Catalyst system for the polymerization of alkenes to polyolefins
Miller, Stephen A.; Bercaw, John E.
2002-01-01
The invention provides metallocene catalyst systems for the controlled polymerization of alkenes to a wide variety of polyolefins and olefin coplymers. Catalyst systems are provided that specifically produce isotactic, syndiotactic and steroblock polyolefins. The type of polymer produced can be controlled by varying the catalyst system, specifically by varying the ligand substituents. Such catalyst systems are particularly useful for the polymerization of polypropylene to give elastomeric polypropylenes. The invention also provides novel elastomeric polypropylene polymers characterized by dyad (m) tacticities of about 55% to about 65%, pentad (mmmm) tacticities of about 25% to about 35%, molecular weights (M.sub.w)in the range of about 50,000 to about 2,000,000, and have mmrm+rrmr peak is less than about 5%.
Catalyst system for the polymerization of alkenes to polyolefins
Miller, Stephen A.; Bercaw, John E.
2004-02-17
The invention provides metallocene catalyst systems for the controlled polymerization of alkenes to a wide variety of polyolefins and olefin coplymers. Catalyst systems are provided that specifically produce isotactic, syndiotactic and steroblock polyolefins. The type of polymer produced can be controlled by varying the catalyst system, specifically by varying the ligand substituents. Such catalyst systems are particularly useful for the polymerization of polypropylene to give elastomeric polypropylenes. The invention also provides novel elastomeric polypropylene polymers characterized by dyad (m) tacticities of about 55% to about 65%, pentad (mmmm) tacticities of about 25% to about 35%, molecular weights (M.sub.W) in the range of about 50,000 to about 2,000,000, and have mmrm+rrmr peak is less than about 5%.
NASA Astrophysics Data System (ADS)
Prokhorov, K. A.; Nikolaeva, G. Yu; Sagitova, E. A.; Pashinin, P. P.; Guseva, M. A.; Shklyaruk, B. F.; Gerasin, V. A.
2018-04-01
We report a Raman structural study of melt-mixed blends of isotactic polypropylene with two grades of polyethylene: linear high-density and branched low-density polyethylenes. Raman methods, which had been suggested for the analysis of neat polyethylene and isotactic polypropylene, were modified in this study for quantitative analysis of polyethylene/polypropylene blends. We revealed the dependence of the degree of crystallinity and conformational composition of macromolecules in the blends on relative content of the blend components and preparation conditions (quenching or annealing). We suggested a simple Raman method for evaluation of the relative content of the components in polyethylene/polypropylene blends. The degree of crystallinity of our samples, evaluated by Raman spectroscopy, is in good agreement with the results of analysis by differential scanning calorimetry.
Adsorption of polypropylene from dilute solutions on a zeolite column packing.
Macko, Tibor; Pasch, Harald; Denayer, Joeri F
2005-01-01
Faujasite type zeolite CBV-780 was tested as adsorbent for isotactic polypropylene by liquid chromatography. When cyclohexane, cyclohexanol, n-decanol, n-dodecanol, diphenylmethane, or methylcyclohexane was used as mobile phase, polypropylene was fully or partially retained within the column packing. This is the first series of sorbent-solvent systems to show a pronounced retention of isotactic polypropylene. According to the hydrodynamic volumes of polypropylene in solution, macromolecules of polypropylene should be fully excluded from the pore volume of the sorbent. Sizes of polypropylene macromolecules in linear conformations, however, correlate with the pore size of the column packing used. It is presumed that the polypropylene chains partially penetrate into the pores and are retained due to the high adsorption potential in the narrow pores.
Sangyeob Lee; Todd F. Shupe; Chung Y. Hse
2008-01-01
The objective of this study was to improve interfacial adhesion properties at the interface of thermomechanical pulp (TMP) fiber and isotactic polypropylene (iPP) using thermoset adhesives such as phenol formaldehyde (PF) and urea formaldehyde (UF). This study also attempted to achieve fiber-to-fiber adhesion using thermoset adhesives before the molten iPP would flow...
High impact strength polymers having novel nano-structures produced via reactive extrusion
NASA Astrophysics Data System (ADS)
Tortorella, Nathan Fraser
A major focus of scientists and engineers over the last century has been to increase the impact strength and therefore reduce the brittleness of materials. By altering and adding energy absorption mechanisms, brittle failure can be averted. Isotactic polypropylene (PP) is the focus of this dissertation because it is an extremely low cost, high volume, versatile plastic but behaves in a brittle manner at or below room temperature or in a notched state. Early work on impact modification of polypropylene focused on blending energy-absorbing low density elastomers and rubbers. These binary blends all had a common problem---an increase in impact strength was paralleled by a significant decrease in both elastic modulus and yield stress. Reactive extrusion processing has allowed the in-situ compatibilization of isotactic polypropylene and metallocene-catalyzed ethylene-octene copolymers (EOCs). This process involves combining both the comonomer and vector fluid approaches to grafting polyolefins. Styrene monomer and a multifunctional acrylate monomer undergo peroxide-induced copolymerization and grafting in the presence of both PP and EOC. This results in a phase separated alloy with an impact strength over 13 times that of pure polypropylene and double that of the physical blend. There is also a significant improvement in stress-strain performance when comparing the alloys to physical blend counterparts. Many researchers have categorized the necessary components to toughening polypropylene as pertaining to the amorphous phase. The alloys described in this dissertation meet the criteria put forth by these researchers, namely low density, crystallinity, and modulus of the elastomer phase, sub-micron particle diameter, close inter-particle distance, and a high degree of entanglements of both the PP matrix phase and EOC minor phase. But many people neglect to study the crystalline state of impact modified PP in conjunction with the amorphous phase. This work shows that the typical 10-100 mum diameter spherulitic structures found in pure PP are not present in the alloys. In fact, the spherulites are less than a micron in diameter, are uniformly distributed throughout the sample, and crystallize at much higher temperatures. SEM images, when coupled with DSC and XRD, reveal the presence of a high number of small lamellar crystals composed of a unique highly dense cross-hatched structure. Thus, impact strength and stiffness can be simultaneously improved by controlling the size and cross-hatch density of the lamellar crystals and applying phase transformation toughening concepts.
Crystallization of isotactic polypropylene in different shear regimes
NASA Astrophysics Data System (ADS)
Spina, Roberto; Spekowius, Marcel; Hopmann, Christian
2017-10-01
The investigation of the shear-induced crystallization of isotactic polypropylene in isothermal conditions in different shear regimes is the aim of the present research. A multiscale framework is developed and implemented to compute the nucleation and growth of spherulites, based on material parameters needed to connect crystallization kinetics to the molecular material properties. The framework consists of a macro-model based on a Finite Element Method linked to a micro-model based on Cellular Automata. The main results are the evolution of the crystallization degree and spherulite space filling as a function of imposed temperature ash shear rate.
Radiation resistant polypropylene blended with mobilizer,. antioxidants and nucleating agent
NASA Astrophysics Data System (ADS)
Shamshad, A.; Basfar, A. A.
2000-03-01
Post-irradiation storage of medical disposables prepared from isotactic polypropylene renders them brittle due to degradation. To avoid this, isotactic polypropylene [(is)PP] was blended with a mobilizer, dioctyl pthallate (DOP), three antioxidants (hindered amines and a secondary antioxidant) and benzoic acid to obtain radiation-resistant, thermally-stable and transparent material. Different formulations prepared were subjected to gamma radiation to doses of 25 and 50 kGy. Tests of breakage on bending after ageing in an oven at 70°C up to 12 months have shown that the addition of DOP and the antioxidants imparts improved radiation and thermal stability as compared to (is)PP alone or its blend with DOP. All the formulations irradiated or otherwise demonstrated excellent colour stability even after accelerated ageing at 70°C for prolonged periods.
Naffakh, Mohammed; Marco, Carlos; Ellis, Gary
2011-09-22
The dynamic crystallization and melting behavior of isotactic polypropylene-tungsten disulfide (iPP/IF-WS(2)) nanocomposites incorporating a β-nucleating agent is investigated by X-ray diffraction and differential scanning calorimetry. A conventional melt-processing strategy is employed to generate new materials that exhibit variable α and β polymorphism under the appropriate kinetic conditions. The results show that when the dual additive system is employed the nucleation ability on isotactic polypropylene not only depends on the nucleation efficiency (NE) and relative content of the individual α and β-nucleating agents, but also on the cooling rates employed. The nucleating behavior of the additives is explained by competitive nucleation, and the correlation between crystallization and melting temperatures and relative content of α and β-crystals of iPP in the nanocomposites is discussed.
Effect of microstructure on the thermo-oxidation of solid isotactic polypropylene-based polyolefins
Hoyos, Mario; Tiemblo, Pilar; Gómez-Elvira, José Manuel
2008-01-01
In the present work we aim to clarify the role of the microstructure and the crystalline distribution from the thermo-oxidation of solid isotactic PP (iPP) and ethylene-propylene (EP) copolymers. The effects of the content and quality of the isotacticity interruptions, together with the associated average isotactic length, on the induction time (ti) as well as on the activation energy (Eact) of the thermo-oxidation are analysed. Both parameters have been found to change markedly at an average isotactic length (n1) of 30 propylene units. While ti reaches a minimum when n1 is approximately 30 units, Eact increases quasi-exponentially as the number of units decreases from 30. This variation can be explained in terms of changes induced in the crystalline interphase, i.e. local molecular dynamics, which are closely linked to the initiation of the thermo-oxidation of isotactic PP-based polyolefins. PMID:27877971
Low gravity synthesis of polymers with controlled molecular configuration
NASA Technical Reports Server (NTRS)
Heimbuch, A. H.; Parker, J. A.; Schindler, A.; Olf, H. G.
1975-01-01
Heterogeneous chemical systems have been studied for the synthesis of isotactic polypropylene in order to establish baseline parameters for the reaction process and to develop sensitive and accurate methods of analysis. These parameters and analytical methods may be used to make a comparison between the polypropylene obtained at one g with that of zero g (gravity). Baseline reaction parameters have been established for the slurry (liquid monomer in heptane/solid catalyst) polymerization of propylene to yield high purity, 98% isotactic polypropylene. Kinetic data for the slurry reaction showed that a sufficient quantity of polymer for complete characterization can be produced in a reaction time of 5 min; this time is compatible with that available on a sounding rocket for a zero-g simulation experiment. The preformed (activated) catalyst was found to be more reproducible in its activity than the in situ formed catalyst.
Morphology Evolution of Polypropylene in Immiscible Polymer Blends for Fabrication of Nanofibers
USDA-ARS?s Scientific Manuscript database
Immiscible blends of cellulose acetate butyrate (CAB) and isotactic polypropylenes (iPPs) with different melting index were extruded through a two-strand rod die. The extrudates were hot-drawn at the die exit at different draw ratios by controlling the drawing speed. The morphologies of iPP fibers e...
Maleated polypropylene film and wood fiber handsheet laminates
Sangyeob Lee; Todd F. Shupe; Leslie H. Groom; Chung Y. Hse
2008-01-01
The grafting effect of maleic anhydride (MA) as an interfacial bonding agent and its influence on the tensile strength properties of thermomechanical pulp handsheet-isotactic polypropylene (iPP) film laminates was studied. For the MA treated with benzoyl peroxide (BPO) as an initiator, tensile strength properties increased 76% with PP film over untreated laminates. The...
Sangyeob Lee; Todd F. Shupe; Leslie H. Groom; Chung Y. Hse
2007-01-01
Chemical coupling on the thermomechanical pulp (TMP) fiber improved tensile strength of the TMP fiber handsheet and isotactic polypropylene film laminates (TPL). For the maleic anhydride W) with benzoyl peroxide (BPO)a an initiator, tensile strength increaded 52: with the TMP fiber treatment over untreated laminates. The optimum strength properties were obtained with...
ELECTRON SPIN RESONANCE STUDIES ON PEROXIDE RADICALS IN IRRADIATED POLYPROPYLENE (in German)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, H.; Hellwege, K.-H.; Neudoerfl, P.
1963-06-01
Peroxide radicals are formed by oxidation of carbon radicals in irradiated isotactic polypropylene. An interpretation of their ESR spectra is given. The recombination of the peroxide radicals follows a chain reaction mechanism, which is derived from the reversibility of formation of peroxide radicals, the time dependence of their concentration, and from the oxygen consumption of samples containing peroxide radicals. The reactions are discussed in view of the radiation induced oxidative degradation of polypropylene. (auth)
2015-02-01
as the UDRI Principal Investigator with assistance provided by Dr. Geoffrey Frank. Financial support by Dr. Les Lee at the Air Force Office of... polypropylene composites with some success however require sophisticated manufacturing techniques. Nickel powders have been used similarly to the...of Composites of Isotactic Polypropylene Reinforced with Electrically Conductive Fibers," Polymer Composites, vol. 18, no. 6, 1997. [35] J. Leng
Synthetic strategy for preparing chiral double-semicrystalline polyether block copolymers
McGrath, Alaina J.; Shi, Weichao; Rodriguez, Christina G.; ...
2014-12-11
Here, we report an effective strategy for the synthesis of semi-crystalline block copolyethers with well-defined architecture and stereochemistry. As an exemplary system, triblock copolymers containing either atactic (racemic) or isotactic ( R or S) poly(propylene oxide) end blocks with a central poly(ethylene oxide) mid-block were prepared by anionic ring-opening procedures. Stereochemical control was achieved by an initial hydrolytic kinetic resolution of racemic terminal epoxides followed by anionic ring-opening polymerization of the enantiopure monomer feedstock. The resultant triblock copolymers were highly isotactic (meso triads [ mm]% ~ 90%) with optical microscopy, differential scanning calorimetry, wide angle x-ray scattering and small anglemore » x-ray scattering being used to probe the impact of the isotacticity on the resultant polymer and hydrogel properties.« less
Morphological, rheological and mechanical characterization of polypropylene nanocomposite blends.
Rosales, C; Contreras, V; Matos, M; Perera, R; Villarreal, N; García-López, D; Pastor, J M
2008-04-01
In the present work, the effectiveness of styrene/ethylene-butylene/styrene rubbers grafted with maleic anhydride (MA) and a metallocene polyethylene (mPE) as toughening materials in binary and ternary blends with polypropylene and its nanocomposite as continuous phases was evaluated in terms of transmission electron microscopy (TEM), scanning electron microscopy (SEM), oscillatory shear flow and dynamic mechanical thermal analysis (DMA). The flexural modulus and heat distortion temperature values were determined as well. A metallocene polyethylene and a polyamide-6 were used as dispersed phases in these binary and ternary blends produced via melt blending in a corotating twin-screw extruder. Results showed that the compatibilized blends prepared without clay are tougher than those prepared with the nanocomposite of PP as the matrix phase and no significant changes in shear viscosity, melt elasticity, flexural or storage moduli and heat distortion temperature values were observed between them. However, the binary blend with a nanocomposite of PP as matrix and metallocene polyethylene phase exhibited better toughness, lower shear viscosity, flexural modulus, and heat distortion temperature values than that prepared with polyamide-6 as dispersed phase. These results are related to the degree of clay dispersion in the PP and to the type of morphology developed in the different blends.
Mixing of Isotactic and Syndiotactic Polypropylenes in the Melt
DOE Office of Scientific and Technical Information (OSTI.GOV)
CLANCY,THOMAS C.; PUTZ,MATHIAS; WEINHOLD,JEFFREY D.
2000-07-14
The miscibility of polypropylene (PP) melts in which the chains differ only in stereochemical composition has been investigated by two different procedures. One approach used detailed local information from a Monte Carlo simulation of a single chain, and the other approach takes this information from a rotational isomeric state model devised decades ago, for another purpose. The first approach uses PRISM theory to deduce the intermolecular packing in the polymer blend, while the second approach uses a Monte Carlo simulation of a coarse-grained representation of independent chains, expressed on a high-coordination lattice. Both approaches find a positive energy change uponmore » mixing isotactic PP (iPP) and syndiotactic polypropylene (sPP) chains in the melt. This conclusion is qualitatively consistent with observations published recently by Muelhaupt and coworkers. The size of the energy chain on mixing is smaller in the MC/PRISM approach than in the RIS/MC simulation, with the smaller energy change being in better agreement with the experiment. The RIS/MC simulation finds no demixing for iPP and atactic polypropylene (aPP) in the melt, consistent with several experimental observations in the literature. The demixing of the iPP/sPP blend may arise from attractive interactions in the sPP melt that are disrupted when the sPP chains are diluted with aPP or iPP chains.« less
NASA Astrophysics Data System (ADS)
Zhu, Peng-wei; Phillips, Andrew; Tung, Jason; Edward, Graham
2005-05-01
The orientation distribution of sheared isotactic polypropylene (iPP) containing different amount of sodium benzoate (SB) has been investigated through the gradient of shear flow field using microbeam of synchrotron wide-angle x-ray techniques. The degree of the overall orientation of α-phase crystal is found to increase with increasing concentration of SB. Compared with the sheared iPP in the absence of SB, the orientation of α-phase crystal is found to distribute over a broader range of shear flow field in the presence of SB. The overall orientation of α-phase crystal is explained in terms of a parent-daughter model or lamella-branched shish-kebab structure. As the concentration of SB increases, the contribution from the c-axis orientation of parent lamellae decreases in the flow direction. The contribution from the a*-axis orientation of daughter lamellae is developed to be dominant in the flow direction when the concentration of SB exceeds a critical value.
Barczewski, Mateusz; Matykiewicz, Danuta; Andrzejewski, Jacek; Skórczewska, Katarzyna
2016-05-01
The aim of this study was to produce isotactic polypropylene based composites filled with waste thermosetting bulk moulded composite (BMC). The influence of BMC waste addition (5, 10, 20 wt%) on composites structure and properties was investigated. Moreover, additional studies of chemical treatment of the filler were prepared. Modification of BMC waste by calcium stearate (CaSt) powder allows to assess the possibility of the production of composites with better dispersion of the filler and more uniform properties. The mechanical, processing, and thermal properties, as well as structural investigations were examined by means of static tensile test, Dynstat impact strength test, differential scanning calorimetry (DSC), wide angle X-ray scattering (WAXS), melt flow index (MFI) and scanning electron microscopy (SEM). Developed composites with different amounts of non-reactive filler exhibited satisfactory thermal and mechanical properties. Moreover, application of the low cost modifier (CaSt) allows to obtain composites with better dispersion of the filler and improved processability.
Application of waste bulk moulded composite (BMC) as a filler for isotactic polypropylene composites
Barczewski, Mateusz; Matykiewicz, Danuta; Andrzejewski, Jacek; Skórczewska, Katarzyna
2016-01-01
The aim of this study was to produce isotactic polypropylene based composites filled with waste thermosetting bulk moulded composite (BMC). The influence of BMC waste addition (5, 10, 20 wt%) on composites structure and properties was investigated. Moreover, additional studies of chemical treatment of the filler were prepared. Modification of BMC waste by calcium stearate (CaSt) powder allows to assess the possibility of the production of composites with better dispersion of the filler and more uniform properties. The mechanical, processing, and thermal properties, as well as structural investigations were examined by means of static tensile test, Dynstat impact strength test, differential scanning calorimetry (DSC), wide angle X-ray scattering (WAXS), melt flow index (MFI) and scanning electron microscopy (SEM). Developed composites with different amounts of non-reactive filler exhibited satisfactory thermal and mechanical properties. Moreover, application of the low cost modifier (CaSt) allows to obtain composites with better dispersion of the filler and improved processability. PMID:27222742
Zhang, Yuanming; Sun, Tingting; Jiang, Wei; Han, Guangting
2018-05-01
In this paper, the crystalline modification of a rare earth nucleating agent (WBG) for isotactic polypropylene (PP) based on its supramolecular self-assembly was investigated by differential scanning calorimetry, wide-angle X-ray diffraction and polarized optical microscopy. In addition, the relationship between the self-assembly structure of the nucleating agent and the crystalline structure, as well as the possible reason for the self-assembly behaviour, was further studied. The structure evolution of WBG showed that the self-assembly structure changed from a needle-like structure to a dendritic structure with increase in the content of WBG. When the content of WBG exceeded a critical value (0.4 wt%), it self-assembled into a strip structure. This revealed that the structure evolution of WBG contributed to the K β and the crystallization morphology of PP with different content of WBG. In addition, further studies implied that the behaviour of self-assembly was a liquid-solid transformation of WBG, followed by a liquid-liquid phase separation of molten isotactic PP and WBG. The formation of the self-assembly structure was based on the free molecules by hydrogen bond dissociation while being heated, followed by aggregation into another structure by hydrogen bond association while being cooled. Furthermore, self-assembly behaviour depends largely on the interaction between WBG themselves.
Study on structure and hydrophobicity of PP/EVA co-blending membrane: Quenching rate
NASA Astrophysics Data System (ADS)
Tang, Na; Li, Zhao; Hua, Xinxin
2017-03-01
Isotactic polypropylene (iPP)/ethylene vinyl acetate (EVA) co-blending hydrophobic microporous membranes for vacuum membrane distillation (VMD) were prepared via thermally induced phase separation (TIPS). In the process of preparation, quenching rate has a great influence on the membrane morphology.
Chemical cross-linking of polypropylenes towards new shape memory polymers.
Raidt, Thomas; Hoeher, Robin; Katzenberg, Frank; Tiller, Joerg C
2015-04-01
In this work, syndiotactic polypropylene (sPP) as well as isotactic polypropylene (iPP) are cross-linked to gain a shape memory effect. Both prepared PP networks exhibit maximum strains of 700%, stored strains of up to 680%, and recoveries of nearly 100%. While x-iPP is stable for many cycles, x-sPP ruptures after the first shape-memory cycle. It is shown by wide-angle X-ray scattering (WAXS) experiments that cross-linked iPP exhibits homoepitaxy in the temporary, stretched shape but in contrast to previous reports it contains a higher amount of daughter than mother crystals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Extensional Flow-Induced Dynamic Phase Transitions in Isotactic Polypropylene.
Ju, Jianzhu; Wang, Zhen; Su, Fengmei; Ji, Youxin; Yang, Haoran; Chang, Jiarui; Ali, Sarmad; Li, Xiangyang; Li, Liangbin
2016-09-01
With a combination of fast extension rheometer and in situ synchrotron radiation ultra-fast small- and wide-angle X-ray scattering, flow-induced crystallization (FIC) of isotactic polypropylene (iPP) is studied at temperatures below and above the melting point of α crystals (Tmα). A flow phase diagram of iPP is constructed in strain rate-temperature space, composing of melt, non-crystalline shish, α and α&β coexistence regions, based on which the kinetic and dynamic competitions among these four phases are discussed. Above Tmα , imposing strong flow reverses thermodynamic stabilities of the disordered melt and the ordered phases, leading to the occurrence of FIC of β and α crystals as a dynamic phase transition. Either increasing temperature or stain rate favors the competiveness of the metastable β over the stable α crystals, which is attributed to kinetic rate rather than thermodynamic stability. The violent competitions among four phases near the boundary of crystal-melt may frustrate crystallization and result in the non-crystalline shish winning out. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Vorontsov, N. V.; Popov, A. A.; Margolin, A. L.
2017-12-01
Changes in the supramolecular structure of polymer composites based on isotactic polypropylene (PP) and polyamide 6/66 (PA) are studied depending on the PP : PA ratio. Temperatures and enthalpies of melting and crystallization of both PP and PA and their composites are determined depending on the composition of the mixtures. It was shown that the initial melting point of a composite does not change with increasing PA content in the blends. The crystallization temperature of the mixtures is shown to increase with the addition of PA and becomes much higher than the crystallization temperatures of both PP and PA. The observed effect can be due to a strong interaction between the PP and PA molecules, thus decreasing the molecular mobility and increasing the crystallization temperature. The crystallization and melting of PP-PA mixtures are found to proceed at the close temperatures, although the crystallization and melting temperatures of pure PP and pure PA differ widely. The melting and crystallization enthalpies decrease with increasing PA concentration in the mixtures, which indicates a decrease in the degree of crystallinity of the composite.
NASA Astrophysics Data System (ADS)
Zha, Jun-Wei; Yan, Hong-Da; Li, Wei-Kang; Dang, Zhi-Min
2016-11-01
Polypropylene (PP) has become one promising material to potentially replace the cross-link polyethylene used for high voltage direct current cables. Besides the isotactic polypropylene, the block polypropylene (b-PP) and random polypropylene (r-PP) can be synthesized through the copolymerization of ethylene and propylene molecules. In this letter, the effect of morphology and crystalline phases on the insulating electrical properties of PP was investigated. It was found that the introduction of polyethylene monomer resulted in the formation of β and γ phases in b-PP and r-PP. The results from the characteristic trap energy levels indicated that the β and γ phases could induce deep electron traps which enable to capture the carriers. And the space charge accumulation was obviously suppressed. Besides, the decreased electrical conductivity was observed in b-PP and r-PP. It is attributed to the existence of deep traps which can effectively reduce the carrier mobility and density in materials.
Macko, Tibor; Pasch, Harald; Brüll, Robert
2006-05-19
The adsorption of polyethylene and polypropylene on zeolites depends on the nature of zeolite, the solvent as well as the molar mass of the polymer sample. For example, linear polyethylene is strongly retained on zeolite SH-300 from decalin, while isotactic, syndiotactic or atactic polypropylene is fully eluted in this system. On the other hand, polypropylene is retained on zeolite CBV-780 from diphenylether, while linear polyethylene is eluted. These differences in the elution behaviour have been utilised for selective removal of either linear polyethylene or polypropylene from blends of both polymers. The desorption of the retained polymer is difficult, or at times impossible. However, the selected adsorption systems have complimentary character, i.e. either one or second component is eluted or fully retained. Thus these sorbent/solvent systems, identified herein, are the first isocratic chromatographic systems, which enable selectively to remove polyethylene or polypropylene from their mixture. Moreover, decalin/SH-300 enables the removal of both linear and branched polyethylene from mixtures with random ethylene/propylene copolymers (polyethylene fully retained, ethylene/propylene copolymers eluted).
ERIC Educational Resources Information Center
Horikoshi, Ryo; Kobayashi, Yoji; Kageyama, Hiroshi
2013-01-01
Catalysis with transition-metal complexes is a part of the inorganic chemistry curriculum and a challenging topic for upper-level undergraduate and graduate students. A hands-on teaching aid has been developed for use during conventional lectures to help students understand these catalytic reactions. A unique method of illustrating the…
Flow-induced crystallization in isotactic polypropylene
NASA Astrophysics Data System (ADS)
Hamad, Fawzi Ghassan
Brief intervals of strong flow stretch chains in a semicrystalline polymer melt, which results in an increase in the nuclei number density and a transformation of the crystal structure. This flow-induced crystallization (FIC) phenomenon is explored in this study using highly isotactic polypropylene (iPP) samples. Using one synthesized and five commercial linear isotactic polypropylene samples, we investigate the FIC behavior by imposing shear onto these samples in a rotational rheometer. Equipped with a good temperature control and flexible shear protocol, we apply different temperature and flow conditions. The magnitude of the FIC effect varies with basic processing parameters (shear rate, specific work, crystallization temperature, and shearing temperature) and material properties (totalistic, molecular weight distribution, and particle concentration in the polymer). The scope of this study is to systematically investigate the influences of these parameters on FIC. The FIC effects that are investigated in this dissertation are: crystallization kinetics, persistence time of flow-induced nuclei, and crystal morphology. The crystallization time was measured in the rheometer by monitoring the onset of crystallization after quenching samples sheared above Tm. These samples were subsequently used to study their flow-induced nuclei persistence time and crystal morphology. The lifetime of flow-induced nuclei was determined by measuring the time required to return from FIC back to quiescent crystallization using a differential scanning calorimeter. The crystal morphology was imaged using polarized optical microscopy and atomic force microscopy. We investigated the influence of specific work on the three FIC characteristics, and found three regimes that are separated by the critical work ( Wc) and the saturation work (Wsat) thresholds. Below the critical work threshold, the morphology is composed of mostly spherulite crystals, which keep a constant volume, and a small fraction of rice grain (anisotropic) crystals. The number of rice grain crystals increases with specific work, speeding up the crystallization time of the semicrystalline polymer. At critical work, spherulite formation stops, and the morphology consists only of rice grain structures. This morphology allows the sample to crystallize at higher temperatures when cooling at 5 C/min, with the sheared sample crystallizing at 129C compared to the unsheared sample at 113C. . Shearing isotactic polypropylene at higher temperatures reduced the FIC effect after subsequent quenching. Generally speaking, shearing at higher temperatures results in slower crystallization, but surprisingly, the influence of temperature is rather weak. Flow-induced crystallization persists even when shear is applied well above the equilibrium melting temperature (187C), finally weakening above the Hoffman-Weeks temperature (210C). This is likely due to the long lifetime of flow- induced precursors (crystallize to form rice grains), which remain stable at temperatures below 210C and only start to disappear slowly in prolonged annealing at temperatures above 210C (diminishing the FIC effect). Tacticity was found to govern the maximum nuclei number density in sheared samples; samples with lower isotactic content show a stronger FIC effect. Similarly, it was found that the concentration of particulates (mainly catalyst residue) are crucially important to FIC, samples with lower amounts of particles lowering the FIC nuclei number density. Data shows that the rate at which the crystallization time changes correlates with the prominence of the high molecular weight tail. A sample with a higher molecular weight tail in its distribution exhibits a faster change in crystallization time as a function of specific work. Similarly, increasing the molecular weight of the added component in a blend induces a larger change in the FIC behavior. (Abstract shortened by ProQuest.).
Melting processes of oligomeric α and β isotactic polypropylene crystals at ultrafast heating rates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Xiaojing; He, Xuehao, E-mail: xhhe@tju.edu.cn, E-mail: scjiang@tju.edu.cn; Jiang, Shichun, E-mail: xhhe@tju.edu.cn, E-mail: scjiang@tju.edu.cn
The melting behaviors of α (stable) and β (metastable) isotactic polypropylene (iPP) crystals at ultrafast heating rates are simulated with atomistic molecular dynamics method. Quantitative information about the melting processes of α- and β-iPP crystals at atomistic level is achieved. The result shows that the melting process starts from the interfaces of lamellar crystal through random dislocation of iPP chains along the perpendicular direction of lamellar crystal structure. In the melting process, the lamellar crystal gradually expands but the corresponding thickness decreases. The analysis shows that the system expansion lags behind the crystallinity decreasing and the lagging extents for α-more » and β-iPP are significantly different. The apparent melting points of α- and β-iPP crystals rise with the increase of the heating rate and lamellar crystal thickness. The apparent melting point of α-iPP crystal is always higher than that of β-iPP at differently heating rates. Applying the Gibbs-Thomson rule and the scaling property of the melting kinetics, the equilibrium melting points of perfect α- and β-iPP crystals are finally predicted and it shows a good agreement with experimental result.« less
NASA Astrophysics Data System (ADS)
Yu, Yishan
The influence of various fillers, nucleating agents and ethylene propylene diene terpolymer (EPDM) additive on crystalline modification (alpha-, beta- and smectic forms) and crystalline orientation of polypropylene in die extrudates, melt spun filaments, thick rods, blow molded bottles and injection molded parts of isotactic polypropylene (PP), its blends/compounds and dynamically vulcanized polypropylene thermoplastic elastomers (TPEs) were experimentally studied under a range of cooling and processing conditions. The phenomena of crystallization, polymorphism and orientation in processing of both thin and thick samples (filaments, rods, bottles and injection molded parts) were simulated through transport laws incorporating polymer crystallization kinetics. Continuous cooling transformation (CCT) curves for the various material systems investigated were developed under quiescent and uniaxial stress conditions. We applied experimental data on polymorphism of thin sections to predict crystalline structure variation in thick parts. The predictions were consistent with experiments. For filaments, the polypropylene crystalline orientation-spinline stress relationship is generally similar for the neat PP, blends/compounds and TPEs. However, the blends and TPEs have much lower birefringence apparently due to a lack of orientation in the rubber phase. It was shown that the polypropylene contribution to the birefringence for the neat PP and its blends is the same at the same spinline stress. For bottles, the inflation pressures used have little effect on orientation of either polypropylene crystals or disc-shaped talc filler. The talc discs are highly oriented parallel to the bottle surface. For the bottles without talc, the orientation of polypropylene crystallographic axes are low. The polypropylene crystallographic b-axes in the talc filled bottles are more highly oriented. For injection molded parts, it was found that a low orientation layer exists between the part surface and an intermediate highly oriented layer in the parts of neat PP and its blends/compounds. The thickness of this layer increases as the injection pressure decreases. This layer was not formed in the TPE parts. This would seem to be associated with the TPEs exhibiting a yield stress in shear flow and not exhibiting fountain flow in mold filling. For all parts studied, the orientation characteristics of polypropylene crystallographic axes in the highly oriented layer are similar from sample to sample. The strong orientation of the c-axis parallel to the machine direction and the b-axis perpendicular to the machine direction are observed in the highly oriented layer. The talc discs in both the highly oriented layer and the intermediate position are highly oriented parallel to the part face due to melt flow. At intermediate position in the talc-filled parts, the polypropylene crystallographic (040) planes prefer to align themselves parallel to the part surface but are not so well oriented when the talc is absent.
Structure and Thermodynamics of Polyolefin Melts
NASA Astrophysics Data System (ADS)
Weinhold, J. D.; Curro, J. G.; Habenschuss, A.; Londono, J. D.
1997-03-01
Subtle differences in the intermolecular packing of various polyolefins can create dissimilar permeability and mixing behavior. We have used a combination of the Polymer Reference Interaction Site Model (PRISM) and Monte Carlo simulation to study the structural and thermodynamic properties of realistic models for polyolefins. Results for polyisobutylene and syndiotactic polypropylene will be presented along with comparisons to wide-angle x-ray scattering experiments and properties determined from previous studies of polyethylene and isotactic polypropylene. Our technique uses a Monte Carlo simulation on an isolated molecule to determine the polymer's intramolecular structure. With this information, PRISM theory can predict the intermolecular packing for any liquid density and/or mixture composition in a computationally efficient manner. This approach will then be used to explore the mixing behavior of these polyolefins.
Nano-Charged Polypropylene Application: Realistic Perspectives for Enhancing Durability
Naddeo, Carlo; Vertuccio, Luigi; Barra, Giuseppina; Guadagno, Liberata
2017-01-01
Isotactic polypropylene/multi-walled carbon nanotube (iPP/MWCNTs) films have been exposed to accelerated weathering in a UV device for increasing times. The effect of UV irradiation on the structural and chemical changes has been investigated. The resistance to accelerated photooxidation of (iPP/MWCNTs) films has been compared to the photooxidation behaviour of unfilled polypropylene films with the same structural organization. The chemical and structural modifications resulting from photooxidation have been followed using infrared spectroscopy, calorimetric and diffractometric analysis. MWCNTs embedded in the polymeric matrix are able to strongly contrast the degradation mechanisms and the structural and morphological rearrangements caused by the UV treatment on the unfilled polymer. MWCNTs determine an induction period (IP) before the increase of the carbonyl and hydroxyl groups. The extent of the IP is strictly correlated to the amount of MWCNTs. The low electrical percolation threshold (EPT) and the electrical conductivity of the nanocomposites, together with their excellent thermal and photooxidative stability, make them promising candidates to fulfill many industrial requirements. PMID:28805728
Shear-induced conformational ordering, relaxation, and crystallization of isotactic polypropylene.
An, Haining; Li, Xiangyang; Geng, Yong; Wang, Yunlong; Wang, Xiao; Li, Liangbin; Li, Zhongming; Yang, Chuanlu
2008-10-02
The shear-induced coil-helix transition of isotactic polypropylene (iPP) has been studied with time-resolved Fourier transform infrared spectroscopy at various temperatures. The effects of temperature, shear rate, and strain on the coil-helix transition were studied systematically. The induced conformational order increases with the shear rate and strain. A threshold of shear strain is required to induce conformational ordering. High temperature reduces the effect of shear on the conformational order, though a simple correlation was not found. Following the shear-induced conformational ordering, relaxation of helices occurs, which follows the first-order exponential decay at temperatures well above the normal melting point of iPP. The relaxation time versus temperature is fitted with an Arrhenius law, which generates an activation energy of 135 kJ/mol for the helix-coil transition of iPP. At temperatures around the normal melting point, two exponential decays are needed to fit well on the relaxation kinetic of helices. This suggests that two different states of helices are induced by shear: (i) isolated single helices far away from each other without interactions, which have a fast relaxation kinetic; (ii) aggregations of helices or helical bundles with strong interactions among each other, which have a much slower relaxation process. The helical bundles are assumed to be the precursors of nuclei for crystallization. The different helix concentrations and distributions are the origin of the three different processes of crystallization after shear. The correlation between the shear-induced conformational order and crystallization is discussed.
NASA Astrophysics Data System (ADS)
Moncada, E.; Quijada, R.; Retuert, J.
2007-08-01
Hybrid layered aluminosilicate nanoparticles (HLNP) containing octadecylamine (ODA) as the organic part, and silica nanoparticles with spherical morphology containing ODA (HSNP) or without ODA (SNP) were prepared by the sol-gel method and used for the formation of nanocomposites with polypropylene. The polypropylene matrices, of different molecular weight and polydispersity, were prepared using polymers obtained via Ziegler-Natta or metallocene catalysts. A strong influence of the morphology and the presence of ODA on the surface of the nanoparticles was found on the formation and characteristics of the nanocomposites. The mechanical properties and thermal stability of these materials were determined and compared with those of nanocomposites prepared with 2:1 phylosilicate clays such as montmorillonite and hectorite in similar polymer matrices. X-ray diffraction, transmission electron microscopy, and the study of mechanical properties showed that the use of HLNP allows nanocomposites with considerably improved mechanical properties to be obtained, compared with nanocomposites prepared with exfoliated clays. In the case of nanocomposites prepared with spherical particles functionalized with ODA (HSNP), materials with high specific strength combined with high elongation before rupture were obtained. The thermal stabilization of polypropylene matrices containing the synthesized nanoparticles (HLNP, HSNP or SNP) occurs about 50 °C higher than that attained with clays.
Makio, Haruyuki; Prasad, Aitha Vishwa; Terao, Hiroshi; Saito, Junji; Fujita, Terunori
2013-07-07
Bis(phenoxy-imine) Zr and Hf complexes were activated with (i)Bu3Al or (i)Bu2AlH in conjunction with Ph3CB(C6F5)4 and tested as catalysts for propylene polymerization with emphasis on the enantioselectivity of the isospecific species and the single site polymerization characteristics. The isoselective species was identified as the in situ generated bis(phenoxy-amine) complex whose isoselectivity was sensitive to subtle changes in ligand structure. By employing specific substituents at certain key positions the isotacticity reached an extremely high level comparable to high-end commercial isotactic polypropylenes (Tm > 160 °C). Single site polymerization characteristics depended upon the efficiency and selectivity of the in situ imine reduction which is sensitive to the substituent on the imine nitrogen and the reaction conditions. By using (i)Bu2AlH as a reducing agent, quantitative imine reduction can be achieved with a stoichiometric amount of the reducing agent. This lower alkylaluminum loading is beneficial for the catalyst and significantly enhances the polymerization activity and the molecular weight of the resultant polymer.
Luijsterburg, B J; Jobse, P S; Spoelstra, A B; Goossens, J G P
2016-08-01
Post-consumer plastic waste obtained via mechanical recycling is usually applied in thick-walled products, because of the low mechanical strength due to the presence of contaminants. In fact, sorted post-consumer isotactic poly(propylene) (i-PP) can be considered as a blend of 95% i-PP and 5% poly(ethylene), with traces of poly(ethylene terephthalate) (PET). By applying a treatment such as solid-state drawing (SSD) after melt extrusion, the polymer chains can be oriented in one direction, thereby improving the stiffness and tensile strength. In this research, molecular processes such as crystal break-up and chain orientation of these complex blends were monitored as a function of draw ratio. The melt filter mesh size - used to exclude rigid PET particles - and the addition of carbon black (CB) - often added for coloration in the recycling industry - were varied to investigate their influence on the SSD process. This research shows that despite the blend complexity, the molecular processes during SSD compare to virgin i-PP and that similar draw ratios can be obtained (λmax=20), albeit at reduced stiffness and strength as a result of the foreign polymers present in post-consumer i-PP. It is observed that the process stability improves with decreasing mesh size and that higher draw ratios can be obtained. The addition of carbon black, which resides in the dispersed PE phase, also stabilizes the SSD process. Compared to isotropic post-consumer i-PP, the stiffness can be improved by a factor 10 to over 11GPa, while the tensile strength can be improved by a factor 15-385MPa, which is approx. 70% of the maximum tensile strength achieved for virgin i-PP. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chemiluminescence and reactivity of the composites based on blends of polypropylene and polyamide
NASA Astrophysics Data System (ADS)
Vorontsov, N. V.; Popov, A. A.; Margolin, A. L.
2017-12-01
The effect of the composition of blends based on isotactic polypropylene (PP) and aliphatic polyamide 6/66-4 (PA) on the rate of photo-oxidation of their mixtures in air at room temperature has been studied. The decay of photoinduced chemiluminescence was studied to determine the kinetics of peroxyl radical termination in composites and the rate constants of this process depending on the composition of the mixtures. In the presence of PA, the rate of photo-oxidation of mixtures is much higher than the rates of photo-oxidation of separately taken components, PP and PA. Thus, the kinetics of photo-oxidation of mixtures differs from the simple sum of photo-oxidation kinetics of PP and PA, which should be expected in the absence of chemical and physical interaction of the components of the mixture. A decrease in the rate constants due to PA additives indicates a decrease in the mobility of molecules in the composites and explains the observed increase in photo-oxidation of mixtures.
NASA Astrophysics Data System (ADS)
Yang, Chenguang; Xing, Zhe; Zhang, Mingxing; Zhao, Quan; Wang, Mouhua; Wu, Guozhong
2017-12-01
A blend of isotactic polypropylene (PP) with high-density polyethylene (HDPE) in different PP/HDPE ratios was irradiated by γ-ray to induce cross-linking and then foamed using supercritical carbon dioxide (scCO2) as a blowing agent. Radiation effect on the melting point and crystallinity were analyzed in detail. The average cell diameter and cell density were compared for PP/HDPE foams prepared under different conditions. The optimum absorbed dose for the scCO2 foaming of PP/HDPE in terms of foaming ability and cell structure was 20 kGy. Tensile measurements showed that the elongation at break and tensile strength at break of the crosslinked PP/HDPE foams were higher than the non-crosslinked ones. Of particular interest was the increase in the foaming temperature window from 4 ℃ for pristine PP to 8-12 ℃ for the radiation crosslinked PP/HDPE blends. This implies much easier handling of scCO2 foaming of crosslinked PP with the addition of HDPE.
Stereospecific olefin polymerization catalysts
Bercaw, John E.; Herzog, Timothy A.
1998-01-01
A metallocene catalyst system for the polymerization of .alpha.-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula ##STR1## wherein: R.sup.1, R.sup.2, and R.sup.3 are independently selected from the group consisting of hydrogen, C.sub.1 to C.sub.10 alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C.sub.1 to C.sub.10 alkyls as a substituent, C.sub.6 to C.sub.15 aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R.sup.8).sub.3 where R.sup.8 is selected from the group consisting of C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; R.sup.4 and R.sup.6 are substituents both having van der Waals radii larger than the van der Waals radii of groups R.sup.1 and R.sup.3 ; R.sup.5 is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E.sup.1, E.sup.2 are independently selected from the group consisting of Si(R.sup.9).sub.2, Si(R.sup.9).sub.2 --Si(R.sup.9).sub.2, Ge(R.sup.9).sub.2, Sn(R.sup.9).sub.2, C(R.sup.9).sub.2, C(R.sup.9).sub.2 --C(R.sup.9).sub.2, where R.sup.9 is C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; and the ligand may have C.sub.S or C.sub.1 -symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from .alpha.-olefin monomers.
Stereospecific olefin polymerization catalysts
Bercaw, J.E.; Herzog, T.A.
1998-01-13
A metallocene catalyst system is described for the polymerization of {alpha}-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula shown wherein: R{sup 1}, R{sup 2}, and R{sup 3} are independently selected from the group consisting of hydrogen, C{sub 1} to C{sub 10} alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C{sub 1} to C{sub 10} alkyls as a substituent, C{sub 6} to C{sub 15} aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R{sup 8}){sub 3} where R{sup 8} is selected from the group consisting of C{sub 1} to C{sub 10} alkyl, C{sub 6} to C{sub 15} aryl or C{sub 3} to C{sub 10} cycloalkyl; R{sup 4} and R{sup 6} are substituents both having van der Waals radii larger than the van der Waals radii of groups R{sup 1} and R{sup 3}; R{sup 5} is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E{sup 1}, E{sup 2} are independently selected from the group consisting of Si(R{sup 9}){sub 2}, Si(R{sup 9}){sub 2}--Si(R{sup 9}){sub 2}, Ge(R{sup 9}){sub 2}, Sn(R{sup 9}){sub 2}, C(R{sup 9}){sub 2}, C(R{sup 9}){sub 2}--C(R{sup 9}){sub 2}, where R{sup 9} is C{sub 1} to C{sub 10} alkyl, C{sub 6} to C{sub 15} aryl or C{sub 3} to C{sub 10} cycloalkyl; and the ligand may have C{sub S} or C{sub 1}-symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from {alpha}-olefin monomers.
Naffakh, Mohammed; Marco, Carlos; Ellis, Gary
2012-02-16
The isothermal crystallization and subsequent melting behavior of isotactic polypropylene (iPP) nucleated with different nucleating agents (NAs) are investigated. Tungsten disulfide (IF-WS(2)) and N,N'-dicyclohexyl-2,6-naphthalene (NJ) and dual-additive mixtures are introduced into an iPP matrix to generate new materials that exhibit variable α- and β-polymorphism. As shown in previous work, small amounts of IF-WS(2) or NJ have a nucleating effect during the crystallization of iPP. However, the isothermal crystallization and melting behavior of iPP nucleated by dual α(IF-WS(2))/β(NJ) additive systems are dependent on both the NA composition balance and the crystallization temperature. In particular, our results demonstrate that it is possible to obtain any α-phase to β-phase content ratio by controlling the composition of NAs under appropriate isothermal crystallization conditions. The nucleating behavior of the additives can be illustrated by competitive nucleation, and the correlation between crystallization and melting temperatures and relative α- and β-crystals content in iPP in the nanocomposites is discussed.
Díez-Pascual, Ana M; Naffakh, Mohammed
2013-10-09
Novel isotactic polypropylene (iPP)/glass fiber (GF) laminates reinforced with inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles as environmentally friendly fillers have been successfully fabricated by simple melt-blending and fiber impregnation in a hot-press without the addition of any compatibilizer. The influence of IF-WS2 concentration on the morphology, viscosity. and thermal and mechanical behavior of the hierarchical composites has been investigated. Results revealed an unprecedented 62 °C increase in the degradation temperature of iPP/GF upon addition of only 4.0 wt % IF-WS2. The coexistence of both micro- and nanoscale fillers resulted in synergistic effects on enhancing the stiffness, strength, crystallinity, thermal stability, glass transition (Tg) and heat distortion temperature (HDT) of the matrix. The approach used in this work is an efficient, versatile, scalable and economic strategy to improve the mechanical and thermal behavior of GF-reinforced thermoplastics with a view to extend their use in advanced technological applications. This new type of composite materials shows great potential to improve the efficiency and sustainability of many forms of transport.
Optical properties of polypropylene upon recycling.
De Santis, Felice; Pantani, Roberto
2013-01-01
In the last few years there has been an increasing interest in the possibility of recycling polymeric materials, using physical recycling. However, is it well known that polymers experience a depletion of all the properties upon recycling. These effects have been widely characterized in the literature for what concerns the mechanical or rheological properties. The changes of optical properties after recycling have been much less studied, even if, especially in food packaging, optical characteristics (above all the opacity) are of extreme importance, and thus it is quite significant to assess the effect of recycling on these properties. In this work, the influence of recycling steps on the opacity of films of a commercial grade of isotactic polypropylene (i-PP) was studied. The material was extruded several times to mimic the effect of recycling procedures. After extrusion, films were obtained by cooling samples of material at different cooling rates. The opacity of the obtained films was then measured and related to their crystallinity and morphology. It was found that opacity generally increases on increasing the amount of α phase and for the same amount of α phase on increasing the size of the spherulites.
NASA Astrophysics Data System (ADS)
Ban, Kyunha
We have investigated slippage effect on melt flow of various polyolefins and their compounds in modular intermeshing co-rotating twin screw extruder, which include high density polyethylene (HDPE), isotactic polypropylene (iPP), isotactic polybutene-1 (PB1), isotactic poly(4-methyl pentene-1) (P4MP1) and two different kinds of particle filled polypropylenes (PP/carbon black and PP/Silica). To induce slippage during the process, octadecanoic acid was introduced on the second port of the extruder. Length of fill, die pressure and screw characteristics in twin screw extruder were studied under varying processing parameters: volumetric flow rate, screw rotational speed, and die geometry. The effort to account for these variations on slippage effect was combined with considerations of the structures of polyolefins and polarities of fillers. One of five different polyolefins, CPO, has different backbone structure and the others have different pendant group. The order of pendant group size from small to big was found out to be HDPE > PP > PB1 > P4MP1. Two different kinds of inorganic particle fillers (carbon black and silica) were compounded to study the effect of polarity of inorganic particles on the slippage behavior. Carbon black represented non-polar filler and silica represented polar filler. In order to make objective and quantitative predictions in twin screw extrusion process, it was necessary to figure out slip velocity - shear stress relation since the boundary conditions on the barrel, screw and die surfaces are determined by slip velocities which are only can be predicted from applied shear stress fields. From the Mooney's method, we could find out slip velocity - shear stress relations using three different diameters of capillary dies having same L/D ratio. A numerical method (Flow Analysis Network method) was applied to simulate the effect of slippage on the flow in twin screw channel based on the slip velocity and shear stress relations obtained from capillary experiments. To confirm the simulation, length of fills for various process conditions were predicted by simulation and they were compared with experimental results. In addition, the screw characteristics and flow patterns for two different special mixing elements (SME, ZME) were obtained to investigate the mechanism and functions of these elements using the FAN method. The simulation of these special mixing elements were compared with conventional screw elements which having same helix angle, diameter and length.
Estimation of crystallinity in isotropic isotactic polypropylene with Raman spectroscopy.
Minogianni, Chrysa; Gatos, Konstantinos G; Galiotis, Costas
2005-09-01
The Raman spectrum of isotactic polypropylene (iPP) has been found to exhibit vibrational peaks in the region of 750 to 880 cm(-1) that are sensitive to the degree of crystallinity. These features are broadly assigned to various modes of methyl group rocking, rho(CH2), and there have been various attempts to assess crystallinity based on the integrated intensities of these bands. Various vibrational analyses performed in the past in combination with experimental studies have concluded that the presence of crystalline order with trans-gauche conformation gives rise to a peak at 809 cm(-1), which is assigned to a rho(CH2) mode coupled with the skeletal stretching mode. However, the presence of additional peaks at 830 cm(-1), 841 cm(-1), and 854 cm(-1), within the same envelope, have been the subject of controversy. In this work isotropic films of iPP derived from the same precursor of identical tacticity have been subjected to various degrees of annealing and the integrated intensities of the Raman bands were measured. The results showed that true 3d crystallinity in isotropic iPP can only be expressed by the 809 cm(-1) band whereas the band at 841 cm(-1) corresponds to an uncoupled rho(CH2) fundamental mode and thus is a measure of the amorphous content. The less intense satellite bands at 830 cm(-1) and 854 cm(-1) of solid iPP cannot be distinguished from the 841 cm(-1) band in the melt and are generally considered as intermediate phases possibly related to non-crystalline components with 3(1)-helical conformations. Independent differential scanning calorimetry (DSC) crystallinity measurements were in broad agreement with the Raman measurements based on the normalized intensity of the 809 cm(-1) Raman band. By comparing the Raman with the DSC data a new value for the theoretical heat of fusion for the 100% crystalline iPP has been proposed.
Miyoshi, Toshikazu; Mamun, Al; Hu, Wei
2010-01-14
The order-disorder phenomenon of local packing structures, space heterogeneity, and molecular dynamics and average lamellar thickness,
Optical Properties of Polypropylene upon Recycling
2013-01-01
In the last few years there has been an increasing interest in the possibility of recycling polymeric materials, using physical recycling. However, is it well known that polymers experience a depletion of all the properties upon recycling. These effects have been widely characterized in the literature for what concerns the mechanical or rheological properties. The changes of optical properties after recycling have been much less studied, even if, especially in food packaging, optical characteristics (above all the opacity) are of extreme importance, and thus it is quite significant to assess the effect of recycling on these properties. In this work, the influence of recycling steps on the opacity of films of a commercial grade of isotactic polypropylene (i-PP) was studied. The material was extruded several times to mimic the effect of recycling procedures. After extrusion, films were obtained by cooling samples of material at different cooling rates. The opacity of the obtained films was then measured and related to their crystallinity and morphology. It was found that opacity generally increases on increasing the amount of α phase and for the same amount of α phase on increasing the size of the spherulites. PMID:24288478
Influence of residual stress on the adhesion and surface morphology of PECVD-coated polypropylene
NASA Astrophysics Data System (ADS)
Jaritz, Montgomery; Hopmann, Christian; Behm, Henrik; Kirchheim, Dennis; Wilski, Stefan; Grochla, Dario; Banko, Lars; Ludwig, Alfred; Böke, Marc; Winter, Jörg; Bahre, Hendrik; Dahlmann, Rainer
2017-11-01
The properties of plasma-enhanced chemical vapour deposition (PECVD) coatings on polymer materials depend to some extent on the surface and material properties of the substrate. Here, isotactic polypropylene (PP) substrates are coated with silicon oxide (SiO x ) films. Plasmas for the deposition of SiO x are energetic and oxidative due to the high amount of oxygen in the gas mixture. Residual stress measurements using single Si cantilever stress sensors showed that these coatings contain high compressive stress. To investigate the influence of the plasma and the coatings, residual stress, silicon organic (SiOCH) coatings with different thicknesses between the PP and the SiO x coating are used as a means to protect the substrate from the oxidative SiO x coating process. Pull-off tests are performed to analyse differences in the adhesion of these coating systems. It could be shown that the adhesion of the PECVD coatings on PP depends on the coatings’ residual stress. In a PP/SiOCH/SiO x -multilayer system the residual stress can be significantly reduced by increasing the thickness of the SiOCH coating, resulting in enhanced adhesion.
A simple model for heterogeneous nucleation of isotactic polypropylene
NASA Astrophysics Data System (ADS)
Howard, Michael; Milner, Scott
2013-03-01
Flow-induced crystallization (FIC) is of interest because of its relevance to processes such as injection molding. It has been suggested that flow increases the homogeneous nucleation rate by reducing the melt state entropy. However, commercial polypropylene (iPP) exhibits quiescent nucleation rates that are much too high to be consistent with homogeneous nucleation in carefully purified samples. This suggests that heterogeneous nucleation is dominant for typical samples used in FIC experiments. We describe a simple model for heterogeneous nucleation of iPP, in terms of a cylindrical nucleus on a flat surface with the critical size and barrier set by the contact angle. Analysis of quiescent crystallization data with this model gives reasonable values for the contact angle. We have also employed atomistic simulations of iPP crystals to determine surface energies with vacuum and with Hamaker-matched substrates, and find values consistent with the contact angles inferred from heterogeneous nucleation experiments. In future work, these results combined with calculations from melt rheology of entropy reduction due to flow can be used to estimate the heterogeneous nucleation barrier reduction due to flow, and hence the increase in nucleation rate due to FIC for commecial iPP.
DYNAMIC MECHANICAL STUDIES OF IRRADIATED POLYPROPYLENE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sauer, J.A.; Merrill, L.J.; Woodward, A.E.
1962-04-01
The internal friction and the dynamic modulus of isotactic polypropylene samples subject to varying degrees of pile irradiation were studied at low audio frequencies and over the temperature range from 100 to over 400 deg K. The radiation dosages used varied from 5.4 x lO/sup 17/ to 14 x lO/sup 18/ nvt. For irradiation doses up to about 3 x lO/sup 18/ nvt, one observed change is a decrease in the temperature at which the final upswing in damping and drop in modulus occurs, presumably as a result of defects produced in the crystallites by the irradiation. As the irradiationmore » dose increases above 3 x lO/sup 18/ nvt, all evidence of crystallinity is lost, and the internal friction peak which occurs in the neighborhood of 300 deg K and which is associated with the glass transition of the amorphous regions moves to higher temperatures as a result of the increasing chain-stiffening effect due to crosslinking. The secondary loss peak at 250 deg K attributed to the motion of a small number of segraents in the amorphous regions is found to increase in magnitude with increasing dose. The results of density determinations raade before and after irradiation and also after subsequent exposure of the irradiated samples to melting temperatures and of solvent extraction studies of the irradiated samples confirm the simultaneous occurrence of crosslinking and of crystalline degradation upon pile irradiation of polypropylene samples. (auth)« less
Theoretical and experimental prediction of the redox potentials of metallocene compounds
NASA Astrophysics Data System (ADS)
Li, Ya-Ping; Liu, Hai-Bo; Liu, Tao; Yu, Zhang-Yu
2017-11-01
The standard redox electrode potential ( E°) values of metallocene compounds are obtained theoretically with density functional theory (DFT) method at B3LYP/6-311++G( d, p) level and experimentally with cyclic voltammetry (CV). The theoretical E° values of metallocene compounds are in good agreement with experimental ones. We investigate the substituent effects on the redox properties of metallocene compounds. Among the four metallocene compounds, the E° values is largest for titanocene dichloride and smallest for ferrocene.
Folding of Polymer Chains in Early Stage of Crystallization
NASA Astrophysics Data System (ADS)
Yuan, Shichen; Miyoshi, Toshikazu
Understanding the structural formation of long polymer chains in the early stage of crystallization is one of the long-standing problems in polymer science. Using solid state NMR, we investigated chain trajectory of isotactic polypropylene in the mesomorphic nano-domains formed via rapid and deep quenching. Comparison of experimental and simulated 13C-13C Double Quantum (DQ) buildup curves demonstrated that instead of random re-entry models and solidification models, individual chains in the mesomorphic form iPP adopt adjacent reentry sequences with an average folding number of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rotman, D.
Exxon chemical says it has made linear low-density polyethylene (LLDPE) using metallocene catalysts at its world-scale gas-phase plant in Mont Belvieu, TX. Exxon also says it has received a broad US patent that covers the use of metallocenes in gas-phase reactors that use condensing mode technology and that it plans to license the know-how. The moves, say industry experts, greatly strengthen Exxon`s position in metallocenes, particularly in pushing metallocene-based PE into commodity markets. The use of gas-phase technology {open_quotes}had to happen{close_quotes} to allow metallocene polymers to compete as commodities, says David Highfield, v.p. at Catalyst Consultants (Spring House, PA). {open_quotes}It`smore » very important and very significant in widening the scope of [metallocene] technology.{close_quotes}« less
Method of preparing metallocene compounds
Rosenblum, Myron; Matchett, Stephen A.
1992-01-01
This invention describes a novel method of preparing metallocene compounds. The invention is based on synthesis of novel bis cyclopentadienides that, under appropriate conditions, will either encapsulate a transition metal to produce a metallocene such as ferrocene, or ferrocene derivative, or will yield a polymeric metallocene. Compounds produced by this process are useful as catalysts in propulsion systems, or as anti-knock compounds in gasolines.
Recent Advances of Metallocenes for Medicinal Chemistry.
Santos, Miguel M; Bastos, Pedro; Catela, Isabelle; Zalewska, Karolina; Branco, Luis C
2017-01-01
The recent advances for the synthesis and application of different metallocenes for Medicinal Chemistry is reviewed. This manuscript presents the different metallocene scaffolds, with special emphasis on ferrocene derivatives, and their potential pharmaceutical application. Over the last years, the synthesis of new metallocene compounds and their biological and medicinal effects against some types of diseases (e.g. anti-tumoral, antibiotics, anti-viral) have been reported. From the medicinal point of view, the attractive properties of metallocene derivatives, such as their high stability, low toxicity and appealing redox behaviors are particularly relevant. This area has attracted many researchers as well as the pharmaceutical industry due to the promising results of some metallocenes, in particular ferrocene compounds, in breast cancer and malaria. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Non-metallocene organometallic complexes and related methods and systems
Agapie, Theodor; Golisz, Suzanne Rose; Tofan, Daniel; Bercaw, John E.
2010-12-07
A non-metallocene organometallic complex comprising a tridentate ligand and a metal bonded to a tridentate ligand, wherein two substituted aryl groups in the tridentate ligand are connected to a cyclic group at the ortho position via semi-rigid ring-ring linkages, and selected so to provide the resulting non-metallocene organometallic complex with a C.sub.S geometry, a C.sub.1 geometry, a C.sub.2 geometry or a C.sub.2v geometry. Method for performing olefin polymerization with a non-metallocene organometallic complex as a catalyst, related catalytic systems, tridentate ligand and method for providing a non-metallocene organometallic complex.
Phase separation of DMDBS from iPP, and controlled crystalline orientation
NASA Astrophysics Data System (ADS)
Sreenivas, K.; Kumaraswamy, Guruswamy; Basargekar, R. S.
2012-02-01
We report an unexpected dependence of DMDBS phase separation temperature on the molecular weight of the matrix isotactic polypropylene (iPP). DMDBS crystallizes out at lower temperatures for iPP with decreasing molecular weight (and correspondingly lower tacticity). This molecular weight dependence is unique to iPP, and is not observed for either syndiotactic PP or for random ethylene-PP copolymers. We show that thermodynamic Flory-type arguments are unable to rationalize the observed results. We also results on extrusion film casting of iPP containing DMDBS and show that flow-alignment of DMDBS networks template the orientation of PP crystals. The modulus and yield strength increase on addition of DMDBS, relative to the neat iPP. Tensile modulus and yield stress of drawn films increase with the degree of orientation, and we are able to achieve a substantial increase even at relatively low draw ratios.
Marks, Tobin J.; Chen, You-Xian
2000-01-01
The synthesis of the organo-Lewis acid perfluorobiphenylborane (PBB) and the activation of metallocenes for the formation of a variety of highly active homogeneous Ziegler-Natta metallocene olefin polymerization, copolymerization and ring-opening polymerization catalysts is described.
Glass Fiber Reinforced Polypropylene Mechanical Properties Enhancement by Adhesion Improvement
Etcheverry, Mariana; Barbosa, Silvia E.
2012-01-01
Glass fibers (GF) are the reinforcement agent most used in polypropylene (PP) based composites, as they have good balance between properties and costs. However, their final properties are mainly determined by the strength and stability of the polymer-fiber interphase. Fibers do not act as an effective reinforcing material when the adhesion is weak. Also, the adhesion between phases can be easily degraded in aggressive environmental conditions such as high temperatures and/or elevated moisture, and by the stress fields to which the material may be exposed. Many efforts have been done to improve polymer-glass fiber adhesion by compatibility enhancement. The most used techniques include modifications in glass surface, polymer matrix and/or both. However, the results obtained do not show a good costs/properties improvement relationship. The aim of this work is to perform an accurate analysis regarding methods for GF/PP adhesion improvement and to propose a new route based on PP in-situ polymerization onto fibers. This route involves the modification of fibers with an aluminum alkyl and hydroxy-α-olefin and from there to enable the growth of the PP chains using direct metallocenic copolymerization. The adhesion improvements were further proved by fragmentation test, as well as by mechanical properties measurements. The strength and toughness increases three times and the interfacial strength duplicates in PP/GF composites prepared with in-situ polymerized fibers. PMID:28817025
Pérez-Medina, Juan C.; Waldo-Mendoza, Miguel A.; Cruz-Delgado, Víctor J.; Quiñones-Jurado, Zoe V.; González-Morones, Pablo; Ziolo, Ronald F.; Martínez-Colunga, Juan G.; Soriano-Corral, Florentino; Avila-Orta, Carlos A.
2016-01-01
Metamaterial behavior of polymer nanocomposites (NCs) based on isotactic polypropylene (iPP) and multi-walled carbon nanotubes (MWCNTs) was investigated based on the observation of a negative dielectric constant (ε′). It is demonstrated that as the dielectric constant switches from negative to positive, the plasma frequency (ωp) depends strongly on the ultrasound-assisted fabrication method, as well as on the melt flow index of the iPP. NCs were fabricated using ultrasound-assisted extrusion methods with 10 wt % loadings of MWCNTs in iPPs with different melt flow indices (MFI). AC electrical conductivity (σ(AC)) as a function of frequency was determined to complement the electrical classification of the NCs, which were previously designated as insulating (I), static-dissipative (SD), and conductive (C) materials. It was found that the SD and C materials can also be classified as metamaterials (M). This type of behavior emerges from the negative dielectric constant observed at low frequencies although, at certain frequencies, the dielectric constant becomes positive. Our method of fabrication allows for the preparation of metamaterials with tunable ωp. iPP pure samples show only positive dielectric constants. Electrical conductivity increases in all cases with the addition of MWCNTs with the largest increases observed for samples with the highest MFI. A relationship between MFI and the fabrication method, with respect to electrical properties, is reported. PMID:28774042
Sterically shielded diboron-containing metallocene olefin polymerization catalysts
Marks, Tobin J.; Ja, Li; Yang, Xinmin
1995-09-05
A non-coordinating anion, preferably containing a sterically shielded diboron hydride, if combined with a cyclopenta-dienyl-substituted metallocene cation component, such as a zirconocene metallocene, is a useful olefin polymerization catalyst component. The anion preferably has the formula ##STR1## where R is branched lower alkyl, such as t-butyl.
Preparation, characterization, and activity of α-Ti(HPO4)2 supported metallocene catalysts
NASA Astrophysics Data System (ADS)
Shi, Yasai; Yuan, Yuan; Xu, Qinghong; Yi, Jianjun
2016-10-01
A series of heterogeneous catalysts by loading metallocenes on surface of α-Ti(HPO4)2, a kind of solid acid, has been synthesized. Polymerization of alkenes, including ethylene and propylene, based on participation of the heterogeneous catalysts were studied and the results were compared to metallocenes supported on silica gel, α-Zr(HPO4)2 and clay. Higher catalytic activity, larger polymer molecular weight and narrow distribution of polymer molecular weight were obtained. Acidic strength of the support and its influence to metallocenes were studied to discover intrinsic factors in the polymerizations.
Polymer Grafted Nanoparticles for Designed Interfaces in Polymer Nanocomposites
NASA Astrophysics Data System (ADS)
Mohammadkhani, Mohammad
This dissertation presents the design, synthesis, and characterization of polymer nanocomposite interfaces and the property enhancement from this interface design. Through the use of reversible addition fragmentation chain transfer (RAFT) polymerization for the grafting of polymer chains to silica nanoparticles, the surface of silica nanoparticles can be manipulated to tune the properties of nanocomposites by controlling the interface between the particles and the polymer matrix. In the first part of this work, compatibility of 15 nm silica nanoparticles grafted with different alkyl methacrylates with linear low density polyethylene was investigated. SI-RAFT polymerization of hexyl, lauryl, and stearyl methacrylate on silica NPs was studied in detail and revealed living character for all these polymerizations. Composites of linear low density polyethylene filled with PHMA, PLMA, and PSMA-g-SiO2 NPs were prepared and analyzed to find the effects of side chain length on the dispersibility of particles throughout the matrix. PSMA brushes were the most "olefin-like" of the series and thus showed the highest compatibility with polyethylene. The effects of PSMA brush molecular weight and chain density on the dispersion of silica particles were investigated. Multiple characterizations such as DSC, WAXS, and SAXS were applied to study the interaction between PSMA-g-SiO2 NPs and the polyethylene matrix. In the next part, the compatibility of PSMA-g-SiO2 NPs with different molecular variables with isotactic polypropylene was investigated. Anthracene was used as a conjugated ligand to introduce to the surface of PSMA-g-SiO2 NPs to develop bimodal architecture on nanoparticles and use them in polypropylene dielectric nanocomposites. The dispersion of particles was investigated and showed that for both monomodal and bimodal particles where PSMA chains are medium density and relatively high molecular weight, they maintain an acceptable level of dispersion throughout of the matrix. Furthermore, the effects of anthracene surface modification and also level of dispersion towards improving the dielectric breakdown strength under AC and DC conditions were studied. Finally, the RAFT polymerizations of isoprene in solution and, for the first time, on the surface of silica particles using a high temperature stable trithiocarbonate RAFT agent were studied. The effects of different temperatures, initiators, and monomer feed ratios on the kinetics of the SI-RAFT polymerization were also investigated. Kinetic studies revealed that the rate of SI-RAFT polymerization increased with an increase in the density of grafted RAFT agent. Well-defined polyisoprene-grafted silica NPs (PIP-g-SiO2 NPs) were synthesized and mixed with a polyisoprene matrix to determine the compatibility and dispersion of these particles with the matrix. Hydrogenation of PIP-g-SiO2 NPs were performed using p-toluenesulfonyl hydrazide at high temperature to obtain hydrogenated (HPIP)-g-SiO2 NPs. A bimodal octadecylsilane (C18)-HPIP-g-SiO2 NPs sample was synthesized and mixed with isotactic PP matrix analyzed for the compatibility with polypropylene.
Encapsulant Material For Solar Cell Module And Laminated Glass Applications
Hanoka, Jack I.
2000-09-05
An encapsulant material includes a layer of metallocene polyethylene disposed between two layers of ionomer. More specifically, the layer of metallocene polyethylene is disposed adjacent a rear surface of the first ionomer layer, and a second layer of ionomer is disposed adjacent a rear surface of the layer of metallocene polyethylene. The encapsulant material can be used in solar cell module and laminated glass applications.
NASA Astrophysics Data System (ADS)
Tian, Yefei; Zhou, Jian; Feng, Jiachun
2018-04-01
The effect of thermal history on β-nucleated iPP was systematically investigated by comparing the variance of crystalline microstructures and mechanical property of stepwise crystallized sample and annealed sample, which experienced different thermal history. The mechanical property tests exhibit that that the toughness of stepwise crystallized sample and annealed sample were both decreased compared to control sample, while the tensile strength of the stepwise crystallized sample increased slightly. Structure investigation showed that the α-relaxation peak, which is related to the assignment of chains in rigid amorphous phase, moved to the high temperature region for stepwise crystallized sample, while it moved to the low temperature region for annealed sample. The results indicated the weakening in rigid amorphous fraction (RAF) and the increase in lamellar thickness of β-iPP after stepwise crystallization treatment. For annealed sample, the RAF strengthened and lamellar thickness decreased slightly after thermal treatment. A mechanism of crystalline microstructures evolution of restricted area between the main lamellar under different treatments was proposed.
Li, Heng; Zhang, Wen-Xiong; Xi, Zhenfeng
2013-09-16
A variety of ester-substituted cyclopentadiene derivatives have been synthesized by one-pot reactions of 1,4-dilithio-1,3-butadienes, CO, and acid chlorides. Direct deprotonation of the ester-substituted cyclopentadienes with Ae[N(SiMe3 )2 ]2 (Ae=Ca, Sr, Ba) efficiently generated members of a new class of heavier alkaline earth (Ca, Sr, Ba) metallocenes in good to excellent yields. Single-crystal X-ray structural analysis demonstrated that these heavier alkaline earth metallocenes incorporated two intramolecularly coordinated ester pendants and multiply-substituted cyclopentadienyl ligands. The corresponding transition metal metallocenes, such as ferrocene derivatives and half-sandwich cyclopentadienyl tricarbonylrhenium complexes, could be generated highly efficiently by metathesis reactions. The multiply-substituted cyclopentadiene ligands bearing an ester pendant, and the corresponding heavier alkaline earth and transition-metal metallocenes, may have further applications in coordination chemistry, organometallic chemistry, and organic synthesis. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Encapsulant Material For Solar Cell Module And Laminated Glass Applications
Hanoka, Jack I.; Klemchuk, Peter P.
2001-02-13
An encapsulant material includes a layer of metallocene polyethylene disposed between two layers of an acid copolymer of polyethylene. More specifically, the layer of metallocene polyethylene is disposed adjacent a rear surface of the first layer of the acid copolymer of polyethylene, and a second layer of the acid copolymer of polyethlene is disposed adjacent a rear surface of the layer of metallocene polyethylene. The encapsulant material can be used in solar cell module and laminated glass applications.
Coordination Chemistry of Disilylated Germylenes with Group 4 Metallocenes
2013-01-01
Reaction of the PEt3 adduct of a disilylated five-membered cyclic germylene with group 4 metallocene dichlorides in the presence of magnesium led to the formation of the respective germylene metallocene phosphine complexes of titanium, zirconium, and hafnium. Attempts to react the related NHC adduct of a disilylated four-membered cyclic germylene under the same conditions with Cp2TiCl2 did not give the expected germylene NHC titanocene complex. This complex was, however, obtained in the reaction of Cp2Ti(btmsa) with the NHC germylene adduct. A computational analysis of the structure of the group 4 metallocene germylene complexes revealed the multiple-bond character of the M–Ge(II) linkage, which can be rationalized with the classical σ-donor/π-acceptor interaction. The strength of the M–Ge(II) bond increases descending group 4. PMID:23874053
Marks, Tobin J.; Chen, You-Xian
2001-01-01
The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.
Probing polymer crystallization at processing-relevant cooling rates with synchrotron radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavallo, Dario, E-mail: Dario.cavallo@unige.it; Portale, Giuseppe; Androsch, René
2015-12-17
Processing of polymeric materials to produce any kind of goods, from films to complex objects, involves application of flow fields on the polymer melt, accompanied or followed by its rapid cooling. Typically, polymers solidify at cooling rates which span over a wide range, from a few to hundreds of °C/s. A novel method to probe polymer crystallization at processing-relevant cooling rates is proposed. Using a custom-built quenching device, thin polymer films are ballistically cooled from the melt at rates between approximately 10 and 200 °C/s. Thanks to highly brilliant synchrotron radiation and to state-of-the-art X-ray detectors, the crystallization process ismore » followed in real-time, recording about 20 wide angle X-ray diffraction patterns per second while monitoring the instantaneous sample temperature. The method is applied to a series of industrially relevant polymers, such as isotactic polypropylene, its copolymers and virgin and nucleated polyamide-6. Their crystallization behaviour during rapid cooling is discussed, with particular attention to the occurrence of polymorphism, which deeply impact material’s properties.« less
NASA Astrophysics Data System (ADS)
Chang, Jiarui; Wang, Zhen; Tang, Xiaoliang; Tian, Fucheng; Ye, Ke; Li, Liangbin
2018-02-01
We have designed and constructed a portable extruder with a rotatable mandrel, which can be employed to study the multi-dimensional flow field (MDFF) induced crystallization of polymer combined with in situ wide angle x-ray scattering (WAXS). With the piston driving the melt sample to flow along the channel, a direct axial shear field is achieved. At the same time, the central mandrel keeps rotating under a stable speed, providing the sample with an additional circumferential shear field. By presetting different proportions of the two shear fields, namely, axial and circumferential, various flow states of the sample can be obtained, which makes it capable of investigating the effects of MDFF on polymer crystallization. We have performed an in situ WAXS experiment of MDFF induced crystallization of isotactic polypropylene based on the portable extruder at the beam line BL16B in Shanghai Synchrotron Radiation Facility. The rheological and structural information is collected simultaneously, which manifests the viability of the portable extruder on regulating MDFF and can provide guidance for polymer processing.
Marks, Tobin J.; Chen, You-Xian
2002-01-01
The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.
Highly tunable porous organic polymer (POP) supports for metallocene-based ethylene polymerization
NASA Astrophysics Data System (ADS)
Wang, Xiong; Li, Zhenyou; Han, Xiaoyu; Han, Zhengang; Bai, Yongxiao
2017-10-01
Porous organic Polymers (POPs) can not only exhibit high specific surface area and pore volume, but also tunable pore size distribution. Herein, copolymers of 2-hydroxyethylmethylacrylate (HEMA) and divinylbenzene (DVB) with specific pore structure were synthesized via a dispersion polymerization strategy, and then immobilized metallocene catalysts with well-defined pore structure were obtained on the produced POP supports. The nitrogen sorption and Gel permeation chromatography (GPC) results demonstrate that the pore structure of the immobilized metallocene catalyst is highly dependent on the pore structure of the POPs, and the pore structure of metallocene catalysts or the POPs has a significant influence on the molecular chain growth of the produced polyethylene. By tuning the distribution of the active species scattered in the micro- and the narrow meso-pore range (roughly ≤4 nm), the chain growth of the polyolefin can be tailored effectively during the polymerization process, although differential scanning calorimetry (DSC) and temperature rising elution fractionation (TREF) results show that the chemical composition distributions (CCDs) of produced PE from the POPs-supported metallocene catalysts are not determined by polymerization activity or molecule chain length, but mainly by the active site species scattered in the supported catalysts. Scanning electron micrograph (SEM) shows that the produced polyethylene has highly porous fabric which consists of nanofiber and spherical beads of micron dimension.
The role of protein homochirality in shaping the energy landscape of folding
Nanda, Vikas; Andrianarijaona, Aina; Narayanan, Chitra
2007-01-01
The homochirality, or isotacticity, of the natural amino acids facilitates the formation of regular secondary structures such as α-helices and β-sheets. However, many examples exist in nature where novel polypeptide topologies use both l- and d-amino acids. In this study, we explore how stereochemistry of the polypeptide backbone influences basic properties such as compactness and the size of fold space by simulating both lattice and all-atom polypeptide chains. We formulate a rectangular lattice chain model in both two and three dimensions, where monomers are chiral, having the effect of restricting local conformation. Syndiotactic chains with alternating chirality of adjacent monomers have a very large ensemble of accessible conformations characterized predominantly by extended structures. Isotactic chains on the other hand, have far fewer possible conformations and a significant fraction of these are compact. Syndiotactic chains are often unable to access maximally compact states available to their isotactic counterparts of the same length. Similar features are observed in all-atom models of isotactic versus syndiotactic polyalanine. Our results suggest that protein isotacticity has evolved to increase the enthalpy of chain collapse by facilitating compact helical states and to reduce the entropic cost of folding by restricting the size of the unfolded ensemble of competing states. PMID:17600146
Metallocenes--The First 25 Years
ERIC Educational Resources Information Center
Hunt, C. B.
1977-01-01
This article reviews the discovery of the first of the metallocenes and some of the developments which have taken place in the 25 years following. Applications to topics such as the solution of the polyphenylchromium problem and Alkene polymerisation, are discussed. Ferrocene is studied in detail. (MA)
Metallocene Catalytic Insertion Polymerization of 1-Silene to Polycarbosilanes
NASA Astrophysics Data System (ADS)
Tian, Yuelong; Ge, Min; Zhang, Weigang; Lv, Xiaoxu; Yu, Shouquan
2015-11-01
Metallocene of zirconium were used as a catalyst for an insertion polymerization of 1-methylsilene directly into pre-ceramic precursor polyzirconocenecarbosilane (PZCS) during dechlorination of dichlorodimethylesilane by sodium, which exhibits high catalytic effectiveness with the maximum conversion ratio of polycarbosilane up to 91%. The average molecular weights of polymers synthesized are less than 1400, all with very narrow polymolecularities. The mechanism of catalytic polymerization was assumed to be similar to a coordination insertion polymerization of 1-olefins by metallocenes. The obtained PZCS show high ceramic yields with formation of composite ceramics of ZrC-SiC, which are novel polymeric precursors of ultra-high temperature ceramic (UHTC) fiber and composite.
Metallocene Catalytic Insertion Polymerization of 1-Silene to Polycarbosilanes.
Tian, Yuelong; Ge, Min; Zhang, Weigang; Lv, Xiaoxu; Yu, Shouquan
2015-11-06
Metallocene of zirconium were used as a catalyst for an insertion polymerization of 1-methylsilene directly into pre-ceramic precursor polyzirconocenecarbosilane (PZCS) during dechlorination of dichlorodimethylesilane by sodium, which exhibits high catalytic effectiveness with the maximum conversion ratio of polycarbosilane up to 91%. The average molecular weights of polymers synthesized are less than 1400, all with very narrow polymolecularities. The mechanism of catalytic polymerization was assumed to be similar to a coordination insertion polymerization of 1-olefins by metallocenes. The obtained PZCS show high ceramic yields with formation of composite ceramics of ZrC-SiC, which are novel polymeric precursors of ultra-high temperature ceramic (UHTC) fiber and composite.
Gómez-Ruiz, Santiago; Maksimović-Ivanić, Danijela; Mijatović, Sanja; Kaluđerović, Goran N.
2012-01-01
The purpose of this paper is to summarize mode of action of cisplatin on the tumor cells, a brief outlook on the metallocene compounds as antitumor drugs as well as the future tendencies for the use of the latter in anticancer chemotherapy. Molecular mechanisms of cisplatin interaction with DNA, DNA repair mechanisms, and cellular proteins are discussed. Molecular background of the sensitivity and resistance to cisplatin, as well as its influence on the efficacy of the antitumor immune response was evaluated. Furthermore, herein are summarized some metallocenes (titanocene, vanadocene, molybdocene, ferrocene, and zirconocene) with high antitumor activity. PMID:22844263
NASA Astrophysics Data System (ADS)
El Majdoub, Lotfia; Shi, Yasai; Yuan, Yuan; Zhou, Annan; Abutartour, Abubaker; Xu, Qinghong
2015-10-01
Zirconocene catalyst supported on silica gel was prepared for olefin polymerization by surface modification of calcined silica with SiCl4, and the reaction between the modified silica and cyclopentadienyl sodium and ZrCl4. The catalyst was characterized by using Fourier-transform infrared (FT-IR) spectrometer, thermogravimetric (TG), and differential scanning calorimetric (DSC) analytic spectrometer. It was found that the metallocene structure could be formed and connected on silica surface by chemical bond. Initial catalytic tests showed that the supported metallocene was catalytically active (methylaluminoxane as a cocatalyst), producing polymer with higher molecular weight than the metallocene just immobilized on the surface of silica gel.
Zhang, Qing-Wei; An, Kun; Liu, Li-Chuan; Yue, Yuan; He, Wei
2015-06-01
Reported herein is the rhodium-catalyzed enantioselective C-H bond silylation of the cyclopentadiene rings in Fe and Ru metallocenes. Thus, in the presence of (S)-TMS-Segphos, the reactions took place under very mild conditions to afford metallocene-fused siloles in good to excellent yields and with ee values of up to 97%. During this study it was observed that the steric hindrance of chiral ligands had a profound influence on the reactivity and enantioselectivity of the reaction, and might hold the key to accomplishing conventionally challenging asymmetric C-H silylations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ávila-Orta, Carlos A.; Quiñones-Jurado, Zoe V.; Waldo-Mendoza, Miguel A.; Rivera-Paz, Erika A.; Cruz-Delgado, Víctor J.; Mata-Padilla, José M.; González-Morones, Pablo; Ziolo, Ronald F.
2015-01-01
Isotactic polypropylenes (iPP) with different melt flow indexes (MFI) were used to fabricate nanocomposites (NCs) with 10 wt % loadings of multi-wall carbon nanotubes (MWCNTs) using ultrasound-assisted extrusion methods to determine their effect on the morphology, melt flow, and electrical properties of the NCs. Three different types of iPPs were used with MFIs of 2.5, 34 and 1200 g/10 min. Four different NC fabrication methods based on melt extrusion were used. In the first method melt extrusion fabrication without ultrasound assistance was used. In the second and third methods, an ultrasound probe attached to a hot chamber located at the exit of the die was used to subject the sample to fixed frequency and variable frequency, respectively. The fourth method is similar to the first method, with the difference being that the carbon nanotubes were treated in a fluidized air-bed with an ultrasound probe before being used in the fabrication of the NCs with no ultrasound assistance during extrusion. The samples were characterized by MFI, Optical microscopy (OM), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), electrical surface resistivity, and electric charge. MFI decreases in all cases with addition of MWCNTs with the largest decrease observed for samples with the highest MFI. The surface resistivity, which ranged from 1013 to 105 Ω/sq, and electric charge, were observed to depend on the ultrasound-assisted fabrication method as well as on the melt flow index of the iPP. A relationship between agglomerate size and area ratio with electric charge was found. Several trends in the overall data were identified and are discussed in terms of MFI and the different fabrication methods. PMID:28793686
Metallocene catalyst containing bulky organic group
Marks, T.J.; Ja, L.; Yang, X.
1996-03-26
An ionic metallocene catalyst for olefin polymerization which comprises: (1) a cyclopentadienyl-type ligand, a Group IVB transition metal, and alkyl, aryl, or hydride substituents, as a cation, and (2) a weakly coordinating anion comprising boron substituted with halogenated, such as tetrafluoro-aryl substituents preferably containing silylalkyl substitution, such as para-silyl t-butyldimethyl.
Synthesis and Characterization of Cerium(IV) Metallocenes
Sutton, Andrew; Clark, David Lewis; Scott, Brian Lindley; ...
2015-12-11
In this study, by applying a salt metathesis approach between Ce(OtBu 3) 2(NO 3) 2(THF) 2 and the potassium salts of mono- and ditrimethylsilyl substituted cyclopentadienes, we were able to isolate two new Ce(IV) metallocenes, including to the best of our knowledge, the first structurally characterized bis-cyclopentadiene Ce(IV) compound.
Metallocene catalyst containing bulky organic group
Marks, Tobin J.; Ja, Li; Yang, Xinmin
1996-03-26
An ionic metallocene catalyst for olefin polymerization which comprises: (1) a cyclopentadienyl-type ligand, a Group IVB transition metal, and alkyl, aryl, or hydride substituents, as a cation, and (2) a weakly coordinating anion comprising boron substituted with halogenated, such as tetra fluoro, aryl substituents preferably containing silylalkyl substitution, such as para-silyl t-butyldimethyl.
Binotti, Barbara; Carfagna, Carla; Zuccaccia, Cristiano; Macchioni, Alceo
2005-01-07
Cationic Pd(II) complexes modified with achiral C(2v)-symmetric alpha-diimine ligands allow preparation of atactic or isotactic stereoblock CO/p-methylstyrene copolymers; both catalyst activity and polyketone microstructure depend on the choice of alpha-diimine substituents and counterion.
Specific Interactions of Antitumor Metallocenes with Deoxydinucleoside Monophosphates
NASA Astrophysics Data System (ADS)
Eberle, Rahel P.; Hari, Yvonne; Schürch, Stefan
2017-09-01
Bent metallocenes Cp2MCl2 (M = Ti, V, Nb, Mo) are known to exhibit cytotoxic activity against a variety of cancer types. Though the mechanism of action is not fully understood yet, the accumulation of the metal ions in the nucleus points towards DNA as one of the primary targets. A set of eight deoxydinucleoside monophosphates was used to study the adduct yields with metallocenes and cisplatin. The binding affinities are reflected by the relative intensities of the adducts and were found to follow the order of Pt > V > Ti > Mo (no adducts were detected with Nb). High-resolution tandem mass spectrometry was applied to locate the binding patterns in the deoxydinucleoside monophosphates. Whereas cisplatin binds to the soft nitrogen atoms in the purine nucleobases, the metallocenes additionally interact with the hard phosphate oxygen, which is in good agreement with the hard and soft (Lewis) acids and bases (HSAB) concept. However, the binding specificities were found to be unique for each metallocene. The hard Lewis acids titanium and vanadium predominantly bind to the deprotonated phosphate oxygen, whereas molybdenum, an intermediate Lewis acid, preferentially interacts with the nucleobases. Nucleobases comprise alternative binding sites for titanium and vanadium, presumably oxygen atoms for the first and nitrogen atoms for the latter. In summary, the intrinsic binding behavior of the different metallodrugs is reflected by the gas-phase dissociation of the adducts. Consequently, MS/MS can provide insights into therapeutically relevant interactions between metallodrugs and their cellular targets. [Figure not available: see fulltext.
Substantially isotactic, linear, alternating copolymers of carbon monoxide and an olefin
Sen, Ayusman; Jiang, Zhaozhong
1996-01-01
The compound, [Pd(Me-DUPHOS)(MeCN).sub.2 ](BF.sub.4).sub.2, [Me-DUPHOS: 1,2-bis(2,5-dimethylphospholano)benzene] is an effective catalyst for the highly enantioselective, alternating copolymerization of olefins, such as aliphatic .alpha.-olefins, with carbon monoxide to form optically active, isotactic polymers which can serve as excellent starting materials for the synthesis of other classes of chiral polymers. For example, the complete reduction of a propylene-carbon monoxide copolymer resulted in the formation of a novel, optically active poly(1,4-alcohol). Also, the previously described catalyst is a catalyst for the novel alternating isomerization cooligomerization of 2-butene with carbon monoxide to form optically active, isotactic poly(1,5-ketone)
Substantially isotactic, linear, alternating copolymers of carbon monoxide and an olefin
Sen, A.; Jiang, Z.
1996-05-28
The compound, [Pd(Me-DUPHOS)(MeCN){sub 2}](BF{sub 4}){sub 2}, [Me-DUPHOS: 1,2-bis(2,5-dimethylphospholano)benzene] is an effective catalyst for the highly enantioselective, alternating copolymerization of olefins, such as aliphatic {alpha}-olefins, with carbon monoxide to form optically active, isotactic polymers which can serve as excellent starting materials for the synthesis of other classes of chiral polymers. For example, the complete reduction of a propylene-carbon monoxide copolymer resulted in the formation of a novel, optically active poly(1,4-alcohol). Also, the previously described catalyst is a catalyst for the novel alternating isomerization cooligomerization of 2-butene with carbon monoxide to form optically active, isotactic poly(1,5-ketone).
Marks, Tobin J.; Chen, You-Xian
2001-01-01
The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interefere in the ethylene polymerization process, while affecting the the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.
NASA Astrophysics Data System (ADS)
Liguori, R.; Botta, A.; Pragliola, S.; Rubino, A.; Venditto, V.; Velardo, A.; Aprano, S.; Maglione, M. G.; Prontera, C. T.; De Girolamo Del Mauro, A.; Fasolino, T.; Minarini, C.
2017-06-01
The electroluminescence (EL) of isotactic and syndiotactic poly(N-pentenyl-carbazole) (PPK), achieved by coordination polymerization, is studied in order to investigate the interrelation between the polymer tacticity and their physical-chemical properties. The use of these polymers in organic light-emitting diode (OLED) fabrication is also explored. Thermal and x-ray diffraction analyses of PPKs show that the isotactic stereoisomer is semicrystalline, whereas the syndiotactic one is amorphous. Optical analysis of both stereoisomers, carried out on film samples, reveals the presence of two different excimers: ‘sandwich-like’ and ‘partially overlapping’. Nevertheless, the emission intensity ratio between ‘sandwich-like’ and ‘partially overlapping’ excimers is higher in the isotactic than in the syndiotactic stereoisomer. Using the synthesized polymers as OLED emitting layers, the influence of the polymer tacticity on the EL properties of the device is highlighted. In detail, while blue OLEDs are obtained by using the syndiotactic stereoisomer, OLEDs with a multilayer structure fabricated with the isotactic stereoisomer emit white light. The contribution of three different emissions (fluorescence, phosphorescence and electromer emissions) with comparable intensities to the detected white light is discussed.
Tang, Xiaoyan; Chen, Eugene Y-X
2018-06-11
Bacterial poly(3-hydroxybutyrate) (P3HB) is a perfectly isotactic, crystalline material possessing properties suitable for substituting petroleum plastics, but high costs and low volumes of its production are impractical for commodity applications. The chemical synthesis of P3HB via ring-opening polymerization (ROP) of racemic β-butyrolactone has attracted intensive efforts since the 1960s, but not yet produced P3HB with high isotacticity and molecular weight. Here, we report a route utilizing racemic cyclic diolide (rac-DL) derived from bio-sourced succinate. With stereoselective racemic catalysts, the ROP of rac-DL under ambient conditions produces rapidly P3HB with perfect isotacticity ([mm] > 99%), high melting temperature (T m = 171 °C), and high molecular weight (M n = 1.54 × 10 5 g mol -1 , Đ = 1.01). With enantiomeric catalysts, kinetic resolution polymerizations of rac-DL automatically stops at 50% conversion and yields enantiopure (R,R)-DL and (S,S)-DL with >99% e.e. and the corresponding poly[(S)-3HB] and poly[(R)-3HB] with high T m = 175 °C.
Quantum transport of the single metallocene molecule
NASA Astrophysics Data System (ADS)
Yu, Jing-Xin; Chang, Jing; Wei, Rong-Kai; Liu, Xiu-Ying; Li, Xiao-Dong
2016-10-01
The Quantum transport of three single metallocene molecule is investigated by performing theoretical calculations using the non-equilibrium Green's function method combined with density functional theory. We find that the three metallocen molecules structure become stretched along the transport direction, the distance between two Cp rings longer than the other theory and experiment results. The lager conductance is found in nickelocene molecule, the main transmission channel is the electron coupling between molecule and the electrodes is through the Ni dxz and dyz orbitals and the s, dxz, dyz of gold. This is also confirmed by the highest occupied molecular orbital resonance at Fermi level. In addition, negative differential resistance effect is found in the ferrocene, cobaltocene molecules, this is also closely related with the evolution of the transmission spectrum under applied bias.
Activation of C-H bonds by rare-earth metallocene-butyl complexes.
Grindell, Richard; Day, Benjamin M; Guo, Fu-Sheng; Pugh, Thomas; Layfield, Richard A
2017-09-05
The stable metallocene-butyl complexes [(Cp Me ) 2 M( n Bu)] 2 (M = Y, Dy) were synthesized and their reactivity towards to ferrocene and bulky N-heterocyclic carbenes investigated. Selective mono-deprotonation of ferrocene and a benzylic methyl group of IMes were observed, whereas a control reaction of (Cp Me ) 3 M with IMes resulted in a normal-to-abnormal NHC rearrangement.
Liu, Z; Somsook, E; White, C B; Rosaaen, K A; Landis, C R
2001-11-14
Metallocene-catalyzed polymerization of 1-alkenes offers fine control of critical polymer attributes such as molecular weight, polydispersity, tacticity, and comonomer incorporation. Enormous effort has been expended on the synthesis and discovery of new catalysts and activators, but elementary aspects of the catalytic processes remain unclear. For example, it is unclear how the catalyst is distributed among active and dormant sites and how this distribution influences the order in monomer for the propagation rates, for which widely varying values are reported. Similarly, although empirical relationships between average molecular weights and monomer have been established for many systems, the underlying mechanisms of chain termination are unclear. Another area of intense interest concerns the role of ion-pairing in controlling the activity and termination mechanisms of metallocene-catalyzed polymerizations. Herein we report the application of quenched-flow kinetics, active site counting, polymer microstructure analysis, and molecular weight distribution analysis to the determination of fundamental rate laws for initiation, propagation, and termination for the polymerization of 1-hexene in toluene solution as catalyzed by the contact ion-pair, [rac-(C(2)H(4)(1-indenyl)(2))ZrMe][MeB(C(6)F(5))(3)] (1) over the temperature range of -10 to 50 degrees C. Highly isotactic (>99% mmmm) poly-1-hexene is produced with no apparent enchained regioerrors. Initiation and propagation processes are first order in the concentrations of 1-hexene and 1 but independent of excess borane or the addition of the contact ion-pair [PhNMe(3)][MeB(C(6)F(5))(3)]. Active site counting and the reaction kinetics provide no evidence of catalyst accumulation in dormant or inactive sites. Initiation is slower than propagation by a factor of 70. The principal termination process is the formation of unsaturates of two types: vinylidene end groups that arise from termination after a 1,2 insertion and vinylene end groups that follow 2,1 insertions. The rate law for the former termination process is independent of the 1-hexene concentration, whereas the latter is first order. Analysis of (13)C-labeled polymer provides support for a mechanism of vinylene end group formation that is not chain transfer to monomer. Deterministic modeling of the molecular weight distributions using the fundamental rate laws and kinetic constants demonstrates the robustness of the kinetic analysis. Comparisons of insertion frequencies with estimated limits on the rates of ion-pair symmetrization obtained by NMR suggest that ion-pair separation prior to insertion is not required, but the analysis requires assumptions that cannot be validated.
Metallocene Antimalarials: The Continuing Quest
Blackie, Margaret A. L.; Chibale, Kelly
2008-01-01
Over the last decade, a significant body of research has been developed around the inclusion of a metallocene moiety into known antimalarial compounds. Ferroquine is the most successful of these compounds. Herein, we describe our contribution to metallocene antimalarials. Our approach has sought to introduce diversity sites in the side chain of ferroquine in order to develop a series of ferroquine derivatives. The replacement of the ferrocenyl moiety with ruthenocene has given rise to ruthenoquine and a modest series of analogues. The reaction of ferroquine and selected analogues with Au(PPh3)NO3, Au(C6F5)(tht), and [Rh(COD)Cl2] has resulted in a series of heterobimetallic derivatives. In all cases, compounds have been evaluated for in vitro antiplasmodial activity in both chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum. Preliminary structure-activity relationships have been delineated. PMID:18274662
Efficient palladium-catalyzed asymmetric allylic alkylation of ketones and aldehydes.
Zhao, Xiaohu; Liu, Delong; Xie, Fang; Liu, Yangang; Zhang, Wanbin
2011-03-21
Palladium-catalyzed asymmetric allylic alkylation of ketones, via enamines generated in situ as nucleophiles, were carried out smoothly with chiral metallocene-based P,N-ligands. Under the same conditions, however, reactions of aldehydes could hardly be observed. Subsequently, this obstacle was resolved by using chiral metallocene-based P,P-ligands. Both ketones and aldehydes afforded excellent enantioselectivities with up to 98% ee and 94% ee, respectively.
NASA Astrophysics Data System (ADS)
Panda, Bishnu P.; Mohanty, Smita; Nayak, Sanjay K.
2014-09-01
This research aims to study the effect of accelerated weathering conditions on the photodegradation characteristics for fibrillar silicate clay-filled Polypropylene (PP) nanocomposites in the presence of metallocene linear low density polyethylene (m-LLDPE). Silane-treated attapulgite (ATP) clay along with ethylene octene elastomer-grafted maleic anhydride (POE-g-MAH) was used to compatibilize both blend and nanocomposite system. The result showed that developed PP/m-LLDPE nanocomposites displayed good UV resistance with little change in retained stress-at-break and elongation-at-break values. Balanced loss of toughness values noted maintaining higher fracture toughness values for nanocomposites containing 5 phr ATP clay. Infrared analysis was used to detect progress of degradation followed by change in carbonyl index revealed predominated chain scission in late irradiation, while crosslinking was dominant for initial irradiation period. An increase in crystallinity during UV exposure (chemi-crystallization) was detected with exposure time for all compositions and virtually independent of initial structure of the polymer. The highest value of crystallization observed for PP and the lowest one for nanocomposites containing 5 phr of ATP clay revealed good oxidation stability. Surface morphology revealed induced degradation throughout cross-section of PP, while severity of the surface degradation was significantly reduced for developed nanocomposites.
Are metastable, precrystallisation, density-fluctuations a universal phenomena?
Heeley, Ellen L; Poh, C Kit; Li, Wu; Maidens, Anna; Bras, Wim; Dolbnya, Igor P; Gleeson, Anthony J; Terrill, Nicolas J; Fairclough, J Patrick A; Olmsted, Peter D; Ristic, Rile I; Hounslow, Micheal J; Ryan, Anthony J
2003-01-01
In-situ observations of crystallisation in minerals and organic polymers have been made by simultaneous, time-resolved small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) techniques. In isotactic polypropylene slow quiescent crystallisation shows the onset of large scale ordering prior to crystal growth. Rapid crystallisations studied by melt extrusion indicate the development of well resolved oriented SAXS patterns associated with long range order before the development of crystalline peaks in the WAXS region. Block copolymers self-assemble into mesophases in polymer melts above a critical chain length (or above a critical temperature) and this self-assembly process is shown to be susceptible to an incipient crystallisation. Mesophase formation is observed at anomalously high temperatures in ethylene-oxide containing block copolymers below the normal melting point of the polyoxy ethylene chains. Formation of calcium carbonate from aqueous solutions of sodium carbonate and calcium nitrate is observed to be a two-stage process and precipitation proceeds by the production of an amorphous metastable phase. This phase grows until it is volume filling and leads to the formation of the two polymorphs Calcite and Vaterite. These three sets of results suggest pre-nucleation density fluctuations, leading to a metastable phase, play an integral role in all three classes of crystallisation. In due course, this phase undergoes transformation to "normal" crystals.
Metal atom dynamics in superbulky metallocenes: a comparison of (Cp(BIG))2Sn and (Cp(BIG))2Eu.
Harder, Sjoerd; Naglav, Dominik; Schwerdtfeger, Peter; Nowik, Israel; Herber, Rolfe H
2014-02-17
Cp(BIG)2Sn (Cp(BIG) = (4-n-Bu-C6H4)5cyclopentadienyl), prepared by reaction of 2 equiv of Cp(BIG)Na with SnCl2, crystallized isomorphous to other known metallocenes with this ligand (Ca, Sr, Ba, Sm, Eu, Yb). Similarly, it shows perfect linearity, C-H···C(π) bonding between the Cp(BIG) rings and out-of-plane bending of the aryl substituents toward the metal. Whereas all other Cp(BIG)2M complexes show large disorder in the metal position, the Sn atom in Cp(BIG)2Sn is perfectly ordered. In contrast, (119)Sn and (151)Eu Mößbauer investigations on the corresponding Cp(BIG)2M metallocenes show that Sn(II) is more dynamic and loosely bound than Eu(II). The large displacement factors in the group 2 and especially in the lanthanide(II) metallocenes Cp(BIG)2M can be explained by static metal disorder in a plane parallel to the Cp(BIG) rings. Despite parallel Cp(BIG) rings, these metallocenes have a nonlinear Cpcenter-M-Cpcenter geometry. This is explained by an ionic model in which metal atoms are polarized by the negatively charged Cp rings. The extent of nonlinearity is in line with trends found in M(2+) ion polarizabilities. The range of known calculated dipole polarizabilities at the Douglas-Kroll CCSD(T) level was extended with values (atomic units) for Sn(2+) 15.35, Sm(2+)(4f(6) (7)F) 9.82, Eu(2+)(4f(7) (8)S) 8.99, and Yb(2+)(4f(14) (1)S) 6.55. This polarizability model cannot be applied to predominantly covalently bound Cp(BIG)2Sn, which shows a perfectly ordered structure. The bent geometry of Cp*2Sn should therefore not be explained by metal polarizability but is due to van der Waals Cp*···Cp* attraction and (to some extent) to a small p-character component in the Sn lone pair.
NASA Astrophysics Data System (ADS)
Achary, B. Shivaprasad; Ramya, A. R.; Trivedi, Rajiv; Bangal, P. R.; Giribabu, L.
We report here the design and synthesis of corrole-metallocene dyads consisting of a metallocene (either ferrocene (Dyad 1) or mixed sandwich η5-[C5H4(COOH)]Co(η4-C4Ph4) (Dyad 2)) connected via an ester linkage at meso phenyl position. Both the dyads were characterized by 1H NMR, MALDI-TOF, UV-visible, fluorescence spectroscopies (steady-state, picosecond time-resolved), femtosecond transient absorption spectroscopy (fs-TA) and electrochemical methods. The absorption spectra of these dyads showed slight broadening and splitting of the Soret band that indicates a weak ground state interaction between the corrole macrocycle and metallocene part of the present donor-acceptor (D-A) system. However, in both the dyad systems, fluorescence emission of the corrole was quenched in polar solvents as compared to its parent compound 10-(4-hydroxyphenyl)-5,15-bis-(pentafluorophenyl ) corrole (Ph-Corr). The quenching was more pronounced in ferrocene derivatives than in cobaltocenyl derivatives. Transient absorption studies confirm the absence of photoinduced electron transfer from metallocene to correl for these dyad systems and the quenching of singlet state of corrole is found to enhance intersystem crossing due to heavy atom effect. Corrole-ferrocene and corrole-mixed sandwich η5-[C5H4(COOH)]Co(η4-C4Ph4) dyads have been designed, synthesized and characterized by various spectroscopic techniques. Emission intensitiy of both dyads were quenched in polar solvents whereas transient absorption studies indicates that the quenching coule be due to the heavy atom effect.
Shamiri, Ahmad; Chakrabarti, Mohammed H.; Jahan, Shah; Hussain, Mohd Azlan; Kaminsky, Walter; Aravind, Purushothaman V.; Yehye, Wageeh A.
2014-01-01
50 years ago, Karl Ziegler and Giulio Natta were awarded the Nobel Prize for their discovery of the catalytic polymerization of ethylene and propylene using titanium compounds and aluminum-alkyls as co-catalysts. Polyolefins have grown to become one of the biggest of all produced polymers. New metallocene/methylaluminoxane (MAO) catalysts open the possibility to synthesize polymers with highly defined microstructure, tacticity, and steroregularity, as well as long-chain branched, or blocky copolymers with excellent properties. This improvement in polymerization is possible due to the single active sites available on the metallocene catalysts in contrast to their traditional counterparts. Moreover, these catalysts, half titanocenes/MAO, zirconocenes, and other single site catalysts can control various important parameters, such as co-monomer distribution, molecular weight, molecular weight distribution, molecular architecture, stereo-specificity, degree of linearity, and branching of the polymer. However, in most cases research in this area has reduced academia as olefin polymerization has seen significant advancements in the industries. Therefore, this paper aims to further motivate interest in polyolefin research in academia by highlighting promising and open areas for the future. PMID:28788120
NASA Astrophysics Data System (ADS)
Cheng, Xu
2001-07-01
Me3Si substituents adjacent to Cp2MCl2 (M = Ti, Zr, Hf) are converted to BrMe2Si groups using BBr 3. The high reactivity of the Si-Br bonds toward nucleophiles such as water suggested that these substituents could react with hydroxylated silica surfaces, immobilizing the metallocenes. This dissertation concerns the syntheses of electrophile-functionalized zirconocene dihalide complexes and their use as precursors to silica-supported metallocene olefin polymerization catalysts. First we extended the metallocene "functionalization" chemistry to obtain substituents bearing more than one electrophilic bond. (Me3Sn) 2C5H4 combined with CpZrCl3 in toluene to afford (eta5-Me3Sn-C5H4)CpZrCl 2 (A). Reactions of A with electrophiles (E-X = Cl2B-Cl, I-Cl, and I-I) afforded (eta5-XMe 2Sn-C5H4)CpZrCl2 (and E-Me) cleanly. The reaction of A with BBr3 afforded either (eta5-BrMe2Sn-C5H4)CpZrBr2 (25 °C, 10 min) or (eta5-Br2MeSn-C5H 4)CpZrBr2 (25 °C, 15 h). Ph2MeSi-C5H 4Li combined with ZrCl4•2THF to afford (eta 5-Ph2MeSi-C5H4)2ZrCl 2 (B). The reaction of B with BCl3 led to incomplete cleavage of the Ph-Si bonds, however treatment of B with BBr3 afforded (eta5-Br2MeSi-C 5H4)2ZrBr2 (C) efficiently. X-ray crystal structures of (eta5-ClMe2Sn-C 5H4)CpZrCl2•1/2toluene, (eta 5-Br2MeSn-C5H4)CpZrBr2•THF, B, and C were obtained. Metallocene C reacts with water to afford an oligosiloxane-supported zirconocene dibromide. Spectroscopic characterization suggested a stereoregular structure in which the metallocene units have meso symmetry. The oligomeric substance showed high activity for homogeneous ethylene polymerization. Supported metallocene olefin polymerization catalysts were prepared by combining a functionalized metallocene precursor (Cp2ZrBr 2 bearing either BrMe2Si or Br2MeSi groups) and partially dehydroxylated silica. The activities of the immobilized zirconocene catalysts decreased and the stabilities increased with increasing number of tethers. The immobilized catalyst prepared from (eta5-Br 2MeSi-C5H4)2ZrBr2, which is assumed to form two "double-tethers" to silica, was significantly more active than the catalyst prepared from [eta5-1,3-(BrMe 2Si)2C5H3]2ZrBr2, which is assumed to form four "single-tethers" to silica. Catalyst leaching was observed in all the immobilized zirconocene catalysts. Finally we report model studies on the stability of the Si-O-Si bonds toward methylaluminoxane (MAO). The reaction of (eta5-BrMe 2Si-C5H4)CpZrBr2 with tBuMe 2SiOH results in the formation of Si-O-Si bonds; addition of NEt 3 results in further reaction to afford Si-O-Zr bonds. The reaction of Me3Si-O-SiMe3 with MAO showed that Si-O-Si bonds can be cleaved under the conditions of our polymerization reactions.
NASA Astrophysics Data System (ADS)
Billinghurst, Brant E.; Gough, Kathleen M.
2003-03-01
The first through third overtone spectra of ferrocene, ruthenocene, nickelocene, cobaltocene, dicyclopentadienyl magnesium and sodium cyclopentadienyl are examined with particular attention to the CH stretching of the cyclopentadienyl. Using semi-empirical correlations between CH bond length and CH stretching frequencies in each overtone region, we have determined that the type of metal atom within a metallocene complex has little effect on the CH bond length in the cyclopentadienyl. The only exception is cobaltocene where there is evidence that the Jahn-Teller effect results in several different CH bond lengths. Evidence that bis(cyclopentadienyl) magnesium is not ionic has been observed.
Jongsomjit, Bunjerd; Ngamposri, Sutti; Praserthdam, Piyasan
2005-07-14
Activities during ethylene/1-hexene copolymerization were found to increase using the mixed titania/silica-supported MAO with rac-Et[Ind]2ZrCl2 metallocene catalyst. Energy Dispersive X-ray spectorcopy (EDX) indicated that the titania was apparently located on the outer surface of silica and acted as a spacer to anchor MAO to the silica surface. IR spectra revealed the Si-O-Ti stretching at 980 cm(-1) with low content of titania. The presence of anchored titania resulted in less steric hindrance and less interaction due to supporting effect.
Novel Potent Metallocenes against Liver Stage Malaria
Matos, Joana; da Cruz, Filipa P.; Cabrita, Élia; Gut, Jiri; Nogueira, Fátima; do Rosário, Virgílio E.; Moreira, Rui; Rosenthal, Philip J.; Prudêncio, Miguel
2012-01-01
Novel conjugates of the antimalarial drug primaquine (compound 1) with ferrocene, named primacenes, have been synthesized and screened for their activities against blood stage and liver stage malaria in vitro and host-vector transmission in vivo. Both transmission-blocking and blood-schizontocidal activities of the parent drug were conserved only in primacenes bearing a basic aliphatic amine group. Liver stage activity did not require this structural feature, and all metallocenes tested were comparable to or better than primaquine in this regard. Remarkably, the replacement of primaquine's aliphatic chain by hexylferrocene, as in compound 7, led to a ∼45-fold-higher level activity against liver stage parasitemia than that of primaquine. PMID:22155838
NASA Astrophysics Data System (ADS)
Zhang, Yu; Wang, Xinzhi; Tang, Jianguo; Wang, Wei; Wang, Jinping; Belfiore, Laurence A.
2017-04-01
In this contribution, we obtained the strong enhancement effect of silver nanowires(AgNWs) on fluorescent property of Eu3+-antenna complexes through the function of the surface plasmon resonance(SPR) effect. The key structural characteristics are: (1) AgNWs are covered by the Eu3+-ligand complex and spaced by SiO2 nano-layer between AgNWs and Eu3+-ligand complex (this structure is marked as AgNWs@SiO2@EuTP), and (2) AgNWs as nano-material with large ratio of length to diameter show their good dispersion and processability in isotactic polypropylene (iPP). We obtained the important data about the optimal spacer thickness of SiO2 is 15 nm that was not found in previous publications. The enhanced intensity of fluorescence of EuTP by AgNWs in AgNWs@SiO2@EuTP is 9 times compared with that of EuTP. All of these outstanding properties and fine structures were characterized by TEM, FT-IR, XRD, and fluorescence spectrophotometer. On the other hand, the desired fluorescent iPP composite material was obtained through blending AgNWs@SiO2@EuTP into iPP host. Very importantly, the enhancement effect of AgNWs on EuTP fluorescence in AgNWs@SiO2@EuTP is refrained from the quenching caused by host polymer of iPP.
Vidal, Fernando; Gowda, Ravikumar R; Chen, Eugene Y-X
2015-07-29
This contribution reports the first chemoselective, stereospecific, and living polymerization of polar divinyl monomers, enabled by chiral ansa-zirconocenium catalysts through an enantiomorphic-site controlled coordination-addition polymerization mechanism. Silyl-bridged-ansa-zirconocenium ester enolate 2 has been synthesized and structurally characterized, but it exhibits low to negligible activity and stereospecificity in the polymerization of polar divinyl monomers including vinyl methacrylate (VMA), allyl methacrylate (AMA), 4-vinylbenzyl methacrylate (VBMA), and N,N-diallyl acrylamide (DAA). In contrast, ethylene-bridged-ansa-zirconocenium ester enolate 1 is highly active and stereospecific in the polymerization of such monomers including AMA, VBMA, and DAA. The polymerization by 1 is perfectly chemoselective for all four polar divinyl monomers, proceeding exclusively through conjugate addition across the methacrylic C═C bond, while leaving the pendant C═C bonds intact. The polymerization of DAA is most stereospecific and controlled, producing essentially stereoperfect isotactic PDAA with [mmmm] > 99%, M(n) matching the theoretical value (thus a quantitative initiation efficiency), and a narrow molecular weight distribution (Đ = 1.06-1.16). The stereospecificity is slightly lower for the AMA polymerization but still leading to highly isotactic poly(allyl methacrylate) (PAMA) with 95-97% [mm]. The polymerization of VBMA is further less stereospecific, affording PVBMA with 90-94% [mm], while the polymerization VMA is least stereospecific. Several lines of evidence from both homo- and block copolymerization results have demonstrated living characteristics of the AMA polymerization by 1. Mechanistic studies of this polymerization have yielded a monometallic coordination-addition polymerization mechanism involving the eight-membered chelating intermediate. Post-functionalization of isotactic polymers bearing the pendant vinyl group on every repeating unit via the thiol-ene "click" reaction achieves a full conversion of all the pendant double bonds to the corresponding thioether bonds. Photocuring of such isotactic polymers is also successful, producing an elastic material readily characterizable by dynamic mechanical analysis.
Synthesis and use of (perfluoroaryl) fluoro-aluminate anion
Marks, T.J.; Chen, Y.X.
1998-12-29
A trityl perfluorophenyl alumninate such as tris(2,2{prime},2{double_prime}nonafluorobiphenyl) fluoroaluminate (PBA{sup {minus}}) and its role as a cocatalyst in metallocene-mediated olefin polymerization is disclosed. 4 figs.
Zhao, Wei; Wang, Yang; Liu, Xinli; Chen, Xuesi; Cui, Dongmei
2012-10-01
A one-pot method for the preparation of a new family of PLA materials is reported that combines heterotactic (soft) and isotactic stereoblocks (hard). The ring-opening polymerization of rac-lactide with a salan-rare-earth-metal-alkyl complex in the presence of excess triethanolamine was performed in an immortal mode to give three-armed heterotactic poly(lactide) (soft) with excellent end-hydroxy fidelity. The in situ addition of a salen-aluminum-alkyl precursor to the above polymerization system under any monomer-conversion conditions activated the "dormant" hydroxy-ended PLA chains to propagate through the incorporation of the remaining rac-lactide monomer, but with isospecific selectivity (hard). The resultant PLA had a three-armed architecture with controlled molecular weight and extremely narrow molecular-weight distribution (PDI<1.08). More strikingly, each side-arm simultaneously possessed highly heterotactic (soft) and highly isotactic (hard) segments and the ratio of these two stereoregular sequences could be swiftly adjusted by tuning the addition time of the salen-aluminum-alkyl precursor to the polymerization system. Therefore, star-shaped hard-soft stereoblock poly(lactide)s with various P(m) values and crystallinity were achieved in a single reactor for the first time. This strategy should be applicable to the synthesis of a series of new types of stereoblock polyesters by using an immortal-polymerization process and a proper choice of specific, selective metal-based catalysts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Andrikopoulos, Prokopis C; Armstrong, David R; Clegg, William; Gilfillan, Carly J; Hevia, Eva; Kennedy, Alan R; Mulvey, Robert E; O'Hara, Charles T; Parkinson, John A; Tooke, Duncan M
2004-09-22
Subjecting ferrocene, ruthenocene, or osmocene to the synergic amide base sodium-magnesium tris(diisopropylamido) affords a unique homologous series of metallocene derivatives of general formula [(M(C(5)H(3))(2))Na(4)Mg(4)(i-Pr(2)N)(8)] (where M = Fe (1), Ru (2), or Os (3)). X-ray crystallographic studies of 1-3 reveal a common molecular "inverse crown" structure comprising a 16-membered [(NaNMgN)(4)](4+) "host" ring and a metallocenetetraide [M(C(5)H(3))(2)](4-) "guest" core, the cleaved protons of which are lost selectively from the 1, 1', 3, and 3'-positions. Variable-temperature NMR spectroscopic studies indicate that 1, 2, and 3 each exist as two distinct interconverting conformers in arene solution, the rates of exchange of which have been calculated using coalescence and EXSY NMR measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuzmin, Stanislav L.; Wesolowski, Michal J.; Duley, Walter W.
A new type of metal-organic composition consisting of clusters of nanoparticles has been synthesised by laser irradiation of metallocene/benzene solutions. The metallocene molecules in this reaction become the source of the metal. Exposure to high-energy femtosecond laser pulses dehydrogenate benzene molecules and initiate the high-temperature high-pressure conditions that results in the synthesis of new materials. Irradiation experiments have been carried out on ferrocene/benzene and on other solutions. With ferrocene the synthesis of a new compound has been confirmed by X-ray powder diffraction as the peaks detected do not correspond to any known substance in the Crystallography Open Database. Theoretical simulationmore » of the periodic structure of this new carbide predicts that it has hexagonal symmetry and a unit cell with a = 3.2A and c =2.8A. The exact structure is still uncertain but may be determined from scanning tunneling microscope (STM) studies.« less
13C and 1H NMR (Nuclear Magnetic Resonance) studies of solid polyolefines
NASA Technical Reports Server (NTRS)
Cudby, M. E. A.; Harris, R. K.; Metcalfe, K.; Packer, K. J.; Smith, P. W. R.
1983-01-01
The basis of H-1 and C-13 high-resolution NMR investigations of solid polymers is outlined. The C-13 NMR spectra of solid syndiotactic and isotactic polypropene are discussed and their interpretation in terms of conformation and chain-packing effects are reviewed. The effects of decreasing temperature on the C-13 high-resolution spectrum of an annealed sample of isotactic polypropene is described and interpreted in terms of the crystal structure. The question of the proportion of the sample giving rise to C-13 signals is addressed and some results reported. The main cause for observing only part of the total sample is shown to be the H-1 rotating frame spin-lattice relaxation behavior. The H-1 spin-lattice relaxation and spectral characteristics of a number of polyolefin samples are summarized and the role of spin-diffusion discussed.
Analysis of thickness dependent on crystallization kinetics in thin isotactic-polysterene films
NASA Astrophysics Data System (ADS)
Khairuddin
2016-11-01
Crystalliaztion kinetics of thin film of Isotactic Polysterene (it-PS) films has been studied. Thin PET films having thickness of 338, 533, 712, 1096, 1473, and 2185 A° were prepared by using spin-cast technique. The it-PS crystals were grown on Linkam-hostage in the temperature range 130-240°C with an interval of 10°C. The crystal growths are measured by optical microscopy in lateral direction. It was found that a substantial thickness dependence on crystallisation rate. The analysis using fitting technique based on theory crystal growth of Lauritzen-Hoffman showed that the fitting technique could not resolve to predict the mechanism controlling the thickness dependence on the rate of crystallisation. The possible reasons were due to the crystallisation rate varies with the type of crystals (smooth, rough, overgrowth terrace), and the crystallisation rate changes with the time of crystallisation.
Illos, Roni A; Bisogno, Fabricio R; Clodic, Gilles; Bolbach, Gerard; Weissbuch, Isabelle; Lahav, Meir
2008-07-09
As part of our studies on the biochirogenesis of peptides of homochiral sequence during early evolution, the formation of oligopeptides composed of 14-24 residues of the same handedness in the polymerization of dl-leucine (Leu), dl-phenylalanine (Phe), and dl-valine (Val) in aqueous solutions, by activation with N, N'-carbonyldiimidazole and then initiation with a primary amine, in a one-pot reaction, was demonstrated by MALDI-TOF MS using deuterium enantio-labeled alpha-amino acids. The formation of long isotactic peptides is rationalized by the following steps occurring in tandem: (i) creation of a library of short diasteroisomeric oligopeptides containing isotactic peptides in excess in comparison to a binomial kinetics, as a result of an asymmetric induction exerted by the N-terminal residue of a given handedness; (ii) precipitation of the less soluble racemic isotactic penta- and hexapeptides in the form of beta-sheets that are delineated by homochiral rims; (iii) regio-enantiospecific chain elongation occurring heterogeneously at the beta-sheets/solution interface. Polymerization of l-Leu with l-isoleucine (Ile) or l-Phe with l- (1) N-Me-histidine yielded mixtures of copeptides containing both residues. In contrast, in the polymerization of the corresponding mixtures of l- + d-alpha-amino acids, the long oligopeptides were composed mainly from oligo- l-Leu and oligo- d-Ile in the first system and oligo- d-Phe in the second. Furthermore, in the polymerization of mixtures of hydrophobic racemic alpha-amino acids dl-Leu, dl-Val, and dl-Phe and with added racemic dl-alanine and dl-tyrosine, copeptides of homochiral sequences are most dominantly represented. Possible routes for a spontaneous "mirror-symmetry breaking" process of the racemic mixtures of homochiral peptides are presented.
Method for making thin polypropylene film
Behymer, R.D.; Scholten, J.A.
1985-11-21
An economical method is provided for making uniform thickness polypropylene film as thin as 100 Angstroms. A solution of polypropylene dissolved in xylene is formed by mixing granular polypropylene and xylene together in a flask at an elevated temperature. A substrate, such as a glass plate or microscope slide is immersed in the solution. When the glass plate is withdrawn from the solution at a uniform rate, a thin polypropylene film forms on a flat surface area of the glass plate as the result of xylene evaporation. The actual thickness of the polypropylene film is functional of the polypropylene in xylene solution concentration, and the particular withdrawal rate of the glass plate from the solution. After formation, the thin polypropylene film is floated from the glass plate onto the surface of water, from which it is picked up with a wire hoop.
Synthesis and use of (perfluoroaryl) fluoro-aluminate anion
Marks, Tobin J.; Chen, You-Xian
2001-01-01
A trityl perfluorophenyl alumninate such as tris(2,2',2"-nonafluorobiphenyl)-fluoroaluminate (PBA.sup..crclbar.) and its role as a cocatalyst in metallocene-mediated olefin polymerization is disclosed. Gallium and indium analogs are also disclosed, as are analogs with different anyl groups or different numbers of flourine atoms thereon.
Organo-Lewis acid as cocatalyst for cationic homogeneous Ziegler-Natta olefin polymerizations
Marks, Tobin J.; Chen, You-Xian
2001-01-01
Organo-Lewis acids of the formula BR'R".sub.2 wherein B is boron, R' is fluorinated biphenyl, and R" is a fluorinated phenyl, fluorinated biphenyl, or fluorinated polycyclic fused ring group, and cationic metallocene complexes formed therewith. Such complexes are useful as polymerization catalysts.
Organo-Lewis acid as cocatalyst for cationic homogeneous Ziegler-Natta olefin polymerizations
Marks, Tobin J.; Chen, You-Xian
2002-01-01
Organo-Lewis acids of the formula BR'R".sub.2 wherein B is boron, R' is fluorinated biphenyl, and R" is a fluorinated phenyl, fluorinated biphenyl, or fluorinated polycyclic fused ring group, and cationic metallocene complexes formed therewith. Such complexes are useful as polymerization catalysts.
Manual Solid-Phase Peptide Synthesis of Metallocene-Peptide Bioconjugates
ERIC Educational Resources Information Center
Kirin, Srecko I.; Noor, Fozia; Metzler-Nolte, Nils; Mier, Walter
2007-01-01
A simple and relatively inexpensive procedure for preparing a biologically active peptide using solid phase peptide synthesis (SPPS) is described. Fourth-year undergraduate students have gained firsthand experience from the solid-phase synthesis techniques and they have become familiar with modern analytical techniques based on the particular…
Kelly, Michelle; Macdougall, Katherine; Olabisi, Oluwafisayo; McGuire, Neil
2017-02-01
Polypropylene is a material that is commonly used to treat pelvic floor conditions such as pelvic organ prolapse (POP) and stress urinary incontinence (SUI). Owing to the nature of complications experienced by some patients implanted with either incontinence or prolapse meshes, the biocompatibility of polypropylene has recently been questioned. This literature review considers the in vivo response to polypropylene following implantation in animal models. The specific areas explored in this review are material selection, impact of anatomical location, and the structure, weight and size of polypropylene mesh types. All relevant abstracts from original articles investigating the host response of mesh in vivo were reviewed. Papers were obtained and categorised into various mesh material types: polypropylene, polypropylene composites, and other synthetic and biologically derived mesh. Polypropylene mesh fared well in comparison with other material types in terms of host response. It was found that a lightweight, large-pore mesh is the most appropriate structure. The evidence reviewed shows that polypropylene evokes a less inflammatory or similar host response when compared with other materials used in mesh devices.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-27
..., polymer With ethenylbenzene, Reaction Products With polyethylene-polypropylene glycol 2-aminopropyl Me...-furandione, polymer with ethenylbenzene, reaction products with polyethylene-polypropylene glycol 2... residues of 2,5-furandione, polymer with ethenylbenzene, reaction products with polyethylene-polypropylene...
Hou, Weixin; Mu, Bo; Wang, Qihua
2008-11-01
A polypropylene/methyl-silicone superhydrophobic surface was prepared using a simple casting method. Varying the ratio of polypropylene and methyl-silicone results in different surface microstructure. The wetting behavior of the as-prepared surface was investigated. A polypropylene monolithic material was also prepared. Its superhydrophobicity still retains when the material was cut or abraded. The as-prepared material can also be used to separate some organic solvents from water.
Crystallization behavior of polypropylene and its effect on woodfiber composite properties
Suzhou Yin; Timothy G. Rials; Michael P. Wolcott
1999-01-01
This paper describes an approach where polarizing optical microscopy is used to observe the crystallization process of different polypropylenes in the presence of wood fiber. The crystallization behavior was found to be related to the chemical composition of the polymer systems and the addition of maleic anhydride grafted polypropylene (MAPP) to polypropylene...
Pentadienyl chemistry of the heavy alkaline-earth metals revisited.
Reiners, Matthias; Fecker, Ann Christin; Freytag, Matthias; Jones, Peter G; Walter, Marc D
2014-05-14
Open-metallocenes of the heavy alkaline-earth metals [(η(5)-Pdl')2M(thf)n] (M = Ca (1), Sr (2), n = 1; M = Ba (3), n = 2; Pdl' = 2,4-tBu2C5H5) are readily prepared by salt-metathesis between MI2 and KPdl' and characterized by NMR spectroscopy and X-ray diffraction studies.
USDA-ARS?s Scientific Manuscript database
In order to understand the origin of the tacticity splitting in the NMR spectrum of poly(lactic acid), monomer model compound and dimer model compounds (both isotactic and syndiotactic) were synthesized and their 1H and 13C NMR chemical shifts observed. Two energetically stable conformations were o...
El Sayed, Y; Awadein, A
2013-01-01
Purpose To compare the results of silicone and polypropylene Ahmed glaucoma valves (AGV) implanted during the first 10 years of life. Methods A prospective study was performed on 50 eyes of 33 patients with paediatric glaucoma. Eyes were matched to either polypropylene or silicone AGV. In eyes with bilateral glaucoma, one eye was implanted with polypropylene and the other eye was implanted with silicone AGV. Results Fifty eyes of 33 children were reviewed. Twenty five eyes received a polypropylene valve, and 25 eyes received a silicone valve. Eyes implanted with silicone valves achieved a significantly lower intraocular pressure (IOP) compared with the polypropylene group at 6 months, 1 year, and 2 years postoperatively. The average survival time was significantly longer (P=0.001 by the log-rank test) for the silicone group than for the polypropylene group and the cumulative probability of survival by the log-rank test at the end of the second year was 80% (SE: 8.0, 95% confidence interval (CI): 64–96%) in the silicone group and 56% (SE: 9.8, 95% CI: 40–90%) in the polypropylene group. The difference in the number of postoperative interventions and complications between both groups was statistically insignificant. Conclusion Silicone AGVs can achieve better IOP control, and longer survival with less antiglaucoma drops compared with polypropylene valves in children younger than 10 years. PMID:23579403
DOE Office of Scientific and Technical Information (OSTI.GOV)
Z Xu; C Chen; Y Wang
Combined effects of graphene nanosheets (GNSs) and shear flow on the crystallization behavior of isotactic polypropylene (iPP) were investigated by in-situ synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. For crystallization under quiescent condition (at 145 C), the half-crystallization time (t{sub 1/2}) of nanocomposites containing 0.05 and 0.1 wt % GNSs was reduced to at least 50% compared to that of neat iPP, indicating the high nucleation ability of GNSs. The crystallization rate of iPP was directly proportional to the GNS content. Under a relatively weak shear flow (at a rate of 20 s{sup -1} for 5more » s duration) and a low degree of supercooling, the neat iPP exhibited an isotropic structure due to the relaxation of row nuclei. However, visible antisotropic crystals appeared in sheared iPP/GNSs nanocomposites, indicating that GNSs induced a network structure hindering the mobility of iPP chains and allowing the survival of oriented row nuclei for a long period of time. The presence of GNSs clearly enhanced the effects of shear-induced nucleation as well as orientation of iPP crystals. Two kinds of nucleating origins coexisted in the sheared nanocomposite melt: heterogeneous nucleating sites initiated by GNSs and homogeneous nucleating sites (row nuclei) induced by shear. The difference of t{sub 1/2} of nanocomposites with and without shear was significantly larger than that of neat iPP. The presence of GNSs and shear flow exhibited a synergistic interaction on promoting crystallization kinetics of iPP, although the effect of GNS concentration was not apparent. From WAXD results of isothermal and nonisothermal crystallization of sheared iPP, it was found that the appearance of {beta}-crystals depended on the preservation of row nuclei, where the {alpha}-crystals were predominant in the iPP/GNSs nanocomposites, indicating that GNSs could directly induce {alpha}-crystals of iPP.« less
Rebecca E. Ibach; Roger M. Rowell; Sandra E. Lange; Rebecca L. Schumann
2002-01-01
Aspen fiber-polypropylene composites were prepared with various levels of fiber (0,30%, 40%, 50%, and 60%), polypropylene (PP) (100%, 98%, 70%, 68%, 60%, 58%, 50%, 48%, 40%, and 38%), and the compatibilizer maleated polypropylene (MAPP) (0 and 2%). Specimens were either subjected to 10 cycles of 1 week room temperature water soaking-oven drying or 2-hr. boiling...
Li, Mengqing; Forest, Jean-Marc; Coursol, Christian; Leclair, Grégoire
2011-09-01
The stability of cyclosporine diluted to 0.2 or 2.5 mg/mL with 0.9% sodium chloride injection or 5% dextrose injection and stored in polypropylene-polyolefin containers or polypropylene syringes was evaluated. Intravenous cyclosporine solutions (0.2 and 2.5 mg/mL) were aseptically prepared and transferred to 250-mL polypropylene-polyolefin bags or 60-mL polypropylene syringes. Chemical stability was measured using a stability-indicating high-performance liquid chromatography (HPLC) assay. Physical stability was assessed by visual inspection and a dynamic light scattering (DLS) method. After 14 days, HPLC assay showed that the samples of i.v. cyclosporine stored in polypropylene-polyolefin bags remained chemically stable (>98% of initial amount remaining); the physical stability of the samples was confirmed by DLS and visual inspection. The samples stored in polypropylene syringes were found to contain an impurity (attributed to leaching of a syringe component by the solution) that could be detected by HPLC after 1 day; on further investigation, no leaching was detected when the syringes were exposed to undiluted i.v. cyclosporine 50 mg/mL for 10 minutes. Samples of i.v. cyclosporine solutions of 0.2 and 2.5 mg/mL diluted in 0.9% sodium chloride injection or 5% dextrose injection and stored at 25 °C in polypropylene-polyolefin bags were physically and chemically stable for at least 14 days. When stored in polypropylene syringes, the samples were contaminated by an impurity within 1 day; however, the short-term (i.e., ≤10 minutes) use of the syringes for the preparation and transfer of i.v. cyclosporine solution is considered safe.
Radiation-induced grafting of acrylic acid onto polypropylene film and its biodegradability
NASA Astrophysics Data System (ADS)
Mandal, Dev K.; Bhunia, Haripada; Bajpai, Pramod K.; Chaudhari, C. V.; Dubey, K. A.; Varshney, L.
2016-06-01
Polypropylene based commodity polyolefins are widely used in packaging, manufacturing, electrical, pharmaceutical and other applications. The aim of the present work is to study the effect of grafting of acrylic acid on the biodegradability of acrylic acid grafted polypropylene. The effect of different conditions showed that grafting percentage increased with increase in monomer concentration, radiation dose and inhibitor concentration but decreased with increase in radiation dose rate. The maximum grafting of 159.4% could be achieved at optimum conditions. The structure of grafted polypropylene films at different degree of grafting was characterized by EDS, FTIR, TGA, DSC, SEM and XRD. EDS studies showed that the increase in acrylic acid grafting percentage increased the hydrophilicity of the grafted films. FTIR studies indicated the presence of acrylic acid on the surface of polypropylene film. TGA studies revealed that thermal stability decreased with increase in grafting percentage. DSC studies showed that melting temperature and crystallinity of the grafted polypropylene films lower than polypropylene film. SEM studies indicated that increase in acrylic acid grafting percentage increased the wrinkles in the grafted films. The maximum biodegradability could be achieved to 6.85% for 90.5% grafting. This suggested that microorganisms present in the compost could biodegrade acrylic acid grafted polypropylene.
Liu, Huixia; Jiang, Hairong; Guo, Dehui; Chen, Guochun; Yan, Zhang; Li, Pin; Zhu, Hejun; Chen, Jun; Wang, Xiao
2015-01-01
Polypropylene and PA66 are widely used in our daily life, but they cannot be welded by laser transmission welding (LTW) because of polar differences and poor compatibility. In this paper, grafting modification technology is used to improve the welding performance between polypropylene and PA66. Firstly, the strong reactive and polar maleic-anhydride (MAH) is grafted to polypropylene and infrared spectrometer is used to prove that MAH has been grafted to polypropylene. At the same time, the mechanical and thermal properties of the graft modified polypropylene (TGMPP) are tested. The results prove that the grafting modification has little influence on them. Also, the optical properties of TGMPP are measured. Then, the high welding strength between TGMPP and PA66 is found and the mechanism of the weldability is researched, which shows that there are two reasons for the high welding strength. By observing the micro morphology of the welding zone, one reason found is that the modification of polypropylene can improve the compatibility between polypropylene and PA66 and make them easy to diffuse mutually, which causes many locking structures formed in the welding region. The other reason is that there are chemical reactions between TGMPP and PA66 proved by the X-ray photoelectron spectrometer. PMID:28793484
Polyorganometallosiloxane-2- or -4-pyridine coatings
Sugama, Toshifumi
1997-01-01
A new family of polyorganometallosiloxane-2- or -4-pyridine compounds are provided for corrosion resistant coatings on light metals such as aluminum, magnesium, zinc, steel and their allows. The novel compounds contain backbones modified by metal alkoxides, metallocenes and metallophthalocyanates where the metal is Zr, Ti, Mo, V, Hf, Nb, Si, B and combinations thereof. Methods of making the new compounds are also provided.
Drooghaag, Xavier; Marchand-Brynaert, Jacqueline; Champagne, Benoît; Liégeois, Vincent
2010-09-16
The synthesis and the separation of the four stereoisomers of 2,4,6,8,10-pentamethylundecane (PMU) are described together with their characterization by Raman spectroscopy. In parallel, theoretical calculations of the Raman and vibrational Raman optical activity (VROA) spectra are reported and analyzed in relation with the recorded spectra. A very good agreement is found between the experimental and theoretical spectra. The Raman spectra are also shown to be less affected by the change of configuration than the VROA spectra. Nevertheless, by studying the overlap between the theoretical Raman spectra, we show clear relationships between the spectral fingerprints and the structures displaying a mixture of the TGTGTGTG conformation of the (4R,6s,8S)-PMU (isotactic compound) with the TTTTTTTT conformation of the (4R,6r,8S)-PMU (syndiotactic compound). Then, the fingerprints of the VROA spectra of the five conformers of the (4R,8R)-PMU have been related to the fingerprints of the regular (TG)(N) isotactic compound as a function of the torsion angles. Since the (TT)(N) syndiotactic compound has no VROA signatures, the VROA spectroscopy is very sensitive to the helical structures, as demonstrated here.
Greyling, Guilaume; Pasch, Harald
2017-08-25
Multidetector thermal field-flow fractionation (ThFFF) is shown to be a versatile characterisation platform that can be used to characterise hydrophilic polymers in a variety of organic and aqueous solutions with various ionic strengths. It is demonstrated that ThFFF fractionates isotactic and syndiotactic poly(methacrylic acid) (PMAA) as well as poly(2-vinyl pyridine) (P2VP) and poly(4-vinyl pyridine) (P4VP) according to microstructure in organic solvents and that the ionic strength of the mobile phase has no influence on the retention behaviour of the polymers. With regard to aqueous solutions, it is shown that, despite the weak retention, isotactic and syndiotactic PMAA show different retention behaviours which can qualitatively be attributed to microstructure. Additionally, it is shown that the ionic strength of the mobile phase has a significant influence on the thermal diffusion of polyelectrolytes in aqueous solutions and that the addition of an electrolyte is essential to achieve a microstructure-based separation of P2VP and P4VP in aqueous solutions. Copyright © 2017 Elsevier B.V. All rights reserved.
Permeation Tests on Polypropylene Fiber Materials
2018-03-16
Engineering at the Naval Research Laboratory (NRL) evaluated polypropylene nanofiber materials for their potential in air filtration to remove toxic......The Center for Bio/Molecular Science and Engineering at the Naval Research Laboratory (NRL) evaluated polypropylene nanofiber materials provided by
Properties of antibacterial polypropylene/nanometal composite fibers
USDA-ARS?s Scientific Manuscript database
Melt spinning of polypropylene fibers containing silver and zinc nanoparticles was investigated. The nanometals were generally uniformly dispersed in polypropylene, but aggregation of these materials was observed on fiber surface and in fiber cross-sections. The mechanical properties of the resulted...
Photo-oxidative degradation of TiO{sub 2}/polypropylene films
DOE Office of Scientific and Technical Information (OSTI.GOV)
García-Montelongo, X.L.; Martínez-de la Cruz, A., E-mail: azael70@yahoo.com.mx; Vázquez-Rodríguez, S.
Graphical abstract: - Highlights: • Photo-oxidative degradation of polypropylene is accelerated by TiO{sub 2} incorporation. • Weight loss, FTIR, SEM and GPC shown high degree of degradation of polypropylene. • A mechanism of the photo-degradation of polypropylene by TiO{sub 2} is proposed. - Abstract: Photo-oxidative degradation of polypropylene films with TiO{sub 2} nanoparticles incorporated was studied in a chamber of weathering with Xenon lamps as irradiation source. TiO{sub 2} powder with crystalline structure of anatase was synthesized by thermal treatments at 400 and 500 °C starting from a precursor material obtained by sol–gel method. Composites of TiO{sub 2}/polypropylene were preparedmore » with 0.1, 0.5 and 1.0 wt% of TiO{sub 2}. The mixture of components was performed using a twin screw extruder, the resulting material was pelletized by mechanical fragmenting and then hot-pressed in order to form polypropylene films with TiO{sub 2} dispersed homogeneously. Photo-oxidative degradation process was followed by visual inspection, weight loss of films, scanning electron microscopy (SEM), infrared spectroscopy with Fourier transformed (FTIR), and gel permeation chromatography (GPC)« less
Iwamoto, Shinichiro; Yamamoto, Shigehiro; Lee, Seung-Hwan; Ito, Hirokazu; Endo, Takashi
2014-01-01
Lignocellulose nanofibers were prepared by the wet disk milling of wood flour. First, an ethylene-butene copolymer was pre-compounded with wood flour or lignocellulose nanofibers to prepare master batches. This process involved evaporating the water of the lignocellulose nanofiber suspension during compounding with ethylene-butene copolymer by heating at 105 °C. These master batches were compounded again with polypropylene to obtain the final composites. Since ethylene-butene copolymer is an elastomer, its addition increased the impact strength of polypropylene but decreased the stiffness. In contrast, the wood flour- and lignocellulose nanofiber-reinforced composites showed significantly higher flexural moduli and slightly higher flexural yield stresses than did the ethylene-butene/polypropylene blends. Further, the wood flour composites exhibited brittle fractures during tensile tests and had lower impact strengths than those of the ethylene-butene/polypropylene blends. On the other hand, the addition of the lignocellulose nanofibers did not decrease the impact strength of the ethylene-butene/polypropylene blends. Finally, the addition of wood flour and the lignocellulose nanofibers increased the crystallization temperature and crystallization rate of polypropylene. The increases were more remarkable in the case of the lignocellulose nanofibers than for wood flour. PMID:28788222
Influence of the grade on the variability of the mechanical properties of polypropylene waste.
Jmal, Hamdi; Bahlouli, Nadia; Wagner-Kocher, Christiane; Leray, Dimitri; Ruch, Frédéric; Munsch, Jean-Nicolas; Nardin, Michel
2018-05-01
The prior properties of recycled polypropylene depend on the origin of waste deposits and its chemical constituents. To obtain specific properties with a predefine melt flow index of polypropylene, the suppliers of polymer introduce additives and fillers. However, the addition of additives and/or fillers can modify strongly the mechanical behaviour of recycled polypropylene. To understand the impact of the additives and fillers on the quasi-static mechanical behaviour, we consider, in this study, three different recycled polypropylenes with three different melt flow index obtained from different waste deposits. The chemical constituents of the additives and filler contents of the recycled polypropylenes are determined through thermo-physico-chemical analysis. Tensile and bending tests performed at different strain rates allow identifying the mechanical properties such as the elastic modulus, the yield stress, the maximum stress, and the failure mechanisms. The results obtained are compared with non-recycled polypropylene and with few researches to explain the combined effect of additives. Finally, a post-mortem analysis of the samples was carried out to make the link between the obtained mechanical properties and microstructure. Copyright © 2018 Elsevier Ltd. All rights reserved.
Polyorganometallosiloxane-2- or -4-pyridine coatings
Sugama, T.
1997-12-30
A new family of polyorganometallosiloxane-2- or -4-pyridine compounds are provided for corrosion resistant coatings on light metals such as aluminum, magnesium, zinc, steel and their alloys. The novel compounds contain backbones modified by metal alkoxides, metallocenes and metallophthalocyanates where the metal is Zr, Ti, Mo, V, Hf, Nb, Si, B and combinations thereof. Methods of making the new compounds are also provided. 13 figs.
Altering surface characteristics of polypropylene mesh via sodium hydroxide treatment.
Regis, Shawn; Jassal, Manisha; Mukherjee, Nilay; Bayon, Yves; Scarborough, Nelson; Bhowmick, Sankha
2012-05-01
Incisional hernias represent a serious and common complication following laparotomy. The use of synthetic (e.g. polypropylene) meshes to aid repair of these hernias has considerably reduced recurrence rates. While polypropylene is biocompatible and has a long successful clinical history in treating hernias and preventing reherniation, this material may suffer some limitations, particularly in challenging patients at risk of wound failure due to, for example, an exaggerated inflammation reaction, delayed wound healing, and infection. Surface modification of the polypropylene mesh without sacrificing its mechanical properties, critical for hernia repair, represents one way to begin to address these clinical complications. Our hypothesis is treatment of a proprietary polypropylene mesh with sodium hydroxide (NaOH) will increase in vitro NIH/3T3 cell attachment, predictive of earlier and improved cell colonization and tissue integration of polypropylene materials. Our goal is to achieve this altered surface functionality via enhanced removal of chemicals/oils used during material synthesis without compromising the mechanical properties of the mesh. We found that NaOH treatment does not appear to compromise the mechanical strength of the material, despite roughly a 10% decrease in fiber diameter. The treatment increases in vitro NIH/3T3 cell attachment within the first 72 h and this effect is sustained up to 7 days in vitro. This research demonstrates that sodium hydroxide treatment is an efficient way to modify the surface of polypropylene hernia meshes without losing the mechanical integrity of the material. This simple procedure could also allow the attachment of a variety of biomolecules to the polypropylene mesh that may aid in reducing the complications associated with polypropylene meshes today. Copyright © 2012 Wiley Periodicals, Inc.
Carrasco-Guigón, Fernando Javier; Rodríguez-Félix, Dora Evelia; Castillo-Ortega, María Mónica; Santacruz-Ortega, Hisila C; Burruel-Ibarra, Silvia E; Encinas-Encinas, Jose Carmelo; Plascencia-Jatomea, Maribel; Herrera-Franco, Pedro Jesus; Madera-Santana, Tomas Jesus
2017-01-25
The preparation of composites of synthetic and natural polymers represent an interesting option to combine properties; in this manner, polypropylene and chitosan extruded films using a different proportion of components and polypropylene-graft-maleic anhydride (PPgMA) as compatibilizer were prepared. The effect of the content of the biopolymer in the polypropylene (PP) matrix, the addition of compatibilizer, and the particle size on the properties of the composites was analyzed using characterization by fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), tensile strength, and contact angle, finding that in general, the addition of the compatibilizer and reducing the particle size of the chitosan, favored the physicochemical and morphological properties of the films.
NASA Astrophysics Data System (ADS)
Ahmadi, Masoud; Ansari, Reza; Rouhi, Saeed
2017-11-01
This paper aims to investigate the elastic modulus of the polypropylene matrix reinforced by carbon nanotubes at different temperatures. To this end, the finite element approach is employed. The nanotubes with different volume fractions and aspect ratios (the ratio of length to diameter) are embedded in the polymer matrix. Besides, random and regular algorithms are utilized to disperse carbon nanotubes in the matrix. It is seen that as the pure polypropylene, the elastic modulus of carbon nanotube reinforced polypropylene decreases by increasing the temperature. It is also observed that when the carbon nanotubes are dispersed parallelly and the load is applied along the nanotube directions, the largest improvement in the elastic modulus of the nanotube/polypropylene nanocomposites is obtained.
Polypropylene Oil as a Fuel for Ni-YSZ | YSZ | LSCF Solid Oxide Fuel Cell
NASA Astrophysics Data System (ADS)
Pratiwi, Andini W.; Rahmawati, Fitria; Rochman, Refada A.; Syahputra, Rahmat J. E.; Prameswari, Arum P.
2018-01-01
This research aims to convert polypropylene plastic to polypropylene oil through pyrolysis method and use the polypropylene oil as fuel for Solid Oxide Fuel Cell, SOFC, to produce electricity. The material for SOFC single cell are Ni-YSZ, YSZ, and LSCF as anode, electrolyte and cathode, respectively. YSZ is yttria-stabilized-zirconia. Meanwhile, LSCF is a commercial La0.6Sr0.4Co0.2Fe0.8O3. The Ni-YSZ is a composite of YSZ with nickel powder. LSCF and Ni-YSZ slurry coated both side of YSZ electrolyte pellet through screen printing method. The result shows that, the produced polypropylene oil consist of C8 to C27 hydrocarbon chain. Meanwhile, a single cell performance test at 673 K, 773 K and 873 K with polypropylene oil as fuel, found that the maximum power density is 1.729 μW. cm-2 at 673 K with open circuit voltage value of 9.378 mV.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-aminoethyl) amino]propyl Me, di-Me, reaction products with polyethylene-polypropylene glycol Bu glycidal..., reaction products with polyethylene-polypropylene glycol Bu glycidal ether. (a) Chemical substance and... silicones, 3-[(2-aminoethyl) amino]propyl Me, di-Me, reaction products with polyethylene-polypropylene...
Code of Federal Regulations, 2011 CFR
2011-07-01
...-aminoethyl) amino]propyl Me, di-Me, reaction products with polyethylene-polypropylene glycol Bu glycidal..., reaction products with polyethylene-polypropylene glycol Bu glycidal ether. (a) Chemical substance and... silicones, 3-[(2-aminoethyl) amino]propyl Me, di-Me, reaction products with polyethylene-polypropylene...
Carrasco-Guigón, Fernando Javier; Rodríguez-Félix, Dora Evelia; Castillo-Ortega, María Mónica; Santacruz-Ortega, Hisila C.; Burruel-Ibarra, Silvia E.; Encinas-Encinas, Jose Carmelo; Plascencia-Jatomea, Maribel; Herrera-Franco, Pedro Jesus; Madera-Santana, Tomas Jesus
2017-01-01
The preparation of composites of synthetic and natural polymers represent an interesting option to combine properties; in this manner, polypropylene and chitosan extruded films using a different proportion of components and polypropylene-graft-maleic anhydride (PPgMA) as compatibilizer were prepared. The effect of the content of the biopolymer in the polypropylene (PP) matrix, the addition of compatibilizer, and the particle size on the properties of the composites was analyzed using characterization by fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), tensile strength, and contact angle, finding that in general, the addition of the compatibilizer and reducing the particle size of the chitosan, favored the physicochemical and morphological properties of the films. PMID:28772464
Effects of Surface Modification on the Mechanical Properties of Flax/β-Polypropylene Composites
Wu, Chang-Mou; Lai, Wen-You; Wang, Chen-Yu
2016-01-01
The effects of surface treatment of flax fibers featuring vinyltrimethoxy silane (VTMO) and maleic anhydride-polypropylene (MAPP) on the mechanical properties of flax/PP composites were investigated. α-polypropylene (α-PP) and β-polypropylene (β-PP) were used as matrices for measuring the mechanical properties of the flax fiber/polypropylene (flax/PP) composites. Flax/PP composites composed of double-covered uncommingled yarn (DCUY) were prepared using a film-stacking technique. The influence of surface treatment on the tensile, flexural, impact, and water uptake properties of Flax/PP composites were investigated. MAPP treatment was suitable for flax/PP composites in terms of superior tensile and impact properties. VTMO treatment showed superior flexural properties and less influence on the impact properties after moisture absorption. PMID:28773439
Selective laser vaporization of polypropylene sutures and mesh
NASA Astrophysics Data System (ADS)
Burks, David; Rosenbury, Sarah B.; Kennelly, Michael J.; Fried, Nathaniel M.
2012-02-01
Complications from polypropylene mesh after surgery for female stress urinary incontinence (SUI) may require tedious surgical revision and removal of mesh materials with risk of damage to healthy adjacent tissue. This study explores selective laser vaporization of polypropylene suture/mesh materials commonly used in SUI. A compact, 7 Watt, 647-nm, red diode laser was operated with a radiant exposure of 81 J/cm2, pulse duration of 100 ms, and 1.0-mm-diameter laser spot. The 647-nm wavelength was selected because its absorption by water, hemoglobin, and other major tissue chromophores is low, while polypropylene absorption is high. Laser vaporization of ~200-μm-diameter polypropylene suture/mesh strands, in contact with fresh urinary tissue samples, ex vivo, was performed. Non-contact temperature mapping of the suture/mesh samples with a thermal camera was also conducted. Photoselective vaporization of polypropylene suture and mesh using a single laser pulse was achieved with peak temperatures of 180 and 232 °C, respectively. In control (safety) studies, direct laser irradiation of tissue alone resulted in only a 1 °C temperature increase. Selective laser vaporization of polypropylene suture/mesh materials is feasible without significant thermal damage to tissue. This technique may be useful for SUI procedures requiring surgical revision.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Michael Edward
1993-10-01
The thesis is divided into the following 4 chapters: synthesis, characterization, and reactivity of trinuclear pentamethylcyclopentadienyl cobalt and nickel clusters with triply-bridging methylidyne groups; chemical and physical properties of pentamethylcyclopentadienyl acetylacetonate complexes of Co(II) and Ni(II); synthesis, characterization, and reactivity of pentamethylcyclopentadienyl halide complexes of Co and Ni; and crystallographic studies of distortions in metallocenes with C 5-symmetrical cyclopentadienyl rings.
NASA Astrophysics Data System (ADS)
Wang, J.; Guo, J. P.; Yi, J. J.; Huang, Q. G.; Li, H. M.; Li, Y. F.; Gao, K. J.; Yang, W. T.
2014-08-01
This paper reports the preparation of coral-shaped topological morphology nascent polyethylene (PE) particles promoted by the novel heterogeneous non-metallocene catalyst (m-CH3PhO)TiCl3/carbon nanotubes (CNTs), with AlEt3 used as a cocatalyst. Scanning electron microscope (SEM), high resolution transmission electron microscope (HR-TEM) and inductively coupled plasma (ICP) emission spectroscopy were used to determine the morphology of the catalyst particles and the content of (m-CH3PhO)TiCl3. The carbon nanotube surface was treated with Grignard Reagent prior to reacting with (m-CH3PhO)TiCl3. The catalyst system could effectively catalyze ethylene polymerization and ethylene with 1- hexene copolymerization, the catalytic activity could reach up to 5.8 kg/((gTi)h). Morphology of the obtained polymer particles by SEM and HR-TEM technique revealed that the nascent polyethylene particles looked like coral shape in micro-size. The multiwalled carbon nanotubes (MWCNTs) supported catalysts polymerized ethylene to form polymer nanocomposite in situ. The microscopic examination of this nanocomposite revealed that carbon nanoparticles in PE matrix had a good distribution and the cryogenically fractured surface was ductile-like when polymerization time was 2 min.
Effects of moisture on aspen-fiber/polypropylene composites
Roger M. Rowell
2002-01-01
Aspen fiber/polypropylene composites were made using several different levels of aspen fiber (0 to 60% by weight) with and without the addition of a compatibilizer (maleic anhydride grafted polypropylene, MAPP). These composites were tested under various relative humidity conditions and in water soaking, boiling water, cyclic liquid water and oven drying tests. In all...
News from Online: Industrial Chemicals and Polymers
NASA Astrophysics Data System (ADS)
Sweeney Judd, Carolyn
1999-02-01
Paper or plastic? I am asked this question every time I go grocery shopping. Asked another way, the question is, "Which polymer do you want?" To learn about polymers, go shopping at a great site from the University of Southern Mississippi, The Macrogalleria, a cyberwonderland of polymer fun at http://www.psrc.usm.edu/macrog/index.html . Plan to spend some time here. Bring along Chime and Shockwave plug-ins or download them from The Macrogalleria. The Macrogalleria shopping mall is divided into five levels. On the first level, Polymers are Everywhere at http:/ /www.psrc.usm.edu/macrog/floor1.html, you can visit stores selling sporting goods, food, and clothing. Learn about natural polymers in shoes and in French fries at http://www.psrc.usm.edu/macrog/natupoly.html . Find out about nylon in toothbrushes at http://www.psrc.usm.edu/macrog/nylon.html and about carbon fibers in tennis racquets at http://www.psrc.usm.edu/macrog /carfib.html-great graphics and even better chemistry. Skip up to level three for How They Work at http:/ /www.psrc.usm.edu/macrog/floor3.html. Take a look at the history of rubber on The Cross-linking Page at http:/ /www.psrc.usm.edu/macrog/xlink.html. Move on to level four for Makin' Polymers at http://www.psrc.usm.edu/macrog /floor4.html. Let's go right to the Ziegler-Natta Vinyl Polymerization at http://www.psrc.usm.edu/macrog/ziegler.html . Don't miss the humor in the initial explanation of the process. This page is excellent-with graphics, reactions, and a movie of a polymerization ( http://www.psrc.usm.edu/macrog/movies/zns.html ). This movie is worth seeing several times. Next take a look at another catalyst metallocene at http:/ /www.psrc.usm.edu/macrog/mcene.html. Explanations, graphics, and mechanisms help make this site worth visiting and great for teaching. Several people contributed to The Macrogalleria, with major contributions from Mark Michalovic of the University of Southern Mississippi. Grants were from POLYED, a joint committee of the American Chemical Society Divisions of Polymer Chemistry and Polymeric Materials: Science and Engineering and General Electric Corporation. The POLYED site, http:/ /chemdept.uwsp.edu/polyed/index.htm, is hosted by the University of Wisconsin at Stevens Point. This National Center for Polymer Education is another good place to go for information. More education is available at the Ziegler Research Group Home Page at http://www.chem.ucalgary.ca/groups/ziegler/index.html . Go to Metallocene as Olefin Polymerization Catalysis: An Introduction ( http://www.chem.ucalgary.ca/groups/ziegler/met_intro.html ) for historical accounts of metallocene and Ziegler-Natta catalysts. Movies are available here too. This Canadian site is well-documented and educational. Back at the University of Wisconsin-Madison, The Why Files site at http://whyfiles.news.wisc.edu helps bring important chemical and technology news to the public. Go to the archived files of October 1997 ( http://whyfiles.news.wisc.edu/shorties/catalyst.html ) to find information about the importance of low-temperature metallocene catalysts. The Why Files received funding from the National Science Foundation. Go here for science information in an easy-to-read format. One of the driving forces toward better catalysis is the attempt to reach 100% product, combining efficiency with lowered pollution. Companies can look to the Environmental Protection Agency for information: Environsense at http://es.epa.gov/ is pledged to offer "Common Sense Solutions to Environmental Problems". So where can we get these polymers? The American Chemical Society can help. Go to Chemcylopedia at http://pubs.acs.org/chemcy99/ for great information. Both purchasers and users of chemicals can benefit from this site. Searches can be made on the chemical or on the supplier. Information provided includes CAS Registry Numbers and special shipping requirements as well as potential applications. Do you remember that we started with paper? Let's end with information about making paper. Go to http://www.sci.fi /~saarives/pulpmfl.htm for Ahlstrom Machinery's Typical Offerings for Chemical Pulp Mills. Now this is a chemically rich plant that is worth the trip. Carolyn Sweeney Judd teaches at Houston Community College System, 1300 Holman, Houston, TX 77004; phone: 713/718-6315; email: cjudd@tenet.edu. World Wide Web Addresses The Macrogalleria http://www.psrc.usm.edu/macrog/index.html Polymers Are Everywhere http://www.psrc.usm.edu/macrog/floor1.html Natural Polymers http://www.psrc.usm.edu/macrog/natupoly.html Nylon http://www.psrc.usm.edu/macrog/nylon.html Carbon Fibers http://www.psrc.usm.edu/macrog/carfib.html How They Work http://www.psrc.usm.edu/macrog/floor3.html The Cross-linking Page http://www.psrc.usm.edu/macrog/xlink.html Makin' Polymers http://www.psrc.usm.edu/macrog/floor4.html Ziegler-Natta Vinyl Polymerization http://www.psrc.usm.edu/macrog/ziegler.html Syndiotactic Ziegler-Natta Polymerization (movie, Shockwave plug-in required for viewing) at http://www.psrc.usm.edu/macrog/movies/zns.html Metallocene Catalysis Polymerization http://www.psrc.usm.edu/macrog/mcene.html POLYED Welcome Page http://chemdept.uwsp.edu/polyed/index.htm Ziegler Research Group Home Page http://www.chem.ucalgary.ca/groups/ziegler/index.html Metallocene as Olefin Polymerization Catalysis: An Introduction at http://www.chem.ucalgary.ca/groups/ziegler/met_intro.html The Why Files http://whyfiles.news.wisc.edu Low-Temperature Metallocene Catalysts http://whyfiles.news.wisc.edu/shorties/catalyst.html Environsense http://es.epa.gov/ Chemcylopedia 99 http://pubs.acs.org/chemcy99/ Ahlstrom Machinery's Typical Offerings for Chemical Pulp Mills at http://www.sci.fi/~saarives/pulpmfl.htm access date for all sites: December 1998
Strength of laser welded joints of polypropylene composites
NASA Astrophysics Data System (ADS)
Votrubec, V.; Hisem, P.; Vinšová, L.; Lukášová, V.
2017-11-01
This paper deals with experimental tests of laser welded polypropylene composites. Polymers, such as polypropylene, are often filled with fibres in order to increase their mechanical properties. The welding procedure can also influence material properties nearby weld joints. Therefore the strength of weld joints is lower than strength of primary materials. This effect is proved by realized shear tests. Polymer specimens were filled with 20 % and 40 % of glass fibres and all possible combinations of specimens were welded for experiments. There is also discussed influence of volume fraction of glass fibres in polypropylene on the strength of weld joint.
Craig M. Clemons; Daniel F. Caulfield; A. Jeffrey Giacomin
1999-10-01
In this study, the microstructure of injection-molded polypropylene reinforced with cellulose fiber was investigated. Scanning electron microscopy of the fracture surfaces and X-ray diffraction were used to investigate fiber orientation. The polypropylene matrix was removed by solvent extraction, and the lengths of the residual fibers were optically determined. Fiber...
Nadir Ayrilmis; Turgay Akbulut; Turker Dundar; Robert H. White; Fatih Mengeloglu; Umit Buyuksari; Zeki Candan; Erkan Avci
2012-01-01
Physical, mechanical, and fire properties of the injection-molded wood flour/polypropylene composites incorporated with different contents of boron compounds; borax/boric acid and zinc borate, and phosphate compounds; mono and diammonium phosphates were investigated. The effect of the coupling agent content, maleic anhydride-grafted polypropylene, on the properties of...
Orenstein, Sean B; Saberski, Ean R; Kreutzer, Donald L; Novitsky, Yuri W
2012-08-01
While synthetic prosthetics have essentially become mandatory for hernia repair, mesh-induced chronic inflammation and scarring can lead to chronic pain and limited mobility. Mesh propensity to induce such adverse effects is likely related to the prosthetic's material, weight, and/or pore size. We aimed to compare histopathologic responses to various synthetic meshes after short- and long-term implantations in mice. Samples of macroporous polyester (Parietex [PX]), heavyweight microporous polypropylene (Trelex[TX]), midweight microporous polypropylene (ProLite[PL]), lightweight macroporous polypropylene (Ultrapro[UP]), and expanded polytetrafluoroethylene (DualMesh[DM]) were implanted subcutaneously in mice. Four and 12 wk post-implantation, meshes were assessed for inflammation, foreign body reaction (FBR), and fibrosis. All meshes induced varying levels of inflammatory responses. PX induced the greatest inflammatory response and marked FBR. DM induced moderate FBR and a strong fibrotic response with mesh encapsulation at 12 wk. UP and PL had the lowest FBR, however, UP induced a significant chronic inflammatory response. Although inflammation decreased slightly for TX, marked FBR was present throughout the study. Of the three polypropylene meshes, fibrosis was greatest for TX and slightly reduced for PL and UP. For UP and PL, there was limited fibrosis within each mesh pore. Polyester mesh induced the greatest FBR and lasting chronic inflammatory response. Likewise, marked fibrosis and encapsulation was seen surrounding ePTFE. Heavier polypropylene meshes displayed greater early and persistent fibrosis; the reduced-weight polypropylene meshes were associated with the least amount of fibrosis. Mesh pore size was inversely proportional to bridging fibrosis. Moreover, reduced-weight polypropylene meshes demonstrated the smallest FBR throughout the study. Overall, we demonstrated that macroporous, reduced-weight polypropylene mesh exhibited the highest degree of biocompatibility at sites of mesh implantation. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, J.; Zheng, W. Z.; Qin, C. Z.; Xu, Z. Z.; Wu, Y. Q.
2018-01-01
The effect of different fibers on mechanical properties and ductility of alkali-activated slag cementitious material (AASCM) is studied. The research contents include: fiber type (plant fiber, polypropylene fiber), fiber content, mechanical property index, tensile stress-strain relationship curve, treating time. The test results showed that the compressive strength of two fibers reinforced AASCM was about 90 ~ 110MPa, and the tensile strength was about 3 ~ 5MPa. The reinforcement effect of polypropylene fiber is superior to that of plant fiber, and the mechanical properties of polypropylene fiber reinforced AASCM are superior to those of plant fiber, According to the comparison of SEM pictures, the plant fiber and polypropylene fiber are both closely bound with the matrix, and the transition zones are complete and close. Thus, it is proved that plant fiber and polypropylene fiber delay the crack extension and enhance the ductility of AASCM.
Melt rheological properties of natural fiber-reinforced polypropylene
Jarrod J. Schemenauer; Tim A. Osswald; Anand R. Sanadi; Daniel F. Caulfield
2000-01-01
The melt viscosities and mechanical properties of 3 different natural fiber-polypropylene composites were investigated. Coir (coconut), jute, and kenaf fibers were compounded with polypropylene at 30% by weight content. A capillary rheometer was used to evaluate melt viscosity. The power-law model parameters are reported over a shear rate range between 100 to 1000 sâ1...
The Study on the Mechanical Properties of Multi-walled Carbon Nanotube/Polypropylene Fibers
NASA Astrophysics Data System (ADS)
Youssefi, Mostafa; Safaie, Banafsheh
2018-06-01
Polypropylene (PP) is an important semicrystalline polymer with various applications. Polypropylene fibers containing 1 wt% of multi-walled carbon nanotube was spun using a conventional melt spinning apparatus. The produced fibers were drawn with varying levels of draw ratio. The mechanical properties of the composites were studied. Tensile strength and modulus of the composite fibers were increased with the increase in draw ratio. Molecular orientation and helical content of the composite fibers were increased after drawing. To conclude, tensile properties and molecular orientation of the composite fibers were higher than those of neat polypropylene fibers with the same draw ratio.
Autoclaved Sand-Lime Products with a Polypropylene Mesh
NASA Astrophysics Data System (ADS)
Kostrzewa, Paulina; Stępień, Anna
2017-10-01
The paper presents the results of the research on modifications of silicate bricks with a polypropylene mesh and their influence on physical, mechanical and microstructural properties of such bricks. The main goal of the paper was to determine effects of the polypropylene mesh on sand-lime product parameters. The analysis has focused on compressive strength, water absorption, bulk density and structural features of the material. The obtained product is characterized by improved basic performance characteristics compared to traditional silicate products. Using the polypropylene mesh increased compressive strength by 25% while decreasing the product density. The modified products retain their form and do not disintegrate after losing their bearing capacity.
The Study on the Mechanical Properties of Multi-walled Carbon Nanotube/Polypropylene Fibers
NASA Astrophysics Data System (ADS)
Youssefi, Mostafa; Safaie, Banafsheh
2018-01-01
Polypropylene (PP) is an important semicrystalline polymer with various applications. Polypropylene fibers containing 1 wt% of multi-walled carbon nanotube was spun using a conventional melt spinning apparatus. The produced fibers were drawn with varying levels of draw ratio. The mechanical properties of the composites were studied. Tensile strength and modulus of the composite fibers were increased with the increase in draw ratio. Molecular orientation and helical content of the composite fibers were increased after drawing. To conclude, tensile properties and molecular orientation of the composite fibers were higher than those of neat polypropylene fibers with the same draw ratio.
NASA Astrophysics Data System (ADS)
Anuar, N. I. S.; Zakaria, S.; Harun, J.; Wang, C.
2017-07-01
Kenaf and empty fruit bunch (EFB) fibre which are the important natural fibres in Malaysia were studied as nonwoven polymer composites. The effect of fibre loading on kenaf polypropylene and EFB polypropylene nonwoven composite was studied at different mixture ratio. Kenaf polypropylene nonwoven composite (KPNC) and EFB polypropylene nonwoven composite (EPNC) were prepared by carding and needle-punching techniques, followed by a compression moulding at 6 mm thickness. This study was conducted to identify the optimum fibre loading of nonwoven polypropylene composite and their effect on the mechanical strength. The study was designed at 40%, 50%, 60% and 70% of fibre content in nonwoven mat and composite. The tensile strength, flexural strength and compression strength were tested to evaluate the composite mechanical properties. It was found that the mechanical properties for both kenaf and EFB nonwoven composites were influenced by the fibre content. KPNC showed higher mechanical strength than EPNC. The highest flexural strength was obtained at 60% KPNC and the lowest value was showed by 40% EPNC. The tensile and flexural strength for both KPNC and EPNC decreased after the fibre loading of 60%.
Craig Merrill Clemons; Anand R. Sanadi
2007-01-01
An instrumented Izod test was used to investigate the effects of fiber content, coupling agent, and temperature on the impact performance of kenaf fiber reinforced polypropylene (PP). Composites containing 0-60% (by weight) kenaf fiber and 0 or 2% maleated polypropylene (MAPP) and PP/wood flour composites were tested at room temperature and between -50 °C and +...
Comparison of polypropylene and silicone Ahmed Glaucoma Valves.
Ishida, Kyoko; Netland, Peter A; Costa, Vital P; Shiroma, Lineu; Khan, Baseer; Ahmed, Iqbal Ike K
2006-08-01
To evaluate and compare the clinical outcomes after implantation of the silicone plate and the polypropylene plate Ahmed Glaucoma Valves. Prospective, multicenter, comparative series. A total of 132 patients with uncontrolled glaucoma were treated with either the silicone or polypropylene Ahmed Glaucoma Valve implant. Success was defined according to 2 criteria: (1) intraocular pressure (IOP) of 6 mmHg or more or 21 mmHg or less, and (2) IOP reduction of at least 30% relative to preoperative values. Eyes requiring further glaucoma surgery, including cyclophotocoagulation, or showing loss of light perception were classified as failures. Average follow-up was 12.8 months (range, 6-30 months) for the silicone plate group and 14.5 months (range, 6-30 months) for the polypropylene plate group (P = 0.063). At the last follow-up examination, the mean IOP was 13.8+/-3.9 mmHg and 17.3+/-6.5 mmHg (P<0.0001) and the mean number of antiglaucoma medications was 1.9+/-1.3 and 2.1+/-1.4 (P = 0.48) in the silicone plate and polypropylene plate groups, respectively. The life-table success rates for the silicone plate and polypropylene plate groups were 94.2% and 83.2% at 12 months and 82.4% and 56.7% at 24 months by definition 1, respectively (P = 0.035). When an IOP reduction of at least 30% was used for success criterion (definition 2), probabilities of success were 89.5% and 71.7% at 12 months and 78.3% and 68.5% at 24 months in the silicone and the polypropylene plate groups, respectively (P = 0.012). Visual outcomes were comparable between the 2 groups. However, complications including Tenon's cyst were observed more frequently in the polypropylene plate than in the silicone plate group (P<0.05). The silicone Ahmed Glaucoma Valve (model FP7) showed improved IOP reduction compared with the polypropylene (model S2) implant. Differences observed in mean IOP, success rate, and complications suggest that plate material may influence clinical outcome.
Tensile properties of wood flour/kenaf fiber polypropylene hybrid composites
Jamal Mirbagheri; Mehdi Tajvidi; John C. Hermanson; Ismaeil Ghasemi
2007-01-01
Hybrid composites of wood flour/kenaf fiber and polypropylene were prepared at a fixed fiber to plastic ratio of 40 : 60 and variable ratios of the two reinforcements namely 40 : 0, 30 : 10, 20 : 20, 10 : 30, and 0 : 40 by weight. Polypropylene was used as the polymer matrix, and 40–80 mesh kenaf fiber and 60–100 mesh wood flour were used as the...
NASA Astrophysics Data System (ADS)
Ollivia, S. L.; Juwono, A. L.; Roseno, Seto
2017-05-01
The use of synthetic fibers as reinforcement in composites has disadvantage which are unsustainable and an adverse impact on the environment. An alternative reinforcement for composites is natural fiber. Polypropylene and Sumberejo kenaf fibers were used respectively as the matrix and reinforcement. The aim of this research was to obtain the optimum tensile properties and deflection temperature with the variation of kenaf fiber fractions. Polypropylene/kenaf fiber composites were fabricated by hot press method. The kenaf fiber was soaked in NaOH solution before being used as the reinforcement and polypropylene was extruded before being used as the matrix. The weight fractions were varied to produce composites and pristine polypropylene samples were also prepared for comparison. The optimum tensile strength, modulus and deflection temperature were found in the composites with the 40 wt% kenaf fiber fraction with an increase up to 80% and 170% compared to the pristine polypropylene with the values of (60.3 ± 4,3) MPa and (159.1 ± 1,8) °C respectively. The Scanning Electron Microscope observation results in the fracture surface of the composites with the 40 wt% fiber fraction showed a relatively good bonding interface between fibers and the matrix and the failure modes were fiber breakage and matrix failures.
NASA Astrophysics Data System (ADS)
Oktariani, Erfina; Istikowati, Rita; Tomo, Hendro Sat Setijo; Rizal, Rafliansyah; Pratama, Yosea
2018-02-01
Composites from natural fiber reinforcement are developed as the alternative sheet materials of plastic composite for small-size bodywork parts in automotive industries. Kenaf fiber is selected as the reinforcement of plastic composite. Press forming of Kenaf-Polypropylene is experimentally produced in this study. The aim of this study is to obtain the optimal factor of the process of sheet forming of Kenaf-Polypropylene. The Kenaf delignified is cut into 5 cm lengths and distributed on the surface of Polypropylene sheet for 3 and 5 ply layers. The layers of Kenaf-Polypropylene then pressed by hot press at 190 and 210°C, 40 and 50 bar, for 3 and 5 minutes. However, there are limitations in handling multi responses in design of experiments. The application of the fuzzy logic theory to the grey relational analysis may further develop its performance in solving multi-response problems for process parameter optimization. The layer of Kenaf and Polypropylene, temperature, the duration of hot press and pressure are factors that affect the process. The result of experimental investigation and as well as analysis, shows that the best combination values were 3 ply layer, 210°C, 5 minutes of hot press and 50 bar.
Bonding and Mobility of Alkali Metals in Helicenes.
Barroso, Jorge; Murillo, Fernando; Martínez-Guajardo, Gerardo; Ortíz-Chi, Filiberto; Pan, Sudip; Fernández-Herrera, María A; Merino, Gabriel
2018-06-04
In this work, we analyze the interaction of alkali metal cations with [6]- and [14]helicene and the cation mobility of therein. We found that the distortion of the carbon skeleton is the cause that some of the structures that are local minima for the smallest cations are not energetically stable for K+, Rb+, and Cs+. Also, the most favorable complexes are those where the cation is interacting with two rings forming a metallocene-like structure, except for the largest cation Cs+, where the distortion provoked by the size of the cation desestabilizes the complex. As far as mobility is concerned, the smallest cations, particularly Na+, are the ones that can move most efficiently. In [6]helicene, the mobility is limited by the capture of the cation forming the metallocene-like structure. In larger helicenes, the energy barriers for the cation to move are similar both inside and outside the helix. However, complexes with the cation between two layers are more energetically favored so that the movement will be preferred in that region. The bonding analysis reveals that interactions with no less than 50% of orbitalic contribution are taking place for the series of E+-[6]helicene. Particularly, the complexes of Li+ stand out showing a remarkably orbitalic character bonding (72.5 - 81.6%). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Kuo-Tseng; Wu, Ling-Huey
2017-05-05
Supported olefin polymerization catalysts can prevent reactor-fouling problems and produce uniform polymer particles. Constrained geometry complexes (CGCs) have less sterically hindered active sites than bis-cyclopentadienyl metallocene catalysts. In the literature, micrometer-sized silica particles were used for supporting CGC catalysts, which might have strong mass transfer limitations. This study aims to improve the activity of supported CGC catalysts by using nanometer-sized silica. Ti[(C₅Me₄)SiMe₂(N t Bu)]Cl₂, a "constrained-geometry" titanium catalyst, was supported on MAO-treated silicas (nano-sized and micro-sized) by an impregnation method. Ethylene homo-polymerization and co-polymerization with 1-octene were carried out in a temperature range of 80-120 °C using toluene as the solvent. Catalysts prepared and polymers produced were characterized. For both catalysts and for both reactions, the maximum activities occurred at 100 °C, which is significantly higher than that (60 °C) reported before for supported bis-cyclopentadienyl metallocene catalysts containing zirconium, and is lower than that (≥140 °C) used for unsupported Ti[(C₅Me₄)SiMe₂(N t Bu)]Me₂ catalyst. Activities of nano-sized catalyst were 2.6 and 1.6 times those of micro-sized catalyst for homopolymerization and copolymerization, respectively. The former produced polymers with higher crystallinity and melting point than the latter. In addition, copolymer produced with nanosized catalyst contained more 1-octene than that produced with microsized catalyst.
Investigations into the mechanical and physical behavior of thermoplastic elastomers
NASA Astrophysics Data System (ADS)
Wright, Kathryn Janelle
This thesis describes investigations into the physical and mechanical characteristics of two commercial thermoplastic elastomer (TPE) systems. Both systems studied exhibit elastomeric behavior similar to more traditional crosslinked elastomers; however, in these TPEs non-conventional polymer architectures and morphologies are used to produce their elastomeric behavior. The two TPEs of interest are ethylene-propylene random copolymers and dynamically vulcanized blends of ethylene-propylene-diene monomer (EPDM) and isotactic polypropylene (iPP). Very few studies have examined the mechanical behavior of these materials in terms of their composition and morphology. As such, the primary goal of this research is to both qualitatively and quantitatively understand the influence of composition and morphology on mechanical behavior. In additional very little information is available that compares their performance with that of crosslinked elastomers. As a result, the secondary goal is to qualitatively compare the mechanical responses of these TPEs with that of their more traditional counterparts. The ethylene-propylene copolymers studied have very high comonomer contents and exhibit slow crystallization kinetics. Their morphology consists of nanoscale crystallites embedded in an amorphous rubbery matrix. These crystallites act as physical crosslinks that allow for elasticity. Slow crystallization causes subsequent changes in mechanical behavior that take place over days and even weeks. Physical responses (e.g., density, crystallization kinetics, and crystal structure) of five copolymer compositions are investigated. Mechanical responses (e.g., stiffness, ductility, yielding, and reversibility) are also examined. Finally, the influence of morphology on deformation is studied using in situ analytical techniques. The EPDM/iPP blends are dynamically vulcanized which produces a complex morphology consisting of chemically crosslinked EPDM domains embedded within a semicrystalline iPP matrix. Six compositions are investigated as a function of three parameters: major volume fraction, iPP molecular weight, and EPDM cure state. The influence of these parameters on morphology and resulting mechanical behavior is examined. This work culminates in the development of a morphological model to describe the steady-state reversibility of these EPDM/iPP blends. The model is then evaluated in terms of composition and cure state.
NASA Astrophysics Data System (ADS)
Yoon, Joonsung
The primary objective of this research is to investigate the morphological and mechanical properties of composite materials and porous materials prepared by thermally induced phase separation. High melting crystallizable diluents were mixed with polymers so that the phase separation would be induced by the solidification of the diluents upon cooling. Theoretical phase diagrams were calculated using Flory-Huggins solution thermodynamics which show good agreement with the experimental results. Porous materials were prepared by the extraction of the crystallized diluents after cooling the mixtures (hexamethylbenzene/polyethylene and pyrene/polyethylene). Anisotropic structures show strong dependence on the identity of the diluents and the composition of the mixtures. Anisotropic crystal growth of the diluents was studied in terms of thermodynamics and kinetics using DSC, optical microscopy and SEM. Microstructures of the porous materials were explained in terms of supercooling and dendritic solidification. Dual functionality of the crystallizable diluents for composite materials was evaluated using isotactic polypropylene (iPP) and compatible diluents that crystallize upon cooling. The selected diluents form homogeneous mixtures with iPP at high temperature and lower the viscosity (improved processability), which undergo phase separation upon cooling to form solid particles that function as a toughening agent at room temperature. Tensile properties and morphology of the composites showed that organic crystalline particles have the similar effect as rigid particles to increase toughness; de-wetting between the particle and iPP matrix occurs at the early stage of deformation, followed by unhindered plastic flow that consumes significant amount of fracture energy. The effect of the diluents, however, strongly depends on the identity of the diluents that interact with the iPP during solidification step, which was demonstrated by comparing tetrabromobisphenol-A and phthalic anhydride. A simple method to prepare composite surfaces that can change the wettability in response to the temperature change was proposed and evaluated. Composite surfaces prepared by nanoporous alumina templates filled with polymers showed surface morphology and wettability that depend on temperature. This effect is attributed to the significant difference in thermal conductivity and the thermal expansion coefficient between the alumina and the polymers. The reversibility in thermal response depends on the properties of the polymers.
Li, Gang; Zuccaccia, Cristiano; Tedesco, Consiglia; D'Auria, Ilaria; Macchioni, Alceo; Pellecchia, Claudio
2014-01-03
New [(N(-),N,N(-))ZrR2] dialkyl complexes (N(-),N,N(-)=pyrrolyl-pyridyl-amido or indolyl-pyridyl-amido; R=Me or CH2Ph) have been synthesised and tested as pre-catalysts for ethene and propene polymerisation in combination with different activators, such as B(C6F5)3, [Ph3C][B(C6F5)4], [HNMe2Ph][B(C6F5)4] or solid AlMe3-depleted methylaluminoxane (DMAO). Polyethylene (M(w)>2 MDa and M(w)/M(n)= 1.3-1.6) has been produced if pre-catalysts were activated with 1000 equivalents of DMAO (based on Al) [activity >1000 kg(PE)(mol([Zr]) h mol atm)(-1)] or by using a higher pre-catalyst concentration and a mixture of [HNPhMe2][B(C6F5)4] (1 equiv) and AliBu2H (60 equiv). In the case of propene polymerisation, activity has been observed only if pre-catalysts were treated with an excess of AliBu2H prior to addition of DMAO, which led to highly isotactic polypropylene ([mmmm]>95%). Neutral pre-catalysts and ion pairs derived from their activation have been characterised in solution by using advanced 1D and 2D NMR spectroscopy experiments. The detection and rationalisation of intercationic NOEs clearly showed the formation of dimeric species in which some pyrrolyl or indolyl π-electron density of one unit is engaged in stabilising the metal centre of the other unit, which relegates the counterions in the second coordination sphere. The solid-state structure of the dimeric indolyl-pyridyl-amidomethylzirconium derivative, determined by X-ray diffraction studies, points toward a weak Zr···η(3)-indolyl interaction. It can be hypothesised that the formation of dimeric cationic species hampers monomer coordination (especially of less reactive α-olefins) and that addition of AliBu2H is crucial to split the homodimers. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lisantono, Ade; Praja, Baskoro Abdi; Hermawan, Billy Nouwen
2017-11-01
One of the methods to increase the tensile strength of concrete is adding a fiber material into the concrete. While to reduce a noise in a construction project, a self compacting concrete was a good choices in the project. This paper presents an experimental study of flexural behavior and strength of self compacting fiber reinforced concrete (RC) beams using polypropylene fiber. The micro monofilament polypropylene fibers with the proportion 0.9 kg/m3 of concrete weight were used in this study. Four beam specimens were cast and tested in this study. Two beams were cast of self compacting reinforced concrete without fiber, and two beams were cast of self compacting fiber reinforced concrete using polypropylene. The beams specimen had the section of (180×260) mm and the length was 2000 mm. The beams had simple supported with the span of 1800 mm. The longitudinal reinforcements were using diameter of 10 mm. Two reinforcements of Ø10 mm were put for compressive reinforcement and three reinforcements of Ø10 mm were put for tensile reinforcement. The shear reinforcement was using diameter of 8 mm. The shear reinforcements with spacing of 100 mm were put in the one fourth near to the support and the spacing of 150 mm were put in the middle span. Two points loading were used in the testing. The result shows that the load-carrying capacity of the self compacting reinforced concrete beam using polypropylene was a little bit higher than the self compacting reinforced concrete beam without polypropylene. The increment of load-carrying capacity of self compacting polypropylene fiber reinforced concrete was not so significant because the increment was only 2.80 % compare to self compacting non fiber reinforced concrete. And from the load-carrying capacity-deflection relationship curves show that both the self compacting polypropylene fiber reinforced concrete beam and the self compacting non fiber reinforced concrete beam were ductile beams.
Gamma irradiation assisted fungal degradation of the polypropylene/biomass composites
NASA Astrophysics Data System (ADS)
Butnaru, Elena; Darie-Niţă, Raluca Nicoleta; Zaharescu, Traian; Balaeş, Tiberius; Tănase, Cătălin; Hitruc, Gabriela; Doroftei, Florica; Vasile, Cornelia
2016-08-01
White-rot fungus Bjerkandera adusta has been tested for its ability to degrade some biocomposites materials based on polypropylene and biomass (Eucalyptus globulus, pine cones, and Brassica rapa). γ-irradiation was applied to initiate the degradation of relatively inert polypropylene matrix. The degradation process has been studied by scanning electron microscopy, atomic force microscopy, infrared spectroscopy, contact angle measurements, rheological and chemiluminescence tests. These analyses showed that the polypropylene/biomass composites properties are worsen under the action of the selected microorganism. The formation of cracks and scrap particles over the entire matrix surface and the decrease of the complex viscosity values, as well as the dynamic moduli of gamma irradiated PP/biomass composite and exposed to Bjerkandera adusta fungus, indicate fungal efficiency in composite degradation.
Matthews, Brent D; Pratt, Broc L; Pollinger, Harrison S; Backus, Charles L; Kercher, Kent W; Sing, R F; Heniford, B Todd
2003-10-01
The development of intra-abdominal adhesions, bowel obstruction, and enterocutaneous fistulas are potentially severe complications related to the intraperitoneal placement of prosthetic biomaterials. The purpose of this study was to determine the natural history of adhesion formation to polypropylene mesh and two types of polytetrafluoroethylene (ePTFE) mesh when placed intraperitoneally in a rabbit model that simulates laparoscopic ventral hernia repair. Thirty New Zealand white rabbits were used for this study. A 10-cm midline incision was performed for intra-abdominal access and a 2 cm x 2 cm piece of mesh (n = 60) was sewn to an intact peritoneum on each side of the midline. Two types of ePTFE mesh (Dual Mesh and modified Dual Mesh, W.L. Gore & Assoc., Flagstaff, AZ) and polypropylene mesh were compared. The rate of adhesion formation was evaluated by direct visualization using microlaparoscopy (2-mm endoscope/trocar) at 7 days, 3 weeks, 9 weeks, and 16 weeks after mesh implantation. Adhesions to the prosthetic mesh were scored for extent (%) using the Modified Diamond Scale (0 = 0%, 1
The effect of modified ijuk fibers to crystallinity of polypropylene composite
NASA Astrophysics Data System (ADS)
Prabowo, I.; Nur Pratama, J.; Chalid, M.
2017-07-01
Nowadays, plastics becomes concern associated with its degradation and environmental issues. It has led studies to develop an environmental-friendly material. To minimize the impact of those problems, recently the usage of natural fibers as a filler are introduced because of biodegradability and availability. The promising natural fiber is “ijuk” fiber from Arenga pinnata plant as a filler and polypropylene (PP) polymer as a matrix. Unfortunately, the natural fibers and polymers have the different properties on which polymers are polar while natural fibers are non-polar so that reducing the compatibility and resulting the poor crystallinity. To enhance the compatibility and crystallinity, ijuk fibers were prepared by multistage treatments including alkalinization with 5 and 10% sodium hydroxide (NaOH), oxidation with 3 and 6% sodium hypochlorite (NaClO) and hydrolysis with 20% sulphuric acid (H2SO4) in sequences. The purposes of multistage treatments are to remove the components such as lignin, wax, hemicellulose, to cause an oxidative fragmentation of remaining lignin and to annihilate the amorphous parts respectively. Fourier-Transform Infrared (FTIR) confirms the compatibility meanwhile Differential Scanning Calorimetry (DSC) reveals the crystallinity and Scanning Electron Microscope (SEM) displays surface morphology of polypropylene. The experiments were revealing that the effects of “ijuk” fibers by the multistage treatments of 5 and 10% NaOH resulting the crystallinity of polypropylene around 31.2 and 27.64% respectively compared to the crystallinity before adding the “ijuk” fibers for 16.8%. It indicates that the entire treatments increasing the compatibility and crystallinity of polypropylene. In addition, the use of 5% NaOH offers the better crystallinity than non-treated polypropylene. The experiments conclude that by adding alkalinized “ijuk” fibers of multistage treatments can increase the compatibility and crystallinity of polypropylene.
[INFLUENCE OF TITANIUM COATING ON THE BIOCOMPATIBILITY OF POLYPROPYLENE IMPLANTS].
Babichenko, I I; Kazantsev, A A; Titarov, D L; Shemyatovsky, K A; Ghevondian, N M; Melchenko, D; Alekhin, A I
2016-01-01
Comparative analysis of the proliferative activity of inflammatory cells and distribution of collagen types I and III was carried out around the net materials of polypropylene and titanium coating polypropylene using im- munohistochemical method and polarization microscopy. Experimental modeling of implanted mesh material were made in the soft tissues of the lumbar region of rats. On the 7th postoperative day, quantitative analysis of proliferating cells delected using antibodies to the Ki-67 protein showed, a significant decrease (p < 0.001) in the number of proliferating cells around the network elements of the polypropylene (29.1 ± 5.7 %), when com- pared to similar figures of infiltrates in titanium coating polypropylene (33.6 ± 3.1 %). Similar patterns were found on the 30th day of the experiment--15.9 ± 4.3 and 26.9 ± 3.6%--respectively (p < 0.001). Different types of collagen fibers in the granulomas around various types of implanted mesh material were detected on sections stained with Sirius red at polarizing light. On the 7th day after surgery, the ratio of collagen fibers ty- pe I and III in granulomas around the mesh material made of polypropylene was 1.085 ± 0.022 and this rati around materials of titanium coated polypropylene was higher--1.107 ± 0.013 (p = 0.017). On the 30th posto- perative day in the interface area ratio I/III collagen significantly increased and amounted to 1.174 ± 0.036 and 1.246 ± 0.102, respectively (p = 0.045). Assessing the impact of the use of titanium as a coating on the po- lypropylene, it can be argued that it promotes the formation of collagen I type and a more mature connective tis- sue around the mesh of the implants.
[Experimental basis of a new material for the manufacture of bases dentures].
Shturminskiĭ, V G
2013-10-01
The author studied the problem of improving the quality of prosthetic removable prostheses through the development of new basic material based on polypropylene copolymer. To this end, we examined the physical and chemical structure and hygienic properties of the produced material. The studies found that the developed material of polypropylene optimal solution for the partial plate denture bases, without flaws acrylic prosthesis and improves the properties of the previously used polypropylene plastics.
Qu, Wenwen; Hooymans, Johanna M M; Qiu, Jun; de-Bont, Nik; Gelling, Onko-Jan; van der Mei, Henny C; Busscher, Henk J
2013-05-01
Surface properties of lens cases are determinant for their cleanability and for microbial transmission from lens cases to contact lenses (CLs). PEG-polymer-brush-coatings are known to decrease microbial adhesion more than other surface-coatings. Here, we applied a robust, silica nanoparticles-based brush-coating to polypropylene cases to evaluate their ease of cleaning and probability of bacterial transmission to CLs. Adhesion forces of nine bacterial strains (Pseudomonas, Staphylococci, and Serratia) to rigid CLs, polypropylene, and silica nanoparticles-based brush-coated polypropylene were measured using atomic-force-microscopy and subjected to Weibull analyses to yield bacterial transmission probabilities. Biofilms of each strain were grown in coated and uncoated cases and rinsed with a NaCl or antimicrobial lens care solution. Residual, viable organisms were quantified. Bacterial adhesion forces of all strains were significantly, up to tenfold smaller on brush-coated than on uncoated polypropylene. This yielded, higher transmission probabilities to a CL, but mild-rinsing yielded 10-100 fold higher removal of bacteria from brush-coated than from polypropylene cases. Moreover, due to weak adhesion forces, bacteria on brush-coated cases were two-to-three fold more susceptible to an antimicrobial lens care solution than on polypropylene cases. Therewith, the design of lens case surfaces is a compromise between ease of cleaning and transmission probability to CLs. Copyright © 2013 Wiley Periodicals, Inc.
Khan, Mohammad Jakir Hossain; Hussain, Mohd Azlan; Mujtaba, Iqbal Mohammed
2014-01-01
Propylene is one type of plastic that is widely used in our everyday life. This study focuses on the identification and justification of the optimum process parameters for polypropylene production in a novel pilot plant based fluidized bed reactor. This first-of-its-kind statistical modeling with experimental validation for the process parameters of polypropylene production was conducted by applying ANNOVA (Analysis of variance) method to Response Surface Methodology (RSM). Three important process variables i.e., reaction temperature, system pressure and hydrogen percentage were considered as the important input factors for the polypropylene production in the analysis performed. In order to examine the effect of process parameters and their interactions, the ANOVA method was utilized among a range of other statistical diagnostic tools such as the correlation between actual and predicted values, the residuals and predicted response, outlier t plot, 3D response surface and contour analysis plots. The statistical analysis showed that the proposed quadratic model had a good fit with the experimental results. At optimum conditions with temperature of 75°C, system pressure of 25 bar and hydrogen percentage of 2%, the highest polypropylene production obtained is 5.82% per pass. Hence it is concluded that the developed experimental design and proposed model can be successfully employed with over a 95% confidence level for optimum polypropylene production in a fluidized bed catalytic reactor (FBCR). PMID:28788576
Yang, Peng; Pageni, Parasmani; Kabir, Mohammad Pabel; Zhu, Tianyu; Tang, Chuanbing
2017-01-01
We report the synthesis of cationic cobaltocenium and neutral ferrocene containing homopolymers mediated by photoinduced reversible addition-fragmentation chain transfer (RAFT) polymerization with a photocatalyst fac-[Ir(ppy)3]. The homopolymers were further used as macromolecular chain transfer agents to synthesize diblock copolymers via chain extension. Controlled/“living” feature of photoinduced RAFT polymerization was confirmed by kinetic studies even without prior deoxygenation. A light switch between ON and OFF provided a spatiotemporal control of polymerization. PMID:29276651
1985-08-01
Kodak) by crystallization from acetone; it was recrystallized twice from ethanol and dried in a vacuum oven. Tetraethylamonium perchlorate (TEAP) (G...the electrooxidation of in(Cp’) 2 , which yielded significantly smaller reverse (cathodic) currents in the most strongly coordinating solvents (DMX...DM50) at slower scan rates (< 0.5 V sec-1). Nevertheless, satisfactory a.c. polarograms were obtained for each of these system=. 5 4 Temperature
NASA Astrophysics Data System (ADS)
Syahputra, R. J. E.; Rahmawati, F.; Prameswari, A. P.; Saktian, R.
2017-03-01
The research focusses on converting polypropylene oil as pyrolysis product of polypropylene plastic into an electricity. The converter was a direct liquid fuel-solid oxide fuel cell (SOFC) with cerium oxide based material as electrolyte. The polypropylene vapor flowed into fuel cell, in the anode side and undergo oxidation reaction, meanwhile, the Oxygen in atmosphere reduced into oxygen ion at cathode. The fuel cell test was conducted at 400 - 600 °C. According to GC-MS analysis, the polypropylene oil consist of C8 to C27 hydrocarbon chain. The XRD analysis result shows that Na2CO3 did not change the crystal structure of SDC even increases the electrical conductivity. The maximum power density is 0.079 mW.cm-2 at 773 K. The open circuite voltage is 0.77 volt. Chemical stability test by analysing the single cell at before and after fuel cell test found that ionic migration occured during fuel cell operation. It is supported by the change of elemental composition in the point position of electrolyte and at the electrolyte-electrode interface
Duan, Dengle; Wang, Yunpu; Dai, Leilei; Ruan, Roger; Zhao, Yunfeng; Fan, Liangliang; Tayier, Maimaitiaili; Liu, Yuhuan
2017-10-01
Microwave-assisted fast co-pyrolysis of lignin and polypropylene for bio-oil production was conducted using the ex-situ catalysis technology. Effects of catalytic temperature, feedstock/catalyst ratio, and lignin/polypropylene ratio on product distribution and chemical components of bio-oil were investigated. The catalytic temperature of 250°C was the most conducive to bio-oil production in terms of the yield. The bio-oil yield decreased with the addition of catalyst during ex-situ catalytic co-pyrolysis. When the feedstock/catalyst ratio was 2:1, the minimum char and coke values were 21.22% and 1.54%, respectively. The proportion of cycloalkanes decreased and the aromatics increased with the increasing catalyst loading. A positive synergistic effect was observed between lignin and polypropylene. The char yield dramatically deceased and the bio-oil yield improved during co-pyrolysis compared with those during lignin pyrolysis alone. The proportion of oxygenates dramatically and the minimum value of 6.74% was obtained when the lignin/polypropylene ratio was 1:1. Copyright © 2017. Published by Elsevier Ltd.
Synthesis and Characterization of Liquid Crystalline Poly((N-acylethyleneimine)s.
1986-10-01
ethanolamine and catalytic traces of p-toluensulfonic acid were added. The solution was stirred at 150 C for 20 hrs and then the excess of ethanolamine was...HeOBiPh-6-Oxz) with that of the corresponding polymethacrylate containing also six methylene units as a spacer (2,30), (Scheme 3). This... polymethacrylate was reported by Ringsdorf et. al, and its phase *i behavior is known both for the atactic (2,30) and Isotactic (30) configura- tions. The &tactic
Study of rheological properties of polypropylene/organoclay hybrid materials.
Yu, Suzhu; Liu, Songlin; Zhao, Jianhong; Yong, Ming Shyan
2006-12-01
Polypropylene nanocomposites reinforced with organic modified montmorillonite clay have been fabricated by melt compounding using extrusion. The morphology of the composites is studied with transmission electron microscopy and X-ray diffraction. The melt-state rheological properties of the nanocomposites have been investigated as a function of temperature and organoclay loading. It is found that the organoclays are intercalated and dispersed evenly in the matrix. The storage and loss moduli of the hybrid composites decrease with temperature and increase with organoclay concentration. Both polypropylene and its composites demonstrate a melt-like rheological behavior, indicating the low degree of exfoliation of the organoclay. A shear thinning behavior is found for both polypropylene and its composites, but the onset of shear thinning for organoclay composites occurs at lower shear rates.
Vostrikov, O V; Zotov, V A; Nikitenko, E V
2004-01-01
Tissue reactions to titanium-nickelide and polypropylen and caprone implants used in surgical treatment of anterior aldomen wall hernias were studied in experiment. Digital density of leukocytes, fibroblasts, vessels, thickness of the capsule were studied. Pronounced inflammatory reaction was observed on day 3 which attenuated on day 14 in case of titanium nickelide and on day 30-60 in case of polypropylene and caprone. Fibroplastic processes start in the first group after 7 days while in the second group only after 30 days of the experiment. Thickness of the capsule around titanium-nickelide was 2-3 times less than around polypropylene and caprone. Thus, titanium-nickelide material is biologically more inert than caprone and polypropylen which are widely used in surgery of hernias.
Analysis and optimization of machining parameters of laser cutting for polypropylene composite
NASA Astrophysics Data System (ADS)
Deepa, A.; Padmanabhan, K.; Kuppan, P.
2017-11-01
Present works explains about machining of self-reinforced Polypropylene composite fabricated using hot compaction method. The objective of the experiment is to find optimum machining parameters for Polypropylene (PP). Laser power and Machining speed were the parameters considered in response to tensile test and Flexure test. Taguchi method is used for experimentation. Grey Relational Analysis (GRA) is used for multiple process parameter optimization. ANOVA (Analysis of Variance) is used to find impact for process parameter. Polypropylene has got the great application in various fields like, it is used in the form of foam in model aircraft and other radio-controlled vehicles, thin sheets (∼2-20μm) used as a dielectric, PP is also used in piping system, it is also been used in hernia and pelvic organ repair or protect new herrnis in the same location.
Neodymium:YAG laser cutting of intraocular lens haptics in vitro and in vivo.
Feder, J M; Rosenberg, M A; Farber, M D
1989-09-01
Various complications following intraocular lens (IOL) surgery result in explantation of the lenses. Haptic fibrosis may necessitate cutting the IOL haptics prior to removal. In this study we used the neodymium: YAG (Nd:YAG) laser to cut polypropylene and poly(methyl methacrylate) (PMMA) haptics in vitro and in rabbit eyes. In vitro we were able to cut 100% of both haptic types successfully (28 PMMA and 30 polypropylene haptics). In rabbit eyes we were able to cut 50% of the PMMA haptics and 43% of the polypropylene haptics. Poly(methyl methacrylate) haptics were easier to cut in vitro and in vivo than polypropylene haptics, requiring fewer shots for transection. Complications of Nd:YAG laser use frequently interfered with haptic transections in rabbit eyes. Haptic transection may be more easily accomplished in human eyes.
Macrophage polarization in response to ECM coated polypropylene mesh
Wolf, MT; Dearth, CL; Ranallo, CA; LoPresti, S; Carey, LE; Daly, KA; Brown, BN; Badylak, SF
2015-01-01
The host response to implanted biomaterials is a highly regulated process that influences device functionality and clinical outcome. Non-degradable biomaterials, such as knitted polypropylene mesh, frequently elicit a chronic foreign body reaction with resultant fibrosis. Previous studies have shown that an extracellular matrix (ECM) hydrogel coating of polypropylene mesh reduces the intensity of the foreign body reaction, though the mode of action is unknown. Macrophage participation plays a key role in the development of the foreign body reaction to biomaterials, and therefore the present study investigated macrophage polarization following mesh implantation. Spatiotemporal analysis of macrophage polarization was conducted in response to uncoated polypropylene mesh and mesh coated with hydrated and dry forms of ECM hydrogels derived from either dermis or urinary bladder. Pro-inflammatory M1 macrophages (CD86+/CD68+), alternatively activated M2 macrophages (CD206+/CD68+), and foreign body giant cells were quantified between 3-35 days. Uncoated polypropylene mesh elicited a dominant M1 response at the mesh fiber surface, which was decreased by each ECM coating type beginning at 7 days. The diminished M1 response was accompanied by a reduction in the number of foreign body giant cells at 14 and 35 days, though there was a minimal effect upon the number of M2 macrophages at any time. These results show that ECM coatings attenuate the M1 macrophage response and increase the M2/M1 ratio to polypropylene mesh in vivo. PMID:24856104
Kshirsagar, Parthraj R; Hegde, Harsha; Pai, Sandeep R
2016-05-01
This study was designed to understand the effect of storage in polypropylene microcentrifuge tubes and glass vials during ultra-flow liquid chromatographic (UFLC) analysis. One ml of methanol was placed in polypropylene microcentrifuge tubes (PP material, Autoclavable) and glass vials (Borosilicate) separately for 1, 2, 4, 8, 10, 20, 40, and 80 days intervals stored at -4°C. Contaminant peak was detected in methanol stored in polypropylene microcentrifuge tubes using UFLC analysis. The contaminant peak detected was prominent, sharp detectable at 9.176 ± 0.138 min on a Waters 250-4.6 mm, 4 μ, Nova-Pak C18 column with mobile phase consisting of methanol:water (70:30). It was evident from the study that long-term storage of biological samples prepared using methanol in polypropylene microcentrifuge tubes produce contaminant peak. Further, this may mislead in future reporting an unnatural compound by researchers. Long-term storage of biological samples prepared using methanol in polypropylene microcentrifuge tubes produce contaminant peakContamination peak with higher area under the curve (609993) was obtained in ultra-flow liquid chromatographic run for methanol stored in PP microcentrifuge tubesContamination peak was detected at retention time 9.113 min with a lambda max of 220.38 nm and 300 mAU intensity on the given chromatographic conditionsGlass vials serve better option over PP microcentrifuge tubes for storing biological samples. Abbreviations used: UFLC: Ultra Flow Liquid Chromatography; LC: Liquid Chromatography; MS: Mass spectrometry; AUC: Area Under Curve.
Kozłowska, Marta Karolina; Domańska, Urszula; Lempert, Małgorzata; Rogalski, Marek
2005-03-18
The partial molar volumes, V1(M), and the molar volume of isotactic crystalline low-molecular-weight poly(1-butene), iPBu-1, V1, have been calculated from the measured density of {iPBu-1 + solvent (n-hexane, n-heptane, n-nonane, n-decane, p-xylene, cyclohexane and chloroform)} systems. Some of the thermodynamic quantities were also obtained for the iPBu-1 with eight hydrocarbons (n-octane, n-decane, n-undecane, n-dodecane, n-tridecane, o-xylene, m-xylene, p-xylene) by the method of inverse gas chromatography at various temperatures. The weight fraction activity coefficients of the solvent at infinite dilution, omega2(infinity) and the Flory-Huggins thermodynamic interaction parameters, chi21(infinity), between polymer and solvents were determined. The partial molar free energy, deltaG2(infinity), the partial molar heat of mixing, deltaH2(infinity), at infinite dilution and the polymer solubility parameter, delta1, were calculated. Additionally, the (solid + liquid) binary mixtures equilibria, SLE, of iPBu-1 with three hydrocarbons (n-octane, n-decane and m-xylene) were studied by a dynamic method. By performing these experiments over a large concentration range, the T-x phase diagrams of the polymer-solvent systems were constructed. The excess Gibbs energy models were used to describe the nonideal behaviour of the liquid phase. The omega2(infinity) were determined from the solubility measurements and were predicted by using the UNIFAC FV model.
PLASTIC SHRINKAGE CONTROLLING EFFECT BY POLYPROPYLENE SHORT FIBER WITH HYDROPHILY
NASA Astrophysics Data System (ADS)
Hosoda, Akira; Sadatsuki, Yoshitomo; Oshima, Akihiro; Ishii, Akina; Tsubaki, Tatsuya
The aim of this research is to clarify the mechanism of controlling plastic shrinkage crack by adding small amout of synthetic short fiber, and to propose optimum polypropylene short fiber to control plastic shrinkage crack. In this research, the effect of the hydrophily of polypropylene fiber was investigated in the amount of plastic shrinkage of mortar, total area of plastic shrinkage crack, and bond properties between fiber and mortar. The plastic shrinkage test of morar was conducted under high temperature, low relative humidity, and constant wind velocity. When polypropylene fiber had hydrophily, the amount of plastic shrinkage of mortar was restrained, which was because cement paste in morar was captured by hydrophilic fiber and then bleeding of mortar was restrained. With hydrophily, plastic shrinkage of mortar was restrained and bridging effect was improved due to better bond, which led to remarkable reduction of plastic shrinkage crack. Based on experimental results, the way of developing optimum polypropylene short fiber for actual construction was proposed. The fiber should have large hydrophily and small diameter, and should be used in as small amount as possible in order not to disturb workability of concrete.
NASA Astrophysics Data System (ADS)
Toommee, S.; Pratumpong, P.
2018-06-01
Zeolite was successfully modified by conventional synthetic route. Polyethylene glycol was employed for surface modification of zeolite. The surface of zeolite exhibited therefore hydrophobic properties. Less than 5 wt% of modified zeolites with uniform size and shape were integrated into polypropylene matrix. Mechanical properties of composite exhibited the similar trend compare to neat polypropylene. Oxygen transmission rate and water vapor transmission rate were evaluated and it exhibited the strong potential to be a good candidate material in active packaging.
Liang, Rui; Knight, Katrina; Barone, William; Powers, Robert W; Nolfi, Alexis; Palcsey, Stacy; Abramowitch, Steven; Moalli, Pamela A
2017-02-01
The use of wide pore lightweight polypropylene mesh to improve anatomical outcomes in the surgical repair of prolapse has been hampered by mesh complications. One of the prototype prolapse meshes has been found to negatively impact the vagina by inducing a decrease in smooth muscle volume and contractility and the degradation of key structural proteins (collagen and elastin), resulting in vaginal degeneration. Recently, bioscaffolds derived from extracellular matrix have been used to mediate tissue regeneration and have been widely adopted in tissue engineering applications. Here we aimed to: (1) define whether augmentation of a polypropylene prolapse mesh with an extracellular matrix regenerative graft in a primate sacrocolpopexy model could mitigate the degenerative changes; and (2) determine the impact of the extracellular matrix graft on vagina when implanted alone. A polypropylene-extracellular matrix composite graft (n = 9) and a 6-layered extracellular matrix graft alone (n = 8) were implanted in 17 middle-aged parous rhesus macaques via sacrocolpopexy and compared to historical data obtained from sham (n = 12) and the polypropylene mesh (n = 12) implanted by the same method. Vaginal function was measured in passive (ball-burst test) and active (smooth muscle contractility) mechanical tests. Vaginal histomorphologic/biochemical assessments included hematoxylin-eosin and trichrome staining, immunofluorescent labeling of α-smooth muscle actin and apoptotic cells, measurement of total collagen, collagen subtypes (ratio III/I), mature elastin, and sulfated glycosaminoglycans. Statistical analyses included 1-way analysis of variance, Kruskal-Wallis, and appropriate post-hoc tests. The host inflammatory response in the composite mesh-implanted vagina was reduced compared to that following implantation with the polypropylene mesh alone. The increase in apoptotic cells observed with the polypropylene mesh was blunted in the composite (overall P < .001). Passive mechanical testing showed inferior parameters for both polypropylene mesh alone and the composite compared to sham whereas the contractility and thickness of smooth muscle layer in the composite were improved with a value similar to sham, which was distinct from the decreases observed with polypropylene mesh alone. Biochemically, the composite had similar mature elastin content, sulfated glycosaminoglycan content, and collagen subtype III/I ratio but lower total collagen content when compared to sham (P = .011). Multilayered extracellular matrix graft alone showed overall comparable values to sham in aspects of the biomechanical, histomorphologic, or biochemical endpoints of the vagina. The increased collagen subtype ratio III/I with the extracellular matrix graft alone (P = .033 compared to sham) is consistent with an ongoing active remodeling response. Mesh augmentation with a regenerative extracellular matrix graft attenuated the negative impact of polypropylene mesh on the vagina. Application of the extracellular matrix graft alone had no measurable negative effects suggesting that the benefits of this extracellular matrix graft occur when used without a permanent material. Future studies will focus on understanding mechanisms. Copyright © 2016. Published by Elsevier Inc.
Liang, Rui; Knight, Katrina; Barone, William; Powers, Robert W.; Nolfi, Alexis; Palcsey, Stacy; Abramowitch, Steven; Moalli, Pamela A.
2016-01-01
BACKGROUND The use of wide pore lightweight polypropylene mesh to improve anatomical outcomes in the surgical repair of prolapse has been hampered by mesh complications. One of the prototype prolapse meshes has been found to negatively impact the vagina by inducing a decrease in smooth muscle volume and contractility and the degradation of key structural proteins (collagen and elastin), resulting in vaginal degeneration. Recently, bioscaffolds derived from extracellular matrix have been used to mediate tissue regeneration and have been widely adopted in tissue engineering applications. OBJECTIVE Here we aimed to: (1) define whether augmentation of a polypropylene prolapse mesh with an extracellular matrix regenerative graft in a primate sacrocolpopexy model could mitigate the degenerative changes; and (2) determine the impact of the extracellular matrix graft on vagina when implanted alone. STUDY DESIGN A polypropylene-extracellular matrix composite graft (n = 9) and a 6-layered extracellular matrix graft alone (n = 8) were implanted in 17 middle-aged parous rhesus macaques via sacrocolpopexy and compared to historical data obtained from sham (n = 12) and the polypropylene mesh (n = 12) implanted by the same method. Vaginal function was measured in passive (ball-burst test) and active (smooth muscle contractility) mechanical tests. Vaginal histomorphologic/ biochemical assessments included hematoxylin-eosin and trichrome staining, immunofluorescent labeling of α-smooth muscle actin and apoptotic cells, measurement of total collagen, collagen subtypes (ratio III/ I), mature elastin, and sulfated glycosaminoglycans. Statistical analyses included 1-way analysis of variance, Kruskal-Wallis, and appropriate posthoc tests. RESULTS The host inflammatory response in the composite mesh-implanted vagina was reduced compared to that following implantation with the polypropylene mesh alone. The increase in apoptotic cells observed with the polypropylene mesh was blunted in the composite (overall P < .001). Passive mechanical testing showed inferior parameters for both polypropylene mesh alone and the composite compared to sham whereas the contractility and thickness of smooth muscle layer in the composite were improved with a value similar to sham, which was distinct from the decreases observed with polypropylene mesh alone. Biochemically, the composite had similar mature elastin content, sulfated glycosaminoglycan content, and collagen subtype III/I ratio but lower total collagen content when compared to sham (P = .011). Multilayered extracellular matrix graft alone showed overall comparable values to sham in aspects of the biomechanical, histomorphologic, or biochemical end-points of the vagina. The increased collagen subtype ratio III/I with the extracellular matrix graft alone (P = .033 compared to sham) is consistent with an ongoing active remodeling response. CONCLUSION Mesh augmentation with a regenerative extracellular matrix graft attenuated the negative impact of polypropylene mesh on the vagina. Application of the extracellular matrix graft alone had no measurable negative effects suggesting that the benefits of this extra-cellular matrix graft occur when used without a permanent material. Future studies will focus on understanding mechanisms. PMID:27615441
Early Wound Morbidity after Open Ventral Hernia Repair with Biosynthetic or Polypropylene Mesh.
Sahoo, Sambit; Haskins, Ivy N; Huang, Li-Ching; Krpata, David M; Derwin, Kathleen A; Poulose, Benjamin K; Rosen, Michael J
2017-10-01
Recently introduced slow-resorbing biosynthetic and non-resorbing macroporous polypropylene meshes are being used in hernias with clean-contaminated and contaminated wounds. However, information about the use of biosynthetic meshes and their outcomes compared with polypropylene meshes in clean-contaminated and contaminated cases is lacking. Here we evaluate the use of biosynthetic mesh and polypropylene mesh in elective open ventral hernia repair (OVHR) and investigate differences in early wound morbidity after OVHR within clean-contaminated and contaminated cases. All elective, OVHR with biosynthetic mesh or uncoated polypropylene mesh from January 2013 through October 2016 were identified within the Americas Hernia Society Quality Collaborative. Association of mesh type with 30-day wound events in clean-contaminated or contaminated wounds was investigated using a 1:3 propensity-matched analysis. Biosynthetic meshes were used in 8.5% (175 of 2,051) of elective OVHR, with the majority (57.1%) used in low-risk or comorbid clean cases. Propensity-matched analysis in clean-contaminated and contaminated cases showed no significant difference between biosynthetic mesh and polypropylene mesh groups for 30-day surgical site occurrences (20.7% vs 16.7%; p = 0.49) or unplanned readmission (13.8% vs 9.8%; p = 0.4). However, surgical site infections (22.4% vs 10.9%; p = 0.03), surgical site occurrences requiring procedural intervention (24.1% vs 13.2%; p = 0.049), and reoperation rates (13.8% vs 4.0%; p = 0.009) were significantly higher in the biosynthetic group. Biosynthetic mesh appears to have higher rates of 30-day wound morbidity compared with polypropylene mesh in elective OVHR with clean-contaminated or contaminated wounds. Additional post-market analysis is needed to provide evidence defining best mesh choices, location, and surgical technique for repairing contaminated ventral hernias. Copyright © 2017 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
Rieder, Erwin; Stoiber, Martin; Scheikl, Verena; Poglitsch, Marcus; Dal Borgo, Andrea; Prager, Gerhard; Schima, Heinrich
2011-01-01
Laparoscopic ventral hernia repair has gained popularity among minimally invasive surgeons. However, mesh fixation remains a matter of discussion. This study was designed to compare noninvasive fibrin-glue attachment with tack fixation of meshes developed primarily for intra-abdominal use. It was hypothesized that particular mesh structures would substantially influence detachment force. For initial evaluation, specimens of laminated polypropylene/polydioxanone meshes were anchored to porcine abdominal walls by either helical titanium tacks or absorbable tacks in vitro. A universal tensile-testing machine was used to measure tangential detachment forces (TF). For subsequent experiments of glue fixation, polypropylene/polydioxanone mesh and 4 additional meshes with diverse particular mesh structure, ie, polyvinylidene fluoride/polypropylene mesh, a titanium-coated polypropylene mesh, a polyester mesh bonded with a resorbable collagen, and a macroporous condensed PTFE mesh were evaluated. TF tests revealed that fibrin-glue attachment was not substantially different from that achieved with absorbable tacks (median TF 7.8 Newton [N], range 1.3 to 15.8 N), but only when certain open porous meshes (polyvinylidene fluoride/polypropylene mesh: median 6.2 N, range 3.4 to 10.3 N; titanium-coated polypropylene mesh: median 5.2 N, range 2.1 to 11.7 N) were used. Meshes coated by an anti-adhesive barrier (polypropylene/polydioxanone mesh: median 3.1 N, range 1.7 to 5.8 N; polyester mesh bonded with a resorbable collagen: median 1.3 N, range 0.5 to 1.9 N), or the condensed PTFE mesh (median 3.1 N, range 2.1 to 7.0 N) provided a significantly lower TF (p < 0.01). Fibrin glue appears to be an appealing noninvasive option for mesh fixation in laparoscopic ventral hernia repair, but only if appropriate meshes are used. Glue can also serve as an adjunct to mechanical fixation to reduce the number of invasive tacks. Copyright © 2010 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
Torrefied biomass-polypropylene composites
USDA-ARS?s Scientific Manuscript database
Torrefied almond shells and wood chips were incorporated into polypropylene as fillers to produce torrefied biomass-polymer composites. Response surface methodology was used to examine the effects of filler concentration, filler size, and lignin factor (relative lignin to cellulose concentration) on...
Study on Mechanical Properties of Hybrid Fiber Reinforced Concrete
NASA Astrophysics Data System (ADS)
He, Dongqing; Wu, Min; Jie, Pengyu
2017-12-01
Several common high elastic modulus fibers (steel fibers, basalt fibers, polyvinyl alcohol fibers) and low elastic modulus fibers (polypropylene fiber) are incorporated into the concrete, and its cube compressive strength, splitting tensile strength and flexural strength are studied. The test result and analysis demonstrate that single fiber and hybrid fiber will improve the integrity of the concrete at failure. The mechanical properties of hybrid steel fiber-polypropylene fiber reinforced concrete are excellent, and the cube compressive strength, splitting tensile strength and flexural strength respectively increase than plain concrete by 6.4%, 3.7%, 11.4%. Doped single basalt fiber or polypropylene fiber and basalt fibers hybrid has little effect on the mechanical properties of concrete. Polyvinyl alcohol fiber and polypropylene fiber hybrid exhibit ‘negative confounding effect’ on concrete, its splitting tensile and flexural strength respectively are reduced by 17.8% and 12.9% than the single-doped polyvinyl alcohol fiber concrete.
Analysis of Nanodomain Composition in High-Impact Polypropylene by Atomic Force Microscopy-Infrared.
Tang, Fuguang; Bao, Peite; Su, Zhaohui
2016-05-03
In this paper, compositions of nanodomains in a commercial high-impact polypropylene (HIPP) were investigated by an atomic force microscopy-infrared (AFM-IR) technique. An AFM-IR quantitative analysis method was established for the first time, which was then employed to analyze the polyethylene content in the nanoscopic domains of the rubber particles dispersed in the polypropylene matrix. It was found that the polyethylene content in the matrix was close to zero and was high in the rubbery intermediate layers, both as expected. However, the major component of the rigid cores of the rubber particles was found to be polypropylene rather than polyethylene, contrary to what was previously believed. The finding provides new insight into the complicated structure of HIPPs, and the AFM-IR quantitative method reported here offers a useful tool for assessing compositions of nanoscopic domains in complex polymeric systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobrzyńska-Mizera, Monika, E-mail: monika.dobrzynska-mizera@doctorate.put.poznan.pl; Sterzyński, Tomasz; Dutkiewicz, Michał
Composites based on polypropylene (iPP) modified with a sorbitol derivative (NX8000) and siloxane-silsesquioxane resin (SiOPh) containing maleated polypropylene (MAPP) as compatibilizer were prepared by melt extrusion. Calorimetric investigations were carried out using differential scanning calorimetry (DSC), whereas the morphological and mechanical properties were investigated by scanning electron microscopy (SEM) and static tensile tests. DSC measurements revealed no influence of SiOPh and a slight effect of MAPP addition on the crystallization kinetics of polypropylene. Additionally, the introduction of MAPP into the iPP+NX8000+SiOPh composites increased plastic properties of the samples. All the above was attributed to the compatibilizing effect of MAPP whichmore » improved interfacial adhesion between iPP, NX8000 and SiOPh. This phenomenon was also confirmed by the SEM images illustrating more homogenous distribution of the filler in the compatibilized samples.« less
Vibration behaviour of foamed concrete floor with polypropylene and rise husk ash fibre
NASA Astrophysics Data System (ADS)
Azaman, N. A. Mohd; Ghafar, N. H. Abd; Ayub, N.; Ibrahim, M. Z.
2017-11-01
In the history of the construction industry, lightweight concrete or foamed concrete is a special concrete which can very useful in the construction sector because it is very lightweight and it can compact by itself at each angle of foamwork. Foamed concrete is one of lightweight concrete which widely used for floor construction due to its light weight and economic. The significant challenges in the floor design process are considering the vibration that needs improvements for the poor dynamic behaviour insulation. An alternative material to replace sand with certain amount of rice husk ash (RHA) and polypropylene was introduced. Research was determine the dynamic behavior of foam-polypropylene and foam-RHA concrete by using impact hammer test. The natural frequency for normal foamed concrete, 0.5 % of Polypropylene and 15% of RHA is 29.8 Hz, 29.3 Hz and 29.5 Hz respectively.
Karjalainen, T; He, M; Chong, A K S; Lim, A Y T; Ryhanen, J
2010-07-01
Nickel-titanium (NiTi) has been proposed as an alternative material for flexor tendon core suture. To our knowledge, its suitability as a circumferential suture of flexor tendon repair has not been investigated before. The purpose of this ex vivo study was to investigate the biomechanical properties of NiTi circumferential repairs and to compare them with commonly used polypropylene. Forty porcine flexor tendons were cut and repaired by simple running or interlocking mattress technique using 100 microm NiTi wire or 6-0 polypropylene. The NiTi circumferential repairs showed superior stiffness, gap resistance, and load to failure when compared to polypropylene repairs with both techniques. Nickel-titanium wire seems to be a potential material for circumferential repair of flexor tendons. Copyright 2010 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Smarzewski, Piotr
2017-10-01
This study has investigated the effect of curing period on the mechanical properties of straight polypropylene and hooked-end steel fibre reinforced ultra-high performance concrete (UHPC). Various physical properties are evaluated, i.e. absorbability, apparent density and open porosity. Compressive strength, tensile splitting strength, flexural strength and modulus of elasticity were determined at 28, 56 and 730 days. Comparative strength development of fibre reinforced mixes at 0.5%, 1%, 1.5% and 2% by volume fractions in relation to the mix without fibres was observed. Good correlations between the compressive strength and the modulus of elasticity are established. Steel and polypropylene fibres significantly increased the compressive strength, tensile splitting strength, flexural strength and modulus of elasticity of UHPC after two years curing period when fibre content volume was at least 1%. It seems that steel fibre reinforced UHPC has better properties than the polypropylene fibre reinforced UHPC.
NASA Astrophysics Data System (ADS)
Dobrzyńska-Mizera, Monika; Dutkiewicz, Michał; Sterzyński, Tomasz; Di Lorenzo, Maria Laura
2015-12-01
Composites based on polypropylene (iPP) modified with a sorbitol derivative (NX8000) and siloxane-silsesquioxane resin (SiOPh) containing maleated polypropylene (MAPP) as compatibilizer were prepared by melt extrusion. Calorimetric investigations were carried out using differential scanning calorimetry (DSC), whereas the morphological and mechanical properties were investigated by scanning electron microscopy (SEM) and static tensile tests. DSC measurements revealed no influence of SiOPh and a slight effect of MAPP addition on the crystallization kinetics of polypropylene. Additionally, the introduction of MAPP into the iPP+NX8000+SiOPh composites increased plastic properties of the samples. All the above was attributed to the compatibilizing effect of MAPP which improved interfacial adhesion between iPP, NX8000 and SiOPh. This phenomenon was also confirmed by the SEM images illustrating more homogenous distribution of the filler in the compatibilized samples.
Ummartyotin, S; Pechyen, C
2016-05-20
Cellulose based composite was successfully designed as active packaging with additional feature of microwavable properties. Small amount of cellulose with 10 μm in diameter was integrated into polypropylene matrix. The use of maleic anhydride was employed as coupling agent. Thermal and mechanical properties of cellulose based composite were superior depending on polypropylene matrix. Crystallization temperature and compressive strength were estimated to be 130 °C and 5.5 MPa. The crystal formation and its percentage were therefore estimated to be 50% and it can be predicted on the feasibility of microwavable packaging. Morphological properties of cellulose based composite presented the good distribution and excellent uniformity. It was remarkable to note that cellulose derived from cotton can be prepared as composite with polypropylene matrix. It can be used as packaging for microwave application. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Chong; Zha, Jun-Wei; Yan, Hong-Da; Li, Wei-Kang; Dang, Zhi-Min
2018-02-01
Polypropylene is one kind of eco-friendly insulating material, which has attracted more attention for use in high voltage direct current (HVDC) insulation due to the long-distance transmission, low loss, and recyclability. In this work, the morphology and thermal and electrical properties of the block polypropylene with various β-nucleating agent (β-NA) contents were investigated. The relative fraction of the β-crystal can reach 64.7% after adding 0.05 wt. % β-NA. The β-NA also greatly reduced the melting point and improved the crystallization temperature. The electrical property results showed that the alternating and direct current breakdown strength and conduction current were obviously improved. In addition, space charge accumulation was significantly suppressed by introducing the β-NA. This work provides an attractive strategy of design and fabrication of polypropylene for HVDC application.
Code of Federal Regulations, 2012 CFR
2012-07-01
... recovered for reuse in the process, off-site purification or treatment, or sale, at the time the process... polypropylene, polyethylene, polystyrene, (general purpose, crystal, or expandable) or poly(ethylene... production of polypropylene, polyethylene, polystyrene, (general purpose, crystal, or expandable), or poly...
Code of Federal Regulations, 2011 CFR
2011-07-01
... recovered for reuse in the process, off-site purification or treatment, or sale, at the time the process... polypropylene, polyethylene, polystyrene, (general purpose, crystal, or expandable) or poly(ethylene... production of polypropylene, polyethylene, polystyrene, (general purpose, crystal, or expandable), or poly...
Polypropylene fiber reinforced concrete detention ponds : final report.
DOT National Transportation Integrated Search
1995-09-01
In 1991, two Durafiber polypropylene fiber reinforced concrete lined detention ponds were constructed. The detention ponds are located on the north side of the 181st Avenue Interchange, on the Columbia River Highway (I-84), approximately ten miles ea...
Electrochemistry in supercritical fluids
Branch, Jack A.; Bartlett, Philip N.
2015-01-01
A wide range of supercritical fluids (SCFs) have been studied as solvents for electrochemistry with carbon dioxide and hydrofluorocarbons (HFCs) being the most extensively studied. Recent advances have shown that it is possible to get well-resolved voltammetry in SCFs by suitable choice of the conditions and the electrolyte. In this review, we discuss the voltammetry obtained in these systems, studies of the double-layer capacitance, work on the electrodeposition of metals into high aspect ratio nanopores and the use of metallocenes as redox probes and standards in both supercritical carbon dioxide–acetonitrile and supercritical HFCs. PMID:26574527
Heimgartner, Heinz
2017-01-01
The scope of applications of dialkyl dicyanofumarates and maleates as highly functionalized electron-deficient dipolarophiles, dienophiles and Michael acceptors is summarized. The importance for the studies on reaction mechanisms of cycloadditions is demonstrated. Multistep reactions with 1,2-diamines and β-aminoalcohols leading to diverse five- and six-membered heterocycles are discussed. Applications of dialkyl dicyanofumarates as oxidizing agents in the syntheses of disulfides and diselenides are described. The reactions with metallocenes leading to charge-transfer complexes with magnetic properties are also presented. PMID:29114328
Redox polymer electrodes for advanced batteries
Gregg, Brian A.; Taylor, A. Michael
1998-01-01
Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene.
Redox polymer electrodes for advanced batteries
Gregg, B.A.; Taylor, A.M.
1998-11-24
Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene. 2 figs.
Reaction kinetics and product distributions in photoelectrochemical cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koval, C.A.
1992-01-01
Hot electron reaction studies at p-InP/CH[sub 3]CN interface revealed essential/desirable features for redox systems used to investigate hot carriers in photoelectrocehmical cells. Reduction of dibromoethylbenzene (DBEB) in presence of metallocene couples is being studied using rotating rink disk electrodes of n-and p-InP disks and Pt rings. At highly doped p-InP electrodes, reduction of DBEB can be very efficient (>30%). A minielectrochemical cell was used to investigate electron transfer at nonilluminated n-WSe[sub 2]/dimethylferrocene[sup +/0] interfaces.
Polypropylene fiber reinforced microsilica concrete bridge deck overlay at Link River Bridge
DOT National Transportation Integrated Search
2000-02-01
In 1997 ODOT overlaid the Link River Bridge with microsilica concrete, reinforced with polypropylene fibers (FMC). The manufacturer claimed the fibers would reduce plastic shrinkage cracks and settlement cracking during the early life of the concrete...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouza, R.; Barral, L.; Abad, M. J.
The effects of Pinus Sylvestris wood flour as filler in polypropylene matrix was evaluated. The mechanical properties and the morphology of different wood flour/polypropylene composites (WPC) were studied. The composites materials were prepared with several amounts of wood flour from 10 to 30% wt. Mechanical properties show that the wood flour incorporation increases the rigidity of the composites. Morphological analysis indicates that agglomerates are formed, with amounts exceeding 30% of wood flour. For the silane--treated composites, the dispersion of the filler into the polypropylene (PP) matrix improved. Shore D hardness of the composites is decreased with the addition of themore » coupling agent.« less
Enhancing the Dyeability of Polypropylene Fibers by Melt Blending with Polyethylene Terephthalate
Moradian, Siamak; Ameri, Farhad
2013-01-01
Attempts were made to modify polypropylene fibers by melt blending with polyethylene terephthalate in order to enhance the dyeability of the resultant fiber. Five blends of polypropylene/polyethylene terephthalate/compatibilizer were prepared and subsequently spun into fibers. Three disperse dyes were used to dye such modified fibers at boiling and 130°C. The dyeing performance of the blend fibers, as well as the morphological, chemical, thermal, and mechanical properties, of the corresponding blends was characterized by means of spectrophotometry, polarized optical microscopy, scanning electron microscopy (SEM), FT-IR spectroscopy, differential scanning calorimetry (DSC), and tensile testing. PMID:24288485
Effect of tetraethoxysilane coating on the improvement of plasma treated polypropylene adhesion
NASA Astrophysics Data System (ADS)
Pantoja, M.; Encinas, N.; Abenojar, J.; Martínez, M. A.
2013-09-01
Polypropylene is one of the most used polymers due to its lightweight and recyclability properties, among others. However, its poor characteristics regarding surface energy and lack of polar functional groups have to be overcome to perform adhesion processes. The main objective of this work is to improve the adhesion behavior of polypropylene by combining atmospheric pressure plasma surface activation and silane adhesion promoter. Tetraethoxysilane hydrolysis and condensation are followed through infrared spectroscopy by attenuated total reflectance in order to set the coating conditions. Contact angle measurements and surface energy calculations as well as infrared and X-ray photoelectron spectroscopy are used to evaluate polymer chemical modifications. Morphological changes are studied through scanning electron and atomic force microscopy. Results show the ability of plasma treatment to create active oxydised functional groups on the polypropylene surface. These groups lead to a proper wetting of the polymer by the silane. Shear strength of single-lap bonding of polypropylene with a polyurethane adhesive suffers a significant improvement when the silane coating is applied on previously plasma activated samples. It has been also demonstrated that the silane curing conditions play a decisive role on the adhesion response. Finally, the stability of the silane solution is tested up to 30 days, yielding diminished but still acceptable adhesion strength values.
Upcycling of polypropylene waste by surface modification using radiation-induced grafting
NASA Astrophysics Data System (ADS)
Hassan, Muhammad Inaam ul; Taimur, Shaista; Yasin, Tariq
2017-11-01
In this work, upcycling of polypropylene waste into amidoxime functionalized polypropylene adsorbent was studied using radiation-induced grafting technique. Polypropylene waste (PPw) was resulted from accelerated thermal ageing of polypropylene (PP). Bulk grafting of acrylonitrile (AN) onto PPw was achieved by simultaneous radiation grafting method using gamma rays. Degree of grafting of AN on PPw is affected by absorbed dose and dose rate. The acrylonitrile groups of grafted PPw were chemically converted into amidoxime functionality. Both the acrylonitrile-grafted PP waste and its amidoxime product were investigated by FTIR, XRD, SEM-EDX and TGA techniques. The prepared amidoxime adsorbent with amidoxime group density of 8.06 mmol/g was used for removal of copper ions from aqueous solutions. The effects of various physicochemical conditions such as: solution pH, adsorbent content, initial metal ion concentration and time on adsorption were studied to maximize adsorption of metal ion. Pseudo-first-order, pseudo-second-order and intra-particle diffusion models were applied to study the kinetics of adsorption. Maximum Langmuir adsorption capacity of 208.3 mg/g at pH 5.0 with optimum contact time of 120 min was observed. Utilization of PP waste and its comparable adsorption capacity with existing radiation grafted polymer-based adsorbents provide a new, cheap and cost effective system.
Environmental aging and degradation of multiwalled carbon nanotube reinforced polypropylene
The degradation of polypropylene (PP) and PP-multiwalled carbon nanotube (PP-MWCNT) panels during environmental weathering resulted in an increased degree of crystallinity, making them brittle, and creating surface cracks. The degradation led to a breakdown of the panels and incr...
NASA Astrophysics Data System (ADS)
Bashtannik, P. I.; Ovcharenko, V. G.; Boot, Yu. A.
1997-11-01
Basalt fibers are efficient reinforcing fillers for polypropylene because they increase both the mechanical and the tribotechnical properties of composites. Basalt fibers can compete with traditional fillers (glass and asbestos fibers) of polypropylene with respect to technological, economic, and toxic properties. The effect of technological parameters of producing polypropylene-based basalt fiber-reinforced plastics (BFRPs) by combined extrusion on their mechanical properties has been investigated. The extrusion temperature was found to be the main parameter determining the mechanical properties of the BFRPs. With temperature growth from 180 to 240°C, the residual length of the basalt fibers in the composite, as well as the adhesive strength of the polymer-fiber system, increased, while the composite defectiveness decreased. The tensile strength and elastic modulus increased from 35 to 42 MPa and 3.2 to 4.2 GPa, respectively. At the same time, the growth in composite solidity led to its higher brittleness. Thus, a higher temperature of extrusion allows us to produce materials which can be subjected to tensile and bending loads, while the materials produced at a lower temperature of extrusion are impact stable. The effect of the gap size between the extruder body and moving disks on the mechanical properties of the BFRPs is less significant than that of temperature. An increase of the gap size from 2 to 8 mm improves the impregnation quality of the fibers, but the extruder productivity diminishes. The possibility of controling the properties of reinforced polypropylene by varying the technological parameters of combined extrusion is shown. The polypropylene-based BFRPs produced by the proposed method surpass the properties of glass and asbestos fiber-reinforced plastics.
COAL/POLYMER COPROCESSING WITH EFFICIENT USE OF HYDROGEN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Linda J. Broadbelt; Matthew J. DeWitt; Hsi-Wu Wong
2000-09-30
The final project period was devoted to investigating the binary mixture pyrolysis of polypropylene and polystyrene. Their interactions were assessed in order to provide a baseline for experiments with multicomponent mixtures of polymers with coal. Pyrolysis of polypropylene, polystyrene and their binary mixture was investigated at temperatures of 350 C and 420 C with reaction times from 1 to 180 minutes. Two different loadings, 10 mg and 20 mg, were studied for neat polypropylene and polystyrene to assess the effect of total pressure on product yields and selectivities. For neat pyrolysis of polypropylene, total conversion was much higher at 420more » C, and no significant effect of loading on the total conversion was observed. Four classes of products, alkanes, alkenes, dienes, and aromatic compounds, were observed, and their distribution was explained by a typical free radical mechanism. For neat polystyrene pyrolysis, conversion reached approximately 75% at 350 C, while at 420 C the conversion reached a maximum around 90% at 10 minutes and decreased at longer times because of condensation reactions. The selectivities to major products were slightly different for the two different loadings due to the effect of total reaction pressure on secondary reactions. For binary mixture pyrolysis, the overall conversion was higher than the average of the two neat cases. The conversion of polystyrene remained the same, but a significant enhancement in the polypropylene conversion was observed. This suggests that the less reactive polypropylene was initiated by polystyrene-derived radicals. These results are summarized in detail in an attached manuscript that is currently in preparation. The other results obtained during the lifetime of this grant are documented in the set of attached manuscripts.« less
Biocomposites from abaca strands and polypropylene. Part I: Evaluation of the tensile properties.
Vilaseca, Fabiola; Valadez-Gonzalez, Alex; Herrera-Franco, Pedro J; Pèlach, M Angels; López, Joan Pere; Mutjé, Pere
2010-01-01
In this paper, abaca strands were used as reinforcement of polypropylene matrix and their tensile mechanical properties were studied. It was found relevant increments on the tensile properties of the abaca strand-PP composites despite the lack of good adhesion at fiber-matrix interface. Afterwards, it was stated the influence of using maleated polypropylene (MAPP) as compatibilizer to promote the interaction between abaca strands and polypropylene. The intrinsic mechanical properties of the reinforcement were evaluated and used for modeling both the tensile strength and elastic modulus of the composites. For these cases, the compatibility factor for the ultimate tensile strength was deduced from the modified rule of mixtures. Additionally, the experimental fiber orientation coefficient was measured, allowing determining the interfacial shear strengths of the composites and the critical fiber length of the abaca strand reinforcement. The mechanical improvement was compared to that obtained for fiberglass-reinforced PP composites and evaluated under an economical and technical point of view.
Wood, A. J.; Cozad, M. J.; Grant, D. A.; Ostdiek, A. M.; Bachman, S. L.
2014-01-01
During its tenure in vivo, synthetic mesh materials are exposed to foreign body responses, which can alter physicochemical properties of the material. Three different synthetic meshes comprised of polypropylene, expanded polytetrafluoroethylene (ePTFE), and polyethylene terephthalate (PET) materials were explanted from a single patient providing an opportunity to compare physicochemical changes between three different mesh materials in the same host. Results from infrared spectroscopy demonstrated significant oxidation in polypropylene mesh while ePTFE and PET showed slight chemical changes that may be caused by adherent scar tissue. Differential scanning calorimetry results showed a significant decrease in the heat of enthalpy and melt temperature in the polypropylene mesh while the ePTFE and PET showed little change. The presence of giant cells and plasma cells surrounding the ePTFE and PET were indicative of an active foreign body response. Scanning electron micrographs and photo micrographs displayed tissue entrapment and distortion of all three mesh materials. PMID:23371769
Catalytic copyrolysis of particle board and polypropylene over Al-MCM-48
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hannah; Choi, Suek Ju; Kim, Ji Man
Highlights: • Al-MCM-48 was used for catalytic copyrolysis of particle board and polypropylene. • Catalytic produced mainly hydrocarbons. • The hydrocarbons produced were mainly in the diesel range. - Abstract: Particle board and polypropylene (PP) at a mixing ratio of 1:1 were copyrolyzed over two Al-MCM-48 catalysts with Si/Al ratios of 20 and 80. The catalyst characteristics were examined by measuring the Brunauer-Emmett-Teller surface area, temperature programmed desorption of ammonia, and X-ray diffraction. The main pyrolysis products of particle board were oxygenates, acids, and phenolics, whereas a large quantity of hydrocarbons within the diesel fuel range was produced from copyrolysismore » with polypropylene. The catalytic copyrolysis of particle board and PP over the Al-MCM-48 catalysts produced bio-oil with a much larger hydrocarbon content than that from the catalytic pyrolysis of particle board only. The hydrocarbons produced were mainly in the diesel range, highlighting the potential for the production of high-quality fuel.« less
Paradiso, Vito M; Caponio, Francesco; Summo, Carmine; Gomes, Tommaso
2014-04-01
The combined effect of natural antioxidants and packaging materials on the quality decay of breakfast cereals during storage was evaluated. Corn flakes were produced on industrial scale, using different packages and adding natural tocopherols to the ingredients, and stored for 1 year. The samples were then submitted to sensory analysis and HS-solid phase microextraction/gas chromatography/mass spectrometry (SPME/GC/MS) analysis. The packaging had a significant influence on the sensory profile of the aged product: metallized polypropylene gave the highest levels of oxidation compounds and sensory defects. The sensory profile was improved using polypropylene and especially high-density polyethylene. Natural tocopherols reduced the sensory decay of the flakes and the oxidative evolution of the volatile profile. They gave the most remarkable improvement in polypropylene (either metallized or not) packs. Polypropylene showed a barrier effect on the scalping of volatiles outside of the pack. This led to higher levels of oxidation volatiles and faster rates of the further oxidative processes involving the volatiles.
Zhu, Jingwen; Zins, Emilie-Laure; Alikhani, Mohammad Esmaïl
2016-12-01
For over a decade, amine-borane has been considered as a potential chemical hydrogen vector in the context of a search for cleaner energy sources. When catalyzed by organometallic complexes, the reaction mechanisms currently considered involve the formation of β-BH agostic intermediates. A thorough understanding of these intermediates may constitute a crucial step toward the identification of ideal catalysts. Topological approaches such as QTAIM and ELF revealed to be particularly suitable for the description of β-agostic interactions. When studying model catalysts, accurate theoretical calculations may be carried out. However, for a comparison with experimental data, calculations should also be carried out on large organo-metallic species, often including transition metals belonging to the second or the third row. In such a case, DFT methods are particularly attractive. Unfortunately, triple-ζ all electrons basis sets are not easily available for heavy transition metal elements. Thus, a subtle balance should be reached between the affordable level of calculations and the required accuracy of the electronic description of the systems. Herein we propose the use of B3LYP functional in combination with the LanL2DZ pseudopotential for the metal atom and 6-311++G(2d,2p) basis set for the other atoms, followed by a single point using the DKH2 relativistic Hamiltonian in combination with the B3LYP/DZP-DKH level, as a "minimum level of theory" leading to a consistent topological description of the interaction within the ELF and QTAIM framework, in the context of isolated (gas-phase) group 4 metallocene catalysts.
Coussens, Betty B; Budzelaar, Peter H M; Friederichs, Nic
2008-02-13
One of the important product parameters of polyolefins is their molecular weight (distribution). A common way to control this parameter is to add molecular hydrogen during the polymerization, which then acts as a chain transfer agent. The factors governing the hydrogen sensitivity of olefin polymerization catalysts are poorly understood and have attracted little attention from computational chemists. To explore the electronic factors determining hydrogen sensitivity we performed density functional calculations on a wide range of simple model systems including some metallocenes and a few basic models of heterogeneous catalysts. As a quantitative measure for hydrogen sensitivity we used the ratio of (i) the rate constant for chain transfer to hydrogen to (ii) the rate constant for ethene insertion, k(h)/k(p) (see the scheme below), and as a measure of electrophilicity we used the energy of complexation to the probe molecule ammonia. [Formula: see text] For isolated species in the gas phase, complexation energies appear to dominate the chemistry. Ethene complexes more strongly than hydrogen and with increasing electrophilicity of the metal centre this difference grows; the hydrogen sensitivity decreases accordingly. Although many factors (like catalyst dormancy and deactivation issues) complicate the comparison with experiment, this result seems to agree both in broad terms with the experimental lower hydrogen sensitivity of heterogeneous catalysts, and more specifically with the increased hydrogen sensitivity of highly alkylated or fused metallocenes. The opposite conclusion reached by Blom (see Blom et al 2002 Macromol. Chem. Phys. 203 381-7) is due to the use of a very different measure of electrophilicity, rather than to different experimental data.
POLYMERIZATION OF /cap alpha/-METHYLSTYRENE BY ELECTRON IRRADIATION (in German)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braun, D.; Heufer, G.; Seufert, W.
1964-01-01
Ampoules of alpha -methylstyrene sealed under vacuum were irradiated with 1-Mev electrons in a type JS Van de Graaff generator; comparative experiments with gamma rays were carried out with a /sup 60/Co source of 3000 deg C. High doses of electrons (ca. 10/sup 8/ rad) are necessary for polymerization. The conversion is graphed as a function of dose at 0 deg C; it reaches a maximum plateau of 65% at 4 x 10/sup 8/ rad; this may point to radiolysis of the polymer at doses above this. Polymerization conversion increases with decreasing dose rate, when dose and temperature are heldmore » constant; and conversion increases with decreasing temperature (22% at --22 deg C; 10% at 15 deg C; <1% at 60 deg C), as has been found with gamma rays. In the solid state between --40 deg C and --80 deg C the maximum yield is only about 5%. The molecular weights of all poly- alpha -methylstyrenes thus formed lie between 3000 and 12,000, independently of dose rate and temperature. All polymethylstyrenes formed in the liquid state have approximately the same tacticity independent of temperature (isotactic about 20%; syndiotactic about 80%). This corresponds to the tacticity of polymers formed cationically with Lewis acids. In the solid state the tacticity is: isotactic 38%, syndiotactic, 62%, comparable with the tacticity of anionic polymerization. In the liquid state the tacticity and the sensitivity towards water indicate a cationic mechanism for the reaction. NMR studies also indicate a cationic mechanism. (BBB)« less
Plant growth responses to polypropylene--biocontainers
USDA-ARS?s Scientific Manuscript database
The influence of bio-fillers incorporated into polypropylene (PP) on the growth of plants was evaluated. Biocontainers were created by injection molding of PP with 25-40% by weight of Osage orange tree, Paulownia tree, coffee tree wood or dried distillers grain and 5% by weight of maleated polypropy...
21 CFR 878.5010 - Nonabsorbable polypropylene surgical suture.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nonabsorbable polypropylene surgical suture. 878.5010 Section 878.5010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.5010...
21 CFR 878.5010 - Nonabsorbable polypropylene surgical suture.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nonabsorbable polypropylene surgical suture. 878.5010 Section 878.5010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.5010...
21 CFR 878.5010 - Nonabsorbable polypropylene surgical suture.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nonabsorbable polypropylene surgical suture. 878.5010 Section 878.5010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.5010...
21 CFR 878.5010 - Nonabsorbable polypropylene surgical suture.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nonabsorbable polypropylene surgical suture. 878.5010 Section 878.5010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.5010...
USDA-ARS?s Scientific Manuscript database
Absorbent nonwoven topsheets are traditionally spunbond (or spunbond-meltblown (SM)) polypropylene nonwoven fabrics, and are used for a wide range of incontinence applications. Here we describe how nonwoven greige cotton demonstrates positive incontinence performance indices suitable for top sheet ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Oisik; Sarmah, Ajit K., E-mail: a.sarmah@auckland.ac.nz; Bhattacharyya, Debes
Highlights: • Biochar made from waste wood was added with wood polypropylene composites. • 24% biochar gave the best mechanical properties. • 6% biochar had no effect on physico-mechanical properties of composites. • Coupling agent remained unreacted in composites having higher amount of biochar. - Abstract: In an attempt to concurrently address the issues related to landfill gas emission and utilization of organic wastes, a relatively novel idea is introduced to develop biocomposites where biochar made from pyrolysis of waste wood (Pinus radiata) is added with the same wood, plastic/polymer (polypropylene) and maleated anhydride polypropylene (MAPP). Experiments were conducted bymore » manufacturing wood and polypropylene composites (WPCs) mixed with 6 wt%, 12 wt%, 18 wt%, 24 wt%, and 30 wt% biochar. Though 6 wt% addition had similar properties to that of the control (composite without biochar), increasing biochar content to 24 wt% improved the composite’s tensile/flexural strengths and moduli. The biochar, having high surface area due to fine particles and being highly carbonised, acted as reinforcing filler in the biocomposite. Composites having 12 wt% and 18 wt% of biochar were found to be the most ductile and thermally stable, respectively. This study demonstrates that, WPCs added with biochar has good potential to mitigate wastes while simultaneously producing biocomposites having properties that might be suited for various end applications.« less
Kim, M K; Lee, J L; Wee, W R; Lee, J H
2002-01-01
Aims: To evaluate in vivo fibroplasia and biological stability of porous polymers intended for use in the Seoul-type keratoprosthesis (S-KPro). Methods: Four porous polymers (polypropylene, two kinds of polyethylene terephthalate (PE70 and PE50), and polyurethane) were investigated. Discs of polymers were inserted into the corneal stroma of rabbits for a 2 and 5 month period. Corneal oedema and neovascularisation were evaluated. The fibroplasia and collagen deposition were examined under light and transmission electron microscopy. S-KPros, whose skirt was made of four types of polymer, were implanted into the rabbits' eyes. The retention time and complications were evaluated. Results: Neovascularisation and corneal oedema were found in all of the disc inserted eyes, but the corneal oedema subsided within 2 months in most of the eyes. The mean number of fibroblasts increased significantly in polypropylene and PE50 disc inserted eyes compared with polyurethane disc inserted eyes. Plentiful collagen deposition was also found in both polypropylene and PE50 disc inserted eyes. Mean retention time in the polypropylene SK-Pro implanted eyes was longer than that of the other eyes (20.7 weeks). The PE70 skirt induced corneal melting around the prosthesis. Conclusion: Polypropylene encourages fibroblast ingrowth and shows good biological stability when used as a skirt material in S-KPro. PMID:12084755
Kassem, M I; El-Haddad, H M
2016-10-01
To compare polypropylene mesh positioned onlay supported by omentum and/or peritoneum versus inlay implantation of polypropylene-based composite mesh in patients with complicated wide-defect ventral hernias. This was a prospective randomized study carried out on 60 patients presenting with complicated large ventral hernia in the period from January 2012 to January 2016 in the department of Gastrointestinal Surgery unit and Surgical Emergency of the Main Alexandria University Hospital, Egypt. Large hernia had an abdominal wall defect that could not be closed. Patients were divided into two groups of 30 patients according to the type of mesh used to deal with the large abdominal wall defect. The study included 38 women (63.3 %) and 22 men (37.7 %); their mean age was 46.5 years (range, 25-70). Complicated incisional hernia was the commonest presentation (56.7 %).The operative and mesh fixation times were longer in the polypropylene group. Seven wound infections and two recurrences were encountered in the propylene group. Mean follow-up was 28.7 months (2-48 months). Composite mesh provided, in one session, satisfactory results in patients with complicated large ventral hernia. The procedure is safe and effective in lowering operative time with a trend of low wound complication and recurrence rates.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Intracardiac patch or pledget made of... CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3470 Intracardiac patch or pledget made of... or pledget made of polypropylene, polyethylene terephthalate, or polytetrafluoroethylene is a fabric...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intracardiac patch or pledget made of... CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3470 Intracardiac patch or pledget made of... or pledget made of polypropylene, polyethylene terephthalate, or polytetrafluoroethylene is a fabric...
USDA-ARS?s Scientific Manuscript database
Larvae of the Indian meal moth, Plodia interpunctella (Hübner), can invade or penetrate packaging materials and infest food products. Energy bars with three polypropylene packaging types were challenged with eggs (first instars), third, and fifth instars of P. interpunctella to determine package res...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Intracardiac patch or pledget made of... CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3470 Intracardiac patch or pledget made of... or pledget made of polypropylene, polyethylene terephthalate, or polytetrafluoroethylene is a fabric...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Intracardiac patch or pledget made of... CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3470 Intracardiac patch or pledget made of... or pledget made of polypropylene, polyethylene terephthalate, or polytetrafluoroethylene is a fabric...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Intracardiac patch or pledget made of... CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3470 Intracardiac patch or pledget made of... or pledget made of polypropylene, polyethylene terephthalate, or polytetrafluoroethylene is a fabric...
NASA Astrophysics Data System (ADS)
Feng, Wenlai
This is a study of the continuous ultrasound aided extrusion process for the in-situ compatibilization of isotactic polypropylene (iPP)/ethylene-propylene diene rubber (EPDM) thermoplastic elastomer (TPE) using a newly developed ultrasonic treatment reactor. The rheological, mechanical properties and morphology of the TPE with and without ultrasonic treatment were studied. In-situ compatibilization in the ultrasonically treated blends was observed as evident by their more stable morphology after annealing, improved mechanical properties and IR spectra. The obtained results indicated that ultrasonic treatment induced the thermo-mechanical degradations and led to the possibility of enhanced molecular transport and chemical reactions at the interfaces. Processing conditions were established for enhanced in situ compatibilization of the PP/EPDM TPE. The ultrasonic treatments of butyl rubber gum and ultrasonic devulcanization of butyl rubber, tire-curing bladder during extrusion using a grooved barrel ultrasonic reactor were carried out. The ultrasonic treatment of gum caused degradation of the polymer main chain leading to lower molecular weight, broader molecular weight distribution, less unsaturation and changes in physical properties. The devulcanization of butyl rubber was successfully accomplished only at severe conditions of ultrasonic treatment. The mechanical properties of vulcanizates prepared from devulcanized butyl rubber are comparable to that of the virgin vulcanizate. The molecular characterization of sol fraction of devulcanized butyl rubber showed the devulcanization and degradation of butyl rubber occurred simultaneously. 1H NMR transverse relaxation was also used to study butyl rubber gum before and after ultrasonic treatment, and ultrasonically devulcanized unfilled butyl rubber. The T2 relaxation decays were successfully described using a two-component model. The recyclability of tire-curing bladder was also investigated. Gel fraction, crosslink density, cure behavior, dynamic properties and mechanical properties were measured. Good mechanical properties of revulcanized rubber were achieved by blending devulcanized rubber with the carbon black filled virgin butyl rubber. The structural characteristics of devulcanized butyl rubber were simulated using the Dobson-Gordon theory of rubber network statistics. A fairly good agreement between experimental data and theoretical prediction on normalized gel fraction vs. normalized crosslink density was achieved. The simulation of devulcanized butyl rubber indicated that the rate of crosslink rupture is much higher than that of the main chain.
In situ reinforced polymers using low molecular weight compounds
NASA Astrophysics Data System (ADS)
Yordem, Onur Sinan
2011-12-01
The primary objective of this research is to generate reinforcing domains in situ during the processing of polymers by using phase separation techniques. Low molecular weight compounds were mixed with polymers where the process viscosity is reduced at process temperatures and mechanical properties are improved once the material system is cooled or reacted. Thermally induced phase separation and thermotropic phase transformation of low molar mass compounds were used in isotactic polypropylene (iPP) and poly(ether ether ketone) (PEEK) resins. Reaction induced phase separation was utilized in thermosets to generate anisotropic reinforcements. A new strategy to increase fracture toughness of materials was introduced. Simultaneously, enhancement in stiffness and reduction in process viscosity were also attained. Materials with improved rheological and mechanical properties were prepared by using thermotropic phase transformations of metal soaps in polymers (calcium stearate/iPP). Morphology and thermal properties were studied using WAXS, DSC and SEM. Mechanical and rheological investigation showed significant reduction in process viscosity and substantial improvement in fracture toughness were attained. Effects of molecular architecture of metal soaps were investigated in PEEK (calcium stearate/PEEK and sodium stearate/PEEK). The selected compounds reduced the process viscosity due to the high temperature co-continuous morphology of metal soaps. Unlike the iPP system that incorporates spherical particles, interaction between PEEK and metal soaps resulted in two discrete and co-continuous phases of PEEK and the metal stearates. DMA and melt rheology exhibited that sodium stearate/PEEK composites are stiffer. Effective moduli of secondary metal stearate phase were calculated using different composite theories, which suggested bicontinuous morphology to the metal soaps in PEEK. Use of low molecular weight crystallizable solvents was investigated in reactive systems. Formation of anisotropic reinforcements was evaluated using dimethyl sulfone (DMS) as the crystallizable diluent and diglycidyl ether of bisphenol-A (DGEBA)/m-phenylene diamine (mPDA) material system as the epoxy thermoset. Miscible blends of DMS and DGEBA/mPDA form homogenous mixtures that undergo polymerization induced phase separation, once the DGEBA oligomers react with mPDA. The effect of the competition between the crystallization and phase separation of DMS resulted in nano-wires to micro-scale fiber-like crystals that were generated by adjusting the reaction temperature and DMS concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koval, C.A.
1992-12-01
Hot electron reaction studies at p-InP/CH{sub 3}CN interface revealed essential/desirable features for redox systems used to investigate hot carriers in photoelectrocehmical cells. Reduction of dibromoethylbenzene (DBEB) in presence of metallocene couples is being studied using rotating rink disk electrodes of n-and p-InP disks and Pt rings. At highly doped p-InP electrodes, reduction of DBEB can be very efficient (>30%). A minielectrochemical cell was used to investigate electron transfer at nonilluminated n-WSe{sub 2}/dimethylferrocene{sup +/0} interfaces.
Additive manufacturing with polypropylene microfibers.
Haigh, Jodie N; Dargaville, Tim R; Dalton, Paul D
2017-08-01
The additive manufacturing of small diameter polypropylene microfibers is described, achieved using a technique termed melt electrospinning writing. Sequential fiber layering, which is important for accurate three-dimensional fabrication, was achieved with the smallest fiber diameter of 16.4±0.2μm obtained. The collector speed, temperature and melt flow rate to the nozzle were optimized for quality and minimal fiber pulsing. Of particular importance to the success of this method is appropriate heating of the collector plate, so that the electrostatically drawn filament adheres during the direct-writing process. By demonstrating the direct-writing of polypropylene, new applications exploiting the favorable mechanical, stability and biocompatible properties of this polymer are envisaged. Copyright © 2017. Published by Elsevier B.V.
Effects of moisture on aspen-fiber/polypropylene composites
Roger M. Rowell; Sandra E. Lange; Rodney E. Jacobson
2004-01-01
Moisture sorption in fiber-thermoplastic composites leads to dimensional instability and biological attack. To determine the pick up of moisture this type of composite, aspen fiber/polypropylene composites were made using several different levels of aspen fiber (30 to 60% by weight) with and without the addition of a compatibilizer (maleic anhydride grafted...
21 CFR 878.5010 - Nonabsorbable polypropylene surgical suture.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nonabsorbable polypropylene surgical suture. 878.5010 Section 878.5010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...: Surgical Sutures; Guidance for Industry and FDA.” See § 878.1(e) for the availability of this guidance...
Effectiveness of the ZeroFly® storage bag fabric against stored-product insects
USDA-ARS?s Scientific Manuscript database
The ZeroFly® Storage Bag is a polypropylene bag (PP) which has deltamethrin incorporated in its fibers, and represents a novel approach to reducing stored-product insect pest-related postharvest losses. Fabric samples from ZeroFly bags, polypropylene (PP) bags, jute bags, malathion-treated PP bags, ...
Geopolymer Porous Nanoceramics for Structural Smart and Thermal Shock Resistant Applications
2011-02-02
porous membranes and foams, ceramic armor composites , iron-based geopolymer analogues, geopolymer composites reinforced with chopped polypropylene... geopolymers and geopolymer composites , as fabricated and upon conversion to ceramics with heating. The microstucture consisted of nanoporous...ceramic armore composites , iron-based geopolymer analogues, geopolymer composites reinforced with chopped polypropylene or basalt fibers and
Quality evaluation of polypropylene packaged corn yogurt during storage
NASA Astrophysics Data System (ADS)
Aini, Nur; Prihananto, V.; Sustriawan, B.; Astuti, Y.; Maulina, M. R.
2018-01-01
Packaging is an important factor to control the process of quality decrease of any food product, including to determine the shelf life. The objective of this study was to determine changes quality of corn yogurt packaged using polypropylene. The method were using was package yogurt polypropylene, then it was stored in a refrigerator at 5, 10, or 15°C during 21 days. The yogurt was analysed every 7 days over a 21-day period. The results indicate that protein content decreased during storage, while the lactic acid bacteria, total acid, pH, viscosity, and total solids were increased. At the end of storage, the amount of lactic acid bacteria still fulfil the minimum requirements of a probiotic food, with a count of 6.407 log CFU/g. Overal scoring by panelist (scores ranged from 0 to 5) have a 4.78 at the beginning of storage. By the 21st day of storage, yogurt was packaging using transparent polypropylene having a score of 3.85, and that stored in opaque white packaging having a value of 3.95.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Junhao, E-mail: jhzhang6@mail.ustc.edu.cn; Department of Chemistry, University of Science and Technology of China, Heifei, Anhui 230026; Du, Jin
Microspheres assembled from carbon nanotubes (MCNTs), with the diameters ranging from 5.5 to 7.5 {mu}m, were synthesized by means of pyrolysis of polypropylene and maleated polypropylene in an autoclave. The characterization of structure and morphology was carried out by X-ray diffractometer (XRD), field-emission scanning electron microscopy (FESEM), (high resolution) transmission electron microscope [(HR)TEM)], selected-area electron diffraction (SAED) and Raman spectrum. As a typical morphology, the possible growth process of MCNTs was also investigated and discussed. The results of nitrogen adsorption-desorption indicate that the Brunauer-Emett-Teller (BET) surface area (140.6 m{sup 2}/g) of the MCNTs obtained at 600 {sup o}C is aboutmore » twice as that (74.5 m{sup 2}/g) of carbon nanotubes obtained at 700 {sup o}C. The results of catalytic experiment show that MCNTs based catalyst has higher catalytic activity than the carbon nanotubes based catalyst for the preparation of methanol and dimethoxy-ethane by oxidation of dimethyl ether.« less
Szewczyk, Michal; Drzewinska, Joanna; Dzmitruk, Volha; Shcharbin, Dzmitry; Klajnert, Barbara; Appelhans, Dietmar; Bryszewska, Maria
2012-12-20
There are several barriers to the application of dendriplexes formed by poly(propylene imine) dendrimers and genetic material for gene therapy. One limitation is their interaction with extracellular matrix components such as glucosaminoglycans. These can displace the genetic material from the dendriplexes, affecting their transfection activity. In this study, we analyzed the interaction between dendriplexes and the four main glucosaminoglycans (heparin, heparan sulfate, chondroitin sulfate, and hyaluronic acid) by fluorescence polarization and gel electrophoresis. Dendriplexes were formed by combining three anti-HIV antisense oligodeoxynucleotides with three poly(propylene imine) dendrimers of the fourth generation: unmodified and partially modified with maltose and maltotriose (open shell glycodendrimers). The data showed that the effect of glucosaminoglycans on dendriplexes depends on the glucosaminoglycan type and the oligosaccharide serving as the surface group of the dendrimer. Heparin at physiological concentrations destroys dendriplexes formed by open shell glycodendrimers, but dendriplexes based on unmodified poly(propylene imine) dendrimers are stable in its presence. The other glucosaminoglycans at physiological concentrations cannot destroy dendriplexes formed by any of the dendrimers studied.
[Synthesis and characterization of chromium doped Y3Al5O12 compound pigment].
Yue, Shi-Juan; Su, Xiao; Jiang, Han-Jie; Liu, Shao-Xuan; Hong, You-Li; Zhang, Kai; Huang, Wan-Xias; Xiong, Zu-Jiang; Zhao, Ying; Liu, Cui-Ge; Wei, Yong-Ju; Meng, Tao; Xu, Yi-Zhuang; Wu, Jin-Guang
2012-09-01
The authors synthesized a new kind of green pigment via co-precipitation method by doping Y3Al5O12 with Cr+. The size of the pigment particles is around 200 nm as observed under scanning electron microscope. XRD results demonstrate that the pigment crystalline form of the pigment is yttrium alluminium garnet. UV-Vis spectra were used to investigate the coordination states and transition behavior of the doping ions. In addition, the colour feature was measured by CIE L* a* b* chroma value. The pigment was blended with polypropylene and then polypropylene fiber was produced using the polypropelene-pigment composite via molten spinning process. The distribution of the pigment particles in the polypropylene fibers was characterized by Xray computed tomography (CT) technique on the Beijing synchrotron radiation facility. The result states that the composite oxide pigment particles are homogeneously dispersed in the polypropylene fibers. The pigments are stable, non-toxic to the environment, and may be applied in non-aqueous dyeing to reduce waste water emitted by textile dyeing and printing industry.
Bouley, G; Dubreuil, A; Jouany, J M; Boudène, C
1981-01-01
Since the use of plastic materials, a change in the pathology of fire victims has been observed. We studied the effects of a single short-term inhalation (30 min) of a sub-lethal dose of polypropylene pyrolysis products (one LD-0). Including control and test animals, 66 rats and 112 mice were used. The exposure provoked disturbances in the antixenic defense mechanisms of the respiratory system, chiefly in tracheo-bronchial defenses, since we observed a lowering of ciliary activity of 35 to 78% in test animals exposed a few hours before, compared with the controls. These changes provoked a significant increase in death-rate of test animals, following experimental airborne infection by Klebsiella pneumoniae. The combustion products of polypropylene plastic materials did not contain hydrocyanic acid nor hydrochloric acid, and neither the temperature of the inhaled air, nor the concentration of carbon monoxide could explain these effects. On the contrary, we can suspect the well known irritative properties of aldehyde compounds formed during smoldering combustion of polypropylene.
Decontamination of laboratory microbiological waste by steam sterilization.
Rutala, W A; Stiegel, M M; Sarubbi, F A
1982-01-01
A steam sterilizer (autoclave) was tested to determine the operating parameters that affected sterilization of microbiological waste. Tests involved standardized loads (5, 10 ad 15 lb [ca. 2.27, 4.54, and 6.80 kg, respectively]) contaminated petri plates in autoclave bags placed in polypropylene or stainless steel containers. Thermal and biological data were obtained by using a digital potentiometer and a biological indicator containing spores of Bacillus stearothermophilus, respectively. The transfer of heat was more efficient when smaller loads of microbiological waste were tested and stainless steel rather than polypropylene containers were used. A single bag with the sides rolled down to expose the top layer of petri plates allowed heat to pass better than did a single bag with the top constricted by a twist-tie. The presence of water in the autoclave bag did not significantly improve heat-up time in stainless steel or polypropylene containers. The results of biological tests substantiated the temperature data. When 10 or 15 lb of microbiological waste was exposed to various test conditions, the only condition that ensured the destruction of B. stearothermophilus involved the use of a stainless steel container (with or without water) for 90 min. Autoclaving for 45 min resulted in the destruction of bacteria included in 10 lb (136 +/- 3 plates) or 15 lb (205 +/- 6 plates) of microbiological waste when stainless steel containers with or without water or polypropylene containers with water used, whereas 60 min was required to kill all bacteria if polypropylene containers without water were used. PMID:7103486
Sharma, Prashant
2015-06-01
Removal of orbital floor is an integral part of total (radical) maxillectomy (type IIIa), which if not managed properly, may lead to some eye related distressing complications like diplopia, eyelid malposition, epiphora, dacryocystitis, enopthalmos and ectoprion. Among all, diplopia is the most distressing complication which hampers daily activity. Various options for orbital floor reconstruction are available like titanium sheet, polypropylene mesh, non-vascularized or vascularized bone graft, pedicled flaps, micro-vascular free flaps, prosthesis placement, and split skin graft followed by obturator placement. Till date no-body has tried stabilization of eye ball by 'darning' the orbital floor using non-absorbable suture. 'Polypropylene suture darning' is an easy to learn, novel method with equally good results. Five patients with potentially resectable tumors underwent total maxillectomy. I used polypropylene 3-0 round body suture and 'darning' was done at orbital floor, incorporating periosteum (if remaining) and peri-orbital fat into the sutures. Muscle flaps were done to provide bulk and palatal reconstruction. Assessment of patients was done post-operatively at day-5 i.e., before discharge and at 1 month after surgery, and also in further follow up visits. The results were very good in terms of clear vision & eye movements (directly related to 'darning'), and the aesthetic look of patients and bilateral symmetry were satisfactory (not related to darning). Darning of orbital floor by polypropylene after total maxillectomy is an easy to learn and cost-effective method of reconstruction with good results.
Triantou, Marianna I; Tarantili, Petroula A; Andreopoulos, Andreas G
2015-05-01
In the present research, blending of polymers used in electrical and electronic equipment, i.e. acrylonitrile-butadiene-styrene terpolymer, polycarbonate and polypropylene, was performed in a twin-screw extruder, in order to explore the effect process parameters on the mixture properties, in an attempt to determine some characteristics of a fast and economical procedure for waste management. The addition of polycarbonate in acrylonitrile-butadiene-styrene terpolymer seemed to increase its thermal stability. Also, the addition of polypropylene in acrylonitrile-butadiene-styrene terpolymer facilitates its melt processing, whereas the addition of acrylonitrile-butadiene-styrene terpolymer in polypropylene improves its mechanical performance. Moreover, the upgrading of the above blends by incorporating 2 phr organically modified montmorillonite was investigated. The prepared nanocomposites exhibit greater tensile strength, elastic modulus and storage modulus, as well as higher melt viscosity, compared with the unreinforced blends. The incorporation of montmorillonite nanoplatelets in polycarbonate-rich acrylonitrile-butadiene-styrene terpolymer/polycarbonate blends turns the thermal degradation mechanism into a two-stage process. Alternatively to mechanical recycling, the energy recovery from the combustion of acrylonitrile-butadiene-styrene terpolymer/polycarbonate and acrylonitrile-butadiene-styrene terpolymer/polypropylene blends was recorded by measuring the gross calorific value. Comparing the investigated polymers, polypropylene presents the higher gross calorific value, followed by acrylonitrile-butadiene-styrene terpolymer and then polycarbonate. The above study allows a rough comparative evaluation of various methodologies for treating plastics from waste from electrical and electronic equipment. © The Author(s) 2015.
Responses of Hyalella azteca to acute and chronic microplastic exposures.
Au, Sarah Y; Bruce, Terri F; Bridges, William C; Klaine, Stephen J
2015-11-01
Limited information is available on the presence of microplastics in freshwater systems, and even less is known about the toxicological implications of the exposure of aquatic organisms to plastic particles. The present study was conducted to evaluate the effects of microplastic ingestion on the freshwater amphipod, Hyalella azteca. Hyalella azteca was exposed to fluorescent polyethylene microplastic particles and polypropylene microplastic fibers in individual 250-mL chambers to determine 10-d mortality. In acute bioassays, polypropylene microplastic fibers were significantly more toxic than polyethylene microplastic particles; 10-d lethal concentration 50% values for polyethylene microplastic particles and polypropylene microplastic fibers were 4.64 × 10(4) microplastics/mL and 71.43 microplastics/mL, respectively. A 42-d chronic bioassay using polyethylene microplastic particles was conducted to quantify effects on reproduction, growth, and egestion. Chronic exposure to polyethylene microplastic particles significantly decreased growth and reproduction at the low and intermediate exposure concentrations. During acute exposures to polyethylene microplastic particles, the egestion times did not significantly differ from the egestion of normal food materials in the control; egestion times for polypropylene microplastic fibers were significantly slower than the egestion of food materials in the control. Amphipods exposed to polypropylene microplastic fibers also had significantly less growth. The greater toxicity of microplastic fibers than microplastic particles corresponded with longer residence times for the fibers in the gut. The difference in residence time might have affected the ability to process food, resulting in an energetic effect reflected in sublethal endpoints. © 2015 SETAC.
NASA Astrophysics Data System (ADS)
Ibrahim, M. H. Wan; Mangi, Sajjad Ali; Burhanudin, M. K.; Ridzuan, M. B.; Jamaluddin, N.; Shahidan, S.; Wong, YH; Faisal, SK; Fadzil, M. A.; Ramadhansyah, P. J.; Ayop, S. S.; Othman, N. H.
2017-11-01
This paper presents the effects of using palm oil biomass (POB) clinker with polypropylene (PP) fibres in concrete on its compressive and flexural strength performances. Due to infrastructural development works, the use of concrete in the construction industry has been increased. Simultaneously, it raises the demand natural sand, which causes depletion of natural resources. While considering the environmental and economic benefits, the utilization of industrial waste by-products in concrete will be the alternative solution of the problem. Among the waste products, one of such waste by-product is the palm oil biomass clinker, which is a waste product from burning processes of palm oil fibres. Therefore, it is important to utilize palm oil biomass clinker as partial replacement of fine aggregates in concrete. Considering the facts, an experimental study was conducted to find out the potential usage of palm oil fibres in concrete. In this study, total 48 number of specimens were cast to evaluate the compressive and flexural strength performances. Polypropylene fibre was added in concrete at the rate of 0.2%, 0.4% and 0.6%, and sand was replaced at a constant rate of 10% with palm oil biomass clinker. The flexural strength of concrete was noticed in the range of 2.25 MPa and 2.29 MPa, whereas, the higher value of flexural strength was recorded with 0.4% polypropylene fibre addition. Hence, these results show that the strength performances of concrete containing POB clinker could be improved with the addition of polypropylene fibre.
McDonald, Jeffrey G.; Cummins, Carolyn L.; Barkley, Robert M.; Thompson, Bonne M.; Lincoln, Holly A.
2009-01-01
Reported here is the mass spectral identification of sorbitol-based nuclear clarifying agents (NCAs) and the quantitative description of their extractability from common laboratory and household plasticware made of polypropylene. NCAs are frequently added to polypropylene to improve optical clarity, increase performance properties, and aid in the manufacturing process of this plastic. NCA addition makes polypropylene plasticware more aesthetically pleasing to the user and makes the product competitive with other plastic formulations. We show here that several NCAs are readily extracted with either ethanol or water from plastic labware during typical laboratory procedures. Observed levels ranged from a nanogram to micrograms of NCA. NCAs were also detected in extracts from plastic food storage containers; levels ranged from 1to 10 μg in two of the three brands tested. The electron ionization mass spectra for three sorbitol-based nuclear clarifying agents (1,3:2,4-bis-O-(benzylidene)sorbitol, 1,3:2,4-bis-O-(p-methylbenzylidene)sorbitol, 1,3:2,4-bis-O-(3,4-dimethylbenzylidene)sorbitol) are presented for the native and trimethylsilylderivatized compounds together with the collision-induced dissociation mass spectra; gas and liquid chromatographic data are also reported. These NCAs now join other well-known plasticizers such as phthalate esters and bisphenol A as common laboratory contaminants. While the potential toxicity of NCAs in mammalian systems is unknown, the current data provide scientists and consumers the opportunity to make more informed decisions regarding the use of polypropylene plastics. PMID:18533681
Non-cross-linked porcine acellular dermal matrices for abdominal wall reconstruction.
Burns, Nadja K; Jaffari, Mona V; Rios, Carmen N; Mathur, Anshu B; Butler, Charles E
2010-01-01
Non-cross-linked porcine acellular dermal matrices have been used clinically for abdominal wall repair; however, their biologic and mechanical properties and propensity to form visceral adhesions have not been studied. The authors hypothesized that their use would result in fewer, weaker visceral adhesions than polypropylene mesh when used to repair ventral hernias and form a strong interface with the surrounding musculofascia. Thirty-four guinea pigs underwent inlay repair of surgically created ventral hernias using polypropylene mesh, porcine acellular dermal matrix, or a composite of the two. The animals were killed at 4 weeks, and the adhesion tenacity grade and surface area of the repair site involved by adhesions were measured. Sections of the repair sites, including the implant-musculofascia interface, underwent histologic analysis and uniaxial mechanical testing. The incidence of bowel adhesions to the repair site was significantly lower with the dermal matrix (8 percent, p < 0.01) and the matrix/mesh combination (0 percent, p < 0.001) than with polypropylene mesh alone (70 percent). The repairs made with the matrix or the matrix/mesh combination, compared with the polypropylene mesh repairs, had significantly lower mean adhesion surface areas [12.8 percent (p < 0.001), 9.2 percent (p < 0.001), and 79.9 percent] and grades [0.6 (p < 0.001), 0.6 (p < 0.001), and 2.9]. The dermal matrix underwent robust cellular and vascular infiltration. The ultimate tensile strength at the implant-musculofascia interface was similar in all groups. Porcine acellular dermal matrix becomes incorporated into the host tissue and causes fewer adhesions to repair sites than does polypropylene mesh, with similar implant-musculofascia interface strength. It also inhibits adhesions to adjacent dermal matrix in the combination repairs. It has distinct advantages over polypropylene mesh for complex abdominal wall repairs, particularly when material placement directly over bowel is unavoidable.
UV induced surface modification on improving the cytocompatibility of metallocene polyethylene.
Jaganathan, Saravana K; Prasath, Mani M
2018-01-01
Demand for medical implants is rising day by day as the world becomes the place for more diseased and older people. Accordingly, in this research, metallocene polyethylene (mPE), a commonly used polymer was treated with UV rays for improving its biocompatibility. Scanning electron microscopy (SEM) images confirmed the formation of crests and troughs, which depicts the improvement of surface roughness of mPE substrates caused by UV etching. Accordingly, the contact angle measurements revealed that the wettability of mPE-2.5 J/cm2 (68.09º) and mPE-5 J/cm2 (57.93º) samples were found to be increased compared to untreated mPE (86.84º) indicating better hydrophilicity. Further, the UV treated surface exhibited enhanced blood compatibility as determined in APTT (untreated mPE- 55.3 ± 2.5 s, mPE-2.5 J/cm2 - 76.7 ± 4.1 s and mPE-5 J/cm2 - 112.3 ± 2 s) and PT (untreated mPE - 24.7 ± 1.5 s, mPE- 2.5 J/cm2 - 34.3 ± 1.1 s and mPE-5 J/cm2 - 43 ± 2 s) assay. Moreover, the treated mPE-2.5 J/cm2 (4.88%) and mPE-5 J/cm2 (1.79%) showed decreased hemolytic percentage compared to untreated mPE (15.40%) indicating better safety to red blood cells. Interestingly, the changes in physicochemical properties of mPE are directly proportional to the dosage of the UV rays. UV modified mPE surfaces were found to be more compatible as identified through MTT assay, photomicrograph and SEM images of the seeded 3T3 cell population. Hence UV-modified surface of mPE may be successfully exploited for medical implants.
Yucheng Peng; Sergio A. Gallegos; Douglas J. Gardner; Yousoo Han; Zhiyong Cai
2014-01-01
The unique aspect of polymer composites reinforced by various fillers or additives is that the mechanical properties of the material can be tailored to fit a variety of uses: construction, transportation, industrial, and consumer applications. By selecting a specific reinforcement or designing a particular manufacturing process a material with desired properties can be...
Umesh Agarwal; Ronald Sabo; Richard Reiner; Craig Clemons; Alan Rudie
2013-01-01
Raman spectroscopy was used to analyze cellulose nanocrystal (CNC)-polypropylene (PP) composites and to investigate the spatial distribution of CNCs in extruded composite filaments. Three composites were made from two forms of nanocellulose (CNCs from wood pulp and the nanoscale fraction of microcrystalline cellulose), and two of the three composites...
Umesh P. Agarwal; Ronald Sabo; Richard S. Reiner; Craig M. Clemons; Alan W. Rudie
2012-01-01
Raman spectroscopy was used to analyze cellulose nanocrystal (CNC)âpolypropylene (PP) composites and to investigate the spatial distribution of CNCs in extruded composite filaments. Three composites were made from two forms of nanocellulose (CNCs from wood pulp and the nanoscale fraction of microcrystalline cellulose) and two of the three composites investigated used...
Transcrystalline interphases in natural fiber-PP composites: effect of coupling agent
A.R. Sanadi; D.F. Caulfield
2000-01-01
The interest in lignocellulosic fiber composites has been growing in recent years because of their high specific properties. In this work, a new technique was used to prepare specimen to observe the transcrystalline zones in kenaf fiber-polypropylene composites. A maleated polypropylene (MAPP) coupling agent was used to improve the stress-transfer efficiency in the...
Repair of a deep digital tendon deficit in a horse using a polypropylene implant.
Crawford, W H; Ingle, J E
1997-01-01
A yearling horse was treated for a chronic wound with a 4 cm deficit in the deep digital tendon. The gap in the tendon was bridged with paired polypropylene braided implants designed for use as a ligament augmentation device. Uncomplicated healing and return to function occurred. Images Figure 1. PMID:9167878
2012-03-22
Fabric 3.85% Polypropylene (PP) (Class 5 plastics, soda cups, yogurt boxes, syrup bottles, prescription bottles) 1.32% Yard waste 5.67% PVC (Class 3...plastics, milk jugs) 1.23% Cardboard 31.33% Polypropylene (PP) (Class 5 plastics, soda cups, yogurt boxes, syrup bottles, prescription bottles) 0.62
Craig Clemons; Daniel Caulfield; A. Jeffrey Giacomin
2003-01-01
Unlike their glass reinforced counterparts, microstructure and dynamic fracture behavior of natural fiber-reinforced thermoplastics have hardly been investigated. Here, we characterize the microstructure of cellulose fiber-reinforced polypropylene and determined its effect on impact toughness. Fiber lengths were reduced by one-half when compounded in a high-intensity...
USDA-ARS?s Scientific Manuscript database
Columbian coffee trees are subject to frequent replacement plantings due to disease and local climate changes which makes them an ideal source of wood fibers for wood plastic composites (WPC). Composites of polypropylene (PP) consisting of 25% and 40% by weight of coffee wood flour (CF) and 0% or 5%...
Mechanical performance of hemp fiber polypropylene composites at different operating temperatures
Mehdi Tajvidi; Nazanin Motie; Ghonche Rassam; Robert H. Falk; Colin Felton
2010-01-01
In order to quantify the effect of temperature on the mechanical properties of hemp fiber polypropylene composites, formulations containing 25% and 40% (by weight) hemp fiber were produced and tested at three representative temperatures of 256, 296, and 336 K. Flexural, tensile, and impact tests, as well as dynamic mechanical analysis, were performed and the reduction...
Geopolymer Porous Nanoceramics for Structural, for Smart and Thermal Shock Resistant Applications
2011-02-02
porous membranes and foams, ceramic armor composites , iron-based geopolymer analogues, geopolymer composites reinforced with chopped polypropylene...the microstructure of geopolymers and geopolymer composites , as fabricated and upon conversion to ceramics with heating. The microstructure consisted...porous membranes and foams, ceramic armor composites , iron-based geopolymer analogues, geopolymer composites reinforced with chopped polypropylene or
Jackson, Anthony T; Slade, Susan E; Thalassinos, Konstantinos; Scrivens, James H
2008-10-01
The end-group functionalisation of a series of poly(propylene glycol)s has been characterised by means of electrospray ionisation-tandem mass spectrometry (ESI-MS/MS). A series of peaks with mass-to-charge ratios that are close to that of the precursor ion were used to generate information on the end-group functionalities of the poly(propylene glycol)s. Fragment ions resulting from losses of both of the end groups were noted from some of the samples. An example is presented of how software can be used to significantly reduce the length of time involved in data interpretation (which is typically the most time-consuming part of the analysis).
Doering, Andrew; Azadi, Ali; Doering, David; Ostergard, Donald R
2017-12-22
We report a case of a mid-urethral sling (Advantage Fit, Boston Scientific Corporation, Marlborough, Massachusetts) freshly removed from its original package. Upon removal from the packaging, the sling was noted to have a deformation in positioning at the midpoint, with curvature opposite the natural curve of the sling in the body. The images show the comparison to a sling with the desired positioning. Mid-urethral slings are commonly made from polypropylene mesh which has memory properties. It is important that manufacturers ensure that any steps in the processing or packaging of slings do not result in changes in the shape of the sling that may have unknown impacts on its clinical outcome.
Hu, Jian; Tashiro, Kohji
2016-05-26
In order to visualize the 2D spatial distribution of the structural change in the phase transition from crystal form II to I of isotactic polybutene-1 spherulite grown from the melt, the time-dependent measurement of the 2D polarized FTIR spectra has been performed. At a melt-isothermal crystallization temperature of 103 °C, the square-shape spherulite appeared from the melt and grew with time. When the isothermal crystallization occurred at 98 °C, the round-shaped spherulite was observed. In both cases, after the temperature jump to an ambient temperature, the 2D images changed clearly in the process of the phase transition from form II to form I, but the spherulite morphology itself was not changed detectably. The polarized IR imaging has revealed the preferential orientation of the crystallites in the spherulite. In the case of the spherulite grown at 103 °C, the ab plane is oriented in parallel to the spherulite plane and the molecular chains stand along the normal to the surface. On the other hand, in the spherulite grown at 98 °C, the chains were found to lie on the spherulite plane preferentially. Such a difference in the crystal orientation in the spherulite is related intimately with the outer shape of the spherulite and also with the growth mechanism of the spherulite. In this way, the polarized 2D IR imaging was found to be quite useful for the in situ detection of the time-dependently changing 2D spatial distribution of the crystallites in the spherulite.
NASA Astrophysics Data System (ADS)
Negash, Solomon; Tatek, Yergou B.; Tsige, Mesfin
2018-04-01
We have carried out atomistic (all-atom) molecular dynamics simulations to investigate the effect of tacticity on the structure and glass transition temperature (Tg) of polystyrene (PS) thin films adsorbed on two distinct types of solid substrates. The systems consist of thin films made of atactic, isotactic, and syndiotactic PS chains supported by graphite or hydroxylated α-quartz substrates, which are known to be atomically flat but chemically and structurally different. We have observed a marked dependence of the film structure on substrate type as well as on tacticity. For instance, rings' orientation near substrate surfaces depends on substrate type for atactic PS and isotactic PS films, while no such dependence is observed for syndiotactic PS films whose interfacial structure seems to result from their propensity to adopt the trans conformation rather than their specific interaction with the substrates. Moreover, our results indicate that glass transition temperatures of substrate supported polystyrene films are higher compared to those of the corresponding free-standing films. More specifically, PS films on graphite exhibit larger Tg values than those on α-quartz, and we have noticed that syndiotactic PS has the largest Tg irrespective of the substrate type. Furthermore, the local Tg in the region of the film in contact with the substrates shows a strong tacticity and substrate dependence, whereas no dependencies were found for the local Tg in the middle of the film. Substrate-film interaction energy and chains' dynamics near substrate-film interfaces were subsequently investigated in order to substantiate the obtained Tgs, and it was found that films with higher Tgs are strongly adsorbed on the substrates and/or exhibit smaller interfacial chains' dynamics essentially due to steric hindrance.
Shanmugam, Sivaprakash; Boyer, Cyrille
2015-08-12
Nature has developed efficient polymerization processes, which allow the synthesis of complex macromolecules with a perfect control of tacticity as well as molecular weight, in response to a specific stimulus. In this contribution, we report the synthesis of various stereopolymers by combining a photoactivated living polymerization, named photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) with Lewis acid mediators. We initially investigated the tolerance of two different photoredox catalysts, i.e., Ir(ppy)3 and Ru(bpy)3, in the presence of a Lewis acid, i.e., Y(OTf)3 and Yb(OTf)3, to mediate the polymerization of N,N-dimethyl acrylamide (DMAA). An excellent control of tacticity as well as molecular weight and dispersity was observed when Ir(ppy)3 and Y(OTf)3 were employed in a methanol/toluene mixture, while no polymerization or poor control was observed with Ru(bpy)3. In comparison to a thermal system, a lower amount of Y(OTf)3 was required to achieve good control over the tacticity. Taking advantage of the temporal control inherent in our system, we were able to design complex macromolecular architectures, such as atactic block-isotactic and isotactic-block-atactic polymers in a one-pot polymerization approach. Furthermore, we discovered that we could modulate the degree of tacticity through a chemical stimulus, by varying [DMSO]0/[Y(OTf)3]0 ratio from 0 to 30 during the polymerization. The stereochemical control afforded by the addition of a low amount of DMSO in conjunction with the inherent temporal control enabled the synthesis of stereogradient polymer consisting of five different stereoblocks in one-pot polymerization.
NASA Astrophysics Data System (ADS)
Othman, M. H.; Rosli, M. S.; Hasan, S.; Amin, A. M.; Hashim, M. Y.; Marwah, O. M. F.; Amin, S. Y. M.
2018-03-01
The fundamental knowledge of flow behaviour is essential in producing various plastic parts injection moulding process. Moreover, the adaptation of advanced polymer-nanocomposites such as polypropylene-nanoclay with natural fibres, for instance Gigantochloa Scortechinii may boost up the mechanical properties of the parts. Therefore, this project was proposed with the objective to optimise the processing condition of injected mould polypropylene-nanoclay-Gigantochloa Scortechini fibres based on the flow behaviour, which was melt flow index. At first, Gigantochloa Scortechinii fibres have to be preheated at temperature 120°C and then mixed with polypropylene, maleic anhydride modified polypropylene oligomers (PPgMA) and nanoclay by using Brabender Plastograph machine. Next, forms of pellets were produced from the samples by using Granulator machine for use in the injection moulding process. The design of experiments that was used in the injection moulding process was Taguchi Method Orthogonal Array -L934. Melt Flow Index (MF) was selected as the response. Based on the results, the value of MFI increased when the fiber content increase from 0% to 3%, which was 17.78 g/10min to 22.07 g/10min and decreased from 3% to 6%, which was 22.07 g/10min to 20.05 g/10min and 3%, which gives the highest value of MFI. Based on the signal to ratio analysis, the most influential parameter that affects the value of MFI was the melt temperature. The optimum parameter for 3% were 170°C melt temperature, 35% packing pressure, 30% screw speed and 3 second filling time.
Influence of moisture absorption on mechanical properties of wood flour- polypropylene composites
Nicole Stark
2001-09-01
Wood-plastic composites are being examined for a greater number of structural-type applications that may be exposed to different environments, some of them adverse. This paper discusses the influence of moisture absorption on the mechanical proper-ties of wood flour-polypropylene composites. Composites filled with 20% or 40% wood flour (by weight) were placed in...
Nanoindentation of the interphase region of a wood-reinforced polypropylene composite
Joseph E. Jakes; John C. Hermanson; Donald S. Stone
2007-01-01
The interphase region of a wood-reinforced polypropylene (PP) composite was investigated with nanoindentation techniques capable of separating intrinsic properties of PP in the interphase region from the effect of elastic discontinuity caused by the nearby wood cell wall. From data collected in this experiment, no differences in hardness or Youngâs modulus for PP were...
2014-06-01
Canada), telle que representee par le ministre de la Defense nationale, 2014 i Abstract Under certain conditions, military coatings...μm Particle C: a compound of fluorinated polymer and polypropylene , mean particle size 9 μm Due to the fact that all three types of particles have...functional particles, which are either pure fluorinated polymer or compound of fluorinated polymer and polypropylene , possessing certain degrees of
Effects of wood fiber characteristics on mechanical properties of wood/polypropylene composites
Nicole M. Stark; Robert E. Rowlands
2003-01-01
Commercial wood flour, the most common wood-derived filler for thermoplastics, is produced in a mixture of particle sizes and generally has a lower aspect ratio than wood and other natural fibers. To understand how wood flour and fiber characteristics influence the mechanical properties of polypropylene composites, we first investigated the effect of different sizes of...
Y. Xue; D.R. Veazie; C. Glinsey; M.F. Horstemeyer; R.M. Rowell
2007-01-01
The mechanical properties of newly developed aspen fiberâpolypropylene composites (APC) were experimentally explored and numerically predicted at the temperatures and humidity that are typical for domestic housing applications. The mechanical properties of APCs with five different fiber-loadings were evaluated at the room temperature, 4 [degrees] C, and 40 [degrees] C...
Coir fiber reinforced polypropylene composite panel for automotive interior applications
Nadir Ayrilmis; Songklod Jarusombuti; Vallayuth Fueangvivat; Piyawade Bauchongkol; Robert H. White
2011-01-01
In this study, physical, mechanical, and flammability properties of coconut fiber reinforced polypropylene (PP) composite panels were evaluated. Four levels of the coir fiber content (40, 50, 60, and 70 % based on the composition by weight) were mixed with the PP powder and a coupling agent, 3 wt % maleic anhydride grafted PP (MAPP) powder. The water resistance and the...
Novel Particulate Air-Filtration Media: Market Survey
2013-02-01
efficiencies up to 99.999% (0.001% penetration) using two solid-state laser photometers to measure aerosol concentration levels up and downstream of...MN) Tetratex, Ultra-Web, Spider-Web, Dura-Life, Fiber-Web, and Syntek XP DuPont (Wilmington, DE) Spunbond Polypropylene , Nomex KD, and Hybrid...nanofiber technology. The meltblown textiles can be manufactured using polypropylene , polyamides, polylactic acid and biodegradable polymers
Neodymium:YAG laser cutting of intraocular lens haptics.
Gorn, R A; Steinert, R F
1985-11-01
Neodymium:YAG laser cutting of polymethylmethacrylate and polypropylene anterior chamber and posterior chamber intraocular lens haptics was studied in terms of ease of transection and physical structure of the cut areas as seen by scanning electron microscopy. A marked difference was discovered, with the polymethylmethacrylate cutting easily along transverse planes, whereas the polypropylene resisted cutting along longitudinal fibers. Clinical guidelines are presented.
Porous structure, permeability, and mechanical properties of polyolefin microporous films
NASA Astrophysics Data System (ADS)
Elyashevich, G. K.; Kuryndin, I. S.; Lavrentyev, V. K.; Bobrovsky, A. Yu.; Bukošek, V.
2012-09-01
Microporous films of polyolefins, namely, polyethylene and polypropylene, have been prepared using the process based on the extrusion of the melt with the subsequent annealing, uniaxial extension, and thermal fixation. The influence of the conditions used for preparation of the films on their morphology, porosity, number and sizes of through-flow channels, and mechanical properties has been investigated. It has been found that a significant influence on the characteristics of the porous structure of the films is exerted by the degree of orientation of the melt at extrusion, the annealing temperature, and the degree of uniaxial extension of the films. The threshold values of these parameters, at which through-flow channels are formed in the films, have been determined. It has been shown using filtration porosimetry that polyethylene films have a higher permeability to liquids as compared to the polypropylene samples (240 and 180 L/(m2 h atm), respectively). The porous structure of the polyethylene films is characterized by larger sizes of through pores than those of the polypropylene samples (the average pore sizes are 210 and 160 nm, respectively), whereas the polypropylene films contain a larger number of through-flow channels.
High strain rate behaviour of polypropylene microfoams
NASA Astrophysics Data System (ADS)
Gómez-del Río, T.; Garrido, M. A.; Rodríguez, J.; Arencón, D.; Martínez, A. B.
2012-08-01
Microcellular materials such as polypropylene foams are often used in protective applications and passive safety for packaging (electronic components, aeronautical structures, food, etc.) or personal safety (helmets, knee-pads, etc.). In such applications the foams which are used are often designed to absorb the maximum energy and are generally subjected to severe loadings involving high strain rates. The manufacture process to obtain polymeric microcellular foams is based on the polymer saturation with a supercritical gas, at high temperature and pressure. This method presents several advantages over the conventional injection moulding techniques which make it industrially feasible. However, the effect of processing conditions such as blowing agent, concentration and microfoaming time and/or temperature on the microstructure of the resulting microcellular polymer (density, cell size and geometry) is not yet set up. The compressive mechanical behaviour of several microcellular polypropylene foams has been investigated over a wide range of strain rates (0.001 to 3000 s-1) in order to show the effects of the processing parameters and strain rate on the mechanical properties. High strain rate tests were performed using a Split Hopkinson Pressure Bar apparatus (SHPB). Polypropylene and polyethylene-ethylene block copolymer foams of various densities were considered.
Property Relationship in Organosilanes and Nanotubes Filled Polypropylene Hybrid Composites
Monsiváis-Barrón, Alejandra J.; Bonilla-Rios, Jaime; Sánchez-Fernández, Antonio
2014-01-01
Polypropylene composites with different filler contents were prepared by creating a masterbatch containing 3 wt%. filler. A variety of silanol groups were used to synthetized three compounds in different media trough a sol-gel process with acetic acid, formic acid and ammonium hydroxide as catalysts. Besides, four different nanotubular fillers were also used to analyze their behavior and compare it with the effect caused by the silanol groups. These tubular structures comprise: unmodified halloysite, carbon nanotubes and functionalized halloysite and carbon nanotubes. Morphological characterization in SEM and STEM/TEM showed dispersion in the polypropylene matrix. According to TGA and DSC measurements thermal behavior remain similar for all the composites. Mechanical test in tension demonstrate that modulus of the composites increases for all samples with a major impact for materials containing silanol groups synthetized in formic acid. Rheological measurements show a significantly increment in viscosity for samples containing unmodified and modified carbon nanotubes. No difference was found for samples containing silanol groups and halloysite when compared to neat polypropylene. Finally, the oxygen transmission rate increased for all samples showing high barrier properties only for samples containing natural and functionalized halloysite nanotubes. PMID:28788233
Property Relationship in Organosilanes and Nanotubes Filled Polypropylene Hybrid Composites.
Monsiváis-Barrón, Alejandra J; Bonilla-Rios, Jaime; Sánchez-Fernández, Antonio
2014-10-20
Polypropylene composites with different filler contents were prepared by creating a masterbatch containing 3 wt%. filler. A variety of silanol groups were used to synthetized three compounds in different media trough a sol-gel process with acetic acid, formic acid and ammonium hydroxide as catalysts. Besides, four different nanotubular fillers were also used to analyze their behavior and compare it with the effect caused by the silanol groups. These tubular structures comprise: unmodified halloysite, carbon nanotubes and functionalized halloysite and carbon nanotubes. Morphological characterization in SEM and STEM/TEM showed dispersion in the polypropylene matrix. According to TGA and DSC measurements thermal behavior remain similar for all the composites. Mechanical test in tension demonstrate that modulus of the composites increases for all samples with a major impact for materials containing silanol groups synthetized in formic acid. Rheological measurements show a significantly increment in viscosity for samples containing unmodified and modified carbon nanotubes. No difference was found for samples containing silanol groups and halloysite when compared to neat polypropylene. Finally, the oxygen transmission rate increased for all samples showing high barrier properties only for samples containing natural and functionalized halloysite nanotubes.
NASA Astrophysics Data System (ADS)
Shakeri, Alireza; Ghasemian, Ali
2010-04-01
This study aims to investigate the moisture absorption of recycled newspaper fiber and recycled newspaper-glass fiber hybrid reinforced polypropylene composites to study their suitability in outdoor applications. In this work composite materials were made from E-glass fiber (G), recycled newspaper (NP) and polypropylene (PP), by using internal mixing and hot-pressing molding. Long-term water absorption (WA) and thickness swelling (TS) kinetics of the composites was investigated with water immersion. It was found that the WA and TS increase with NP content in composite and water immersion time before an equilibrium condition was reached. Composites made from the NP show comparable results as those made of the hybrid fiber. The results suggest that the water absorption and thickness swelling composite decrease with increasing glass fiber contents in hybrid fiber composite. It is interesting to find that the WA and TS can be reduced significantly with incorporation of a coupling agent (maleated polypropylene) in the composite formulation. Further studies were conducted to model the water diffusion and thickness swelling of the composites. Diffusion coefficients and swelling rate parameters in the models were obtained by fitting the model predictions with the experimental data.
NASA Astrophysics Data System (ADS)
Hafizhah, R.; Juwono, A. L.; Roseno, S.
2017-05-01
The development of eco-friendly composites has been increasing in the past four decades because the requirement of eco-friendly materials has been increasing. Indonesia has a lot of natural fiber resources and, pineapple leaf fiber is one of those fibers. This study aimed to determine the influence of weight fraction of pineapple leaf fibers, that were grown at Subang, to the tensile properties and the deflection temperature of polypropylene/Subang pineapple leaf fiber composites. Pineapple leaf fibers were pretreated by alkalization, while polypropylene pellets, as the matrix, were extruded into sheets. Hot press method was used to fabricate the composites. The results of the tensile test and Heat Deflection Temperature (HDT) test showed that the composites that contained of 30 wt.% pineapple leaf fiber was the best composite. The values of tensile strength, modulus of elasticity and deflection temperature were (64.04 ± 3.91) MPa; (3.98 ± 0.55) GPa and (156.05 ± 1.77) °C respectively, in which increased 187.36%, 198.60%, 264.72% respectively from the pristine polypropylene. The results of the observation on the fracture surfaces showed that the failure modes were fiber breakage and matrix failure.
Mechanical Characterization of Composites and Foams for Aerospace Applications
NASA Technical Reports Server (NTRS)
Veazie, D. R.; Glinsey, C.; Webb, M. M.; Norman, M.; Meador, Michael A. (Technical Monitor)
2000-01-01
Experimental studies to investigate the mechanical properties of ultra-lightweight polyimide foams for space applications, compression after impact (CAI) properties for low velocity impact of sandwich composites, and aspen fiber/polypropylene composites containing an interface adhesive additive, Maleic Anhydride Grafted Polypropylene (MAPP), were performed at Clark Atlanta University. Tensile, compression, flexural, and shear modulus tests were performed on TEEK foams categorized by their densities and relative cost according to ASTM specifications. Results showed that the mechanical properties of the foams increased as a function of higher price and increasing density. The CAI properties of Nomex/phenolic honeycomb core, fiberglass/epoxy facesheet sandwich composites for two damage arrangements were compared using different levels of impact energy ranging from 0 - 452 Joules. Impact on the thin side showed slightly more retention of CAI strength at low impact levels, whereas higher residual compressive strength was observed from impact on the thick side at higher impact levels. The aspen fiber/polypropylene composites studied are composed of various percentages (by weight) of aspen fiber and polypropylene ranging from 30%-60% and 40%-100%, respectively. Results showed that the MAPP increases tensile and flexural strength, while having no significant influence on tensile and flexural modulus.
Suzuki, Yasutomo; Saito, Yuka; Ogushi, Satoko; Kimura, Go; Kondo, Yukihiro
2012-10-01
Herein we describe our experience with a bone-anchored sling using a suture anchor and polypropylene mesh for the treatment of post-radical prostatectomy urinary incontinence. Eight patients with urinary incontinence as a result of intrinsic sphincter deficiency after radical prostatectomy were included in the analysis. The procedure involved piercing the pubic bone with a bone drill, inserting the suture anchor and fixing a soft or rigid polypropylene mesh to press firmly on the bulbar urethra. Urinary incontinence was significantly improved according to changes in the daily number of pads used at 1, 3 and 6 months postoperatively in comparison with preoperatively. However, no meaningful improvement at 6 months postoperatively was seen with the soft mesh. Complications included perineal pain in four cases, but pain control was achieved using non-steroidal anti-inflammatory drugs. The bone-anchored sling with a suture anchor and polypropylene mesh appears to be safe and effective for the treatment of post-radical prostatectomy urinary incontinence. Soft mesh appears inappropriate as material for the bone-anchored sling because of the progressive likelihood of worsened urinary incontinence. © 2012 The Japanese Urological Association.
Ring-Opening Polymerization of rac-Lactide with Aluminum Chiral Anilido-Oxazolinate Complexes
2015-01-01
A series of dimethylaluminum complexes (L1a–i)AlMe2 (2a–i, where HL1a–i = 2-(2′-ArNH)phenyl-4-R1-oxazoline) bearing chiral, bidentate anilido-oxazolinate ligands have been prepared and characterized. Six of the complexes, in the presence of an alcohol cocatalyst, are shown to be active initiators for the stereoselective ring-opening polymerization of rac-lactide in toluene solution and under bulk conditions, yielding polylactides with a range of tacticity from slightly isotactic to moderately heterotactic. The reactivity and selectivity of these catalysts are discussed on the basis of the effect of their substituents. PMID:24891754
Hecq, J-D; Godet, M; Gillet, P; Jamart, J; Galanti, L
2014-01-01
The aim of this study was to investigate the long-term stability of morphine hydrochloride in 0.9% NaCI infusion polyolefin bags and polypropylene syringes after storage at 5 degrees C + 3 degrees C and to evaluate the influence of initial freezing and microwave thawing on this stability. Ten polyolefin bags and five polypropylene syringes containing 100 mL of 1 mg/mL of morphine hydrochloride solution in 0.9% NaCI were prepared under aseptic conditions. Five polyolefin bags were frozen at -20 degrees C for 90 days before storage. Immediately after the preparation and after thawing, 2 mL of each bag were withdrawn for the initial concentration measurements. All polyolefin bags and polypropylene syringes were then refrigerated at 5 degrees C + 3 degrees C for 58 days during which the morphine concentrations were measured periodically by high-performance liquid chromatography using a reversed-phase column, naloxone as internal standard, a mobile phase consisting of 5% acetonitrile and 95% of KH2PO4 buffer (pH 3.50), and detection with diode array detector at 254 nm. Visual and microscopic observations and spectrophotometric and pH measurements were also performed. Solutions were considered stable if the concentration remained superior to 90% of the initial concentration. The degradation products peaks were not quantitatively significant and were resolved from the native drug. Polyolefin bag and polypropylene syringe solutions were stable when stored at 5 degrees C + 3 degrees C during these 58 days. No color change or precipitation in the solutions was observed. The physical stability was confirmed by visual, microscopic, and spectrophotometric inspection. There was no significant change in pH during storage. Freezing and microwave thawing didn't influence the infusion stability. Morphine hydrochloride infusions may be prepared in advance by centralized intravenous additive service, frozen in polyolefin bags, and microwave thawed before storage under refrigeration until 58 days either in polyolefin bags or polypropylene syringes. Such treatment could improve safety and management.
Guise, Catarina; Fernandes, Margarida M; Nóbrega, João M; Pathak, Sudhir; Schneider, Walter; Fangueiro, Raul
2016-11-09
Current brain imaging methods largely fail to provide detailed information about the location and severity of axonal injuries and do not anticipate recovery of the patients with traumatic brain injury. High-definition fiber tractography appears as a novel imaging modality based on water motion in the brain that allows for direct visualization and quantification of the degree of axons damage, thus predicting the functional deficits due to traumatic axonal injury and loss of cortical projections. This neuroimaging modality still faces major challenges because it lacks a "gold standard" for the technique validation and respective quality control. The present work aims to study the potential of hollow polypropylene yarns to mimic human white matter axons and construct a brain phantom for the calibration and validation of brain diffusion techniques based on magnetic resonance imaging, including high-definition fiber tractography imaging. Hollow multifilament polypropylene yarns were produced by melt-spinning process and characterized in terms of their physicochemical properties. Scanning electronic microscopy images of the filaments cross section has shown an inner diameter of approximately 12 μm, confirming their appropriateness to mimic the brain axons. The chemical purity of polypropylene yarns as well as the interaction between the water and the filament surface, important properties for predicting water behavior and diffusion inside the yarns, were also evaluated. Restricted and hindered water diffusion was confirmed by fluorescence microscopy. Finally, the yarns were magnetic resonance imaging scanned and analyzed using high-definition fiber tractography, revealing an excellent choice of these hollow polypropylene structures for simulation of the white matter brain axons and their suitability for constructing an accurate brain phantom.
NASA Astrophysics Data System (ADS)
Shieddieque, Apang Djafar; Mardiyati, Suratman, Rochim; Widyanto, Bambang
2018-04-01
The increasing amount of car usage is causing an escalated amount of fuel consumption and CO2 emission. It implicates demand for the automotive industry to increase the efficiency of their products, One of the most effective ways to solve the issue is to find green weight light material for the interior automotive component. The Aim of this research was to investigate the effect of alkaline treatment and fiber orientation on the impact resistant of material bio- composite sansevieiria trifasciata fiber/Polypropylene. In this research, bio-composites sansevieria trifasciata fiber/Polypropylene was prepared with random fiber orientation and unidirectional orientation by using a hot press method with pressure 140 Bar and temperature 240°C. Fiber was taken from Sansevieria trifasciata by using mechanical retting. In this study, Sansevieria fiber was given alkaline treatment (mercerization) with NaOH 3% (w/w) solution at temperature 100°C for an hour. The fraction of fiber volume that were used in this experiment are 0%, 5%, 10%, and 15%. The impact test was conducted based on ASTM D 6110 - 04, and the fracture analysis was investigated by scanning electron microscope (SEM). The best result of impact toughness and fracture analysis were achieved by bio composite untreated and unidirectional sansevieria trifasciata fiber/Polypropylene with fiber volume fraction of 15%, which was 48.092kJ/m2 for impact resistant. As compared to the impact toughness standard, which needed for interior automotive component, the impact toughness of sansevieria trifasciata fiber/Polypropylene has fulfilled the standard of the interior material automotive industry. Therefore, this material can be potentially used as materials on the car exterior component.
Bacterial adhesion forces to Ag-impregnated contact lens cases and transmission to contact lenses.
Qu, Wenwen; Busscher, Henk J; van der Mei, Henny C; Hooymans, Johanna M M
2013-03-01
To measure adhesion forces of Pseudomonas aeruginosa, Staphylococcus aureus, and Serratia marcescens to a rigid contact lens (CL), standard polypropylene, and Ag-impregnated lens cases using atomic force microscopy and determine bacterial transmission from lens case to CL. Adhesion forces of bacterial strains to Ag-impregnated and polypropylene lens cases and a rigid CL were measured using atomic force microscopy. Adhesion forces were used to calculate Weibull distributions, from which transmission probabilities from lens case to CL were derived. Transmission probabilities were compared with actual transmission of viable bacteria from a lens case to the CL in 0.9% NaCl and in an antimicrobial lens care solution. Bacterial transmission probabilities from polypropylene lens cases based on force analysis coincided well for all strains with actual transmission in 0.9% NaCl. Bacterial adhesion forces on Ag-impregnated lens cases were much smaller than that on polypropylene and CLs, yielding a high probability of transmission. Comparison with actual bacterial transmission indicated bacterial killing due to Ag ions during colony-forming unit transmission from an Ag-impregnated lens case, especially for P. aeruginosa. Transmission of viable bacteria from Ag-impregnated lens cases could be further decreased by use of an antimicrobial lens care solution instead of 0.9% NaCl. Bacterial transmission probabilities are higher from Ag-impregnated lens cases than from polypropylene lens cases because of small adhesion forces, but this is compensated for by enhanced bacterial killing due to Ag impregnation, especially when in combination with an antimicrobial lens care solution. This calls for a balanced combination of antimicrobial lens care solutions and surface properties of a lens case and CL.
Eco-friendly Fibre from Recycled Polypropylene of Bottle Cap Waste and Lignin
NASA Astrophysics Data System (ADS)
Soekoco, A. S.; Basuki, A.; Mardiyati
2016-01-01
Ecofriendly fibre is one of potential alternatives to fulfill the rising demand in textile material supply which is limited due to the decreasing reserve of oil. Large amount of polypropylene waste from bottle cap and lignin as a byproduct from pulp industry are potential solutions. Grinded polypropylene bottle cap was blended with lignin powder in concentration of 5 wt. % processed by melt spinning at 170° C temperature. The fibres produced have an average diameter 170 and 250 micrometres. In view of the mechanical properties. the tensile strength is 11.9 MPa for fibre with 170 micrometres diameter and 14.7 MPa for fibre with 250 micrometres diameter. Fibre surface morphology was further studied using micron microscope. and the result shows black flocks spread in the fibre. indicating that the lignin does not blend evenly.
Visible light photoactivity of Polypropylene coated Nano-TiO2 for dyes degradation in water
Giovannetti, R.; Amato, C. A. D’; Zannotti, M.; Rommozzi, E.; Gunnella, R.; Minicucci, M.; Di Cicco, A.
2015-01-01
The use of Polypropylene as support material for nano-TiO2 photocatalyst in the photodegradation of Alizarin Red S in water solutions under the action of visible light was investigated. The optimization of TiO2 pastes preparation using two commercial TiO2, Aeroxide P-25 and Anatase, was performed and a green low-cost dip-coating procedure was developed. Scanning electron microscopy, Atomic Force Microscopy and X-Ray Diffraction analysis were used in order to obtain morphological and structural information of as-prepared TiO2 on support material. Equilibrium and kinetics aspects in the adsorption and successive photodegradation of Alizarin Red S, as reference dye, are described using polypropylene-TiO2 films in the Visible/TiO2/water reactor showing efficient dyes degradation. PMID:26627118
Materials testing protocol for small joint prostheses.
Savory, K M; Hutchinson, D T; Bloebaum, R
1994-10-01
In this article, a protocol for the evaluation of new materials for small joint prostheses is introduced. The testing methods employed in the protocol were developed by reviewing reported clinical failure modes and conditions found in vivo. The methods developed quantitatively evaluates the fatigue, fatigue crack propagation, and wear resistance properties of materials. For this study, a silicone elastomer similar to Dow Corning Silastic HP100, a radiation stable polypropylene, and a copolymer of polypropylene and ethylene propylene-diene monomer (EPDM) are evaluated. None of the materials tested demonstrated the ideal properties that are sought in a self-hinging joint prostheses. The silicone elastomer had excellent wear properties; however, cracks quickly propagated, causing catastrophic failure when fatigued. Conversely, the copolymer showed excellent fatigue crack propagation resistance and less than favorable wear properties. The polypropylene did not perform well in any evaluation.
ERIC Educational Resources Information Center
Lopez Gaxiola, Daniel
2011-01-01
In this project we developed conductive thermoplastic resins by adding varying amounts of three different carbon fillers: carbon black (CB), synthetic graphite (SG) and multi-walled carbon nanotubes (CNT) to a polypropylene matrix for application as fuel cell bipolar plates. This component of fuel cells provides mechanical support to the stack,…
A Combination Tissue Engineering Strategy for Schwann Cell-Induced Spinal Cord Repair
2016-10-01
block copolymer consisting of polyethylene oxide (PEO) and polypropylene oxide (PPO). It has thermoreversible gelation properties when used at...high; Zeus Inc., Orangeburg, SC) were placed on top of the aligned and random fibrous PVDF-TrFE disks in 96-well polypropylene plates to prevent them...2011. Preparation of spinal cord injured tissue for light and electron microscopy including preparation for immunostaining. In: Lane LE , Dunnett BS
Translations on Eastern Europe, Political, Sociological, and Military Affairs, Number 1446.
1977-09-14
general designer was national enterprise Chemoprojekt Litvinov, and both the international and national ethylene pipelines on the territory of the CSR ...Gradually the related units in the CSR for production of polypropylene at Litvinov and for PVC production at Neratovice were also put into operation...Deliveries of propylene from the GDR are designed for production of polypropylene, oxoalcohols and epichlorhydride in the CSR . The propylene supply
A. R. Sanadi; R. A. Young; C. Clemons; R. M. Rowell
1994-01-01
Recycled newspaper fibers (ONP) are potentially outstanding nonabrasive reinforcing fibers with high specific properties. In this study, a high energy thermokinetic mixer was used to mix these fibers in a polypropylene (PP) matrix, and the blends were then injection molded in order to observe the tensile and impact strengths of the composites. A 40% (weight) of ONP in...
NASA Astrophysics Data System (ADS)
Chen, Huirong; Ma, Wenzhong; Xia, Yanping; Gu, Yi; Cao, Zheng; Liu, Chunlin; Yang, Haicun; Tao, Shengxi; Geng, Haoran; Tao, Guoliang; Matsuyama, Hideto
2017-10-01
An amphiphilic polypropylene-g-poly[vinylpyrrolidone-co-poly(ethylene glycol) methacrylate] (PP-g-(NVP-co-PEGMA)) modifier was prepared by melt grafting polymerization using N-vinyl pyrrolidone (NVP) as the grafting monomer and poly(ethylene glycol) (PEGMA) as the comonomer. Fourier transform infrared (FTIR) spectroscopy and elemental analysis showed that the hydrophilic branched chains (NVP-g-PEGMA) were successfully grafted to polypropylene (PP) macromolecular chains. The largest NVP grafting degree for PP-g-(NVP-co-PEGMA) (up to 20.4%) was obtained when the mass ratio of PP/NVP/PEGMA was 100/30/15. Hydrophilic PP microporous membranes were prepared by stretching cast films of PP/PP-g-(NVP-co-PEGMA) blends. The membrane thermostability (including the modifier) was better than that of the pure PP membrane with a similar surface pore structure. The porosity of the modified membranes was only slightly lower than that of the pure PP membranes. Contact angle measurements were used to examine the hydrophilicity of the membranes. The water contact angle of the membranes decreased when PP-g-(NVP-co-PEGMA) was added, and the minimum contact angle was 64.5°. Therefore, this work provides a good application for stretched hydrophilic PP membrane fabrication.
NASA Astrophysics Data System (ADS)
Taheri, Hesam; Nóbrega, João Miguel; Samyn, Pieter; Covas, José Antonio
2014-05-01
In this work, the simultaneous effect of both temperature and drawing ratio during processing of polypropylene monofilaments has been investigated. The basis of this work specifically aims at emphasizing the conditions of temperature and drawing ratio applied in the cooling bath, in order to find out under which conditions the named parameters can be applied in a processing line under continuous extrusion. The effects of temperature are studied for a constant total drawing ratio to analyze the influences on mechanical properties and structural differences of the final polypropylene monofilament. The quenched monofilaments were drawn around an adjustable guide assembly in the quench bath and first drawing stage, imparting thermal and mechanical treatments to the filaments. In the heating stage, monofilaments are affected to high-speed draw rolls while passing through the oven. As such, the best conditions to produce a polypropylene monofilament with high tenacity strength were determined. Results of this study show that the monofilament properties are significantly affected by temperature in the cooling zone. The nature of the first drawing had a significant effect on the end properties and monofilaments with modulus of 637 MPa have finally been manufactured. We have also proposed a new hypothesis, which is termed "gap nucleation" and determine this phenomenon in the gap between die and cooling bath.
Steinmetz, Hanna P; Rudnick-Glick, Safra; Natan, Michal; Banin, Ehud; Margel, Shlomo
2016-11-01
There has been increased concern during the past few decades over the role bacterial biofilms play in causing a variety of health problems, especially since they exhibit a high degree of resistance to antibiotics and are able to survive in hostile environments. Biofilms consist of bacterial aggregates enveloped by a self-produced matrix attached to the surface. Ca(2+) ions promote the formation of biofilms, and enhance their stability, viscosity, and strength. Bisphosphonates exhibit a high affinity for Ca(2+) ions, and may inhibit the formation of biofilms by acting as sequestering agents for Ca(2+) ions. Although the antibacterial activity of bisphosphonates is well known, research into their anti-biofilm behavior is still in its early stages. In this study, we describe the synthesis of a new thin coating composed of poly(styryl bisphosphonate) grafted onto oxidized polypropylene films for anti-biofilm applications. This grafting process was performed by graft polymerization of styryl bisphosphonate vinylic monomer onto O2 plasma-treated polypropylene films. The surface modification of the polypropylene films was confirmed using surface measurements, including X-ray photoelectron spectroscopy, atomic force microscopy, and water contact angle goniometry. Significant inhibition of biofilm formation was achieved for both Gram-negative and Gram-positive bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sanbhal, Noor; Mao, Ying; Sun, Gang; Xu, Rui Fang; Zhang, Qian; Wang, Lu
2018-05-01
Light weight polypropylene (PP) mesh is the most widely used implant among all other synthetic meshes for hernia repair. However, infection is the complication associated to all synthetic meshes after hernia repair. Thus, to manage mesh related infection; antibacterial drug is generally loaded to surgical implants to supply drug locally in mesh implanted site. Nevertheless, PP mesh restricts the loading of antibacterial drug at operated area due to its low wettability. The aim of this study was to introduce a novel antimicrobial PP mesh modified with β-cyclodextrine (CD) and loaded with antimicrobial agent for infection prevention. A cold oxygen plasma treatment was able to activate the surfaces of polypropylene fibers, and then CD was incorporated onto the surfaces of PP fibers. Afterward, triclosan, as a model antibacterial agent, was loaded into CD cavity to provide desired antibacterial functions. The modified polypropylene mesh samples CD-Tric-1, CD-Tric-3 exhibited excellent inhibition zone and continuous antibacterial efficacy against E. coli and S. aureus up to 6 and 7 days respectively. Results of AFM, SEM, FTIR and antibacterial tests evidenced that oxygen plasma process is necessary to increase chemical connection between CD molecules and PP fibers. The samples were also characterized by using EDX, XRD, TGA, DSC and water contact angle.
Zwitterionic Group VIII transition metal initiators supported by olefin ligands
Bazan, Guillermo C [Goleta, CA; Chen, Yaofeng [Shanghai, CN
2011-10-25
A zwitterionic Group VIII transition metal complex containing the simple and relatively small 3-(arylimino)-but-1-en-2-olato ligand that catalyzes the formation of polypropylene and high molecular weight polyethylene. A novel feature of this catalyst is that the active species is stabilized by a chelated olefin adduct. The present invention also provides methods of polymerizing olefin monomers using zwitterionic catalysts, particularly polypropylene and high molecular weight polyethylene.
Fracture behavior of polypropylene/clay nanocomposites.
Chen, Ling; Wang, Ke; Kotaki, Masaya; Hu, Charmaine; He, Chaobin
2006-12-01
Polypropylene (PP)/clay nanocomposites have been prepared via a reactive compounding approach with an epoxy based masterbatch. Compared with PP and common PP/organoclay nanocomposites, the PP/clay nanocomposites based on epoxy/clay masterbatch have higher impact strength. The phenomenon can be attributed to the epoxy phase dispersed uniformly in the PP matrix, which may act as impact energy absorber and helps to form a large damage zone, thus a higher impact strength value is achieved.
Bondar, Yuliia; Kuzenko, Svetlana; Han, Do-Hung; Cho, Hyun-Kug
2014-01-01
A nanocomposite adsorbent based on potassium nickel hexacyanoferrate-loaded polypropylene fabric was synthesized for selective removal of Cs ions from contaminated waters by a two-stage synthesis: radiation-induced graft polymerization of acrylic acid monomer onto the nonwoven polypropylene fabric surface with subsequent in situ formation of potassium nickel hexacyanoferrate (KNiHCF) nanoparticles within the grafted chains. Data of scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy confirmed the formation of KNiHCF homogeneous phase on the fabric surface, which consisted of crystalline cubic-shaped nanoparticles (70 to 100 nm). The efficiency of the synthesized adsorbent for removal of cesium ions was evaluated under various experimental conditions. It has demonstrated a rapid adsorption process, high adsorption capacity over a wide pH range, and selectivity in Cs ion removal from model solutions with high concentration of sodium ions.
Effects of environmental ageing on HMS-polypropylene/Cloisite nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komatsu, L. G. H., E-mail: dfparra@ipen.br; Oliani, W. L., E-mail: dfparra@ipen.br; Ferreto, H. F. R., E-mail: dfparra@ipen.br
High melt strength polypropylene Nanocomposites (NC-HMSPP) were obtained with concentrations of 0.1 and 5 wt% of Cloisite 20A. The melt intercalation, using twin screw extruder was done to homogenize the nanocomposite in presence of polypropylene graft maleic anhydride (PP-g-MA) compatibilizer agent. In this work, the manufactured dumbbell samples were settled in device for natural ageing assay. The period of exposition was January to December of 2012. The effects of environmental ageing was determined by carbonyl index (FT-IR) and the results showed that nanocomposites were more stable than HMSPP. The mechanical properties (elongation and rupture strength) were evaluated and the thermalmore » behavior was investigated by differential scanning calorimetry (DSC) and X ray diffraction (DRX). The morphology was observed by scanning electron microscopy (SEM) in which the nanocomposites showed intense cracks on the surface.« less
Texturing of polypropylene (PP) with nanosecond lasers
NASA Astrophysics Data System (ADS)
Riveiro, A.; Soto, R.; del Val, J.; Comesaña, R.; Boutinguiza, M.; Quintero, F.; Lusquiños, F.; Pou, J.
2016-06-01
Polypropylene (PP) is a biocompatible and biostable polymer, showing good mechanical properties that has been recently introduced in the biomedical field for bone repairing applications; however, its poor surface properties due to its low surface energy limit their use in biomedical applications. In this work, we have studied the topographical modification of polypropylene (PP) laser textured with Nd:YVO4 nanosecond lasers emitting at λ = 1064 nm, 532 nm, and 355 nm. First, optical response of this material under these laser wavelengths was determined. The application of an absorbing coating was also studied. The influence of the laser processing parameters on the surface modification of PP was investigated by means of statistically designed experiments. Processing maps to tailor the roughness, and wettability, the main parameters affecting cell adhesion characteristics of implants, were also determined. Microhardness measurements were performed to discern the impact of laser treatment on the final mechanical properties of PP.
Facile preparation in two steps of highly hydrophobic coatings on polypropylene surface
NASA Astrophysics Data System (ADS)
Petcu, Cristian; Nistor, Cristina Lavinia; Purcar, Violeta; Cinteză, Ludmila Otilia; Spătaru, Cătălin-Ilie; Ghiurea, Marius; Ianchiş, Raluca; Anastasescu, Mihai; Stoica, Mihai
2015-08-01
Monolayer and bilayer coatings deposited on polypropylene (PP) surface were prepared by sol-gel process at room temperature. Monolayer coatings were produced from sol-gel acidic solutions, containing tetraethylorthosilicate (TEOS) and different co-precursors such as phenyltriethoxysilane (PhTES), octylmethyldimethoxysilane (OMDMS) and dodecyltriethoxysilane (DOTES). Bilayer coatings consist of one layer prepared in a similar way described for monolayer coatings, followed by a second layer, obtained from fluorinated silica nanoparticles dispersion. The fluorinated group has been confirmed by the presence of Csbnd F bonds along with network Sisbnd Osbnd Si vibrational mode. Water contact angle values registered for bilayer-coated polypropylene are higher, comparing with the reference (pristine PP) and with the monolayer-coated substrate, and varies as a function of the hydrophobic functional groups of the silica co-precursors: phenyl < octyl < dodecyl. The fluorooctyl functions lead to a significant decrease in the surface energy values for bilayer coating, with very small values of polar component.
2014-01-01
A nanocomposite adsorbent based on potassium nickel hexacyanoferrate-loaded polypropylene fabric was synthesized for selective removal of Cs ions from contaminated waters by a two-stage synthesis: radiation-induced graft polymerization of acrylic acid monomer onto the nonwoven polypropylene fabric surface with subsequent in situ formation of potassium nickel hexacyanoferrate (KNiHCF) nanoparticles within the grafted chains. Data of scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy confirmed the formation of KNiHCF homogeneous phase on the fabric surface, which consisted of crystalline cubic-shaped nanoparticles (70 to 100 nm). The efficiency of the synthesized adsorbent for removal of cesium ions was evaluated under various experimental conditions. It has demonstrated a rapid adsorption process, high adsorption capacity over a wide pH range, and selectivity in Cs ion removal from model solutions with high concentration of sodium ions. PMID:24725367
New Polymer Materials for the Laser Sintering Process: Polypropylene and Others
NASA Astrophysics Data System (ADS)
Wegner, Andreas
Laser sintering of polymers gets more and more importance for small series production. However, there is only a little number of materials available for the process. In most cases parts are build up using polyamide 12 or polyamide 11. Reasons for that are high prices, a restricted availability, poor mechanical part properties or an insufficient understanding of the processing of other materials. These problems result from the complex processing conditions in laser sintering with high requirements on the material's characteristics. Within this area, at the chair for manufacturing technology fundamental knowledge was established. Aim of the presented study was to qualify different polymers for the laser sintering process. Polyethylene, polypropylene, polyamide 6, polyoxymethylene as well as polybutylene terephthalate were analyzed. Within the study problems of qualifying new materials are discussed using some examples. Furthermore, the processing conditions as well as mechanical properties of a new polypropylene compound are shown considering also different laser sintering machines.
NASA Astrophysics Data System (ADS)
Bala, Vaneeta; Tripathi, S. K.; Kumar, Ranjan
2015-02-01
Density functional theory has been applied to study cadmium sulphide-polyvinyl alcohol nanocomposite film. Structural models of two isotactic-polyvinyl alcohol (I-PVA) chains around one cadmium sulphide nanoparticle is considered in which each chain consists three monomer units of [-(CH2CH(OH))-]. All of the hydroxyl groups in I-PVA chains are directed to cadmium sulphide nanoparticle. Electronic and structural properties are investigated using ab-intio density functional code, SIESTA. Structural optimizations are done using local density approximations (LDA). The exchange correlation functional of LDA is parameterized by the Ceperley-Alder (CA) approach. The core electrons are represented by improved Troulier-Martins pseudopotentials. Densities of states clearly show the semiconducting nature of cadmium sulphide polyvinyl alcohol nanocomposite.
The influence of cosmic radiation on the properties of different polymers
NASA Astrophysics Data System (ADS)
Major, Andrea Adamne; Boja, David
2017-10-01
During our research we investigated the influence of cosmic radiation on the properties of different polymers. Polypropylene, polyamide 6.6 and polycarbonate were used as raw materials. Test pieces were injection molded. The test pieces were "flying" at different heights (on Earth, at 5500 m, at 12000 m). Thermal properties were investigated: DSC and TGA. We found that cosmic relay influences change in the thermal properties of polypropylene, polyamide 6.6 and polycarbonate.
Research on mechanical properties of carbon fiber /polyamide reinforced PP composites
NASA Astrophysics Data System (ADS)
Chen, Xinghui; Yu, Qiang; Liu, Lixia; Ji, Wenhua; Yang, Li; Fan, Dongli
2017-10-01
The polyamide composites reinforced by carbon fiber/polypropylene are produced by injection molding processing. The flow abilities and mechanical properties of the CF/PA/PP composite materials are studied by the fusion index instrument and the universal testing machine. The results show that with the content of carbon fiber/polyamide increase, the impact breaking strength and the tensile property of the composite materials increase, which is instructive to the actual injection production of polypropylene products.
Stability of thiopental sodium and propofol in polypropylene syringes at 23 and 4 degrees C.
Chernin, E L; Stewart, J T; Smiler, B
1996-07-01
The stability of thiopental sodium and propofol in an admixture stored in polypropylene syringes at room temperature and under refrigeration was studied. Propofol injection 10 mg/ mL and thiopental sodium 25 mg/mL were mixed to final concentrations of 5 and 12.5 mg/mL, respectively. The admixture was put into 60-mL polypropylene syringes, and two syringes were stored at 23 degrees C and two at 4 degrees C. For solutions stored at 23 degrees C, samples were taken at 0, 4, 8, 24, 48, 72, 120, 168, 216, 240, and 264 hours, and for samples stored at 4 degrees C, samples were taken at 0, 4, 8, 24, 48, 72, 120, 168, 216, and 312 hours. Drug concentrations were determined by high-performance liquid chromatography. Thiopental sodium and propofol retained > 90% of their initial concentrations for up to 312 hours at 4 degrees C. At 23 degrees C, > 90% of the initial concentration was retained by propofol for up to 120 hours and by thiopental sodium for up to 240 hours. No visual changes or significant change in pH occurred in any sample. When mixed and stored in polypropylene syringes, propofol 5 mg/mL and thiopental sodium 12.5 mg/mL were stable for up to 312 hours at 4 degrees C and for up to 120 hours at 23 degrees C.
Charoo, Naseem; Chiew, Magdalene; Tay, Amelia; Lian, Lai
2014-09-01
The aim of this work was to find the effect of temperature and manufacturing source of phenylmercuric nitrate (PMN) on PMN absorption on low-density polyethylene (LDPE) and polypropylene containers in chloramphenicol eye drops. Two factorial experiments were designed to study the effect of temperature on PMN assay in chloramphenicol eye drops stored in LDPE and prepared from two different PMN sources. PMN source had no effect on PMN assay at 2-8 °C, however at stress conditions (30 °C/75%RH) for 3 weeks, the effect of PMN source on PMN assay was found significant (p < 0.05) in formulations stored in LDPE bottles. Temperature was the major contributor to decreased PMN assay. In formulations stored in polypropylene containers, PMN source had significant effect on PMN assay at 2-8 °C and 30 °C/75%RH. Overall, new PMN and polypropylene bottles performed better. The eye drops complied with preservative efficacy test both initially and at the end of shelf life. The concentration exponent of PMN is very low and in spite of its high absorption by container/closure, PMN was still able to protect the eye drops at the end of shelf life. It can be inferred that preservative efficacy test is the better indicator of preservative activity.
NASA Astrophysics Data System (ADS)
Murdy, Rachel Campbell; Mak, Michelle; Misra, Manjusri; Mohanty, Amar K.
2015-05-01
The use of agricultural and food processing residues as potential reinforcements in plastics has been extensively studied. However, there is a large variation in the mechanical performance of agricultural fiber-based biocomposites due to different processing materials and parameters. An in-depth comparison of the resulting effect of the agricultural filler on the matrix is often not possible given the discrepancy in processing conditions. This study seeks to determine the intrinsic properties of agricultural fibers and food processing residues for their use in polypropylene biocomposites based on a standardization of experimental design. The effect of 25wt% loading of miscanthus, fall-and spring-harvest switchgrass, wheat straw, oat hull, soy hull, soy stalk, hemp and flax on the physico-mechanical properties of polypropylene biocomposites was investigated. The addition of fiber led to an improvement in flexural strength, flexural modulus, and tensile modulus, and a general decrease in tensile strength at yield, elongation at break and Izod impact strength. Scanning electron microscopy highlighted the interfacial adhesion, orientation and distribution of the fibers within the matrix, confirming that fiber length and dispersion within the matrix are positively correlated with mechanical properties. The crystallization of the polypropylene phase and a compositional analysis of the agricultural fibers and processing residues were also compared to offer insight into the effect of the filler's intrinsic properties on the resulting material performance.
Ali, Murtaza N; Rehman, Ihtesham Ur
2011-11-01
Oesophageal cancer is the ninth leading cause of malignant cancer death and its prognosis remains poor. Dysphagia which is an inability to swallow is a presenting symptom of oesophageal cancer and is indicative of incurability. The goal of this study was to design and manufacture an Auxetic structure film and to configure this film as an Auxetic stent for the palliative treatment of oesophageal cancer, and for the prevention of dysphagia. Polypropylene was used as a material for its flexibility and non-toxicity. The Auxetic (rotating-square geometry) structure was made by laser cutting the polypropylene film. This flat structure was welded together to form a tubular form (stent), by an adjustable temperature control soldering iron station: following this, an annealing process was also carried out to ease any material stresses. Poisson's ratio was estimated and elastic and plastic deformation of the Auxetic structure was evaluated. The elastic and plastic deformation behaviours of the Auxetic polypropylene film were evaluated by applying repetitive uniaxial tensile loads. Observation of the structure showed that it was initially elastically deformed, thereafter plastic deformation occurred. This research discusses a novel way of fabricating an Auxetic structure (rotating-squares connected together through hinges) on Polypropylene films, by estimating the Poisson's ratio and evaluating the plastic deformation relevant to the expansion behaviour of an Auxetic stent within the oesophageal lumen.
NASA Astrophysics Data System (ADS)
Othman, Nurul Syazwani; Santiagoo, Ragunathan; Abdillahi, Khalid Mohamed; Ismail, Hanafi
2017-07-01
The fabrication of polypropylene (PP)/ recycled acrylonitrile butadiene rubber (NBRr)/ empty fruit bunch (EFB) composites were investigated. The effects of polypropylene maleic anhydride (PPMAH) as a compatibilizer on the mechanical and morphological properties of PP/NBRr/EFB composites were studied. Composites were prepared through melt mixing using heated two roll mill at 180 °C for 9 minutes and rotor speed of 15 rpm. NBRr loading were varied from 0 to 60 phr and PPMAH was fixed for 5 phr. The composites were moulded into a 1 mm thin sheet using hot press machine and then cut into dumbbell shape. The mechanical and morphological properties of composites were examined using universal tensile machine (UTM) and scanning electron microscope (SEM), respectively. Tensile strength and Young's modulus of PP/NBRr/EFB composites decreased with increasing NBRr loading, whilst increasing the elongation at break. However, PPMAH compatibilized composites have resulted 27% to 40% and 25% to 42% higher tensile strength and Young's modulus, respectively, higher compared to uncompatibilized composites. This was due to the better adhesion between PP/NBRr matrices and EFB filler with the presence of maleic anhydride moieties. From the morphological study, the micrograph of PPMAH compatibilized composites has proved the well bonded and good attachments of EFB filler with PP/NBRr matrices which results better tensile strength to the PP/NBRr/EFB composites.
Kasina, Piotr; Tammelin, Ann; Blomfeldt, Anne-Marie; Ljungqvist, Bengt; Reinmüller, Berit; Ottosson, Carin
2016-01-01
Lowering air-borne bacteria counts in the operating room is essential in prevention of surgical site infections in orthopaedic joint replacement surgery. This is mainly achieved by decreasing bacteria counts through dilution, with appropriate ventilation and by limiting the bacteria carrying skin particles, predominantly shed by the personnel. The aim of this study was to investigate if a single use polypropylene clothing system or a reusable polyester clothing system could offer similar air quality in the operating room as a mobile laminar airflow device-assisted reusable cotton/polyester clothing system. Prospective observational study design, comparing the performance of three Clean Air Suits by measuring Colony Forming Units (CFU)/m(3) of air during elective hip and knee arthroplasties, performed at a large university-affiliated hospital. The amount of CFU/m(3) of air was measured during 37 operations of which 13 were performed with staff dressed in scrub suits made of a reusable mixed material (69 % cotton, 30 % polyester, 1 % carbon fibre) accompanied by two mobile laminar airflow units. During 24 procedures no mobile laminar airflow units were used, 13 with staff using a reusable olefin fabric clothing (woven polypropylene) and 11 with staff dressed in single-use suits (non-woven spunbonded polypropylene). Air from the operating field was sampled through a filter, by a Sartorius MD8, and bacterial colonies were counted after incubation. There were 6-8 measurements from each procedure, in total 244 measurements. Statistical analysis was performed by Mann-Whitney U-test. The single-use polypropylene suit reduced the amount of CFU/m(3) to a significantly lower level than both other clothing systems. Single-use polypropylene clothing systems can replace mobile laminar airflow unit-assisted reusable mixed material-clothing systems. Measurements in standardized laboratory settings can only serve as guidelines as environments in real operation settings present a much more difficult challenge.
Beckingham, B; Ghosh, U
2017-01-01
Microplastic particles are increasingly being discovered in diverse habitats and a host of species are found to ingest them. Since plastics are known to sorb hydrophobic organic contaminants (HOCs) there is a question of what risk of chemical exposure is posed to aquatic biota from microplastic-associated contaminants. We investigate bioavailability of polychlorinated biphenyls (PCBs) from polypropylene microplastic by measuring solid-water distribution coefficients, gut fluid solubilization, and bioaccumulation using sediment invertebrate worms as a test system. Microplastic-associated PCBs are placed in a differential bioavailability framework by comparing the results to several other natural and anthrogenic particles, including wood, coal, and biochar. PCB distribution coefficients for polypropylene were higher than natural organic materials like wood, but in the range of lipids and sediment organic carbon, and smaller than black carbons like coal and biochars. Gut fluid solubilization potential increased in the order: coal < polypropylene < biochar < wood. Interestingly, lower gut fluid solubilization for polypropylene than biochar infers that gut fluid micelles may have solubilized part of the biochar matrix while bioaccessibility from plastic can be limited by the solubilizing potential of gut fluids dependent on the solid to liquid ratio or renewal of fluids in the gut. Biouptake in worms was lower by 76% when PCBs were associated with polypropylene compared to sediment. The presence of microplastics in sediments had an overall impact of reducing bioavailability and transfer of HOCs to sediment-ingesting organisms. Since the vast majority of sediment and suspended particles in the environment are natural organic and inorganic materials, pollutant transfer through particle ingestion will be dominated by these particles and not microplastics. Therefore, these results support the conclusion that in most cases the transfer of organic pollutants to aquatic organisms from microplastic in the diet is likely a small contribution compared to other natural pathways of exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bakker, D; van Blitterswijk, C A; Hesseling, S C; Koerten, H K; Kuijpers, W; Grote, J J
1990-04-01
The biocompatibility of porous implants made of Estane 5714 F1 polyether urethane, polypropylene oxide, and a poly(ethylene oxide hydantoin) and poly(tetramethylene terephthalate) segmented polyether polyester copolymer (HPOE/PBT copolymer), which were selected as candidates for an alloplastic tympanic membrane, was assessed after implantation in rat middle ears for periods of up to 1 year. Implantation of the materials led to tissue reactions initially associated with the wound-healing process, whereas after 1 month not only the presence of macrophages and foreign-body giant cells surrounding the implant materials but also implant degradation were characteristic for a foreign-body reaction. Macrophages and foreign-body giant cells dominated the picture of the tissue surrounding polypropylene oxide. The altered morphology of these cells, the persistent infiltration of the implantation sites by exudate cells, and the premature death of five rats in the 1-year group suggest that polypropylene oxide degradation was accompanied by the release of toxic substances. Estane and copolymer degradation did not induce tissue responses reflecting implant toxicity, and tympanic membranes given these alloplasts showed a normal healing pattern. Inclusions in the cytoplasm of macrophages associated with degradation and phagocytosis of all of the polymers under study were found to contain iron, silicon, titanium, and aluminum. Growth of fibrous tissue and bone, the latter into Estane and HPOE/PBT copolymer implants, indicated appropriate implant fixation by tissue, although macrophages and foreign-body giant cells were present as well. Especially the fixation of copolymer by ingrowth of bone seems promising in terms of the amount of bone in the pores and the electron-dense bone/copolymer interface. The latter is indicative for bonding osteogenesis. The HPOE/PBT copolymer is a better candidate for alloplastic tympanic membrane than Estane, and the use of polypropylene oxide cannot be recommended.
Qi, Jie; Zhang, Huang; Wang, Yingzhou; Mani, Mohan Prasath; Jaganathan, Saravana Kumar
2018-01-01
Currently, the design of extracellular matrix (ECM) with nanoscale properties in bone tissue engineering is challenging. For bone tissue engineering, the ECM must have certain properties such as being nontoxic, highly porous, and should not cause foreign body reactions. In this study, the hybrid scaffold based on polyvinyl alcohol (PVA) blended with metallocene polyethylene (mPE) and plectranthus amboinicus (PA) was fabricated for bone tissue engineering via electrospinning. The fabricated hybrid nanocomposites were characterized by scanning electron microscopy (SEM), Fourier transform and infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), contact angle measurement, and atomic force microscopy (AFM). Furthermore, activated partial thromboplastin time (APTT), prothrombin time (PT), and hemolytic assays were used to investigate the blood compatibility of the prepared hybrid nanocomposites. The prepared hybrid nanocomposites showed reduced fiber diameter (238±45 nm) and also increased porosity (87%) with decreased pore diameter (340±86 nm) compared with pure PVA. The interactions between PVA, mPE, and PA were identified by the formation of the additional peaks as revealed in FTIR. Furthermore, the prepared hybrid nanocomposites showed a decreased contact angle of 51°±1.32° indicating a hydrophilic nature and exhibited lower thermal stability compared to pristine PVA. Moreover, the mechanical results revealed that the electrospun scaffold showed an improved tensile strength of 3.55±0.29 MPa compared with the pristine PVA (1.8±0.52 MPa). The prepared hybrid nanocomposites showed delayed blood clotting as noted in APTT and PT assays indicating better blood compatibility. Moreover, the hemolysis assay revealed that the hybrid nanocomposites exhibited a low hemolytic index of 0.6% compared with pure PVA, which was 1.6% suggesting the safety of the developed nanocomposite to red blood cells (RBCs). The prepared nanocomposites exhibited better physico-chemical properties, sufficient porosity, mechanical strength, and blood compatibility, which favors it as a valuable candidate in bone tissue engineering for repairing the bone defects.
Structure-property evolution during polymer crystallization
NASA Astrophysics Data System (ADS)
Arora, Deepak
The main theme of this research is to understand the structure-property evolution during crystallization of a semicrystalline thermoplastic polymer. A combination of techniques including rheology, small angle light scattering, differential scanning calorimetry and optical microscopy are applied to follow the mechanical and optical properties along with crystallinity and the morphology. Isothermal crystallization experiments on isotactic poly-1-butene at early stages of spherulite growth provide quantitative information about nucleation density, volume fraction of spherulites and their crystallinity, and the mechanism of connecting into a sample spanning structure. Optical microscopy near the fluid-to-solid transition suggests that the transition, as determined by time-resolved mechanical spectroscopy, is not caused by packing/jamming of spherulites but by the formation of a percolating network structure. The effect of strain, Weissenberg number (We ) and specific mechanical work (w) on rate of crystallization (nucleation followed by growth) and on growth of anisotropy was studied for shear-induced crystallization of isotactic poly-1-butene. The samples were sheared for a finite strain at the beginning of the experiment and then crystallized without further flow (Janeschitz-Kriegl protocol). Strain requirements to attain steady state/leveling off of the rate of crystallization were found to be much larger than the strain needed to achieve steady state of flow. The large strain and We>1 criteria were also observed for morphological transition from spherulitic growth to oriented growth. An apparatus for small angle light scattering (SALS) and light transmission measurements under shear was built and tested at the University of Massachusetts Amherst. As a new development, the polarization direction can be rotated by a liquid crystal polarization rotator (LCPR) with a short response time of 20 ms. The experiments were controlled and analyzed with a LabVIEW(TM) based code (LabVIEW(TM) 7.1) in real time. The SALS apparatus was custom built for ExxonMobil Research in Clinton NJ.
Verhoog, Roelof
1999-03-23
The casing of a leak-proof one-piece battery is made of a material comprising a mixture of at least a matrix based on polypropylene and an alloy of a polyamide and a polypropylene. The ratio of the matrix to the alloy is in the range 0.5 to 6 by weight. The alloy forms elongate arborescent inclusions in the matrix such that, on average, the largest dimension of a segment of the arborescence is at least twenty times the smallest dimension of the segment.
Co-pyrolysis of polypropylene waste with Brazilian heavy oil.
Assumpção, Luiz C F N; Carbonell, Montserrat M; Marques, Mônica R C
2011-01-01
To evaluate the chemical recycling of plastic residues, co-pyrolysis of polypropylene (PP) waste with Brazilian crude oil was evaluated varying the temperature (400°C to 500°C) and the amount of PP fed to the reactor. The co-pyrolysis of plastic waste in an inert atmosphere provided around 80% of oil pyrolytic, and of these, half represent the fraction of diesel oil. This study can be used as a reference in chemical recycling of plastics, specially associated with plastics co-pyrolysis.
Novel Biophysical Marker of Aggressive Prostate Cancer Cells
2013-06-01
needle. Once the entire contents of the syringe is passed through the needle (considered one passage) and (B) collected in a 15 mL polypropylene tube cut ...tissue culture media for the cell line analyzed unless otherwise indicated. 4 mL of suspension is placed into a 14 mL polypropylene round-bottom tubes...BD Falcon #352059) cut down to the 5 mL line (collection tube) and loaded into a 5 mL syringe (BD Biosciences #309603) by slowly drawing up the cells
von Ahnen, Thomas; von Ahnen, Martin; Schardey, Hans
2010-01-01
Background The aim of this prospective, randomized, single-blinded clinical trial was to compare the incidence of chronic pain after laparoscopic transabdominal preperitoneal hernia repair (TAPP) using a 35-g/m2 titanized polypropylene mesh and a 16-g/m2 titanized polypropylene mesh. The reported incidence of chronic pain in patients who underwent laparoscopic hernia repair is a serious problem. The techniques of dissection, mesh fixation, and the mesh material used have all been identified as being part of the problem. Excellent biocompatibility through a unique combination of a lightweight open porous polypropylene mesh covered with a covalent-bonded titanium layer has been claimed. The aim of this study was to find out whether the titanium surface alone or the difference in material load between the two available meshes influences clinical outcomes. Methods Three hundred eighty patients with 466 inguinal hernias were operated on between 2002 and 2006 with the laparoscopic transabdominal preperitoneal (TAPP) technique. Mesh fixation with staples was carried out routinely. After the dissection was completed just prior to the implantation of the mesh, patients were randomized into two groups. In Group A, 250 (53.6%) inguinal hernias were repaired with a 35-g/m2 titanized polypropylene mesh, and in Group B, 216 (46.4%) inguinal hernias were repaired with a 16-g/m2 titanized polypropylene mesh. The primary outcome was chronic pain 3 years after surgery. The degree of pain was determined using a visual analog scale (VAS) with a range from 0 to 10. The secondary outcome was the rate of recurrence. Results The postoperative period of observation was at least 3 years for every patient. In both groups, 90% of the patients could be questioned and examined clinically: in Group A (Light), 5.3% of the patients and in Group B (Extralight), 1.5% of the patients suffered from chronic pain. Chronic pain was significantly more common in Group A than in Group B (p = 0.037). There was no difference with respect to the rate of recurrence: for Group A it was 3.1% and for Group B it was 2.6% (p = 0.724). Conclusions Chronic pain is not very common in patients who have had their inguinal hernias repaired with titanium-covered polypropylene mesh. Reducing the material load from 35 to 16 g/m2 seems to further improve the biocompatibility of these meshes, thus improving the clinical outcome by reducing chronic pain to a rare event. The role of staples in causing chronic pain following inguinal hernia repair may be overestimated. There was no evidence supporting the notion that the use of the 16-g/m2 titanized meshes is associated with increased recurrence rates. PMID:21103989
Ciampi, Pietro; Scotti, Celeste; Nonis, Alessandro; Vitali, Matteo; Di Serio, Clelia; Peretti, Giuseppe M; Fraschini, Gianfranco
2014-05-01
Rotator cuff repair typically results in a satisfactory, although variable, clinical outcome. However, anatomic failure of the repaired tendon often occurs. Patch augmentation can improve the results of open rotator cuff repair by supporting the healing process, protecting the suture, and reducing friction in the subacromial space. Cohort study; Level of evidence, 3. A total of 152 patients with a posterosuperior massive rotator cuff tear were treated by open repair only (control group; n = 51; mean age, 67.06 ± 4.42 years), open repair together with collagen patch augmentation (collagen group; n = 49; mean age, 66.53 ± 5.17 years), or open repair together with polypropylene patch augmentation (polypropylene group; n = 52; mean age, 66.17 ± 5.44 years) and were retrospectively studied. Patients were evaluated preoperatively and after 36 months with a visual analog scale (VAS) and the University of California, Los Angeles (UCLA) shoulder rating scale and by measuring elevation of the scapular plane and strength with a dynamometer. The VAS and UCLA scores were also obtained 2 months postoperatively. Tendon integrity was assessed after 1 year by ultrasound. Patients were homogeneous as per the preoperative assessment. After 2 months, results (mean ± standard deviation) for the control, collagen, and polypropylene groups, respectively, were as follows: VAS scores were 6.96 ± 1.11, 6.46 ± 1.02, and 4.92 ± 0.90, while UCLA scores were 11.29 ± 1.46, 11.40 ± 1.51, and 19.15 ± 1.99. After 36 months, the mean scores for the respective groups were 3.66 ± 1.05, 4.06 ± 1.02, and 3.28 ± 1.10 for the VAS and 14.88 ± 1.98, 14.69 ± 1.99, and 24.61 ± 3.22 for the UCLA scale. In addition, after 36 months, elevation on the scapular plane was 140.68° ± 9.84°, 140.61° ± 12.48°, and 174.71° ± 8.18°, and abduction strength was 8.73 ± 0.54 kg, 9.03 ± 0.60 kg, and 13.79 ± 0.64 kg for the control, collagen, and polypropylene groups, respectively. The retear rate after 12 months was 41% (21/51) for the control group, 51% (25/49) for the collagen group, and 17% (9/52) for the polypropylene group. In particular, the reduced 12-month retear rate and the increased UCLA scores, abduction strength, and elevation at 3-year follow-up were statistically significant for patients treated with a polypropylene patch compared with those treated with repair only or with a collagen patch. Polypropylene patch augmentation of rotator cuff repair was demonstrated to significantly improve the 36-month outcome in terms of function, strength, and retear rate.
Recycling of asbestos tailings used as reinforcing fillers in polypropylene based composites.
Zhai, Wensi; Wang, Yao; Deng, Yuan; Gao, Hongli; Lin, Zhen; Li, Mao
2014-04-15
In this work, asbestos tailings were recycled and used as reinforcing fillers to enhance the mechanical properties of polypropylene (PP). A silane coupling agent was used to chemically modify the asbestos tailings to increase the compatibility between asbestos tailings and polypropylene matrix. Both raw and chemically treated asbestos tailings with different loading levels (from 3 to 30 wt%) were utilized to fabricate composites. Mechanical properties of these composites have been investigated by dynamic mechanical analysis, tensile test and notched impact test. Results showed that hybridization of asbestos tailings in the composites enhanced the mechanical properties of neat PP evidently, and treated asbestos tailings/PP composites yielded even better mechanical properties compared with those of raw asbestos tailings/PP composites. This recycling method of asbestos tailings not only reduces disposal costs and avoids secondary pollution but also produces a new PP-based composite material with enhanced mechanical properties. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Setiawan, Achmad Hanafi; Aulia, Fauzan
2017-01-01
The commonly food packaging materials today is used a thin layer plastic or film, which is made of a synthetic polymer, such as polypropylene (PP). However, the use of these polymers has a negative impact on the environment, because the synthetic polymer is difficult to degrade naturally by the biotic components such as micro-organisms decomposers and abiotic components such as the sunshine. The use of the biodegradable polymeric material will reduce the use of synthetic polymer products, thereby reducing plastic waste pollution at relatively low cost, it is expected to produce positive effects both for the environment and in terms of economy. PLA is a biodegradable polymer that can be substituted totally or partially to synthetic polymers as far as could fulfill the main function of packaging in the protection and preservation of food. Increasing PLA content in polypropylene blend will affect to the increasing in its water absorption and also its biodegradable. 20% PLA may the optimum composition of poly-blend for food packaging.
Antibacterial performance of nano polypropylene filter media containing nano-TiO2 and clay particles
NASA Astrophysics Data System (ADS)
Shafiee, Sara; Zarrebini, Mohammad; Naghashzargar, Elham; Semnani, Dariush
2015-10-01
Disinfection and elimination of pathogenic microorganisms from liquid can be achieved by filtration process using antibacterial filter media. The advent of nanotechnology has facilitated the introduction of membranes consisting of nano-fiber in filtration operations. The melt electro-spun fibers due to their extremely small diameters are used in the production of this particular filtration medium. In this work, antibacterial polypropylene filter medium containing clay particles and nano-TiO2 were made using melt electro-spun technology. Antibacterial performance of polypropylene nano-filters was evaluated using E. coli bacteria. Additionally, filtration efficiency of the samples in terms fiber diameter, filter porosity, and fiber distribution using image processing technique was determined. Air permeability and dust aerosol tests were conducted to establish the suitability of the samples as a filter medium. It was concluded that as far as antibacterial property is concerned, nano-fibers filter media containing clay particles are preferential to similar media containing TiO2 nanoparticles.
Bindi, Marco; Rivelli, Matteo; Solej, Mario; Enrico, Stefano; Martino, Valter
2016-01-01
Abstract Laparoscopic transabdominal preperitoneal inguinal hernia repair is a safe and effective technique. In this study we tested the hypothesis that self-gripping mesh used with the laparoscopic approach is comparable to polypropylene mesh in terms of perioperative complications, against a lower overall cost of the procedure. We carried out a prospective randomized trial comparing a group of 30 patients who underwent laparoscopic inguinal hernia repair with self-gripping mesh versus a group of 30 patients who received polypropylene mesh with fibrin glue fixation. There were no statistically significant differences between the two groups with regard to intraoperative variables, early or late intraoperative complications, chronic pain or recurrence. Self-gripping mesh in transabdominal hernia repair was found to be a valid alternative to polypropylene mesh in terms of complications, recurrence and postoperative pain. The cost analysis and comparability of outcomes support the preferential use of self-gripping mesh. PMID:28352842
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiao, B.; Teyssedre, G.; Laurent, C.
The mechanisms of electroluminescence from large band gap polymers used as insulation in electric components are still under debate. It becomes important to unravel the underlying physics of the emission because of increasing thermo-electric stress and a possible relationship between electroluminescence and field withstand. We report herein on the cathodoluminescence spectra of polyethylene and polypropylene films as a way to uncover the nature of its contributions to electroluminescence emission. It is shown that spectra from the two materials are structured around four elementary components, each of them being associated with a specific process contributing to the overall emission with differentmore » weights depending on excitation conditions and on materials. The cathodoluminescence and electroluminescence spectra of each material are reconstructed from the four spectral components and their relative contribution are discussed. It is shown that electroluminescence from polyethylene and polypropylene has the same origin pointing towards generic mechanisms in both.« less
Topological and thermal properties of polypropylene composites based on oil palm biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, A. H., E-mail: aamir.bhat@petronas.com.my, E-mail: anie-yal88@yahoo.com; Dasan, Y. K., E-mail: aamir.bhat@petronas.com.my, E-mail: anie-yal88@yahoo.com
Roughness on pristine and polymer composite surfaces is of enormous practical importance for polymer applications. This study deals with the use of varying quantity of oil palm ash as a nanofiller in a polypropylene based matrix. The oil palm ash sample was preprocessed to break the particles into small diameter by using ultra sonication before using microfluidizer for further deduction in size and homogenization. The oil palm ash was made to undergo many passes through the microfluidizer for fine distribution of particles. Polypropylene based composites containing different loading percentage oil palm ash was granulated by twin screw extruder and thenmore » injection molded. The surface morphology of the OPA passed through microfluidizer was analyzed by Tapping Mode - Atomic Force Microscopy (TMAFM). Thermal analysis results showed an increase in the activation energy values. The thermal stability of the composite samples showed improvement as compared to the virgin polymer as corroborated by the on-set degradation temperatures and the temperatures at which 50% degradation occurred.« less
Shim, Young-Sun; Park, Soo-Jin
2012-07-01
In this study, the effects of polypropylene-grafted maleic-anhydride-treated multi-walled carbon nanotubes (PP-MWNTs) on the viscoelastic behaviors and mechanical properties of a polypropylene-(PP)-based composite system were examined. The PP-MWNT/PP composites were prepared via melt mixing with a 3:1 ratio of PP-g-MA and acid-treated MWNTs at 220 degrees C. The surface characteristics of the PP-MWNTs were confirmed via Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM). The viscoelastic behavior and mechanical properties of the PP-MWNT/PP composites were confirmed using a rheometer and an ultimate testing machine (UTM). The storage and loss moduli increased with increasing PP-MWNT content. The critical intensity stress factor (K(IC)) of the PP-MWNT/PP composites at high filler loading was also higher than that of the MWNT/PP composites. In conclusion, the viscoelastic behavior and mechanical properties of MWNT/PP can be improved by grafting MWNTs to PP-g-MA.
Effect of surface modified kaolin on properties of polypropylene grafted maleic anhydride
NASA Astrophysics Data System (ADS)
Yang, Ni; Zhang, Zuo-Cai; Ma, Ning; Liu, Huan-Li; Zhan, Xue-Qing; Li, Bing; Gao, Wei; Tsai, Fang-Chang; Jiang, Tao; Chang, Chang-Jung; Chiang, Tai-Chin; Shi, Dean
To achieve reinforcement of mechanical and thermal performances of polypropylene (PP) product, this work aimed at fabrication of surface modified kaolin (M-kaolin) filled polypropylene grafted maleic anhydride (PP-g-MAH) composites with varying contents of fillers and investigation of their mechanical and thermal properties. And the prepared PP-g-MAH/M-kaolin composites were characterized by means of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Fracture analysis by SEM showed M-kaolin particles were well dispersed in the PP-g-MAH matrix. Mechanical behaviors were determined by tensile strength, tensile strain at break and impact strength analysis. Impact strength of PP-g-MAH/2 wt% M-kaolin composites was improved up to 30% comparing with unfilled composites. Thermostability had been found enhanced when M-kaolin added. The results revealed PP-g-MAH/M-kaolin composites showed the optimal thermal and mechanical properties when 2 wt% of M-kaolin was added.
Air-coupled piezoelectric transducers with active polypropylene foam matching layers.
Gómez Alvarez-Arenas, Tomás E
2013-05-10
This work presents the design, construction and characterization of air-coupled piezoelectric transducers using 1-3 connectivity piezocomposite disks with a stack of matching layers being the outer one an active quarter wavelength layer made of polypropylene foam ferroelectret film. This kind of material has shown a stable piezoelectric response together with a very low acoustic impedance (<0.1 MRayl). These features make them a suitable candidate for the dual use or function proposed here: impedance matching layer and active material for air-coupled transduction. The transducer centre frequency is determined by the l/4 resonance of the polypropylene foam ferroelectret film (0.35 MHz), then, the rest of the transducer components (piezocomposite disk and passive intermediate matching layers) are all tuned to this frequency. The transducer has been tested in several working modes including pulse-echo and pitch-catch as well as wide and narrow band excitation. The performance of the proposed novel transducer is compared with that of a conventional air-coupled transducers operating in a similar frequency range.
NASA Astrophysics Data System (ADS)
Shubhra, Quazi T. H.; Alam, A. K. M. M.
2011-11-01
Silk is a strong natural proteinous fiber and E-glass is a very strong synthetic fiber. Compression molding method was used to fabricate B. mori silk fiber reinforced polypropylene (PP) matrix composites. The tensile strength (TS), tensile modulus (TM), bending strength (BS), bending modulus (BM) and impact strength (IS) of prepared composites were 55.1 MPa, 780 MPa, 56.3 MPa, 3450 MPa and 17 kJ/m 2, respectively. Synthetic E-glass fiber reinforced PP based composites were fabricated in the same way and TS, TM, BS, BM, IS of E-glass fiber reinforced polypropylene composites were found to be 128.7 MPa, 4350 MPa, 141.6 MPa, 6300 MPa and 19 kJ/m 2, respectively. Gamma radiation is high energy ionizing radiation and was applied to increase the mechanical properties of the composites. Application of gamma ray increases the mechanical properties of silk/PP composites to a greater extent than that of E-glass/PP composites.
Reuse of EAF Slag as Reinforcing Filler for Polypropylene Matrix Composites
NASA Astrophysics Data System (ADS)
Cornacchia, G.; Agnelli, S.; Gelfi, M.; Ramorino, G.; Roberti, R.
2015-06-01
Electric-arc furnace (EAF) slag, the by-product of steel fabricated at the EAF, is in most cases still sent to dumps, with serious environmental consequences. This work shows an innovative, economically convenient application for EAF slag: its use as reinforcing filler for polypropylene. Composites based on polypropylene containing 10-40 wt.% of EAF slag particles were prepared by melt compounding followed by injection molding. A physical-chemical analysis of the EAF slag was performed to determine microstructural features and main component phases. Leaching tests demonstrated that, although EAF slag can release small amounts of toxic elements, such as heavy metals, incorporating such material into the polymeric matrix immobilizes the heavy metals inside that matrix. The mechanical characterization of the polymer-based composites was performed. Incorporating EAF slag particles raises the Young's modulus and the tensile strength at yield, whereas elongation at break and the impact strength of the polymer-based composite are significantly reduced only when large amounts of filler are added, i.e., 30% or more.
Nikitin, D; Choukourov, A; Titov, V; Kuzmicheva, L; Lipatova, I; Mezina, E; Aleksandriiskii, V; Shelemin, A; Khalakhan, I; Slavinska, D; Biederman, H
2016-12-10
Atmospheric air plasma treatment of chitosan solutions leads to degradation of chitosan molecules by OH radicals and is accompanied by a predominant cleavage of glycosidic linkages and by a decrease of the molecular weight. The degradation proceeds via first order kinetics with the rate constant of (5.73±0.22)×10(-6)s(-1) and the energetic yield of chitosan bond scission of (2.4±0.2)×10(-8)mol/J. Products of degradation together with intact chitosan molecules adsorb and form coatings on polypropylene foils immersed into the solution that is being plasma treated. The plasma treatment results in strong binding of chitosan to polypropylene due to the formation of covalent bonds between the activated polymer surface and chitosan molecules. Plasma-driven crosslinking is responsible for the accumulation of compressive stress which leads to the development of buckling instabilities in the chitosan coatings. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murdy, Rachel Campbell; Mak, Michelle; Misra, Manjusri
The use of agricultural and food processing residues as potential reinforcements in plastics has been extensively studied. However, there is a large variation in the mechanical performance of agricultural fiber-based biocomposites due to different processing materials and parameters. An in-depth comparison of the resulting effect of the agricultural filler on the matrix is often not possible given the discrepancy in processing conditions. This study seeks to determine the intrinsic properties of agricultural fibers and food processing residues for their use in polypropylene biocomposites based on a standardization of experimental design. The effect of 25wt% loading of miscanthus, fall-and spring-harvest switchgrass,more » wheat straw, oat hull, soy hull, soy stalk, hemp and flax on the physico-mechanical properties of polypropylene biocomposites was investigated. The addition of fiber led to an improvement in flexural strength, flexural modulus, and tensile modulus, and a general decrease in tensile strength at yield, elongation at break and Izod impact strength. Scanning electron microscopy highlighted the interfacial adhesion, orientation and distribution of the fibers within the matrix, confirming that fiber length and dispersion within the matrix are positively correlated with mechanical properties. The crystallization of the polypropylene phase and a compositional analysis of the agricultural fibers and processing residues were also compared to offer insight into the effect of the filler’s intrinsic properties on the resulting material performance.« less
Silk fibroin hydrogel as physical barrier for prevention of post hernia adhesion.
Konar, S; Guha, R; Kundu, B; Nandi, S; Ghosh, T K; Kundu, S C; Konar, A; Hazra, S
2017-02-01
Adhesion formation remains a major complication following hernia repair surgery. Physical barriers though effective for adhesion prevention in clinical settings are associated with major disadvantages, therefore, needs further investigation. This study evaluates silk fibroin hydrogel as a physical barrier on polypropylene mesh for the prevention of adhesion following ventral hernia repair. Peritoneal explants were cultured on silk fibroin scaffold to evaluate its support for mesothelial cell growth. Full thickness uniform sized defects were created on the ventral abdominal wall of rabbits, and the defects were covered either with silk hydrogel coated polypropylene mesh or with plain polypropylene mesh as a control. The animals were killed after 1 month, and the adhesion formation was graded; healing response of peritoneum was evaluated by immunohistochemistry with calretinin, collagen staining of peritoneal sections, and expression of PCNA, collagen-I, TNFα, IL6 by real time PCR; and its adverse effect if any was determined. Silk fibroin scaffold showed excellent support for peritoneal cell growth in vitro and the cells expressed calretinin. A remarkable prevention of adhesion formation was observed in the animals implanted with silk hydrogel coated mesh compared to the control group; in these animals peritoneal healing was complete and predominantly by mesothelial cells with minimum fibrotic changes. Expression of inflammatory cytokines decreased compared to control animals, histology of abdominal organs, haematological and blood biochemical parameters remained normal. Therefore, silk hydrogel coating of polypropylene mesh can improve peritoneal healing, minimize adhesion formation, is safe and can augment the outcome of hernia surgery.
[Digital archiving of imaged heart catheter studies on CD-R. Detection of irreversible CD damage].
Erbel, R; Ge, J; Haude, M
1998-12-01
The digital archiving has great advantages compared to the standard 35-mm X-ray cinefilm documentation. The data are immediately available and quantitative coronary angiography possible. In addition the technical progress is enhancing the availability of data. The loss of films is nearly eliminated, as only copies of the digital archive data are delivered. In addition a big advantage concerning pollution is present, when CD Rs are used. We report about the damage of CD Rs after 89, 162, 181 and 252 days when they were stored in polypropylene material containing envelopes. The damaged CD Rs all belonged to the provider Verbatim, whereas CD Rs of the provider Rank Xerox or Kodak were never damaged. In contrary to the Verbatim company, Rank Xerox gave written confirmation for 10-year storage and a written confirmation, that the storage in the polypropylene envelopes is possible. Mechanical, thermal damage and damage by humidity have to be discussed as well as chemical interactions of the CD Rs surface with the polypropylene material. As the digital storage for X-ray images has to be provided for 10 years in Germany, it is concluded, that the storage in polypropylene envelopes has to be avoided, when a written confirmation by the company is not given. These observations should stimulate to better control and analyze the real storage availabilities of digital data and provide in the future other media than CD R for long-term archiving.
Botondi, Rinaldo; Moscetti, Roberto; Massantini, Riccardo
2016-05-01
Ozonated water and peracetic acid were tested as sanitizers to enhance the storability of fresh-cut melon cubes. Sanitizers were also combined with suitable packaging materials (polypropylene and polylactic acid based plastic films). Fresh-cut melon cubes were stored at 4 °C for up to 7 days. Ozonated water and peracetic acid treatments were given by dipping cubes into 0.8 ppm O3 and 100 ppm Tsunami 100™ solutions, respectively, for 3 min. Both sanitizers exhibited efficiency in reducing the total microbial counts on melon cubes (< 2 log CFU g(-1)). Respiratory activity and ethylene production were both affected by the interaction between the sanitizer and the packaging used. Carbon dioxide and oxygen reached 9.89 kPa and 12.20 kPa partial pressures, respectively, using peracetic acid treatment in combination with polypropylene film packaging, consequently developing off-odors starting from day 3. Strong color changes were noted in cubes stored in polylactic acid packaging after 7 days of storage, affecting the sensory quality of the melon cubes. Sensory evaluation (overall visual quality) indicated loss in flavor in the polypropylene packaging. The overall visual quality started to decline on 3rd day because of the development of translucency.Overall, the use of ozone in combination with polypropylene packaging provided the best solution to maintain the quality of melon cubes for up to 5 days of storage at 4 °C.
Fire/burn risk with electrosurgical devices and endoscopy fiberoptic cables.
Smith, Lee P; Roy, Soham
2008-01-01
The purpose of the study was to systematically explore the fire and burn risk associated with fiberoptic cables and electrosurgical devices. A 300-W light source was connected to a standard gray fiberoptic light cable. The end of the cable was either rested atop or buried within a cotton towel or polypropylene drape in the presence or absence of 100% oxygen for up to 10 minutes. A monopolar electrosurgical device set at 1 W, 10 W, or 30 W was tested on a cotton towel or polypropylene drape for a period of 30 seconds. All trials were repeated. Resting the light cable on top of the cotton towel or polypropylene drape with or without oxygen produced no result. Burying the end of the cable within the drape produced a hole in the drape within 15 seconds both with and without oxygen. Burying the end of the cable within the cotton towel produced a yellow discoloration after 2 minutes both with and without oxygen. The monopolar electrosurgical device set at 30 W burned immediately through the polypropylene drape, producing a skin burn. All other trials with monopolar electrocautery produced no result. No flame or fire was produced in any trial. Fiberoptic cables and electrosurgical generators represent a serious burn risk for surgical patients, with operating room drapes and towels affording only limited protection. Otolaryngologists should be keenly aware of the risks that these devices represent because our specialty uses them frequently.
Liu, Li-Jie; Li, Jin-Hong; Wang, Xiang; Qian, Ting-Ting; Li, Xiao-Hui
2015-01-01
High-porosity magnesia phosphate paste (HPMPP) was prepared via the pre-foaming method. In the pre-foaming method, sintering treatment was not required. The bulk density and maximum compressive strength of the HPMPP prepared according to the ratio of water to solids (W/So) of 0.32 reached 464.00 ± 5.00 Kg/m3 and 0.30 ± 0.05 MPa, respectively. The compressive strength increased with the increases in the addition amounts of sodium silicate and polypropylene fibers. The bulk density of HPMPP increased with the increase in the addition of sodium silicate and decreased with the increase in the addition of polypropylene fibers. Besides, the porosity of the magnesia phosphate paste increased from 79.85% to 81.27% and from 80.31% to 83.75% after the addition of sodium silicate and polypropylene fibers respectively. The highest porosity (83.75%) of the prepared HPMPP was realized under the addition proportion (sodium silicate: polypropylene fibers: solids = 0.06:0.0025:1). The average pore size of the prepared HPMPP is about 180 μm and the pore distribution range is relatively narrow. The hydration product (struvite) is combined with MgO particle one by one and then coated on the surface of bubbles. With the decrease of the water content, after breaking bubbles, the porous structure can be achieved. PMID:26268675
Dolz, Noé; Babot, Daniel; Álvarez-Rodríguez, Javier; Forcada, Fernando
2015-12-01
This study aimed at evaluating the use of polypropylene fabrics in weaned pig facilities (5-10 weeks of age) during the winter period to improve thermal environment and energy saving for heating. Two experiments were conducted to validate the effects of fabrics (F) compared to control (C) in three 2-week periods using natural ventilation (assay 1, 2013) and forced ventilation (assay 2, 2014). Air temperature was greater in F than in C compartments in both years, particularly during the first 2-week periods (2 °C of mean difference). Natural ventilation was not enough to maintain relative humidity levels below 70 % at the end of the postweaning period (9-10 weeks of age) in both groups (F and C), whereas forced ventilation allowed controlling daily mean relative humidity levels <60 %. About 12-26 % of the radiant heat was transmitted through the fabrics cover, depending on the wavelength. There were no differences on growth performance of piglets in the two compartments in both years. The use of polypropylene fabrics was associated with a significant electric energy saving for heating during the first (data available only in 2014) and second 2-week period in both years. In conclusion, polypropylene fabrics may be an interesting tool to provide optimal environmental conditions for weaned piglets in winter, especially during the two first weeks after weaning. Their transmittance properties allow trapping infrared emission produced by the piglets and heating, avoiding heat losses through the roof, and therefore saving heating energy.
Influence of gamma irradiation on carbon nanotube-reinforced polypropylene.
Castell, P; Medel, F J; Martinez, M T; Puértolas, J A
2009-10-01
Single walled carbon nanotubes (SWNT) have been incorporated into a polypropylene (PP) matrix in different concentrations (range: 0.25-2.5 wt%). The nanotubes were blended with PP particles (approximately 500 microm in size) before mixing in an extruder. Finally, rectangular plates were obtained by compression moulding. PP-SWNT composites were gamma irradiated at different doses, 10 and 20 kGy, to promote crosslinking in the matrix and potentially enhance the interaction between nanotubes and PP. Extensive thermal, structural and mechanical characterization was conducted by means of DSC, X-ray diffraction, Raman spectroscopy, uniaxial tensile tests and dynamic mechanical thermal (DMTA) techniques. DSC thermograms reflected higher crystallinity with increasing nanotube concentration. XRD analysis confirmed the only presence of a monoclinic crystals and proved unambiguously that CNTs generated a preferred orientation. Raman spectroscopy confirmed that the intercalation of the polymer between bundles is favored at low CNTs contents. Elastic modulus results confirmed the reinforcement of the polypropylene matrix with increasing SWNT concentration, although stiffness saturation was observed at the highest concentration. Loss tangent DMTA curves showed three transitions for raw polypropylene. While gamma relaxation remained practically unchanged in all the samples, beta relaxation temperatures showed an increase with increasing CNT content due to the reduced mobility of the system. Gamma-irradiated PP exhibited an increase in the beta relaxation temperature, associated with changes in glass transition due to radiation-induced crosslinking. On the contrary, gamma-irradiated nanocomposites did not show this effect probably due to the reaction of radiative free radicals with CNTs.
Kang, Kyungmo; Chang, Yoonjee; Choi, Jae Chun; Park, Se-Jong; Han, Jaejoon
2018-04-01
Safety concerns have emerged over the increased use of polypropylene (PP) in food-packaging markets. Some antioxidants in PP can migrate to foods and cause undesirable effects in humans. In this study, migration behaviors of butylated hydroxytoluene (BHT) and Irganox 1010 (I-1010) in PP sheets were determined according to the US FDA migration test conditions. In particular, we tested the effects of severe conditions of food processing and storage, such as autoclave heating (sterilization at about 121 °C), microwave radiation (700 W), and deep freezing (-30 °C) on migration of antioxidants. Migrant concentrations were higher in 95% ethanol as lipid food simulant, because of the hydrophobic nature of both PP and antioxidants. Autoclave heating treatment increased migrant concentrations compared with other processing conditions. Moreover, increased migrant concentrations by deep freezing condition were attributed to the brittleness of PP at freezing temperature. Regardless of processing conditions, BHT which has a lower molecular weight, migrated faster than I-1010. The antioxidants with hydrophobic nature such as butylated hydroxytoluene (BHT) and Irganox 1010 (I-1010) in polypropylene sheets would be migrated to foods, which is an important issue for industrial production food packaging materials. Migration behavior was promoted by severe processing conditions such as autoclave heating, microwave radiation, freezing, and especially autoclave heating treatment led the highest migration among them. Therefore, control of chemical additive migration from polypropylene food packaging is needed for safe food processing. © 2018 Institute of Food Technologists®.
Blackie, Margaret A L; Beagley, Paul; Croft, Simon L; Kendrick, Howard; Moss, John R; Chibale, Kelly
2007-10-15
To establish the role of the ferrocenyl moiety in the antiplasmodial activity of ferroquine, compounds in which this moiety is replaced by the corresponding ruthenium-based moieties were synthesized and evaluated. In both the sensitive (D10) and resistant (K1) strains of Plasmodium falciparum, ruthenoquine analogues showed comparable potency to ferroquine. This suggests that a probable role of the ferrocenyl fragment is to serve simply as a hydrophobic spacer group. In addition, ferroquine analogues with different aromatic substituents were synthesized and evaluated. Unexpectedly high activity for quinoline compounds lacking the 7-chloro substituent suggests the ferrocenyl moiety may have an additive and/or synergistic effect.
Photoproduction of Hydrogen by Decamethylruthenocene Combined with Electrochemical Recycling.
Rivier, Lucie; Peljo, Pekka; Vannay, Laurent A C; Gschwend, Grégoire C; Méndez, Manuel A; Corminboeuf, Clémence; Scanlon, Micheál D; Girault, Hubert H
2017-02-20
The photoinduced hydrogen evolution reaction (HER) by decamethylruthenocene, Cp 2 *Ru II (Cp*=C 5 Me 5 ), is reported. The use of a metallocene to photoproduce hydrogen is presented as an alternative strategy to reduce protons without involving an additional photosensitizer. The mechanism was investigated by (spectro)electrochemical and spectroscopic (UV/Vis and 1 H NMR) measurements. The photoactivated hydride involved was characterized spectroscopically and the resulting [Cp 2 *Ru III ] + species was electrochemically regenerated in situ on a fluorinated tin oxide electrode surface. A promising internal quantum yield of 25 % was obtained. Optimal experimental conditions- especially the use of weakly coordinating solvent and counterions-are discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Three-Dimensional Conformation of Folded Polymers in Single Crystals
NASA Astrophysics Data System (ADS)
Hong, You-lee; Yuan, Shichen; Li, Zhen; Ke, Yutian; Nozaki, Koji; Miyoshi, Toshikazu
2015-10-01
The chain-folding mechanism and structure of semicrystalline polymers have long been controversial. Solid-state NMR was applied to determine the chain trajectory of 13C CH3 -labeled isotactic poly(1-butene) (i PB 1 ) in form III chiral single crystals blended with nonlabeled i PB 1 crystallized in dilute solutions under low supercooling. An advanced 13C - 13C double-quantum NMR technique probing the spatial proximity pattern of labeled 13C nuclei revealed that the chains adopt a three-dimensional (3D) conformation in single crystals. The determined results indicate a two-step crystallization process of (i) cluster formation via self-folding in the precrystallization stage and (ii) deposition of the nanoclusters as a building block at the growth front in single crystals.
Peng, Deqian; Du, Gaixia; Zhang, Pengfei; Yao, Bo; Li, Xiaofang; Zhang, Shaowen
2016-06-01
The polymerization of ocimene has been first achieved by half-sandwich rare-earth metal dialkyl complexes in combination with activator and Al(i) Bu3 . The regio- and stereoselectivity in the ocimene polymerization can be controlled by tuning the cyclopentadienyl ligand and the central metal of the complex. The chiral cyclopentadienyl-ligated Sc complex 1 prepares syndiotactic cis-1,4-polyocimene (cis-1,4-selectivity up to 100%, rrrr = 100%), while the corresponding Lu, Y, and Dy complexes 2-4 and the achiral pentamethylcyclopentadienyl Sc, Lu, and Y complexes 5-7 afford isotactic trans-1,2-polyocimenes (trans-1,2-selectivity up to 100%, mm = 100%). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermal degradation and tensile strength of sansevieria trifasciata-polypropylene composites
NASA Astrophysics Data System (ADS)
Abral, H.; Kenedy, E.
2015-07-01
The paper exhibits thermal degradation and tensile strength of Sansevieria Trifasciata (ST) fibers and polypropylene (PP) composites. Thermal degradation of ST fibers PP composites was conducted by using thermogravimetry (TGA) instrument, meanwhile tensile strength of the composite was done by using tensile equipment. The results show that the thermal resistance of ST fibers PP composites was higher than that of virgin PP only. Increases in volume fraction of fibers in the composites enhance the tensile strength. Scanning Electron Microscope (SEM) observation exhibits good interface bonding between ST fibers and PP matrix.
Stability of nitroglycerin 110 mcg/mL stored in polypropylene syringes.
McCluskey, Susan V; Vu, Nicole; Rueter, John
2013-01-01
Various angiography procedures at Mayo Clinic (Rochester campus) require small bolus doses of injectable nitroglycerin. Commercially acquired containers of injectable nitroglycerin provide excessive amounts of drug for these procedural needs, so syringes were chosen as a container for dispensing of the dose needed. Due to nitroglycerin's known chemical attributes of volatility and sorption to plastic surfaces, careful consideration of the stability needs to be taken into account when storing in a syringe. Since there is a lack of stability information in the literature, we studied the stability of nitroglycerin in polypropylene syringes over 90 days. Methods used for this study consisted of a validated stability-indicating high-performance liquid chromatographic assay, visual appearance, and pH. Samples were stored protected from light at ambient controlled temperature and consisted of nitroglycerin 110 mcg/mL in 5% dextrose injection 10.1 mL in 12 mL Terumo polypropylene syringes. Samples were tested at intervals up to 90 days. Results from the visual portion of the study showed clear, colorless, and particulate-free solutions throughout the 90-day study period. The pH results started at 4.27 +/- 0.13 (day 0) and ranged from 4.19 +/- 0.17 to 4.92 +/- 0.43 throughout the study period. Potency test results revealed a day 0 concentration of 104.242 +/- 0.193 mcg/mL (batch 1) and 122.483 +/- 0.168 mcg/mL (batch 2). Results trended downward with percentage of day 0 concentration of 92.2% +/- 2.4% at day 14 and of 81.4% +/- 4.9% at day 90. Chromatographic profiles of the samples exhibited insignificant changes over the study period. The nitroglycerin peak was spectrally pure based on peak-purity analysis, suggesting that sorption to the polypropylene syringe is one possible reason for the concentration decline over time, but nitroglycerin is a volatile compound and loss through vaporization cannot be ruled out. Nitroglycerin 110 mcg/mL in 5% dextrose injection, packaged in Terumo polypropylene syringes with 10.1 mL aliquots, maintained 90% of syringe potency for 24 days when stored protected from light under controlled ambient conditions.
Lubiński, Wojciech; Krzystolik, Karol; Gosławski, Wojciech; Kuprjanowicz, Leszek; Mularczyk, Maciej
2018-01-01
Inflammation associated with biomaterials of Ahmed® glaucoma drainage devices may cause the formation of a capsule around the device and can thus have a significant influence on the level of intraocular pressure reduction. The objective of this study was to compare the clinical outcomes after the implantation of a polypropylene or silicone Ahmed® glaucoma valve in patients with neovascular glaucoma. In the study, 27 eyes with neovascular glaucoma (group 1) received silicon Ahmed® valves and 23 eyes (group 2) received polypropylene valves. The best corrected distance visual acuity (BCDVA), intraocular pressure (IOP) and number of anti-glaucomatous drugs were recorded preoperatively and during a follow-up period of 24 months after surgery. Success was defined by the following criteria: 1) intraocular pressure in the rage of 6-21 mm Hg; 2) IOP reduction of at least 30% relative to preoperative values. All complications were registered. One month postoperatively, the mean BCDVA increased significantly in both groups compared to preoperative values (p < 0.001). These values did not change during the 24 months of follow-up examinations. The probability of success defined by criterion 1 at 24 months of observation was 66.7% for silicone and 27.3% for propylene valves group (p < 0.007). According to criterion 2, the difference in success between the groups was not statistically significant. The total number of complications that occurred in both groups during the 24 months of follow-up examinations was similar, except for a higher occurrence of Tenon's cyst formation in the group with a polypropylene valve (18% vs 35%; p < 0.04). In patients with neovascular glaucoma, the implantation of a silicone valve is associated with a significantly higher probability of long-term reduction of IOP below 21 mm Hg and with a lower risk of valve encapsulation in comparison to polypropylene valves. The obtained results suggest that silicone Ahmed® valves are more effective in the treatment of patients with neovascular glaucoma.
NASA Astrophysics Data System (ADS)
Somwangthanaroj, Anongnat
Polymer/clay nanocomposites have the potential usefulness in industrial applications such as automotive and packaging due to their strong, light-weight and inexpensive properties. However, to respond to needs of various applications it is crucial to understand the crystallization and rheological properties of these materials. Our initial hypothesis was that the processing conditions such as shear rate, shear strain and temperature affect the crystallization kinetics of intercalated polypropylene nanocomposites. Another hypothesis was that the compatibilizer, PP-MA, affects the role of the nucleating agent, sodium benzoate. The final hypothesis was that the rheological properties of nanocomposites depend on the degree of clay dispersion. By means of time-resolved small-angle light scattering, we were able to demonstrate that clay enhances the crystallization kinetics in nanocomposites and its result differs significantly from that of pure polypropylene. Characteristic crystallization times are extracted from the time evolution of integral measures of the angularly dependent parallel polarized and cross polarized light scattering intensity. Flow acceleration of crystallization kinetics has been observed for the polymer nanocomposites at applied strain rates for which flow has only modest effect on polypropylene crystallization. Furthermore, we were able to conclude that the addition of the nucleating agent sodium benzoate in the presence of polypropylene grafted maleic anhydride is not effective in accelerating crystallization. The rheological properties of two types of polypropylene/clay nanocomposites, with different degrees of clay dispersion have been measured in both linear and non-linear viscoelastic regime. In the linear viscoelastic regime, the storage and loss modulus of nanocomposites increases when clay loading increases. The storage and loss modulus of unsonicated nanocomposites are higher than the sonicated ones because the ultrasonic processing alters the structure of clay and polymer blend in sonicated nanocomposite. Non-linear rheology addresses the possible structure of particulate domains of clays in polymers. From this research, we demonstrated the possible effect of clay and compatibilizer on the crystallization kinetics and the effect of structure of clay and polymer matrix on rheological properties. To understand how clay enhances the mechanical properties, we still need to investigate where the clay actually resides and how the polymer crystallite forms.
Joining of polypropylene/polypropylene and glass fiber reinforced polypropylene composites
NASA Astrophysics Data System (ADS)
Zhang, Jianguang
Joining behavior of polypropylene (PP) to PP and long glass fiber reinforced polypropylene (LFT) to LFT were investigated. Adhesive bonding was used to join PP/PP. Both adhesive bonding and ultrasonic welding were used to join LFT/LFT. Single-lap shear testing and low velocity impact (LVI) testing were used to evaluate the performance of bonded structures. The two-part acrylic adhesive DP8005 was determined to be the best among the three adhesive candidates, which was attributed to its low surface energy. The impact resistance of LFT/LFT joints, normalized with respect to thickness, was higher than that of PP/PP joints because of higher stiffness of LFT/LFT joints. The stress states in the adhesive layer of adhesively bonded structures were analyzed using ANSYS and LS-DYNA to simulate the single-lap shear testing and LVI testing, respectively. The shear and peel stresses peaked at the edges of the adhesive layer. Compared to LFT/LFT joints, higher peel stress occurred in the adhesive layer in the PP/PP joints in tension. Impact response of adhesively bonded structures as evaluated by LS-DYNA showed good agreement with the experimental results. The effect of weld time and weld pressure on the shear strength of ultrasonically welded LFT/LFT was evaluated. With higher weld pressure, less time was required to obtain a complete weld. At longer weld times, lower weld pressure was required. From the 15 weld conditions studied, a weld map was obtained that provides conditions to achieve a complete weld. Nanoindentation was used to evaluate the effect of ultrasonic weld on the modulus and hardness of the PP matrix. Modulus and hardness of the PP matrix were slightly decreased by ultrasonic welding possibly due to the decrease in the molecular weight. The temperature profile in LFT/LFT in the transverse direction during ultrasonic welding was analyzed by two ANSYS-based thermal models: (a) one in which heat generated by interfacial friction was treated as a heat flux and (b) one in which heat was generated in a thin slab at the interface. The weld map obtained from the thin slab model was closer to the one obtained experimentally.
Polypropylene mesh augmentation for complete quadriceps rupture after total knee arthroplasty.
Nodzo, Scott R; Rachala, Sridhar R
2016-01-01
Polypropylene mesh has previously been shown to be an effective treatment for failed patellar tendon repairs after total knee arthroplasty (TKA), but there have been few reports of this synthetic mesh used in complete quadriceps rupture after TKA. We retrospectively reviewed seven consecutive cases in six patients with complete quadriceps tears after TKA who had their quadriceps tendon repaired with suture and polypropylene mesh augmentation. All but two patients had previously failed primary suture repair. Patient outcomes were evaluated using the Knee Society Score. Standardized anterior-posterior (AP), lateral and merchant radiographs were evaluated preoperatively and at final follow-up. Seven knees in six patients were evaluated with a mean follow-up of 34±10 (range 24 to 49months) months. There were only four clinical successes defined as an extensor lag less than 30°. Of the functioning knees at final follow-up (n=5) the overall extensor lag in this group did significantly improve from 50±13° to 20±15° (range 5 to 40°) (p=.01). Mean postoperative flexion at final follow-up was 115±8°. Mean Knee Society Score for function improved from 20±30 to 45±54 (p=.03) as did the mean Knee Society Score for pain (44±18 vs. 74±78, p=.02). Polypropylene mesh offered limited postoperative functional results when used as an augment to the multiply operated knee that sustains a complete quadriceps rupture after TKA, but did allow for significant improvement in postoperative pain outcomes. IV. Copyright © 2015 Elsevier B.V. All rights reserved.
Wolf, Matthew T.; Carruthers, Christopher A.; Dearth, Christopher L.; Crapo, Peter M.; Huber, Alexander; Burnsed, Olivia A.; Londono, Ricardo; Johnson, Scott A.; Daly, Kerry A.; Stahl, Elizabeth C.; Freund, John M.; Medberry, Christopher J.; Carey, Lisa E.; Nieponice, Alejandro; Amoroso, Nicholas J.; Badylak, Stephen F.
2013-01-01
Surgical mesh devices composed of synthetic materials are commonly used for ventral hernia repair. These materials provide robust mechanical strength and are quickly incorporated into host tissue; factors which contribute to reduced hernia recurrence rates. However, such mesh devices cause a foreign body response with the associated complications of fibrosis and patient discomfort. In contrast, surgical mesh devices composed of naturally occurring extracellular matrix (ECM) are associated with constructive tissue remodeling, but lack the mechanical strength of synthetic materials. A method for applying a porcine dermal ECM hydrogel coating to a polypropylene mesh is described herein with the associated effects upon the host tissue response and biaxial mechanical behavior. Uncoated and ECM coated heavy-weight BARD™ Mesh were compared to the light-weight ULTRAPRO™ and BARD™ Soft Mesh devices in a rat partial thickness abdominal defect overlay model. The ECM coated mesh attenuated the pro-inflammatory response compared to all other devices, with a reduced cell accumulation and fewer foreign body giant cells. The ECM coating degraded by 35 days, and was replaced with loose connective tissue compared to the dense collagenous tissue associated with the uncoated polypropylene mesh device. Biaxial mechanical characterization showed that all of the mesh devices were of similar isotropic stiffness. Upon explantation, the light-weight mesh devices were more compliant than the coated or uncoated heavy-weight devices. The present study shows that an ECM coating alters the default host response to a polypropylene mesh, but not the mechanical properties in an acute in vivo abdominal repair model. PMID:23873846
Xu, Zhi-Kang; Dai, Qing-Wen; Wu, Jian; Huang, Xiao-Jun; Yang, Qian
2004-02-17
A novel method for the surface modification of a microporous polypropylene membrane by tethering phospholipid analogous polymers (PAPs) is given, which includes the photoinduced graft polymerization of N,N-dimethylaminoethyl methacrylate (DMAEMA) and the ring-opening reaction of grafted poly-(DMAEMA) with 2-alkyloxy-2-oxo-1,3,2-dioxaphospholanes. Five 2-alkyloxy-2-oxo-1,3,2-dioxaphospholanes, containing octyloxy, dodecyloxy, tetradecyloxy, hexadecyloxy, and octadecyloxy groups in the molecular structure, were used to fabricate the PAP-modified polypropylene membranes. The attenuated total reflectance FT-IR spectra of the original, poly(DMAEMA)-grafted, and PAP-modified membranes confirmed the chemical changes on the membrane surface. Scanning electron microscope pictures showed that, compared with the original membrane, the surface porosities ofpoly(DMAEMA)-grafted and PAP-modified membranes were somewhat reduced. Water contact angles measured by the sessile drop method on PAP-modified membranes were slightly lower than that on the original polypropylene membrane, but higher than those on poly(DMAEMA)-grafted membranes with the exception of octyloxy-containing PAP-modified membranes. However, BSA adsorption experiments indicated that the five PAP-modified membranes had a much better protein-resistant property than the original polypropylene membrane and the poly(DMAEMA)-grafted membranes. For hexadecyloxy- and octadecyloxy-containing PAP-modified membranes, almost no protein adsorption was observed when the grafting degree was above 6 wt %. It was also found that the platelet adhesion was remarkably suppressed on the PAP-modified membranes. All these results demonstrate that the described approach is an effective way to improve the surface biocompatibility for polymeric membranes.
The influence of temperature on the formation of liquid fuel from Polypropylene plastic wastes
NASA Astrophysics Data System (ADS)
Martynis, M.; Mulyazmi; Praputri, E.; Witri, R.; Putri, N.
2018-03-01
The current trend of municipal waste management in urban areas is caused by rapid changes in social, economic, political and cultural life. As a non-biodegradable polymers that have become essential materials, plastic wastes have created a very serious environmental challenge because of the huge quantities and their disposal problems. Recycling of plastics is seen as one method for reducing environmental and resource depletion. The most attractive technique of plastics recycling is pyrolysis involving the degradation of the polymeric materials by heating in the absence of oxygen. This study investigated the characteristics of pyrolysis liquid fuel (PLF) produced from polypropylene plastic wastes with temperature variations. Pyrolisis was carried out on 200 grams of polypropylene waste plastics at the operating temperature of 200°C, 250°C, 300 °C and 350 °C for 45 minutes. The liquid products were found to have carbon chain length in the range of C8-C9, similar with gasoline. The maximum density, volume and calorific value of the oil obtained were 0.8 g/cm3, 61 ml and 1307 cal/gr, respectively.
Fouling mechanism in ultrafiltration of vegetable oil
NASA Astrophysics Data System (ADS)
Ariono, D.; Wardani, A. K.; Widodo, S.; Aryanti, Putu T. P.; Wenten, I. G.
2018-03-01
Energy efficient and cost-effective separation of impurities from vegetable oil is a great challenge for vegetable oil processing. Several technologies have been developed, including pressurized membrane, chemical treatment, and chemical free separation methods. Among those technologies, ultrafiltration membrane is one of the most attractive processes with low operating pressure and temperature. In this work, hydrophobic polypropylene ultrafiltration membrane was used to remove impurities such as non-dissolved solids from palm kernel oil. Unfortunately, the hydrophobicity of polypropylene membrane leads to significant impact on the reduction of permeate flux due to membrane fouling. This fouling is associated with the accumulation of substances on the membrane surface or within the membrane pores. For better understanding, fouling mechanism that occurred during palm kernel oil ultrafiltration using hydrophobic polypropylene membrane was investigated. The effect of trans-membrane pressure and feed temperature on fouling mechanism was also studied. The result showed that cake formation became the dominant fouling mechanism up to 50 min operation of palm kernel oil ultrafiltration. Furthermore, the fouling mechanism was not affected by the increase of trans-membrane pressure and feed temperature.
Jayabalan, M.
2009-01-01
The effect of reinforcement in the cross-linked poly(propylene fumarate-co-caprolactone diol) thermoset composites based on Kevlar fibres and hydroxyapatite was studied. Cross-linked poly(propylene fumarate-co-caprolactone diol) was also studied without any reinforcement for comparison. The reinforcing fibre acts as a barrier for the curing reaction leading to longer setting time and lesser cross-link density. The fibre and HA reinforced composites have almost the same compressive strength. Nonreinforced material undergoes greater degree of swelling. Among the reinforced materials, the hydroxyapatite reinforced composite has a much higher swelling percentage than the fibre reinforced one. The studies on in vitro degradation of the cured materials reveal hydrolytic degradation in Ringer's solution and PBS medium during aging. All the three materials are found to swell initially in Ringer's solution and PBS medium during aging and then undergo gradual degradation. Compression properties of these cross-linked composites increase with aging; HA reinforced composite has the highest compressive strength and compressive modulus, whereas the aged fibre-reinforced composite has the least compressive strength and modulus. PMID:20126578
Characterization of carbon nanofibre-reinforced polypropylene foams.
Antunes, M; Velasco, J I; Realinho, V; Arencón, D
2010-02-01
In this paper, carbon-nanofibre-reinforced polypropylene foams were prepared and characterized regarding their foaming behaviour, cellular structure and both thermo-mechanical as well as electrical properties. Polypropylene (PP) nanocomposites containing 5, 10 and 20 wt% of carbon nanofibres (CNF) and a chemical blowing agent were prepared by melt-mixing inside a twin-screw extruder and subsequently water-cooled and pelletized. The extruded nanocomposites were later foamed using a one-step compression-moulding process. The thermo-mechanical properties of the CNF-reinforced PP foams were studied, analyzing the influence of the carbon nanofibres on the cellular structure and subsequent thermo-mechanical behaviour of the foams. Carbon nanofibres not only seemed to act as nucleating agents, reducing the average cell size of the foams and increasing their cell density for similar expansion ratios, but also helped produce mechanically-improved foams, even reaching for the 20 wt% CNF-reinforced ones a specific modulus around 1.2 GPa x cm3/g for densities as low as 300 kg/m3. An increasingly higher electrical conductivity was assessed for both the solids as well as the foams with increasing the amount of carbon nanofibres.
Ardanuy, Mònica; Antunes, Marcelo; Velasco, José Ignacio
2012-02-01
Novel lightweight composite foams based on recycled polypropylene reinforced with cellulosic fibres obtained from agricultural residues were prepared and characterized. These composites, initially prepared by melt-mixing recycled polypropylene with variable fibre concentrations (10-25 wt.%), were foamed by high-pressure CO(2) dissolution, a clean process which avoids the use of chemical blowing agents. With the aim of studying the influence of the fibre characteristics on the resultant foams, two chemical treatments were applied to the barley straw in order to increase the α-cellulose content of the fibres. The chemical composition, morphology and thermal stability of the fibres and composites were analyzed. Results indicate that fibre chemical treatment and later foaming of the composites resulted in foams with characteristic closed-cell microcellular structures, their specific storage modulus significantly increasing due to the higher stiffness of the fibres. The addition of the fibres also resulted in an increase in the glass transition temperature of PP in both the solid composites and more significantly in the foams. Copyright © 2011 Elsevier Ltd. All rights reserved.
A trilayer separator with dual function for high performance lithium-sulfur batteries
NASA Astrophysics Data System (ADS)
Song, Rensheng; Fang, Ruopian; Wen, Lei; Shi, Ying; Wang, Shaogang; Li, Feng
2016-01-01
In this article, we propose a trilayer graphene/polypropylene/Al2O3 (GPA) separator with dual function for high performance lithium-sulfur (Li-S) batteries. Graphene is coated on one side of polypropylene (PP) separator, which functions as a conductive layer and an electrolyte reservoir that allows for rapid electron and ion transport. Then Al2O3 particles are coated on the other side to further enhance thermal stability and safety of the graphene coated polypropylene (GCP) separator, which are touched with lithium metal anode in the Li-S battery. The GPA separator shows good thermal stability after heating at 157 °C for 10 min while both GCP and PP separators showing an obvious shrinkage about 10%. The initial discharge specific capacity of Li-S coin cell with a GPA separator could reach 1067.7 mAh g-1 at 0.2C. After 100 discharge/charge cycles, it can still deliver a reversible capacity of as high as 804.4 mAh g-1 with 75% capacity retention. The pouch cells further confirm that the trilayer design has great promise towards practical applications.
NASA Astrophysics Data System (ADS)
Chen, K.; Y Zhang, T.; Zhang, F.; Zhang, Z. R.
2017-12-01
Grey system theory regards uncertain system in which information is known partly and unknown partly as research object, extracts useful information from part known, and thereby revealing the potential variation rule of the system. In order to research the applicability of data-driven modelling method in melting peak temperature (T m) fitting and prediction of polypropylene (PP) during ultraviolet radiation aging, the T m of homo-polypropylene after different ultraviolet radiation exposure time investigated by differential scanning calorimeter was fitted and predicted by grey GM(1, 1) model based on grey system theory. The results show that the T m of PP declines with the prolong of aging time, and fitting and prediction equation obtained by grey GM(1, 1) model is T m = 166.567472exp(-0.00012t). Fitting effect of the above equation is excellent and the maximum relative error between prediction value and actual value of T m is 0.32%. Grey system theory needs less original data, has high prediction accuracy, and can be used to predict aging behaviour of PP.
Alin, Jonas; Hakkarainen, Minna
2011-05-25
Microwave heating of commercial microwavable polypropylene packaging in contact with fatty food simulants caused significant antioxidant degradation and increased specific migration as shown by electrospray ionization-mass spectrometry (ESI-MS) and gas chromatography-mass spectrometry (GC-MS). Degradation of the antioxidants Irgafos 168 and Irganox 1010 was not detected during conventional heating of polypropylene packaging at the same temperature. The migration into aqueous food simulants was primarily restricted by the water solubility of the migrants. Using isooctane as fatty food simulant caused significant swelling and greatly enhanced overall migration values compared to the other fatty food simulant, 99.9% ethanol, or the aqueous food simulants 10% ethanol, 3% acetic acid, or water. ESI-MS spectra clearly reflected the overall migration values, and the number and amount of compounds detected decreased as the hydrophilicity of the food simulant increased. ESI-MS was shown to be an excellent tool for the analysis of semivolatile migrants and a good complement to GC-MS analysis of volatile migrants.
Song, Yixuan; Tzeng, Ping; Grunlan, Jaime C
2016-06-01
Biaxially oriented polypropylene (BOPP) is widely used in packaging. Although its orientation increases mechanical strength and clarity, BOPP suffers from a high oxygen transmission rate (OTR). Multilayer thin films are deposited from water using layer-by-layer (LbL) assembly. Polyethylenimine (PEI) is combined with either poly(acrylic acid) (PAA) or vermiculite (VMT) clay to impart high oxygen barrier. A 30-bilayer PEI/VMT nanocoating (226 nm thick) improves the OTR of 17.8 μm thick BOPP by more than 30X, rivaling most inorganic coatings. PEI/PAA multilayers achieve comparable barrier with only 12 bilayers due to greater thickness, but these films exhibit increased oxygen permeability at high humidity. The PEI/VMT coatings actually exhibit improved oxygen barrier at high humidity (and also improve moisture barrier by more than 40%). This high barrier BOPP meets the criteria for sensitive food and some electronics packaging applications. Additionally, this water-based coating technology is cost effective and provides an opportunity to produce high barrier polypropylene film on an industrial scale. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jayabalan, M; Thomas, V; Rajesh, P N
2001-10-01
Polypropylene fumarate/phloroglucinol triglycidyl methacrylate oligomeric blend-based bone cement was studied. Higher the percentage of phloroglucinol triglycidyl methacrylate, lesser the setting time. An optimum setting time could be arrived with 50:50 blend composition of the two oligomers. Composite cement of 50:50 blend prepared with hydroxyapatite granules of particle size 125 microm binds bovine rib bones. The tensile strength of this adhesive bond was found to be 1.11 kPa. The thermal studies suggest the onset of cross-linking reaction in the cured blend if the blend is heated. The absence of softening endotherm in the cured blend shows the thermosetting-like amorphous nature of blend system, which may restrict the changes in creep properties. The in vitro biodegradation studies reveal possible association of calcium ions with negatively charged units of degrading polymer chain resulting in slow down of degradation. Relatively slow degradation was observed in Ringer's solution. The study reveals the potential use of polypropylene fumarate/phloroglucinol triglycidyl methacrylate as partially degradable polymeric cement for orthopaedic applications.
Jayabalan, M
2009-01-01
The effect of reinforcement in the cross-linked poly(propylene fumarate-co-caprolactone diol) thermoset composites based on Kevlar fibres and hydroxyapatite was studied. Cross-linked poly(propylene fumarate-co-caprolactone diol) was also studied without any reinforcement for comparison. The reinforcing fibre acts as a barrier for the curing reaction leading to longer setting time and lesser cross-link density. The fibre and HA reinforced composites have almost the same compressive strength. Nonreinforced material undergoes greater degree of swelling. Among the reinforced materials, the hydroxyapatite reinforced composite has a much higher swelling percentage than the fibre reinforced one. The studies on in vitro degradation of the cured materials reveal hydrolytic degradation in Ringer's solution and PBS medium during aging. All the three materials are found to swell initially in Ringer's solution and PBS medium during aging and then undergo gradual degradation. Compression properties of these cross-linked composites increase with aging; HA reinforced composite has the highest compressive strength and compressive modulus, whereas the aged fibre-reinforced composite has the least compressive strength and modulus.
Azizi, Kolsoom; Keshavarz Moraveji, Mostafa; Abedini Najafabadi, Hamed
2017-11-01
Thermal decomposition behavior and kinetics of microalgae Chlorella vulgaris, wood and polypropylene were investigated using thermogravimetric analysis (TGA). Experiments were carried out at heating rates of 10, 20 and 40°C/min from ambient temperature to 600°C. The results show that pyrolysis process of C. vulgaris and wood can be divided into three stages while pyrolysis of polypropylene occurs almost totally in one step. It is shown that wood can delay the pyrolysis of microalgae while microalgae can accelerate the pyrolysis of wood. The existence of polymer during the pyrolysis of microalgae or wood will lead to two divided groups of peaks in DTG curve of mixtures. The results showed that interaction is inhibitive rather than synergistic during the decomposition process of materials. Kinetics of process is studied by the Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO). The average E values obtained from FWO and KAS methods were 131.228 and 142.678kJ/mol, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Citek, D.; Rehacek, S.; Pavlik, Z.; Kolisko, J.; Dobias, D.; Pavlikova, M.
2018-03-01
Actual paper focus on thermal properties of a sustainable lightweight concrete incorporating high volume of waste polypropylene aggregate as partial substitution of natural aggregate. In presented experiments a glass fiber reinforced polypropylene (GFPP) which is a by-product of PP tubes production, partially substituted fine natural silica aggregate in 10, 20, 30, 40 and 50 mass %. Results were compared with a reference concrete mix without plastic waste in order to quantify the effect of GFPP use on concrete properties. Main material physical parameters were studied (bulk density, matrix density without air content, and particle size distribution). Especially a thermal transport and storage properties of GFPP were examined in dependence on compaction time. For the developed lightweight concrete, thermal properties were accessed using transient impulse technique, where the measurement was done in dependence on moisture content (from the fully water saturated state to dry state). It was found that the tested lightweight concrete should be prospective construction material possessing improved thermal insulation function and the reuse of waste plastics in concrete composition was beneficial both from the environmental and financial point of view.
Sukovatykh, B S; Valuĭskaia, N M; Pravednikova, N V; Netiaga, A A; Kas'ianova, M A; Zhukovskiĭ, V A
2011-01-01
An analysis of complex examination and treatment of 151 patients after planned and performed surgical interventions on organs of the retroperitoneal space was made. The patients were divided into 4 groups. The first group (of comparison) included 46 patients who were treated by lumbotomy for different diseases of organs of the urinary system. In 35 patients of the second group (prophylactics) the indications were determined and in 20 patients preventive endoprosthesis of the lateral abdominal wall using polypropylene endoprosthesis was fulfilled. Herniotomy with plasty of the lateral abdominal wall using local tissues was fulfilled in 30 patients. Prosthesing hernioplasty of the lateral abdominal wall was fulfilled in 40 patients of the main group. It was found that preventive endoprosthesis of the lateral abdominal wall allowed prevention of progressing anatomo-functional i/isufficiency and the appearance of postoperative hernias. The application of polypropylene endoprosthesis for the treatment of postoperative hernias allows obtaining 36.4% more good results as compared with the control group, 21.7% decreased number of satisfactory results and no recurrent hernias.
NASA Astrophysics Data System (ADS)
George, Johnsy; Kumar, R.; Sajeevkumar, V. A.; Sabapathy, S. N.; Vaijapurkar, S. G.; Kumar, D.; Kchawahha, A.; Bawa, A. S.
2007-07-01
Irradiation processing of food in the prepackaged form may affect chemical and physical properties of the plastic packaging materials. The effect of γ-irradiation doses (2.5-10.0 kGy) on polypropylene (PP)-based retortable food packaging materials, were investigated using Fourier transform infrared (FTIR) spectroscopic analysis, which revealed the changes happening to these materials after irradiation. The mechanical properties decreased with irradiation while oxygen transmission rate (OTR) was not affected significantly. Colour measurement indicated that Nylon 6 containing multilayer films became yellowish after irradiation. Thermal characterization revealed the changes in percentage crystallinity.
Studies on thermal decomposition behaviors of polypropylene using molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Huang, Jinbao; He, Chao; Tong, Hong; Pan, Guiying
2017-11-01
Polypropylene (PP) is one of the main components of waste plastics. In order to understand the mechanism of PP thermal decomposition, the pyrolysis behaviour of PP has been simulated from 300 to 1000 K in periodic boundary conditions by molecular dynamic method, based on AMBER force field. The simulation results show that the pyrolysis process of PP can mostly be divided into three stages: low temperature pyrolysis stage, intermediate temperature stage and high temperature pyrolysis stage. PP pyrolysis is typical of random main-chain scission, and the possible formation mechanism of major pyrolysis products was analyzed.
3D printing of polypropylene using the fused filament fabrication technique
NASA Astrophysics Data System (ADS)
Silva, A. F.; Carneiro, O. S.; Gomes, R.
2017-10-01
This work addresses the potential of polypropylene, neat (PP) and reinforced with short glass fibers (GRPP), as a candidate for the Fused Filament Fabrication (FFF)-based 3D printing technique. The entire production chain was evaluated, i.e., starting with PP and GRPP pellets, filaments were produced by extrusion and test samples were printed in different process conditions (different layers' thicknesses, deposition orientation and infill) with the in-house produced filaments. This strategy enabled a true comparison between parts printed (FFF) with parts manufactured by compression molding (CM), using exactly the same grade of raw material.
Production, characterization, and modeling of mineral filled polypropylene filaments
NASA Astrophysics Data System (ADS)
George, Brian Robert
1999-11-01
This research produced mineral filled polypropylene filaments using a variety of fillers, characterized these filaments, and attempted to model their mechanical properties with current composite models. Also, these filaments were compared with bone to determine if they are suitable for modeling the mechanical properties of bone. Fillers used consist of wollastonite, talc, calcium carbonate, titanium dioxide, and hydroxyapatite. Fillers and polypropylene chips were combined and extruded into rods with the use of a mixer. The rods were chipped up and then formed into filaments through melt extrusion utilizing a piston extruder. Filaments with volume fractions of filler of 0.05, 0.10, 0.15, and 0.20 were produced. Additionally, some methods of trying to improve the properties of these filaments were attempted, but did not result in any significant property improvements. The fillers and filaments were visually characterized with a scanning electron microscope. Cross-sections, filament outer surfaces, fracture surfaces, and longitudinal cut open surfaces were viewed in this manner. Those filaments with anisotropic filler had some oriented filler particles, while all filaments suffered from poor adhesion between the polypropylene and the filler as well as agglomerations of filler particles. Twenty specimens of each filament were tensile tested and the average tenacity, strain, and modulus were calculated. Filaments containing talc, talc and wollastonite, titanium dioxide, or hydroxyapatite suffered from a drastic transition from ductile to brittle with the addition of 0.05 volume fraction of filler. This is evidenced by the sharp decrease in strain at this volume fraction of filler when compared to the strain of the unfilled polypropylene filament. Additionally, these same filaments suffered a sharp decrease in tenacity at the same volume fraction. These instant decreases are attributed to the agglomerations of filler in the filament. Generally, the modulus of the filaments increased with the increase in concentration of filler. The tensile tenacity, strain, and modulus were modeled with current composite models for particulate filled composites. The tenacity and strain models did not accurately predict the properties of the filaments, while the modulus models were more accurate, perhaps because the agglomerations of filler did not affect the modulus as much as it affected the tenacity and strain of the filaments. Production, characterization, and modeling of these filaments indicates that there are many areas for improvements, such as improved mixing of the filler and polypropylene, increased adhesion between matrix and filler, and decreased agglomerations of filler. Mechanically, these filaments can not match the properties of bone. However, they do have many structural similarities at the micro-mechanical level, so with some improvements in properties these filaments may be suitable models for modeling bone behavior.
Erickson, Karla A.; Scott, Brian Lindley; Kiplinger, Jaqueline Loetsch
2017-01-18
Here, calcium borohydride allows for the high-yielding synthesis of (C 5Me 5)2An(η 3-H 3BH) 2 (An = Th, U) by reaction with (C 5Me 5) 2AnCl 2 (An = Th, U). While a preparative synthesis of (C 5Me 5) 2U(η 3-H 3BH) 2 has been previously reported in the literature using K(C 5Me 5) and U(BH 4) 4, the use of Ca(BH 4) 2 is higher yielding and mild. Full characterization of the novel compound (C 5Me 5) 2Th(η 3-H 3BH) 2 is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, Karla A.; Scott, Brian Lindley; Kiplinger, Jaqueline Loetsch
Here, calcium borohydride allows for the high-yielding synthesis of (C 5Me 5)2An(η 3-H 3BH) 2 (An = Th, U) by reaction with (C 5Me 5) 2AnCl 2 (An = Th, U). While a preparative synthesis of (C 5Me 5) 2U(η 3-H 3BH) 2 has been previously reported in the literature using K(C 5Me 5) and U(BH 4) 4, the use of Ca(BH 4) 2 is higher yielding and mild. Full characterization of the novel compound (C 5Me 5) 2Th(η 3-H 3BH) 2 is presented.
Drzeżdżon, Joanna; Sikorski, Artur; Chmurzyński, Lech; Jacewicz, Dagmara
2018-06-05
The new 2-pyridinecarboxylate (2-pic) complex of chromium(III) has been designed and synthesized as a new highly active and selective oligomerization catalyst. The crystal structure of the new compound has been determined by X-ray diffraction. The composition and purity of [Cr(2-pic) 2 (OH 2 ) 2 ]NO 3 have been confirmed by several spectroscopic methods and the elemental analysis. Furthermore, the new complex has been investigated towards its catalytic activity for the oligomerization of 2-chloro-2-propen-1-ol under the atmospheric pressure and at room temperature. It has turned out that the novel catalyst exhibits a very high catalytic activity. Consequently, [Cr(2-pic) 2 (OH 2 ) 2 ]NO 3 belongs to a new generation of non-metallocene catalysts.
Transient Cooperative Processes in Dewetting Polymer Melts.
Chandran, Sivasurender; Reiter, Günter
2016-02-26
We compare the high velocity dewetting behavior, at elevated temperatures, of atactic polystyrene (aPS) and isotactic polystyrene (iPS) films, with the zero shear bulk viscosity (η_{bulk}) of aPS being approximately ten times larger than iPS. As expected, for aPS the apparent viscosity of the films (η_{f}) derived from high-shear dewetting is less than η_{bulk}, displaying a shear thinning behavior. Surprisingly, for iPS films, η_{f} is always larger than η_{bulk}, even at about 50 °C above the melting point, with η_{f}/η_{bulk} following an Arrhenius behavior. The corresponding activation energy of ∼160±10 kJ/mol for iPS films suggests a cooperative motion of segments which are aligned and agglomerated by fast dewetting.
Rogo-Gupta, Lisa; Baxter, Z Chad; Le, Ngoc-Bich; Raz, Shlomo; Rodríguez, Larissa V
2012-11-01
We report on the long-term outcomes of the distal urethral polypropylene sling for stress urinary incontinence in a patient cohort that was closely followed and whose outcomes were reported at 1 and 5 years after surgery. We performed a prospective study of all consecutive patients who underwent a distal urethral polypropylene sling procedure between November 1999 and April 2000. The 1 and 5-year outcomes for this particular patient cohort were previously reported. At the minimum 11-year followup, outcome was determined by patient self-assessment including validated questionnaires. A total of 69 patients were followed prospectively and followup was obtained for 30. Of those lost to followup 10 were deceased and 5 were cognitively impaired. Mean patient age at followup was 73 years (range 40 to 97). More than 11 years after surgery 48% of patients reported no stress urinary incontinence symptoms and 63% were never bothered by stress urinary incontinence. Patients reported a mean overall symptom improvement of 64% compared to 81% at 5 years. Overall 82% of patients met the criteria for treatment success by symptom scores and 80% met the criteria by bother scores. The distal urethral polypropylene sling procedure has excellent long-term durability in the treatment of stress urinary incontinence, in addition to low morbidity and low cost as previously described. Eleven years after the procedure the majority of patients report symptom improvement. Nevertheless, many older patients are unable to participate in followup. When choosing an anti-incontinence procedure, durability should be considered in light of patient age given that the theoretical advantages of long-term durability are limited by cognitive decline and mortality. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Lee, Hyung Won; Choi, Suek Joo; Park, Sung Hoon; Jeon, Jong-Ki; Jung, Sang-Chul; Kim, Sang Chai; Park, Young-Kwon
2014-01-01
The catalytic co-pyrolysis of a seaweed biomass, Laminaria japonica, and a typical polymer material, polypropylene, was studied for the first time. A mesoporous material Al-SBA-15 was used as a catalyst. Pyrolysis experiments were conducted using a fixed-bed reactor and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS). BET surface area, N2 adsorption-desorption isotherms, and NH3 temperature programmed desorption were measured to examine the catalyst characteristics. When only L. japonica was pyrolyzed, catalytic reforming slightly increased the gas yield and decreased the oil yield. The H2O content in bio-oil was increased by catalytic reforming from 42.03 to 50.32 wt% due to the dehydration reaction occurring on the acid sites inside the large pores of Al-SBA-15. Acids, oxygenates, mono-aromatics, poly aromatic hydrocarbons, and phenolics were the main components of the bio-oil obtained from the pyrolysis of L. japonica. Upon catalytic reforming over Al-SBA-15, the main oxygenate species 1,4-anhydro-d-galactitol and 1,5-anhydro-d-manitol were completely removed. When L. japonica was co-pyrolyzed with polypropylene, the H2O content in bio-oil was decreased dramatically (8.93 wt% in the case of catalytic co-pyrolysis), contributing to the improvement of the oil quality. A huge increase in the content of gasoline-range and diesel-range hydrocarbons in bio-oil was the most remarkable change that resulted from the co-pyrolysis with polypropylene, suggesting its potential as a transport fuel. The content of mono-aromatics with high economic value was also increased significantly by catalytic co-pyrolysis.
NASA Astrophysics Data System (ADS)
Lee, Hyung Won; Choi, Suek Joo; Park, Sung Hoon; Jeon, Jong-Ki; Jung, Sang-Chul; Kim, Sang Chai; Park, Young-Kwon
2014-08-01
The catalytic co-pyrolysis of a seaweed biomass, Laminaria japonica, and a typical polymer material, polypropylene, was studied for the first time. A mesoporous material Al-SBA-15 was used as a catalyst. Pyrolysis experiments were conducted using a fixed-bed reactor and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS). BET surface area, N2 adsorption-desorption isotherms, and NH3 temperature programmed desorption were measured to examine the catalyst characteristics. When only L. japonica was pyrolyzed, catalytic reforming slightly increased the gas yield and decreased the oil yield. The H2O content in bio-oil was increased by catalytic reforming from 42.03 to 50.32 wt% due to the dehydration reaction occurring on the acid sites inside the large pores of Al-SBA-15. Acids, oxygenates, mono-aromatics, poly aromatic hydrocarbons, and phenolics were the main components of the bio-oil obtained from the pyrolysis of L. japonica. Upon catalytic reforming over Al-SBA-15, the main oxygenate species 1,4-anhydro- d-galactitol and 1,5-anhydro- d-manitol were completely removed. When L. japonica was co-pyrolyzed with polypropylene, the H2O content in bio-oil was decreased dramatically (8.93 wt% in the case of catalytic co-pyrolysis), contributing to the improvement of the oil quality. A huge increase in the content of gasoline-range and diesel-range hydrocarbons in bio-oil was the most remarkable change that resulted from the co-pyrolysis with polypropylene, suggesting its potential as a transport fuel. The content of mono-aromatics with high economic value was also increased significantly by catalytic co-pyrolysis.
2014-01-01
The catalytic co-pyrolysis of a seaweed biomass, Laminaria japonica, and a typical polymer material, polypropylene, was studied for the first time. A mesoporous material Al-SBA-15 was used as a catalyst. Pyrolysis experiments were conducted using a fixed-bed reactor and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS). BET surface area, N2 adsorption-desorption isotherms, and NH3 temperature programmed desorption were measured to examine the catalyst characteristics. When only L. japonica was pyrolyzed, catalytic reforming slightly increased the gas yield and decreased the oil yield. The H2O content in bio-oil was increased by catalytic reforming from 42.03 to 50.32 wt% due to the dehydration reaction occurring on the acid sites inside the large pores of Al-SBA-15. Acids, oxygenates, mono-aromatics, poly aromatic hydrocarbons, and phenolics were the main components of the bio-oil obtained from the pyrolysis of L. japonica. Upon catalytic reforming over Al-SBA-15, the main oxygenate species 1,4-anhydro-d-galactitol and 1,5-anhydro-d-manitol were completely removed. When L. japonica was co-pyrolyzed with polypropylene, the H2O content in bio-oil was decreased dramatically (8.93 wt% in the case of catalytic co-pyrolysis), contributing to the improvement of the oil quality. A huge increase in the content of gasoline-range and diesel-range hydrocarbons in bio-oil was the most remarkable change that resulted from the co-pyrolysis with polypropylene, suggesting its potential as a transport fuel. The content of mono-aromatics with high economic value was also increased significantly by catalytic co-pyrolysis. PMID:25136282
The Effectiveness of Shin Guards Used by Football Players
Tatar, Yasar; Ramazanoglu, Nusret; Camliguney, Asiye Filiz; Saygi, Evrim Karadag; Cotuk, Hasan Birol
2014-01-01
In football, injuries from opponent contact occur commonly in the lower extremities. FIFA the world’s governing body for football requires players to wear shin guards. The aim of this study was to compare the protective effectiveness of polypropylene based shin guards with custom-made carbon fiber ones. Three commercial polypropylene shin guards (Adidas Predator™, Adidas UCL™, and Nike Mercurial™) and two custom-made carbon fiber shin guards were examined. The experimental setup had the following parts: 1) A pendulum attached a load cell at the tip (CAS Corp., Korea) and a fixed prosthetic foot equipped with a cleat to simulate an attacker’s foot. 2) An artificial tibia prepared by condensed foam and reinforced by carbon fibers protected with soft clothing. 3) A multifunctional sensor system (Tekscan Corp., F-Socket System, Turkey) to record the impact on the tibia. In the low impact force trials, only 2.79-9.63 % of the load was transmitted to the sensors. When comparing for mean force, peak force and impulse, both carbon fiber shin guards performed better than the commercial ones (Adidas Predator™, Adidas UCL™, and Nike Mercurial™) (p = 0.000). Based on these same parameters, the Nike Mercurial™ provided better protection than the Adidas Predator™ and the Adidas UCL™ (p = 0.000). In the high impact force trials, only 5.16-10.90 % of the load was transmitted to the sensors. For peak force and impulse, the carbon fiber shin guards provided better protection than all the others. Carbon fiber shin guards possess protective qualities superior to those of commercial polypropylene shin guards. Key Points Shin guards decrease the risk of serious injuries. Carbon shin guards provide sufficient protection against high impact forces. Commercially available Polypropylene based shin guards do not provide sufficient protection against high impact forces. PMID:24570615
The effectiveness of shin guards used by football players.
Tatar, Yasar; Ramazanoglu, Nusret; Camliguney, Asiye Filiz; Saygi, Evrim Karadag; Cotuk, Hasan Birol
2014-01-01
In football, injuries from opponent contact occur commonly in the lower extremities. FIFA the world's governing body for football requires players to wear shin guards. The aim of this study was to compare the protective effectiveness of polypropylene based shin guards with custom-made carbon fiber ones. Three commercial polypropylene shin guards (Adidas Predator™, Adidas UCL™, and Nike Mercurial™) and two custom-made carbon fiber shin guards were examined. The experimental setup had the following parts: 1) A pendulum attached a load cell at the tip (CAS Corp., Korea) and a fixed prosthetic foot equipped with a cleat to simulate an attacker's foot. 2) An artificial tibia prepared by condensed foam and reinforced by carbon fibers protected with soft clothing. 3) A multifunctional sensor system (Tekscan Corp., F-Socket System, Turkey) to record the impact on the tibia. In the low impact force trials, only 2.79-9.63 % of the load was transmitted to the sensors. When comparing for mean force, peak force and impulse, both carbon fiber shin guards performed better than the commercial ones (Adidas Predator™, Adidas UCL™, and Nike Mercurial™) (p = 0.000). Based on these same parameters, the Nike Mercurial™ provided better protection than the Adidas Predator™ and the Adidas UCL™ (p = 0.000). In the high impact force trials, only 5.16-10.90 % of the load was transmitted to the sensors. For peak force and impulse, the carbon fiber shin guards provided better protection than all the others. Carbon fiber shin guards possess protective qualities superior to those of commercial polypropylene shin guards. Key PointsShin guards decrease the risk of serious injuries.Carbon shin guards provide sufficient protection against high impact forces.Commercially available Polypropylene based shin guards do not provide sufficient protection against high impact forces.
Oh, Kyunghwan; Seo, Youngwook P; Hong, Soon Man; Takahara, Atsushi; Lee, Kyoung Hwan; Seo, Yongsok
2013-07-14
For the preparation of nanocomposites, we conducted environmentally benign foaming processing on polypropylene (PP) copolymer/clay nanocomposites via a batch process in an autoclave. We investigated the dispersion and the exfoliation of the nanoclay particles. Full exfoliation was achieved by the foamability of the matrix PP copolymer using supercritical carbon dioxide (sc CO2) and subcritical carbon dioxide (sub CO2). More and smaller cells were observed when the clay was blended as heterogeneous nuclei and sc CO2 was used. Small angle X-ray scattering showed that highly dispersed states (exfoliation) of the clay particles were obtained by the foaming process. Since the clay particles provided more nucleating sites for the foaming of the polymer, a well dispersed (or fully exfoliated) nanocomposite exhibited a higher cell density and a smaller cell size at the same clay particle concentration. Expansion of the adsorbed CO2 facilitated the exfoliation of the clay platelets; thus, sc CO2 at lower temperature was more efficient for uniform foaming-cell production. Fully dispersed clay platelets were, however, re-aggregated when subjected to a further melting processing. The reprocessed nanocomposites still had some exfoliated platelets as well as some aggregated intercalates. The dual role of the nanoclay particles as foaming nucleus and a crystallization nucleus was confirmed by cell growth observation and nonisothermal crystallization kinetics analysis. A low foaming temperature and a high saturation pressure were more favorable for obtaining a uniform foam. The PP copolymer was found to be foamed more easily than polypropylene. A small amount of other olefin moieties in the backbone of the polymer facilitated better foamability than the neat polypropylene.
Jezequel, M; Dufaud, V; Ruiz-Garcia, M J; Carrillo-Hermosilla, F; Neugebauer, U; Niccolai, G P; Lefebvre, F; Bayard, F; Corker, J; Fiddy, S; Evans, J; Broyer, J P; Malinge, J; Basset, J M
2001-04-18
The reactions of CpZr(CH(3))(3), 1, and Cp(2)Zr(CH(3))(2), 2, with partially dehydroxylated silica, silica-alumina, and alumina surfaces have been carried out with careful identification of the resulting surface organometallic complexes in order to probe the relationship between catalyst structure and polymerization activity. The characterization of the supported complexes has been achieved in most cases by in situ infrared spectroscopy, surface microanalysis, qualitative and quantitative analysis of evolved gases during surface reactions with labeled surface, solid state (1)H and (13)C NMR using (13)C-enriched compounds, and EXAFS. 1 and 2 react with silica(500) and silica-alumina(500) by simple protonolysis of one Zr-Me bond by surface silanols with formation of a single well-defined neutral compound. In the case of silica-alumina, a fraction of the supported complexes exhibits some interactions with electronically unsaturated surface aluminum sites. 1 and 2 also react with the hydroxyl groups of gamma-alumina(500), leading to several surface structures. Correlation between EXAFS and (13)C NMR data suggests, in short, two main surface structures having different environments for the methyl group: [Al](3)-OZrCp(CH(3))(2) and [Al](2)-OZrCp(CH(3))(mu-CH(3))-[Al] for the monoCp series and [Al](2)-OZrCp(2)(CH(3)) and [Al]-OZrCp(2)(mu-CH(3))-[Al] for the bisCp series. Ethylene polymerization has been carried out with all the supported complexes under various reaction conditions. Silica-supported catalysts in the absence of any cocatalyst exhibited no activity whatsoever for ethylene polymerization. When the oxide contained Lewis acidic sites, the resulting surface species were active. The activity, although improved by the presence of additional cocatalysts, remained very low by comparison with that of the homogeneous metallocene systems. This trend has been interpreted on the basis of various possible parameters, including the (p-pi)-(d-pi) back-donation of surface oxygen atoms to the zirconium center.
Processing-property relationships of polypropylene/ciprofloxacin fibers
NASA Astrophysics Data System (ADS)
Botta, L.; Scaffaro, R.
2015-12-01
In this work we prepared polypropylene (PP) fibers incorporating an antibiotic, i.e. ciprofloxacin (CFX), by melt spinning. In particular, PP has been compounded with CFX at different concentrations by using a counter-rotating twin screw compounder. The PP/CFX fibers have been spun by using a capillary rheometer operating under a constant extrusion speed. The effect of "online" hot drawing during the melt spinning or of an "offline" cold drawing on the properties of PP/CFX fibers were evaluated. In particular, the influence of the drawing conditions on the mechanical properties and the release kinetics were studied. Moreover, the rheological behavior in non-isothermal elongation flow has been assessed.
Laser welding of polypropylene using two different sources
NASA Astrophysics Data System (ADS)
Mandolfino, Chiara; Brabazon, Dermot; McCarthy, Éanna; Lertora, Enrico; Gambaro, Carla; Ahad, Inam Ul
2017-10-01
In this paper, laser weldability of neutral polypropylene has been investigated using fibre and carbon dioxide lasers. A design of experiment (DoE) was conducted in order to establish the influence of the main working parameters on the welding strength of the two types of laser. The welded samples were characterized by carrying out visual and microscopic inspection for the welding morphology and cross-section, and by distinguishing the tensile strength. The resulting weld quality was investigated by means of optical microscopy at weld cross-sections. The tensile strength of butt-welded materials was measured and compared to that of a corresponding bulk material.
Antifriction basalt-plastics based on polypropylene
NASA Astrophysics Data System (ADS)
Bashtannik, P. I.; Ovcharenko, V. G.
1997-05-01
A study is made of the dependence of the mechanical and friction-engineering properties of polypropylene reinforced with basalt fibers on the viscosity of the polymer matrix. It is established that the main factors that determine the mechanical properties of the plastics are the quality of impregnation of the fibers by the binder and the residual length of the reinforcing filler in the composite after extrusion and injection molding. The material that was developed has a low friction coefficient and low rate of wear within a relatively brood range of friction conditions. The basalt-plastics can be used in the rubbing parts of machines and mechanisms subjected to dry friction.
NASA Astrophysics Data System (ADS)
Scantamburlo, Andrea; Gazzola, Luca; Sorgato, Marco; Lucchetta, Giovanni
2018-05-01
In parts manufactured by injection molding of long glass fiber reinforced polypropylene, the local fiber orientation, fiber concentration and fiber length distribution varies along both the thickness direction and the flow path. This heterogeneous microstructure significantly influences the mechanical properties variability in the molded parts. The aim of this work is to investigate the influence of the matrix viscosity, the injection speed and the mold geometry on the fiber concentration distribution. In particular, the factors involved in fiber-matrix separation and fiber pull-out during the injection phases were analyzed in order to understand the phenomenon.
Tough and Reinforced Polypropylene/Kaolin Composites using Modified Kaolin
NASA Astrophysics Data System (ADS)
Yao, J. L.; Zhu, H. X.; Qi, Y. B.; Guo, M. J.; Hu, Q.; Gao, L.
2018-05-01
Polypropylene (PP)/kaolin composites have been prepared by filling modified kaolin with diethylenetriaminepentaacetic acid (DTPA) into the PP matrix. The surface modification of kaolin particles effectively improves the compatibility between kaolin and PP matrix. It is conducive for uniform dispersion of inorganic particles in the matrix, and enhances the mechanical performance of the composites. Compared with plain kaolin, the mechanical properties of the modified composites exhibit higher tensile strength, bending strength, impact strength and melt index simultaneously. The DTPA modification of kaolin overall enhances the mechanical properties of PP composites. It meets the requirements in various applications, and makes the modified experiment interesting in modern teaching.
Fracture Toughness of Polypropylene-Based Particulate Composites
Arencón, David; Velasco, José Ignacio
2009-01-01
The fracture behaviour of polymers is strongly affected by the addition of rigid particles. Several features of the particles have a decisive influence on the values of the fracture toughness: shape and size, chemical nature, surface nature, concentration by volume, and orientation. Among those of thermoplastic matrix, polypropylene (PP) composites are the most industrially employed for many different application fields. Here, a review on the fracture behaviour of PP-based particulate composites is carried out, considering the basic topics and experimental techniques of Fracture Mechanics, the mechanisms of deformation and fracture, and values of fracture toughness for different PP composites prepared with different particle scale size, either micrometric or nanometric.
Flexural creep behaviour of jute polypropylene composites
NASA Astrophysics Data System (ADS)
Chandekar, Harichandra; Chaudhari, Vikas
2016-09-01
Present study is about the flexural creep behaviour of jute fabric reinforced polypropylene (Jute-PP) composites. The PP sheet and alkali treated jute fabric is stacked alternately and hot pressed in compression molding machine to get Jute-PP composite laminate. The flexural creep study is carried out on dynamic mechanical analyzer. The creep behaviour of the composite is modeled using four-parameter Burgers model. Short-term accelerated creep testing is conducted which is later used to predict long term creep behaviour. The feasibility of the construction of a master curve using the time-temperature superposition (TTS) principle to predict long term creep behavior of unreinforced PP and Jute-PP composite is investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramirez-Vargas, E.
2000-10-01
Morphological and mechanical properties of polypropylene [PP]/poly(ethylene vinyl acetate) [EVA] blends have been studied. Infrared results using thin films first indicated a transition toward compatibility between both components at concentrations above 40% EVA. The transition was verified with different experimental techniques and it was associated to morphological changes and mechanical properties. The PP/EVA blends were mechanically evaluated in terms of impact and tensile strength to determine the influence of blending on the performance properties of these materials. Agreement was found between the transition and the enhancement of both elongation at break and impact strength.
Nanaki, Stavroula G; Pantopoulos, Kostas; Bikiaris, Dimitrios N
2011-01-01
Poly(propylene adipate)-block-poly(ɛ-caprolactone) copolymers were synthesized using a combination of polycondensation and ring-opening polymerization of ɛ-caprolactone in the presence of poly(propylene adipate). Gel permeation chromatography was used for molecular weight determination, whereas hydrogen-1 nuclear magnetic resonance and carbon-13 nuclear magnetic resonance spectroscopy were employed for copolymer characterization and composition evaluation. The copolymers were found to be block while their composition was similar to the feeding ratio. They formed semicrystalline structures, while only poly(ɛ-caprolactone) formed crystals, as shown by wide angle X-ray diffraction. Differential scanning calorimetry data suggest that the melting point and heat of fusion of copolymers decreased by increasing the poly(propylene adipate) amount. The synthesized polymers exhibited low cytotoxicity and were used to encapsulate desferrioxamine, an iron-chelating drug. The desferrioxamine nanoparticles were self-assembled into core shell structures, had mean particle size <250 nm, and the drug remained in crystalline form. Further studies revealed that the dissolution rate was mainly related to the melting temperature, as well as to the degree of crystallinity of copolymers. PMID:22162656
NASA Astrophysics Data System (ADS)
Nisticò, Roberto; Rosellini, Andrea; Rivolo, Paola; Faga, Maria Giulia; Lamberti, Roberta; Martorana, Selanna; Castellino, Micaela; Virga, Alessandro; Mandracci, Pietro; Malandrino, Mery; Magnacca, Giuliana
2015-02-01
Hernia diseases are among the most common and diffuse causes of surgical interventions. Unfortunately, still nowadays there are different phenomena which can cause the hernioplasty failure, for instance post-operative prostheses displacements and proliferation of bacteria in the surgical site. In order to limit these problems, commercial polypropylene (PP) and polypropylene/Teflon (PP/PTFE) bi-material meshes were surface functionalised to confer adhesive properties (and therefore reduce undesired displacements) using polyacrylic acid synthesized by plasma polymerisation (PPAA). A broad physico-chemical and morphological characterisation was carried out and adhesion properties were investigated by means of atomic force microscopy (AFM) used in force/distance (F/D) mode. Once biomedical devices surface was functionalised by PPAA coating, metallic silver nanoparticles (AgNPs) with antimicrobial properties were synthesised and loaded onto the polymeric prostheses. The effect of the PPAA, containing carboxylic functionalities, adhesive coating towards AgNPs loading capacity was verified by means of X-ray photoelectron spectroscopy (XPS). Preliminary measurement of the Ag loaded amount and release in water were also investigated via inductively coupled plasma atomic emission spectroscopy (ICP-AES). Promising results were obtained for the functionalised biomaterials, encouraging future in vitro and in vivo tests.
NASA Astrophysics Data System (ADS)
Nisticò, Roberto; Faga, Maria Giulia; Gautier, Giovanna; Magnacca, Giuliana; D'Angelo, Domenico; Ciancio, Emanuele; Piacenza, Giacomo; Lamberti, Roberta; Martorana, Selanna
2012-08-01
Polypropylene (PP) fibers can be manufactured to form nets which can find application as prosthesis in hernioplasty. One of the most important problem to deal with when nets are applied in vivo consists in the reproduction of bacteria within the net fibers intersections. This occurs right after the application of the prosthesis, and causes infections, thus it is fundamental to remove bacteria in the very early stage of the nets application. This paper deals with the physico-chemical characterization of such nets, pre-treated by atmospheric pressure plasma dielectric barrier discharge apparatus (APP-DBD) and functionalized with an antibiotic drug such as chitosan. The physico-chemical characterization of sterilized nets, before and after the functionalization with chitosan, was carried out by means of scanning electron microscopy (SEM) coupled with EDS spectroscopy, FTIR spectroscopy, drop shape analysis (DSA), X-ray diffraction and thermal analyses (TGA and DSC). The aim of the work is to individuate a good strategy to characterize this kind of materials, to understand the effects of polypropylene pre-treatment on functionalization efficiency, to follow the materials ageing in order to study the effects of the surface treatment for in vivo applications.
Evaluation of a new composite prosthesis for the repair of abdominal wall defects.
Losi, Paola; Munaò, Antonella; Spiller, Dario; Briganti, Enrica; Martinelli, Ilaria; Scoccianti, Marco; Soldani, Giorgio
2007-10-01
The degree of integration of biomaterials used in the repair of abdominal wall defects seems to depend upon the structure of the prosthesis. The present investigation evaluates the behaviour in terms of adhesion formation and integration of a new composite prosthesis that could be employed in this clinical application. Full-thickness abdominal wall defects (7 x 5 cm) were created in 16 anaesthetized New Zealand white rabbits and the prosthesis were placed in direct contact with the visceral peritoneum during the experiment. The defects were repaired with a composite prosthesis or pure polypropylene mesh to establish two study groups (n = 8 each). The composite device was constituted by a polypropylene mesh physically attached to a poly(ether)urethane-polydimethylsiloxane laminar sheet. Animals were sacrificed 7, 14, 21 and 30 days after implant and prosthesis/surrounding tissue specimens subjected to light and electron microscopy. Firm adhesions were detected in the polypropylene implants, while they were not present in the composite implants. The excellent behaviour of the composite prosthesis shown in this study warrants further investigation on its use for the repair of abdominal wall defects when a prosthetic device needs to be placed in contact with the intestinal loops.
Bio-composites fabricated by sandwiching sisal fibers with polypropylene (PP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sosiati, H., E-mail: hsosiati@gmail.com; Nahyudin, A., E-mail: ahmadnahyudin@yahoo.co.id; Fauzi, I., E-mail: ikhsannurfauzi@gmail.com
Sisal fibers reinforced polypropylene (PP) composites were successfully fabricated using sandwiching sisal fibers with PP sheets. The ratio of fiber and polymer matrix was 50:50 (wt. %). Untreated short and long sisal fibers, and alkali treated short sisal fibers in 6% NaOH at 100°C for 1 and 3 h were used as reinforcement or fillers. A small amount (3 wt. %) of maleic anhydride grafted polypropylene (MAPP) was added as a coupling agent. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were used to characterize the surface morphology and chemical composition of the fibers, respectively. Flexural test of sisal/PPmore » composites was done according to ASTM D 790-02. The results showed that flexural strength of untreated long fiber reinforced composite is much higher than that of the untreated and alkali treated short fibers reinforced composites with and without the addition of MAPP. Alkalization related to fiber surface modification, fiber length/fiber orientation and a composite fabrication technique are important factors in contributing to the fiber distribution within the matrix, the bonding between the fiber and the matrix and the enhancement of flexural strength of the bio-composite.« less
[Study on the interface of human hepatocyte/micropore polypropylene ultrafiltration membrane].
Peng, Cheng-Hong; Han, Bao-San; Gao, Chang-You; Ma, Zu-Wei; Zhao, Zhi-Ming; Wang, Yong; Liu, Hong; Zhang, Gui-di; Yang, Mei-Juan
2004-09-02
To found a new interface of human hepatocyte/micropore polypropylene ultrafiltration membrane (MPP) with good cytocompatibility so as to construct bioartificial bioreactor with polypropylene hollow fibers in future. MPP ultrafiltration membrane underwent chemical grafting modification through ultraviolet irradiation and Fe(2+) reduction. The contact angles of MPP and the modified MPP membranes were measured. Human hepatic cells L-02 were cultured. MPP and modified MPP membranes were spread on the wells of culture plate and human hepatic cells and cytodex 3 were inoculated on them. Different kinds of microscopy were used to observe the morphology of these cells. The water contact angle of MPP and the modified MPP membranes decreased from 78 degrees +/- 5 degrees to 27 degrees +/- 4 degrees (P < 0.05), which indicated that the hydrophilicity of the membrane was improved obviously after the grafting modification. Human hepatocyte L-02 did not adhere to and spread on the modified MPP membrane surface, and only grew on the microcarrier cytodex 3 with higher density and higher proliferation ratio measured by MTT. Grafting modification of acrylamide on MPP membrane is a good method to improve the human hepatocyte cytocompatibility with MPP ultrafiltration membrane.
Structural characterization and mechanical properties of polypropylene reinforced natural fibers
NASA Astrophysics Data System (ADS)
Karim, M. A. A.; Zaman, I.; Rozlan, S. A. M.; Berhanuddin, N. I. C.; Manshoor, B.; Mustapha, M. S.; Khalid, A.; Chan, S. W.
2017-10-01
Recently the development of natural fiber composite instead of synthetics fiber has lead to eco-friendly product manufacturing to meet various applications in the field of automotive, construction and manufacturing. The use of natural fibers offer an alternative to the reinforcing fibers because of their good mechanical properties, low density, renewability, and biodegradability. In this present research, the effects of maleic anhydride polypropylene (MAPP) on the mechanical properties and material characterization behaviour of kenaf fiber and coir fiber reinforced polypropylene were investigated. Different fractions of composites with 10wt%, 20wt% and 30wt% fiber content were prepared by using brabender mixer at 190°C. The 3wt% MAPP was added during the mixing. The composites were subsequently molded with injection molding to prepare the test specimens. The mechanical properties of the samples were investigated according to ISO 527 to determine the tensile strength and modulus. These results were also confirmed by the SEM machine observations of fracture surface of composites and FTIR analysis of the chemical structure. As the results, the presence of MAPP helps increasing the mechanical properties of both fibers and 30wt% kenaf fiber with 3wt% MAPP gives the best result compare to others.
Anderson, Collin R; Collins, Deborah; Laursen, Trevor; Arave, Trevor; Helm, Michael
2016-01-01
Sodium nitroprusside is a potent vasodilator employed intraoperatively and within critical care areas. The photolabile pharmaceutical agent has been used for decades and various stability studies have been executed. Due to potential shortages and the desire to batch compound sodium nitroprusside at a concentration of 1 mg/mL in polypropylene syringes, a new stability study was performed. Chromatographic analysis was conducted on a C18 column, with elution via an aqueous phase of 0.01 M sodium phosphate monobasic, adjusted to pH 6.5 with sodium hydroxide, and methanol (97.5:2.5) at a rate of 1 mL/min, and subsequent ultraviolet detection at 210 nm. Triplicate determinations of four samples, stored under refrigeration at 4°C, were obtained initially and on days 2, 5, and 9. Turbidity and pH measurements were performed in conjunction with visual observation on days of chromatographic analysis. Results demonstrate that sodium nitroprusside compounded in 5% dextrose at a concentration of 1 mg/mL, stored at 4°C protected from light in polypropylene syringes, is physically and chemically stable for at least 9 days. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Nanaki, Stavroula G; Pantopoulos, Kostas; Bikiaris, Dimitrios N
2011-01-01
Poly(propylene adipate)-block-poly(ɛ-caprolactone) copolymers were synthesized using a combination of polycondensation and ring-opening polymerization of ɛ-caprolactone in the presence of poly(propylene adipate). Gel permeation chromatography was used for molecular weight determination, whereas hydrogen-1 nuclear magnetic resonance and carbon-13 nuclear magnetic resonance spectroscopy were employed for copolymer characterization and composition evaluation. The copolymers were found to be block while their composition was similar to the feeding ratio. They formed semicrystalline structures, while only poly(ɛ-caprolactone) formed crystals, as shown by wide angle X-ray diffraction. Differential scanning calorimetry data suggest that the melting point and heat of fusion of copolymers decreased by increasing the poly(propylene adipate) amount. The synthesized polymers exhibited low cytotoxicity and were used to encapsulate desferrioxamine, an iron-chelating drug. The desferrioxamine nanoparticles were self-assembled into core shell structures, had mean particle size <250 nm, and the drug remained in crystalline form. Further studies revealed that the dissolution rate was mainly related to the melting temperature, as well as to the degree of crystallinity of copolymers.
Recycling disposable cups into paper plastic composites.
Mitchell, Jonathan; Vandeperre, Luc; Dvorak, Rob; Kosior, Ed; Tarverdi, Karnik; Cheeseman, Christopher
2014-11-01
The majority of disposable cups are made from paper plastic laminates (PPL) which consist of high quality cellulose fibre with a thin internal polyethylene coating. There are limited recycling options for PPLs and this has contributed to disposable cups becoming a high profile, problematic waste. In this work disposable cups have been shredded to form PPL flakes and these have been used to reinforce polypropylene to form novel paper plastic composites (PPCs). The PPL flakes and polypropylene were mixed, extruded, pelletised and injection moulded at low temperatures to prevent degradation of the cellulose fibres. The level of PPL flake addition and the use of a maleated polyolefin coupling agent to enhance interfacial adhesion have been investigated. Samples have been characterised using tensile testing, dynamic mechanical analysis (DMA) and thermogravimetric analysis. Use of a coupling agent allows composites containing 40 wt.% of PPL flakes to increase tensile strength of PP by 50% to 30 MPa. The Young modulus also increases from 1 to 2.5 GPa and the work to fracture increases by a factor of 5. The work demonstrates that PPL disposable cups have potential to be beneficially reused as reinforcement in novel polypropylene composites. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pleasance, Emily A.; Pegg, Ronald B.; Swanson, Ruthann B.; Cheely, Anna N.; Huang, Guangwei; Parrish, Daniel R.; Kerrihard, Adrian L.
2018-01-01
Abstract Raw almonds are a major commodity, yet much is unknown about how storage conditions determine their shelf life. The storage stability, as measured by consumer assessments and chemical measures, of raw almonds was determined for samples stored in cardboard boxes and polypropylene packaging for 2 years at 4, 15, 25, and 35 °C, and at 50% and 65% relative humidity (RH). Samples stored in unlined cartons always failed (>25% rejection) before their counterparts stored in polypropylene bags under identical environmental conditions. Models determined that polypropylene packaging (as opposed to unlined cardboard cartons) extended the time until sample rejection by more than 7 months. Temperature and RH were both negatively associated with storage time until failure. Flavor was a greater contributor to consumer acceptability than texture or odor, while peroxide values and free fatty acids were of greater importance in predicting raw almond consumer quality than measures of conjugated dienes or 2‐thiobarbituric acid‐reactive substances. Practical Application The results of this study will allow almond producers to determine packaging types and environmental storage conditions that provide shelf life of a specified time. PMID:29355948
Thermal properties of light-weight concrete with waste polypropylene aggregate
NASA Astrophysics Data System (ADS)
Záleská, Martina; Pokorný, Jaroslav; Pavlíková, Milena; Pavlík, Zbyšek
2017-07-01
Thermal properties of a sustainable light-weight concrete incorporating high volume of waste polypropylene as partial substitution of natural aggregate were studied in the paper. Glass fiber reinforced polypropylene (GFPP), a by-product of PP tubes production, partially substituted fine natural silica aggregate in 10, 20, 30, 40, and 50 mass%. In order to quantify the effect of GFPP use on concrete properties, a reference concrete mix without plastic waste was studied as well. For the applied GFPP, bulk density, matrix density, and particle size distribution were measured. Specific attention was paid to thermal transport and storage properties of GFPP that were examined in dependence on compaction time. For the developed light-weight concrete, thermal properties were accessed using transient impulse technique, whereas the measurement was done in dependence on moisture content, from the dry state to fully water saturated state. Additionally, the investigated thermal properties were plotted as function of porosity. The tested light-weight concrete was found to be prospective construction material possessing improved thermal insulation function. Moreover, the reuse of waste plastics in concrete composition was beneficial both from the environmental and financial point of view considering plastics low biodegradability and safe disposal.
NASA Astrophysics Data System (ADS)
Jaritz, M.; Behm, H.; Hopmann, Ch; Kirchheim, D.; Mitschker, F.; Awakowicz, P.; Dahlmann, R.
2017-01-01
The influence of ultraviolet (UV) radiation from oxygen and argon pretreatment plasmas on a plastic substrate has not been fully understood yet. In particular, its influence on the adhesion properties has not been sufficiently researched so far. This paper addresses this issue by comparing the bond strength of a plasmapolymerized silicon organic coating (SiO x C y H z ) on polypropylene (PP) after oxygen and argon plasma pretreatment and pretreatment by UV radiation emitted by the same plasmas. The UV radiation is isolated from the other species from the plasma by means of a magnesium fluoride (MgF2) optical filter. It could be shown that UV radiation originating from an oxygen plasma has a significant impact on both substrate surface chemistry and coating adhesion. The same maximum bond strength enhancement can be reached by pretreating the polypropylene surface either with pulsed oxygen plasma, or with only the UV radiation from this oxygen plasma. Also, similar surface chemistry and topography modifications are induced. For argon plasma no significant influence of its UV radiation on the substrate could be observed in this study.
[Complications associated with the use of polypropylene mesh in women under colposacropexy].
Aguilera-Maldonado, Lizzete Verónica; Jiménez-Vieyra, Carlos Ramón; Solís-Moreno, Tania Kristal
2015-10-01
There have been numerous surgical procedures and modi fied in the hope of obtaining a lasting cure for pelvic organ prolapse These surgeries were performed using the traditionally native tissues of the patient. In an effort to reduce morbidity, improve surgical outcomes and reduce the complexity of these operations, we used a growing number of synthetic mesh repairs and biomaterials used tissue from cadaver or animal. To evaluate the frequency of complications associated with the use of polypropylene mesh in women undergoing colposacropexy. Retrospective, observational and descriptive study conducted at the Hospitalde Ginecología y Obstetricia 3 IMSS (Mexico) between 1 January 2006 and 15 February 2013. The main risk factors associated with pelvic organ prolapse were considered, comorbidity and complications directly linked to the procedure. With respect to the related complications colposacropexy procedure using polypropylene mesh were documented in 20 of 67 patients which corresponded to 30%. A number of complications have been associated with the use of meshes between these include: extrusion, erosion, pelvic pain, dyspareunia, bladder or bowel condition, but one aspect is poorly evaluated sexual dysfunction without to definitely plays an important role in the field bio-psychosocial.
Delayed-onset streptococcus pyogenes endophthalmitis following Ahmed glaucoma valve implantation.
Bayraktar, Zerrin; Kapran, Ziya; Bayraktar, Sükrü; Acar, Nur; Unver, Yaprak Banu; Gök, Kemran
2005-01-01
To report a case of delayed-onset Streptococcus pyogenes endophthalmitis following implantation of an Ahmed glaucoma valve. A 10-year-old patient presented with acute endophthalmitis 1 year after Ahmed glaucoma valve implantation. The conjunctiva and Tenon's capsule over the valve plate had been penetrated by one of the polypropylene fixation sutures. The valve was removed, and pars plana vitrectomy was performed. Vitreous specimens and removal of the discharge over the plate revealed Streptococcus pyogenes. This is the first documented case of Streptococcus pyogenes endophthalmitis following Ahmed glaucoma valve implantation. We think the conjunctival buttonhole caused by the polypropylene suture provided an entry site for the infection. (c) Japanese Ophthalmological Society 2005.
Histologic Inflammatory Response to Transvaginal Polypropylene Mesh: A Systematic Review.
Thomas, Dominique; Demetres, Michelle; Anger, Jennifer T; Chughtai, Bilal
2018-01-01
To evaluate the inflammatory response following transvaginal implantation of polypropylene (PP) mesh. A comprehensive literature search was performed in the following databases from inception in April 2017: Ovid MEDLINE, Ovid EMBASE, and The Cochrane Library (Wiley). The studies retrieved were screened for eligibility against predefined inclusion and exclusion criteria. Twenty-three articles were included in this review. Following the implantation of PP mesh, there are immediate and local inflammatory responses. PP mesh elicits an inflammatory response that decreases over time; however, no studies documented a complete resolution. Further studies are needed to determine if there is a complete resolution of inflammation or if it persists. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Palanisamy, S.; Tunakova, V.; Karthik, D.; Ali, A.; Militky, J.
2017-10-01
In this study, the different proportion of conductive component blended with polypropylene yarn were taken for making conductive textile samples for analysis of electromagnetic shielding effectiveness, fabric bending moment and air permeability. The ASTM D4935 coaxial transmission line method was used to study the electromagnetic shielding. Electromagnetic shielding effectiveness of textile structures containing different percentage of metal content ranges from 1 to 50 dB at high frequency range. Breathability of structures, more precisely air permeability was considered as one of important parameters for designing of electromagnetic radiation protective fabrics for certain applications. The bending moment of samples is decreases with increasing metal component percent.
2014-08-15
made of hybrid polypropylene /glass yarns, at different testing strain rates. The results obtained relatively little damage (and, hence, strength...l 1.1 1.2 1.3 1.4 1.5 1.6 1.7 -20 0 20 40 60 80 (a) Two-Bond-Angle, rad B o n d -A n g le E n er g y, k J/ m o l 2.8 3 3.2 3.4 0 100 200 300 400 500...Experimental characterization of the tensile behavior of a polypropylene /glass 3D-fabric: from the yarn to the fabric. In: 4th world conference on 3D fabrics
Laser surface texturing of polypropylene to increase adhesive bonding
NASA Astrophysics Data System (ADS)
Mandolfino, Chiara; Pizzorni, Marco; Lertora, Enrico; Gambaro, Carla
2018-05-01
In this paper, the main parameters of laser surface texturing of polymeric substrates have been studied. The final aim of the texturing is to increase the performance of bonded joints of grey-pigmented polypropylene substrates. The experimental investigation was carried out starting from the identification of the most effective treatment parameters, in order to achieve a good texture without compromising the characteristics of the bulk material. For each of these parameters, three values were individuated and 27 sets of samples were realised. The surface treatment was analysed and related to the mechanical characteristics of the bonded joints performing lap-shear tests. A statistical analysis in order to find the most influential parameter completed the work.
The cleaning and disinfection by heat of bedpans in automatic and semi-automatic machines.
Mostafa, A. B.; Chackett, K. F.
1976-01-01
This work is concerned with the cleaning and disinfection by heat of stainless-steel and polypropylene bedpans, which had been soiled with either a biological contaminant, human serum albumin (HSA) labelled with technetium-99m 99m(Tc), or a bacteriological contaminant, streptococcus faecalis mixed with Tc-labelled HSA. Results of cleaning and disinfection achieved with a Test Machine and those achieved by procedures adopted in eight different wards of a general hospital are reported. Bedpan washers installed in wards were found to be less efficient than the Test Machine, at least partly because of inadequate maintenance. Stainless-steel and polypropylene bedpans gave essentially the same results. PMID:6591
Nano-silica as the go material on heat resistant tunnel lining
NASA Astrophysics Data System (ADS)
Omar, Faizah; Osman, S. A.; Mutalib, A.
2018-04-01
This paper is concerned with passive fire protection method of protective concrete mix that is made up of fly ash, polypropylene fibre, and nano-silica. Nano-silica is focused on as the innovative material to be used in the composition of the protective concrete mix. The previous experimental studies which analyse the performance of passive fire protection on tunnels are discussed. This paper also discusses passive fire protection. The fire protection materials and behaviour analyses of tunnel structure are also presented. At the end of the paper, the recommendation of the optimum composition concrete material with fly ash, polypropylene fibre and nano-silica as tunnel lining fire protective materials is proposed.
NASA Astrophysics Data System (ADS)
Sahadat Hossain, Md.; Uddin, Muhammad B.; Razzak, Md.; Sarwaruddin Chowdhury, A. M.; Khan, Ruhul A.
2017-12-01
Composites were prepared successfully by compression molding technique using jute fabrics (reinforcing agent) and polypropylene (matrix). Jute fabrics were treated with disaccharide (sucrose) solution and composites were fabricated with the treated fabric and polypropylene. The fiber content of the prepared composites was 40% by weight. It was found that the sucrose (2% solution) decreased the tensile strength (TS) and elongation at break about 6% and 37%, respectively, but tensile modulus and impact strength improved about 27% and 32%, respectively. When gamma radiation was applied through the untreated and treated composites the mechanical properties were improved much higher in non-treated Jute/PP-based composites than that of sucrose treated composites. For 5.0 kGy gamma dose the highest mechanical properties were observed for non-treated composites. At 5.0 kGy gamma dose the improvement of TS was 14% and 2% for non-treated and sucrose treated composites, respectively. The water uptake property of the sucrose treated composites was performed up to 10 days and composites absorbed 18% water. The functional groups of the both composites were analyzed by Fourier transform infrared spectroscopy machine. The scanning electron microscopic images of the both composites were taken for the surface and fiber adhesion analysis.
Przydacz, Mikolaj; Adli, Oussama El Yazami; Mahfouz, Wally; Loutochin, Oleg; Bégin, Louis R.
2017-01-01
Introduction To evaluate the impact of design features of the synthetic mid-urethral slings on tissue integrity and inflammatory responses. Material and methods In total 30 female Sprague-Dawley rats were implanted with type I monofilamentous, macroporous polypropylene meshes: Gynecare TVT-Obturator tape® (Ethicon Inc., Johnson & Johnson, Somerville, NJ, USA) and I-STOP® (CL Medical Inc., Lyon, France). All animal groups were sacrificed at set time intervals – 6 weeks, 3 months, 6 months, 9 months and 12 months – and the abdominal wall was harvested with mesh strips for histological evaluation. Results All mesh strips appeared to be well incorporated into the abdominal wall, and no signs of shrinkage was noticed. All specimens showed a thin/delicate, loose, fibrous interface between the synthetic graft plate and abdominal wall, along with mild inflammatory reactions from 6 weeks to 12 months. Conclusions Both mesh brands induced comparable, minimal foreign body reactions and integrated well into the host tissues despite differences in architectural features. TVT-O® and I-STOP® evoked similar low-grade inflammatory responses up to 12 months in this animal model. Structural differences and architectural features of polypropylene slings used in this study have had no impact on tissue integrity and inflammatory responses. PMID:28721282
Przydacz, Mikolaj; Adli, Oussama El Yazami; Mahfouz, Wally; Loutochin, Oleg; Bégin, Louis R; Corcos, Jacques
2017-06-30
To evaluate the impact of design features of the synthetic mid-urethral slings on tissue integrity and inflammatory responses. In total 30 female Sprague-Dawley rats were implanted with type I monofilamentous, macroporous polypropylene meshes: Gynecare TVT-Obturator tape ® (Ethicon Inc., Johnson & Johnson, Somerville, NJ, USA) and I-STOP ® (CL Medical Inc., Lyon, France). All animal groups were sacrificed at set time intervals - 6 weeks, 3 months, 6 months, 9 months and 12 months - and the abdominal wall was harvested with mesh strips for histological evaluation. All mesh strips appeared to be well incorporated into the abdominal wall, and no signs of shrinkage was noticed. All specimens showed a thin/delicate, loose, fibrous interface between the synthetic graft plate and abdominal wall, along with mild inflammatory reactions from 6 weeks to 12 months. Both mesh brands induced comparable, minimal foreign body reactions and integrated well into the host tissues despite differences in architectural features. TVT-O ® and I-STOP ® evoked similar low-grade inflammatory responses up to 12 months in this animal model. Structural differences and architectural features of polypropylene slings used in this study have had no impact on tissue integrity and inflammatory responses.
Stability of erythropoietin repackaging in polypropylene syringes for clinical use.
Marsili, Angela; Puorro, Giorgia; Pane, Chiara; de Rosa, Anna; Defazio, Giovanni; Casali, Carlo; Cittadini, Antonio; de Michele, Giuseppe; Florio, Brunello Ettore; Filla, Alessandro; Saccà, Francesco
2017-02-01
Introduction: Epoetin alfa (Eprex®) is a subcutaneous, injectable formulation of short half-life recombinant human erythropoietin (rHuEPO). To current knowledge there are no published studies regarding the stability of rHuEPO once repackaging occurs (r-EPO) for clinical trial purposes. Materials and methods: We assessed EPO concentration in Eprex® and r-EPO syringes at 0, 60, 90, and 120 days after repackaging in polypropylene syringes. R-EPO was administered to 56 patients taking part in a clinical trial in Friedreich Ataxia. Serum EPO levels were measured at baseline and 48 h after r-EPO administration. Results: No differences were found between r-EPO and Eprex® syringes, but both globally decreased in total EPO content during storage at 4 °C. Patients receiving r-EPO had similar levels in EPO content as expected from previous trials in Friedreich Ataxia and from pharmacokinetics studies in healthy volunteers. Discussion: We demonstrate that repackaging of EPO does not alter its concentration if compared to the original product (Eprex®). This is true both for repackaging procedures and for the stability in polypropylene tubes. The expiration date of r-EPO can be extended from 1 to 4 months after repackaging, in accordance with pharmacopeia rules.
Ninomiya, Kazuaki; Abe, Megumi; Tsukegi, Takayuki; Kuroda, Kosuke; Tsuge, Yota; Ogino, Chiaki; Taki, Kentaro; Taima, Tetsuya; Saito, Joji; Kimizu, Mitsugu; Uzawa, Kiyoshi; Takahashi, Kenji
2018-02-15
In the present study, we examined the efficacy of choline acetate (ChOAc, a cholinium ionic liquid))-assisted pretreatment of bagasse powder for subsequent mechanical nanofibrillation to produce lignocellulose nanofibers. Bagasse sample with ChOAc pretreatment and subsequent nanofibrillation (ChOAc/NF-bagasse) was prepared and compared to untreated control bagasse sample (control bagasse), bagasse sample with nanofibrillation only (NF-bagasse) and with ChOAc pretreatment only (ChOAc-bagasse). The specific surface area was 0.83m 2 /g, 3.1m 2 /g, 6.3m 2 /g, and 32m 2 /g for the control bagasse, ChOAc-bagasse, NF-bagasse, and the ChOAc/NF-bagasse, respectively. Esterified bagasse/polypropylene composites were prepared using the bagasse samples. ChOAc/NF-bagasse exhibited the best dispersion in the composites. The tensile toughness of the composites was 0.52J/cm 3 , 0.73J/cm 3 , 0.92J/cm 3 , and 1.29J/cm 3 for the composites prepared using control bagasse, ChOAc-bagasse, NF-bagasse, and ChOAc/NF-bagasse, respectively. Therefore, ChOAc pretreatment and subsequent nanofibrillation of bagasse powder resulted in enhanced tensile toughness of esterified bagasse/polypropylene composites. Copyright © 2017 Elsevier Ltd. All rights reserved.
Adsorption of Ten Microcystin Congeners to Common Laboratory-Ware Is Solvent and Surface Dependent.
Altaner, Stefan; Puddick, Jonathan; Wood, Susanna A; Dietrich, Daniel R
2017-04-06
Cyanobacteria can produce heptapetides called microcystins (MC) which are harmful to humans due to their ability to inhibit cellular protein phosphatases. Quantitation of these toxins can be hampered by their adsorption to common laboratory-ware during sample processing and analysis. Because of their structural diversity (>100 congeners) and different physico-chemical properties, they vary in their adsorption to surfaces. In this study, the adsorption of ten different MC congeners (encompassing non-arginated to doubly-arginated congeners) to common laboratory-ware was assessed using different solvent combinations. Sample handling steps were mimicked with glass and polypropylene pipettes and vials with increasing methanol concentrations at two pH levels, before analysis by liquid chromatography-tandem mass spectrometry. We demonstrated that MC adsorb to polypropylene surfaces irrespective of pH. After eight successive pipet actions using polypropylene tips ca. 20% of the MC were lost to the surface material, which increased to 25%-40% when solutions were acidified. The observed loss was alleviated by changing the methanol (MeOH) concentration in the final solvent. The required MeOH concentration varied depending on which congener was present. Microcystins only adsorbed to glass pipettes (loss up to 30% after eight pipet actions) when in acidified aqueous solutions. The latter appeared largely dependent on the presence of ionizable groups, such as arginine residues.
Effect of coupling agent on durian skin fibre nanocomposite reinforced polypropylene
NASA Astrophysics Data System (ADS)
Siti Nur E'zzati, M. A.; Anuar, H.; Siti Munirah Salimah, A. R.
2018-01-01
This paper reports on the development of a composite-based natural fiber to reduce the reliance on petroleum-based product in order to amplify environmental awareness. The production of Durian Skin Nanofiber (DSNF) was conducted using biological fermentation method via rhizopus oryzae in order to obtain the nano dimension of the particle size. Polypropylene (PP) and DSNF were produced using Haake internal mixer via melt blending technique. The significant effect of maleic anhydride grafted polypropylene (MAPP) on the properties of PP/DSNF nanocomposite was investigated to study its mechanical properties which are tensile strength and thermal stability using thermogravimetric (TGA) and differential scanning analysis (DSC). The tensile property of PP nanocomposites increased from 33 MPa to 38 MPa with the presence of MAPP. The addition of MAPP also increased the thermal stability of PP/DSNF nanocomposite where the char residue increased by 52%. Besides that, the thermal degradation of PP/DSNF and PP/DSNF-MAPP were higher than PP where they exerted higher amount of weight loss at an elevated temperature. The percentage of crystallinity, %Xc, of PP nanocomposites improved with the addition of MAPP by 35% based on the differential scanning calorimetry (DSC) result. The SEM analysis showed that the PP/DSNF-MAPP exerts ductile fracture while PP/DSNF exerts brittle fracture.
Ziraki, Sahar; Zebarjad, Seyed Mojtaba; Hadianfard, Mohammad Jafar
2016-04-01
Metacarpophalangeal joint implants have been usually made of silicone rubber. In the current study, silica nano particles and polypropylene fibers were added to silicone rubber to improve silicone properties. The effect of the addition of silica nano particles and polypropylene fibers on the tensile behavior of the resultant composites were investigated. Composite samples with different content of PP fibers and Silica nano particles (i. e. 0, 1 and 2wt%) as well as the hybrid composite of silicone rubber with 1wt% SiO2 and 1wt% PP fiber were prepared. Tensile tests were done at constant cross head speed. To study the body fluid effect on the mechanical properties of silicone rubber composites, samples soaked in simulated body fluid (SBF) at 37°C were also tested. The morphology of the samples were studied by scanning electron microscope. Results of analysis revealed that an increase in PP fibers and silica nano particles content to 2wt%, increases the tensile strength of silicone rubber of about 75% and 42% respectively. It was found out that the strength of the samples decreases after being soaked in simulated body fluid, though composites with PP fibers as the reinforcement showed less property degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Use of rubble from building demolition in mortars.
Corinaldesi, V; Giuggiolini, M; Moriconi, G
2002-01-01
Because of increasing waste production and public concerns about the environment, it is desirable to recycle materials from building demolition. If suitably selected, ground, cleaned and sieved in appropriate industrial crushing plants, these materials can be profitably used in concrete. Nevertheless, the presence of masonry instead of concrete rubble is particularly detrimental to the mechanical performance and durability of recycled-aggregate concrete and the same negative effect is detectable when natural sand is replaced by fine recycled aggregate fraction. An alternative use of both masonry rubble and fine recycled material fraction could be in mortars. These could contain either recycled instead of natural sand or powder obtained by bricks crushing as partial cement substitution. In particular, attention is focused on the modification that takes place when either polypropylene or stainless steel fibers are added to these mortars. Polypropylene fibers are added in order to reduce shrinkage of mortars, stainless steel fibers for improving their flexural strength. The combined use of polypropylene fibers and fine recycled material from building demolition could allow the preparation of mortars showing good performance, in particular when coupled with bricks. Furthermore, the combined use of stainless steel fibers and mortars containing brick powder seems to be an effective way to guarantee a high flexural strength.
Pandit, Subhendu; Kumar, Sushil; Mishra, B.K.
2015-01-01
Background Most of the organs and tissues are preserved in formalin with its own set of disadvantages. Plastination is a unique method of permanently preserving tissue in a life like state. Plastination developed by western authorities is a labour and equipment intensive affair. Most common polymer used is S10, however this study uses easily available alternative polymers for plastination. Method Various polymers like Epoxy resins, Polypropylene resins, Orthocryl and silicone were used in plastinating the anatomical specimens. Specific methods were used for solid, hollow organs and brain specimens. The specimens were made to undergo stages of fixation, dehydration, impregnation and curing. The results were studied and interpreted under various parameters. Results The results were interpreted under various parameters like shrinkage, retention of colour, odour, pliability and retention of gross anatomy. The study concluded that Orthocryl and Epoxy resins retained maximum colour with minimal shrinkage while maximum discolouration was with polypropylene plastinates. Brain sections were best preserved in Orthocryl. Conclusion The study concluded that indigenous methods and materials can produce quality plastinates which can be an important adjunct to traditional methods of teaching however more studies need to be done for refinement. PMID:26288492
NASA Astrophysics Data System (ADS)
Feng, Guanhua; Li, Zihe; Mi, Liwei; Zheng, Jinyun; Feng, Xiangming; Chen, Weihua
2018-02-01
Separator as an important part of lithium-ion batteries, allowing the ion to transfer and preventing the direct contact of anode with cathode, determines the safety of the batteries. In this work, a kind of polypropylene/hydrophobic silica-aerogel-composite (SAC) separator is fabricated through combining hydrophobic silica aerogel and polypropylene (PP) separator. The rationally designed SAC effectively increases the thermal stability of the separator with slightly growing weight (the area retention rate is 30% higher than that of the PP separator after being heated for 30 min at 160 °C). In addition, the hydrophobic silica aerogel layer in SAC significantly improves the wettability of PP separator to electrolyte owning to the introduced hydrophobic functional groups of -Si(CH3)3 and porous structure, and the contact angles of SAC separator to several common organic electrolytes (EC/DMC, DMC/DOL, Diglyme) are close to 0°. Electrochemical tests show that the prepared SAC separator can decrease the polarization of Li-ion batteries and leads to improved power performance and cycle stability. And the SAC separator is firm with neglectable abscission after folding 200 times. This work provides a new way to improve the safety and simultaneously reduce the polarization of the batteries, implying promising application potential in power batteries.
Improved method for concentration of Giardia, Cryptosporidium, and poliovirus from water.
Watt, Pamela M; Johnson, Dana C; Gerba, Charles P
2002-03-01
Methods for the concentration of enteric viruses and the protozoan parasites, Giardia and Cryptosporidium, from drinking water currently require the use of two different types of filters. Electropositive or electronegative microporous filters (0.2-0.45 microm nominal porosity) are used for the collection of enteroviruses, while polypropylene spun-fiber filters (1 microm porosity) and small pleated cartridge filters are used for the collection of protozoan parasites from water. Since the filter mechanically traps the protozoa by size exclusion, a microporous filter with an appropriately small nominal porosity could possibly be used for co-collection of both protozoa and enteroviruses. This study compared the concentration efficiencies of a polypropylene fiber cartridge (DPPPY) filter and two different microporous filters (Filterite and IMDS) with poliovirus (type 1), with respect to their ability to concentrate Giardia and Cryptosporidium from water. Giardia cysts and Cryptosporidium oocysts were added to 4001 of either tap water or tertiary treated wastewater and passed through the test filter. The protozoa were eluted from the polypropylene filter by hand-washing in a detergent solution. Viruses and protozoa were eluted from the microporous filter by two consecutive back-washes with a 1.5% beef extract, 0.1% Tween 80 solution. The eluent was then centrifuged to remove the parasites and the supernatant assayed for viruses. The overall efficiency was greater for the Filterite filter (40.4% for Giardia; 36.6% for Cryptosporidium) when compared to the spun fiber filter (10.1% for Giardia; 16.0% for Cryptosporidium). The Filterite filters were easier and faster to process than the polypropylene spun fiber filters. There was no significant difference in the recovery of protozoa from 1MDS and DPPPY filters. Co-collection of viruses and protozoan parasites from water onto the same filter is possible and can reduce the time and cost of routine water monitoring.
Granderath, Frank A; Schweiger, Ursula M; Kamolz, Thomas; Pasiut, Martin; Haas, Christoph F; Pointner, Rudolph
2002-01-01
One of the most frequent complications after laparoscopic antireflux surgery is intrathoracic migration of the wrap ("slipped" Nissen fundoplication). The most common reasons for this are inadequate closure of the crura or disruption of the crural closure. The aim of this prospective study was to evaluate surgical outcomes in patients who underwent laparoscopic antireflux surgery with simple nonabsorbable polypropylene sutures for hiatal closure in comparison to patients who underwent routine mesh-hiatoplasty. Between 1993 and 1998, a group of 361 patients underwent primary laparoscopic Nissen or Toupet fundoplication with the use of simple nonabsorbable polypropylene sutures for hiatal closure. Since December 1998, in all patients (n = 170) who underwent laparoscopic antireflux surgery, a 1 x 3 cm polypropylene mesh was placed on the crura behind the esophagus to reinforce them. Functional outcome, symptoms of gastroesophageal reflux disease, and postoperative complications such as recurrent hiatal hernia with or without intrathoracic migration of the wrap have been used for assessment of outcomes. In the initial series of 361 patients, postoperative herniation of the wrap occurred in 22 patients (6.1%). Of these 22 patients, 17 of them (4.7%) had to undergo laparoscopic redo surgery. The remaining five patients were free of symptoms. In comparison to these results, in a second group of 170 patients there was only one (0.6%) who had postoperative herniation of the wrap into the chest. There have been no significant differences in objective data such as DeMeester scores or lower esophageal sphincter pressure between the two groups. Postoperative dysphagia was increased during the early period after surgery in patients undergoing mesh-hiatoplasty but resolved without any further treatment within the first year after laparoscopic antireflux surgery. We concluded that routine hiatoplasty with the use of a polypropylene mesh is effective in preventing postoperative herniation of the wrap and leads to a significantly better surgical outcome than closure of the hiatal crura with simple sutures, without any additional long-term side effects.
Kirkham, Kylian; Munson, Jessica M; McCluskey, Susan V; Graner, Kevin K
2017-01-01
The stability of dalteparin 1,000 units/mL in 0.9% sodium chloride for injection stored in polypropylene syringes under refrigeration was examined. Dalteparin 1,000-units/mL syringes were prepared by adding 9 mL of 0.9% sodium chloride for injection to 1 mL of dalteparin sodium 10,000 unit/mL from commercial single-use syringes. Compounded solutions in 0.5-mL aliquots were transferred to 1-mL polypropylene syringes and sealed with a Luer lock tip cap and stored at refrigerated temperatures (2°C to 8°C) with ambient fluorescent light exposure. Syringes from three batches of dalteparin 1,000 units/mL were potency tested in duplicate by a stability-indicating high-performance liquid chromatography assay using a 0.5-mL sample at specified intervals. Visual and pH testing were performed on each batch. Samples were visually inspected for container integrity, color, and clarity. Samples for pH testing were prepared using a 1:1 dilution of dalteparin 1,000 units/mL in sterile water for injection and underwent duplicate analysis at each time point. High-performance liquid chromatography analyses showed a remaining percent of the initial dalteparin content at day 30 of 94.88% ± 2.11%. Samples remained colorless and clear with no signs of container compromise and no visual particulate matter at each time point. Throughout the 30-day study period, pH values remained within 0.3-pH units from the initial value of 5.84. Dalteparin 1,000 unit/mL in 0.9% sodium chloride for injection, packaged in 1-mL polypropylene syringes was stable for at least 30 days while stored at refrigerated conditions with ambient fluorescent light exposure. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
NASA Astrophysics Data System (ADS)
Kajaks, Janis; Kalnins, Karlis; Uzulis, Sandris; Matvejs, Juris
2015-12-01
During the last 20-30 years many researchers have paid attention to the studies of properties of thewood polymer composites (WPC). A lot of works are closely related to investigations of exploitation properties of wood fibres or wood flour containing polyolefine composites [1, 2]. The most useful from wide selection of polyolefines are polypropylenes, but timber industry waste materials comprising lignocellulose fibres are often used as reinforcement of WPC [3-12]. Plywood industry is not an exception - part of waste materials (by-products) are used for heat energy, i.e. burned. In this work we have approbated reinforcing of polypropylene (PP) with one of the plywood industry by-products, such as birch plywood sawdust (PSWD),which containswood fibre fractions with different length [13]. The main fraction (50%) includes fibres with length l = 0.5 - 1 mm. Our previous study [13] has confirmed that PSWD is a promising filler for PP reinforcing. Addition of PSWD up to 40-50 wt.% has increased WPC tensile and flexural modulus, but decreased deformation ability of PP matrix, impact strength, water resistance and fluidity of composite melts. It was shown [13] that modification of the composites with interfacial modifier - coupling agent maleated polypropylene (MAPP content up to 5-7 wt.%) considerably improved all the abovementioned properties. SEM investigations also confirmed positive action of coupling agent on strengthening of adhesion interaction between components wood and PP matrix. Another way how to make better properties of the WPC is to form hybridcomposites [1, 14-24]. Very popular WPC modifiers are nanoparticle additions like organonanoclays, which increase WPC physical-mechanical properties - microhardness, water resistance and diminish barrier properties and combustibility [1, 2, 14-17, 19, 20]. The goal of this study was to investigate organonanoclays influence on plywood production industry by-product birch plywood sawdust (PSWD) containing polypropylenewood hybrid composites (WPHC) physical-mechanical and other exploitation properties.
Sexual function before and 1 year after laparoscopic sacrocolpopexy.
Salamon, Charbel G; Lewis, Christa M; Priestley, Jennifer; Culligan, Patrick J
2014-01-01
This study aimed to compare sexual function before and 1 year after laparoscopic sacrocolpopexy using a porcine dermis or a polypropylene mesh material. This was a secondary analysis of sexual function measured before and 1 year after laparoscopic sacrocolpopexy in a group of 81 sexually active women participating in a randomized controlled trial comparing porcine dermis and polypropylene mesh. Sexual function was assessed using the short form of the Pelvic Organ Prolapse/Urinary Incontinence Sexual Questionnaire (PISQ-12). Responses to individual questions from the physical domain of the PISQ-12 were also analyzed. Additional information included the type of mesh material used and whether a concomitant suburethral sling or perineorrhaphy was performed. There was a significant postoperative improvement in total PISQ-12 scores for the entire cohort (33.2 vs 38.3, P < 0.01). Similarly, PISQ-12 scores were significantly improved in both groups (33.2 preoperative vs 37.4 one year postoperative in the porcine dermis, P < 0.01 and 33.2 vs 39.2 in the polypropylene mesh, P < 0.01). There were no differences between the 2 graft material groups. Preoperatively, 63.0% (48/76) of women reported avoiding sexual intercourse because of bulging in vagina (PISQ12-question #8), at 1 year postoperatively only 4% (3/76) had a positive response (P < 0.01). We observed a significant decrease in the number of women who reported pain during intercourse at 12 months as evidenced by the responses to the PISQ12-question #5, 47.4% (36/76) versus 26.3% (20/76) (P < 0.01). The addition of a suburethral sling or a perineorrhaphy did not negatively impact sexual function at 1 year. Laparoscopic sacrocolpopexy had a positive impact on sexual function at 1 year regardless of whether a porcine dermis or a polypropylene mesh material was used.
A laparoscopic intraperitoneal onlay mesh technique for the repair of an indirect inguinal hernia.
Fitzgibbons, R J; Salerno, G M; Filipi, C J; Hunter, W J; Watson, P
1994-01-01
OBJECTIVE: This study was done (1) to determine whether congenital indirect inguinal hernias in male pigs could be repaired by placing a polypropylene mesh prosthesis over the defect intra-abdominally, (2) to measure the incidence of adhesions between intra-abdominal viscera and the prosthesis with and without the adhesion barrier oxidized regenerated cellulose, (3) to determine the incidence of other complications, and (4) to assess the effect on fertility. SUMMARY BACKGROUND DATA: Several techniques for laparoscopic inguinal herniorrhaphy are currently being evaluated to determine whether there are advantages over conventional inguinal herniorrhaphy. Perhaps the most controversial is the intraperitoneal onlay mesh procedure (IPOM). Its advantage is its simplicity (in that the repair is accomplished by placing a prosthesis over the hernia defect intra-abdominally, avoiding a groin dissection). Its disadvantage is the potential for complications because the prosthesis is in contact with the intra-abdominal viscera. METHODS: In male pigs, polypropylene mesh alone or polypropylene mesh plus the adhesion barrier oxidized regenerated cellulose (composite prosthesis) was fixed to the peritoneum surrounding the hernia defect. In phase 1 (6-week follow-up), two groups of 13 pigs each underwent herniorrhaphy at laparotomy or laparoscopy. In phase 2 (7.1-month follow-up), 21 pigs underwent laparoscopic herniorrhaphy. RESULTS: All IPOM herniorrhaphies were successful. The prostheses adhered most frequently to the bladder, followed by small bowel, peritoneum, and cord structures. Prosthetic erosion into these organs was not observed. Laparoscopically placed prostheses in phases 1 and 2 had significantly less surface covered by adhesions (13% +/- 13% and 19% +/- 27%, respectively) and a lower adhesion tenacity grade (1.5 +/- 0.9 and 1.3 +/- 1.1, respectively) than those placed at laparotomy (44% +/- 27% and 2.5 +/- 0.7, respectively; p < 0.01). In phase 1, a histologic evaluation of laparoscopically placed specimens demonstrated significantly thinner above-mesh fibrotic tissue compared with the prostheses implanted at laparotomy (p < 0.04). In either phase, the use of the adhesion barrier did not produce any histologic difference between the polypropylene alone and the composite prosthesis. Fertility studies were performed in phase 2 and showed no adverse effects caused by either prosthesis. CONCLUSIONS: This study demonstrated that the intraperitoneal placement of a polypropylene prosthesis was an effective technique for indirect inguinal herniorrhaphy in a pig. Furthermore, with laparotomy, the addition of oxidized regenerated cellulose significantly decreased the rate of adhesion formation to the prosthesis. However, oxidized regenerated cellulose would appear to have no value when used with a prosthesis placed laparoscopically. Images Figure 1. Figure 2. Figure 5. Figure 5. PMID:8129485
Endogan, T; Ozyaylali, I; Kulacoglu, H; Serbetci, K; Kiyak, G; Hasirci, N
2013-01-01
Prosthetic mesh repair for abdominal wall hernias is widely used because of its technical simplicity and low hernia recurrence rates. The most commonly used material is pure polypropylene mesh, although newer composite materials are recommended by some centers due to their advantages.However, these meshes are more expensive than pure polypropylene meshes. Resterilization of a pure polypropylene mesh has been shown to be quite safe, and many centers prefer slicing a large mesh into smaller pieces, suitable for any hernia type or defect size. Nevertheless there is no data about the safety after resterilization of the composite meshes. The present study was carried out to investigate the effects of resterilization and in vitro degradation in phosphate buffered saline solution on the physical structure and the mechanical properties of partially absorbable lightweight meshes. Two composite meshes were used in the study: One mesh consists of monofilament polypropylene and monofilament polyglecaprone -a copolymer of glycolide and epsilon(ε)- caprolactone - (Ultrapro®, 28 g m2, Ethicon, Hamburg,Germany), and the other one consisted of multifilament polypropylene and multifilament polyglactine (Vypro II®, 30g m2, Ethicon, Hamburg, Germany). Two large meshes were cut into rectangular specimens sized 50 x 20 mm for mechanical testing and 20 x 20 mm for in vitro degradation experiments.Meshes were divided into control group with no resterilization and gas resterilization. Ethylene oxide gas sterilization was performed at 55°C for 4.5 hours. In vitro degradation in 0.01M phosphate buffered saline (PBS, pH 7.4) solution at 37 ± 1°C for 8 weeks was applied to one subgroup in each mesh group. Tensiometric measurements and scanning electronmicroscopic evaluations were completed for control and resterilization specimens. Regardless of resterilization, when the meshes were exposed to in vitro degradation, all mechanical parameters decreased significantly. Highest reduction in mechanical properties was observed for Ultrapro due to the degradation of absorbable polyglecaprone and polyglactin parts of these meshes. It was observed that resterilization by ethylene oxide did not determine significant difference on the degradation characteristics and almost similar physical structures were observed for resterilized and non-resterilized meshes. For VyproII meshes, no significant mechanical difference was observed between resterilized and non-resterilized meshes after degradation while resterilized Ultrapro meshes exhibited stronger characteristics than non-resterilized counterparts, after degradation. Resterilization with ethylene oxide did not affect the mechanical properties of partially absorbable compositemeshes. No important surface changes were observed inscanning electron microscopy after resterilization. Celsius.
40 CFR 52.375 - Certification of no sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... of High-density Polyethylene and Polypropylene Resins. (e) Synthetic organic chemical manufacturing industry (SOCMI) distillation. (f) Synthetic organic chemical manufacturing industry (SOCMI) reactor...
Pagano, Justin K.; Erickson, Karla A.; Scott, Brian L.; ...
2016-10-22
A new uranium metallacyclocumulene, (C 5Me 5) 2U(η 4-1,2,3,4-PhC 4Ph), was synthesized by both reaction of (C 5Me 5) 2UCl 2 with 1,4-diphenylbutadiyne in the presence of KC 8 and by ligand exchange between (C 5Me 5) 2U(η 2-Me 3SiC 2SiMe 3) and 1,4-diphenylbutadiyne. Lastly, full characterization of (C 5Me 5) 2U(η 4-1,2,3,4-PhC 4Ph) is reported, including the solid-state structure. (C 5Me 5) 2U(η 4-1,2,3,4-PhC 4Ph) displays an unusually detailed UV–visible spectrum, which is rare for uranium(IV) metallocene complexes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pagano, Justin K.; Erickson, Karla A.; Scott, Brian L.
A new uranium metallacyclocumulene, (C 5Me 5) 2U(η 4-1,2,3,4-PhC 4Ph), was synthesized by both reaction of (C 5Me 5) 2UCl 2 with 1,4-diphenylbutadiyne in the presence of KC 8 and by ligand exchange between (C 5Me 5) 2U(η 2-Me 3SiC 2SiMe 3) and 1,4-diphenylbutadiyne. Lastly, full characterization of (C 5Me 5) 2U(η 4-1,2,3,4-PhC 4Ph) is reported, including the solid-state structure. (C 5Me 5) 2U(η 4-1,2,3,4-PhC 4Ph) displays an unusually detailed UV–visible spectrum, which is rare for uranium(IV) metallocene complexes.
Pagano, Justin Kane; Scott, Brian Lindley; Kiplinger, Jaqueline Loetsch
2018-06-09
Two new uranium metallacyclopropenes, (C 5Me 4R) 2U(η 2-Ph 2PC=CPPh 2) (R = Me, Et) were prepared by reducing the corresponding (C 5Me 4R) 2UCl 2 complexes with KC 8 in the presence of 1,2-bis(diphenylphosphino)acetylene (Ph 2P–C≡C–PPh 2). Both compounds were fully characterized by a combination of elemental analysis and multinuclear NMR, UV–visible–NIR, and IR spectroscopies. Differences in the electronic spectra of these novel compounds and the known (C 5Me 5) 2U(η 2-Me 3SiC=CSiMe 3) are discussed. Finally, also presented is the solid-state structure of (C 5Me 4Et) 2U(η 2-Ph 2PC=CPPh 2), which reveals significant distortions of the coordinated 1,2-bis(diphenylphosphino)acetylenemore » (Ph 2P–C≡C–PPh 2) ligand.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pagano, Justin Kane; Scott, Brian Lindley; Kiplinger, Jaqueline Loetsch
Two new uranium metallacyclopropenes, (C 5Me 4R) 2U(η 2-Ph 2PC=CPPh 2) (R = Me, Et) were prepared by reducing the corresponding (C 5Me 4R) 2UCl 2 complexes with KC 8 in the presence of 1,2-bis(diphenylphosphino)acetylene (Ph 2P–C≡C–PPh 2). Both compounds were fully characterized by a combination of elemental analysis and multinuclear NMR, UV–visible–NIR, and IR spectroscopies. Differences in the electronic spectra of these novel compounds and the known (C 5Me 5) 2U(η 2-Me 3SiC=CSiMe 3) are discussed. Finally, also presented is the solid-state structure of (C 5Me 4Et) 2U(η 2-Ph 2PC=CPPh 2), which reveals significant distortions of the coordinated 1,2-bis(diphenylphosphino)acetylenemore » (Ph 2P–C≡C–PPh 2) ligand.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minasian, Stefan; Krinsky Ph.D., Jamin; Williams, Valerie
2008-07-23
The discovery of molecular metal-metal bonds has been of fundamental importance to the understanding of chemical bonding. For the actinides, examples of unsupported metal-metal bonds are relatively uncommon, consisting of Cp{sub 3}U-SnPh{sub 3}, and several actinide-transition metal complexes. Traditionally, bonding in the f-elements has been described as electrostatic; however, elucidating the degree of covalency is a subject of recent research. In carbon monoxide complexes of the trivalent uranium metallocenes, decreased {nu}{sub CO} values relative to free CO suggest that the U(III) atom acts as a {pi}-donor. Ephritikhine and coworkers have demonstrated that {pi}-accepting ligands can differentiate trivalent lanthanide and actinidemore » ions, an effect that renders this chemistry of interest in the context of nuclear waste separation technology.« less
Scarel, Alessandro; Durand, Jérôme; Franchi, Davide; Zangrando, Ennio; Mestroni, Giovanni; Carfagna, Carla; Mosca, Luca; Seraglia, Roberta; Consiglio, Giambattista; Milani, Barbara
2005-10-07
The coordination chemistry of the chiral bioxazoline ligand (4S,4'S)-2,2'-bis(4-isopropyl-4,5-dihydrooxazole) to Pd(II) provides evidence that the ligand bonding can occur either through chelation of one Pd(II) ion leading to a mononuclear species with the expected cis geometry, or by double bridging of two Pd(II) ions giving a dinuclear complex with trans geometry. The species in solution are identified by 1H NMR spectroscopy. Both the mononuclear and the dinuclear complexes promote the CO/styrene copolymerization, yielding the corresponding polyketone with a fully or a predominantly isotactic microstructure, depending on the reaction medium. The nature of the anion present in the palladium precatalysts affects the polyketone stereochemistry. MALDI-TOF analysis of the copolymers synthesized reveals the presence of p-hydroxyphenolic end-groups, thus confirming and explaining the role of 1,4-hydroquinone as a molecular weight regulator.
Naman, C Benjamin; Almaliti, Jehad; Armstrong, Lorene; Caro-Díaz, Eduardo J; Pierce, Marsha L; Glukhov, Evgenia; Fenner, Amanda; Spadafora, Carmenza; Debonsi, Hosana M; Dorrestein, Pieter C; Murray, Thomas F; Gerwick, William H
2017-08-25
A recent untargeted metabolomics investigation into the chemical profile of 10 organic extracts from cf. Symploca spp. revealed several interesting chemical leads for further natural product drug discovery. Subsequent target-directed isolation efforts with one of these, a Panamanian marine cyanobacterium cf. Symploca sp., yielded a phenethylamide metabolite that terminates in a relatively rare gem-dichlorovinylidene moiety, caracolamide A (1), along with a known isotactic polymethoxy-1-alkene (2). Detailed NMR and HRESIMS analyses were used to determine the structures of these molecules, and compound 1 was confirmed by a three-step synthesis. Pure compound 1 was shown to have in vitro calcium influx and calcium channel oscillation modulatory activity when tested as low as 10 pM using cultured murine cortical neurons, but was not cytotoxic to NCI-H460 human non-small-cell lung cancer cells in vitro (IC 50 > 10 μM).
Shen, Qing; Gu, Qing-Feng; Hu, Jian-Feng; Teng, Xin-Rong; Zhu, Yun-Feng
2003-11-15
In this paper, the surface properties, e.g., the total surface free energy and the related Lifshitz-van der Waals and Lewis acid-base components, of polyacrylonitrile (PAN) precipitation polymerized in supercritical CO(2) have been characterized. Moreover, the influence of molecular weight varying has been also investigated. Results show that the surface properties of PAN resulting from supercritical CO(2) are different from those obtained by the conventional method. Of these data, one important finding is that the supercritical CO(2) PAN seems to decrease the surface free energy with the increased molecular weight. Based on previous recorded NMR spectra of this PAN and especially compared to commercial PAN, such phenomena are discussed and ascribed to an increase of the H-bonds and a reduction of the isotacticity in the supercritical CO(2) condition for PAN.
Sun, Yangyang; Cui, Yaqin; Xiong, Jiao; Dai, Zhongran; Tang, Ning; Wu, Jincai
2015-10-07
Two binuclear magnesium and zinc alkoxides supported by a bis-salalen type dinucleating heptadentate Schiff base ligand were synthesized and fully characterized. The two complexes are efficient initiators for the ring-opening polymerization (ROP) of L-lactide, affording polymers with narrow polydispersities and desirable molecular weights. Interestingly, the mechanisms for the ROP of lactide are different at different temperatures. At a high temperature of 130 °C, a coordination-insertion mechanism is reasonable for the bulk melt polymerization of lactide. At a low temperature, the alkoxide cannot initiate the ROP reaction; however, upon the addition of external benzyl alcohol into the system, the ROP of lactide can smoothly proceed via an "activated monomer" mechanism. In addition, these complexes display slight stereo-selectivity for the ring-opening polymerization of rac-lactide, affording partially isotactic polylactide in toluene with a Pm value of 0.59.
Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts
Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol
2003-04-08
A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n }.sup.+ {A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, and SnR".sub.3 containing groups (R"=C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.
Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts
Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol
2003-12-30
A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, SnR".sub.3, and C.dbd.C containing groups (R".dbd.C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.
Synthesis of Poly(Propylene Fumarate)
Kasper, F. Kurtis; Tanahashi, Kazuhiro; Fisher, John P.; Mikos, Antonios G.
2010-01-01
This protocol describes the synthesis of 500 – 4000 Da poly(propylene fumarate) by a two-step reaction of diethyl fumarate and propylene glycol through a bis(hydroxypropyl) fumarate diester intermediate. Purified PPF can be covalently crosslinked to form degradable polymer networks, which have been widely explored for biomedical applications. The properties of crosslinked PPF networks depend upon the molecular properties of the constituent polymer, such as the molecular weight. The purity of the reactants and the exclusion of water from the reaction system are of utmost importance in the generation of high-molecular-weight PPF products. Additionally, the reaction time and temperature influence the molecular weight of the PPF product. The expected time required to complete this protocol is 3 d. PMID:19325548
Dubois, F; Derouiche, Y; Leblond, J M; Maschke, U; Douali, R
2015-09-01
The temperature dependence of the ionic conductivity is studied in a series of poly(propylene glycol) diacrylate monomers. The experimental data are analyzed by means of the approach recently proposed by Petrowsky et al. [J. Phys. Chem. B. 113, 5996 (2009)10.1021/jp810095g]. This so-called compensated Arrhenius formalism (CAF) approach takes into account the influence of the dielectric permittivity on the exponential prefactor in the classical Arrhenius equation. The experimental data presented in this paper show a good agreement with the CAF; this means that the exponential prefactor is principally dielectric permittivity dependent. The compensated data revealed two conduction processes with different activation energies; they correspond to low and high temperature ranges, respectively.
Cryogenic performance of single polymer polypropylene composites
NASA Astrophysics Data System (ADS)
Atli-Veltin, Bilim
2018-03-01
The main objective of the experimental study detailed in this paper is to investigate the performance of fully recyclable, lightweight, low-cost, thermoplastic Polypropylene (PP) composite tapes at low temperatures. Coupons made of [±45] and [0/90] laminates are subjected to tensile and 3-point bending tests at room temperature as well as at -196 °C. In addition to that, cryogenic low velocity impact tests at 268 J and 777 J impact energies are performed on tubular structures. The results are indicating that the laminates made of PP tapes have sufficient ductility for cryogenic applications. Low velocity impact tests showed that the viscoelastic behavior of the material is preserved, even at such low temperatures and more than 72% of impact energy is absorbed by the material.
Casini, R; Papari, G; Andreone, A; Marrazzo, D; Patti, A; Russo, P
2015-07-13
We investigate the use of Terahertz (THz) Time Domain Spectroscopy (TDS) as a tool for the measurement of the index dispersion of multi-walled carbon nanotubes (MWCNT) in polypropylene (PP) based composites. Samples containing 0.5% by volume concentration of non-functionalized and functionalized carbon nanotubes are prepared by melt compounding technology. Results indicate that the THz response of the investigated nanocomposites is strongly dependent on the kind of nanotube functionalization, which in turn impacts on the level of dispersion inside the polymer matrix. We show that specific dielectric parameters such as the refractive index and the absorption coefficient measured by THz spectroscopy can be both correlated to the index of dispersion as estimated using conventional optical microscopy.
Niu, Fang; Zhang, Le-Sheng; Chen, Chao-Qiu; Li, Wei; Li, Lin; Song, Wei-Guo; Jiang, Lei
2010-08-01
TiO(2) porous nanospheres on polypropylene (PP) films (TiO(2)/PP composite) are produced at ambient temperature. Particle/pore size match up is the key anchoring point to overcome the low affinity between hydrophilic materials and hydrophobic materials. With the hydrophilic TiO(2) catalyst evenly dispersed on a hydrophobic surface, the aqueous solution will selectively skip the substrate and wet the catalysts. Such a wettability-induced smart system maximizes the degrading activity of the TiO(2) catalyst. In photodegrading reactions, the resulting TiO(2)/PP composite film exhibits a 10 times higher activity in flow-type setup than the same TiO(2) catalyst in a traditional batch-type setup.
NASA Astrophysics Data System (ADS)
Dubois, F.; Derouiche, Y.; Leblond, J. M.; Maschke, U.; Douali, R.
2015-09-01
The temperature dependence of the ionic conductivity is studied in a series of poly(propylene glycol) diacrylate monomers. The experimental data are analyzed by means of the approach recently proposed by Petrowsky et al. [J. Phys. Chem. B. 113, 5996 (2009), 10.1021/jp810095g]. This so-called compensated Arrhenius formalism (CAF) approach takes into account the influence of the dielectric permittivity on the exponential prefactor in the classical Arrhenius equation. The experimental data presented in this paper show a good agreement with the CAF; this means that the exponential prefactor is principally dielectric permittivity dependent. The compensated data revealed two conduction processes with different activation energies; they correspond to low and high temperature ranges, respectively.
Recovery of polypropylene from spent lead-acid batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stout, M.E.
1995-12-31
The recovery of the constituent components of spent lead-acid batteries was pioneered in the early 1970`s by M.A. Industries, Inc. M.A.`s main reason for research and development in this area was to recover the polypropylene casings for use as feed stock in their injection molding plants. At that time spent and reject casings were either disposed of or being fed with the lead bearing materials into the smelting process. M.A. has since developed, built and operated a plant for the conversion of scrap casing into reusable copolymer resins. The system is composed of washing, sizing, extrusion and pelletizing the polymermore » into a form which is ready to be injection molded into new products.« less
NASA Astrophysics Data System (ADS)
Li, Dianqing; Tuo, Zhenjun; Evans, David G.; Duan, Xue
2006-10-01
An organic UV absorber has been intercalated into a layered double hydroxide (LDH) host by ion-exchange method using ZnAl-NO 3-LDH as a precursor with an aqueous solution of the sodium salt of 5-benzotriazolyl-4-hydroxy-3- sec-butylbenzenesulfonic acid (BZO). After intercalation of the UV absorber, the interlayer distance in the LDHs increases from 0.89 to 2.32 nm. Infrared spectra and thermogravimetry and differential thermal analysis (TG-DTA) curves reveal the presence of a complex system of supramolecular host-guest interactions. The thermostability of BZO is markedly enhanced by intercalation in the LDH host. ZnAl-BZO-LDHs/polypropylene composite materials exhibit excellent UV photostability.
Diode laser welding of polypropylene: investigations of the microstructures in the welded seam
NASA Astrophysics Data System (ADS)
Abed, S.; Laurens, Patricia; Carretero, C.; Deschamps, J. R.; Duval, C.
2003-03-01
Laser welding of thermoplastic polymers is a non-contact process especially efficient for joining thermoplastic polymers. This innovative technology is already used for industrial series production in different sectors (automobile, packaging,...). The majority of the basic research concerns the weld strength depending on polymer nature, optical properties, butt design and process parameters. Nevertheless, a lack of knowledge concerning the influence of thermal history of the weld seam on morphology of semicrystalline polymer still exists, when this parameter strongly influences the strength of the weld. Actual results of diode laser transmission welding (LTW) experiments on polypropylene, a semicrystalline polymer widely used in industry, could contribute to a better understanding of the process itself and to success in practical applications.
Lorenz, Sara E; Schmiege, Benjamin M; Lee, David S; Ziller, Joseph W; Evans, William J
2010-07-19
The metallocene precursors needed to provide the tetramethylcyclopentadienyl yttrium complexes (C(5)Me(4)H)(3)Y, [(C(5)Me(4)H)(2)Y(THF)](2)(mu-eta(2):eta(2)-N(2)), and [(C(5)Me(4)H)(2)Y(mu-H)](2) for reactivity studies have been synthesized and fully characterized, and their reaction chemistry has led to an unexpected conversion of an azide to an amide. (C(5)Me(4)H)(2)Y(mu-Cl)(2)K(THF)(x), 1, synthesized from YCl(3) and KC(5)Me(4)H reacts with allylmagnesium chloride to make (C(5)Me(4)H)(2)Y(eta(3)-C(3)H(5)), 2, which is converted to [(C(5)Me(4)H)(2)Y][(mu-Ph)(2)BPh(2)], 3, with [Et(3)NH][BPh(4)]. Complex 3 reacts with KC(5)Me(4)H to form (C(5)Me(4)H)(3)Y, 4. The reduced dinitrogen complex, [(C(5)Me(4)H)(2)Y(THF)](2)(mu-eta(2):eta(2)-N(2)), 5, can be synthesized from either [(C(5)Me(4)H)(2)Y](2)[(mu-Ph)(2)BPh(2)], 3, or (C(5)Me(4)H)(3)Y, 4, with potassium graphite under a dinitrogen atmosphere. The (15)N labeled analogue, [(C(5)Me(4)H)(2)Y(THF)](2)(mu-eta(2):eta(2)-(15)N(2)), 5-(15)N, has also been prepared, and the (15)N NMR data have been compared to previously characterized reduced dinitrogen complexes. Complex 2 reacts with H(2) to form the corresponding hydride, [(C(5)Me(4)H)(2)Y(mu-H)](2), 6. Complex 5 displays similar reactivity to that of the analogous [(C(5)Me(4)H)(2)Ln(THF)](2)(mu-eta(2):eta(2)-N(2)) complexes (Ln = La, Lu), with substrates such as phenazine, anthracene, and CO(2). In addition, 5 reduces Me(3)SiN(3) to form (C(5)Me(4)H)(2)Y[N(SiMe(3))(2)], 7.
Minasian, Stefan G; Keith, Jason M; Batista, Enrique R; Boland, Kevin S; Kozimor, Stosh A; Martin, Richard L; Shuh, David K; Tyliszczak, Tolek; Vernon, Louis J
2013-10-02
Metal-carbon covalence in (C5H5)2MCl2 (M = Ti, Zr, Hf) has been evaluated using carbon K-edge X-ray absorption spectroscopy (XAS) as well as ground-state and time-dependent hybrid density functional theory (DFT and TDDFT). Differences in orbital mixing were determined experimentally using transmission XAS of thin crystalline material with a scanning transmission X-ray microscope (STXM). Moving down the periodic table (Ti to Hf) has a marked effect on the experimental transition intensities associated with the low-lying antibonding 1a1* and 1b2* orbitals. The peak intensities, which are directly related to the M-(C5H5) orbital mixing coefficients, increase from 0.08(1) and 0.26(3) for (C5H5)2TiCl2 to 0.31(3) and 0.75(8) for (C5H5)2ZrCl2, and finally to 0.54(5) and 0.83(8) for (C5H5)2HfCl2. The experimental trend toward increased peak intensity for transitions associated with 1a1* and 1b2* orbitals agrees with the calculated TDDFT oscillator strengths [0.10 and 0.21, (C5H5)2TiCl2; 0.21 and 0.73, (C5H5)2ZrCl2; 0.35 and 0.69, (C5H5)2HfCl2] and with the amount of C 2p character obtained from the Mulliken populations for the antibonding 1a1* and 1b2* orbitals [8.2 and 23.4%, (C5H5)2TiCl2; 15.3 and 39.7%, (C5H5)2ZrCl2; 20.1 and 50.9%, (C5H5)2HfCl2]. The excellent agreement between experiment, theory, and recent Cl K-edge XAS and DFT measurements shows that C 2p orbital mixing is enhanced for the diffuse Hf (5d) and Zr (4d) atomic orbitals in relation to the more localized Ti (3d) orbitals. These results provide insight into how changes in M-Cl orbital mixing within the metallocene wedge are correlated with periodic trends in covalent bonding between the metal and the cyclopentadienide ancillary ligands.
Oil-in-oil emulsions: a unique tool for the formation of polymer nanoparticles.
Klapper, Markus; Nenov, Svetlin; Haschick, Robert; Müller, Kevin; Müllen, Klaus
2008-09-01
Polymer latex particles are nanofunctional materials with widespread applications including electronics, pharmaceuticals, photonics, cosmetics, and coatings. These materials are typically prepared using waterborne heterogeneous systems such as emulsion, miniemulsion, and suspension polymerization. However, all of these processes are limited to water-stable catalysts and monomers mainly polymerizable via radical polymerization. In this Account, we describe a method to overcome this limitation: nonaqueous emulsions can serve as a versatile tool for the synthesis of new types of polymer nanoparticles. To form these emulsions, we first needed to find two nonmiscible nonpolar/polar aprotic organic solvents. We used solvent mixtures of either DMF or acetonitrile in alkanes and carefully designed amphiphilic block and statistical copolymers, such as polyisoprene- b-poly(methyl methacrylate) (PI- b-PMMA), as additives to stabilize these emulsions. Unlike aqueous emulsions, these new emulsion systems allowed the use of water-sensitive monomers and catalysts. Although polyaddition and polycondensation reactions usually lead to a large number of side products and only to oligomers in the aqueous phase, these new conditions resulted in high-molecular-weight, defect-free polymers. Furthermore, conducting nanoparticles were produced by the iron(III)-induced synthesis of poly(ethylenedioxythiophene) (PEDOT) in an emulsion of acetonitrile in cyclohexane. Because metallocenes are sensitive to nitrile and carbonyl groups, the acetonitrile and DMF emulsions were not suitable for carrying out metallocene-catalyzed olefin polymerization. Instead, we developed a second system, which consists of alkanes dispersed in perfluoroalkanes. In this case, we designed a new amphipolar polymeric emulsifier with fluorous and aliphatic side chains to stabilize the emulsions. Such heterogeneous mixtures facilitated the catalytic polymerization of ethylene or propylene to give spherical nanoparticles of high molecular weight polyolefins. These nonaqueous systems also allow for the combination of different polymerization techniques to obtain complex architectures such as core-shell structures. Previously, such structures primarily used vinylic monomers, which greatly limited the number of polymer combinations. We have demonstrated how nonaqueous emulsions allow the use of a broad variety of hydrolyzable monomers and sensitive catalysts to yield polyester, polyurethane, polyamide, conducting polymers, and polyolefin latex particles in one step under ambient reaction conditions. This nonpolar emulsion strategy dramatically increases the chemical palette of polymers that can form nanoparticles via emulsion polymerization.
NASA Astrophysics Data System (ADS)
Hu, Qingli; Wang, Chuan; Ou, Jinping
2010-04-01
Stiffness of asphalt concrete is very low, so ordinary FRP or steel packaged sensors are not suitable for measuring its strain accurately. In view of the problem, one innovative kind of optical fiber Bragg grating sensor packaged with polypropylene, a thermoplastic resin, was proposed in this article. Firstly, a conveniently assembled and dissembled steel die was designed and fabricated. Then, after characteristics study of polypropylene during heating and cooling repeatedly, the reliable grouting technique was formed. After this, real-time monitor of the entire sensor packaging process including die apartness was performed, and then, the sensor mechanics performance, the microscopic structure and other properties were studied thoroughly. Results of SEM indicate that interface of optical fiber and polypropylene is considerable tight. Measured strain during sensor making is reasonable. The FBG sensor was also embedded into a concrete column to measure its strain during continuously 7 day-long early-age solidification and compressive strain. Additionally, the FBG was also used to measure strain of asphalt concrete beam. Linearity and repeatability of the sensors are quit well and measured strains are quite believable. So, we can say that due to deformation compatibility between packaged material and FBG, FBG sensor and be measured material, especially low modulus of packaging materials, the strain of asphalt pavement can be monitored reliably by the sensor.
NASA Astrophysics Data System (ADS)
Starost, K.; Frijns, E.; Laer, J. V.; Faisal, N.; Egizabal, A.; Elizextea, C.; Nelissen, I.; Blazquez, M.; Njuguna, J.
2017-05-01
In this study, the effect on nanoparticle emissions due to drilling on Polypropylene (PP) reinforced with 20% talc, 5% montmorillonite (MMT) and 5% Wollastonite (WO) is investigated. The study is the first to explore the nanoparticle release from WO and talc reinforced composites and compares the results to previously researched MMT. With 5% WO, equivalent tensile properties with a 10 % weight reduction were obtained relative to the reference 20% talc sample. The materials were fabricated through injection moulding. The nanorelease studies were undertaken using the controlled drilling methodology for nanoparticle exposure assessment developed within the European Commission funded SIRENA Life 11 ENV/ES/506 project. Measurements were taken using CPC and DMS50 equipment for real-time characterization and measurements. The particle number concentration (of particles <1000nm) and particle size distribution (4.87nm - 562.34nm) of the particles emitted during drilling were evaluated to investigate the effect of the silicate fillers on the particles released. The nano-filled samples exhibited a 33% decrease (MMT sample) or a 30% increase (WO sample) on the average particle number concentration released in comparison to the neat polypropylene sample. The size distribution data displayed a substantial percentage of the particles released from the PP, PP/WO and PP/MMT samples to be between 5-20nm, whereas the PP/talc sample emitted larger particle diameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, Kenneth W., E-mail: kenneth.allen@gtri.gatech.edu; Scott, Mark M.; Reid, David R.
In this work, we present a new X-band waveguide (WR90) measurement method that permits the broadband characterization of the complex permittivity for low dielectric loss tangent material specimens with improved accuracy. An electrically long polypropylene specimen that partially fills the cross-section is inserted into the waveguide and the transmitted scattering parameter (S{sub 21}) is measured. The extraction method relies on computational electromagnetic simulations, coupled with a genetic algorithm, to match the experimental S{sub 21} measurement. The sensitivity of the technique to sample length was explored by simulating specimen lengths from 2.54 to 15.24 cm, in 2.54 cm increments. Analysis ofmore » our simulated data predicts the technique will have the sensitivity to measure loss tangent values on the order of 10{sup −3} for materials such as polymers with relatively low real permittivity values. The ability to accurately characterize low-loss dielectric material specimens of polypropylene is demonstrated experimentally. The method was validated by excellent agreement with a free-space focused-beam system measurement of a polypropylene sheet. This technique provides the material measurement community with the ability to accurately extract material properties of low-loss material specimen over the entire X-band range. This technique could easily be extended to other frequency bands.« less
Adsorption of Ten Microcystin Congeners to Common Laboratory-Ware Is Solvent and Surface Dependent
Altaner, Stefan; Puddick, Jonathan; Wood, Susanna A.; Dietrich, Daniel R.
2017-01-01
Cyanobacteria can produce heptapetides called microcystins (MC) which are harmful to humans due to their ability to inhibit cellular protein phosphatases. Quantitation of these toxins can be hampered by their adsorption to common laboratory-ware during sample processing and analysis. Because of their structural diversity (>100 congeners) and different physico-chemical properties, they vary in their adsorption to surfaces. In this study, the adsorption of ten different MC congeners (encompassing non-arginated to doubly-arginated congeners) to common laboratory-ware was assessed using different solvent combinations. Sample handling steps were mimicked with glass and polypropylene pipettes and vials with increasing methanol concentrations at two pH levels, before analysis by liquid chromatography-tandem mass spectrometry. We demonstrated that MC adsorb to polypropylene surfaces irrespective of pH. After eight successive pipet actions using polypropylene tips ca. 20% of the MC were lost to the surface material, which increased to 25%–40% when solutions were acidified. The observed loss was alleviated by changing the methanol (MeOH) concentration in the final solvent. The required MeOH concentration varied depending on which congener was present. Microcystins only adsorbed to glass pipettes (loss up to 30% after eight pipet actions) when in acidified aqueous solutions. The latter appeared largely dependent on the presence of ionizable groups, such as arginine residues. PMID:28383495
Gross, Jürgen H
2017-12-01
Basic poly(propylene glycols), commercially available under the trade name Jeffamine, are evaluated for their potential use as internal mass calibrants in matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry. Due to their basic amino endgroups Jeffamines are expected to deliver [M+H] + ions in higher yields than neutral poly(propylene glycols) or poly(ethylene glycols). Aiming at accurate mass measurements and molecular formula determinations by matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry, four Jeffamines (M-600, M-2005, D-400, D-230) were thus compared. As a result, Jeffamine M-2005 is introduced as a new mass calibrant for positive-ion matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry in the range of m/z 200-1200 and the reference mass list is provided. While Jeffamine M-2005 is compatible with α-cyano-4-hydroxycinnamic acid, 2,5-dihydroxybenzoic acid, and 2-[(2 E)-3-(4- tert-butylphenyl)-2-methylprop-2-enylidene]malonitrile matrix, its use in combination with 2-[(2 E)-3-(4- tert-butylphenyl)-2-methylprop-2-enylidene]malonitrile provides best results due to low laser fluence requirements. Applications to PEG 300, PEG 600, the ionic liquid trihexyl(tetradecyl)-phosphonium tris(pentafluoroethyl)-trifluorophosphate, and [60]fullerene demonstrate mass accuracies of 2-5 ppm.
Nishida, Yoshihiro; Tsukushi, Satoshi; Urakawa, Hiroshi; Toriyama, Kazuhiro; Kamei, Yuzuru; Yokoi, Kohei; Ishiguro, Naoki
2015-12-01
Sternal resection is occasionally required for patients with malignant tumors, particularly sarcomas, in the sternal region. Few reports have described post-operative respiratory and shoulder function after sternal resection for patients with bone and soft-tissue sarcomas. Eight consecutive patients with bone and soft tissue sarcomas requiring sternal resection were the focus of this study. Chest wall was reconstructed with a non-rigid or semi-rigid prosthesis combined, in most cases, with soft tissue flap reconstruction. Clinical outcomes investigated included complications, shoulder function, evaluated with Musculoskeletal Tumor Society-International Symposium of Limb Salvage system, and respiratory function, evaluated by use of spirometry. The anterior chest wall was reconstructed with non-rigid strings for 3 patients and with polypropylene mesh for 5. There were no severe post-operative complications, for example surgical site infection or pneumonia. All 3 patients with non-rigid reconstruction experienced paradoxical breathing, whereas none with polypropylene mesh did so. Post-operatively, FEV(1)% was unchanged but %VC was significantly reduced (p = 0.01), irrespective of the reconstruction method used (strings or polypropylene mesh). Shoulder function was not impaired. Among patients undergoing sternal resection, post-operative shoulder function was excellent. Pulmonary function was slightly restricted, but not sufficiently so to interfere with the activities of daily living (ADL). Paradoxical breathing is a slight concern for non-rigid reconstruction.
Interfacial properties of aluminum/glass-fiberreinforced polypropylene sandwich composites
NASA Astrophysics Data System (ADS)
Baştürk, S. B.; Guruşçu, A.; Tanoğlu, M.
2013-07-01
Aluminum/glass-fiber-reinforced polypropylene (Al/GFPP) laminates were manufactured by using various surface pretreatment techniques. Adhesion at the composite/metal interface was achieved by a surface pretreatment of Al sheets with amino-based silane coupling agents, incorporation of a polyolefin-based adhesive film and modification with a PP-based film containing 20 wt.% of maleic-anhydride-modified polypropylene (PP-g-MA). In order to increase the effect of bonding between components of the laminates, the combination of silane treatment and the addition of the PP-based film was also investigated. The mechanical properties (shear, peel, and bending strengths) of adhesively bonded Al/GFPP laminates were examined to evaluate the effects of the surface treatments mentioned. It was revealed that the adhesion in the laminated Al/GFPP systems could be improved by the treatment of aluminum surface with an amino-based silane coupling agent. Judging from the results of peel and bending strength, with incorporation of polyolefin-based films, adhesion in the Al/GFPP laminates increased significantly. The modification of Al/GFPP interfaces with a PP-g-MA/PP layer led to the highest improvement in their adhesion properties. The combination of surface modification with silane and addition of PP-based films did not yield the high bending strength desired. This may be due to the insufficient bonding between silane groups and PP-based films.
A study on polypropylene encapsulation and solidification of textile sludge.
Kumari, V Krishna; Kanmani, S
2011-10-01
The textile sludge is an inevitable solid waste from the textile wastewater process and is categorised under toxic substances by statutory authorities. In this study, an attempt has been made to encapsulate and solidify heavy metals and dyes present in textile sludge using polypropylene and Portland cement. Sludge samples (2 Nos.) were characterized for pH (8.5, 9.5), moisture content (1.5%, 1.96%) and chlorides (245mg/L, 425.4mg/L). Sludge samples were encapsulated into polypropylene with calcium carbonate (additive) and solidified with cement at four different proportions (20, 30, 40, 50%) of sludge. Encapsulated and solidified cubes were made and then tested for compressive strength. Maximum compressive strength of cubes (size, 7.06cm) containing sludge (50%) for encapsulation (16.72 N/mm2) and solidification (18.84 N/mm2) was more than that of standard M15 mortar cubes. The leachability of copper, nickel and chromium has been effectively reduced from 0.58 mg/L, 0.53 mg/L and 0.07 mg/L to 0.28mg/L, 0.26mg/L and BDL respectively in encapsulated products and to 0.24mg/L, BDL and BDL respectively in solidified products. This study has shown that the solidification process is slightly more effective than encapsulation process. Both the products were recommended for use in the construction of non-load bearing walls.
Ultrasonic cleaning of conveyor belt materials using Listeria monocytogenes as a model organism.
Tolvanén, Riina; Lunden, Janne; Korkeala, Hannu; Wirtanen, Gun
2007-03-01
Persistent Listeria monocytogenes contamination of food industry equipment is a difficult problem to solve. Ultrasonic cleaning offers new possibilities for cleaning conveyors and other equipment that are not easy to clean. Ultrasonic cleaning was tested on three conveyor belt materials: polypropylene, acetal, and stainless steel (cold-rolled, AISI 304). Cleaning efficiency was tested at two temperatures (30 and 45 degrees C) and two cleaning times (30 and 60 s) with two cleaning detergents (KOH, and NaOH combined with KOH). Conveyor belt materials were soiled with milk-based soil and L. monocytogenes strains V1, V3, and B9, and then incubated for 72 h to attach bacteria to surfaces. Ultrasonic cleaning treatments reduced L. monocytogenes counts on stainless steel 4.61 to 5.90 log units; on acetal, 3.37 to 5.55 log units; and on polypropylene, 2.31 to 4.40 log units. The logarithmic reduction differences were statistically analyzed by analysis of variance using Statistical Package for the Social Sciences software. The logarithmic reduction was significantly greater in stainless steel than in plastic materials (P < 0.001 for polypropylene, P = 0.023 for acetal). Higher temperatures enhanced the cleaning efficiency in tested materials. No significant difference occurred between cleaning times. The logarithmic reduction was significantly higher (P = 0.013) in cleaning treatments with potassium hydroxide detergent. In this study, ultrasonic cleaning was efficient for cleaning conveyor belt materials.
Thilagavathi, G; Praba Karan, C; Das, Dipayan
2018-08-01
This work reports on a series of thermally-bonded, hybrid and oil-sorbent nonwovens developed from binary and tertiary mixing of cotton, kapok, and three varieties of milkweed fibers (Asclepias Syriaca, Calotropis Procera and Calotropis Gigantea) and polypropylene fibers. The physical and chemical properties of the fibers were investigated to examine their oleophilic character. It was observed that all the fiber surfaces were covered with natural wax. Further, kapok and milkweed fibers were found to have less cell wall thickness and high void ratio. Oil sorption and retention characteristics of these fibers were studied in loose fibrous form as well as in structured assembly form (thermally-bonded nonwovens) using high density oil and diesel oil. The effects of fiber diameter, fiber cross-sectional shape, fiber surface area and porosity on the oil sorption behavior were discussed. An excellent and a selective oil sorption behavior of milkweed fibers (Calotropis Procera and Calotropis Gigantea) blended with cotton and polypropylene fibers were observed. The maximum oil sorption capacity of the developed thermal bonded nonwoven was 40.16 g/g for high density (HD) oil and 23.00 g/g for diesel oil. Further, a high porosity combined with high surface area played a major role in deciding the oil sorption and retention characteristics. Copyright © 2018 Elsevier Ltd. All rights reserved.
40 CFR 52.1670 - Identification of plans.
Code of Federal Regulations, 2010 CFR
2010-07-01
... provides for adequate State legal authority to ensure for public availability of air pollutant emission..., and April 3, 1987, concerning the manufacture of high-density polyethylene, polypropylene, and...
Study of EPDM/PP polymeric blends: mechanical behavior and effects of compatibilization
NASA Astrophysics Data System (ADS)
Bouchart, Vanessa; Bhatnagar, N.; Brieu, Mathias; Ghosh, A. K.; Kondo, Djimedo
2008-09-01
A blend of Ethylene Propylene Diene Monomer (EPDM) rubber reinforced by polypropylene (PP) particles has been processed and its hyperelastic behavior has been characterized under cyclic uni-axial tensile tests. The experimental results show a significant effect of the fraction of polypropylene particles (10%, 25% and 30% by weight). Moreover, from another series of tests conducted on materials containing compatibilizers at different mass concentration, it is observed that the introduction of a compatibilizer increases the rigidity of the blends and affects notably their macroscopic behavior. These observations are interpreted as a consequence of the modification at microlevel of adherence between particles and matrix phases. The use of a nonlinear micromechanical model allows us to confirm this interpretation. To cite this article: V. Bouchart et al., C. R. Mecanique 336 (2008).
Statoil-Himont outlines Antwerp operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-05-04
Norway's Den morske Stats Oljeselskap AS, the North Sea's largest oil producer, and Himont Inc., the world's largest producer of polypropylene, believe their joint venture complex near Antwerp has changed the traditional structure of the petrochemical industry. At a briefing and press conference, executives from the two companies and their new joint venture, North Sea Petrochemicals, covered their venture and its first 2 months of operation and presented their outlook for the polypropylene market. Statoil stressed its intent to expand petrochemical operations in Europe. The company supplies the complex with all the propane feed and refinery grade propylene its uses.more » The propane comes from Statoil's offshore production, the imported refinery grade propylene from Statoil's Mongstad, Norway, refinery. This paper describes the propylene production process used in Antwerp.« less
Fabrication of Graphene Oxide/Polypropylene Nanocomposites and Their Electrical Conductivity Study
NASA Astrophysics Data System (ADS)
Dong, Jinyong
2011-03-01
Graphene oxide (GO) /polypropylene nanocomposites were fabricated via in situ polymerizing propylene monomer over a GO that had been treated with a Grignard reagent and TiCl 4 successively when GO was not only catalytically activated but also largely reduced to an almost O- free state. The polymerization led to the in situ formation of the PP matrix, which was synchronized by the nanoscale exfoliation of the reduced GO as well as its gradual dispersion. Morphological examination of the ultimate GO/PP nanocomposites by TEM and SEM techniques revealed effective dispersion in nanoscale of GO in PP matrix. High electrical conductivity was discovered with thus prepared GO/PP nanocomposites, e.g. at a GO loading of 4.9 wt%, σc was measured at 0.3 S . m -1
Combating oil spill problem using plastic waste.
Saleem, Junaid; Ning, Chao; Barford, John; McKay, Gordon
2015-10-01
Thermoplastic polymers (such as polypropylene, polyethylene, polyethylene terephthalate (PET) and high density polyethylene (HDPE)) constitute 5-15% of municipal solid waste produced across the world. A huge quantity of plastic waste is disposed of each year and is mostly either discarded in landfills or incinerated. On the other hand, the usage of synthetic polymers as oil sorbents, in particular, polyolefins, including polypropylene (PP), and polyethylene (PE) are the most commonly used oil sorbent materials mainly due to their low cost. However, they possess relatively low oil absorption capacities. In this work, we provide an innovative way to produce a value-added product such as oil-sorbent film with high practical oil uptake values in terms of g/g from waste HDPE bottles for rapid oil spill remedy. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Treatment of postoperative abdominal hernias with polypropylene endoprosthesis].
Chakhvadze, B Iu; Nakashidze, D Kh
2009-06-01
The results of the surgical treatment of 82 patients with postoperative abdominal hernias were analysed. All of the patients underwent surgery with polypropylene endoprosthesis. The choice of a hernioplasty method depended on relative volume of postoperative hernia. Middle-sized hernias were indications for reconstructive surgery (complete adaptation of muscular and aponeurotic layers was maintained). The large and gigantic hernias were indications for correcting surgery (specified diastasis of muscular and aponeurotic layers was maintained). In case of lacking of peritoneum (30 patients) greater omentum was used for isolation of the net from intestinal loops. It is concluded that greater omentum provides good extraperitonisation of transplant from intestinal loop and prevents complications due to contact of net with abdominal organs. Postoperative complications mainly were local and seen in 29% cases. There were no lethal outcomes.
NASA Astrophysics Data System (ADS)
Manas, David; Manas, Miroslav; Gajzlerova, Lenka; Ovsik, Martin; Kratky, Petr; Senkerik, Vojtěch; Skrobak, Adam; Danek, Michal; Manas, Martin
2015-09-01
The influence of beta radiation on the changes in the structure and selected properties (mechanical and thermal) was proved. Using low doses of beta radiation for 25% glass fiber filled polypropylene and its influence on the changes of micromechanical properties of surface layer has not been studied in detail so far. The specimens of 25% glass fiber filled PP were made by injection molding technology and irradiated by low doses of beta radiation (0, 15 and 33 kGy). The changes in the microstructure and micromechanical properties of surface layer were evaluated using FTIR, SEM, WAXS and instrumented microhardness test. The results of the measurements showed considerable increase in micromechanical properties (indentation hardness, indentation elastic modulus) when low doses of beta radiation are used.
Roles of Poly(propylene Glycol) During Solvent-Based Lamination of Ceramic Green Tapes
NASA Technical Reports Server (NTRS)
Suppakarn, Nitinat; Ishida, Hatsuo; Cawley, James D.; Levine, Stanley R. (Technical Monitor)
2000-01-01
Solvent lamination for alumina green tapes is readily accomplished using a mixture of ethanol, toluene and poly(propylene glycol). After lamination, the PPG is clearly present as a discrete film at the interface between the laminated tapes. This condition, however, does not generate delamination during firing. Systematic sets of experiments are undertaken to determine the role of PPG in the lamination process and, specifically, the mechanism by which it is redistributed during subsequent processing. PPG slowly diffuses through the organic binder film at room temperature. The PPG diffusion rapidly increases as temperature is increased to 80 C. The key to the efficiency of adhesives during green-tape lamination is mutual solubility of the nonvolatile component of the glue and the base polymeric binder.
Kiran Ciliz, Nilgun; Ekinci, Ekrem; Snape, Colin E
2004-01-01
A comparison of waste and virgin polypropylene (PP) plastics under slow pyrolysis conditions is presented. Moreover, mixtures of waste PP with wastes of polyethylene (PE) and polystyrene (PS) were pyrolyzed under the same operating conditions. Not only the impact of waste on degradation products but also impacts of the variations in the mixing ratio were investigated. The thermogravimetric weight loss curves and their derivatives of virgin and waste PP showed differences due to the impurities which are dirt and food residues. The liquid yield distribution concerning the aliphatic, mono-aromatic and poly-aromatic compounds varies as the ratio of PP waste increases in the waste plastic mixtures. In addition to this, the alkene/alkane ratio of gas products shows variations depending on the mixing ratio of wastes.
NASA Astrophysics Data System (ADS)
Kravets, L. I.; Elinson, V. M.; Ibragimov, R. G.; Mitu, B.; Dinescu, G.
2018-02-01
The surface and electrochemical properties of polypropylene track-etched membrane treated by plasma of nitrogen, air and oxygen are studied. The effect of the plasma-forming gas composition on the surface morphology is considered. It has been found that the micro-relief of the membrane surface formed under the gas-discharge etching, changes. Moreover, the effect of the non-polymerizing gas plasma leads to formation of oxygen-containing functional groups, mostly carbonyl and carboxyl. It is shown that due to the formation of polar groups on the surface and its higher roughness, the wettability of the plasma-modified membranes improves. In addition, the presence of polar groups on the membrane surface layer modifies its electrochemical properties so that conductivity of plasma-treated membranes increase.
Reno, Frederick E; Edwards, C Nicholas; Bendix Jensen, Morten; Török-Bathó, Magdolna; Esdaile, David J; Piché, Claude; Triest, Myriam; Carballo, Dolorès
2016-09-01
The intranasal route is a promising route of administration for several emergency rescue drugs including naloxone and glucagon. Glucagon nasal powder (GNP) is a novel, needle-free delivery system for intranasal administration of glucagon for the treatment of severe hypoglycemia, an infrequent but serious complication of insulin use in patients with diabetes. The GNP delivery device is a compact, highly portable, single-use nasal powder dosing device constructed of polypropylene that allows for simple, single-step administration. To evaluate the toxicological profile of the polypropylene resin used in the actuator part of the delivery device that will contact skin and nasal mucosal membranes of the patient, we performed an in vitro cytotoxicity study, a skin sensitization study and an irritation (intracutaneous reactivity) study in animal models. Extracts of the actuator of the GNP device were generated from HAM F12 medium with 10% fetal bovine serum, 0.9% sodium chloride (NaCl) or sesame oil. The in vitro cytotoxicity test was performed in cultured L929 mouse fibroblasts. Skin sensitization analysis was performed in 10 guinea pigs according to the Magnusson-Kligman method, using a maximization method with Freund's Complete Adjuvant. Irritation following intracutaneous/intradermal treatment with device extracts (NaCl and sesame oil extractants) was assessed in three New Zealand White rabbits. In vitro cytotoxicity test: Both undiluted and diluted extract showed no toxicity (i.e. no abnormal morphology, cell death or cell lysis) toward L929 fibroblasts (cytotoxicity grade 0). Sensitization test in guinea pigs: Challenge with device extracts did not evoke positive responses in test animals previously induced with device extracts. The net response value represented an incidence rate of 0% and a net dermal irritation score value of 0.00. Irritation (intracutaneous/intradermal) test in New Zealand White rabbits: Device extracts and corresponding vehicle controls caused similar irritation reactions. The difference between the mean scores for the device extracts and the corresponding vehicle controls was less than 1.0. Extracts of the polypropylene resin of the GNP delivery device are not cytotoxic, do not result in dermal sensitization and do not cause irritation when applied topically or intracutaneously. Given the infrequent use and very short duration of exposure to the nasal mucosa during administration of GNP, the polypropylene resin of the GNP device actuator will likely not cause adverse dermal sensitization effects or irritation effects in humans and can, therefore, be considered for use as a delivery device in clinical trials assessing the efficacy and safety of GNP for the treatment of insulin-using patients experiencing episodes of severe hypoglycemia.