Sample records for metallographic quality control

  1. Quality evaluation and control of end cap welds in PHWR fuel elements by ultrasonic examination

    NASA Astrophysics Data System (ADS)

    Choi, M. S.; Yang, M. S.

    1991-02-01

    The current quality control procedure of nuclear fuel end cap weld is mainly dependent on the destructive metallographic examination. A nondestructive examination technique, i.e., ultrasonic examination, has been developed to identify and evaluate weld discontinuities. A few interesting results of the weld quality evaluation by applying the developed ultrasonic examination technique to PHWR fuel welds are presented. In addition, the feasibility of the weld quality control by the ultrasonic examination is discussed. This study shows that the ultrasonic examination is effective and reliable method for detecting abnormal weld contours and weld discontinuities such as micro-fissure, crack, upset split and expulsion, and can be used as a quality control tool for the end cap welding process.

  2. Algorithm based on regional separation for automatic grain boundary extraction using improved mean shift method

    NASA Astrophysics Data System (ADS)

    Zhenying, Xu; Jiandong, Zhu; Qi, Zhang; Yamba, Philip

    2018-06-01

    Metallographic microscopy shows that the vast majority of metal materials are composed of many small grains; the grain size of a metal is important for determining the tensile strength, toughness, plasticity, and other mechanical properties. In order to quantitatively evaluate grain size in metals, grain boundaries must be identified in metallographic images. Based on the phenomenon of grain boundary blurring or disconnection in metallographic images, this study develops an algorithm based on regional separation for automatically extracting grain boundaries by an improved mean shift method. Experimental observation shows that the grain boundaries obtained by the proposed algorithm are highly complete and accurate. This research has practical value because the proposed algorithm is suitable for grain boundary extraction from most metallographic images.

  3. Metallographic structure and hardness of titanium orthodontic brackets.

    PubMed

    Zinelis, Spiros; Annousaki, Olga; Eliades, Theodore; Makou, Margarita

    2003-11-01

    To determine the elemental composition, microstructure, and hardness of two different brands of titanium (Ti) orthodontic brackets. Four specimens of each brand were embedded in epoxy resin and, after metallographic grinding and polishing, were studied under a metallographic microscope. The bonding base morphology of each bracket was studied in as-received brackets by scanning electron microscopy. Energy dispersive x-ray microanalysis (EDS) was used on polished specimens to assess the elemental composition of base and wing bracket components, and the brackets were subjected to metallographic etching to reveal the metallurgical structure. The same specimen surfaces were used for assessment of the Vickers hardness. The results were statistically analyzed by two-way analysis of variance (ANOVA) with the bracket brand and bracket region (base, wing) serving as discriminating variables, whilst further group differences were investigated with Tukey's multiple comparison test at the alpha = 0.05 level of significance. Metallographic imaging revealed that the Orthos2 brackets (Ormco, Glendora, CA, USA) consist of two parts joined together by laser welding, with large gaps along the base wing interface, whereas Rematitan brackets (Dentaurum, Ispringen, Germany) are single-piece appliances. Ti was the only element identified in Rematitan and Orthos2 base materials, while aluminium (Al) and vanadium (V) were also found in the Orthos2 wing component. Metallographic analysis showed the presence of a + b phase for Orthos2 and plate-like grains for Rematitan. The results of the Vickers hardness testing were: Orthos2 (wing): 371 +/- 22, Rematitan (wing): 272 +/- 4, Rematitan (base): 271 +/- 16, Orthos2 (base): 165 +/- 2. The findings of the present study suggest that there are significant differences in composition, microstructure and hardness between the two commercial types of Ti brackets tested; the clinical implications of the findings are discussed.

  4. Ultrasonic Spectroscopy of Stainless Steel Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Cosgriff, Laura M.; Lerch, Bradley A.; Hebsur, Mohan G.; Baaklini, George Y.; Ghosn, Louis J.

    2003-01-01

    Enhanced, lightweight material systems, such as 17-4PH stainless steel sandwich panels are being developed for use as fan blades and fan containment material systems for next generation engines. In order to improve the production for these systems, nondestructive evaluation (NDE) techniques, such as ultrasonic spectroscopy, are being utilized to evaluate the brazing quality between the 17-4PH stainless steel face plates and the 17-4PH stainless steel foam core. Based on NDE data, shear tests are performed on sections representing various levels of brazing quality from an initial batch of these sandwich structures. Metallographic characterization of brazing is done to corroborate NDE findings and the observed shear failure mechanisms.

  5. Laser Surface Modification of H13 Die Steel using Different Laser Spot Sizes

    NASA Astrophysics Data System (ADS)

    Aqida, S. N.; Naher, S.; Brabazon, D.

    2011-05-01

    This paper presents a laser surface modification process of AISI H13 tool steel using three sizes of laser spot with an aim to achieve reduced grain size and surface roughness. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). Metallographic study and image analysis were done to measure the grain size and the modified surface roughness was measured using two-dimensional surface profilometer. From metallographic study, the smallest grain sizes measured by laser modified surface were between 0.51 μm and 2.54 μm. The minimum surface roughness, Ra, recorded was 3.0 μm. This surface roughness of the modified die steel is similar to the surface quality of cast products. The grain size correlation with hardness followed the findings correlate with Hall-Petch relationship. The potential found for increase in surface hardness represents an important method to sustain tooling life.

  6. Fluorescence microscopy for the characterization of structural integrity

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W.; Leonhardt, Todd A.

    1991-01-01

    The absorption characteristics of light and the optical technique of fluorescence microscopy for enhancing metallographic interpretation are presented. Characterization of thermally sprayed coatings by optical microscopy suffers because of the tendency for misidentification of the microstructure produced by metallographic preparation. Gray scale, in bright field microscopy, is frequently the only means of differentiating the actual structural details of porosity, cracking, and debonding of coatings. Fluorescence microscopy is a technique that helps to distinguish the artifacts of metallographic preparation (pullout, cracking, debonding) from the microstructure of the specimen by color contrasting structural differences. Alternative instrumentation and the use of other dye systems are also discussed. The combination of epoxy vacuum infiltration with fluorescence microscopy to verify microstructural defects is an effective means to characterize advanced materials and to assess structural integrity.

  7. High Power Laser Welding. [of stainless steel and titanium alloy structures

    NASA Technical Reports Server (NTRS)

    Banas, C. M.

    1972-01-01

    A review of recent developments in high power, carbon dixoide laser welding is presented. Deep penetration welding in stainless steel to 0.5-in. thick, high speed welding in thin gage rimmed steel and gas shielded welding in Ti-6Al-4V alloy are described. The effects of laser power, power density, focusing optics, gas-shielding techniques, material properties and weld speed on weld quality and penetration are discussed. It is shown that laser welding performance in thin materials is comparable to that of electron beams. It is further shown that high quality welds, as evidenced by NDT, mechanical and metal-lographic tests, can be achieved. The potential of the laser for industrial welding applications is indicated.

  8. High-power Laser Welding of Thick Steel-aluminum Dissimilar Joints

    NASA Astrophysics Data System (ADS)

    Lahdo, Rabi; Springer, André; Pfeifer, Ronny; Kaierle, Stefan; Overmeyer, Ludger

    According to the Intergovernmental Panel on Climate Change (IPCC), a worldwide reduction of CO2-emissions is indispensable to avoid global warming. Besides the automotive sector, lightweight construction is also of high interest for the maritime industry in order to minimize CO2-emissions. Using aluminum, the weight of ships can be reduced, ensuring lower fuel consumption. Therefore, hybrid joints of steel and aluminum are of great interest to the maritime industry. In order to provide an efficient lap joining process, high-power laser welding of thick steel plates (S355, t = 5 mm) and aluminum plates (EN AW-6082, t = 8 mm) is investigated. As the weld seam quality greatly depends on the amount of intermetallic phases within the joint, optimized process parameters and control are crucial. Using high-power laser welding, a tensile strength of 10 kN was achieved. Based on metallographic analysis, hardness tests, and tensile tests the potential of this joining method is presented.

  9. Penecontemporaneous metamorphism, fragmentation, and reassembly of ordinary chondrite parent bodies

    NASA Technical Reports Server (NTRS)

    Grimm, R. E.

    1985-01-01

    The thermal histories of ordinary chondrites and the canonical internal heating or onion shell models, which predict an inverse relation between the petrologic type of chondrites and the metallographic cooling rate, are reviewed. The thermal and accretional requirements of the 'metamorphosed planetesimal' model proposed by Scott and Rajan (1981) are analyzed, and an alternative model consistent with the metallographic cooling rate constraints is suggested in which ordinary chondrite parent bodies are collisionally fragmented and then rapidly reassembled before metamorphic heat has been dissipated.

  10. Characterization of an Indian sword: classic and noninvasive methods of investigation in comparison

    NASA Astrophysics Data System (ADS)

    Barzagli, E.; Grazzi, F.; Williams, A.; Edge, D.; Scherillo, A.; Kelleher, J.; Zoppi, M.

    2015-04-01

    The evolution of metallurgy in history is one of the most interesting topics in Archaeometry. The production of steel and its forging methods to make tools and weapons are topics of great interest in the field of the history of metallurgy. In the production of weapons, we find almost always the highest level of technology. These were generally produced by skilled craftsmen who used the best quality materials available. Indian swords are an outstanding example in this field and one of the most interesting classes of objects for the study of the evolution of metallurgy. This work presents the study of a Shamsheer (a sword with a curved blade with single edge) made available by the Wallace Collection in London. The purpose of this study was to determine the composition, the microstructure, the level and the direction of residual strain and their distribution in the blade. We have used two different approaches: the classical one (metallography) and a nondestructive technique (neutron diffraction): In this way, we can test differences and complementarities of these two techniques. To obtain a good characterization of artifacts studied by traditional analytical methods, an invasive approach is required. However, the most ancient objects are scarce in number, and the most interesting ones are usually in an excellent state of conservation, so it is unthinkable to apply techniques with a destructive approach. The analysis of blades that has been performed by metallographic microscopy has demonstrated the specificity of the production of this type of steel. However, metallographic analysis can give only limited information about the structural characteristics of these artifacts of high quality, and it is limited to the sampled areas. The best approach for nondestructive analysis is therefore to use neutron techniques.

  11. Metallographic Methods. Polishing Procedure for Metallographic Examination of Cemented Carbides

    DTIC Science & Technology

    1949-01-31

    were flnatlv oolished oj) i ool1 sh- in’? fllak covered with the finpst erote of brondrloth, Wühler "Spl^rt" 156!! ».T<,, or Fisher ’"Xivl...not-sslxim fprrlcv nidr. In thp ohotomicrogr"ohs, Fi-ra. 3, 6, 9, 12, 15, 18 , 21 "nd.2lj, " tvpic"! tunestpn crbide ^r".in is lndic"tpd...b Pig. 18 . Btehed. X1500. Fairly larg« tun««ten oarblda (1), Solid solution phass (2), cobalt binder (whita). Etchant-Hot alkaline

  12. Metallographic and fractographic observations of posttest creep-fatigue specimens of weld-deposited Type 308 CRE stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, M. W.

    Type 308 CRE stainless steel weld specimens were subjected to metallographic and fractographic analysis after failure in elevated-temperature (593/sup 0/C) creep-fatigue tests. The failure mode for specimens tested under continuous-cycle fatigue conditions was predominantly transgranular. When the test cycle was modified to include a hold time at the maximum tensile strain, the failure mode became predominantly interphase. Sigma phase was observed within the delta-ferrite regions in the weld. However, the presence of sigma phase did not appear to affect the failure mode.

  13. Metallographic techniques for evaluation of thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Brindley, William J.; Leonhardt, Todd A.

    1990-01-01

    The performance of ceramic thermal barrier coatings is strongly dependent on the amount and shape of the porosity in the coating. Current metallographic techniques do not provide polished surfaces that are adequate for a repeatable interpretation of the coating structures. A technique recently developed at NASA-Lewis for preparation of thermal barrier coating sections combines epoxy impregnation, careful sectioning and polishing, and interference layering to provide previously unobtainable information on processing-induced porosity. In fact, increased contrast and less ambiguous structure developed by the method make automatic quantitative metallography a viable option for characterizing thermal barrier coating structures.

  14. Restoration of Worn Movable Bridge Props with Use of Bronze Claddings.

    PubMed

    Viňáš, Ján; Vrabeľ, Marek; Greš, Miroslav; Brezina, Jakub; Sabadka, Dušan; Fedorko, Gabriel; Molnár, Vieroslav

    2018-03-21

    This article examined the possibility of using CuSn6P claddings in sliding bearing renovation of movable pontoon bridge props. The bronze layer was welded on cylinders of the high-strength steel S355J0WP EN 10155-93, in an inert atmosphere using an automated welding method (gas tungsten arc welding). Pulsed arc welding was used to minimize the effects of heat on the cladding area, while also accounting for the differences in the physical properties of the joined metals. The sliding bearing was created in two layers. The quality of the cladding layer was evaluated by nondestructive and/or destructive tests. The quality of the surface was assessed by visual inspection (visual testing) in accordance with the EN ISO 17637 standard. The quality of the claddings was evaluated by metallographic analysis, performed using light microscopy. The microhardness values of a few weld areas were determined by Vickers tests, performed according to the EN ISO 9015-2 standard. The analyses confirmed that the welding parameters and filler material used resulted in high-quality weld joints with no internal (subsurface) or metallurgical defects.

  15. Restoration of Worn Movable Bridge Props with Use of Bronze Claddings

    PubMed Central

    Viňáš, Ján; Vrabeľ, Marek; Greš, Miroslav; Brezina, Jakub; Sabadka, Dušan; Fedorko, Gabriel

    2018-01-01

    This article examined the possibility of using CuSn6P claddings in sliding bearing renovation of movable pontoon bridge props. The bronze layer was welded on cylinders of the high-strength steel S355J0WP EN 10155-93, in an inert atmosphere using an automated welding method (gas tungsten arc welding). Pulsed arc welding was used to minimize the effects of heat on the cladding area, while also accounting for the differences in the physical properties of the joined metals. The sliding bearing was created in two layers. The quality of the cladding layer was evaluated by nondestructive and/or destructive tests. The quality of the surface was assessed by visual inspection (visual testing) in accordance with the EN ISO 17637 standard. The quality of the claddings was evaluated by metallographic analysis, performed using light microscopy. The microhardness values of a few weld areas were determined by Vickers tests, performed according to the EN ISO 9015–2 standard. The analyses confirmed that the welding parameters and filler material used resulted in high-quality weld joints with no internal (subsurface) or metallurgical defects. PMID:29561762

  16. Fiber laser welding of nickel based superalloy Inconel 625

    NASA Astrophysics Data System (ADS)

    Janicki, Damian M.

    2013-01-01

    The paper describes the application of single mode high power fiber laser (HPFL) for the welding of nickel based superalloy Inconel 625. Butt joints of Inconel 625 sheets 0,8 mm thick were laser welded without an additional material. The influence of laser welding parameters on weld quality and mechanical properties of test joints was studied. The quality and mechanical properties of the joints were determined by means of tensile and bending tests, and micro hardness tests, and also metallographic examinations. The results showed that a proper selection of laser welding parameters provides non-porous, fully-penetrated welds with the aspect ratio up to 2.0. The minimum heat input required to achieve full penetration butt welded joints with no defect was found to be 6 J/mm. The yield strength and ultimate tensile strength of the joints are essentially equivalent to that for the base material.

  17. Stress-rupture strength and microstructural stability of tungsten-hafnium-carbon-wire reinforced superalloy composites

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.; Signorelli, R. A.

    1974-01-01

    Tungsten-hafnium-carbon - superalloy composites were found to be potentially useful for turbine blade applications on the basis of stress-rupture strength. The 100- and 1000-hr rupture strengths calculated for 70 vol. % fiber composites based on test data at 1090C (2000F) were 420 and 280 MN/m2 (61,000 and 41,000 psi, respectively). The investigation indicated that, with better quality fibers, composites having 100- and 1000-hr rupture strengths of 570 and 370 MN/m2 (82,000 and 54,000 psi, respectively), may be obtained. Metallographic studies indicated sufficient fiber-matrix compatibility for 1000 hr or more at 1090C (2000F).

  18. Preliminary metallographic studies of ball fatigue under rolling-contact conditions

    NASA Technical Reports Server (NTRS)

    Bear, H Robert; Butler, Robert H

    1957-01-01

    The metallurgical results produced on balls tested in the rolling-contact fatigue spin rig were studied by metallographic examination. Origin and progression of fatigue failures were observed. These evaluations were made on SAE 52100 and AISI M-1 balls fatigue tested at room temperature (80 F) and 200 to 250 F. Most failures originated subsurface in shear; inclusions, structure changes, and directionalism adversely affected ball fatigue life. Structures in the maximum-shear-stress region of the balls of both materials were stable at room temperature and unstable at 200 to 250 F. Failures were of the same type as those found in full-scale bearings.

  19. Cu-Zn binary phase diagram and diffusion couples

    NASA Technical Reports Server (NTRS)

    Mccoy, Robert A.

    1992-01-01

    The objectives of this paper are to learn: (1) what information a binary phase diagram can yield; (2) how to construct and heat treat a simple diffusion couple; (3) how to prepare a metallographic sample; (4) how to operate a metallograph; (5) how to correlate phases found in the diffusion couple with phases predicted by the phase diagram; (6) how diffusion couples held at various temperatures could be used to construct a phase diagram; (7) the relation between the thickness of an intermetallic phase layer and the diffusion time; and (8) the effect of one species of atoms diffusing faster than another species in a diffusion couple.

  20. Solidification in direct metal deposition by LENS processing

    NASA Astrophysics Data System (ADS)

    Hofmeister, William; Griffith, Michelle

    2001-09-01

    Thermal imaging and metallographic analysis were used to study Laser Engineered Net Shaping (LENS™) processing of 316 stainless steel and H13 tool steel. The cooling rates at the solid-liquid interface were measured over a range of conduction conditions. The length scale of the molten zone controls cooling rates during solidification in direct metal deposition. In LENS processing, the molten zone ranges from 0.5 mm in length to 1.5 mm, resulting in cooling rates at the solid-liquid interface ranging from 200 6,000 Ks-1.

  1. Inclusions and Substructures in Uranium of Nuclear Purity. Report No. 51; INCLUSIONES Y SUBESTRUCTURAS EN URANIO DE PUREZA NUCLEAR. INFORME NO. 51

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biloni, H.; Lindenvald, N.; Sabato, J.A.

    1961-01-01

    The inclusions in uranium of nuclear purity (UC, UH/sub 3/, UO/sub 2/, UO, UN, and the complexes which include the intersolubility of U with C and N or with C, N, and O) were . analyzed metallographically, and the results reported by other authors were discussed critically. The existence of the fine precipitate reticular substructure, sensitive to thermal treatments, which generally appears in uraniunn was analyzed. Its origins were discussed in accordance with bibliographic data. Complementary data for its comprehension are given from the metallographic analysis of U--Al and U-- Fe alloys with low Al and Fe concentrations. (tr-auth)

  2. Fault Analysis on Bevel Gear Teeth Surface Damage of Aeroengine

    NASA Astrophysics Data System (ADS)

    Cheng, Li; Chen, Lishun; Li, Silu; Liang, Tao

    2017-12-01

    Aiming at the trouble phenomenon for bevel gear teeth surface damage of Aero-engine, Fault Tree of bevel gear teeth surface damage was drawing by logical relations, the possible cause of trouble was analyzed, scanning electron-microscope, energy spectrum analysis, Metallographic examination, hardness measurement and other analysis means were adopted to investigate the spall gear tooth. The results showed that Material composition, Metallographic structure, Micro-hardness, Carburization depth of the fault bevel gear accord with technical requirements. Contact fatigue spall defect caused bevel gear teeth surface damage. The small magnitude of Interference of accessory gearbox install hole and driving bevel gear bearing seat was mainly caused. Improved measures were proposed, after proof, Thermoelement measures are effective.

  3. Investigation on Simultaneous Effects of Shot Peen and Austenitizing Time and Temperature on Grain Size and Microstructure of Austenitic Manganese Steel (Hadfield)

    NASA Astrophysics Data System (ADS)

    Beheshti, M.; Zabihiazadboni, M.; Ismail, M. C.; Kakooei, S.; Shahrestani, S.

    2018-03-01

    Optimal conditions to increase life time of casting parts have been investigated by applying various cycles of heat treatment and shot peening on Hadfield steel surface. Metallographic and SEM microstructure examinations were used to determine the effects of shot peen, austenitizing time and temperature simultaneously. The results showed that with increasing austenitizing time and temperature of casting sample, carbides resolved in austenite phase and by further increase of austenitizing temperature and time, the austenite grain size becomes larger. Metallographic images illustrated that shot peening on Hadfield steel surface; Austenite - Martensite transformation has not occurred, but its matrix hardened through twining formation process.

  4. Fundamental Effects of Aging on Creep Properties of Solution-Treated Low-Carbon N-155 Alloy

    NASA Technical Reports Server (NTRS)

    Frey, D N; Freeman, J W; White, A E

    1950-01-01

    A method is developed whereby the fundamental mechanisms are investigated by which processing, heat treatment, and chemical composition control the properties of alloys at high temperatures. The method used metallographic examination -- both optical and electronic --studies of x-ray diffraction-line widths, intensities, and lattice parameters, and hardness surveys to evaluate fundamental structural conditions. Mechanical properties at high temperatures are then measured and correlated with these measured structural conditions. In accordance with this method, a study was made of the fundamental mechanism by which aging controlled the short-time creep and rupture properties of solution-treated low-carbon n-155 alloy at 1200 degrees F.

  5. Development of a wear-resistant flux cored wire of Fe-C-Si-Mn-Cr-Ni-Mo-V system for deposit welding of mining equipment parts

    NASA Astrophysics Data System (ADS)

    Osetkovsky, I. V.; Kozyrev, N. A.; Kryukov, R. E.; Usoltsev, A. A.; Gusev, A. I.

    2017-09-01

    The effect of introduction of cobalt in the charge of the flux cored wire of Fe-C-Si-Mn-Cr-Ni-Mo-V system operating under abrasive and abrasive-shock loads is studied. In the laboratory conditions samples of flux cored wires were made, deposition was performed, the effect of cobalt on the hardness and the degree of wear was evaluated, metallographic studies were carried out. The influence of cobalt introduced into the charge of the flux cored wire of Fe-C-Si-Mn-Cr-Ni-Mo-V system on the structure, nature of nonmetallic inclusions, hardness and wear resistance of the weld metal was studied. In the laboratory conditions samples flux cored wire were made using appropriate powdered materials. As a carbon-fluorine-containing material dust from gas cleaning units of aluminum production was used. In the course of the study the chemical composition of the weld metal was determined, metallographic analysis was performed, mechanical properties were determined. As a result of the metallographic analysis the size of the former austenite grain, martensite dispersion in the structure of the weld metal, the level of contamination with its nonmetallic inclusions were established.

  6. Influence of the Manufacturing Process on Defects in the Galvanized Coating of High Carbon Steel Wires.

    PubMed

    Gelfi, Marcello; Solazzi, Luigi; Poli, Sandro

    2017-03-06

    This study is a detailed failure analysis of galvanized high carbon steel wires, which developed coating cracks during the torsion test performed as a quality control at the end of the manufacturing process. Careful visual inspections showed that the cracks are already present in the coating before the torsion test. In order to explain the origin of these cracks, systematic metallographic investigations were performed by means of optical and scanning electron microscope on both the wires and the rods that have been cold drawn to produce the wire. The chemical composition of the galvanized coatings was evaluated by means of energy dispersive spectroscopy. Micro bidimensional X-ray diffraction experiments were also performed to measure the residual stresses in the galvanized coating. The results showed that the failure is related to two main factors: the relatively high content of silicon in the steel and the unsuitable cooling rate of the rods at the exit from the galvanizing bath. The mechanism proposed to explain the origin of the defects was supported by Finite Elements Methods simulations and verified with in-plant tests. The proper countermeasures were then applied and the problem successfully solved.

  7. Influence of the Manufacturing Process on Defects in the Galvanized Coating of High Carbon Steel Wires

    PubMed Central

    Gelfi, Marcello; Solazzi, Luigi; Poli, Sandro

    2017-01-01

    This study is a detailed failure analysis of galvanized high carbon steel wires, which developed coating cracks during the torsion test performed as a quality control at the end of the manufacturing process. Careful visual inspections showed that the cracks are already present in the coating before the torsion test. In order to explain the origin of these cracks, systematic metallographic investigations were performed by means of optical and scanning electron microscope on both the wires and the rods that have been cold drawn to produce the wire. The chemical composition of the galvanized coatings was evaluated by means of energy dispersive spectroscopy. Micro bidimensional X-ray diffraction experiments were also performed to measure the residual stresses in the galvanized coating. The results showed that the failure is related to two main factors: the relatively high content of silicon in the steel and the unsuitable cooling rate of the rods at the exit from the galvanizing bath. The mechanism proposed to explain the origin of the defects was supported by Finite Elements Methods simulations and verified with in-plant tests. The proper countermeasures were then applied and the problem successfully solved. PMID:28772623

  8. Co/Ni ratios at taenite/kamacite interfaces and relative cooling rates in iron meteorites

    NASA Astrophysics Data System (ADS)

    Wasson, John T.; Hoppe, Peter

    2012-05-01

    We report a pilot study of a new technique to use the distribution of Co between kamacite and taenite to infer relative cooling rates of iron meteorites; data of Widge and Goldstein (1977) showed that the distribution is temperature dependent. A plot of the logarithm of the double ratio [(Co/Ni)kamacite/(Co/Ni)taenite] (abbreviated Rαγ) against inverse temperature yields a linear equation showing that the ratio ranges from ˜2.5 at 1080 K to ˜30 at 710 K. Thus, a measurement of Rαγ in the kamacite and taenite near the interface offers information about relative cooling rates; the higher Rαγ, the lower the cooling rate. A major advantage of this technique is that it is mainly affected by the final (low-temperature) cooling rate, just before the sample cooled to the blocking temperature where diffusion became insignificant. To test this method we used the NanoSIMS ion probe to measure Rαγ in two IVA and two IIIAB irons; members of each pair differ by large factors in elemental composition and in published metallographic cooling rates (Yang and Goldstein, 2006; Yang et al., 2008). Despite differing by a factor of 25 in estimated metallographic cooling rate, the two IVA irons showed similar Rαγ values of ˜22. If experimental uncertainties are considered this implies that, at low temperatures, their cooling rates differ by less than a factor of 5 with 95% confidence, i.e., significantly less than the range in metallographic cooling rates. In contrast, the IIIAB irons have different ratios; Rαγ in Haig is 29 whereas that in Cumpas, with a reported cooling rate 4.5 times lower, is 22, the opposite of that expected from the published cooling rates. A reevaluation of the Yang-Goldstein IIIAB data set shows that Haig has anomalous metallographic properties. We suggest that both the high Rαγ in Haig and the systematically low taenite central Ni contents are the result of impact-produced fractures in the taenite that allowed equilibration with kamacite down to lower temperatures but shut down Ni transport to the interiors of taenite lamellae. Our observations of similar Rαγ values in IVA irons differing by a factor of 25 in metallographic cooling rates implies that there was, in fact, only a comparatively small difference in low-temperature cooling rates in IVA irons; because we studied only two IVA irons, this conclusion will remain tentative until further studies can be completed.

  9. Evaluation of Primary Dendrite Arm Spacings from Aluminum-7wt% Silicon alloys Directionally Solidified aboard the International Space Station - Comparison with Theory

    NASA Technical Reports Server (NTRS)

    Angart, Samuel; Lauer, Mark; Poirier, David; Tewari, Surendra; Rajamure, Ravi; Grugel, Richard

    2015-01-01

    Aluminum – 7wt% silicon alloys were directionally solidified in the microgravity environment aboard the International Space Station as part of the “MIcrostructure Formation in CASTing of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions” (MICAST) European led program. Cross-sections of the sample during periods of steady-state growth were metallographically prepared from which the primary dendrite arm spacing (lambda 1) was measured. These spacings were found to be in reasonable agreement with the Hunt-Lu model which assumes a diffusion-controlled, convectionless, environment during controlled solidification. Deviation from the model was found and is attributed to gravity-independent thermocapillary convection where, over short distances, the liquid appears to have separated from the crucible wall.

  10. A study on the control of melting ratio to increase mechanical properties of laser welded joints between AISI 440C and AISI 430F

    NASA Astrophysics Data System (ADS)

    Romoli, L.; Rashed, C. A. A.; Lovicu, G.; Ishak, R.

    2015-05-01

    Laser beam welding of dissimilar AISI 440C and AISI 430F stainless steels was investigated in a circular constrained configuration. The beam incidence angle and the offset of the focusing position respect to the contact point between the two materials were used as main control parameters to vary the melting ratio inside the seam. The objective of the study is twofold: to avoid surface microcracks related to the high percentage of carbon of the martensitic steel and to enhance the shear strength of the weld by making it less brittle. To reach this scope the effects of incidence angle and offset on weld bead geometry and melting ratio were studied by means of metallographic analyses, microstructure and microhardness characterization. As last step, the weld mechanical strength was tested by tensile-shear stress test on the whole seam. Experiments demonstrated that varying incidence angle and offsetting the focal position is a reliable method to modify the melting ratio and maintaining the expected resistance length at the material interface, as well. It was found that increasing the percentage of ferritic steel into the joint has beneficial effects on the weld quality and on the shear resistance. The critical carbon content determining the mechanical properties in the fusion zone can be calculated by taking into account the melting ratio.

  11. A Specially Constructed Metallograph for Use at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Jenkins, Joe E; Buchele, Donald R; Long, Roger A

    1951-01-01

    A Metallographic microscope was developed with provision for heating a specimen to 1800 F in protective atmospheres, that is, vacuum or gas. A special objective was constructed of reflecting elements with an unusually long working distance (7/16 in.) and a high numerical aperture (0.5). Changes in specimen microstructure were observed and recorded on 35-millimeter motion-picture film. The resulting pictures were projected as motion pictures and individual frames were cut and enlargements made for close observation. Structural changes upon heating a 0.35-percent annealed carbon steel and a 5-percent tin phosphor bronze specimen were observed and recorded. Newly formed microstructure were revealed by selective vacuum etching and specimen relief resulting from recrystallization and varying grain orientation.

  12. Nucleation of the Widmanstatten Pattern in Iron Meteorites

    NASA Technical Reports Server (NTRS)

    Yang, J.; Goldstein, J. I.

    2004-01-01

    The Widmanstatten pattern develops at low temperatures during the evolution of the asteroids. We have studied the origin of the Widmanstatten pattern in order to obtain metallographic cooling rates in the temperature range (approx. 700 to 300 deg C). This paper summarizes our recent evaluation of the various mechanisms for the formation of the Widmanstatten pattern. All chemical groups of the iron meteorites are considered. We also propose a new mechanism for the formation of the Widmanstatten pattern in the low P metal phase of iron, stony-iron and stony meteorites. The results of this evaluation enables us to more accurately determine metallographic cooling rates particularly when incorporated with other recent advances in Fe-Ni and Fe-Ni (P saturated) phase diagrams and interdiffusion coefficients.

  13. High-Speed Friction Stir Welding of AA7075-T6 Sheet: Microstructure, Mechanical Properties, Micro-texture, and Thermal History

    NASA Astrophysics Data System (ADS)

    Zhang, Jingyi; Upadhyay, Piyush; Hovanski, Yuri; Field, David P.

    2018-01-01

    Friction stir welding (FSW) is a cost-effective and high-quality joining process for aluminum alloys (especially heat-treatable alloys) that is historically operated at lower joining speeds (up to hundreds of millimeters per minute). In this study, we present a microstructural analysis of friction stir welded AA7075-T6 blanks with high welding speeds up to 3 M/min. Textures, microstructures, mechanical properties, and weld quality are analyzed using TEM, EBSD, metallographic imaging, and Vickers hardness. The higher welding speed results in narrower, stronger heat-affected zones (HAZs) and also higher hardness in the nugget zones. The material flow direction in the nugget zone is found to be leaning towards the welding direction as the welding speed increases. Results are coupled with welding parameters and thermal history to aid in the understanding of the complex material flow and texture gradients within the welds in an effort to optimize welding parameters for high-speed processing.

  14. The Role of Nano-TiO2 Lubricating Fluid on the Hot Rolled Surface and Metallographic Structure of SS41 Steel

    PubMed Central

    Meng, Yanan; Sun, Jianlin; Wu, Ping; Dong, Chang; Yan, Xudong

    2018-01-01

    In this paper, nano-TiO2lubricating fluid was chosen as an advanced rolling lubricant to investigate its effect on the hot rolled surface and metallographic structure of SS41 steel strips. The tribological performances of nano-TiO2 lubricating fluid were measured by a four-ball tribotester. The hot rolling experiments under different lubrication conditions were carried out by a four-high rolling mill. The surface morphology, oxide scales and metallographic structure after hot rolling were observed using a confocal laser scanning microscope and scanning electron microscope (SEM), respectively. The composition of surface attachments was analyzed with X-ray photoelectron spectroscopy (XPS). The results indicate that the nano-TiO2 lubricating fluid has a better tribological performance. The surface defects on the hot rolled surface could be decreased. The phase composition of the surface still appears as a mixture of ferrite and pearlite. The surface of steel strips is not micro-alloyed with titanium as predicted. Additionally, the grain size of rolled steel strips which were lubricated with the nano-TiO2lubricating fluid decreased by nearly 50%, compared with traditional lubricating fluid. Furthermore, it was found that the thickness of the oxide layers on the surface reduced, whilst the Rockwell hardness of the oxide layers was enhanced as nano-TiO2 lubricating fluid was applied. PMID:29462937

  15. The Role of Nano-TiO2 Lubricating Fluid on the Hot Rolled Surface and Metallographic Structure of SS41 Steel.

    PubMed

    Meng, Yanan; Sun, Jianlin; Wu, Ping; Dong, Chang; Yan, Xudong

    2018-02-16

    In this paper, nano-TiO2lubricating fluid was chosen as an advanced rolling lubricant to investigate its effect on the hot rolled surface and metallographic structure of SS41 steel strips. The tribological performances of nano-TiO2 lubricating fluid were measured by a four-ball tribotester. The hot rolling experiments under different lubrication conditions were carried out by a four-high rolling mill. The surface morphology, oxide scales and metallographic structure after hot rolling were observed using a confocal laser scanning microscope and scanning electron microscope (SEM), respectively. The composition of surface attachments was analyzed with X-ray photoelectron spectroscopy (XPS). The results indicate that the nano-TiO2 lubricating fluid has a better tribological performance. The surface defects on the hot rolled surface could be decreased. The phase composition of the surface still appears as a mixture of ferrite and pearlite. The surface of steel strips is not micro-alloyed with titanium as predicted. Additionally, the grain size of rolled steel strips which were lubricated with the nano-TiO2lubricating fluid decreased by nearly 50%, compared with traditional lubricating fluid. Furthermore, it was found that the thickness of the oxide layers on the surface reduced, whilst the Rockwell hardness of the oxide layers was enhanced as nano-TiO2 lubricating fluid was applied.

  16. Failure study of helium-cooled tungsten divertor plasma-facing units tested at DEMO relevant steady-state heat loads

    NASA Astrophysics Data System (ADS)

    Ritz, G.; Hirai, T.; Norajitra, P.; Reiser, J.; Giniyatulin, R.; Makhankov, A.; Mazul, I.; Pintsuk, G.; Linke, J.

    2009-12-01

    Tungsten was selected as armor material for the helium-cooled divertor in future DEMO-type fusion reactors and fusion power plants. After realizing the design and testing of them under cyclic thermal loads of up to ~14 MW m-2, the tungsten divertor plasma-facing units were examined by metallography; they revealed failures such as cracks at the thermal loaded and as-machined surfaces, as well as degradation of the brazing layers. Furthermore, in order to optimize the machining processes, the quality of tungsten surfaces prepared by turning, milling and using a diamond cutting wheel were examined. This paper presents a metallographic examination of the tungsten plasma-facing units as well as technical studies and the characterization on machining of tungsten and alternative brazing joints.

  17. Shear Fracture of Dual Phase AHSS in the Process of Stamping: Macroscopic Failure Mode and Micro-level Metallographical Observation

    NASA Astrophysics Data System (ADS)

    Wang, Wurong; Wei, Xicheng; Yang, Jun; Shi, Gang

    2011-08-01

    Due to its excellent strength and formability combinations, dual phase (DP) steels offer the potential to improve the vehicle crashworthiness performance without increasing car body weight and have been increasingly used into new vehicles. However, a new type of crack mode termed as shear fracture is accompanied with the application of these high strength DP steel sheets. With the cup drawing experiment to identify the limit drawing ratio (LDR) of three DP AHSS with strength level from 600 MPa to 1000 MPa, the study compared and categorized the macroscopic failure mode of these three types of materials. The metallographical observation along the direction of crack was conducted for the DP steels to discover the micro-level propagation mechanism of the fracture.

  18. METALLOGRAPHIC STUDIES OF SPUTNIK 4 FRAGMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammerer, O.F.; Sadofsky, J.; Gurinsky, D.H.

    1963-09-01

    Metallographic analyses were performed on a fragment of steel recovered after the disintegration of Sputnik 4 and on a melted agglomerate found on the fragment. The examination indicated that the material was a hot-rolled carbon steel similar in hardness to a structural steel with a tensile strength of 3.8 to 4.1 x 10/sup 10/ dynes/cm/sup 2/. The major portion of the fragment exhibited a banded structure characteristic of hot-rolled material. The upper surface was probably heated to the melting point which resulted in the formation of a narrow band similar to an as-cast Widmannstaettn microstructure. The melted material at themore » bottom of the specimen was a porous mass containing several different varieties of inclusions and compounds. (auth)« less

  19. Metallographic cooling rates of L-group ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Bennett, Marvin E.; Mcsween, Harry Y., Jr.

    1993-01-01

    Shock metamorphism appears to be a ubiquitous feature in L-group ordinary chondrites. Brecciation and heterogeneous melting obscure much of the early history of this meteorite group and have caused confusion as to whether L chondrites have undergone thermal metamorphism within onion-shell or rubble-pile parent bodies. Employing the most recent shock criteria, we have examined 55 Antarctic and 24 non-Antarctic L chondrites in order to identify those which have been least affected by post-accretional shock. Six low-shock samples (those with shock grade less than S4) of petrographic types L3-L5 were selected from both populations and metallographic cooling rates were obtained following the technique of Willis and Goldstein. All non-Antarctic L6 chondrites inspected were too heavily shocked to be included in this group. However, 4 shocked L6 chondrites were analyzed in order to determine what effects shock may impose on metallographic cooling rates. Metallographic cooling rates were derived by analyzing the cores of taenite grains and then measuring the distance to the nearest grain edge. Taenites were identified using backscatter imaging on a Cameca SX-50 electron microprobe. Using backscatter we were able to locate homogeneous, rust-free, nearly spherical grains. M-shaped profiles taken from grain traverses were also used to help locate the central portions of selected grains. All points which contained phosphorus above detection limits were discarded. Plots of cooling-rate data are summarized and data from the high-shock samples are presented. The lack of coherency of cooling rates for individual samples is indicative of heterogeneous cooling following shock. The data confirms the statement expressed by numerous workers that extreme care must be taken when selecting samples of L chondrites for cooling-rate studies. Data for the 6 non-Antarctic low-shock samples are also presented. The samples display a general trend in cooling rates. The lowest metamorphic grade yielded the slowest cooling rates and an increase in grade follows an increase in cooling rate. This is the opposite relationship to that predicted by the onion-shell model.

  20. Influence of Mn contents in 0Cr18Ni10Ti thin wall stainless steel tube on TIG girth weld quality

    NASA Astrophysics Data System (ADS)

    Liu, Bo

    2017-03-01

    Three kinds of cold worked 0Cr18Ni10Ti thin wall stainless steel tubes with the manganese contents of 1.27%, 1.35% and 1.44% and the cold worked 0Cr18Ni10Ti stainless steel end plug with manganese content of 1.35% were used for TIG girth welding in the present investigation. The effect of different manganese contents in stainless steel tube on weld quality was studied. The results showed that under the same welding conditions, the metallographic performance of the girth weld for the thin wall stainless steel tube with the manganese element content 1.44% welded with end plug was the best. Under the appropriate welding conditions, the quality of the girth weld increased with the increase of the manganese content till 1.44%. It was found that in the case of the Mn content of 1.44%, and under the proper welding condition the welding defects, such as welding cracks were effectively avoided, and the qualified weld penetration can be obtained.. It is concluded that the appropriate increase of the manganese content can significantly improve the TIG girth weld quality of the cold worked 0Cr18Ni10Ti stainless steel tube.

  1. The effects of laser welding parameters on the microstructure of ferritic and duplex stainless steels welds

    NASA Astrophysics Data System (ADS)

    Pekkarinen, J.; Kujanpää, V.

    This study is focused to determine empirically, which microstructural changes occur in ferritic and duplex stainless steels when heat input is controlled by welding parameters. Test welds were done autogenously bead-on-plate without shielding gas using 5 kW fiber laser. For comparison, some gas tungsten arc welds were made. Used test material were 1.4016 (AISI 430) and 1.4003 (low-carbon ferritic) type steels in ferritic steels group and 1.4162 (low-alloyed duplex, LDX2101) and 1.4462 (AISI 2205) type steels in duplex steels group. Microstructural changes in welds were identified and examined using optical metallographic methods.

  2. Low-hazard metallography of moisture-sensitive electrochemical cells.

    PubMed

    Wesolowski, D E; Rodriguez, M A; McKenzie, B B; Papenguth, H W

    2011-08-01

    A low-hazard approach is presented to prepare metallographic cross-sections of moisture-sensitive battery components. The approach is tailored for evaluation of thermal (molten salt) batteries composed of thin pressed-powder pellets, but has general applicability to other battery electrochemistries. Solution-cast polystyrene is used to encapsulate cells before embedding in epoxy. Nonaqueous grinding and polishing are performed in an industrial dry room to increase throughput. Lapping oil is used as a lubricant throughout grinding. Hexane is used as the solvent throughout processing; occupational exposure levels are well below the limits. Light optical and scanning electron microscopy on cross-sections are used to analyse a thermal battery cell. Spatially resolved X-ray diffraction on oblique angle cut cells complement the metallographic analysis. Published 2011. This article is a US Government work and is in the public domain in the USA.

  3. Metallurgical characterization of orthodontic brackets produced by Metal Injection Molding (MIM).

    PubMed

    Zinelis, Spiros; Annousaki, Olga; Makou, Margarita; Eliades, Theodore

    2005-11-01

    The aim of this study was to investigate the bonding base surface morphology, alloy type, microstructure, and hardness of four types of orthodontic brackets produced by Metal Injection Molding technology (Discovery, Extremo, Freedom, and Topic). The bonding base morphology of the brackets was evaluated by scanning electron microscopy (SEM). Brackets from each manufacturer were embedded in epoxy resin, and after metallographic grinding, polishing and coating were analyzed by x-ray energy-dispersive spectroscopic (EDS) microanalysis to assess their elemental composition. Then, the brackets were subjected to metallographic etching to reveal their metallurgical structure. The same specimen surfaces were repolished and used for Vickers microhardness measurements. The results were statistically analyzed with one-way analysis of variance and Student-Newman-Keuls multiple comparison test at the 0.05 level of significance. The findings of SEM observations showed a great variability in the base morphology design among the brackets tested. The x-ray EDS analysis demonstrated that each bracket was manufactured from different ferrous or Co-based alloys. Metallographic analysis showed the presence of a large grain size for the Discovery, Freedom, and Topic brackets and a much finer grain size for the Extremo bracket. Vickers hardness showed great variations among the brackets (Topic: 287 +/- 16, Freedom: 248 +/- 13, Discovery: 214 +/- 12, and Extremo: 154 +/- 9). The results of this study showed that there are significant differences in the base morphology, composition, microstructure, and microhardness among the brackets tested, which may anticipate significant clinical implications.

  4. Thermomechanical Testing and Microstructural Development of Class L Steel Wheel Alloy

    DOT National Transportation Integrated Search

    1994-03-01

    Macrostructure, microstructure, and quantitative metallographic analysis is conducted on Association of American Railroads Class L wheel steel specimens tested in a Gleeble 1500 under combined mechanical compression and resistance heating to temperat...

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eremenko, V.N.; Kosolapova, T.Ya.

    Metallographic studies and chemical phase analysis of carbon-free nickel with titanium carbide, prepared by powder metallurgy and treated under various thermal conditions, showed no separation of free carbon and indicated that the TiC--Ni system is quasi-binary. (R.V.J.)

  6. High-Speed Friction Stir Welding of AA7075-T6 Sheet: Microstructure, Mechanical Properties, Micro-texture, and Thermal History

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jingyi; Upadhyay, Piyush; Hovanski, Yuri

    Friction-stir-welding (FSW) is a cost-effective and high quality joining process for aluminum alloys (especially heat-treatable allo ys) that has been applied successfully in the aerospace industry. However, the full potential of FSW on more cost-sensitive applications is still limited by the production rate, namely the welding speed of the process. The majority of literature evaluating FSW of aluminum alloys is based on welds made in the range of welding speeds around hundreds of millimeters per minute, and only a handful are at a moderate speed of 1 m/min. In this study we present a microstructural analysis of friction stir weldedmore » AA7075-T6 blanks with welding speeds up to 3 m/min. Textures, microstructures, mechanical properties, and weld quality are analyzed using TEM, EBSD, metallographic imaging, and Vickers hardness. Results are coupled with welding parameters to aid in the understanding of the complex material flow and texture gradients within the welds in an effort to optimize welding parameters for high speed processing.« less

  7. Fiber laser welding of dual-phase galvanized sheet steel (DP590): traditional analysis and new quality assessment techniques

    NASA Astrophysics Data System (ADS)

    Miller, Stephanie; Pfeif, Erik; Kazakov, Andrei; Baumann, Esther; Dowell, Marla

    2016-03-01

    Laser welding has many advantages over traditional joining methods, yet remains underutilized. NIST has undertaken an ambitious initiative to improve predictions of weldability, reliability, and performance of laser welds. This study investigates butt welding of galvanized and ungalvanized dual-phase automotive sheet steels (DP 590) using a 10 kW commercial fiber laser system. Parameter development work, hardness profiles, microstructural characterization, and optical profilometry results are presented. Sound welding was accomplished in a laser power range of 2.0 kW to 4.5 kW and travel speed of 2000 mm/min to 5000 mm/min. Vickers hardness ranged from approximately 2 GPa to 4 GPa across the welds, with limited evidence of heat affected zone softening. Decreased hardness across the heat affected zone directly correlated to the appearance of ferrite. A technique was developed to non-destructively evaluate weld quality based on geometrical criteria. Weld face profilometry data were compared between light optical, metallographic sample, and frequency-modulated continuous-wave laser detection and ranging (FMCW LADAR) methods.

  8. Three-dimensional microstructural characterization of bulk plutonium and uranium metals using focused ion beam technique

    NASA Astrophysics Data System (ADS)

    Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.

    2016-05-01

    Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can reveal salient microstructural features that cannot be observed from conventional metallographic techniques. Examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics.

  9. Three-dimensional microstructural characterization of bulk plutonium and uranium metals using focused ion beam technique

    DOE PAGES

    Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.

    2016-03-03

    Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can revealmore » salient microstructural features that cannot be observed from conventional metallographic techniques. As a result, examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics.« less

  10. Features of postfailure fuel behavior in transient overpower and transient undercooled/overpower tests in the transient reactor test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerner, R.C.; Bauer, T.H.; Morman, J.A.

    Prototypic oxide fuel was subjected to simulated, fast reactor severe accident conditions in a series of in-pile tests in the Transient Reactor Test Facility reactor. Seven experiments were performed on fresh and previously irradiated oxide fuel pins under transient overpower and transient undercooled. overpower accident conditions. For each of the tests, fuel motions were observed by the hodoscope. Hodoscope data are correlated with coolant flow, pressure, and temperature data recorded by the loop instrumentation. Data were analyzed from the onset of initial failure to a final mass distribution at the end of the test. In this paper results of thesemore » analyses are compared to pre- and posttest accident calculations and to posttest metallographic accident calculations and to posttest metallographic examinations and computed tomographic reconstructions from neutron radiographs.« less

  11. A Study of the Oscillation Marks' Characteristics of Continuously Cast Incoloy Alloy 825 Blooms

    NASA Astrophysics Data System (ADS)

    Saleem, Saud; Vynnycky, Michael; Fredriksson, Hasse

    2016-08-01

    A comprehensive experimental study of oscillation mark (OM) formation and its characteristics during the solidification of Incoloy alloy 825 in the continuous casting of blooms is investigated by plant trials and metallographic study. The experiments involved two heats with the same casting and mold conditions and sampling at different locations across the strand. The metallographic study combined macro/micro-examinations of OMs and segregation analysis of Cr, Mn, Mo, Ni, and Si by microprobe analysis. The results show that OMs have widely different characteristics, such as mark type, depth, segregation, and accompanying microstructure. Furthermore, the mark pitch can vary considerably even for the similar casting conditions, leading to different conditions for the marks' formation in relation to the mold's cyclic movement. Finally, a mechanism for the OM formation is discussed and proposed. Possible solutions for minimizing the observed defects by optimizing the mold conditions are suggested.

  12. Microstructural Features in Corroded Celtic Iron Age Sword Blades

    NASA Astrophysics Data System (ADS)

    Ghiara, G.; Piccardo, P.; Campodonico, S.; Carnasciali, M. M.

    2014-05-01

    Archaeological artefacts made from iron and steel are often of critical importance for archaeometallurgical studies, which aim to understand the process of manufacturing, as the nearly complete alloy mineralization does not allow for any type of metallographic interpretation. In this study, three Iron Age sword blades dated from the second century BC (LaTène B2/D1) found in the archaeological site of Tintignac (Commune de Naves, Corrèze, France), were investigated. A multianalytical approach was employed to acquire a complete range of data from the partially or totally corroded objects. Analyses were carried out with the use of light optical microscopy, micro Raman spectroscopy, and scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy (EDXS). Remnants of metallographic features—ghost microstructure—in the corrosion layers of the blades were observed, allowing for a partial reconstruction of the manufacturing process.

  13. Clean Cast Steel Technology: Effect of Micro-porosity on Tensile and Charpy Properties of Four Cast Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, John, A.; Bates, Charles, E.

    2005-09-19

    The effect of these large shrink cavities on mechanical properties could be easily calculated using well established engineering formulas. Over the years, increases in computational and metallurgical resources have allowed the modeler to improve accuracy and increase the complexity of numerical predictors. An accurate prediction of micro-porosity, not observable using conventional radiographic techniques, and an engineering understanding of the effect on mechanical properties would give a designer confidence in using a more efficient casting design and a lower safety factor. This will give castings an additional design advantage. The goal of this project is to provide current and future modelers/designersmore » with a tensile and Charpy property dataset for validation of micro-porosity predictors. The response of ultimate strength, elongation, and reduction in area to micro-porosity was very similar in all four alloys. Ultimate strength was largely unaffected by tensile fracture surface porosity until values of about 25% were reached and decreased linearly with increasing values. Elongation and reduction in area decreased sharply after less than 5% fracture surface porosity. Niyama values of about 0.7 were produced sound material and acceptable tensile properties. Ultrasonic velocities of 0.233 in/usec and higher produced acceptable tensile properties. Metallographic examination revealed a ratio of 4-6 to 1 in fracture surface porosity to metallographic porosity. Charpy impact properties were largely unaffected by the microporosity concentrations examined in this study and did not correlate to either Niyama values, fracture surface porosity, or metallographic porosity.« less

  14. Powder metallurgy processing of high strength turbine disk alloys

    NASA Technical Reports Server (NTRS)

    Evans, D. J.

    1976-01-01

    Using vacuum-atomized AF2-1DA and Mar-M432 powders, full-scale gas turbine engine disks were fabricated by hot isostatically pressing (HIP) billets which were then isothermally forged using the Pratt & Whitney Aircraft GATORIZING forging process. While a sound forging was produced in the AF2-1DA, a container leak had occurred in the Mar-M432 billet during HIP. This resulted in billet cracking during forging. In-process control procedures were developed to identify such leaks. The AF2-1DA forging was heat treated and metallographic and mechanical property evaluation was performed. Mechanical properties exceeded those of Astroloy, one of the highest temperature capability turbine disk alloys presently used.

  15. Revealing Slip Bands In A Metal-Matrix/Fiber Composite

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.

    1995-01-01

    Experimental procedure includes heat treatments and metallographic techniques developed to facilitate studies of deformation of metal-matrix/fiber composite under stress. Reveals slip bands, indicative of plastic flow occurring in matrix during mechanical tests of specimens of composite.

  16. Microscopy & microanalysis 2016 in Columbus, Ohio

    DOE PAGES

    Michael, Joseph R.

    2016-01-08

    The article provides information about an upcoming conference from the program chair. The Microscopy Society of America (MSA), the Microanalysis Society (MAS), and the International Metallographic Society (IMS) invite participation in Microscopy & Microanalysis 2016 in Columbus, Ohio, July 24 through July 28, 2016.

  17. Microstructure Instability in Cryogenically-Deformed Copper (Preprint)

    DTIC Science & Technology

    2011-03-01

    prepared using conventional metallographic techniques followed by electropolishing in a solution of 70 pct. orthophosphoric acid in water at ambient...at room temperatu re on the microhardness profile across the sample diameter is shown in Fig. 1. After 15 minutes, the microhardness distribution was

  18. Metallographic autopsies of full-scale ITER prototype cable-in-conduit conductors after full testing in SULTAN: 1. The mechanical role of copper strands in a CICC

    DOE PAGES

    Sanabria, Carlos; Lee, Peter J.; Starch, William; ...

    2015-06-22

    Cables made with Nb 3Sn-based superconductor strands will provide the 13 T maximum peak magnetic field of the ITER Central Solenoid (CS) coils and they must survive up to 60,000 electromagnetic cycles. Accordingly, prototype designs of CS cable-in-conduit-conductors (CICC) were electromagnetically tested over multiple magnetic field cycles and warm-up-cool-down scenarios in the SULTAN facility at CRPP. We report here a post mortem metallographic analysis of two CS CICC prototypes which exhibited some rate of irreversible performance degradation during cycling. The standard ITER CS CICC cable design uses a combination of superconducting and Cu strands, and because the Lorentz force onmore » the strand is proportional to the transport current in the strand, removing the copper strands (while increasing the Cu:SC ratio of the superconducting strands) was proposed as one way of reducing the strand load. In this study we compare the two alternative CICCs, with and without Cu strands, keeping in mind that the degradation after SULTAN test was lower for the CICC without Cu strands. The post mortem metallographic evaluation revealed that the overall strand transverse movement was 20% lower in the CICC without Cu strands and that the tensile filament fractures found were less, both indications of an overall reduction in high tensile strain regions. Furthermore, it was interesting to see that the Cu strands in the mixed cable design (with higher degradation) helped reduce the contact stresses on the high pressure side of the CICC, but in either case, the strain reduction mechanisms were not enough to suppress cyclic degradation. Advantages and disadvantages of each conductor design are discussed here aimed to understand the sources of the degradation.« less

  19. OBSERVATIONS ON RHENIUM-TUNGSTEN ALLOYS (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirner, K.

    1959-12-01

    Re-W alloys were arc melted between tungsten electrodes, checked metallographically and their hardness was determined. Two intermetallic phases were found, one of which---a stgroa phase--having a broad homogeneity range (approximately from 40 to 60%) and a high hardness (1800 VPN/sub 300/). (auth)

  20. Metallographic Analysis of Brush Bristle and Integrity Testing of Brush Seal in Shroud Ring of T-700 Engine

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Griffin, Thomas A.; Bobula, George A.; Bill, Robert C.; Hull, David R.; Csavina, Kristine R.

    1995-01-01

    Post-test investigation of a T-700 engine brush seal found regions void of bristles ('yanked out'), regions of bent-over bristles near the inlet, some 'snapped' bristles near the fence, and a more uniform 'smeared' bristle interface between the first and last axial rows of bristles. Several bristles were cut from the brush seal, wax mounted, polished, and analyzed. Metallographic analysis of the bristles near the rub tip showed tungsten-rich phases uniformly distributed throughout the bristle with no apparent change within 1 to 2 micron of the interface except for possibly a small amount of titanium, which would represent a transfer from the rotor. Analysis of the bristle wear face showed nonuniform tungsten, which is indicative of material resolidification. The cut end contained oxides and internal fractures; the worn end was covered with oxide scale. Material losses due to wear and elastoplastic deformation within the shear zone and third-body lubrication effects in the contact zone are discussed.

  1. Some metallographic results for brush bristles and brush segments of a shroud ring brush seal tested in a T-700 engine

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Griffin, Thomas A.; Bobula, George A.; Bill, Robert C.; Hull, David R.; Csavina, Kristine R.

    1994-01-01

    Post-test investigation of a T-700 engine brush seal found regions void of bristles ('yanked out'), regions of bent-over bristles near the inlet, some 'snapped' bristles near the fence, and a more uniform smeared bristle interface between the first and last axial rows of bristles. Several bristles and four brush segments were cut from the brush seal, wax mounted, polished, and analyzed. Metallographic analysis of the bristle near the rub tip showed tungsten-rich phases uniformly distributed throughout the bristle, no apparent change within 1 mu m of the interface, and possibly a small amount of titanium, which would represent a transfer from the rotor. Analysis of the bristle wear face showed nonuniform tungsten, which is indicative of material resolidification. The cut end contained oxides and internal fractures; the worn end was covered with oxide scale. Material losses due to wear and elastoplastic deformation within the shear zone and third-body lubrication effects in the contact zone are discussed.

  2. Creep-Rupture Behavior and Recrystallization in HR6W and Haynes Alloy 230 Cold-Bent Boiler Tubing for Ultrasupercritical (USC) Steam Boiler Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shingledecker, John P

    2007-01-01

    Creep-rupture experiments were conducted on HR6W and Haynes 230, candidate Ultrasupercritical (USC) alloys, tubes to evaluate the effects of cold-work and recrystallization during high-temperature service. These creep tests were performed by internally pressurizing cold-bent boiler tubes at 775 C for times up to 8000 hours. The bends were fabricated with cold-work levels beyond the current ASME Boiler and Pressure Vessel (ASME B&PV) Code Section I limits for austenitic stainless steels. Destructive metallographic evaluation of the crept tube bends was used to determine the effects of cold-work and the degree of recrystallization. The metallographic analysis combined with an evaluation of themore » creep and rupture data suggest that solid-solution strengthened nickel-based alloys can be fabricated for high-temperature service at USC conditions utilizing levels of cold-work higher than the current allowed levels for austenitic stainless steels.« less

  3. Effect of Heating Time on Hardness Properties of Laser Clad Gray Cast Iron Surface

    NASA Astrophysics Data System (ADS)

    Norhafzan, B.; Aqida, S. N.; Mifthal, F.; Zulhishamuddin, A. R.; Ismail, I.

    2018-03-01

    This paper presents effect of heating time on cladded gray cast iron. In this study, the effect of heating time on cladded gray cast iron and melted gray cast iron were analysed. The gray cast iron sample were added with mixed Mo-Cr powder using laser cladding technique. The mixed Mo and Cr powder was pre-placed on gray cast iron surface. Modified layer were sectioned using diamond blade cutter and polish using SiC abrasive paper before heated. Sample was heated in furnace for 15, 30 and 45 minutes at 650 °C and cool down in room temperature. Metallographic study was conduct using inverted microscope while surface hardness properties were tested using Wilson hardness test with Vickers scale. Results for metallographic study showed graphite flakes within matrix of pearlite. The surface hardness for modified layer decreased when increased heating time process. These findings are significant to structure stability of laser cladded gray cast iron with different heating times.

  4. Metallographic Cooling Rates of IAB Iron Meteorites

    NASA Astrophysics Data System (ADS)

    Meibom, A.; Haack, H.; Jensen, S. K.; Ulff-Moller, F.; Rasmussen, K. L.

    1995-09-01

    Non-metals can play an important role for the diffusion-controlled growth of the Widmanstatten structure in iron meteorites. The presence of P significantly changes the diffusivity and equilibrium concentration of Ni in kamacite and taenite [1,2], and the effects of P have therefore been included in metallographic cooling rate calculations for many years. The presence of C probably increases the diffusivity of Ni in taenite up to a factor of two, which is considerably smaller than the effect of P that increases the Ni diffusivity by up to a factor of 10 [3,1]. On the other hand, C partitions strongly into taenite leaving kamacite essentially C-free (<10 micrograms/g [4]) and significantly reduces the equilibrium Ni-concentration in taenite [5]. Therefore, the effect of C should be included in metallographic cooling rate calculations of C-rich iron meteorites [6]. IAB iron meteorites have much higher bulk C-concentrations than most other iron meteorites and the metallic phases of the IAB irons were probably saturated with C soon after kamacite nucleation commenced. Since C is expected to decrease the solubility of P in taenite [7] we have based our cooling rate estimate of Toluca (IAB) on the Fe-Ni-C system rather than the Fe-Ni-P system. Previous metallographic cooling rates determined for IAB irons, including the effect of P, are low (1-10 degrees C/My [8] and 30-70 degrees C/My [9]). Fractional crystallization of S-rich cores [10, 11] and impact generated melt pools [12] have been proposed as origins of the IAB iron meteorites. Since we expect melt pools near the surface to have cooled significantly faster than the core of a differentiated parent body, the metallographic cooling rates may be used to discriminate between the two models. We have performed thermodynamic calculations on the C-saturated Fe-Ni-C-system at temperatures above 400 degrees C [13]. The results agree with earlier experimental work [5] and indicate that C, to the same degree as P, reduces the Ni concentration of taenite coexisting with kamacite. We did not extend the thermodynamic calculations below 400 degrees C due to the lack of data. Therefore, our cooling rate estimates are based on taenite lamellae wider than about 10 micrometers which are largely sensitive to the cooling rate above around 400 degrees C. Our preliminary results show a slightly better match between calculated and measured Ni mid-profile-concentrations versus total-lamella-width for Toluca (IAB) using the Fe-Ni-C system than using the Fe-Ni-P system. This difference is mainly due to a lower diffusivity of Ni in taenite in the Fe-Ni-C system. The average cooling rate obtained for Toluca using the Fe-Ni-C system is approximately a factor of 5 lower than the cooling rate obtained on the basis of the Fe-Ni-P system. However, both lie in the range 1-15 degrees C/My which is consistent with cooling rate estimates based on Pu-fission tracks in silicate inclusions of Landes and Copiapo; both IAB [13]. These relatively low cooling rate is in discordance with a melt-pool origin of the IAB iron meteorites. References: [1] Dean D. C. and Goldstein J. I. (1986) Metall. Trans., 17A, 1131-1138. [2] Romig A. D. and Goldstein J. I. (1980) Metall. Trans. A, 11A, 1151-1159. [3] Wells C. and Mehl R. F. (1941) Trans. AIME, 145, 329-339. [4] Makjanic J. et al. (1988) NIMB, B30, 466-469. [5] Romig A. D. and Goldstein J. I. (1978) Metall. Trans., 9A, 1599-1609. [6] Meibom et al. (1994) Meteoritics, 29, 501. [7] Buchwald, personal communication. [8] Rasmussen K. L. (1989) Phys. Scripta, 39, 410-416. [9] Herpfer M. A. et al., GCA, 58, 1353-1365. [10] Kracher A. (1985) Proc. LPSC 15th, in JGR, 90, C689-C698. [11] McCoy T. et al. (1993) Meteoritics, 28, 552-560. [12] Choi B.-G. et al. (1995) GCA, 59, 593-612. [13] Sundman. B., Manual to Thermo-Calc, Royal Institute of Technology, Stockholm. [14] Benkheiri et al. (1979) Icarus, 40, 497-501.

  5. Superconductivity in zirconium-rhodium alloys

    NASA Technical Reports Server (NTRS)

    Zegler, S. T.

    1969-01-01

    Metallographic studies and transition temperature measurements were made with isothermally annealed and water-quenched zirconium-rhodium alloys. The results clarify both the solid-state phase relations at the Zr-rich end of the Zr-Rh alloy system and the influence upon the superconducting transition temperature of structure and composition.

  6. Restoration of engraved marks on steel surfaces by etching technique.

    PubMed

    Zaili, Mohd Azlan Mohd; Kuppuswamy, R; Harun, Hafizah

    2007-08-24

    It is known that restoration of erased engraved identification marks on the engine and the chassis of a car or on a firearm has low success rate. Unlike stamping, engraving on a metal surface leaves no pronounced, permanent subsurface deformation in the crystalline structure, also called dislocation that can be revealed by suitable methods. Hence, the current research work investigated whether metallographic reagents used in the restoration of stamp (compression) marks could be applied to recover engraved marks on steel surfaces and also to establish the sensitivity and effectiveness of some of these reagents for the restoration of the marks. Experiments were conducted by mechanically engraving alphanumeric characters on several steel plates using a computer controlled engraving machine called Gravograph. The markings were later erased from the above steel plates by removing the metal in stages of 0.01 mm through 0.04 mm below the bottom of the engraving. Several plates were thus prepared wherein each one had been abraded to a specific depth. Then eight metallographic reagents were tested on each one of the above erased plates using a swabbing technique. The results had shown that while most of the reagents were able to restore marks up to certain levels of erasure, the reagent 5 g copper sulphate, 60 ml water, 30 ml concentrated ammonium hydroxide and 60 ml concentrated hydrochloric acid restored marks erased to a depth of 0.04 mm below the engraving depth, thus presenting itself the most sensitive reagent. Quite significantly, the above reagent was also able to decipher successfully the original engraved marks that had been erased and engraved with a new number, or obliterated by centre punching. The results of this research work should benefit the forensic practitioners engaged in the serial number recovery on vehicles, firearms and other objects.

  7. On the sensitivity of some common metallographic reagents to restoring obliterated marks on medium carbon (0.31% C) steel surfaces.

    PubMed

    Yin, Siaw Hui; Kuppuswamy, R

    2009-01-10

    Chemical etching, which is the most sensitive method to recover obliterated serial numbers on metal surfaces, has been practised quite successfully in forensic science laboratories all over the world. A large number of etchants suitable for particular metal surfaces based on empirical studies is available in the literature. This article reviews the sensitivity and efficacy of some popular etchants for recovering obliterated marks on medium carbon steel (0.31% C with ferrite-pearlite microstructure) used in automobile parts. The experiments involved engraving these carbon steel plates with some alphanumeric characters using a computer controlled machine "Gravograph" and erasing them to several depths below the bottom of their engraving depth. Seven metallographic reagents of which most of them were copper containing compounds were chosen for etching. The erased plates were etched with every one of these etchants using swabbing method. The results have revealed that Fry's reagent comprising cupric chloride 90 g, hydrochloric acid 120 mL and water 100mL provided the necessary contrast and was concluded to be the most sensitive. The same reagent was recommended by earlier workers for revealing strain lines in steel surfaces. Earlier, another reagent containing 5 g copper sulphate, 60 mL water, 30 mL (conc.) ammonium hydroxide, and 60 mL (conc.) hydrochloric acid was proved to be more sensitive to restore erased marks on low carbon steel (0.1% C with ferrite-pearlite structure) [M.A.M. Zaili, R. Kuppuswamy, H. Harun, Restoration of engraved marks on steel surfaces by etching technique, Forensic Sci. Int. 171 (2007) 27-32]. Thus the sensitivity of the etching reagent on steel surfaces appeared to be dependent on the content of carbon in the steel.

  8. Corrosion management of PbCaSn alloys in lead-acid batteries: Effect of composition, metallographic state and voltage conditions

    NASA Astrophysics Data System (ADS)

    Rocca, E.; Bourguignon, G.; Steinmetz, J.

    Since several years, lead calcium-based alloys have supplanted lead antimony alloys as structural materials for positive grids of lead-acid batteries in many applications, especially for VRLA batteries. Nevertheless, the positive grid corrosion probably remains one of the causes of rapid and premature failure of lead-acid batteries. The objective of the present study is to present a comprehensive study of the PbCaSn alloy corrosion in function of their composition, metallographic state and voltage conditions (discharge, overcharge, floating and cycling conditions). For that, four alloys PbCaSn x wt.% (x = 0, 0.6, 1.2, 2) were synthesized in two extreme metallurgical conditions and tested by four electrochemical lab-tests. Weight loss measurements and analyses by SEM, EPMA and XRD allowed to monitor the oxidation tests and to characterize the corrosion layers after the oxidation tests. The results show that the tin level in PbCaSn alloys should be adapted on the calcium concentration and the rate of overageing process, to maintain the beneficial effect of tin in service during the battery lifetime. According to our results, a Sn/Ca ratio of 2.5 gives good corrosion resistance in all potential conditions. Nevertheless, when tin level is too high, the corrosion layers can peel off from the metal, which involves a lack of cohesion between the collector and the paste, in cycling conditions. The anodic potential undergone by the metal is a second main factor determining the corrosion, especially the floating conditions and the frequency of deep discharge and overcharge. Thus the adjustment of the charge controller parameters of a battery system is a necessity to increase the lifetime of the grids and maintain a good rechargeability.

  9. Analysis of microstructure and mechanical properties of aluminium-copper joints welded by FSW process

    NASA Astrophysics Data System (ADS)

    Iordache, M.; Sicoe, G.; Iacomi, D.; Niţu, E.; Ducu, C.

    2017-08-01

    The research conducted in this article aimed to check the quality of joining some dissimilar materials Al-Cu by determining the mechanical properties and microstructure analysis. For the experimental measurements there were used tin alloy Al - EN-AW-1050A with a thickness of 2 mm and Cu99 sheet with a thickness of 2 mm, joined by FSW weld overlay. The main welding parameters were: rotating speed of the rotating element 1400 rev/min, speed of the rotating element 50 mm/min. The experimental results were determined on samples specially prepared for metallographic analysis. In order to prepare samples for their characterization, there was designed and built a device that allowed simultaneous positioning and fixing for grinding. The characteristics analyzed in the joint welded samples were mictrostructure, microhardness and residual stresses. The techniques used to determine these characteristics were optical microscopy, electron microscopy with fluorescence radioactive elemental analysis (EDS), Vickers microhardness line - HV0.3 and X-ray diffractometry.

  10. Study on Plastic Deformation Characteristics of Shot Peening of Ni-Based Superalloy GH4079

    NASA Astrophysics Data System (ADS)

    Zhong, L. Q.; Liang, Y. L.; Hu, H.

    2017-09-01

    In this paper, the X-ray stress diffractometer, surface roughness tester, field emission scanning electron microscope(SEM), dynamic ultra-small microhardness tester were used to measure the surface residual stress and roughness, topography and surface hardness changes of GH4079 superalloy, which was processed by metallographic grinding, turning, metallographic grinding +shot peening and turning + shot peening. Analysized the effects of shot peening parameters on shot peening plastic deformation features; and the effects of the surface state before shot peening on shot peening plastic deformation characteristics. Results show that: the surface residual compressive stress, surface roughness and surface hardness of GH4079 superalloy were increased by shot peening, in addition, the increment of the surface residual compressive stress, surface roughness and surface hardness induced by shot peening increased with increasing shot peening intensity, shot peening time, shot peening pressure and shot hardness, but harden layer depth was not affected considerably. The more plastic deformation degree of before shot peening surface state, the less increment of the surface residual compressive stress, surface roughness and surface hardness induced by shot peening.

  11. Low temperature mechanical properties, fractographic and metallographic evaluation of several alloy steels

    NASA Technical Reports Server (NTRS)

    Montano, J. W.

    1973-01-01

    The mechanical properties are presented of alloy steels, 4130, 4140, 4340, 6150, and 8740. Test specimens were manufactured from approximately 1.00 inch (2.54 cm) diameter bar stock which had been heat treated to two different hardness levels. The following mechanical tests were performed at temperatures of 80 F (+26.7 C), 0 F (-17.8 C), -100 F (-73 C), and -200 F (-129 C): (1) tensile test (Ultimate, yield, modulus, elongation, and reduction of area), (2) notched tensile test, (3) charpy V-notched impact test (impact energy), and (4) double shear strength test (ultimate and yield). The test data indicate excellent tensile strength, notched/unnotched tensile ratios, ductility, impact, and shear properties at all test temperatures, except at -200 F (-129 C) where the impact strength of the higher strength group of alloy steels, 4130 (Rc-37) and 4140 (Rc-44) decreased to approximately 9 ft. lbs. (12 joules) and 6 ft. lbs. (8 joules), respectively. Chemical, metallographic, and fractographic analyses were also performed to evaluate microstructure, microhardness and the effect of decrease in temperature on the ductile to brittle failure transition.

  12. Thermal and impact history of the H chondrite parent asteroid during metamorphism: Constraints from metallic Fe-Ni

    NASA Astrophysics Data System (ADS)

    Scott, Edward R. D.; Krot, Tatiana V.; Goldstein, Joseph I.; Wakita, Shigeru

    2014-07-01

    We have studied cloudy taenite, metallographic cooling rates, and shock effects in 30 H3-6 chondrites to elucidate the thermal and early impact history of the H chondrite parent body. We focused on H chondrites with old Ar-Ar ages (>4.4 Gyr) and unshocked and mildly shocked H chondrites, as strongly shocked chondrites with such old ages are very rare. Cooling rates for most H chondrites at 500 °C are 10-50 °C/Myr and do not decrease systematically with increasing petrologic type as predicted by the onion-shell model in which types 3-5 are arranged in concentric layers around a type 6 core. Some type 4 chondrites cooled slower than some type 6 chondrites and type 3 chondrites did not cool faster than other types, contrary to the onion-shell model. Cloudy taenite particle sizes, which range from 40 to 120 nm, are inversely correlated with metallographic cooling rates and show that the latter were not compromised by shock heating. The three H4 chondrites that were used to develop the onion-shell model, Ste. Marguerite, Beaver Creek, and Forest Vale, cooled through 500 °C at ⩾5000 °C/Myr. Our thermal modeling shows that these rates are 50× higher than could be achieved in a body that was heated by 26Al and cooled without disturbance by impact. Published Ar-Ar ages do not decrease systematically with increasing petrologic type but do correlate inversely with cloudy taenite particle size suggesting that impact mixing decreased during metamorphism. Metal and silicate compositions in regolith breccias show that impacts mixed material after metamorphism without causing significant heating. Impacts during metamorphism created Portales Valley and two other H6 chondrites with large metallic veins, excavated the fast-cooled H4 chondrites around 3-4 Myr after accretion, and mixed petrologic types. Metallographic data do not require catastrophic disruption by impact during cooling.

  13. Metallurgical causes for the occurrence of creep damage in longitudinally seam-welded Cr-Mo high-energy piping

    NASA Astrophysics Data System (ADS)

    Zhou, Gang

    A continuous occurrence of catastrophic failures, leaks and cracks of the Cr-Mo steam piping has created widespread utility concern for the integrity and serviceability of the seam-welded piping systems in power plants across USA. Cr-Mo steels are the materials widely used for elevated temperature service in fossil-fired generating stations. A large percentage of the power plant units with the Cr-Mo seam-welded steam piping have been in operation for a long duration such that the critical components of the units have been employed beyond the design life (30 or 40 years). This percentage will increase even more significantly in the near future. There is a strong desire to extend and thus there is a need to assess the remaining life of these units. Thus, understanding of the metallurgical causes for the failures and damage in the Cr-Mo seam-welded piping plays a major role in estimating possible life-extension and decision making on whether to operate, repair or replace. In this study, an optical metallographic method and a Cryo-Crack fractographic method have been developed for characterization and quantification of the damage in seam-welded steam piping. More than 500 metallographic assessments, from more than 25 power plants, have been accomplished using the optical metallographic method, and more than 200 fractographic specimens from 10 power plants have been evaluated using the "Cryo-Crack" fractographic technique. For comparison, "virgin" SA welds were fabricated using the Mohave welding procedure with re-N&T Mohave base metal with both "acid" and "basic" fluxes. The damage mechanism, damage distribution pattern, damage classification, correlation of the damage with the microstructural features of these SA welds and the impurity segregation patterns have been determined. A physical model for cavitation (leading to failure) in Cr-Mo SA weld metals and evaluation methodologies for high energy piping are proposed.

  14. Implications for Metallographic Cooling Rates, Derived from Fine-Scale Analytical Traverses Across Kamacite, Taenite, and Tetrataenite in the Butler Iron Meteorite

    NASA Technical Reports Server (NTRS)

    Jones, J. H.; Ross, D. K.; Chabot, N. L.; Keller, L. P.

    2016-01-01

    The "M-shaped" Ni concentrations across Widmanstatten patterns in iron meteorites, mesosiderites, and ordinary chondrites are commonly used to calculate cooling rates. As Ni-poor kamacite exolves from Ni-rich taenite, Ni concentrations build up at the kamacite-taenite interface because of the sluggish diffusivity of Ni. Quantitative knowledge of experimentally-determined Ni diffusivities, coupled with the shape of the M-profile, have been used to allow calculation of cooling rates that pertained at low temperatures, less than or equal to 500 C. However, determining Ni metallographic cooling rates are challenging, due to the sluggish diffusivity of Ni at low temperatures. There are three potential difficulties in using Ni cooling rates at low temperatures: (i) Ni diffusivities are typically extrapolated from higher-temperature measurements; (ii) Phase changes occur at low temperatures that may be difficult to take into account; and (iii) It appears that Ge in kamacite and taenite has continued to equilibrate (or attempted to equilibrate) at temperatures below those that formed the M-shaped Ni profile. Combining Ni measurements with those of other elements has the potential to provide a way to confirm or challenge Ni-determined cooling rates, as well as provide insight into the partitioning behaviors of elements during the cooling of iron meteorites. Despite these benefits, studies that examine elemental profiles of Ni along with other elements in iron meteorites are limited, often due to the low concentration levels of the other elements and associated analytical challenges. The Butler iron meteorite provides a good opportunity to conduct a multi-element analytical study, due to the higher concentration levels of key elements in addition to Fe and Ni. In this work, we perform combined analysis for six elements in the Butler iron to determine the relative behaviors of these elements during the evolution of iron meteorites, with implications for metallographic cooling rates.

  15. New Analysis Method Application in Metallographic Images through the Construction of Mosaics Via Speeded Up Robust Features and Scale Invariant Feature Transform

    PubMed Central

    Rebouças Filho, Pedro Pedrosa; Moreira, Francisco Diego Lima; Xavier, Francisco Geilson de Lima; Gomes, Samuel Luz; dos Santos, José Ciro; Freitas, Francisco Nélio Costa; Freitas, Rodrigo Guimarães

    2015-01-01

    In many applications in metallography and analysis, many regions need to be considered and not only the current region. In cases where there are analyses with multiple images, the specialist should also evaluate neighboring areas. For example, in metallurgy, welding technology is derived from conventional testing and metallographic analysis. In welding, these tests allow us to know the features of the metal, especially in the Heat-Affected Zone (HAZ); the region most likely for natural metallurgical problems to occur in welding. The expanse of the Heat-Affected Zone exceeds the size of the area observed through a microscope and typically requires multiple images to be mounted on a larger picture surface to allow for the study of the entire heat affected zone. This image stitching process is performed manually and is subject to all the inherent flaws of the human being due to results of fatigue and distraction. The analyzing of grain growth is also necessary in the examination of multiple regions, although not necessarily neighboring regions, but this analysis would be a useful tool to aid a specialist. In areas such as microscopic metallography, which study metallurgical products with the aid of a microscope, the assembly of mosaics is done manually, which consumes a lot of time and is also subject to failures due to human limitations. The mosaic technique is used in the construct of environment or scenes with corresponding characteristics between themselves. Through several small images, and with corresponding characteristics between themselves, a new model is generated in a larger size. This article proposes the use of Digital Image Processing for the automatization of the construction of these mosaics in metallographic images. The use of this proposed method is meant to significantly reduce the time required to build the mosaic and reduce the possibility of failures in assembling the final image; therefore increasing efficiency in obtaining results and expediting the decision making process. Two different methods are proposed: One using the transformed Scale Invariant Feature Transform (SIFT), and the second using features extractor Speeded Up Robust Features (SURF). Although slower, the SIFT method is more stable and has a better performance than the SURF method and can be applied to real applications. The best results were obtained using SIFT with Peak Signal-to-Noise Ratio = 61.38, Mean squared error = 0.048 and mean-structural-similarity = 0.999, and processing time of 4.91 seconds for mosaic building. The methodology proposed shows be more promissory in aiding specialists during analysis of metallographic images. PMID:28793412

  16. Holding fixture for metallographic mount polishing

    DOEpatents

    Barth, Clyde H.; Cramer, Charles E.

    1997-01-01

    A fixture for holding mounted specimens for polishing, having an arm; a body attached to one end of the arm, the body having at least one flange having an opening to accommodate a mounted specimen; and a means applying pressure against the outer surface of the mounted specimen to hold the specimen in contact with the polishing surface.

  17. Kinetics of electrolysis current reversal boriding of tool steels in a boron-containing oxychloride melt based on CaCl2

    NASA Astrophysics Data System (ADS)

    Chernov, Ya. B.; Filatov, E. S.

    2017-08-01

    The kinetics of thermal diffusion boriding in a melt based on calcium chloride with a boron oxide additive is studied using reversed current. The main temperature, concentration, and current parameters of the process are determined. The phase composition of the coating is determined by a metallographic method.

  18. Structure and Corrosion Resistance of Welded Joints of Alloy 1151 in Marine Atmosphere

    NASA Astrophysics Data System (ADS)

    Bakulo, A. V.; Yakushin, B. F.; Puchkov, Yu. A.

    2017-07-01

    The corrosion behavior of joints formed by TIG and IMIG welding from clad sheets of heat-hardenable aluminum alloy 1151 of the Al - Cu - Mg system is studied. The corrosion tests are performed in an aqueous solution of NaCl in a salt-spray chamber. The welded joints are subjected to a metallographic analysis.

  19. Evaluation of the MICAST #2-12 AI-7wt%Si Sample Directionally Solidified Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Tewari, Surendra N.; Ghods, Masoud; Angart, Samuel G.; Lauer, Mark; Grugel, Richard N.; Poirier, David R.

    2016-01-01

    The US team of the European led "MIcrostructure Formation in CASTing of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions" (MICAST) program recently received a third Aluminum - 7wt% silicon alloy that was processed in the microgravity environment aboard the International Space Station. The sample, designated MICAST#2-12, was directionally solidified in the Solidification with Quench Furnace (SQF) at a constant rate of 40micometers/s through an imposed temperature gradient of 31K/cm. Procedures taken to evaluate the state of the sample prior to sectioning for metallographic analysis are reviewed and rational for measuring the microstructural constituents, in particular the primary dendrite arm spacing (Lambda (sub1)), is given. The data are presented, put in context with the earlier samples, and evaluated in view of a relevant theoretical model.

  20. Department of Defense In-House RDT and E Activities

    DTIC Science & Technology

    1976-10-30

    BALLISTIC TESTS.FAC AVAL FCR TESIS OF SP ELELTRONIC’ FIl’ CON EQUIP 4 RELATED SYSTEMS E COMPONFNTZ, 35 INSTALLATION: MEDICAL BIOENGINEERINC- R&D LABORATORY...ANALYSIS OF CHEMICAL AND METALLOGRAPHIC EFFECTS, MICROBIOLOGICAL EFFECTS, CLIMATIC ENVIRONMENTAL EFFECTS. TEST AND EVALUATE WARHEADS AND SPECIAL...CCMMUNICATI’N SYST:M INSTRUMENTED DROP ZONES ENGINEERING TEST FACILITY INSTRUMENTATION CALIBRATICN FACILITY SCIENTIFIC COMPUTER CENTER ENVIRONMENTAL TESY

  1. Holding fixture for metallographic mount polishing

    DOEpatents

    Barth, C.H.; Cramer, C.E.

    1997-12-30

    A fixture is described for holding mounted specimens for polishing, having an arm; a body attached to one end of the arm, the body having at least one flange having an opening to accommodate a mounted specimen; and a means applying pressure against the outer surface of the mounted specimen to hold the specimen in contact with the polishing surface. 3 figs.

  2. Investigation of the fracture mechanism of Ti-5Al-2.5Sn at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Van Stone, R. H.; Low, J. R., Jr.; Shannon, J. L., Jr.

    1978-01-01

    Fractography and metallographic sectioning were used to investigate the influence of microstructure on the fracture mechanism and fracture toughness (KIC) of normal interstitial and extra low interstitial (ELI) Ti-5Al-25Sn at 20 K (-423 F) and 77 K (-320 F). Plates of each grade were mill annealed at 815 C followed by either air or furnace cooling. These variations in composition and cooling rate resulted in differences in the volume fraction and internal structure of the dispersed beta phase and in the ordering of the alpha matrix. The ELI alloys were tougher than the normal interstitial plates. KIC of the furnace-cooled ELI plate was 25% lower than that of the air-cooled ELI material. Variations in cooling rate had no influence of KIC of the normal interstitial alloys. Fractography showed that a large portion of the fracture surfaces were covered with elongated dimples. Metallographic sections of specimens deformed at 77 K showed that these features form at the intersections of slip bands or deformation twins with grain or twin boundaries. Ordering and higher interstitial levels increase the local strain in slip bands resulting in void nucleation at lower macroscopic strains and lower KIC values.

  3. In Situ Acoustic Monitoring of Thermal Spray Process Using High-Frequency Impulse Measurements

    NASA Astrophysics Data System (ADS)

    Tillmann, Wolfgang; Walther, Frank; Luo, Weifeng; Haack, Matthias; Nellesen, Jens; Knyazeva, Marina

    2018-01-01

    In order to guarantee their protective function, thermal spray coatings must be free from cracks, which expose the substrate surface to, e.g., corrosive media. Cracks in thermal spray coatings are usually formed because of tensile residual stresses. Most commonly, the crack occurrence is determined after the thermal spraying process by examination of metallographic cross sections of the coating. Recent efforts focus on in situ monitoring of crack formation by means of acoustic emission analysis. However, the acoustic signals related to crack propagation can be absorbed by the noise of the thermal spraying process. In this work, a high-frequency impulse measurement technique was applied to separate different acoustic sources by visualizing the characteristic signal of crack formation via quasi-real-time Fourier analysis. The investigations were carried out on a twin wire arc spraying process, utilizing FeCrBSi as a coating material. The impact of the process parameters on the acoustic emission spectrum was studied. Acoustic emission analysis enables to obtain global and integral information on the formed cracks. The coating morphology and coating defects were inspected using light microscopy on metallographic cross sections. Additionally, the resulting crack patterns were imaged in 3D by means of x-ray microtomography.

  4. Surface modification of AISI H13 tool steel by laser cladding with NiTi powder

    NASA Astrophysics Data System (ADS)

    Norhafzan, B.; Aqida, S. N.; Chikarakara, E.; Brabazon, D.

    2016-04-01

    This paper presents laser cladding of NiTi powder on AISI H13 tool steel surface for surface properties enhancement. The cladding process was conducted using Rofin DC-015 diffusion-cooled CO2 laser system with wavelength of 10.6 µm. NiTi powder was pre-placed on H13 tool steel surface. The laser beam was focused with a spot size of 90 µm on the sample surface. Laser parameters were set to 1515 and 1138 W peak power, 18 and 24 % duty cycle and 2300-3500 Hz laser pulse repetition frequency. Hardness properties of the modified layer were characterized by Wilson Hardness tester. Metallographic study and chemical composition were conducted using field emission scanning electron microscope and energy-dispersive X-ray spectrometer (EDXS) analysis. Results showed that hardness of NiTi clad layer increased three times that of the substrate material. The EDXS analysis detected NiTi phase presence in the modified layer up to 9.8 wt%. The metallographic study shows high metallurgical bonding between substrate and modified layer. These findings are significant to both increased hardness and erosion resistance of high-wear-resistant components and elongating their lifetime.

  5. Tribological characterization of the drill pipe tool joints reconditioned by using welding technologies

    NASA Astrophysics Data System (ADS)

    Caltaru, M.; Badicioiu, M.; Ripeanu, R. G.; Dinita, A.; Minescu, M.; Laudacescu, E.

    2018-01-01

    Drill pipe is a seamless steel pipe with upset ends fitted with special threaded ends that are known as tool joints. During drilling operations, the wall thickness of the drill pipe and the outside diameter of the tool joints will be gradually reduced due to wear. The present research work investigate the possibility of reconditioning the drill pipe tool joints by hardbanding with a new metal-cored coppered flux cored wire, Cr-Mo alloyed, using the gas metal active welding process, taking into considerations two different hardbanding technologies, consisting in: hardbanding drill pipe tool joints after removing the old hardbanding material and surface reconstruction with a compensation material (case A), and hardbanding tool joint drill pipe, without removing the old hardbanding material (case B). The present paper brings forward the experimental researches regarding the tribological characterization of the reconditioned drill pipe tool joint by performing macroscopic analyses, metallographic analyses, Vickers hardness measurement, chemical composition measurement and wear tests conducted on ball on disk friction couples, in order to certify the quality of the hardbanding obtained by different technological approaches, to validate the optimum technology.

  6. Effect of Solidification Behavior on Microstructures and Mechanical Properties of Ni-Cr-Fe Superalloy Investment Casting

    PubMed Central

    Kang, Maodong; Wang, Jun; Gao, Haiyan; Han, Yanfeng; Wang, Guoxiang; He, Shuxian

    2017-01-01

    The effect of solidification behavior on the microstructures and mechanical properties of Ni-Cr-Fe superalloy investment casting is given. Metallographic and image analysis have been used to quantitatively examine the microstructures’ evolution. For the parts with the thickness of 3 mm and 24 mm, the volume fraction and maximum equivalent radius of the Laves phase increases from 0.3% to 1.2%, from 11.7 μm to 23.4 μm, respectively. Meanwhile, the volume fraction and maximum equivalent radius of carbides increase from 0.3% to 0.5%, from 8.1 μm to 9.9 μm, respectively. In addition, the volume fraction of microporosity increases from 0.3% to 2.7%. As a result, the ultimate tensile strength is reduced from 1125.5 MPa to 820.9 MPa, the elongation from 13.3% to 7.7%, and the quality index from 1294.2 MPa to 954.0 MPa, respectively. A typical brittle fracture is observed on the tensile fracture. As the cooling rate decreases, the microstructures become coarser. PMID:28772611

  7. Anisotropy measurement of pyrolytic carbon layers of coated particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vesyolkin, Ju. A., E-mail: Ju.Ves@yandex.ru; Ivanov, A. S., E-mail: asi.kiae@gmail.com; Trushkina, T. V.

    2015-12-15

    Equipment at the National Research Center Kurchatov Institute intended for the anisotropy determination of pyrolytic carbon layers in coated particles (CPs) of the GT-MGR reactor is tested and calibrated. The dependence of the anisotropy coefficient on the size of the measurement region is investigated. The results of measuring the optical anisotropy factor (OPTAF) for an aluminum mirror, rutile crystal, and available CP samples with the known characteristics measured previously using ORNL equipment (United States) are presented. In addition, measurements of CP samples prepared at VNIINM are performed. A strong dependence of the data on the preparation quality of metallographic sectionsmore » is found. Our investigations allow us to make the conclusion on the working capacity of the existing equipment for measuring the anisotropy of pyrolytic carbon CP coatings using the equipment at the Kurchatov Institute with the relative error of about 1%. It is shown that the elimination of the errors caused by the stochastic fluctuations in a measuring path by mathematical processing of the signal allows us to decrease the relative error of OPTAF measurements to ∼0.3%.« less

  8. Heuristic Analysis Model of Nitrided Layers’ Formation Consisting of the Image Processing and Analysis and Elements of Artificial Intelligence

    PubMed Central

    Wójcicki, Tomasz; Nowicki, Michał

    2016-01-01

    The article presents a selected area of research and development concerning the methods of material analysis based on the automatic image recognition of the investigated metallographic sections. The objectives of the analyses of the materials for gas nitriding technology are described. The methods of the preparation of nitrided layers, the steps of the process and the construction and operation of devices for gas nitriding are given. We discuss the possibility of using the methods of digital images processing in the analysis of the materials, as well as their essential task groups: improving the quality of the images, segmentation, morphological transformations and image recognition. The developed analysis model of the nitrided layers formation, covering image processing and analysis techniques, as well as selected methods of artificial intelligence are presented. The model is divided into stages, which are formalized in order to better reproduce their actions. The validation of the presented method is performed. The advantages and limitations of the developed solution, as well as the possibilities of its practical use, are listed. PMID:28773389

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korol, A.A.; Korol, Y.A.; Kasich-Pilipenko, I.Y.

    Melted slip coatings were obtained and the structural changes in the coatings and their substrates upon simultaneous heating by concentrated solar radiant energy fluxes were studied. Well known wear and corrosion resistant TiC-Ni-B and WC-Ni-B coatings 50 to 300 microns thick applied by the slip method to flat or cylindrical stainless steel and titanium specimens were examined. The specimens were heated in an SGU-5 solar heating installation with a 2 m diameter parabolic mirror concentrator in a process chamber with a quartz window under a vacuum. Metallographic analysis revealed a finely dispersed heterogeneous structure with no visible porosity, good bondingmore » of coating to substrate, and uniform distribution of carbide phase in the metal matrix of the TiC-Ni-B coatings on titanium. Results were similar for the other coatings, indicating that concentrated solar energy can produce coatings with satisfactory surface quality, good density, and a framework structure. The coating interacted with the substrate by diffusion. Most of the volume of the substrate underwent no significant changes, indicating good bond strength between coatings and substrate.« less

  10. Mach 1 oxidation of thoriated nickel chromium at 1204 C /2200 F/.

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Sanders, W. A.

    1972-01-01

    Electropolished and ground samples of TD-NiCr were exposed to a 1-atm, Mach 1 gas stream at 1204 C for times up to 50 hr. The samples were subjected to both cyclic and isothermal exposure. Weight change, metal loss, X-ray diffraction, metallographic, and electron microprobe analyses were performed. Neither surface preparation nor cyclic-against-isothermal-exposure conditions had a strong effect on the oxidation behavior of the alloy. Initially, a Cr2O3 layer was formed whose volatilization resulted in a very rapid loss of metal - more than 40 microns in the first hour. At about 1 hr, the Cr2O3 layer broke down and NiO began to cover the surface. By 5 hr, the NiO had covered the surface and the rate of loss slowed. The rate-controlling step was diffusion of Cr through NiO.

  11. Low-Cycle Fatigue Behavior of Die-Cast Mg Alloy AZ91

    NASA Astrophysics Data System (ADS)

    Rettberg, Luke; Anderson, Warwick; Jones, J. Wayne

    An investigation has been conducted on the influence of microstructure and artificial aging response (T6) on the low-cycle fatigue behavior of super vacuum die-cast (SVDC) AZ91. Fatigue lifetimes were determined from total strain-controlled fatigue tests for strain amplitudes of 0.2%, 0.4% and 0.6%, under fully reversed loading at a frequency of 5 Hz. Cyclic stress-strain behavior was determined using incremental step test (IST) methods. Two locations in a prototype casting with different thicknesses and, therefore, solidification rates, microstructure and porosity, were examined. In general., at all total strain amplitudes fatigue life was unaffected by microstructure refinement and was attributed to significant levels of porosity. Cyclic softening and a subsequent increased cyclic hardening rate, compared to monotonic tests, were observed, independent of microstructure. These results, fractography and damage accumulation processes, determined from metallographic sectioning, are discussed.

  12. External stress-corrosion cracking of a 1.22-m-diameter type 316 stainless steel air valve

    NASA Technical Reports Server (NTRS)

    Moore, Thomas J.; Telesman, Jack; Moore, Allan S.; Johnson, Dereck F.; Kuivinen, David E.

    1993-01-01

    An investigation was conducted to determine the cause of the failure of a massive AISI Type 316 stainless steel valve which controlled combustion air to a jet engine test facility. Several through-the-wall cracks were present near welded joints in the valve skirt. The valve had been in outdoor service for 18 years. Samples were taken in the cracked regions for metallographic and chemical analyses. Insulating material and sources of water mist in the vicinity of the failed valve were analyzed for chlorides. A scanning electron microscope was used to determine whether foreign elements were present in a crack. On the basis of the information generated, the failure was characterized as external stress-corrosion cracking. The cracking resulted from a combination of residual tensile stress from welding and the presence of aqueous chlorides. Recommended countermeasures are included.

  13. The laser welding technique applied to the non precious dental alloys procedure and results.

    PubMed

    Bertrand, C; Le Petitcorps, Y; Albingre, L; Dupuis, V

    2001-03-10

    The laser welding technique was chosen for its versatility in the repair of dental metal prosthesis. The aim of this research is to assess the accuracy, quality and reproducibility of this technique as applied to Ni-Cr-Mo and Cr-Co-Mo alloys often used to make prosthesis The alloy's ability to weld was evaluated with a pulsed Nd-Yag Laser equipment. In order to evaluate the joining, various cast wires with different diameters were used. The efficiency of the joining was measured with tensile tests. In order to understand this difference, metallographic examinations and X-Ray microprobe analysis were performed through the welded area and compared with the cast part. It was found that a very slight change in the chemistry of the Ni-Cr alloys had a strong influence on the quality of the joining. The Co-Cr alloy presented an excellent weldability. A very important change in the microstructure due to the effect of the laser was pointed out in the welding zone, increasing its micro-hardness. The higher level of carbon and boron in one of the two Ni-Cr was found to be responsible for its poor welding ability. However for the others, the maximum depth of welding was found to be around 2mm which is one of the usual thicknesses of the components which have to be repaired.

  14. Control of molten salt corrosion of fusion structural materials by metallic beryllium

    NASA Astrophysics Data System (ADS)

    Calderoni, P.; Sharpe, P.; Nishimura, H.; Terai, T.

    2009-04-01

    A series of tests have been performed between 2001 and 2006 at the Safety and Tritium Applied Research facility of the Idaho National Laboratory to demonstrate chemical compatibility between the molten salt flibe (2LiF + BeF 2 in moles) and fusion structural materials once suitable fluoride potential control methods are established. The tests adopted metallic beryllium contact as main fluoride potential control, and the results have been published in recent years. A further step was to expose two specimens of low activation ferritic/martensitic steel 9Cr-2W to static corrosion tests that include an active corrosion agent (hydrofluoric gas) in controlled conditions at 530 °C, and the results of the tests are presented in this paper. The results confirmed the expected correlation of the HF recovery with the concentration of metallic impurities dissolved in the salt because of specimen corrosion. The metals concentration dropped to levels close to the detectable limit when the beryllium rod was inserted and increased once the content of excess beryllium in the system had been consumed by HF reduction and specimen corrosion progressed. Metallographic analysis of the samples after 500 h exposure in reactive conditions showed evidence of the formation of unstable chromium oxide layers on the specimen's surface.

  15. Control of molten salt corrosion of fusion structural materials by metallic beryllium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Calderoni; P. Sharpe; H. Nishimura

    2009-04-01

    A series of tests have been performed between 2001 and 2006 at the Safety and Tritium Applied Research facility of the Idaho National Laboratory to demonstrate chemical compatibility between the molten salt flibe (2LiF+BeF2 in moles) and fusion structural materials once suitable fluoride potential control methods are established. The tests adopted metallic beryllium contact as main fluoride potential control, and the results have been published in recent years. A further step was to expose two specimens of low activation ferritic/martensitic steel 9Cr-2W to static corrosion tests that include an active corrosion agent (hydrofluoric gas) in controlled conditions at 530 C,more » and the results of the tests are presented in this paper. The results confirmed the expected correlation of the HF recovery with the concentration of metallic impurities dissolved in the salt because of specimen corrosion. The metals concentration dropped to level close to the detectable limit when the beryllium rod was inserted and increased once the content of excess beryllium in the system had been consumed by HF reduction and specimens corrosion progressed. Metallographic analysis of the samples after 500 hours exposure in reactive conditions showed evidence of the formation of unstable chromium oxide layers on the specimens surface.« less

  16. Hybrid Laser-Arc Welding Tanks Steels

    NASA Astrophysics Data System (ADS)

    Turichin, G.; Tsibulskiy, I.; Kuznetsov, M.; Akhmetov, A.; Klimova-Korsmik, O.

    2016-04-01

    The results investigate hybrid laser-arc welding of high strength steels using design responsible metallic construction and the highest strength body of vehicles. Welds from modern high strength steels grade Hardox 400, Hardox 450, Armox 600T and AB were created. High power fiber laser LS-15 with output 15 kW and arc rectifier VDU - 1500 DC were used in the experiment. Results of the metallographic research and mechanical tests are presented.

  17. Effect of Etching Methods in Metallographic Studies of Duplex Stainless Steel 2205

    NASA Astrophysics Data System (ADS)

    Kisasoz, A.; Karaaslan, A.; Bayrak, Y.

    2017-03-01

    Three different etching methods are used to uncover the ferrite-austenite structure and precipitates of secondary phases in stainless steel 22.5% Cr - 5.4% Ni - 3% Mo - 1.3% Mn. The structure is studied under a light microscope. The chemical etching is conducted in a glycerol solution of HNO3, HCl and HF; the electrochemical etching is conducted in solutions of KOH and NaOH.

  18. Environmental Assisted Cracking in High Hardness Armor Steel

    DTIC Science & Technology

    1985-09-01

    Longitudinal and transverse tension tests (ASTM E8-81) utilizing flat dogbane specimens, and subsize Charpy impact tests (ASTM 23-81) were performed on part...had been obtained. Longitudinal and transverse tension tests (ASTM E8-81) utilizing flat dogbane specimens, and subsize Charpy impact tests (ASTM 23... Charpy and tensile bar surfaces. All of the optical metallography samples were prepared using standard metallographic practices. The optical specimens

  19. A STUDY OF THE HARDNESS OF SEVERAL USMC INCONEL TUBE WELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owczarski, W.A.

    1960-01-01

    An investigation was conducted to determine if spontaneous hardening took place in a series of welded tube joints made with INCO-weld A wire causing failure in bend tests. Summaries of bend test data are given along with results of metallographic examination and hardness surveys. It was concluded that the failures of bend specimens were due to excessive fissuring not associated with hardness. (J.R.D.)

  20. Investigation of gold embrittlement in connector solder joints

    NASA Technical Reports Server (NTRS)

    Lane, F. L.

    1972-01-01

    An investigation was performed to determine to what extent typical flight connector solder joints may be embrittled by the presence of gold. In addition to mapping of gold content in connector solder joints by an electron microprobe analyzer, metallographic examinations and mechanical tests (thermal shock, vibration, impact and tensile strength) were also conducted. A description of the specimens and tests, a discussion of the data, and some conclusions are presented.

  1. Porosity Evolution in a Creeping Single Crystal (Preprint)

    DTIC Science & Technology

    2012-08-01

    1] indicated that the growth of initially present processing induced voids in a nickel based single crystal superalloy played a significant role in...processing induced voids in a nickel based single crystal superalloy played a significant role in limiting creep life. Also, creep tests on single...experimental observations of creep deformation and failure of a nickel based single crystal superalloy, [1, 2]. Metallographic observations have shown that Ni

  2. Corrosion-resistant antifretting coating for the protection of blade locking pieces in GTE compressors and fans

    NASA Astrophysics Data System (ADS)

    Muboyadzhyan, S. A.; Gorlov, D. S.; Egorova, L. P.; Bulavintseva, E. E.

    2014-09-01

    The properties of a corrosion-resistant antifretting coating on EP866Sh steel and VT8M-1 titanium alloy samples are studied. The results of corrosion resistance, heat resistance, fretting resistance, long-term strength, and high-cycle fatigue tests and the results of physical metallurgy and metallographic investigations of the samples with the coating before and after the tests are presented.

  3. Isothermal Damage and Fatigue Behavior of SCS-6/Timetal 21S [0/90](Sub S) Composite at 650 Deg C

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.

    1994-01-01

    The isothermal fatigue damage and life behaviors of SCS-6/Timetal 21S (0/90)s were investigated at 650 C. Strain ratcheting and degradation of the composite's static elastic modulus were carefully monitored as functions of cycles to indicate damage progression. Extensive fractographic and metallographic analyses were conducted to determine damage/failure mechanisms. Resulting fatigue lives show considerable reductions in comparison to (0) reinforced titanium matrix composites subjected to comparable conditions. Notable stiffness degradations were found to occur after the first cycle of loading, even at relatively low maximum stress levels, where cyclic lives are greater than 25,000 cycles. This was attributed to the extremely weak fiber/matrix bond which fails under relatively low transverse loads. Stiffness degradations incurred on first cycle loadings and degradations thereafter were found to increase with increasing maximum stress. Environmental effects associated with oxidation of the (90) fiber interfaces clearly played a role in the damage mechanisms as fracture surfaces revealed environment assisted matrix cracking along the (90) fibers. Metallographic analysis indicated that all observable matrix fatigue cracks initiated at the (90) fiber/matrix interfaces. Global de-bonding in the loading direction was found along the (90) fibers. No surface initiated cracks were evident and minimal if any (0) fiber cracking was visible.

  4. Kinetics and mechanism of the oxidation process of two-component Fe-Al alloys

    NASA Technical Reports Server (NTRS)

    Przewlocka, H.; Siedlecka, J.

    1982-01-01

    The oxidation process of two-component Fe-Al alloys containing up to 7.2% Al and from 18 to 30% Al was studied. Kinetic measurements were conducted using the isothermal gravimetric method in the range of 1073-1223 K and 1073-1373 K for 50 hours. The methods used in studies of the mechanism of oxidation included: X-ray microanalysis, X-ray structural analysis, metallographic analysis and marker tests.

  5. Identification and distribution of inclusions in derby and ingot uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, C.M.; Vaughan, D.A.

    1953-08-31

    Inclusions in derby and ingot uranium have been identified by X-ray diffraction methods. Metallographic and microradiographic examinations have shown that inclusions of MgF2, UO2, UN, and UO are concentrated at the top of derby and ingot metal by gravity separation. UC inclusions are distributed throughout the ingot metal. The amount of the carbide phase in the ingot varies with the temperature maintained during remelt of derby metal.

  6. Initial Assessment of CSA Group Niobium Boron Based Coatings on 4340 Steel

    DTIC Science & Technology

    2017-07-01

    Technical Report ARWSB-TR-17026 Initial Assessment of CSA Group Niobium- Boron Based Coatings on 4340 Steel C.P. Mulligan...REPORT TYPE Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Initial Assessment of CSA Group Niobium- Boron Based Coatings on 4340...metallographic mounts reported as (1) thin and (2) thick Niobium- Boron (Nb-B) type coatings on steel. CSA Group is interested in providing coatings for potential

  7. Failure Analysis of the Main Rotor Retention Nut from AH-64 Helicopter

    DTIC Science & Technology

    1992-06-01

    corrosion , and electrochemical tests. The chemi- cal composition of the steel was well within the contractors specification and met the in- dustry standards...1. Additionally, the contractor specification meets the industry standards for the chemical composition for maraging C-250 grade steel . Table 1...metallographic analy- sis of both failed and intact nuts; chemical analysis of the 18 Ni maraging steel C-250 grade steel ; mechanical property, stress

  8. The characteristics of welded joints for air conditioning application

    NASA Astrophysics Data System (ADS)

    Weglowski, M. St.; Weglowska, A.; Miara, D.; Kwiecinski, K.; Błacha, S.; Dworak, J.; Rykala, J.; Pikula, J.; Ziobro, G.; Szafron, A.; Zimierska-Nowak, P.; Richert, M.; Noga, P.

    2017-10-01

    In the paper the results of metallographic examination of welded joints for air-conditioning elements are presented. The European directives 2006/40/EC on the greenhouse gasses elimination demand to stop using traditional refrigerant and to change it to R744 (CO2) medium in air conditioning installation. The R744 refrigerant is environmental friendly medium if compared with standard solution such as R12, R134a or R1234yf and safer for passengers than R1234yf. The non-standard thermodynamic parameters of the R744 which translate into high pressure and high temperature require specific materials to develop the shape and to specify the technology of manufacturing for the particular elements of the conduits and moreover the technologies of joining for the whole structure, which would meet the exploitation requirements of the new air-conditioning system. To produce the test welded joints of stainless steels four different joining technologies were applied: laser welding, plasma welding, electron beam welding as well as high speed rotation welding. This paper describes the influence of the selected welding process on the macrostructure and microstructure of welded joints of AISI 304 and AISI 316L steels. The results indicated that plasma welding laser welding and electron beam welding technologies guaranty the proper quality of welded joints and can be used for the air conditioning application in automotive industry. However, high speed rotation welding not guarantee the good quality of welded joints and cannot be used for above application.

  9. Consideration of wear rates at high velocity

    NASA Astrophysics Data System (ADS)

    Hale, Chad S.

    The development of the research presented here is one in which high velocity relative sliding motion between two bodies in contact has been considered. Overall, the wear environment is truly three-dimensional. The attempt to characterize three-dimensional wear was not economically feasible because it must be analyzed at the micro-mechanical level to get results. Thus, an engineering approximation was carried out. This approximation was based on a metallographic study identifying the need to include viscoplasticity constitutive material models, coefficient of friction, relationships between the normal load and velocity, and the need to understand wave propagation. A sled test run at the Holloman High Speed Test Track (HHSTT) was considered for the determination of high velocity wear rates. In order to adequately characterize high velocity wear, it was necessary to formulate a numerical model that contained all of the physical events present. The experimental results of a VascoMax 300 maraging steel slipper sliding on an AISI 1080 steel rail during a January 2008 sled test mission were analyzed. During this rocket sled test, the slipper traveled 5,816 meters in 8.14 seconds and reached a maximum velocity of 1,530 m/s. This type of environment was never considered previously in terms of wear evaluation. Each of the features of the metallography were obtained through micro-mechanical experimental techniques. The byproduct of this analysis is that it is now possible to formulate a model that contains viscoplasticity, asperity collisions, temperature and frictional features. Based on the observations of the metallographic analysis, these necessary features have been included in the numerical model, which makes use of a time-dynamic program which follows the movement of a slipper during its experimental test run. The resulting velocity and pressure functions of time have been implemented in the explicit finite element code, ABAQUS. Two-dimensional, plane strain models were used to determine the state of stress within the slipper and the pressure distribution along the bottom. Local submodel collisions between the slipper and a 6 mum radius hemispherical asperity were analyzed to determine mechanical and melt wear rates. A simplified damage criterion of maximum Mises stress was used to determine the damaged volume during the slipper and asperity collision. Overall, the model predicts a total wear volume that is approximately 36% of the total wear measured during the metallographic analysis.

  10. Study of gas tungsten arc welding procedures for tantalum alloy T-111 (Ta-8 W-2Hf) plate

    NASA Technical Reports Server (NTRS)

    Gold, R. E.; Kesterson, R. L.

    1973-01-01

    Methods of eliminating or reducing underbread cracking in multipass GTA welds in thick T-111 plate were studied. Single V butt welds prepared using experimental filler metal compositions and standard weld procedures resulted in only moderate success in reducing underbread cracking. Subsequent procedural changes incorporating manual welding, slower weld speeds, and three or fewer fill passes resulted in crack-free single V welds only when the filler metal was free of hafnium. The double V joint design with successive fill passes on opposite sides of the joint produced excellent welds. The quality of each weld was determined metallographically since the cracking, when present, was very slight and undetectable using standard NDT techniques. Tensile and bend tests were performed on selected weldments. The inherent filler metal strength and the joint geometry determined the strength of the weldment. Hardness and electron beam microprobe traverses were made on selected specimens with the result that significant filler metal-base metal dilution as well as hafnium segregation was detected. A tentative explanation of T-111 plate underbread cracking is presented based on the intrinsic effects of hafnium in the weldment.

  11. High Strain Rate Mechanical Properties of Epoxy and Epoxy-Based Particulate Composites (Preprint)

    DTIC Science & Technology

    2007-05-01

    WC) and titanium alloy (Ti- 6Al - 4V ) bar materials available. For all bar systems, the properties of the sample are determined by measuring the...metallographically-polished, carbon-coated specimens provided adequate contrast between the aluminum particles, the epoxy matrix and any porosity present after...The difference between the two measures of particle size can be explained by the higher levels of porosity observed in the Epoxy-65H2 specimen, which

  12. Characterization of Metals Melting Discs: Skylab Experiment M551

    NASA Technical Reports Server (NTRS)

    Monroe, R. E.

    1973-01-01

    Information developed to characterize flight and ground based samples from the metals melting experiment is detailed in this report. Included are the characteristics determined by nondestructive examination, visual observation, metallographic examination and posttest measurements. Comparisons of the flight and ground based discs showed that an electron beam heat source can be used successfully in zero gravity for cutting, welding, or melting. Few differences were observed that could be attributed to the absence of gravity in these operations.

  13. Ternary phase equilibria in transition metal-boron-carbon-silicon systems. Part I. Related binary systems, Volume III. Systems Mo-B and W-B. Technical documentary report, 1 November 1964-1 June 1965

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudy, E.; Windisch.

    1965-07-01

    On the basis of X-ray, melting point, metallographic, and differential thermoanalytical studies on molybdenum-boron and tungsten-boron alloys, constitution diagrams for both binary systems are presented. In the high temperature regions, the newly established phase diagrams differ significantly from previously reported systems. The results are discussed and compared with available literature data.

  14. Calculation and experimental determination of the geometric parameters of the coatings by laser cladding

    NASA Astrophysics Data System (ADS)

    Birukov, V. P.; Fichkov, A. A.

    2017-12-01

    In the present work the experiments on laser cladding of powder Fe-B-Cr-6-2 on samples of steel 20. Metallographic studies of geometric parameters of deposited layers and the depth of the heat affected zone (HAZ). Using is the method of full factorial experiment (FFE) mathematical dependences of the geometrical sizes of the deposited layers of processing modes. Deviation of calculated values from experimental data is not more than 3%.

  15. Density Determination and Metallographic Surface Preparation of Electron Beam Melted Ti6Al4V

    DTIC Science & Technology

    2015-06-02

    Electron Microscopy SiC Silicon Carbide Ti6Al4V Titanium-6Aluminum-4Vanadium WRNMMC Walter Reed National Military Medical Center Wd Dry...polishing with silicon carbide ( SiC ) papers and colloidal silica suspension to produce samples with varying surface topographies. Surfaces were...manufacturing process. For titanium alloys, the grinding media typically used is silicon carbide ( SiC ) paper. Table 1 lists grades of SiC papers that are

  16. Effect of Silicon Content on Carbide Precipitation and Low-Temperature Toughness of Pressure Vessel Steels

    NASA Astrophysics Data System (ADS)

    Ruan, L. H.; Wu, K. M.; Qiu, J. A.; Shirzadi, A. A.; Rodionova, I. G.

    2017-05-01

    Cr - Mn - Mo - Ni pressure vessel steels containing 0.54 and 1.55% Si are studied. Metallographic and fractographic analyses of the steels after tempering at 650 and 700°C are performed. The impact toughness at - 30°C and the hardness of the steels are determined. The mass fraction of the carbide phase in the steels is computed with the help of the J-MatPro 4.0 software.

  17. Proceedings of the Tri-Service Gun Tube Wear and Erosion Symposium, ARRADCOM, Dover, NJ, 29-31 March 1977

    DTIC Science & Technology

    1977-03-01

    failure was due to the material property or plating defects . In view of the electrolyte being of a proprietary nature and inconsistencies were...rifling action along the entire length of each barrel with no major pitting or other defects . Metallographic examination of the cross-section of the...Ethylenediamine, 98% _ - 52 Sodium borohydride, 98% I _ - 1 Dimethylamine borane ( DMAE ) - - 4 Sodium hypophosphite (H120) 22.5 15 - - Lead acetate (31120

  18. Operational Test Instrumentation Guide.

    DTIC Science & Technology

    1981-11-01

    Water Vapor 1 oz/100 in2/day +0.02 gm/100 Transmission (25 gm/645 cm2 /day) in2/day H-12 Parameter Range Accuracy Corrosion Weight Loss Unlimited +10 mg...Abrasion Resistance Unlimited ( weight loss ) +10 mg Metallographic Microscope up to 1,500X Magnification Examination Rockwell Hardness Any +1 point...S-band conversion is possible in approximately 30 days. b Limitations. (o Large data errors at elevation angles below 3 degrees. A-21 o Loss of

  19. Post examination of copper ER sensors exposed to bentonite

    NASA Astrophysics Data System (ADS)

    Kosec, Tadeja; Kranjc, Andrej; Rosborg, Bo; Legat, Andraž

    2015-04-01

    Copper corrosion in saline solutions under oxic conditions is one of concerns for the early periods of disposal of spent nuclear fuel in deep geological repositories. The main aim of the study was to investigate the corrosion behaviour of copper during this oxic period. The corrosion rate of pure copper was measured by means of thin electrical resistance (ER) sensors that were placed in a test package containing an oxic bentonite/saline groundwater environment at room temperature for a period of four years. Additionally, the corrosion rate was monitored by electrochemical impedance spectroscopy (EIS) measurements that were performed on the same ER sensors. By the end of the exposure period the corrosion rate, as estimated by both methods, had dropped to approximately 1.0 μm/year. The corrosion rate was also estimated by the examination of metallographic cross sections. The post examination tests which were used to determine the type and extent of corrosion products included different spectroscopic techniques (XRD and Raman analysis). It was confirmed that the corrosion rate obtained by means of physical (ER) and electrochemical techniques (EIS) was consistent with that estimated from the metallographic cross section analysis. The corrosion products consisted of cuprous oxide and paratacamite, which was very abundant. From the types of attack it can be concluded that the investigated samples of copper in bentonite underwent uneven general corrosion.

  20. Titanium-35niobium alloy as a potential material for biomedical implants: In vitro study.

    PubMed

    de Andrade, Dennia Perez; de Vasconcellos, Luana Marotta Reis; Carvalho, Isabel Chaves Silva; Forte, Lilibeth Ferraz de Brito Penna; de Souza Santos, Evelyn Luzia; Prado, Renata Falchete do; Santos, Dalcy Roberto Dos; Cairo, Carlos Alberto Alves; Carvalho, Yasmin Rodarte

    2015-11-01

    Research on new titanium alloys and different surface topographies aims to improve osseointegration. The objective of this study is to analyze the behavior of osteogenic cells cultivated on porous and dense samples of titanium-niobium alloys, and to compare them with the behavior of such type of cells on commercial pure titanium. Samples prepared using powder metallurgy were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and metallographic and profilometer analyses. Osteogenic cells from newborn rat calvaria were plated over different groups: dense or porous samples composed of Ti or Ti-35niobium (Nb). Cell adhesion, cell proliferation, MTT assay, cell morphology, protein total content, alkaline phosphatase activity, and mineralization nodules were assessed. Results from XRD and EDS analysis confirmed the presence of Ti and Nb in the test alloy. Metallographic analysis revealed interconnected pores, with pore size ranging from 138 to 150μm. The profilometer analysis detected the greatest rugosity within the dense alloy samples. In vitro tests revealed similar biocompatibility between Ti-35Nb and Ti; furthermore, it was possible to verify that the association of porous surface topography and the Ti-35Nb alloy positively influenced mineralized matrix formation. We propose that the Ti-35Nb alloy with porous topography constitutes a biocompatible material with great potential for use in biomedical implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Designing Pulse Laser Surface Modification of H13 Steel Using Response Surface Method

    NASA Astrophysics Data System (ADS)

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2011-01-01

    This paper presents a design of experiment (DOE) for laser surface modification process of AISI H13 tool steel in achieving the maximum hardness and minimum surface roughness at a range of modified layer depth. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). The response surface method with Box-Behnken design approach in Design Expert 7 software was used to design the H13 laser surface modification process. Metallographic study and image analysis were done to measure the modified layer depth. The modified surface roughness was measured using two-dimensional surface profilometer. The correlation of the three laser processing parameters and the modified surface properties was specified by plotting three-dimensional graph. The hardness properties were tested at 981 mN force. From metallographic study, the laser modified surface depth was between 37 μm and 150 μm. The average surface roughness recorded from the 2D profilometry was at a minimum value of 1.8 μm. The maximum hardness achieved was between 728 and 905 HV0.1. These findings are significant to modern development of hard coatings for wear resistant applications.

  2. Oxidation of SUS-316 stainless steel for fast breeder reactor fuel cladding under oxygen pressure controlled by Ni/NiO oxygen buffer

    NASA Astrophysics Data System (ADS)

    Saito, Minoru; Furuya, Hirotaka; Sugisaki, Masayasu

    1985-09-01

    Oxidation of SUS-316 stainless steel for a fast breeder reactor fuel cladding was examined in the temperature range of 843-1010 K under the oxygen pressure of 1017 t - 10 t-13 Pa hy use of an experimental technique of a Ni/NiO oxygen buffer. The formation of the duplex oxide layer, i.e. an outer Fe 3O 4 layer and an inner (Fe, Cr, Ni)-spinel layer, was observed and the oxidation kinetics was found to obey the parabolic rate law. The oxygen pressure and temperature dependence of the parabolic rate constant kp( PO2, T) was determined as follows: kp( PO2, T)/ kg2 · m-1 · s-1 = 0.170( PO2/ Pa) 0.141exp[-114 × 10 3/( RT/ J)]. On the basis of the oxidation kinetics and the metallographic information, the outward diffusion of Fe in the outer oxide layer was assigned to be the rate-determining process.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ay, H.; Özyurek, D.; Yıldırım, M., E-mail: musayildirim@karabuk.edu.tr

    In this study, the wear properties of in-situ 7075 Al-Ti composites produced by powder metallurgy route were investigated. Different amount of Ti (2, 4, 6 %) added to gas atomized 7075 Al alloy powders and they were mixed in turbula with 47rpm for 45 minutes. Then the mixed powders were pre-shaped by press under 600 MPa pressure. The samples were cooled in the furnace after sintered at 580 °C for 4 hours in the atmosphere controlled furnace. Standard metallographic process such as grinding, polishing and etching were applied to sintered samples. The hardness values were measured. Scanning Electron Microscope (SEM), X-Raymore » Diffraction (XRD) examines were carried out. The wear tests were performed in a pin-on disc type wear apparatus with 1 ms{sup −1} sliding speed at six different sliding distance (500-3000 m) under 30 N loads. As a result of studies, hardness values were increased with increasing Ti content, in addition the weight losses were decreased with increasing Ti amount.« less

  4. Automated Plasma Spray (APS) process feasibility study: Plasma spray process development and evaluation

    NASA Technical Reports Server (NTRS)

    Fetheroff, C. W.; Derkacs, T.; Matay, I. M.

    1979-01-01

    An automated plasma spray (APS) process was developed to apply two layer (NiCrAlY and ZrO2-12Y2O3) thermal-barrier coatings to aircraft gas turbine engine blade airfoils. The APS process hardware consists of four subsystems: a mechanical blade positioner incorporating two interlaced six-degree-of-freedom assemblies; a noncoherent optical metrology subsystem; a microprocessor-based adaptive system controller; and commercial plasma spray equipment. Over fifty JT9D first stage turbine blades specimens were coated with the APS process in preliminary checkout and evaluation studies. The best of the preliminary specimens achieved an overall coating thickness uniformity of + or - 53 micrometers, much better than is achievable manually. Factors limiting this performance were identified and process modifications were initiated accordingly. Comparative evaluations of coating thickness uniformity for manually sprayed and APS coated specimens were initiated. One of the preliminary evaluation specimens was subjected to a torch test and metallographic evaluation.

  5. Systematic Destruction of Electronic Parts for Aid in Electronic Failure Analysis

    NASA Technical Reports Server (NTRS)

    Decker, S. E.; Rolin, T. D.; McManus, P. D.

    2012-01-01

    NASA analyzes electrical, electronic, and electromechanical (EEE) parts used in space vehicles to understand failure modes of these components. Operational amplifiers and transistors are two examples of EEE parts critical to NASA missions that can fail due to electrical overstress (EOS). EOS is the result of voltage or current over time conditions that exceeds a component s specification limit. The objective of this study was to provide known voltage pulses over well-defined time intervals to determine the type and extent of damage imparted to the device. The amount of current was not controlled but measured so that pulse energy was determined. The damage was ascertained electrically using curve trace plots and optically using various metallographic techniques. The resulting data can be used to build a database of physical evidence to compare to damaged components removed from flight avionics. The comparison will provide the avionics failure analyst necessary information about voltage and times that caused flight or test failures when no other electrical data is available.

  6. Effect of Deformation Parameters on Microstructure and Properties During DIFT of X70HD Pipeline Steel

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Zhu, Wei; Xiao, Hong; Zhang, Liang-liang; Qin, Hao; Yu, Yue

    2018-02-01

    Grain refinement is a critical approach to improve the strength of materials without damaging the toughness. The grains of deformation-induced ferrite are considerably smaller than those of proeutectoid ferrite. Grain refinement is crucial to the application of deformation-induced ferrite. The composition of ferrite and bainite or martensite is important in controlling the performance of X70HD pipeline steel, and cooling significantly influences the control of their ratio and grain size. By analyzing the static and dynamic phase-transition points using Gleeble-3800 thermal simulator, thermal simulations were performed through two-stage deformations in the austenite zone. Ferrite transformation rules were studied with thermal simulation tests under different deformation and cooling parameters based on the actual production of cumulative deformation. The influence of deformation parameters on the microstructure transformation was analyzed. Numerous fine-grain deformation-induced ferrites were obtained by regulating various parameters, including deformation temperature, strain rate, cooling rate, final cooling temperature and other parameters. Results of metallographic observation and microtensile testing revealed that the selection of appropriate parameters can refine the grains and improve the performance of the X70HD pipeline steel.

  7. Continuous Cooling Transformation in Cast Duplex Stainless Steels CD3MN and CD3MWCuN

    NASA Astrophysics Data System (ADS)

    Kim, Yoon-Jun; Chumbley, L. Scott; Gleeson, Brian

    2008-04-01

    The kinetics of brittle phase transformation in cast duplex stainless steels CD3MN and CD3MWCuN was investigated under continuous cooling conditions. Cooling rates slower than 5 °C/min. were obtained using a conventional tube furnace with a programable controller. In order to obtain controlled high cooling rates, a furnace equipped to grow crystals by means of the Bridgman method was used. Samples were soaked at 1100 °C for 30 min and cooled at different rates by changing the furnace position at various velocities. The velocity of the furnace movement was correlated to a continuous-cooling-temperature profile for the samples. Continuous-cooling-transformation (CCT) diagrams were constructed based on experimental observations through metallographic sample preparations and optical microscopy. These are compared to calculated diagrams derived from previously determined isothermal transformation diagrams. The theoretical calculations employed a modified Johnson-Mehl-Avrami (JMA) equation (or Avrami equation) under assumption of the additivity rule. Rockwell hardness tests were made to present the correlation between hardness change and the amount of brittle phases (determined by tint-etching to most likely be a combination of sigma + chi) after cooling.

  8. Metallographic Preparation of Space Shuttle Reaction Control System Thruster Electron Beam Welds for Electron Backscatter Diffraction

    NASA Technical Reports Server (NTRS)

    Martinez, James

    2011-01-01

    A Space Shuttle Reaction Control System (RCS) thruster failed during a firing test at the NASA White Sands Test Facility (WSTF), Las Cruces, New Mexico. The firing test was being conducted to investigate a previous electrical malfunction. A number of cracks were found associated with the fuel closure plate/injector assembly (Fig 1). The firing test failure generated a flight constraint to the launch of STS-133. A team comprised of several NASA centers and other research institutes was assembled to investigate and determine the root cause of the failure. The JSC Materials Evaluation Laboratory was asked to compare and characterize the outboard circumferential electron beam (EB) weld between the fuel closure plate (Titanium 6Al-4V) and the injector (Niobium C-103 alloy) of four different RCS thrusters, including the failed RCS thruster. Several metallographic challenges in grinding/polishing, and particularly in etching were encountered because of the differences in hardness, ductility, and chemical resistance between the two alloys and the bimetallic weld. Segments from each thruster were sectioned from the outboard weld. The segments were hot-compression mounted using a conductive, carbon-filled epoxy. A grinding/polishing procedure for titanium alloys was used [1]. This procedure worked well on the titanium; but a thin, disturbed layer was visible on the niobium surface by means of polarized light. Once polished, each sample was micrographed using bright field, differential interference contrast optical microscopy, and scanning electron microscopy (SEM) using a backscatter electron (BSE) detector. No typical weld anomalies were observed in any of the cross sections. However, areas of large atomic contrast were clearly visible in the weld nugget, particularly along fusion line interfaces between the titanium and the niobium. This prompted the need to better understand the chemistry and microstructure of the weld (Fig 2). Energy Dispersive X-Ray Spectroscopy (EDS) was used to confirm the chemical composition of the variations in contrast in these areas. Niobium alloys generally require exposure to more aggressive chemical reagents than titanium alloys for etching because of niobium s chemical resistance; therefore, the titanium portion of the sample was etched first. A five second immersion in Kroll s reagent revealed a general microstructure on the titanium portion of the sample; however, the titanium heat affected zone closest to the weld, was over-etched due to higher concentrations of refined grains and an increase in eta-phase. The Kroll s etchant also revealed some microstructure in the weld nugget itself; the niobium portion of the sample remained unetched.

  9. The Structure and Properties of Diffusion Assisted Bonded Joints in 17-4 PH, Type 347, 15-5 PH and Nitronic 40 Stainless Steels

    NASA Technical Reports Server (NTRS)

    Wigley, D. A.

    1981-01-01

    Diffusion assisted bonds are formed in 17-4 PH, 15-5 PH, type 347 and Nitronic 40 stainless steels using electrodeposited copper as the bonding agent. The bonds are analyzed by conventional metallographic, electron microprobe analysis, and scanning electron microscopic techniques as well as Charpy V-notch impact tests at temperatures of 77 and 300 K. Results are discussed in terms of a postulated model for the bonding process.

  10. Annealing Increases Stability Of Iridium Thermocouples

    NASA Technical Reports Server (NTRS)

    Germain, Edward F.; Daryabeigi, Kamran; Alderfer, David W.; Wright, Robert E.; Ahmed, Shaffiq

    1989-01-01

    Metallurgical studies carried out on samples of iridium versus iridium/40-percent rhodium thermocouples in condition received from manufacturer. Metallurgical studies included x-ray, macroscopic, resistance, and metallographic studies. Revealed large amount of internal stress caused by cold-working during manufacturing, and large number of segregations and inhomogeneities. Samples annealed in furnace at temperatures from 1,000 to 2,000 degree C for intervals up to 1 h to study effects of heat treatment. Wire annealed by this procedure found to be ductile.

  11. Development of a Modulated-Microstructure Heat Treatable Steel

    DTIC Science & Technology

    1975-07-10

    IV. Heat Treatment V. Results and Discussion V. 1 Properties of the Soft Layer Alloy, PS4 V. 2 Properties of High Speed Steel (REX 71) V. 3...the High Strength System. Fig. 6 Hardness of Tempered PS4 Alloy. Cast alloy hardened by austenitizing, at 2175^ quenched, and reheating three times...at 1000oF and then cooling in liquid nitrogen to form martensite. Fig. 7A Metallographic Section Through Impact Fracture of PS4 Tempered at 300oF

  12. Analysis of in-service failures and advances in microstructural characterization. Microstructural science Volume 26

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramovici, E.; Northwood, D.O.; Shehata, M.T.

    1999-01-01

    The contents include Analysis of In-Service Failures (tutorials, transportation industry, corrosion and materials degradation, electronic and advanced materials); 1998 Sorby Award Lecture by Kay Geels, Struers A/S (Metallographic Preparation from Sorby to the Present); Advances in Microstructural Characterization (characterization techniques using high resolution and focused ion beam, characterization of microstructural clustering and correlation with performance); Advanced Applications (advanced alloys and intermetallic compounds, plasma spray coatings and other surface coatings, corrosion, and materials degradation).

  13. Failure Analysis of a CH-47 Horizontal Hinge Pin Assembly, P/N 114RS226

    DTIC Science & Technology

    2006-12-01

    and globular) dispersed in a matrix of tempered martensite observed in all the metallographic cross sections produced from the M50 steel rings and...ring, were shown to have met the requirements of AMS 6491 (1)—the specification for VIM- VAR M50 required by each roller- bearing set drawing (see table...2). Although the phosphorus content for each part was at or near the maximum level allowed by AMS 6491, literature on M50 steel and a conversation

  14. Study on Cracking Mechanism of Hardened Planetary frame

    NASA Astrophysics Data System (ADS)

    Li, Xinghui

    2017-09-01

    Planetary carrier made by 45 steel appear quenching crack, which is analyzed in chemical composition, hardness test and metallographic microscopic structure. The reasons of quenching crack of planetary gear include the unreasonable structure of the planetary carrier, thinner annular wall on the base of the upper part, and in dangerous area of the 45 steel in the process of quenching. The faster cooling rate of quenching results in a centripetal stress with the thick-wall part, which is greater than the ultimate bearing capacity of the material.

  15. Tests of NASA ceramic thermal barrier coating for gas-turbine engines

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.

    1979-01-01

    A two-layer thermal barrier coating system with a bond coating of nickel-chromium-aluminum-yttrium and a ceramic coating of yttria-stabilized zirconia was tested for corrosion protection, thermal protection and durability. Full-scale gas-turbine engine tests demonstrated that this coating eliminated burning, melting, and warping of uncoated parts. During cyclic corrosion resistance tests made in marine diesel fuel products of combustion in a burner rig, the ceramic cracked on some specimens. Metallographic examination showed no base metal deterioration.

  16. Increasing of the lifetime of large forging dies by repairwelding

    NASA Astrophysics Data System (ADS)

    Duchek, M.; Koukolikova, M.; Kotous, J.; Majer, M.

    2018-02-01

    Repair welding is often used for rebuilding discarded or failed forging dies. It saves the cost of new tools. Increased useful life of repaired dies is another motivation for repair welding. This article focuses on the development of new filler materials for this purpose. The main goal was to prolong the life of tools of DIN 1.2714 material. Filler wires of two chemistries were made and several samples were experimentally welded. Metallographic and tribological analyses were carried out.

  17. Roman iron axes manufacturing technology

    NASA Astrophysics Data System (ADS)

    Barrena, M. I.; Gómez de Salazar, J. M.; Soria, A.

    2008-03-01

    The results of metallographic, chemical and mechanical analysis of two Roman axes are presented. Insights into the technologies used by the Romans are considered. These axes were buried in a Roman village in La Olmeda, Palencia, Spain, which was built around the first century BC and it was later abandoned and destroyed in the fifth century AD. It has been observed that some artefacts, specifically axes show that the technology existed to increase hardness by solid-state welding of sheet steel of different carbon contents.

  18. Practical field repair of fused slurry silicide coating for space shuttle t.p.s.

    NASA Technical Reports Server (NTRS)

    Reznik, B. D.

    1971-01-01

    Study of short-time high-temperature diffusion treatments as part of a program of development of methods of reapplying fused slurry silicide coating in the field. The metallographic structure and oxidation behavior of R512E applied to Cb-752 coated under simulated field repair conditions was determined. Oxidation testing in reduced pressure environment has shown that performance equivalent to furnace-processed specimens can be obtained in a two-minute diffusion at 2700 F.

  19. Investigation of the martensitic transformation of (Cu-Zn-Ni) shape memory alloys

    NASA Astrophysics Data System (ADS)

    Naat, N. A.; Mohammed, M. A.

    2017-02-01

    (Cu-Zn-Ni) shape memory alloy with different percent have been prepared by using high frequency induction furnace under argon atmosphere. All of the specimens obtained from this alloys were heated in furnace for (15 minutes at 865°C) for homogenization and quenched in iced-water. Comparisons has been made with data obtained via differential scanning calorimetry (DSC) and energy-dispersive X-ray spectroscopy (EDS). The metallographic analyses were carried out by using optical microscopy (OM).

  20. PROGRESS ON THE STUDY OF THE URANIUM-ALUMINUM-IRON CONSTITUTION DIAGRAM FOR THE PERIOD APRIL 1-AUGUST 31, 1963

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, R.B.

    Progress is reported of a research program on deterinining the U--Al-- Fe constitution diagram up to approximates 1000 ppm each of Al and Fe. Results are reported of metallographic examinations of U--Al, U--Fe, and U--Al--Fe alloys, and tentative phase diagrams are given for all three systems. Lattice parameters and electrical resistances were measured in an effort to determine the solid solubilities of Al and Fe in U. (D.L.C.)

  1. Some Properties of Beryllium Oxide and Beryllium Oxide - Columbium Ceramals

    NASA Technical Reports Server (NTRS)

    Robards, C F; Gangler, J J

    1951-01-01

    High-temperature tensile and thermal-shock investigations were conducted on beryllium oxide and beryllium oxide plus columbium metal additions. X-ray diffraction and metallographic results are given. The tensile strength of 6150 pounds per square inch for beryllium oxide at 1800 degrees F compared favorably with the zirconia bodies previously tested. Additions of 2, 5, 8, 10, 12, and 15 percent by weight of columbium metal failed to improve the shock resistance over that of pure beryllium oxide.

  2. The Effects of Substrate Material and Thermal Processing Atmosphere on the Strength of PS304: A High Temperature Solid Lubricant Coating

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2002-01-01

    PS304, a plasma spray deposited solid lubricant coating developed for high temperature sliding contacts was deposited on nine different substrate metals, heat treated at 650C in either air or argon and subsequently tested for strength using a commercially available pull-off adhesion test. Some samples were examined metallographically to help elucidate and explain the results. As deposited coatings exhibit pull-off strengths typically between 16 and 20 MPa with failure occuring (cohesively) within the coating. Heat treatment in argon at 650 C results in a slight increase in coating (cohesive) strength of about 30 percent to 21 to 27 MPa. Heat treatment in air at 650 C results in a dramatic increase in strength to over 30 MPa, exceeding the strength of the epoxy used in the pull test. Cross section metallographic analyses show that no microstructural coating changes occur following the argon heat treatments, however, exposure to air at 650C gives rise to the formation of a second chromium-rich phase precipitate within the PS304 NiCr constituent which provides a strengthening effect and a slight (approximately 5 percent) coating thickness increase. Subsequent heat treatments do not result in any further coating changes. Based upon these studies, PS304 is a suitable coating for use on a wide variety of high temperature substrates and must be heat treated following deposition to enhance strength and ensure dimensional stability.

  3. Metallographic Characterization of Wrought Depleted Uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsyth, Robert Thomas; Hill, Mary Ann

    Metallographic characterization was performed on wrought depleted uranium (DU) samples taken from the longitudinal and transverse orientations from specific locations on two specimens. Characterization of the samples included general microstructure, inclusion analysis, grain size analysis, and microhardness testing. Comparisons of the characterization results were made to determine any differences based on specimen, sample orientation, or sample location. In addition, the characterization results for the wrought DU samples were also compared with data obtained from the metallographic characterization of cast DU samples previously characterized. No differences were observed in microstructure, inclusion size, morphology, and distribution, or grain size in regard tomore » specimen, location, or orientation for the wrought depleted uranium samples. However, a small difference was observed in average hardness with regard to orientation at the same locations within the same specimen. The longitudinal samples were slightly harder than the transverse samples from the same location of the same specimen. This was true for both wrought DU specimens. Comparing the wrought DU sample data with the previously characterized cast DU sample data, distinct differences in microstructure, inclusion size, morphology and distribution, grain size, and microhardness were observed. As expected, the microstructure of the wrought DU samples consisted of small recrystallized grains which were uniform, randomly oriented, and equiaxed with minimal twinning observed in only a few grains. In contrast, the cast DU microstructure consisted of large irregularly shaped grains with extensive twinning observed in most grains. Inclusions in the wrought DU samples were elongated, broken and cracked and light and dark phases were observed in some inclusions. The mean inclusion area percentage for the wrought DU samples ranged from 0.08% to 0.34% and the average density from all wrought DU samples was 1.62E+04/cm 2. Inclusions in the cast DU samples were equiaxed and intact with light and dark phases observed in some inclusions. The mean inclusion area percentage for the cast DU samples ranged from 0.93% to 1.00% and the average density from all wrought DU samples was 2.83E+04/cm 2. The average mean grain area from all wrought DU samples was 141 μm 2 while the average mean grain area from all cast DU samples was 1.7 mm2. The average Knoop microhardness from all wrought DU samples was 215 HK and the average Knoop microhardness from all cast DU samples was 264 HK.« less

  4. Quality of Metal Deposited Flux Cored Wire With the System Fe-C-Si-Mn-Cr-Mo-Ni-V-Co

    NASA Astrophysics Data System (ADS)

    Gusev, Aleksander I.; Kozyrev, Nikolay A.; Osetkovskiy, Ivan V.; Kryukov, Roman E.; Kozyreva, Olga A.

    2017-10-01

    Studied the effect of the introduction of vanadium and cobalt into the charge powder fused wire system Fe-C-Si-Mn-Cr-Ni-Mo-V, used in cladding assemblies and equipment parts and mechanisms operating under abrasive and abrasive shock loads. the cored wires samples were manufactured in the laboratory conditions and using appropriate powder materials and as a carbonfluoride contained material were used the dust from gas purification of aluminum production, with the following components composition, %: Al2O3 = 21-46.23; F = 18-27; Na2O = 8-15; K2O = 0.4-6; CaO = 0.7-2.3; Si2O = 0.5-2.48; Fe2O3 = 2.1-3.27; C = 12.5-30.2; MnO = 0.07-0.9; MgO = 0.06-0.9; S = 0.09-0.19; P = 0.1-0.18. Surfacing was produced on the St3 metal plates in 6 layers under the AN-26C flux by welding truck ASAW-1250. Cutting and preparation of samples for research had been implemented. The chemical composition and the hydrogen content of the weld metal were determined by modern methods. The hardness and abrasion rate of weld metal had been measured. Conducted metallographic studies of weld metal: estimated microstructure, grain size, contamination of oxide non-metallic inclusions. Metallographic studies showed that the microstructure of the surfaced layer by cored wire system Fe-C-Si-Mn-Cr-Mo-Ni-V-Co is uniform, thin dendrite branches are observed. The microstructure consists of martensite, which is formed inside the borders of the former austenite grain retained austenite present in small amounts in the form of separate islands, and thin layers of δ-ferrite, which is located on the borders of the former austenite grains. Carried out an assessment the effect of the chemical composition of the deposited metal on the hardness and wear and hydrogen content. In consequence of multivariate correlation analysis, it was determined dependence to the hardness of the deposited layer and the wear resistance of the mass fraction of the elements included in the flux-cored wires of the system Fe-C-Si-Mn-Cr-Mo-Ni-V-Co. The calculated value of the average approximation error suggests that the dependence is adequate and can be used to determine the resulting indicators. These dependencies can be used to predict the hardness of the deposited layer and its wear resistance while changing the chemical composition of the weld metal.

  5. A Generic Metallographic Preparation Method for Magnesium Alloys

    DTIC Science & Technology

    2013-05-01

    treated castings or wrought alloys. Stains solid solution, leaves compound white. 9: 100-ml water 0.2–2-g oxalic acid For pure Mg and most alloys. Swab...water 2-g oxalic acid Pure Mg Mg-Mn Mg-Al, Mg-Al-Zn (Al+Znɝ%) Mg-Al, Mg-Al-Zn (Al+Zn>5%) Mg-Zn-Zr Mg-Th-Zr Swab...using a 100-ml ethanol, 10-ml distilled water, 10-ml acetic acid , and 5-g picric acid etchant. Immersed and using gentle agitation 5–20 s. Though not

  6. Failure analysis of blistered gold plating on spot welded electrical relays

    NASA Technical Reports Server (NTRS)

    Sokolowski, Witold; O'Donnell, Tim

    1989-01-01

    Gold-plated stainless-steel sideplates, part of a JPL Galileo spacecraft electronic-relay assembly, exhibited blistering after resistance spot welding. Unacceptable relays had heavy nonuniform gold electrodeposited layers with thicknesses 4.5-11.5 microns. SEM and metallographic investigations indicated much higher heat input generated during the resistance spot welding in unacceptable relays. The attributes of acceptable welded relays are contrasted with unacceptable relays; the possible mechanism of laminar formation of polymeric material in the gold plating is discussed; and some recommendations are provided to prevent similar problems.

  7. Simulated studies of wear and friction in total hip prosthesis components with various ball sizes and surface finishes

    NASA Technical Reports Server (NTRS)

    Swikert, M. A.; Johnson, R. L.

    1976-01-01

    Experiments were conducted on a newly designed total hip joint simulator. The apparatus closely simulates the complex motions and loads of the human hip in normal walking. The wear and friction of presently used appliance configurations and materials were determined. A surface treatment of the metal femoral ball specimens was applied to influence wear. The results of the investigation indicate that wear can be reduced by mechanical treatment of metal femoral ball surfaces. A metallographic examination and surface roughness measurements were made.

  8. Removal of Carbide Net in Steel ShKh15 by Optimizing the Mode of Spheroidizing Annealing

    NASA Astrophysics Data System (ADS)

    Popova, E. V.; Khomutova, A. P.; Yuzhakova, I. V.; Pilipova, A. M.; Smulakovskii, M. E.

    2018-03-01

    A metallographic study of the carbide phase in rolled sections from bearing steels ShKh15 and ShKh15SG etched in different reagents is performed. The steels are treated by different variants. The experimental results are processed with the aim to correct the mode of spheroidizing annealing of steel ShKh15. The characteristic of the "carbide net remainder" is reduced from 4 - 5 divisions of scale 4 of the GOST 801-78 Standard to 2 scale divisions.

  9. A new diffusion-inhibited oxidation-resistant coating for superalloys

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A.; Glasgow, T. K.; Levine, S. R.

    1981-01-01

    A concept for enhanced protection of superalloys consists of adding an oxidation- and diffusion-resistant cermet layer between the superalloy and the outer oxidation-resistant metallic alloy coating. Such a duplex coating was compared with a physical-vapor-deposited (PVD) NiCrAlY coating in cyclic oxidation at 1150 C. The substrate alloy was MA 754 - an oxide-dispersion-strengthened superalloy that is difficult to coat. The duplex coating, applied by plasma spraying, outperformed the PVD coating on the basis of weight change and both macroscopic and metallographic observations.

  10. Development and research of a rhenium-free high-temperature nickel superalloy for the turbine rotor blades in aviation GTE

    NASA Astrophysics Data System (ADS)

    Shmotin, Yu. N.; Logunov, A. V.; Leshchenko, I. A.; Danilov, D. V.

    2016-12-01

    The studies directed on designing an advanced rhenium-free nickel superalloy, which is an analog of ZhS32VI alloy, are performed. The chemical composition of the alloy has been found and an experimental alloy batch has been melted (10 kg). Microstructural and metallographic studies and strength tests are carried out. The new single-crystal superalloy has a long-term strength σ1000 100= 238-248 MPa at a density of 8.87 g/cm3.

  11. Impact behavior of graphite-epoxy simulated fan blades

    NASA Technical Reports Server (NTRS)

    Cook, T. S.; Preston, J. L., Jr.

    1977-01-01

    The response of a graphite-epoxy material, Modmor II/PR-286, to foreign object impact was investigated by impacting spherical projectiles of three different materials - gelatin, ice, and steel - on simulated blade specimens. Visual and metallographic inspection revealed three damage mechanisms: penetration, leading edge bending failure, and stress wave delamination and cracking. The steel projectiles caused penetration damage regardless of the impact location and angle. For the ice and gelatin particles impacting the leading edge, failure was due to large local bending strains, resulting in significant material removal and delamination damage.

  12. As-received microstructure of a SiC/Ti-15-3 composite

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Hull, David R.; Leonhardt, Todd A.

    1988-01-01

    A silicon carbide fiber reinforced titanium (Ti-15V-3Cr-3Sn-3Al) composite is metallographically examined. Several methods for examining composite materials are investigated and documented. Polishing techniques for this material are described. An interference layering method is developed to reveal the structure of the fiber, the reaction zone, and various phases within the matrix. Microprobe and transmission electron microscope (TEM) analyses are performed on the fiber/matrix interface. A detailed description of the fiber distribution as well as the microstructure of the fiber and matrix are presented.

  13. Filler Wire Development for 2195 Aluminum-Lithium. Pt. 2

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerald W.; Cho, Alex

    1998-01-01

    The objective of the research was to determine the susceptibility of submitted welded 2195 plate in an AI (Alternate Immersion) environment. Forty-day AI exposure was completed on 8 welded 2195 stress corrosion samples. No stress corrosion cracking (SCC) was found on any of the samples tested. All 8 samples experienced exfoliation corrosion attack in the heat-affected zone (HAZ) adjacent to the weld. All samples were examined metallographically and showed varying degrees of intergranular corrosion (IG). The filler metal on all samples showed moderate to heavy pitting.

  14. Acoustic emission from a solidifying aluminum-lithium alloy

    NASA Technical Reports Server (NTRS)

    Henkel, D. P.; Wood, J. D.

    1992-01-01

    Physical phenomena associated with the solidification of an AA2090 Al-Li alloy have been characterized by AE methods. Repeatable patterns of AE activity as a function of solidification time are recorded and explained for ultrahigh-purity (UHP) aluminum and an Al-4.7 wt pct Cu binary alloy, in addition to the AA2090 Al-Li alloy, by the complementary utilization of thermal, AE, and metallographic methods. One result shows that the solidification of UHP aluminum produces one discrete period of high AE activity as the last 10 percent of solid forms.

  15. Oxidation resistant porous material for transpiration cooled vanes

    NASA Technical Reports Server (NTRS)

    Madsen, P.; Rusnak, R. M.

    1972-01-01

    Porous metal sheet with controlled permeability was made by space winding and diffusion bonding fine wire. Two iron-chromium-aluminum alloys and three-chromium alloys were used: GE 1541 (Fe-Cr-Al-Y), H 875 (Fe-Cr-Al-Si), TD Ni Cr, DH 245 (Ni-Cr-Al-Si) and DH 242 (Ni-Cr-Si-Cb). GE 1541 and H 875 were shown in initial tests to have greater oxidation resistance than the other candidate alloys and were therefore tested more extensively. These two materials were cyclic furnace oxidation tested in air at 1800 and 2000 F for accumulated exposure times of 4, 16, 64, 100, 200, 300, 400, 500, and and 600 hours. Oxidation weight gain, permeability change and mechanical properties were determined after exposure. Metallographic examination was performed to determine effects of exposure on the porous metal and electron beam weld joints of porous sheet to IN 100 strut material. Hundred hour stress rupture life and tensile tests were performed at 1800 F. Both alloys had excellent oxidation resistance and retention of mechanical properties and appear suitable for use as transpiration cooling materials in high temperature gas turbine engines.

  16. Isothermal reduction kinetics and mineral phase of chromium-bearing vanadium-titanium sinter reduced with CO gas at 873-1273 K

    NASA Astrophysics Data System (ADS)

    Yang, Song-tao; Zhou, Mi; Jiang, Tao; Xue, Xiang-xin

    2018-02-01

    Reduction of chromium-bearing vanadium-titanium sinter (CVTS) was studied under simulated conditions of a blast furnace, and thermodynamics and kinetics were theoretically analyzed. Reduction kinetics of CVTS at different temperatures was evaluated using a shrinking unreacted core model. The microstructure, mineral phase, and variation of the sinter during reduction were observed by X-ray diffraction, scanning electron microscopy, and metallographic microscopy. Results indicate that porosity of CVTS increased with temperature. Meanwhile, the reduction degree of the sinter improved with the reduction rate. Reduction of the sinter was controlled by a chemical reaction at the initial stage and inner diffusion at the final stage. Activation energies measured 29.22-99.69 kJ/mol. Phase transformations in CVTS reduction are as follows: Fe2O3→Fe3O4→FeO→Fe; Fe2TiO5→Fe2TiO4→FeTiO3; FeO·V2O3→V2O3; FeO·Cr2O3→Cr2O3.

  17. An automatic chip structure optical inspection system for electronic components

    NASA Astrophysics Data System (ADS)

    Song, Zhichao; Xue, Bindang; Liang, Jiyuan; Wang, Ke; Chen, Junzhang; Liu, Yunhe

    2018-01-01

    An automatic chip structure inspection system based on machine vision is presented to ensure the reliability of electronic components. It consists of four major modules, including a metallographic microscope, a Gigabit Ethernet high-resolution camera, a control system and a high performance computer. An auto-focusing technique is presented to solve the problem that the chip surface is not on the same focusing surface under the high magnification of the microscope. A panoramic high-resolution image stitching algorithm is adopted to deal with the contradiction between resolution and field of view, caused by different sizes of electronic components. In addition, we establish a database to storage and callback appropriate parameters to ensure the consistency of chip images of electronic components with the same model. We use image change detection technology to realize the detection of chip images of electronic components. The system can achieve high-resolution imaging for chips of electronic components with various sizes, and clearly imaging for the surface of chip with different horizontal and standardized imaging for ones with the same model, and can recognize chip defects.

  18. Clast Selection and Metallographic Cooling Rates: Initial Results on Type 1A and 2A Mesosiderites

    NASA Technical Reports Server (NTRS)

    Baecker, B.; Cohen, B. A.; Rubin, A. E.; Frasl, B.; Corrigan, C. M.

    2017-01-01

    We initiated a comprehensive study on selected clasts and metal of mesosiderites using SEM, electron microprobe and the complete suite of noble gases. Here we report initial results on the petrography of selected clasts and metallographic cooling rates using the central Ni method used in sev-eral publications. We focus on the approach of selecting grains in least recrystallized mesosiderites. Hence, especially (lithic) clasts in type 1A, 1B, 2A and 2B are the first choice. They provide highest primitive-ness and least annealing/metamorphism. All grains selected should be in close proximity to each other. Lithic clasts in mesosiderites are of high interest be-cause of their igneous texture and similarity to eucrites and howardite petrography. We find pyrox-enes (px) and plagioclase (plag) attached to each other which implies a common formation history. It will be interesting to see differences and similarities in their noble gas inventory (CRE ages, trapped components and closure temperature). In addition, we will investi-gate variations of the lithic clasts toward similar grains in the thick sections which are not igneous. Plag grains are the best bases for noble gas measurements con-cerning He to Ar and Ar-Ar dating since it delivers im-portant target elements. We focus on plag grains in close contact to olivine (olv) / px grains to assess weth-er both grains show noble gas patterns being similar or different. Phosphate grains are suitable for Kr and Xe measurements since they yield REE abundances (tar-get elements).

  19. The effect of welding parameters on high-strength SMAW all-weld-metal. Part 1: AWS E11018-M

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vercesi, J.; Surian, E.

    Three AWS A5.5-81 all-weld-metal test assemblies were welded with an E110180-M electrode from a standard production batch, varying the welding parameters in such a way as to obtain three energy inputs: high heat input and high interpass temperature (hot), medium heat input and medium interpass temperature (medium) and low heat input and low interpass temperature (cold). Mechanical properties and metallographic studies were performed in the as-welded condition, and it was found that only the tensile properties obtained with the test specimen made with the intermediate energy input satisfied the AWS E11018-M requirements. With the cold specimen, the maximal yield strengthmore » was exceeded, and with the hot one, neither the yield nor the tensile minimum strengths were achieved. The elongation and the impact properties were high enough to fulfill the minimal requirements, but the best Charpy-V notch values were obtained with the intermediate energy input. Metallographic studies showed that as the energy input increased the percentage of the columnar zones decreased, the grain size became larger, and in the as-welded zone, there was a little increment of both acicular ferrite and ferrite with second phase, with a consequent decrease of primary ferrite. These results showed that this type of alloy is very sensitive to the welding parameters and that very precise instructions must be given to secure the desired tensile properties in the all-weld-metal test specimens and under actual working conditions.« less

  20. The great 8 MA event and the structure of the H-chondrite parent body

    NASA Technical Reports Server (NTRS)

    Benoit, P. H.; Sears, D. W. G.

    1993-01-01

    The H-chondrites have been the subject of several recent controversies, including the question of whether Antarctic and non-Antarctic meteorites are or are not the same and whether there or is not evidence for stratigraphic layering in the original parent body. We have identified two distinct groups of H5 chondrites in the Antarctic collection. One group has induced thermoluminescence (TL) peak temperatures less than 190 C and metallographic cooling rates between S to 50 K/Myr, similar to modern falls. It also has a variety of cosmic ray exposure ages, many being greater than 107 years. The other group has TL peak temperatures greater than 190 C, metallographic cooling rates of 100 K/Myr and cosmic ray exposure ages of 8 Ma. The members of this group were generals smaller than those of the greater than 190 C group (including the mode falls) during cosmic ray exposure. Detailed study of the cosmogenic nuclide concentrations of these groups indicates that they are not solely the result of pairing of a few unusual meteorites. It is likely that the greater than 190 C group was an important part of the H-chondrite flux about 1 million years ago, but has since decreased in importance relative to the less than 190 C group. In a previous work, we discussed several possible origins for the greater than 190 C group, including multiple H-chondrite parent bodies, unusual parent body structure, and creation during the 8 Ma event. In this paper, we present new data for H4 chondrites in light of these ideas.

  1. Effect of the conditions of REM microalloying of steel on the corrosion activity of nonmetallic inclusions

    NASA Astrophysics Data System (ADS)

    Movenko, D. A.; Kotel'nikov, G. I.; Pavlov, A. V.; Bytsenko, O. A.

    2015-11-01

    Experimental heats of low-alloy steel are performed under various conditions of rare-earth metal microalloying and aluminum and calcium deoxidation. Electron-probe microanalysis of nonmetallic inclusions and a metallographic investigation of a metal are used to show that, when interacting with water, nonmetallic cerium oxide inclusions do not form hydrates and, correspondingly, are not aggressive. When aluminum, calcium, and cerium additions are sequentially introduced into a melt, a continuous cerium oxide shell forms on calcium aluminates, protects corrosive nonmetallic inclusions against interaction with water, and weakens local metal corrosion.

  2. Post STS-135 Evaluation of Main Flame Deflector Witness Materials

    NASA Technical Reports Server (NTRS)

    Long, Victoria

    2011-01-01

    NASA and USA design engineers submitted witness materials from the solid rocket booster (SRB) main flame deflector for evaluation after the launch of STS-135. The following items were submitted for analysis: HY-80 steel witnes rods, 304 sta inles steel caps, and tungsten pistons. All of the items were photographed in order to document their condition after the launch of STS-135. The submitted samples were dimensionally measured in order to determine the amount of material lost during launch. Microstructural changes were observed in the HY-80 witness rod metallographic samples due to the heat of the launch.

  3. Metallographic examination of the structure of the metal of cold arms of the nineteenth-early twentieth centuries made at the Zlatoust arms factory

    NASA Astrophysics Data System (ADS)

    Schastlivtsev, V. M.; Rodionov, D. P.; Gerasimov, V. Yu.; Khlebnikova, Yu. V.

    2010-11-01

    Data are given concerning the structure and the chemical composition of carbon steel used for making cold arms, which was produced at the Zlatoust arms factory in the nineteenth and early twentieth centuries. The results of the analysis of the structure of metal demonstrates the general trend of the development of metallurgy both at the Ural plants and in the world: from the creation of the crucible methods of production of cast steel to the mass production of cast steel by the Bessemer and Martin methods.

  4. Application of Image Analysis for Characterization of Spatial Arrangements of Features in Microstructure

    NASA Technical Reports Server (NTRS)

    Louis, Pascal; Gokhale, Arun M.

    1995-01-01

    A number of microstructural processes are sensitive to the spatial arrangements of features in microstructure. However, very little attention has been given in the past to the experimental measurements of the descriptors of microstructural distance distributions due to the lack of practically feasible methods. We present a digital image analysis procedure to estimate the micro-structural distance distributions. The application of the technique is demonstrated via estimation of K function, radial distribution function, and nearest-neighbor distribution function of hollow spherical carbon particulates in a polymer matrix composite, observed in a metallographic section.

  5. Metallographic study of metallic fragment of lunar surface material

    NASA Technical Reports Server (NTRS)

    Mints, R. I.; Petukhova, T. M.; Ivanov, A. V.

    1974-01-01

    A high precision investigation of a metallic fragment from the lunar material returned by the Soviet Luna 16 automatic station revealed three characteristic temperature intervals with different kinetics of solid solution decomposition. The following were found in the structure of the iron-nickel-cobalt alloy: (1) delta-phase and alpha-ferrite of diffusional, displacement origin in the grain boundary and acicular forms; and (2) martensite of isothermal and athermal nature, acicular, lamellar, massive, and dendritic. The diversity of the shapes of structural constituents is associated with the effect on their formation of elastic distortions and various mechanisms of deformation relaxation processes.

  6. Failure Investigation of Radiant Platen Superheater Tube of Thermal Power Plant Boiler

    NASA Astrophysics Data System (ADS)

    Ghosh, D.; Ray, S.; Mandal, A.; Roy, H.

    2015-04-01

    This paper highlights a case study of typical premature failure of a radiant platen superheater tube of 210 MW thermal power plant boiler. Visual examination, dimensional measurement and chemical analysis, are conducted as part of the investigations. Apart from these, metallographic analysis and fractography are also conducted to ascertain the probable cause of failure. Finally it has been concluded that the premature failure of the super heater tube can be attributed to localized creep at high temperature. The corrective actions has also been suggested to avoid this type of failure in near future.

  7. SNAP-8 refractory boiler development program

    NASA Technical Reports Server (NTRS)

    Fuller, R. A.

    1974-01-01

    Performance and endurance tests of the SNAP-8, SN-1 refractory metal boiler are described. The tests were successful and indicated that the boiler heat transfer area could be reduced significantly primarily because of the wetting characteristics of mercury on tantalum in a contaminant-free environment. A continuous endurance test of more than 10,000 hours was conducted without noticeable change in the thermal performance of the boiler. A conclusion of the metallographic examination of the boiler following the endurance test was that expected boiler life would be of the order of 40,000 hours at observed corrosion rates.

  8. Development of the activated diffusion brazing process for fabrication of finned shell to strut turbine blades

    NASA Technical Reports Server (NTRS)

    Wilbers, L. G.; Berry, T. F.; Kutchera, R. E.; Edmonson, R. E.

    1971-01-01

    The activated diffusion brazing process was developed for attaching TD-NiCr and U700 finned airfoil shells to matching Rene 80 struts obstructing the finned cooling passageways. Creep forming the finned shells to struts in combination with precise preplacement of brazing alloy resulted in consistently sound joints, free of cooling passageway clogging. Extensive tensile and stress rupture testing of several joint orientation at several temperatures provided a critical assessment of joint integrity of both material combinations. Trial blades of each material combination were fabricated followed by destructive metallographic examination which verified high joint integrity.

  9. Cyclic oxidation of coated Oxide Dispersion Strengthened (ODS) alloys in high velocity gas streams at 1100 deg C

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A.

    1978-01-01

    Several overlay coatings on ODS NiCrAl's were tested in Mach 1 and Mach 0.3 burner rigs to examine oxidation and thermal fatigue performance. The coatings were applied by various methods. Based on weight change, macroscopic, and metallographic observations in Mach 1 tests Nascoat 70 on TD-NiCrAl exhibited the best oxidation resistance. In Mach 0.3 tests PWA 267 and ATD-1, about equally, were the best coatings on YD-NiCrAl (Nascoat 70 was not tested in Mach 0.3 rigs).

  10. Damage mechanisms in bithermal and thermomechanical fatigue of Haynes 188

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Halford, Gary R.

    1992-01-01

    Post failure fractographic and metallographic studies were conducted on Haynes 188 specimens fatigued under bithermal and thermomechanical loading conditions between 316 and 760 C. Bithermal fatigue specimens examined included those tested under high strain rate in-phase and out-phase, tensile creep in-phase, and compressive creep out-of-phase loading conditions. Specimens tested under in-phase and out-of-phase thermomechanical fatigue were also examined. The nature of failure mode (transgrandular versus intergranular), the topography of the fracture surface, and the roles of oxidation and metallurgical changes were studied for each type of bithermal and thermomechanical test.

  11. Post STS-134 Evaluation of Main Flame Deflector Witness Materials

    NASA Technical Reports Server (NTRS)

    Long, Victoria

    2011-01-01

    NASA and USA design engineers submitted witness materials from the solid rocket booster (SRB) main flame deflector for evaluation after the launch of STS-134. The following items were submitted for analysis: 1018 steel witness rods 304 stainless steel caps, tungsten pistons, and A-286 piston sleeves. All of the items were photographed in order to document their condition after the launch of STS-134. All of the items were dimensionally measured in order to determine the amount of material lost during launch. Microstructural changes were observed in the 1018 witness rod metallographic samples due to the heat of the launch

  12. Mechanical properties of low-alloy-steels with bainitic microstructures and varying carbon content

    NASA Astrophysics Data System (ADS)

    Weber, A.; Klarner, J.; Vogl, T.; Schöngrundner, R.; Sam, G.; Buchmayr, B.

    2016-03-01

    Materials used in the oilfield industry are subjected to special conditions. These requirements for seamless steel tubes are between the priorities of strength, toughness and sour gas resistance. Steels with bainitic microstructure provide a great opportunity for those harsh environmental conditions. With different morphologies of bainite, like carbide free, upper or lower bainite, the interaction of high tensile strength and elongation is assumed to be better than with tempered martensite. To form carbide free bainite two ways of processing are proposed, isothermal holding with accurate time control or controlled continuous cooling. Both require knowledge of time-temperature transformation behaviour, which can be reached through a detailed alloying concept, focused on the influence of silicon to supress the carbide nucleation and chromium to stabilize the austenite fraction. The present work is based on three alloys with varying silicon and chromium contents. The carbide free microstructure is obtained by a continuous cooling path. Additionally different heat treatments were done to compare the inherent performance of the bainitic morphologies. The bainitic structures were characterized metallographically for their microstructure and the primary phase by means of transmission electron microscopy. The mechanical properties of carbide-free structures were analysed with quasi-static tensile tests and Charpy impact tests. Moreover, investigations about hydrogen embrittlement were done with focus on the effect of retained austenite. The results were ranked and compared qualitatively.

  13. Microstructure and Properties of Thermally Sprayed Functionally Graded Coatings for Polymeric Substrates

    NASA Technical Reports Server (NTRS)

    Ivosevic, M.; Knight, R.; Kalidindi, S. R.; Palmese, G. R.; Sutter, J. K.

    2003-01-01

    The use of polymer matrix composites (PMCs) in the gas flow path of advanced turbine engines offers significant benefits for aircraft engine performance but their useful lifetime is limited by their poor erosion resistance. High velocity oxy-fuel (HVOF) sprayed polymer/cermet functionally graded (FGM) coatings are being investigated as a method to address this technology gap by providing erosion and oxidation protection to polymer matrix composites. The FGM coating structures are based on a polyimide matrix filled with varying volume fractions of WC-Co. The graded coating architecture was produced using a combination of internal and external feedstock injection, via two computer-controlled powder feeders and controlled substrate preheating. Porosity, coating thickness and volume fraction of the WC-Co filler retained in the coatings were determined using standard metallographic techniques and computer image analysis. The pull-off strength (often referred to as the adhesive strength) of the coatings was evaluated according to the ASTM D 4541 standard test method, which measured the greatest normal tensile force that the coating could withstand. Adhesive/cohesive strengths were determined for three different types of coating structures and compared based on the maximum indicated load and the surface area loaded. The nature and locus of the fractures were characterized according to the percent of adhesive and/or cohesive failure, and the tested interfaces and layers involved were analyzed by Scanning Electron Microscopy.

  14. Elemental, microstructural, and mechanical characterization of high gold orthodontic brackets after intraoral aging.

    PubMed

    Hersche, Sepp; Sifakakis, Iosif; Zinelis, Spiros; Eliades, Theodore

    2017-02-01

    The purpose of the present study was to investigate the elemental composition, the microstructure, and the selected mechanical properties of high gold orthodontic brackets after intraoral aging. Thirty Incognito™ (3M Unitek, Bad Essen, Germany) lingual brackets were studied, 15 brackets as received (control group) and 15 brackets retrieved from different patients after orthodontic treatment. The surface of the wing area was examined by scanning electron microscopy (SEM). Backscattered electron imaging (BEI) was performed, and the elemental composition was determined by X-ray EDS analysis (EDX). After appropriate metallographic preparation, the mechanical properties tested were Martens hardness (HM), indentation modulus (EIT), elastic index (ηIT), and Vickers hardness (HV). These properties were determined employing instrumented indentation testing (IIT) with a Vickers indenter. The results were statistically analyzed by unpaired t-test (α=0.05). There were no statistically significant differences evidenced in surface morphology and elemental content between the control and the experimental group. These two groups of brackets showed no statistically significant difference in surface morphology. Moreover, the mean values of HM, EIT, ηIT, and HV did not reach statistical significance between the groups (p>0.05). Under the limitations of this study, it may be concluded that the surface elemental content and microstructure as well as the evaluated mechanical properties of the Incognito™ lingual brackets remain unaffected by intraoral aging.

  15. Analysis of 3D printing parameters of gears for hybrid manufacturing

    NASA Astrophysics Data System (ADS)

    Budzik, Grzegorz; Przeszlowski, Łukasz; Wieczorowski, Michal; Rzucidlo, Arkadiusz; Gapinski, Bartosz; Krolczyk, Grzegorz

    2018-05-01

    The paper deals with analysis and selection of parameters of rapid prototyping of gears by selective sintering of metal powders. Presented results show wide spectrum of application of RP systems in manufacturing processes of machine elements, basing on analysis of market in term of application of additive manufacturing technology in different sectors of industry. Considerable growth of these methods over the past years can be observed. The characteristic errors of printed model with respect to ideal one for each technique were pointed out. Special attention was paid to the method of preparation of numerical data CAD/STL/RP. Moreover the analysis of manufacturing processes of gear type elements was presented. The tested gears were modeled with different allowances for final machining and made by DMLS. Metallographic analysis and strength tests on prepared specimens were performed. The above mentioned analysis and tests were used to compare the real properties of material with the nominal ones. To improve the quality of surface after sintering the gears were subjected to final machining. The analysis of geometry of gears after hybrid manufacturing method was performed (fig.1). The manufacturing process was defined in a traditional way as well as with the aid of modern manufacturing techniques. Methodology and obtained results can be used for other machine elements than gears and constitutes the general theory of production processes in rapid prototyping methods as well as in designing and implementation of production.

  16. Determining bonding, thickness, and density via thermal wave impedance NDE

    NASA Technical Reports Server (NTRS)

    Green, D. R.

    1985-01-01

    Bonding, density, and thickness of coatings have a vital effect on their performance in many applications. Pioneering development work on thermal wave nondestructive evaluation (NDE) methods during the past 25 years has resulted in an array of useful techniques for performing bonding, density, and thickness measurements in a practical shop environment. The most useful thermal wave methods for this purpose are based on thermal wave surface impedance measurement or scanning. A pulse of heat from either a thermal transducer or a hot gas pulse is projected onto the surface, and the resulting temperature response is analyzed to unfold the bonding, density, and thickness of the coating. An advanced emissivity independent infrared method was applied to detect the temperature response. These methods were recently completely computerized and can automatically provide information on coating quality in near real-time using the proper equipment. Complex shapes such as turbine blades can be scanned. Microscopic inhomogeneities such as microstructural differences and small, normal, isolated voids do not cause problems but are seen as slight differences in the bulk thermal properties. Test objects with rough surfaces can be effectively nondestructively evaluated using proper thermal surface impedance methods. Some of the basic principles involved, as well as metallographic results illustrating the ability of the thermal wave surface impedance method to detect natural nonbonds under a two-layer thermally sprayed coating, will be presented.

  17. Simulation based analysis of laser beam brazing

    NASA Astrophysics Data System (ADS)

    Dobler, Michael; Wiethop, Philipp; Schmid, Daniel; Schmidt, Michael

    2016-03-01

    Laser beam brazing is a well-established joining technology in car body manufacturing with main applications in the joining of divided tailgates and the joining of roof and side panels. A key advantage of laser brazed joints is the seam's visual quality which satisfies highest requirements. However, the laser beam brazing process is very complex and process dynamics are only partially understood. In order to gain deeper knowledge of the laser beam brazing process, to determine optimal process parameters and to test process variants, a transient three-dimensional simulation model of laser beam brazing is developed. This model takes into account energy input, heat transfer as well as fluid and wetting dynamics that lead to the formation of the brazing seam. A validation of the simulation model is performed by metallographic analysis and thermocouple measurements for different parameter sets of the brazing process. These results show that the multi-physical simulation model not only can be used to gain insight into the laser brazing process but also offers the possibility of process optimization in industrial applications. The model's capabilities in determining optimal process parameters are exemplarily shown for the laser power. Small deviations in the energy input can affect the brazing results significantly. Therefore, the simulation model is used to analyze the effect of the lateral laser beam position on the energy input and the resulting brazing seam.

  18. The influence of EI-21 redox ion-exchange resins on the secondary-coolant circuit water chemistry of vehicular nuclear power installations

    NASA Astrophysics Data System (ADS)

    Moskvin, L. N.; Rakov, V. T.

    2015-06-01

    The results obtained from testing the secondary-coolant circuit water chemistry of full-scale land-based prototype bench models of vehicular nuclear power installations equipped with water-cooled water-moderated and liquid-metal reactor plants are presented. The influence of copper-containing redox ionexchange resins intended for chemically deoxygenating steam condensate on the working fluid circulation loop's water chemistry is determined. The influence of redox ion-exchange resins on the water chemistry is evaluated by generalizing an array of data obtained in the course of extended monitoring using the methods relating to physicochemical analysis of the quality of condensate-feedwater path media and the methods relating to metallographic analysis of the state of a faulty steam generator's tube system surfaces. The deoxygenating effectiveness of the normal state turbine condensate vacuum deaeration system is experimentally determined. The refusal from applying redox ion-exchange resins in the condensate polishing ion-exchange filters is formulated based on the obtained data on the adverse effect of copper-containing redox ionexchange resins on the condensate-feedwater path water chemistry and based on the data testifying a sufficient effect from using the normal state turbine condensate vacuum deaeration system. Data on long-term operation of the prototype bench model of a vehicular nuclear power installation without subjecting the turbine condensate to chemical deoxygenation are presented.

  19. 2D and 3D characterization of pore defects in die cast AM60

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhuofei; CanmetMATERIALS, 183 Longwood Road South, Hamilton L8P 0A5, Ontario Canada; Maurey, Alexandre

    2016-04-15

    The widespread application of die castings can be hampered due to the potential of large scale porosity to act as nucleation sites for fracture and fatigue. It is therefore important to develop robust approaches to the characterization of porosity providing parameters that can be linked to the material's mechanical properties. We have tackled this problem in a study of the AM60 die cast Mg alloy, using samples extracted from a prototype shock tower. A quantitative characterization of porosity has been undertaken, analyzing porosity in both 2D (using classical metallographic methods) and in 3D (using X-ray computed tomography (XCT)). Metallographic characterizationmore » results show that shrinkage pores and small gas pores can be distinguished based on their distinct geometrical features. Shrinkage pores are irregular with multiple arms, resulting in a form factor less than 0.4. In contrast, gas pores are generally more circular in shape yielding form factors larger than 0.6. XCT provides deeper insight into the shape of pores, although this understanding is limited by the resolution obtainable by laboratory based XCT. It also shows how 2D sectioning can produce artefacts as single complex pores are sectioned into multiple small pores. - Highlights: • Mg (e.g. AM60) die castings may contain large scale porosity that act as nucleation sites for fracture and fatigue • Quantitative characterization of porosity metallography (2D) and X-ray tomography (3D) is used • Shrinkage pores and small gas pores can be distinguished based on their distinct geometrical features. • Shrinkage pores are irregular giving a form factor < 0.4; gas pores are rounder with form factors > 0.6 • XCT enables pore visualization, although limited by the resolution obtainable by laboratory based XCT.« less

  20. Comprehensive investigation of the metal in drums of boilers at thermal power stations

    NASA Astrophysics Data System (ADS)

    Ozhigov, L. S.; Mitrofanov, A. S.; Tolstolutskaya, G. D.; Vasilenko, R. L.; Rudenko, A. G.; Ruzhytskyi, V. V.; Ribalchenko, N. D.; Shramchenko, S. V.

    2017-05-01

    A comparative investigation of the metal of drums of two TP-100 boilers at the Starobeshevskaya and the Lugansk thermal power stations (TPS) was performed. Their operation time was approximately 300000 hours; the shell of one drum was ruptured during a hydraulic test, and the other drum is in operation. According to the results of the technical diagnostics and a strength analysis, both drums comply with the applicable regulatory requirements. The objects of the investigation were fragments of the ruptured drum and a "plug" cut out of the shell during a scheduled inspection. The investigation was carried out by microscopic metallography methods and the scanning electron microscopy technique. Mechanical tests of metal specimens were performed, and the hydrogen content in these specimens was measured. Prior to the material research, the metal was examined using a magnetic memory method. The investigation yielded specifics of the metal microstructure, mechanical properties, and fracture patterns of the metal specimens at various temperatures. An investigation performed by the method of thermal-desorption mass spectrometry revealed no considerable difference in the hydrogen content in the metal of both drums, thereby excluding the effect of hydrogenation in analyzing the rupture causes. It was established that the drum at the Starobeshevskaya TPS had been damaged due to its low impact strength at room temperature and high brittle-ductile transition point. Comparison of the metallographic study data with the results obtained using the magnetic memory method suggests that the fracture was caused by local formation of the Widmannstatten pattern at points where accessories are welded to the shell. The prospects are demonstrated of the comprehensive approach to nondestructive examination (NDE) of TPS drums using the magnetic memory technique and metallographic methods.

  1. Metallographic autopsies of full-scale ITER prototype cable-in-conduit conductors after full cyclic testing in SULTAN: III. The importance of strand surface roughness in long twist pitch conductors

    DOE PAGES

    Sanabria, Charlie; Lee, Peter J.; Starch, William; ...

    2016-05-31

    As part of the ITER conductor qualification process, 3 m long Cable-in-Conduit Conductors (CICCs) were tested at the SULTAN facility under conditions simulating ITER operation so as to establish the current sharing temperature, T cs, as a function of multiple full Lorentz force loading cycles. After a comprehensive evaluation of both the Toroidal Field (TF) and the Central Solenoid (CS) conductors, it was found that T cs degradation was common in long twist pitch TF conductors while short twist pitch CS conductors showed some T cs increase. However, one kind of TF conductors containing superconducting strand fabricated by the Bochvarmore » Institute of Inorganic Materials (VNIINM) avoided T cs degradation despite having long twist pitch. In our earlier metallographic autopsies of long and short twist pitch CS conductors, we observed a substantially greater transverse strand movement under Lorentz force loading for long twist pitch conductors, while short twist pitch conductors had negligible transverse movement. With help from the literature, we concluded that the transverse movement was not the source of T cs degradation but rather an increase of the compressive strain in the Nb 3Sn filaments possibly induced by longitudinal movement of the wires. Like all TF conductors this TF VNIINM conductor showed large transverse motions under Lorentz force loading, but Tcs actually increased, as in all short twist pitch CS conductors. We here propose that the high surface roughness of the VNIINM strand may be responsible for the suppression of the compressive strain enhancement (characteristic of long twist pitch conductors). Furthermore, it appears that increasing strand surface roughness could improve the performance of long twist pitch CICCs.« less

  2. Influence of Feedstock Powder Modification by Heat Treatments on the Properties of APS-Sprayed Al2O3-40% TiO2 Coatings

    NASA Astrophysics Data System (ADS)

    Berger, Lutz-Michael; Sempf, Kerstin; Sohn, Yoo Jung; Vaßen, Robert

    2018-04-01

    The formation and decomposition of aluminum titanate (Al2TiO5, tialite) in feedstock powders and coatings of the binary Al2O3-TiO2 system are so far poorly understood. A commercial fused and crushed Al2O3-40%TiO2 powder was selected as the feedstock for the experimental series presented in this paper, as the composition is close to that of Al2TiO5. Part of that powder was heat-treated in air at 1150 and 1500 °C in order to modify the phase composition, while not influencing the particle size distribution and processability. The powders were analyzed by thermal analysis, XRD and FESEM including EDS of metallographically prepared cross sections. Only a maximum content of about 45 wt.% Al2TiO5 was possible to obtain with the heat treatment at 1500 °C due to inhomogeneous distribution of Al and Ti in the original powder. Coatings were prepared by plasma spraying using a TriplexPro-210 (Oerlikon Metco) with Ar-H2 and Ar-He plasma gas mixtures at plasma power levels of 41 and 48 kW. Coatings were studied by XRD, SEM including EDS linescans of metallographically prepared cross sections, and microhardness HV1. With the exception of the powder heat-treated at 1500 °C an Al2TiO5-Ti3O5 (tialite-anosovite) solid solution Al2- x Ti1+ x O5 instead of Al2TiO5 existed in the initial powder and the coatings.

  3. Metallographic autopsies of full-scale ITER prototype cable-in-conduit conductors after full cyclic testing in SULTAN: III. The importance of strand surface roughness in long twist pitch conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanabria, Charlie; Lee, Peter J.; Starch, William

    As part of the ITER conductor qualification process, 3 m long Cable-in-Conduit Conductors (CICCs) were tested at the SULTAN facility under conditions simulating ITER operation so as to establish the current sharing temperature, T cs, as a function of multiple full Lorentz force loading cycles. After a comprehensive evaluation of both the Toroidal Field (TF) and the Central Solenoid (CS) conductors, it was found that T cs degradation was common in long twist pitch TF conductors while short twist pitch CS conductors showed some T cs increase. However, one kind of TF conductors containing superconducting strand fabricated by the Bochvarmore » Institute of Inorganic Materials (VNIINM) avoided T cs degradation despite having long twist pitch. In our earlier metallographic autopsies of long and short twist pitch CS conductors, we observed a substantially greater transverse strand movement under Lorentz force loading for long twist pitch conductors, while short twist pitch conductors had negligible transverse movement. With help from the literature, we concluded that the transverse movement was not the source of T cs degradation but rather an increase of the compressive strain in the Nb 3Sn filaments possibly induced by longitudinal movement of the wires. Like all TF conductors this TF VNIINM conductor showed large transverse motions under Lorentz force loading, but Tcs actually increased, as in all short twist pitch CS conductors. We here propose that the high surface roughness of the VNIINM strand may be responsible for the suppression of the compressive strain enhancement (characteristic of long twist pitch conductors). Furthermore, it appears that increasing strand surface roughness could improve the performance of long twist pitch CICCs.« less

  4. Sensitivity and comparison evaluation of Saturn 5 liquid penetrants

    NASA Technical Reports Server (NTRS)

    Jones, G. H.

    1973-01-01

    Results of a sensitivity and comparison evaluation performed on six liquid penetrants that were used on the Saturn 5 vehicle and other space hardware to detect surface discontinuities are described. The relationship between penetrant materials and crack definition capabilities, the optimum penetrant materials evaluation method, and the optimum measurement methods for crack dimensions were investigated. A unique method of precise developer thickness control was envolved, utilizing clear radiographic film and a densitometer. The method of evaluation included five aluminum alloy, 2219-T87, specimens that were heated and then quenched in cold water to produce cracks. The six penetrants were then applied, one at a time, and the crack indications were counted and recorded for each penetrant for comparison purposes. Measurements were made by determining the visual crack indications per linear inch and then sectioning the specimens for a metallographic count of the cracks present. This method provided a numerical approach for assigning a sensitivity index number to the penetrants. Of the six penetrants evaluated, two were not satisfactory (one was not sufficiently sensitive and the other was to sensitive, giving false indications). The other four were satisfactory with approximately the same sensitivity in the range of 78 to 80.5 percent of total cracks detected.

  5. Effects of real-time thermal aging on graphite/polyimide composites

    NASA Technical Reports Server (NTRS)

    Haskins, J. F.; Kerr, J. R.

    1985-01-01

    As part of a program to evaluate high-temperature advanced composites for use on supersonic cruise transport aircraft, two graphite/polyimide composites have been aged at elevated temperatures for times up to 5.7 years. Work on the first, HT-S/710 graphite/polyimide, was started in 1974. Evaluation of the second polyimide, Celion 6000/LARC-160, began in 1980. Baseline properties are presented, including unnotched and notched tensile data as a function of temperature, compression, flexure, shear, and constant-amplitude fatigue data at R = 0.1 and R = -1. Tensile specimens were aged in ovens where pressure and aging temperatures were controlled for various times up to and including 50,000 hours. Changes in tensile strength were determined and plotted as a function of aging time. The HT-S/710 composite aged at 450 F and 550 F if compared to the Celion 6000/LARC-160 composite aged at 350 F and 450 F. After tensile testing, many of the thermal aging specimens were examined using a scanning electron microscope. Results of these studies are presented, and changes in properties and degradation mechanisms during high-temperature aging are discussed and illustrated using metallographic techniques.

  6. Post-test analysis of lithium-ion battery materials at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    Bareno, Javier; Dietz-Rago, Nancy; Bloom, Ira

    2014-03-01

    Electrochemical performance is often limited by surface and interfacial reactions at the electrodes. However, routine handling of samples can alter the very surfaces that are the object of study. Our approach combines standardized testing of batteries with sample harvesting under inert atmosphere conditions. Cells of different formats are disassembled inside an Argon glove box with controlled water and oxygen concentrations below 2 ppm. Cell components are characterized in situ, guaranteeing that observed changes in physicochemical state are due to electrochemical operation, rather than sample manipulation. We employ a complementary set of spectroscopic, microscopic, electrochemical and metallographic characterization to obtain a complete picture of cell degradation mechanisms. The resulting information about observed degradation mechanisms is provided to materials developers, both academic and industrial, to suggest new strategies and speed up the Research & Development cycle of Li-ion and related technologies. This talk will describe Argonne's post-test analysis laboratory, with an emphasis on capabilities and opportunities for collaboration. Cell disassembly, sample harvesting procedures and recent results will be discussed. This work was performed under the auspices of the U.S. Department of Energy, Office of Vehicle Technologies, Hybrid and Electric Systems, under Contract No. DE-AC02-06CH11357.

  7. Investigation of the reaction of 5Al-2.5Sn titanium with hydrogen at subzero temperature

    NASA Technical Reports Server (NTRS)

    Williams, D. N.; Wood, R. A.

    1972-01-01

    An investigation of the effect of temperature on the surface hydriding reaction of 5Al-2.5Sn titanium exposed to hydrogen at 250 psig was made. The temperature range studied extended from 160 F to -160 F. Reaction conditions were controlled so as to expose a vacuum-cleaned, oxide-free alloy surface to an ultrapure hydrogen atmosphere. Reaction times up to 1458 hours were studied. The hydriding reaction was extremely sensitive to experimental variables and the reproducibility of reaction behavior was poor. However, it was demonstrated that the reaction proceeded quite rapidly at 160 F; as much as 1 mil surface hydriding being observed after exposure for 162 hours. The amount of hydriding appeared to decrease with decreasing temperature at 75 F, -36 F, and -76 F. No surface hydriding was detected either by vacuum fusion analysis or by metallographic examination after exposure for 1458 hours at -110 F or -160 F. Tensile properties were unaffected by surface hydriding of the severity developed in this program (up to 1 mil thick) as determined by slow strain rate testing of hydrided sheet tensile samples.

  8. Mach 1 oxidation of thoriated nickel chromium at 1204 C (2200 F)

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Sanders, W. A.

    1971-01-01

    TD NiCr was exposed to a Mach 1, 1-atmosphere gas stream at 1204 C for times up to 50 hours. Weight change, metal thickness loss, X-ray diffraction, metallographic, and electron microprobe analyses were made. Neither surface preparation nor thermal cycling had an appreciable effect on the results. Initially, Cr2O3 formed and volatilized, allowing a rapid metal loss rate of 40 microns per hour. After about 1 hour the Cr2O3 broke down, resulting in an NiO overgrowth. The metal loss rate then slowed to 2.5 microns per hour and remained constant to 50 hours.

  9. Effect of rhenium on the structure and properties of the weld metal of a molybdenum alloy

    NASA Technical Reports Server (NTRS)

    Dyachenko, V. V.; Morozov, B. P.; Tylkina, M. A.; Savitskiy, Y. M.; Nikishanov, V. V.

    1984-01-01

    The structure and properties of welds made in molybdenum alloy VM-1 as a function of rhenium concentrations in the weld metal were studied. Rhenium was introduced into the weld using rhenium wire and tape or wires of Mo-47Re and Mo-52Re alloys. The properties of the weld metal were studied by means of metallographic techniques, electron microscopy, X-ray analysis, and autoradiography. The plasticity of the weld metal sharply was found to increase with increasing concentration of rhenium up to 50%. During welding, a decarburization process was observed which was more pronounced at higher concentrations of rhenium.

  10. Oxidation and thermal fatigue of coated and uncoated NX-188 nickel-base alloy in a high velocity gas stream

    NASA Technical Reports Server (NTRS)

    Johnson, J. R.; Young, S. G.

    1972-01-01

    A cast nickel-base superalloy, NX-188, coated and uncoated, was tested in a high-velocity gas stream for resistance to oxidation and thermal fatigue by cycling between room temperature and 980, 1040, and 1090 C. Contrary to the behavior of more conventional nickel-base alloys, uncoated NX-188 exhibited the greatest weight loss at the lowest test temperature. In general, on the basis of weight change and metallographic observations a coating consisting of vapor-deposited Fe-Cr-Al-Y over a chromized substrate exhibited the best overall performance in resistance to oxidation and thermal fatigue.

  11. Hot fire test results of subscale tubular combustion chambers

    NASA Technical Reports Server (NTRS)

    Kazaroff, John M.; Jankovsky, Robert S.; Pavli, Albert J.

    1992-01-01

    Advanced, subscale, tubular combustion chambers were built and test fired with hydrogen-oxygen propellants to assess the increase in fatigue life that can be obtained with this type of construction. Two chambers were tested: one ran for 637 cycles without failing, compared to a predicted life of 200 cycles for a comparable smooth-wall milled-channel liner configuration. The other chamber failed at 256 cycles, compared to a predicted life of 118 cycles for a comparable smooth-wall milled-channel liner configuration. Posttest metallographic analysis determined that the strain-relieving design (structural compliance) of the tubular configuration was the cause of this increase in life.

  12. Determination of fiber volume in graphite/epoxy materials using computer image analysis

    NASA Technical Reports Server (NTRS)

    Viens, Michael J.

    1990-01-01

    The fiber volume of graphite/epoxy specimens was determined by analyzing optical images of cross sectioned specimens using image analysis software. Test specimens were mounted and polished using standard metallographic techniques and examined at 1000 times magnification. Fiber volume determined using the optical imaging agreed well with values determined using the standard acid digestion technique. The results were found to agree within 5 percent over a fiber volume range of 45 to 70 percent. The error observed is believed to arise from fiber volume variations within the graphite/epoxy panels themselves. The determination of ply orientation using image analysis techniques is also addressed.

  13. Microstructural study of the nickel-base alloy WAZ-20 using qualitative and quantitative electron optical techniques

    NASA Technical Reports Server (NTRS)

    Young, S. G.

    1973-01-01

    The NASA nickel-base alloy WAZ-20 was analyzed by advanced metallographic techniques to qualitatively and quantitatively characterize its phases and stability. The as-cast alloy contained primary gamma-prime, a coarse gamma-gamma prime eutectic, a gamma-fine gamma prime matrix, and MC carbides. A specimen aged at 870 C for 1000 hours contained these same constituents and a few widely scattered high W particles. No detrimental phases (such as sigma or mu) were observed. Scanning electron microscope, light metallography, and replica electron microscope methods are compared. The value of quantitative electron microprobe techniques such as spot and area analysis is demonstrated.

  14. Burnishing rolling process of the surface prepared in the turning process

    NASA Astrophysics Data System (ADS)

    Kulakowska, Agnieszka; Kukielka, Leon; Kaldunski, Pawel; Bohdal, Lukasz; Patyk, Radoslaw; Chodor, Jaroslaw; Kukielka, Krzysztof

    2018-05-01

    The aim of this article is to demonstrate the possibility of using burnishing rolling process as the technology of product development. The experimental researches were carried out, showing the ability to form the surface layer of the product with the desired properties. First, during turning rolling the surfaces of the samples were prepared. Then, the surfaces were burnished. The influence of turning process on the state of the surface layer parameters of C45 steel shafts are shown. Among the examined aspects the surface roughness, nano-roughness, material bearing, surface microstructure, metallographic structure were considered. Numerical simulation were conducted. Conclusions from the experiments and simulation were given.

  15. Single Crystal Membranes

    NASA Technical Reports Server (NTRS)

    Stormont, R. W.; Morrison, A.

    1974-01-01

    Single crystal a- and c-axis tubes and ribbons of sodium beta-alumina and sodium magnesium beta-alumina were grown from sodium oxide rich melts. Additional experiments grew ribbon crystals containing sodium magnesium beta, beta double prime, beta triple prime, and beta quadruple prime. A high pressure crystal growth chamber, sodium oxide rich melts, and iridium for all surfaces in contact with the melt were combined with the edge-defined, film-fed growth technique to grow the single crystal beta-alumina tubes and ribbons. The crystals were characterized using metallographic and X-ray diffraction techniques, and wet chemical analysis was used to determine the sodium, magnesium, and aluminum content of the grown crystals.

  16. Characterization of failure processes in tungsten copper composites under fatigue loading conditions

    NASA Technical Reports Server (NTRS)

    Kim, Yong-Suk; Verrilli, Michael J.; Gabb, Timothy P.

    1989-01-01

    A fractographic and metallographic investigation was performed on specimens of a tungsten fiber reinforced copper matrix composite (9 vol percent), which had experienced fatigue failures at elevated temperatures. Major failure modes and possible failure mechanisms, with an emphasis placed on characterizing fatigue damage accumulation, were determined. Metallography of specimens fatigued under isothermal cyclic loading suggested that fatigue damage initiates in the matrix. Cracks nucleated within the copper matrix at grain boundaries, and they propagated through cavity coalescence. The growing cracks subsequently interacted with the reinforcing tungsten fibers, producing a localized ductile fiber failure. Examinations of interrupted tests before final failure confirmed the suggested fatigue damage processes.

  17. Magnetic testing for inter-granular crack defect of tubing coupling

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Yu, Runqiao

    2018-04-01

    This study focused on the inter-granular crack defects of tubing coupling wherein a non-destructive magnetic testing technique was proposed to determine the magnetic flux leakage features on coupling surface in the geomagnetic field using a high-precision magnetic sensor. The abnormal magnetic signatures of defects were analysed, and the principle of the magnetic test was explained based on the differences in the relative permeability of defects and coupling materials. Abnormal fluctuations of the magnetic signal were observed at the locations of the inter-granular crack defects. Imaging showed the approximate position of defects. The test results were proven by metallographic phase.

  18. Development of high temperature materials for solid propellant rocket nozzle applications. [tantalum carbides-tungsten fiber composites

    NASA Technical Reports Server (NTRS)

    Manning, C. R., Jr.; Honeycutt, L., III

    1974-01-01

    Evaluation of tantalum carbide-tungsten fiber composites has been completed as far as weight percent carbon additions and weight percent additions of tungsten fiber. Extensive studies were undertaken concerning Young's Modulus and fracture strength of this material. Also, in-depth analysis of the embrittling effects of the extra carbon additions on the tungsten fibers has been completed. The complete fabrication procedure for the tantalum carbide-tungsten fiber composites with extra carbon additions is given. Microprobe and metallographic studies showed the effect of extra carbon on the tungsten fibers, and evaluation of the thermal shock parameter fracture strength/Young's Modulus is included.

  19. Time-temperature-stress capabilities of composites for supersonic cruise aircraft applications

    NASA Technical Reports Server (NTRS)

    Haskins, J. F.; Kerr, J. R.; Stein, B. A.

    1976-01-01

    A range of baseline properties was determined for representatives of 5 composite materials systems: B/Ep, Gr/Ep, B/PI, Gr/PI, and B/Al. Long-term exposures are underway in static thermal environments and in ones which simultaneously combine programmed thermal histories and mechanical loading histories. Selected results from the environmental exposure studies with emphasis placed on the 10,000-hour thermal aging data are presented. Results of residual strength determinations and changes in physcial and chemical properties during high temperature aging are discussed and illustrated using metallographic, fractographic and thermomechanical analyses. Some initial results of the long-term flight simulation tests are also included.

  20. Mechanism of Surface Reinforcement of Steels by Nanocarbon Materials Using Laser Heating

    NASA Astrophysics Data System (ADS)

    Bocharov, G. S.; Eletskii, A. V.; Zilova, O. S.; Terentyev, E. V.; Fedorovich, S. D.; Chudina, O. V.; Churilov, G. N.

    2018-02-01

    The mechanism of the surface reinforcement and wear resistance of steel products are studied as a result of creating the strengthening layers with the nanocarbon using the laser heating. Laser surface treatment using soot remaining after fullerene extraction leads to a more than fivefold increase in the microhardness (up to 1086 HV) and a decrease in the friction coefficient by 20-30%. The conclusion that the reinforcement mechanism involves the formation of eutectic, cementite, martensite, the cellular substructure, and grain refinement is carried out based on metallographic studies of the strengthened layers of technically pure iron with a thickness of 20-70 μm.

  1. Studies of $${\\rm Nb}_{3}{\\rm Sn}$$ Strands Based on the Restacked-Rod Process for High Field Accelerator Magnets

    DOE PAGES

    Barzi, E.; Bossert, M.; Gallo, G.; ...

    2011-12-21

    A major thrust in Fermilab's accelerator magnet R&D program is the development of Nb 3Sn wires which meet target requirements for high field magnets, such as high critical current density, low effective filament size, and the capability to withstand the cabling process. The performance of a number of strands with 150/169 restack design produced by Oxford Superconducting Technology was studied for round and deformed wires. To optimize the maximum plastic strain, finite element modeling was also used as an aid in the design. Results of mechanical, transport and metallographic analyses are presented for round and deformed wires.

  2. Sputter-ion plating of coatings for protection of gas-turbine blades against high-temperature oxidation and corrosion

    NASA Technical Reports Server (NTRS)

    Coad, J. P.; Restall, J. E.

    1982-01-01

    Considerable effort is being devoted to the development of overlay coatings for protecting critical components such as turbine blades against high-temperature oxidation, corrosion, and erosion damage in service. The most commercially advanced methods for depositing coatings are electron-beam evaporation and plasma spraying. Sputter-ion plating (SIP) offers a potentially cheaper and simpler alternative method for depositing overlays. Experimental work on SIP of Co-Cr-Al-Y and Ni-Cr-Al-Ti alloy coatings is described. Results are presented of metallographic assessment of these coatings, and of the results obtained from high-velocity testing using a gas-turbine simulator rig.

  3. Structure Formation and Properties of Weld Overlay Produced by Laser Cladding under the Influence of Nanoparticles of High-melting Compounds

    NASA Astrophysics Data System (ADS)

    Murzakov, M.; Petrovskiy, V.; Birukov, V.; Dzhumaev, P.; Polski, V.; Markushov, Y.; Bykovskiy, D.

    Researches of flat samples using laser cladding technology were carried out. Nickel-based powders with the addition of nanopowders of tantalum carbide and tungsten carbide with water-based hydroxyethylcellulose as the binder, were used for slip cladding. Powders are fused on under local argon protection. The experiments were carried out to determine minimal base metal penetration depth, microhardness distribution over cross section of substrate and deposited layers, enrichment level of cladding metal with base components depending on power density and deposition rate. Metallographic studies of obtained overlays were conducted using a high-precision analytical equipment.

  4. Friction and wear behaviors and mechanisms of ZnO and graphite in Cu-based friction materials

    NASA Astrophysics Data System (ADS)

    Chen, Tianhua

    2018-03-01

    Based on powder metallurgy method, nanometer graphite reinforced copper matrix friction materials were prepared. The nanometer zinc oxide were obtained by the hydro-thermal synthesis. Nanoparticles on friction performances of copper-based materials was studied. The wear morphology were investigated by metallographic microscopes. Tribological performance were use the inertia friction and wear testing machine. Experimental results show that the friction factor of the friction material added by nanometer zinc oxide and nano graphite are high and stable, which has no obvious recession phenomenon with the increase of number of joint compared with not add nanoparticles of friction materials.

  5. Improved simulation method of automotive spot weld failure with an account of the mechanical properties of spot welds

    NASA Astrophysics Data System (ADS)

    Wu, H.; Meng, X. M.; Fang, R.; Huang, Y. F.; Zhan, S.

    2017-12-01

    In this paper, the microstructure and mechanical properties of spot weld were studied, the hardness of nugget and heat affected zone (HAZ) were also tested by metallographic microscope and microhardness tester. The strength of the spot weld with the different parts' area has been characterized. According to the experiments result, CAE model of spot weld with HAZ structure was established, and simulation results of different lap-shear CAE models were analyzed. The results show that the spot weld model which contained the HAZ has good performance and more suitable for engineering application in spot weld simulation.

  6. Phase transition temperature in the Zr-rich corner of Zr-Nb-Sn-Fe alloys

    NASA Astrophysics Data System (ADS)

    Canay, M.; Danón, C. A.; Arias, D.

    2000-08-01

    The influence of small composition changes on the phase transformation temperature of Zr-1Nb-1Sn-0.2(0.7)Fe alloys was studied in the present work, by electrical resistivity measurements and metallographic techniques. For the alloy with 0.2 at.% Fe we have determined Tα↔α+β=741°C and Tα+β↔β=973°C, and for the 0.7 at.% Fe the transformation temperatures were T α↔α+β=712°C and T α+β↔β=961°C. We have verified that the addition of Sn stabilized the β phase.

  7. Optical anisotropy and domain structure of multiferroic Ni-Mn-Ga and Co-Ni-Ga Heusler-type alloys

    NASA Astrophysics Data System (ADS)

    Ivanova, A. I.; Gasanov, O. V.; Kaplunova, E. I.; Kalimullina, E. T.; Zalyotov, A. B.; Grechishkin, R. M.

    2015-03-01

    A study is made of the reflectance anisotropy of martensitic and magnetic domains in ferromagnetic shape memory alloys (FSMA) Ni-Mn-Ga and Co-Ni-Ga. The reflectance of metallographic sections of these alloys was measured in the visible with the aid of standard inverted polarized light microscope with a 360° rotatable specimen stage. Calculations are presented for the estimation of image contrast values between neighboring martensite twins. Qualitative and quantitative observations and angular measurements in reflected polarized light proved to be useful for the analysis of specific features of the martensite microstructure of multiferroic materials.

  8. Archaeometric study on minting dies produced under papal rule in Ferrara

    NASA Astrophysics Data System (ADS)

    Monticelli, Cecilia; Balbo, Andrea; Vaccaro, Carmela; Gulinelli, Maria Teresa; Garagnani, Gian Luca

    2013-12-01

    In the Civic Museum of Palazzo Schifanoia in Ferrara, a collection of 1104 coin striking tools is stored. Among these, eight steel dies produced from the 2nd decade of the seventeenth to the half of the eighteenth century, representative of the whole period of activity of the papal mint in Ferrara, have been chosen and studied. In that period, while important innovations in the coin minting technique were introduced in Europe, Ferrara declined from the rank of ducal mint to that of peripheral minting center of the highly centralized Papal States. The dies have been characterized by metallographic, chemical, and microhardness investigations. The results suggest that the dies were obtained by a manual smithing technique consisting in hammer hot forging. The die quality improved with time. In fact, in the period 1619-1622, a hardening treatment for the engraved die end consisting in a simple local carburization coexisted with a more efficient production method, based on the application of a proper final heat treatment. This treatment induced a graded microstructure from the engraved end, with a hard martensitic or bainitic structure, to the opposite end, with a tough ferritic/pearlitic structure. From 1675 onward, the latter production method was applied on all the studied dies. The chemical analysis of the alloys suggest that they were likely obtained from iron ores with a common provenance, while the analysis of the slag inclusions suggests the adoption of a direct method of ironmaking throughout the activity period of the mint.

  9. Welding of a corrosion-resistant composite material based on VT14 titanium alloy obtained using an electron beam emitted into the atmosphere

    NASA Astrophysics Data System (ADS)

    Golkovski, M. G.; Samoylenko, V. V.; Polyakov, I. A.; Lenivtseva, O. G.; Chakin, I. K.; Komarov, P. N.; Ruktuev, A. A.

    2017-01-01

    The study investigates the possibility of inert gas arc welding of a double layer composite material on a titanium base with an anti-corrosive layer obtained by fused deposition of a powder mix containing tantalum and niobium over a titanium base using an electron beam emitted into the atmosphere. Butt welding and fillet welding options were tested with two types of edge preparation. Welds were subjected to a metallographic examination including a structural study and an analysis of the chemical and phase composition of the welds. A conclusion was made regarding the possibility of using welding for manufacturing of items from the investigated composite material.

  10. The causes of high power diode laser brazed seams fractures of dissimilar materials

    NASA Astrophysics Data System (ADS)

    Adamiak, Marcin; Czupryński, Artur; Janicki, Damian; Górka, Jacek

    2016-12-01

    Presented in this article are the results of experiments carried out to determine the causes of braze cracking of dissimilar materials brazed with a ROFIN DL 020 high power diode laser with the use of additional powdered EN AW-1070A aluminium alloy to bond thin aluminium sheets with soft, low alloy DC04+ZE75/75 steel plate which was electrolytically coated with zinc on both sides. Presented are the results of metallographic, macroscopic, microscopic, diffractometric phase analyses of the weld joints. Metallurgical problems arising during processing as well as suggestions regarding technical aspects of laser brazing dissimilar materials in regards to their physical characteristics and chemical composition are explored.

  11. Original structures, and fragmentation and reassembly histories of asteroids - Evidence from meteorites

    NASA Technical Reports Server (NTRS)

    Taylor, G. Jeffrey; Maggiore, Peter; Scott, Edward R. D.; Rubin, Alan E.; Keil, Klaus

    1987-01-01

    The validity of an onion shell model (OSM) for chondrite parent asteroids was assessed using metallographic cooling rates (MCR) derived from the compositions of metallic Fe-Ni grains. The hypothesis evaluated was that the hottest materials in chondrites would have been buried the deepest and cooled the slowest. The survey covered breccia from regolith and 13 different chondrites. The MCRs agreed well with cooling rates predicted by fission-track thermometry and Ar-40/Ar-39 ages. The OSM predicts an inverse correlation between the cooling rate and the petrographic type. Low correlations found between the MCRs and petrographic type indicate that chondrite parent asteroids were not assembled with onion shell structures.

  12. Microstructural Effects on Creep-Fatigue Life of Alloy 709

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMurtrey, Michael; Carroll, Laura; Wright, Jill

    Creep-fatigue tests were performed on plates of Alloy 709 from various heats and processing conditions, but often with inhomogeneous microstructures. After testing, metallographic analysis was performed and the specimens were generally found to either have a uniform grain size or a bimodal grain size distribution with either isolated or groups (bands) of large grains. Creep-fatigue life was characterized with respect to the length of the grain boundary perpendicular to the stress axis, and it was found that large grains (>400 μm) tended to be detrimental to creep-fatigue life, with the exception of elongated (parallel to the stress axis) grains andmore » some specimens that underwent additional annealing.« less

  13. Development of a method for fabricating metallic matrix composite shapes by a continuous mechanical process

    NASA Technical Reports Server (NTRS)

    Divecha, A. P.; Karmarkar, S. D.; Pawar, P. G.

    1973-01-01

    The continuing efforts in upscaling to produce larger diameter Al/B tubes are described. While the basic methodology remains unchanged, the larger volume of acrylic binder material and its removal by dissolution in toluene had to be performed by dynamic scrubbing. Similarly, the boron and MCF continuous length requirements increased when a 6 foot long by 7 inches wide mat was needed. These modifications and associated problems are described fully with schematics. Also included are seven experiments conducted to prepare larger tubes. The thermal profile, drawing speeds, and furnace positions in the draw bench bay are presented along with metallographic evidence of composite cross sections.

  14. Failure Analysis of Main Flame Deflector Nelson Studs

    NASA Technical Reports Server (NTRS)

    Long, Victoria

    2009-01-01

    NASA Structures engineers submitted two Nelson refractory studs from the main flame deflector at Launch Complex (LC) 39 A for analysis when they were observed to be missing a significant amount of material after launch. The damaged stud and an unused comparative stud were analyzed by macroscopic and microscopic examination along with metallographic evaluation of the microstructure. The stud lost material due to a combination of erosion and corrosion. Plain carbon steel readily forms an oxide layer in the coastal launch environment at Kennedy Space Center. The blast during a launch removes this brittle oxide layer, which then forms again post-launch, thereby further removing material. No indications of melting were observed.

  15. The optical breakdown threshold of air on a polished metal surface for radiation at lambda=10.6 microns

    NASA Astrophysics Data System (ADS)

    Arkhipov, Iu. V.; Belashkov, I. N.; Datskevich, N. P.; Egorov, V. N.; Iziumov, A. F.

    1986-01-01

    Threshold conditions for the formation of a plasma due to optical breakdown of air on the polished surfaces of Al, Co, Mi, and W samples have been investigated experimentally. The optical breakdown was initiated by pulsed radiation from two CO2 lasers having pulse powers 0.5 and 1.0 kJ, respectively. The thresholds for the formation of the plasma were determined for two exposure spots of o/14 sq mm and 46 sq cm, respectively. A metallographic study was carried out in order to identify the specific types of defects corresponding to the lowest optical breakdown thresholds. Before-and-after photographs of the metal surfaces are provided.

  16. Measurement of fracture toughness of metallic materials produced by additive manufacturing

    NASA Astrophysics Data System (ADS)

    Quénard, O.; Dorival, O.; Guy, Ph.; Votié, A.; Brethome, K.

    2018-04-01

    This study focuses on the microstructure and mechanical properties of metallic materials produced by additive layer manufacturing (ALM), especially the laser beam melting process. The influence of the specimen orientation during the ALM process and that of two post-build thermal treatments were investigated. The identified metal powder is Ti-6Al-4V (titanium base). Metallographic analysis shows their effects on the microstructure of the metals. Mechanical experiments involving tensile tests as well as toughness tests were performed according to ASTM (American Society for Testing and Materials) norms. The results show that the main influence is that of the thermal treatments; however the manufacturing stacking direction may lead to some anisotropy in the mechanical properties.

  17. The fracture toughness of borides formed on boronized cold work tool steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Ugur; Sen, Saduman

    2003-06-15

    In this study, the fracture toughness of boride layers of two borided cold work tool steels have been investigated. Boriding was carried out in a salt bath consisting of borax, boric acid, ferro-silicon and aluminum. Boriding was performed at 850 and 950 deg. C for 2 to 7 h. The presence of boride phases were determined by X-ray diffraction (XRD) analysis. Hardness and fracture toughness of borides were measured via Vickers indenter. Increasing of boriding time and temperature leads to reduction of fracture toughness of borides. Metallographic examination showed that boride layer formed on cold work tool steels was compactmore » and smooth.« less

  18. Relation between the fracture laws and the fatigue life of a surface-hardened pseudo-α titanium alloy

    NASA Astrophysics Data System (ADS)

    Bagmutov, V. P.; Vodop'yanov, V. I.; Zakharov, I. N.; Denisevich, D. S.

    2016-07-01

    The laws of fracture and fatigue life of the PT-3V pseudo-α titanium alloy subjected to surface hardening using electromechanical, ultrasonic, and combined treatment are studied. Fracture mechanisms and the structures of crack nucleation and growth zones are described using the results of metallographic and fractographic analysis of samples after fatigue tests. It is shown that the existence of a thin hardened layer on the sample surface changes the crack nucleation time and the state of fracture surface in the crack nucleation zone. This surface is characterized by signs of brittle or ductile fracture, which substantially affects the fatigue life of the sample.

  19. Study on Damage Mechanism of Ductile Cast Iron Cooling Stave

    NASA Astrophysics Data System (ADS)

    Wang, Cui; Zhang, Jianliang; Zuo, Haibin; Dai, Bing

    The damage mechanism of ductile cast iron cooling stave applied to No.4 blast furnace of Guofeng steel was analyzed through damage investigation in details, the damage causes: high-temperature gas flow erosion, wear of burden, high-temperature ablation, carburizing damage, improper operation on blast furnace, etc. were given out both in macroscopic and microscopic views. It can be obtained from metallographic diagrams that the diameter of graphite nodules increases, the number per unit area reduces, and roundness declines, successively, from cold to hot surface, which are not conducive to stave longevity. In summary, the material for staves manufacture should be better in comprehensive mechanical properties to prolong the service life, thus making blast furnace long campaign.

  20. Tensile deformation damage in SiC reinforced Ti-15V-3Cr-3Al-3Sn

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Saltsman, James F.

    1991-01-01

    The damage mechanisms of a laminated, continuous SiC fiber reinforced Ti-15V-3Cr-3Al-3Sn (Ti-15-3) composite were investigated. Specimens consisting of unidirectional as well as cross-ply laminates were pulled in tension to failure at room temperature and 427 C and subsequently examined metallographically. Selected specimens were interrupted at various strain increments and examined to document the development of damage. When possible, a micromechanical stress analysis was performed to aid in the explanation of the observed damage. The analyses provide average constituent microstresses and laminate stresses and strains. It was found that the damage states were dependent upon the fiber architecture.

  1. Hybrid welding of dissimilar metals

    NASA Astrophysics Data System (ADS)

    Samigullin, A. D.; Bashmakov, D. A.; Israphilov, I. Kh; Turichin, G. A.

    2017-01-01

    The article addresses issues laser - plasma welding (LPW) dissimilar metals and the results of metallographic studies of the microstructure of welds ferrite - 40 steel and molybdenum - steel 40. Increasing potential opportunities the high-energy processing is carried out by integration the laser radiation (LR) and plasma, which allows you to create the desired spatial distribution of the energy flow for technological processes (TP) of laser-plasma heat treatment (LPT) of metals. The distribution of the thermal field is determined by the density distribution of energy flow LR and plasma exposure time, and the thermal characteristics of the treated metal. The most interesting is the treatment of details with ring flow of plasma and LR axial impact.

  2. Electrochemical monitoring of high-temperature molten-salt corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, G.; Stott, F.H.; Dawson, J.L.

    1990-02-01

    Hot molten-salt corrosion can cause serious metal degradation in boiler plant, incinerators, and furnaces. In this research, electrochemical-impedance and electrochemical-noise techniques have been evaluated for the monitoring of hot-corrosion processes in such plants. Tests have been carried out on Ni-1% Co and Alloy 800, a commercial material of interest to operators of industrial plants. Electrochemical-impedance and electrochemical-noise data were compared with the results of metallographic examination of the test alloys and showed reasonable correlation between the electrochemical data and the actual degradation processes. This preliminary work indicated that the electrochemical techniques show considerable promise as instruments for the monitoring ofmore » high-temperature corrosion processes.« less

  3. Relationship between fatigue life in the creep-fatigue region and stress-strain response

    NASA Technical Reports Server (NTRS)

    Berkovits, A.; Nadiv, S.

    1988-01-01

    On the basis of mechanical tests and metallographic studies, strainrange partitioned lives were predicted by introducing stress-strain materials parameters into the Universal Slopes Equation. This was the result of correlating fatigue damage mechanisms and deformation mechanisms operating at elevated temperatures on the basis of observed mechanical and microstructural behavior. Correlation between high temperature fatigue and stress strain properties for nickel base superalloys and stainless steel substantiated the method. Parameters which must be evaluated for PP- and CC- life are the maximum stress achievable under entirely plastic and creep conditions respectively and corresponding inelastic strains, and the two more pairs of stress strain parameters must be ascertained.

  4. Characterization of GTA weldments in 10Ni-8CO-2Cr-1MO steel

    NASA Technical Reports Server (NTRS)

    Stonesifer, F. R.; Smith, H. L.

    1972-01-01

    This study of 10Ni-8Co-2Cr-1Mo steel includes evaluations of tensile, impact, hardness, fracture toughness properties, and metallographic features. Base plate and three weldments in one-inch thicknesses were examined to compare as-welded properties with those obtained after reaging, and results of welding the 10%Ni alloy with 9-4-20 wire as opposed to a matching weld wire composition. Critical crack sizes are calculated for the material. The most desirable weld properties are obtained using the matching weld wire and a reaging cycle. However, the improvement gained through reaging is probably not sufficient to justify the additional cost for most practical applications.

  5. Metals and Ceramics Division annual progress report, October 1, 1978-June 30, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, S.

    Research is reported concerning: (1) engineering materials including materials compatibility, mechanical properties, nondestructive testing, pressure vessel technology, and welding and brazing; (2) fuels and processes consisting of ceramic technology, fuel cycle technology, fuels evaluation, fuels fabrication and metals processing; and (3) materials science which includes, ceramic studies, physical metallurgy and properties, radiation effects and microstructural analysis, metastable and superconducting materials, structure and properties of surfaces, theoretical research, and x-ray research and applications. Highlights of the work of the metallographic group and the current status of the High-Temperature Materials Laboratory (HTML) and the Materials and Structures Technology Management Center (MSTMC) aremore » presented. (FS)« less

  6. Microstructural Evolution of Ti-6Al-4V during High Strain Rate Conditions of Metal Cutting

    NASA Technical Reports Server (NTRS)

    Dong, Lei; Schneider, Judy

    2009-01-01

    The microstructural evolution following metal cutting was investigated within the metal chips of Ti-6Al-4V. Metal cutting was used to impose a high strain rate on the order of approx.10(exp 5)/s within the primary shear zone as the metal was removed from the workpiece. The initial microstructure of the parent material (PM) was composed of a bi-modal microstructure with coarse prior grains and equiaxed primary located at the boundaries. After metal cutting, the microstructure of the metal chips showed coarsening of the equiaxed primary grains and lamellar. These metallographic findings suggest that the metal chips experienced high temperatures which remained below the transus temperature.

  7. Microstructure Evolution in Cut Metal Chips of Ti-6Al-4V

    NASA Technical Reports Server (NTRS)

    Dong, L.; Schneider, J. A.

    2008-01-01

    The microstructural evolution following metal cutting was investigated within metal chips of Ti-6Al-4V. Metal cutting was used to impose a high strain rate on the order of approx.10(exp 5)/s within the primary shear zone as the metal was removed from the workpiece. The initial microstructure of the parent material (PM) was composed of a bi-modal microstructure with coarse prior beta grains and equiaxed primary alpha located at the boundaries. After metal cutting, the microstructure of the metal chips showed coarsening of the equiaxed primary alpha grains and beta lamellar. These metallographic findings suggest that the metal chips experienced high temperatures which remained below the beta transus temperature.

  8. Fractography of composite delamination

    NASA Technical Reports Server (NTRS)

    Bascom, W. D.

    1989-01-01

    Delamination is a major failure mode of carbon fiber organic matrix composites. It can occur under a variety of loading conditions. Efforts to develop predictive models of the delamination of carbon fiber composites are hampered by a lack of information about the micromechanics of impact damage and delamination growth. Crack formation and propagation in these materials cannot be observed in sufficient detail to determine micro-damage using currently available nondestructive methods such as acoustic backscattering or x ray imaging. Consequently, destructive methods are required. Delamination of composites in Mode I, Mode II and after low energy impact loads were investigated using metallographic techniques of potting the failed specimens, sectioning and examining the cut sections for damage modes.

  9. The role of mechanical properties in cavitation erosion resistance. [parameters affecting metal fatigue under cavitation flow conditions

    NASA Technical Reports Server (NTRS)

    Gould, G. C.

    1974-01-01

    Methods for determining the correlations of erosion resistance and mechanical properties of materials are discussed. The most common method of testing cavitation erosion resistance of materials is the vibratory cavitation probe. The instrument and its operation are described. The use of the whirling arm device is considered as a second method. Metallographic investigations of the earliest stages of cavitation erosion damage of metallic materials was conducted. The materials show plastic deformation occurring during the incubation period and increasing until cracks form and metal fragments are lost. The parameters of the work done to cause material fractures are identified. The reactions obtained with specific materials are reported.

  10. Transition joints between Zircaloy-2 and stainless steel by diffusion bonding

    NASA Astrophysics Data System (ADS)

    Bhanumurthy, K.; Krishnan, J.; Kale, G. B.; Banerjee, S.

    1994-11-01

    The diffusion bonding between Zircaloy-2 and stainless steel (AISI 304L) using niobium, nickel and copper as intermediate layers has been investigated in the temperature range of 750 to 900°C. Bonding was carried out in a vacuum hot press, under compressive loading. Electron probe microanalysis and metallographic analysis showed a good metallurgical compatibility and also indicated the absence of discontunities, micropores and intermetallic compounds at various interfaces. The bond strength of the diffusion bonded assembly was found to be about 400 MPa for the couples bonded at 870°C for 2 h. The dimple structure on the fractured surface is indicative of the ductile mode of failure of the bonded assembly.

  11. Status of RF beryllium characterization for ITER Fist Wall

    NASA Astrophysics Data System (ADS)

    Kupriyanov, I. B.; Nikolaev, G. N.; Roedig, M.; Gervash, A. А.; Linke, I. J.; Kurbatova, L. A.; Perevalov, S. I.; Giniyatulin, R. N.

    2011-10-01

    The status of RF R&D activities in production and characterization of TGP-56FW beryllium grade is presented. The results of metallographic studies of microstructure and cracks morphology are reported for full-scale Be tiles (56 × 56 × 10 mm) subjected to VDE simulation tests in TSEFEY-M testing facility (VDE-10 MJ/m 2 during 0.1 s, 1 shot ) and following low cycle thermal fatigue tests (500 thermal cycles at 1.5 MW/m 2). First results of plasma disruption tests ( E = 1.2-5 MJ/m 2, 5 ms), which were obtained during the realization of Thermal Shock/VDE Qualification program of RF beryllium in JUDITH-1 facility, are also discussed.

  12. The study of the modes of Ta-Zr powder mixture non-vacuum electron-beam cladding on the surface of the cp-titanium plates

    NASA Astrophysics Data System (ADS)

    Samoylenko, V. V.; Lozhkina, E. A.; Polyakov, I. A.; Lenivtseva, O. G.; Ivanchik, I. S.; Matts, O. E.

    2016-11-01

    The effect of the modes of non-vacuum electron-beam cladding of Ta-Zr powder mixtures on the structure and properties of the layers formed on the surface of cp-titanium were studied. The mode of the electron-beam alloying of titanium with zirconium and tantalum, which ensured the formation of a defect-free layer with a high content of alloying elements was selected. Metallographic examination indicated the presence of a dendritic- and plate-type structure of cladded layers. The microhardness of the layers, formed at the optimum mode, was not changed in the cross section and was equal to 450 HV.

  13. A preliminary ferritic-martensitic stainless steel constitution diagram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balmforth, M.C.; Lippold, J.C.

    1998-01-01

    This paper describes preliminary research to develop a constitution diagram that will more accurately predict the microstructure of ferritic and martensitic stainless steel weld deposits. A button melting technique was used to produce a wide range of compositions using mixtures of conventional ferritic and martensitic stainless steels, including types 403, 409, 410, 430, 439 and 444. These samples were prepared metallographically, and the vol-% ferrite and martensite was determined quantitatively. In addition, the hardness and ferrite number (FN) were measured. Using this data, a preliminary constitution diagram is proposed that provides a more accurate method for predicting the microstructures ofmore » arc welds in ferritic and martensitic stainless steels.« less

  14. Containerless processing of undercooled melts

    NASA Technical Reports Server (NTRS)

    Perepezko, J. H.

    1993-01-01

    The investigation focused on the control of microstructural evolution in Mn-Al, Fe-Ni, Ni-V, and Au-Pb-Sb alloys through the high undercooling levels provided by containerless processing, and provided fundamental new information on the control of nucleation. Solidification analysis was conducted by means of thermal analysis, x-ray diffraction, and metallographic characterization on samples processed in a laboratory scale drop tube system. The Mn-Al alloy system offers a useful model system with the capability of phase separation on an individual particle basis, thus permitting a more complete understanding of the operative kinetics and the key containerless processing variables. This system provided the opportunity of analyzing the nucleation rate as a function of processing conditions and allowed for the quantitative assessment of the relevant processing parameters. These factors are essential in the development of a containerless processing model which has a predictive capability. Similarly, Ni-V is a model system that was used to study duplex partitionless solidification, which is a structure possible only in high under cooling solidification processes. Nucleation kinetics for the competing bcc and fcc phases were studied to determine how this structure can develop and the conditions under which it may occur. The Fe-Ni alloy system was studied to identify microstructural transitions with controlled variations in sample size and composition during containerless solidification. This work was forwarded to develop a microstructure map which delineates regimes of structural evolution and provides a unified analysis of experimental observations. The Au-Pb-Sb system was investigated to characterize the thermodynamic properties of the undercooled liquid phase and to characterize the glass transition under a variety of processing conditions. By analyzing key containerless processing parameters in a ground based drop tube study, a carefully designed flight experiment may be planned to utilize the extended duration microgravity conditions of orbiting spacecraft.

  15. Effect of surface oxidation on emissivity properties of pure aluminum in the near infrared region

    NASA Astrophysics Data System (ADS)

    Zhang, Kaihua; Yu, Kun; Liu, Yufang; Zhao, Yuejin

    2017-08-01

    Emissivity is a basic thermo physical property of materials and determines the precision of radiation thermometry. The aim of this paper is to study the effect of surface oxidation on the infrared emissivity properties of pure aluminum. The emissivity data presented in this study covers the spectral range between 0.8 and 2.2 µm and temperatures from 473 to 873 K. The samples with different oxidation time were prepared under a controlled environment. The morphology and composition of the samples were characterized by metallographic microscope and XRD techniques before and after oxidation. The thickness of oxide film with different oxidation time was accurately measured by spectroscopic ellipsometer and a parabolic growth was found. In addition, the interference model of an oxidized metal substrate is established to explain the influence of the oxide film thickness on the emissivity. The thickness of oxide film when the interference effect occurs was calculated according to the interference model. The data shows that the maximum value measured was less than the thickness value at the first order constructive interference. Neither peaks nor valleys were observed in emissivity measurements with different oxidation time at 873 K, which could be related to the thin oxide film on sample surface.

  16. Mechanical properties of bovine cortical bone based on the automated ball indentation technique and graphics processing method.

    PubMed

    Zhang, Airong; Zhang, Song; Bian, Cuirong

    2018-02-01

    Cortical bone provides the main form of support in humans and other vertebrates against various forces. Thus, capturing its mechanical properties is important. In this study, the mechanical properties of cortical bone were investigated by using automated ball indentation and graphics processing at both the macroscopic and microstructural levels under dry conditions. First, all polished samples were photographed under a metallographic microscope, and the area ratio of the circumferential lamellae and osteons was calculated through the graphics processing method. Second, fully-computer-controlled automated ball indentation (ABI) tests were performed to explore the micro-mechanical properties of the cortical bone at room temperature and a constant indenter speed. The indentation defects were examined with a scanning electron microscope. Finally, the macroscopic mechanical properties of the cortical bone were estimated with the graphics processing method and mixture rule. Combining ABI and graphics processing proved to be an effective tool to obtaining the mechanical properties of the cortical bone, and the indenter size had a significant effect on the measurement. The methods presented in this paper provide an innovative approach to acquiring the macroscopic mechanical properties of cortical bone in a nondestructive manner. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A bioactive coating with submicron-sized titania crystallites fabricated by induction heating of titanium after tensile deformations.

    PubMed

    Li, Ning-Bo; Xu, Wen-Hua; Xiao, Gui-Yong; Zhao, Jun-Han; Lu, Yu-Peng

    2017-11-01

    Thermal oxidation technology was widely investigated as one of effective surface modification method for improving the bioactivity and biocompatibility of titanium and its alloys. In this work, the induction heat oxidization method, a fast, efficient, economical and environmental protective technology, was applied to prepare the submicron-morphological oxide coating with variable rutile TiO 2 equiaxed crystallites on the surface of pure Ti substrates after cold-drawing with 10-20% deformations. The results showed the plastic-deformed Ti cylinders recrystallized during induction heating treatment (IHT) for 10-20s which resulted in evolution of microstructures as well as slight improvement of microhardness. The surface characteristics of TiO 2 crystallites in oxidation layers were determined by the microstructural evolutions of Ti substrate in terms of the nucleation and growth of TiO 2 crystallites. Specially, the oxidized surface with 50-75nm roughness and more uniform and finer equiaxed oxide grains remarkablely improved the apatite deposition after bioactive evaluation in 1.5 × SBF for 7 days. This work provided a potential method to create controlled bioactive oxide coatings with submicro-/nano-scaled TiO 2 crystallites on titanium substrate in terms of the role of metallographic microstructure in the formation process of titanium oxides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Tribo-mechanical properties of thin boron coatings deposited on polished cobalt alloy surfaces for orthopedic applications

    PubMed Central

    Klepper, C. C.; Williams, J. M.; Truhan, J.J.; Qu, J.; Riester, L.; Hazelton, R. C.; Moschella, J.J.; Blau, P.J.; Anderson, J.P.; Popoola, O.O.; Keitz, M.D.

    2008-01-01

    This paper presents experimental evidence that thin (<∼200 nm) boron coatings, deposited with a (vacuum) cathodic arc technique on pre-polished Co-Cr-Mo surfaces, could potentially extend the life of metal-on-polymer orthopedic devices using cast Co-Cr-Mo alloy for the metal component. The primary tribological test used a linear, reciprocating pin-on-disc arrangement, with pins made of ultra-high molecular weight polyethylene. The disks were cast Co-Cr-Mo samples that were metallographically polished and then coated with boron at a substrate bias of 500 V and at about 100 °C. The wear tests were carried out in a saline solution to simulate the biological environment. The improvements were manifested by the absence of a detectable wear track scar on the coated metal component, while significant polymer transfer film was detected on the uncoated (control) samples tested under the same conditions. The polymer transfer track was characterized with both profilometry and Rutherford Backscattering Spectroscopy. Mechanical characterization of the thin films included nano-indentation, as well as additional pin-on-disk tests with a steel ball to demonstrate adhesion, using ultra-high frequency acoustic microscopy to probe for any void occurrence at the coating-substrate interface. PMID:19340285

  19. Automated Plasma Spray (APS) process feasibility study

    NASA Technical Reports Server (NTRS)

    Fetheroff, C. W.; Derkacs, T.; Matay, I. M.

    1981-01-01

    An automated plasma spray (APS) process was developed to apply two layer (NiCrAlY and ZrO2-12Y2O3) thermal barrier coatings to aircraft and stationary gas turbine engine blade airfoils. The APS process hardware consists of four subsystems: a mechanical positioning subsystem incorporating two interlaced six degree of freedom assemblies (one for coating deposition and one for coating thickness monitoring); a noncoherent optical metrology subsystem (for in process gaging of the coating thickness buildup at specified points on the specimen); a microprocessor based adaptive system controller (to achieve the desired overall thickness profile on the specimen); and commerical plasma spray equipment. Over fifty JT9D first stage aircraft turbine blade specimens, ten W501B utility turbine blade specimens and dozens of cylindrical specimens were coated with the APS process in preliminary checkout and evaluation studies. The best of the preliminary turbine blade specimens achieved an overall coating thickness uniformity of 53 micrometers (2.1 mils), much better than is achievable manually. Comparative evaluations of coating thickness uniformity for manually sprayed and APS coated specimens were performed. One of the preliminary turbine blade evaluation specimens was subjected to a torch test and metallographic evaluation. Some cylindrical specimens coated with the APS process survived up to 2000 cycles in subsequent burner rig testing.

  20. A Metallurgical Study of Nāga Bhasma.

    PubMed

    Singh Gautam, Dev Nath

    2017-01-01

    The metal Nāga (Lead) is being used by Indians since ancient times. Its external and internal uses have been described in Caraka, Suśruta and other Ayurvedic Saṃhitā . According to most of the Rasa texts, Nāga Bhasma and its formulations are used in many diseases such as Prameha , Jvara , Gulma , Śukrameha etc. In the present study, Nāga Bhasma was prepared by the traditional Puṭa method (TPM) and by the electric muffle furnace Puṭa method (EMFPM) and standardized using Metallographic studies. Doing so helps in the study of the microstructure of Nāga Bhasma and also helps in the identification of the metal particles along with the nature of compound formed during the Māraṇa (Bhasmīkaraṇa) process. Different samples from initial raw material to final product of Nāga Bhasma were collected during the pharmaceutical process (1 st , 30 th and 60 th Puṭa ) from both methods i.e. TPM and EMFPM. Samples from both methods were studied using metallographic examination. The processing of the Nāga Bhasma ( ṣaṣṭipuṭa ) was done according to Ānanda Kanda [9] Samples from the raw material i.e. Aśodhita Nāga (raw Lead) and that processed after 1 st , 30 th and 60 th Puṭa from both methods i.e. traditional Puṭa method (using heat from burning of cow dung cakes) and electric muffle furnace Puṭa method were taken. They were mounted on self hardening acrylic base. After careful polishing to obtain scratch free surface of product, they were used for metallurgical study. This study shows that traditional Puṭa method may be better than electric muffle furnace Puṭa method because of more homogeneous distribution of Lead sulphide in the Nāga Bhasma which is prepared by traditional method.

  1. A Metallurgical Study of Nāga Bhasma

    PubMed Central

    Singh Gautam, Dev Nath

    2017-01-01

    Background: The metal Nāga (Lead) is being used by Indians since ancient times. Its external and internal uses have been described in Caraka, Suśruta and other Ayurvedic Saṃhitā. According to most of the Rasa texts, Nāga Bhasma and its formulations are used in many diseases such as Prameha, Jvara, Gulma, Śukrameha etc. Objectives: In the present study, Nāga Bhasma was prepared by the traditional Puṭa method (TPM) and by the electric muffle furnace Puṭa method (EMFPM) and standardized using Metallographic studies. Doing so helps in the study of the microstructure of Nāga Bhasma and also helps in the identification of the metal particles along with the nature of compound formed during the Māraṇa (Bhasmīkaraṇa) process. Setting and Design: Different samples from initial raw material to final product of Nāga Bhasma were collected during the pharmaceutical process (1st, 30th and 60th Puṭa) from both methods i.e. TPM and EMFPM. Samples from both methods were studied using metallographic examination. Materials and Methods: The processing of the Nāga Bhasma (ṣaṣṭipuṭa) was done according to Ānanda Kanda[9] Samples from the raw material i.e. Aśodhita Nāga (raw Lead) and that processed after 1st, 30th and 60th Puṭa from both methods i.e. traditional Puṭa method (using heat from burning of cow dung cakes) and electric muffle furnace Puṭa method were taken. They were mounted on self hardening acrylic base. After careful polishing to obtain scratch free surface of product, they were used for metallurgical study. Conclusion: This study shows that traditional Puṭa method may be better than electric muffle furnace Puṭa method because of more homogeneous distribution of Lead sulphide in the Nāga Bhasma which is prepared by traditional method. PMID:29269968

  2. Group IVA irons: New constraints on the crystallization and cooling history of an asteroidal core with a complex history

    NASA Astrophysics Data System (ADS)

    McCoy, T. J.; Walker, R. J.; Goldstein, J. I.; Yang, J.; McDonough, W. F.; Rumble, D.; Chabot, N. L.; Ash, R. D.; Corrigan, C. M.; Michael, J. R.; Kotula, P. G.

    2011-11-01

    We report analyses of 14 group IVA iron meteorites, and the ungrouped but possibly related, Elephant Moraine (EET) 83230, for siderophile elements by laser ablation ICP-MS and isotope dilution. EET was also analyzed for oxygen isotopic composition and metallographic structure, and Fuzzy Creek, currently the IVA with the highest Ni concentration, was analyzed for metallographic structure. Highly siderophile elements (HSE) Re, Os and Ir concentrations vary by nearly three orders of magnitude over the entire range of IVA irons, while Ru, Pt and Pd vary by less than factors of five. Chondrite normalized abundances of HSE form nested patterns consistent with progressive crystal-liquid fractionation. Attempts to collectively model the HSE abundances resulting from fractional crystallization achieved best results for 3 wt.% S, compared to 0.5 or 9 wt.% S. Consistent with prior studies, concentrations of HSE and other refractory siderophile elements estimated for the bulk IVA core and its parent body are in generally chondritic proportions. Projected abundances of Pd and Au, relative to more refractory HSE, are slightly elevated and modestly differ from L/LL chondrites, which some have linked with group IVA, based on oxygen isotope similarities. Abundance trends for the moderately volatile and siderophile element Ga cannot be adequately modeled for any S concentration, the cause of which remains enigmatic. Further, concentrations of some moderately volatile and siderophile elements indicate marked, progressive depletions in the IVA system. However, if the IVA core began crystallization with ˜3 wt.% S, depletions of more volatile elements cannot be explained as a result of prior volatilization/condensation processes. The initial IVA core had an approximately chondritic Ni/Co ratio, but a fractionated Fe/Ni ratio of ˜10, indicates an Fe-depleted core. This composition is most easily accounted for by assuming that the surrounding silicate shell was enriched in iron, consistent with an oxidized parent body. The depletions in Ga may reflect decreased siderophilic behavior in a relatively oxidized body, and more favorable partitioning into the silicate portion of the parent body. Phosphate inclusions in EET show Δ 17O values within the range measured for silicates in IVA iron meteorites. EET has a typical ataxitic microstructure with precipitates of kamacite within a matrix of plessite. Chemical and isotopic evidence for a genetic relation between EET and group IVA is strong, but the high Ni content and the newly determined, rapid cooling rate of this meteorite show that it should continue to be classified as ungrouped. Previously reported metallographic cooling rates for IVA iron meteorites have been interpreted to indicate an inwardly crystallizing, ˜150 km radius metallic body with little or no silicate mantle. Hence, the IVA group was likely formed as a mass of molten metal separated from a much larger parent body that was broken apart by a large impact. Given the apparent genetic relation with IVA, EET was most likely generated via crystal-liquid fractionation in another, smaller body spawned from the same initial liquid during the impact event that generated the IVA body.

  3. Preliminary study on pressure brazing and diffusion welding of Nb-1Zr to Inconel 718

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1990-01-01

    Future space power systems may include Nb-1Zr/Inconel 718 dissimilar metal joints for operation at 1000 K for 60,000 h. The serviceability of pressure-brazed and diffusion-welded joints was investigated. Ni-based metallic glass foil filler metals were used for brazing. Ni and Fe foils were used as diffusion welding inter-layers. Joint soundness was determined by metallographic examination in the as-brazed and as-welded condition, after aging at 1000 K, and after thermal cycling. Brazed joints thermally cycled in the as-brazed condition and diffusion-welded joints were unsatisfactory because of cracking problems. Brazed joints may meet the service requirements if the joints are aged at 1000 K prior to thermal cycling.

  4. Evaluation of a Brayton cycle recuperator after 21,000 hours of ground testing

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1979-01-01

    A metallographic examination was conducted on a Brayton cycle recuperator and associated ducting after 21,000 hours of ground testing in air. At the hot (turbine) end, the recuperator operated at a nominal temperature of 675 C. The type 347 stainless-steel recuperator performed satisfactorily in the ground test even though the primary working fluid leaked to the atmosphere periodically. The leakage path was located at plate-bar braze joints which cracked as a result of thermal stresses. The welded type 347 stainless steel ducting a type 347/Hastelloy X bellows survived the ground test with no apparent loss of ductility or integrity. Some apparent aging embrittlement was observed in the Hastelloy X ducting but the serviceability was not affected.

  5. Characterization of the NEXT Hollow Cathode Inserts After Long-Duration Testing

    NASA Technical Reports Server (NTRS)

    Mackey, J.; Shastry, R.; Soulas, G.

    2017-01-01

    Hollow dispenser cathode inserts are a critical element of electric propulsion systems, and should therefore be well understood during long term operation to ensure reliable system performance. This work destructively investigated cathode inserts from the NEXT long-duration test which demonstrated 51,184 hours of high-voltage operation, 918 kg of propellant throughput, and 35.5 MN-s of total impulse. The characterization methods used include scanning electron microscopy with energy dispersive spectroscopy and X-ray diffraction. Microscopy analysis has been performed on fractured surfaces, emission surfaces, and metallographically polished cross-sections of post-test inserts and unused inserts. Impregnate distribution, etch region thickness, impregnate chemical content, emission surface topography, and emission surface phase identification are the primary factors investigated.

  6. Investigation the effect of modification with nanopowders on crystallization process and microstructure of some alloys

    NASA Astrophysics Data System (ADS)

    Kuzmanov, P. M.; Popov, S. I.; Yovkov, L. V.; Dimitrova, R. N.; Cherepanov, A. N.; Manolov, V. K.

    2017-10-01

    Modified with nano-powders (NP), AlSi7Mg aluminum alloy, P265GH steel and GG25 gray cast iron, have been investigated. Thermal and metallographic analyses have been made. For modified AlSi7Mg alloy, reduction of overcooling and duration of crystallization at the initial crystallization and their increase at eutectic crystallization have been found. For cast iron GG25, reduction of overcooling at crystallization was established and for P265GH steel, overcooling was not recorded, only a change in the slope of the temperature dependence. The thermal effects obtained in the crystallization correspond to the refinement of micro- and macrostructures. A mathematical model for crystallization of samples for thermal analysis has been developed and solved.

  7. The monitoring and fatigue behavior of CFCCs at ambient temperature and 1000{degrees}C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miriyala, N.; Liaw, P.K.; McHargue, C.J.

    1997-04-01

    Metallographically polished flexure bars of Nicalon/SiC and Nicalon/alumina composites were subjected to monotonic and cycle-fatigue loadings, with loading either parallel or normal to the fabric plies. The fabric orientation did not significantly affect the mechanical behavior of the Nicalon/SiC composite at ambient temperature. However, the mechanical behavior of the Nicalon/alumina composite was significantly affected by the fabric orientation at ambient temperature in air and at 1000{degrees}C in argon atmosphere. In addition, there was a significant degradation in the fatigue performance of the alumina matrix composite at the elevated temperature, owing to creep in the material and degradation in the fibermore » strength.« less

  8. Relationship between fatigue life in the creep-fatigue region and stress-strain response

    NASA Technical Reports Server (NTRS)

    Berkovits, A.; Nadiv, S.

    1988-01-01

    On the basis of mechanical tests and metallographic studies, strainrange partitioned lives were predicted by introducing stress-strain materials parameters into the Universal Slopes Equation. This was the result of correlating fatigue damage mechanisms and deformation mechanisms operating at elevated temperatures on the basis of observed mechanical and microstructural behavior. Correlation between high temperature fatigue and stress strain properties for nickel base superalloys and stainless steel substantiated the method. Parameters which must be evaluated for PP- and CC- life are the maximum stress achievable under entirely plastic and creep conditions respectively and corresponding inelastic strains, and the elastic modulus. For plasticity/creep interaction conditions (PC and CP) two more pairs of stress strain parameters must be ascertained.

  9. A New Continuous Cooling Transformation Diagram for AISI M4 High-Speed Tool Steel

    NASA Astrophysics Data System (ADS)

    Briki, Jalel; Ben Slima, Souad

    2008-12-01

    The increasing evolution of dilatometric techniques now allows for the identification of structural transformations with very low signal. The use of dilatometric techniques coupled with more common techniques, such as metallographic, hardness testing, and x-ray diffraction allows to plot a new CCT diagram for AISI M4 high-speed tool steel. This diagram is useful for a better selection of alternate solutions, hardening, and tempering heat treatments. More accurate determination of the various fields of transformation of austenite during its cooling was made. The precipitation of carbides highlighted at high temperature is at the origin of the martrensitic transformation into two stages (splitting phenomena). For slow cooling rates, it was possible to highlight the ferritic, pearlitic, and bainitic transformation.

  10. Aqueous sodium chloride induced intergranular corrosion of Al-Li-Cu alloys

    NASA Technical Reports Server (NTRS)

    Pizzo, P. P.; Daeschner, D. L.

    1986-01-01

    Two methods have been explored to assess the susceptibility of Al-Li-Cu alloys to intergranular corrosion in aqueous sodium chloride solution. They are: (1) constant extension rate testing with and without alternate-immersion preexposure and (2) metallographic examination after exposure to a NaCl-H2O2 corrosive solution per Mil-H-6088F. Intergranular corrosion was found to occur in both powder and ingot metallurgy alloys of similar composition, using both methods. Underaging rendered the alloys most susceptible. The results correlate to stress-corrosion data generated in conventional time-to-failure and crack growth-rate tests. Alternate-immersion preexposure may be a reliable means to assess stress corrosion susceptibility of Al-Li-Cu alloys.

  11. Dynamics of solid lubrication as observed by optical microscopy

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.

    1976-01-01

    A bench metallograph was converted into a micro contact imager by the addition of a tribometer employing a steel ball in sliding contact with a glass disk. The sliding contact was viewed in real time by means of projection microscope optics. The dynamics of abrasive particles and of solid lubricant particles within the contact were observed in detail. The contact was characterized by a constantly changing pattern of elastic strain with the passage of surface discontinuities and solid particles. Abrasive particles fragmented upon entering the contact, embedded in one surface and scratched the other; in contrast, the solid lubricant particles flowed plastically into thin films. The rheological behavior of the lubricating solids gave every appearance of a paste-like consistency within the Hertzian contact.

  12. Effects of Forged Stock and Pure Aluminum Coating on Cryogenic Performance of Heat Treated Aluminum Mirrors

    NASA Technical Reports Server (NTRS)

    Toland, Ronald W.; Ohl, Raymond G.; Barthelmy, Michael P.; Zewari, S. Wahid; Greenhouse, Matthew A.; MacKenty, John W.

    2003-01-01

    We present the results of an on-going test program designed to empirically determine the effects of different stress relief procedures for aluminum mirrors. Earlier test results identified a preferred heat treatment for flat and spherical mirrors diamond turned from blanks cut out of Al 6061-T651 plate stock. Further tests have been performed on mirrors from forged stock and one set from plate stock coated with Alumiplate(trademark) aluminum coating to measure the effect of these variables on cryogenic performance. The mirrors are tested for figure error and radius of curvature at room temperature and at 80 K for three thermal cycles. We correlate the results of our optical testing with heat treatment and metallographic data.

  13. Evaluation of multilayer printed wiring boards by metallographic techniques: An illustrated guide to the preparation and inspection of plated-through hole test coupons based on the requirements of Mil-P-55110D

    NASA Technical Reports Server (NTRS)

    Jellison, J.

    1986-01-01

    This work is an illustrated handbook containing the rationale and procedure for the evaluation of multilayer printed wiring board construction integrity with respect to plated-through holes in accordance with the requirements of MIL-P-55110D, Printed Wiring Boards. It is intended as a practical aid for those concerned with determining the construction integrity of multilayer boards for high reliability applications. Photomicrographs of cross sectioned holes illustrate defect types, acceptable and unacceptable conditions, and methods of measurement. A procedure for specimen preparation is given, and appropriate paragraphs of the military specification are included and explained.

  14. Effects of Porosity on Ultrasonic Characteristic Parameters and Mechanical Properties of Glass Fiber Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Ma, Wen; Liu, Fushun

    Voids are inevitable in the fabrication of fiber reinforced composites and have a detrimental impact on mechanical properties of composites. Different void contents were acquired by applying different vacuum bag pressures. Ultrasonic inspection and ablation density method were adopted to measure the ultrasonic characteristic parameters and average porosity, the characterization of voids' distribution, shape and size were carried out through metallographic analysis. Effects of void content on the tensile, flexural and interlaminar shear properties and the ultrasonic characteristic parameters were discussed. The results showed that, as vacuum bag pressure went from -50kPa to -98kPa, the voids content decreased from 4.36 to 0.34, the ultrasonic attenuation coefficient decreased, but the mechanical strengths all increased.

  15. Investigation to develop a method to apply diffusion barrier to high strength fibers

    NASA Technical Reports Server (NTRS)

    Veltri, R. D.; Paradis, R. D.; Douglas, F. C.

    1975-01-01

    A radio frequency powered ion plating process was used to apply the diffusion barriers of aluminum oxide, yttrium oxide, hafnium oxide and titanium carbide to a substrate tungsten fiber. Each of the coatings was examined as to its effect on both room temperature strength and tensile strength of the base tungsten fiber. The coated fibers were then overcoated with a nickel alloy to become single cell diffusion couples. These diffusion couples were exposed to 1093 C for 24 hours, cycled between room temperature and 1093 C, and given a thermal anneal for 100 hours at 1200 C. Tensile testing and metallographic examinations determined that the hafnium oxide coating produced the best high temperature diffusion barrier for tungsten of the four coatings.

  16. The influence of flushing time on the bonding quality of liquid white cast iron on the solid surface of similar material

    NASA Astrophysics Data System (ADS)

    Bandanadjaja, Beny; Purwadi, Wiwik; Idamayanti, Dewi; Lilansa, Noval; Hanaldi, Kus; Nurzaenal, Friya Kurnia

    2018-05-01

    Hard metal castings are widely used in the coal mill pulverizer as construction material for coal crushers. During its operation crushers and mills experience degradation caused by abrasion load. This research dealed with the surface overlaying of similiar material on the surface of white cast iron by mean of gravity casting. The die blank casting was preheated prior to the casting process of outer layer made of Ni-Hard white cast iron to guarantee bonding processes and avoid any crack. The preheating temperature of die blankin ther range of 500C up to 850C was set up to reach the interface temperature in the range of 887°C -1198°C and the flushing time was varied between 10-20 seconds. Studies carried on the microstructure of sample material revealed a formation of metallurgical bonding at the preheating temperature above 625 °C by pouring temperature ranging from 1438 °C to 1468 °C. Metallographical and chemical composition by mean of EDS examination were performed to observed the resut. This research concludes that the casting of Ni-Hard 1 overlay by applying gravity casting method can be done by preheating the surface of casting to 625 °C, interface temperature of 1150 °C, flushing time of 7 seconds and pouring temperature of 1430 °C. Excellent metallurgical bonding at the contact area between dieblank and overlay material has been achieved in which there is no parting line at the interface area to be observed.

  17. Manufacturing of reliable actively cooled fusion components - a challenge for non-destructive inspections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reheis, N.; Zabernig, A.; Ploechl, L.

    1994-12-31

    Actively cooled in-vessel components like divertors or limiters require high quality and reliability to ensure safe operation during long term use. Such components are subjected to very severe thermal and mechanical cyclic loads and high power densities. Key requirements for materials in question are e.g. high melting point and thermal conductivity and low atomic mass number. Since no single material can simultaneously meet all of these requirements the selection of materials to be combined in composite components as well as of manufacturing and non-destructive inspection (NDI) methods is a particularly challenging task. Armour materials like graphite intended to face themore » plasma and help to maintain its desired properties, are bonded to metallic substrates like copper, molybdenum or stainless steel providing cooling and mechanical support. Several techniques such as brazing and active metal casting have been developed and successfully applied for joining materials with different thermophysical properties, pursuing the objective of sufficient heat dissipation from the hot, plasma facing surface to the coolant. NDI methods are an integral part of the manufacturing schedule of these components, starting in the design phase and ending in the final inspection. They apply all kinds of divertor types (monobloc and flat-tile concept). Particular focus is put on the feasibility of detecting small flaws and defects in complex interfaces and on the limits of these techniques. Special test pieces with defined defects acting as standards were inspected. Accompanying metallographic investigations were carried out to compare actual defects with results recorded during NDI.« less

  18. Structure Optimization of Porous Dental Implant Based on 3D Printing

    NASA Astrophysics Data System (ADS)

    Ji, Fangqiu; Zhang, Chunyu; Chen, Xianshuai

    2018-03-01

    In this paper, selective laser melting (SLM) technology is used to process complex structures. In combination with the theory of biomedicine, a porous implant with a porous structure is designed to induce bone cell growth. The mechanical strength advantage of SLM was discussed by observing the metallographic structure of SLM specimen with mechanical microscope and mechanical tensile test. The osseointegration of porous implants was observed and analyzed by biological experiments. By establishing a mechanical model, the mechanical properties of the bone implant combined with the jaw bone were studied by the simple mechanical analysis under static multi loading and the finite element mechanical analysis. According to the experimental observation and mechanical research, the optimization suggestions for the structure design of the implant made by SLM technology were put forward.

  19. An experimental, low-cost, silicon slurry/aluminide high-temperature coating for superalloys

    NASA Technical Reports Server (NTRS)

    Young, S. G.; Deadmore, D. L.

    1979-01-01

    A duplex silicon-slurry/aluminide coating has been developed and cyclically tested in Mach 1 combustion gases for oxidation and thermal fatigue resistance at 1093 C and in Mach 0.3 gases for hot-corrosion resistance at 900 C. The base-metal superalloys were VIA and B-1900. The coated B-1900 specimens performed much better in oxidation than similar specimens coated with aluminides and almost as well as the more-expensive Pt-Al and MCrAlY (where M is Ni and/or Co) coatings deposited by the physical vapor deposition process. The coating also provided good hot-corrosion protection. Metallographic, X-ray, and electron microprobe studies were made to characterize the coating, determine failure mechanisms, and study some of the changes due to exposure.

  20. Heat Treatment of Closed-Cell A356 + 4 wt.%Cu + 2 wt.%Ca Foam and Its Effect on the Foam Mechanical Behavior

    NASA Astrophysics Data System (ADS)

    Mirbagheri, S. M. H.; Vali, H.; Soltani, H.

    2017-01-01

    In this investigation, aluminum-silicon alloy foam is developed by adding certain amounts of copper and calcium elements in A356 alloy. Addition of 4 wt.%Cu + 2 wt.%Ca to the melt changed bubbles morphology from ellipsoid to spherical by decreasing Reynolds number and increasing Bond number. Compression behavior and energy absorption of the foams are assessed before and after aging. Solid solution treatment and aging lead to the best mechanical properties with 170% enhancement in yield strength and 185% improvement in energy absorption capacity as compared to non-heat-treated foams. The metallographic observations showed that bubbles geometry and structure in the A356 + 4wt.% Cu + 2 wt.%Ca foam are more homogeneous than the A356 foam.

  1. Development of Ion-Plasma Coatings for Protecting Intermetallic Refractory Alloys VKNA-1V and VKNA-25 in the Temperature Range of 1200 - 1250°C

    NASA Astrophysics Data System (ADS)

    Budinovskii, S. A.; Matveev, P. V.; Smirnov, A. A.

    2017-05-01

    Multilayer heat-resistant ion-plasma coatings for protecting the parts of the hot duct of gas-turbine engines produced from refractory nickel alloys based on VKNA intermetallics from high-temperature oxidation are considered. Coatings of the Ni - Cr - Al (Ta, Re, Hf, Y) + Al - Ni - Y systems are tested for high-temperature strength at 1200 and 1250°C. Metallographic and microscopic x-ray spectrum analyses of the structure and composition of the coatings in the initial condition and after the testing are performed. The effect of protective coatings of the Ni - Cr - Al - Hf + Al - Ni - Y systems on the long-term strength of alloys VKNA-1V and VKNA-25 at 1200°C is studied.

  2. High-Temperature Graphitization Failure of Primary Superheater Tube

    NASA Astrophysics Data System (ADS)

    Ghosh, D.; Ray, S.; Roy, H.; Mandal, N.; Shukla, A. K.

    2015-12-01

    Failure of boiler tubes is the main cause of unit outages of the plant, which further affects the reliability, availability and safety of the unit. So failure analysis of boiler tubes is absolutely essential to predict the root cause of the failure and the steps are taken for future remedial action to prevent the failure in near future. This paper investigates the probable cause/causes of failure of the primary superheater tube in a thermal power plant boiler. Visual inspection, dimensional measurement, chemical analysis, metallographic examination and hardness measurement are conducted as the part of the investigative studies. Apart from these tests, mechanical testing and fractographic analysis are also conducted as supplements. Finally, it is concluded that the superheater tube is failed due to graphitization for prolonged exposure of the tube at higher temperature.

  3. The effect of laser pulse tailored welding of Inconel 718

    NASA Technical Reports Server (NTRS)

    Mccay, T. Dwayne; Mccay, Mary Helen; Sharp, C. Michael; Womack, Michael G.

    1990-01-01

    Pulse tailored laser welding has been applied to wrought, wrought grain grown, and cast Inconel 718 using a CO2 laser. Prior to welding, the material was characterized metallographically and the solid state transformation regions were identified using Differential Scanning Calorimetry and high temperature x-ray diffraction. Bead on plate welds (restrained and unrestrained) were then produced using a matrix of pulse duty cycles and pulsed average power. Subsequent characterization included heat affected zone width, penetration and underbead width, the presence of cracks, microfissures and porosity, fusion zone curvature, and precipitation and liquated region width. Pedigree welding on three selected processing conditions was shown by microstructural and dye penetrant analysis to produce no microfissures, a result which strongly indicates the viability of pulse tailored welding for microfissure free IN 718.

  4. Quantitative methods in fractography; Proceedings of the Symposium on Evaluation and Techniques in Fractography, Atlanta, GA, Nov. 10, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, B.M.; Putatunda, S.K.

    1990-01-01

    Papers are presented on the application of quantitative fractography and computed tomography to fracture processes in materials, the relationships between fractographic features and material toughness, the quantitative analysis of fracture surfaces using fractals, and the analysis and interpretation of aircraft component defects by means of quantitative fractography. Also discussed are the characteristics of hydrogen-assisted cracking measured by the holding-load and fractographic method, a fractographic study of isolated cleavage regions in nuclear pressure vessel steels and their weld metals, a fractographic and metallographic study of the initiation of brittle fracture in weldments, cracking mechanisms for mean stress/strain low-cycle multiaxial fatigue loadings,more » and corrosion fatigue crack arrest in Al alloys.« less

  5. Use of fractography and sectioning techniques to study fracture mechanisms

    NASA Technical Reports Server (NTRS)

    Van Stone, R. H.; Cox, T. B.

    1976-01-01

    Recent investigations of the effect of microstructure on the fracture mechanisms and fracture toughness of steels, aluminum alloys, and titanium alloys have used standard fractographic techniques and a sectioning technique on specimens plastically deformed to various strains up to fracture. The specimens are prepared metallographically for observation in both optical and electron beam instruments. This permits observations to be made about the fracture mechanism as it occurs in thick sections and helps remove speculation from the interpretation of fractographic features. This technique may be used in conjunction with other standard techniques such as extraction replicas and microprobe analyses. Care must be taken to make sure that the microstructural features which are observed to play a role in the fracture process using the sectioning technique can be identified with fractography.

  6. Fractography and mechanisms of environmentally enhanced fatigue crack propagation of a reactor pressure vessel steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torronen, K.; Kemppainen, M.

    1981-10-01

    This paper describes the findings and interpretations of the fractographic survey conducted for the International Cyclic Crack Growth Rate (ICCGR) cooperative group round-robin specimens. Specimens of A533B pressure vessel steel were tested at several laboratories in the United States and elsewhere with the same nominal test parameters. A rather wide scatter of the results was found. A fractographic and metallographic survey was carried out in order to clarify the scatter and to evaluate the micromechanism of the crack growth. The fractographic findings are reported in detail and correlated to the crack growth behavior. A hydrogen-assisted crack propagation mechanism based onmore » the fractography is proposed and applied to the observed crack growth behavior.« less

  7. The fractography-modeling link in cleavage fracture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, A.W.

    1997-12-31

    Cleavage fracture has historically been modelled, out of necessity, in rather idealized terms. In real materials, however, there are a number of difficulties in linking such models with metallographic and fractographic observations. Some of the most vivid examples occur for {alpha}{sub 2} titanium aluminide alloys, in which, when the microstructure contains primary {alpha}{sub 2} particles, the primary particles crack first. When basketweave or Widmanstaetten structures of {alpha}{sub 2} laths comprise the microstructure, it appears that individual laths crack first. And in colony structures, cracking occurs first across the {alpha}{sub 2} lath colonies. Both detailed fractographic observations, and also a statisticalmore » model for brittle fracture by failure of weakest links, have been developed. The extent to which this can be interpreted in classical cleavage terms will be discussed.« less

  8. Investigation of the fracture mechanism in Ti-5Al-2.5Sn at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Vanstone, R. H.; Low, J. R., Jr.; Shannon, J. L., Jr.

    1977-01-01

    The influence of microstructure on the fracture mechanism and plane-strain fracture toughness of Ti-5Al-2.5Sn was studied through the use of fractography and metallographic sectioning techniques. One-inch thick plates of extra low interstitial (ELI) and normal interstitial Ti-5Al-2.5Sn were mill annealed at 815 C followed by either air or furnace cooling. These variations in composition and cooling rate resulted in differences in the volume fraction and internal structure of the iron-stabilized phase, and in the crystallographic texture and ordering of the alpha matrix. The tensile properties of these plates were determined at 20 K, 77 K, and 295 K. The air-cooled ELI plate was the toughest material evaluated.

  9. Dissimilar Brazed Joints Between Steel and Tungsten Carbide

    NASA Astrophysics Data System (ADS)

    Voiculescu, I.; Geanta, V.; Binchiciu, H.; Iovanas, D.; Stefanoiu, R.

    2017-06-01

    Brazing is a joining process used to obtain heterogeneous assemblies between different materials, such as steels, irons, non-ferrous metals, ceramics etc. Some application, like asphalt cutters, require quick solutions to obtain dissimilar joints at acceptable costs, given the very short period of operation of these parts. This paper presents some results obtained during the brazing of dissimilar joints between steel and tungsten carbide by using different types of Ag-Cu system filler materials alloyed with P and Sn. The brazing techniques used were oxygen-gas flame and induction joining. The brazing behaviour was analysed in cross sections by optical and electron microscopy. The metallographic analysis enhanced the adhesion features and the length of penetration in the joining gap. The melting range of the filler materials was measured using thermal analysis.

  10. Failure Analysis of PRDS Pipe in a Thermal Power Plant Boiler

    NASA Astrophysics Data System (ADS)

    Ghosh, Debashis; Ray, Subrata; Mandal, Jiten; Mandal, Nilrudra; Shukla, Awdhesh Kumar

    2018-04-01

    The pressure reducer desuperheater (PRDS) pipeline is used for reducing the pressure and desuperheating of the steam in different auxiliary pipeline. When the PRDS pipeline is failed, the reliability of the boiler is affected. This paper investigates the probable cause/causes of failure of the PRDS tapping line. In that context, visual inspection, outside diameter and wall thickness measurement, chemical analysis, metallographic examination and hardness measurement are conducted as part of the investigative studies. Apart from these tests, mechanical testing and fractographic analysis are also conducted as supplements. Finally, it has been concluded that the PRDS pipeline has mainly failed due to graphitization due to prolonged exposure of the pipe at higher temperature. The improper material used is mainly responsible for premature failure of the pipe.

  11. Abundances of volatile-bearing phases in carbonaceous chondrites and cooling rates of meteorites based on cation ordering of orthopyroxenes

    NASA Technical Reports Server (NTRS)

    Ganguly, Jibamitra

    1989-01-01

    Results of preliminary calculations of volatile abundances in carbonaceous chondrites are discussed. The method (Ganguly 1982) was refined for the calculation of cooling rate on the basis of cation ordering in orthopyroxenes, and it was applied to the derivation of cooling rates of some stony meteorites. Evaluation of cooling rate is important to the analysis of condensation, accretion, and post-accretionary metamorphic histories of meteorites. The method of orthopyroxene speedometry is widely applicable to meteorites and would be very useful in the understanding of the evolutionary histories of carbonaceous chondrites, especially since the conventional metallographic and fission track methods yield widely different results in many cases. Abstracts are given which summarize the major conclusions of the volatile abundance and cooling rate calculations.

  12. Effects of heat treatment on mechanical properties of h13 steel

    NASA Astrophysics Data System (ADS)

    Guanghua, Yan; Xinmin, Huang; Yanqing, Wang; Xingguo, Qin; Ming, Yang; Zuoming, Chu; Kang, Jin

    2010-12-01

    Heat treatment on the mechanical properties of H13 hot working die steel for die casting is discussed. The H13 steel for die casting was treated by different temperatures of vacuum quenching, tempering, and secondary tempering to investigate its mechanical properties. Strength, plasticity, hardness, and impact toughness of the H13 hot working die steel for die casting were measured. Microstructure, grain size, and carbide particle size after heat treatment have a great impact on the mechanical properties of H13 hot working die steel for die casting. The microstructure of the H13 was analyzed by scanning electron microscopy (SEM) and by a metallographic microscope. It is found that H13 exhibits excellent mechanical properties after vacuum quenching at 1050°C and twice tempering at 600°C.

  13. Dynamic Response and Microstructure Evolution of AA2219-T4 and AA2219-T6 Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Olasumboye, A.; Owolabi, G.; Odeshi, A.; Zeytinci, A.; Yilmaz, N.

    2018-02-01

    In this study, the dynamic deformation behavior of AA2219 aluminum alloy was investigated in two different temper conditions: T4 and T6, with a view to determining the effect of heat treatment on the microstructure and flow behavior of the material under high strain rates. Split Hopkinson pressure bar experiment was used in determining the dynamic response of the alloy while a digital image correlation system was employed in visualizing and tracking the surface deformation of the specimens. Optical microscopy and scanning electron microscopy were used to assess the microstructure of the material after following standard metallographic specimen preparation techniques. The results obtained showed heterogeneous deformation of the alloy in the two temper conditions. It was observed that the dynamic mechanical behavior of each sample preparation was dependent on its strength properties due to aging type, which in turn controls the metamorphosis of the strengthening precipitates and the initial microstructure. At the maximum strain rate of 3500 s-1, transformed bands leading to crack nucleation was observed in the AA2219-T4 aluminum alloy while AA2219-T6 had fractured at the same strain rate. The modes of crack formation and growth in the two alloys were found to be similar: nucleation, growth and coalescence of voids. However, shear band bifurcation phenomenon was observed only in the AA2219-T6 alloy.

  14. Dynamic Response and Microstructure Evolution of AA2219-T4 and AA2219-T6 Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Olasumboye, A.; Owolabi, G.; Odeshi, A.; Zeytinci, A.; Yilmaz, N.

    2018-06-01

    In this study, the dynamic deformation behavior of AA2219 aluminum alloy was investigated in two different temper conditions: T4 and T6, with a view to determining the effect of heat treatment on the microstructure and flow behavior of the material under high strain rates. Split Hopkinson pressure bar experiment was used in determining the dynamic response of the alloy while a digital image correlation system was employed in visualizing and tracking the surface deformation of the specimens. Optical microscopy and scanning electron microscopy were used to assess the microstructure of the material after following standard metallographic specimen preparation techniques. The results obtained showed heterogeneous deformation of the alloy in the two temper conditions. It was observed that the dynamic mechanical behavior of each sample preparation was dependent on its strength properties due to aging type, which in turn controls the metamorphosis of the strengthening precipitates and the initial microstructure. At the maximum strain rate of 3500 s-1, transformed bands leading to crack nucleation was observed in the AA2219-T4 aluminum alloy while AA2219-T6 had fractured at the same strain rate. The modes of crack formation and growth in the two alloys were found to be similar: nucleation, growth and coalescence of voids. However, shear band bifurcation phenomenon was observed only in the AA2219-T6 alloy.

  15. Microstructural Developments Leading to New Advanced High Strength Sheet Steels: A Historical Assessment of Critical Metallographic Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlock, David K; Thomas, Larrin S; Taylor, Mark D

    In the past 30+ years significant advancements have been made in the development of higher strength sheet steels with improved combinations of strength and ductility that have enabled important product improvements leading to safer, lighter weight, and more fuel efficient automobiles and in other applications. Properties of the primarily low carbon, low alloy steels are derived through careful control of time-temperature processing histories designed to produce multiphase ferritic based microstructures that include martensite and other constituents including retained austenite. The basis for these developments stems from the early work on dual-phase steels which was the subject of much interest. Inmore » response to industry needs, dual-phase steels have evolved as a unique class of advanced high strength sheet steels (AHSS) in which the thermal and mechanical processing histories have been specifically designed to produce constituent combinations for the purpose of simultaneously controlling strength and deformation behavior, i.e. stress-strain curve shapes. Improvements continue as enhanced dual-phase steels have recently been produced with finer microstructures, higher strengths, and better overall formability. Today, dual phase steels are the primary AHSS products used in vehicle manufacture, and several companies have indicated that the steels will remain as important design materials well into the future. In this presentation, fundamental results from the early work on dual-phase steels will be reviewed and assessed in light of recent steel developments. Specific contributions from industry/university cooperative research leading to product improvements will be highlighted. The historical perspective provided in the evolution of dual-phase steels represents a case-study that provides important framework and lessons to be incorporated in next generation AHSS products.« less

  16. Effect of Delayed Bonding and Antioxidant Application on the Bond Strength to Enamel after Internal Bleaching.

    PubMed

    Kılınç, Halil İbrahim; Aslan, Tuğrul; Kılıç, Kerem; Er, Özgür; Kurt, Gökmen

    2016-07-01

    This study evaluated the effect of delayed bonding and antioxidant application (AA, 10% sodium ascorbate) after internal bleaching (35% carbamide peroxide) on the shear bond strength of an adhesive cement to enamel. Eighty-four human maxillary central incisors were endodontically treated. The control group remained unbleached with no AA. Experimental groups were all internally bleached. The buccal enamel was finished and polished with metallographic paper to a refinement of #600, in order to obtain a 5-mm(2) flat bonding area. An adhesive cement (Clearfil Esthetic) was placed into a plastic tube with internal diameter of 3 mm and a 3-mm height and cured on the enamel. Bonding occurred either immediately after bleaching (group Im), a 7-day delay (group 7), or a 14-day delay (group 14), and half the specimens were treated with antioxidant application (groups Im-AA, 7-AA, and 14-AA). Shear bond strength testing was performed on a universal testing machine, and data were analyzed with ANOVA and Fisher test (5%). Delaying of bonding is a useful factor for enhancing shear bond strength (p < 0.05), whereas AA only enhanced shear bond strength after 7 days delayed bleaching (p < 0.05). The highest bond strength was noted in groups 7-AA (20.51 ± 4.5 MPa), 14 (19.82 ± 4.6), 14-AA (20.27 ± 4.4), and control (20.51 ± 5.1), which were not significantly different from each other. After internal bleaching, adhesive cementation to enamel is recommended only when delayed 14 days, or delayed 7 days with sodium ascorbate application. © 2015 by the American College of Prosthodontists.

  17. Investigation of Creep Processes and Microdamages in 10Kh9V2MFBR-Sh High-Chromium Steel

    NASA Astrophysics Data System (ADS)

    Grin', E. A.; Pchelintsev, A. V.

    2018-01-01

    During the modernization and the new construction of power units at TPPs in Russia, high-chromium martensitic steels with higher heat-resistant properties than the traditional perlite steels are increasingly used as structural materials. High-chromium steels have a necessary regulatory support for their use in domestic power engineering. However, up to the present time, the issue of assessing the quality of these steels at the analysis of their state during long-term operation remains open. The article proposed is one of the first attempts to create a system of quality criteria for martensitic steels based on their microdamage parameters. Tests were carried out on the long-term strength and creep of samples from 10Kh9V2MFBR-Sh steel at high temperatures with the construction of creep curves in relative coordinates "deformation related to the deformation of fracture, current time related to time to failure." For some samples, the tests were interrupted and the metal was subjected to metallographic studies consisting of the analysis of microdamage with reference to the accumulated creep strain. It has been shown experimentally that the deformation curve of high-chromium steel differs from the analogous curve of pearlitic steel by a longer and flat section of steady creep and by a sharper transition to the third accelerated creep stage, which has a very short time period (approximately 10% of the total durability). The tendency to the increase in the microdamage of the structure of steel as the accumulated creep strain increases with time was confirmed. The beginning of transition to the final creep phase is characterized by the formation of contours of future pore chains and by the appearance of individual large pores of up to 6 μm in size, the presence of which in the microstructure of the martensitic steel indicates a very significant accumulation of creep strain, and corresponds to the predestruction stage of metal. It is necessary to continue the research to obtain quantitative indicators on the accumulation of microdamage in high-chromium steel in a conjunction with the development of a metal resource under creep conditions.

  18. 40 CFR 81.112 - Charleston Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Regions § 81.112 Charleston Intrastate Air Quality Control Region. The Charleston Intrastate Air Quality Control Region (South Carolina) consists of the territorial area encompassed by the... Quality Control Region: Region 1. 81.107Greenwood Intrastate Air Quality Control Region: Region 2. 81...

  19. 40 CFR 81.112 - Charleston Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Regions § 81.112 Charleston Intrastate Air Quality Control Region. The Charleston Intrastate Air Quality Control Region (South Carolina) consists of the territorial area encompassed by the... Quality Control Region: Region 1. 81.107Greenwood Intrastate Air Quality Control Region: Region 2. 81...

  20. 40 CFR 81.88 - Billings Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Regions § 81.88 Billings Intrastate Air Quality Control Region. The Metropolitan Billings Intrastate Air Quality Control Region (Montana) has been renamed the Billings Intrastate Air Quality Control... to by Montana authorities as follows: Sec. 481.168Great Falls Intrastate Air Quality Control Region...

  1. 40 CFR 81.88 - Billings Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Regions § 81.88 Billings Intrastate Air Quality Control Region. The Metropolitan Billings Intrastate Air Quality Control Region (Montana) has been renamed the Billings Intrastate Air Quality Control... to by Montana authorities as follows: Sec. 481.168Great Falls Intrastate Air Quality Control Region...

  2. Quality Control for Interviews to Obtain Dietary Recalls from Children for Research Studies

    PubMed Central

    SHAFFER, NICOLE M.; THOMPSON, WILLIAM O.; BAGLIO, MICHELLE L.; GUINN, CAROLINE H.; FRYE, FRANCESCA H. A.

    2005-01-01

    Quality control is an important aspect of a study because the quality of data collected provides a foundation for the conclusions drawn from the study. For studies that include interviews, establishing quality control for interviews is critical in ascertaining whether interviews are conducted according to protocol. Despite the importance of quality control for interviews, few studies adequately document the quality control procedures used during data collection. This article reviews quality control for interviews and describes methods and results of quality control for interviews from two of our studies regarding the accuracy of children's dietary recalls; the focus is on quality control regarding interviewer performance during the interview, and examples are provided from studies with children. For our two studies, every interview was audio recorded and transcribed. The audio recording and typed transcript from one interview conducted by each research dietitian either weekly or daily were randomly selected and reviewed by another research dietitian, who completed a standardized quality control for interviews checklist. Major strengths of the methods of quality control for interviews in our two studies include: (a) interviews obtained for data collection were randomly selected for quality control for interviews, and (b) quality control for interviews was assessed on a regular basis throughout data collection. The methods of quality control for interviews described may help researchers design appropriate methods of quality control for interviews for future studies. PMID:15389417

  3. Simulation investigation of thermal phase transformation and residual stress in single pulse EDM of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Tang, Jiajing; Yang, Xiaodong

    2018-04-01

    The thermal phase transformation and residual stress are ineluctable in the electrical discharge machining (EDM) process, and they will greatly affect the working performances of the machined surface. This paper presents a simulation study on the thermal phase transformation and residual stress in single-pulse EDM of Ti-6Al-4V, which is the most popular titanium alloy in fields such as aircraft engine and some other leading industries. A multi-physics model including thermal, hydraulic, metallography and structural mechanics was developed. Based on the proposed model, the thickness and metallographic structure of the recast layer and heat affected layer (HAZ) were investigated. The distribution and characteristics of residual stress around the discharge crater were obtained. The recast layer and HAZ at the center of crater are found to be the thinnest, and their thicknesses gradually increase approaching the periphery of the crater. The recast layer undergoes a complete α‧ (martensitic) transformation, while the HAZ is mainly composed by the α  +  β  +  α‧ three-phase microstructure. Along the depth direction of crater, the Von Mises stress increases first and then decreases, reaching its maximal value near the interface of recast layer and HAZ. In the recast layer, both compressive stress component and tensile stress component are observed. ANOVA results showed that the influence of discharge current on maximal tensile stress is more significant than that of pulse duration, while the pulse duration has more significant influence on average thickness of the recast layer and the depth location of the maximal tensile stress. The works conducted in this study will help to evaluate the quality and integrity of EDMed surface, especially when the non-destructive testing is difficult to achieve.

  4. Investigation of the crater-like microdefects induced by laser shock processing with aluminum foil as absorbent layer

    NASA Astrophysics Data System (ADS)

    Ye, Y. X.; Xuan, T.; Lian, Z. C.; Feng, Y. Y.; Hua, X. J.

    2015-06-01

    This paper reports that 3D crater-like microdefects form on the metal surface when laser shock processing (LSP) is applied. LSP was conducted on pure copper block using the aluminum foil as the absorbent material and water as the confining layer. There existed the bonding material to attach the aluminum foil on the metal target closely. The surface morphologies and metallographs of copper surfaces were characterized with 3D profiler, the optical microscopy (OM) or the scanning electron microscopy (SEM). Temperature increases of metal surface due to LSP were evaluated theoretically. It was found that, when aluminum foil was used as the absorbent material, and if there existed air bubbles in the bonding material, the air temperatures within the bubbles rose rapidly because of the adiabatic compression. So at the locations of the air bubbles, the metal materials melted and micromelting pool formed. Then under the subsequent expanding of the air bubbles, a secondary shock wave was launched against the micromelting pool and produced the crater-like microdefects on the metal surface. The temperature increases due to shock heat and high-speed deformation were not enough to melt the metal target. The temperature increase induced by the adiabatic compression of the air bubbles may also cause the gasification of the metal target. This will also help form the crater-like microdefects. The results of this paper can help to improve the surface quality of a metal target during the application of LSP. In addition, the results provide another method to fabricate 3D crater-like dents on metal surface. This has a potential application in mechanical engineering.

  5. Spray Characteristics and Tribo-Mechanical Properties of High-Velocity Arc-Sprayed WC-W2C Iron-Based Coatings

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Hagen, L.; Kokalj, D.

    2017-10-01

    In terms of arc-sprayed coatings, the lamellar coating microstructure is mainly affected by the atomization behavior of the molten electrode tips. When using compressed air, oxide formations occur during atomization, across the particle-laden spray plume and when the molten droplets splash onto the substrate. Within the scope of this study, the potential of a high-velocity arc-spraying process due to elevated atomization gas pressures and its effect on the spray and coating characteristics was analyzed using a cast tungsten carbide (CTC)-reinforced FeCMnSi cored wire. Since the atomization behavior corresponds with the electrode phenomena, the power spectrum and the droplet formation were observed during spraying. The tribo-mechanical properties of CTC-FeCMnSi coatings were examined in dry sliding experiments and indentation tests. In addition, adhesion tests and metallographic investigations were carried out to analyze the bonding strength, cohesive behavior, and lamellar microstructure. The occurrence of oxide phases was evaluated by x-ray diffraction and electron microscopy. Moreover, the oxygen content was determined by using glow discharge optical emission spectroscopy as well as energy-dispersive x-ray spectroscopy. With respect to elevated atomization gas pressures, a dense microstructure with improved adhesion to the substrate and reduced surface roughness was observed. Dry sliding experiments revealed an advanced wear behavior of specimens, when using above average increased atomization gas pressures. Analytic methods verified the existence of oxide phases, which were generated during spraying. A significant change of the extent and type of oxides, when applying an increased flow rate of the atomization gas, cannot be observed. Besides an enhanced coating quality, the use of increased atomization gas pressure exhibited good process stability.

  6. [On-site quality control of acupuncture randomized controlled trial: design of content and checklist of quality control based on PICOST].

    PubMed

    Li, Hong-Jiao; He, Li-Yun; Liu, Zhi-Shun; Sun, Ya-Nan; Yan, Shi-Yan; Liu, Jia; Zhao, Ye; Liu, Bao-Yan

    2014-02-01

    To effectively guarantee quality of randomized controlld trial (RCT) of acupuncture and develop reasonable content and checklist of on-site quality control, influencing factors on quality of acupuncture RCT are analyzed and scientificity of quality control content and feasibility of on-site manipulation are put into overall consideration. Based on content and checklist of on-site quality control in National 11th Five-Year Plan Project Optimization of Comprehensive Treatment Plan for TCM in Prevention and Treatment of Serious Disease and Clinical Assessment on Generic Technology and Quality Control Research, it is proposed that on-site quality control of acupuncture RCT should be conducted with PICOST (patient, intervention, comparison, out come, site and time) as core, especially on quality control of interveners' skills and outcome assessment of blinding, and checklist of on-site quality control is developed to provide references for undertaking groups of the project.

  7. Evaluation of the mechanical properties of electroslag refined iron alloys

    NASA Technical Reports Server (NTRS)

    Bhat, G. K.

    1976-01-01

    Nitronic 40 (21Cr-6N-9Mn), HY-130, 9Ni-4Co, and D-6 alloys were prepared and evaluated in the form of 15.2 mm thick plates. Smooth bar tensile tests, double-edge sharp notch fracture toughness tests Charpy V-notch impact tests were conducted on appropriate heat treated specimens of the four steel plates at 22 C, -50 C, -100 C, -150 C, and -196 C. Similar material characterization, including metallographic evaluation studies on air melt and vacuum arc melt grades of same four alloy steels were conducted for comparative purposes. A cost analysis of manufacturing plates of air melt, electroslag remelt and vacuum arc remelt grades was performed. The results of both material characterization and cost analyses pointed out certain special benefits of electroslag processing iron base alloys.

  8. Calcium hydride synthesis of Ti-Nb-based alloy powders

    NASA Astrophysics Data System (ADS)

    Kasimtsev, A. V.; Shuitsev, A. V.; Yudin, S. N.; Levinskii, Yu. V.; Sviridova, T. A.; Alpatov, A. V.; Novosvetlova, E. E.

    2017-09-01

    The metallothermic (calcium hydride) synthesis of Ti-Nb alloy powders alloyed with tantalum and zirconium is experimentally studied under various conditions. Chemical, X-ray diffraction, and metallographic analyses of the synthesized products show that initial oxides are completely reduced and a homogeneous β-Ti-based alloy powder forms under the optimum synthesis conditions at a temperature of 1200°C. At a lower synthesis temperature, the end products have a high oxygen content. The experimental results are used to plot the thermokinetic dependences o formation of a bcc solid solution at various times of isothermal holding of Ti-22Nb-6Ta and Ti-22Nb-6Zr (at %) alloys. The physicochemical and technological properties of the Ti-22Nb-6Ta and Ti-22Nb-6Zr alloy powders synthesized by calcium hydride reduction under the optimum conditions are determined.

  9. Exploratory study of friction welds in Udimet 700 and TD-Nickel bar

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1971-01-01

    Friction welded butt joints were made in both Udimet 700 and TD-Nickel bar. Also, dissimilar metal friction welds were made between these materials. Friction welding of Udimet 700 shows great promise because the welds were found to be as strong as the parent metal in stress rupture and tensile tests at 760 and 980 C. The weld line was not detectable metallographically in the heat treated condition. Friction welding for TD-Nickel, however, holds little if any promise. TD-Nickel friction weldments could support only 9 percent as much stress as the base metal for a 10-hour stress-rupture life at 1090 C. Dissimilar Udimet 700/TD-Nickel friction welds could sustain only 15 percent as much stress as the TD-Nickel parent metal for a 10-hour rupture life at 930 C.

  10. Effects of silicon additions on oxidation and mechanical behavior of the nickel-base superalloy B-1900

    NASA Technical Reports Server (NTRS)

    Miner, R. V., Jr.; Lowell, C. E.

    1975-01-01

    Test specimens with nominal additions of Si were tested in oxidation, thermal fatigue, sulfidation, tension, and stress rupture, and were also extensively studied metallographically. Alloy B-1900 modified with 0.6- or 1.2-wt% Si exhibited oxidation resistance equivalent to that of aluminide-coated B-1900 during cyclic, high-gas-velocity oxidation tests. Resistances to thermal fatigue and sulfidation were improved by the Si additions, but were not superior to aluminide-coated B-1900. Stress-rupture tests at 1000 C of specimens given the standard heat treatment to simulate an aluminide coating cycle showed Si to be detrimental. However, application of another heat treatment increased the rupture life of the alloy with 0.6-wt% Si to that of the unmodified B-1900 given the standard heat treatment.

  11. The electron microprobe as a metallographic tool

    NASA Technical Reports Server (NTRS)

    Goldstein, J. I.

    1974-01-01

    The electron microprobe (EMP) is shown to represent one of the most powerful techniques for the examination of the microstructure of materials. It is an electron optical instrument in which compositional and topographic information is obtained from regions smaller than 1 micron in diameter on a specimen. Photographs of compositional and topographic changes in 1-sq-mm to 20-sq-micron areas on various types of specimens can also be obtained. These photographs are strikingly similar to optical photomicrographs. Various signals measured in the EMP (X-rays, secondary electrons, backscattered electrons, etc.) are discussed, along with their resolution and the type of information they may help obtain. In addition to elemental analysis, solid state detecting and scanning techniques are reviewed. Various techniques extending the EMP instrument capabilities, such as deconvolution and soft X-ray analysis, are also described.

  12. Post STS-133 Evaluation of Main Flame Deflector Witness Materials

    NASA Technical Reports Server (NTRS)

    Long, Victoria

    2011-01-01

    NASA and USA Structures engineers submitted main flame deflector witness materials for evaluation after the launch of STS-133. The following items were submitted for analysis: HY-80 steel witness rods, 304 stainless steel caps, tungsten pistons, 17-4 precipitation hardened (PH) stainless steel and A-286 piston sleeves, Medtherm Corporation calorimeters, and Nanmac Corporation thermocouples. All of the items were photographed in order to document their condition after the launch of STS-133, and before they were reinstalled at the launch pad for future launches. The HY -80 witness rods, 304 stainless steel caps, and the piston sleeves were dimensionally measured in order to determine the amount of material lost during launch. Microstructural changes were observed in the HY-80 witness rod and 304 stainless steel cap metallographic samples due to the heat of the launch.

  13. Homogeneity and structure of CuZrAlY metallic glass ribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fetić, A. Salčinović, E-mail: amra.s@pmf.unsa.ba; Selimović, A.; Hrvat, K.

    2016-03-25

    Metallic glasses are metastable amorphous structures produced by quenching-rapid cooling technique. Due to very high cooling rates during the production process, it is very difficult to produce homogeneous samples with identical chemical composition. In this paper we will present preliminary results of homogeneity and structure examinations of a CuZrAlY metallic glass ribbon. The ribbon, approximately 1.5 m long and 1 mm wide, was produced using melt spinning technique. Samples from the middle and the end of the ribbon were chosen for further examination. Surface was checked by metallographic and electron scanning microscopy. Chemical composition in different areas of each sample was checkedmore » by energy-dispersive X-ray spectroscopy. Electrical resistivity measurements in the temperature range from 80 K to 280 K were also conducted.« less

  14. Quantitative image analysis of WE43-T6 cracking behavior

    NASA Astrophysics Data System (ADS)

    Ahmad, A.; Yahya, Z.

    2013-06-01

    Environment-assisted cracking of WE43 cast magnesium (4.2 wt.% Yt, 2.3 wt.% Nd, 0.7% Zr, 0.8% HRE) in the T6 peak-aged condition was induced in ambient air in notched specimens. The mechanism of fracture was studied using electron backscatter diffraction, serial sectioning and in situ observations of crack propagation. The intermetallic (rare earthed-enriched divorced intermetallic retained at grain boundaries and predominantly at triple points) material was found to play a significant role in initiating cracks which leads to failure of this material. Quantitative measurements were required for this project. The populations of the intermetallic and clusters of intermetallic particles were analyzed using image analysis of metallographic images. This is part of the work to generate a theoretical model of the effect of notch geometry on the static fatigue strength of this material.

  15. Development of single crystal membranes

    NASA Technical Reports Server (NTRS)

    Stormont, R. W.; Cocks, F. H.

    1972-01-01

    The design and construction of a high pressure crystal growth chamber was accomplished which would allow the growth of crystals under inert gas pressures of 2 MN/sq m (300 psi). A novel crystal growth technique called EFG was used to grow tubes and rods of the hollandite compounds, BaMgTi7O16, K2MgTi7O16, and tubes of sodium beta-alumina, sodium magnesium-alumina, and potassium beta-alumina. Rods and tubes grown are characterized using metallographic and X-ray diffraction techniques. The hollandite compounds are found to be two or three-phase, composed of coarse grained orientated crystallites. Single crystal c-axis tubes of sodium beta-alumina were grown from melts containing excess sodium oxide. Additional experiments demonstrated that crystals of magnesia doped beta-alumina and potassium beta-alumina also can be achieved by this EFG technique.

  16. Damage percolation during stretch flange forming of aluminum alloy sheet

    NASA Astrophysics Data System (ADS)

    Chen, Zengtao; Worswick, Michael J.; Keith Pilkey, A.; Lloyd, David J.

    2005-12-01

    A multi-scale finite element (FE)-damage percolation model was employed to simulate stretch flange forming of aluminum alloys AA5182 and AA5754. Material softening and strain gradients were captured using a Gurson-based FE model. FE results were then fed into the so-called damage percolation code, from which the damage development was modelled within measured microstructures. The formability of the stretch flange samples was predicted based upon the onset of catastrophic failure triggered by profuse void coalescence within the measured second-phase particle field. Damage development is quantified in terms of crack and void areal fractions, and compared to metallographic results obtained from interrupted stretch flange specimens. Parametric study is conducted on the effect of void nucleation strain in the prediction of formability of stretch flanges to "calibrate" proper nucleation strains for both alloys.

  17. 21 CFR 111.105 - What must quality control personnel do?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false What must quality control personnel do? 111.105... for Quality Control § 111.105 What must quality control personnel do? Quality control personnel must... manufacturing record. To do so, quality control personnel must perform operations that include: (a) Approving or...

  18. Total Quality Management Implementation Strategy: Directorate of Quality Assurance

    DTIC Science & Technology

    1989-05-01

    Total Quality Control Harrington, H. James The Improvement Process Imai, Masaaki Kaizen Ishikawa , Kaoru What is Total Quality Control Ishikawa ... Kaoru Statistical Quality Control Juran, J. M. Managerial Breakthrough Juran, J. M. Quality Control Handbook Mizuno, Ed Managing for Quality Improvements

  19. 30 CFR 28.31 - Quality control plans; contents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Quality control plans; contents. 28.31 Section... PROTECTION FOR TRAILING CABLES IN COAL MINES Quality Control § 28.31 Quality control plans; contents. (a) Each quality control plan shall contain provisions for the management of quality, including: (1...

  20. Principles and Practices for Quality Assurance and Quality Control

    USGS Publications Warehouse

    Jones, Berwyn E.

    1999-01-01

    Quality assurance and quality control are vital parts of highway runoff water-quality monitoring projects. To be effective, project quality assurance must address all aspects of the project, including project management responsibilities and resources, data quality objectives, sampling and analysis plans, data-collection protocols, data quality-control plans, data-assessment procedures and requirements, and project outputs. Quality control ensures that the data quality objectives are achieved as planned. The historical development and current state of the art of quality assurance and quality control concepts described in this report can be applied to evaluation of data from prior projects.

  1. 21 CFR 111.105 - What must quality control personnel do?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false What must quality control personnel do? 111.105..., LABELING, OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS Production and Process Control System: Requirements for Quality Control § 111.105 What must quality control personnel do? Quality control personnel must...

  2. 40 CFR 81.77 - Puerto Rico Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Puerto Rico Air Quality Control Region... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.77 Puerto Rico Air Quality Control Region. The Puerto Rico Air Quality Control Region...

  3. 40 CFR 81.77 - Puerto Rico Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Puerto Rico Air Quality Control Region... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.77 Puerto Rico Air Quality Control Region. The Puerto Rico Air Quality Control Region...

  4. 40 CFR 81.77 - Puerto Rico Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Puerto Rico Air Quality Control Region... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.77 Puerto Rico Air Quality Control Region. The Puerto Rico Air Quality Control Region...

  5. 40 CFR 81.77 - Puerto Rico Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Puerto Rico Air Quality Control Region... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.77 Puerto Rico Air Quality Control Region. The Puerto Rico Air Quality Control Region...

  6. 40 CFR 81.89 - Metropolitan Cheyenne Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Region. 81.89 Section 81.89 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.89 Metropolitan Cheyenne Intrastate Air Quality Control Region. The Metropolitan Cheyenne Intrastate Air Quality Control Region (Wyoming) consists of the territorial area...

  7. 40 CFR 81.101 - Metropolitan Dubuque Interstate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Region. 81.101 Section 81.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.101 Metropolitan Dubuque Interstate Air Quality Control Region. The Metropolitan Dubuque Interstate Air Quality Control Region (Illinois-Iowa-Wisconsin) consists of the...

  8. 40 CFR 81.106 - Greenville-Spartanburg Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Region. 81.106 Section 81.106 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.106 Greenville-Spartanburg Intrastate Air Quality Control Region. The Greenville-Spartanburg Intrastate Air Quality Control Region (South Carolina) consists of the territorial...

  9. 40 CFR 81.101 - Metropolitan Dubuque Interstate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Region. 81.101 Section 81.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.101 Metropolitan Dubuque Interstate Air Quality Control Region. The Metropolitan Dubuque Interstate Air Quality Control Region (Illinois-Iowa-Wisconsin) consists of the...

  10. 40 CFR 81.106 - Greenville-Spartanburg Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Region. 81.106 Section 81.106 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.106 Greenville-Spartanburg Intrastate Air Quality Control Region. The Greenville-Spartanburg Intrastate Air Quality Control Region (South Carolina) consists of the territorial...

  11. 40 CFR 81.89 - Metropolitan Cheyenne Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Region. 81.89 Section 81.89 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.89 Metropolitan Cheyenne Intrastate Air Quality Control Region. The Metropolitan Cheyenne Intrastate Air Quality Control Region (Wyoming) consists of the territorial area...

  12. 40 CFR 81.62 - Northeast Mississippi Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Region. 81.62 Section 81.62 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.62 Northeast Mississippi Intrastate Air Quality Control Region. The Alabama-Mississippi-Tennessee Interstate Air Quality Control Region has been renamed the Northeast...

  13. 40 CFR 81.78 - Metropolitan Portland Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Region. 81.78 Section 81.78 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.78 Metropolitan Portland Intrastate Air Quality Control Region. The Metropolitan Portland Intrastate Air Quality Control Region (Maine) consists of the territorial area...

  14. 40 CFR 81.118 - Southwest Missouri Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Region. 81.118 Section 81.118 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.118 Southwest Missouri Intrastate Air Quality Control Region. The Southwest Missouri Intrastate Air Quality Control Region consists of the territorial area encompassed by the...

  15. 40 CFR 81.87 - Metropolitan Boise Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Region. 81.87 Section 81.87 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.87 Metropolitan Boise Intrastate Air Quality Control Region. The Metropolitan Boise Intrastate Air Quality Control Region (Idaho) consists of the territorial area encompassed...

  16. 40 CFR 81.116 - Northern Missouri Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Region. 81.116 Section 81.116 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.116 Northern Missouri Intrastate Air Quality Control Region. The Northern Missouri Intrastate Air Quality Control Region consists of the territorial area encompassed by the...

  17. 40 CFR 81.97 - Southwest Florida Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Region. 81.97 Section 81.97 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.97 Southwest Florida Intrastate Air Quality Control Region. The Southwest Florida Intrastate Air Quality Control Region consists of the territorial area encompassed by the...

  18. 40 CFR 81.104 - Central Pennsylvania Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Region. 81.104 Section 81.104 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.104 Central Pennsylvania Intrastate Air Quality Control Region. The Central Pennsylvania Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  19. 40 CFR 81.120 - Middle Tennessee Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Region. 81.120 Section 81.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.120 Middle Tennessee Intrastate Air Quality Control Region. The Middle Tennessee Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  20. 40 CFR 81.117 - Southeast Missouri Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Region. 81.117 Section 81.117 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.117 Southeast Missouri Intrastate Air Quality Control Region. The Southeast Missouri Intrastate Air Quality Control Region consists of the territorial area encompassed by the...

  1. 40 CFR 81.75 - Metropolitan Charlotte Interstate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Region. 81.75 Section 81.75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.75 Metropolitan Charlotte Interstate Air Quality Control Region. The Metropolitan Charlotte Interstate Air Quality Control Region (North Carolina-South Carolina) has been revised...

  2. 40 CFR 81.98 - Burlington-Keokuk Interstate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Region. 81.98 Section 81.98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.98 Burlington-Keokuk Interstate Air Quality Control Region. The Burlington-Keokuk Interstate Air Quality Control Region (Illinois-Iowa) is revised to consist of the...

  3. 40 CFR 81.79 - Northeastern Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Region. 81.79 Section 81.79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.79 Northeastern Oklahoma Intrastate Air Quality Control Region. The Metropolitan Tulsa Intrastate Air Quality Control Region has been renamed the Northeastern Oklahoma Intrastate...

  4. 40 CFR 81.118 - Southwest Missouri Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Region. 81.118 Section 81.118 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.118 Southwest Missouri Intrastate Air Quality Control Region. The Southwest Missouri Intrastate Air Quality Control Region consists of the territorial area encompassed by the...

  5. 40 CFR 81.119 - Western Tennessee Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Region. 81.119 Section 81.119 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.119 Western Tennessee Intrastate Air Quality Control Region. The Western Tennessee Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  6. 40 CFR 81.115 - Northwest Nevada Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Region. 81.115 Section 81.115 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.115 Northwest Nevada Intrastate Air Quality Control Region. The Northwest Nevada Intrastate Air Quality Control Region consists of the territorial area encompassed by the...

  7. 40 CFR 81.116 - Northern Missouri Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Region. 81.116 Section 81.116 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.116 Northern Missouri Intrastate Air Quality Control Region. The Northern Missouri Intrastate Air Quality Control Region consists of the territorial area encompassed by the...

  8. 40 CFR 81.104 - Central Pennsylvania Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Region. 81.104 Section 81.104 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.104 Central Pennsylvania Intrastate Air Quality Control Region. The Central Pennsylvania Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  9. 40 CFR 81.87 - Metropolitan Boise Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Region. 81.87 Section 81.87 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.87 Metropolitan Boise Intrastate Air Quality Control Region. The Metropolitan Boise Intrastate Air Quality Control Region (Idaho) consists of the territorial area encompassed...

  10. 40 CFR 81.123 - Southeastern Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Region. 81.123 Section 81.123 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.123 Southeastern Oklahoma Intrastate Air Quality Control Region. The Southeastern Oklahoma Intrastate Air Quality Control Region consists of the territorial area encompassed by the...

  11. 40 CFR 81.79 - Northeastern Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Region. 81.79 Section 81.79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.79 Northeastern Oklahoma Intrastate Air Quality Control Region. The Metropolitan Tulsa Intrastate Air Quality Control Region has been renamed the Northeastern Oklahoma Intrastate...

  12. 40 CFR 81.67 - Lake Michigan Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Regions § 81.67 Lake Michigan Intrastate Air Quality Control Region. The Menominee-Escanaba (Michigan)-Marinette (Wisconsin) Interstate Air Quality Control Region has been renamed the Lake Michigan Intrastate Air Quality Control Region (Wisconsin) and revised to consist of the territorial area...

  13. 40 CFR 81.115 - Northwest Nevada Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Region. 81.115 Section 81.115 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.115 Northwest Nevada Intrastate Air Quality Control Region. The Northwest Nevada Intrastate Air Quality Control Region consists of the territorial area encompassed by the...

  14. 40 CFR 81.97 - Southwest Florida Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Region. 81.97 Section 81.97 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.97 Southwest Florida Intrastate Air Quality Control Region. The Southwest Florida Intrastate Air Quality Control Region consists of the territorial area encompassed by the...

  15. 40 CFR 81.117 - Southeast Missouri Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Region. 81.117 Section 81.117 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.117 Southeast Missouri Intrastate Air Quality Control Region. The Southeast Missouri Intrastate Air Quality Control Region consists of the territorial area encompassed by the...

  16. 40 CFR 81.122 - Mississippi Delta Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Region. 81.122 Section 81.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.122 Mississippi Delta Intrastate Air Quality Control Region. The Mississippi Delta Intrastate Air Quality Control Region consists of the territorial area encompassed by the...

  17. 40 CFR 81.98 - Burlington-Keokuk Interstate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Region. 81.98 Section 81.98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.98 Burlington-Keokuk Interstate Air Quality Control Region. The Burlington-Keokuk Interstate Air Quality Control Region (Illinois-Iowa) is revised to consist of the...

  18. 42 CFR 84.41 - Quality control plans; contents.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Quality control plans; contents. 84.41 Section 84... AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Quality Control § 84.41 Quality control plans; contents. (a) Each quality control plan shall contain provisions for the...

  19. 42 CFR 84.41 - Quality control plans; contents.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Quality control plans; contents. 84.41 Section 84... AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Quality Control § 84.41 Quality control plans; contents. (a) Each quality control plan shall contain provisions for the...

  20. 42 CFR 84.41 - Quality control plans; contents.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Quality control plans; contents. 84.41 Section 84... AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Quality Control § 84.41 Quality control plans; contents. (a) Each quality control plan shall contain provisions for the...

  1. 42 CFR 84.41 - Quality control plans; contents.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Quality control plans; contents. 84.41 Section 84... AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Quality Control § 84.41 Quality control plans; contents. (a) Each quality control plan shall contain provisions for the...

  2. 42 CFR 84.41 - Quality control plans; contents.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Quality control plans; contents. 84.41 Section 84... AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Quality Control § 84.41 Quality control plans; contents. (a) Each quality control plan shall contain provisions for the...

  3. 20 CFR 602.41 - Proper expenditure of Quality Control granted funds.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Proper expenditure of Quality Control granted... LABOR QUALITY CONTROL IN THE FEDERAL-STATE UNEMPLOYMENT INSURANCE SYSTEM Quality Control Grants to States § 602.41 Proper expenditure of Quality Control granted funds. The Secretary may, after reasonable...

  4. 30 CFR 28.32 - Proposed quality control plans; approval by MSHA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Proposed quality control plans; approval by...-CIRCUIT PROTECTION FOR TRAILING CABLES IN COAL MINES Quality Control § 28.32 Proposed quality control plans; approval by MSHA. (a) Each proposed quality control plan submitted in accordance with this...

  5. 20 CFR 602.41 - Proper expenditure of Quality Control granted funds.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Proper expenditure of Quality Control granted... LABOR QUALITY CONTROL IN THE FEDERAL-STATE UNEMPLOYMENT INSURANCE SYSTEM Quality Control Grants to States § 602.41 Proper expenditure of Quality Control granted funds. The Secretary may, after reasonable...

  6. 30 CFR 28.30 - Quality control plans; filing requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Quality control plans; filing requirements. 28... PROTECTION FOR TRAILING CABLES IN COAL MINES Quality Control § 28.30 Quality control plans; filing... part, each applicant shall file with MSHA a proposed quality control plan which shall be designed to...

  7. 30 CFR 28.30 - Quality control plans; filing requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Quality control plans; filing requirements. 28... PROTECTION FOR TRAILING CABLES IN COAL MINES Quality Control § 28.30 Quality control plans; filing... part, each applicant shall file with MSHA a proposed quality control plan which shall be designed to...

  8. 30 CFR 28.30 - Quality control plans; filing requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION FOR TRAILING CABLES IN COAL MINES Quality Control § 28.30 Quality control plans; filing... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Quality control plans; filing requirements. 28... part, each applicant shall file with MSHA a proposed quality control plan which shall be designed to...

  9. 30 CFR 28.32 - Proposed quality control plans; approval by MSHA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-CIRCUIT PROTECTION FOR TRAILING CABLES IN COAL MINES Quality Control § 28.32 Proposed quality control plans; approval by MSHA. (a) Each proposed quality control plan submitted in accordance with this... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Proposed quality control plans; approval by...

  10. 30 CFR 28.32 - Proposed quality control plans; approval by MSHA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-CIRCUIT PROTECTION FOR TRAILING CABLES IN COAL MINES Quality Control § 28.32 Proposed quality control plans; approval by MSHA. (a) Each proposed quality control plan submitted in accordance with this... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Proposed quality control plans; approval by...

  11. 30 CFR 28.30 - Quality control plans; filing requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROTECTION FOR TRAILING CABLES IN COAL MINES Quality Control § 28.30 Quality control plans; filing... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Quality control plans; filing requirements. 28... part, each applicant shall file with MSHA a proposed quality control plan which shall be designed to...

  12. 30 CFR 28.30 - Quality control plans; filing requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROTECTION FOR TRAILING CABLES IN COAL MINES Quality Control § 28.30 Quality control plans; filing... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Quality control plans; filing requirements. 28... part, each applicant shall file with MSHA a proposed quality control plan which shall be designed to...

  13. 30 CFR 28.32 - Proposed quality control plans; approval by MSHA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-CIRCUIT PROTECTION FOR TRAILING CABLES IN COAL MINES Quality Control § 28.32 Proposed quality control plans; approval by MSHA. (a) Each proposed quality control plan submitted in accordance with this... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Proposed quality control plans; approval by...

  14. 21 CFR 866.5910 - Quality control material for cystic fibrosis nucleic acid assays.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Quality control material for cystic fibrosis... Test Systems § 866.5910 Quality control material for cystic fibrosis nucleic acid assays. (a) Identification. Quality control material for cystic fibrosis nucleic acid assays. A quality control material for...

  15. 21 CFR 866.5910 - Quality control material for cystic fibrosis nucleic acid assays.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Quality control material for cystic fibrosis... Test Systems § 866.5910 Quality control material for cystic fibrosis nucleic acid assays. (a) Identification. Quality control material for cystic fibrosis nucleic acid assays. A quality control material for...

  16. 21 CFR 866.5910 - Quality control material for cystic fibrosis nucleic acid assays.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Quality control material for cystic fibrosis... Test Systems § 866.5910 Quality control material for cystic fibrosis nucleic acid assays. (a) Identification. Quality control material for cystic fibrosis nucleic acid assays. A quality control material for...

  17. 21 CFR 866.5910 - Quality control material for cystic fibrosis nucleic acid assays.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Quality control material for cystic fibrosis... Test Systems § 866.5910 Quality control material for cystic fibrosis nucleic acid assays. (a) Identification. Quality control material for cystic fibrosis nucleic acid assays. A quality control material for...

  18. 21 CFR 211.22 - Responsibilities of quality control unit.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Responsibilities of quality control unit. 211.22... Personnel § 211.22 Responsibilities of quality control unit. (a) There shall be a quality control unit that... have been fully investigated. The quality control unit shall be responsible for approving or rejecting...

  19. 21 CFR 211.22 - Responsibilities of quality control unit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Responsibilities of quality control unit. 211.22... Personnel § 211.22 Responsibilities of quality control unit. (a) There shall be a quality control unit that... have been fully investigated. The quality control unit shall be responsible for approving or rejecting...

  20. 40 CFR 81.99 - New Mexico Southern Border Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Designation of Air Quality Control Regions § 81.99 New Mexico Southern Border Intrastate Air Quality Control Region. The Arizona-New Mexico Southern Border Interstate Air Quality Control Region has been renamed the New Mexico Southern Border Intrastate Air Quality Control Region and has been revised to consist of...

  1. 40 CFR 81.76 - State of Hawaii Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false State of Hawaii Air Quality Control... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.76 State of Hawaii Air Quality Control Region. The State of Hawaii Air Quality...

  2. 40 CFR 81.76 - State of Hawaii Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false State of Hawaii Air Quality Control... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.76 State of Hawaii Air Quality Control Region. The State of Hawaii Air Quality...

  3. 40 CFR 81.76 - State of Hawaii Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false State of Hawaii Air Quality Control... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.76 State of Hawaii Air Quality Control Region. The State of Hawaii Air Quality...

  4. 40 CFR 81.76 - State of Hawaii Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false State of Hawaii Air Quality Control... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.76 State of Hawaii Air Quality Control Region. The State of Hawaii Air Quality...

  5. Thermal fatigue behavior of H-13 die steel for aluminum die casting with various ion sputtered coatings

    NASA Technical Reports Server (NTRS)

    Nieh, C. Y.; Wallace, J. F.

    1981-01-01

    Sputtered coatings of Mo, W, Pt, Ag, Au, Co, Cr, Ni, Ag + Cu, Mo + Pt, Si3N4, A1N, Cr3C2, Ta5Si3, and ZrO2 were applied to a 2-inch-square, 7-inch-long thermal fatigue test specimen which was then internally water cooled and alternately immersed in molten aluminum and cooled in air. After 15,000 cycles the thermal fatigue cracks at the specimen corners were measured. Results indicate that a significant improvement in thermal fatigue resistance was obtained with platinum, molybdenum, and tungsten coatings. Metallographic examination indicates that the improvement in thermal fatigue resistance resulted from protection of the surface of the die steel from oxidation. The high yield strength and ductility of molybdenum and tungsten contributed to the better thermal fatigue resistance.

  6. Metallographic examination of TD-nickel base alloys. [thermal and chemical etching technique evaluation

    NASA Technical Reports Server (NTRS)

    Kane, R. D.; Petrovic, J. J.; Ebert, L. J.

    1975-01-01

    Techniques are evaluated for chemical, electrochemical, and thermal etching of thoria dispersed (TD) nickel alloys. An electrochemical etch is described which yielded good results only for large grain sizes of TD-nickel. Two types of thermal etches are assessed for TD-nickel: an oxidation etch and vacuum annealing of a polished specimen to produce an etch. It is shown that the first etch was somewhat dependent on sample orientation with respect to the processing direction, the second technique was not sensitive to specimen orientation or grain size, and neither method appear to alter the innate grain structure when the materials were fully annealed prior to etching. An electrochemical etch is described which was used to observe the microstructures in TD-NiCr, and a thermal-oxidation etch is shown to produce better detail of grain boundaries and to have excellent etching behavior over the entire range of grain sizes of the sample.

  7. Yb-fibre Laser Welding of 6 mm Duplex Stainless Steel 2205

    NASA Astrophysics Data System (ADS)

    Bolut, M.; Kong, C. Y.; Blackburn, J.; Cashell, K. A.; Hobson, P. R.

    Duplex stainless steel (DSS) is one of the materials of choice for structural and nuclear applications, having high strength and good corrosion resistance when compared with other grades of stainless steel. The welding process used to join these materials is critical as transformation of the microstructure during welding directly affects the material properties. High power laser welding has recently seen an increase in research interest as it offers both speed and flexibility. This paper presents an investigation into the important parameters affecting laser welding of DSS grade 2205, with particular focus given to the critical issue of phase transformation during welding. Bead-on-plate melt-run trials without filler material were performed on 6mm thick plates using a 5 kW Yb-fibre laser. The laser beam was characterized and a Design of Experiment approach was used to quantify the impact of the process parameters. Optical metallographic methods were used to examine the resulting microstructures.

  8. Experimental research results of solid particle erosion resistance of blade steel with protective coating

    NASA Astrophysics Data System (ADS)

    Kachalin, G. V.; Mednikov, A. F.; Tkhabisimov, A. B.; Seleznev, L. I.

    2017-11-01

    The paper presents the results of metallographic studies and solid particle erosion tests of uncoated blade steel 20kH13 samples and samples with a protective coating based on chromium carbide (Cr-CrC) at a flow (air) velocity CA = 180 m/s, flow temperature tA = 25 °C, attack angle α = 30° and consumption of solid abrasive particles GP = 5·10-4 kg/s. It was found that the coating has a granular structure, a thickness is about 11 μm, the microhardness of the surface is 1520 ± 50 HV0.05. Processing of the obtained data by statistical analysis methods showed that the protective coating based on Cr-CrC increases the solid particle erosion resistance of the blade steel 20kH13 by the incubation-transitional period duration more than 2.5 times.

  9. The effect of environmentally friendly hot-dipping auxiliary on the morphology of alloy coatings

    NASA Astrophysics Data System (ADS)

    Chen, Suhong; Guo, Kai; Zhu, Yi; Gao, Feng; Han, Zhijun

    2017-10-01

    Zn-Al-Mg-RE hot-dip alloy coatings which prepared by the environmentally friendly plating auxiliary were investigated by X-ray diffraction (XRD), SEM analysis and salt spray measurement. Significant variation in coating surface morphology and element content are observed with increasing content of Al and Mg in this paper. A reinforced ternary eutectic Zn-Al-MgZn2 is confirmed which attribute to improvement metallographic structure derived from certain ternary eutectic reaction in alloy solidification. For Mg-containing coatings, the enhanced corrosion resistance is observed by corrosion resistance test in salt spray at 35°C with 5% NaCl in terms of corrosion weight changes. It is found that the incorporation of 3 wt.% Mg and 0.1 wt.% rare earth element in to Zn-Al-Mg-RE bath caused structural refinement of the crystal and also helped to achieve excellent surface morphology.

  10. Evaluation of a bonded particle cartridge filtration system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, W.; Krug, H.P.; Dopp, V.

    1996-10-01

    Metal cleanliness is a major issue in today`s aluminum casthouse, especially in the production of critical products such as canstock, litho sheet and foil. Bonded particle cartridge filters are widely regarded as the most effective means available for inclusion removal from critical production items. V.A.W. and Foseco have carried out a joint program of evaluation of a cartridge filter system in conjunction with ceramic foam filters and an in-line degassing unit--in various configurations. The ceramic foam filters ranged from standard, coarse pore types to new generation all-ceramic bonded, fine pore types. Metal cleanliness was assessed using LiMCA, PoDFA, and LAISmore » sampling techniques, as well as metallographic and scanning electron microscope examinations. This paper outlines the findings of this work which was carried out a V.A.W.`s full scale experimental D.C. slab casting unit as Neuss in Germany.« less

  11. Thermoelectric properties of Ge 1-xSn xTe crystals grown by vertical Bridgman method

    NASA Astrophysics Data System (ADS)

    Wu, C. C.; Ferng, N. J.; Gau, H. J.

    2007-06-01

    Single crystals of Ge 1-xSn xTe compounds with x=0, 0.8, 0.9 and 1.0 were grown by vertical Bridgman method. The crystalline phase and stochiometry for these crystals were investigated by X-ray diffraction, metallographic microscope as well as electron-probe microanalysis (EPMA). Electrical property of the as-grown samples was characterized using room temperature resistivity and Hall measurements. The thermoelectric behaviors for the Ge 1-xSn xTe crystals were studied by means of thermal and carrier transport measurements. Temperature dependences of resistivity, Seebeck coefficient and thermal conductivity for the various compositions of Ge 1-xSn xTe were analyzed. A two-valence band model was proposed to describe the temperature dependence of thermoelectric property of the Ge 1-xSn xTe crystals. The dimensionless thermoelectric figure of merit ZT for the alloys was evaluated and discussed.

  12. Analysis of Fatigue Crack Paths in Cold Drawn Pearlitic Steel

    PubMed Central

    Toribio, Jesús; González, Beatriz; Matos, Juan-Carlos

    2015-01-01

    In this paper, a fracto-metallographic analysis was performed on the cracked specimens of cold drawn pearlitic steel subjected to fatigue tests. Fatigue cracks are transcollonial and exhibit a preference for fracturing pearlitic lamellae, with non-uniform crack opening displacement values, micro-discontinuities, branchings, bifurcations and frequent local deflections that create microstructural roughness. At the micro-level, the cold drawn pearlitic steel exhibits higher micro-roughness than the hot rolled bar (this is a consequence of the manufacturing process by cold drawing), so that the actual fractured surface in the cold drawn wire is greater than that in the hot rolled bar, due to the fact that the crack deflection events are more frequent and with higher angle in the former (the heavily drawn prestressing steel wire). These findings show the relevant role on the manufacturing process by cold drawing in the fatigue crack propagation in pearlitic steel. PMID:28793647

  13. Cation ordering in orthopyroxenes and cooling rates of meteorites: Low temperature cooling rates of Estherville, Bondoc and Shaw

    NASA Technical Reports Server (NTRS)

    Ganguly, J.; Yang, H.; Ghose, S.

    1993-01-01

    The cooling rates of meteorites provide important constraints on the size of their parent bodies, and their accretionary and evolutionary histories. However, the cooling rates obtained so far from the commonly used metallographic, radiometric and fission-track methods have been sometimes quite controversial, such as in the case of the mesosiderites and the meteorite Shaw. We have undertaken a systematic study of the cooling rates of meteorites using a different approach, which involves single crystal x-ray determination of Fe(2+)-Mg ordering in orthopyroxenes (OP(x)) in meteorites, subject to bulk compositional constraints, and numerical simulation of the evolution of the ordering state as a function of cooling rate, within the framework of the thermodynamic and kinetic principles governing cation ordering. We report the results obtained for OP(x) crystals from Shaw and two mesosiderites, Estherville and Bondoc.

  14. Effect of hydrogen on fatigue crack propagation in vanadium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, D.W.; Stoloff, N.S.

    The influence of hydrogen on fatigue crack propagation in unalloyed vanadium and several hydrogen-charged vanadium alloys has been investigated. The Paris--Erdogan equation, da/dN = C(..delta..K)/sup m/, was approximately obeyed for all alloys. Crack growth rates were lowest in vanadium and dilute vanadium-hydrogen alloys, and were not very sensitive to volume fraction of hydrides in more concentrated alloys. The crack growth exponent, m, is inversely proportional to the cyclic strain hardening rate, n', and the rate constant C is inversely proportional to the square of the ultimate tensile stress, sigma/sub UTS/: metallographic examination showed hydride reorientation and growth in the originallymore » hydrided alloys. No stress-induced hydrides were observed in V-H solid-solution alloys. Fractures in hydrided materials exhibited cleavage-like features, while striations were noted in unalloyed vanadium and dilute solid-solution alloys.« less

  15. Effect of hydrogen on fatigue crack propagation in vanadium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, D.W.; Stoloff, N.S.

    The influence of hydrogen on fatigue crack propagation in unalloyed vanadium and several hydrogen-charged vanadium alloys has been investigated. The Paris--Erdogan equation, da/dN = C(..delta..K)/sup m/, was approximately obeyed for all alloys. Crack growth rates were lowest in vanadium and dilute vanadium--hydrogen alloys, and were not very sensitive to volume fraction of hydrides in more concentrated alloys. The crack growth exponent, m, is inversely proportional to the cyclic strain hardening rate, n', and the rate constant C is inversely proportional to the square of the ultimate tensile stress, sigma/sub UTS/: metallographic examination showed hydride reorientation and growth in the originallymore » hydrided alloys. No stress-induced hydrides were observed in V--H solid-solution alloys. Fractures in hydrided materials exhibited cleavage-like features, while striations were noted in unalloyed vanadium and dilute solid-solution alloys.« less

  16. Analysis of Fatigue Crack Paths in Cold Drawn Pearlitic Steel.

    PubMed

    Toribio, Jesús; González, Beatriz; Matos, Juan-Carlos

    2015-11-04

    In this paper, a fracto-metallographic analysis was performed on the cracked specimens of cold drawn pearlitic steel subjected to fatigue tests. Fatigue cracks are transcollonial and exhibit a preference for fracturing pearlitic lamellae, with non-uniform crack opening displacement values, micro-discontinuities, branchings, bifurcations and frequent local deflections that create microstructural roughness. At the micro-level, the cold drawn pearlitic steel exhibits higher micro-roughness than the hot rolled bar (this is a consequence of the manufacturing process by cold drawing), so that the actual fractured surface in the cold drawn wire is greater than that in the hot rolled bar, due to the fact that the crack deflection events are more frequent and with higher angle in the former (the heavily drawn prestressing steel wire). These findings show the relevant role on the manufacturing process by cold drawing in the fatigue crack propagation in pearlitic steel.

  17. Examination of UC-ZrC after long term irradiation at thermionic temperature

    NASA Technical Reports Server (NTRS)

    Yang, L.; Johnson, H. O.

    1972-01-01

    Two fluoride tungsten clad UC-ZrC fueled capsules, designated as V-2C and V-2D, were examined a hot cell after irradiation in NASA Plum Brook Reactor at a maximum cladding temperature of 1930 K for 11,089 and 12,031 hours to burnups of 3.0 x 10 to the 20th power and 2.1 x 10 to the 20th power fission/c.c. respectively. Percentage of fission gas release from the fuel material was measured by radiochemical means. Cladding deformation, fuel-cladding interaction and microstructures of fuel, cladding, and fuel-cladding interface were studied metallographically. Compositions of dispersions in fuel, fuel matrix and fuel-cladding interaction layer were analyzed by electron microprobe techniques. Axial and radial distributions of burnup were determined by gamma-scan, autoradiography and isotopic burnup analysis. The results are presented and discussed in conjunction with the requirements of thermionic fuel elements for space power application.

  18. Planetoid core crystallisation and fractionation - Evidence from the Agpalilik mass of the Cape York iron meteorite shower

    NASA Astrophysics Data System (ADS)

    Esbensen, K. H.; Buchwald, V. F.

    1982-09-01

    Metallographic and chemical study of the Agpalik mass of the Cape York iron meteorite shower reveals evidence of the mode of crystallization and fractionation of key elements consistent with a dendritic solidification of at least part of the once fully molten parent body's metallic core. Chemical gradients of Ir and Au are assessed across an 85 cm section that is inferred to be perpendicular to the parent body's gravitational field, and are interpreted as representing a dendritic growth mode. The characteristic elongated and orientated sulfide nodules found in Agpalik signify trapped liquid of the latest stages of crystallization. Detailed mineralogical and chemical characterization of the Agpalik liquid-solid transformation products allow modelling of the entire crystallization history commencing with dendritic metal precipitation through an ultimate troilite-taenite-Cu eutectic, representing a crystallization range spanning approximately 1350-700 C.

  19. Solid-state Bonding of Superplastic Aluminum Alloy 7475 Sheet

    NASA Technical Reports Server (NTRS)

    Byun, T. D. S.; Vastava, R. B.

    1985-01-01

    Experimental works were carried out to study the feasibility of solid state bonding of superplastic aluminum 7475 sheet. Amount of deformation, bonding time, surface cleaning method and intermediate layer were the process parameters investigated. Other parameters, held constant by the superplastic forming condition which is required to obtain a concurrent solid state bonding, are bonding temperature, bonding pressure and atmosphere. Bond integrity was evaluated through metallographic examination, X-ray line scan analysis, SEM fractographic analysis and lap shear tests. The early results of the development program indicated that sound solid state bonding was accomplished for this high strength 7475 alloy with significant amounts of deformation. A thin intermediate layer of the soft 5052 aluminum alloy aided in achieving a solid state bonding by reducing the required amount of plastic deformation at the interface. Bond strength was substantially increased by a post bond heat treatment.

  20. Bimodal metal micro-nanopowders for powder injection molding

    NASA Astrophysics Data System (ADS)

    Pervikov, Aleksandr; Rodkevich, Nikolay; Glazkova, Elena; Lerner, Marat

    2017-12-01

    The paper studies a bimodal metal powder composition designed to prepare feedstock for powder injection molding, as well as microstructure and porosity of sintered pats. Two kinds of metal powder compositions are used, in particular, a mixture of micro- and nanopowders and a bimodal powder prepared with dispersion of steel wire. The feedstock is prepared by mixing a bimodal metal powder composition with acetylacetone and paraffin wax. The microstructure of the debound parts is observed by scanning electron microscopy. The sintered parts are characterized by density measurements and metallographic analysis. The technique of the metal powder composition proves to affect the characteristics of sintered parts. Nanoparticles are shown in the interstitial spaces among the microparticles upon mixing micro- and nanopowders, but the regular distribution of nanoparticles on the surface of microparticles is observed in the bimodal powder providing the reduction of the porosity of sintered parts and increasing the density to the proper density of steel.

  1. Effect of Width of Kerf on Machining Accuracy and Subsurface Layer After WEDM

    NASA Astrophysics Data System (ADS)

    Mouralova, K.; Kovar, J.; Klakurkova, L.; Prokes, T.

    2018-02-01

    Wire electrical discharge machining is an unconventional machining technology that applies physical principles to material removal. The material is removed by a series of recurring current discharges between the workpiece and the tool electrode, and a `kerf' is created between the wire and the material being machined. The width of the kerf is directly dependent not only on the diameter of the wire used, but also on the machine parameter settings and, in particular, on the set of mechanical and physical properties of the material being machined. To ensure precise machining, it is important to have the width of the kerf as small as possible. The present study deals with the evaluation of the width of the kerf for four different metallic materials (some of which were subsequently heat treated using several methods) with different machine parameter settings. The kerf is investigated on metallographic cross sections using light and electron microscopy.

  2. Computation material science of structural-phase transformation in casting aluminium alloys

    NASA Astrophysics Data System (ADS)

    Golod, V. M.; Dobosh, L. Yu

    2017-04-01

    Successive stages of computer simulation the formation of the casting microstructure under non-equilibrium conditions of crystallization of multicomponent aluminum alloys are presented. On the basis of computer thermodynamics and heat transfer during solidification of macroscale shaped castings are specified the boundary conditions of local heat exchange at mesoscale modeling of non-equilibrium formation the solid phase and of the component redistribution between phases during coalescence of secondary dendrite branches. Computer analysis of structural - phase transitions based on the principle of additive physico-chemical effect of the alloy components in the process of diffusional - capillary morphological evolution of the dendrite structure and the o of local dendrite heterogeneity which stochastic nature and extent are revealed under metallographic study and modeling by the Monte Carlo method. The integrated computational materials science tools at researches of alloys are focused and implemented on analysis the multiple-factor system of casting processes and prediction of casting microstructure.

  3. Development of a Cu-Sn based brazing system with a low brazing and a high remelting temperature

    NASA Astrophysics Data System (ADS)

    Schmieding, M.; Holländer, U.; Möhwald, K.

    2017-03-01

    Objective of the project presented is the development of a joining process for hot working steel components at low brazing temperatures leading to a bond with a much higher remelting temperature. This basically is achieved by the use of a Cu-Sn melt spinning foil combined with a pure Cu foil. During brazing, the Sn content of the foil is decreased by diffusion of Sn into the additional Cu resulting in a homogenious joint with a increased remelting temperature of the filler metal. Within this project specimens were brazed and diffusion annealed in a vacuum furnace at 850 °C varying the processing times (0 - 10 h). The samples prepared were studied metallographically and diffusion profiles of Sn were recorded using EDX line scans. The results are discussed in view of further investigations and envisaged applications.

  4. Experimental Study on Dynamic Mechanical Properties of 30CrMnSiNi2A Steel.

    NASA Astrophysics Data System (ADS)

    Huang, Fenglei; Yao, Wei; Wu, Haijun; Zhang, Liansheng

    2009-06-01

    Under dynamic conditions, the strain-rate dependence of material response and high levels of hydrostatic pressure cause the material behavior to be significantly different from what is observed under quasi-static condition. The curves of stress and strain of 30CrMnSiNi2A steel in different strain rates are obtained with SHPB experiments. Metallographic analyses show that 30CrMnSiNi2A steel is sensitive to strain rate, and dynamic compression leads to shear failure with the angle 45^o as the small carbide which precipitates around grain boundary changes the properties of 30CrMnSiNi2A steel. From the SHPB experiments and quasi-static results, the incomplete Johnson-Cook model has been obtained: σ=[1587+382.5(ɛ^p)^0.245][1+0.017ɛ^*], which can offer parameters for theory application and numerical simulation.

  5. Ultrasonic and metallographic studies on AISI 4140 steel exposed to hydrogen at high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Oruganti, Malavika

    This thesis conducts an investigation to study the effects of hydrogen exposure at high temperature and pressure on the behavior of AISI 4140 steel. Piezoelectric ultrasonic technique was primarily used to evaluate surface longitudinal wave velocity and defect geometry variations, as related to time after exposure to hydrogen at high temperature and pressure. Critically refracted longitudinal wave technique was used for the former and pulse-echo technique for the latter. Optical microscopy and scanning electron microscopy were used to correlate the ultrasonic results with the microstructure of the steel and to provide better insight into the steel behavior. The results of the investigation indicate that frequency analysis of the defect echo, determined using the pulse-echo technique at regular intervals of time, appears to be a promising tool for monitoring defect growth induced by a high temperature and high pressure hydrogen-related attack.

  6. Silicon nitride-aluminum oxide solid solution (SiAION) formation and densification by pressure sintering

    NASA Technical Reports Server (NTRS)

    Yeh, H. C.; Sanders, W. A.; Fiyalko, J. L.

    1975-01-01

    Stirred-ball-mill-blended Si3N4 and Al2O3 powders were pressure sintered in order to investigate the mechanism of solid solution formation and densification in the Si3N4-Al2O3 system. Powder blends with Si3N4:Al2O3 mole ratios of 4:1, 3:2, and 2:3 were pressure sintered at 27.6-MN/sq m pressure at temperatures to 17000 C (3090 F). The compaction behavior of the powder blends during pressure sintering was determined by observing the density of the powder compact as a function of temperature and time starting from room temperature. This information, combined with the results of X-ray diffraction and metallographic analyses regarding solutioning and phase transformation phenomena in the Si3N4-Al2O3 system, was used to describe the densification behavior.

  7. Metallurgical evaluation of factors influencing the ductility of aged T-111

    NASA Technical Reports Server (NTRS)

    Gold, R. E.

    1972-01-01

    The metallurgical factors influencing the ductility of T-111 (Ta-8W-2Hf) alloy following long-time exposures of GTA welds and tubing in the temperature range 982 C (1800 F) through 1316 C (2400 F) were evaluated by means of scanning and transmission electron microscopy, Auger electron emission spectroscopy, and optical metallographic procedures. No classical aging response occurs in the alloy over the temperature range studied. The ductility impairment implied by previous investigations is not the result of microstructural response of the alloy to thermal exposures. Intergranular failure in the GTA sheet welds appears the result of random contamination by silicon, potassium, and/or fluorine at the grain boundaries of the fusion zones. Exposure to lithium at high temperatures had no adverse effects on the ductility of T-111 tubing. These materials were, however, sensitive to post-age handling and testing procedures.

  8. Prediction Of Formability In Sheet Metal Forming Processes Using A Local Damage Model

    NASA Astrophysics Data System (ADS)

    Teixeira, P.; Santos, Abel; César Sá, J.; Andrade Pires, F.; Barata da Rocha, A.

    2007-05-01

    The formability in sheet metal forming processes is mainly conditioned by ductile fracture resulting from geometric instabilities due to necking and strain localization. The macroscopic collapse associated with ductile failure is a result of internal degradation described throughout metallographic observations by the nucleation, growth and coalescence of voids and micro-cracks. Damage influences and is influenced by plastic deformation and therefore these two dissipative phenomena should be coupled at the constitutive level. In this contribution, Lemaitre's ductile damage model is coupled with Hill's orthotropic plasticity criterion. The coupling between damaging and material behavior is accounted for within the framework of Continuum Damage Mechanics (CDM). The resulting constitutive equations are implemented in the Abaqus/Explicit code, for the prediction of fracture onset in sheet metal forming processes. The damage evolution law takes into account the important effect of micro-crack closure, which dramatically decreases the rate of damage growth under compressive paths.

  9. Mechatronical systems and experimental methods for investigations on tribology of electrical contacts

    NASA Astrophysics Data System (ADS)

    Franek, Friedrich; Neuhaus, Alexander; Reichart, Martin; Schrank, Clemens

    2008-08-01

    The investigation of electrical low power switching contacts, including dry-circuit, is characterized as a highly interdisciplinary research field. The knowledge of plasma physics, the influence of kinetics on contact phenomena, material science and metallurgy, as well as thermal aspects and tribology, is demanded. The methods usually used at the Austrian Center of Competence for Tribology are e.g. defined contact make and break along two-independent axis using model switches, high-resolution measurement of displacement and electrical values, including the detection of arcs, contact force measurement in the kHz and cN range (one-axis and two-axis systems), on-line optical investigations (especially time lapse movie systems), state of the art 3D surface topography measurement of eroded contact surfaces, and (electron-) microscopical evaluation of metallographic cross sections. Some aspects of this methodology are presented in this paper.

  10. Study of the wear resistance of ion-plasma coatings based on titanium and aluminum and obtained by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kachalin, G. V.; Mednikov, A. F.; Tkhabisimov, A. B.; Sidorov, S. V.

    2017-05-01

    The paper presents the results of metallographic researches and erosion tests of ion-plasma coatings (based on titanium, aluminum and their nitrides), which were formed on samples of 12Kh13 and EI961 blade steels. Erosion tests and studies of characteristics of obtained by magnetron sputtering coatings were carried out by using a set of research equipment UNU “Erosion-M” NRU “MPEI”. It was found that the formed Ti/Al-TiN/AlN coatings increase the duration of blade steels erosion wear incubation period by at least in 1.5 times and have a layered structure with thicknesses of nitride layers 1.3-1.6 μm and intermediate metallic layers 0.3-0.5 μm, with a total thickness of coatings of 10-14 μm for 12Kh13steel samples and 19-21 μm for EI961 steel samples.

  11. Metallographic assessment of Al-12Si high-pressure die casting escalator steps.

    PubMed

    Vander Voort, George Frederic; Suárez-Peña, Beatriz; Asensio-Lozano, Juan

    2014-10-01

    A microstructural characterization study was performed on high-pressure die cast specimens extracted from escalator steps manufactured from an Al-12 wt.% Si alloy designed for structural applications. Black and white, color light optical imaging and scanning electron microscopy techniques were used to conduct the microstructural analysis. Most regions in the samples studied contained globular-rosette primary α-Al grains surrounded by an Al-Si eutectic aggregate, while primary dendritic α-Al grains were present in the surface layer. This dendritic microstructure was observed in the regions where the melt did not impinge directly on the die surface during cavity filling. Consequently, microstructures in the surface layer were nonuniform. Utilizing physical metallurgy principles, these results were analyzed in terms of the applied pressure and filling velocity during high-pressure die casting. The effects of these parameters on solidification at different locations of the casting are discussed.

  12. Effects of long time exposures in Rene-41

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radavich, J.F.

    1995-12-31

    A microstructural study was carried out on Rene-41 samples to determine the cause(s) of embrittlement developed after longtime engine exposures. The structural changes in Rene-41 samples exposed 12,000 to 15,000 hours as part of a thermal shield were compared to new material and re-heat treated exposed material. Selective metallographic, SEM, EDS and x-ray diffraction techniques showed that in long exposures the {gamma} phase coarsens, a Mu phase forms, and a continuous Cr rich carbide forms at the grain boundaries. The continuous grain boundary carbide is the main cause for the embrittlement. Exposed material that is given the standard Rene-41 heatmore » treatment becomes ductile as the grain boundary carbide is solutioned. Samples of exposed brittle material that initially shows a brittle intergranular fracture exhibit a ductile transgranular mode after re-heat treatment. Results of the various characterization techniques will be presented.« less

  13. Spectroscopic studies of GTA welding plasmas. Temperature calculation and dilution measurement

    NASA Astrophysics Data System (ADS)

    Lacroix, D.; Boudot, C.; Jeandel, G.

    1999-10-01

    A spectroscopic study of the GTAW plasma-plume created during the welding of stainless steel and other materials (iron, nickel and chromium) has been carried out. The spectra of these plasmas have been studied for several welding parameters. Temperature calculations are based on the observation of relative intensities and shapes of the emission peaks. We assume that the plasma is in local thermal equilibrium. The temperature is calculated with the Boltzmann plot method from twelve iron emission lines (in the range 368 385 nm): it varies between 9650 and 12 100 K. Dilution experiments have been carried out. We checked the mixing of metals: during welding of two different metallic plates and during welding with an Inconel wire. Dilution is monitored following the intensity of some characteristic emission lines (chromium and nickel). Comparison of spectroscopic results and metallographic ones is made.

  14. Study of Radiographic Linear Indications and Subsequent Microstructural Features in Gas Tungsten Arc Welds of Inconel 718

    NASA Technical Reports Server (NTRS)

    Walley, J. L.; Nunes, A. C.; Clounch, J. L.; Russell, C. K.

    2007-01-01

    This study presents examples and considerations for differentiating linear radiographic indications produced by gas tungsten arc welds in a 0.05-in-thick sheet of Inconel 718. A series of welds with different structural features, including the enigma indications and other defect indications such as lack of fusion and penetration, were produced, radiographed, and examined metallographically. The enigma indications were produced by a large columnar grain running along the center of the weld nugget occurring when the weld speed was reduced sufficiently below nominal. Examples of respective indications, including the effect of changing the x-ray source location, are presented as an aid to differentiation. Enigma, nominal, and hot-weld specimens were tensile tested to demonstrate the harmlessness of the enigma indication. Statistical analysis showed that there is no difference between the strengths of these three weld conditions.

  15. Improved TIG weld joint strength in aluminum alloy 2219-T87 by filler metal substitution

    NASA Technical Reports Server (NTRS)

    Poorman, R. M.; Lovoy, C. V.

    1972-01-01

    The results of an investigation on weld joint characteristics of aluminum alloy 2219-T87 are given. Five different alloys were utilized as filler material. The mechanical properties of the joints were determined at ambient and cryogenic temperatures for weldments in the as-welded condition and also, for weldments after elevated temperature exposures. Other evaluations included hardness surveys, stress corrosion susceptibility, and to a limited extent, the internal metallurgical weld structures. The overall results indicate that M-943 filler weldments are superior in strength to weldments containing either the standard 2319 filler or fillers 2014, 2020, and a dual wire feed consisting of three parts 2319 and one part 5652. In addition, no deficiencies were evident in M-934 filler weldments with regard to ductility, joint strength after elevated temperature exposure, weld hardness, metallographic structures, or stress corrosion susceptibility.

  16. Wear Resistance of Austempered Ductile Iron with Nanosized Additives

    NASA Astrophysics Data System (ADS)

    Kaleicheva, J. K.; Mishev, V.

    2018-01-01

    The wear resistance, microstructure and mechanical properties of austempered ductile iron (ADI) with nanosized additives of cubic boron nitride cBN are investigated. Samples of ductile iron are put under austhempering at the following conditions: heating at 900°С, 1 h and isothermal retention at 280оС, 2 h and 380°С, 2 h with the aim to achieve a lower bainitic structure and an upper bainitic structure. The experimental wear testing of austempered ductile irons is performed in friction conditions of a fixed abrasive by a cinematic scheme „pin - disc” using an accelerated testing method and device. The microstructure of the ADI is investigated by metallographic and X-Ray analyses. The Vickers hardness testing and impact strength examination are carried out. The influence of the nanosized additives of cBN on the wear resistance, microstructure, impact strength and hardness of the ADI is investigated.

  17. Identification of delamination failure of boride layer on common Cr-based steels

    NASA Astrophysics Data System (ADS)

    Taktak, Sukru; Tasgetiren, Suleyman

    2006-10-01

    Adhesion is an important aspect in the reliability of coated components. With low-adhesion of interfaces, different crack paths may develop depending on the local stress field at the interface and the fracture toughness of the coating, substrate, and interface. In the current study, an attempt has been made to identify the delamination failure of coated Cr-based steels by boronizing. For this reason, two commonly used steels (AISI H13, AISI 304) are considered. The steels contain 5.3 and 18.3 wt.% Cr, respectively. Boriding treatment is carried out in a slurry salt bath consisting of borax, boric acid, and ferrosilicon at a temperature range of 800 950 °C for 3, 5, and 7 h. The general properties of the boron coating are obtained by mechanical and metallographic characterization tests. For identification of coating layer failure, some fracture toughness tests and the Daimler-Benz Rockwell-C adhesion test are used.

  18. Tailoring Selective Laser Melting Process Parameters for NiTi Implants

    NASA Astrophysics Data System (ADS)

    Bormann, Therese; Schumacher, Ralf; Müller, Bert; Mertmann, Matthias; de Wild, Michael

    2012-12-01

    Complex-shaped NiTi constructions become more and more essential for biomedical applications especially for dental or cranio-maxillofacial implants. The additive manufacturing method of selective laser melting allows realizing complex-shaped elements with predefined porosity and three-dimensional micro-architecture directly out of the design data. We demonstrate that the intentional modification of the applied energy during the SLM-process allows tailoring the transformation temperatures of NiTi entities within the entire construction. Differential scanning calorimetry, x-ray diffraction, and metallographic analysis were employed for the thermal and structural characterizations. In particular, the phase transformation temperatures, the related crystallographic phases, and the formed microstructures of SLM constructions were determined for a series of SLM-processing parameters. The SLM-NiTi exhibits pseudoelastic behavior. In this manner, the properties of NiTi implants can be tailored to build smart implants with pre-defined micro-architecture and advanced performance.

  19. Molybdenum-UO2 cerment irradiation at 1145 K

    NASA Technical Reports Server (NTRS)

    Mcdonald, G.

    1971-01-01

    Two molybdenum-UO2 cermet fuel pins were fission heated in a helium-cooled loop at a temperature of 1145 K and to a total burnup of 5.3 % of the U-235. After irradiation the fuel pins were measured to check dimensional stability, punctured at the plenums to determine fission gas release, and examined metallographically to determine the effect of irradiation. Burnup was determined in several sections of the fuel pin. The results of the postirradiation examination indicated: (1) There was no visible change in the fuel pins on irradiation under the above conditions. (2) The maximum swelling of the fuel pins was less than 1%. (3) There was no migration of UO2 and no visible interaction between the molybdenum and the UO2. (4) Approximately 12% of the fission gas formed was released from the cermet cone into the gas plenum.

  20. Fatigue crack growth at elevated temperature 316 stainless steel and H-13 steel

    NASA Technical Reports Server (NTRS)

    Chen, W. C.; Liu, H. W.

    1976-01-01

    Crack growths were measured at elevated temperatures under four types of loading: pp, pc, cp, and cc. In H-13 steel, all these four types of loading gave nearly the same crack growth rates, and the length of hold time had negligible effects. In AISI 316 stainless steel, the hold time effects on crack growth rate were negligible if the loading was tension-tension type; however, these effects were significant in reversed bending load, and the crack growth rates under these four types of loading varied considerably. Both tensile and compressive hold times caused increased crack growth rate, but the compressive hold period was more deleterious than the tensile one. Metallographic examination showed that all the crack paths under different types of loading were largely transgranular for both CTS tension-tension specimens and SEN reversed cantilever bending specimens. In addition, an electric potential technique was used to monitor crack growth at elevated temperature.

  1. Microstructure, Mechanical Properties, and Corrosion Resistance of Thermomechanically Processed AlZn6Mg0.8Zr Alloy

    PubMed Central

    Kowalski, Aleksander; Ozgowicz, Wojciech; Jurczak, Wojciech; Grajcar, Adam; Boczkal, Sonia; Żelechowski, Janusz

    2018-01-01

    The paper presents results of the investigations on the effect of low-temperature thermomechanical treatment (LTTT) on the microstructure of AlZn6Mg0.8Zr alloy (7000 series) and its mechanical properties as well as electrochemical and stress corrosion resistance. For comparison of the LTTT effect, the alloy was subjected to conventional precipitation hardening. Comparative studies were conducted in the fields of metallographic examinations and static tensile tests. It was found that mechanical properties after the LTTT were better in comparison to after conventional heat treatment (CHT). The tested alloy after low-temperature thermomechanical treatment with increasing plastic deformation shows decreased electrochemical corrosion resistance during potentiodynamic tests. The alloy after low-temperature thermomechanical treatment with deformation degree in the range of 10 to 30% is characterized by a high resistance to stress corrosion specified by the level of PSCC indices. PMID:29642448

  2. A system framework of inter-enterprise machining quality control based on fractal theory

    NASA Astrophysics Data System (ADS)

    Zhao, Liping; Qin, Yongtao; Yao, Yiyong; Yan, Peng

    2014-03-01

    In order to meet the quality control requirement of dynamic and complicated product machining processes among enterprises, a system framework of inter-enterprise machining quality control based on fractal was proposed. In this system framework, the fractal-specific characteristic of inter-enterprise machining quality control function was analysed, and the model of inter-enterprise machining quality control was constructed by the nature of fractal structures. Furthermore, the goal-driven strategy of inter-enterprise quality control and the dynamic organisation strategy of inter-enterprise quality improvement were constructed by the characteristic analysis on this model. In addition, the architecture of inter-enterprise machining quality control based on fractal was established by means of Web service. Finally, a case study for application was presented. The result showed that the proposed method was available, and could provide guidance for quality control and support for product reliability in inter-enterprise machining processes.

  3. [Development of whole process quality control and management system of traditional Chinese medicine decoction pieces based on traditional Chinese medicine quality tree].

    PubMed

    Yu, Wen-Kang; Dong, Ling; Pei, Wen-Xuan; Sun, Zhi-Rong; Dai, Jun-Dong; Wang, Yun

    2017-12-01

    The whole process quality control and management of traditional Chinese medicine (TCM) decoction pieces is a system engineering, involving the base environment, seeds and seedlings, harvesting, processing and other multiple steps, so the accurate identification of factors in TCM production process that may induce the quality risk, as well as reasonable quality control measures are very important. At present, the concept of quality risk is mainly concentrated in the aspects of management and regulations, etc. There is no comprehensive analysis on possible risks in the quality control process of TCM decoction pieces, or analysis summary of effective quality control schemes. A whole process quality control and management system for TCM decoction pieces based on TCM quality tree was proposed in this study. This system effectively combined the process analysis method of TCM quality tree with the quality risk management, and can help managers to make real-time decisions while realizing the whole process quality control of TCM. By providing personalized web interface, this system can realize user-oriented information feedback, and was convenient for users to predict, evaluate and control the quality of TCM. In the application process, the whole process quality control and management system of the TCM decoction pieces can identify the related quality factors such as base environment, cultivation and pieces processing, extend and modify the existing scientific workflow according to their own production conditions, and provide different enterprises with their own quality systems, to achieve the personalized service. As a new quality management model, this paper can provide reference for improving the quality of Chinese medicine production and quality standardization. Copyright© by the Chinese Pharmaceutical Association.

  4. 40 CFR 81.16 - Metropolitan Denver Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.16 Metropolitan Denver Intrastate Air Quality Control Region. The Metropolitan Denver Intrastate Air Quality Control Region (Colorado) consists of the territorial area...

  5. 40 CFR 81.62 - Northeast Mississippi Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.62 Northeast Mississippi Intrastate Air Quality Control Region. The Alabama-Mississippi-Tennessee Interstate Air Quality Control Region has been renamed the Northeast...

  6. 40 CFR 81.16 - Metropolitan Denver Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.16 Metropolitan Denver Intrastate Air Quality Control Region. The Metropolitan Denver Intrastate Air Quality Control Region (Colorado) consists of the territorial area...

  7. 40 CFR 81.31 - Metropolitan Providence Interstate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.31 Metropolitan Providence Interstate Air Quality Control Region. The Metropolitan Providence Interstate Air Quality Control Region (Rhode Island-Massachusetts) consists of the...

  8. 40 CFR 81.16 - Metropolitan Denver Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.16 Metropolitan Denver Intrastate Air Quality Control Region. The Metropolitan Denver Intrastate Air Quality Control Region (Colorado) consists of the territorial area...

  9. 40 CFR 81.30 - Southeastern Wisconsin Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.30 Southeastern Wisconsin Intrastate Air Quality Control Region. The Metropolitan Milwaukee Intrastate Air Quality Control Region (Wisconsin) has been renamed the Southeastern...

  10. 40 CFR 81.31 - Metropolitan Providence Interstate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.31 Metropolitan Providence Interstate Air Quality Control Region. The Metropolitan Providence Interstate Air Quality Control Region (Rhode Island-Massachusetts) consists of the...

  11. 40 CFR 81.62 - Northeast Mississippi Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.62 Northeast Mississippi Intrastate Air Quality Control Region. The Alabama-Mississippi-Tennessee Interstate Air Quality Control Region has been renamed the Northeast...

  12. 40 CFR 81.28 - Metropolitan Baltimore Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.28 Metropolitan Baltimore Intrastate Air Quality Control Region. The Metropolitan Baltimore Intrastate Air Quality Control Region (Maryland) consists of the territorial area...

  13. 40 CFR 81.78 - Metropolitan Portland Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.78 Metropolitan Portland Intrastate Air Quality Control Region. The Metropolitan Portland Intrastate Air Quality Control Region (Maine) consists of the territorial area...

  14. 40 CFR 81.78 - Metropolitan Portland Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.78 Metropolitan Portland Intrastate Air Quality Control Region. The Metropolitan Portland Intrastate Air Quality Control Region (Maine) consists of the territorial area...

  15. 40 CFR 81.28 - Metropolitan Baltimore Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.28 Metropolitan Baltimore Intrastate Air Quality Control Region. The Metropolitan Baltimore Intrastate Air Quality Control Region (Maryland) consists of the territorial area...

  16. 40 CFR 81.62 - Northeast Mississippi Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.62 Northeast Mississippi Intrastate Air Quality Control Region. The Alabama-Mississippi-Tennessee Interstate Air Quality Control Region has been renamed the Northeast...

  17. 40 CFR 81.28 - Metropolitan Baltimore Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.28 Metropolitan Baltimore Intrastate Air Quality Control Region. The Metropolitan Baltimore Intrastate Air Quality Control Region (Maryland) consists of the territorial area...

  18. 40 CFR 81.30 - Southeastern Wisconsin Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.30 Southeastern Wisconsin Intrastate Air Quality Control Region. The Metropolitan Milwaukee Intrastate Air Quality Control Region (Wisconsin) has been renamed the Southeastern...

  19. 40 CFR 81.29 - Metropolitan Indianapolis Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Air Quality Control Region. 81.29 Section 81.29 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.29 Metropolitan Indianapolis Intrastate Air Quality Control...

  20. 40 CFR 81.31 - Metropolitan Providence Interstate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.31 Metropolitan Providence Interstate Air Quality Control Region. The Metropolitan Providence Interstate Air Quality Control Region (Rhode Island-Massachusetts) consists of the...

  1. 40 CFR 81.29 - Metropolitan Indianapolis Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Air Quality Control Region. 81.29 Section 81.29 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.29 Metropolitan Indianapolis Intrastate Air Quality Control...

  2. 40 CFR 81.44 - Metropolitan Memphis Interstate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.44 Metropolitan Memphis Interstate Air Quality Control Region. The Metropolitan Memphis Interstate Air Quality Control Region (Arkansas-Mississippi-Tennessee) consists of the...

  3. 40 CFR 81.30 - Southeastern Wisconsin Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.30 Southeastern Wisconsin Intrastate Air Quality Control Region. The Metropolitan Milwaukee Intrastate Air Quality Control Region (Wisconsin) has been renamed the Southeastern...

  4. 40 CFR 81.30 - Southeastern Wisconsin Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.30 Southeastern Wisconsin Intrastate Air Quality Control Region. The Metropolitan Milwaukee Intrastate Air Quality Control Region (Wisconsin) has been renamed the Southeastern...

  5. 40 CFR 81.28 - Metropolitan Baltimore Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.28 Metropolitan Baltimore Intrastate Air Quality Control Region. The Metropolitan Baltimore Intrastate Air Quality Control Region (Maryland) consists of the territorial area...

  6. 40 CFR 81.29 - Metropolitan Indianapolis Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Air Quality Control Region. 81.29 Section 81.29 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.29 Metropolitan Indianapolis Intrastate Air Quality Control...

  7. 40 CFR 81.19 - Metropolitan Boston Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.19 Metropolitan Boston Intrastate Air Quality Control Region. The Metropolitan Boston Intrastate Air Quality Control Region (Massachusetts) consists of the territorial area...

  8. 40 CFR 81.19 - Metropolitan Boston Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.19 Metropolitan Boston Intrastate Air Quality Control Region. The Metropolitan Boston Intrastate Air Quality Control Region (Massachusetts) consists of the territorial area...

  9. 40 CFR 81.44 - Metropolitan Memphis Interstate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.44 Metropolitan Memphis Interstate Air Quality Control Region. The Metropolitan Memphis Interstate Air Quality Control Region (Arkansas-Mississippi-Tennessee) consists of the...

  10. 40 CFR 81.16 - Metropolitan Denver Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.16 Metropolitan Denver Intrastate Air Quality Control Region. The Metropolitan Denver Intrastate Air Quality Control Region (Colorado) consists of the territorial area...

  11. 40 CFR 81.19 - Metropolitan Boston Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.19 Metropolitan Boston Intrastate Air Quality Control Region. The Metropolitan Boston Intrastate Air Quality Control Region (Massachusetts) consists of the territorial area...

  12. 40 CFR 81.19 - Metropolitan Boston Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.19 Metropolitan Boston Intrastate Air Quality Control Region. The Metropolitan Boston Intrastate Air Quality Control Region (Massachusetts) consists of the territorial area...

  13. 40 CFR 81.29 - Metropolitan Indianapolis Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Air Quality Control Region. 81.29 Section 81.29 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.29 Metropolitan Indianapolis Intrastate Air Quality Control...

  14. 40 CFR 81.44 - Metropolitan Memphis Interstate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.44 Metropolitan Memphis Interstate Air Quality Control Region. The Metropolitan Memphis Interstate Air Quality Control Region (Arkansas-Mississippi-Tennessee) consists of the...

  15. 40 CFR 81.31 - Metropolitan Providence Interstate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.31 Metropolitan Providence Interstate Air Quality Control Region. The Metropolitan Providence Interstate Air Quality Control Region (Rhode Island-Massachusetts) consists of the...

  16. 40 CFR 81.44 - Metropolitan Memphis Interstate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.44 Metropolitan Memphis Interstate Air Quality Control Region. The Metropolitan Memphis Interstate Air Quality Control Region (Arkansas-Mississippi-Tennessee) consists of the...

  17. 40 CFR 81.44 - Metropolitan Memphis Interstate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.44 Metropolitan Memphis Interstate Air Quality Control Region. The Metropolitan Memphis Interstate Air Quality Control Region (Arkansas-Mississippi-Tennessee) consists of the...

  18. 40 CFR 81.16 - Metropolitan Denver Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.16 Metropolitan Denver Intrastate Air Quality Control Region. The Metropolitan Denver Intrastate Air Quality Control Region (Colorado) consists of the territorial area...

  19. 40 CFR 81.28 - Metropolitan Baltimore Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.28 Metropolitan Baltimore Intrastate Air Quality Control Region. The Metropolitan Baltimore Intrastate Air Quality Control Region (Maryland) consists of the territorial area...

  20. 40 CFR 81.30 - Southeastern Wisconsin Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.30 Southeastern Wisconsin Intrastate Air Quality Control Region. The Metropolitan Milwaukee Intrastate Air Quality Control Region (Wisconsin) has been renamed the Southeastern...

  1. 40 CFR 81.19 - Metropolitan Boston Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.19 Metropolitan Boston Intrastate Air Quality Control Region. The Metropolitan Boston Intrastate Air Quality Control Region (Massachusetts) consists of the territorial area...

  2. 40 CFR 81.29 - Metropolitan Indianapolis Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Air Quality Control Region. 81.29 Section 81.29 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.29 Metropolitan Indianapolis Intrastate Air Quality Control...

  3. 40 CFR 81.78 - Metropolitan Portland Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.78 Metropolitan Portland Intrastate Air Quality Control Region. The Metropolitan Portland Intrastate Air Quality Control Region (Maine) consists of the territorial area...

  4. 40 CFR 81.62 - Northeast Mississippi Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.62 Northeast Mississippi Intrastate Air Quality Control Region. The Alabama-Mississippi-Tennessee Interstate Air Quality Control Region has been renamed the Northeast...

  5. 40 CFR 81.31 - Metropolitan Providence Interstate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.31 Metropolitan Providence Interstate Air Quality Control Region. The Metropolitan Providence Interstate Air Quality Control Region (Rhode Island-Massachusetts) consists of the...

  6. 40 CFR 81.107 - Greenwood Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Regions § 81.107 Greenwood Intrastate Air Quality Control Region. The Greenwood Intrastate Air Quality Control Region (South Carolina) consists of the territorial area encompassed by the... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Greenwood Intrastate Air Quality...

  7. 40 CFR 81.108 - Columbia Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Regions § 81.108 Columbia Intrastate Air Quality Control Region. The Columbia Intrastate Air Quality Control Region (South Carolina) consists of the territorial area encompassed by the... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Columbia Intrastate Air Quality...

  8. 40 CFR 81.108 - Columbia Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Regions § 81.108 Columbia Intrastate Air Quality Control Region. The Columbia Intrastate Air Quality Control Region (South Carolina) consists of the territorial area encompassed by the... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Columbia Intrastate Air Quality...

  9. 40 CFR 81.111 - Georgetown Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Regions § 81.111 Georgetown Intrastate Air Quality Control Region. The Georgetown Intrastate Air Quality Control Region (South Carolina) consists of the territorial area encompassed by the... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Georgetown Intrastate Air Quality...

  10. 40 CFR 81.109 - Florence Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Regions § 81.109 Florence Intrastate Air Quality Control Region. The Florence Intrastate Air Quality Control Region (South Carolina) consists of the territorial area encompassed by the... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Florence Intrastate Air Quality...

  11. 40 CFR 81.111 - Georgetown Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Regions § 81.111 Georgetown Intrastate Air Quality Control Region. The Georgetown Intrastate Air Quality Control Region (South Carolina) consists of the territorial area encompassed by the... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Georgetown Intrastate Air Quality...

  12. 40 CFR 81.109 - Florence Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Regions § 81.109 Florence Intrastate Air Quality Control Region. The Florence Intrastate Air Quality Control Region (South Carolina) consists of the territorial area encompassed by the... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Florence Intrastate Air Quality...

  13. 40 CFR 81.107 - Greenwood Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Regions § 81.107 Greenwood Intrastate Air Quality Control Region. The Greenwood Intrastate Air Quality Control Region (South Carolina) consists of the territorial area encompassed by the... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Greenwood Intrastate Air Quality...

  14. 40 CFR 81.90 - Androscoggin Valley Interstate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quality Control Region. 81.90 Section 81.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.90 Androscoggin Valley Interstate Air Quality Control Region. The...

  15. 40 CFR 81.90 - Androscoggin Valley Interstate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Region. 81.90 Section 81.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.90 Androscoggin Valley Interstate Air Quality Control Region. The...

  16. 40 CFR 81.75 - Metropolitan Charlotte Interstate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.75 Metropolitan Charlotte Interstate Air Quality Control Region. The Metropolitan Charlotte Interstate Air Quality Control Region (North Carolina-South Carolina) has been revised...

  17. 40 CFR 81.45 - Metropolitan Atlanta Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.45 Metropolitan Atlanta Intrastate Air Quality Control Region. The Metropolitan Atlanta Intrastate Air Quality Control Region (Georgia) has been revised to consist of the...

  18. 40 CFR 81.34 - Metropolitan Dayton Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.34 Metropolitan Dayton Intrastate Air Quality Control Region. The Metropolitan Dayton Intrastate Air Quality Control Region consists of the territorial area encompassed by the...

  19. 40 CFR 81.24 - Niagara Frontier Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.24 Niagara Frontier Intrastate Air Quality Control Region. The Niagara Frontier Intrastate Air Quality Control Region (New York) consists of the territorial area...

  20. 40 CFR 81.43 - Metropolitan Toledo Interstate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.43 Metropolitan Toledo Interstate Air Quality Control Region. The Metropolitan Toledo Interstate Air Quality Control Region (Ohio-Michigan) consists of the territorial area...

  1. 40 CFR 81.45 - Metropolitan Atlanta Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.45 Metropolitan Atlanta Intrastate Air Quality Control Region. The Metropolitan Atlanta Intrastate Air Quality Control Region (Georgia) has been revised to consist of the...

  2. 40 CFR 81.47 - Central Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.47 Central Oklahoma Intrastate Air Quality Control Region. The Metropolitan Oklahoma Intrastate Air Quality Control Region has been renamed the Central Oklahoma Intrastate...

  3. 40 CFR 81.41 - Metropolitan Birmingham Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.41 Metropolitan Birmingham Intrastate Air Quality Control Region. The Metropolitan Birmingham Intrastate Air Quality Control Region (Alabama) has been revised to consist of the...

  4. 40 CFR 81.34 - Metropolitan Dayton Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.34 Metropolitan Dayton Intrastate Air Quality Control Region. The Metropolitan Dayton Intrastate Air Quality Control Region consists of the territorial area encompassed by the...

  5. 40 CFR 81.41 - Metropolitan Birmingham Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.41 Metropolitan Birmingham Intrastate Air Quality Control Region. The Metropolitan Birmingham Intrastate Air Quality Control Region (Alabama) has been revised to consist of the...

  6. 40 CFR 81.20 - Metropolitan Cincinnati Interstate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.20 Metropolitan Cincinnati Interstate Air Quality Control Region. The Metropolitan Cincinnati Interstate Air Quality Control Region (Ohio-Kentucky-Indiana) is revised to consist of...

  7. 40 CFR 81.23 - Southwest Pennsylvania Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.23 Southwest Pennsylvania Intrastate Air Quality Control Region. The Southwest Pennsylvania Intrastate Air Quality Control Region is redesignated to consist of the territorial...

  8. 40 CFR 81.34 - Metropolitan Dayton Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.34 Metropolitan Dayton Intrastate Air Quality Control Region. The Metropolitan Dayton Intrastate Air Quality Control Region consists of the territorial area encompassed by the...

  9. 40 CFR 81.79 - Northeastern Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.79 Northeastern Oklahoma Intrastate Air Quality Control Region. The Metropolitan Tulsa Intrastate Air Quality Control Region has been renamed the Northeastern Oklahoma Intrastate...

  10. 40 CFR 81.59 - Cumberland-Keyser Interstate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.59 Cumberland-Keyser Interstate Air Quality Control Region. The Cumberland-Keyser Interstate Air Quality Control Region (Maryland-West Virginia) has been revised to consist...

  11. 40 CFR 81.49 - Southeast Florida Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.49 Southeast Florida Intrastate Air Quality Control Region. The Southeast Florida Intrastate Air Quality Control Region is redesignated to consist of the territorial area...

  12. 40 CFR 81.49 - Southeast Florida Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.49 Southeast Florida Intrastate Air Quality Control Region. The Southeast Florida Intrastate Air Quality Control Region is redesignated to consist of the territorial area...

  13. 40 CFR 81.41 - Metropolitan Birmingham Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.41 Metropolitan Birmingham Intrastate Air Quality Control Region. The Metropolitan Birmingham Intrastate Air Quality Control Region (Alabama) has been revised to consist of the...

  14. 40 CFR 81.41 - Metropolitan Birmingham Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.41 Metropolitan Birmingham Intrastate Air Quality Control Region. The Metropolitan Birmingham Intrastate Air Quality Control Region (Alabama) has been revised to consist of the...

  15. 40 CFR 81.34 - Metropolitan Dayton Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.34 Metropolitan Dayton Intrastate Air Quality Control Region. The Metropolitan Dayton Intrastate Air Quality Control Region consists of the territorial area encompassed by the...

  16. 40 CFR 81.43 - Metropolitan Toledo Interstate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.43 Metropolitan Toledo Interstate Air Quality Control Region. The Metropolitan Toledo Interstate Air Quality Control Region (Ohio-Michigan) consists of the territorial area...

  17. 40 CFR 81.24 - Niagara Frontier Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.24 Niagara Frontier Intrastate Air Quality Control Region. The Niagara Frontier Intrastate Air Quality Control Region (New York) consists of the territorial area...

  18. 40 CFR 81.47 - Central Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.47 Central Oklahoma Intrastate Air Quality Control Region. The Metropolitan Oklahoma Intrastate Air Quality Control Region has been renamed the Central Oklahoma Intrastate...

  19. 40 CFR 81.23 - Southwest Pennsylvania Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.23 Southwest Pennsylvania Intrastate Air Quality Control Region. The Southwest Pennsylvania Intrastate Air Quality Control Region is redesignated to consist of the territorial...

  20. 40 CFR 81.49 - Southeast Florida Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.49 Southeast Florida Intrastate Air Quality Control Region. The Southeast Florida Intrastate Air Quality Control Region is redesignated to consist of the territorial area...

  1. 40 CFR 81.45 - Metropolitan Atlanta Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.45 Metropolitan Atlanta Intrastate Air Quality Control Region. The Metropolitan Atlanta Intrastate Air Quality Control Region (Georgia) has been revised to consist of the...

  2. 40 CFR 81.47 - Central Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.47 Central Oklahoma Intrastate Air Quality Control Region. The Metropolitan Oklahoma Intrastate Air Quality Control Region has been renamed the Central Oklahoma Intrastate...

  3. 40 CFR 81.23 - Southwest Pennsylvania Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.23 Southwest Pennsylvania Intrastate Air Quality Control Region. The Southwest Pennsylvania Intrastate Air Quality Control Region is redesignated to consist of the territorial...

  4. 40 CFR 81.59 - Cumberland-Keyser Interstate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.59 Cumberland-Keyser Interstate Air Quality Control Region. The Cumberland-Keyser Interstate Air Quality Control Region (Maryland-West Virginia) has been revised to consist...

  5. 40 CFR 81.20 - Metropolitan Cincinnati Interstate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.20 Metropolitan Cincinnati Interstate Air Quality Control Region. The Metropolitan Cincinnati Interstate Air Quality Control Region (Ohio-Kentucky-Indiana) is revised to consist of...

  6. 40 CFR 81.43 - Metropolitan Toledo Interstate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.43 Metropolitan Toledo Interstate Air Quality Control Region. The Metropolitan Toledo Interstate Air Quality Control Region (Ohio-Michigan) consists of the territorial area...

  7. 40 CFR 81.24 - Niagara Frontier Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.24 Niagara Frontier Intrastate Air Quality Control Region. The Niagara Frontier Intrastate Air Quality Control Region (New York) consists of the territorial area...

  8. 40 CFR 81.20 - Metropolitan Cincinnati Interstate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.20 Metropolitan Cincinnati Interstate Air Quality Control Region. The Metropolitan Cincinnati Interstate Air Quality Control Region (Ohio-Kentucky-Indiana) is revised to consist of...

  9. 40 CFR 81.43 - Metropolitan Toledo Interstate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.43 Metropolitan Toledo Interstate Air Quality Control Region. The Metropolitan Toledo Interstate Air Quality Control Region (Ohio-Michigan) consists of the territorial area...

  10. 40 CFR 81.75 - Metropolitan Charlotte Interstate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.75 Metropolitan Charlotte Interstate Air Quality Control Region. The Metropolitan Charlotte Interstate Air Quality Control Region (North Carolina-South Carolina) has been revised...

  11. 40 CFR 81.14 - Metropolitan Chicago Interstate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.14 Metropolitan Chicago Interstate Air Quality Control Region. The Metropolitan Chicago Interstate Air Quality Control Region (Illinois-Indiana) is revised to consist of the...

  12. 40 CFR 81.14 - Metropolitan Chicago Interstate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.14 Metropolitan Chicago Interstate Air Quality Control Region. The Metropolitan Chicago Interstate Air Quality Control Region (Illinois-Indiana) is revised to consist of the...

  13. 40 CFR 81.24 - Niagara Frontier Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.24 Niagara Frontier Intrastate Air Quality Control Region. The Niagara Frontier Intrastate Air Quality Control Region (New York) consists of the territorial area...

  14. 40 CFR 81.49 - Southeast Florida Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.49 Southeast Florida Intrastate Air Quality Control Region. The Southeast Florida Intrastate Air Quality Control Region is redesignated to consist of the territorial area...

  15. 40 CFR 81.23 - Southwest Pennsylvania Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.23 Southwest Pennsylvania Intrastate Air Quality Control Region. The Southwest Pennsylvania Intrastate Air Quality Control Region is redesignated to consist of the territorial...

  16. 40 CFR 81.14 - Metropolitan Chicago Interstate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.14 Metropolitan Chicago Interstate Air Quality Control Region. The Metropolitan Chicago Interstate Air Quality Control Region (Illinois-Indiana) is revised to consist of the...

  17. 40 CFR 81.20 - Metropolitan Cincinnati Interstate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.20 Metropolitan Cincinnati Interstate Air Quality Control Region. The Metropolitan Cincinnati Interstate Air Quality Control Region (Ohio-Kentucky-Indiana) is revised to consist of...

  18. 40 CFR 81.59 - Cumberland-Keyser Interstate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.59 Cumberland-Keyser Interstate Air Quality Control Region. The Cumberland-Keyser Interstate Air Quality Control Region (Maryland-West Virginia) has been revised to consist...

  19. 40 CFR 81.14 - Metropolitan Chicago Interstate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.14 Metropolitan Chicago Interstate Air Quality Control Region. The Metropolitan Chicago Interstate Air Quality Control Region (Illinois-Indiana) is revised to consist of the...

  20. 40 CFR 81.45 - Metropolitan Atlanta Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.45 Metropolitan Atlanta Intrastate Air Quality Control Region. The Metropolitan Atlanta Intrastate Air Quality Control Region (Georgia) has been revised to consist of the...

Top