamination in the Kepler sample cannot reconcile the two occurrence calculations. We conclude that other factors, such as binary contamination and imperfect stellar properties, must also be at play.

  17. X-ray and gamma ray emission from petawatt laser-driven nanostructured metal targets

    NASA Astrophysics Data System (ADS)

    Hill, Matthew; Allan, Peter; Brown, Colin; Hoarty, David; Hobbs, Lauren; James, Steven; Bargsten, Clayton; Hollinger, Reed; Rocca, Jorge; Park, Jaebum; Chen, Hui; London, Richard; Shepherd, Ronnie; Tommasini, Riccardo; Vinko, Sam; Wark, Justin; Marjoribanks, Robin; Neely, David; Spindloe, Chris

    2016-10-01

    Nano-wire arrays of nickel and gold have been fired at the Orion laser facility using high contrast 1 ω and 2 ω short pulse beams (0.7 ps pulse length, >1020 W cm-2 intensity). Time-resolved and time-integrated K-shell and M-shell emission have been characterized and compared to those of flat foils, investigating the capability of these metamaterial coatings to enhance laser-target coupling and X-ray emission. Bremsstrahlung emission of gamma rays and associated pair production via the Bethe-Heitler process have also been investigated by use of 1 mm-thick gold substrates attached to the gold nanowires. We present our latest experimental data and outline some potential future applications.

  18. Quantum particle interacting with a metallic particle: Spectra from quantum Langevin theory

    NASA Astrophysics Data System (ADS)

    Loh, W. M. Edmund; Ooi, C. H. Raymond

    2017-01-01

    The effect of a nearby metallic particle on the quantum optical properties of a quantum particle in the four-level double Raman configuration is studied using the quantum Langevin approach. We obtain analytical expressions for the correlated quantum fields of Stokes and anti-Stokes photons emitted from the system and perform analysis on how the interparticle distance, the direction of observation or detection, the strengths of controllable laser fields, the presence of surface plasmon resonance, and the number density of the quantum particle affect the quantum spectra of the Stokes and anti-Stokes fields. We explore the physics behind the quantum-particle-metallic-nanoparticle interaction within the dipole approximation, that is, when the interparticle distance is much larger than the sizes of the particles. Our results show the dependence of the spectra on the interparticle distance in the form of oscillatory behavior with damping as the interparticle distance increases. At weaker laser fields the enhancement of quantum fields which manifests itself in the form of a Fano dip in the central peak of the spectra becomes significant. Also, the quantum-particle-metallic-nanoparticle coupling, which is affected by the size of the metallic nanoparticle and the number density of the quantum particle, changes the angular dependence of the spectra by breaking the angular rotational symmetry. In the presence of surface plasmon resonance the oscillatory dependence of the spectra on the interparticle distance and angles of observation becomes even stronger due to the plasmonic enhancement effect.

  19. Metal complexation and biodegradation of EDTA and S,S-EDDS: a density functional theory study.

    PubMed

    Chen, Litao; Liu, Ting; Ma, Chun'an

    2010-01-14

    The complexation reactions of ethylenediaminetetraacetate (EDTA(4-)) and S,S-ethylenediaminedisuccinate (S,S-EDDS(4-)) with Co(2+), Ni(2+), Cu(2+), Zn(2+), and Cd(2+) cations are investigated by using the DFT/B3LYP method. The hydration reaction of each metal ion with solvent water cluster is considered with a mixed cluster/continuum model. The subsequent metal complexation is treated as a substitution reaction of the coordinated water molecules by the amino polycarboxylic acid ligand. Thermodynamic cycles are schemed to evaluate the free energy changes for both hydration and complexation processes. The values of complexation free energy changes show that the stabilities of metal complexes with the isomeric ligands follow the order of [M(S,S-EDDS)](2-) in trans(O(6))-conformer < [M(S,S-EDDS)](2-) in trans(O(5))-conformer < [M(EDTA)](2-), implying that the failure to observe the trans(O(6)) conformer under experimental conditions is attributed to its inherent instability. The same trend appears in our steric strain analysis on the various chelate rings in complexes. Because the [M(S,S-EDDS)](2-) in trans(O(6)) complex is not available, we focus on the other two series of complexes with concerned metal ions. The stabilities decrease in the order Cu(2+) > Ni(2+) > Co(2+) > Zn(2+) > Cd(2+) and Cu(2+) > Ni(2+) > Co(2+) > Cd(2+) > Zn(2+) for trans(O(5))-[M(S,S-EDDS)](2-) and [M(EDTA)](2-), respectively. These two tendencies are shown to be consistent with the decrease in the metal-to-ligand charge transfer. Meanwhile, a good quantitative correlation is found between the complexation free energies and the dipole moments for all complexes (excluding the case of Cu(2+)). The far-infrared spectra are present to investigate the characteristics of metal-dependent vibrations, and the further natural bond orbital (NBO) method is taken to show the nature of metal-ligand bonding interactions. Finally, and perhaps most importantly, degrading products of both amino polycarboxylic

  20. Adsorption of a metalorganic complex at a metal surface: A density functional theory study vs. model description

    SciTech Connect

    Kostyrko, T. Ślusarski, T.

    2015-01-21

    A modification of the electronic and magnetic structure of a metalorganic complex by chemisorption at a metallic surface is addressed. The density functional theory (DFT) is applied to investigate a simplified form of a copper-dioxolene complex in a free state and connected to Au(111) surface with alkanethiol linkers. A systematic study of the dependence of the system electronic structure on the linker length is performed. It is found that the electronic structure of the complex is well preserved during the adsorption process. The magnetic moment of the Cu-dioxolene functional group is shown to be strictly correlated with the amount of the charge residing at the complex. On the basis of the DFT results, a model Hamiltonian of the adsorbed metalorganic system is proposed. The model is an extension of the Sandorfy's model of the alkanes and includes explicitly Coulomb interaction between electrons both within the alkane's backbone and the end group. We show that the latter feature is necessary to understand the evolution of the system's properties with the length of the linkers. The advantage of this approach is that it not only reproduces the main results of our DFT analysis but also provides a simple common basis to analyse a wide class of metal complexes bound to metal surfaces with alkanethiol linkers.

  1. The half-metallicity of zinc-blende CaC/GaAs(001) heterojunction: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Moradi, M.; Mohammadi, A.; Afshari, M.; Soltani, Z.

    2013-04-01

    First principles calculations, based on spin density functional theory (SDFT) as implemented in the PWscf code of the QUANTUM-ESPRESSO package, are performed to study electronic and magnetic properties of CaC/GaAs(001) heterojunction. We simulate the interface of CaC in Zinc-Blende (ZB) structure and GaAs semiconductor to see whether this electrode could be a good choice for spin current injection or not. For this purpose, we calculate the spin-polarized density of states for ZB-CaC, in-plane strained ZB-CaC (tetragonal phase) and also for ZB-CaC/GaAs(001) heterojunction. It is shown that ZB-CaC, is a half-metal ferromagnet with large half-metallic gap. The half-metallicity is found to be robust with respect to the lattice deformation to the tetragonal phase and is maintained in the range of 0.59< c/a <1.22. Calculations with supercell scheme for simulation ZB-CaC/GaAs(001) heterojunction show that the spin polarization at the Fermi energy reduced at the CaC/GaAs(001) heterojunction. But due to large difference of density of states of spin channels around the Fermi energy, the spin polarization is large yet. So the CaC/GaAs(001) heterojunction can be used in spintronics applications as a spin current injector but it is not 100% spin-polarized.

  2. Use the superconducting proximity effect to investigate alkali metal films and the comparison between the experiment and theory

    NASA Astrophysics Data System (ADS)

    Zhang, Manjiang

    Bilayers of Pb and the alkali metals Cs, Rb, K and Na were quench condensed on the quartz plate. The transition temperature measurement provides information about interface barriers between the Pb and the alkali metals. Such a barrier, which is not due to impurities or oxidation, is particularly large in Pb/Cs sandwiches. The thin K film is forced into an insulating state by being covered with sub-monolayers of Pb. The SPE is used to investigate the electronic change in the alkali film. The K film behaves as if its electrons are unable to carry a current in the x-y-plane but can easily move in the z-direction. This shows on the length scale of the K film thickness, the electronic properties of the film do not change noticeably during the metal-insulator transition. The superconducting proximity effect is investigated for SN-double layers in the thin film limit. In this regime, the normalized initial slope Ssn = (ds=Ts )|dTc=ddn| is independent of the thickness of the superconductor, the mean free path of the films and the transparency of the interface if it is not too small. The transition temperature Tc is compared with a numerical calculation developed in our group. The deviation between the experiment and theory decreases from the normal metal to the superconductor with a relative high transition temperature. The deviation factor decreases from 2.5 for Cu, Ag, Au, Mg to 1.5 for Cd, Zn, Al and finally no disagreement for In and Sn. A weak perpendicular magnetic field is applied on the super- and normal conductor double layers. The difference of the transition temperature dTc measured with and without magnetic field increases with increasing the normal metal thickness. A quantitative explanation is given based on the increased dephasing of the electrons in the magnetic field. Numerical calculation of the transition temperature based on the strong coupling theory is also given and compared with the experimental results.

  3. No breakdown of the radiatively driven wind theory in low-metallicity environments

    NASA Astrophysics Data System (ADS)

    Bouret, J.-C.; Lanz, T.; Hillier, D. J.; Martins, F.; Marcolino, W. L. F.; Depagne, E.

    2015-05-01

    We present a spectroscopic analysis of Hubble Space Telescope/Cosmic Origins Spectrograph observations of three massive stars in the low metallicity dwarf galaxies IC 1613 and WLM. These stars, were previously observed with Very Large Telescope (VLT)/X-shooter by Tramper et al., who claimed that their mass-loss rates are higher than expected from theoretical predictions for the underlying metallicity. A comparison of the far ultraviolet (FUV) spectra with those of stars of similar spectral types/luminosity classes in the Galaxy, and the Magellanic Clouds provides a direct, model-independent check of the mass-loss-metallicity relation. Then, a quantitative spectroscopic analysis is carried out using the non-LTE (NLTE) stellar atmosphere code CMFGEN. We derive the photospheric and wind characteristics, benefiting from a much better sensitivity of the FUV lines to wind properties than Hα. Iron and CNO abundances are measured, providing an independent check of the stellar metallicity. The spectroscopic analysis indicates that Z/Z⊙ = 1/5, similar to a Small Magellanic Cloud-type environment, and higher than usually quoted for IC 1613 and WLM. The mass-loss rates are smaller than the empirical ones by Tramper et al., and those predicted by the widely used theoretical recipe by Vink et al. On the other hand, we show that the empirical, FUV-based, mass-loss rates are in good agreement with those derived from mass fluxes computed by Lucy. We do not concur with Tramper et al. that there is a breakdown in the mass-loss-metallicity relation.

  4. Cyclotron production of Ga-68 for human use from liquid targets: From theory to practice

    NASA Astrophysics Data System (ADS)

    Alves, F.; Alves, V. H.; Neves, A. C. B.; do Carmo, S. J. C.; Nactergal, B.; Hellas, V.; Kral, E.; Gonçalves-Gameiro, C.; Abrunhosa, A. J.

    2017-05-01

    A fully automated system for the production of 68Ga based on commercially available cyclotron liquid target and synthesis modules is described. A solution containing enriched 68Zn dissolved in a nitric solution is irradiated in a Cyclone 18/9 IBA cyclotron leading to the production of up to about 25 GBq of 68Ga. The irradiated solution is transferred to a Synthera synthesis module in which 68Ga is separated and purified with a yield superior to 85 % and where further labelling is achieved with yields no inferior to 70 %. The developed and implemented method presents an improved approach for the production of 68Ga-radiopharmaceuticals suitable for human use, in a process that takes less than 2 hours. This technique represents an economically viable alternative to 68Ge/68Ga generators with improved characteristics.

  5. Effect of metal in M3(btc)2 and M2(dobdc) MOFs for O2/N2 separations: A combined density functional theory and experimental study

    DOE PAGES

    Parkes, Marie V.; Sava Gallis, Dorina F.; Greathouse, Jeffery A.; ...

    2015-03-02

    Computational screening of metal-organic framework (MOF) materials for selective oxygen adsorption from air could lead to new sorbents for the oxyfuel combustion process feedstock streams. A comprehensive study on the effect of MOF metal chemistry on gas binding energies in two common but structurally disparate metal-organic frameworks has been undertaken. Dispersion-corrected density functional theory methods were used to calculate the oxygen and nitrogen binding energies with each of fourteen metals, respectively, substituted into two MOF series, M2(dobdc) and M3(btc)2. The accuracy of DFT methods was validated by comparing trends in binding energy with experimental gas sorption measurements. A periodic trendmore » in oxygen binding energies was found, with greater oxygen binding energies for early transition-metal-substituted MOFs compared to late transition metal MOFs; this was independent of MOF structural type. The larger binding energies were associated with oxygen binding in a side-on configuration to the metal, with concomitant lengthening of the O-O bond. In contrast, nitrogen binding energies were similar across the transition metal series, regardless of both MOF structural type and metal identity. Altogether, these findings suggest that early transition metal MOFs are best suited to separating oxygen from nitrogen, and that the MOF structural type is less important than the metal identity.« less

  6. THEY MIGHT BE GIANTS: LUMINOSITY CLASS, PLANET OCCURRENCE, AND PLANET-METALLICITY RELATION OF THE COOLEST KEPLER TARGET STARS

    SciTech Connect

    Mann, Andrew W.; Hilton, Eric J.; Gaidos, Eric; Lepine, Sebastien

    2012-07-01

    We estimate the stellar parameters of late K- and early M-type Kepler target stars. We obtain medium-resolution visible spectra of 382 stars with K{sub P} - J > 2 ({approx_equal}K5 and later spectral type). We determine luminosity class by comparing the strength of gravity-sensitive indices (CaH, K I, Ca II, and Na I) to their strength in a sample of stars of known luminosity class. We find that giants constitute 96% {+-} 1% of the bright (K{sub P} < 14) Kepler target stars, and 7% {+-} 3% of dim (K{sub P} > 14) stars, significantly higher than fractions based on the stellar parameters quoted in the Kepler Input Catalog (KIC). The KIC effective temperatures are systematically (110{sup +15}{sub -35} K) higher than temperatures we determine from fitting our spectra to PHOENIX stellar models. Through Monte Carlo simulations of the Kepler exoplanet candidate population, we find a planet occurrence of 0.36 {+-} 0.08 when giant stars are properly removed, somewhat higher than when a KIC log g > 4 criterion is used (0.27 {+-} 0.05). Last, we show that there is no significant difference in g - r color (a probe of metallicity) between late-type Kepler stars with transiting Earth-to-Neptune-size exoplanet candidates and dwarf stars with no detected transits. We show that a previous claimed offset between these two populations is most likely an artifact of including a large number of misidentified giants.

  7. Interactions of calmodulin with metal ions and with its target proteins revealed by conformation-sensitive monoclonal antibodies.

    PubMed

    Wolf, T; Solomon, B; Ivnitski, D; Rishpon, J; Fleminger, G

    1998-01-01

    Two monoclonal antibodies (mAbs) raised against bovine calmodulin (CaM), CAM1 and CAM4, enable one to monitor conformational changes that occur in the molecule. The interaction of CAM1 with CaM depends on the Ca2+ occupancy of its Ca(2+)-binding sites. CAM4, in contrast, interacts with CaM in a Ca(2+)-independent manner, interacting with both holoCaM and EGTA-treated CaM to a similar extent. Their interaction with various CaMs, CaM tryptic fragments and chemically modified CaM, as well as molecular graphics, led to identification of the CAM1 and CAM4 epitopes on the C- and N-terminal lobes of CAM respectively. The two mAbs were used as macromolecular probes to detect conformational changes occurring in the CaM molecule upon binding of metal ions and target proteins and peptides. MAb CAM1 successfully detected changes associated with Al3+ binding even in the presence of Ca2+, indicating that Al3+ and Ca2+ ions may bind to the protein simultaneously, leading to a new conformation of the molecule. MAbs CAM1 and CAM4 were used to follow the interactions of CaM with its target peptides and proteins. Complexes with melittin, mastoparan, calcineurin and phosphodiesterase showed different immunological properties on an immuno-enzyme electrode, indicating unique structural properties for each complex.

  8. Signal enhancement in electrospray laser desorption/ionization mass spectrometry by using a black oxide-coated metal target and a relatively low laser fluence.

    PubMed

    Kononikhin, Alexey; Huang, Min-Zong; Popov, Igor; Kostyukevich, Yury; Kukaev, Evgeny; Boldyrev, Alexey; Spasskiy, Alexander; Leypunskiy, Ilya; Shiea, Jentaie; Nikolaev, Eugene

    2013-01-01

    The electrospray Laser desorption/ionization (ELDI) method is actively used for direct sample analysis and ambient mass spectrometry imaging. The optimizing of Laser desorption conditions is essential for this technology. In this work, we propose using a metal target with a black oxide (Fe3O4) coating to increase the signal in ELDI-MS for peptides and small proteins. The experiments were performed on an LTQ-FT mass spectrometer equipped with a home-made ELDI ion source. A cutter blade with black oxide coating was used as a target. A nitrogen laser was used with the following parameters: 337 nm, pulse duration 4ns, repetition rate 10 Hz, fluence to approximately 700 Jm(-2). More than a five times signal increase was observed for a substance P peptide when a coated and a non-coated metal target were compared. No ion signal was observed for proteins if the same fluence and the standard stainless steel target were used. With the assistance of the Fe3O4 coated metal target and a relatively low laser fluence < or =700 Jm(-2)), proteins such as insulin, ubiquitin and myoglobin were successfully ionized. It was demonstrated that the Fe3O4-coated metal target can be used efficiently to assist laser desorption and thus significantly increase the analyte signal in ELDI-MS. A relatively low laser fluence (< or = 700 Jm(-2)) was enough to desorb peptides and proteins (up to 17 kDal with the assistance of the Fe3O4-coated metal target under ambient conditions.

  9. Targeting Parents for Childhood Weight Management: Development of a Theory-Driven and User-Centered Healthy Eating App

    PubMed Central

    Lahiri, Sudakshina; Brown, Katherine Elizabeth

    2015-01-01

    Background The proliferation of health promotion apps along with mobile phones' array of features supporting health behavior change offers a new and innovative approach to childhood weight management. However, despite the critical role parents play in children’s weight related behaviors, few industry-led apps aimed at childhood weight management target parents. Furthermore, industry-led apps have been shown to lack a basis in behavior change theory and evidence. Equally important remains the issue of how to maximize users’ engagement with mobile health (mHealth) interventions where there is growing consensus that inputs from the commercial app industry and the target population should be an integral part of the development process. Objective The aim of this study is to systematically design and develop a theory and evidence-driven, user-centered healthy eating app targeting parents for childhood weight management, and clearly document this for the research and app development community. Methods The Behavior Change Wheel (BCW) framework, a theoretically-based approach for intervention development, along with a user-centered design (UCD) philosophy and collaboration with the commercial app industry, guided the development process. Current evidence, along with a series of 9 focus groups (total of 46 participants) comprised of family weight management case workers, parents with overweight and healthy weight children aged 5-11 years, and consultation with experts, provided data to inform the app development. Thematic analysis of focus groups helped to extract information related to relevant theoretical, user-centered, and technological components to underpin the design and development of the app. Results Inputs from parents and experts working in the area of childhood weight management helped to identify the main target behavior: to help parents provide appropriate food portion sizes for their children. To achieve this target behavior, the behavioral diagnosis

  10. Targeting Parents for Childhood Weight Management: Development of a Theory-Driven and User-Centered Healthy Eating App.

    PubMed

    Curtis, Kristina Elizabeth; Lahiri, Sudakshina; Brown, Katherine Elizabeth

    2015-06-18

    The proliferation of health promotion apps along with mobile phones' array of features supporting health behavior change offers a new and innovative approach to childhood weight management. However, despite the critical role parents play in children's weight related behaviors, few industry-led apps aimed at childhood weight management target parents. Furthermore, industry-led apps have been shown to lack a basis in behavior change theory and evidence. Equally important remains the issue of how to maximize users' engagement with mobile health (mHealth) interventions where there is growing consensus that inputs from the commercial app industry and the target population should be an integral part of the development process. The aim of this study is to systematically design and develop a theory and evidence-driven, user-centered healthy eating app targeting parents for childhood weight management, and clearly document this for the research and app development community. The Behavior Change Wheel (BCW) framework, a theoretically-based approach for intervention development, along with a user-centered design (UCD) philosophy and collaboration with the commercial app industry, guided the development process. Current evidence, along with a series of 9 focus groups (total of 46 participants) comprised of family weight management case workers, parents with overweight and healthy weight children aged 5-11 years, and consultation with experts, provided data to inform the app development. Thematic analysis of focus groups helped to extract information related to relevant theoretical, user-centered, and technological components to underpin the design and development of the app. Inputs from parents and experts working in the area of childhood weight management helped to identify the main target behavior: to help parents provide appropriate food portion sizes for their children. To achieve this target behavior, the behavioral diagnosis revealed the need for eliciting change in

  11. Thermochromism of metal-doped VO{sub 2} films deposited by dual-target sputtering

    SciTech Connect

    Jin, P.; Tazawa, M.; Yoshimura, K.; Miki, T.; Igarashi, K.; Tanemura, S.

    1994-12-31

    There are several kinds of chromogenic materials such as photochromic material, electrochromic material and thermochromic material, of which the thermochromic one is known for its optical properties (transmittance and reflectance) being able to change reversibly upon temperature. Among the chromogenic materials feasible to smart window coatings, thermochromic (TC) one has recently received increasing attention, since a window with TC coating enables automatic control of the energy throughputs of the solar radiation as well as the environmental radiation in response to the ambient temperature. Here, thermochromic VO{sub 2} films were prepared by reactive magnetron sputtering under various conditions of substrate temperature, total sputter pressure and oxygen flow ratio and characterized by XRD, RBS, AFM and spectrophotometry. Films with VO{sub 2} single phase were formed from a fairly low substrate temperature of 300 C by precisely controlling the oxygen flow ratio. The use of vanadium nucleated substrates significantly improved the crystallinity of VO{sub 2}. Tungsten doped V{sub 1{minus}x}W{sub x}O{sub 2} films with x = 0--0.26 were formed by dual-target sputtering and the thermochromism of films was evaluated. The tungsten doping linearly decreased {tau}{sub c} by 24 C/at.%W with a reduction in the hysteresis loop width.

  12. A density functional theory guide to high quality modification of mixed metal oxides used for photocatalytic water splitting

    NASA Astrophysics Data System (ADS)

    Mayfield, Cedric Leon

    Phase stability and charge transport of pristine and transition metal alloyed bismuth titanate (Bi2Ti2O7, a.k.a. BTO), a photocatalytic water splitter, has been studied using the generalized gradient approximated density functional theory (GGA-DFT). The primary goals of this work were to predict the effective conditions for pure phase synthesis of the modified ternary multi-metal oxide and to determine the most suitable modifications for enhancing its photocatalytic properties. To understand the details of phase stability and photoconduction, we have derived the formation enthalpies, defect formation energies, electronic structures, spectral absorptions and polaron activation energies for pristine and transition metal doped bismuth titanate (Bi2Ti2O7, a.k.a. BTO). Implantation of the localized 3d electrons is a primary band engineering technique for extending the spectral absorptions of metal oxides into the visible range. However, localized states typically increase charge trapping that reduces crucial photocurrent for the photocatalytic process. Therefore one objective here is to understand the extent to which localization plays a role in electron transfer and which mode of conduction, band or polaron hopping, is dominantly effected. As predicting the effective conditions for pure phase stability and modeling electron transport of multi metal oxide materials is still in development as a whole, we have benchmarked our methods by reproducing relative quantities of world class metal oxide photocatalyst, rutile TiO2 and monoclinic scheelite BiVO4. In recognition of our methods, our results have been used to enhance H2 production of a facile hydrothermal synthesized Fe-doped BTO. Furthermore, we demonstrate with results for Cr- and Mn-doped BTO how experimental characterization can also be enhanced. For each transition metal ion (M = Cr, Mn, and Fe), pure phase stability has a unique association with the presence or absence of O defects. Band modifications vary with

  13. Mono-energetic mono-directional resonance neutron activation of natural indium metal target

    SciTech Connect

    Ertek, C.; Oigawa, Hiroyuki

    1994-12-31

    The mono-energetic neutrons of 1.456eV energy are obtained from 2 MWth TR-I swimming pool type research reactor using double collimated beams and BRAGG reflection of pure Beryllium mono-crystal with extremely fine energy resolution. Foil thickness for 3 foils were 26., 28, and 44.10-4 cm and they were perpendicular to the beam of mono-energetic neutrons and were irradiated in sandwich form. After irradiation, the saturation activities were obtained using Phillips two-pie special beta-ray detector in a well controlled and shielded geometry. Counting reproducibility was excellent (better than 0.1%). Special Attention was paid to the irradiated (side A) and non-irradiated (side B) sides of the foils. Usual irradiation and decay corrections were applied to obtain the saturation activities. In this work, the preliminary calculations of reaction rates using Nakazawa M. et al., JENDL Dosimetry file, JAERI 1325, (1992) were performed. Considerable differences are found between the calculations and experiment and possible reasons are still under investigation. The preliminary calculations of reaction rates using ENDFB/VI are in agreement with JENDL-3 estimates. Absolute reaction rate estimates are not yet ready. Considerable numbers of research centers are interested in the experiment and very constructive inputs are expressed and obtained from Hiroyuki Oigawa, Shigeaki Okajima and T. Mukaiyama, JAERI, Japan; N.P. Baumann and K.O. Ott, USA; E. Zsolnay and E. Szondy, Hungary; M.C. Lopes and J. Molina, Portugal; F. Bensch, H. Boeck Austria; and M. Turgut and A. Isyar, Turkey. Investigations using collision theory, multiple scattering and monte-carlo techniques have been undertaken.

  14. In Vivo Targeting and Positron Emission Tomography Imaging of Tumor with Intrinsically Radioactive Metal-Organic Frameworks Nanomaterials.

    PubMed

    Chen, Daiqin; Yang, Dongzhi; Dougherty, Casey A; Lu, Weifei; Wu, Hongwei; He, Xianran; Cai, Ting; Van Dort, Marcian E; Ross, Brian D; Hong, Hao

    2017-04-25

    Nanoscale metal-organic frameworks (nMOF) materials represent an attractive tool for various biomedical applications. Due to the chemical versatility, enormous porosity, and tunable degradability of nMOFs, they have been adopted as carriers for delivery of imaging and/or therapeutic cargos. However, the relatively low stability of most nMOFs has limited practical in vivo applications. Here we report the production and characterization of an intrinsically radioactive UiO-66 nMOF ((89)Zr-UiO-66) with incorporation of positron-emitting isotope zirconium-89 ((89)Zr). (89)Zr-UiO-66 was further functionalized with pyrene-derived polyethylene glycol (Py-PGA-PEG) and conjugated with a peptide ligand (F3) to nucleolin for targeting of triple-negative breast tumors. Doxorubicin (DOX) was loaded onto UiO-66 with a relatively high loading capacity (1 mg DOX/mg UiO-66) and served as both a therapeutic cargo and a fluorescence visualizer in this study. Functionalized (89)Zr-UiO-66 demonstrated strong radiochemical and material stability in different biological media. Based on the findings from cellular targeting and in vivo positron emission tomography (PET) imaging, we can conclude that (89)Zr-UiO-66/Py-PGA-PEG-F3 can serve as an image-guidable, tumor-selective cargo delivery nanoplatform. In addition, toxicity evaluation confirmed that properly PEGylated UiO-66 did not impose acute or chronic toxicity to the test subjects. With selective targeting of nucleolin on both tumor vasculature and tumor cells, this intrinsically radioactive nMOF can find broad application in cancer theranostics.

  15. Heat transfer to a heavy liquid metal in curved geometry: Code validation and CFD simulation for the MEGAPIE lower target

    NASA Astrophysics Data System (ADS)

    Dury, Trevor V.

    2006-06-01

    The ESS and SINQ Heat Emitting Temperature Sensing Surface (HETSS) mercury experiments have been used to validate the Computational Fluid Dynamics (CFD) code CFX-4 employed in designing the lower region of the international liquid metal cooled MEGAPIE target, to be installed at SINQ, PSI, in 2006. Conclusions were drawn on the best turbulence models and degrees of mesh refinement to apply, and a new CFD model of the MEGAPIE geometry was made, based on the CATIA CAD design of the exact geometry constructed. This model contained the fill and drain tubes as well as the bypass feed duct, with the differences in relative vertical length due to thermal expansion being considered between these tubes and the window. Results of the mercury experiments showed that CFD calculations can be trusted to give peak target window temperature under normal operational conditions to within about ±10%. The target nozzle actually constructed varied from the theoretical design model used for CFD due to the need to apply more generous separation distances between the nozzle and the window. In addition, the bypass duct contraction approaching the nozzle exit was less sharp compared with earlier designs. Both of these changes modified the bypass jet penetration and coverage of the heated window zone. Peak external window temperature with a 1.4 mA proton beam and steady-state operation is now predicted to be 375 °C, with internal temperature 354.0 °C (about 32 °C above earlier predictions). Increasing bypass flow from 2.5 to 3.0 kg/s lowers these peak temperatures by about 12 °C. Stress analysis still needs to be made, based on these thermal data.

  16. Solid state theory. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides.

    PubMed

    Qian, Xiaofeng; Liu, Junwei; Fu, Liang; Li, Ju

    2014-12-12

    Quantum spin Hall (QSH) effect materials feature edge states that are topologically protected from backscattering. However, the small band gap in materials that have been identified as QSH insulators limits applications. We use first-principles calculations to predict a class of large-gap QSH insulators in two-dimensional transition metal dichalcogenides with 1T' structure, namely, 1T'-MX2 with M = (tungsten or molybdenum) and X = (tellurium, selenium, or sulfur). A structural distortion causes an intrinsic band inversion between chalcogenide-p and metal-d bands. Additionally, spin-orbit coupling opens a gap that is tunable by vertical electric field and strain. We propose a topological field effect transistor made of van der Waals heterostructures of 1T'-MX2 and two-dimensional dielectric layers that can be rapidly switched off by electric field through a topological phase transition instead of carrier depletion.

  17. Theory of pump-probe experiments of metallic metamaterials coupled to the gain medium

    SciTech Connect

    Huang, Zhixiang; Koschny, Thomas; Soukoulis, Costas

    2012-05-04

    We establish a new approach for pump-probe simulations of metallic metamaterials coupled to the gain materials. It is of vital importance to understand the mechanism of the coupling of metamaterials with the gain medium. Using a four-level gain system, we have studied light amplification of arrays of metallic split-ring resonators with a gain layer underneath. We find that the differential transmittance ΔT/T can be negative for split-ring resonators on the top of the gain substrate, which is not expected, and ΔT/T is positive for the gain substrate alone. These simulations agree with pump-probe experiments and can help to design new experiments to compensate for the losses of metamaterials.

  18. Theory of metal atom-water interactions and alkali halide dimers

    NASA Technical Reports Server (NTRS)

    Jordan, K. D.; Kurtz, H. A.

    1982-01-01

    Theoretical studies of the interactions of metal atoms with water and some of its isoelectronic analogs, and of the properties of alkali halides and their aggregates are discussed. Results are presented of ab initio calculations of the heats of reaction of the metal-water adducts and hydroxyhydrides of Li, Be, B, Na, Mg, and Al, and of the bond lengths and angles an; the heats of reaction for the insertion of Al into HF, H2O, NH3, H2S and CH3OH, and Be and Mg into H2O. Calculations of the electron affinities and dipole moments and polarizabilities of selected gas phase alkali halide monomers and dimers are discussed, with particular attention given to results of calculations of the polarizability of LiF taking into account electron correlation effects, and the polarizability of the dimer (LiF)2.

  19. The theory of tunneling in normal metal/d-type superconductor 2D-structures

    SciTech Connect

    Devyatov, I. A. Goncharov, D. V.; Kupriyanov, M. Yu.

    2001-04-15

    A sequential theoretical analysis is performed of tunneling in normal metal/d-type superconductor structures which contain scattering centers in the interlayer between a normal metal and a superconductor. As a result, it is demonstrated that the presence of a scattering center inside an insulator interlayer leads to partial suppression of previously predicted anomalously high values of conductance in the low-voltage region (zero bias anomaly (ZBA)). In so doing, the inclusion of the “interference” term in the current operator (interference of tunneling through a scattering center with direct potential tunneling) results in the suppression of ZBA. The predicted effect is virtually independent both of the position of the scattering center in the interlayer and of the shape of the resonance curve of scattering (which is Lorentzian in the case of resonance tunneling through the scattering center).

  20. Microscopic theory of surface-enhanced Raman scattering in noble-metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Pustovit, Vitaliy N.; Shahbazyan, Tigran V.

    2006-02-01

    We present a microscopic model for surface-enhanced Raman scattering (SERS) from molecules adsorbed on small noble-metal nanoparticles. In the absence of direct overlap of molecular orbitals and electronic states in the metal, the main enhancement source is the strong electric field of the surface plasmon resonance in a nanoparticle acting on a molecule near the surface. In small particles, the electromagnetic enhancement is strongly modified by quantum-size effects. We show that, in nanometer-sized particles, SERS magnitude is determined by a competition between several quantum-size effects such as the Landau damping of surface plasmon resonance and reduced screening near the nanoparticle surface. Using time-dependent local density approximation, we calculate spatial distribution of local fields near the surface and enhancement factor for different nanoparticles sizes.

  1. Theory of Strength and High-Rate Plasticity in BCC Metals Laser-Driven to High Pressures

    NASA Astrophysics Data System (ADS)

    Rudd, Robert E.; Barton, N. R.; Cavallo, R. M.; Hawreliak, J. A.; Maddox, B. R.; Park, H.-S.; Prisbrey, S. T.; Remington, B. A.; Comley, A. J.; Ross, P. W.; Brickner, N.

    2012-10-01

    High-rate plastic deformation is the subject of increasing experimental activity. High energy laser platforms such as those at the National Ignition Facility and the Laboratory for Laser Energetics offer the possibility to study plasticity at extremely high rates in shock waves and, importantly, in non-shock ramp-compression waves. Here we describe the theory of high-rate deformation of metals and how high energy lasers can be, and are, used to study the mechanical strength of materials under extreme conditions. Specifically, we describe how LLNL's multiscale strength model has been used to interpret the microscopic plastic flow in laser-driven Rayleigh-Taylor strength experiments, and how molecular dynamics (MD) and plasticity theory have been used to help understand in-situ diffraction based strength experiments for tantalum. The multiscale model provides information about the dislocation flow associated with plasticity and makes predictions that are compared with the experimental in-situ radiography of the Rayleigh-Taylor growth rate. We also use multi-million atom MD simulations inform the analytic theory of 1D to 3D plastic relaxation and compare to diffraction.

  2. Theory of the dissociation dynamics of small molecules on metal surfaces: Finite temperature studies

    NASA Astrophysics Data System (ADS)

    Jackson, B. E.

    1992-11-01

    The goal is to gain a better understanding of metal-catalyzed reactions by examining in detail the dynamics of molecule-metal interactions. Much effort has been focused on treating the molecule quantum mechanically when necessary, and including the effects of finite surface temperature. Recently developed time-dependent quantum techniques have been used to compute the dissociative sticking probability of H2, HD, and D2 on Cu and Ni surfaces. All molecular degrees of freedom can now be included either quantum mechanically or classically. The dependence upon translational and internal molecular energy, the angle and site of surface impact, and the details of the molecule-metal interaction potential were examined. Similar techniques were used to study the Eley-Rideal mechanism for the recombinative desorption of adsorbed H and D atoms with gas-phase H and D atoms. Several useful methods for coupling gas particles to the thermal vibrations of the solid were developed and used in studies of energy transfer and sticking. The trapping of H2 and other diatomics in weakly bound molecular precursors to dissociative adsorption is also of interest.

  3. Stoichiometry determined exchange interactions in amorphous ternary transition metal oxides: Theory and experiment

    SciTech Connect

    Hu, Shu-jun; Yan, Shi-shen Zhang, Yun-peng; Zhao, Ming-wen; Kang, Shi-shou; Mei, Liang-mo

    2014-07-28

    Amorphous transition metal oxides exhibit exotic transport and magnetic properties, while the absence of periodic structure has long been a major obstacle for the understanding of their electronic structure and exchange interaction. In this paper, we have formulated a theoretical approach, which combines the melt-quench approach and the spin dynamic Monte-Carlo simulations, and based on it, we explored amorphous Co{sub 0.5}Zn{sub 0.5}O{sub 1−y} ternary transition metal oxides. Our theoretical results reveal that the microstructure, the magnetic properties, and the exchange interactions of Co{sub 0.5}Zn{sub 0.5}O{sub 1−y} are strongly determined by the oxygen stoichiometry. In the oxygen-deficient sample (y > 0), we have observed the long-range ferromagnetic spin ordering which is associated with the non-stoichiometric cobalt-rich region rather than metallic clusters. On the other hand, the microstructure of stoichiometric sample takes the form of continuous random networks, and no long-range ferromagnetism has been observed in it. Magnetization characterization of experimental synthesized Co{sub 0.61}Zn{sub 0.39}O{sub 1−y} films verifies the relation between the spin ordering and the oxygen stoichiometry. Furthermore, the temperature dependence of electrical transport shows a typical feature of semiconductors, in agreement with our theoretical results.

  4. Theory of Plasmonic Waves on a Chain of Metallic Nanoparticles in a Liquid Crystalline Host

    NASA Astrophysics Data System (ADS)

    Stroud, David; Pike, Nicholas

    2014-03-01

    Linearly polarized plasmonic waves can propagate along a chain of metallic particles, of sufficiently small diameter and spacing. We have calculated the dispersion relations for these plasmonic waves when the host is either a nematic or a cholesteric liquid crystal (NLC or CLC). An NLC is found to alter the dispersion relations of both transverse (T) and or longitudinal (L) waves significantly from those for an isotropic host. If the NLC director is perpendicular to the metallic chain, the doubly degenerate T branch is split into two linearly polarized branches. Similar results are obtained for a CLC with twist axis parallel to the chain, except that the T branches are elliptically polarized. When a magnetic field is applied parallel to the chain, the dispersion relations for the T branches are no longer symmetric about k = 0 and the chain may act as a one-way waveguide at certain frequencies. We present numerical examples assuming spherical metal particle with a Drude dielectric function. This work was supported by the Center for Emerging Materials at The Ohio State University, an NSF MRSEC (Grant No. DMR0820414).

  5. Study of underwater laser propulsion using different target materials.

    PubMed

    Qiang, Hao; Chen, Jun; Han, Bing; Shen, Zhong-Hua; Lu, Jian; Ni, Xiao-Wu

    2014-07-14

    In order to investigate the influence of target materials, including aluminum (Al), titanium (Ti) and copper (Cu), on underwater laser propulsion, the analytical formula of the target momentum IT is deduced from the enhanced coupling theory of laser propulsion in atmosphere with transparent overlay metal target. The high-speed photography method and numerical simulation are employed to verify the IT model. It is shown that the enhanced coupling theory, which was developed originally for laser propulsion in atmosphere, is also applicable to underwater laser propulsion with metal targets.

  6. A theory of sound propagation in disordered one-dimensional metals

    NASA Astrophysics Data System (ADS)

    Kaner, E. A.; Tarasov, Y. V.

    1988-07-01

    This paper presents a consistent quantum mechanical derivation of the Hamiltonian to describe the interaction of electrons with long-wavelength phonons in one-dimensional conductors. Due to the nearly total mutual cancellation of the common deformational and Coulomb electron-phonon interaction mechanisms, the sound field happens to be much less coupled to electrons than in three-dimensional metals. In 1d metals a major part is played by a new mechanism, called “cross-deformational”, and by the inertial interaction due to the Stewart-Tolman effect. The cross-deformational interaction results from the modulation by the sound wave of the potential of the interaction between the electrons and the randomly located impurities. It is nondiagonal with respect to the electron momenta on the Fermi surface. Equations of motion are derived for the 1d metal in the continuum approximation consistently taking into account the electron elasticity. A new technique is suggested for the calculation of dynamic electron correlation functions, permitting one to take into account directly and automatically the multiple electron scattering by impurities and the effect of electron localization in a disordered 1d conductor. The sound velocity and absorption are analysed as functions of frequency for all possible frequencies and wavelengths, both for weak and strong spatial dispersion. We found that the sound absorption due to the cross-dimensional interaction is an essentially localized effect occuring at the moment when the electron is scattered by a single impurity. A geometric resonance type oscillatory behavior is predicted for the frequency dependence of the absorption. It occurs due to the hopping character of the electron motion, with a fixed hop length, in the nonuniform sound field. Since Landau damping is absent, the frequency dependence of the absorption in the range of strong spatial dispersion proves to be quadratic rather than linear as in 3d metals. The effects of

  7. Magneto-Rayleigh-Taylor Instability: Theory and simulation in planar and cylindrical pulsed power targets

    NASA Astrophysics Data System (ADS)

    Weis, Matthew R.

    Cylindrical liner implosions in the Magnetized Liner Inertial Fusion (MagLIF) concept are susceptible to the magneto-Rayleigh-Taylor instability (MRT). The danger of MRT enters in two phases, (1) during the main implosion, the outer surface of the liner is MRT unstable, and (2) during the short time period when the liner decelerates onto hot fuel, the inner surface becomes unstable. Growth of MRT on the outer surface may also feedthrough, which may seed the inner surface leading to high MRT growth in the second phase. If MRT growth becomes large enough, confinement of the fuel is lost. To characterize MRT we solve the linearized, ideal MHD equations in both planar and cylindrical geometries, including the presence of an axial magnetic field and the effects of sausage and kink modes (present in cylindrical coordinates only). In general, the total instability growth rates in cylindrical geometry are found to be larger than those in planar geometry. MRT and feedthrough is shown to be suppressed by strong magnetic field line bending (tension). However, for the same amount of field line bending, feedthrough is the most stabilized. Application of the planar and the cylindrical model to results from the Z-machine at Sandia National Laboratories is presented. Analytic MRT growth rates for a typical magnetized MagLIF-like implosion show the kink mode to be the fastest growing early and very late in the liner implosion (during deceleration). 1D HYDRA MHD simulations are used to generate realistic, evolving profiles (in density, pressure, and magnetic field) during the implosion from which instantaneous growth rates can be computed exactly, using either the planar or cylindrical analytic formulae developed in this thesis. Sophisticated 2D HYDRA MHD simulations were also performed to compare with the analytic theory and experimental results. In 2D, highly compressed axial magnetic fields can reduce the growth of perturbations at the fuel/liner interface during the implosion

  8. An automated flow system incorporating in-line acid dissolution of bismuth metal from a cyclotron irradiated target assembly for use in the isolation of astatine-211.

    PubMed

    O'Hara, Matthew J; Krzysko, Anthony J; Niver, Cynthia M; Morrison, Samuel S; Owsley, Stanley L; Hamlin, Donald K; Dorman, Eric F; Scott Wilbur, D

    2017-04-01

    Astatine-211 ((211)At) is a promising cyclotron-produced radionuclide being investigated for use in targeted alpha therapy. The wet chemical isolation of trace quantities of (211)At, produced within several grams of Bi metal deposited onto an aluminum cyclotron target assembly, involves a multi-step procedure. Because the (211)At isolation method is labor-intensive and complex, automation of the method is being developed to facilitate routine processing at the University of Washington and to make it easier to transfer the process to other institutions. As part of that automation effort, a module useful in the initial step of the isolation procedure, dissolution of the Bi target, was designed and tested. The computer-controlled module performs in-line dissolution of Bi metal from the target assembly using an enclosed target dissolution block, routing the resulting solubilized (211)At/Bi mixture to the subsequent process step. The primary parameters involved in Bi metal solubilization (influent HNO3 concentration and flow rate) were optimized prior to evaluation of the system using replicate (211)At-bearing cyclotron irradiated targets. The results indicate that the system performs in a predictable and reproducible manner, with cumulative Bi and (211)At recoveries following a sigmoidal function. Copyright © 2017. Published by Elsevier Ltd.

  9. Density Functional Theory of Open-Shell Systems. The 3d-Series Transition-Metal Atoms and Their Cations.

    PubMed

    Luo, Sijie; Averkiev, Boris; Yang, Ke R; Xu, Xuefei; Truhlar, Donald G

    2014-01-14

    The 3d-series transition metals (also called the fourth-period transition metals), Sc to Zn, are very important in industry and biology, but they provide unique challenges to computing the electronic structure of their compounds. In order to successfully describe the compounds by theory, one must be able to describe their components, in particular the constituent atoms and cations. In order to understand the ingredients required for successful computations with density functional theory, it is useful to examine the performance of various exchange-correlation functionals; we do this here for 4s(N)3d(N') transition-metal atoms and their cations. We analyze the results using three ways to compute the energy of the open-shell states: the direct variational method, the weighted-averaged broken symmetry (WABS) method, and a new broken-symmetry method called the reinterpreted broken symmetry (RBS) method. We find the RBS method to be comparable in accuracy with the WABS method. By examining the overall accuracy in treating 18 multiplicity-changing excitations and 10 ionization potentials with the RBS method, 10 functionals are found to have a mean-unsigned error of <5 kcal/mol, with ωB97X-D topping the list. For local density functionals, which are more practical for extended systems, the M06-L functional is the most accurate. And by combining the results with our previous studies of p-block and 4d-series elements as well as databases for alkyl bond dissociation, main-group atomization energies, and π-π noncovalent interactions, we find five functionals, namely, PW6B95, MPW1B95, M08-SO, SOGGA11-X, and MPWB1K, to be highly recommended. We also studied the performance of PW86 and C09 exchange functionals, which have drawn wide interest in recent studies due to their claimed ability to reproduce Hartree-Fock exchange at long distance. By combining them with four correlation functionals, we find the performance of the resulting functionals disappointing both for 3d

  10. Iron-Targeting Antitumor Activity of Gallium Compounds and Novel Insights Into Triapine®-Metal Complexes

    PubMed Central

    Antholine, William E.

    2013-01-01

    Abstract Significance: Despite advances made in the treatment of cancer, a significant number of patients succumb to this disease every year. Hence, there is a great need to develop new anticancer agents. Recent Advances: Emerging data show that malignant cells have a greater requirement for iron than normal cells do and that proteins involved in iron import, export, and storage may be altered in cancer cells. Therefore, strategies to perturb these iron-dependent steps in malignant cells hold promise for the treatment of cancer. Recent studies show that gallium compounds and metal-thiosemicarbazone complexes inhibit tumor cell growth by targeting iron homeostasis, including iron-dependent ribonucleotide reductase. Chemical similarities of gallium(III) with iron(III) enable the former to mimic the latter and interpose itself in critical iron-dependent steps in cellular proliferation. Newer gallium compounds have emerged with additional mechanisms of action. In clinical trials, the first-generation-compound gallium nitrate has exhibited activity against bladder cancer and non-Hodgkin's lymphoma, while the thiosemicarbazone Triapine® has demonstrated activity against other tumors. Critical Issues: Novel gallium compounds with greater cytotoxicity and a broader spectrum of antineoplastic activity than gallium nitrate should continue to be developed. Future Directions: The antineoplastic activity and toxicity of the existing novel gallium compounds and thiosemicarbazone-metal complexes should be tested in animal tumor models and advanced to Phase I and II clinical trials. Future research should identify biologic markers that predict tumor sensitivity to gallium compounds. This will help direct gallium-based therapy to cancer patients who are most likely to benefit from it. Antioxid. Redox Signal. 00, 000–000. PMID:22900955

  11. Iron-targeting antitumor activity of gallium compounds and novel insights into triapine(®)-metal complexes.

    PubMed

    Chitambar, Christopher R; Antholine, William E

    2013-03-10

    Despite advances made in the treatment of cancer, a significant number of patients succumb to this disease every year. Hence, there is a great need to develop new anticancer agents. Emerging data show that malignant cells have a greater requirement for iron than normal cells do and that proteins involved in iron import, export, and storage may be altered in cancer cells. Therefore, strategies to perturb these iron-dependent steps in malignant cells hold promise for the treatment of cancer. Recent studies show that gallium compounds and metal-thiosemicarbazone complexes inhibit tumor cell growth by targeting iron homeostasis, including iron-dependent ribonucleotide reductase. Chemical similarities of gallium(III) with iron(III) enable the former to mimic the latter and interpose itself in critical iron-dependent steps in cellular proliferation. Newer gallium compounds have emerged with additional mechanisms of action. In clinical trials, the first-generation-compound gallium nitrate has exhibited activity against bladder cancer and non-Hodgkin's lymphoma, while the thiosemicarbazone Triapine(®) has demonstrated activity against other tumors. Novel gallium compounds with greater cytotoxicity and a broader spectrum of antineoplastic activity than gallium nitrate should continue to be developed. The antineoplastic activity and toxicity of the existing novel gallium compounds and thiosemicarbazone-metal complexes should be tested in animal tumor models and advanced to Phase I and II clinical trials. Future research should identify biologic markers that predict tumor sensitivity to gallium compounds. This will help direct gallium-based therapy to cancer patients who are most likely to benefit from it.

  12. Improving Theory of Mind in Schizophrenia by Targeting Cognition and Metacognition with Computerized Cognitive Remediation: A Multiple Case Study

    PubMed Central

    Cellard, Caroline; Reeder, Clare; Wykes, Til; Ivers, Hans; Maziade, Michel; Lavoie, Marie-Audrey; Pothier, William

    2017-01-01

    Schizophrenia is associated with deficits in theory of mind (ToM) (i.e., the ability to infer the mental states of others) and cognition. Associations have often been reported between cognition and ToM, and ToM mediates the relationship between impaired cognition and impaired functioning in schizophrenia. Given that cognitive deficits could act as a limiting factor for ToM, this study investigated whether a cognitive remediation therapy (CRT) that targets nonsocial cognition and metacognition could improve ToM in schizophrenia. Four men with schizophrenia received CRT. Assessments of ToM, cognition, and metacognition were conducted at baseline and posttreatment as well as three months and 1 year later. Two patients reached a significant improvement in ToM immediately after treatment whereas at three months after treatment all four cases reached a significant improvement, which was maintained through 1 year after treatment for all three cases that remained in the study. Improvements in ToM were accompanied by significant improvements in the most severely impaired cognitive functions at baseline or by improvements in metacognition. This study establishes that a CRT program that does not explicitly target social abilities can improve ToM. PMID:28246557

  13. Improving Theory of Mind in Schizophrenia by Targeting Cognition and Metacognition with Computerized Cognitive Remediation: A Multiple Case Study.

    PubMed

    Thibaudeau, Élisabeth; Cellard, Caroline; Reeder, Clare; Wykes, Til; Ivers, Hans; Maziade, Michel; Lavoie, Marie-Audrey; Pothier, William; Achim, Amélie M

    2017-01-01

    Schizophrenia is associated with deficits in theory of mind (ToM) (i.e., the ability to infer the mental states of others) and cognition. Associations have often been reported between cognition and ToM, and ToM mediates the relationship between impaired cognition and impaired functioning in schizophrenia. Given that cognitive deficits could act as a limiting factor for ToM, this study investigated whether a cognitive remediation therapy (CRT) that targets nonsocial cognition and metacognition could improve ToM in schizophrenia. Four men with schizophrenia received CRT. Assessments of ToM, cognition, and metacognition were conducted at baseline and posttreatment as well as three months and 1 year later. Two patients reached a significant improvement in ToM immediately after treatment whereas at three months after treatment all four cases reached a significant improvement, which was maintained through 1 year after treatment for all three cases that remained in the study. Improvements in ToM were accompanied by significant improvements in the most severely impaired cognitive functions at baseline or by improvements in metacognition. This study establishes that a CRT program that does not explicitly target social abilities can improve ToM.

  14. Magnetovolume effect and finite-temperature theory of magnetism in transition metals and alloys

    NASA Astrophysics Data System (ADS)

    Kakehashi, Y.

    1990-01-01

    A review of recent developments in the theory of magnetovolume effects based on the Liberman-Pettifor virial theorem is presented. The general expression of the electronic contribution to the thermal expansion is shown to cover a wide range of magnetovolume effects from the insulator to the weak ferromagnets. It consists of the positive term proportional to the specific heat and a term proportional to the temperature derivative of the amplitude of the local moment. By using the single-site spin fluctuation theory (SSF) the Fe-Ni as well as Fe3Pt invar alloys are shown to be understood from this viewpoint. The local environment effects and the electron correlations at finite temperatures improve the difficulties in the SSF.

  15. Magnetovolume effect and finite-temperature theory of magnetism in transition metals and alloys

    NASA Astrophysics Data System (ADS)

    Kakehashi, Y.

    1989-10-01

    A review of recent developments in the theory of magnetovolume effects based on the Liberman-Pettifor virial theorem is presented. The general expression of the electronic contribution to the thermal expansion is shown to cover a wide range of magnetovolume effects from the insulator to the weak ferromagnets. It consists of the positive term proportional to the specific heat and a term proportional to the temperature derivative of the amplitude of the local moment. By using the single-site spin fluctuation theory (SSF) the Fe-Ni as well as Fe 3Pt invar alloys are shown to be understood from this viewpoint. The local environment effects and the electron correlations at finite temperatures improve the difficulties in the SSF.

  16. First Principles Theory of the Interaction of Hydrogen with Surfaces and Bulk of Transition Metals

    DTIC Science & Technology

    1991-01-01

    has been madel’ 5 to ful information about the Pd-UI interaction can be ob- disprove reports of an apparent " cold - fusion " reaction6 tamed from accurate...34 cold - fusion " re- density of states and the corresponding charge density. action in a Pd matrix.P In Fig. 2 we compare the total density of states of...small net charge transfer from to the metal matrix is likely to favor a " cold - fusion " re- Pd to II (= 0.2 e near the equilibrium distance which is

  17. Theory of magic optical traps for Zeeman-insensitive clock transitions in alkali-metal atoms

    SciTech Connect

    Derevianko, Andrei

    2010-05-15

    Precision measurements and quantum-information processing with cold atoms may benefit from trapping atoms with specially engineered, 'magic' optical fields. At the magic trapping conditions, the relevant atomic properties remain immune to strong perturbations by the trapping fields. Here we develop a theoretical analysis of magic trapping for especially valuable Zeeman-insensitive clock transitions in alkali-metal atoms. The involved mechanism relies on applying a magic bias B field along a circularly polarized trapping laser field. We map out these B fields as a function of trapping laser wavelength for all commonly used alkalis. We also highlight a common error in evaluating Stark shifts of hyperfine manifolds.

  18. Peridynamic theory for modeling three-dimensional damage growth in metallic and composite structures

    NASA Astrophysics Data System (ADS)

    Ochoa-Ricoux, Juan Pedro

    A recently introduced nonlocal peridynamic theory removes the obstacles present in classical continuum mechanics that limit the prediction of crack initiation and growth in materials. It is also applicable at different length scales. This study presents an alternative approach for the derivation of peridynamic equations of motion based on the principle of virtual work. It also presents solutions for the longitudinal vibration of a bar subjected to an initial stretch, propagation of a pre-existing crack in a plate subjected to velocity boundary conditions, and crack initiation and growth in a plate with a circular cutout. Furthermore, damage growth in composites involves complex and progressive failure modes. Current computational tools are incapable of predicting failure in composite materials mainly due to their mathematical structure. However, the peridynamic theory removes these obstacles by taking into account non-local interactions between material points. Hence, an application of the peridynamic theory to predict how damage propagates in fiber reinforced composite materials subjected to mechanical and thermal loading conditions is presented. Finally, an analysis approach based on a merger of the finite element method and the peridynamic theory is proposed. Its validity is established through qualitative and quantitative comparisons against the test results for a stiffened composite curved panel with a central slot under combined internal pressure and axial tension. The predicted initial and final failure loads, as well as the final failure modes, are in close agreement with the experimental observations. This proposed approach demonstrates the capability of the PD approach to assess the durability of complex composite structures.

  19. Theory of dark resonances for alkali-metal vapors in a buffer-gas cell

    SciTech Connect

    Taichenachev, A.V.; Yudin, V.I.; Wynands, R.; Staehler, M.; Kitching, J.; Hollberg, L.

    2003-03-01

    We develop an analytical theory of dark resonances that accounts for the full atomic-level structure, as well as all field-induced effects such as coherence preparation, optical pumping, ac Stark shifts, and power broadening. The analysis uses a model based on relaxation constants, which assumes the total collisional depolarization of the excited state. A good qualitative agreement with the experiments for Cs in Ne is obtained.

  20. Theory and applications of surface energy transfer for 2-20 nm diameter metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Riskowski, Ryan A.

    The development and experimental validation of a mathematical model for nanoparticle-based surface energy transfer (SET) between gold nanoparticles and fluorescent dye labels, has enabled biophysical studies of nucleic acid structure and function previously inaccessible by other methods. The main advantages of SET for optical distance measurements are that it can operate over longer distances than other similar methods, such as Forster Resonance Energy Transfer (FRET), thus enabling measurements across biological structures much larger than otherwise possible. This work discusses the fundamental theory for the SET interaction and expansion of SET theory to account for multiple interacting dye labels and demonstrated on DNA and RNA in order to allow 3D triangulation of labeled structures. SET theory has also been expanded to core shell structures which represent a new class of designer SET platforms with dramatically increased spectral windows; allowing for a multitude of dye labels to be used simultaneously over a broad range of wavelengths. Additionally, these designer nanostructures can incorporate the material properties of the core. So that , for example Ni Au, can provide a SET measurement platform coupled with a magnetic moment for sample purification and manipulation. These efforts to develop and establish optical SET methods lays a foundation of a powerful methodology for biophysical characterization, and allows researchers to study biological structures previously too large or complex to be easily studied, such as the unknown tertiary structures of large RNA elements.

  1. Target-stimulated metallic HgS nanostructures on a DNA-based polyion complex membrane for highly efficient impedimetric detection of dissolved hydrogen sulfide.

    PubMed

    Zhuang, Junyang; Fu, Libing; Lai, Wenqiang; Tang, Dianping; Chen, Guonan

    2013-12-11

    Target-stimulated metallic HgS nanostructures formed on the DNA-based polyion complex (PIC) membrane were for the first time utilized as an efficient scheme for impedimetric detection of hydrogen sulfide (H2S) by coupling insoluble precipitation with sensitivity enhancement.

  2. A solid-state density functional theory investigation of the effect of metal substitution (Metal = Mn, Cd, Co) on the terahertz spectra of isomorphous molecular metal 5-(4-pyridyl)tetrazolato complexes

    NASA Astrophysics Data System (ADS)

    Pellizzeri, Steven; Witko, Ewelina M.; Korter, Timothy M.; Zubieta, Jon

    2013-09-01

    The crystal structure and experimental terahertz spectroscopy of an isomorphous series [Mn(C6H4N5)2(H2O)4]ṡ2H2O (Mn-4PT), [Co(C6H4N5)2(H2O)4]ṡ2H2O (Co-4PT), and [Cd(C6H4N5)2(H2O)4]ṡ2H2O (Cd-4PT) were compared using solid-state density functional theory (DFT) simulations. The effect of the central metal atom was investigated to determine the influence on the low energy lattice and molecular vibrations exhibited in the region from 10 to 100 cm-1, known as the terahertz (THz) region. Using solid-state DFT the normal modes of these THz vibrations were determined and it was shown that the mass and size of the metal center has a large effect in this region. Each complex exhibited common vibrational modes involving whole ligand motion around the central metal atom. These vibrations were found to shift to lower frequencies with a drastic mass increase; however, this trend is reversed with the smaller mass change between the manganese and cobalt due to the stronger cobalt-nitrogen bond compared to the manganese-nitrogen bond.

  3. Three-Dimensional Characterization of Buried Metallic Targets via a Tomographic Algorithm Applied to GPR Synthetic Data

    NASA Astrophysics Data System (ADS)

    Comite, Davide; Galli, Alessandro; Catapano, Ilaria; Soldovieri, Francesco; Pettinelli, Elena

    2013-04-01

    This work is focused on the three-dimensional (3-D) imaging of buried metallic targets achievable by processing GPR (ground penetrating radar) simulation data via a tomographic inversion algorithm. The direct scattering problem has been analysed by means of a recently-developed numerical setup based on an electromagnetic time-domain CAD tool (CST Microwave Studio), which enables us to efficiently explore different GPR scenarios of interest [1]. The investigated 3D domain considers here two media, representing, e.g., an air/soil environment in which variously-shaped metallic (PEC) scatterers can be buried. The GPR system is simulated with Tx/Rx antennas placed in a bistatic configuration at the soil interface. In the implementation, the characteristics of the antennas may suitably be chosen in terms of topology, offset, radiative features, frequency ranges, etc. Arbitrary time-domain waveforms can be used as the input GPR signal (e.g., a Gaussian-like pulse having the frequency spectrum in the microwave range). The gathered signal at the output port includes the backscattered wave from the objects to be reconstructed, and the relevant data may be displayed in canonical radargram forms [1]. The GPR system sweeps along one main rectilinear direction, and the scanning process is here repeated along different close parallel lines to acquire data for a full 3-D analysis. Starting from the processing of the synthetic GPR data, a microwave tomographic approach is used to tackle the imaging, which is based on the Kirchhoff approximation to linearize the inverse scattering problem [2]. The target reconstruction is given in terms of the amplitude of the 'object function' (normalized with respect to its maximum inside the 3-D investigation domain). The data of the scattered field are collected considering a multi-frequency step process inside the fixed range of the signal spectrum, under a multi-bistatic configuration where the Tx and Rx antennas are separated by an offset

  4. Physical Theory of Voltage Fade in Lithium- and Manganese-Rich Transition Metal Oxides

    SciTech Connect

    Rinaldo, Steven G.; Gallagher, Kevin G.; Long, Brandon R.; Croy, Jason R.; Bettge, Martin; Abraham, Daniel P.; Bareno, Javier; Dees, Dennis W.

    2015-03-04

    Lithium- and manganese-rich (LMR) transition metal oxide cathodes are of interest for lithium-ion battery applications due to their increased energy density and decreased cost. However, the advantages in energy density and cost are offset, in part, due to the phenomena of voltage fade. Specifically, the voltage profiles (voltage as a function of capacity) of LMR cathodes transform from a high energy configuration to a lower energy configuration as they are repeatedly charged (Li removed) and discharged (Li inserted). Here, we propose a physical model of voltage fade that accounts for the emergence of a low voltage Li phase due to the introduction of transition metal ion defects within a parent Li phase. The phenomenological model was re-cast in a general form and experimental LMR charge profiles were de-convoluted to extract the evolutionary behavior of various components of LMR capacitance profiles. Evolution of the voltage fade component was found to follow a universal growth curve with a maximal voltage fade capacity of ≈ 20% of the initial total capacity.

  5. C-N coupling on transition metal surfaces: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Gómez-Díaz, Jaime; Vargas-Fuentes, Crisa; López, Núria

    2011-09-01

    We have investigated the formation of C-N bonds from individual atoms and single hydrogenated moieties on a series of transition metals. These reactions play a role in HCN formation at high oxygen coverage, also known as Andrussow oxidation, and they are fundamental to understand the ability of other materials to form part of alloys where Pt is the major component. Dehydrogenations take place quite easily under these high oxygen conditions and thus, the C+N, HC+N, and N+CH recombinations to form HCN or its isomer CNH might represent the rate-limiting steps for the reaction. For all the metals in the present study we have found that the activation energy for the reactions between HxC and NHy (x,y = 0,1) involved in C-N formation follow a linear relationship with the adsorption energy of the N atom. This is due to the common nature of all these transition states, where N-containing fragments get activated from three-fold hollow sites to bridge positions. The slopes of the linear dependence, though, depend on the valence of the N fragment, i.e., smaller slopes are found for NH moieties with respect to N ones.

  6. C-N coupling on transition metal surfaces: a density functional theory study.

    PubMed

    Gómez-Díaz, Jaime; Vargas-Fuentes, Crisa; López, Núria

    2011-09-28

    We have investigated the formation of C-N bonds from individual atoms and single hydrogenated moieties on a series of transition metals. These reactions play a role in HCN formation at high oxygen coverage, also known as Andrussow oxidation, and they are fundamental to understand the ability of other materials to form part of alloys where Pt is the major component. Dehydrogenations take place quite easily under these high oxygen conditions and thus, the C+N, HC+N, and N+CH recombinations to form HCN or its isomer CNH might represent the rate-limiting steps for the reaction. For all the metals in the present study we have found that the activation energy for the reactions between H(x)C and NH(y) (x,y = 0,1) involved in C-N formation follow a linear relationship with the adsorption energy of the N atom. This is due to the common nature of all these transition states, where N-containing fragments get activated from three-fold hollow sites to bridge positions. The slopes of the linear dependence, though, depend on the valence of the N fragment, i.e., smaller slopes are found for NH moieties with respect to N ones. © 2011 American Institute of Physics

  7. Effect of scanning speed on continuous wave laser scribing of metal thin films: theory and experiment

    NASA Astrophysics Data System (ADS)

    Shahbazi, AmirHossein; Koohian, Ata; Madanipour, Khosro

    2017-01-01

    In this paper continuous wave laser scribing of the metal thin films have been investigated theoretically and experimentally. A formulation is presented based on parameters like beam power, spot size, scanning speed and fluence thresholds. The role of speed on the transient temperature and tracks width is studied numerically. By using two frameworks of pulsed laser ablation of thin films and laser printing on paper, the relation between ablation width and scanning speed has been derived. Furthermore, various speeds of the focused 450 nm continuous laser diode with an elliptical beam spot applied to a 290 nm copper thin film coated on glass, experimentally. The beam power was 150 mW after spatial filtering. By fitting the theoretical formulation to the experimental data, the threshold fluence and energy were obtained to be 13.2 J mm-2 and 414~μ J respectively. An anticipated theoretical parameter named equilibrium~border was verified experimentally. It shows that in the scribing of the 290 nm copper thin film, at a distance where the intensity reaches about 1/e of its maximum value, the absorbed fluence on the surface is equal to zero. Therefore the application of continuous laser in metal thin film ablation has different mechanism from pulsed laser drilling and beam scanning in printers.

  8. Dynamics of the laser-induced nanostructuring of thin metal layers: experiment and theory

    NASA Astrophysics Data System (ADS)

    Lorenz, P.; Klöppel, M.; Smausz, T.; Csizmadia, T.; Ehrhardt, M.; Zimmer, K.; Hopp, B.

    2015-02-01

    Nanostructures are of increasing importance in manifold application fields such as electronics, optics and beyond. However, the fast and cost-effective production of nanostructures is a big technological challenge for laser machining. One promising approach is laser irradiation of thin metal layers, which allows the fabrication of metal nanostructures induced by a melting and transformation process. The influence of laser parameters (laser fluence, laser pulse number) on the morphology of the nanopatterned film and the dynamics of the nanostructure formation during excimer laser irradiation of a 20 nm chromium film on fused silica were studied. The dynamics of nanopatterning, comprising hole and droplet formation, were investigated by time-dependent reflection and transmission measurements as well as time-dependent optical microscopy. The resulting patterns were investigated by optical and scanning electron microscopy (SEM). However, for an optimization of this process a better understanding of the underlying physical phenomena is necessary. Therefore, experimental data of laser-induced nanopatterning were compared with results of physical simulations that consider the heat equation (laser-solid interaction including melting and evaporation) and the Navier-Stokes equation (transformation processes of the molten phase). The simulations, making use of laser fluence-dependent effective material parameters (surface tension and viscosity), are in good agreement with the experimental results.

  9. Stable structures and electronic properties of 6-atom noble metal clusters using density functional theory

    NASA Astrophysics Data System (ADS)

    Phaisangittisakul, N.; Paiboon, K.; Bovornratanaraks, T.; Pinsook, U.

    2012-08-01

    The 6-atom clusters of group IB noble metals have been investigated theoretically using the density functional calculation with a plane-wave basis (CASTEP). We have calculated their optimized structures, relative cluster's energies, atomic and bonding populations, spectra of the vibrational frequencies, energy gaps between the highest occupied and the lowest unoccupied molecular orbitals, and average polarizabilities per atom. The stable structures we found are planar triangular, pentagonal pyramid, and capped trigonal bipyramid. For the Cu6 and Ag6 cluster, the planar structure energetically competes with the pyramid structure for the ground state. According to the population analyses, the s-d orbital hybridization is explicitly shown to be in association with the corner atoms of the planar structure. We found that the vibrational spectra of the clusters are structural dependent. The average polarizabilities for the planar structure of the Cu6 and Ag6 cluster are quite different from their other stable isomers. In contrast, the polarizabilities are about the same for all stable gold hexamers. Our calculations benefit a reliable geometry identification of the 6-atom noble metal clusters.

  10. Physical Theory of Voltage Fade in Lithium- and Manganese-Rich Transition Metal Oxides

    DOE PAGES

    Rinaldo, Steven G.; Gallagher, Kevin G.; Long, Brandon R.; ...

    2015-03-04

    Lithium- and manganese-rich (LMR) transition metal oxide cathodes are of interest for lithium-ion battery applications due to their increased energy density and decreased cost. However, the advantages in energy density and cost are offset, in part, due to the phenomena of voltage fade. Specifically, the voltage profiles (voltage as a function of capacity) of LMR cathodes transform from a high energy configuration to a lower energy configuration as they are repeatedly charged (Li removed) and discharged (Li inserted). Here, we propose a physical model of voltage fade that accounts for the emergence of a low voltage Li phase due tomore » the introduction of transition metal ion defects within a parent Li phase. The phenomenological model was re-cast in a general form and experimental LMR charge profiles were de-convoluted to extract the evolutionary behavior of various components of LMR capacitance profiles. Evolution of the voltage fade component was found to follow a universal growth curve with a maximal voltage fade capacity of ≈ 20% of the initial total capacity.« less

  11. Effect of Siloxane Ring Strain and Cation Charge Density on the Formation of Coordinately Unsaturated Metal Sites on Silica: Insights from Density Functional Theory (DFT) Studies

    DOE PAGES

    Das, Ujjal; Zhang, Guanghui; Hu, Bo; ...

    2015-10-28

    Amorphous silica (SiO2) is commonly used as a support in heterogeneous catalysis. However, due to the structural disorder and temperature induced change of surface morphology, the structures of silica supported metal catalysts are difficult to determine. Most studies are primarily focused on understanding the interactions of different types of surface hydroxyl groups with metal ions. In comparison, the effect of siloxane ring size on the structure of silica supported metal catalysts and how it affects catalytic activity is poorly understood. Here, we have used density functional theory calculations to understand the effect of siloxane ring strain on structure and activitymore » of different monomeric Lewis acid metal sites on silica. In particular, we have found that large siloxane rings favor strong dative bonding interaction between metal ion and surface hydroxyls, leading to the formation of high-coordinate metal sites. In comparison, metal-silanol interaction is weak in small siloxane rings, resulting in low-coordinate metal sites. The physical origin of this size dependence is associated with siloxane ring strain, and, a correlation between metal-silanol interaction energy and ring strain energy has been observed. In addition to ring strain, the strength of the metal-silanol interaction also depends on the positive charge density of the cations. In fact, a correlation also exists between metal-silanol interaction energy and charge density of several first-row transition and post-transition metals. The theoretical results are compared with the EXAFS data of monomeric Zn(II) and Ga(III) ions grafted on silica. In conclusion, the molecular level insights of how metal ion coordination on silica depends on siloxane ring strain and cation charge density will be useful in the synthesis of new catalysts.« less

  12. Effect of Siloxane Ring Strain and Cation Charge Density on the Formation of Coordinately Unsaturated Metal Sites on Silica: Insights from Density Functional Theory (DFT) Studies

    SciTech Connect

    Das, Ujjal; Zhang, Guanghui; Hu, Bo; Hock, Adam S.; Redfern, Paul C.; Miller, Jeffrey T.; Curtiss, Larry A.

    2015-10-28

    Amorphous silica (SiO2) is commonly used as a support in heterogeneous catalysis. However, due to the structural disorder and temperature induced change of surface morphology, the structures of silica supported metal catalysts are difficult to determine. Most studies are primarily focused on understanding the interactions of different types of surface hydroxyl groups with metal ions. In comparison, the effect of siloxane ring size on the structure of silica supported metal catalysts and how it affects catalytic activity is poorly understood. Here, we have used density functional theory calculations to understand the effect of siloxane ring strain on structure and activity of different monomeric Lewis acid metal sites on silica. In particular, we have found that large siloxane rings favor strong dative bonding interaction between metal ion and surface hydroxyls, leading to the formation of high-coordinate metal sites. In comparison, metal-silanol interaction is weak in small siloxane rings, resulting in low-coordinate metal sites. The physical origin of this size dependence is associated with siloxane ring strain, and, a correlation between metal-silanol interaction energy and ring strain energy has been observed. In addition to ring strain, the strength of the metal-silanol interaction also depends on the positive charge density of the cations. In fact, a correlation also exists between metal-silanol interaction energy and charge density of several first-row transition and post-transition metals. The theoretical results are compared with the EXAFS data of monomeric Zn(II) and Ga(III) ions grafted on silica. In conclusion, the molecular level insights of how metal ion coordination on silica depends on siloxane ring strain and cation charge density will be useful in the synthesis of new catalysts.

  13. Density functional theory embedding for correlated wavefunctions: improved methods for open-shell systems and transition metal complexes.

    PubMed

    Goodpaster, Jason D; Barnes, Taylor A; Manby, Frederick R; Miller, Thomas F

    2012-12-14

    Density functional theory (DFT) embedding provides a formally exact framework for interfacing correlated wave-function theory (WFT) methods with lower-level descriptions of electronic structure. Here, we report techniques to improve the accuracy and stability of WFT-in-DFT embedding calculations. In particular, we develop spin-dependent embedding potentials in both restricted and unrestricted orbital formulations to enable WFT-in-DFT embedding for open-shell systems, and develop an orbital-occupation-freezing technique to improve the convergence of optimized effective potential calculations that arise in the evaluation of the embedding potential. The new techniques are demonstrated in applications to the van-der-Waals-bound ethylene-propylene dimer and to the hexa-aquairon(II) transition-metal cation. Calculation of the dissociation curve for the ethylene-propylene dimer reveals that WFT-in-DFT embedding reproduces full CCSD(T) energies to within 0.1 kcal/mol at all distances, eliminating errors in the dispersion interactions due to conventional exchange-correlation (XC) functionals while simultaneously avoiding errors due to subsystem partitioning across covalent bonds. Application of WFT-in-DFT embedding to the calculation of the low-spin/high-spin splitting energy in the hexaaquairon(II) cation reveals that the majority of the dependence on the DFT XC functional can be eliminated by treating only the single transition-metal atom at the WFT level; furthermore, these calculations demonstrate the substantial effects of open-shell contributions to the embedding potential, and they suggest that restricted open-shell WFT-in-DFT embedding provides better accuracy than unrestricted open-shell WFT-in-DFT embedding due to the removal of spin contamination.

  14. Luminescent properties of metal-organic framework MOF-5: relativistic time-dependent density functional theory investigations.

    PubMed

    Ji, Min; Lan, Xin; Han, Zhenping; Hao, Ce; Qiu, Jieshan

    2012-11-19

    The electronically excited state and luminescence property of metal-organic framework MOF-5 were investigated using relativistic density functional theory (DFT) and time-dependent DFT (TDDFT). The geometry, IR spectra, and UV-vis spectra of MOF-5 in the ground state were calculated using relativistic DFT, leading to good agreement between the experimental and theoretical results. The frontier molecular orbitals and electronic configuration indicated that the luminescence mechanism in MOF-5 follows ligand-to-ligand charge transfer (LLCT), namely, π* → π, rather than emission with the ZnO quantum dot (QD) proposed by Bordiga et al. The geometry and IR spectra of MOF-5 in the electronically excited state have been calculated using the relativistic TDDFT and compared with those for the ground state. The comparison reveals that the Zn4O13 QD is rigid, whereas the ligands BDC(2-) are nonrigid. In addition, the calculated emission band of MOF-5 is in good agreement with the experimental result and is similar to that of the ligand H2BDC. The combined results confirmed that the luminescence mechanism for MOF-5 should be LLCT with little mixing of the ligand-to-metal charge transfer. The reason for the MOF-5 luminescence is explained by the excellent coplanarity between the six-membered ring consisting of zinc, oxygen, carbon, and the benzene ring.

  15. Metal-like Band Structures of Ultrathin Si {111} and {112} Surface Layers Revealed through Density Functional Theory Calculations.

    PubMed

    Tan, Chih-Shan; Huang, Michael H

    2017-09-04

    Density functional theory calculations have been performed on Si (100), (110), (111), and (112) planes with tunable number of planes for evaluation of their band structures and density of states profiles. The purpose is to see whether silicon can exhibit facet-dependent properties derived from the presence of a thin surface layer having different band structures. No changes have been observed for single to multiple layers of Si (100) and (110) planes with a consistent band gap between the valence band and the conduction band. However, for 1, 2, 4, and 5 Si (111) and (112) planes, metal-like band structures were obtained with continuous density of states going from the valence band to the conduction band. For 3, 6, and more Si (111) planes, as well as 3 and 6 Si (112) planes, the same band structure as that seen for Si (100) and (110) planes has been obtained. Thus, beyond a layer thickness of five Si (111) planes at ≈1.6 nm, normal semiconductor behavior can be expected. The emergence of metal-like band structures for the Si (111) and (112) planes are related to variation in Si-Si bond length and bond distortion plus 3s and 3p orbital electron contributions in the band structure. This work predicts possession of facet-dependent electrical properties of silicon with consequences in FinFET transistor design. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Memory matrix theory of the dc resistivity of a disordered antiferromagnetic metal with an effective composite operator

    NASA Astrophysics Data System (ADS)

    Freire, Hermann

    2017-09-01

    We perform the calculation of the dc resistivity as a function of temperature of the ;strange-metal; state that emerges in the vicinity of a spin-density-wave phase transition in the presence of weak disorder. This scenario is relevant to the phenomenology of many important correlated materials, such as, e.g., the pnictides, the heavy-fermion compounds and the cuprates. To accomplish this task, we implement the memory-matrix approach that allows the calculation of the transport coefficients of the model beyond the quasiparticle paradigm. Our computation is also inspired by the ɛ = 3 - d expansion in a hot-spot model embedded in d-space dimensions recently put forth by Sur and Lee (2015), in which they find a new low-energy non-Fermi liquid fixed point that is perturbatively accessible near three dimensions. As a consequence, we are able to establish here the temperature and doping dependence of the electrical resistivity at intermediate temperatures of a two-dimensional disordered antiferromagnetic metallic model with a composite operator that couples the order-parameter fluctuations to the entire Fermi surface. We argue that our present theory provides a good basis in order to unify the experimental transport data, e.g., in the cuprates and the pnictide superconductors, within a wide range of doping regimes.

  17. A self-consistent plasticity theory for modeling the thermo-mechanical properties of irradiated FCC metallic polycrystals

    NASA Astrophysics Data System (ADS)

    Xiao, Xiazi; Song, Dingkun; Xue, Jianming; Chu, Haijian; Duan, Huiling

    2015-05-01

    A self-consistent theoretical framework is developed to model the thermo-mechanical behaviors of irradiated face-centered cubic (FCC) polycrystalline metals at low to intermediate homologous temperatures. In this model, both irradiation and temperature effects are considered at the grain level with the assist of a tensorial plasticity crystal model, and the elastic-visocoplastic self-consistent method is applied for the scale transition from individual grains to macroscopic polycrystals. The proposed theory is applied to analyze the mechanical behaviors of irradiated FCC copper. It is found that: (1) the numerical results match well with experimental data, which includes the comparison of results for single crystals under the load in different directions, and for polycrystals with the influences of irradiation and temperature. Therefore, the feasibility and accuracy of the present model are well demonstrated. (2) The main irradiation effects including irradiation hardening, post-yield softening, strain-hardening coefficient (SHC) dropping and the non-zero stress offset are all captured by the proposed model. (3) The increase of temperature results in the decrease of yield strength and SHC. The former is attributed to the weakened dislocation-defect interaction, while the latter is due to the temperature-strengthened dynamic recovery of dislocations through the thermally activated mechanism. The present model may provide a theoretical guide to predict the thermo-mechanical behaviors of irradiated FCC metals for the selection of structural materials in nuclear equipment.

  18. Analysis of amorphous indium-gallium-zinc-oxide thin-film transistor contact metal using Pilling-Bedworth theory and a variable capacitance diode model

    NASA Astrophysics Data System (ADS)

    Kiani, Ahmed; Hasko, David G.; Milne, William I.; Flewitt, Andrew J.

    2013-04-01

    It is widely reported that threshold voltage and on-state current of amorphous indium-gallium-zinc-oxide bottom-gate thin-film transistors are strongly influenced by the choice of source/drain contact metal. Electrical characterisation of thin-film transistors indicates that the electrical properties depend on the type and thickness of the metal(s) used. Electron transport mechanisms and possibilities for control of the defect state density are discussed. Pilling-Bedworth theory for metal oxidation explains the interaction between contact metal and amorphous indium-gallium-zinc-oxide, which leads to significant trap formation. Charge trapping within these states leads to variable capacitance diode-like behavior and is shown to explain the thin-film transistor operation.

  19. Relationships between the distribution of O atoms on partially oxidized metal (Al, Ag, Cu, Ti, Zr, Hf) surfaces and the adsorption energy: A density-functional theory study

    NASA Astrophysics Data System (ADS)

    Houska, J.; Kozak, T.

    2017-06-01

    We investigate the oxidation of selected metal (Al, Ag, Cu, Ti, Zr, and Hf) surfaces by the density functional theory. We go through a wide range of (233 per metal) distributions of O atoms on a partially oxidized metal surface. First, we focus on the qualitative information whether the preferred distribution of O atoms is heterogeneous (stoichiometric oxide + metal) or homogeneous (substoichiometric oxide). We find that the former is energetically preferred, e.g., for Al, while the latter is energetically preferred, e.g., for Ti, Zr, and Hf. Second, we provide the quantitative values of adsorption energies corresponding to the energetically preferred O atom distributions for various partial coverages of various metals by O. Third, we discuss and show an example of implications of the aforementioned findings for the understanding and simulations of sputtering.

  20. Atomistic simulation study of short pulse laser interactions with a metal target under conditions of spatial confinement by a transparent overlayer

    NASA Astrophysics Data System (ADS)

    Karim, Eaman T.; Shugaev, Maxim; Wu, Chengping; Lin, Zhibin; Hainsey, Robert F.; Zhigilei, Leonid V.

    2014-05-01

    The distinct characteristics of short pulse laser interactions with a metal target under conditions of spatial confinement by a solid transparent overlayer are investigated in a series of atomistic simulations. The simulations are performed with a computational model combining classical molecular dynamics (MD) technique with a continuum description of the laser excitation, electron-phonon equilibration, and electronic heat transfer based on two-temperature model (TTM). Two methods for incorporation of the description of a transparent overlayer into the TTM-MD model are designed and parameterized for Ag-silica system. The material response to the laser energy deposition is studied for a range of laser fluences that, in the absence of the transparent overlayer, covers the regimes of melting and resolidification, photomechanical spallation, and phase explosion of the overheated surface region. In contrast to the irradiation in vacuum, the spatial confinement by the overlayer facilitates generation of sustained high-temperature and high-pressure conditions near the metal-overlayer interface, suppresses the generation of unloading tensile wave, decreases the maximum depth of melting, and prevents the spallation and explosive disintegration of the surface region of the metal target. At high laser fluences, when the laser excitation brings the surface region of the metal target to supercritical conditions, the confinement prevents the expansion and phase decomposition characteristic for the vacuum conditions leading to a gradual cooling of the hot compressed supercritical fluid down to the liquid phase and eventual solidification. The target modification in this case is limited to the generation of crystal defects and the detachment of the metal target from the overlayer.

  1. Diffusion in a Metallic Melt at the Critical Temperature of Mode Coupling Theory

    NASA Astrophysics Data System (ADS)

    Zöllmer, Volker; Rätzke, Klaus; Faupel, Franz; Meyer, Andreas

    2003-05-01

    According to mode coupling theory, liquidlike motion becomes frozen at a critical temperature Tc well above the caloric glass transition temperature Tg. Here, for the first time, we report on radiotracer diffusion in a supercooled Pd43Cu27Ni10P20 alloy from Tg to the equilibrium melt. Liquidlike motion is seen to set in exactly above Tc as evidenced by a gradual drop of the effective activation energy. This strongly supports the mode coupling scenario. Isotope effect measurements, which have never been carried out near Tc in any material, show atomic transport up to the equilibrium melt to be far away from the hydrodynamic regime of uncorrelated binary collisions.

  2. Evaluation of the immunological profile of antibody-functionalized metal-filled single-walled carbon nanocapsules for targeted radiotherapy

    PubMed Central

    Perez Ruiz de Garibay, Aritz; Spinato, Cinzia; Klippstein, Rebecca; Bourgognon, Maxime; Martincic, Markus; Pach, Elzbieta; Ballesteros, Belén; Ménard-Moyon, Cécilia; Al-Jamal, Khuloud T.; Tobias, Gerard; Bianco, Alberto

    2017-01-01

    This study investigates the immune responses induced by metal-filled single-walled carbon nanotubes (SWCNT) under in vitro, ex vivo and in vivo settings. Either empty amino-functionalized CNTs [SWCNT-NH2 (1)] or samarium chloride-filled amino-functionalized CNTs with [SmCl3@SWCNT-mAb (3)] or without [SmCl3@SWCNT-NH2 (2)] Cetuximab functionalization were tested. Conjugates were added to RAW 264.7 or PBMC cells in a range of 1 μg/ml to 100 μg/ml for 24 h. Cell viability and IL-6/TNFα production were determined by flow cytometry and ELISA. Additionally, the effect of SWCNTs on the number of T lymphocytes, B lymphocytes and monocytes within the PBMC subpopulations was evaluated by immunostaining and flow cytometry. The effect on monocyte number in living mice was assessed after tail vein injection (150 μg of each conjugate per mouse) at 1, 7 and 13 days post-injection. Overall, our study showed that all the conjugates had no significant effect on cell viability of RAW 264.7 but conjugates 1 and 3 led to a slight increase in IL-6/TNFα. All the conjugates resulted in significant reduction in monocyte/macrophage cell numbers within PBMCs in a dose-dependent manner. Interestingly, monocyte depletion was not observed in vivo, suggesting their suitability for future testing in the field of targeted radiotherapy in mice. PMID:28198410

  3. Evaluation of the immunological profile of antibody-functionalized metal-filled single-walled carbon nanocapsules for targeted radiotherapy

    NASA Astrophysics Data System (ADS)

    Perez Ruiz de Garibay, Aritz; Spinato, Cinzia; Klippstein, Rebecca; Bourgognon, Maxime; Martincic, Markus; Pach, Elzbieta; Ballesteros, Belén; Ménard-Moyon, Cécilia; Al-Jamal, Khuloud T.; Tobias, Gerard; Bianco, Alberto

    2017-02-01

    This study investigates the immune responses induced by metal-filled single-walled carbon nanotubes (SWCNT) under in vitro, ex vivo and in vivo settings. Either empty amino-functionalized CNTs [SWCNT-NH2 (1)] or samarium chloride-filled amino-functionalized CNTs with [SmCl3@SWCNT-mAb (3)] or without [SmCl3@SWCNT-NH2 (2)] Cetuximab functionalization were tested. Conjugates were added to RAW 264.7 or PBMC cells in a range of 1 μg/ml to 100 μg/ml for 24 h. Cell viability and IL-6/TNFα production were determined by flow cytometry and ELISA. Additionally, the effect of SWCNTs on the number of T lymphocytes, B lymphocytes and monocytes within the PBMC subpopulations was evaluated by immunostaining and flow cytometry. The effect on monocyte number in living mice was assessed after tail vein injection (150 μg of each conjugate per mouse) at 1, 7 and 13 days post-injection. Overall, our study showed that all the conjugates had no significant effect on cell viability of RAW 264.7 but conjugates 1 and 3 led to a slight increase in IL-6/TNFα. All the conjugates resulted in significant reduction in monocyte/macrophage cell numbers within PBMCs in a dose-dependent manner. Interestingly, monocyte depletion was not observed in vivo, suggesting their suitability for future testing in the field of targeted radiotherapy in mice.

  4. Proton induced production and radiochemical isolation of 44Ti from scandium metal targets for 44Ti/44Sc generator development

    DOE PAGES

    Radchenko, Valery; Engle, Jonathan Ward; Medvedev, Dmitri G.; ...

    2017-04-07

    Scandium-44 g (half-life 3.97 h) shows promise for application in positron emission tomography (PET), due to favorable decay parameters. One of the sources of 44gSc is the 44Ti/44gSc generator, which can conveniently provide this radioisotope on a daily basis at a diagnostic facility. Titanium-44 (half-life 60.0 a), in turn, can be obtained via proton irradiation of scandium metal targets. A substantial 44Ti product batch, however, requires high beam currents, long irradiation times and an elaborate chemical procedure for 44Ti isolation and purification. This study describes the production of a combined 175 MBq (4.7 mCi) batch yield of 44Ti in weekmore » long proton irradiations at the Los Alamos Isotope Production Facility (LANL-IPF) and the Brookhaven Linac Isotope Producer (BNL-BLIP). A two-step ion exchange chromatography based chemical separation method is introduced: first, a coarse separation of 44Ti via anion exchange sorption in concentrated HCl results in a 44Tc/Sc separation factor of 102–103. A second, cation exchange based step in HCl media is then applied for 44Ti fine purification from residual Sc mass. In conclusion, this method yields a 90–97% 44Ti recovery with an overall Ti/Sc separation factor of ≥106.« less

  5. Magnetic Resonance Imaging Distortion and Targeting Errors from Strong Rare Earth Metal Magnetic Dental Implant Requiring Revision.

    PubMed

    Seong-Cheol, Park; Chong Sik, Lee; Seok Min, Kim; Eu Jene, Choi; Do Hee, Lee; Jung Kyo, Lee

    2016-12-22

    Recently, the use of magnetic dental implants has been re-popularized with the introduction of strong rare earth metal, for example, neodymium, magnets. Unrecognized magnetic dental implants can cause critical magnetic resonance image distortions. We report a case involving surgical failure caused by a magnetic dental implant. A 62-year-old man underwent deep brain stimulation for medically insufficiently controlled Parkinson's disease. Stereotactic magnetic resonance imaging performed for the first deep brain stimulation showed that the overdenture was removed. However, a dental implant remained and contained a neodymium magnet, which was unrecognized at the time of imaging; the magnet caused localized non-linear distortions that were the largest around the dental magnets. In the magnetic field, the subthalamic area was distorted by a 4.6 mm right shift and counter clockwise rotation. However, distortions were visually subtle in the operation field and small for distant stereotactic markers, with approximately 1-2 mm distortions. The surgeon considered the distortion to be normal asymmetry or variation. Stereotactic marker distortion was calculated to be in the acceptable range in the surgical planning software. Targeting errors, approximately 5 mm on the right side and 2 mm on the left side, occurred postoperatively. Both leads were revised after the removal of dental magnets. Dental magnets may cause surgical failures and should be checked and removed before stereotactic surgery. Our findings should be considered when reviewing surgical precautions and making distortion-detection algorithm improvements.

  6. Room Temperature Growth of Al-Doped ZnO Thin Films by Reactive DC Sputtering Technique with Metallic Target

    NASA Astrophysics Data System (ADS)

    Hasuike, Noriyuki; Nishio, Koji; Kisoda, Kenji; Harima, Hiroshi

    2013-01-01

    We prepared Al-deopd ZnO (AZO) films by reactive DC sputtering method using metallic target at room temperature. All the tested AZO films (0<[Al]<8.9%) with the transmittance above 85% in visible region were successfully grown on quartz substrate. All the AZO films have wurtzite structure with no impurity phase. The AZO films with [Al]<2.9% have the preferential orientation in c-axis direction, and the orientation became indistinct as increasing in Al content. In the optical measurement, the absorption edge was shifted from 3.30 to 3.66 eV due to Burstein-Moss effect, and the electron densities were roughly estimated at 2.5×1019 to 1.5×1021 cm-3, respectively. On the other hand, the high transmittance in infrared region suggested low electron mobility. Since this gives rise to the high electric resistivity, the further improvements and optimization of the growth conditions are required for the realization of AZO based transparent conductive.

  7. Nonequilibrium theory of a hot-electron bolometer with normal metal-insulator-superconductor tunnel junction

    SciTech Connect

    Golubev, Dmitri; Kuzmin, Leonid

    2001-06-01

    The operation of the hot-electron bolometer with normal metal-insulator-superconductor (NIS) tunnel junction as a temperature sensor is analyzed theoretically. The responsivity and the noise equivalent power (NEP) of the bolometer are obtained numerically for typical experimental parameters. Relatively simple approximate analytical expressions for these values are derived. The time constant of the device is also found. We demonstrate that the effect of the electron cooling by the NIS junction, which serves as a thermometer, can improve the sensitivity. This effect is also useful in the presence of the finite background power load. We discuss the effect of the correlation of the shot noise and the heat flow noise in the NIS junction. {copyright} 2001 American Institute of Physics.

  8. Theory of edge-state optical absorption in two-dimensional transition metal dichalcogenide flakes

    NASA Astrophysics Data System (ADS)

    Trushin, Maxim; Kelleher, Edmund J. R.; Hasan, Tawfique

    2016-10-01

    We develop an analytical model to describe sub-band-gap optical absorption in two-dimensional semiconducting transition metal dichalcogenide (s-TMD) nanoflakes. The material system represents an array of few-layer molybdenum disulfide crystals, randomly orientated in a polymer matrix. We propose that optical absorption involves direct transitions between electronic edge states and bulk bands, depends strongly on the carrier population, and is saturable with sufficient fluence. For excitation energies above half the band gap, the excess energy is absorbed by the edge-state electrons, elevating their effective temperature. Our analytical expressions for the linear and nonlinear absorption could prove useful tools in the design of practical photonic devices based on s-TMDs.

  9. Microstructure-based description of the deformation of metals: Theory and application

    NASA Astrophysics Data System (ADS)

    Helm, Dirk; Butz, Alexander; Raabe, Dierk; Gumbsch, Peter

    2011-04-01

    Aiming for an integrated approach to computational materials engineering in an industrial context poses big challenges in the development of suitable materials descriptions for the different steps along the processing chain. The first key component is to correctly describe the microstructural changes during the thermal and mechanical processing of the base material into a semi-finished product. Explicit representations of the microstructure are most suitable there. The final processing steps and particularly component assessment then has to describe the entire component which requires homogenized continuum mechanical representations. A key challenge is the step in between, the determination of the (macroscopic) materials descriptions from microscopic structures. This article describes methods to include microstructure into descriptions of the deformation of metal, and demonstrates the central steps of the simulation along the processing chain of an automotive component manufactured from a dual phase steel.

  10. Theory of light scattering in subwavelength metallic slot antenna array fabricated on subwavelength thin film

    NASA Astrophysics Data System (ADS)

    Choi, S. B.; Park, D. J.

    2015-10-01

    We demonstrate an analytic model that describes the near-field electromagnetic field profile near a subwavelength-sized metallic slot antenna fabricated on a thin dielectric substrate having a subwavelength thickness reaching λ/1000 in the terahertz frequency region. We found two-dimensional light diffraction induced by the two-dimensional nature of the slot antenna, and back-reflected waves interfered with each other in a complicated manner, resulting in a coupling of the Fourierdecomposed field amplitudes between the diffraction orders along the x and the y directions. We applied these findings to our model by modifying a previously developed model [D. J. Park et al., J. Korean Phys. Soc. 65, 1390 (2014)], and we monitor the effect on far-field transmission. This coupling effect was found to contribute to removal of physically-meaningless spikes or divergences in the transmission spectra, especially for relatively thick substrates.

  11. Theory of thermal and charge transport in diffusive normal metal/superconductor junctions

    NASA Astrophysics Data System (ADS)

    Yokoyama, T.; Tanaka, Y.; Golubov, A. A.; Asano, Y.

    2005-12-01

    Thermal and charge transport in diffusive normal metal (DN)/insulator/ s -, d -, and p -wave superconductor junctions are studied based on the Usadel equation with the Nazarov’s generalized boundary condition. We derive a general expression of the thermal conductance in unconventional superconducting junctions. Thermal conductance, electric conductance of junctions and their Lorentz ratio are calculated as a function of resistance in DN, the Thouless energy, magnetic scattering rate in DN and transparency of the insulating barrier. We also discuss transport properties for various orientation angles between the normal to the interface and the crystal axis of superconductors. It is demonstrated that the proximity effect does not influence the thermal conductance while the midgap Andreev resonant states suppress it. Dependencies of the electrical and thermal conductance on temperature are sensitive to pairing symmetries and orientation angles. The results imply a possibility to distinguish one pairing symmetry from another based on the results of experimental observations.

  12. Observations vs theory: from metallicity correlations of exoplanets and debris discs to HL Tau

    NASA Astrophysics Data System (ADS)

    Nayakshin, Sergei V.

    2015-12-01

    Boley et al (2010) and Nayakshin (2010) proposed Tidal Downsizing (TD), a new hypothesis for forming all types of planets. Gas fragments born by gravitational disc instability at ~ 100 AU migrate inwards rapidly, with some becoming hot Jupiters. Grain sedimentation inside the fragments makes rocky cores. These cores are future Earths and Super Earths, leaved behind when most of the migrating fragments are tidally disrupted.TD can now be tested against data in detail thanks to a numerical population synthesis model (Nayakshin and Fletcher 2015). TD scenario is fundamentally different from Core Accretion (CA), with sub-Saturn planets and debris discs born in gas fragment disruptions, and not vice versa. I therefore find robust observational differences between CA and TD despite uncertainties inherent in any population synthesis. Here I use metallicity correlations of all sorts to test the model. In TD, the only population that correlates with metallicity (Z) of the host strongly is that of moderately massive gas giants interior to a few AU from the host. Super-Earths and debris discs correlate in mass but not in numbers with Z; very massive gas giants, brown dwarfs and directly imaged gas giants are neutral to Z. Fragment self-destruction by core feedback explains simultaneously the core mass function roll-over at ~20 Earth masses, the rapid formation of suspected planets in HL Tau, and the paucity of directly imaged gas giants. Debris discs and gas giants do not correlate in TD, as observed.I argue that TD does a better job in accounting for many of the observed properties of exoplanets and planetary debris than CA. I finish with observational predictions that can distinguish TD from Core Accretion in the near future.

  13. Energy level alignment and quantum conductance of functionalized metal-molecule junctions: Density functional theory versus GW calculations

    SciTech Connect

    Jin, Chengjun; Markussen, Troels; Thygesen, Kristian S.; Strange, Mikkel; Solomon, Gemma C.

    2013-11-14

    We study the effect of functional groups (CH{sub 3}*4, OCH{sub 3}, CH{sub 3}, Cl, CN, F*4) on the electronic transport properties of 1,4-benzenediamine molecular junctions using the non-equilibrium Green function method. Exchange and correlation effects are included at various levels of theory, namely density functional theory (DFT), energy level-corrected DFT (DFT+Σ), Hartree-Fock and the many-body GW approximation. All methods reproduce the expected trends for the energy of the frontier orbitals according to the electron donating or withdrawing character of the substituent group. However, only the GW method predicts the correct ordering of the conductance amongst the molecules. The absolute GW (DFT) conductance is within a factor of two (three) of the experimental values. Correcting the DFT orbital energies by a simple physically motivated scissors operator, Σ, can bring the DFT conductances close to experiments, but does not improve on the relative ordering. We ascribe this to a too strong pinning of the molecular energy levels to the metal Fermi level by DFT which suppresses the variation in orbital energy with functional group.

  14. On the theory of ps and sub-ps laser pulse interaction with metals. II. Spatial temperature distribution

    NASA Astrophysics Data System (ADS)

    Hüttner, Bernd; Rohr, Gernot C.

    1998-04-01

    The interaction of short laser pulses with metals is described in terms of a new model involving a generalised nonlocal heat flow in time. The resulting system of coupled differential equations contains additional terms that originate in the thermal inertia of the electron subsystem. They are connected to the time derivative of both the laser intensity and the coupling of the electrons to the phonons. After briefly discussing the importance of the coefficient of heat exchange and of the different contributions to its main parts, the electron-phonon coupling and the average of the squared phonon frequencies, we present snap-shot-like calculations of the spatial temperature distribution along the z-axis for Al, Au, Pb and Nb for different intensities but fixed pulse duration τL=250 fs. In addition, the electron and phonon temperatures inside a thin Au film are studied in detail. Our results are compared to those arising from a standard two temperature model (TTM) and those of the conventional theory. While the traditional theory becomes invalid in most cases at least in the ps-range the differences between our approach and the TTM become the more pronounced the smaller the coefficient of heat exchange.

  15. Theory, design, and operation of liquid metal fast breeder reactors, including operational health physics

    SciTech Connect

    Adams, S.R.

    1985-10-01

    A comprehensive evaluation was conducted of the radiation protection practices and programs at prototype LMFBRs with long operational experience. Installations evaluated were the Fast Flux Test Facility (FFTF), Richland, Washington; Experimental Breeder Reactor II (EBR-II), Idaho Falls, Idaho; Prototype Fast Reactor (PFR) Dounreay, Scotland; Phenix, Marcoule, France; and Kompakte Natriumgekuhlte Kernreak Toranlange (KNK II), Karlsruhe, Federal Republic of Germany. The evaluation included external and internal exposure control, respiratory protection procedures, radiation surveillance practices, radioactive waste management, and engineering controls for confining radiation contamination. The theory, design, and operating experience at LMFBRs is described. Aspects of LMFBR health physics different from the LWR experience in the United States are identified. Suggestions are made for modifications to the NRC Standard Review Plan based on the differences.

  16. Paired box gene 2 is associated with estrogen receptor α in ovarian serous tumors: Potential theory basis for targeted therapy.

    PubMed

    Wang, Min; Ma, Haifen

    2016-08-01

    It has been suggested that Paired box gene (PAX)2 is activated by estradiol via estrogen receptor (ER)α in breast and endometrial cancer. The expression of PAX2 was restricted to ovarian serous tumors and only one case was positive in borderline mucinous tumor in our previous study. In the present study, immunohistochemistry was performed to assess the expression of ERα in 58 cases of ovarian serous tumors, including 30 serous cystadenomas, 16 borderline serous cystadenomas, 12 serous carcinomas and 67 cases of ovarian mucinous tumors, including 29 mucinous cystadenoma, 23 borderline mucinous cystadenoma and 15 mucinous carcinoma, which were the same specimens with detection of PAX2 expression. The results demonstrated that ERα was expressed in 10% (3/30) of serous cystadenomas, 62.5% (10/16) borderline serous cystadenomas and 66.7% (8/12) serous carcinomas. The expression of ERα in borderline serous cystadenomas and serous carcinomas were significantly higher compared with that in serous cystadenomas (P<0.01). ERα was detected in 3.4% (1/29) mucinous cystadenoma, 26.1% (6/23) borderline mucinous cystadenoma and only 6.7% (1/15) mucinous carcinoma. Furthermore, a scatter plot of the expression of PAX2 and ERα revealed a linear correlation between them in ovarian serous tumors (P<0.0001). With few positive results, no correlation was determined in ovarian mucinous tumors. It was demonstrated that PAX2 is associated with ERα in ovarian serous tumors, and this may become a potential theory basis for targeted therapy for ovarian serous tumors. Further research is required to determine how PAX2 and ERα work together, and the role of targeted therapy in ovarian serous tumors.

  17. Pressure-induced phase transitions in Pa metal from first-principles theory

    SciTech Connect

    Soederlind, P.; Eriksson, O.

    1997-11-01

    Protactinium metal is shown to undergo a phase transition to the {alpha}-U orthorhombic structure below 1 Mbar pressure. At higher pressures, the bct phase reenters in the phase diagram and at the highest pressures, an ideal hcp structure becomes stable. Hence, Pa undergoes a sequence of transitions; bct{r_arrow}{alpha}-U{r_arrow}bct{r_arrow}hcp, with the first transition taking place at 0.25 Mbar and the subsequent ones above 1 Mbar. The bct{r_arrow}{alpha}-U transition is triggered by the pressure-induced promotion of the spd valence states to 5f states. In this regard, Pa approaches uranium which at ambient conditions has one more 5f electron than Pa at similar conditions. At higher compression of Pa, the 5f band broadens and electrostatic interactions in combination with Born-Mayer repulsion become increasingly important and this drives Pa to gradually more close-packed structures. At ultrahigh pressures, the balance between electrostatic energy, Born-Mayer repulsion, and one-electron band energy stabilizes the hcp (ideal packing) structure. The electrostatic energy and Born-Mayer repulsion rule out open crystal structures under these conditions in Pa and between the close-packed structures, the hcp structure is shown to be stabilized by filling of the 5f band. {copyright} {ital 1997} {ital The American Physical Society}

  18. Theory of magnetoresistance due to lattice dislocations in face-centred cubic metals

    NASA Astrophysics Data System (ADS)

    Bian, Q.; Niewczas, M.

    2016-06-01

    A theoretical model to describe the low temperature magneto-resistivity of high purity copper single and polycrystals containing different density and distribution of dislocations has been developed. In the model, magnetoresistivity tensor is evaluated numerically using the effective medium approximation. The anisotropy of dislocation-induced relaxation time is considered by incorporating two independent energy bands with different relaxation times and the spherical and cylindrical Fermi surfaces representing open, extended and closed electron orbits. The effect of dislocation microstructure is introduced by means of two adjustable parameters corresponding to the length and direction of electron orbits in the momentum space, which permits prediction of magnetoresistance of FCC metals containing different density and distribution of dislocations. The results reveal that dislocation microstructure influences the character of the field-dependent magnetoresistivity. In the orientation of the open orbits, the quadratic variation in magnetoresistivity changes to quasi-linear as the density of dislocations increases. In the closed orbit orientation, dislocations delay the onset of magnetoresistivity saturation. The results indicate that in the open orbit orientations of the crystals, the anisotropic relaxation time due to small-angle dislocation scattering induces the upward deviation from Kohler's rule. In the closed orbit orientations Kohler's rule holds, independent of the density of dislocations. The results obtained with the model show good agreement with the experimental measurements of transverse magnetoresistivity in deformed single and polycrystal samples of copper at 2 K.

  19. Performance of Density Functional Theory for Second Row (4d) Transition Metal Thermochemistry.

    PubMed

    Laury, Marie L; Wilson, Angela K

    2013-09-10

    The performances of 22 density functionals, including generalized gradient approximation (GGA), hybrid GGAs, hybrid-meta GGAs, and range-separated and double hybrid functionals, in combination with the correlation consistent basis sets and effective core potentials, have been gauged for the prediction of gas phase enthalpies of formation for the TM-4d set, which contains 30 second row transition metal-containing molecules. The enthalpies of formation determined by the 22 density functionals were compared to those generated via the relativistic pseudopotential correlation consistent Composite Approach (rp-ccCA), which has a goal of reproducing energies akin to those from CCSD(T,FC1)-DK/aug-cc-pCV∞Z-DK calculations. B3LYP/cc-pVTZ-PP optimized geometries were used in this study, though structures determined by other functionals also were examined. Of the functionals employed, the double hybrid functionals, B2GP-PLYP and mPW2-PLYP, yielded the best overall results with mean absolute deviations (MADs) from experimental enthalpies of formation of 4.25 and 5.19 kcal mol(-1), respectively. The GGA functionals BP86 and PBEPBE resulted in deviations from experiment of nearly 100 kcal mol(-1) for molecules such as molybdenum carbonyls. The ωB97X-D functional, which includes the separation of exchange energy into long-range and short-range contributions and includes a dispersion correction, resulted in an MAD of 6.52 kcal mol(-1).

  20. Understanding Small-Molecule Interactions in Metal-Organic Frameworks: Coupling Experiment with Theory.

    PubMed

    Lee, Jason S; Vlaisavljevich, Bess; Britt, David K; Brown, Craig M; Haranczyk, Maciej; Neaton, Jeffrey B; Smit, Berend; Long, Jeffrey R; Queen, Wendy L

    2015-10-14

    Metal-organic frameworks (MOFs) have gained much attention as next-generation porous media for various applications, especially gas separation/storage, and catalysis. New MOFs are regularly reported; however, to develop better materials in a timely manner for specific applications, the interactions between guest molecules and the internal surface of the framework must first be understood. A combined experimental and theoretical approach is presented, which proves essential for the elucidation of small-molecule interactions in a model MOF system known as M2 (dobdc) (dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate; M = Mg, Mn, Fe, Co, Ni, Cu, or Zn), a material whose adsorption properties can be readily tuned via chemical substitution. It is additionally shown that the study of extensive families like this one can provide a platform to test the efficacy and accuracy of developing computational methodologies in slightly varying chemical environments, a task that is necessary for their evolution into viable, robust tools for screening large numbers of materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The absence of intraband scattering in a consistent theory of Gilbert damping in pure metallic ferromagnets

    NASA Astrophysics Data System (ADS)

    Edwards, D. M.

    2016-03-01

    Damping of magnetization dynamics in a ferromagnetic metal, arising from spin-orbit coupling, is usually characterised by the Gilbert parameter α. Recent calculations of this quantity, using a formula due to Kambersky, find that it is infinite for a perfect crystal owing to an intraband scattering term which is of third order in the spin-orbit parameter ξ. This surprising result conflicts with recent work by Costa and Muniz who study damping numerically by direct calculation of the dynamical transverse susceptibility in the presence of spin-orbit coupling. We resolve this inconsistency by following the approach of Costa and Muniz for a slightly simplified model where it is possible to calculate α analytically. We show that to second order in ξ one retrieves the Kambersky result for α, but to higher order one does not obtain any divergent intraband terms. The present work goes beyond that of Costa and Muniz by pointing out the necessity of including the effect of long-range Coulomb interaction in calculating damping for large ξ. A direct derivation of the Kambersky formula is given which shows clearly the restriction of its validity to second order in ξ so that no intraband scattering terms appear. This restriction has an important effect on the damping over a substantial range of impurity content and temperature. The experimental situation is discussed.

  2. Pressure-induced phase transitions in Pa metal from first-principles theory

    NASA Astrophysics Data System (ADS)

    Söderlind, Per; Eriksson, Olle

    1997-11-01

    Protactinium metal is shown to undergo a phase transition to the α-U orthorhombic structure below 1 Mbar pressure. At higher pressures, the bct phase reenters in the phase diagram and at the highest pressures, an ideal hcp structure becomes stable. Hence, Pa undergoes a sequence of transitions; bct-->α-U-->bct-->hcp, with the first transition taking place at 0.25 Mbar and the subsequent ones above 1 Mbar. The bct-->α-U transition is triggered by the pressure-induced promotion of the spd valence states to 5f states. In this regard, Pa approaches uranium which at ambient conditions has one more 5f electron than Pa at similar conditions. At higher compression of Pa, the 5f band broadens and electrostatic interactions in combination with Born-Mayer repulsion become increasingly important and this drives Pa to gradually more close-packed structures. At ultrahigh pressures, the balance between electrostatic energy, Born-Mayer repulsion, and one-electron band energy stabilizes the hcp (ideal packing) structure. The electrostatic energy and Born-Mayer repulsion rule out open crystal structures under these conditions in Pa and between the close-packed structures, the hcp structure is shown to be stabilized by filling of the 5f band.

  3. Different effects of a laser prepulse on the proton generation between plastic and metal targets irradiated by an ultraintense laser pulse

    SciTech Connect

    Lee, K.; Cha, Y.-H.; Lee, Y. W.; Park, S. H.; Jeong, Y. U.; Lee, J. Y.

    2009-01-15

    The effect of a laser prepulse on the generation of proton beams is compared between plastic and metal targets by irradiating a 30 fs, 2.4x10{sup 18} W/cm{sup 2} Ti:sapphire laser pulse. Proton energies generated from both target materials increase as the pulse duration of the laser prepulse decreases. However, it was found that there are distinct differences with respect to target materials. In the case of aluminum targets, as target thickness decreases, proton energy gets higher, which is well described by an isothermal expansion model. However, in the case of Mylar targets, no such dependence on target thickness could be observed, and the highest maximum proton energies are higher by factors of 1.5 to 3 than those from aluminum targets or those predicted by the isothermal expansion model. Such characteristics of the proton beams from Mylar targets can be accounted for by a bulk acceleration model, or acceleration by a resistively induced electric field.

  4. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Dynamics of formation of the liquid-drop phase of laser erosion jets near the surfaces of metal targets

    NASA Astrophysics Data System (ADS)

    Goncharov, V. K.; Kontsevoi, V. L.; Puzyrev, M. V.

    1995-03-01

    An investigation was made of laser erosion jets formed at 0.1-1.5 mm above the surfaces of Pb, Co, Ni, Sn, and Zn targets. A neodymium laser emitting rectangular pulses of 400 μs duration and of energy up to 400 J was used. The diameters, as well as the number density and volume fraction of the metal particles present in the jet, were measured. An analysis of the results showed that the metal liquid drops broke up near the surface and experienced additional evaporation because of their motion opposite to the laser beam.

  5. [Study about target-network of anti-cerebral infarction neuropathy based on theory of neurovascular unit and network pharmacology].

    PubMed

    Liu, Qingshan; Fang, Liang; Wang, Weiqun; Zhang, Ziqian; Yang, Hongjun

    2012-01-01

    Potention drug-targets on anti-neuropathy of stroke were summarized, and it will provide materials for developing innovation components traditional Chinese medicine on anti-cerebral infarction neuropathy. This article had done a series of researching work about neurovascular unit which includes three kinds of cells: neuron, gliacyte,brain microvascular endothelial cell, then signal mechanism of cell death or apoptosis of each section of stroke neuropathy was analysised by the historical documents. There are five important pathways: inflammatory factor-MMPs pathway- Caspases, Ca2+ -mitochondrial pathway-Caspases, Ca2+ -Phospholipase-PI-3K/AK pathway, Ca2+ -radical-MAPK pathway, Ca2+ -NO-protease pathway, among all the nodes, Caspases, Ca2+, NO were the most important ones. Developing the multi-mechanism and multilevel of traditional chinese medicine under the guidance of the theories of network pharmacology and neurovascular unit will play an important role in studying the key links of signal-network of stroke neuropathy.

  6. Application of analytic hierarchy process-grey target theory systematic model in comprehensive evaluation of water environmental quality.

    PubMed

    Wu, Jun; Tian, Xiaogang; Tang, Ya; Zhao, Yujie; Hu, Yandi; Fang, Zili

    2010-07-01

    Comprehensive evaluation of the water environment for effective water quality management is complicated by a considerable number of factors and uncertainties. It is difficult to combine micro-evaluation with the macro-evaluation process. To effectively eliminate the subjective errors of the traditional analytic hierarchy process (AHP), a new modeling approach--the analytic hierarchy process and grey target theory (AHP-GTT) systematic model--is presented in this study to evaluate water quality in a certain watershed. A case study of applying the AHP-GTT systematic model to the evaluation and analysis of the water environment was conducted in the Yibin section of the Yangtze River, China. The micro-evaluation is based on defining the weights of indices of the water quality (IWQ) of each water cross-section, while the macro-evaluation is based on calculating the comprehensive indices of water environmental quality and analyzing the tendency of the water environment of each cross-section. The results indicated that the Baixi and Shuidongmen sections are seriously polluted areas, with the tendencies of becoming worse. Also, the key IWQs of these two cross-sections are 5-day biochemical oxygen demand and chemical oxygen demand of permanganate, respectively.

  7. Time-domain Response of a Metal Detector to a Target Buried in Soil with Frequency-dependent Magnetic Susceptibility

    DTIC Science & Technology

    2016-07-06

    metallic sphere buried in a non-conducting soil half-space with frequency-dependent complex magnetic susceptibility. The sphere is chosen as a simple...prototype for the small metal parts in low-metal landmines, while soil with dispersive magnetic susceptibility is a good model for some soils that are...the frequency domain. Approximate theoretical expressions for weakly magnetic soils are found to fit the experimental data very well, which allowed the

  8. Predicting density functional theory total energies and enthalpies of formation of metal-nonmetal compounds by linear regression

    NASA Astrophysics Data System (ADS)

    Deml, Ann M.; O'Hayre, Ryan; Wolverton, Chris; Stevanović, Vladan

    2016-02-01

    The availability of quantitatively accurate total energies (Etot) of atoms, molecules, and solids, enabled by the development of density functional theory (DFT), has transformed solid state physics, quantum chemistry, and materials science by allowing direct calculations of measureable quantities, such as enthalpies of formation (Δ Hf ). Still, the ability to compute Etot and Δ Hf values does not, necessarily, provide insights into the physical mechanisms behind their magnitudes or chemical trends. Here, we examine a large set of calculated Etot and Δ Hf values obtained from the DFT+U -based fitted elemental-phase reference energies (FERE) approach [V. Stevanović, S. Lany, X. Zhang, and A. Zunger, Phys. Rev. B 85, 115104 (2012), 10.1103/PhysRevB.85.115104] to probe relationships between the Etot/Δ Hf of metal-nonmetal compounds in their ground-state crystal structures and properties describing the compound compositions and their elemental constituents. From a stepwise linear regression, we develop a linear model for Etot, and consequently Δ Hf , that reproduces calculated FERE values with a mean absolute error of ˜80 meV/atom. The most significant contributions to the model include calculated total energies of the constituent elements in their reference phases (e.g., metallic iron or gas phase O2), atomic ionization energies and electron affinities, Pauling electronegativity differences, and atomic electric polarizabilities. These contributions are discussed in the context of their connection to the underlying physics. We also demonstrate that our Etot/Δ Hf model can be directly extended to predict the Etot and Δ Hf of compounds outside the set used to develop the model.

  9. Generation of Subsurface Voids, Incubation Effect, and Formation of Nanoparticles in Short Pulse Laser Interactions with Bulk Metal Targets in Liquid: Molecular Dynamics Study.

    PubMed

    Shih, Cheng-Yu; Shugaev, Maxim V; Wu, Chengping; Zhigilei, Leonid V

    2017-08-03

    The ability of short pulse laser ablation in liquids to produce clean colloidal nanoparticles and unusual surface morphology has been employed in a broad range of practical applications. In this paper, we report the results of large-scale molecular dynamics simulations aimed at revealing the key processes that control the surface morphology and nanoparticle size distributions by pulsed laser ablation in liquids. The simulations of bulk Ag targets irradiated in water are performed with an advanced computational model combining a coarse-grained representation of liquid environment and an atomistic description of laser interaction with metal targets. For the irradiation conditions that correspond to the spallation regime in vacuum, the simulations predict that the water environment can prevent the complete separation of the spalled layer from the target, leading to the formation of large subsurface voids stabilized by rapid cooling and solidification. The subsequent irradiation of the laser-modified surface is found to result in a more efficient ablation and nanoparticle generation, thus suggesting the possibility of the incubation effect in multipulse laser ablation in liquids. The simulations performed at higher laser fluences that correspond to the phase explosion regime in vacuum reveal the accumulation of the ablation plume at the interface with the water environment and the formation of a hot metal layer. The water in contact with the metal layer is brought to the supercritical state and provides an environment suitable for nucleation and growth of small metal nanoparticles from metal atoms emitted from the hot metal layer. The metal layer itself has limited stability and can readily disintegrate into large (tens of nanometers) nanoparticles. The layer disintegration is facilitated by the Rayleigh-Taylor instability of the interface between the higher density metal layer decelerated by the pressure from the lighter supercritical water. The nanoparticles emerging

  10. Generation of Subsurface Voids, Incubation Effect, and Formation of Nanoparticles in Short Pulse Laser Interactions with Bulk Metal Targets in Liquid: Molecular Dynamics Study

    PubMed Central

    2017-01-01

    The ability of short pulse laser ablation in liquids to produce clean colloidal nanoparticles and unusual surface morphology has been employed in a broad range of practical applications. In this paper, we report the results of large-scale molecular dynamics simulations aimed at revealing the key processes that control the surface morphology and nanoparticle size distributions by pulsed laser ablation in liquids. The simulations of bulk Ag targets irradiated in water are performed with an advanced computational model combining a coarse-grained representation of liquid environment and an atomistic description of laser interaction with metal targets. For the irradiation conditions that correspond to the spallation regime in vacuum, the simulations predict that the water environment can prevent the complete separation of the spalled layer from the target, leading to the formation of large subsurface voids stabilized by rapid cooling and solidification. The subsequent irradiation of the laser-modified surface is found to result in a more efficient ablation and nanoparticle generation, thus suggesting the possibility of the incubation effect in multipulse laser ablation in liquids. The simulations performed at higher laser fluences that correspond to the phase explosion regime in vacuum reveal the accumulation of the ablation plume at the interface with the water environment and the formation of a hot metal layer. The water in contact with the metal layer is brought to the supercritical state and provides an environment suitable for nucleation and growth of small metal nanoparticles from metal atoms emitted from the hot metal layer. The metal layer itself has limited stability and can readily disintegrate into large (tens of nanometers) nanoparticles. The layer disintegration is facilitated by the Rayleigh–Taylor instability of the interface between the higher density metal layer decelerated by the pressure from the lighter supercritical water. The nanoparticles

  11. Predicting Bond Dissociation Energies of Transition-Metal Compounds by Multiconfiguration Pair-Density Functional Theory and Second-Order Perturbation Theory Based on Correlated Participating Orbitals and Separated Pairs.

    PubMed

    Bao, Junwei Lucas; Odoh, Samuel O; Gagliardi, Laura; Truhlar, Donald G

    2017-02-14

    We study the performance of multiconfiguration pair-density functional theory (MC-PDFT) and multireference perturbation theory for the computation of the bond dissociation energies in 12 transition-metal-containing diatomic molecules and three small transition-metal-containing polyatomic molecules and in two transition-metal dimers. The first step is a multiconfiguration self-consistent-field calculation, for which two choices must be made: (i) the active space and (ii) its partition into subspaces, if the generalized active space formulation is used. In the present work, the active space is chosen systematically by using three correlated-participating-orbitals (CPO) schemes, and the partition is chosen by using the separated-pair (SP) approximation. Our calculations show that MC-PDFT generally has similar accuracy to CASPT2, and the active-space dependence of MC-PDFT is not very great for transition-metal-ligand bond dissociation energies. We also find that the SP approximation works very well, and in particular SP with the fully translated BLYP functional SP-ftBLYP is more accurate than CASPT2. SP greatly reduces the number of configuration state functions relative to CASSCF. For the cases of FeO and NiO with extended-CPO active space, for which complete active space calculations are unaffordable, SP calculations are not only affordable but also of satisfactory accuracy. All of the MC-PDFT results are significantly better than the corresponding results with broken-symmetry spin-unrestricted Kohn-Sham density functional theory. Finally we test a perturbation theory method based on the SP reference and find that it performs slightly worse than CASPT2 calculations, and for most cases of the nominal-CPO active space, the approximate SP perturbation theory calculations are less accurate than the much less expensive SP-PDFT calculations.

  12. Langmuir probe investigation of transient plasmas generated by femtosecond laser ablation of several metals: Influence of the target physical properties on the plume dynamics

    NASA Astrophysics Data System (ADS)

    Irimiciuc, S. A.; Gurlui, S.; Bulai, G.; Nica, P.; Agop, M.; Focsa, C.

    2017-09-01

    Langmuir probe measurements were performed on transient plasmas generated by femtosecond laser ablation of several metallic targets (Al, Cu, Mn, Ni, In, Te, W). The analysis of current-voltage characteristics at various delays after the laser pulse gave access to the temporal evolution of ion density, electron temperature and plasma potential. The time-of-flight profile of the current recorded by the probe was also discussed in terms of a shifted Maxwell-Boltzmann velocity distribution, considering both thermal and drift velocities. The plasma parameters derived by these approaches were correlated with the electrical conductivity of the investigated metals. Assuming a direct dependence between the probe ionic signal and the charge carrier mobility in the target, a logarithmic fit was proposed for the plasma potential variation with electrical conductivity, whereas a derivative of this function was applied for the electron temperature. The saturation charge derived from the time-integrated probe ionic signals was influenced by the electrical conductivity of the target and also by the atomic weight of the metal. A steep increase of the thermal and drift velocities with conductivity was observed.

  13. Theory of electron-hole pair excitations in unimolecular processes at metal surfaces. I. X-ray edge effects

    NASA Astrophysics Data System (ADS)

    Gadzuk, J. W.; Metiu, H.

    1980-09-01

    A theory of the dynamics of molecular processes at solid surfaces must necessarily deal with those aspects of the solid which provide dissipative or irreversible reaction channels, thus giving the particular process a direction in time. While the heat-bath aspects of the solid are often considered from the phonon point of view, there is increasing speculation that the substrate electron-hole pair excitations may be a significant rate-determining factor, at least for metals. This belief is supported by various conclusions which have emerged from theoretical studies of time-dependent perturbations acting on extended Fermi systems, as physically realized in core-level spectroscopies of solids. We present here one phase of a study of surface reaction dynamics, focusing on the irreversible coupling of nuclear motion of an incident beam of atoms or molecules with the substrate electrons. For the cases in which the incident particle undergoes a substrate-induced diabatic transition in its internal electronic state, a sudden localized perturbation on the electrons is turned on. In analogy with the x-ray edge problem, an infrared divergent spectrum of electron-hole pairs is created which could give rise to irreversibility. Specific examples are considered and the ramifications on such observable quantities as sticking coefficients are detailed.

  14. On the origins of the deficiencies of density functional theory exchange-correlation functionals for transition metal oxides

    NASA Astrophysics Data System (ADS)

    Mattsson, Ann E.; Armiento, Rickard; Hao, Feng

    2011-03-01

    The transition metal oxides (TMO) are a class of compounds that are difficult to treat in density functional theory (DFT) with simple local and semi-local functionals. Especially for CuO, they failed to give the correct equilibrium monoclinic structure. The major source of the deficiency is attributed to the imperfect cancellation of the electronic self-interaction (SI) in the approximated exchange energy. Previous studies show that a large part of the SI error is connected to the confinement error that can be modeled by harmonic-oscillator (HO) systems. We discuss recent advances towards a simple methodology to quantify the confinement errors in real TMO systems. Our results show that these confinement errors may account for the deficiencies of DFT functionals in obtaining the correct equilibrium structure of the TMO. Sandia is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  15. Noncollinear spin-fluctuation theory of transition-metal magnetism: Role of transverse spin fluctuations in Fe

    NASA Astrophysics Data System (ADS)

    Garibay-Alonso, R.; Dorantes-Dávila, J.; Pastor, G. M.

    2015-05-01

    A local electronic theory of transition-metal magnetism at finite temperatures is presented, which takes into account longitudinal and transverse spin fluctuations on the same footing. The magnetic properties are determined in the framework of a rotational-invariant d -band model Hamiltonian by applying a four-field Hubbard-Stratonovich functional-integral method in the static approximation. The role of transverse spin excitations on the temperature-dependent magnetic properties is investigated by performing alloy averages in the single-site virtual crystal approximation. Bulk Fe is considered as the representative example for the applications. Results are given for the average magnetization M , for the spin-excitation energies, and for the transverse and longitudinal contributions to the local magnetic moments μl at atom l . The importance of noncollinear spin excitations is quantified by comparison with the corresponding collinear calculations. An important reduction of about 33% of the calculated Curie temperature TC is obtained, which now amounts to 1250 K and is thus relatively close to the experimental value. The longitudinal (transverse) components of μl are found to decrease (increase) as a function of temperature until the full rotational symmetry is reached at TC. This reflects the increasing importance of the transverse spin fluctuations. The origin of the temperature dependence of M and μl is analyzed in terms of the local spin-fluctuation energies.

  16. Adsorption and ring-opening of lactide on the chiral metal surface Pt(321)(S) studied by density functional theory.

    PubMed

    Franke, J-H; Kosov, D S

    2015-01-28

    We study the adsorption and ring-opening of lactide on the naturally chiral metal surface Pt(321)(S). Lactide is a precursor for polylactic acid ring-opening polymerization, and Pt is a well known catalyst surface. We study, here, the energetics of the ring-opening of lactide on a surface that has a high density of kink atoms. These sites are expected to be present on a realistic Pt surface and show enhanced catalytic activity. The use of a naturally chiral surface also enables us to study potential chiral selectivity effects of the reaction at the same time. Using density functional theory with a functional that includes the van der Waals forces in a first-principles manner, we find modest adsorption energies of around 1.4 eV for the pristine molecule and different ring-opened states. The energy barrier to be overcome in the ring-opening reaction is found to be very small at 0.32 eV and 0.30 eV for LL- and its chiral partner DD-lactide, respectively. These energies are much smaller than the activation energy for a dehydrogenation reaction of 0.78 eV. Our results thus indicate that (a) ring-opening reactions of lactide on Pt(321) can be expected already at very low temperatures, and Pt might be a very effective catalyst for this reaction; (b) the ring-opening reaction rate shows noticeable enantioselectivity.

  17. Assessing the density functional theory-based multireference configuration interaction (DFT/MRCI) method for transition metal complexes

    SciTech Connect

    Escudero, Daniel E-mail: thiel@kofo.mpg.de; Thiel, Walter E-mail: thiel@kofo.mpg.de

    2014-05-21

    We report an assessment of the performance of density functional theory-based multireference configuration interaction (DFT/MRCI) calculations for a set of 3d- and 4d-transition metal (TM) complexes. The DFT/MRCI results are compared to published reference data from reliable high-level multi-configurational ab initio studies. The assessment covers the relative energies of different ground-state minima of the highly correlated CrF{sub 6} complex, the singlet and triplet electronically excited states of seven typical TM complexes (MnO{sub 4}{sup −}, Cr(CO){sub 6}, [Fe(CN){sub 6}]{sup 4−}, four larger Fe and Ru complexes), and the corresponding electronic spectra (vertical excitation energies and oscillator strengths). It includes comparisons with results from different flavors of time-dependent DFT (TD-DFT) calculations using pure, hybrid, and long-range corrected functionals. The DFT/MRCI method is found to be superior to the tested TD-DFT approaches and is thus recommended for exploring the excited-state properties of TM complexes.

  18. Assessing the density functional theory-based multireference configuration interaction (DFT/MRCI) method for transition metal complexes.

    PubMed

    Escudero, Daniel; Thiel, Walter

    2014-05-21

    We report an assessment of the performance of density functional theory-based multireference configuration interaction (DFT/MRCI) calculations for a set of 3d- and 4d-transition metal (TM) complexes. The DFT/MRCI results are compared to published reference data from reliable high-level multi-configurational ab initio studies. The assessment covers the relative energies of different ground-state minima of the highly correlated CrF6 complex, the singlet and triplet electronically excited states of seven typical TM complexes (MnO4(-), Cr(CO)6, [Fe(CN)6](4-), four larger Fe and Ru complexes), and the corresponding electronic spectra (vertical excitation energies and oscillator strengths). It includes comparisons with results from different flavors of time-dependent DFT (TD-DFT) calculations using pure, hybrid, and long-range corrected functionals. The DFT/MRCI method is found to be superior to the tested TD-DFT approaches and is thus recommended for exploring the excited-state properties of TM complexes.

  19. Adsorption and ring-opening of lactide on the chiral metal surface Pt(321)S studied by density functional theory

    NASA Astrophysics Data System (ADS)

    Franke, J.-H.; Kosov, D. S.

    2015-01-01

    We study the adsorption and ring-opening of lactide on the naturally chiral metal surface Pt(321)S. Lactide is a precursor for polylactic acid ring-opening polymerization, and Pt is a well known catalyst surface. We study, here, the energetics of the ring-opening of lactide on a surface that has a high density of kink atoms. These sites are expected to be present on a realistic Pt surface and show enhanced catalytic activity. The use of a naturally chiral surface also enables us to study potential chiral selectivity effects of the reaction at the same time. Using density functional theory with a functional that includes the van der Waals forces in a first-principles manner, we find modest adsorption energies of around 1.4 eV for the pristine molecule and different ring-opened states. The energy barrier to be overcome in the ring-opening reaction is found to be very small at 0.32 eV and 0.30 eV for LL- and its chiral partner DD-lactide, respectively. These energies are much smaller than the activation energy for a dehydrogenation reaction of 0.78 eV. Our results thus indicate that (a) ring-opening reactions of lactide on Pt(321) can be expected already at very low temperatures, and Pt might be a very effective catalyst for this reaction; (b) the ring-opening reaction rate shows noticeable enantioselectivity.

  20. Density-Functional Theory Applied to Rare Earth Metals: Approaches Based on the Random-Phase Approximation

    NASA Astrophysics Data System (ADS)

    Casadei, Marco; Ren, Xinguo; Rinke, Patrick; Scheffler, Matthias; Rubio, Angel

    2013-03-01

    The description of the volume collapse exhibited by some rare earth metals poses a great challenge to density-functional theory (DFT) since local/semilocal functionals (LDA/GGA) fail to produce the associated phase transitions. We approach this problem by treating all electrons at the same quantum mechanical level, using both hybrid functionals (e.g. PBE0 and HSE06) and exact-exchange plus correlation in the random-phase approximation (EX+cRPA). We also assess the performance of recently developed beyond RPA schemes (e.g. rPT2). The calculations are performed for cerium and praseodymium, that display a volume collapse, and neodymium, in which the volume collapse is absent. The isostructural α- γ phase transition in cerium is the most studied. The exact exchange contribution in PBE0 and HSE06 is crucial to produce two distinct solutions that can be associated with the α and γ phases, but quantitative agreement with the extrapolated phase diagram requires EX+cRPA.

  1. A unified theory of spin-relaxation due to spin-orbit coupling in metals and semiconductors

    PubMed Central

    Boross, Péter; Dóra, Balázs; Kiss, Annamária; Simon, Ferenc

    2013-01-01

    Spintronics is an emerging paradigm with the aim to replace conventional electronics by using electron spins as information carriers. Its utility relies on the magnitude of the spin-relaxation, which is dominated by spin-orbit coupling (SOC). Yet, SOC induced spin-relaxation in metals and semiconductors is discussed for the seemingly orthogonal cases when inversion symmetry is retained or broken by the so-called Elliott-Yafet and D'yakonov-Perel' spin-relaxation mechanisms, respectively. We unify the two theories on general grounds for a generic two-band system containing intra- and inter-band SOC. While the previously known limiting cases are recovered, we also identify parameter domains when a crossover occurs between them, i.e. when an inversion symmetry broken state evolves from a D'yakonov-Perel' to an Elliott-Yafet type of spin-relaxation and conversely for a state with inversional symmetry. This provides an ultimate link between the two mechanisms of spin-relaxation. PMID:24252975

  2. A unified theory of spin-relaxation due to spin-orbit coupling in metals and semiconductors

    NASA Astrophysics Data System (ADS)

    Boross, Péter; Dóra, Balázs; Kiss, Annamária; Simon, Ferenc

    2013-11-01

    Spintronics is an emerging paradigm with the aim to replace conventional electronics by using electron spins as information carriers. Its utility relies on the magnitude of the spin-relaxation, which is dominated by spin-orbit coupling (SOC). Yet, SOC induced spin-relaxation in metals and semiconductors is discussed for the seemingly orthogonal cases when inversion symmetry is retained or broken by the so-called Elliott-Yafet and D'yakonov-Perel' spin-relaxation mechanisms, respectively. We unify the two theories on general grounds for a generic two-band system containing intra- and inter-band SOC. While the previously known limiting cases are recovered, we also identify parameter domains when a crossover occurs between them, i.e. when an inversion symmetry broken state evolves from a D'yakonov-Perel' to an Elliott-Yafet type of spin-relaxation and conversely for a state with inversional symmetry. This provides an ultimate link between the two mechanisms of spin-relaxation.

  3. A unified theory of spin-relaxation due to spin-orbit coupling in metals and semiconductors.

    PubMed

    Boross, Péter; Dóra, Balázs; Kiss, Annamária; Simon, Ferenc

    2013-11-20

    Spintronics is an emerging paradigm with the aim to replace conventional electronics by using electron spins as information carriers. Its utility relies on the magnitude of the spin-relaxation, which is dominated by spin-orbit coupling (SOC). Yet, SOC induced spin-relaxation in metals and semiconductors is discussed for the seemingly orthogonal cases when inversion symmetry is retained or broken by the so-called Elliott-Yafet and D'yakonov-Perel' spin-relaxation mechanisms, respectively. We unify the two theories on general grounds for a generic two-band system containing intra- and inter-band SOC. While the previously known limiting cases are recovered, we also identify parameter domains when a crossover occurs between them, i.e. when an inversion symmetry broken state evolves from a D'yakonov-Perel' to an Elliott-Yafet type of spin-relaxation and conversely for a state with inversional symmetry. This provides an ultimate link between the two mechanisms of spin-relaxation.

  4. Improvement of Radiological Teaching - Effects of Focusing of Learning Targets and Increased Consideration of Learning Theory Knowledge.

    PubMed

    Wirth, Stefan; William, York-Alexander; Paolini, Marco; Wirth, Kathrin; Maxien, Daniel; Reiser, Maximilian; Fischer, Martin R

    2017-09-20

    the concept to comparable teaching units. Key points  · Radiological teaching allows integration of current learning theory concepts with reasonable effort.. · In a test seminar this improved the evaluation results of the teaching unit by the students.. · In addition, this also led to a higher rate of correctly answered examination questions from past state examinations.. · This supports further steps towards excellent radiological teaching.. Citation Format · Wirth S, William Y, Paolini M et al. Improvement of Radiological Teaching - Effects of Focusing of Learning Targets and Increased Consideration of Learning Theory Knowledge. Fortschr Röntgenstr 2017; DOI: 10.1055/s-0043-119037. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Initial observations of cavitation-induced erosion of liquid metal spallation target vessels at the Spallation Neutron Source

    SciTech Connect

    McClintock, David A; Riemer, Bernie; Ferguson, Phillip D; Carroll, Adam J; Dayton, Michael J

    2012-01-01

    During operation of the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory the mechanical properties of the AISI 316L target module are altered by high-energy neutron and proton radiation. The interior surfaces of the target vessel are also damaged by cavitation-induced erosion, which results from repetitive rapid heating of the liquid mercury by high-energy proton beam pulses. Until recently no observations of cavitation-induced erosion were possible for conditions prototypical to the SNS. Post irradiation examination (PIE) of the first and second operational SNS targets was performed to gain insight into the radiation-induced changes in mechanical properties of the 316L target material and the extent of cavitation-induced erosion to the target vessel inner surfaces. Observations of cavitation-induced erosion of the first and second operational SNS target modules are presented here, including images of the target vessel interiors and specimens removed from the target beam-entrance regions.

  6. Generation of nanocrystalline surface layer in short pulse laser processing of metal targets under conditions of spatial confinement by solid or liquid overlayer

    NASA Astrophysics Data System (ADS)

    Shugaev, Maxim V.; Shih, Cheng-Yu; Karim, Eaman T.; Wu, Chengping; Zhigilei, Leonid V.

    2017-09-01

    The effect of spatial confinement by a solid or liquid overlayer on short pulse laser-induced surface microstructure modification is investigated in a series of large-scale atomistic simulations performed for Ag targets irradiated in the regime of melting and resolidification, below the thresholds for laser spallation and ablation. For Ag targets with free surfaces, the formation of a nanocrystalline region with random crystallographic grain orientation is observed under irradiation conditions leading to the generation of numerous sub-surface voids that slow down the solidification process. When no voids are generated, the resolidification produces grains misoriented with respect to the bulk of the target by just several degrees and separated from each other by low angle grain boundaries or dislocation walls. The presence of a liquid or solid overlayer suppresses nucleation of sub-surface voids, provides an additional pathway for cooling through the heat conduction to the overlayer, and facilitates the formation of nanocrystalline structure in a region of the metal target adjacent to the overlayer. Moreover, the stabilizing effect of the solid overlayer may result in an incomplete melting of metal in the vicinity of the interface, making it possible for grains growing from the interface to retain ;memory; of the target orientation and to produce nanocrystalline interfacial region with small misorientation of grains with respect to the bulk of the target. In all simulations, the nanocrystalline layers generated by laser processing of single crystal Ag targets are characterized by a high density of stacking faults, twin boundaries, and point defects produced in the course of the rapid resolidification.

  7. Graphene-supported small transition-metal clusters: A density functional theory investigation within van der Waals corrections

    NASA Astrophysics Data System (ADS)

    Rêgo, Celso R. C.; Tereshchuk, Polina; Oliveira, Luiz N.; Da Silva, Juarez L. F.

    2017-06-01

    Transition-metal nanoparticles adsorbed on graphene are of great interest due to the unique catalytic and magnetic properties resulting from nanoparticles-graphene interactions. Comparison between the physical properties of such systems and those of the same nanoparticles in the gas phase is especially important. Here we report a systematic density functional investigation of the structural, energetic, and magnetic properties of small Nin, Pdn, and Ptn clusters, comprising from n =1 to 6 atoms, in the gas phase and adsorbed on a graphene monolayer. Our results show that the Ni adatom binds to the graphene hollow site, with -1.47 -meV adsorption energy, while Pd and Pt prefer the bridge sites, with -1.14 - and -1.62 -meV adsorption energies, respectively. This difference is determined by a competition between quantum and classical forces. Ni2 and Pt2 dimers bind perpendicularly on hollow and bridge sites, respectively, while Pd2 lies parallel to the graphene sheet, with each adatom on a bridge site. For larger TMn (TM = Ni , Pd , Pt ; n =3 -6 ) clusters, either two or three atoms bind to bridge graphene sites. In almost all cases the adsorbed clusters retain their gas-phase structures. The exceptions are Ni5 and Pt4, which acquire more compact structures with effective coordination number 12 and 19 % larger than in the gas phase, respectively. As the number of atoms grows, the cluster binds more weakly to the graphene, while its binding energy mounts up. Van der Waals corrections to the plain density functional theory (DFT) total energy raise the adsorption energy, but leave the cluster structure unchanged, in the gas phase or upon adsorption. Bader charge analysis shows that adsorption causes minor charge redistribution: the TM atoms bound to C atoms become positively charged, while the remaining metal atoms acquire negative charge. We have derived an approximate analytical expression for the local densities of states for the d orbitals of Ni , Pd , and Pt adatoms

  8. Hydrogen Abundances in Metal Grains from the Hammadah Al Hamra (HaH) 237 Metal-rich Chondrite: A Test of the Nebular-Formation Theory

    NASA Technical Reports Server (NTRS)

    Lauretta, D. S.; Guan, Y.; Leshin, L. A.

    2005-01-01

    The Bencubbin-like (CB) chondrites are metal-rich, primitive meteorites [1,2]. Some of these chondrites (HaH 237, QUE 94411) contain compositionally zoned metal grains with near-chondritic bulk compositions. Thermodynamic modeling of the zoning patterns in these grains suggests that they were formed by condensation in a region of the solar nebula with enhanced dust/gas ratios and a total pressure of 10(exp -4) bars at temperatures between 1400 - 1500 K [3]. If these predictions are correct than the metal grains would have been exposed to abundant H2 gas, which comprises the bulk of nebular systems. Since Fe-based alloys can absorb significant quantities of H, metal grains formed in the solar nebula should contain measurable abundances of H.

  9. Simulating Valence-to-Core X-ray Emission Spectroscopy of Transition Metal Complexes with Time-Dependent Density Functional Theory

    SciTech Connect

    Zhang, Yu; Mukamel, Shaul; Khalil, Munira; Govind, Niranjan

    2015-11-09

    Valence-to-core (VtC) X-ray emission spectroscopy (XES) has emerged as a power- ful technique for the structural characterization of complex organometallic compounds in realistic environments. Since the spectrum represents electronic transitions from the ligand molecular orbitals to the core holes of the metal centers, the approach is more chemically sensitive to the metal-ligand bonding character compared with con- ventional X-ray absorption techniques. In this paper we study how linear-response time-dependent density functional theory (LR-TDDFT) can be harnessed to simulate K-edge VtC X-ray emission spectra reliably. LR-TDDFT allows one to go beyond the single-particle picture that has been extensively used to simulate VtC-XES. We con- sider seven low- and high-spin model complexes involving chromium, manganese and iron transition metal centers. Our results are in good agreement with experiment.

  10. Simulating Valence-to-Core X-ray Emission Spectroscopy of Transition Metal Complexes with Time-Dependent Density Functional Theory.

    PubMed

    Zhang, Yu; Mukamel, Shaul; Khalil, Munira; Govind, Niranjan

    2015-12-08

    Valence-to-core (VtC) X-ray emission spectroscopy (XES) has emerged as a powerful technique for the structural characterization of complex organometallic compounds in realistic environments. Since the spectrum represents electronic transitions from the ligand molecular orbitals to the core holes of the metal centers, the approach is more chemically sensitive to the metal-ligand bonding character compared with conventional X-ray absorption techniques. In this paper we study how linear-response time-dependent density functional theory (LR-TDDFT) can be harnessed to simulate K-edge VtC X-ray emission spectra reliably. LR-TDDFT allows one to go beyond the single-particle picture that has been extensively used to simulate VtC-XES. We consider seven low- and high-spin model complexes involving chromium, manganese, and iron transition metal centers. Our results are in good agreement with experiment.

  11. Atomic defects and dopants in ternary Z-phase transition-metal nitrides Cr M N with M =V , Nb, Ta investigated with density functional theory

    NASA Astrophysics Data System (ADS)

    Urban, Daniel F.; Elsässer, Christian

    2017-09-01

    A density functional theory study of atomic defects and dopants in ternary Z-phase transition-metal nitrides Cr M N with M =V , Nb, or Ta is presented. Various defect formation energies of native point defects and of substitutional atoms of other metal elements which are abundant in the steel as well are evaluated. The dependence thereof on the thermodynamic environment, i.e., the chemical conditions of a growing Z-phase precipitate, is studied, and different growth scenarios are compared. The results obtained may help to relate results of experimental atomic-scale analysis by atom probe tomography or transmission electron microscopy to the theoretical modeling of the formation process of the Z phase from binary transition-metal nitrides.

  12. Structure and magnetism of [M3](6/7+) metal chain complexes from density functional theory: analysis for copper and predictions for silver.

    PubMed

    Bénard, M; Berry, J F; Cotton, F A; Gaudin, C; López, X; Murillo, C A; Rohmer, M-M

    2006-05-15

    The ground-state electronic structure of the trinuclear complex Cu3(dpa)4Cl2 (1), where dpa is the anion of di(2-pyridyl)amine, has been investigated within the framework of density functional theory (DFT) and compared with that obtained for other known M3(dpa)4Cl2 complexes (M = Cr, Co, Ni) and for the still hypothetical Ag3(dpa)4Cl2 compound. Both coinage metal compounds display three singly occupied x2-y2-like (delta) orbitals oriented toward the nitrogen environment of each metal atom, generating antibonding M-(N4) interactions. All other metal orbital combinations are doubly occupied, resulting in no delocalized metal-metal bonding. This is at variance with the other known symmetric M3(dpa)4Cl2 complexes of the first transition series, which all display some delocalized bonding through the metal backbone, with formal bond multiplicity decreasing in the order Cr > Co > Ni. An antiferromagnetic coupling develops between the singly occupied MOs via a superexchange mechanism involving the bridging dpa ligands. This magnetic interaction can be considered as an extension to the three aligned Cu(II) atoms of the well-documented exchange coupling observed in carboxylato-bridged dinuclear copper compounds. Broken-symmetry calculations with approximate spin projection adequately reproduce the coupling constant observed for 1. Oxidation of 1 removes an electron from the magnetic orbital located on the central Cu atom and its ligand environment; 1+ displays a much weaker antiferromagnetic interaction coupling the terminal Cu-N4 moieties via four ligand pathways converging through the x2-y2 orbital of the central metal. The silver homologues of 1 and 1+ display similar electronic ground states, but the calculated magnetic couplings are stronger by factors of about 3 and 4, respectively, resulting from a better overlap between the metal centers and their equatorial ligand environment within the magnetic orbitals.

  13. Role of fluorophore-metal interaction in photoinduced electron transfer (PET) sensors: time-dependent density functional theory (TDDFT) study.

    PubMed

    Lee, Hyunjung; Hancock, Robert D; Lee, Hee-Seung

    2013-12-19

    The origins of fluorescence quenching by Hg(II) ion chelation and fluorescence enhancement by Zn(II) ion chelation to a PET sensor are investigated. Specifically, the fluorescence quenching and enhancing mechanisms associated with the ligand ADPA (N-(9-anthracenylmethyl)-N-(2-pyridinylmethyl)-2-pyridinemethanamine), protonated ADPA and metal bound (Zn(II) and Hg(II)) ADPA are studied via density functional theory (DFT) and time-dependent DFT (TDDFT) methods. The study found that a structural change in the excited state of ADPA induces reordering of the frontier molecular orbitals, and the S1 → S0 transition becomes a charge transfer transition from the fluorophore to the tertiary nitrogen of the dipicolylamine (DPA) unit, which is forbidden. Protonation on the tertiary amine or chelation of Zn(II) prevents such changes, and the HOMO-LUMO transition is contained within the fluorophore. Therefore, fluorescence is restored. The chelation of Hg(II), on the other hand, promotes extensive interaction between the Hg(II) ion and the fluorophore, which is reflected in the short Hg(II)-fluorophore distance (3.11 Å). A noticeable structural change upon the S0 → S1 transition is observed in the Hg(II)-ADPA system as well, where the resulting S1 → S0 transition becomes a charge transfer transition from mercury to the fluorophore and the fluorescence is thus quenched. Therefore, the present DFT/TDDFT calculations reproduce the fluorescence on-off behavior associated with the entire ADPA family of complexes, which illustrates that the combination of DFT and TDDFT calculations, including excited state geometry optimization, can be a valuable tool to uncover the detailed fluorescence sensing mechanisms.

  14. Evaluation of exchange-correlation functionals for time-dependent density functional theory calculations on metal complexes.

    PubMed

    Holland, Jason P; Green, Jennifer C

    2010-04-15

    The electronic absorption spectra of a range of copper and zinc complexes have been simulated by using time-dependent density functional theory (TD-DFT) calculations implemented in Gaussian03. In total, 41 exchange-correlation (XC) functionals including first-, second-, and third-generation (meta-generalized gradient approximation) DFT methods were compared in their ability to predict the experimental electronic absorption spectra. Both pure and hybrid DFT methods were tested and differences between restricted and unrestricted calculations were also investigated by comparison of analogous neutral zinc(II) and copper(II) complexes. TD-DFT calculated spectra were optimized with respect to the experimental electronic absorption spectra by use of a Matlab script. Direct comparison of the performance of each XC functional was achieved both qualitatively and quantitatively by comparison of optimized half-band widths, root-mean-squared errors (RMSE), energy scaling factors (epsilon(SF)), and overall quality-of-fit (Q(F)) parameters. Hybrid DFT methods were found to outperform all pure DFT functionals with B1LYP, B97-2, B97-1, X3LYP, and B98 functionals providing the highest quantitative and qualitative accuracy in both restricted and unrestricted systems. Of the functionals tested, B1LYP gave the most accurate results with both average RMSE and overall Q(F) < 3.5% and epsilon(SF) values close to unity (>0.990) for the copper complexes. The XC functional performance in spin-restricted TD-DFT calculations on the zinc complexes was found to be slightly worse. PBE1PBE, mPW1PW91 and B1LYP gave the most accurate results with typical RMSE and Q(F) values between 5.3 and 7.3%, and epsilon(SF) around 0.930. These studies illustrate the power of modern TD-DFT calculations for exploring excited state transitions of metal complexes. 2009 Wiley Periodicals, Inc.

  15. Size dependence of the melting temperature of metallic nanoclusters from the viewpoint of the thermodynamic theory of similarity

    NASA Astrophysics Data System (ADS)

    Samsonov, V. M.; Vasilyev, S. A.; Bembel, A. G.

    2016-08-01

    The generalized Thomson formula T m = T m (∞) (1-δ) R for the melting point of small objects T m has been analyzed from the viewpoint of the thermodynamic theory of similarity, where R is the radius of the particle and T m (∞) is the melting point of the corresponding large crystal. According to this formula, the parameter δ corresponds to the value of the radius of the T m ( R -1) particle obtained by the linear extrapolation of the dependence to the melting point of the particle equal to 0 K. It has been shown that δ = αδ0, where α is the factor of the asphericity of the particle (shape factor). In turn, the redefined characteristic length δ0 is expressed through the interphase tension σ sl at the boundary of the crystal with its own melt, the specific volume of the solid phase v s and the macroscopic value of the heat of fusion λ∞:δ0 = 2σ sl v s /λ∞. If we go from the reduced radius of the particle R/δ to the redefined reduced radius R/ r 1 or R/ d, where r 1 is the radius of the first coordination shell and d ≈ r 1 is the effective atomic diameter, then the simplex δ/ r 1 or δ/ d will play the role of the characteristic criterion of thermodynamic similarity. At a given value of α, this role will be played by the simplex Estimates of the parameters δ0 and δ0/ d have been carried out for ten metals with different lattice types. It has been shown that the values of the characteristic length δ0 are close to 1 nm and that the simplex δ0/ d is close to unity. In turn, the calculated values of the parameter δ agree on the order of magnitude with existing experimental data.

  16. Benchmark Calculations of Energetic Properties of Groups 4 and 6 Transition Metal Oxide Nanoclusters Including Comparison to Density Functional Theory.

    PubMed

    Fang, Zongtang; Both, Johan; Li, Shenggang; Yue, Shuwen; Aprà, Edoardo; Keçeli, Murat; Wagner, Albert F; Dixon, David A

    2016-08-09

    The heats of formation and the normalized clustering energies (NCEs) for the group 4 and group 6 transition metal oxide (TMO) trimers and tetramers have been calculated by the Feller-Peterson-Dixon (FPD) method. The heats of formation predicted by the FPD method do not differ much from those previously derived from the NCEs at the CCSD(T)/aT level except for the CrO3 nanoclusters. New and improved heats of formation for Cr3O9 and Cr4O12 were obtained using PW91 orbitals instead of Hartree-Fock (HF) orbitals. Diffuse functions are necessary to predict accurate heats of formation. The fluoride affinities (FAs) are calculated with the CCSD(T) method. The relative energies (REs) of different isomers, NCEs, electron affinities (EAs), and FAs of (MO2)n (M = Ti, Zr, Hf, n = 1-4) and (MO3)n (M = Cr, Mo, W, n = 1-3) clusters have been benchmarked with 55 exchange-correlation density functional theory (DFT) functionals including both pure and hybrid types. The absolute errors of the DFT results are mostly less than ±10 kcal/mol for the NCEs and the EAs and less than ±15 kcal/mol for the FAs. Hybrid functionals usually perform better than the pure functionals for the REs and NCEs. The performance of the two types of functionals in predicting EAs and FAs is comparable. The B1B95 and PBE1PBE functionals provide reliable energetic properties for most isomers. Long range corrected pure functionals usually give poor FAs. The standard deviation of the absolute error is always close to the mean errors, and the probability distributions of the DFT errors are often not Gaussian (normal). The breadth of the distribution of errors and the maximum probability are dependent on the energy property and the isomer.

  17. Laser Driven Compression Equations of State and Hugoniot Pressure Measurements in Thick Solid Metallic Targets at ˜0.17-13 TW/cm2

    NASA Astrophysics Data System (ADS)

    Remo, John L.

    2010-10-01

    An electro-optic laser probe was developed to obtain parameters for high energy density equations of state (EoS), Hugoniot pressures (PH), and strain rates for high energy density laser irradiation intensity, I, experiments at ˜170 GW/cm2 (λ = 1064 nm) to ˜13 TW/cm2 (λ = 527 nm) on Al, Cu, Ti, Fe, Ni metal targets in a vacuum. At I ˜7 TW/cm2 front surface plasma pressures and temperatures reached 100's GPa and over two million K. Rear surface PH ranged from 7-120 GPa at average shock wave transit velocities 4.2-8.5 km/s, depending on target thickness and I. A surface plasma compression ˜100's GPa generated an impulsive radial expanding shock wave causing compression, rarefactions, and surface elastic and plastic deformations depending on I. A laser/fiber optic system measured rear surface shock wave emergence and particle velocity with ˜3 GHz resolution by monitoring light deflection from diamond polished rear surfaces of malleable metallic targets, analogous to an atomic force microscope. Target thickness, ˜0.5-2.9 mm, prevented front surface laser irradiation penetration, due to low radiation skin depth, from altering rear surface reflectivity (refractive index). At ˜10 TW electromagnetic plasma pulse noise generated from the target chamber overwhelmed detector signals. Pulse frequency analysis using Moebius loop antennae probed transient noise characteristics. Average shock (compression) and particle (rear surface displacement) velocity measurements determined rear surface PH and GPa) EoS that are compared with gas guns.

  18. High-k gadolinium scandate on Si obtained by high pressure sputtering from metal targets and in-situ plasma oxidation

    NASA Astrophysics Data System (ADS)

    Pampillón, M. A.; San Andrés, E.; Feijoo, P. C.; Fierro, J. L. G.

    2017-03-01

    This article studies the physical and electrical behavior of Gd2‑x Sc x O3 layers grown by high pressure sputtering from metallic Gd and Sc targets. The aim is to obtain a high permittivity dielectric for microelectronic applications. The films were obtained by the deposition of a metallic nanolaminate of Gd and Sc alternating layers, which is afterwards in-situ oxidized by plasma. The oxide films obtained were close to stoichiometry, amorphous and with minimal interfacial regrowth. By fabricating metal–insulator–semiconductor capacitors we found that a moderate temperature annealing is needed to enhance permittivity, which reaches a high value of 32 while keeping moderate leakage. Finally, the feasibility of interface scavenging in this material with Ti gate electrodes is also demonstrated.

  19. Structure and Energetics of Benzene Adsorbed on Transition-Metal Surfaces: Density-Functional Theory with Screened van der Waals Interactions

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Ruiz-López, Victor G.; Zhang, Guo-Xu; Ren, Xinguo; Scheffler, Matthias; Tkatchenko, Alexandre

    2012-02-01

    The adsorption of benzene on metal surfaces is an important benchmark system for more complex hybrid inorganic/organic interfaces. Here, the recently developed DFT+vdW\\surfcirc method (density-functional theory including screened van der Waals (vdW) interactions) [1] is used to study the structure and energetics of benzene on transition-metal surfaces (Cu, Ag, Au, Pd, Pt, Rh, and Ir). Benzene adsorbs in a planar configuration at coinage metal surfaces, with almost zero distortion and a flat potential-energy surface. In contrast, benzene is strongly bound to the (111) surface of Pd, Pt, Rh, and Ir, and located at the bridge-30^o site. The vdW interactions significantly enhance the binding energy by more than 0.75 eV for all metals. The screening of the vdW energy plays a critical role in coinage metals, shortening the equilibrium distance by 0.2 å, and lowering the binding energy by 0.25 eV. The validity of our results is confirmed by comparison with calculations using the random-phase approximation including renormalized single excitations (EX+cRPA+rSE scheme [2]), and the experimental data from temperature-programmed desorption and calorimetry measurements. [1] V. G. Ruiz-L'opez et al., submitted. [2] X. Ren et al., Phys. Rev. Lett. 106, 153003 (2011).

  20. Corrosion mechanisms for metal alloy waste forms: experiment and theory Level 4 Milestone M4FT-14LA0804024 Fuel Cycle Research & Development

    SciTech Connect

    Liu, Xiang-Yang; Taylor, Christopher D.; Kim, Eunja; Goff, George Scott; Kolman, David Gary

    2014-07-31

    This document meets Level 4 Milestone: Corrosion mechanisms for metal alloy waste forms - experiment and theory. A multiphysics model is introduces that will provide the framework for the quantitative prediction of corrosion rates of metallic waste forms incorporating the fission product Tc. The model requires a knowledge of the properties of not only the metallic waste form, but also the passive oxide films that will be generated on the waste form, and the chemistry of the metal/oxide and oxide/environment interfaces. in collaboration with experimental work, the focus of this work is on obtaining these properties from fundamental atomistic models. herein we describe the overall multiphysics model, which is based on MacDonald's point-defect model for passivity. We then present the results of detailed electronic-structure calculations for the determination of the compatibility and properties of Tc when incorporated into intermetallic oxide phases. This work is relevant to the formation of multi-component oxides on metal surfaces that will incorporate Tc, and provide a kinetic barrier to corrosion (i.e. the release of Tc to the environment). Atomistic models that build upon the electronic structure calculations are then described using the modified embedded atom method to simulate metallic dissolution, and Buckingham potentials to perform classical molecular dynamics and statics simulations of the technetium (and, later, iron-technetium) oxide phases. Electrochemical methods were then applied to provide some benchmark information of the corrosion and electrochemical properties of Technetium metal. The results indicate that published information on Tc passivity is not complete and that further investigation is warranted.