Science.gov

Sample records for metalloproteinase-7 promotes cellular

  1. Matrix Metalloproteinases-7 and Kidney Fibrosis

    PubMed Central

    Ke, Ben; Fan, Chuqiao; Yang, Liping; Fang, Xiangdong

    2017-01-01

    Matrix metalloproteinase-7 (MMP-7) is a secreted zinc- and calcium-dependent endopeptidase that degrades a broad range of extracellular matrix substrates and additional substrates. MMP-7 playsa crucial role in a diverse array of cellular processes and appears to be a key regulator of fibrosis in several diseases, including pulmonary fibrosis, liver fibrosis, and cystic fibrosis. In particular, the relationship between MMP-7 and kidney fibrosis has attracted significant attention in recent years. Growing evidence indicates that MMP-7 plays an important role in the pathogenesis of kidney fibrosis. Here, we summarize the recent progress in the understanding of the role of MMP-7 in kidney fibrosis. In particular, we discuss how MMP-7 contributes to kidney fibrotic lesions via the following three pathways: epithelial-mesenchymal transition (EMT), transforming growth factor-beta (TGF-β) signaling, and extracellular matrix (ECM) deposition. Further dissection of the crosstalk among and regulation of these pathways will help clinicians and researchers develop effective therapeutic approaches for treating chronic kidney disease. PMID:28239354

  2. EBNA1 regulates cellular gene expression by binding cellular promoters.

    PubMed

    Canaan, Allon; Haviv, Izhak; Urban, Alexander E; Schulz, Vincent P; Hartman, Steve; Zhang, Zhengdong; Palejev, Dean; Deisseroth, Albert B; Lacy, Jill; Snyder, Michael; Gerstein, Mark; Weissman, Sherman M

    2009-12-29

    Epstein-Barr virus (EBV) is associated with several types of lymphomas and epithelial tumors including Burkitt's lymphoma (BL), HIV-associated lymphoma, posttransplant lymphoproliferative disorder, and nasopharyngeal carcinoma. EBV nuclear antigen 1 (EBNA1) is expressed in all EBV associated tumors and is required for latency and transformation. EBNA1 initiates latent viral replication in B cells, maintains the viral genome copy number, and regulates transcription of other EBV-encoded latent genes. These activities are mediated through the ability of EBNA1 to bind viral-DNA. To further elucidate the role of EBNA1 in the host cell, we have examined the effect of EBNA1 on cellular gene expression by microarray analysis using the B cell BJAB and the epithelial 293 cell lines transfected with EBNA1. Analysis of the data revealed distinct profiles of cellular gene changes in BJAB and 293 cell lines. Subsequently, chromatin immune-precipitation revealed a direct binding of EBNA1 to cellular promoters. We have correlated EBNA1 bound promoters with changes in gene expression. Sequence analysis of the 100 promoters most enriched revealed a DNA motif that differs from the EBNA1 binding site in the EBV genome.

  3. Leukocytic Promotion of Prostate Cellular Proliferation

    PubMed Central

    McDowell, Kristy L.; Begley, Lesa A.; Mor-Vaknin, Nirit; Markovitz, David M.; Macoska, Jill A.

    2011-01-01

    BACKGROUND Histological evidence of pervasive inflammatory infiltrate has been noted in both benign prostatic hyperplasia/hypertrophy (BPH) and prostate cancer (PCa). Cytokines known to attract particular leukocyte subsets are secreted from prostatic stroma consequent to aging and also from malignant prostate epithelium. Therefore, we hypothesized that leukocytes associated with either acute or chronic inflammation attracted to the prostate consequent to aging or tumorigenesis may promote the abnormal cellular proliferation associated with BPH and PCa. METHODS An in vitro system designed to mimic the human prostatic microenvironment incorporating prostatic stroma (primary and immortalized prostate stromal fibroblasts), epithelium (N15C6, BPH-1, LNCaP, and PC3 cells), and inflammatory infiltrate (HL-60 cells, HH, and Molt-3 T-lymphocytes) was developed. Modified Boyden chamber assays were used to test the ability of prostate stromal and epithelial cells to attract leukocytes and to test the effect of leukocytes on prostate cellular proliferation. Antibody arrays were used to identify leukocyte-secreted cytokines mediating prostate cellular proliferation. RESULTS Leukocytic cells migrated towards both prostate stromal and epithelial cells. CD4+ T-lymphocytes promoted the proliferation of both transformed and non-transformed prostate epithelial cell lines tested, whereas CD8+ T-lymphocytes as well as dHL-60M macrophagic and dHL-60N neutrophilic cells selectively promoted the proliferation of PCa cells. CONCLUSIONS The results of these studies show that inflammatory cells can be attracted to the prostate tissue microenvironment and can selectively promote the proliferation of non-transformed or transformed prostate epithelial cells, and are consistent with differential role(s) for inflammatory infiltrate in the etiologies of benign and malignant proliferative disease in the prostate. PMID:19866464

  4. Proliferative effects of apical, but not basal, matrix metalloproteinase-7 activity in polarized MDCK cells

    SciTech Connect

    Harrell, Permila C.; McCawley, Lisa J.; Fingleton, Barbara; McIntyre, J. Oliver; Matrisian, Lynn M. . E-mail: lynn.matrisian@vanderbilt.edu

    2005-02-15

    Matrix metalloproteinase-7 (MMP-7) is primarily expressed in glandular epithelium. Therefore, its mechanism of action may be influenced by its regulated vectorial release to either the apical and/or basolateral compartments, where it would act on its various substrates. To gain a better understanding of where MMP-7 is released in polarized epithelium, we have analyzed its pattern of secretion in polarized MDCK cells expressing stably transfected human MMP-7 (MDCK-MMP-7), and HCA-7 and Caco2 human colon cancer cell lines. In all cell lines, latent MMP-7 was secreted to both cellular compartments, but was 1.5- to 3-fold more abundant in the basolateral compartment as compared to the apical. However, studies in the MDCK system demonstrated that MMP-7 activity was 2-fold greater in the apical compartment of MDCK-MMP-7{sup HIGH}-polarized monolayers, which suggests the apical co-release of an MMP-7 activator. In functional assays, MMP-7 over-expression increased cell saturation density as a result of increased cell proliferation with no effect on apoptosis. Apical MMP-7 activity was shown to be responsible for the proliferative effect, which occurred, as demonstrated by media transfer experiments, through cleavage of an apical substrate and not through the generation of a soluble factor. Taken together, our findings demonstrate the importance of MMP-7 secretion in relation to its mechanism of action when expressed in a polarized epithelium.

  5. Tungsten Oxide Nanoplates; the Novelty in Targeting Metalloproteinase-7 Gene in Both Cervix and Colon Cancer Cells.

    PubMed

    Yassin, Abdelrahman M; Elnouby, Mohamed; El-Deeb, Nehal M; Hafez, Elsayed E

    2016-10-01

    In this study, we synthesized tungsten oxide (WO3) nanoplates, both crystallographic phases and the morphology of the samples were determined by powder x-ray diffraction and the scanning electron microscopy, respectively. The obtained data clarified that, the all prepared WO3·H2O samples were composed of large quantity of nanoplates. The cytotoxicity patterns of nanoplates were checked on both normal and cancer mammalian cell lines. Both nanoplates cytotoxicity did not exceed the 50 % inhibitory concentration (IC50) on the all normal tested cells even by using concentrations up to 1 mg/ml. In addition, orthorhombic tungsten oxide nanoplate was more potent against both Caco2 and Hela cells by showing inhibition percentages in cellular viability 64.749 and 72.27, respectively, and with cancer selectivity index reached 3.2 and 2.6 on both colon and cervix cancer, respectively. The anticancer effects of nanoplates were translated to alteration in both pro-apoptotic and anti-apoptotic genes expressions. Tungsten oxide nanoplates down regulated the expression of B cell lymphoma 2 (Bcl-2) and metalloproteinase-7 (MMP7) genes. In addition, orthorhombic tungsten oxide nanoplates showed more potentiation in IL2 and IL8 induction (40.43 pg/ml) and upregulation of TNF-α gene expression but with lower folds than Escherichia coli lipopolysaccharide (LPS) induction.

  6. Exopolysaccharides promote Myxococcus xanthus social motility by inhibiting cellular reversals.

    PubMed

    Zhou, Tianyi; Nan, Beiyan

    2017-02-01

    The biofilm-forming bacterium Myxococcus xanthus moves on surfaces as structured swarms utilizing type IV pili-dependent social (S) motility. In contrast to isolated cells that reverse their moving direction frequently, individual cells within swarms rarely reverse. The regulatory mechanisms that inhibit cellular reversal and promote the formation of swarms are not well understood. Here we show that exopolysaccharides (EPS), the major extracellular components of M. xanthus swarms, inhibit cellular reversal in a concentration-dependent manner. Thus, individual wild-type cells reverse less frequently in swarms due to high local EPS concentrations. In contrast, cells defective in EPS production hyper-reverse their moving direction and show severe defects in S-motility. Surprisingly, S-motility and wild-type reversal frequency are restored in double mutants that are defective in both EPS production and the Frz chemosensory system, indicating that EPS regulates cellular reversal in parallel to the Frz pathway. Here we clarify that besides functioning as the structural scaffold in biofilms, EPS is a self-produced signal that coordinates the group motion of the social bacterium M. xanthus.

  7. Palmitate promotes inflammatory responses and cellular senescence in cardiac fibroblasts.

    PubMed

    Sokolova, Marina; Vinge, Leif Erik; Alfsnes, Katrine; Olsen, Maria Belland; Eide, Lars; Kaasbøll, Ole Jørgen; Attramadal, Håvard; Torp, May-Kristin; Fosshaug, Linn E; Rashidi, Azita; Lien, Egil; Finsen, Alexandra Vanessa; Sandanger, Øystein; Aukrust, Pål; Ranheim, Trine; Yndestad, Arne

    2017-02-01

    Palmitate triggers inflammatory responses in several cell types, but its effects on cardiac fibroblasts are at present unknown. The aims of the study were to (1) assess the potential of palmitate to promote inflammatory signaling in cardiac fibroblasts through TLR4 and the NLRP3 inflammasome and (2) characterize the cellular phenotype of cardiac fibroblasts exposed to palmitate. We examined whether palmitate induces inflammatory responses in cardiac fibroblasts from WT, NLRP3(-/-) and ASC(-/-)mice (C57BL/6 background). Exposure to palmitate caused production of TNF, IL-6 and CXCL2 via TLR4 activation. NLRP3 inflammasomes are activated in a two-step manner. Whereas palmitate did not prime the NLRP3 inflammasome, it induced activation in LPS-primed cardiac fibroblasts as indicated by IL-1β, IL-18 production and NLRP3-ASC co-localization. Palmitate-induced NLRP3 inflammasome activation in LPS-primed cardiac fibroblasts was associated with reduced AMPK activity, mitochondrial reactive oxygen species production and mitochondrial dysfunction. The cardiac fibroblast phenotype caused by palmitate, in an LPS and NLRP3 independent manner, was characterized by decreased cellular proliferation, contractility, collagen and MMP-2 expression, as well as increased senescence-associated β-galactosidase activity, and consistent with a state of cellular senescence. This study establishes that in vitro palmitate exposure of cardiac fibroblasts provides inflammatory responses via TLR4 and NLRP3 inflammasome activation. Palmitate also modulates cardiac fibroblast functionality, in a NLRP3 independent manner, resulting in a phenotype related to cellular senescence. These effects of palmitate could be of importance for myocardial dysfunction in obese and diabetic patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Matrix metalloproteinase-7 and matrix metalloproteinase-9 in pediatric multiple sclerosis.

    PubMed

    Yılmaz, Ünsal; Unsal, Yılmaz; Gücüyener, Kıvılcım; Kıvılcım, Gücüyener; Atak, Ayşegül; Ayşegül, Atak; Aral, Arzu; Arzu, Aral; Gürkaş, Esra; Esra, Gürkaş; Demir, Ercan; Ercan, Demir; Serdaroğlu, Ayşe; Ayşe, Serdaroğlu

    2012-09-01

    Matrix metalloproteinases and their tissue inhibitors play a key role in the pathogenesis of adult-onset multiple sclerosis, and were suggested as biomarkers of response to interferon-β, an established treatment in multiple sclerosis. However, data regarding pediatric population are scarce. We determined serum levels of matrix metalloproteinase-7, matrix metalloproteinase-9, and tissue inhibitor of matrix metalloproteinase-1 in children, and evaluated effects of interferon-β therapy on these measures. Serum samples from 14 children with relapsing, remitting multiple sclerosis at baseline and at month 12, and from 15 controls, were collected. Interferon-β treatment was initiated in eight patients. Mean serum matrix metalloproteinase-9 levels and matrix metalloproteinase-9/tissue inhibitor of matrix metalloproteinase-1 ratio were higher in patients compared with controls, and were reduced significantly in treated patients at month 12, but did not change in untreated patients. Mean matrix metalloproteinase-7 levels were lower in patients compared with controls, and increased significantly in the treated group, but did not change significantly in the untreated group. In pediatric multiple sclerosis, a shift in matrix metalloproteinase-9/tissue inhibitor of matrix metalloproteinase-1 balance toward proteolytic activity is evident, and interferon-β therapy demonstrates a beneficial effect on this disturbed balance. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Cellular Adhesion Promotes Prostate Cancer Cells Escape from Dormancy

    PubMed Central

    Ruppender, Nazanin; Larson, Sandy; Lakely, Bryce; Kollath, Lori; Brown, Lisha; Coleman, Ilsa; Coleman, Roger; Nguyen, Holly; Nelson, Peter S.; Corey, Eva; Snyder, Linda A.; Vessella, Robert L.; Morrissey, Colm; Lam, Hung-Ming

    2015-01-01

    Dissemination of prostate cancer (PCa) cells to the bone marrow is an early event in the disease process. In some patients, disseminated tumor cells (DTC) proliferate to form active metastases after a prolonged period of undetectable disease known as tumor dormancy. Identifying mechanisms of PCa dormancy and reactivation remain a challenge partly due to the lack of in vitro models. Here, we characterized in vitro PCa dormancy-reactivation by inducing cells from three patient-derived xenograft (PDX) lines to proliferate through tumor cell contact with each other and with bone marrow stroma. Proliferating PCa cells demonstrated tumor cell-cell contact and integrin clustering by immunofluorescence. Global gene expression analyses on proliferating cells cultured on bone marrow stroma revealed a downregulation of TGFB2 in all of the three proliferating PCa PDX lines when compared to their non-proliferating counterparts. Furthermore, constitutive activation of myosin light chain kinase (MLCK), a downstream effector of integrin-beta1 and TGF-beta2, in non-proliferating cells promoted cell proliferation. This cell proliferation was associated with an upregulation of CDK6 and a downregulation of E2F4. Taken together, our data provide the first clinically relevant in vitro model to support cellular adhesion and downregulation of TGFB2 as a potential mechanism by which PCa cells may escape from dormancy. Targeting the TGF-beta2-associated mechanism could provide novel opportunities to prevent lethal PCa metastasis. PMID:26090669

  10. Cellular senescence and tumor promotion: Is aging the key?

    PubMed

    Loaiza, Natalia; Demaria, Marco

    2016-04-01

    The senescence response is a potent tumor suppressor mechanism characterized by an irreversible growth arrest in response to potentially oncogenic signals to prevent the proliferation of damaged cells. Late in life, some of the features of senescent cells seem to mediate the development of age-related pathologies, including cancer. In the present review, we present a summary of the current knowledge regarding the causes, effector pathways and cellular features of senescence. We also discuss how the senescence response, initially a tumor suppressor mechanism, turns into a tumor promoter apparently as a consequence of aging. We argue that three age-related phenomena--senescence-associated secretory phenotype (SASP) dysregulation, decline in the immune system function and genomic instability--could contribute, independently or synergistically, to deteriorate the efficacy of the senescence response in stopping cancer. As a consequence, senescent cells could be considered premalignant cells, and targeting senescent cells could be a preventive and therapeutic strategy against cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Stiff substrates increase YAP-signaling-mediated matrix metalloproteinase-7 expression.

    PubMed

    Nukuda, A; Sasaki, C; Ishihara, S; Mizutani, T; Nakamura, K; Ayabe, T; Kawabata, K; Haga, H

    2015-09-07

    Abnormally stiff substrates have been shown to trigger cancer progression. However, the detailed molecular mechanisms underlying this trigger are not clear. In this study, we cultured T84 human colorectal cancer cells on plastic dishes to create a stiff substrate or on collagen-I gel to create a soft substrate. The stiff substrate enhanced the expression of matrix metalloproteinase-7 (MMP-7), an indicator of poor prognosis. In addition, we used polyacrylamide gels (2, 67 and 126 kPa) so that the MMP-7 expression on the 126-kPa gel was higher compared with that on the 2-kPa gel. Next, we investigated whether yes-associated protein (YAP) affected the MMP-7 expression. YAP knockdown decreased MMP-7 expression. Treatment with inhibitors of epidermal growth factor receptor (EGFR) and myosin regulatory light chain (MRLC) and integrin-α2 or integrin-β1 knockdown downregulated MMP-7 expression. Finally, we demonstrated that YAP, EGFR, integrin-α2β1 and MRLC produced a positive feedback loop that enhanced MMP-7 expression. These findings suggest that stiff substrates enhanced colorectal cancer cell viability by upregulating MMP-7 expression through a positive feedback loop.

  12. Urine matrix metalloproteinase-7 and risk of kidney disease progression and mortality in type 2 diabetes.

    PubMed

    Afkarian, Maryam; Zelnick, Leila R; Ruzinski, John; Kestenbaum, Bryan; Himmelfarb, Jonathan; de Boer, Ian H; Mehrotra, Rajnish

    2015-01-01

    The renin-angiotensin-aldosterone system (RAAS), bone morphogenetic protein (BMP) and WNT pathways are dysregulated in diabetic kidney disease (DKD). Urine excretion of angiotensinogen, gremlin-1 and matrix metalloproteinase-7 (MMP-7), components of the RAAS, BMP and WNT pathways, respectively, is increased in DKD. We asked if this increase is associated with subsequent progression to end-stage renal disease (ESRD) or death. Using time-to-event analyses, we examined the association of baseline urine concentration of these proteins with progression to ESRD or death in a predominantly Mexican-American cohort with type 2 diabetes and proteinuric DKD (n=141). Progression to ESRD occurred for 38 participants over a median follow-up of 3.0years; 39 participants died over a median follow-up of 3.6years. Urine MMP-7 and gremlin-1 were associated with increased risk of ESRD after adjustment for demographic and clinical covariates. Angiotensinogen showed a U-shaped relationship with ESRD, with the middle tertile associated with lowest risk of ESRD. After additional adjustment for glomerular filtration rate and albuminuria, all associations with ESRD lost significance. Only urine MMP-7 was associated with mortality, and this association remained robust in the fully adjusted model with a Hazard ratio of 3.59 (95% confidence interval 1.31 to 9.85) for highest vs. lowest tertile. Serum MMP-7 was not associated with mortality and did not attenuate the association of urine MMP-7 with mortality (HR 4.03 for highest vs. lowest urine MMP-7 tertile). Among people with type 2 diabetes and proteinuric DKD, urine MMP-7 concentration was strongly associated with subsequent mortality. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Diabetes Associated Markers After Bariatric Surgery: Fetuin-A, but Not Matrix Metalloproteinase-7, Is Reduced.

    PubMed

    Yang, Po-Jen; Ser, Kong-Han; Lin, Ming-Tsan; Nien, Hsiao-Ching; Chen, Chiung-Nien; Yang, Wei-Shiung; Lee, Wei-Jei

    2015-12-01

    Recent studies showed that fetuin-A and matrix metalloproteinase-7 (MMP-7) are type 2 diabetes mellitus (T2DM)-associated markers. Bariatric surgery not only reduces body weight but also improves T2DM. This study aimed to investigate the changes of fetuin-A and MMP-7 in obese subjects with and without T2DM after bariatric surgery. We enrolled 130 obese subjects that received bariatric surgery, including 41 Roux-en-Y gastric bypass (RYGB), 67 mini-gastric bypass (MGB), and 22 sleeve gastrectomy (SG) patients. Forty-three patients suffered from T2DM prior to surgery. The fasting serum fetuin-A and MMP-7 levels were measured before and 1 year after surgery. Only five of 43 patients remained diabetic after surgery. Preoperative T2DM patients had higher fetuin-A and MMP-7 levels than non-T2DM subjects. RYGB, MGB, and SG all decreased the fetuin-A levels 1 year after the operation. The MMP-7 levels were not changed after RYGB, MGB, or SG. In multivariate analyses, the preoperative fetuin-A was significantly related to the diastolic blood pressure (DBP) and glycosylated hemoglobin (HbA1c), while the postoperative fetuin-A was independently related to the waist-to-hip ratio and HbA1c. Moreover, the preoperative MMP-7 level was significantly related to age, DBP, aspartate transaminase, alanine transaminase, and gamma-glutamyl transferase (rGT), while the postoperative MMP-7 level was independently related to age and rGT. The fetuin-A and MMP-7 levels are both higher in obese T2DM than non-T2DM subjects. The level of fetuin-A is reduced after RYGB, MGB, and SG, but the level of MMP-7 remains unchanged.

  14. Urine matrix metalloproteinase-7 and risk of kidney disease progression and mortality in type 2 diabetes

    PubMed Central

    Afkarian, Maryam; Zelnick, Leila R; Ruzinski, John; Kestenbaum, Bryan; Himmelfarb, Jonathan; de Boer, Ian H; Mehrotra, Rajnish

    2017-01-01

    Aims The renin-angiotensin-aldosterone system (RAAS), bone morphogenetic protein (BMP) and WNT pathways are dysregulated in diabetic kidney disease (DKD). Urine excretion of angiotensinogen, gremlin-1 and matrix metalloproteinase-7 (MMP-7), components of the RAAS, BMP and WNT pathways, respectively, is increased in DKD. We asked if this increase is associated with subsequent progression to end-stage renal disease (ESRD) or death. Methods Using time-to-event analyses, we examined the association of baseline urine concentration of these proteins with progression to ESRD or death in a predominantly Mexican-American cohort with type 2 diabetes and proteinuric DKD (n=141). Results Progression to ESRD occurred for 38 participants over a median follow-up of 3.0 years; 39 participants died over a median follow-up of 3.6 years. Urine MMP-7 and gremlin-1 were associated with increased risk of ESRD after adjustment for demographic and clinical covariates. Angiotensinogen showed a U-shaped relationship with ESRD, with the middle tertile associated with lowest risk of ESRD. After additional adjustment for glomerular filtration rate and albuminuria, all associations with ESRD lost significance. Only urine MMP-7 was associated with mortality, and this association remained robust in the fully adjusted model with a Hazard ratio of 3.59 (95% confidence interval 1.31 to 9.85) for highest vs. lowest tertile. Serum MMP-7 was not associated with mortality and did not attenuate the association of urine MMP-7 with mortality (HR 4.03 for highest vs. lowest urine MMP-7 tertile). Conclusions Among people with type 2 diabetes and proteinuric DKD, urine MMP-7 concentration was strongly associated with subsequent mortality. PMID:26412030

  15. Matrix metalloproteinase 7 restrains Helicobacter pylori-induced gastric inflammation and premalignant lesions in the stomach by altering macrophage polarization.

    PubMed

    Krakowiak, M S; Noto, J M; Piazuelo, M B; Hardbower, D M; Romero-Gallo, J; Delgado, A; Chaturvedi, R; Correa, P; Wilson, K T; Peek, R M

    2015-04-02

    Helicobacter pylori is the strongest risk factor for the development of gastric cancer. Although the specific mechanisms by which this pathogen induces carcinogenesis have not been fully elucidated, high-expression interleukin (IL)-1β alleles are associated with increased gastric cancer risk among H. pylori-infected persons. In addition, loss of matrix metalloproteinase 7 (MMP7) increases mucosal inflammation in mouse models of epithelial injury, and we have shown that gastric inflammation is increased in H. pylori-infected MMP7(-/-) C57BL/6 mice. In this report, we define mechanisms that underpin such responses and extend these results into a genetic model of MMP7 deficiency and gastric cancer. Wild-type (WT) or MMP7(-/-) C57BL/6 mice were challenged with broth alone as an uninfected control or the H. pylori strain PMSS1. All H. pylori-challenged mice were successfully colonized. As expected, H. pylori-infected MMP7(-/-) C57BL/6 mice exhibited a significant increase in gastric inflammation compared with uninfected or infected WT C57BL/6 animals. Loss of MMP7 resulted in M1 macrophage polarization within H. pylori-infected stomachs, as assessed by Luminex technology and immunohistochemistry, and macrophages isolated from infected MMP7-deficient mice expressed significantly higher levels of the M1 macrophage marker IL-1β compared with macrophages isolated from WT mice. To extend these findings into a model of gastric cancer, hypergastrinemic WT INS-GAS or MMP7(-/-) INS-GAS mice were challenged with H. pylori strain PMSS1. Consistent with findings in the C57BL/6 model, H. pylori-infected MMP7-deficient INS-GAS mice exhibited a significant increase in gastric inflammation compared with either uninfected or infected WT INS-GAS mice. In addition, the incidence of gastric hyperplasia and dysplasia was significantly increased in H. pylori-infected MMP7(-/-) INS-GAS mice compared with infected WT INS-GAS mice, and loss of MMP7 promoted M1 macrophage polarization. These

  16. Evaluation of Matrix Metalloproteinase 7 in Plasma and Pancreatic Juice as a Biomarker for Pancreatic Cancer

    PubMed Central

    Kuhlmann, Koert F.D.; van Till, J.W. Olivier; Boermeester, Marja A.; de Reuver, Philip R.; Tzvetanova, Iva D.; Offerhaus, G. Johan A.; ten Kate, Fiebo J.W.; Busch, Olivier R.C.; van Gulik, Thomas M.; Gouma, Dirk J.; Crawford, Howard C.

    2015-01-01

    Differentiating between periampullary carcinoma and chronic pancreatitis with an inflammatory mass is difficult. Consequently, 6% to 9% of pancreatic resections for suspected carcinoma are done inappropriately for chronic pancreatitis. Here, we test if matrix metalloproteinase 7 (MMP-7), a secreted protease frequently expressed in pancreatic carcinoma, can be measured in plasma, pancreatic, and duodenal juice, and if it can distinguish between periampullary carcinoma and chronic pancreatitis. Ninety-four patients who underwent pancreatic surgery for a (peri)pancreatic neoplasm (n = 63) or chronic pancreatitis (n = 31) were analyzed. Median plasma MMP-7 levels were significantly higher in carcinoma (1.95 ng/mL; interquartile range, 0.81–3.22 ng/mL) compared with chronic pancreatitis and benign disease (0.83 ng/mL; interquartile range, 0.25–1.21 ng/mL; P < 0.01). MMP-7 levels in pancreatic juice were higher, although not significantly, in carcinoma (62 ng/mg protein; interquartile range, 18–241 ng/mg protein) compared with chronic pancreatitis and benign disease (23 ng/mg protein; interquartile range, 8.5–99 ng/mg protein; P = 0.17). MMP-7 levels in duodenal juice were universally low. At an arbitrary cutoff of 1.5 ng/mL in plasma, positive and negative predictive values were 83% and 57%, respectively, values comparable to those of today’s most common pancreatic tumor marker, carbohydrate antigen 19-9 (CA19-9; 83% and 53%, respectively). Positive and negative likelihood ratios for plasma MMP-7 were 3.35 and 0.52, respectively. The area under the receiver operating characteristic curve for MMP-7 was 0.73 (95% confidence interval, 0.63–0.84) and for CA19-9, 0.75 (95% confidence interval, 0.64–0.85). Combined MMP-7 and CA19-9 assessment gave a positive predictive value of 100%. Thus, plasma MMP-7 levels discriminated between patients with carcinoma and those with chronic pancreatitis or benign disease. The diagnostic accuracy of plasma MMP-7 alone is not

  17. The Aryl Hydrocarbon Receptor Relays Metabolic Signals to Promote Cellular Regeneration

    PubMed Central

    2016-01-01

    While sensing the cell environment, the aryl hydrocarbon receptor (AHR) interacts with different pathways involved in cellular homeostasis. This review summarizes evidence suggesting that cellular regeneration in the context of aging and diseases can be modulated by AHR signaling on stem cells. New insights connect orphaned observations into AHR interactions with critical signaling pathways such as WNT to propose a role of this ligand-activated transcription factor in the modulation of cellular regeneration by altering pathways that nurture cellular expansion such as changes in the metabolic efficiency rather than by directly altering cell cycling, proliferation, or cell death. Targeting the AHR to promote regeneration might prove to be a useful strategy to avoid unbalanced disruptions of homeostasis that may promote disease and also provide biological rationale for potential regenerative medicine approaches. PMID:27563312

  18. The Matrix Metalloproteinase-7 Polymorphism Rs10895304 Is Associated With Increased Recurrence Risk in Patients With Clinically Localized Prostate Cancer

    SciTech Connect

    Jaboin, Jerry J.; Hwang, Misun; Lopater, Zachary; Chen Heidi; Ray, Geoffrey L.; Perez, Carmen; Cai Qiuyin; Wills, Marcia L.; Lu Bo

    2011-04-01

    Purpose: To evaluate whether selected high-risk matrix metalloproteinase-7 single nucleotide polymorphisms influence clinicopathologic outcomes in patients with early-stage prostate cancer. Methods and Materials: Two hundred twelve prostate cancer patients treated with radical prostatectomy were evaluated with a median follow-up of 9.8 years. Genotyping was performed using hybridization with custom-designed allele-specific probes. Three single nucleotide polymorphisms within the matrix metalloproteinase-7 gene were assessed with respect to age at diagnosis, margin status, extracapsular extension, lymph node involvement, recurrence-free survival, and overall survival in paraffin-embedded prostate tissue specimens from patients with early-stage prostate cancer who underwent radical prostatectomy. Results: Rs10895304 was the sole significant polymorphism. The A/G genotype of rs10895304 had a statistically significant association with recurrence-free survival in postprostatectomy patients (p = 0.0061, log-rank test). The frequency of the risk-reducing genotype (A/A) was 74%, whereas that of the risk-enhancing genotypes (A/G and G/G) were 20% and 6%, respectively. Multivariable Cox regression analyses detected a significant association between rs10895304 and recurrences after adjustment for known prognostic factors. The G allele of this polymorphism was associated with increased risk of prostate cancer recurrence (adjusted hazards ratio, 3.375; 95% confidence interval 1.567-7.269; p < 0.001). The other assayed polymorphisms were not significant, and no correlations were made to other clinical variables. Conclusions: The A/G genotype of rs10895304 is predictive of decreased recurrence-free survival in patients with clinically localized prostate cancer. Our data suggest that for this subset of patients, prostatectomy alone may not be adequate for local control. This is a novel and relevant marker that should be evaluated for improved risk stratification of patients who

  19. SIRT6 delays cellular senescence by promoting p27Kip1 ubiquitin-proteasome degradation

    PubMed Central

    Zhao, Ganye; Wang, Hui; Xu, Chenzhong; Wang, Pan; Chen, Jun; Wang, Pengfeng; Sun, Zhaomeng; Su, Yuanyuan; Wang, Zhao; Han, Limin; Tong, Tanjun

    2016-01-01

    Sirtuin6 (SIRT6) has been implicated as a key factor in aging and aging-related diseases. However, the role of SIRT6 in cellular senescence has not been fully understood. Here, we show that SIRT6 repressed the expression of p27Kip1 (p27) in cellular senescence. The expression of SIRT6 was reduced during cellular senescence, whereas enforced SIRT6 expression promoted cell proliferation and antagonized cellular senescence. In addition, we demonstrated that SIRT6 promoted p27 degradation by proteasome and SIRT6 decreased the acetylation level and protein half-life of p27. p27 acetylation increased its protein stability. Furthermore, SIRT6 directly interacted with p27. Importantly, p27 was strongly acetylated and had a prolonged protein half-life with the reduction of SIRT6 when cells were senescent, compared with those young cells. Finally, SIRT6 markedly rescued senescence induced by p27. Our findings indicate that SIRT6 decreases p27 acetylation, leading to its degradation via ubiquitin-proteasome pathway and then delays cellular senescence. PMID:27794562

  20. A cellular repressor regulates transcription initiation from the minute virus of mice P38 promoter.

    PubMed Central

    Krauskopf, A; Aloni, Y

    1994-01-01

    We previously reported that the P38 promoter of minute virus of mice (MVM) is trans activated by the viral nonstructural protein, NS1, through an interaction with a downstream promoter element designated DPE. In this communication we report the identification of a distinct downstream promoter element which inhibits transcription from the P38 promoter in vitro, in the absence of the DPE. Removal of 34 bp from the region between +95 and +129 downstream from the P38 initiation start site relieved inhibition of transcription in whole-cell extract. Inhibition was also relieved by the addition, to the transcription reaction, of excess DNA fragments which span the putative inhibiting element. This indicated the involvement of a trans-acting factor, in inhibition of transcription from the P38. Gel retardation experiments demonstrated the specific binding of a cellular protein to the inhibitory element. This P38 inhibitory element shows spacing and orientation dependence as well as promoter specificity. The regulation of viral transcription by a cellular repressor may play an important role in obtaining a fine temporal order of viral gene expression during the course of infection. Images PMID:8139925

  1. Queuine promotes antioxidant defence system by activating cellular antioxidant enzyme activities in cancer.

    PubMed

    Pathak, Chandramani; Jaiswal, Yogesh K; Vinayak, Manjula

    2008-04-01

    Constant generation of Reactive oxygen species (ROS) during normal cellular metabolism of an organism is generally balanced by similar rate of consumption by antioxidants. Imbalance between ROS production and antioxidant defense results in increased level of ROS causing oxidative stress which leads to promotion of malignancy. Queuine is a hyper modified base analogue of guanine, found at first anti-codon position of Q- family of tRNAs. These tRNAs are completely modified with respect to queuosine in terminally differentiated somatic cells, however hypomodification of Q-tRNAs is close association with cell proliferation. Q-tRNA modification is essential for normal development, differentiation and cellular functions. Queuine is a nutrient factor to eukaryotes. It is found to promote cellular antioxidant defense system and inhibit tumorigenesis. The activities of antioxidant enzymes like catalase, SOD, glutathione peroxidase and glutathione reductase are found to be low in Dalton's lymphoma ascites transplanted (DLAT) mouse liver compared to normal. However, exogenous administration of queuine to DLAT mouse improves the activities of antioxidant enzymes. The results suggest that queuine promotes antioxidant defense system by increasing antioxidant enzyme activities and in turn inhibits oxidative stress and tumorigenesis.

  2. Cellular microRNAs up-regulate transcription via interaction with promoter TATA-box motifs.

    PubMed

    Zhang, Yijun; Fan, Miaomiao; Zhang, Xue; Huang, Feng; Wu, Kang; Zhang, Junsong; Liu, Jun; Huang, Zhuoqiong; Luo, Haihua; Tao, Liang; Zhang, Hui

    2014-12-01

    The TATA box represents one of the most prevalent core promoters where the pre-initiation complexes (PICs) for gene transcription are assembled. This assembly is crucial for transcription initiation and well regulated. Here we show that some cellular microRNAs (miRNAs) are associated with RNA polymerase II (Pol II) and TATA box-binding protein (TBP) in human peripheral blood mononuclear cells (PBMCs). Among them, let-7i sequence specifically binds to the TATA-box motif of interleukin-2 (IL-2) gene and elevates IL-2 mRNA and protein production in CD4(+) T-lymphocytes in vitro and in vivo. Through direct interaction with the TATA-box motif, let-7i facilitates the PIC assembly and transcription initiation of IL-2 promoter. Several other cellular miRNAs, such as mir-138, mir-92a or mir-181d, also enhance the promoter activities via binding to the TATA-box motifs of insulin, calcitonin or c-myc, respectively. In agreement with the finding that an HIV-1-encoded miRNA could enhance viral replication through targeting the viral promoter TATA-box motif, our data demonstrate that the interaction with core transcription machinery is a novel mechanism for miRNAs to regulate gene expression.

  3. Biscysteine-Bearing Peptide Probes To Reveal Extracellular Thiol-Disulfide Exchange Reactions Promoting Cellular Uptake.

    PubMed

    Li, Tao; Gao, Wei; Liang, Jingjing; Zha, Mirao; Chen, Yaqi; Zhao, Yibing; Wu, Chuanliu

    2017-08-15

    In recent years, delivery systems based on the incorporation of thiols/disulfides have been extensively explored to promote the intracellular delivery of biological cargoes. However, it remains unclear about the detailed processes of thiol-disulfide exchanges taking place on the cell surface and how the exchange reactions promote the cellular uptake of cargoes bearing thiols or disulfide bonds. In this work, we report the rational design of biscysteine motif-containing peptide probes with substantially different ring-closing property and how these peptide probes were employed to explore the thiol-disulfide exchanges on the cell surface. Our results show that extensive thiol-disulfide exchanges between peptides and exofacial protein thiols/disulfides are involved in the cellular uptake of these peptide probes, and importantly glutathione (GSH) exported from the cytosols participates extensively in the exchange reactions. Cysteine-glycine-cysteine (CGC)-containing peptide probes can be more efficiently taken up by cells compared to other probes, and we suggested that the driving force for the superior cellular uptake arises from very likely the unique propensity of the CGC motif in forming doubly bridged disulfide bonds with exofacial proteins. Our probe-based strategy provides firsthand information on the detailed processes of the exchange reactions, which would be of great benefit to the development of delivery systems based on the extracellular thiol-disulfide exchanges for intracellular delivery of biologics.

  4. Serum Matrix Metalloproteinase-7 Level is Associated with Fibrosis and Renal Survival in Patients with IgA Nephropathy.

    PubMed

    Zhang, Jian; Ren, Pingping; Wang, Yucheng; Feng, Shi; Wang, Cuili; Shen, Xiujin; Weng, Chunhua; Lang, Xiaobing; Chen, Zhiming; Jiang, Hong; Chen, Jianghua

    2017-09-18

    In view of the latest findings that matrix metalloproteinase-7 (MMP-7) acted as a vital marker and pathogenic mediator of renal fibrosis in a murine model, we hypothesized that serum MMP-7 level might serve as a noninvasive prognostic biomarker in IgA nephropathy (IgAN) patients. We conducted a retrospective follow-up study of 244 IgAN patients for a median of 81.9 months. Serum MMP-7 was detected at the time of diagnosis, and renal progression was assessed by Cox proportional hazards method. Compared with healthy populations, the serum levels of MMP-7 were significantly elevated in IgAN patients. Besides, serum MMP-7 levels were well correlated with renal scarring lesions characterized by glomerular sclerosis and interstitial fibrosis. Follow-up analyses revealed that increased serum MMP-7 levels were linked with a greater risk of poor renal outcome with a hazard ratio of 1.898 per doubling MMP-7 concentration. By contrast with the first quartile, the risk of deterioration in renal function elevated such that the hazard ratio for the second quartile was 1.805, 3.383 for the third, and 5.173 for the fourth quartile of the MMP-7 level. This study showed that the higher serum MMP-7 levels were independently associated with renal fibrosis and poor prognosis in IgAN. © 2017 The Author(s). Published by S. Karger AG, Basel.

  5. Syndecan-2 Functions as a Docking Receptor for Pro-matrix Metalloproteinase-7 in Human Colon Cancer Cells*

    PubMed Central

    Ryu, Heui-Young; Lee, Jiseon; Yang, Sanghwa; Park, Haein; Choi, Sojoong; Jung, Kyeong-Cheon; Lee, Seung-Taek; Seong, Je-Kyung; Han, Inn-Oc; Oh, Eok-Soo

    2009-01-01

    Although elevated syndecan-2 expression is known to be crucial for the tumorigenic activity in colon carcinoma cells, how syndecan-2 regulates colon cancer is unclear. In human colon adenocarcinoma tissue samples, we found that both mRNA and protein expression of syndecan-2 were increased, compared with the neighboring normal epithelium, suggesting that syndecan-2 plays functional roles in human colon cancer cells. Consistent with this notion, syndecan-2-overexpressing HT-29 colon adenocarcinoma cells showed enhanced migration/invasion, anchorage-independent growth, and primary tumor formation in nude mice, paralleling their morphological changes into highly tumorigenic cells. In addition, our experiments revealed that syndecan-2 enhanced both expression and secretion of matrix metalloproteinase-7 (MMP-7), directly interacted with pro-MMP-7, and potentiated the enzymatic activity of pro-MMP-7 by activating its processing into the active MMP-7. Collectively, these data strongly suggest that syndecan-2 functions as a docking receptor for pro-MMP-7 in colon cancer cells. PMID:19858218

  6. Plasmin and plasminogen activator inhibitor type 1 promote cellular motility by regulating the interaction between the urokinase receptor and vitronectin.

    PubMed Central

    Waltz, D A; Natkin, L R; Fujita, R M; Wei, Y; Chapman, H A

    1997-01-01

    The urokinase receptor (uPAR) coordinates plasmin-mediated cell-surface proteolysis and promotes cellular adhesion via a binding site for vitronectin on uPAR. Because vitronectin also binds plasminogen activator inhibitor type 1 (PAI-1), and plasmin cleavage of vitronectin reduces PAI-1 binding, we explored the effects of plasmin and PAI-1 on the interaction between uPAR and vitronectin. PAI-1 blocked cellular binding of and adhesion to vitronectin by over 80% (IC50 approximately 5 nM), promoted detachment of uPAR-bearing cells from vitronectin, and increased cellular migration on vitronectin. Limited cleavage of vitronectin by plasmin also abolished cellular binding and adhesion and induced cellular detachment. A series of peptides surrounding a plasmin cleavage site (arginine 361) near the carboxy-terminal end of vitronectin were synthesized. Two peptides spanning res 364-380 blocked binding of uPAR to vitronectin (IC50 approximately 8-25 microM) identifying this region as an important site of uPAR-vitronectin interaction. These data illuminate a complex regulatory scheme for uPAR-dependent cellular adhesion to vitronectin: Active urokinase promotes adhesion and also subsequent detachment through activation of plasmin or complex formation with PAI-1. Excess PAI-1 may also promote migration by blocking cellular adhesion and/or promoting detachment, possibly accounting in part for the strong correlation between PAI-1 expression and tumor cell metastasis. PMID:9202057

  7. Chromatin remodeling of human subtelomeres and TERRA promoters upon cellular senescence

    PubMed Central

    Thijssen, Peter E.; Tobi, Elmar W.; Balog, Judit; Schouten, Suzanne G.; Kremer, Dennis; El Bouazzaoui, Fatiha; Henneman, Peter; Putter, Hein; Eline Slagboom, P.; Heijmans, Bastiaan T.; Van der Maarel, Silvère M.

    2013-01-01

    Subtelomeres are patchworks of evolutionary conserved sequence blocks and harbor the transcriptional start sites for telomere repeat containing RNAs (TERRA). Recent studies suggest that the interplay between telomeres and subtelomeric chromatin is required for maintaining telomere function. To further characterize chromatin remodeling of subtelomeres in relation to telomere shortening and cellular senescence, we systematically quantified histone modifications and DNA methylation at the subtelomeres of chromosomes 7q and 11q in primary human WI-38 fibroblasts. Upon senescence, both subtelomeres were characterized by a decrease in markers of constitutive heterochromatin, suggesting relative chromatin relaxation. However, we did not find increased levels of markers of euchromatin or derepression of the 7q VIPR2 gene. The repressed state of the subtelomeres was maintained upon senescence, which could be attributed to a rise in levels of facultative heterochromatin markers at both subtelomeres. While senescence-induced subtelomeric chromatin remodeling was similar for both chromosomes, chromatin remodeling at TERRA promoters displayed chromosome-specific patterns. At the 7q TERRA promoter, chromatin structure was co-regulated with the more proximal subtelomere. In contrast, the 11q TERRA promoter, which was previously shown to be bound by CCCTC-binding factor CTCF, displayed lower levels of markers of constitutive heterochromatin that did not change upon senescence, whereas levels of markers of facultative heterochromatin decreased upon senescence. In line with the chromatin state data, transcription of 11q TERRA but not 7q TERRA was detected. Our study provides a detailed description of human subtelomeric chromatin dynamics and shows distinct regulation of the TERRA promoters of 7q and 11q upon cellular senescence. PMID:23644601

  8. Altered stoichiometry and nuclear delocalization of NonO and PSF promote cellular senescence

    PubMed Central

    Huang, Ching-Jung; Das, Utsab; Xie, Weijun; Ducasse, Miryam; Tucker, Haley O.

    2016-01-01

    While cellular senescence is a critical mechanism to prevent malignant transformation of potentially mutated cells, persistence of senescent cells can also promote cancer and aging phenotypes. NonO/p54nrb and PSF are multifunctional hnRNPs typically found as a complex exclusively within the nuclei of all mammalian cells. We demonstrate here that either increase or reduction of expression of either factor results in cellular senescence. Coincident with this, we observe expulsion of NonO and PSF-containing nuclear paraspeckles and posttranslational modification at G2/M. That senescence is mediated most robustly by overexpression of a cytoplasmic C-truncated form of NonO further indicated that translocation of NonO and PSF from the nucleus is critical to senescence induction. Modulation of NonO and PSF expression just prior to or coincident with senescence induction disrupts the normally heterodimeric NonO-PSF nuclear complex resulting in a dramatic shift in stoichiometry to heterotetramers and monomer with highest accumulation within the cytoplasm. This is accompanied by prototypic cell cycle checkpoint activation and chromatin condensation. These observations identify yet another role for these multifunctional factors and provide a hitherto unprecedented mechanism for cellular senescence and nuclear-cytoplasmic trafficking. PMID:27992859

  9. Altered stoichiometry and nuclear delocalization of NonO and PSF promote cellular senescence.

    PubMed

    Huang, Ching-Jung; Das, Utsab; Xie, Weijun; Ducasse, Miryam; Tucker, Haley O

    2016-12-13

    While cellular senescence is a critical mechanism to prevent malignant transformation of potentially mutated cells, persistence of senescent cells can also promote cancer and aging phenotypes. NonO/p54nrb and PSF are multifunctional hnRNPs typically found as a complex exclusively within the nuclei of all mammalian cells. We demonstrate here that either increase or reduction of expression of either factor results in cellular senescence. Coincident with this, we observe expulsion of NonO and PSF-containing nuclear paraspeckles and posttranslational modification at G2/M. That senescence is mediated most robustly by overexpression of a cytoplasmic C-truncated form of NonO further indicated that translocation of NonO and PSF from the nucleus is critical to senescence induction. Modulation of NonO and PSF expression just prior to or coincident with senescence induction disrupts the normally heterodimeric NonO-PSF nuclear complex resulting in a dramatic shift in stoichiometry to heterotetramers and monomer with highest accumulation within the cytoplasm. This is accompanied by prototypic cell cycle checkpoint activation and chromatin condensation. These observations identify yet another role for these multifunctional factors and provide a hitherto unprecedented mechanism for cellular senescence and nuclear-cytoplasmic trafficking.

  10. Cytosolic phosphorylating glyceraldehyde-3-phosphate dehydrogenases affect Arabidopsis cellular metabolism and promote seed oil accumulation.

    PubMed

    Guo, Liang; Ma, Fangfang; Wei, Fang; Fanella, Brian; Allen, Doug K; Wang, Xuemin

    2014-07-01

    The cytosolic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPC) catalyzes a key reaction in glycolysis, but its contribution to plant metabolism and growth are not well defined. Here, we show that two cytosolic GAPCs play important roles in cellular metabolism and seed oil accumulation. Knockout or overexpression of GAPCs caused significant changes in the level of intermediates in the glycolytic pathway and the ratios of ATP/ADP and NAD(P)H/NAD(P). Two double knockout seeds had ∼3% of dry weight decrease in oil content compared with that of the wild type. In transgenic seeds under the constitutive 35S promoter, oil content was increased up to 42% of dry weight compared with 36% in the wild type and the fatty acid composition was altered; however, these transgenic lines exhibited decreased fertility. Seed-specific overexpression lines had >3% increase in seed oil without compromised seed yield or fecundity. The results demonstrate that GAPC levels play important roles in the overall cellular production of reductants, energy, and carbohydrate metabolites and that GAPC levels are directly correlated with seed oil accumulation. Changes in cellular metabolites and cofactor levels highlight the complexity and tolerance of Arabidopsis thaliana cells to the metabolic perturbation. Further implications for metabolic engineering of seed oil production are discussed. © 2014 American Society of Plant Biologists. All rights reserved.

  11. SIRT6 Depletion Suppresses Tumor Growth by Promoting Cellular Senescence Induced by DNA Damage in HCC.

    PubMed

    Lee, Namgyu; Ryu, Hye Guk; Kwon, Jung-Hee; Kim, Dae-Kyum; Kim, Sae Rom; Wang, Hee Jung; Kim, Kyong-Tai; Choi, Kwan Yong

    2016-01-01

    The role of Sirtuin 6 (SIRT6) as a tumor suppressor or oncogene in liver cancer remains controversial. Thus, we identified the specific role of SIRT6 in the progression of hepatocellular carcinoma (HCC). SIRT6 expression was significantly higher in HCC cell lines and HCC tissues from 138 patients than in an immortalized hepatocyte cell line, THLE-2 and non-tumor tissues, respectively. SIRT6 knockdown by shRNA suppressed the growth of HCC cells and inhibited HCC tumor growth in vivo. In addition, SIRT6 silencing significantly prevented the growth of HCC cell lines by inducing cellular senescence in the p16/Rb- and p53/p21-pathway independent manners. Microarray analysis revealed that the expression of genes involved in nucleosome assembly was apparently altered in SIRT6-depleted Hep3B cells. SIRT6 knockdown promoted G2/M phase arrest and downregulation of genes encoding histone variants associated with nucleosome assembly, which could be attributed to DNA damage. Taken together, our findings suggest that SIRT6 acts as a tumor promoter by preventing DNA damage and cellular senescence, indicating that SIRT6 represents a potential therapeutic target for the treatment of HCC.

  12. SIRT6 Depletion Suppresses Tumor Growth by Promoting Cellular Senescence Induced by DNA Damage in HCC

    PubMed Central

    Lee, Namgyu; Ryu, Hye Guk; Kwon, Jung-Hee; Kim, Dae-Kyum; Kim, Sae Rom; Wang, Hee Jung; Kim, Kyong-Tai; Choi, Kwan Yong

    2016-01-01

    The role of Sirtuin 6 (SIRT6) as a tumor suppressor or oncogene in liver cancer remains controversial. Thus, we identified the specific role of SIRT6 in the progression of hepatocellular carcinoma (HCC). SIRT6 expression was significantly higher in HCC cell lines and HCC tissues from 138 patients than in an immortalized hepatocyte cell line, THLE-2 and non-tumor tissues, respectively. SIRT6 knockdown by shRNA suppressed the growth of HCC cells and inhibited HCC tumor growth in vivo. In addition, SIRT6 silencing significantly prevented the growth of HCC cell lines by inducing cellular senescence in the p16/Rb- and p53/p21-pathway independent manners. Microarray analysis revealed that the expression of genes involved in nucleosome assembly was apparently altered in SIRT6-depleted Hep3B cells. SIRT6 knockdown promoted G2/M phase arrest and downregulation of genes encoding histone variants associated with nucleosome assembly, which could be attributed to DNA damage. Taken together, our findings suggest that SIRT6 acts as a tumor promoter by preventing DNA damage and cellular senescence, indicating that SIRT6 represents a potential therapeutic target for the treatment of HCC. PMID:27824900

  13. Resveratrol attenuates renal injury and fibrosis by inhibiting transforming growth factor-β pathway on matrix metalloproteinase 7.

    PubMed

    Xiao, Zhou; Chen, Chen; Meng, Ting; Zhang, Wenzheng; Zhou, Qiaoling

    2016-01-01

    Renal injury has a strong relationship to the subsequent development of renal fibrosis. In developing renal fibrosis, tubular epithelial cells in the kidney underwent epithelial-mesenchymal transition (EMT). Matrix metalloproteinase 7 (MMP7) was reported to reduce E-cadherin and induce EMT by up-regulation of β-catenin/lymphoid enhancer-binding factor 1 (LEF1) signaling. In this research, we tried to evaluate the role of resveratrol (RSV) on EMT process in renal injury and fibrosis. Human tubular epithelial cell HK-2 cells were treated with aristolochic acid (AAs) and transforming growth factor-β(TGF-β) to induce EMT with or without the administration of RSV. The inhibitory role of RSV on EMT in renal injury and fibrosis was determined by Western blotting, real-time PCR, and immunofluorescence staining. The EMT repressing role of RSV was also evaluated in vivo by renal ischemia-reperfusion (I/R) injury and unilateral ureteral obstruction (UUO) models. The underlying mechanism was investigated by shRNA interfering MMP7 and sirtuin 1 (SIRT1) expression. The results indicated that RSV reversed human kidney 2 (HK-2) cell EMT, renal I/R injury, and renal fibrosis. MMP7 inhibition was responsible for RSV-induced EMT repression. SIRT1 was up-regulated by RSV inhibited TGF-β pathway on MMP7 via deacetylating Smad4. In conclusion, RSV attenuated renal injury and fibrosis by inhibiting EMT process which was attributed to the fact that the up-regulated SIRT1 by RSV deacetylated Smad4 and inhibited MMP7 expression. © 2015 by the Society for Experimental Biology and Medicine.

  14. The cellular transcription factor SP1 and an unknown cellular protein are required to mediate Rep protein activation of the adeno-associated virus p19 promoter.

    PubMed Central

    Pereira, D J; Muzyczka, N

    1997-01-01

    Control of adeno-associated virus (AAV) transcription from the three AAV promoters (p5, p19, and p40) requires the adenovirus E1a protein and the AAV nonstructural (Rep) proteins. The Rep proteins have been shown to repress the AAV p5 promoter yet facilitate activation of the p19 and p40 promoters during a productive infection. To elucidate the mechanism of promoter regulation by the AAV Rep proteins, the cellular factors involved in mediating Rep activation of the p19 promoter were characterized. A series of protein-DNA binding experiments using extracts derived from uninfected HeLa cells was performed to identify cellular factors that bind to the p19 promoter. Electrophoretic mobility shift assays, DNase I protection analyses, and UV cross-linking experiments demonstrated specific interactions with the cellular factor SP1 (or an SP1-like protein) at positions -50 and -130 relative to the start of p19 transcription. Additionally, an unknown cellular protein (cellular AAV activating protein [cAAP]) with an approximate molecular mass of 34 kDa was found to interact with a CArG-like element at position -140. Mutational analysis of the p19 promoter suggested that the SP1 site at -50 and the cAAP site at -140 were necessary to mediate Rep activation of p19. Antibody precipitation experiments demonstrated that Rep-SP1 protein complexes can exist in vivo. Although Rep was demonstrated to interact with p19 DNA directly, the affinity of Rep binding was much lower than that seen for the Rep binding elements within the terminal repeat and the p5 promoter. Furthermore, the interaction of purified Rep68 with the p19 promoter in vitro was negligible unless purified SP1 was also added to the reaction. Thus, the ability of Rep to transactivate the p19 promoter is likely to involve SP1-Rep protein contacts that facilitate Rep interaction with p19 DNA. PMID:9032303

  15. Teneurin-4 promotes cellular protrusion formation and neurite outgrowth through focal adhesion kinase signaling

    PubMed Central

    Suzuki, Nobuharu; Numakawa, Tadahiro; Chou, Joshua; de Vega, Susana; Mizuniwa, Chihiro; Sekimoto, Kaori; Adachi, Naoki; Kunugi, Hiroshi; Arikawa-Hirasawa, Eri; Yamada, Yoshihiko; Akazawa, Chihiro

    2014-01-01

    Teneurin-4 (Ten-4), a transmembrane protein, is highly expressed in the central nervous system; however, its cellular and molecular function in neuronal differentiation remains unknown. In this study, we aimed to elucidate the function of Ten-4 in neurite outgrowth. Ten-4 expression was induced during neurite outgrowth of the neuroblastoma cell line Neuro-2a. Ten-4 protein was localized at the neurite growth cones. Knockdown of Ten-4 expression in Neuro-2a cells decreased the formation of the filopodia-like protrusions and the length of individual neurites. Conversely, overexpression of Ten-4 promoted filopodia-like protrusion formation. In addition, knockdown and overexpression of Ten-4 reduced and elevated the activation of focal adhesion kinase (FAK) and Rho-family small GTPases, Cdc42 and Rac1, key molecules for the membranous protrusion formation downstream of FAK, respectively. Inhibition of the activation of FAK and neural Wiskott-Aldrich syndrome protein (N-WASP), which is a downstream regulator of FAK and Cdc42, blocked protrusion formation by Ten-4 overexpression. Further, Ten-4 colocalized with phosphorylated FAK in the filopodia-like protrusion regions. Together, our findings show that Ten-4 is a novel positive regulator of cellular protrusion formation and neurite outgrowth through the FAK signaling pathway.—Suzuki, N., Numakawa, T., Chou, J., de Vega, S., Mizuniwa, C., Sekimoto, K., Adachi, N., Kunugi, H., Arikawa-Hirasawa, E., Yamada, Y., Akazawa, C. Teneurin-4 promotes cellular protrusion formation and neurite outgrowth through focal adhesion kinase signaling. PMID:24344332

  16. Lentiviral gene therapy using cellular promoters cures type 1 Gaucher disease in mice.

    PubMed

    Dahl, Maria; Doyle, Alexander; Olsson, Karin; Månsson, Jan-Eric; Marques, André R A; Mirzaian, Mina; Aerts, Johannes M; Ehinger, Mats; Rothe, Michael; Modlich, Ute; Schambach, Axel; Karlsson, Stefan

    2015-05-01

    Gaucher disease is caused by an inherited deficiency of the enzyme glucosylceramidase. Due to the lack of a fully functional enzyme, there is progressive build-up of the lipid component glucosylceramide. Insufficient glucosylceramidase activity results in hepatosplenomegaly, cytopenias, and bone disease in patients. Gene therapy represents a future therapeutic option for patients unresponsive to enzyme replacement therapy and lacking a suitable bone marrow donor. By proof-of-principle experiments, we have previously demonstrated a reversal of symptoms in a murine disease model of type 1 Gaucher disease, using gammaretroviral vectors harboring strong viral promoters to drive glucosidase β-acid (GBA) gene expression. To investigate whether safer vectors can correct the enzyme deficiency, we utilized self-inactivating lentiviral vectors (SIN LVs) with the GBA gene under the control of human phosphoglycerate kinase (PGK) and CD68 promoter, respectively. Here, we report prevention of, as well as reversal of, manifest disease symptoms after lentiviral gene transfer. Glucosylceramidase activity above levels required for clearance of glucosylceramide from tissues resulted in reversal of splenomegaly, reduced Gaucher cell infiltration and a restoration of hematological parameters. These findings support the use of SIN-LVs with cellular promoters in future clinical gene therapy protocols for type 1 Gaucher disease.

  17. Lentiviral Gene Therapy Using Cellular Promoters Cures Type 1 Gaucher Disease in Mice

    PubMed Central

    Dahl, Maria; Doyle, Alexander; Olsson, Karin; Månsson, Jan-Eric; Marques, André R A; Mirzaian, Mina; Aerts, Johannes M; Ehinger, Mats; Rothe, Michael; Modlich, Ute; Schambach, Axel; Karlsson, Stefan

    2015-01-01

    Gaucher disease is caused by an inherited deficiency of the enzyme glucosylceramidase. Due to the lack of a fully functional enzyme, there is progressive build-up of the lipid component glucosylceramide. Insufficient glucosylceramidase activity results in hepatosplenomegaly, cytopenias, and bone disease in patients. Gene therapy represents a future therapeutic option for patients unresponsive to enzyme replacement therapy and lacking a suitable bone marrow donor. By proof-of-principle experiments, we have previously demonstrated a reversal of symptoms in a murine disease model of type 1 Gaucher disease, using gammaretroviral vectors harboring strong viral promoters to drive glucosidase β-acid (GBA) gene expression. To investigate whether safer vectors can correct the enzyme deficiency, we utilized self-inactivating lentiviral vectors (SIN LVs) with the GBA gene under the control of human phosphoglycerate kinase (PGK) and CD68 promoter, respectively. Here, we report prevention of, as well as reversal of, manifest disease symptoms after lentiviral gene transfer. Glucosylceramidase activity above levels required for clearance of glucosylceramide from tissues resulted in reversal of splenomegaly, reduced Gaucher cell infiltration and a restoration of hematological parameters. These findings support the use of SIN-LVs with cellular promoters in future clinical gene therapy protocols for type 1 Gaucher disease. PMID:25655314

  18. Promoter analysis of the membrane protein gp64 gene of the cellular slime mold Polysphondylium pallidum.

    PubMed

    Takaoka, N; Fukuzawa, M; Saito, T; Sakaitani, T; Ochiai, H

    1999-10-28

    We cloned a genomic fragment of the membrane protein gp64 gene of the cellular slime mold Polysphondylium pallidum by inverse PCR. Primer extension analysis identified a major transcription start site 65 bp upstream of the translation start codon. The promoter region of the gp64 gene contains sequences homologous to a TATA box at position -47 to -37 and to an initiator (Inr, PyPyCAPyPyPyPy) at position -3 to +5 from the transcription start site. Successively truncated segments of the promoter were tested for their ability to drive expression of the beta-galactosidase reporter gene in transformed cells; also the difference in activity between growth conditions was compared. The results indicated that there are two positive vegetative regulatory elements extending between -187 and -62 bp from the transcription start site of the gp64 promoter; also their activity was two to three times higher in the cells grown with bacteria in shaken suspension than in the cells grown in an axenic medium.

  19. Viral Cyclin promotes KSHV-induced cellular transformation and tumorigenesis by overriding contact inhibition

    PubMed Central

    Jones, Tiffany; Ramos da Silva, Suzane; Bedolla, Roble; Ye, Fengchun; Zhou, Fuchun; Gao, Shou-jiang

    2014-01-01

    Kaposi sarcoma-associated herpesvirus (KSHV) is a tumor virus encoding several proto-oncogenes. However, the roles of these viral genes in KSHV-induced tumorigenesis have not been defined. In this study, we used a recently developed model of KSHV-induced cellular transformation and tumorigenesis combining with a reverse genetic system to examine the role of a KSHV latent gene vCyclin (ORF72), a cellular Cyclin D2 homolog, in KSHV-induced oncogenesis. Deletion of vCyclin did not affect cell proliferation and cell cycle progression at a low-density condition, when cells were at an active proliferation state. However, vCyclin mutant cells were contact-inhibited and arrested at G1 phase at a high-density condition. As a result, vCyclin mutant cells formed less and smaller colonies in soft agar assay. Nude mice inoculated with vCyclin mutant cells had reduced tumor incidence and extended tumor latency and survival compared with mice inoculated with wild-type (WT) virus-infected cells. WT but not mutant virus effectively induced Cyclin-dependent kinase inhibitor p27/Kip1 Ser10 phosphorylation and cytoplasmic relocalization. shRNA knockdown of p27 released the blockage of the mutant cells from cell cycle arrest at G1 phase at a high-density condition. Together, these results indicate that vCyclin primarily functions to enhance cellular transformation and tumorigenesis by promoting cell cycle progression and cell proliferation at a contact-inhibited condition. PMID:24419204

  20. Prostaglandin E2 promotes intestinal repair through an adaptive cellular response of the epithelium.

    PubMed

    Miyoshi, Hiroyuki; VanDussen, Kelli L; Malvin, Nicole P; Ryu, Stacy H; Wang, Yi; Sonnek, Naomi M; Lai, Chin-Wen; Stappenbeck, Thaddeus S

    2017-01-04

    Adaptive cellular responses are often required during wound repair. Following disruption of the intestinal epithelium, wound-associated epithelial (WAE) cells form the initial barrier over the wound. Our goal was to determine the critical factor that promotes WAE cell differentiation. Using an adaptation of our in vitro primary epithelial cell culture system, we found that prostaglandin E2 (PGE2) signaling through one of its receptors, Ptger4, was sufficient to drive a differentiation state morphologically and transcriptionally similar to in vivo WAE cells. WAE cell differentiation was a permanent state and dominant over enterocyte differentiation in plasticity experiments. WAE cell differentiation was triggered by nuclear β-catenin signaling independent of canonical Wnt signaling. Creation of WAE cells via the PGE2-Ptger4 pathway was required in vivo, as mice with loss of Ptger4 in the intestinal epithelium did not produce WAE cells and exhibited impaired wound repair. Our results demonstrate a mechanism by which WAE cells are formed by PGE2 and suggest a process of adaptive cellular reprogramming of the intestinal epithelium that occurs to ensure proper repair to injury. © 2016 The Authors.

  1. Muscle mitohormesis promotes cellular survival via serine/glycine pathway flux.

    PubMed

    Ost, Mario; Keipert, Susanne; van Schothorst, Evert M; Donner, Verena; van der Stelt, Inge; Kipp, Anna P; Petzke, Klaus-Jürgen; Jove, Mariona; Pamplona, Reinald; Portero-Otin, Manuel; Keijer, Jaap; Klaus, Susanne

    2015-04-01

    Recent studies on mouse and human skeletal muscle (SM) demonstrated the important link between mitochondrial function and the cellular metabolic adaptation. To identify key compensatory molecular mechanisms in response to chronic mitochondrial distress, we analyzed mice with ectopic SM respiratory uncoupling in uncoupling protein 1 transgenic (UCP1-TG) mice as model of muscle-specific compromised mitochondrial function. Here we describe a detailed metabolic reprogramming profile associated with mitochondrial perturbations in SM, triggering an increased protein turnover and amino acid metabolism with induced biosynthetic serine/1-carbon/glycine pathway and the longevity-promoting polyamine spermidine as well as the trans-sulfuration pathway. This is related to an induction of NADPH-generating pathways and glutathione metabolism as an adaptive mitohormetic response and defense against increased oxidative stress. Strikingly, consistent muscle retrograde signaling profiles were observed in acute stress states such as muscle cell starvation and lipid overload, muscle regeneration, and heart muscle inflammation, but not in response to exercise. We provide conclusive evidence for a key compensatory stress-signaling network that preserves cellular function, oxidative stress tolerance, and survival during conditions of increased SM mitochondrial distress, a metabolic reprogramming profile so far only demonstrated for cancer cells and heart muscle. © FASEB.

  2. Development of a cellularly degradable PEG hydrogel to promote articular cartilage extracellular matrix deposition

    PubMed Central

    Sridhar, Balaji V.; Brock, J. Logan; Silver, Jason S.; Leight, Jennifer L.

    2015-01-01

    Healing articular cartilage remains a significant clinical challenge because of its limited self-healing capacity. While delivery of autologous chondrocytes to cartilage defects has received growing interest, combining cell-based therapies with scaffolds that capture aspects of native tissue and promote cell-mediated remodeling could improve outcomes. Currently, scaffold-based therapies with encapsulated chondrocytes permit matrix production; however, resorption of the scaffold does not match the rate of production by cells leading to generally low ECM outputs. Here, a PEG norbornene hydrogel was functionalized with thiolated TGF-β1 and crosslinked by an MMP-degradable peptide. Chondrocytes were co-encapsulated with a smaller population of MSCs, with the goal of stimulating matrix production and increasing bulk mechanical properties of the scaffold. Interestingly, the co-encapsulated cells cleaved the MMP-degradable target sequence more readily than either cell population alone. Relative to non-degradable gels, cellularly-degraded materials showed significantly increased GAG and collagen deposition over just 14 days of culture, while maintaining high levels of viability and producing a more diffuse matrix. These results indicate the potential of an enzymatically-degradable, peptide-functionalized PEG hydrogel to locally influence and promote cartilage matrix production over a short period. Scaffolds that permit cell-mediated remodeling may be useful in designing treatment options for cartilage tissue engineering applications. PMID:25607633

  3. Surgical vein graft preparation promotes cellular dysfunction, oxidative stress, and intimal hyperplasia in human saphenous vein

    PubMed Central

    Osgood, Michael J.; Hocking, Kyle M.; Voskresensky, Igor V.; Li, Fan Dong; Komalavilas, Padmini; Cheung-Flynn, Joyce; Brophy, Colleen M.

    2014-01-01

    Introduction Human saphenous vein (HSV) is the most widely used bypass conduit for peripheral and coronary vascular reconstructions. However, outcomes are limited by a high rate of intimal hyperplasia (IH). HSV undergoes a series of ex vivo surgical manipulations prior to implantation, including hydrostatic distension, marking, and warm ischemia in solution. We investigated the impact of surgical preparation on HSV cellular function and development of IH in organ culture. We hypothesized that oxidative stress is a mediator of HSV dysfunction. Methods HSV was collected from patients undergoing vascular bypass before and after surgical preparation. Smooth muscle and endothelial function were measured using a muscle bath. Endothelial preservation was assessed with immunohistochemical staining. An organ culture model was used to investigate the influence of surgical preparation injury on the development of IH. Superoxide levels were measured using a high-performance liquid chromatography-based assay. The influence of oxidative stress on HSV physiologic responses was investigated by exposing HSV to hydrogen peroxide (H2O2). Results Surgical vein graft preparation resulted in smooth muscle and endothelial dysfunction, endothelial denudation, diminished endothelial nitric oxide synthase staining, development of increased IH, and increased levels of reactive oxygen species. Experimental induction of oxidative stress in unmanipulated HSV by treatment with H2O2 promoted endothelial dysfunction. Duration of storage time in solution did not contribute to smooth muscle or endothelial dysfunction. Conclusions Surgical vein graft preparation causes dysfunction of the smooth muscle and endothelium, endothelial denudation, reduced endothelial nitric oxide synthase expression, and promotes IH in organ culture. Moreover, increased levels of reactive oxygen species are produced and may promote further vein graft dysfunction. These results argue for less injurious means of preparing

  4. Surgical vein graft preparation promotes cellular dysfunction, oxidative stress, and intimal hyperplasia in human saphenous vein.

    PubMed

    Osgood, Michael J; Hocking, Kyle M; Voskresensky, Igor V; Li, Fan Dong; Komalavilas, Padmini; Cheung-Flynn, Joyce; Brophy, Colleen M

    2014-07-01

    Human saphenous vein (HSV) is the most widely used bypass conduit for peripheral and coronary vascular reconstructions. However, outcomes are limited by a high rate of intimal hyperplasia (IH). HSV undergoes a series of ex vivo surgical manipulations prior to implantation, including hydrostatic distension, marking, and warm ischemia in solution. We investigated the impact of surgical preparation on HSV cellular function and development of IH in organ culture. We hypothesized that oxidative stress is a mediator of HSV dysfunction. HSV was collected from patients undergoing vascular bypass before and after surgical preparation. Smooth muscle and endothelial function were measured using a muscle bath. Endothelial preservation was assessed with immunohistochemical staining. An organ culture model was used to investigate the influence of surgical preparation injury on the development of IH. Superoxide levels were measured using a high-performance liquid chromatography-based assay. The influence of oxidative stress on HSV physiologic responses was investigated by exposing HSV to hydrogen peroxide (H2O2). Surgical vein graft preparation resulted in smooth muscle and endothelial dysfunction, endothelial denudation, diminished endothelial nitric oxide synthase staining, development of increased IH, and increased levels of reactive oxygen species. Experimental induction of oxidative stress in unmanipulated HSV by treatment with H2O2 promoted endothelial dysfunction. Duration of storage time in solution did not contribute to smooth muscle or endothelial dysfunction. Surgical vein graft preparation causes dysfunction of the smooth muscle and endothelium, endothelial denudation, reduced endothelial nitric oxide synthase expression, and promotes IH in organ culture. Moreover, increased levels of reactive oxygen species are produced and may promote further vein graft dysfunction. These results argue for less injurious means of preparing HSV prior to autologous transplantation

  5. Polymeric biomaterials for nerve regeneration applications: From promoting cellular organization to the delivery of bioactive molecules

    NASA Astrophysics Data System (ADS)

    Delgado-Rivera, Roberto L.

    Thousands of new cases of injury to the central nervous system (CNS) occur each year in the USA and all over the world. However, despite recent advances, at present there is no cure for the resulting paraplegia or quadriplegia. This research is directed towards engineering biomaterial platforms to promote cellular organization at the surface of polymer scaffolds that will be conducive to proper regeneration of injured CNS. In addition, the formulation of a delivery system for neuroactive molecules using polymer-based materials will be evaluated to establish its potential to treat CNS disorders. Initial studies involved the chemical modification of an electrospun nonwoven matrix of nanofibers with fibroblast growth factor 2 (FGF-2). Nanofibers alone up-regulated FGF-2, albeit to a lesser extent than nanofibers covalently modified with FGF-2. These results underscore the importance of both surface topography and growth factor presentation on cellular function. Moreover, that FGF-2 modified nanofibrillar scaffolds may demonstrate utility in tissue engineering applications for replacement and regeneration of damaged tissue following CNS injury or disease. Subsequent research efforts focused on a novel micropatterning technique called microscale plasma-initiated patterning (microPIP). This patterning method uses a polydimethylsiloxane (PDMS) stamp to selectively protect regions of an underlying substrate from oxygen plasma treatment resulting in hydrophobic and hydrophilic regions. FGF-2 and laminin-1 were applied to an electrospun polyamide nanofibrillar matrix following plasma treatment. In this work it, was possible to demonstrate that textured surfaces, such as nanofibrillar scaffolds, can be micropatterned to provide external chemical cues for cellular organization. Finally, a microsphere system capable of encapsulating proteins while minimizing the mechanisms of protein degradation and providing a controlled release was investigated. Microspheres were comprised of

  6. Estradiol-induced promotion of hepatocarcinogenesis in medaka: Relationship of foci of cellular alteration to neoplasia

    SciTech Connect

    Cooke, J.B.; Hinton, D.E.

    1995-12-31

    In some laboratory and field studies, female fish have higher prevalences of liver tumors than do males. The authors hypothesize gender and site-specific differences in prevalence are due to variable exposures of previously initiated fish to tumor modulating compounds. Estradiol, a growth promoter, increases incidences of hepatic tumors in carcinogen-treated rainbow trout and medaka (Oryzias latipes). Estradiol also increases incidences of hepatic foci of cellular alteration (FCA) in medaka. FCA are found in subadults of tumor-bearing feral populations. Lack of knowledge about the relationship of various phenotypes of FCA to eventual tumors, however, has prevented use of FCA as a biomarker. The authors examined fate and growth of liver FCA using a 2-step, initiation-promotion protocol. Three week old medaka were exposed to 200 ppm diethylnitrosamine (DEN) for 24 hr. and then fed 0.1 ppm 17-{beta}-estradiol (E2) continuously through sampling at weeks 4--26. Percent volume of FCA and morphometric characteristics of normal and focal hepatocytes, including numerical density and average hepatocyte volume were quantified using computer-assisted stereology. E2 increased percentage of liver occupied by DEN-initiated amphophilic, basophilic and eosinophilic FCA in both sexes. Focal parameters of young, DEN-initiated and estradiol-treated medaka were not reached until much later in fish given only DEN. Non-focal hepatocytes in estradiol-treated medaka were smaller and more numerous than in DEN-only counterparts. Morphometric analysis is quantitatively tracking the fate of specific phenotypes of FCA to determine their role in progression to cancer.

  7. Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants.

    PubMed

    Xu, Wen; Cai, Shu-Yu; Zhang, Yun; Wang, Yu; Ahammed, Golam Jalal; Xia, Xiao-Jian; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan; Reiter, Russel J; Zhou, Jie

    2016-11-01

    Melatonin is a pleiotropic signaling molecule that provides physiological protection against diverse environmental stresses in plants. Nonetheless, the mechanisms for melatonin-mediated thermotolerance remain largely unknown. Here, we report that endogenous melatonin levels increased with a rise in ambient temperature and that peaked at 40°C. Foliar pretreatment with an optimal dose of melatonin (10 μmol/L) or the overexpression of N-acetylserotonin methyltransferase (ASMT) gene effectively ameliorated heat-induced photoinhibition and electrolyte leakage in tomato plants. Both exogenous melatonin treatment and endogenous melatonin manipulation by overexpression of ASMT decreased the levels of insoluble and ubiquitinated proteins, but enhanced the expression of heat-shock proteins (HSPs) to refold denatured and unfolded proteins under heat stress. Meanwhile, melatonin also induced expression of several ATG genes and formation of autophagosomes to degrade aggregated proteins under the same stress. Proteomic profile analyses revealed that protein aggregates for a large number of biological processes accumulated in wild-type plants. However, exogenous melatonin treatment or overexpression of ASMT reduced the accumulation of aggregated proteins. Aggregation responsive proteins such as HSP70 and Rubisco activase were preferentially accumulated and ubiquitinated in wild-type plants under heat stress, while melatonin mitigated heat stress-induced accumulation and ubiquitination of aggregated proteins. These results suggest that melatonin promotes cellular protein protection through induction of HSPs and autophagy to refold or degrade denatured proteins under heat stress in tomato plants. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Kinin Peptides Enhance Inflammatory and Oxidative Responses Promoting Apoptosis in a Parkinson's Disease Cellular Model

    PubMed Central

    Kozik, Andrzej

    2016-01-01

    Kinin peptides ubiquitously occur in nervous tissue and participate in inflammatory processes associated with distinct neurological disorders. These substances have also been demonstrated to promote the oxidative stress. On the other hand, the importance of oxidative stress and inflammation has been emphasized in disorders that involve the neurodegenerative processes such as Parkinson's disease (PD). A growing number of reports have demonstrated the increased expression of kinin receptors in neurodegenerative diseases. In this study, the effect of bradykinin and des-Arg10-kallidin, two representative kinin peptides, was analyzed with respect to inflammatory response and induction of oxidative stress in a PD cellular model, obtained after stimulation of differentiated SK-N-SH cells with a neurotoxin, 1-methyl-4-phenylpyridinium. Kinin peptides caused an increased cytokine release and enhanced production of reactive oxygen species and NO by cells. These changes were accompanied by a loss of cell viability and a greater activation of caspases involved in apoptosis progression. Moreover, the neurotoxin and kinin peptides altered the dopamine receptor 2 expression. Kinin receptor expression was also changed by the neurotoxin. These results suggest a mediatory role of kinin peptides in the development of neurodegeneration and may offer new possibilities for its regulation by using specific antagonists of kinin receptors. PMID:27721576

  9. Mitochondrial oxidative stress caused by Sod2 deficiency promotes cellular senescence and aging phenotypes in the skin.

    PubMed

    Velarde, Michael C; Flynn, James M; Day, Nicholas U; Melov, Simon; Campisi, Judith

    2012-01-01

    Cellular senescence arrests the proliferation of mammalian cells at risk for neoplastic transformation, and is also associated with aging. However, the factors that cause cellular senescence during aging are unclear. Excessive reactive oxygen species (ROS) have been shown to cause cellular senescence in culture, and accumulated molecular damage due to mitochondrial ROS has long been thought to drive aging phenotypesin vivo. Here, we test the hypothesis that mitochondrial oxidative stress can promote cellular senescence in vivo and contribute to aging phenotypes in vivo, specifically in the skin. We show that the number of senescent cells, as well as impaired mitochondrial (complex II) activity increase in naturally aged mouse skin. Using a mouse model of genetic Sod2 deficiency, we show that failure to express this important mitochondrial anti-oxidant enzyme also impairs mitochondrial complex II activity, causes nuclear DNA damage, and induces cellular senescence but not apoptosis in the epidermis. Sod2 deficiency also reduced the number of cells and thickness of the epidermis, while increasing terminal differentiation. Our results support the idea that mitochondrial oxidative stress and cellular senescence contribute to aging skin phenotypes in vivo.

  10. Mitochondrial oxidative stress caused by Sod2 deficiency promotes cellular senescence and aging phenotypes in the skin

    PubMed Central

    Velarde, Michael C.; Flynn, James M.; Day, Nicholas U.; Melov, Simon; Campisi, Judith

    2012-01-01

    Cellular senescence arrests the proliferation of mammalian cells at risk for neoplastic transformation, and is also associated with aging. However, the factors that cause cellular senescence during aging are unclear. Excessive reactive oxygen species (ROS) have been shown to cause cellular senescence in culture, and accumulated molecular damage due to mitochondrial ROS has long been thought to drive aging phenotypes in vivo. Here, we test the hypothesis that mitochondrial oxidative stress can promote cellular senescence in vivo and contribute to aging phenotypes in vivo, specifically in the skin. We show that the number of senescent cells, as well as impaired mitochondrial (complex II) activity increase in naturally aged mouse skin. Using a mouse model of genetic Sod2 deficiency, we show that failure to express this important mitochondrial anti-oxidant enzyme also impairs mitochondrial complex II activity, causes nuclear DNA damage, and induces cellular senescence but not apoptosis in the epidermis. Sod2 deficiency also reduced the number of cells and thickness of the epidermis, while increasing terminal differentiation. Our results support the idea that mitochondrial oxidative stress and cellular senescence contribute to aging skin phenotypes in vivo. PMID:22278880

  11. Non-destructive monitoring of rpoS promoter activity as stress marker for evaluating cellular physiological status.

    PubMed

    Funabashi, Hisakage; Haruyama, Tetsuya; Mie, Masayasu; Yanagida, Yasuko; Kobatake, Eiry; Aizawa, Masuo

    2002-04-25

    To monitor the extent of cellular physiological stress, the activity of the rpoS promoter was evaluated as a marker of the stress pathway. A reporter plasmid was constructed by inserting the GFPuv gene under the rpoS promoter and used to transform Escherichia coli cells. The fluorescence of the GFPuv protein was measured in intact cells in a non-destructive manner. The physiological status of the cells could be conveniently monitored using the rpoS-GFPuv reporter gene with respect to the cellular growth phase and to elevated ethanol and NaCl concentrations as two examples of environmental stress factors. Comparison of the response of different E. coli strains demonstrated an essential role of the relA gene in the induction of the rpoS-GFPuv reporter gene.

  12. PLAGL2 translocation and SP-C promoter activity-A cellular response of lung cells to hypoxia

    SciTech Connect

    Guo, Yuhong; Yang, Meng-Chun; Weissler, Jonathan C.; Yang, Yih-Sheng . E-mail: Yih-Sheng.Yang@UTSouthwestern.edu

    2007-08-31

    Cobalt is a transition metal which can substitute for iron in the oxygen-sensitive protein and mimic hypoxia. Cobalt was known to be associated with the development of lung disease. In this study, when lung cells were exposed to hypoxia-induced by CoCl{sub 2} at a sub-lethal concentration (100 {mu}M), their thyroid transcription factor-1 (TTF-1) expression was greatly reduced. Under this condition, SP-B promoter activity was down-regulated, but SP-C promoter remained active. Therefore, we hypothesized that other factor(s) besides TTF-1 might contribute to the modulation of SP-C promoter in hypoxic lung cells. Pleomorphic adenoma gene like-2 (PLAGL2), a previously identified TTF-1-independent activator of the SP-C promoter, was not down-regulated, nor increased, within those cells. Its cellular location was redistributed from the cytoplasm to the nucleus. Chromatin immunoprecipitation (ChIP) and quantitative RT-PCR analyses demonstrated that nuclear PLAGL2 occupied and transactivated the endogenous SP-C promoter in lung cells. Thereby, through relocating and accumulating of PLAGL2 inside the nucleus, PLAGL2 interacted with its target genes for various cellular functions. These results further suggest that PLAGL2 is an oxidative stress responding regulator in lung cells.

  13. A positive feedback at the cellular level promotes robustness and modulation at the circuit level.

    PubMed

    Dethier, Julie; Drion, Guillaume; Franci, Alessio; Sepulchre, Rodolphe

    2015-10-01

    This article highlights the role of a positive feedback gating mechanism at the cellular level in the robustness and modulation properties of rhythmic activities at the circuit level. The results are presented in the context of half-center oscillators, which are simple rhythmic circuits composed of two reciprocally connected inhibitory neuronal populations. Specifically, we focus on rhythms that rely on a particular excitability property, the postinhibitory rebound, an intrinsic cellular property that elicits transient membrane depolarization when released from hyperpolarization. Two distinct ionic currents can evoke this transient depolarization: a hyperpolarization-activated cation current and a low-threshold T-type calcium current. The presence of a slow activation is specific to the T-type calcium current and provides a slow positive feedback at the cellular level that is absent in the cation current. We show that this slow positive feedback is required to endow the network rhythm with physiological modulation and robustness properties. This study thereby identifies an essential cellular property to be retained at the network level in modeling network robustness and modulation. Copyright © 2015 the American Physiological Society.

  14. mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases

    PubMed Central

    Palmieri, Michela; Pal, Rituraj; Nelvagal, Hemanth R.; Lotfi, Parisa; Stinnett, Gary R.; Seymour, Michelle L.; Chaudhury, Arindam; Bajaj, Lakshya; Bondar, Vitaliy V.; Bremner, Laura; Saleem, Usama; Tse, Dennis Y.; Sanagasetti, Deepthi; Wu, Samuel M.; Neilson, Joel R.; Pereira, Fred A.; Pautler, Robia G.; Rodney, George G.; Cooper, Jonathan D.; Sardiello, Marco

    2017-01-01

    Neurodegenerative diseases characterized by aberrant accumulation of undigested cellular components represent unmet medical conditions for which the identification of actionable targets is urgently needed. Here we identify a pharmacologically actionable pathway that controls cellular clearance via Akt modulation of transcription factor EB (TFEB), a master regulator of lysosomal pathways. We show that Akt phosphorylates TFEB at Ser467 and represses TFEB nuclear translocation independently of mechanistic target of rapamycin complex 1 (mTORC1), a known TFEB inhibitor. The autophagy enhancer trehalose activates TFEB by diminishing Akt activity. Administration of trehalose to a mouse model of Batten disease, a prototypical neurodegenerative disease presenting with intralysosomal storage, enhances clearance of proteolipid aggregates, reduces neuropathology and prolongs survival of diseased mice. Pharmacological inhibition of Akt promotes cellular clearance in cells from patients with a variety of lysosomal diseases, thus suggesting broad applicability of this approach. These findings open new perspectives for the clinical translation of TFEB-mediated enhancement of cellular clearance in neurodegenerative storage diseases. PMID:28165011

  15. Overexpression of the human DEK oncogene reprograms cellular metabolism and promotes glycolysis

    PubMed Central

    Watanabe, Miki; Muraleedharan, Ranjithmenon; Lambert, Paul F.; Lane, Andrew N.; Romick-Rosendale, Lindsey E.; Wells, Susanne I.

    2017-01-01

    The DEK oncogene is overexpressed in many human malignancies including at early tumor stages. Our reported in vitro and in vivo models of squamous cell carcinoma have demonstrated that DEK contributes functionally to cellular and tumor survival and to proliferation. However, the underlying molecular mechanisms remain poorly understood. Based on recent RNA sequencing experiments, DEK expression was necessary for the transcription of several metabolic enzymes involved in anabolic pathways. This identified a possible mechanism whereby DEK may drive cellular metabolism to enable cell proliferation. Functional metabolic Seahorse analysis demonstrated increased baseline and maximum extracellular acidification rates, a readout of glycolysis, in DEK-overexpressing keratinocytes and squamous cell carcinoma cells. DEK overexpression also increased the maximum rate of oxygen consumption and therefore increased the potential for oxidative phosphorylation (OxPhos). To detect small metabolites that participate in glycolysis and the tricarboxylic acid cycle (TCA) that supplies substrate for OxPhos, we carried out NMR-based metabolomics studies. We found that high levels of DEK significantly reprogrammed cellular metabolism and altered the abundances of amino acids, TCA cycle intermediates and the glycolytic end products lactate, alanine and NAD+. Taken together, these data support a scenario whereby overexpression of the human DEK oncogene reprograms keratinocyte metabolism to fulfill energy and macromolecule demands required to enable and sustain cancer cell growth. PMID:28558019

  16. Human Cytomegalovirus Promotes Survival of Infected Monocytes via a Distinct Temporal Regulation of Cellular Bcl-2 Family Proteins

    PubMed Central

    Collins-McMillen, Donna; Kim, Jung Heon; Nogalski, Maciej T.; Stevenson, Emily V.; Caskey, Joshua R.; Cieply, Stephen J.

    2015-01-01

    ABSTRACT Monocytes play a key role in the hematogenous dissemination of human cytomegalovirus (HCMV) to target organ systems. To infect monocytes and reprogram them to deliver infectious virus, HCMV must overcome biological obstacles, including the short life span of monocytes and their antiviral proapoptotic response to infection. We have shown that virally induced upregulation of cellular Mcl-1 promotes early survival of HCMV-infected monocytes, allowing cells to overcome an early apoptotic checkpoint at around 48 h postinfection (hpi). Here, we demonstrate an HCMV-dependent shift from Mcl-1 as the primary antiapoptotic player to the related protein, Bcl-2, later during infection. Bcl-2 was upregulated in HCMV-infected monocytes beginning at 48 hpi. Treatment with the Bcl-2 antagonist ABT-199 only reduced the prosurvival effects of HCMV in target monocytes beginning at 48 hpi, suggesting that Mcl-1 controls survival prior to 48 hpi, while Bcl-2 promotes survival after 48 hpi. Although Bcl-2 was upregulated following viral binding/signaling through cellular integrins (compared to Mcl-1, which is upregulated through binding/activation of epidermal growth factor receptor [EGFR]), it functioned similarly to Mcl-1, adopting the early role of Mcl-1 in preventing caspase-3 cleavage/activation. This distinct, HCMV-induced shift from Mcl-1 to Bcl-2 occurs in response to a cellular upregulation of proapoptotic Bax, as small interfering RNA (siRNA)-mediated knockdown of Bax reduced the upregulation of Bcl-2 in infected monocytes and rescued the cells from the apoptotic effects of Bcl-2 inhibition. Our data demonstrate a distinct survival strategy whereby HCMV induces a biphasic regulation of cellular Bcl-2 proteins to promote host cell survival, leading to viral dissemination and the establishment of persistent HCMV infection. IMPORTANCE Hematogenous dissemination of HCMV via infected monocytes is a crucial component of the viral survival strategy and is required for the

  17. RGS6 Suppresses Ras-induced Cellular Transformation by Facilitating Tip60-mediated Dnmt1 Degradation and Promoting Apoptosis

    PubMed Central

    Huang, Jie; Stewart, Adele; Maity, Biswanath; Hagen, Jussara; Fagan, Rebecca L.; Yang, Jianqi; Quelle, Dawn E.; Brenner, Charles; Fisher, Rory A.

    2014-01-01

    The RAS protooncogene plays a central role in regulation of cell proliferation, and point mutations leading to oncogenic activation of Ras occur in a large number of human cancers. Silencing of tumor suppressor genes by DNA methyltransferase 1 (Dnmt1) is essential for oncogenic cellular transformation by Ras, and Dnmt1 is over-expressed in numerous human cancers. Here we provide new evidence that the pleiotropic Regulator of G protein Signaling (RGS) family member RGS6 suppresses Ras-induced cellular transformation by facilitating Tip60-mediated degradation of Dmnt1 and promoting apoptosis. Employing mouse embryonic fibroblasts (MEFs) from wild type (WT) and RGS6−/− mice, we found that oncogenic Ras induced up-regulation of RGS6, which in turn blocked Ras-induced cellular transformation. RGS6 functions to suppress cellular transformation in response to oncogenic Ras by down regulating Dnmt1 protein expression leading to inhibition of Dnmt1-mediated anti-apoptotic activity. Further experiments showed that RGS6 functions as a scaffolding protein for both Dnmt1 and Tip60 and is required for Tip60-mediated acetylation of Dnmt1 and subsequent Dnmt1 ubiquitylation and degradation. The RGS domain of RGS6, known only for its GAP activity toward Gα subunits, was sufficient to mediate Tip60 association with RGS6. This work demonstrates a novel signaling action for RGS6 in negative regulation of oncogene-induced transformation and provides new insights into our understanding of the mechanisms underlying Ras-induced oncogenic transformation and regulation of Dnmt1 expression. Importantly, these findings identify RGS6 as an essential cellular defender against oncogenic stress and a potential therapeutic target for developing new cancer treatments. PMID:23995786

  18. Expression and Cellular Immunogenicity of a Transgenic Antigen Driven by Endogenous Poxviral Early Promoters at Their Authentic Loci in MVA

    PubMed Central

    Orubu, Toritse; Alharbi, Naif Khalaf; Lambe, Teresa; Gilbert, Sarah C.; Cottingham, Matthew G.

    2012-01-01

    CD8+ T cell responses to vaccinia virus are directed almost exclusively against early gene products. The attenuated strain modified vaccinia virus Ankara (MVA) is under evaluation in clinical trials of new vaccines designed to elicit cellular immune responses against pathogens including Plasmodium spp., M. tuberculosis and HIV-1. All of these recombinant MVAs (rMVA) utilize the well-established method of linking the gene of interest to a cloned poxviral promoter prior to insertion into the viral genome at a suitable locus by homologous recombination in infected cells. Using BAC recombineering, we show that potent early promoters that drive expression of non-functional or non-essential MVA open reading frames (ORFs) can be harnessed for immunogenic expression of recombinant antigen. Precise replacement of the MVA orthologs of C11R, F11L, A44L and B8R with a model antigen positioned to use the same translation initiation codon allowed early transgene expression similar to or slightly greater than that achieved by the commonly-used p7.5 or short synthetic promoters. The frequency of antigen-specific CD8+ T cells induced in mice by single shot or adenovirus-prime, rMVA-boost vaccination were similarly equal or marginally enhanced using endogenous promoters at their authentic genomic loci compared to the traditional constructs. The enhancement in immunogenicity observed using the C11R or F11L promoters compared with p7.5 was similar to that obtained with the mH5 promoter compared with p7.5. Furthermore, the growth rates of the viruses were unimpaired and the insertions were genetically stable. Insertion of a transgenic ORF in place of a viral ORF by BAC recombineering can thus provide not only a potent promoter, but also, concomitantly, a suitable insertion site, potentially facilitating development of MVA vaccines expressing multiple recombinant antigens. PMID:22761956

  19. Regulation of viral and cellular promoter activity by polyomavirus early proteins.

    PubMed Central

    Pannuti, A; La Mantia, G; Lania, L

    1987-01-01

    The chloramphenicol-acetyl-transferase (CAT) expression system has been utilized to study the ability of the polyomavirus (Py) early proteins, the 100K large T, the 55K middle T and 22K small T-antigens, to activate a variety of eukaryotic promoters (the SV40 early, the alpha 2(1) collagen, the rabbit beta-globin, the polyomavirus early and the H-2 class I) in both transient and stable expression assays. We have found that either the complete polyomavirus early region or a plasmid expressing only the 55K middle T-antigen are capable of stimulating the expression of all the promoter-CAT plasmids in transient co-transfection experiments in both NIH-3T3 and Rat-2 cells. Conversely, the Py early proteins do not stimulate the transcription of most of the promoter-CAT genes stably introduced in the cell chromosomes, with the exception of H-2 class I promoter, when stimulation of transcription has been observed upon infection with recombinant retrovirus encoding the Py middle T-antigen. Images PMID:3029721

  20. IN-MACA-MCC: Integrated Multiple Attractor Cellular Automata with Modified Clonal Classifier for Human Protein Coding and Promoter Prediction.

    PubMed

    Pokkuluri, Kiran Sree; Inampudi, Ramesh Babu; Nedunuri, S S S N Usha Devi

    2014-01-01

    Protein coding and promoter region predictions are very important challenges of bioinformatics (Attwood and Teresa, 2000). The identification of these regions plays a crucial role in understanding the genes. Many novel computational and mathematical methods are introduced as well as existing methods that are getting refined for predicting both of the regions separately; still there is a scope for improvement. We propose a classifier that is built with MACA (multiple attractor cellular automata) and MCC (modified clonal classifier) to predict both regions with a single classifier. The proposed classifier is trained and tested with Fickett and Tung (1992) datasets for protein coding region prediction for DNA sequences of lengths 54, 108, and 162. This classifier is trained and tested with MMCRI datasets for protein coding region prediction for DNA sequences of lengths 252 and 354. The proposed classifier is trained and tested with promoter sequences from DBTSS (Yamashita et al., 2006) dataset and nonpromoters from EID (Saxonov et al., 2000) and UTRdb (Pesole et al., 2002) datasets. The proposed model can predict both regions with an average accuracy of 90.5% for promoter and 89.6% for protein coding region predictions. The specificity and sensitivity values of promoter and protein coding region predictions are 0.89 and 0.92, respectively.

  1. Cellular targets and mechanistic strategies of remyelination-promoting IgMs as part of the naturally occurring autoantibody repertoire.

    PubMed

    Watzlawik, Jens O; Wootla, Bharath; Painter, Meghan M; Warrington, Arthur E; Rodriguez, Moses

    2013-09-01

    Immunoglobulins with germline sequences occur in invertebrates and vertebrates and are named naturally occurring autoantibodies (NAbs). NAbs may target foreign antigens, self- or altered self-components and are part of the normal immunoglobulin repertoire. Accumulating evidence indicates that naturally occurring antibodies can act as systemic surveillance molecules, which tag, damaged or stressed cells, invading pathogens and toxic cellular debris for elimination by the immune system. In addition to acting as detecting molecules, certain types of NAbs actively signal in different cell types with a broad range of responses from induction of apoptosis in cancer cells to stimulation of remyelination in glial cells. This review emphasizes functions and characteristics of NAbs with focus on remyelination-promoting mouse and human antibodies. Human remyelination-promoting NAbs are potential therapeutics to combat a wide spectrum of disease processes including demyelinating diseases like multiple sclerosis. We will highlight the identified glycosphingolipid (SL) antigens of polyreactive remyelination-promoting antibodies and their proposed mechanism(s) of action. The nature of the identified antigens suggests a lipid raft-based mechanism for remyelination-promoting antibodies with SLs as most essential raft components. However, accumulating evidence also suggests involvement of other antigens in stimulation of remyelination, which will be discussed in the text.

  2. Cellular targets and mechanistic strategies of remyelination-promoting IgMs as part of the naturally occurring autoantibody repertoire

    PubMed Central

    Watzlawik, Jens O; Wootla, Bharath; Painter, Meghan M; Warrington, Arthur E; Rodriguez, Moses

    2014-01-01

    Immunoglobulins with germline sequences occur in invertebrates and vertebrates and are named naturally occurring autoantibodies (NAbs). NAbs may target foreign antigens, self- or altered self-components and are part of the normal immunoglobulin repertoire. Accumulating evidence indicates that naturally occurring antibodies can act as systemic surveillance molecules, which tag, damaged or stressed cells, invading pathogens and toxic cellular debris for elimination by the immune system. In addition to acting as detecting molecules, certain types of NAbs actively signal in different cell types with a broad range of responses from induction of apoptosis in cancer cells to stimulation of remyelination in glial cells. This review emphasizes functions and characteristics of NAbs with focus on remyelination-promoting mouse and human antibodies. Human remyelination-promoting NAbs are potential therapeutics to combat a wide spectrum of disease processes including demyelinating diseases like multiple sclerosis. We will highlight the identified glycosphingolipid (SL) antigens of polyreactive remyelination-promoting antibodies and their proposed mechanism(s) of action. The nature of the identified antigens suggests a lipid raft-based mechanism for remyelination-promoting antibodies with SLs as most essential raft components. However, accumulating evidence also suggests involvement of other antigens in stimulation of remyelination, which will be discussed in the text. PMID:24053345

  3. Mutant IDH1 Expression Drives TERT Promoter Reactivation as Part of the Cellular Transformation Process.

    PubMed

    Ohba, Shigeo; Mukherjee, Joydeep; Johannessen, Tor-Christian; Mancini, Andrew; Chow, Tracy T; Wood, Matthew; Jones, Lindsey; Mazor, Tali; Marshall, Roxanne E; Viswanath, Pavithra; Walsh, Kyle M; Perry, Arie; Bell, Robert J A; Phillips, Joanna J; Costello, Joseph F; Ronen, Sabrina M; Pieper, Russell O

    2016-11-15

    Mutations in the isocitrate dehydrogenase gene IDH1 are common in low-grade glioma, where they result in the production of 2-hydroxyglutarate (2HG), disrupted patterns of histone methylation, and gliomagenesis. IDH1 mutations also cosegregate with mutations in the ATRX gene and the TERT promoter, suggesting that IDH mutation may drive the creation or selection of telomere-stabilizing events as part of immortalization/transformation process. To determine whether and how this may occur, we investigated the phenotype of pRb-/p53-deficient human astrocytes engineered with IDH1 wild-type (WT) or R132H-mutant (IDH1(mut)) genes as they progressed through their lifespan. IDH1(mut) expression promoted 2HG production and altered histone methylation within 20 population doublings (PD) but had no effect on telomerase expression or telomere length. Accordingly, cells expressing either IDH1(WT) or IDH1(mut) entered a telomere-induced crisis at PD 70. In contrast, only IDH1(mut) cells emerged from crisis, grew indefinitely in culture, and formed colonies in soft agar and tumors in vivo Clonal populations of postcrisis IDH1(mut) cells displayed shared genetic alterations, but no mutations in ATRX or the TERT promoter were detected. Instead, these cells reactivated telomerase and stabilized their telomeres in association with increased histone lysine methylation (H3K4me3) and c-Myc/Max binding at the TERT promoter. Overall, these results show that although IDH1(mut) does not create or select for ATRX or TERT promoter mutations, it can indirectly reactivate TERT, and in doing so contribute to astrocytic immortalization and transformation. Cancer Res; 76(22); 6680-9. ©2016 AACR.

  4. Cardiomyocyte Differentiation Promotes Cell Survival During Nicotinamide Phosphoribosyltransferase Inhibition Through Increased Maintenance of Cellular Energy Stores

    PubMed Central

    Kropp, Erin M.; Broniowska, Katarzyna A.; Waas, Matthew; Nycz, Alyssa; Corbett, John A.

    2017-01-01

    Abstract To address concerns regarding the tumorigenic potential of undifferentiated human pluripotent stem cells (hPSC) that may remain after in vitro differentiation and ultimately limit the broad use of hPSC‐derivatives for therapeutics, we recently described a method to selectively eliminate tumorigenic hPSC from their progeny by inhibiting nicotinamide phosphoribosyltransferase (NAMPT). Limited exposure to NAMPT inhibitors selectively removes hPSC from hPSC‐derived cardiomyocytes (hPSC‐CM) and spares a wide range of differentiated cell types; yet, it remains unclear when and how cells acquire resistance to NAMPT inhibition during differentiation. In this study, we examined the effects of NAMPT inhibition among multiple time points of cardiomyocyte differentiation. Overall, these studies show that in vitro cardiomyogenic commitment and continued culturing provides resistance to NAMPT inhibition and cell survival is associated with the ability to maintain cellular ATP pools despite depletion of NAD levels. Unlike cells at earlier stages of differentiation, day 28 hPSC‐CM can survive longer periods of NAMPT inhibition and maintain ATP generation by glycolysis and/or mitochondrial respiration. This is distinct from terminally differentiated fibroblasts, which maintain mitochondrial respiration during NAMPT inhibition. Overall, these results provide new mechanistic insight into how regulation of cellular NAD and energy pools change with hPSC‐CM differentiation and further inform how NAMPT inhibition strategies could be implemented within the context of cardiomyocyte differentiation. Stem Cells Translational Medicine 2017;6:1191–1201 PMID:28224719

  5. Deregulated telomere transcription causes replication-dependent telomere shortening and promotes cellular senescence

    PubMed Central

    Maicher, André; Kastner, Lisa; Dees, Martina; Luke, Brian

    2012-01-01

    Telomeres are transcribed into non-coding TElomeric Repeat containing RNAs (TERRA). We have employed a transcriptionally inducible telomere to investigate how telomere transcription affects telomere function in Saccharomyces cerevisiae. We report that telomere shortening resulting from high levels of telomere transcription stems from a DNA replication-dependent loss of telomere tracts, which can occur independent of both telomerase inhibition and homologous recombination. We show that in order for telomere loss to occur, transcription must pass through the telomere tract itself producing a TERRA molecule. We demonstrate that increased telomere transcription of a single telomere leads to a premature cellular senescence in the absence of a telomere maintenance mechanism (telomerase and homology directed repair). Similar rapid senescence and telomere shortening are also seen in sir2Δ cells with compromised telomere maintenance, where TERRA levels are increased at natural telomeres. These data suggest that telomere transcription must be tightly controlled to prevent telomere loss and early onset senescence. PMID:22553368

  6. Cardiomyocyte Differentiation Promotes Cell Survival During Nicotinamide Phosphoribosyltransferase Inhibition Through Increased Maintenance of Cellular Energy Stores.

    PubMed

    Kropp, Erin M; Broniowska, Katarzyna A; Waas, Matthew; Nycz, Alyssa; Corbett, John A; Gundry, Rebekah L

    2017-04-01

    To address concerns regarding the tumorigenic potential of undifferentiated human pluripotent stem cells (hPSC) that may remain after in vitro differentiation and ultimately limit the broad use of hPSC-derivatives for therapeutics, we recently described a method to selectively eliminate tumorigenic hPSC from their progeny by inhibiting nicotinamide phosphoribosyltransferase (NAMPT). Limited exposure to NAMPT inhibitors selectively removes hPSC from hPSC-derived cardiomyocytes (hPSC-CM) and spares a wide range of differentiated cell types; yet, it remains unclear when and how cells acquire resistance to NAMPT inhibition during differentiation. In this study, we examined the effects of NAMPT inhibition among multiple time points of cardiomyocyte differentiation. Overall, these studies show that in vitro cardiomyogenic commitment and continued culturing provides resistance to NAMPT inhibition and cell survival is associated with the ability to maintain cellular ATP pools despite depletion of NAD levels. Unlike cells at earlier stages of differentiation, day 28 hPSC-CM can survive longer periods of NAMPT inhibition and maintain ATP generation by glycolysis and/or mitochondrial respiration. This is distinct from terminally differentiated fibroblasts, which maintain mitochondrial respiration during NAMPT inhibition. Overall, these results provide new mechanistic insight into how regulation of cellular NAD and energy pools change with hPSC-CM differentiation and further inform how NAMPT inhibition strategies could be implemented within the context of cardiomyocyte differentiation. Stem Cells Translational Medicine 2017;6:1191-1201. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  7. Non-genomic estrogen/estrogen receptor α promotes cellular malignancy of immature ovarian teratoma in vitro.

    PubMed

    Hung, Yao-Ching; Chang, Wei-Chun; Chen, Lu-Min; Chang, Ying-Yi; Wu, Ling-Yu; Chung, Wei-Min; Lin, Tze-Yi; Chen, Liang-Chi; Ma, Wen-Lung

    2014-06-01

    Malignant immature ovarian teratomas (IOTs) most often occur in women of reproductive age. It is unclear, however, what roles estrogenic signaling plays in the development of IOT. In this study, we examined whether estrogen receptors (ERα and β) promote the cellular malignancy of IOT. Estradiol (E2), PPT (propylpyrazole), and DPN (diarylpropionitrile) (ERα- and β-specific agonists, respectively), as well as ERα- or ERβ-specific short hairpin (sh)RNA were applied to PA-1 cells, a well-characterized IOT cell line. Cellular tumorigenic characteristics, for example, cell migration/invasion, expression of the cancer stem/progenitor cell marker CD133, and evidence for epithelial-mesenchymal transition (EMT) were examined. In PA-1 cells that expressed ERα and ERβ, we found that ERα promoted cell migration and invasion. We also found that E2/ERα signaling altered cell behavior through non-classical transactivation function. Our data show non-genomic E2/ERα activations of focal adhesion kinase-Ras homolog gene family member A (FAK-RhoA) and ERK governed cell mobility capacity. Moreover, E2/ERα signaling induces EMT and overexpression of CD133 through upregulation micro-RNA 21 (miR21; IOT stem/progenitor promoter), and ERK phosphorylations. Furthermore, E2/ERα signaling triggers a positive feedback regulatory loop within miR21 and ERK. At last, expression levels of ERα, CD133, and EMT markers in IOT tissue samples were examined by immunohistochemistry. We found that cytosolic ERα was co-expressed with CD133 and mesenchymal cell markers but not epithelial cell markers. In conclusion, estrogenic signals exert malignant transformation capacity of cancer cells, exclusively through non-genomic regulation in female germ cell tumors.

  8. Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response

    SciTech Connect

    Kiran, Shashi; Oddi, Vineesha; Ramakrishna, Gayatri

    2015-02-01

    Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose of doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress. - Highlights: • Knockdown of SIRT7 sensitized cells to DNA damage induced apoptosis. • SIRT7 delayed onset of premature senescence by attenuating DNA damage response. • Overexpression of SIRT7 delayed cell cycle progression by delaying G1/S transition. • Upon DNA damage SIRT

  9. Cellular aspartyl proteases promote the unconventional secretion of biologically active HIV-1 matrix protein p17

    PubMed Central

    Caccuri, Francesca; Iaria, Maria Luisa; Campilongo, Federica; Varney, Kristen; Rossi, Alessandro; Mitola, Stefania; Schiarea, Silvia; Bugatti, Antonella; Mazzuca, Pietro; Giagulli, Cinzia; Fiorentini, Simona; Lu, Wuyuan; Salmona, Mario; Caruso, Arnaldo

    2016-01-01

    The human immune deficiency virus type 1 (HIV-1) matrix protein p17 (p17), although devoid of a signal sequence, is released by infected cells and detected in blood and in different organs and tissues even in HIV-1-infected patients undergoing successful combined antiretroviral therapy (cART). Extracellularly, p17 deregulates the function of different cells involved in AIDS pathogenesis. The mechanism of p17 secretion, particularly during HIV-1 latency, still remains to be elucidated. A recent study showed that HIV-1-infected cells can produce Gag without spreading infection in a model of viral latency. Here we show that in Gag-expressing cells, secretion of biologically active p17 takes place at the plasma membrane and occurs following its interaction with phosphatidylinositol-(4,5)-bisphosphate and its subsequent cleavage from the precursor Gag (Pr55Gag) operated by cellular aspartyl proteases. These enzymes operate a more complex Gag polypeptide proteolysis than the HIV-1 protease, thus hypothetically generating slightly truncated or elongated p17s in their C-terminus. A 17 C-terminal residues excised p17 was found to be structurally and functionally identical to the full-length p17 demonstrating that the final C-terminal region of p17 is irrelevant for the protein’s biological activity. These findings offer new opportunities to identify treatment strategies for inhibiting p17 release in the extracellular microenvironment. PMID:27905556

  10. Cellular factors promoting resistance to effective treatment of glioma with oncolytic myxoma virus.

    PubMed

    Zemp, Franz J; McKenzie, Brienne A; Lun, Xueqing; Reilly, Karlyne M; McFadden, Grant; Yong, V Wee; Forsyth, Peter A

    2014-12-15

    Oncolytic virus therapy is being evaluated in clinical trials for human glioma. While it is widely assumed that the immune response of the patient to the virus infection limits the utility of the therapy, investigations into the specific cell type(s) involved in this response have been performed using nonspecific pharmacologic inhibitors or allogeneic models with compromised immunity. To identify the immune cells that participate in clearing an oncolytic infection in glioma, we used flow cytometry and immunohistochemistry to immunophenotype an orthotopic glioma model in immunocompetent mice after Myxoma virus (MYXV) administration. These studies revealed a large resident microglia and macrophage population in untreated tumors, and robust monocyte, T-, and NK cell infiltration 3 days after MYXV infection. To determine the role on the clinical utility of MYXV therapy for glioma, we used a combination of knockout mouse strains and specific immunocyte ablation techniques. Collectively, our experiments identify an important role for tumor-resident myeloid cells and overlapping roles for recruited NK and T cells in the clearance and efficacy of oncolytic MYXV from gliomas. Using a cyclophosphamide regimen to achieve lymphoablation prior and during MYXV treatment, we prevented treatment-induced peripheral immunocyte recruitment and, surprisingly, largely ablated the tumor-resident macrophage population. Virotherapy of cyclophosphamide-treated animals resulted in sustained viral infection within the glioma as well as a substantial survival advantage. This study demonstrates that resistance to MYXV virotherapy in syngeneic glioma models involves a multifaceted cellular immune response that can be overcome with cyclophosphamide-mediated lymphoablation.

  11. Promoting siRNA delivery via enhanced cellular uptake using an arginine-decorated amphiphilic dendrimer

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoxuan; Liu, Cheng; Zhou, Jiehua; Chen, Chao; Qu, Fanqi; Rossi, John J.; Rocchi, Palma; Peng, Ling

    2015-02-01

    RNA interference (RNAi) with small interfering RNA (siRNA) is expected to offer an attractive means to specifically and efficiently silence disease-associated genes for treating various diseases provided that safe and efficient delivery systems are available. In this study, we have established an arginine-decorated amphiphilic dendrimer composed of a hydrophobic alkyl chain and a hydrophilic PAMAM dendron bearing arginine terminals as nonviral vector for siRNA delivery. Indeed, this dendrimer proved to be very effective at delivering siRNAs in human prostate cancer PC-3 cells and in human hematopoietic CD34+ stem cells, leading to improved gene silencing compared to the corresponding nonarginine decorated dendrimer. Further investigation confirmed that this dendrimer was granted with the capacity to form stable nanoparticles with siRNA and significantly enhance cellular uptake of siRNA. In addition, this dendrimer revealed no discernible cytotoxicity. All these findings demonstrate that decoration of the dendrimer surface with arginine residues is indeed a useful strategy to improve the delivery ability of dendrimers.

  12. Constitutive HER2 signaling promotes breast cancer metastasis through cellular senescence.

    PubMed

    Angelini, Pier Davide; Zacarias Fluck, Mariano F; Pedersen, Kim; Parra-Palau, Josep Lluís; Guiu, Marc; Bernadó Morales, Cristina; Vicario, Rocio; Luque-García, Antonio; Navalpotro, Nerea Peiró; Giralt, Jordi; Canals, Francesc; Gomis, Roger R; Tabernero, Josep; Baselga, José; Villanueva, Josep; Arribas, Joaquín

    2013-01-01

    Senescence, a terminal cell proliferation arrest, can be triggered by oncogenes. Oncogene-induced senescence is classically considered a tumor defense barrier. However, several findings show that, under certain circumstances, senescent cells may favor tumor progression because of their secretory phenotype. Here, we show that the expression in different breast epithelial cell lines of p95HER2, a constitutively active fragment of the tyrosine kinase receptor HER2, results in either increased proliferation or senescence. In senescent cells, p95HER2 elicits a secretome enriched in proteases, cytokines, and growth factors. This secretory phenotype is not a mere consequence of the senescence status and requires continuous HER2 signaling to be maintained. Underscoring the functional relevance of the p95HER2-induced senescence secretome, we show that p95HER2-induced senescent cells promote metastasis in vivo in a non-cell-autonomous manner.

  13. Cellular factors promoting resistance to effective treatment of glioma with oncolytic Myxoma virus

    PubMed Central

    Zemp, Franz J.; McKenzie, Brienne A.; Lun, Xueqing; Reilly, Karlyne M.; McFadden, Grant; Yong, V. Wee; Forsyth, Peter A.

    2014-01-01

    Oncolytic virus therapy is being evaluated in clinical trials for human glioma. While it is widely assumed that the patient's immune response to the virus infection limits the therapy's utility, investigations into the specific cell type(s) involved in this response have been performed using non-specific pharmacological inhibitors or allogeneic models with compromised immunity. To identify the immune cells that participate in clearing an oncolytic infection in glioma, we used flow cytometry and immunohistochemistry to immunophenotype an orthotopic glioma model in immunocompetent mice after Myxoma virus (MYXV) administration. These studies revealed a large resident microglia and macrophage population in untreated tumours, and robust monocyte, T and NK cell infiltration 3 days following MYXV infection. To determine the role on the clinical utility of MYXV therapy for glioma, we used a combination of knockout mouse strains and specific immunocyte ablation techniques. Collectively, our experiments identify an important role for tumour-resident myeloid cells and overlapping roles for recruited NK and T cells in the clearance and efficacy of oncolytic MYXV from gliomas. Using a cyclophosphamide regimen to achieve lymphoablation prior and during MYXV treatment, we prevented treatment-induced peripheral immunocyte recruitment and, surprisingly, largely ablated the tumour-resident macrophage population. Virotherapy of CPA-treated animals resulted in sustained viral infection within the glioma as well as a substantial survival advantage. This study demonstrates that resistance to MYXV virotherapy in syngeneic glioma models involves a multi-faceted cellular immune response that can be overcome with CPA-mediated lymphoablation. PMID:25336188

  14. Matricellular protein CCN1 promotes regression of liver fibrosis through induction of cellular senescence in hepatic myofibroblasts.

    PubMed

    Kim, Ki-Hyun; Chen, Chih-Chiun; Monzon, Ricardo I; Lau, Lester F

    2013-05-01

    Liver fibrosis occurs as a wound-healing response to chronic hepatic injuries irrespective of the underlying etiology and may progress to life-threatening cirrhosis. Here we show that CCN1, a matricellular protein of the CCN (CYR61/CTGF/NOV) family, is accumulated in hepatocytes of human cirrhotic livers. CCN1 is not required for liver development or regeneration, since these processes are normal in mice with hepatocyte-specific Ccn1 deletion. However, Ccn1 expression is upregulated upon liver injuries and functions to inhibit liver fibrogenesis induced by either carbon tetrachloride intoxication or bile duct ligation and promote fibrosis regression. CCN1 acts by triggering cellular senescence in activated hepatic stellate cells and portal fibroblasts by engaging integrin α6β1 to induce reactive oxygen species accumulation through the RAC1-NADPH oxidase 1 enzyme complex, whereupon the senescent cells express an antifibrosis genetic program. Mice with hepatocyte-specific Ccn1 deletion suffer exacerbated fibrosis with a concomitant deficit in cellular senescence, whereas overexpression of hepatic Ccn1 reduces liver fibrosis with enhanced senescence. Furthermore, tail vein delivery of purified CCN1 protein accelerates fibrosis regression in mice with established fibrosis. These findings reveal a novel integrin-dependent mechanism of fibrosis resolution in chronic liver injury and identify the CCN1 signaling pathway as a potential target for therapeutic intervention.

  15. miR-122-SOCS1-JAK2 axis regulates allergic inflammation and allergic inflammation-promoted cellular interactions

    PubMed Central

    Kim, Hanearl; Kim, Hyuna; Byun, Jaehwan; Park, Yeongseo; Lee, Hansoo; Lee, Yun Sil; Choe, Jongseon; Kim, Young Myeong; Jeoung, Dooil

    2017-01-01

    The regulatory role of suppressor of cytokine signaling 1 (SOCS1) in inflammation has been reported. However, its role in allergic inflammation has not been previously reported. SOCS1 mediated in vitro and in vivo allergic inflammation. Histone deacetylase-3 (HDAC3), a mediator of allergic inflammation, interacted with SOCS1, and miR-384 inhibitor, a positive regulator of HDAC3, induced features of allergic inflammation in an SOCS1-dependent manner. miRNA array analysis showed that the expression of miR-122 was decreased by antigen-stimulation. TargetScan analysis predicted the binding of miR-122 to the 3′-UTR of SOCS1. miR-122 inhibitor induced in vitro and in vivo allergic features in SOCS1-dependent manner. SOCS1 was necessary for allergic inflammation-promoted enhanced tumorigenic and metastatic potential of cancer cells. SOCS1 and miR-122 regulated cellular interactions involving cancer cells, mast cells and macrophages during allergic inflammation. SOCS1 mimetic peptide, D-T-H-F-R-T-F-R-S-H-S-D-Y-R-R-I, inhibited in vitro and in vivo allergic inflammation, allergic inflammation-promoted enhanced tumorigenic and metastatic potential of cancer cells, and cellular interactions during allergic inflammation. Janus kinase 2 (JAK2) exhibited binding to SOCS1 mimetic peptide and mediated allergic inflammation. Transforming growth factor- Δ1 (TGF-Δ1) was decreased during allergic inflammation and showed an anti-allergic effect. SOCS1 and JAK2 regulated the production of anti-allergic TGF-Δ1. Taken together, our results show that miR-122-SOCS1 feedback loop can be employed as a target for the development of anti-allergic and anti-cancer drugs. PMID:28968979

  16. MERTK Inhibition Induces Polyploidy and Promotes Cell Death and Cellular Senescence in Glioblastoma Multiforme

    PubMed Central

    Sufit, Alexandra; Lee-Sherick, Alisa B.; DeRyckere, Deborah; Rupji, Manali; Dwivedi, Bhakti; Varella-Garcia, Marileila; Pierce, Angela M.; Kowalski, Jeanne; Wang, Xiaodong; Frye, Stephen V.; Earp, H. Shelton

    2016-01-01

    Background MER receptor tyrosine kinase (MERTK) is expressed in a variety of malignancies, including glioblastoma multiforme (GBM). Our previous work demonstrated that inhibition of MERTK using RNA interference induced cell death and chemosensitivity in GBM cells, implicating MERTK as a potential therapeutic target. Here we investigate whether a novel MERTK-selective small molecule tyrosine kinase inhibitor, UNC2025, has similar anti-tumor effects in GBM cell lines. Methods Correlations between expression of GAS6, a MERTK ligand, and prognosis were determined using data from the TCGA database. GBM cell lines (A172, SF188, U251) were treated in vitro with increasing doses of UNC2025 (50-400nM). Cell count and viability were determined by trypan blue exclusion. Cell cycle profiles and induction of apoptosis were assessed by flow cytometric analysis after BrdU or Po-Pro-1/propidium iodide staining, respectively. Polyploidy was detected by propidium iodide staining and metaphase spread. Cellular senescence was determined by β-galactosidase staining and senescence-associated secretory cytokine analysis. Results Decreased overall survival significantly correlated with high levels of GAS6 expression in GBM, highlighting the importance of TAM kinase signaling in GBM tumorigenesis and/or therapy resistance and providing strong rationale for targeting these pathways in the clinic. All three GBM cell lines exhibited dose dependent reductions in cell number and colony formation (>90% at 200nM) after treatment with UNC2025. Cell cycle analysis demonstrated accumulation of cells in the G2/M phase and development of polyploidy. After extended exposure, 60–80% of cells underwent apoptosis. The majority of surviving cells (65–95%) were senescent and did not recover after drug removal. Thus, UNC2025 mediates anti-tumor activity in GBM by multiple mechanisms. Conclusions The findings described here provide further evidence of oncogenic roles for MERTK in GBM, demonstrate the

  17. Derepression of hTERT gene expression promotes escape from oncogene-induced cellular senescence

    PubMed Central

    Patel, Priyanka L.; Suram, Anitha; Mirani, Neena; Bischof, Oliver; Herbig, Utz

    2016-01-01

    Oncogene-induced senescence (OIS) is a critical tumor-suppressing mechanism that restrains cancer progression at premalignant stages, in part by causing telomere dysfunction. Currently it is unknown whether this proliferative arrest presents a stable and therefore irreversible barrier to cancer progression. Here we demonstrate that cells frequently escape OIS induced by oncogenic H-Ras and B-Raf, after a prolonged period in the senescence arrested state. Cells that had escaped senescence displayed high oncogene expression levels, retained functional DNA damage responses, and acquired chromatin changes that promoted c-Myc–dependent expression of the human telomerase reverse transcriptase gene (hTERT). Telomerase was able to resolve existing telomeric DNA damage response foci and suppressed formation of new ones that were generated as a consequence of DNA replication stress and oncogenic signals. Inhibition of MAP kinase signaling, suppressing c-Myc expression, or inhibiting telomerase activity, caused telomere dysfunction and proliferative defects in cells that had escaped senescence, whereas ectopic expression of hTERT facilitated OIS escape. In human early neoplastic skin and breast tissue, hTERT expression was detected in cells that displayed features of senescence, suggesting that reactivation of telomerase expression in senescent cells is an early event during cancer progression in humans. Together, our data demonstrate that cells arrested in OIS retain the potential to escape senescence by mechanisms that involve derepression of hTERT expression. PMID:27503890

  18. Possible function of the c-myc product: promotion of cellular DNA replication.

    PubMed Central

    Iguchi-Ariga, S M; Itani, T; Kiji, Y; Ariga, H

    1987-01-01

    We have recently cloned a plasmid, pARS65, containing the sequences derived from mouse liver DNA which can autonomously replicate in mouse and human cells (Ariga et al., 1987). In this report, we show that replication of pARS65 in HL-60 cells can be inhibited by co-transfection with anti-c-myc antibody. In an in-vitro replication system using HL-60 nuclear extract, pARS65 functioned as a template. This in-vitro replication was also blocked by addition of anti-c-myc antibody. Specific binding activity of the c-myc product to pARS65 was detected by an immunobinding assay, suggesting that the c-myc protein promotes DNA replication through binding to the initiation site of replication. This has been substantiated using the antibody to help isolate a human DNA segment that can autonomously replicate in the cells. Images Fig. 2. Fig. 3. Fig. 4. Fig. 6. PMID:3665880

  19. Structural changes and cellular localization of resuscitation-promoting factor in environmental isolates of Micrococcus luteus.

    PubMed

    Koltunov, Viktoria; Greenblatt, Charles L; Goncharenko, Anna V; Demina, Galya R; Klein, Benjamin Y; Young, Michael; Kaprelyants, Arseny S

    2010-02-01

    Dormancy among nonsporulating actinobacteria is now a widely accepted phenomenon. In Micrococcus luteus, the resuscitation of dormant cells is caused by a small secreted protein (resuscitation-promoting factor, or Rpf) that is found in "spent culture medium." Rpf is encoded by a single essential gene in M. luteus. Homologs of Rpf are widespread among the high G + C Gram-positive bacteria, including mycobacteria and streptomycetes, and most organisms make several functionally redundant proteins. M. luteus Rpf comprises a lysozyme-like domain that is necessary and sufficient for activity connected through a short linker region to a LysM motif, which is present in a number of cell-wall-associated enzymes. Muralytic activity is responsible for resuscitation. In this report, we characterized a number of environmental isolates of M. luteus, including several recovered from amber. There was substantial variation in the predicted rpf gene product. While the lysozyme-like and LysM domains showed little variation, the linker region was elongated from ten amino acid residues in the laboratory strains to as many as 120 residues in one isolate. The genes encoding these Rpf proteins have been characterized, and a possible role for the Rpf linker in environmental adaptation is proposed. The environmental isolates show enhanced resistance to lysozyme as compared with the laboratory strains and this correlates with increased peptidoglycan acetylation. In strains that make a protein with an elongated linker, Rpf was bound to the cell wall, rather than being released to the growth medium, as occurs in reference strains. This rpf gene was introduced into a lysozyme-sensitive reference strain. Both rpf genes were expressed in transformants which showed a slight but statistically significant increase in lysozyme resistance.

  20. Suppression in PHLPP2 induction by morin promotes Nrf2-regulated cellular defenses against oxidative injury to primary rat hepatocytes

    PubMed Central

    Rizvi, Fatima; Mathur, Alpana; Krishna, Shagun; Siddiqi, Mohammad Imran; Kakkar, Poonam

    2015-01-01

    Recent advances indicate a possible role of phytochemicals as modulatory factors in signaling pathways. We have previously demonstrated PHLPP2-mediated suppression of Nrf2 responses during oxidant attack. The present study was designed to explore Nrf2-potentiating mechanism of morin, a flavonol, via its possible role in intervening PHLPP2-regulated Akt/GSK3β/Fyn kinase axis. Efficacy of morin was evaluated against oxidative stress-mediated damage to primary hepatocytes by tert-butyl hydroperoxide (tBHP) and acetaminophen. The anti-cytotoxic effects of morin were found to be a consequence of fortification of Nrf2-regulated antioxidant defenses since morin failed to sustain activities of redox enzyme in Nrf2 silenced hepatocytes. Morin promoted Nrf2 stability and its nuclear retention by possibly modulating PHLPP2 activity which subdues cellular Nrf2 responses by activating Fyn kinase. Pull-down assay using morin-conjugated beads indicated the binding affinity of morin towards PHLPP2. Molecular docking also revealed the propensity of morin to occupy the active site of PHLPP2 enzyme. Thus, dietary phytochemical morin was observed to counteract oxidant-induced hepatocellular damage by promoting Nrf2-regulated transcriptional induction. The findings support the novel role of morin in potentiating Nrf2 responses by limiting PHLPP2 and hence Fyn kinase activation. Therefore, morin may be exploited in developing novel therapeutic strategy aimed at enhancing Nrf2 responses. PMID:26513344

  1. Suppression in PHLPP2 induction by morin promotes Nrf2-regulated cellular defenses against oxidative injury to primary rat hepatocytes.

    PubMed

    Rizvi, Fatima; Mathur, Alpana; Krishna, Shagun; Siddiqi, Mohammad Imran; Kakkar, Poonam

    2015-12-01

    Recent advances indicate a possible role of phytochemicals as modulatory factors in signaling pathways. We have previously demonstrated PHLPP2-mediated suppression of Nrf2 responses during oxidant attack. The present study was designed to explore Nrf2-potentiating mechanism of morin, a flavonol, via its possible role in intervening PHLPP2-regulated Akt/GSK3β/Fyn kinase axis. Efficacy of morin was evaluated against oxidative stress-mediated damage to primary hepatocytes by tert-butyl hydroperoxide (tBHP) and acetaminophen. The anti-cytotoxic effects of morin were found to be a consequence of fortification of Nrf2-regulated antioxidant defenses since morin failed to sustain activities of redox enzyme in Nrf2 silenced hepatocytes. Morin promoted Nrf2 stability and its nuclear retention by possibly modulating PHLPP2 activity which subdues cellular Nrf2 responses by activating Fyn kinase. Pull-down assay using morin-conjugated beads indicated the binding affinity of morin towards PHLPP2. Molecular docking also revealed the propensity of morin to occupy the active site of PHLPP2 enzyme. Thus, dietary phytochemical morin was observed to counteract oxidant-induced hepatocellular damage by promoting Nrf2-regulated transcriptional induction. The findings support the novel role of morin in potentiating Nrf2 responses by limiting PHLPP2 and hence Fyn kinase activation. Therefore, morin may be exploited in developing novel therapeutic strategy aimed at enhancing Nrf2 responses. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Osteocytes exposed to far field of therapeutic ultrasound promotes osteogenic cellular activities in pre-osteoblasts through soluble factors.

    PubMed

    Fung, Chak-Hei; Cheung, Wing-Hoi; Pounder, Neill M; Harrison, Andrew; Leung, Kwok-Sui

    2014-07-01

    acoustic differences of LIPUS at various axial distances. Furthermore, we found that the soluble factors secreted by far field LIPUS exposed osteocytes could further promote pre-osteoblasts cell migration, maturation (transition of cell proliferation into osteogenic differentiation), and matrix calcification. In summary, our results of this present study indicated that axial distance beyond near field could transmit ultrasound energy to osteocyte more efficiently. The LIPUS exposed osteocytes conveyed mechanical signals to pre-osteoblasts and regulated their osteogenic cellular activities via paracrine factors secretion. The soluble factors secreted by far field exposed osteocytes led to promotion in migration and maturation in pre-osteoblasts. This finding demonstrated the positive effects of far field LIPUS on stimulating osteocytes and promoting mechanotransduction between osteocytes and osteoblasts. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Development of a novel fluorogenic proteolytic beacon for in vivo detection and imaging of tumour-associated matrix metalloproteinase-7 activity.

    PubMed Central

    McIntyre, J Oliver; Fingleton, Barbara; Wells, K Sam; Piston, David W; Lynch, Conor C; Gautam, Shiva; Matrisian, Lynn M

    2004-01-01

    The present study describes the in vivo detection and imaging of tumour-associated MMP-7 (matrix metalloproteinase-7 or matrilysin) activity using a novel polymer-based fluorogenic substrate PB-M7VIS, which serves as a selective 'proteolytic beacon' (PB) for this metalloproteinase. PB-M7VIS is built on a PAMAM (polyamido amino) dendrimer core of 14.2 kDa, covalently coupled with an Fl (fluorescein)-labelled peptide Fl(AHX)RPLALWRS(AHX)C (where AHX stands for aminohexanoic acid) and with TMR (tetramethylrhodamine). PB-M7VIS is efficiently and selectively cleaved by MMP-7 with a k (cat)/ K (m) value of 1.9x10(5) M(-1).s(-1) as measured by the rate of increase in Fl fluorescence (up to 17-fold for the cleavage of an optimized PB-M7VIS) with minimal change in the TMR fluorescence. The K (m) value for PB-M7VIS is approx. 0.5 microM, which is approx. two orders of magnitude lower when compared with that for an analogous soluble peptide, indicating efficient interaction of MMP-7 with the synthetic polymeric substrate. With MMP-2 or -3, the k (cat)/ K (m) value for PB-M7VIS is approx. 56- or 13-fold lower respectively, when compared with MMP-7. In PB-M7VIS, Fl(AHX)RPLALWRS(AHX)C is a selective optical sensor of MMP-7 activity and TMR serves to detect both the uncleaved and cleaved reagents. Each of these can be visualized as subcutaneous fluorescent phantoms in a mouse and optically discriminated based on the ratio of green/red (Fl/TMR) fluorescence. The in vivo specificity of PB-M7VIS was tested in a mouse xenograft model. Intravenous administration of PB-M7VIS gave significantly enhanced Fl fluorescence from MMP-7-positive tumours, but not from control tumours ( P <0.0001), both originally derived from SW480 human colon cancer cells. Prior systemic treatment of the tumour-bearing mice with an MMP inhibitor BB-94 ([4-( N -hydroxyamino)-2 R -isobutyl-3 S -(thienylthiomethyl)-succinyl]-L-phenylalanine- N -methylamide), markedly decreased the Fl fluorescence over the MMP-7

  4. A retroviral promoter and a cellular enhancer define a bipartite element which controls env ERVWE1 placental expression.

    PubMed

    Prudhomme, Sarah; Oriol, Guy; Mallet, François

    2004-11-01

    The HERV-W family contains hundreds of loci diversely expressed in several physiological and pathological contexts. A unique locus termed ERVWE1 encodes an envelope glycoprotein (syncytin) involved in hominoid placental physiology. Here we show that syncytin expression is regulated by a bipartite element consisting of a cyclic AMP (cAMP)-inducible long terminal repeat (LTR) retroviral promoter adjacent to a cellular enhancer conferring a high level of expression and placental tropism. Deletion mutant analysis showed that the ERVWE1 5' LTR contains binding sites essential for basal placental activity in the region from positions +1 to +125. The region from positions +125 to +310 represents a cAMP-responsive core HERV-W promoter active in all cell types. Site-directed mutagenesis analysis highlighted the complexity of U3 regulation. ERVWE1 placenta-specific positive (e.g., T240) and negative (e.g., G71) regulatory sites were identified, as were essential sites required for basic activity (e.g., A247). The flanking sequences of the ERVWE1 provirus contain several putative regulatory elements. The upstream HERV-H and HERV-P LTRs were found to be inactive. Conversely, the 436-bp region located between the HERV-P LTR and ERVWE1 was shown to be an upstream regulatory element (URE) which is significantly active in placenta cells. This URE acts as a tissue-specific enhancer. Genetic and functional analyses of hominoid UREs revealed large differences between UREs of members of the Hominidae and the Hylobatidae. These data allowed the identification of a positive regulatory region from positions -436 to -128, a mammalian apparent LTR retrotransposon negative regulatory region from positions -128 to -67, and a trophoblast-specific enhancer (TSE) from positions -67 to -35. Putative AP-2, Sp-1, and GCMa binding sites are essential constituents of the 33-bp TSE.

  5. Shock wave-induced ATP release from osteosarcoma U2OS cells promotes cellular uptake and cytotoxicity of methotrexate.

    PubMed

    Qi, Baochang; Yu, Tiecheng; Wang, Chengxue; Wang, Tiejun; Yao, Jihang; Zhang, Xiaomeng; Deng, Pengfei; Xia, Yongning; Junger, Wolfgang G; Sun, Dahui

    2016-10-03

    Osteosarcoma is the most prevalent primary malignant bone tumor, but treatment is difficult and prognosis remains poor. Recently, large-dose chemotherapy has been shown to improve outcome but this approach can cause many side effects. Minimizing the dose of chemotherapeutic drugs and optimizing their curative effects is a current goal in the management of osteosarcoma patients. In our study, trypan blue dye exclusion assay was performed to investigate the optimal conditions for the sensitization of osteosarcoma U2OS cells. Cellular uptake of the fluorophores Lucifer Yellow CH dilithium salt and Calcein was measured by qualitative and quantitative methods. Human MTX ELISA Kit and MTT assay were used to assess the outcome for osteosarcoma U2OS cells in the present of shock wave and methotrexate. To explore the mechanism, P2X7 receptor in U2OS cells was detected by immunofluorescence and the extracellular ATP levels was detected by ATP assay kit. All data were analyzed using SPSS17.0 statistical software. Comparisons were made with t test between two groups. Treatment of human osteosarcoma U2OS cells with up to 450 shock wave pulses at 7 kV or up to 200 shock wave pulses at 14 kV had little effect on cell viability. However, this shock wave treatment significantly promoted the uptake of Calcein and Lucifer Yellow CH by osteosarcoma U2OS cells. Importantly, shock wave treatment also significantly enhanced the uptake of the chemotherapy drug methotrexate and increased the rate of methotrexate-induced apoptosis. We found that shock wave treatment increased the extracellular concentration of ATP and that KN62, an inhibitor of P2X7 receptor reduced the capacity methotrexate-induced apoptosis. Our results suggest that shock wave treatment promotes methotrexate-induced apoptosis by altering cell membrane permeability in a P2X7 receptor-dependent manner. Shock wave treatment may thus represent a possible adjuvant therapy for osteosarcoma.

  6. A Retroviral Promoter and a Cellular Enhancer Define a Bipartite Element Which Controls env ERVWE1 Placental Expression

    PubMed Central

    Prudhomme, Sarah; Oriol, Guy; Mallet, François

    2004-01-01

    The HERV-W family contains hundreds of loci diversely expressed in several physiological and pathological contexts. A unique locus termed ERVWE1 encodes an envelope glycoprotein (syncytin) involved in hominoid placental physiology. Here we show that syncytin expression is regulated by a bipartite element consisting of a cyclic AMP (cAMP)-inducible long terminal repeat (LTR) retroviral promoter adjacent to a cellular enhancer conferring a high level of expression and placental tropism. Deletion mutant analysis showed that the ERVWE1 5′ LTR contains binding sites essential for basal placental activity in the region from positions +1 to +125. The region from positions +125 to +310 represents a cAMP-responsive core HERV-W promoter active in all cell types. Site-directed mutagenesis analysis highlighted the complexity of U3 regulation. ERVWE1 placenta-specific positive (e.g., T240) and negative (e.g., G71) regulatory sites were identified, as were essential sites required for basic activity (e.g., A247). The flanking sequences of the ERVWE1 provirus contain several putative regulatory elements. The upstream HERV-H and HERV-P LTRs were found to be inactive. Conversely, the 436-bp region located between the HERV-P LTR and ERVWE1 was shown to be an upstream regulatory element (URE) which is significantly active in placenta cells. This URE acts as a tissue-specific enhancer. Genetic and functional analyses of hominoid UREs revealed large differences between UREs of members of the Hominidae and the Hylobatidae. These data allowed the identification of a positive regulatory region from positions −436 to −128, a mammalian apparent LTR retrotransposon negative regulatory region from positions −128 to −67, and a trophoblast-specific enhancer (TSE) from positions −67 to −35. Putative AP-2, Sp-1, and GCMa binding sites are essential constituents of the 33-bp TSE. PMID:15507602

  7. Murine retroviral but not human cellular promoters induce in vivo erythroid-specific deregulation that can be partially prevented by insulators.

    PubMed

    Robert-Richard, Elodie; Richard, Emmanuel; Malik, Punam; Ged, Cécile; de Verneuil, Hubert; Moreau-Gaudry, François

    2007-01-01

    We are developing lentiviral vectors for gene therapy of red blood cell disorders that co-express a transgene in an erythroid-specific manner and the O(6)-methylguanine-DNA-methyltransferase (MGMT) selective gene in a constitutive way. We report that transduction of murine hematopoietic stem cells (HSCs) with a human phosphoglycerate kinase promoter-based vector at low multiplicity of infection (MOI) does not result in a selective in vivo expansion in the presence of alkylating agents. In contrast, by replacing this cellular promoter with the powerful retroviral-derived myeloproliferative sarcoma virus enhancer, negative control region-deleted, dl587rev primer-binding site substituted promoter, the vector allowed efficient chemoprotection of transduced HSCs at low MOI. However, this promoter interacted with the erythroid HS40/ankyrin enhancer/promoter driving green fluorescent protein, leading to an unexpected loss of erythroid specificity. A partial restoration of tissue-specific expression was obtained by interposition of insulator sequences between the expression units. Alternatively, we found that the strong human cellular elongation factor1-alpha promoter allows similar chemoprotection but without any deregulation of the erythroid-specific promoter in the absence of insulators. These data demonstrate that the level of in vivo deregulation induced by a promoter is not correlated with its transcriptional activity.

  8. CD147 and AGR2 expression promote cellular proliferation and metastasis of head and neck squamous cell carcinoma

    SciTech Connect

    Sweeny, Larissa; Liu, Zhiyong; Bush, Benjamin D.; Hartman, Yolanda; Zhou, Tong; Rosenthal, Eben L.

    2012-08-15

    The signaling pathways facilitating metastasis of head and neck squamous cell carcinoma (HNSCC) cells are not fully understood. CD147 is a transmembrane glycoprotein known to induce cell migration and invasion. AGR2 is a secreted peptide also known to promote cell metastasis. Here we describe their importance in the migration and invasion of HNSCC cells (FADU and OSC-19) in vitro and in vivo. In vitro, knockdown of CD147 or AGR2 decreased cellular proliferation, migration and invasion. In vivo, knockdown of CD147 or AGR2 expression decreased primary tumor growth as well as regional and distant metastasis. -- Highlights: Black-Right-Pointing-Pointer We investigated AGR2 in head and neck squamous cell carcinoma for the first time. Black-Right-Pointing-Pointer We explored the relationship between AGR2 and CD147 for the first time. Black-Right-Pointing-Pointer AGR2 and CD147 appear to co-localize in head and squamous cell carcinoma samples. Black-Right-Pointing-Pointer Knockdown of both AGR2 and CD147 reduced migration and invasion in vitro. Black-Right-Pointing-Pointer Knockdown of both AGR2 and CD147 decreased metastasis in vivo.

  9. Heparin-Promoted Cellular Uptake of the Cell-Penetrating Glycosaminoglycan Binding Peptide, GBPECP, Depends on a Single Tryptophan.

    PubMed

    Hung, Li-Chun; Jiang, Ingjye; Chen, Chien-Jung; Lu, Jia-Yin; Hsieh, Yi-Fen; Kuo, Ping-Hsieh; Hung, Yi-Lin; Wang, Lily Hui-Ching; Chang, Margaret Dah-Tsyr; Sue, Shih-Che

    2017-02-17

    A 10-residue, glycosaminoglycan-binding peptide, GBPECP, derived from human eosinophil cationic protein has been recently designated as a potent cell-penetrating peptide. A model system containing peptide, glycan, and lipid was monitored by nuclear magnetic resonance (NMR) spectroscopy to determine the cell-penetrating mechanism. Heparin octasaccharide with dodecylphosphocholine (DPC) lipid micelle was titrated into the GBPECP solution. Our data revealed substantial roles for the charged residues Arg5 and Lys7 in recognizing heparin, whereas Arg3 had less effect. The aromatic residue Trp4 acted as an irreplaceable moiety for membrane insertion, as the replacement of Trp4 with Arg4 abolished cell penetration, although it significantly improved the heparin-binding ability. GBPECP bound either heparin or lipid in the presence or absence of the other ligand indicating that the peptide has two alternative binding sites: Trp4 is responsible for lipid insertion, and Arg5 and Lys7 are for GAG binding. We developed a molecular model showing that the two effects synergistically promote the penetration. The loss of either effect would abolish the penetration. GBPECP has been proven to enter cells through macropinocytosis. The GBPECP treatment inhibited A549 lung cancer cell migration and invasion, implying that the cellular microenvironment would be modulated by GBPECP internalization. The intracellular penetration of GBPECP leading to inhibition of epithelial cell migration and invasion depends on the presence of the tryptophan residue in its sequence compared with similar derivative peptides. Therefore, GBPECP shows substantial potential as a novel delivery therapeutic through rapid and effective internalization and interference with cell mobility.

  10. Interplay between TAp73 Protein and Selected Activator Protein-1 (AP-1) Family Members Promotes AP-1 Target Gene Activation and Cellular Growth.

    PubMed

    Subramanian, Deepa; Bunjobpol, Wilawan; Sabapathy, Kanaga

    2015-07-24

    Unlike p53, which is mutated at a high rate in human cancers, its homologue p73 is not mutated but is often overexpressed, suggesting a possible context-dependent role in growth promotion. Previously, we have shown that co-expression of TAp73 with the proto-oncogene c-Jun can augment cellular growth and potentiate transactivation of activator protein (AP)-1 target genes such as cyclin D1. Here, we provide further mechanistic insights into the cooperative activity between these two transcription factors. Our data show that TAp73-mediated AP-1 target gene transactivation relies on c-Jun dimerization and requires the canonical AP-1 sites on target gene promoters. Interestingly, only selected members of the Fos family of proteins such as c-Fos and Fra1 were found to cooperate with TAp73 in a c-Jun-dependent manner to transactivate AP-1 target promoters. Inducible expression of TAp73 led to the recruitment of these Fos family members to the AP-1 target promoters on which TAp73 was found to be bound near the AP-1 site. Consistent with the binding of TAp73 and AP-1 members on the target promoters in a c-Jun-dependent manner, TAp73 was observed to physically interact with c-Jun specifically at the chromatin via its carboxyl-terminal region. Furthermore, co-expression of c-Fos or Fra1 was able to cooperate with TAp73 in potentiating cellular growth, similarly to c-Jun. These data together suggest that TAp73 plays a vital role in activation of AP-1 target genes via direct binding to c-Jun at the target promoters, leading to enhanced loading of other AP-1 family members, thereby leading to cellular growth.

  11. Effects of antiinflammatory agents on mouse skin tumor promotion, epidermal DNA synthesis, phorbol ester-induced cellular proliferation, and production of plasminogen activator.

    PubMed

    Viaje, A; Slaga, T J; Wigler, M; Weinstein, I B

    1977-05-01

    The antinflammatory ateroids fluocinoine acetonide, fluocinonide, and fluclorolone acetonide were found to be very effectiveinhibitory agents of mouse skin tumor promotion. These steroids also drastically inhibited epidermal DNA synthesis and epidermal cellular proliferation induced by a phorbal ester tumor promoter. In addition, these compounds were potent inhibitors, of plasminogen activator production in tumor cell cultures. The clinically used non-steroidal antiinflammatory agents oxyphenbutazone, indomethacin, and Seclazone also inhibite tumor promotion but were much less effective. Although these agents are useful against inflammatory disorders in general when given p.o., in our studies they had little effect on inflammation and epidermal cellular proliferation induced by a phorbol ester tumor promoter when given topically. The afore mentioned nonsteroidal antiinflammatory agents also had little effect on epidermal DNA synthesis. Oxyphenbutazone and indomethacin were less potent inhibitors of plasminogen activator production in tumor cells than were the antiinflammatory steroids, and Seclazone produced a negligible inhibition. There is, therefore, a general correlation in the potencies of a series of steroidal antiinflammatory agents for inhibition of tumor promotion and their ability to inhibit plasminogen activator production by tumor cell cultures and epidermal DNA synthesis.

  12. Viral Replication Protein Inhibits Cellular Cofilin Actin Depolymerization Factor to Regulate the Actin Network and Promote Viral Replicase Assembly

    PubMed Central

    Kovalev, Nikolay; de Castro Martín, Isabel Fernández; Barajas, Daniel; Risco, Cristina; Nagy, Peter D.

    2016-01-01

    RNA viruses exploit host cells by co-opting host factors and lipids and escaping host antiviral responses. Previous genome-wide screens with Tomato bushy stunt virus (TBSV) in the model host yeast have identified 18 cellular genes that are part of the actin network. In this paper, we show that the p33 viral replication factor interacts with the cellular cofilin (Cof1p), which is an actin depolymerization factor. Using temperature-sensitive (ts) Cof1p or actin (Act1p) mutants at a semi-permissive temperature, we find an increased level of TBSV RNA accumulation in yeast cells and elevated in vitro activity of the tombusvirus replicase. We show that the large p33 containing replication organelle-like structures are located in the close vicinity of actin patches in yeast cells or around actin cable hubs in infected plant cells. Therefore, the actin filaments could be involved in VRC assembly and the formation of large viral replication compartments containing many individual VRCs. Moreover, we show that the actin network affects the recruitment of viral and cellular components, including oxysterol binding proteins and VAP proteins to form membrane contact sites for efficient transfer of sterols to the sites of replication. Altogether, the emerging picture is that TBSV, via direct interaction between the p33 replication protein and Cof1p, controls cofilin activities to obstruct the dynamic actin network that leads to efficient subversion of cellular factors for pro-viral functions. In summary, the discovery that TBSV interacts with cellular cofilin and blocks the severing of existing filaments and the formation of new actin filaments in infected cells opens a new window to unravel the way by which viruses could subvert/co-opt cellular proteins and lipids. By regulating the functions of cofilin and the actin network, which are central nodes in cellular pathways, viruses could gain supremacy in subversion of cellular factors for pro-viral functions. PMID:26863541

  13. p53 promotes cellular survival in a context-dependent manner by directly inducing the expression of haeme-oxygenase-1.

    PubMed

    Nam, S Y; Sabapathy, K

    2011-11-03

    A variety of cellular insults activate the tumour suppressor p53, leading generally to cell-cycle arrest or apoptosis. However, it is not inconceivable that cellular protective mechanisms may be required to keep cells alive while cell-fate decisions are made. In this respect, p53 has been suggested to perform functions that allow cells to survive, by halting of the cell-cycle, and thus preventing immediate cell death. Nonetheless, the existence of direct pro-survival p53 target genes regulating cellular survival is lacking. We show here evidence for p53-dependent cellular survival in a context-dependent manner. Both mouse and human cells lacking p53 are hypersensitive to hydrogen peroxide (H(2)O(2))-induced cell death compared with their isogenic wild-type counterparts. By contrast, p53(-/-) cells are expectedly resistant to cell death upon exposure to DNA-damaging agents such as cisplatin (CDDP) and etoposide. Although p53 and its classical targets such as p21 and Mdm2 are activated by both H(2)O(2) and CDDP, we found that the expression of haeme-oxygenase-1 (HO-1)-an antioxidant and antiapoptotic protein-was directly induced only upon H(2)O(2) treatment in a p53-dependent manner. Consistently, p53, but not its homologue p73, activated HO-1 expression and was bound to the HO-1 promoter specifically only upon H(2)O(2) treatment. Moreover, silencing HO-1 expression enhanced cell death upon H(2)O(2) treatment only in p53-proficient cells. Finally, H(2)O(2)-mediated cell death was rescued significantly in p53-deficient cells by antioxidant treatment, as well as by bilirubin, a by-product of HO-1 metabolism. Taken together, these data demonstrate a direct role for p53 in promoting cellular survival in a context-specific manner through the activation of a direct transcriptional target, HO-1.

  14. Transcriptional activation of the herpes simplex virus type 1 UL38 promoter conferred by the cis-acting downstream activation sequence is mediated by a cellular transcription factor.

    PubMed

    Guzowski, J F; Singh, J; Wagner, E K

    1994-12-01

    The herpes simplex virus (HSV) type 1 strict late (gamma) UL38 promoter contains three cis-acting transcriptional elements: a TATA box, a specific initiator element, and the downstream activation sequence (DAS). DAS is located between positions +20 and +33 within the 5' untranslated leader region and strongly influences transcript levels during productive infection. In this communication, we further characterize DAS and investigate its mechanism of action. DAS function has a strict spacing requirement, and DAS contains an essential 6-bp core element. A similarly positioned element from the gamma gC gene (UL44) has partial DAS function within the UL38 promoter context, and the promoter controlling expression of the gamma US11 transcript contains an identically located element with functional and sequence similarity to UL38 DAS. These data suggest that downstream elements are a common feature of many HSV gamma promoters. Results with recombinant viruses containing modifications of the TATA box or initiator element of the UL38 promoter suggest that DAS functions to increase transcription initiation and not the efficiency of transcription elongation. In vitro transcription assays using uninfected HeLa nuclear extracts show that, as in productive infection with recombinant viruses, the deletion of DAS from the UL38 promoter dramatically decreases RNA expression. Finally, electrophoretic mobility shift assays and UV cross-linking experiments show that DAS DNA forms a specific, stable complex with a cellular protein (the DAS-binding factor) of approximately 35 kDa. These data strongly suggest that the interaction of cellular DAS-binding factor with DAS is required for efficient expression of UL38 and other HSV late genes.

  15. Simvastatin inhibits the core promoter of the TXNRD1 gene and lowers cellular TrxR activity in HepG2 cells.

    PubMed

    Ekström, Lena; Johansson, Maria; Monostory, Katalin; Rundlöf, Anna-Klara; Arnér, Elias S J; Björkhem-Bergman, Linda

    2013-01-04

    Thioredoxin reductase 1 (TrxR1) is a selenocysteine-containing redox-active enzyme that is thought to be important during carcinogenesis. We have recently shown that treatment with statins, HMGCoA reductase inhibitors, reduces the levels of TrxR1 in liver of both rat and human. The reduced TrxR1 levels were correlated with inhibited hepatocarcinogenesis in a rat model. The aim of the present study was to investigate if statins affect the activity of the human TXNRD1 core promoter, which guides expression of TrxR1, and if the effects by statins on TrxR1 expression in liver could be reproduced in a cellular model system. We found that simvastatin and fluvastatin decreased cellular TrxR activity in cultured human liver-derived HepG2 cells with approximately 40% (p<0.05). Simvastatin, but not fluvastatin or atorvastatin, also reduced the TXNRD1 promoter activity in HepG2 cells by 20% (p<0.01). In line with this result, TrxR1 mRNA levels decreased with about 25% in non-transfected HepG2 cells upon treatment with simvastatin (p<0.01). Concomitant treatment with mevalonate could not reverse these effects of simvastatin, indicating that other mechanisms than HMGCoA reductase inhibition was involved. Also, simvastatin did not inhibit sulforaphane-derived stimulation of the TXNRD1 core promoter activity, suggesting that the inhibition by simvastatin was specific for basal and not Nrf2-activated TrxR1 expression. In contrast to simvastatin, the two other statins tested, atorvastatin or fluvastatin, did not influence the TrxR1 mRNA levels. Thus, our results reveal a simvastatin-specific reduction of cellular TrxR1 levels that at least in part involves direct inhibitory effects on the basal activity of the core promoter guiding TrxR1 expression.

  16. Cellular localization of the embryo-specific hybrid PRP from Zea mays, and characterization of promoter regulatory elements of its gene.

    PubMed

    Jose-Estanyol, M; Puigdomènech, P

    2012-10-01

    The expression, regulation and cellular localization of ZmHyPRP, a gene marker of embryo differentiation whose expression declines after ABA induction, was studied. ZmHyPRP is a proline-rich protein with a C-terminal domain having eight cysteines in a CM8 pattern. Transient expression in onion epidermal cells, transformed with a 2x35S::ZmHyPRP-GFP construction, indicated the protein is present in vesicles lining the membrane of the cell. The ZmHyPRP gene expression is under the control of classic promoter seed-specific regulatory elements such as Sph/RY and G-boxes, suggesting regulation by B3 and b-ZIP transcription factors. Promoter deletion analysis, by particle-bombardment transient transformation of maize immature embryos with serial deletions of the promoter fused to GUS, showed the presence of two negative regulatory elements, NE1 (-2070 to -1280) and NE2 (-232 to -178), in the ZmHyPRP promoter. By selective deletion or mutation of ZmHyPRP regulatory promoter elements we conclude that the promoter expression is attenuated by the NE2 element as well as by the G-box2 and the Sph1-2 box together with the G-box2.

  17. Differential effects of Sp cellular transcription factors on viral promoter activation by varicella-zoster virus (VZV) IE62 protein.

    PubMed

    Khalil, Mohamed I; Ruyechan, William T; Hay, John; Arvin, Ann

    2015-11-01

    The immediate early (IE) 62 protein is the major varicella-zoster virus (VZV) regulatory factor. Analysis of the VZV genome revealed 40 predicted GC-rich boxes within 36 promoters. We examined effects of ectopic expression of Sp1-Sp4 on IE62- mediated transactivation of three viral promoters. Ectopic expression of Sp3 and Sp4 enhanced IE62 activation of ORF3 and gI promoters while Sp3 reduced IE62 activation of ORF28/29 promoter and VZV DNA replication. Sp2 reduced IE62 transactivation of gI while Sp1 had no significant influence on IE62 activation with any of these viral promoters. Electrophoretic mobility shift assays (EMSA) confirmed binding of Sp1 and Sp3 but not Sp2 and Sp4 to the gI promoter. Sp1-4 bound to IE62 and amino acids 238-258 of IE62 were important for the interaction with Sp3 and Sp4 as well as Sp1. This work shows that Sp family members have differential effects on IE62-mediated transactivation in a promoter-dependent manner. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. UV induced ubiquitination of the yeast Rad4–Rad23 complex promotes survival by regulating cellular dNTP pools

    PubMed Central

    Zhou, Zheng; Humphryes, Neil; van Eijk, Patrick; Waters, Raymond; Yu, Shirong; Kraehenbuehl, Rolf; Hartsuiker, Edgar; Reed, Simon H.

    2015-01-01

    Regulating gene expression programmes is a central facet of the DNA damage response. The Dun1 kinase protein controls expression of many DNA damage induced genes, including the ribonucleotide reductase genes, which regulate cellular dNTP pools. Using a combination of gene expression profiling and chromatin immunoprecipitation, we demonstrate that in the absence of DNA damage the yeast Rad4–Rad23 nucleotide excision repair complex binds to the promoters of certain DNA damage response genes including DUN1, inhibiting their expression. UV radiation promotes the loss of occupancy of the Rad4–Rad23 complex from the regulatory regions of these genes, enabling their induction and thereby controlling the production of dNTPs. We demonstrate that this regulatory mechanism, which is dependent on the ubiquitination of Rad4 by the GG-NER E3 ligase, promotes UV survival in yeast cells. These results support an unanticipated regulatory mechanism that integrates ubiquitination of NER DNA repair factors with the regulation of the transcriptional response controlling dNTP production and cellular survival after UV damage. PMID:26150418

  19. CREB-2, a Cellular CRE-Dependent Transcription Repressor, Functions in Association with Tax as an Activator of the Human T-Cell Leukemia Virus Type 1 Promoter

    PubMed Central

    Gachon, Frederic; Peleraux, Annick; Thebault, Sabine; Dick, Joelle; Lemasson, Isabelle; Devaux, Christian; Mesnard, Jean-Michel

    1998-01-01

    The Tax protein of the human T-cell leukemia virus type 1 (HTLV-1) has been implicated in human T-cell immortalization. The primary function of Tax is to transcriptionally activate the HTLV-1 promoter, but Tax is also known to stimulate expression of cellular genes. It has been reported to associate with several transcription factors, as well as proteins not involved in transcription. To better characterize potential cellular targets of Tax present in infected cells, a Saccharomyces cerevisiae two-hybrid screening was performed with a cDNA library constructed from the HTLV-1-infected MT2 cell line. From this study, we found 158 positive clones representing seven different cDNAs. We focused our attention on the cDNA encoding the transcription factor CREB-2. CREB-2 is an unconventional member of the ATF/CREB family in that it lacks a protein kinase A (PKA) phosphorylation site and has been reported to negatively regulate transcription from the cyclic AMP response element of the human enkephalin promoter. In this study, we demonstrate that CREB-2 cooperates with Tax to enhance viral transcription and that its basic-leucine zipper C-terminal domain is required for both in vitro and in vivo interactions with Tax. Our results confirm that the activation of the HTLV-1 promoter through Tax and factors of the ATF/CREB family is PKA independent. PMID:9733879

  20. Oncogenic activation of the PI3K/Akt pathway promotes cellular glucose uptake by downregulating the expression of thioredoxin-interacting protein.

    PubMed

    Hong, Shin Yee; Yu, Fa-Xing; Luo, Yan; Hagen, Thilo

    2016-05-01

    Oncogenic activation of the PI3K/Akt pathway is known to play an important role to promote glucose metabolism in cancer cells. However, the molecular mechanism through which the PI3K/Akt signalling pathway promotes glucose utilisation in cancer cells is still not well understood. It has recently been shown that the oncogenic activation of the PI3K/Akt/mTOR signalling in lung adenocarcinoma is important in promoting the localisation of glucose transporter 1 (GLUT1) at the plasma membrane. We thus hypothesised that the effect of constitutive activation of the PI3K/AKT signalling on glucose metabolism is mediated by thioredoxin interacting protein (TXNIP), a known regulator of the GLUT1 plasma membrane localisation. Consistent with previous studies, inhibition of the PI3K/Akt pathway decreased cellular glucose uptake. Furthermore, inhibition of PI3K/Akt signalling in non-small cell lung cancer (NSCLC) cell lines using clinically used tyrosine kinase inhibitors (TKIs) resulted in a decrease in GLUT1 membrane localisation. We also observed that inhibition of the PI3K/Akt pathway in various cell lines, including NSCLC cells, resulted in an increase in TXNIP expression. Importantly, knockdown of TXNIP using siRNA in the NSCLC cells promoted GLUT1 to be localised at the plasma membrane and reversed the effect of PI3K/Akt inhibitors. Together, our results suggest that the oncogenic activation of PI3K/Akt signalling promotes cellular glucose uptake, at least in part, through the regulation of TXNIP expression. This mechanism may contribute to the Warburg effect in cancer cells.

  1. The 1.5 GHz electromagnetic near-field used for cellular phones does not promote rat liver carcinogenesis in a medium-term liver bioassay.

    PubMed

    Imaida, K; Taki, M; Watanabe, S; Kamimura, Y; Ito, T; Yamaguchi, T; Ito, N; Shirai, T

    1998-10-01

    We have recently established that local exposure to a 929.2 MHz electromagnetic near-field, used for cellular phones, does not promote rat liver carcinogenesis in a medium-term bioassay system. In the present study, a 1.439 GHz electromagnetic near-field (EMF), another microwave band employed for cellular phones in Japan, was similarly investigated. Time division multiple access (TDMA) signals for the Personal Digital Cellular (PDC) Japanese cellular telephone standard system were directed to rats through a quarter-wavelength monopole antenna. Numerical dosimetry showed that the peak SARs within the liver were 1.91-0.937 W/kg, while the whole-body average specific absorption rates (SARs) were 0.680-0.453 W/kg, when the time-averaged antenna radiation power was 0.33 W. Exposure was for 90 min a day, 5 days a week, over 6 weeks, to male F344 rats given a single dose of diethylnitrosamine (200 mg/kg, i.p.) 2 weeks previously. At week 3, all rats were subjected to a two-thirds partial hepatectomy. At week 8, the experiment was terminated and the animals were killed. Carcinogenic potential was scored by comparing the numbers and areas of the induced glutathione S-transferase placental form (GST-P)-positive foci in the livers of exposed (48) and sham-exposed rats (48). Despite increased serum levels of corticosterone, adrenocorticotropic hormone (ACTH) and melatonin, the numbers and the areas of GST-P-positive foci were not significantly altered by the exposure. These findings clearly indicated that local body exposure to a 1.439 GHz EMF, as in the case of a 929.2 MHz field, has no promoting effect on rat liver carcinogenesis in the present model.

  2. Cellular Transcription Factors Induced in Trigeminal Ganglia during Dexamethasone-Induced Reactivation from Latency Stimulate Bovine Herpesvirus 1 Productive Infection and Certain Viral Promoters

    PubMed Central

    Workman, Aspen; Eudy, James; Smith, Lynette; Frizzo da Silva, Leticia; Sinani, Devis; Bricker, Halie; Cook, Emily; Doster, Alan

    2012-01-01

    Bovine herpesvirus 1 (BHV-1), an alphaherpesvirinae subfamily member, establishes latency in sensory neurons. Elevated corticosteroid levels, due to stress, reproducibly triggers reactivation from latency in the field. A single intravenous injection of the synthetic corticosteroid dexamethasone (DEX) to latently infected calves consistently induces reactivation from latency. Lytic cycle viral gene expression is detected in sensory neurons within 6 h after DEX treatment of latently infected calves. These observations suggested that DEX stimulated expression of cellular genes leads to lytic cycle viral gene expression and productive infection. In this study, a commercially available assay—Bovine Gene Chip—was used to compare cellular gene expression in the trigeminal ganglia (TG) of calves latently infected with BHV-1 versus DEX-treated animals. Relative to TG prepared from latently infected calves, 11 cellular genes were induced more than 10-fold 3 h after DEX treatment. Pentraxin three, a regulator of innate immunity and neurodegeneration, was stimulated 35- to 63-fold after 3 or 6 h of DEX treatment. Two transcription factors, promyelocytic leukemia zinc finger (PLZF) and Slug were induced more than 15-fold 3 h after DEX treatment. PLZF or Slug stimulated productive infection 20- or 5-fold, respectively, and Slug stimulated the late glycoprotein C promoter more than 10-fold. Additional DEX-induced transcription factors also stimulated productive infection and certain viral promoters. These studies suggest that DEX-inducible cellular transcription factors and/or signaling pathways stimulate lytic cycle viral gene expression, which subsequently leads to successful reactivation from latency in a small subset of latently infected neurons. PMID:22190728

  3. Different Persistence of the Cellular Effects Promoted by Protein Kinase CK2 Inhibitors CX-4945 and TDB.

    PubMed

    Girardi, Cristina; Ottaviani, Daniele; Pinna, Lorenzo A; Ruzzene, Maria

    2015-01-01

    We compare the cellular efficacy of two selective and cell permeable inhibitors of the antiapoptotic kinase CK2. One inhibitor, CX-4945, is already in clinical trials as antitumor drug, while the other, TDB, has been recently successfully employed to demonstrate the implication of CK2 in cellular (dis)regulation. We found that, upon treatment of cancer cells with these compounds, the extent of inhibition of endocellular CK2 is initially comparable but becomes significantly different after the inhibitors are removed from the cellular medium: while in CX-4945 treated cells CK2 activity is restored to control level after 24 h, in the case of TDB it is still strongly reduced after 4 days from removal. The biological effects of the two inhibitors have been analyzed by performing clonogenic, spheroid formation, and wound-healing assays: we observed a permanent inhibition of cell survival and migration in TDB-treated cells even after the inhibitor removal, while in the case of CX-4945 only its maintenance for the whole duration of the assay insured a persisting effect. We suggest that the superiority of TDB in maintaining kinase activity inhibited and perpetuating the consequent effects is an added value to be considered when planning new therapies based on CK2 targeting.

  4. Herpes simplex virus 1 VP22 regulates translocation of multiple viral and cellular proteins and promotes neurovirulence.

    PubMed

    Tanaka, Michiko; Kato, Akihisa; Satoh, Yuko; Ide, Takahiro; Sagou, Ken; Kimura, Kayo; Hasegawa, Hideki; Kawaguchi, Yasushi

    2012-05-01

    Herpes simplex virus 1 (HSV-1) protein VP22, encoded by the UL49 gene, is a major virion tegument protein. In the present study, we showed that VP22 was required for efficient redistribution of viral proteins VP16, VP26, ICP0, ICP4, and ICP27 and of cellular protein Hsc-70 to the cytoplasm of infected cells. We found that two dileucine motifs in VP22, at amino acids 235 and 236 and amino acids 251 and 252, were necessary for VP22 regulation of the proper cytoplasmic localization of these viral and cellular proteins. The dileucine motifs were also required for proper cytoplasmic localization of VP22 itself and for optimal expression of viral proteins VP16, VP22, ICP0, UL41, and glycoprotein B. Interestingly, a recombinant mutant virus with alanines substituted for the dileucines at amino acids 251 and 252 had a 50% lethal dose (LD(50)) for neurovirulence in mice following intracerebral inoculation about 10(3)-fold lower than the LD(50) of the repaired virus. Furthermore, the replication and spread of this mutant virus in the brains of mice following intracerebral inoculation were significantly impaired relative to those of the repaired virus. The ability of VP22 to regulate the localization and expression of various viral and cellular proteins, as shown in this study, was correlated with an increase in viral replication and neurovirulence in the experimental murine model. Thus, HSV-1 VP22 is a significant neurovirulence factor in vivo.

  5. Promotion

    PubMed Central

    Alam, Hasan B.

    2013-01-01

    This article gives an overview of the promotion process in an academic medical center. A description of different promotional tracks, tenure and endowed chairs, and the process of submitting an application is provided. Finally, some practical advice about developing skills and attributes that can help with academic growth and promotion is dispensed. PMID:24436683

  6. No Effect of the Transforming Growth Factor {beta}1 Promoter Polymorphism C-509T on TGFB1 Gene Expression, Protein Secretion, or Cellular Radiosensitivity

    SciTech Connect

    Reuther, Sebastian; Metzke, Elisabeth; Bonin, Michael; Petersen, Cordula; Dikomey, Ekkehard; Raabe, Annette

    2013-02-01

    Purpose: To study whether the promoter polymorphism (C-509T) affects transforming growth factor {beta}1 gene (TGFB1) expression, protein secretion, and/or cellular radiosensitivity for both human lymphocytes and fibroblasts. Methods and Materials: Experiments were performed with lymphocytes taken either from 124 breast cancer patients or 59 pairs of normal monozygotic twins. We used 15 normal human primary fibroblast strains as controls. The C-509T genotype was determined by polymerase chain reaction-restriction fragment length polymorphism or TaqMan single nucleotide polymorphism (SNP) genotyping assay. The cellular radiosensitivity of lymphocytes was measured by G0/1 assay and that of fibroblasts by colony assay. The amount of extracellular TGFB1 protein was determined by enzyme-linked immunosorbent assay, and TGFB1 expression was assessed via microarray analysis or reverse transcription-polymerase chain reaction. Results: The C-509T genotype was found not to be associated with cellular radiosensitivity, neither for lymphocytes (breast cancer patients, P=.811; healthy donors, P=.181) nor for fibroblasts (P=.589). Both TGFB1 expression and TGFB1 protein secretion showed considerable variation, which, however, did not depend on the C-509T genotype (protein secretion: P=.879; gene expression: lymphocytes, P=.134, fibroblasts, P=.605). There was also no general correlation between TGFB1 expression and cellular radiosensitivity (lymphocytes, P=.632; fibroblasts, P=.573). Conclusion: Our data indicate that any association between the SNP C-509T of TGFB1 and risk of normal tissue toxicity cannot be ascribed to a functional consequence of this SNP, either on the level of gene expression, protein secretion, or cellular radiosensitivity.

  7. Sertraline promotes hippocampus-derived neural stem cells differentiating into neurons but not glia and attenuates LPS-induced cellular damage.

    PubMed

    Peng, Zheng-Wu; Xue, Yun-Yun; Wang, Hua-Ning; Wang, Huai-Hai; Xue, Fen; Kuang, Fang; Wang, Bai-Ren; Chen, Yun-Chun; Zhang, Li-Yi; Tan, Qing-Rong

    2012-01-10

    Sertraline is one of the most commonly used antidepressants in clinic. Although it is well accepted that sertraline exerts its action through inhibition of the reuptake of serotonin at presynaptic site in the brain, its effect on the neural stem cells (NSCs) has not been well elucidated. In this study, we utilized NSCs separated from the hippocampus of fetal rat to investigate the effect of sertraline on the proliferation and differentiation of NSCs. The study demonstrated that sertraline had no effect on NSCs proliferation but it significantly promoted NSCs to differentiate into serotoninergic neurons other than glia cells. Furthermore, we found that sertraline protected NSCs against the lipopolysaccharide-induced cellular damage. These data indicate that sertraline can promote neurogenesis and protect the viability of neural stem cells. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Interleukin-6 Promotes the Migration and Cellular Senescence and Inhibits Apoptosis of Human Intrahepatic Biliary Epithelial Cells.

    PubMed

    Li, Ran; Dong, Juan; Bu, Xiu-Qin; Huang, Yong; Yang, Jing-Yu; Dong, Xuan; Liu, Jie

    2017-08-31

    Biliary epithelial cells (BEC) are closely related to some immune regulatory bile duct diseases. However, the complexity and polymorphism of the morphology and function of bile duct cells have hindered further investigation. Therefore, the aim of this study is to investigate how interleukin-6 (IL-6) affects the migration, cellular senescence and apoptosis of human intrahepatic biliary epithelial cells (HIBECs). The HIBECs were stimulated by different concentrations of IL-6 (0, 5, 10, 15 and 20 ng/ml, respectively). Transwell assay was performed in order to measure the migration abilities, positive β-Galactosidase staining for the cellular senescence of HIBECs, MTT assay for changes of proliferation after IL-6 treatment and flow cytometry for cell cycle and apoptosis. The reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting were conducted in order to detect the mRNA and protein expressions of epithelial-mesenchymal transition (EMT) markers in HIBECs. In comparison to the 0 ng/ml group, in the 5, 10, 15 and 20 ng/ml groups, a significant increase in the number of migratory HIBECs, proliferation, along with mRNA and protein expressions of EMT markers was observed. While the mRNA and protein expressions of epithelial markers, the number of β-Galactosidase positive staining cells, as well as apoptosis rate of HIBECs dramatic decreased. Further, the aforementioned changes were significantly more evident in the 15 and 20 ng/ml groups in comparison to the 5 and 10 ng/ml groups. IL-6 may stimulate EMT, enhance the migration and proliferation, and inhibit apoptosis of HIBECs, thus delaying cellular senescence. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Linking ATM Promoter Methylation to Cell Cycle Protein Expression in Brain Tumor Patients: Cellular Molecular Triangle Correlation in ATM Territory.

    PubMed

    Mehdipour, P; Karami, F; Javan, Firouzeh; Mehrazin, M

    2015-08-01

    Ataxia telangiectasia mutated (ATM) is a key gene in DNA double-strand break (DSB), and therefore, most of its disabling genetic alterations play an important initiative role in many types of cancer. However, the exact role of ATM gene and its epigenetic alterations, especially promoter methylation in different grades of brain tumors, remains elusive. The current study was conducted to query possible correlations among methylation statue of ATM gene, ATM/ retinoblastoma (RB) protein expression, D1853N ATM polymorphism, telomere length (TL), and clinicopathological characteristics of various types of brain tumors. Isolated DNA from 30 fresh tissues was extracted from different types of brain tumors and two brain tissues from deceased normal healthy individuals. DNAs were treated with bisulfate sodium using DNA modification kit (Qiagen). Methylation-specific polymerase chain reaction (MSP-PCR) was implicated to determine the methylation status of treated DNA templates confirmed by promoter sequencing. Besides, the ATM and RB protein levels were determined by immunofluorescence (IF) assay using monoclonal mouse antihuman against ATM, P53, and RB proteins. To achieve an interactive correlation, the methylation data were statistically analyzed by considering TL and D1853N ATM polymorphism. More than 73% of the brain tumors were methylated in ATM gene promoter. There was strong correlation between ATM promoter methylation and its protein expression (p < 0.001). As a triangle, meaningful correlation was also found between methylated ATM promoter and ATM protein expression with D1853N ATM polymorphism (p = 0.01). ATM protein expression was not in line with RB protein expression while it was found to be significantly correlated with ATM promoter methylation (p = 0.01). There was significant correlation between TL neither with ATM promoter methylation nor with ATM protein expression nor with D1853N polymorphism. However, TL has shown strong correlation with patient's age and

  10. Cell type specific repression of the varicella zoster virus immediate early gene 62 promoter by the cellular Oct-2 transcription factor.

    PubMed

    Patel, Y; Gough, G; Coffin, R S; Thomas, S; Cohen, J I; Latchman, D S

    1998-05-11

    The cellular transcription factor Oct-2.1 has previously been shown to repress the transactivation of the varicella zoster virus (VZV) immediate early gene promoter by viral transactivators but not to inhibit its basal activity. In the case of the related virus herpes simplex virus (HSV), the effect of Oct-2 on the IE promoters has been shown to be cell type specific and to differ between the different alternatively spliced forms of Oct-2. Here we show that as well as Oct-2.1, the Oct-2.4 and 2.5 isoforms which are expressed in neuronal cells can inhibit transactivation of the VZV immediate early promoter regardless of the cell type used. In contrast, all the isoforms of Oct-2 can inhibit basal activity of the VZV promoter in neuronal cells but not in other cell types indicating that this effect is cell type specific. These effects are discussed in terms of the differential regulation of latent infections with HSV or VZV in dorsal root ganglia.

  11. Specific cellular accumulation of photofrin-II in EC cells promotes photodynamic treatment efficacy in esophageal cancer.

    PubMed

    Gao, Shegan; Liang, Shuo; Ding, Kaili; Qu, Zhifeng; Wang, Ying; Feng, Xiaoshan

    2016-06-01

    Photodynamic therapy (PDT), which uses a light-sensitive compound and laser irradiation, is a light-based oncological treatment modality. PDT offers an alternative, less invasive treatment for various malignant tumors, such as esophageal cancer (EC), through a photochemical reaction induced by photofrin-II or other oncotropic photosensitizers without severe complications. Previous studies has shown that cancerous tissues accumulated more photosensitizers than paired normal tissues, however, whether it is cellular or vascular mechanisms remains unknown. Herein, in vivo and in vitro examinations were performed to study the mechanisms by which photofrin-II effectively and specifically killed EC cells. In this study, EC tissue of patients treated with photofrin-II, human ESCC cellline SHEEC and parental normal cellline SHEE, primary culture cells of EC tissue were used. The concentration of photofrin-II in cells were evaluated by high-performance liquid chromatography (HPLC). The results exhibited that accumulation of photofrin-II in cancerous cells were significantly higher than that in non-cancerous cells (p<0.05) under certain dose and time period of incubation of photofrin-II. In summary, our study showed that, photofrin-II specifically accumulated in EC cells in vivo and in vitro after controlling for vascular factors, which provided strong evidence that maybe the cellular factor is the main mechanism by which photofrin-II-mediated PDT selectively caused EC cells death. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Matrix Metalloproteinase 3 Promotes Cellular Anti-Dengue Virus Response via Interaction with Transcription Factor NFκB in Cell Nucleus

    PubMed Central

    Zuo, Xiangyang; Pan, Wen; Feng, Tingting; Shi, Xiaohong; Dai, Jianfeng

    2014-01-01

    Dengue virus (DENV), the causative agent of human Dengue hemorrhagic fever, is a mosquito-borne virus of immense global health importance. Characterization of cellular factors promoting or inhibiting DENV infection is important for understanding the mechanism of DENV infection. In this report, MMP3 (stromelysin-1), a secretory endopeptidase that degrades extracellular matrices, has been shown promoting cellular antiviral response against DENV infection. Quantitative RT-PCR and Western Blot showed that the expression of MMP3 was upregulated in DENV-infected RAW264.7 cells. The intracellular viral loads were significantly higher in MMP3 silenced cells compared with controls. The expression level of selective anti-viral cytokines were decreased in MMP3 siRNA treated cells, and the transcription factor activity of NFκB was significantly impaired upon MMP3 silencing during DENV infection. Further, we found that MMP3 moved to cell nucleus upon DENV infection and colocalized with NFκB P65 in nucleus. Co-immunoprecipitation analysis suggested that MMP3 directly interacted with NFκB in nucleus during DENV infection and the C-terminal hemopexin-like domain of MMP3 was required for the interaction. This study suggested a novel role of MMP3 in nucleus during viral infection and provided new evidence for MMPs in immunomodulation. PMID:24416274

  13. Matrix metalloproteinase 3 promotes cellular anti-dengue virus response via interaction with transcription factor NFκB in cell nucleus.

    PubMed

    Zuo, Xiangyang; Pan, Wen; Feng, Tingting; Shi, Xiaohong; Dai, Jianfeng

    2014-01-01

    Dengue virus (DENV), the causative agent of human Dengue hemorrhagic fever, is a mosquito-borne virus of immense global health importance. Characterization of cellular factors promoting or inhibiting DENV infection is important for understanding the mechanism of DENV infection. In this report, MMP3 (stromelysin-1), a secretory endopeptidase that degrades extracellular matrices, has been shown promoting cellular antiviral response against DENV infection. Quantitative RT-PCR and Western Blot showed that the expression of MMP3 was upregulated in DENV-infected RAW264.7 cells. The intracellular viral loads were significantly higher in MMP3 silenced cells compared with controls. The expression level of selective anti-viral cytokines were decreased in MMP3 siRNA treated cells, and the transcription factor activity of NFκB was significantly impaired upon MMP3 silencing during DENV infection. Further, we found that MMP3 moved to cell nucleus upon DENV infection and colocalized with NFκB P65 in nucleus. Co-immunoprecipitation analysis suggested that MMP3 directly interacted with NFκB in nucleus during DENV infection and the C-terminal hemopexin-like domain of MMP3 was required for the interaction. This study suggested a novel role of MMP3 in nucleus during viral infection and provided new evidence for MMPs in immunomodulation.

  14. The Cellular TAR RNA Binding Protein, TRBP, Promotes HIV-1 Replication Primarily by Inhibiting the Activation of Double-Stranded RNA-Dependent Kinase PKR▿

    PubMed Central

    Sanghvi, Viraj R.; Steel, Laura F.

    2011-01-01

    The TAR RNA binding protein, TRBP, is a cellular double-stranded RNA (dsRNA) binding protein that can promote the replication of HIV-1 through interactions with the viral TAR element as well as with cellular proteins that affect the efficiency of translation of viral transcripts. The structured TAR element, present on all viral transcripts, can impede efficient translation either by sterically blocking access of translation initiation factors to the 5′-cap or by activating the dsRNA-dependent kinase, PKR. Several mechanisms by which TRBP can facilitate translation of viral transcripts have been proposed, including the binding and unwinding of TAR and the suppression of PKR activation. Further, TRBP has been identified as a cofactor of Dicer in the processing of microRNAs (miRNAs), and sequestration of TRBP by TAR in infected cells has been proposed as a viral countermeasure to potential host cell RNA interference-based antiviral activities. Here, we have addressed the relative importance of these various roles for TRBP in HIV-1 replication. Using Jurkat T cells, primary human CD4+ T cells, and additional cultured cell lines, we show that depletion of TRBP has no effect on viral replication when PKR activation is otherwise blocked. Moreover, the presence of TAR-containing mRNAs does not affect the efficacy of cellular miRNA silencing pathways. These results establish that TRBP, when expressed at physiological levels, promotes HIV-1 replication mainly by suppressing the PKR-mediated antiviral response, while its contribution to HIV-1 replication through PKR-independent pathways is minimal. PMID:21937648

  15. Zinc Finger-Containing Cellular Transcription Corepressor ZBTB25 Promotes Influenza Virus RNA Transcription and Is a Target for Zinc Ejector Drugs.

    PubMed

    Chen, Shu-Chuan; Jeng, King-Song; Lai, Michael M C

    2017-10-15

    viral replication is its dual transcription functions, namely, promoting viral RNA transcription through binding to the U-rich region of vRNA and suppressing cellular interferon production. ZBTB25 contains a zinc finger domain that is required for RNA-inhibitory activity by chelating zinc ions. Disulfiram treatment disrupts the zinc finger functions, effectively repressing IAV replication. Based on our findings, we demonstrate that ZBTB25 regulates IAV RNA transcription and replication and serves as a promising antiviral target for IAV treatment. Copyright © 2017 American Society for Microbiology.

  16. uPARAP/Endo180 is essential for cellular uptake of collagen and promotes fibroblast collagen adhesion.

    PubMed

    Engelholm, Lars H; List, Karin; Netzel-Arnett, Sarah; Cukierman, Edna; Mitola, David J; Aaronson, Hannah; Kjøller, Lars; Larsen, Jørgen K; Yamada, Kenneth M; Strickland, Dudley K; Holmbeck, Kenn; Danø, Keld; Birkedal-Hansen, Henning; Behrendt, Niels; Bugge, Thomas H

    2003-03-31

    The uptake and lysosomal degradation of collagen by fibroblasts constitute a major pathway in the turnover of connective tissue. However, the molecular mechanisms governing this pathway are poorly understood. Here, we show that the urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180, a novel mesenchymally expressed member of the macrophage mannose receptor family of endocytic receptors, is a key player in this process. Fibroblasts from mice with a targeted deletion in the uPARAP/Endo180 gene displayed a near to complete abrogation of collagen endocytosis. Furthermore, these cells had diminished initial adhesion to a range of different collagens, as well as impaired migration on fibrillar collagen. These studies identify a central function of uPARAP/Endo180 in cellular collagen interactions.

  17. Kaposi's sarcoma-associated herpesvirus ORF57 interacts with cellular RNA export cofactors RBM15 and OTT3 to promote expression of viral ORF59.

    PubMed

    Majerciak, Vladimir; Uranishi, Hiroaki; Kruhlak, Michael; Pilkington, Guy R; Massimelli, Maria Julia; Bear, Jenifer; Pavlakis, George N; Felber, Barbara K; Zheng, Zhi-Ming

    2011-02-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) encodes ORF57, which promotes the accumulation of specific KSHV mRNA targets, including ORF59 mRNA. We report that the cellular export NXF1 cofactors RBM15 and OTT3 participate in ORF57-enhanced expression of KSHV ORF59. We also found that ectopic expression of RBM15 or OTT3 augments ORF59 production in the absence of ORF57. While RBM15 promotes the accumulation of ORF59 RNA predominantly in the nucleus compared to the levels in the cytoplasm, we found that ORF57 shifted the nucleocytoplasmic balance by increasing ORF59 RNA accumulation in the cytoplasm more than in the nucleus. By promoting the accumulation of cytoplasmic ORF59 RNA, ORF57 offsets the nuclear RNA accumulation mediated by RBM15 by preventing nuclear ORF59 RNA from hyperpolyadenylation. ORF57 interacts directly with the RBM15 C-terminal portion containing the SPOC domain to reduce RBM15 binding to ORF59 RNA. Although ORF57 homologs Epstein-Barr virus (EBV) EB2, herpes simplex virus (HSV) ICP27, varicella-zoster virus (VZV) IE4/ORF4, and cytomegalovirus (CMV) UL69 also interact with RBM15 and OTT3, EBV EB2, which also promotes ORF59 expression, does not function like KSHV ORF57 to efficiently prevent RBM15-mediated nuclear accumulation of ORF59 RNA and RBM15's association with polyadenylated RNAs. Collectively, our data provide novel insight elucidating a molecular mechanism by which ORF57 promotes the expression of viral intronless genes.

  18. Membrane Surface-Associated Helices Promote Lipid Interactions and Cellular Uptake of Human Calcitonin-Derived Cell Penetrating Peptides

    PubMed Central

    Herbig, Michael E.; Weller, Kathrin; Krauss, Ulrike; Beck-Sickinger, Annette G.; Merkle, Hans P.; Zerbe, Oliver

    2005-01-01

    hCT(9-32) is a human calcitonin (hCT)-derived cell-penetrating peptide that has been shown to translocate the plasma membrane of mammalian cells. It has been suggested as a cellular carrier for drugs, green fluorescent protein, and plasmid DNA. Because of its temperature-dependent cellular translocation resulting in punctuated cytoplasmatic distribution, its uptake is likely to follow an endocytic pathway. To gain insight into the molecular orientation of hCT(9-32) when interacting with lipid models, and to learn more about its mode of action, various biophysical techniques from liposome partitioning to high-resolution NMR spectroscopy were utilized. Moreover, to establish the role of individual residues for the topology of its association with the lipid membrane, two mutants of hCT(9-32), i.e., W30-hCT(9-32) and A23-hCT(9-32), were also investigated. Although unstructured in aqueous solution, hCT(9-32) adopted two short helical stretches when bound to dodecylphosphocholine micelles, extending from Thr10 to Asn17 and from Gln24 to Val29. A23-hCT(9-32), in which the helix-breaking Pro23 was replaced by Ala, displayed a continuous α-helix extending from residue 12 to 26. Probing with the spin label 5-doxylstearate revealed that association with dodecylphosphocholine micelles was such that the helix engaged in parallel orientation to the micelle surface. Moreover, the Gly to Trp exchange in W30-hCT(9-32) resulted in a more stable anchoring of the C-terminal segment close to the interface, as reflected by a twofold increase in the partition coefficient in liposomes. Interestingly, tighter binding to model membranes was associated with an increase in the in vitro uptake in human cervix epithelial andenocarcinoma cell line cells. Liposome leakage studies excluded pore formation, and the punctuated fluorescence pattern of internalized peptide indicated vesicular localization and, in conclusion, strongly suggested an endocytic pathway of translocation. PMID:16183886

  19. Induction of TRPV5 expression by small activating RNA targeting gene promoter as a novel approach to regulate cellular calcium transportation.

    PubMed

    Yang, Bicheng; Duan, Xiaolu; Wu, Wenzheng; Ji, Weidong; Wu, Wenqi; Zhong, Wen; Zhao, Zhijian; Li, Shujue; Liu, Yang; Zeng, Guohua

    2014-10-02

    Promoter-targeted small activating RNAs (saRNAs) have been shown to be able to induce target gene expression, a mechanism known as RNA activation (RNAa). The present study tested whether saRNA can induce the overexpression of TRPV5 in human cells derived from the kidney and subsequently manipulate cell calcium uptake. Three saRNAs complementary to the TRPV5 promoter were synthesized and transfected into cells. TRPV5 expression at the RNA and protein levels was analyzed by quantitative real-time PCR and Western blotting respectively. For functional study, transcellular Ca(2+) transportation was tested by fura-2 analysis. Dihydrotestosterone (DHT), a suppressor of cellular calcium transportation, was administered to challenge the activating effect of selected saRNA. One of these synthesized saRNAs, ds-2939, significantly induced the expression of TRPV5 at both mRNA and protein levels. Fura-2 analysis revealed that the intracellular Ca(2+) concentration was elevated by ds-2939. DHT treatment reduced transmembrane Ca(2+) transport, which was partially antagonized by ds-2939. Our results suggest that a saRNA targeting TRPV5 promoter can be utilized to manipulate the transmembrane Ca(2+) transport by upregulating the expression of TRPV5 and may serve as an alternative for the treatment of Ca(2+) balance-related diseases. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Functional characterization of calliphorid cell death genes and cellularization gene promoters for controlling gene expression and cell viability in early embryos.

    PubMed

    Edman, R M; Linger, R J; Belikoff, E J; Li, F; Sze, S-H; Tarone, A M; Scott, M J

    2015-02-01

    The New World screwworm fly, Cochliomyia hominivorax, and the Australian sheep blow fly, Lucilia cuprina, are major pests of livestock. The sterile insect technique was used to eradicate C. hominivorax from North and Central America. This involved area-wide releases of male and female flies that had been sterilized by radiation. Genetic systems have been developed for making 'male-only' strains that would improve the efficiency of genetic control of insect pests. One system involves induction of female lethality in embryos through activation of a pro-apoptotic gene by the tetracycline-dependent transactivator. Sex-specific expression is achieved using an intron from the transformer gene, which we previously isolated from several calliphorids. In the present study, we report the isolation of the promoters from the C. hominivorax slam and Lucilia sericata bnk cellularization genes and show that these promoters can drive expression of a GFP reporter gene in early embryos of transgenic L. cuprina. Additionally, we report the isolation of the L. sericata pro-apoptotic hid and rpr genes, identify conserved motifs in the encoded proteins and determine the relative expression of these genes at different stages of development. We show that widespread expression of the L. sericata pro-apoptotic genes was lethal in Drosophila melanogaster. The isolated gene promoters and pro-apoptotic genes could potentially be used to build transgenic embryonic sexing strains of calliphorid livestock pests.

  1. The Cellular Generation and a New Risk Environment: Implications for Texting-Based Sexual Health Promotion Interventions among Minority Young Men Who Have Sex with Men

    PubMed Central

    George, Sheba; Phillips, Robert; McDavitt, Bryce; Adams, Wallis; Mutchler, Matt G.

    2012-01-01

    African American and Latino young men who have sex with men (YMSM) are at the forefront of the U.S. HIV epidemic. As members of the “cellular generation,” these youth are very likely to use text messaging; yet, relatively little research has explored use of text messaging as a tool for sexual health promotion, particularly among racial ethnic minorities who are also sexual minorities. We report on the results of ten focus groups conducted among African American and Latino YMSM, aged 18–25, regarding their current texting practices and the feasibility/acceptability of text messaging as a means of conducting sexual health promotion. Our analyses revealed four main themes around their texting behaviors, texting preferences, perceived advantages/disadvantages of texting, and the “etiquette” of texting. We consider implications of these findings for the development of texting-based sexual health promotion interventions, particularly in conjunction with other existing interventions operating in a new risk environment. PMID:23304294

  2. Cellular nucleic-acid-binding protein, a transcriptional enhancer of c-Myc, promotes the formation of parallel G-quadruplexes.

    PubMed

    Borgognone, Mariana; Armas, Pablo; Calcaterra, Nora B

    2010-05-27

    G-rich sequences that contain stretches of tandem guanines can form four-stranded, intramolecular stable DNA structures called G-quadruplexes (termed G4s). Regulation of the equilibrium between single-stranded and G4 DNA in promoter regions is essential for control of gene expression in the cell. G4s are highly stable structures; however, their folding kinetics are slow under physiological conditions. CNBP (cellular nucleic-acid-binding protein) is a nucleic acid chaperone that binds the G4-forming G-rich sequence located within the NHE (nuclease hypersensitivity element) III of the c-Myc proto-oncogene promoter. Several reports have demonstrated that CNBP enhances the transcription of c-Myc in vitro and in vivo; however, none of these reports have assessed the molecular mechanisms responsible for this control. In the present study, by means of Taq polymerase stop assays, electrophoretic mobility-shift assays and CD spectroscopy, we show that CNBP promotes the formation of parallel G4s to the detriment of anti-parallel G4s, and its nucleic acid chaperone activity is required for this effect. These findings are the first to implicate CNBP as a G4-folding modulator and, furthermore, assign CNBP a novel mode-of-action during c-Myc transcriptional regulation.

  3. Nucleolar Follistatin Promotes Cancer Cell Survival under Glucose-deprived Conditions through Inhibiting Cellular rRNA Synthesis*

    PubMed Central

    Gao, Xiangwei; Wei, Saisai; Lai, Kairan; Sheng, Jinghao; Su, Jinfeng; Zhu, Junqiao; Dong, Haojie; Hu, Hu; Xu, Zhengping

    2010-01-01

    Solid tumor development is frequently accompanied by energy-deficient conditions such as glucose deprivation and hypoxia. Follistatin (FST), a secretory protein originally identified from ovarian follicular fluid, has been suggested to be involved in tumor development. However, whether it plays a role in cancer cell survival under energy-deprived conditions remains elusive. In this study, we demonstrated that glucose deprivation markedly enhanced the expression and nucleolar localization of FST in HeLa cells. The nucleolar localization of FST relied on its nuclear localization signal (NLS) comprising the residues 64–87. Localization of FST to the nucleolus attenuated rRNA synthesis, a key process for cellular energy homeostasis and cell survival. Overexpression of FST delayed glucose deprivation-induced apoptosis, whereas down-regulation of FST exerted the opposite effect. These functions depended on the presence of an intact NLS because the NLS-deleted mutant of FST lost the rRNA inhibition effect and the cell protective effect. Altogether, we identified a novel nucleolar function of FST, which is of importance in the modulation of cancer cell survival in response to glucose deprivation. PMID:20843798

  4. The Vaccine Adjuvant Chitosan Promotes Cellular Immunity via DNA Sensor cGAS-STING-Dependent Induction of Type I Interferons.

    PubMed

    Carroll, Elizabeth C; Jin, Lei; Mori, Andres; Muñoz-Wolf, Natalia; Oleszycka, Ewa; Moran, Hannah B T; Mansouri, Samira; McEntee, Craig P; Lambe, Eimear; Agger, Else Marie; Andersen, Peter; Cunningham, Colm; Hertzog, Paul; Fitzgerald, Katherine A; Bowie, Andrew G; Lavelle, Ed C

    2016-03-15

    The cationic polysaccharide chitosan is an attractive candidate adjuvant capable of driving potent cell-mediated immunity, but the mechanism by which it acts is not clear. We show that chitosan promotes dendritic cell maturation by inducing type I interferons (IFNs) and enhances antigen-specific T helper 1 (Th1) responses in a type I IFN receptor-dependent manner. The induction of type I IFNs, IFN-stimulated genes and dendritic cell maturation by chitosan required the cytoplasmic DNA sensor cGAS and STING, implicating this pathway in dendritic cell activation. Additionally, this process was dependent on mitochondrial reactive oxygen species and the presence of cytoplasmic DNA. Chitosan-mediated enhancement of antigen specific Th1 and immunoglobulin G2c responses following vaccination was dependent on both cGAS and STING. These findings demonstrate that a cationic polymer can engage the STING-cGAS pathway to trigger innate and adaptive immune responses.

  5. Suppression and promotion of tumor growth by monoclonal antibodies to ErbB-2 differentially correlate with cellular uptake.

    PubMed Central

    Hurwitz, E; Stancovski, I; Sela, M; Yarden, Y

    1995-01-01

    Amplification and overexpression of the erbB-2/neu protooncogene are frequently associated with aggressive clinical course of certain human adenocarcinomas, and therefore the encoded surface glycoprotein is considered a candidate target for immunotherapy. We previously generated a series of anti-ErbB-2 monoclonal antibodies (mAbs) that either accelerate or inhibit the tumorigenic growth of erbB-2-transformed murine fibroblasts. The present study extended this observation to a human tumor cell line grown as xenografts in athymic mice and addressed the biochemical differences between the two classes of mAbs. We show that the inhibitory effect is dominant in an antibody mixture, and it depends on antibody bivalency. By using radiolabeled mAbs we found that all of three tumor-inhibitory mAbs became rapidly inaccessible to acid treatment when incubated with tumor cells. However, a tumor-stimulatory mAb remained accessible to extracellular treatments, indicating that it did not undergo endocytosis. In addition, intracellular fragments of the inhibitory mAbs, but not of the stimulatory mAb, were observed. Electron microscopy of colloidal gold-antibody conjugates confirmed the absence of endocytosis of the stimulatory mAb but detected endocytic vesicles containing an inhibitory mAb. We conclude that acceleration of cell growth by ErbB-2 correlates with cell surface localization, whereas inhibition of tumor growth is associated with an intrinsic ability of anti-ErbB-2 mAbs to induce endocytosis. These conclusions are relevant to the selection of optimal mAbs for immunotherapy and may have implications for the mechanism of cellular transformation by an overexpressed erbB-2 gene. Images Fig. 3 Fig. 4 PMID:7724565

  6. Down-regulation of Dicer1 promotes cellular senescence and decreases the differentiation and stem cell-supporting capacities of mesenchymal stromal cells in patients with myelodysplastic syndrome.

    PubMed

    Zhao, Youshan; Wu, Dong; Fei, Chengming; Guo, Juan; Gu, Shuncheng; Zhu, Yang; Xu, Feng; Zhang, Zheng; Wu, Lingyun; Li, Xiao; Chang, Chunkang

    2015-02-01

    Although it has been reported that mesenchymal stromal cells are unable to provide sufficient hematopoietic support in myelodysplastic syndrome, the underlying mechanisms remain elusive. In this study, we found that mesenchymal stromal cells from patients with myelodysplastic syndrome displayed a significant increase in senescence, as evidenced by their decreased proliferative capacity, flattened morphology and increased expression of SA-β-gal and p21. Senescent mesenchymal stromal cells from patients had decreased differentiation potential and decreased stem cell support capacity. Gene knockdown of Dicer1, which was down-regulated in mesenchymal stromal cells from patients, induced senescence. The differentiation and stem cell-supporting capacities were significantly inhibited by Dicer1 knockdown. Overexpression of Dicer1 in mesenchymal stromal cells from patients reversed cellular senescence and enhanced stem cell properties. Furthermore, we identified reduced expression in the microRNA-17 family (miR-17-5p, miR-20a/b, miR-106a/b and miR-93) as a potential factor responsible for increased p21 expression, a key senescence mediator, in Dicer1 knockdown cells. Moreover, we found that miR-93 and miR-20a expression levels were significantly reduced in mesenchymal stromal cells from patients and miR-93/miR-20a gain of function resulted in a decrease of cellular senescence. Collectively, the results of our study show that mesenchymal stromal cells from patients with myelodysplastic syndrome are prone to senescence and that Dicer1 down-regulation promotes cellular senescence and decreases the differentiation and stem cell-supporting capacities of mesenchymal stromal cells. Dicer1 down-regulation seems to contribute to the insufficient hematopoietic support capacities of mesenchymal stromal cells from patients with myelodysplastic syndrome. Copyright© Ferrata Storti Foundation.

  7. An Lysophosphatidic Acid Receptors 1 and 3 Axis Governs Cellular Senescence of Mesenchymal Stromal Cells and Promotes Growth and Vascularization of Multiple Myeloma.

    PubMed

    Kanehira, Masahiko; Fujiwara, Tohru; Nakajima, Shinji; Okitsu, Yoko; Onishi, Yasushi; Fukuhara, Noriko; Ichinohasama, Ryo; Okada, Yoshinori; Harigae, Hideo

    2017-03-01

    Mesenchymal stromal cells (MSCs) are multipotent progenitor cells and there is much interest in how MSCs contribute to the regulation of the tumor microenvironment. Whether MSCs exert a supportive or suppressive effect on tumor progression is still controversial, but is likely dependent on a variety of factors that are tumor-type dependent. Multiple myeloma (MM) is characterized by growth of malignant plasma cells in the bone marrow. It has been shown that the progression of MM is governed by MSCs, which act as a stroma of the myeloma cells. Although stroma is created via mutual communication between myeloma cells and MSCs, the mechanism is poorly understood. Here we explored the role of lysophosphatidic acid (LPA) signaling in cellular events where MSCs were converted into either MM-supportive or MM-suppressive stroma. We found that myeloma cells stimulate MSCs to produce autotaxin, an indispensable enzyme for the biosynthesis of LPA, and LPA receptor 1 (LPA1) and 3 (LPA3) transduce opposite signals to MSCs to determine the fate of MSCs. LPA3-silenced MSCs (siLPA3-MSCs) exhibited cellular senescence-related phenotypes in vitro, and significantly promoted progression of MM and tumor-related angiogenesis in vivo. In contrast, siLPA1-MSCs showed resistance to cellular senescence in vitro, and efficiently delayed progression of MM and tumor-related angiogenesis in vivo. Consistently, anti-MM effects obtained by LPA1-silencing in MSCs were completely reproduced by systemic administration of Ki6425, an LPA1 antagonist. Collectively, our results indicate that LPA signaling determines the fate of MSCs and has potential as a therapeutic target in MM. Stem Cells 2017;35:739-753.

  8. The cellular protein hnRNP A2/B1 enhances HIV-1 transcription by unfolding LTR promoter G-quadruplexes

    PubMed Central

    Scalabrin, Matteo; Frasson, Ilaria; Ruggiero, Emanuela; Perrone, Rosalba; Tosoni, Elena; Lago, Sara; Tassinari, Martina; Palù, Giorgio; Richter, Sara N.

    2017-01-01

    G-quadruplexes are four-stranded conformations of nucleic acids that act as cellular epigenetic regulators. A dynamic G-quadruplex forming region in the HIV-1 LTR promoter represses HIV-1 transcription when in the folded conformation. This activity is enhanced by nucleolin, which induces and stabilizes the HIV-1 LTR G-quadruplexes. In this work by a combined pull-down/mass spectrometry approach, we consistently found hnRNP A2/B1 as an additional LTR-G-quadruplex interacting protein. Surface plasmon resonance confirmed G-quadruplex specificity over linear sequences and fluorescence resonance energy transfer analysis indicated that hnRNP A2/B1 is able to efficiently unfold the LTR G-quadruplexes. Evaluation of the thermal stability of the LTR G-quadruplexes in different-length oligonucleotides showed that the protein is fit to be most active in the LTR full-length environment. When hnRNP A2/B1 was silenced in cells, LTR activity decreased, indicating that the protein acts as a HIV-1 transcription activator. Our data highlight a tightly regulated control of transcription based on G-quadruplex folding/unfolding, which depends on interacting cellular proteins. These findings provide a deeper understanding of the viral transcription mechanism and may pave the way to the development of drugs effective against the integrated HIV-1, present both in actively and latently infected cells. PMID:28338097

  9. A single dose of inactivated hepatitis A vaccine promotes HAV-specific memory cellular response similar to that induced by a natural infection.

    PubMed

    Melgaço, Juliana Gil; Morgado, Lucas Nóbrega; Santiago, Marta Almeida; Oliveira, Jaqueline Mendes de; Lewis-Ximenez, Lia Laura; Hasselmann, Bárbara; Cruz, Oswaldo Gonçalves; Pinto, Marcelo Alves; Vitral, Claudia Lamarca

    2015-07-31

    Based on current studies on the effects of single dose vaccines on antibody production, Latin American countries have adopted a single dose vaccine program. However, no data are available on the activation of cellular response to a single dose of hepatitis A. Our study investigated the functional reactivity of the memory cell phenotype after hepatitis A virus (HAV) stimulation through administration of the first or second dose of HAV vaccine and compared the response to that of a baseline group to an initial natural infection. Proliferation assays showed that the first vaccine dose induced HAV-specific cellular response; this response was similar to that induced by a second dose or an initial natural infection. Thus, from the first dose to the second dose, increase in the frequencies of classical memory B cells, TCD8 cells, and central memory TCD4 and TCD8 cells were observed. Regarding cytokine production, increased IL-6, IL-10, TNF, and IFNγ levels were observed after vaccination. Our findings suggest that a single dose of HAV vaccine promotes HAV-specific memory cell response similar to that induced by a natural infection. The HAV-specific T cell immunity induced by primary vaccination persisted independently of the protective plasma antibody level. In addition, our results suggest that a single dose immunization system could serve as an alternative strategy for the prevention of hepatitis A in developing countries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. BubR1 Acts as a Promoter in Cellular Motility of Human Oral Squamous Cancer Cells through Regulating MMP-2 and MMP-9.

    PubMed

    Chou, Chou-Kit; Wu, Chang-Yi; Chen, Jeff Yi-Fu; Ng, Ming-Chong; Wang, Hui-Min David; Chen, Jen-Hao; Yuan, Shyng-Shiou F; Tsai, Eing-Mei; Chang, Jan-Gowth; Chiu, Chien-Chih

    2015-07-03

    BubR1 is a critical component of spindle assembly checkpoint, ensuring proper chromatin segregation during mitosis. Recent studies showed that BubR1 was overexpressed in many cancer cells, including oral squamous cell carcinomas (OSCC). However, the effect of BubR1 on metastasis of OSCC remains unclear. This study aimed to unravel the role of BubR1 in the progression of OSCC and confirm the expression of BubR1 in a panel of malignant OSCC cell lines with different invasive abilities. The results of quantitative real-time PCR showed that the mRNA level of BubR1 was markedly increased in four OSCC cell lines, Ca9-22, HSC3, SCC9 and Cal-27 cells, compared to two normal cells, normal human oral keratinocytes (HOK) and human gingival fibroblasts (HGF). Moreover, the expression of BubR1 in these four OSCC cell lines was positively correlated with their motility. Immunofluorescence revealed that BubR1 was mostly localized in the cytosol of human gingival carcinoma Ca9-22 cells. BubR1 knockdown significantly decreased cellular invasion but slightly affect cellular proliferation on both Ca9-22 and Cal-27 cells. Consistently, the activities of metastasis-associated metalloproteinases MMP-2 and MMP-9 were attenuated in BubR1 knockdown Ca9-22 cells, suggesting the role of BubR1 in promotion of OSCC migration. Our present study defines an alternative pathway in promoting metastasis of OSCC cells, and the expression of BubR1 could be a prognostic index in OSCC patients.

  11. The expression of S100P increases and promotes cellular proliferation by increasing nuclear translocation of β-catenin in endometrial cancer.

    PubMed

    Guo, Luyan; Chen, Shuqin; Jiang, Hongye; Huang, Jiaming; Jin, Wenyan; Yao, Shuzhong

    2014-01-01

    There is increasing evidence suggesting that S100P has a significant role in cancer, and is associated with poor clinical outcomes. The expression of S100P mRNA and protein in endometrial cancer and normal endometrium tissues was detected by real-time quantitative RT-PCR and immunohistochemistry. Moreover, we reduced the expression of S100P in HEC-1A and Ishikawa endometrial cancer cell lines by siRNA transfection. Based on the reduced S100P mRNA expression, we measured the effects of S100P on cellular proliferation by the cell-counting kit-8. Nuclear β-catenin protein level was detected by western blotting. Cyclin D1 and c-myc mRNA expression regulated by β-catenin was detected by real-time quantitative RT-PCR. We found that the expression of S100P mRNA and protein increased in endometrial cancer tissues compared with the normal endometrium. Local S100P expression progressively increased from pathologic differenciation grade 1 to 3. After reducing the S100P expression, the cellular proliferation ability, nuclear β-catenin protein level, cyclin D1 and c-myc mRNA levels reduced. It indicated that S100P could promote cell proliferation by increasing nuclear translocation of β-catenin. The expression of S100P mRNA and protein in endometrial cancer significantly increased and is associated with pathologic differenciation grade. S100P may promote endometrial cell proliferation by increasing nuclear translocation of β-catenin.

  12. BubR1 Acts as a Promoter in Cellular Motility of Human Oral Squamous Cancer Cells through Regulating MMP-2 and MMP-9

    PubMed Central

    Chou, Chou-Kit; Wu, Chang-Yi; Chen, Jeff Yi-Fu; Ng, Ming-Chong; Wang, Hui-Min David; Chen, Jen-Hao; Yuan, Shyng-Shiou F.; Tsai, Eing-Mei; Chang, Jan-Gowth; Chiu, Chien-Chih

    2015-01-01

    BubR1 is a critical component of spindle assembly checkpoint, ensuring proper chromatin segregation during mitosis. Recent studies showed that BubR1 was overexpressed in many cancer cells, including oral squamous cell carcinomas (OSCC). However, the effect of BubR1 on metastasis of OSCC remains unclear. This study aimed to unravel the role of BubR1 in the progression of OSCC and confirm the expression of BubR1 in a panel of malignant OSCC cell lines with different invasive abilities. The results of quantitative real-time PCR showed that the mRNA level of BubR1 was markedly increased in four OSCC cell lines, Ca9-22, HSC3, SCC9 and Cal-27 cells, compared to two normal cells, normal human oral keratinocytes (HOK) and human gingival fibroblasts (HGF). Moreover, the expression of BubR1 in these four OSCC cell lines was positively correlated with their motility. Immunofluorescence revealed that BubR1 was mostly localized in the cytosol of human gingival carcinoma Ca9-22 cells. BubR1 knockdown significantly decreased cellular invasion but slightly affect cellular proliferation on both Ca9-22 and Cal-27 cells. Consistently, the activities of metastasis-associated metalloproteinases MMP-2 and MMP-9 were attenuated in BubR1 knockdown Ca9-22 cells, suggesting the role of BubR1 in promotion of OSCC migration. Our present study defines an alternative pathway in promoting metastasis of OSCC cells, and the expression of BubR1 could be a prognostic index in OSCC patients. PMID:26151845

  13. Engineering a Biocompatible Scaffold with Either Micrometre or Nanometre Scale Surface Topography for Promoting Protein Adsorption and Cellular Response

    PubMed Central

    Le, Xuan; Poinern, Gérrard Eddy Jai; Ali, Nurshahidah; Berry, Cassandra M.; Fawcett, Derek

    2013-01-01

    Surface topographical features on biomaterials, both at the submicrometre and nanometre scales, are known to influence the physicochemical interactions between biological processes involving proteins and cells. The nanometre-structured surface features tend to resemble the extracellular matrix, the natural environment in which cells live, communicate, and work together. It is believed that by engineering a well-defined nanometre scale surface topography, it should be possible to induce appropriate surface signals that can be used to manipulate cell function in a similar manner to the extracellular matrix. Therefore, there is a need to investigate, understand, and ultimately have the ability to produce tailor-made nanometre scale surface topographies with suitable surface chemistry to promote favourable biological interactions similar to those of the extracellular matrix. Recent advances in nanoscience and nanotechnology have produced many new nanomaterials and numerous manufacturing techniques that have the potential to significantly improve several fields such as biological sensing, cell culture technology, surgical implants, and medical devices. For these fields to progress, there is a definite need to develop a detailed understanding of the interaction between biological systems and fabricated surface structures at both the micrometre and nanometre scales. PMID:23533416

  14. FGF-10 and specific structural elements of dermatan sulfate size and sulfation promote maximal keratinocyte migration and cellular proliferation

    PubMed Central

    Radek, Katherine A.; Taylor, Kristen R.; Gallo, Richard L.

    2009-01-01

    Fibroblast growth factor-10 (FGF-10) is essential for epithelial development, while other members of this family, such as FGF-7, are not. FGF-10 is abundantly released into wounds following injury, and likely an essential growth factor required for this process. To evaluate how activation of this growth factor is controlled, multiple glycosaminoglycans were combined with FGF-10 assayed by measurement of the proliferation of cell lines expressing FGF receptor-2-IIIb, or keratinocyte migration in an in vitro wound repair assay. Dermatan sulfate (DS) exhibited greater potency than heparan sulfate or other chondroitin sulfates found in wounds. Structural variants of DS between 10 and 20 disaccharides containing iduronic acid showed maximal capacity to enable FGF-10 receptor stimulation. Furthermore, FGF-10 and DS markedly enhanced migration of keratinocytes in an in vitro wound scratch assay, while FGF-7 or other glycosaminoglycans did not. These data strongly suggest that FGF-10 activity is uniquely important in wound repair and that specific DS structural properties are necessary to promote FGF-10 function. These observations identify a novel interplay between DS and FGF-10 in mediating wound repair. PMID:19152659

  15. Marginal Zone Precursor B Cells as Cellular Agents for Type I IFN Promoted Antigen Transport in Autoimmunity1

    PubMed Central

    Wang, John H.; Li, Jun; Wu, Qi; Yang, PingAr; Pawar, Rahul D.; Xie, Shutao; Timares, Laura; Raman, Chander; Chaplin, David D.; Lu, Lu; Mountz, John D.; Hsu, Hui-Chen

    2010-01-01

    The pathogenic connection of type I interferon (IFN) and its role in regulating the migration response of antigen (Ag)-delivery by B cells into lymphoid follicles in an autoimmune condition has not been well-identified. Here, we show that there was a significantly larger population of marginal zone precursor (MZ-P) B cells, defined as being IgMhiCD1dhiCD21hiCD23hi in the spleens of autoimmune BXD2 mice compared to B6 mice. MZ-P B cells were highly proliferative compared to marginal zone (MZ) and follicular (FO) B cells. The intra-follicular accumulation of MZ-P B cells in proximity to germinal centers (GCs) in BXD2 mice facilitates rapid Ag delivery to the GC area, whereas Ag-carrying MZ B cells, residing predominantly in the periphery, had a lower ability to carry an Ag into the GCs. IFNα, generated by plasmacytoid dendritic cells, induced the expression of CD69 and suppressed the sphingosine-1-phosphate–induced chemotactic response, promoting FO-oriented Ag transport by MZ-P B cells. Knockout of type I IFN receptor in BXD2 (BXD2-Ifnαr−/−) mice substantially diffused the intra-follicular MZ-P B cell conglomeration and shifted their location to the FO-MZ border near the marginal sinus, making Ag delivery to the FO interior less efficient. The development of spontaneous GCs was decreased in BXD2-Ifnαr−/− mice. Together, our results suggest that the MZ-P B cells are major Ag-delivery B cells and that the follicular entry of these B cells is highly regulated by type I IFN producing pDCs in the marginal sinus in the spleens of autoimmune BXD2 mice. PMID:19949066

  16. Calcitonin gene-related peptide promotes cellular changes in trigeminal neurons and glia implicated in peripheral and central sensitization

    PubMed Central

    2011-01-01

    Background Calcitonin gene-related peptide (CGRP), a neuropeptide released from trigeminal nerves, is implicated in the underlying pathology of temporomandibular joint disorder (TMD). Elevated levels of CGRP in the joint capsule correlate with inflammation and pain. CGRP mediates neurogenic inflammation in peripheral tissues by increasing blood flow, recruiting immune cells, and activating sensory neurons. The goal of this study was to investigate the capability of CGRP to promote peripheral and central sensitization in a model of TMD. Results Temporal changes in protein expression in trigeminal ganglia and spinal trigeminal nucleus were determined by immunohistochemistry following injection of CGRP in the temporomandibular joint (TMJ) capsule of male Sprague-Dawley rats. CGRP stimulated expression of the active forms of the MAP kinases p38 and ERK, and PKA in trigeminal ganglia at 2 and 24 hours. CGRP also caused a sustained increase in the expression of c-Fos neurons in the spinal trigeminal nucleus. In contrast, levels of P2X3 in spinal neurons were only significantly elevated at 2 hours in response to CGRP. In addition, CGRP stimulated expression of GFAP in astrocytes and OX-42 in microglia at 2 and 24 hours post injection. Conclusions Our results demonstrate that an elevated level of CGRP in the joint, which is associated with TMD, stimulate neuronal and glial expression of proteins implicated in the development of peripheral and central sensitization. Based on our findings, we propose that inhibition of CGRP-mediated activation of trigeminal neurons and glial cells with selective non-peptide CGRP receptor antagonists would be beneficial in the treatment of TMD. PMID:22145886

  17. Cellular Protein WDR11 Interacts with Specific Herpes Simplex Virus Proteins at the trans-Golgi Network To Promote Virus Replication

    PubMed Central

    Taylor, Kathryne E.

    2015-01-01

    ABSTRACT It has recently been proposed that the herpes simplex virus (HSV) protein ICP0 has cytoplasmic roles in blocking antiviral signaling and in promoting viral replication in addition to its well-known proteasome-dependent functions in the nucleus. However, the mechanisms through which it produces these effects remain unclear. While investigating this further, we identified a novel cytoplasmic interaction between ICP0 and the poorly characterized cellular protein WDR11. During an HSV infection, WDR11 undergoes a dramatic change in localization at late times in the viral replication cycle, moving from defined perinuclear structures to a dispersed cytoplasmic distribution. While this relocation was not observed during infection with viruses other than HSV-1 and correlated with efficient HSV-1 replication, the redistribution was found to occur independently of ICP0 expression, instead requiring viral late gene expression. We demonstrate for the first time that WDR11 is localized to the trans-Golgi network (TGN), where it interacts specifically with some, but not all, HSV virion components, in addition to ICP0. Knockdown of WDR11 in cultured human cells resulted in a modest but consistent decrease in yields of both wild-type and ICP0-null viruses, in the supernatant and cell-associated fractions, without affecting viral gene expression. Although further study is required, we propose that WDR11 participates in viral assembly and/or secondary envelopment. IMPORTANCE While the TGN has been proposed to be the major site of HSV-1 secondary envelopment, this process is incompletely understood, and in particular, the role of cellular TGN components in this pathway is unknown. Additionally, little is known about the cellular functions of WDR11, although the disruption of this protein has been implicated in multiple human diseases. Therefore, our finding that WDR11 is a TGN-resident protein that interacts with specific viral proteins to enhance viral yields improves both

  18. Increased cellular apoptosis susceptibility (CSE1L/CAS) protein expression promotes protrusion extension and enhances migration of MCF-7 breast cancer cells

    SciTech Connect

    Tai, Cheng-Jeng; Shen, Shing-Chuan; Lee, Woan-Ruoh; Liao, Ching-Fong; Deng, Win-Ping; Chiou, Hung-Yi; Hsieh, Cheng-I; Tung, Jai-Nien; Chen, Ching-Shyang; Chiou, Jeng-Fong; Li, Li-Tzu; Lin, Chuang-Yu; Hsu, Chung-Huei; Jiang, Ming-Chung

    2010-10-15

    Microtubules are part of cell structures that play a role in regulating the migration of cancer cells. The cellular apoptosis susceptibility (CSE1L/CAS) protein is a microtubule-associated protein that is highly expressed in cancer. We report here that CSE1L regulates the association of {alpha}-tubulin with {beta}-tubulin and promotes the migration of MCF-7 breast cancer cells. CSE1L was associated with {alpha}-tubulin and {beta}-tubulin in GST (glutathione S-transferase) pull-down and immunoprecipitation assays. CSE1L-GFP (green fluorescence protein) fusion protein experiments showed that the N-terminal of CSE1L interacted with microtubules. Increased CSE1L expression resulted in decreased tyrosine phosphorylation of {alpha}-tubulin and {beta}-tubulin, increased {alpha}-tubulin and {beta}-tubulin association, and enhanced assembly of microtubules. Cell protrusions or pseudopodia are temporary extensions of the plasma membrane and are implicated in cancer cell migration and invasion. Increased CSE1L expression increased the extension of MCF-7 cell protrusions. In vitro migration assay showed that enhanced CSE1L expression increased the migration of MCF-7 cells. Our results indicate that CSE1L plays a role in regulating the extension of cell protrusions and promotes the migration of cancer cells.

  19. Increased cellular apoptosis susceptibility (CSE1L/CAS) protein expression promotes protrusion extension and enhances migration of MCF-7 breast cancer cells.

    PubMed

    Tai, Cheng-Jeng; Shen, Shing-Chuan; Lee, Woan-Ruoh; Liao, Ching-Fong; Deng, Win-Ping; Chiou, Hung-Yi; Hsieh, Cheng-I; Tung, Jai-Nien; Chen, Ching-Shyang; Chiou, Jeng-Fong; Li, Li-Tzu; Lin, Chuang-Yu; Hsu, Chung-Huei; Jiang, Ming-Chung

    2010-10-15

    Microtubules are part of cell structures that play a role in regulating the migration of cancer cells. The cellular apoptosis susceptibility (CSE1L/CAS) protein is a microtubule-associated protein that is highly expressed in cancer. We report here that CSE1L regulates the association of α-tubulin with β-tubulin and promotes the migration of MCF-7 breast cancer cells. CSE1L was associated with α-tubulin and β-tubulin in GST (glutathione S-transferase) pull-down and immunoprecipitation assays. CSE1L-GFP (green fluorescence protein) fusion protein experiments showed that the N-terminal of CSE1L interacted with microtubules. Increased CSE1L expression resulted in decreased tyrosine phosphorylation of α-tubulin and β-tubulin, increased α-tubulin and β-tubulin association, and enhanced assembly of microtubules. Cell protrusions or pseudopodia are temporary extensions of the plasma membrane and are implicated in cancer cell migration and invasion. Increased CSE1L expression increased the extension of MCF-7 cell protrusions. In vitro migration assay showed that enhanced CSE1L expression increased the migration of MCF-7 cells. Our results indicate that CSE1L plays a role in regulating the extension of cell protrusions and promotes the migration of cancer cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. An integrated transcriptomics-guided genome-wide promoter analysis and next-generation proteomics approach to mine factor(s) regulating cellular differentiation

    PubMed Central

    Mandal, Kamal; Bader, Samuel L.; Kumar, Pankaj; Malakar, Dipankar; Campbell, David S.; Pradhan, Bhola Shankar; Sarkar, Rajesh K.; Wadhwa, Neerja; Sensharma, Souvik; Jain, Vaibhav; Moritz, Robert L.

    2017-01-01

    Abstract Differential next-generation-omics approaches aid in the visualization of biological processes and pave the way for divulging important events and/or interactions leading to a functional output at cellular or systems level. To this end, we undertook an integrated Nextgen transcriptomics and proteomics approach to divulge differential gene expression of infant and pubertal rat Sertoli cells (Sc).Unlike, pubertal Sc, infant Sc are immature and fail to support spermatogenesis. We found exclusive association of 14 and 19 transcription factor binding sites to infantile and pubertal states of Sc, respectively, using differential transcriptomics-guided genome-wide computational analysis of relevant promoters employing 220 Positional Weight Matrices from the TRANSFAC database. Proteomic SWATH-MS analysis provided extensive quantification of nuclear and cytoplasmic protein fractions revealing 1,670 proteins differentially located between the nucleus and cytoplasm of infant Sc and 890 proteins differentially located within those of pubertal Sc. Based on our multi-omics approach, the transcription factor YY1 was identified as one of the lead candidates regulating differentiation of Sc.YY1 was found to have abundant binding sites on promoters of genes upregulated during puberty. To determine its significance, we generated transgenic rats with Sc specific knockdown of YY1 that led to compromised spermatogenesis. PMID:28065881

  1. An integrated transcriptomics-guided genome-wide promoter analysis and next-generation proteomics approach to mine factor(s) regulating cellular differentiation.

    PubMed

    Mandal, Kamal; Bader, Samuel L; Kumar, Pankaj; Malakar, Dipankar; Campbell, David S; Pradhan, Bhola Shankar; Sarkar, Rajesh K; Wadhwa, Neerja; Sensharma, Souvik; Jain, Vaibhav; Moritz, Robert L; Majumdar, Subeer S

    2017-04-01

    Differential next-generation-omics approaches aid in the visualization of biological processes and pave the way for divulging important events and/or interactions leading to a functional output at cellular or systems level. To this end, we undertook an integrated Nextgen transcriptomics and proteomics approach to divulge differential gene expression of infant and pubertal rat Sertoli cells (Sc).Unlike, pubertal Sc, infant Sc are immature and fail to support spermatogenesis. We found exclusive association of 14 and 19 transcription factor binding sites to infantile and pubertal states of Sc, respectively, using differential transcriptomics-guided genome-wide computational analysis of relevant promoters employing 220 Positional Weight Matrices from the TRANSFAC database. Proteomic SWATH-MS analysis provided extensive quantification of nuclear and cytoplasmic protein fractions revealing 1,670 proteins differentially located between the nucleus and cytoplasm of infant Sc and 890 proteins differentially located within those of pubertal Sc. Based on our multi-omics approach, the transcription factor YY1 was identified as one of the lead candidates regulating differentiation of Sc.YY1 was found to have abundant binding sites on promoters of genes upregulated during puberty. To determine its significance, we generated transgenic rats with Sc specific knockdown of YY1 that led to compromised spermatogenesis. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  2. Anti-oestrogens but not oestrogen deprivation promote cellular invasion in intercellular adhesion-deficient breast cancer cells

    PubMed Central

    Borley, Annabel C; Hiscox, Stephen; Gee, Julia; Smith, Chris; Shaw, Victoria; Barrett-Lee, Peter; Nicholson, Robert I

    2008-01-01

    Introduction Anti-oestrogens have been the mainstay of therapy in patients with oestrogen-receptor (ER) positive breast cancer and have provided significant improvements in survival. However, their benefits are limited by tumour recurrence in a significant proportion of initially drug-responsive breast cancer patients because of acquired anti-oestrogen resistance. Relapse on such therapies clinically presents as local and/or regional recurrences, frequently with distant metastases, and the prognosis for these patients is poor. The selective ER modulator, tamoxifen, classically exerts gene inhibitory effects during the drug-responsive phase in ER-positive breast cancer cells. Paradoxically, this drug is also able to induce the expression of genes, which in the appropriate cell context may contribute to an adverse cell phenotype. Here we have investigated the effects of tamoxifen and fulvestrant treatment on invasive signalling and compared this with the direct effects of oestrogen withdrawal to mimic the action of aromatase inhibitors. Methods The effect of oestrogen and 4-hydroxy-tamoxifen on the invasive capacity of endocrine-sensitive MCF-7 cells, in the presence or absence of functional E-cadherin, was determined by Matrigel invasion assays. Studies also monitored the impact of oestrogen withdrawal or treatment with fulvestrant on cell invasion. Western blotting using phospho-specific antibodies was performed to ascertain changes in invasive signalling in response to the two anti-oestrogens versus both oestradiol treatment and withdrawal. Results To the best of our knowledge, we report for the first time that tamoxifen can promote an invasive phenotype in ER-positive breast cancer cells under conditions of poor cell-cell contact and suggest a role for Src kinase and associated pro-invasive genes in this process. Our studies revealed that although this adverse effect is also apparent for further classes of anti-oestrogens, exemplified by the steroidal agent

  3. LANA Binds to Multiple Active Viral and Cellular Promoters and Associates with the H3K4Methyltransferase hSET1 Complex

    PubMed Central

    Hu, Jianhong; Yang, Yajie; Turner, Peter C.; Jain, Vaibhav; McIntyre, Lauren M.; Renne, Rolf

    2014-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is a γ-herpesvirus associated with KS and two lymphoproliferative diseases. Recent studies characterized epigenetic modification of KSHV episomes during latency and determined that latency-associated genes are associated with H3K4me3 while most lytic genes are associated with the silencing mark H3K27me3. Since the latency-associated nuclear antigen (LANA) (i) is expressed very early after de novo infection, (ii) interacts with transcriptional regulators and chromatin remodelers, and (iii) regulates the LANA and RTA promoters, we hypothesized that LANA may contribute to the establishment of latency through epigenetic control. We performed a detailed ChIP-seq analysis in cells of lymphoid and endothelial origin and compared H3K4me3, H3K27me3, polII, and LANA occupancy. On viral episomes LANA binding was detected at numerous lytic and latent promoters, which were transactivated by LANA using reporter assays. LANA binding was highly enriched at H3K4me3 peaks and this co-occupancy was also detected on many host gene promoters. Bioinformatic analysis of enriched LANA binding sites in combination with biochemical binding studies revealed three distinct binding patterns. A small subset of LANA binding sites showed sequence homology to the characterized LBS1/2 sequence in the viral terminal repeat. A large number of sites contained a novel LANA binding motif (TCCAT)3 which was confirmed by gel shift analysis. Third, some viral and cellular promoters did not contain LANA binding sites and are likely enriched through protein/protein interaction. LANA was associated with H3K4me3 marks and in PEL cells 86% of all LANA bound promoters were transcriptionally active, leading to the hypothesis that LANA interacts with the machinery that methylates H3K4. Co-immunoprecipitation demonstrated LANA association with endogenous hSET1 complexes in both lymphoid and endothelial cells suggesting that LANA may contribute to the epigenetic

  4. NaDC3 Induces Premature Cellular Senescence by Promoting Transport of Krebs Cycle Intermediates, Increasing NADH, and Exacerbating Oxidative Damage.

    PubMed

    Ma, Yuxiang; Bai, Xue-Yuan; Du, Xuan; Fu, Bo; Chen, Xiangmei

    2016-01-01

    High-affinity sodium-dependent dicarboxylate cotransporter 3 (NaDC3) is a key metabolism-regulating membrane protein responsible for transport of Krebs cycle intermediates. NaDC3 is upregulated as organs age, but knowledge regarding the underlying mechanisms by which NaDC3 modulates mammalian aging is limited. In this study, we showed that NaDC3 overexpression accelerated cellular senescence in young human diploid cells (MRC-5 and WI-38) and primary renal tubular cells, leading to cell cycle arrest in G1 phase and increased expression of senescent biomarkers, senescence-associated β-galactosidase and p16. Intracellular levels of reactive oxygen species, 8-hydroxy-2'-deoxyguanosine, malondialdehyde, and carbonyl were significantly enhanced, and activities of respiratory complexes I and III and ATP level were significantly decreased in NaDC3-infected cells. Stressful premature senescent phenotypes induced by NaDC3 were markedly ameliorated via treatment with the antioxidants Tiron and Tempol. High expression of NaDC3 caused a prominent increase in intracellular levels of Krebs cycle intermediates and NADH. Exogenous NADH and NAD(+) may aggravate and attenuate the aging phenotypes induced by NaDC3, respectively. These results suggest that NaDC3 can induce premature cellular senescence by promoting the transport of Krebs cycle intermediates, increasing generation of NADH and reactive oxygen species and leading to oxidative damage. Our results clarify the aging signaling pathway regulated by NaDC3. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Cellular Transcriptional Coactivator RanBP10 and Herpes Simplex Virus 1 ICP0 Interact and Synergistically Promote Viral Gene Expression and Replication

    PubMed Central

    Sato, Yuka; Kato, Akihisa; Maruzuru, Yuhei; Oyama, Masaaki; Kozuka-Hata, Hiroko; Arii, Jun

    2016-01-01

    ABSTRACT To investigate the molecular mechanism(s) by which herpes simplex virus 1 (HSV-1) regulatory protein ICP0 promotes viral gene expression and replication, we screened cells overexpressing ICP0 for ICP0-binding host cell proteins. Tandem affinity purification of transiently expressed ICP0 coupled with mass spectrometry-based proteomics technology and subsequent analyses showed that ICP0 interacted with cell protein RanBP10, a known transcriptional coactivator, in HSV-1-infected cells. Knockdown of RanBP10 in infected HEp-2 cells resulted in a phenotype similar to that observed with the ICP0-null mutation, including reduction in viral replication and in the accumulation of viral immediate early (ICP27), early (ICP8), and late (VP16) mRNAs and proteins. In addition, RanBP10 knockdown or the ICP0-null mutation increased the level of histone H3 association with the promoters of these viral genes, which is known to repress transcription. These effects observed in wild-type HSV-1-infected HEp-2 RanBP10 knockdown cells or those observed in ICP0-null mutant virus-infected control HEp-2 cells were remarkably increased in ICP0-null mutant virus-infected HEp-2 RanBP10 knockdown cells. Our results suggested that ICP0 and RanBP10 redundantly and synergistically promoted viral gene expression by regulating chromatin remodeling of the HSV-1 genome for efficient viral replication. IMPORTANCE Upon entry of herpesviruses into a cell, viral gene expression is restricted by heterochromatinization of the viral genome. Therefore, HSV-1 has evolved multiple mechanisms to counteract this epigenetic silencing for efficient viral gene expression and replication. HSV-1 ICP0 is one of the viral proteins involved in counteracting epigenetic silencing. Here, we identified RanBP10 as a novel cellular ICP0-binding protein and showed that RanBP10 and ICP0 appeared to act synergistically to promote viral gene expression and replication by modulating viral chromatin remodeling. Our results

  6. Cellular Transcriptional Coactivator RanBP10 and Herpes Simplex Virus 1 ICP0 Interact and Synergistically Promote Viral Gene Expression and Replication.

    PubMed

    Sato, Yuka; Kato, Akihisa; Maruzuru, Yuhei; Oyama, Masaaki; Kozuka-Hata, Hiroko; Arii, Jun; Kawaguchi, Yasushi

    2016-01-06

    To investigate the molecular mechanism(s) by which herpes simplex virus 1 (HSV-1) regulatory protein ICP0 promotes viral gene expression and replication, we screened cells overexpressing ICP0 for ICP0-binding host cell proteins. Tandem affinity purification of transiently expressed ICP0 coupled with mass spectrometry-based proteomics technology and subsequent analyses showed that ICP0 interacted with cell protein RanBP10, a known transcriptional coactivator, in HSV-1-infected cells. Knockdown of RanBP10 in infected HEp-2 cells resulted in a phenotype similar to that observed with the ICP0-null mutation, including reduction in viral replication and in the accumulation of viral immediate early (ICP27), early (ICP8), and late (VP16) mRNAs and proteins. In addition, RanBP10 knockdown or the ICP0-null mutation increased the level of histone H3 association with the promoters of these viral genes, which is known to repress transcription. These effects observed in wild-type HSV-1-infected HEp-2 RanBP10 knockdown cells or those observed in ICP0-null mutant virus-infected control HEp-2 cells were remarkably increased in ICP0-null mutant virus-infected HEp-2 RanBP10 knockdown cells. Our results suggested that ICP0 and RanBP10 redundantly and synergistically promoted viral gene expression by regulating chromatin remodeling of the HSV-1 genome for efficient viral replication. Upon entry of herpesviruses into a cell, viral gene expression is restricted by heterochromatinization of the viral genome. Therefore, HSV-1 has evolved multiple mechanisms to counteract this epigenetic silencing for efficient viral gene expression and replication. HSV-1 ICP0 is one of the viral proteins involved in counteracting epigenetic silencing. Here, we identified RanBP10 as a novel cellular ICP0-binding protein and showed that RanBP10 and ICP0 appeared to act synergistically to promote viral gene expression and replication by modulating viral chromatin remodeling. Our results provide insight into

  7. A subset of high-grade pulmonary neuroendocrine carcinomas shows up-regulation of matrix metalloproteinase-7 associated with nuclear beta-catenin immunoreactivity, independent of EGFR and HER-2 gene amplification or expression.

    PubMed

    Pelosi, Giuseppe; Scarpa, Aldo; Veronesi, Giulia; Spaggiari, Lorenzo; Del Curto, Barbara; Moore, Patrick S; Maisonneuve, Patrick; Sonzogni, Angelica; Masullo, Michele; Viale, Giuseppe

    2005-12-01

    Nuclear translocation of beta-catenin has been correlated with epidermal growth factor receptor (EGFR) overexpression/activation in non-small cell lung cancer. Less is known on beta-catenin transactivation in high-grade pulmonary neuroendocrine tumors and on the status of beta-catenin activating EGFR and human epidermal growth factor receptor 2 (HER-2) or beta-catenin target genes cyclin D1 and matrix metalloproteinase-7 (MMP-7). beta-catenin immunoreactivity was evaluated in 51 large-cell neuroendocrine carcinomas (LCNEC) and 45 small-cell lung carcinomas (SCLC). Nineteen cases were assessed for beta-catenin gene exon 3 mutations, expression of MMP-7, and expression/gene amplification of EGFR, HER-2, and cyclin D1. beta-catenin was expressed in all 96 high-grade neuroendocrine tumors, the vast majority (94%) showing >50% immunopositive cells. A disarrayed immunoreactivity, however, was commonly encountered consisting in variably altered membrane-associated patterns of staining along with progressive accumulation of cytoplasmic immunoreactivity. In LCNEC, but not in SCLC, the disarrayed patterns correlated with EGFR and HER-2 protein expression. beta-catenin nuclear accumulation was found in nine tumors, including seven LCNEC and two SCLC, and was always associated with disarrayed immunoreactivity and increased MMP-7, but not cyclin D1 expression. These cases, however, did not show beta-catenin gene mutations or EGFR and HER-2 gene amplification or expression. No association was found between nuclear beta-catenin and any clinicopathological variable including patients' survival. The subcellular compartmentalization of beta-catenin is profoundly altered in high-grade pulmonary neuroendocrine tumors. A minor subset of these tumors shows beta-catenin nuclear accumulation in association with increased expression of MMP-7, but not of cyclin D1, independent of EGFR and HER-2 gene amplification or expression.

  8. Evaluation of Alpha 1-Antitrypsin and the Levels of mRNA Expression of Matrix Metalloproteinase 7, Urokinase Type Plasminogen Activator Receptor and COX-2 for the Diagnosis of Colorectal Cancer

    PubMed Central

    Bujanda, Luis; Sarasqueta, Cristina; Cosme, Angel; Hijona, Elizabeth; Enríquez-Navascués, José M.; Placer, Carlos; Villarreal, Eloisa; Herreros-Villanueva, Marta; Giraldez, María D.; Gironella, Meritxell; Balaguer, Francesc; Castells, Antoni

    2013-01-01

    Background Colorectal cancer (CRC) is the second most common cause of death from cancer in both men and women in the majority of developed countries. Molecular tests of blood could potentially provide this ideal screening tool. Aim Our objective was to assess the usefulness of serum markers and mRNA expression levels in the diagnosis of CRC. Methods In a prospective study, we measured mRNA expression levels of 13 markers (carbonic anhydrase, guanylyl cyclase C, plasminogen activator inhibitor, matrix metalloproteinase 7 (MMP7), urokinase-type plasminogen activator receptor (uPAR), urokinase-type plasminogen activator, survivin, tetranectin, vascular endothelial growth factor (VEGF), cytokeratin 20, thymidylate synthase, cyclooxygenase 2 (COX-2), and CD44) and three proteins in serum (alpha 1 antitrypsin, carcinoembryonic antigen (CEA) and activated C3 in 42 patients with CRC and 33 with normal colonoscopy results. Results Alpha 1-antitrypsin was the serum marker that was most useful for CRC diagnosis (1.79±0.25 in the CRC group vs 1.27±0.25 in the control group, P<0.0005). The area under the ROC curve for alpha 1-antitrypsin was 0.88 (0.79–0.96). The mRNA expression levels of five markers were statistically different between CRC cases and controls: those for which the ROC area was over 75% were MMP7 (0.81) and tetranectin (0.80), COX-2 (0.78), uPAR (0.78) and carbonic anhydrase (0.77). The markers which identified early stage CRC (Stages I and II) were alpha 1-antitrypsin, uPAR, COX-2 and MMP7. Conclusions Serum alpha 1-antitrypsin and the levels of mRNA expression of MMP7, COX-2 and uPAR have good diagnostic accuracy for CRC, even in the early stages. PMID:23300952

  9. Hes1 triggers epithelial-mesenchymal transition (EMT)-like cellular marker alterations and promotes invasion and metastasis of nasopharyngeal carcinoma by activating the PTEN/AKT pathway.

    PubMed

    Wang, Sheng-Chun; Lin, Xiao-Lin; Wang, Hui-Yan; Qin, Yu-Juan; Chen, Lin; Li, Jing; Jia, Jun-Shuang; Shen, Hong-Fen; Yang, Sheng; Xie, Rao-Ying; Wei, Fang; Gao, Fei; Rong, Xiao-Xiang; Yang, Jie; Zhao, Wen-Tao; Zhang, Ting-Ting; Shi, Jun-Wen; Yao, Kai-Tai; Luo, Wei-Ren; Sun, Yan; Xiao, Dong

    2015-11-03

    Overexpression of the transcriptional factor Hes1 (hairy and enhancer of split-1) has been observed in numerous cancers, but the precise roles of Hes1 in epithelial-mesenchymal transition (EMT), cancer invasion and metastasis remain unknown. Our current study firstly revealed that Hes1 upregulation in a cohort of human nasopharyngeal carcinoma (NPC) biopsies is significantly associated with the EMT, invasive and metastatic phenotypes of cancer. In the present study, we found that Hes1 overexpression triggered EMT-like cellular marker alterations of NPC cells, whereas knockdown of Hes1 through shRNA reversed the EMT-like phenotypes, as strongly supported by Hes1-mediated EMT in NPC clinical specimens described above. Gain-of-function and loss-of-function experiments demonstrated that Hes1 promoted the migration and invasion of NPC cells in vitro. In addition, exogenous expression of Hes1 significantly enhanced the metastatic ability of NPC cells in vivo. Chromatin immunoprecipitation (ChIP) assays showed that Hes1 inhibited PTEN expression in NPC cells through binding to PTEN promoter region. Increased Hes1 expression and decreased PTEN expression were also observed in a cohort of NPC biopsies. Additional studies demonstrated that Hes1-induced EMT-like molecular changes and increased motility and invasion of NPC cells were mediated by PTEN. Taken together, our results suggest, for what we believe is the first time, that Hes1 plays an important role in the invasion and metastasis of NPC through inhibiting PTEN expression to trigger EMT-like phenotypes.

  10. Genetic variants and cellular stressors associated with exfoliation syndrome modulate promoter activity of a lncRNA within the LOXL1 locus

    PubMed Central

    Hauser, Michael A.; Aboobakar, Inas F.; Liu, Yutao; Miura, Shiroh; Whigham, Benjamin T.; Challa, Pratap; Wheeler, Joshua; Williams, Andrew; Santiago-Turla, Cecelia; Qin, Xuejun; Rautenbach, Robyn M.; Ziskind, Ari; Ramsay, Michèle; Uebe, Steffen; Song, Lingyun; Safi, Alexias; Vithana, Eranga N.; Mizoguchi, Takanori; Nakano, Satoko; Kubota, Toshiaki; Hayashi, Ken; Manabe, Shin-ichi; Kazama, Shigeyasu; Mori, Yosai; Miyata, Kazunori; Yoshimura, Nagahisa; Reis, Andre; Crawford, Gregory E.; Pasutto, Francesca; Carmichael, Trevor R.; Williams, Susan E. I.; Ozaki, Mineo; Aung, Tin; Khor, Chiea-Chuen; Stamer, W. Daniel; Ashley-Koch, Allison E.; Allingham, R. Rand

    2015-01-01

    Exfoliation syndrome (XFS) is a common, age-related, systemic fibrillinopathy. It greatly increases risk of exfoliation glaucoma (XFG), a major worldwide cause of irreversible blindness. Coding variants in the lysyl oxidase-like 1 (LOXL1) gene are strongly associated with XFS in all studied populations, but a functional role for these variants has not been established. To identify additional candidate functional variants, we sequenced the entire LOXL1 genomic locus (∼40 kb) in 50 indigenous, black South African XFS cases and 50 matched controls. The variants with the strongest evidence of association were located in a well-defined 7-kb region bounded by the 3'-end of exon 1 and the adjacent region of intron 1 of LOXL1. We replicated this finding in US Caucasian (91 cases/1031 controls), German (771 cases/1365 controls) and Japanese (1484 cases/1188 controls) populations. The region of peak association lies upstream of LOXL1-AS1, a long non-coding RNA (lncRNA) encoded on the opposite strand of LOXL1. We show that this region contains a promoter and, importantly, that the strongly associated XFS risk alleles in the South African population are functional variants that significantly modulate the activity of this promoter. LOXL1-AS1 expression is also significantly altered in response to oxidative stress in human lens epithelial cells and in response to cyclic mechanical stress in human Schlemm's canal endothelial cells. Taken together, these findings support a functional role for the LOXL1-AS1 lncRNA in cellular stress response and suggest that dysregulation of its expression by genetic risk variants plays a key role in XFS pathogenesis. PMID:26307087

  11. GCK-MODY diabetes as a protein misfolding disease: the mutation R275C promotes protein misfolding, self-association and cellular degradation.

    PubMed

    Negahdar, Maria; Aukrust, Ingvild; Molnes, Janne; Solheim, Marie H; Johansson, Bente B; Sagen, Jørn V; Dahl-Jørgensen, Knut; Kulkarni, Rohit N; Søvik, Oddmund; Flatmark, Torgeir; Njølstad, Pål R; Bjørkhaug, Lise

    2014-01-25

    GCK-MODY, dominantly inherited mild hyperglycemia, is associated with more than 600 mutations in the glucokinase gene. Different molecular mechanisms have been shown to explain GCK-MODY. Here, we report a Pakistani family harboring the glucokinase mutation c.823C>T (p.R275C). The recombinant and in cellulo expressed mutant pancreatic enzyme revealed slightly increased enzyme activity (kcat) and normal affinity for α-D-glucose, and resistance to limited proteolysis by trypsin comparable with wild-type. When stably expressed in HEK293 cells and MIN6 β-cells (at different levels), the mutant protein appeared misfolded and unstable with a propensity to form dimers and aggregates. Its degradation rate was increased, involving the lysosomal and proteasomal quality control systems. On mutation, a hydrogen bond between the R275 side-chain and the carbonyl oxygen of D267 is broken, destabilizing the F260-L271 loop structure and the protein. This promotes the formation of dimers/aggregates and suggests that an increased cellular degradation is the molecular mechanism by which R275C causes GCK-MODY. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. STO Feeder Cells Are Useful for Propagation of Primarily Cultured Human Deciduous Dental Pulp Cells by Eliminating Contaminating Bacteria and Promoting Cellular Outgrowth

    PubMed Central

    Murakami, Tomoya; Saitoh, Issei; Inada, Emi; Kurosawa, Mie; Iwase, Yoko; Noguchi, Hirofumi; Terao, Yutaka; Yamasaki, Youichi; Hayasaki, Haruaki; Sato, Masahiro

    2013-01-01

    STO feeder cells, a line established from mouse SIM embryonic fibroblasts, have been frequently used for establishing embryonic stem cells and maintaining them in an undifferentiated state. There are some reports demonstrating that fibroblastic cells have the ability to phagocytose Gram-positive bacterium (e.g., streptococci and staphylococci). In this study, we examined the possibility that STO cells could phagocytose Streptococcus mutans (a bacteria causing tooth decay), which always contaminates cultures of primarily isolated human deciduous dental pulp cells (HDDPCs). Simple cultivation of the primary HDDPCs in the absence of STO cells allowed S. mutans to massively propagate in the medium, thus leading to an opaque medium. In contrast, there was no bacterial contamination in the cultures containing mitomycin C (MMC)-inactivated STO cells. Furthermore, STO cells indicated bacterial phagocytic activity under fluorescent microscopy with the dye pHrodo. Besides removal of contaminating bacteria, STO feeder cells allowed the HDDPCs to spread out. These data suggest that MMC-treated STO cells can be useful for propagation of HDDPCs by eliminating contaminating bacteria and by promoting cellular outgrowth. PMID:26858883

  13. STO Feeder Cells Are Useful for Propagation of Primarily Cultured Human Deciduous Dental Pulp Cells by Eliminating Contaminating Bacteria and Promoting Cellular Outgrowth.

    PubMed

    Murakami, Tomoya; Saitoh, Issei; Inada, Emi; Kurosawa, Mie; Iwase, Yoko; Noguchi, Hirofumi; Terao, Yutaka; Yamasaki, Youichi; Hayasaki, Haruaki; Sato, Masahiro

    2013-12-30

    STO feeder cells, a line established from mouse SIM embryonic fibroblasts, have been frequently used for establishing embryonic stem cells and maintaining them in an undifferentiated state. There are some reports demonstrating that fibroblastic cells have the ability to phagocytose Gram-positive bacterium (e.g., streptococci and staphylococci). In this study, we examined the possibility that STO cells could phagocytose Streptococcus mutans (a bacteria causing tooth decay), which always contaminates cultures of primarily isolated human deciduous dental pulp cells (HDDPCs). Simple cultivation of the primary HDDPCs in the absence of STO cells allowed S. mutans to massively propagate in the medium, thus leading to an opaque medium. In contrast, there was no bacterial contamination in the cultures containing mitomycin C (MMC)-inactivated STO cells. Furthermore, STO cells indicated bacterial phagocytic activity under fluorescent microscopy with the dye pHrodo. Besides removal of contaminating bacteria, STO feeder cells allowed the HDDPCs to spread out. These data suggest that MMC-treated STO cells can be useful for propagation of HDDPCs by eliminating contaminating bacteria and by promoting cellular outgrowth.

  14. miR-221/222 promotes S-phase entry and cellular migration in control of basal-like breast cancer.

    PubMed

    Li, Yuan; Liang, Chunli; Ma, Haizhong; Zhao, Qian; Lu, Ying; Xiang, Zhendong; Li, Li; Qin, Jie; Chen, Yihan; Cho, William C; Pestell, Richard G; Liang, Li; Yu, Zuoren

    2014-05-30

    The miR-221/222 cluster has been demonstrated to function as oncomiR in human cancers. miR-221/222 promotes epithelial-to-mesenchymal transition (EMT) and confers tamoxifen resistance in breast cancer. However, the effects and mechanisms by which miR-221/222 regulates breast cancer aggressiveness remain unclear. Here we detected a much higher expression of miR-221/222 in highly invasive basal-like breast cancer (BLBC) cells than that in non-invasive luminal cells. A microRNA dataset from breast cancer patients indicated an elevated expression of miR-221/222 in BLBC subtype. S-phase entry of the cell cycle was associated with the induction of miR-221/222 expression. miRNA inhibitors specially targeting miR-221 or miR-222 both significantly suppressed cellular migration, invasion and G1/S transition of the cell cycle in BLBC cell types. Proteomic analysis demonstrated the down-regulation of two tumor suppressor genes, suppressor of cytokine signaling 1 (SOCS1) and cyclin-dependent kinase inhibit 1B (CDKN1B), by miR-221/222. This is the first report to reveal miR-221/222 regulation of G1/S transition of the cell cycle. These findings demonstrate that miR-221/222 contribute to the aggressiveness in control of BLBC.

  15. Viral and cellular mRNA-specific activators harness PABP and eIF4G to promote translation initiation downstream of cap binding.

    PubMed

    Smith, Richard W P; Anderson, Ross C; Larralde, Osmany; Smith, Joel W S; Gorgoni, Barbara; Richardson, William A; Malik, Poonam; Graham, Sheila V; Gray, Nicola K

    2017-06-13

    Regulation of mRNA translation is a major control point for gene expression and is critical for life. Of central importance is the complex between cap-bound eukaryotic initiation factor 4E (eIF4E), eIF4G, and poly(A) tail-binding protein (PABP) that circularizes mRNAs, promoting translation and stability. This complex is often targeted to regulate overall translation rates, and also by mRNA-specific translational repressors. However, the mechanisms of mRNA-specific translational activation by RNA-binding proteins remain poorly understood. Here, we address this deficit, focusing on a herpes simplex virus-1 protein, ICP27. We reveal a direct interaction with PABP that is sufficient to promote PABP recruitment and necessary for ICP27-mediated activation. PABP binds several translation factors but is primarily considered to activate translation initiation as part of the PABP-eIF4G-eIF4E complex that stimulates the initial cap-binding step. Importantly, we find that ICP27-PABP forms a complex with, and requires the activity of, eIF4G. Surprisingly, ICP27-PABP-eIF4G complexes act independently of the effects of PABP-eIF4G on cap binding to promote small ribosomal subunit recruitment. Moreover, we find that a cellular mRNA-specific regulator, Deleted in Azoospermia-like (Dazl), also employs the PABP-eIF4G interaction in a similar manner. We propose a mechanism whereby diverse RNA-binding proteins directly recruit PABP, in a non-poly(A) tail-dependent manner, to stimulate the small subunit recruitment step. This strategy may be particularly relevant to biological conditions associated with hypoadenylated mRNAs (e.g., germ cells/neurons) and/or limiting cytoplasmic PABP (e.g., viral infection, cell stress). This mechanism adds significant insight into our knowledge of mRNA-specific translational activation and the function of the PABP-eIF4G complex in translation initiation.

  16. Viral and cellular mRNA-specific activators harness PABP and eIF4G to promote translation initiation downstream of cap binding

    PubMed Central

    Smith, Richard W. P.; Anderson, Ross C.; Larralde, Osmany; Smith, Joel W. S.; Gorgoni, Barbara; Richardson, William A.; Malik, Poonam; Graham, Sheila V.; Gray, Nicola K.

    2017-01-01

    Regulation of mRNA translation is a major control point for gene expression and is critical for life. Of central importance is the complex between cap-bound eukaryotic initiation factor 4E (eIF4E), eIF4G, and poly(A) tail-binding protein (PABP) that circularizes mRNAs, promoting translation and stability. This complex is often targeted to regulate overall translation rates, and also by mRNA-specific translational repressors. However, the mechanisms of mRNA-specific translational activation by RNA-binding proteins remain poorly understood. Here, we address this deficit, focusing on a herpes simplex virus-1 protein, ICP27. We reveal a direct interaction with PABP that is sufficient to promote PABP recruitment and necessary for ICP27-mediated activation. PABP binds several translation factors but is primarily considered to activate translation initiation as part of the PABP–eIF4G–eIF4E complex that stimulates the initial cap-binding step. Importantly, we find that ICP27-PABP forms a complex with, and requires the activity of, eIF4G. Surprisingly, ICP27–PABP–eIF4G complexes act independently of the effects of PABP-eIF4G on cap binding to promote small ribosomal subunit recruitment. Moreover, we find that a cellular mRNA-specific regulator, Deleted in Azoospermia-like (Dazl), also employs the PABP–eIF4G interaction in a similar manner. We propose a mechanism whereby diverse RNA-binding proteins directly recruit PABP, in a non–poly(A) tail-dependent manner, to stimulate the small subunit recruitment step. This strategy may be particularly relevant to biological conditions associated with hypoadenylated mRNAs (e.g., germ cells/neurons) and/or limiting cytoplasmic PABP (e.g., viral infection, cell stress). This mechanism adds significant insight into our knowledge of mRNA-specific translational activation and the function of the PABP–eIF4G complex in translation initiation. PMID:28559344

  17. Cellular Differentiation Regulator BLIMP1 Induces Epstein-Barr Virus Lytic Reactivation in Epithelial and B Cells by Activating Transcription from both the R and Z Promoters

    PubMed Central

    Reusch, Jessica A.; Nawandar, Dhananjay M.; Wright, Kenneth L.; Kenney, Shannon C.

    2014-01-01

    variety of cancerous epithelial cell types as well as in some, but not all, B-cell types that contain this virus in a dormant state. The mechanism by which BLIMP1 does so involves strongly turning on expression of both of the immediate early genes of the virus, probably by directly acting upon the promoters as part of protein complexes or indirectly by altering the expression or activities of some cellular transcription factors and signaling pathways. The fact that EBV+ cancers usually contain mostly undifferentiated cells may be due in part to these cells dying from lytic EBV infection when they differentiate and express wild-type BLIMP1. PMID:25410866

  18. A Mechanism to Enhance Cellular Responsivity to Hormone Action: Krüppel-Like Factor 9 Promotes Thyroid Hormone Receptor-β Autoinduction During Postembryonic Brain Development

    PubMed Central

    Hu, Fang; Knoedler, Joseph R.

    2016-01-01

    Thyroid hormone (TH) receptor (TR)-β (trb) is induced by TH (autoinduced) in Xenopus tadpoles during metamorphosis. We previously showed that Krüppel-like factor 9 (Klf9) is rapidly induced by TH in the tadpole brain, associates in chromatin with the trb upstream region in a developmental stage and TH-dependent manner, and forced expression of Klf9 in the Xenopus laevis cell line XTC-2 accelerates and enhances trb autoinduction. Here we investigated whether Klf9 can promote trb autoinduction in tadpole brain in vivo. Using electroporation-mediated gene transfer, we transfected plasmids into premetamorphic tadpole brain to express wild-type or mutant forms of Klf9. Forced expression of Klf9 increased baseline trb mRNA levels in thyroid-intact but not in goitrogen-treated tadpoles, supporting that Klf9 enhances liganded TR action. As in XTC-2 cells, forced expression of Klf9 enhanced trb autoinduction in tadpole brain in vivo and also increased TH-dependent induction of the TR target genes klf9 and thbzip. Consistent with our previous mutagenesis experiments conducted in XTC-2 cells, the actions of Klf9 in vivo required an intact N-terminal region but not a functional DNA binding domain. Forced expression of TRβ in tadpole brain by electroporation-mediated gene transfer increased baseline and TH-induced TR target gene transcription, supporting a role for trb autoinduction during metamorphosis. Our findings support that Klf9 acts as an accessory transcription factor for TR at the trb locus during tadpole metamorphosis, enhancing trb autoinduction and transcription of other TR target genes, which increases cellular responsivity to further TH action on developmental gene regulation programs. PMID:26886257

  19. The Cellular Ataxia Telangiectasia-Mutated Kinase Promotes Epstein-Barr Virus Lytic Reactivation in Response to Multiple Different Types of Lytic Reactivation-Inducing Stimuli

    PubMed Central

    Hagemeier, Stacy R.; Barlow, Elizabeth A.; Meng, Qiao

    2012-01-01

    The Epstein-Barr virus (EBV) latent-to-lytic switch is mediated by the viral proteins BZLF1 (Z), BRLF1 (R), and BRRF1 (Na). Since we previously showed that DNA-damaging agents (including chemotherapy and irradiation) can induce EBV lytic reactivation and recently demonstrated that wild-type p53 contributes to lytic reactivation, we investigated the role of the ATM kinase during EBV reactivation. ATM phosphorylates and activates p53, as well as numerous other substrates involved in the cellular DNA damage response. Using an ATM inhibitor (KU55933), we found that ATM activity is required for efficient induction of EBV lytic gene expression by a variety of different stimuli, including a histone deacetylase (HDAC) inhibitor, the transforming growth factor β (TGF-β) cytokine, a demethylating agent (5-azacytidine), B cell receptor engagement with anti-IgG antibody, hydrogen peroxide, and the proteosome inhibitor bortezomib. In EBV-infected AGS (gastric) cells, knockdown of ATM, or p53, expression inhibits EBV reactivation. Conversely, treatment of these cells with nutlin-3 (which activates p53 and ATM) robustly induces lytic reactivation in a p53- and ATM-dependent manner. The ability of the EBV R and Na proteins to induce lytic reactivation in EBV-infected AGS cells is ATM dependent. However, overexpression of Z induces lytic gene expression in the presence or absence of ATM activity. Our results suggest that ATM enhances Z promoter activity in the context of the intact EBV genome and that p53 contributes to the ATM effect. Nevertheless, since we found that ATM inhibitors also reduce lytic reactivation in Burkitt lymphoma cells that have no p53, additional ATM substrates must also contribute to the ATM effect. PMID:23015717

  20. Tandem E2F Binding Sites in the Promoter of the p107 Cell Cycle Regulator Control p107 Expression and Its Cellular Functions

    PubMed Central

    Burkhart, Deborah L.; Wirt, Stacey E.; Zmoos, Anne-Flore; Kareta, Michael S.; Sage, Julien

    2010-01-01

    The retinoblastoma tumor suppressor (Rb) is a potent and ubiquitously expressed cell cycle regulator, but patients with a germline Rb mutation develop a very specific tumor spectrum. This surprising observation raises the possibility that mechanisms that compensate for loss of Rb function are present or activated in many cell types. In particular, p107, a protein related to Rb, has been shown to functionally overlap for loss of Rb in several cellular contexts. To investigate the mechanisms underlying this functional redundancy between Rb and p107 in vivo, we used gene targeting in embryonic stem cells to engineer point mutations in two consensus E2F binding sites in the endogenous p107 promoter. Analysis of normal and mutant cells by gene expression and chromatin immunoprecipitation assays showed that members of the Rb and E2F families directly bound these two sites. Furthermore, we found that these two E2F sites controlled both the repression of p107 in quiescent cells and also its activation in cycling cells, as well as in Rb mutant cells. Cell cycle assays further indicated that activation of p107 transcription during S phase through the two E2F binding sites was critical for controlled cell cycle progression, uncovering a specific role for p107 to slow proliferation in mammalian cells. Direct transcriptional repression of p107 by Rb and E2F family members provides a molecular mechanism for a critical negative feedback loop during cell cycle progression and tumorigenesis. These experiments also suggest novel therapeutic strategies to increase the p107 levels in tumor cells. PMID:20585628

  1. Immunohistochemical cellular distribution of proteins related to M phase regulation in early proliferative lesions induced by tumor promotion in rat two-stage carcinogenesis models.

    PubMed

    Yafune, Atsunori; Taniai, Eriko; Morita, Reiko; Akane, Hirotoshi; Kimura, Masayuki; Mitsumori, Kunitoshi; Shibutani, Makoto

    2014-01-01

    We have previously reported that 28-day treatment with hepatocarcinogens increases liver cells expressing p21(Cip1), a G1/S checkpoint protein, and M phase proteins, i.e., nuclear Cdc2, Aurora B, phosphorylated-Histone H3 (p-Histone H3) and heterochromatin protein 1α (HP1α), in rats. To examine the roles of these markers in the early stages of carcinogenesis, we investigated their cellular distribution in several carcinogenic target organs using rat two-stage carcinogenesis models. Promoting agents targeting the liver (piperonyl butoxide and methapyrilene hydrochloride), thyroid (sulfadimethoxine), urinary bladder (phenylethyl isothiocyanate), and forestomach and glandular stomach (catechol) were administered to rats after initiation treatment for the liver with N-diethylnitrosamine, thyroid with N-bis(2-hydroxypropyl)nitrosamine, urinary bladder with N-butyl-N-(4-hydroxybutyl)nitrosamine, and forestomach and glandular stomach with N-methyl-N'-nitro-N-nitrosoguanidine. Numbers of cells positive for nuclear Cdc2, Aurora B, p-Histone H3 and HP1α increased within preneoplastic lesions as determined by glutathione S-transferase placental form in the liver or phosphorylated p44/42 mitogen-activated protein kinase in the thyroid, and hyperplastic lesions having no known preneoplastic markers in the urinary bladder, forestomach and glandular stomach. Immunoreactive cells for p21(Cip1) were decreased within thyroid preneoplastic lesions; however, they were increased within liver preneoplastic lesions and hyperplastic lesions in other organs. These results suggest that M phase disruption commonly occur during the formation of preneoplastic lesions and hyperplastic lesions. Differences in the expression patterns of p21(Cip1) between thyroid preneoplastic and proliferative lesions in other organs may reflect differences in cell cycle regulation involving G1/S checkpoint function between proliferative lesions in each organ.

  2. A critical Sp1 element in the rhesus rhadinovirus (RRV) Rta promoter confers high-level activity that correlates with cellular permissivity for viral replication

    PubMed Central

    DeMaster, Laura K.; Rose, Timothy M.

    2013-01-01

    KSHV establishes characteristic latent infections in vitro, while RRV, a related macaque rhadinovirus, establishes characteristic permissive infections with virus replication. We identified cells that are not permissive for RRV replication and recapitulate the latent KSHV infection and reactivation processes. The RRV replication and transactivator (Rta) promoter was characterized in permissive and non-permissive cells and compared to the KSHV Rta promoter. Both promoters contained a critical Sp1 element, had equivalent activities in different cell types, and were inhibited by LANA. RRV and KSHV infections were non-permissive in cells with low Rta promoter activity. While RRV infections were permissive in cells with high basal promoter activity, KSHV infections remained non-permissive. Our studies suggest that RRV lacks the Rta-inducible LANA promoter that is responsible for LANA inhibition of the KSHV Rta promoter and induction of latency during KSHV infection. Instead, the outcome of RRV infection is determined by host factors, such as Spl. PMID:24314650

  3. A critical Sp1 element in the rhesus rhadinovirus (RRV) Rta promoter confers high-level activity that correlates with cellular permissivity for viral replication.

    PubMed

    DeMaster, Laura K; Rose, Timothy M

    2014-01-05

    KSHV establishes characteristic latent infections in vitro, while RRV, a related macaque rhadinovirus, establishes characteristic permissive infections with virus replication. We identified cells that are not permissive for RRV replication and recapitulate the latent KSHV infection and reactivation processes. The RRV replication and transactivator (Rta) promoter was characterized in permissive and non-permissive cells and compared to the KSHV Rta promoter. Both promoters contained a critical Sp1 element, had equivalent activities in different cell types, and were inhibited by LANA. RRV and KSHV infections were non-permissive in cells with low Rta promoter activity. While RRV infections were permissive in cells with high basal promoter activity, KSHV infections remained non-permissive. Our studies suggest that RRV lacks the Rta-inducible LANA promoter that is responsible for LANA inhibition of the KSHV Rta promoter and induction of latency during KSHV infection. Instead, the outcome of RRV infection is determined by host factors, such as Sp1.

  4. SM22{alpha}-induced activation of p16{sup INK4a}/retinoblastoma pathway promotes cellular senescence caused by a subclinical dose of {gamma}-radiation and doxorubicin in HepG2 cells

    SciTech Connect

    Kim, Tae Rim; Lee, Hee Min; Lee, So Yong; Kim, Eun Jin; Kim, Kug Chan; Paik, Sang Gi; Cho, Eun Wie; Kim, In Gyu

    2010-09-10

    Research highlights: {yields} SM22{alpha} overexpression in HepG2 cells leads cells to a growth arrest state, and the treatment of a subclinical dose of {gamma}-radiation or doxorubicin promotes cellular senescence. {yields} SM22{alpha} overexpression elevates p16{sup INK4a} followed by pRB activation, but there are no effects on p53/p21{sup WAF1/Cip1} pathway. {yields} SM22{alpha}-induced MT-1G activates p16{sup INK4a}/pRB pathway, which promotes cellular senescence by damaging agents. -- Abstract: Smooth muscle protein 22-alpha (SM22{alpha}) is known as a transformation- and shape change-sensitive actin cross-linking protein found in smooth muscle tissue and fibroblasts; however, its functional role remains uncertain. We reported previously that SM22{alpha} overexpression confers resistance against anti-cancer drugs or radiation via induction of metallothionein (MT) isozymes in HepG2 cells. In this study, we demonstrate that SM22{alpha} overexpression leads cells to a growth arrest state and promotes cellular senescence caused by treatment with a subclinical dose of {gamma}-radiation (0.05 and 0.1 Gy) or doxorubicin (0.01 and 0.05 {mu}g/ml), compared to control cells. Senescence growth arrest is known to be controlled by p53 phosphorylation/p21{sup WAF1/Cip1} induction or p16{sup INK4a}/retinoblastoma protein (pRB) activation. SM22{alpha} overexpression in HepG2 cells elevated p16{sup INK4a} followed by pRB activation, but did not activate the p53/p21{sup WAF1/Cip1} pathway. Moreover, MT-1G, which is induced by SM22{alpha} overexpression, was involved in the activation of the p16{sup INK4a}/pRB pathway, which led to a growth arrest state and promoted cellular senescence caused by damaging agents. Our findings provide the first demonstration that SM22{alpha} modulates cellular senescence caused by damaging agents via regulation of the p16{sup INK4a}/pRB pathway in HepG2 cells and that these effects of SM22{alpha} are partially mediated by MT-1G.

  5. The ubiquitous cellular transcriptional factor USF targets the varicella-zoster virus open reading frame 10 promoter and determines virulence in human skin xenografts in SCIDhu mice in vivo.

    PubMed

    Che, Xibing; Berarducci, Barbara; Sommer, Marvin; Ruyechan, William T; Arvin, Ann M

    2007-04-01

    Varicella-zoster virus (VZV) open reading frame 10 (ORF10) is a determinant of virulence in SCIDhu skin xenografts but not in human T cells in vivo. In this analysis of the regulation of ORF10 transcription, we have identified four ORF10-related transcripts, including a major 1.3-kb RNA spanning ORF10 only and three other read-through transcripts. Rapid-amplification-of-cDNA-ends experiments indicated that the 1.3-kb transcript of ORF10 has single initiation and termination sites. In transient expression assays, the ORF10 promoter was strongly stimulated by the major VZV transactivator, IE62. Deletion analyses revealed approximate boundaries for the full ORF10 promoter activity between -75 and -45 and between +5 and -8, relative to the ORF10 transcription start site. The recombinant virus POKA10-Deltapro, with the ORF10 promoter deletion, blocked transcription of ORF10 and also of ORF9A and ORF9 mRNAs, whereas expression of read-through ORF9A/9/10 and ORF9/10 transcripts was increased, compensating for the loss of the monocistronic mRNAs. The cellular factor USF bound specifically to its consensus site within the ORF10 promoter and was required for IE62 transactivation, whereas disrupting the predicted TATA boxes or Oct-1 binding elements had no effect. The USF binding site was disrupted in the recombinant virus, POKA10-proDeltaUSF, and no ORF10 protein was produced. Both ORF10 promoter mutants reduced VZV replication in SCIDhu skin xenografts. These observations provided further evidence of the contribution of the ORF10 protein to VZV pathogenesis in skin and demonstrated that VZV depends upon the cellular transcriptional factor USF to support its virulence in human skin in vivo.

  6. Overexpression of the microRNA miR-433 promotes resistance to paclitaxel through the induction of cellular senescence in ovarian cancer cells.

    PubMed

    Weiner-Gorzel, Karolina; Dempsey, Eugene; Milewska, Malgorzata; McGoldrick, Aloysius; Toh, Valerie; Walsh, Aoibheann; Lindsay, Sinead; Gubbins, Luke; Cannon, Aoife; Sharpe, Daniel; O'Sullivan, Jacintha; Murphy, Madeline; Madden, Stephen F; Kell, Malcolm; McCann, Amanda; Furlong, Fiona

    2015-05-01

    Annually, ovarian cancer (OC) affects 240,000 women worldwide and is the most lethal gynecological malignancy. High-grade serous OC (HGSOC) is the most common and aggressive OC subtype, characterized by widespread genome changes and chromosomal instability and is consequently poorly responsive to chemotherapy treatment. The objective of this study was to investigate the role of the microRNA miR-433 in the cellular response of OC cells to paclitaxel treatment. We show that stable miR-433 expression in A2780 OC cells results in the induction of cellular senescence demonstrated by morphological changes, downregulation of phosphorylated retinoblastoma (p-Rb), and an increase in β-galactosidase activity. Furthermore, in silico analysis identified four possible miR-433 target genes associated with cellular senescence: cyclin-dependent kinase 6 (CDK6), MAPK14, E2F3, and CDKN2A. Mechanistically, we demonstrate that downregulation of p-Rb is attributable to a miR-433-dependent downregulation of CDK6, establishing it as a novel miR-433 associated gene. Interestingly, we show that high miR-433 expressing cells release miR-433 into the growth media via exosomes which in turn can induce a senescence bystander effect. Furthermore, in relation to a chemotherapeutic response, quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed that only PEO1 and PEO4 OC cells with the highest miR-433 expression survive paclitaxel treatment. Our data highlight how the aberrant expression of miR-433 can adversely affect intracellular signaling to mediate chemoresistance in OC cells by driving cellular senescence. © 2015 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  7. Inside-out Signaling Promotes Dynamic Changes in the Carcinoembryonic Antigen-related Cellular Adhesion Molecule 1 (CEACAM1) Oligomeric State to Control Its Cell Adhesion Properties*

    PubMed Central

    Patel, Prerna C.; Lee, Hannah S. W.; Ming, Aaron Y. K.; Rath, Arianna; Deber, Charles M.; Yip, Christopher M.; Rocheleau, Jonathan V.; Gray-Owen, Scott D.

    2013-01-01

    Cell-cell contacts are fundamental to multicellular organisms and are subject to exquisite levels of control. The carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) can engage in both cis-homophilic (parallel) oligomerization and trans-homophilic (anti-parallel) binding. In this study, we establish that the CEACAM1 transmembrane domain has a propensity to form cis-dimers via the transmembrane-embedded 432GXXXG436 motif and that this basal state is overcome when activated calmodulin binds to the CEACAM1 cytoplasmic domain. Although mutation of the 432GXXXG436 motif reduced CEACAM1 oligomerization, it did not affect surface localization of the receptor or influence CEACAM1-dependent cellular invasion by the pathogenic Neisseria. The mutation did, however, have a striking effect on CEACAM1-dependent cellular aggregation, increasing both the kinetics of cell-cell association and the size of cellular aggregates formed. CEACAM1 association with tyrosine kinase c-Src and tyrosine phosphatases SHP-1 and SHP-2 was not affected by the 432GXXXG436 mutation, consistent with their association with the monomeric form of wild type CEACAM1. Collectively, our results establish that a dynamic oligomer-to-monomer shift in surface-expressed CEACAM1 facilitates trans-homophilic binding and downstream effector signaling. PMID:24005674

  8. The promoter of the white spot syndrome virus immediate-early gene WSSV108 is activated by the cellular KLF transcription factor.

    PubMed

    Liu, Wang-Jing; Lo, Chu-Fang; Kou, Guang-Hsiung; Leu, Jiann-Horng; Lai, Ying-Jang; Chang, Li-Kwan; Chang, Yun-Shiang

    2015-03-01

    A series of deletion and mutation assays of the white spot syndrome virus (WSSV) immediate-early gene WSSV108 promoter showed that a Krüppel-like factor (KLF) binding site located from -504 to -495 (relative to the transcription start site) is important for the overall level of WSSV108 promoter activity. Electrophoretic mobility shift assays further showed that overexpressed recombinant Penaeus monodon KLF (rPmKLF) formed a specific protein-DNA complex with the (32)P-labeled KLF binding site of the WSSV108 promoter, and that higher levels of Litopenaeus vannamei KLF (LvKLF) were expressed in WSSV-infected shrimp. A transactivation assay indicated that the WSSV108 promoter was strongly activated by rPmKLF in a dose-dependent manner. Lastly, we found that specific silencing of LvKLF expression in vivo by dsRNA injection dramatically reduced both WSSV108 expression and WSSV replication. We conclude that shrimp KLF is important for WSSV genome replication and gene expression, and that it binds to the WSSV108 promoter to enhance the expression of this immediate-early gene.

  9. Lentiviral MGMT(P140K)-mediated in vivo selection employing a ubiquitous chromatin opening element (A2UCOE) linked to a cellular promoter.

    PubMed

    Phaltane, Ruhi; Lachmann, Nico; Brennig, Sebastian; Ackermann, Mania; Modlich, Ute; Moritz, Thomas

    2014-08-01

    Notwithstanding recent successes, insertional mutagenesis as well as silencing and variegation of transgene expression still represent considerable obstacles to hematopoietic gene therapy. This also applies to O(6)-methylguanine DNA methyltransferase (MGMT)-mediated myeloprotection, a concept recently proven clinically effective in the context of glioblastoma therapy. To improve on this situation we here evaluate a SIN-lentiviral vector expressing the MGMT(P140K)-cDNA from a combined A2UCOE/PGK-promoter. In a murine in vivo chemoselection model the A2UCOE.PGK.MGMT construct allowed for significant myeloprotection as well as robust and stable selection of transgenic hematopoietic cells. In contrast, only transient enrichment and severe myelotoxicity was observed for a PGK.MGMT control vector. Selection of A2UCOE.PGK.MGMT-transduced myeloid and lymphoid mature and progenitor cells was demonstrated in the peripheral blood, bone marrow, spleen, and thymus. Unlike the PGK and SFFV promoters used as controls, the A2UCOE.PGK promoter allowed for sustained vector copy number-related transgene expression throughout the experiment indicating an increased resistance to silencing, which was further confirmed by CpG methylation studies of the PGK promoter. Thus, our data support a potential role of the A2UCOE.PGK.MGMT-vector in future MGMT-based myeloprotection and chemoselection strategies, and underlines the suitability of the A2UCOE element to stabilize lentiviral transgene expression in hematopoietic gene therapy.

  10. Four faces of cellular senescence

    PubMed Central

    Rodier, Francis

    2011-01-01

    Cellular senescence is an important mechanism for preventing the proliferation of potential cancer cells. Recently, however, it has become apparent that this process entails more than a simple cessation of cell growth. In addition to suppressing tumorigenesis, cellular senescence might also promote tissue repair and fuel inflammation associated with aging and cancer progression. Thus, cellular senescence might participate in four complex biological processes (tumor suppression, tumor promotion, aging, and tissue repair), some of which have apparently opposing effects. The challenge now is to understand the senescence response well enough to harness its benefits while suppressing its drawbacks. PMID:21321098

  11. Basic Fibroblast Growth Factor Inhibits Apoptosis and Promotes Proliferation of Adipose-Derived Mesenchymal Stromal Cells Isolated from Patients with Type 2 Diabetes by Reducing Cellular Oxidative Stress

    PubMed Central

    2017-01-01

    Type 2 diabetes (T2D) is a chronic metabolic disorder affecting increasing number of people in developed countries. Therefore new strategies for treatment of T2D and its complications are of special interest. Nowadays, cellular therapies involving mesenchymal stromal cells that reside in adipose tissue (ASCs) constitute a promising approach; however, there are still many obstacles concerning safety and effectiveness that need to be overcome before ASCs could be engaged for the treatment of diabetes mellitus. One of the challenges is preventing ASCs from deterioration caused by elevated oxidative stress present in diabetes milieu. In the current study we investigated the effect of basic fibroblast growth factor (bFGF) treatment on ASCs isolated from patients with diagnosed T2D. We demonstrate here that cell exposition to bFGF in 5 and 10 ng/mL dosages results in improved morphology, increased proliferative activity, reduced cellular senescence and apoptosis, and decreased oxidative stress, indicating recovery of ASCs' function impaired by T2D. Therefore our results provide a support for bFGF as a potential therapeutic agent for improving stem cell-based approaches for the treatment of diabetes mellitus and its complications. PMID:28168007

  12. Notch signaling proteins HES-1 and Hey-1 bind to insulin degrading enzyme (IDE) proximal promoter and repress its transcription and activity: implications for cellular Aβ metabolism.

    PubMed

    Leal, María C; Surace, Ezequiel I; Holgado, María P; Ferrari, Carina C; Tarelli, Rodolfo; Pitossi, Fernando; Wisniewski, Thomas; Castaño, Eduardo M; Morelli, Laura

    2012-02-01

    Cerebral amyloid β (Aβ) accumulation is pathogenically associated with sporadic Alzheimer's disease (SAD). BACE-1 is involved in Aβ generation while insulin-degrading enzyme (IDE) partakes in Aβ proteolytic clearance. Vulnerable regions in AD brains show increased BACE-1 protein levels and enzymatic activity while the opposite occurs with IDE. Another common feature in SAD brains is Notch1 overexpression. Here we demonstrate an increase in mRNA levels of Hey-1, a Notch target gene, and a decrease of IDE transcripts in the hippocampus of SAD brains as compared to controls. Transient transfection of Notch intracellular domain (NICD) in N2aSW cells, mouse neuroblastoma cells (N2a) stably expressing human amyloid precursor protein (APP) Swedish mutation, reduce IDE mRNA levels, promoting extracellular Aβ accumulation. Also, NICD, HES-1 and Hey-1 overexpression result in decreased IDE proximal promoter activity. This effect was mediated by 2 functional sites located at -379/-372 and -310-303 from the first translation start site in the -575/-19 (556 bp) fragment of IDE proximal promoter. By site-directed mutagenesis of the IDE promoter region we reverted the inhibitory effect mediated by NICD transfection suggesting that these sites are indeed responsible for the Notch-mediated inhibition of the IDE gene expression. Intracranial injection of the Notch ligand JAG-1 in Tg2576 mice, expressing the Swedish mutation in human APP, induced overexpression of HES-1 and Hey-1 and reduction of IDE mRNA levels, respectively. Our results support our theory that a Notch-dependent IDE transcriptional modulation may impact on Aβ metabolism providing a functional link between Notch signaling and the amyloidogenic pathway in SAD.

  13. Signal transduction and activator of transcription (STAT) protein-dependent activation of angiotensinogen promoter: A cellular signal for hypertrophy in cardiac muscle

    PubMed Central

    Mascareno, Eduardo; Dhar, Manya; Siddiqui, M. A. Q.

    1998-01-01

    The role of the peptide hormone angiotensin (AngII) in promoting myocardial hypertrophy is well documented. Our studies demonstrate that AngII uses a signaling pathway in cardiac myocytes in which the promoter of the gene encoding its prohormone, angiotensinogen, serves as the target site for activated signal transduction and activator of transcription (STAT) proteins. Gel mobility-shift assay revealed that STAT3 and STAT6 are selectively activated by AngII treatment of cardiomyocytes in culture and bind to a sequence motif (St-domain) in the angiotensinogen promoter to activate its transcription in transient transfection assay. We have also observed a dramatic increase in the St-domain binding activity of STAT proteins in the hypertrophied heart of the genetically hypertensive rat relative to that of the aged-matched normotensive strain WKY, providing a compelling argument in favor of the linkage of STAT pathway to the heart tissue autocrine AngII loop. These studies thus uncover a mechanism by which the activation of a selective set of STATs underlies mobilization of the gene activation program intrinsic to cardiac hypertrophy. PMID:9576927

  14. Signal transduction and activator of transcription (STAT) protein-dependent activation of angiotensinogen promoter: a cellular signal for hypertrophy in cardiac muscle.

    PubMed

    Mascareno, E; Dhar, M; Siddiqui, M A

    1998-05-12

    The role of the peptide hormone angiotensin (AngII) in promoting myocardial hypertrophy is well documented. Our studies demonstrate that AngII uses a signaling pathway in cardiac myocytes in which the promoter of the gene encoding its prohormone, angiotensinogen, serves as the target site for activated signal transduction and activator of transcription (STAT) proteins. Gel mobility-shift assay revealed that STAT3 and STAT6 are selectively activated by AngII treatment of cardiomyocytes in culture and bind to a sequence motif (St-domain) in the angiotensinogen promoter to activate its transcription in transient transfection assay. We have also observed a dramatic increase in the St-domain binding activity of STAT proteins in the hypertrophied heart of the genetically hypertensive rat relative to that of the aged-matched normotensive strain WKY, providing a compelling argument in favor of the linkage of STAT pathway to the heart tissue autocrine AngII loop. These studies thus uncover a mechanism by which the activation of a selective set of STATs underlies mobilization of the gene activation program intrinsic to cardiac hypertrophy.

  15. Inhibition of autophagy and glycolysis by nitric oxide during hypoxia-reoxygenation impairs cellular bioenergetics and promotes cell death in primary neurons.

    PubMed

    Benavides, Gloria A; Liang, Qiuli; Dodson, Matthew; Darley-Usmar, Victor; Zhang, Jianhua

    2013-12-01

    Excessive nitric oxide (NO) production is known to damage mitochondrial proteins and the autophagy repair pathway and so can potentially contribute to neurotoxicity. Accordingly, we hypothesized that protection against protein damage from reactive oxygen and nitrogen species under conditions of low oxygen by the autophagy pathway in neurons would be impaired by NO and enhance bioenergetic dysfunction. Rat primary cortical neurons had the same basal cellular respiration in hypoxia as in normoxia, whereas NO-exposed cells exhibited a gradual decrease in mitochondrial respiration in hypoxia. Upon reoxygenation, the respiration in NO-treated cells did not recover to prehypoxic levels. Hypoxia-reoxygenation in the presence of NO was associated with inhibition of autophagy, and the inability to recover during reoxygenation was exacerbated by an inhibitor of autophagy, 3-methyladenine. The effects of hypoxia could be recapitulated by inhibiting glycolytic flux under normoxic conditions. Under both normoxic and hypoxic conditions NO exposure induced immediate stimulation of glycolysis, but prolonged NO exposure, associated with irreversible inhibition of mitochondrial respiration in hypoxia, inhibited glycolysis. Importantly, we found that NO inhibited basal respiration under normoxic conditions only when glucose was absent from the medium or glycolysis was inhibited by 2-deoxy-d-glucose, revealing a novel NO-dependent mechanism for the inhibition of mitochondrial respiration that is modulated by glycolysis. Taken together these data suggest an oxygen-dependent interaction between mitochondrial respiration, glycolysis, and autophagy in protecting neuronal cells exposed to NO. Importantly, they indicate that mitochondrial dysfunction is intimately linked to a failure of glycolytic flux induced by exposure to NO. In addition, these studies provide new insights into the understanding of how autophagy and NO may play interactive roles in neuroinflammation-induced cellular

  16. DC-SIGN and L-SIGN Are Attachment Factors That Promote Infection of Target Cells by Human Metapneumovirus in the Presence or Absence of Cellular Glycosaminoglycans

    PubMed Central

    Gillespie, Leah; Gerstenberg, Kathleen; Ana-Sosa-Batiz, Fernanda; Parsons, Matthew S.; Farrukee, Rubaiyea; Krabbe, Mark; Spann, Kirsten; Brooks, Andrew G.; Londrigan, Sarah L.

    2016-01-01

    ABSTRACT It is well established that glycosaminoglycans (GAGs) function as attachment factors for human metapneumovirus (HMPV), concentrating virions at the cell surface to promote interaction with other receptors for virus entry and infection. There is increasing evidence to suggest that multiple receptors may exhibit the capacity to promote infectious entry of HMPV into host cells; however, definitive identification of specific transmembrane receptors for HMPV attachment and entry is complicated by the widespread expression of cell surface GAGs. pgsA745 Chinese hamster ovary (CHO) cells are deficient in the expression of cell surface GAGs and resistant to HMPV infection. Here, we demonstrate that the expression of the Ca2+-dependent C-type lectin receptor (CLR) DC-SIGN (CD209L) or L-SIGN (CD209L) rendered pgsA745 cells permissive to HMPV infection. Unlike infection of parental CHO cells, HMPV infection of pgsA745 cells expressing DC-SIGN or L-SIGN was dynamin dependent and inhibited by mannan but not by pretreatment with bacterial heparinase. Parental CHO cells expressing DC-SIGN/L-SIGN also showed enhanced susceptibility to dynamin-dependent HMPV infection, confirming that CLRs can promote HMPV infection in the presence or absence of GAGs. Comparison of pgsA745 cells expressing wild-type and endocytosis-defective mutants of DC-SIGN/L-SIGN indicated that the endocytic function of CLRs was not essential but could contribute to HMPV infection of GAG-deficient cells. Together, these studies confirm a role for CLRs as attachment factors and entry receptors for HMPV infection. Moreover, they define an experimental system that can be exploited to identify transmembrane receptors and entry pathways where permissivity to HMPV infection can be rescued following the expression of a single cell surface receptor. IMPORTANCE On the surface of CHO cells, glycosaminoglycans (GAGs) function as the major attachment factor for human metapneumoviruses (HMPV), promoting dynamin

  17. DC-SIGN and L-SIGN Are Attachment Factors That Promote Infection of Target Cells by Human Metapneumovirus in the Presence or Absence of Cellular Glycosaminoglycans.

    PubMed

    Gillespie, Leah; Gerstenberg, Kathleen; Ana-Sosa-Batiz, Fernanda; Parsons, Matthew S; Farrukee, Rubaiyea; Krabbe, Mark; Spann, Kirsten; Brooks, Andrew G; Londrigan, Sarah L; Reading, Patrick C

    2016-09-01

    It is well established that glycosaminoglycans (GAGs) function as attachment factors for human metapneumovirus (HMPV), concentrating virions at the cell surface to promote interaction with other receptors for virus entry and infection. There is increasing evidence to suggest that multiple receptors may exhibit the capacity to promote infectious entry of HMPV into host cells; however, definitive identification of specific transmembrane receptors for HMPV attachment and entry is complicated by the widespread expression of cell surface GAGs. pgsA745 Chinese hamster ovary (CHO) cells are deficient in the expression of cell surface GAGs and resistant to HMPV infection. Here, we demonstrate that the expression of the Ca(2+)-dependent C-type lectin receptor (CLR) DC-SIGN (CD209L) or L-SIGN (CD209L) rendered pgsA745 cells permissive to HMPV infection. Unlike infection of parental CHO cells, HMPV infection of pgsA745 cells expressing DC-SIGN or L-SIGN was dynamin dependent and inhibited by mannan but not by pretreatment with bacterial heparinase. Parental CHO cells expressing DC-SIGN/L-SIGN also showed enhanced susceptibility to dynamin-dependent HMPV infection, confirming that CLRs can promote HMPV infection in the presence or absence of GAGs. Comparison of pgsA745 cells expressing wild-type and endocytosis-defective mutants of DC-SIGN/L-SIGN indicated that the endocytic function of CLRs was not essential but could contribute to HMPV infection of GAG-deficient cells. Together, these studies confirm a role for CLRs as attachment factors and entry receptors for HMPV infection. Moreover, they define an experimental system that can be exploited to identify transmembrane receptors and entry pathways where permissivity to HMPV infection can be rescued following the expression of a single cell surface receptor. On the surface of CHO cells, glycosaminoglycans (GAGs) function as the major attachment factor for human metapneumoviruses (HMPV), promoting dynamin-independent infection

  18. Overexpression of EB1 in human esophageal squamous cell carcinoma (ESCC) may promote cellular growth by activating beta-catenin/TCF pathway.

    PubMed

    Wang, Yihua; Zhou, Xiaobo; Zhu, Hongxia; Liu, Shuang; Zhou, Cuiqi; Zhang, Guo; Xue, Liyan; Lu, Ning; Quan, Lanping; Bai, Jinfeng; Zhan, Qimin; Xu, Ningzhi

    2005-10-06

    Esophageal squamous cell carcinoma (ESCC) has a multifactorial etiology involving environmental and/or genetic factors. End-binding protein 1 (EB1), which was cloned as an interacting partner of the adenomatous polyposis coli (APC) tumor suppressor protein, was previously found overexpressed in ESCC. However, the precise role of EB1 in the development of this malignancy has not yet been elucidated. In this study, we analysed freshly resected ESCC specimens and demonstrated that EB1 was overexpressed in approximately 63% of tumor samples compared to matched normal tissue. We report that overexpression of EB1 in the ESCC line EC9706 significantly promotes cell growth, whereas suppression of EB1 protein level by RNA interference significantly inhibited growth of esophageal tumor cells. In addition, EB1 overexpression induced nuclear accumulation of beta-catenin and promoted the transcriptional activity of beta-catenin/T-cell factor (TCF). These effects were partially or completely abolished by coexpression of APC or DeltaN TCF4, respectively. Also, we found that EB1 affected the interaction between beta-catenin and APC. Furthermore, EB1 overexpression was correlated with cytoplasmic/nuclear accumulation of beta-catenin in primary human ESCC. Taken together, these results support the novel hypothesis that EB1 overexpression may play a role in the development of ESCC by affecting APC function and activating the beta-catenin/TCF pathway.

  19. DUSP11 activity on triphosphorylated transcripts promotes Argonaute association with noncanonical viral microRNAs and regulates steady-state levels of cellular noncoding RNAs

    PubMed Central

    Burke, James M.; Kincaid, Rodney P.; Nottingham, Ryan M.; Lambowitz, Alan M.; Sullivan, Christopher S.

    2016-01-01

    RNA silencing is a conserved eukaryotic gene expression regulatory mechanism mediated by small RNAs. In Caenorhabditis elegans, the accumulation of a distinct class of siRNAs synthesized by an RNA-dependent RNA polymerase (RdRP) requires the PIR-1 phosphatase. However, the function of PIR-1 in RNAi has remained unclear. Since mammals lack an analogous siRNA biogenesis pathway, an RNA silencing role for the mammalian PIR-1 homolog (dual specificity phosphatase 11 [DUSP11]) was unexpected. Here, we show that the RNA triphosphatase activity of DUSP11 promotes the RNA silencing activity of viral microRNAs (miRNAs) derived from RNA polymerase III (RNAP III) transcribed precursors. Our results demonstrate that DUSP11 converts the 5′ triphosphate of miRNA precursors to a 5′ monophosphate, promoting loading of derivative 5p miRNAs into Argonaute proteins via a Dicer-coupled 5′ monophosphate-dependent strand selection mechanism. This mechanistic insight supports a likely shared function for PIR-1 in C. elegans. Furthermore, we show that DUSP11 modulates the 5′ end phosphate group and/or steady-state level of several host RNAP III transcripts, including vault RNAs and Alu transcripts. This study shows that steady-state levels of select noncoding RNAs are regulated by DUSP11 and defines a previously unknown portal for small RNA-mediated silencing in mammals, revealing that DUSP11-dependent RNA silencing activities are shared among diverse metazoans. PMID:27798849

  20. p85α promotes nucleolin transcription and subsequently enhances EGFR mRNA stability and EGF-induced malignant cellular transformation

    PubMed Central

    Gu, Jiayan; Zhang, Liping; Jin, Honglei; Huang, Haishan; Li, Jingxia; Huang, Chuanshu

    2016-01-01

    p85α is a regulatory subunit of phosphatidylinositol 3-kinase (PI3K) that is a key lipid enzyme for generating phosphatidylinositol 3, 4, 5-trisphosphate, and subsequently activates signaling that ultimately regulates cell cycle progression, cell growth, cytoskeletal changes, and cell migration. In addition to form a complex with the p110 catalytic subunit, p85α also exists as a monomeric form due to that there is a greater abundance of p85α than p110 in many cell types. Our previous studies have demonstrated that monomeric p85α exerts a pro-apoptotic role in UV response through induction of TNF-α gene expression in PI3K-independent manner. In current studies, we identified a novel biological function of p85α as a positive regulator of epidermal growth factor receptor (EGFR) expression and cell malignant transformation via nucleolin-dependent mechanism. Our results showed that p85α was crucial for EGFR and nucleolin expression and subsequently resulted in an increase of malignant cellular transformation by using both specific knockdown and deletion of p85α in its normal expressed cells. Mechanistic studies revealed that p85α upregulated EGFR protein expression mainly through stabilizing its mRNA, whereas nucleolin (NCL) was able to bind to egfr mRNA and increase its mRNA stability. Consistently, overexpression of NCL in p85α−/− cells restored EGFR mRNA stabilization, protein expression and cell malignant transformation. Moreover, we discovered that p85α upregulated NCL gene transcription via enhancing C-Jun activation. Collectively, our studies demonstrate a novel function of p85α as a positive regulator of EGFR mRNA stability and cell malignant transformation, providing a significant insight into the understanding of biomedical nature of p85α protein in mammalian cells and further supporting that p85α might be a potential target for cancer prevention and therapy. PMID:26918608

  1. Nck adaptors, besides promoting N-WASP mediated actin-nucleation activity at pedestals, influence the cellular levels of enteropathogenic Escherichia coli Tir effector

    PubMed Central

    Nieto-Pelegrin, Elvira; Kenny, Brendan; Martinez-Quiles, Narcisa

    2014-01-01

    Enteropathogenic Escherichia coli (EPEC) binding to human intestinal cells triggers the formation of disease-associated actin rich structures called pedestals. The latter process requires the delivery, via a Type 3 secretion system, of the translocated Intimin receptor (Tir) protein into the host plasma membrane where binding of a host kinase-modified form to the bacterial surface protein Intimin triggers pedestal formation. Tir-Intimin interaction recruits the Nck adaptor to a Tir tyrosine phosphorylated residue where it activates neural Wiskott-Aldrich syndrome protein (N-WASP); initiating the major pathway to actin polymerization mediated by the actin-related protein (Arp) 2/3 complex. Previous studies with Nck-deficient mouse embryonic fibroblasts (MEFs) identified a key role for Nck in pedestal formation, presumed to reflect a lack of N-WASP activation. Here, we show the defect relates to reduced amounts of Tir within Nck-deficient cells. Indeed, Tir delivery and, thus, pedestal formation defects were much greater for MEFs than HeLa (human epithelial) cells. Crucially, the levels of two other effectors (EspB/EspF) within Nck-deficient MEFs were not reduced unlike that of Map (Mitochondrial associated protein) which, like Tir, requires CesT chaperone function for efficient delivery. Interestingly, drugs blocking various host protein degradation pathways failed to increase Tir cellular levels unlike an inhibitor of deacetylase activity (Trichostatin A; TSA). Treatments with TSA resulted in significant recovery of Tir levels, potentiation of actin polymerization and improvement in bacterial attachment to cells. Our findings have important implications for the current model of Tir-mediated actin polymerization and opens new lines of research in this area. PMID:25482634

  2. Nck adaptors, besides promoting N-WASP mediated actin-nucleation activity at pedestals, influence the cellular levels of enteropathogenic Escherichia coli Tir effector.

    PubMed

    Nieto-Pelegrin, Elvira; Kenny, Brendan; Martinez-Quiles, Narcisa

    2014-01-01

    Enteropathogenic Escherichia coli (EPEC) binding to human intestinal cells triggers the formation of disease-associated actin rich structures called pedestals. The latter process requires the delivery, via a Type 3 secretion system, of the translocated Intimin receptor (Tir) protein into the host plasma membrane where binding of a host kinase-modified form to the bacterial surface protein Intimin triggers pedestal formation. Tir-Intimin interaction recruits the Nck adaptor to a Tir tyrosine phosphorylated residue where it activates neural Wiskott-Aldrich syndrome protein (N-WASP); initiating the major pathway to actin polymerization mediated by the actin-related protein (Arp) 2/3 complex. Previous studies with Nck-deficient mouse embryonic fibroblasts (MEFs) identified a key role for Nck in pedestal formation, presumed to reflect a lack of N-WASP activation. Here, we show the defect relates to reduced amounts of Tir within Nck-deficient cells. Indeed, Tir delivery and, thus, pedestal formation defects were much greater for MEFs than HeLa (human epithelial) cells. Crucially, the levels of two other effectors (EspB/EspF) within Nck-deficient MEFs were not reduced unlike that of Map (Mitochondrial associated protein) which, like Tir, requires CesT chaperone function for efficient delivery. Interestingly, drugs blocking various host protein degradation pathways failed to increase Tir cellular levels unlike an inhibitor of deacetylase activity (Trichostatin A; TSA). Treatments with TSA resulted in significant recovery of Tir levels, potentiation of actin polymerization and improvement in bacterial attachment to cells. Our findings have important implications for the current model of Tir-mediated actin polymerization and opens new lines of research in this area.

  3. p85α promotes nucleolin transcription and subsequently enhances EGFR mRNA stability and EGF-induced malignant cellular transformation.

    PubMed

    Xie, Qipeng; Guo, Xirui; Gu, Jiayan; Zhang, Liping; Jin, Honglei; Huang, Haishan; Li, Jingxia; Huang, Chuanshu

    2016-03-29

    p85α is a regulatory subunit of phosphatidylinositol 3-kinase (PI3K) that is a key lipid enzyme for generating phosphatidylinositol 3, 4, 5-trisphosphate, and subsequently activates signaling that ultimately regulates cell cycle progression, cell growth, cytoskeletal changes, and cell migration. In addition to form a complex with the p110 catalytic subunit, p85α also exists as a monomeric form due to that there is a greater abundance of p85α than p110 in many cell types. Our previous studies have demonstrated that monomeric p85α exerts a pro-apoptotic role in UV response through induction of TNF-α gene expression in PI3K-independent manner. In current studies, we identified a novel biological function of p85α as a positive regulator of epidermal growth factor receptor (EGFR) expression and cell malignant transformation via nucleolin-dependent mechanism. Our results showed that p85α was crucial for EGFR and nucleolin expression and subsequently resulted in an increase of malignant cellular transformation by using both specific knockdown and deletion of p85α in its normal expressed cells. Mechanistic studies revealed that p85α upregulated EGFR protein expression mainly through stabilizing its mRNA, whereas nucleolin (NCL) was able to bind to egfr mRNA and increase its mRNA stability. Consistently, overexpression of NCL in p85α-/- cells restored EGFR mRNA stabilization, protein expression and cell malignant transformation. Moreover, we discovered that p85α upregulated NCL gene transcription via enhancing C-Jun activation. Collectively, our studies demonstrate a novel function of p85α as a positive regulator of EGFR mRNA stability and cell malignant transformation, providing a significant insight into the understanding of biomedical nature of p85α protein in mammalian cells and further supporting that p85α might be a potential target for cancer prevention and therapy.

  4. Blood storage affects the detection of cellular prion protein on peripheral blood leukocytes and circulating dendritic cells in part by promoting platelet satellitism.

    PubMed

    Glier, Hana; Holada, Karel

    2012-06-29

    Flow cytometry represents an attractive approach for developing currently unavailable screening tests for prion diseases. Several studies have reported significant differences in the binding of antibodies directed against cellular prion protein (PrP(C)) to blood cells of prion-infected subjects compared with healthy controls. However, flow cytometry data usually show large individual variations in detected PrP(C) levels in both infected and control groups, rendering the interpretation of individual patient data difficult. To determine how pre-analytical variables, such as the choice of anticoagulant, whether or not the blood was stored, and the storage temperature, affect the detection of PrP(C) in blood cells. Blood from healthy donors was collected in EDTA or citrate anticoagulant and processed either immediately or after storage overnight at room temperature or at 4°C. The expression of PrP(C) by T cells, B cells, NK cells, monocytes and circulating dendritic cells was evaluated using quantitative flow cytometry with the PrP(C) monoclonal antibodies AG4 and AH6. The anticoagulation of blood with citrate resulted in decreased levels of PrP(C) on monocytes but not the other cell types. The storage of blood prior to analysis led to a significant decrease in the levels of PrP(C) on the cells studied, although there were substantial differences between the cell populations. This decrease was more pronounced when using mAb AG4, which targets the N-terminal portion of the PrP(C) molecule, or following storage at room temperature. Moreover, we identified platelet satellitism on leukocytes, especially on monocytes and granulocytes, as an additional factor contributing to the heterogeneity of PrP(C) detection in stored blood. Our study demonstrates that the storage of blood prior to analysis greatly affects the detection of PrP(C) by flow cytometry. To limit the inclusion of storage-generated artifacts, we recommend the processing of blood samples immediately after their

  5. Epstein-Barr virus nuclear antigen 3A promotes cellular proliferation by repression of the cyclin-dependent kinase inhibitor p21WAF1/CIP1.

    PubMed

    Tursiella, Melissa L; Bowman, Emily R; Wanzeck, Keith C; Throm, Robert E; Liao, Jason; Zhu, Junjia; Sample, Clare E

    2014-10-01

    Latent infection by Epstein-Barr virus (EBV) is highly associated with the endemic form of Burkitt lymphoma (eBL), which typically limits expression of EBV proteins to EBNA-1 (Latency I). Interestingly, a subset of eBLs maintain a variant program of EBV latency - Wp-restricted latency (Wp-R) - that includes expression of the EBNA-3 proteins (3A, 3B and 3C), in addition to EBNA-1. In xenograft assays, Wp-R BL cell lines were notably more tumorigenic than their counterparts that maintain Latency I, suggesting that the additional latency-associated proteins expressed in Wp-R influence cell proliferation and/or survival. Here, we evaluated the contribution of EBNA-3A. Consistent with the enhanced tumorigenic potential of Wp-R BLs, knockdown of EBNA-3A expression resulted in abrupt cell-cycle arrest in G0/G1 that was concomitant with conversion of retinoblastoma protein (Rb) to its hypophosphorylated state, followed by a loss of Rb protein. Comparable results were seen in EBV-immortalized B lymphoblastoid cell lines (LCLs), consistent with the previous observation that EBNA-3A is essential for sustained growth of these cells. In agreement with the known ability of EBNA-3A and EBNA-3C to cooperatively repress p14(ARF) and p16(INK4a) expression, knockdown of EBNA-3A in LCLs resulted in rapid elevation of p14(ARF) and p16I(NK4a). By contrast, p16(INK4a) was not detectably expressed in Wp-R BL and the low-level expression of p14(ARF) was unchanged by EBNA-3A knockdown. Amongst other G1/S regulatory proteins, only p21(WAF1/CIP1), a potent inducer of G1 arrest, was upregulated following knockdown of EBNA-3A in Wp-R BL Sal cells and LCLs, coincident with hypophosphorylation and destabilization of Rb and growth arrest. Furthermore, knockdown of p21(WAF1/CIP1) expression in Wp-R BL correlated with an increase in cellular proliferation. This novel function of EBNA-3A is distinct from the functions previously described that are shared with EBNA-3C, and likely contributes to the

  6. Epstein-Barr Virus Nuclear Antigen 3A Promotes Cellular Proliferation by Repression of the Cyclin-Dependent Kinase Inhibitor p21WAF1/CIP1

    PubMed Central

    Tursiella, Melissa L.; Bowman, Emily R.; Wanzeck, Keith C.; Throm, Robert E.; Liao, Jason; Zhu, Junjia; Sample, Clare E.

    2014-01-01

    Latent infection by Epstein-Barr virus (EBV) is highly associated with the endemic form of Burkitt lymphoma (eBL), which typically limits expression of EBV proteins to EBNA-1 (Latency I). Interestingly, a subset of eBLs maintain a variant program of EBV latency - Wp-restricted latency (Wp-R) - that includes expression of the EBNA-3 proteins (3A, 3B and 3C), in addition to EBNA-1. In xenograft assays, Wp-R BL cell lines were notably more tumorigenic than their counterparts that maintain Latency I, suggesting that the additional latency-associated proteins expressed in Wp-R influence cell proliferation and/or survival. Here, we evaluated the contribution of EBNA-3A. Consistent with the enhanced tumorigenic potential of Wp-R BLs, knockdown of EBNA-3A expression resulted in abrupt cell-cycle arrest in G0/G1 that was concomitant with conversion of retinoblastoma protein (Rb) to its hypophosphorylated state, followed by a loss of Rb protein. Comparable results were seen in EBV-immortalized B lymphoblastoid cell lines (LCLs), consistent with the previous observation that EBNA-3A is essential for sustained growth of these cells. In agreement with the known ability of EBNA-3A and EBNA-3C to cooperatively repress p14ARF and p16INK4a expression, knockdown of EBNA-3A in LCLs resulted in rapid elevation of p14ARF and p16INK4a. By contrast, p16INK4a was not detectably expressed in Wp-R BL and the low-level expression of p14ARF was unchanged by EBNA-3A knockdown. Amongst other G1/S regulatory proteins, only p21WAF1/CIP1, a potent inducer of G1 arrest, was upregulated following knockdown of EBNA-3A in Wp-R BL Sal cells and LCLs, coincident with hypophosphorylation and destabilization of Rb and growth arrest. Furthermore, knockdown of p21WAF1/CIP1 expression in Wp-R BL correlated with an increase in cellular proliferation. This novel function of EBNA-3A is distinct from the functions previously described that are shared with EBNA-3C, and likely contributes to the proliferation of

  7. Poly (C)-binding protein 2 (PCBP2) promotes the progression of esophageal squamous cell carcinoma (ESCC) through regulating cellular proliferation and apoptosis.

    PubMed

    Ye, Jinjun; Zhou, Guoren; Zhang, Zhi; Sun, Lei; He, Xia; Zhou, Jianwei

    2016-08-01

    PCBP2 (Poly(C)-binding protein 2) is a member of PCBP family, which has many functions including mRNA stabilization, translational silence and translational enhancement performed by their poly(C)-binding ability. The abnormal expression of PCBP2 was correlated with various carcinomas. However, the significance and mechanism of PCBP2 in esophageal squamous cell carcinoma (ESCC) progression remain unclear. In this study, Western Blot and immunohistochemistry (IHC) analysis revealed that PCBP2 was overexpressed in ESCC tissues and cell lines. Statistical results also indicated that PCBP2 expression level was significantly positively correlated with ESCC clinicopathological parameters such as tumor grade and tumor size. Furthermore, PCBP2 expression level could also be recognized as an independent prognostic factor for ESCC patients' overall survival. Serum starvation and refeeding assay along with PCBP2-shRNA transfection demonstrated that PCBP2 expression promoted proliferation of ESCC cells. The results above are partly due to growth arrest of cell cycle at G1/S phase. We also found that reduced PCBP2 expression might induce ESCC cell apoptosis with increased cleaved caspase3 expression. Overall, our findings indicated that PCBP2 might be involved in the ESCC progression and be considered as a new treatment target in ESCC.

  8. Hepatitis C virus E2 protein promotes human hepatoma cell proliferation through the MAPK/ERK signaling pathway via cellular receptors

    SciTech Connect

    Zhao Lanjuan; Wang Lu; Ren Hao; Cao Jie; Li Li; Ke Jinshan; Qi Zhongtian . E-mail: qizt53@hotmail.com

    2005-04-15

    Dysregulation of mitogen-activated protein kinase (MAPK) signaling pathways by various viruses has been shown to be responsible for viral pathogenicity. The molecular mechanism by which hepatitis C virus (HCV) infection caused human liver diseases has been investigated on the basis of abnormal intracellular signal events. Current data are very limited involved in transmembrane signal transduction triggered by HCV E2 protein. Here we explored regulation of the MAPK/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway by E2 expressed in Chinese hamster oval cells. In human hepatoma Huh-7 cells, E2 specifically activated the MAPK/ERK pathway including downstream transcription factor ATF-2 and greatly promoted cell proliferation. CD81 and low density lipoprotein receptor (LDLR) on the cell surface mediated binding of E2 to Huh-7 cells. The MAPK/ERK activation and cell proliferation driven by E2 were suppressed by blockage of CD81 as well as LDLR. Furthermore, pretreatment with an upstream kinase MEK1/2 inhibitor U0126 also impaired the MAPK/ERK activation and cell proliferation induced by E2. Our results suggest that the MAPK/ERK signaling pathway triggered by HCV E2 via its receptors maintains survival and growth of target cells.

  9. Intra- and Extra-Cellular Events Related to Altered Glycosylation of MUC1 Promote Chronic Inflammation, Tumor Progression, Invasion, and Metastasis

    PubMed Central

    Cascio, Sandra; Finn, Olivera J.

    2016-01-01

    Altered glycosylation of mucin 1 (MUC1) on tumor cells compared to normal epithelial cells was previously identified as an important antigenic modification recognized by the immune system in the process of tumor immunosurveillance. This tumor form of MUC1 is considered a viable target for cancer immunotherapy. The importance of altered MUC1 glycosylation extends also to its role as a promoter of chronic inflammatory conditions that lead to malignant transformation and cancer progression. We review here what is known about the role of specific cancer-associated glycans on MUC1 in protein-protein interactions and intracellular signaling in cancer cells and in their adhesion to each other and the tumor stroma. The tumor form of MUC1 also creates a different landscape of inflammatory cells in the tumor microenvironment by controlling the recruitment of inflammatory cells, establishing specific interactions with dendritic cells (DCs) and macrophages, and facilitating tumor escape from the immune system. Through multiple types of short glycans simultaneously present in tumors, MUC1 acquires multiple oncogenic properties that control tumor development, progression, and metastasis at different steps of the process of carcinogenesis. PMID:27754373

  10. Aging, Cellular Senescence, and Cancer

    PubMed Central

    Campisi, Judith

    2014-01-01

    For most species, aging promotes a host of degenerative pathologies that are characterized by debilitating losses of tissue or cellular function. However, especially among vertebrates, aging also promotes hyperplastic pathologies, the most deadly of which is cancer. In contrast to the loss of function that characterizes degenerating cells and tissues, malignant (cancerous) cells must acquire new (albeit aberrant) functions that allow them to develop into a lethal tumor. This review discusses the idea that, despite seemingly opposite characteristics, the degenerative and hyperplastic pathologies of aging are at least partly linked by a common biological phenomenon: a cellular stress response known as cellular senescence. The senescence response is widely recognized as a potent tumor suppressive mechanism. However, recent evidence strengthens the idea that it also drives both degenerative and hyper-plastic pathologies, most likely by promoting chronic inflammation. Thus, the senescence response may be the result of antagonistically pleiotropic gene action. PMID:23140366

  11. Aging, cellular senescence, and cancer.

    PubMed

    Campisi, Judith

    2013-01-01

    For most species, aging promotes a host of degenerative pathologies that are characterized by debilitating losses of tissue or cellular function. However, especially among vertebrates, aging also promotes hyperplastic pathologies, the most deadly of which is cancer. In contrast to the loss of function that characterizes degenerating cells and tissues, malignant (cancerous) cells must acquire new (albeit aberrant) functions that allow them to develop into a lethal tumor. This review discusses the idea that, despite seemingly opposite characteristics, the degenerative and hyperplastic pathologies of aging are at least partly linked by a common biological phenomenon: a cellular stress response known as cellular senescence. The senescence response is widely recognized as a potent tumor suppressive mechanism. However, recent evidence strengthens the idea that it also drives both degenerative and hyperplastic pathologies, most likely by promoting chronic inflammation. Thus, the senescence response may be the result of antagonistically pleiotropic gene action.

  12. Antisense inhibition of the plastidial glucose-6-phosphate/phosphate translocator in Vicia seeds shifts cellular differentiation and promotes protein storage.

    PubMed

    Rolletschek, Hardy; Nguyen, Thuy H; Häusler, Rainer E; Rutten, Twan; Göbel, Cornelia; Feussner, Ivo; Radchuk, Ruslana; Tewes, Annegret; Claus, Bernhard; Klukas, Christian; Linemann, Ute; Weber, Hans; Wobus, Ulrich; Borisjuk, Ljudmilla

    2007-08-01

    The glucose-6-phosphate/phosphate translocator (GPT) acts as an importer of carbon into the plastid. Despite the potential importance of GPT for storage in crop seeds, its regulatory role in biosynthetic pathways that are active during seed development is poorly understood. We have isolated GPT1 from Vicia narbonensis and studied its role in seed development using a transgenic approach based on the seed-specific legumin promoter LeB4. GPT1 is highly expressed in vegetative sink tissues, flowers and young seeds. In the embryo, localized upregulation of GPT1 at the onset of storage coincides with the onset of starch accumulation. Embryos of transgenic plants expressing antisense GPT1 showed a significant reduction (up to 55%) in the specific transport rate of glucose-6-phosphate as determined using proteoliposomes prepared from embryos. Furthermore, amyloplasts developed later and were smaller in size, while the expression of genes encoding plastid-specific translocators and proteins involved in starch biosynthesis was decreased. Metabolite analysis and stable isotope labelling demonstrated that starch biosynthesis was also reduced, although storage protein biosynthesis increased. This metabolic shift was characterized by upregulation of genes related to nitrogen uptake and protein storage, morphological variation of the protein-storing vacuoles, and a crude protein content of mature seeds of transgenics that was up to 30% higher than in wild-type. These findings provide evidence that (1) the prevailing level of GPT1 abundance/activity is rate-limiting for the synthesis of starch in developing seeds, (2) GPT1 exerts a controlling function on assimilate partitioning into storage protein, and (3) GPT1 is essential for the differentiation of embryonic plastids and seed maturation.

  13. S100B-p53 disengagement by pentamidine promotes apoptosis and inhibits cellular migration via aquaporin-4 and metalloproteinase-2 inhibition in C6 glioma cells

    PubMed Central

    CAPOCCIA, ELENA; CIRILLO, CARLA; MARCHETTO, ANNALISA; TIBERI, SAMANTA; SAWIKR, YOUSSEF; PESCE, MARCELLA; D'ALESSANDRO, ALESSANDRA; SCUDERI, CATERINA; SARNELLI, GIOVANNI; CUOMO, ROSARIO; STEARDO, LUCA; ESPOSITO, GIUSEPPE

    2015-01-01

    S100 calcium-binding protein B (S100B) is highly expressed in glioma cells and promotes cancer cell survival via inhibition of the p53 protein. In melanoma cells, this S100B-p53 interaction is known to be inhibited by pentamidine isethionate, an antiprotozoal agent. Thus, the aim of the present study was to evaluate the effect of pentamidine on rat C6 glioma cell proliferation, migration and apoptosis in vitro. The change in C6 cell proliferation following treatment with pentamidine was determined by performing a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide-formazan assay. Significant dose-dependent decreases in proliferation were observed at pentamidine concentrations of 0.05 µM (58.5±5%; P<0.05), 0.5 µM (40.6±7%; P<0.01) and 5 µM (13±4%; P<0.001) compared with the control (100% viability). Furthermore, treatment with 0.05, 0.5 and 5 µM pentamidine was associated with a significant increase in apoptosis versus the untreated cells, as determined by DNA fragmentation assays, immunofluorescence analysis of C6 chromatin using Hoechst staining, and immunoblot analysis of B-cell lymphoma-2 (Bcl-2)-associated X protein (100%, P<0.05; 453%, P<0.01; and 1000%, P<0.001, respectively) and Bcl-2 (-60%, P<0.001; −80.13%, P<0.001; −95%, P<0.001, respectively). In addition, the administration of 0.05, 0.5 and 5 µM pentamidine significantly upregulated the protein expression levels of p53 (681±87.5%, P<0.05; 1244±94.3%, P<0.01; and 2244±111%, P<0.001, respectively), and significantly downregulated the expression levels of matrix metalloproteinase-2 (42±2.3%, P<0.05; 71±2.5%, P<0.01; and 95.8±3.3%, P<0.001, respectively) and aquaporin 4 (38±2.5%, P<0.05; 69±2.6%, P<0.01; and 88±3.0%, P<0.001, respectively), compared with the untreated cells. The wound healing assay demonstrated that cell migration was significantly impaired by treatment with 0.05, 0.5 and 5 µM pentamidine compared with untreated cells (88±4.2%, P<0.05; 64±2%, P<0.01; and 42

  14. S100B-p53 disengagement by pentamidine promotes apoptosis and inhibits cellular migration via aquaporin-4 and metalloproteinase-2 inhibition in C6 glioma cells.

    PubMed

    Capoccia, Elena; Cirillo, Carla; Marchetto, Annalisa; Tiberi, Samanta; Sawikr, Youssef; Pesce, Marcella; D'Alessandro, Alessandra; Scuderi, Caterina; Sarnelli, Giovanni; Cuomo, Rosario; Steardo, Luca; Esposito, Giuseppe

    2015-06-01

    S100 calcium-binding protein B (S100B) is highly expressed in glioma cells and promotes cancer cell survival via inhibition of the p53 protein. In melanoma cells, this S100B-p53 interaction is known to be inhibited by pentamidine isethionate, an antiprotozoal agent. Thus, the aim of the present study was to evaluate the effect of pentamidine on rat C6 glioma cell proliferation, migration and apoptosis in vitro. The change in C6 cell proliferation following treatment with pentamidine was determined by performing a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide-formazan assay. Significant dose-dependent decreases in proliferation were observed at pentamidine concentrations of 0.05 µM (58.5±5%; P<0.05), 0.5 µM (40.6±7%; P<0.01) and 5 µM (13±4%; P<0.001) compared with the control (100% viability). Furthermore, treatment with 0.05, 0.5 and 5 µM pentamidine was associated with a significant increase in apoptosis versus the untreated cells, as determined by DNA fragmentation assays, immunofluorescence analysis of C6 chromatin using Hoechst staining, and immunoblot analysis of B-cell lymphoma-2 (Bcl-2)-associated X protein (100%, P<0.05; 453%, P<0.01; and 1000%, P<0.001, respectively) and Bcl-2 (-60%, P<0.001; -80.13%, P<0.001; -95%, P<0.001, respectively). In addition, the administration of 0.05, 0.5 and 5 µM pentamidine significantly upregulated the protein expression levels of p53 (681±87.5%, P<0.05; 1244±94.3%, P<0.01; and 2244±111%, P<0.001, respectively), and significantly downregulated the expression levels of matrix metalloproteinase-2 (42±2.3%, P<0.05; 71±2.5%, P<0.01; and 95.8±3.3%, P<0.001, respectively) and aquaporin 4 (38±2.5%, P<0.05; 69±2.6%, P<0.01; and 88±3.0%, P<0.001, respectively), compared with the untreated cells. The wound healing assay demonstrated that cell migration was significantly impaired by treatment with 0.05, 0.5 and 5 µM pentamidine compared with untreated cells (88±4.2%, P<0.05; 64±2%, P<0.01; and 42±3

  15. Inhibition of Lon blocks cell proliferation, enhances chemosensitivity by promoting apoptosis and decreases cellular bioenergetics of bladder cancer: potential roles of Lon as a prognostic marker and therapeutic target in baldder cancer

    PubMed Central

    Wang, Rongrong; Xu, Cuicui; Shi, Yang; Wu, Xiaoyi; Wu, Zhi; Zhang, Jiliang; Chen, Lin; Wang, Lu; Yu, Xiaomin; Zhu, Haibo; Lu, Bin

    2014-01-01

    ATP-dependent Lon protease within mitochondrial matrix contributes to the degradation of abnormal proteins. The oxidative or hypoxic stress which represents the stress phenotype of cancer leads to up-regulation of Lon. However, the role of Lon in bladder cancer remains undefined. Here, we found that Lon expression in bladder cancer tissues was significantly higher than those in noncancerous tissues; down-regulation of Lon in bladder cancer cells significantly blocked cancer cell proliferation via suppression c-Jun N-terminal kinase (JNK) phosphorylation due to decreased reactive oxygen species (ROS) production and enhanced the sensitivity of bladder cancer cells to chemotherapeutic agents by promoting apoptosis. We further found that Lon down-regulation in bladder cancer cells decreased cellular bioenergetics as determined by measuring aerobic respiration and glycolysis using extracellular flux analyzer. The tissue microarray (TMA) results showed that high expression of Lon was related to the T and TNM stage, as well as histological grade of bladder cancer patients. We also demonstrated that Lon was an independent prognostic factor for overall survival of bladder cancer. Taken together, our data suggest that Lon could serve as a potential diagnostic biomarker and therapeutic target for treatment of bladder cancer, as well as for prediction of the effectiveness of chemotherapy. PMID:25526030

  16. Protein Arginine Methyltransferase 7 Regulates Cellular Response to DNA Damage by Methylating Promoter Histones H2A and H4 of the Polymerase δ Catalytic Subunit Gene, POLD1*

    PubMed Central

    Karkhanis, Vrajesh; Wang, Li; Tae, Sookil; Hu, Yu-Jie; Imbalzano, Anthony N.; Sif, Saïd

    2012-01-01

    Covalent modification of histones by protein arginine methyltransferases (PRMTs) impacts genome organization and gene expression. In this report, we show that PRMT7 interacts with the BRG1-based hSWI/SNF chromatin remodeling complex and specifically methylates histone H2A Arg-3 (H2AR3) and histone H4 Arg-3 (H4R3). To elucidate the biological function of PRMT7, we knocked down its expression in NIH 3T3 cells and analyzed global gene expression. Our findings show that PRMT7 negatively regulates expression of genes involved in DNA repair, including ALKBH5, APEX2, POLD1, and POLD2. Chromatin immunoprecipitation (ChIP) revealed that PRMT7 and dimethylated H2AR3 and H4R3 are enriched at target DNA repair genes in parental cells, whereas PRMT7 knockdown caused a significant decrease in PRMT7 recruitment and H2AR3/H4R3 methylation. Decreased PRMT7 expression also resulted in derepression of target DNA repair genes and enhanced cell resistance to DNA-damaging agents. Furthermore, we show that BRG1 co-localizes with PRMT7 on target promoters and that expression of a catalytically inactive form of BRG1 results in derepression of PRMT7 target DNA repair genes. Remarkably, reducing expression of individual PRMT7 target DNA repair genes showed that only the catalytic subunit of DNA polymerase, POLD1, was able to resensitize PRMT7 knock-down cells to DNA-damaging agents. These results provide evidence for the important role played by PRMT7 in epigenetic regulation of DNA repair genes and cellular response to DNA damage. PMID:22761421

  17. Characterization of Epstein-Barr virus (EBV) BZLF1 gene promoter variants and comparison of cellular gene expression profiles in Japanese patients with infectious mononucleosis, chronic active EBV infection, and EBV-associated hemophagocytic lymphohistiocytosis.

    PubMed

    Imajoh, Masayuki; Hashida, Yumiko; Murakami, Masanao; Maeda, Akihiko; Sato, Tetsuya; Fujieda, Mikiya; Wakiguchi, Hiroshi; Daibata, Masanori

    2012-06-01

    Epstein-Barr virus (EBV) genotypes can be distinguished based on gene sequence differences in EBV nuclear antigens 2, 3A, 3B, and 3C, and the BZLF1 promoter zone (Zp). EBV subtypes and BZLF1 Zp variants were examined in Japanese patients with infectious mononucleosis, chronic active EBV infection, and EBV-associated hemophagocytic lymphohistiocytosis. The results of EBV typing showed that samples of infectious mononucleosis, chronic active EBV infection, and EBV-associated hemophagocytic lymphohistiocytosis all belonged to EBV type 1. However, sequencing analysis of BZLF1 Zp found three polymorphic Zp variants in the same samples. The Zp-P prototype and the Zp-V3 variant were both detected in infectious mononucleosis and chronic active EBV infection. Furthermore, a novel variant previously identified in Chinese children with infectious mononucleosis, Zp-V1, was also found in 3 of 18 samples of infectious mononucleosis, where it coexisted with the Zp-P prototype. This is the first evidence that the EBV variant distribution in Japanese patients resembles that found in other Asian patients. The expression levels of 29 chronic active EBV infection-associated cellular genes were also compared in the three EBV-related disorders, using quantitative real-time reverse transcription polymerase chain reaction analysis. Two upregulated genes, RIPK2 and CDH9, were identified as common specific markers for chronic active EBV infection in both in vitro and in vivo studies. RIPK2 activates apoptosis and autophagy, and could be responsible for the pathogenesis of chronic active EBV infection.

  18. Cellular Phone Towers

    MedlinePlus

    ... the call. How are people exposed to the energy from cellular phone towers? As people use cell ... where people can be exposed to them. The energy from a cellular phone tower antenna, like that ...

  19. Hierarchical cellular materials

    SciTech Connect

    Gibson, L.J.

    1991-12-31

    In this paper a method for estimating the contributions of both the composite and the cellular microstructures to the overall material properties and the mechanical efficiency of natural cellular solids will be described. The method will be demonstrated by focusing on the Young`s modulus; similar techniques can be used for other material properties. The results suggest efficient microstructures for engineered cellular materials.

  20. Hierarchical cellular materials

    SciTech Connect

    Gibson, L.J.

    1991-01-01

    In this paper a method for estimating the contributions of both the composite and the cellular microstructures to the overall material properties and the mechanical efficiency of natural cellular solids will be described. The method will be demonstrated by focusing on the Young's modulus; similar techniques can be used for other material properties. The results suggest efficient microstructures for engineered cellular materials.

  1. The cellular memory disc of reprogrammed cells.

    PubMed

    Anjamrooz, Seyed Hadi

    2013-04-01

    The crucial facts underlying the low efficiency of cellular reprogramming are poorly understood. Cellular reprogramming occurs in nuclear transfer, induced pluripotent stem cell (iPSC) formation, cell fusion, and lineage-switching experiments. Despite these advances, there are three fundamental problems to be addressed: (1) the majority of cells cannot be reprogrammed, (2) the efficiency of reprogramming cells is usually low, and (3) the reprogrammed cells developed from a patient's own cells activate immune responses. These shortcomings present major obstacles for using reprogramming approaches in customised cell therapy. In this Perspective, the author synthesises past and present observations in the field of cellular reprogramming to propose a theoretical picture of the cellular memory disc. The current hypothesis is that all cells undergo an endogenous and exogenous holographic memorisation such that parts of the cellular memory dramatically decrease the efficiency of reprogramming cells, act like a barrier against reprogramming in the majority of cells, and activate immune responses. Accordingly, the focus of this review is mainly to describe the cellular memory disc (CMD). Based on the present theory, cellular memory includes three parts: a reprogramming-resistance memory (RRM), a switch-promoting memory (SPM) and a culture-induced memory (CIM). The cellular memory arises genetically, epigenetically and non-genetically and affects cellular behaviours. [corrected].

  2. A Cellular Biophysics Textbook

    NASA Astrophysics Data System (ADS)

    Wilder, Alan Joseph

    2011-12-01

    In the past two decades, great advances have been made in understanding of the biophysical mechanisms of the protein machines that carry out the fundamental processes of the cell. It is now known that all major eukaryotic cellular processes require a complicated assemblage of proteins acting via a series of concerted motions. In order to grasp current understanding of cellular mechanisms, the new generation of cell biologists needs to be trained in the general characteristics of these cellular properties and the methods with which to study them. This cellular biophysics textbook, to be used in conjunction with the cellular biophysics course (MCB143) at UC-Davis, provides a great tool in the instruction of the new generation of cellular biologists. It provides a hierarchical view of the cell, from atoms to protein machines and explains in depth the mechanisms of cytoskeletal force generators as an example of these principles.

  3. Chronic exposure to a 1.439 GHz electromagnetic field used for cellular phones does not promote N-ethylnitrosourea induced central nervous system tumors in F344 rats.

    PubMed

    Shirai, Tomoyuki; Kawabe, Mayumi; Ichihara, Toshio; Fujiwara, Osamu; Taki, Masao; Watanabe, So-ichi; Wake, Kanako; Yamanaka, Yukio; Imaida, Katsumi; Asamoto, Makoto; Tamano, Seiko

    2005-01-01

    The present study was designed to evaluate whether a 2 year exposure to an electromagnetic field (EMF) equivalent to that generated by cellular phones can accelerate tumor development in the central nervous system (CNS) of rats. Brain tumorigenesis was initiated by an intrauterine exposure to N-ethylnitrosourea (ENU) on gestational day 18. A total of 500 pups were divided into five groups, each composed of 50 males and 50 females: Group 1, untreated control; Group 2, ENU alone; Groups 3-5, ENU + EMF (sham exposure and 2 exposure levels). A 1.439 GHz time division multiple access (TDMA) signal for the Personal Digital Cellular (PDC), Japanese standard cellular system was used for the exposure of the rat head starting from 5 weeks of age, 90 min a day, 5 days a week, for 104 weeks. Brain average specific absorption rate (SAR) was 0.67 and 2.0 W/kg for low and high exposures, respectively: whole body average SAR was less than 0.4 W/kg. There were no inter-group differences in body weights, food consumption, and survival rates. No increase in the incidences or numbers per group of brain and/or spinal cord tumors, either in the males or females, was detected in the EMF exposed groups. In addition, no clear changes in tumor types were evident. Thus, under the present experimental conditions, 1.439 GHz EMF exposure to the heads of rats for a 2 year period was not demonstrated to accelerate or affect ENU initiated brain tumorigenesis. 2004 Wiley-Liss, Inc.

  4. Modelling cellular behaviour

    NASA Astrophysics Data System (ADS)

    Endy, Drew; Brent, Roger

    2001-01-01

    Representations of cellular processes that can be used to compute their future behaviour would be of general scientific and practical value. But past attempts to construct such representations have been disappointing. This is now changing. Increases in biological understanding combined with advances in computational methods and in computer power make it possible to foresee construction of useful and predictive simulations of cellular processes.

  5. Plasmonic Nanostructured Cellular Automata

    NASA Astrophysics Data System (ADS)

    Alkhazraji, Emad; Ghalib, A.; Manzoor, K.; Alsunaidi, M. A.

    2017-03-01

    In this work, we have investigated the scattering plasmonic resonance characteristics of silver nanospheres with a geometrical distribution that is modelled by Cellular Automata using time-domain numerical analysis. Cellular Automata are discrete mathematical structures that model different natural phenomena. Two binary one-dimensional Cellular Automata rules are considered to model the nanostructure, namely rule 30 and rule 33. The analysis produces three-dimensional scattering profiles of the entire plasmonic nanostructure. For the Cellular Automaton rule 33, the introduction of more Cellular Automata generations resulted only in slight red and blue shifts in the plasmonic modes with respect to the first generation. On the other hand, while rule 30 introduced significant red shifts in the resonance peaks at early generations, at later generations however, a peculiar effect is witnessed in the scattering profile as new peaks emerge as a feature of the overall Cellular Automata structure rather than the sum of the smaller parts that compose it. We strongly believe that these features that emerge as a result adopting the different 256 Cellular Automata rules as configuration models of nanostructures in different applications and systems might possess a great potential in enhancing their capability, sensitivity, efficiency, and power utilization.

  6. Cloning of a functional Burkitt's lymphoma polypeptide-binding protein/78 kDa glucose-regulated protein (BiP/GRP78) gene promoter by the polymerase chain reaction, and its interaction with inducible cellular factors.

    PubMed Central

    Chao, C C; Yam, W C; Chen, L K; Lin-Chao, S

    1992-01-01

    The promoter of the human gene encoding the stress-responsive protein polypeptide-binding protein/78 kDa glucose-regulated protein (BiP/GRP78) was isolated from Burkitt's lymphoma cells by PCR. This promoter DNA segment (termed BiP670) or one of its 5' deletion derivatives was fused to the bacterial chloramphenicol acetyltransferase gene and introduced into HeLa cells for transient expression. BiP670 retained transcriptional activity at both the basal and Ca2+ ionophore A23187-inducible levels. However, there was no significant increase in promoter activity following a 5 h induction with 7 microM-A23187, and less than 5-fold induction at 15 h. In contrast, the steady-state mRNA level was induced by 18-fold at 5 h. The in vivo transactivation assays with BiP670 5' deletion derivatives indicate that the putative A23187-inducible element is located within a 70 bp DNA segment (i.e. spanning -39 to -107 bp upstream of the transcriptional initiation site). Using an in vitro gel mobility shift assay, A23187-inducible nuclear factors were identified from HeLa cell extracts. DNA-binding competition experiments also suggest that the 70 bp DNA segment contains a potential sequence motif for the binding of the A23187-inducible nuclear factors. Images Fig. 1. Fig. 3. Fig. 4. Fig. 5. PMID:1382410

  7. Cellular Reflectarray Antenna

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    2010-01-01

    The cellular reflectarray antenna is intended to replace conventional parabolic reflectors that must be physically aligned with a particular satellite in geostationary orbit. These arrays are designed for specified geographical locations, defined by latitude and longitude, each called a "cell." A particular cell occupies nominally 1,500 square miles (3,885 sq. km), but this varies according to latitude and longitude. The cellular reflectarray antenna designed for a particular cell is simply positioned to align with magnetic North, and the antenna surface is level (parallel to the ground). A given cellular reflectarray antenna will not operate in any other cell.

  8. Electromagnetic cellular interactions.

    PubMed

    Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan

    2011-05-01

    Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating.

  9. Cellular aging and cancer

    PubMed Central

    Hornsby, Peter J.

    2010-01-01

    Aging is manifest in a variety of changes over time, including changes at the cellular level. Cellular aging acts primarily as a tumor suppressor mechanism, but also may enhance cancer development under certain circumstances. One important process of cellular aging is oncogene-induced senescence, which acts as an important anti-cancer mechanism. Cellular senescence resulting from damage caused by activated oncogenes prevents the growth or potentially neoplastic cells. Moreover, cells that have entered senescence appear to be targets for elimination by the innnate immune system. In another aspect of cellular aging, the absence of telomerase activity in normal tissues results in such cells lacking a telomere maintenance mechanism. One consequence is that in aging there is an increase in cells with shortened telomeres. In the presence of active oncogenes that cause expansion of a neoplastic clone, shortening of telomeres leading to telomere dysfunction prevents the indefinite expansion of the clone because the cells enter crisis. Crisis results from fusions and other defects caused by dysfunctional telomeres and is a terminal state of the neoplastic clone. In this way the absence of telomerase in human cells, while one cause of cellular aging, also acts as an anti-cancer mechanism. PMID:20705476

  10. Bone Marrow-Derived Mesenchymal Stem Cells Repair Necrotic Pancreatic Tissue and Promote Angiogenesis by Secreting Cellular Growth Factors Involved in the SDF-1α/CXCR4 Axis in Rats

    PubMed Central

    Qian, Daohai; Gong, Jian; He, Zhigang; Hua, Jie; Lin, Shengping; Xu, Chenglei; Meng, Hongbo; Song, Zhenshun

    2015-01-01

    Acute pancreatitis (AP), a common acute abdominal disease, 10%–20% of which can evolve into severe acute pancreatitis (SAP), is of significant morbidity and mortality. Bone marrow-derived mesenchymal stem cells (BMSCs) have been reported to have a potential therapeutic role on SAP, but the specific mechanism is unclear. Therefore, we conducted this experiment to shed light on the probable mechanism. We validated that SDF-1α significantly stimulated the expressions of VEGF, ANG-1, HGF, TGF-β, and CXCR4 in BMSCs, which were inhibited by its receptor agonist, AMD3100. The capacities of proliferation, migration, and repair of human umbilical vein endothelial cells were enhanced by BMSCs supernatant. Meanwhile, BMSCs supernatant could also promote angiogenesis, especially after the stimulation with SDF-1α. In vivo, the migration of BMSCs was regulated by SDF-1α/CXCR4 axis. Moreover, transplanted BMSCs could significantly alleviate SAP, reduce the systematic inflammation (TNF-α↓, IL-1β↓, IL-6↓, IL-4↑, IL-10↑, and TGF-β↑), and promote tissue repair and angiogenesis (VEGF↑, ANG-1↑, HGF↑, TGF-β↑, and CD31↑), compared with the SAP and anti-CXCR4 groups. Taken together, the results showed that BMSCs ameliorated SAP and the SDF-1α/CXCR4 axis was involved in the repair and regeneration process. PMID:25810724

  11. Cellular compartmentalization of secondary metabolism

    PubMed Central

    Kistler, H. Corby; Broz, Karen

    2015-01-01

    Fungal secondary metabolism is often considered apart from the essential housekeeping functions of the cell. However, there are clear links between fundamental cellular metabolism and the biochemical pathways leading to secondary metabolite synthesis. Besides utilizing key biochemical precursors shared with the most essential processes of the cell (e.g., amino acids, acetyl CoA, NADPH), enzymes for secondary metabolite synthesis are compartmentalized at conserved subcellular sites that position pathway enzymes to use these common biochemical precursors. Co-compartmentalization of secondary metabolism pathway enzymes also may function to channel precursors, promote pathway efficiency and sequester pathway intermediates and products from the rest of the cell. In this review we discuss the compartmentalization of three well-studied fungal secondary metabolite biosynthetic pathways for penicillin G, aflatoxin and deoxynivalenol, and summarize evidence used to infer subcellular localization. We also discuss how these metabolites potentially are trafficked within the cell and may be exported. PMID:25709603

  12. Architected Cellular Materials

    NASA Astrophysics Data System (ADS)

    Schaedler, Tobias A.; Carter, William B.

    2016-07-01

    Additive manufacturing enables fabrication of materials with intricate cellular architecture, whereby progress in 3D printing techniques is increasing the possible configurations of voids and solids ad infinitum. Examples are microlattices with graded porosity and truss structures optimized for specific loading conditions. The cellular architecture determines the mechanical properties and density of these materials and can influence a wide range of other properties, e.g., acoustic, thermal, and biological properties. By combining optimized cellular architectures with high-performance metals and ceramics, several lightweight materials that exhibit strength and stiffness previously unachievable at low densities were recently demonstrated. This review introduces the field of architected materials; summarizes the most common fabrication methods, with an emphasis on additive manufacturing; and discusses recent progress in the development of architected materials. The review also discusses important applications, including lightweight structures, energy absorption, metamaterials, thermal management, and bioscaffolds.

  13. Irregular Cellular Learning Automata.

    PubMed

    Esnaashari, Mehdi; Meybodi, Mohammad Reza

    2015-08-01

    Cellular learning automaton (CLA) is a recently introduced model that combines cellular automaton (CA) and learning automaton (LA). The basic idea of CLA is to use LA to adjust the state transition probability of stochastic CA. This model has been used to solve problems in areas such as channel assignment in cellular networks, call admission control, image processing, and very large scale integration placement. In this paper, an extension of CLA called irregular CLA (ICLA) is introduced. This extension is obtained by removing the structure regularity assumption in CLA. Irregularity in the structure of ICLA is needed in some applications, such as computer networks, web mining, and grid computing. The concept of expediency has been introduced for ICLA and then, conditions under which an ICLA becomes expedient are analytically found.

  14. Epigenetics and Cellular Metabolism

    PubMed Central

    Xu, Wenyi; Wang, Fengzhong; Yu, Zhongsheng; Xin, Fengjiao

    2016-01-01

    Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc.) is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well. PMID:27695375

  15. Fatigue of cellular materials

    SciTech Connect

    Huang, J.S.; Lin, J.Y.

    1996-01-01

    The fatigue of cellular materials is analyzed using dimensional arguments. When the first unbroken cell wall ahead of the macrocrack tip fails after some cycles of loading, the macrocrack advances one cell diameter, giving the macrocrack growth rate of cellular materials. Paris law for microcrack propagation, Basquin law for high cycle fatigue and Coffin-Manson law for low cycle fatigue are employed in calculating the number of cycles to failure of the first unbroken cell wall ahead of the macrocrack tip. It is found that fatigue of cellular materials depends on cyclic stress intensity range, cell size, relative density and the fatigue parameters of the solid from which they are made. Theoretical modelling of fatigue of foams is compared to data in polymer foams; agreement is good.

  16. Geroconversion: irreversible step to cellular senescence

    PubMed Central

    Blagosklonny, Mikhail V

    2014-01-01

    Cellular senescence happens in 2 steps: cell cycle arrest followed, or sometimes preceded, by gerogenic conversion (geroconversion). Geroconvesrion is a form of growth, a futile growth during cell cycle arrest. It converts reversible arrest to irreversible senescence. Geroconversion is driven by growth-promoting, mitogen-/nutrient-sensing pathways such as mTOR. Geroconversion leads to hyper-secretory, hypertrophic and pro-inflammatory cellular phenotypes, hyperfunctions and malfunctions. On organismal level, geroconversion leads to age-related diseases and death. Rapamycin, a gerosuppressant, extends life span in diverse species from yeast to mammals. Stress–and oncogene-induced accelerated senescence, replicative senescence in vitro and life-long cellular aging in vivo all can be described by 2-step model. PMID:25483060

  17. Cellular immunotherapies for cancer.

    PubMed

    Berraondo, Pedro; Labiano, Sara; Minute, Luna; Etxeberria, Iñaki; Vasquez, Marcos; Sanchez-Arraez, Alvaro; Teijeira, Alvaro; Melero, Ignacio

    2017-01-01

    Lessons learned over decades on the use of gene and cell therapies have found clinical applicability in the field of cancer immunotherapy. On December 16(th), 2016 a symposium was held in Pamplona (Spain) to analyze and discuss the critical points for the clinical success of adoptive cell transfer strategies in cancer immunotherapy. Cellular immunotherapy is being currently exploited for the development of new cancer vaccines using ex vivo manipulated dendritic cells or to enhance the number of effector cells, transferring reinvigorated NK cells or T cells. In this meeting report, we summarize the main topics covered and provide an overview of the field of cellular immunotherapy.

  18. Cellular structural biology.

    PubMed

    Ito, Yutaka; Selenko, Philipp

    2010-10-01

    While we appreciate the complexity of the intracellular environment as a general property of every living organism, we collectively lack the appropriate tools to analyze protein structures in a cellular context. In-cell NMR spectroscopy represents a novel biophysical tool to investigate the conformational and functional characteristics of biomolecules at the atomic level inside live cells. Here, we review recent in-cell NMR developments and provide an outlook towards future applications in prokaryotic and eukaryotic cells. We hope to thereby emphasize the usefulness of in-cell NMR techniques for cellular studies of complex biological processes and for structural analyses in native environments. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Genetic Dominance & Cellular Processes

    ERIC Educational Resources Information Center

    Seager, Robert D.

    2014-01-01

    In learning genetics, many students misunderstand and misinterpret what "dominance" means. Understanding is easier if students realize that dominance is not a mechanism, but rather a consequence of underlying cellular processes. For example, metabolic pathways are often little affected by changes in enzyme concentration. This means that…

  20. Genetic Dominance & Cellular Processes

    ERIC Educational Resources Information Center

    Seager, Robert D.

    2014-01-01

    In learning genetics, many students misunderstand and misinterpret what "dominance" means. Understanding is easier if students realize that dominance is not a mechanism, but rather a consequence of underlying cellular processes. For example, metabolic pathways are often little affected by changes in enzyme concentration. This means that…

  1. Cellular genetic therapy.

    PubMed

    Del Vecchio, F; Filareto, A; Spitalieri, P; Sangiuolo, F; Novelli, G

    2005-01-01

    Cellular genetic therapy is the ultimate frontier for those pathologies that are consequent to a specific nonfunctional cellular type. A viable cure for there kinds of diseases is the replacement of sick cells with healthy ones, which can be obtained from the same patient or a different donor. In fact, structures can be corrected and strengthened with the introduction of undifferentiated cells within specific target tissues, where they will specialize into the desired cellular types. Furthermore, consequent to the recent results obtained with the transdifferentiation experiments, a process that allows the in vitro differentiation of embryonic and adult stem cells, it has also became clear that many advantages may be obtained from the use of stem cells to produce drugs, vaccines, and therapeutic molecules. Since stem cells can sustain lineage potentials, the capacity for differentiation, and better tolerance for the introduction of exogenous genes, they are also considered as feasible therapeutic vehicles for gene therapy. In fact, it is strongly believed that the combination of cellular genetic and gene therapy approaches will definitely allow the development of new therapeutic strategies as well as the production of totipotent cell lines to be used as experimental models for the cure of genetic disorders.

  2. The New Cellular Immunology

    ERIC Educational Resources Information Center

    Claman, Henry N.

    1973-01-01

    Discusses the nature of the immune response and traces many of the discoveries that have led to the present state of knowledge in immunology. The new cellular immunology is directing its efforts toward improving health by proper manipulation of the immune mechanisms of the body. (JR)

  3. The New Cellular Immunology

    ERIC Educational Resources Information Center

    Claman, Henry N.

    1973-01-01

    Discusses the nature of the immune response and traces many of the discoveries that have led to the present state of knowledge in immunology. The new cellular immunology is directing its efforts toward improving health by proper manipulation of the immune mechanisms of the body. (JR)

  4. Predictability in cellular automata.

    PubMed

    Agapie, Alexandru; Andreica, Anca; Chira, Camelia; Giuclea, Marius

    2014-01-01

    Modelled as finite homogeneous Markov chains, probabilistic cellular automata with local transition probabilities in (0, 1) always posses a stationary distribution. This result alone is not very helpful when it comes to predicting the final configuration; one needs also a formula connecting the probabilities in the stationary distribution to some intrinsic feature of the lattice configuration. Previous results on the asynchronous cellular automata have showed that such feature really exists. It is the number of zero-one borders within the automaton's binary configuration. An exponential formula in the number of zero-one borders has been proved for the 1-D, 2-D and 3-D asynchronous automata with neighborhood three, five and seven, respectively. We perform computer experiments on a synchronous cellular automaton to check whether the empirical distribution obeys also that theoretical formula. The numerical results indicate a perfect fit for neighbourhood three and five, which opens the way for a rigorous proof of the formula in this new, synchronous case.

  5. Probabilistic cellular automata.

    PubMed

    Agapie, Alexandru; Andreica, Anca; Giuclea, Marius

    2014-09-01

    Cellular automata are binary lattices used for modeling complex dynamical systems. The automaton evolves iteratively from one configuration to another, using some local transition rule based on the number of ones in the neighborhood of each cell. With respect to the number of cells allowed to change per iteration, we speak of either synchronous or asynchronous automata. If randomness is involved to some degree in the transition rule, we speak of probabilistic automata, otherwise they are called deterministic. With either type of cellular automaton we are dealing with, the main theoretical challenge stays the same: starting from an arbitrary initial configuration, predict (with highest accuracy) the end configuration. If the automaton is deterministic, the outcome simplifies to one of two configurations, all zeros or all ones. If the automaton is probabilistic, the whole process is modeled by a finite homogeneous Markov chain, and the outcome is the corresponding stationary distribution. Based on our previous results for the asynchronous case-connecting the probability of a configuration in the stationary distribution to its number of zero-one borders-the article offers both numerical and theoretical insight into the long-term behavior of synchronous cellular automata.

  6. [Archives of "comprehensive approach on asbestos-related diseases" supported by the "special coordination funds for promoting science and technology (H18-1-3-3-1)"-- overview of group research project, care and specimen registration, cellular characteristics of mesothelioma and immunological effects of asbestos].

    PubMed

    Otsuki, Takemi; Nakano, Takashi; Hasegawa, Seiki; Okada, Morihito; Tsujimura, Tohru; Sekido, Yoshitaka; Toyokuni, Shinya; Nishimoto, Hiroshi; Fukuoka, Kazuya; Tanaka, Fumihiro; Kumagai, Naoko; Maeda, Megumi; Nishimura, Yasumitsu

    2011-05-01

    The research project entitled "Comprehensive approach on asbestos-related diseases" supported by the "Special Coordination Funds for Promoting Science and Technology (H18-1-3-3-1)" began in 2006 and was completed at the end of the Japanese fiscal year of 2010. This project included four parts; (1) malignant mesothelioma (MM) cases and specimen registration, (2) development of procedures for the early diagnosis of MM, (3) commencement of clinical investigations including multimodal approaches, and (4) basic research comprising three components; (i) cellular and molecular characterization of mesothelioma cells, (ii) immunological effects of asbestos, and (iii) elucidation of asbestos-induced carcinogenesis using animal models. In this special issue of the Japanese Journal of Hygiene, we briefly introduce the achievements of our project. The second and third parts and the third component of the fourth part are described in other manuscripts written by Professors Fukuoka, Hasegawa, and Toyokuni. In this manuscript, we introduce a brief summary of the first part "MM cases and specimen registration", the first component of the fourth part "Cellular and molecular characterization of mesothelioma cells" and the second component of the fourth part "Immunological effects of asbestos". In addition, a previous special issue presented by the Study Group of Fibrous and Particulate Substances (SGFPS) (chaired by Professor Otsuki, Kawasaki Medical School, Japan) for the Japanese Society of Hygiene and published in Environmental Health and Preventive Medicine Volume 13, 2008, included reviews of the aforementioned first component of the fourth part of the project. Taken together, our project led medical investigations regarding asbestos and MM progress and contributed towards the care and examination of patients with asbestos-related diseases during these five years. Further investigations are required to facilitate the development of preventive measures and the cure of asbestos

  7. Cellular Communication through Light

    PubMed Central

    Fels, Daniel

    2009-01-01

    Information transfer is a fundamental of life. A few studies have reported that cells use photons (from an endogenous source) as information carriers. This study finds that cells can have an influence on other cells even when separated with a glass barrier, thereby disabling molecule diffusion through the cell-containing medium. As there is still very little known about the potential of photons for intercellular communication this study is designed to test for non-molecule-based triggering of two fundamental properties of life: cell division and energy uptake. The study was performed with a cellular organism, the ciliate Paramecium caudatum. Mutual exposure of cell populations occurred under conditions of darkness and separation with cuvettes (vials) allowing photon but not molecule transfer. The cell populations were separated either with glass allowing photon transmission from 340 nm to longer waves, or quartz being transmittable from 150 nm, i.e. from UV-light to longer waves. Even through glass, the cells affected cell division and energy uptake in neighboring cell populations. Depending on the cuvette material and the number of cells involved, these effects were positive or negative. Also, while paired populations with lower growth rates grew uncorrelated, growth of the better growing populations was correlated. As there were significant differences when separating the populations with glass or quartz, it is suggested that the cell populations use two (or more) frequencies for cellular information transfer, which influences at least energy uptake, cell division rate and growth correlation. Altogether the study strongly supports a cellular communication system, which is different from a molecule-receptor-based system and hints that photon-triggering is a fine tuning principle in cell chemistry. PMID:19340303

  8. Formin’ cellular structures

    PubMed Central

    Bogdan, Sven; Schultz, Jörg; Grosshans, Jörg

    2014-01-01

    Members of the Diaphanous (Dia) protein family are key regulators of fundamental actin driven cellular processes, which are conserved from yeast to humans. Researchers have uncovered diverse physiological roles in cell morphology, cell motility, cell polarity, and cell division, which are involved in shaping cells into tissues and organs. The identification of numerous binding partners led to substantial progress in our understanding of the differential functions of Dia proteins. Genetic approaches and new microscopy techniques allow important new insights into their localization, activity, and molecular principles of regulation. PMID:24719676

  9. Ultradiscrete Systems (Cellular Automata)

    NASA Astrophysics Data System (ADS)

    Tokihiro, Tetsuji

    Ultradiscretization is a limiting procedure which allows one to obtain a cellular automaton (CA) from continuous equations. Using this method, we can construct integrable CAs from integrable partial difference equations. In this course, we focus on a typical integrable CA, called a Box and Ball system (BBS), and review its peculiar features. Since a BBS is an ultradiscrete limit of the discrete KP equation and discrete Toda equation, we can obtain explicit solutions and conserved quantities for the BBS. Furthermore the BBS is also regarded as a limit (crystallization) of an integrable lattice model. Recent topics, and a periodic BBS in particular are also reviewed.

  10. Review of cellular mechanotransduction

    NASA Astrophysics Data System (ADS)

    Wang, Ning

    2017-06-01

    Living cells and tissues experience physical forces and chemical stimuli in the human body. The process of converting mechanical forces into biochemical activities and gene expression is mechanochemical transduction or mechanotransduction. Significant advances have been made in understanding mechanotransduction at the cellular and molecular levels over the last two decades. However, major challenges remain in elucidating how a living cell integrates signals from mechanotransduction with chemical signals to regulate gene expression and to generate coherent biological responses in living tissues in physiological conditions and diseases.

  11. Cellular mechanics and motility

    NASA Astrophysics Data System (ADS)

    Hénon, Sylvie; Sykes, Cécile

    2015-10-01

    The term motility defines the movement of a living organism. One widely known example is the motility of sperm cells, or the one of flagellar bacteria. The propulsive element of such organisms is a cilium(or flagellum) that beats. Although cells in our tissues do not have a flagellum in general, they are still able to move, as we will discover in this chapter. In fact, in both cases of movement, with or without a flagellum, cell motility is due to a dynamic re-arrangement of polymers inside the cell. Let us first have a closer look at the propulsion mechanism in the case of a flagellum or a cilium, which is the best known, but also the simplest, and which will help us to define the hydrodynamic general conditions of cell movement. A flagellum is sustained by cellular polymers arranged in semi-flexible bundles and flagellar beating generates cell displacement. These polymers or filaments are part of the cellular skeleton, or "cytoskeleton", which is, in this case, external to the cellular main body of the organism. In fact, bacteria move in a hydrodynamic regime in which viscosity dominates over inertia. The system is thus in a hydrodynamic regime of low Reynolds number (Box 5.1), which is nearly exclusively the case in all cell movements. Bacteria and their propulsion mode by flagella beating are our unicellular ancestors 3.5 billion years ago. Since then, we have evolved to form pluricellular organisms. However, to keep the ability of displacement, to heal our wounds for example, our cells lost their flagellum, since it was not optimal in a dense cell environment: cells are too close to each other to leave enough space for the flagella to accomplish propulsion. The cytoskeleton thus developed inside the cell body to ensure cell shape changes and movement, and also mechanical strength within a tissue. The cytoskeleton of our cells, like the polymers or filaments that sustain the flagellum, is also composed of semi-flexible filaments arranged in bundles, and also in

  12. Oral Cellular Neurothekeoma

    PubMed Central

    Emami, Nader; Zawawi, Faisal; Ywakim, Rania; Daniel, Sam J.

    2013-01-01

    Cellular neurothekeoma is known as a cutaneous tumor with uncertain histogenesis. Very little involvement of mucosal membrane has been reported in the literature so far. This is a case report of an intraoral lesion in a 15-years-old girl. Histopathologic evaluation showed a tumor-consists of spindle to epitheloid cells forming micronodules in a concentric whorled shape pattern. Tumor cells were positive for CD63, vimentin, and NKI-C3. Total excision was performed and no recurrence happened after 16-month followup. PMID:23691398

  13. Cellular Analogs of Operant Behavior

    DTIC Science & Technology

    1990-12-31

    activity rather than by a cellular reinforcement process. We have always required as critical evidence of cellular reinforcement that noncontingent or... reinforcement process. We have always required as critical evidence of cellular reinforcement that noncortingent or random presentations of the positive...the burst- ing of hippocampal pyramidal cells. One approach is to attempt to reinforce hippocamp- al bursting with a nonspecific depolarizing agent

  14. Multifunctional periodic cellular metals.

    PubMed

    Wadley, Haydn N G

    2006-01-15

    Periodic cellular metals with honeycomb and corrugated topologies are widely used for the cores of light weight sandwich panel structures. Honeycombs have closed cell pores and are well suited for thermal protection while also providing efficient load support. Corrugated core structures provide less efficient and highly anisotropic load support, but enable cross flow heat exchange opportunities because their pores are continuous in one direction. Recent advances in topology design and fabrication have led to the emergence of lattice truss structures with open cell structures. These three classes of periodic cellular metals can now be fabricated from a wide variety of structural alloys. Many topologies are found to provide adequate stiffness and strength for structural load support when configured as the cores of sandwich panels. Sandwich panels with core relative densities of 2-10% and cell sizes in the millimetre range are being assessed for use as multifunctional structures. The open, three-dimensional interconnected pore networks of lattice truss topologies provide opportunities for simultaneously supporting high stresses while also enabling cross flow heat exchange. These highly compressible structures also provide opportunities for the mitigation of high intensity dynamic loads created by impacts and shock waves in air or water. By filling the voids with polymers and hard ceramics, these structures have also been found to offer significant resistance to penetration by projectiles.

  15. Cellular Array Processing Simulation

    NASA Astrophysics Data System (ADS)

    Lee, Harry C.; Preston, Earl W.

    1981-11-01

    The Cellular Array Processing Simulation (CAPS) system is a high-level image language that runs on a multiprocessor configuration. CAPS is interpretively decoded on a conventional minicomputer with all image operation instructions executed on an array processor. The synergistic environment that exists between the minicomputer and the array processor gives CAPS its high-speed throughput, while maintaining a convenient conversational user language. CAPS was designed to be both modular and table driven so that it can be easily maintained and modified. CAPS uses the image convolution operator as one of its primitives and performs this cellular operation by decomposing it into parallel image steps that are scheduled to be executed on the array processor. Among its features is the ability to observe the imagery in real time as a user's algorithm is executed. This feature reduces the need for image storage space, since it is feasible to retain only original images and produce resultant images when needed. CAPS also contains a language processor that permits users to develop re-entrant image processing subroutines or algorithms.

  16. Cellular and molecular connections between sleep and synaptic plasticity.

    PubMed

    Benington, Joel H; Frank, Marcos G

    2003-02-01

    The hypothesis that sleep promotes learning and memory has long been a subject of active investigation. This hypothesis implies that sleep must facilitate synaptic plasticity in some way, and recent studies have provided evidence for such a function. Our knowledge of both the cellular neurophysiology of sleep states and of the cellular and molecular mechanisms underlying synaptic plasticity has expanded considerably in recent years. In this article, we review findings in these areas and discuss possible mechanisms whereby the neurophysiological processes characteristic of sleep states may serve to facilitate synaptic plasticity. We address this issue first on the cellular level, considering how activation of T-type Ca(2+) channels in nonREM sleep may promote either long-term depression or long-term potentiation, as well as how cellular events of REM sleep may influence these processes. We then consider how synchronization of neuronal activity in thalamocortical and hippocampal-neocortical networks in nonREM sleep and REM sleep could promote differential strengthening of synapses according to the degree to which activity in one neuron is synchronized with activity in other neurons in the network. Rather than advocating one specific cellular hypothesis, we have intentionally taken a broad approach, describing a range of possible mechanisms whereby sleep may facilitate synaptic plasticity on the cellular and/or network levels. We have also provided a general review of evidence for and against the hypothesis that sleep does indeed facilitate learning, memory, and synaptic plasticity.

  17. Cellular response to micropatterned growth promoting and inhibitory substrates

    PubMed Central

    2013-01-01

    Background Normal development and the response to injury both require cell growth, migration and morphological remodeling, guided by a complex local landscape of permissive and inhibitory cues. A standard approach for studying by such cues is to culture cells on uniform substrates containing known concentrations of these molecules, however this method fails to represent the molecular complexity of the natural growth environment. Results To mimic the local complexity of environmental conditions in vitro, we used a contact micropatterning technique to examine cell growth and differentiation on patterned substrates printed with the commonly studied growth permissive and inhibitory substrates, poly-L-lysine (PLL) and myelin, respectively. We show that micropatterning of PLL can be used to direct adherence and axonal outgrowth of hippocampal and cortical neurons as well as other cells with diverse morphologies like Oli-neu oligodendrocyte progenitor cell lines and fibroblast-like COS7 cells in culture. Surprisingly, COS7 cells exhibited a preference for low concentration (1 pg/mL) PLL zones over adjacent zones printed with high concentrations (1 mg/mL). We demonstrate that micropatterning is also useful for studying factors that inhibit growth as it can direct cells to grow along straight lines that are easy to quantify. Furthermore, we provide the first demonstration of microcontact printing of myelin-associated proteins and show that they impair process outgrowth from Oli-neu oligodendrocyte precursor cells. Conclusion We conclude that microcontact printing is an efficient and reproducible method for patterning proteins and brain-derived myelin on glass surfaces in order to study the effects of the microenvironment on cell growth and morphogenesis. PMID:24119185

  18. Pore-forming toxins induce multiple cellular responses promoting survival.

    PubMed

    Gonzalez, Manuel R; Bischofberger, Mirko; Frêche, Barbara; Ho, Sylvia; Parton, Robert G; van der Goot, F Gisou

    2011-07-01

    Pore-forming toxins (PFTs) are secreted proteins that contribute to the virulence of a great variety of bacterial pathogens. They inflict one of the more disastrous damages a target cell can be exposed to: disruption of plasma membrane integrity. Since this is an ancient form of attack, which bears similarities to mechanical membrane damage, cells have evolved response pathways to these perturbations. Here, it is reported that PFTs trigger very diverse yet specific response pathways. Many are triggered by the decrease in cytoplasmic potassium, which thus emerges as a central regulator. Upon plasma membrane damage, cells activate signalling pathways aimed at restoring plasma membrane integrity and ion homeostasis. Interestingly these pathways do not require protein synthesis. Cells also trigger signalling cascades that allow them to enter a quiescent-like state, where minimal energy is consumed while waiting for plasma membrane damage to be repaired. More specifically, protein synthesis is arrested, cytosolic constituents are recycled by autophagy and energy is stored in lipid droplets. © 2011 Blackwell Publishing Ltd.

  19. A Nucleator Arms Race: Cellular Control of Actin Assembly

    PubMed Central

    Campellone, Kenneth G.; Welch, Matthew D.

    2010-01-01

    For more than a decade the Arp2/3 complex, a handful of nucleation-promoting factors, and formins were the only molecules known to directly nucleate actin filament formation de novo. However, the past several years have brought a surge in the discovery of mammalian proteins with roles in actin nucleation and dynamics. Newly recognized nucleation-promoting factors, such as WASH, WHAMM, and JMY stimulate Arp2/3 complex activity at distinct cellular locations. Formin nucleators with additional biochemical and cellular activities have also been uncovered. Finally, the Spire, Cordon-bleu, and Leiomodin nucleators have revealed new ways of overcoming the kinetic barriers to actin polymerization. PMID:20237478

  20. Dendrimeric Guanidinoneomycin for Cellular Delivery of Bio-macromolecules.

    PubMed

    Sganappa, Aurora; Wexselblatt, Ezequiel; Bellucci, Maria Cristina; Esko, Jeffrey D; Tedeschi, Gabriella; Tor, Yitzhak; Volonterio, Alessandro

    2017-01-03

    We present the synthesis of polymeric amino- and guanidinoglycosides prepared by tethering neomycin and guanidinoneomycin to PAMAM dendrimers of generations 2 and 4. The ability of these conjugates to promote cellular uptake of high-molecular-weight cargo is discussed, together with their cytotoxicity and mechanisms of entry. We demonstrate that the presence of multiple guanidinoneomycin carriers on the PAMAM surface plays an important role in promoting cellular uptake of the dendrimers, maintaining the heparan sulfate specificity and negligible cytotoxicity typical of monomeric guanidinoglycoside molecular transporters. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Cellular inactivation by ultrasound.

    PubMed

    Li, G C; Hahn, G M; Tolmach, L J

    1977-05-12

    The lethal effect of ultrasound (US) on mammalian cells has received relatively little attention. Understandably, potential genetic aspects of US have been of prime concern to physicians who use US as a diagnostic tool; at the average power densities involved (<1 W cm(-2)) little, if any cell killing is to be expected. There have been sporadic attempts to use higher intensities ( approximately 1 W cm(-2)) as a treatment modality in cancer therapy, but those experiments seem to have been based on inadequate cellular studies. The effects of US usually were evaluated in terms of morphological criteria rather than on quantitative determination of the loss of viability as measured by colony formation. There are few reports of the effects of US on survival of mammalian cells, and none specifically examine hyperthermic interaction. With the increased interest in hyperthermia for tumour therapy, attention has been directed towards the use of ultrasound to achieve tumour heating. In preliminary experiments in which US was used to heat the EMT6 sarcoma and KHJJ carcinoma in mice, we found a high percentage of tumour cures with short (approximately 30 min) treatments at temperatures (43-44 degrees C) where in vitro results of hyperthermia-induced cell killing would not have led to a prediction of any cures. We therefore initiated an investigation of the effects of US on survival of Chinese hamster cells to see if direct cell killing by US could explain our in vivo results, or, as in the case of radiofrequency (RF) electromagnetic heating, we would be forced to invoke host response(8). In particular, we examined the thermal and non-thermal components of cellular inactivation by US. We report here that there is a definite non-thermal cytotoxic effect of US. Its relative contribution to cell killing is a highly nonlinear function of the temperature of the cellular milieu. The survival curves show clearly that, beyond an initial threshold, small changes in temperature and/or US

  2. Integrated cellular systems

    NASA Astrophysics Data System (ADS)

    Harper, Jason C.

    The generation of new three-dimensional (3D) matrices that enable integration of biomolecular components and whole cells into device architectures, without adversely altering their morphology or activity, continues to be an expanding and challenging field of research. This research is driven by the promise that encapsulated biomolecules and cells can significantly impact areas as diverse as biocatalysis, controlled delivery of therapeutics, environmental and industrial process monitoring, early warning of warfare agents, bioelectronics, photonics, smart prosthetics, advanced physiological sensors, portable medical diagnostic devices, and tissue/organ replacement. This work focuses on the development of a fundamental understanding of the biochemical and nanomaterial mechanisms that govern the cell directed assembly and integration process. It was shown that this integration process relies on the ability of cells to actively develop a pH gradient in response to evaporation induced osmotic stress, which catalyzes silica condensation within a thin 3D volume surrounding the cells, creating a functional bio/nano interface. The mechanism responsible for introducing functional foreign membrane-bound proteins via proteoliposome addition to the silica-lipid-cell matrix was also determined. Utilizing this new understanding, 3D cellular immobilization capabilities were extended using sol-gel matrices endowed with glycerol, trehalose, and media components. The effects of these additives, and the metabolic phase of encapsulated S. cerivisiase cells, on long-term viability and the rate of inducible gene expression was studied. This enabled the entrapment of cells within a novel microfluidic platform capable of simultaneous colorimetric, fluorescent, and electrochemical detection of a single analyte, significantly improving confidence in the biosensor output. As a complementary approach, multiphoton protein lithography was utilized to engineer 3D protein matrices in which to

  3. The Expanding Functions of Cellular Helicases: The Tombusvirus RNA Replication Enhancer Co-opts the Plant eIF4AIII-Like AtRH2 and the DDX5-Like AtRH5 DEAD-Box RNA Helicases to Promote Viral Asymmetric RNA Replication

    PubMed Central

    Kovalev, Nikolay; Nagy, Peter D.

    2014-01-01

    Replication of plus-strand RNA viruses depends on recruited host factors that aid several critical steps during replication. Several of the co-opted host factors bind to the viral RNA, which plays multiple roles, including mRNA function, as an assembly platform for the viral replicase (VRC), template for RNA synthesis, and encapsidation during infection. It is likely that remodeling of the viral RNAs and RNA-protein complexes during the switch from one step to another requires RNA helicases. In this paper, we have discovered a second group of cellular RNA helicases, including the eIF4AIII-like yeast Fal1p and the DDX5-like Dbp3p and the orthologous plant AtRH2 and AtRH5 DEAD box helicases, which are co-opted by tombusviruses. Unlike the previously characterized DDX3-like AtRH20/Ded1p helicases that bind to the 3′ terminal promoter region in the viral minus-strand (−)RNA, the other class of eIF4AIII-like RNA helicases bind to a different cis-acting element, namely the 5′ proximal RIII(−) replication enhancer (REN) element in the TBSV (−)RNA. We show that the binding of AtRH2 and AtRH5 helicases to the TBSV (−)RNA could unwind the dsRNA structure within the RIII(−) REN. This unique characteristic allows the eIF4AIII-like helicases to perform novel pro-viral functions involving the RIII(−) REN in stimulation of plus-strand (+)RNA synthesis. We also show that AtRH2 and AtRH5 helicases are components of the tombusvirus VRCs based on co-purification experiments. We propose that eIF4AIII-like helicases destabilize dsRNA replication intermediate within the RIII(−) REN that promotes bringing the 5′ and 3′ terminal (−)RNA sequences in close vicinity via long-range RNA-RNA base pairing. This newly formed RNA structure promoted by eIF4AIII helicase together with AtRH20 helicase might facilitate the recycling of the viral replicases for multiple rounds of (+)-strand synthesis, thus resulting in asymmetrical viral replication. PMID:24743583

  4. Cellular Morphogenesis In Silico

    PubMed Central

    Shinbrot, Troy; Chun, Young; Caicedo-Carvajal, Carlos; Foty, Ramsey

    2009-01-01

    Abstract We describe a model that simulates spherical cells of different types that can migrate and interact either attractively or repulsively. We find that both expected morphologies and previously unreported patterns spontaneously self-assemble. Among the newly discovered patterns are a segmented state of alternating discs, and a “shish-kebab” state, in which one cell type forms a ring around a second type. We show that these unique states result from cellular attraction that increases with distance (e.g., as membranes stretch viscoelastically), and would not be seen in traditional, e.g., molecular, potentials that diminish with distance. Most of the states found computationally have been observed in vitro, and it remains to be established what role these self-assembled states may play in in vivo morphogenesis. PMID:19686642

  5. [Senescence and cellular immortality].

    PubMed

    Trentesaux, C; Riou, J-F

    2010-11-01

    Senescence was originally described from the observation of the limited ability of normal cells to grow in culture, and may be generated by telomere erosion, accumulation of DNA damages, oxidative stress and modulation of oncogenes or tumor suppressor genes. Senescence corresponds to a cellular response aiming to control tumor progression by limiting cell proliferation and thus constitutes an anticancer barrier. Senescence is observed in pre-malignant tumor stages and disappears from malignant tumors. Agents used in standard chemotherapy also have the potential to induce senescence, which may partly explain their therapeutic activities. It is possible to restore senescence in tumors using targeted therapies that triggers telomere dysfunction or reactivates suppressor genes functions, which are essential for the onset of senescence.

  6. HMGB1 promotes cellular proliferation and invasion, suppresses cellular apoptosis in osteosarcoma.

    PubMed

    Meng, Qingbing; Zhao, Jie; Liu, Hongbing; Zhou, Guoyou; Zhang, Wensheng; Xu, Xingli; Zheng, Minqian

    2014-12-01

    Osteosarcoma is the most common primary malignant bone tumor in children and adolescents. Unfortunately, treatment failures are common due to the metastasis and chemoresistance, but the underlying molecular mechanism remains unclear. Accumulating evidence indicated that the deregulation of DNA-binding protein high-mobility group box 1 (HMGB1) was associated with the development of cancer. This study aimed to explore the expression of HMGB1 in osteosarcoma tissues and its correlation to the clinical pathology of osteosarcoma and to discuss the role of HMGB1 in the development of osteosarcoma. The results from RT-PCR and Western blot showed that the expression rate of HMGB1 messenger RNA (mRNA) and the expression of HMGB1 in the osteosarcoma tissues were significantly higher than those in normal bone tissue (p < 0.05), the expression rate of HMGB1 mRNA and the expression of HMGB1 in the carcinoma tissues with positive lung metastasis were significantly higher than those without lung metastasis (p < 0.05), and with increasing Enneking stage, the expression rate of HMGB1 mRNA and the expression of HMGB1 also increased (p < 0.05). In order to explore the role of HMGB1 in osteosarcoma, the expression of HMGB1 in the human osteosarcoma MG-63 cell line was downregulated by the technique of RNA interference. Western blot results showed that the protein expression of HMGB1 was significantly decreased in the MG-63 cells from HMGB1-siRNA transfection group (p < 0.05), which suggested that HMGB1 was successfully downregulated in the MG-63 cells. Then the changes in proliferation, apoptosis, and invasion of MG-63 cells were examined by MTT test, PI staining, annexin V staining, and transwell chamber assay. Results showed that the abilities of proliferation and invasion were suppressed in HMGB1 knockdown MG-63 cells, and the abilities of apoptosis were enhanced in HMGB1 knockdown MG-63 cells. The expression of cyclin D1, MMP-9 was downregulated in HMGB1 knockdown MG-63 cells, and the expression of caspase-3 was upregulated in HMGB1 knockdown MG-63 cells. Taken together, the overexpression of HMGB1 in osteosarcoma might be related to the tumorigenesis, invasion, and metastasis of osteosarcoma, which might be a potential target for the treatment of osteosarcoma.

  7. Fibre based cellular transfection.

    PubMed

    Tsampoula, X; Taguchi, K; Cizmár, T; Garces-Chavez, V; Ma, N; Mohanty, S; Mohanty, K; Gunn-Moore, F; Dholakia, K

    2008-10-13

    Optically assisted transfection is emerging as a powerful and versatile method for the delivery of foreign therapeutic agents to cells at will. In particular the use of ultrashort pulse lasers has proved an important route to transiently permeating the cell membrane through a multiphoton process. Though optical transfection has been gaining wider usage to date, all incarnations of this technique have employed free space light beams. In this paper we demonstrate the first system to use fibre delivery for the optical transfection of cells. We engineer a standard optical fibre to generate an axicon tip with an enhanced intensity of the remote output field that delivers ultrashort (~ 800 fs) pulses without requiring the fibre to be placed in very close proximity to the cell sample. A theoretical model is also developed in order to predict the light propagation from axicon tipped and bare fibres, in both air and water environments. The model proves to be in good agreement with the experimental findings and can be used to establish the optimum fibre parameters for successful cellular transfection. We readily obtain efficiencies of up to 57 % which are comparable with free space transfection. This advance paves the way for optical transfection of tissue samples and endoscopic embodiments of this technique.

  8. Cellular energy metabolism

    SciTech Connect

    Glaser, M.

    1991-06-01

    Studies have been carried out on adenylate kinase which is an important enzyme in determining the concentrations of the adenine nucleotides. An efficient method has been developed to clone mutant adenylate kinase genes in E. coli. Site-specific mutagenesis of the wild type gene also has been used to obtain forms of adenylate kinase with altered amino acids. The wild type and mutant forms of adenylate kinase have been overexpressed and large quantities were readily isolated. The kinetic and fluorescence properties of the different forms of adenylate kinase were characterized. This has led to a new model for the location of the AMP and ATP bindings sites on the enzyme and a proposal for the mechanism of substrate inhibition. Crystals of the wild type enzyme were obtained that diffract to at least 2.3 {angstrom} resolution. Experiments were also initiated to determine the function of adenylate kinase in vivo. In one set of experiments, E. coli strains with mutations in adenylate kinase showed large changes in cellular nucleotides after reaching the stationary phase in a low phosphate medium. This was caused by selective proteolytic degradation of the mutant adenylate kinase caused by phosphate starvation.

  9. Cellular membrane trafficking of mesoporous silica nanoparticles

    SciTech Connect

    Fang, I-Ju

    2012-01-01

    This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulf some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand types, ligand conformation and ligand density were discussed in Chapter 2 and 3. Furthermore, the exocytosis of mesoporous silica nanoparticles is very attractive for biological applications. The cellular protein sequestration study of mesoporous silica nanoparticles was examined for further information of the intracellular pathway of endocytosed mesoporous silica nanoparticle materials. The surface functionality of mesoporous silica nanoparticle materials demonstrated selectivity among the materials and cancer and normal cell lines. We aimed to determine

  10. 47 CFR 22.909 - Cellular markets.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Cellular markets. 22.909 Section 22.909... Cellular Radiotelephone Service § 22.909 Cellular markets. Cellular markets are standard geographic areas used by the FCC for administrative convenience in the licensing of cellular systems. Cellular markets...

  11. 47 CFR 22.909 - Cellular markets.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Cellular markets. 22.909 Section 22.909... Cellular Radiotelephone Service § 22.909 Cellular markets. Cellular markets are standard geographic areas used by the FCC for administrative convenience in the licensing of cellular systems. Cellular markets...

  12. 47 CFR 22.909 - Cellular markets.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Cellular markets. 22.909 Section 22.909... Cellular Radiotelephone Service § 22.909 Cellular markets. Cellular markets are standard geographic areas used by the FCC for administrative convenience in the licensing of cellular systems. Cellular...

  13. 47 CFR 22.909 - Cellular markets.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Cellular markets. 22.909 Section 22.909... Cellular Radiotelephone Service § 22.909 Cellular markets. Cellular markets are standard geographic areas used by the FCC for administrative convenience in the licensing of cellular systems. Cellular...

  14. 47 CFR 22.909 - Cellular markets.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Cellular markets. 22.909 Section 22.909... Cellular Radiotelephone Service § 22.909 Cellular markets. Cellular markets are standard geographic areas used by the FCC for administrative convenience in the licensing of cellular systems. Cellular...

  15. MSAT and cellular hybrid networking

    NASA Technical Reports Server (NTRS)

    Baranowsky, Patrick W., II

    1993-01-01

    Westinghouse Electric Corporation is developing both the Communications Ground Segment and the Series 1000 Mobile Phone for American Mobile Satellite Corporation's (AMSC's) Mobile Satellite (MSAT) system. The success of the voice services portion of this system depends, to some extent, upon the interoperability of the cellular network and the satellite communication circuit switched communication channels. This paper will describe the set of user-selectable cellular interoperable modes (cellular first/satellite second, etc.) provided by the Mobile Phone and described how they are implemented with the ground segment. Topics including roaming registration and cellular-to-satellite 'seamless' call handoff will be discussed, along with the relevant Interim Standard IS-41 Revision B Cellular Radiotelecommunications Intersystem Operations and IOS-553 Mobile Station - Land Station Compatibility Specification.

  16. Interleukin-17 promotes prostate cancer via MMP7-induced epithelial-to-mesenchymal transition

    PubMed Central

    Zhang, Q; Liu, S; Parajuli, KR; Zhang, W; Zhang, K; Mo, Z; Liu, J; Chen, Z; Yang, S; Wang, AR; Myers, L; You, Z

    2016-01-01

    Chronic inflammation has been associated with a variety of human cancers including prostate cancer. Interleukin-17 (IL-17) is a critical pro-inflammatory cytokine, which has been demonstrated to promote development of prostate cancer, colon cancer, skin cancer, breast cancer, lung cancer, and pancreas cancer. IL-17 promotes prostate adenocarcinoma with a concurrent increase of matrix metalloproteinase 7 (MMP7) expression in mouse prostate. Whether MMP7 mediates IL-17’s action and the underlying mechanisms remain unknown. We generated Mmp7 and Pten double knockout (Mmp7−/− in abbreviation) mouse model and demonstrated that MMP7 promotes prostate adenocarcinoma through induction of epithelial-to-mesenchymal transition (EMT) in Pten-null mice. MMP7 disrupted E-cadherin/β-catenin complex to up-regulate EMT transcription factors in mouse prostate tumors. IL-17 receptor C and Pten double knockout mice recapitulated the weak EMT characteristics observed in Mmp7−/− mice. IL-17 induced MMP7 and EMT in human prostate cancer LNCaP, C4-2B, and PC-3 cell lines, while siRNA knockdown of MMP7 inhibited IL-17-induced EMT. Compound III, a selective MMP7 inhibitor, decreased development of invasive prostate cancer in Pten single knockout mice. In human normal prostates and prostate tumors, IL-17 mRNA levels were positively correlated with MMP7 mRNA levels. These findings demonstrate that MMP7 mediates IL-17’s function in promoting prostate carcinogenesis through induction of EMT, indicating IL-17-MMP7-EMT axis as potential targets for developing new strategies in the prevention and treatment of prostate cancer. PMID:27375020

  17. Association of MMP7 −181A→G Promoter Polymorphism with Gastric Cancer Risk

    PubMed Central

    Kesh, Kousik; Subramanian, Lakshmi; Ghosh, Nillu; Gupta, Vinayak; Gupta, Arnab; Bhattacharya, Samir; Mahapatra, Nitish R.; Swarnakar, Snehasikta

    2015-01-01

    Elevated expression of matrix metalloproteinase7 (MMP7) has been demonstrated to play a pivotal role in cancer invasion. The −181A→G (rs11568818) polymorphism in the MMP7 promoter modulates gene expression and possibly affects cancer progression. Here, we evaluated the impact of −181A→G polymorphism on MMP7 promoter activity and its association with gastric cancer risk in eastern Indian case-control cohorts (n = 520). The GG genotype as compared with the AA genotype was predisposed (p = 0.02; odds ratio = 1.9, 95% confidence interval = 1.1–3.3) to gastric cancer risk. Stratification analysis showed that tobacco addiction enhanced gastric cancer risk in GG subjects when compared with AA subjects (p = 0.03, odds ratio = 2.46, and 95% confidence interval = 1.07–5.68). Meta-analysis revealed that tobacco enhanced the risk for cancer more markedly in AG and GG carriers. Activity and expression of MMP7 were significantly higher in GG than in AA carriers. In support, MMP7 promoter-reporter assays showed greater transcriptional activity toward A to G transition under basal/nicotine-induced/cAMP-response element-binding protein (CREB) overexpressed conditions in gastric adenocarcinoma cells. Moreover, nicotine (a major component of tobacco) treatment significantly up-regulated MMP7 expression due to enhanced CREB phosphorylation followed by its nuclear translocation in gastric adenocarcinoma cells. Furthermore, chromatin immunoprecipitation experiments revealed higher binding of phosphorylated CREB with the −181G than the −181A allele. Altogether, specific binding of phosphorylated CREB to the G allele-carrying promoter enhances MMP7 gene expression that is further augmented by nicotine due to increased CREB phosphorylation and thereby increases the risk for gastric cancer. PMID:25847246

  18. Top-down cellular pyramids

    SciTech Connect

    Wu, A.Y.; Rosenfeld, A.

    1982-07-01

    A cellular pyramid is an exponentially tapering stack of arrays of processors ('cells'), where each cell is connected to its neighbors ('siblings') on its own level, to a 'parent' on the level above, and to its 'children' on the level below. It is shown that in some situations, if information flows top-down only, from fathers to sons, then a cellular pyramid may be no faster than a one-level cellular array; but it may be possible to use simpler cells in the pyramid case.

  19. Health Promotion

    PubMed Central

    Wilson, Ron

    1992-01-01

    How physicians address issues of disease prevention and health promotion is discussed and current standards of screening for disease and counseling practices are reviewed. Collaboration among all health professionals is necessary if preventive medicine is to be effective. PMID:21221259

  20. A Course in Cellular Bioengineering.

    ERIC Educational Resources Information Center

    Lauffenburger, Douglas A.

    1989-01-01

    Gives an overview of a course in chemical engineering entitled "Cellular Bioengineering," dealing with how chemical engineering principles can be applied to molecular cell biology. Topics used are listed and some key references are discussed. Listed are 85 references. (YP)

  1. The cellular microscopy phenotype ontology.

    PubMed

    Jupp, Simon; Malone, James; Burdett, Tony; Heriche, Jean-Karim; Williams, Eleanor; Ellenberg, Jan; Parkinson, Helen; Rustici, Gabriella

    2016-01-01

    Phenotypic data derived from high content screening is currently annotated using free-text, thus preventing the integration of independent datasets, including those generated in different biological domains, such as cell lines, mouse and human tissues. We present the Cellular Microscopy Phenotype Ontology (CMPO), a species neutral ontology for describing phenotypic observations relating to the whole cell, cellular components, cellular processes and cell populations. CMPO is compatible with related ontology efforts, allowing for future cross-species integration of phenotypic data. CMPO was developed following a curator-driven approach where phenotype data were annotated by expert biologists following the Entity-Quality (EQ) pattern. These EQs were subsequently transformed into new CMPO terms following an established post composition process. CMPO is currently being utilized to annotate phenotypes associated with high content screening datasets stored in several image repositories including the Image Data Repository (IDR), MitoSys project database and the Cellular Phenotype Database to facilitate data browsing and discoverability.

  2. Origami interleaved tube cellular materials

    NASA Astrophysics Data System (ADS)

    Cheung, Kenneth C.; Tachi, Tomohiro; Calisch, Sam; Miura, Koryo

    2014-09-01

    A novel origami cellular material based on a deployable cellular origami structure is described. The structure is bi-directionally flat-foldable in two orthogonal (x and y) directions and is relatively stiff in the third orthogonal (z) direction. While such mechanical orthotropicity is well known in cellular materials with extruded two dimensional geometry, the interleaved tube geometry presented here consists of two orthogonal axes of interleaved tubes with high interfacial surface area and relative volume that changes with fold-state. In addition, the foldability still allows for fabrication by a flat lamination process, similar to methods used for conventional expanded two dimensional cellular materials. This article presents the geometric characteristics of the structure together with corresponding kinematic and mechanical modeling, explaining the orthotropic elastic behavior of the structure with classical dimensional scaling analysis.

  3. A Course in Cellular Bioengineering.

    ERIC Educational Resources Information Center

    Lauffenburger, Douglas A.

    1989-01-01

    Gives an overview of a course in chemical engineering entitled "Cellular Bioengineering," dealing with how chemical engineering principles can be applied to molecular cell biology. Topics used are listed and some key references are discussed. Listed are 85 references. (YP)

  4. Mathematical Modeling of Cellular Metabolism.

    PubMed

    Berndt, Nikolaus; Holzhütter, Hermann-Georg

    Cellular metabolism basically consists of the conversion of chemical compounds taken up from the extracellular environment into energy (conserved in energy-rich bonds of organic phosphates) and a wide array of organic molecules serving as catalysts (enzymes), information carriers (nucleic acids), and building blocks for cellular structures such as membranes or ribosomes. Metabolic modeling aims at the construction of mathematical representations of the cellular metabolism that can be used to calculate the concentration of cellular molecules and the rates of their mutual chemical interconversion in response to varying external conditions as, for example, hormonal stimuli or supply of essential nutrients. Based on such calculations, it is possible to quantify complex cellular functions as cellular growth, detoxification of drugs and xenobiotic compounds or synthesis of exported molecules. Depending on the specific questions to metabolism addressed, the methodological expertise of the researcher, and available experimental information, different conceptual frameworks have been established, allowing the usage of computational methods to condense experimental information from various layers of organization into (self-) consistent models. Here, we briefly outline the main conceptual frameworks that are currently exploited in metabolism research.

  5. Stable cellular senescence is associated with persistent DDR activation.

    PubMed

    Fumagalli, Marzia; Rossiello, Francesca; Mondello, Chiara; d'Adda di Fagagna, Fabrizio

    2014-01-01

    The DNA damage response (DDR) is activated upon DNA damage generation to promote DNA repair and inhibit cell cycle progression in the presence of a lesion. Cellular senescence is a permanent cell cycle arrest characterized by persistent DDR activation. However, some reports suggest that DDR activation is a feature only of early cellular senescence that is then lost with time. This challenges the hypothesis that cellular senescence is caused by persistent DDR activation. To address this issue, we studied DDR activation dynamics in senescent cells. Here we show that normal human fibroblasts retain DDR markers months after replicative senescence establishment. Consistently, human fibroblasts from healthy aged donors display markers of DDR activation even three years in culture after entry into replicative cellular senescence. However, by extending our analyses to different human cell strains, we also observed an apparent DDR loss with time following entry into cellular senescence. This though correlates with the inability of these cell strains to survive in culture upon replicative or irradiation-induced cellular senescence. We propose a model to reconcile these results. Cell strains not suffering the prolonged in vitro culture stress retain robust DDR activation that persists for years, indicating that under physiological conditions persistent DDR is causally involved in senescence establishment and maintenance. However, cell strains unable to maintain cell viability in vitro, due to their inability to cope with prolonged cell culture-associated stress, show an only-apparent reduction in DDR foci which is in fact due to selective loss of the most damaged cells.

  6. Roles of Apoptosis and Cellular Senescence in Cancer and Aging.

    PubMed

    Cerella, Claudia; Grandjenette, Cindy; Dicato, Mario; Diederich, Marc

    2016-01-01

    Cancer and aging are two similar processes representing the final outcome of timedependent accumulation of various irreversible dysfunctions, mainly caused by stress-induced DNA and cellular damages. Apoptosis and senescence are two types of cellular response to damages that are altered in both cancer and aging, albeit through different mechanisms. Carcinogenesis is associated with a progressive reduction in the ability of the cells to trigger apoptosis and senescence. In contrast, in aging tissues, there is an increased accumulation of senescent cells, and the nature of apoptosis deregulation varies depending on the tissue. Thus, the prevailing model suggests that apoptosis and cellular senescence function as two essential tumor-suppressor mechanisms, ensuring the health of the individual during early and reproductive stages of life, but become detrimental and promote aging later in life. The recent discovery that various anticancer agents, including canonical inducers of apoptosis, act also as inducers of cellular senescence indicates that pro-senescence strategies may have applications in cancer prevention therapy. Therefore, dissection of the mechanisms mediating the delicate balance between apoptosis and cellular senescence will be beneficial in the therapeutic exploitation of both processes in the development of future anticancer and anti-aging strategies, including minimizing the side effects of such strategies. Here, we provide an overview of the roles of apoptosis and cellular senescence in cancer and aging.

  7. Retrodifferentiation--a mechanism for cellular regeneration?

    PubMed

    Hass, Ralf

    2009-01-01

    Cellular differentiation can be characterized by the acquisition of specified properties during several steps of development whereby the original stem- or precursor-like populations can finally obtain a certain phenotype with highly specific cell functions. The continuing maturation process can be paralleled by progressively reduced proliferative capacity in various cell types functioning as postmitotic tissues. Conversely, other cell populations (e.g., distinct immune cells) may carry out their specific function upon stimulation of proliferation. While these differentiated phenotypes perform their appropriate specific duties throughout the functioning organism, nature may provide an interesting alternative within this concept of life: sometimes, differentiation steps appear to be reversible. Thus, retrograde differentiation--also termed retrodifferentiation--and accordingly rejuvenation may occur when differentiated cells lose their specific properties acquired during previous steps of maturation. Consequently, retrodifferentiation and rejuvenation could provide enormous potential for tissue repair and cell renewal; however, regulatory dysfunctions within these retrograde developments may also involve the risk of tumor promotion.

  8. Enhanced Viral Replication by Cellular Replicative Senescence

    PubMed Central

    Kim, Ji-Ae; Seong, Rak-Kyun

    2016-01-01

    Cellular replicative senescence is a major contributing factor to aging and to the development and progression of aging-associated diseases. In this study, we sought to determine viral replication efficiency of influenza virus (IFV) and Varicella Zoster Virus (VZV) infection in senescent cells. Primary human bronchial epithelial cells (HBE) or human dermal fibroblasts (HDF) were allowed to undergo numbers of passages to induce replicative senescence. Induction of replicative senescence in cells was validated by positive senescence-associated β-galactosidase staining. Increased susceptibility to both IFV and VZV infection was observed in senescent HBE and HDF cells, respectively, resulting in higher numbers of plaque formation, along with the upregulation of major viral antigen expression than that in the non-senescent cells. Interestingly, mRNA fold induction level of virus-induced type I interferon (IFN) was attenuated by senescence, whereas IFN-mediated antiviral effect remained robust and potent in virus-infected senescent cells. Additionally, we show that a longevity-promoting gene, sirtuin 1 (SIRT1), has antiviral role against influenza virus infection. In conclusion, our data indicate that enhanced viral replication by cellular senescence could be due to senescence-mediated reduction of virus-induced type I IFN expression. PMID:27799874

  9. Promoting Models

    NASA Astrophysics Data System (ADS)

    Li, Qin; Zhao, Yongxin; Wu, Xiaofeng; Liu, Si

    There can be multitudinous models specifying aspects of the same system. Each model has a bias towards one aspect. These models often override in specific aspects though they have different expressions. A specification written in one model can be refined by introducing additional information from other models. The paper proposes a concept of promoting models which is a methodology to obtain refinements with support from cooperating models. It refines a primary model by integrating the information from a secondary model. The promotion principle is not merely an academic point, but also a reliable and robust engineering technique which can be used to develop software and hardware systems. It can also check the consistency between two specifications from different models. A case of modeling a simple online shopping system with the cooperation of the guarded design model and CSP model illustrates the practicability of the promotion principle.

  10. p120 and Kaiso Regulate Helicobacter pylori-induced Expression of Matrix Metalloproteinase-7

    PubMed Central

    Ogden, Seth R.; Wroblewski, Lydia E.; Weydig, Christiane; Romero-Gallo, Judith; O'Brien, Daniel P.; Israel, Dawn A.; Krishna, Uma S.; Fingleton, Barbara; Reynolds, Albert B.; Wessler, Silja

    2008-01-01

    Helicobacter pylori is the strongest known risk factor for gastric adenocarcinoma, yet only a fraction of infected persons develop cancer. One H. pylori constituent that augments disease risk is the cytotoxin-associated gene (cag) pathogenicity island, which encodes a secretion system that translocates bacterial effector molecules into host cells. Matrix metalloproteinase (MMP)-7, a member of a family of enzymes with tumor-initiating properties, is overexpressed in premalignant and malignant gastric lesions, and H. pylori cag+ strains selectively increase MMP-7 protein levels in gastric epithelial cells in vitro and in vivo. We now report that H. pylori-mediated mmp-7 induction is transcriptionally regulated via aberrant activation of p120-catenin (p120), a component of adherens junctions. H. pylori increases mmp-7 mRNA levels in a cag- and p120-dependent manner and induces translocation of p120 to the nucleus in vitro and in a novel ex vivo gastric gland culture system. Nuclear translocation of p120 in response to H. pylori relieves Kaiso-mediated transcriptional repression of mmp-7, which is implicated in tumorigenesis. These results indicate that selective and coordinated induction of mmp-7 expression by H. pylori cag+ isolates may explain in part the augmentation in gastric cancer risk associated with these strains. PMID:18653469

  11. Pathway-Focused Arrays Reveal Increased Matrix Metalloproteinase-7 (Matrilysin) Transcription in Trachomatous Trichiasis

    PubMed Central

    Jeffries, David; Pattison, Michael; Korr, Gerit; Gall, Alevtina; Joof, Hassan; Manjang, Ahmed; Burton, Matthew J.; Mabey, David C. W.; Bailey, Robin L.

    2010-01-01

    Purpose. Several genes that are associated with protection from or susceptibility to trachomatous trichiasis (TT) have been identified through genetic association studies. Yet there have been few studies in which gene expression profiles were assessed in TT cases and disease-free controls. The purpose was to identify genes that are differentially expressed in the upper tarsal conjunctiva of subjects with TT. Method. Pathway-focused gene arrays were used to screen conjunctival RNA expression of 226 gene transcripts of interest. The screening was followed by validation of differentially expressed genes by qRT-PCR on an independent set of samples. Three different techniques were then used to test for quantitative differences in the recovered conjunctival protein fraction. Results. Focused arrays identified a set of 13 differentially expressed genes. Validation by qRT-PCR confirmed differential expression in four of these genes (COL1A1, COL7A1, MMP7, and TLR6). Increased expression of MMP7 was the only consistent differentially regulated gene in the conjunctival samples of trichiasis subjects. MMP7 was present in isolated conjunctival proteins and in the tissue culture supernatants of peripheral blood lymphocytes after stimulation. Conclusions. There is an imbalance in extracellular matrix turnover with minimal contribution of adaptive immune responses at this stage of trichiasis. There was little evidence of broad differential expression in genes characteristic of polar responses of adaptive T cells or macrophages. The control of the MMP7 response and its activity appears significant in the fibrotic changes observed in TT. PMID:20375326

  12. Serum Matrix Metalloproteinase-7 is an independent prognostic biomarker in advanced bladder cancer.

    PubMed

    El Demery, Mounira; Demirdjian-Sarkissian, Gaiané; Thezenas, Simon; Jacot, William; Laghzali, Yassine; Darbouret, Bruno; Culine, Stéphane; Rebillard, Xavier; Lamy, Pierre-Jean

    2014-01-01

    Urine markers have been studied extensively but there is a lack of blood prognostic markers in bladder cancer. MMP-7 is produced by stromal cells and by tumor cells and is overexpressed in a variety of epithelial and mesenchymal tumors. In this study, we assessed with an immunoassay we developed, the prognostic value of serum MMP-7 in a series of patients with advanced bladder cancer. Serum samples were collected from 56 patients with advanced bladder cancer who were treated at the Montpellier Cancer Institute between March 2003 and December 2004. MMP-7 was quantified in serum samples by using a homogeneous sandwich fluoroimmunoassay we developed based on the time resolved amplified cryptate emission (TRACE) technology. The median overall survival of the study population was 2.2 years (95% CI, 1.4 to 3.0) with 1- and 5-year survival rates of 73% (95% CI, 59% to 82%) and 25% (95% CI, 14% to 37%), respectively. High MMP-7 serum levels were associated with poor survival. Using a cut-off value of 11.5 ng/mL, the median overall survival was 3.0 years (95% CI, 1.5 to 5.1) for patients with MMP-7 serum level <11.5 ng/mL and 1.3 years (95% CI, 0.8 to 2.5) for patients with serum level ?11.5 ng/mL. Multivariate analysis identified high MMP-7 serum concentration as an independent prognostic factor for survival in patients with advanced bladder cancer (R?=?2.1, 95% CI, 1.1 to 4.4). Our results show that the MMP-7 serum concentration is an independent prognostic factor in patients with locally advanced and or metastatic bladder cancer.

  13. Serum Matrix Metalloproteinase-7 is an independent prognostic biomarker in advanced bladder cancer

    PubMed Central

    2014-01-01

    Background Urine markers have been studied extensively but there is a lack of blood prognostic markers in bladder cancer. MMP-7 is produced by stromal cells and by tumor cells and is overexpressed in a variety of epithelial and mesenchymal tumors. In this study, we assessed with an immunoassay we developed, the prognostic value of serum MMP-7 in a series of patients with advanced bladder cancer. Methods Serum samples were collected from 56 patients with advanced bladder cancer who were treated at the Montpellier Cancer Institute between March 2003 and December 2004. MMP-7 was quantified in serum samples by using a homogeneous sandwich fluoroimmunoassay we developed based on the time resolved amplified cryptate emission (TRACE) technology. Results The median overall survival of the study population was 2.2 years (95% CI, 1.4 to 3.0) with 1- and 5-year survival rates of 73% (95% CI, 59% to 82%) and 25% (95% CI, 14% to 37%), respectively. High MMP-7 serum levels were associated with poor survival. Using a cut-off value of 11.5 ng/mL, the median overall survival was 3.0 years (95% CI, 1.5 to 5.1) for patients with MMP-7 serum level <11.5 ng/mL and 1.3 years (95% CI, 0.8 to 2.5) for patients with serum level ?11.5 ng/mL. Multivariate analysis identified high MMP-7 serum concentration as an independent prognostic factor for survival in patients with advanced bladder cancer (R?=?2.1, 95% CI, 1.1 to 4.4). Conclusions Our results show that the MMP-7 serum concentration is an independent prognostic factor in patients with locally advanced and or metastatic bladder cancer. PMID:25984271

  14. STAT3 Knockdown Reduces Pancreatic Cancer Cell Invasiveness and Matrix Metalloproteinase-7 Expression in Nude Mice

    PubMed Central

    Huang, Ke jian; Wu, Wei dong; Jiang, Tao; Cao, Jun; Feng, Zhen zhong; Qiu, Zheng jun

    2011-01-01

    Aims Transducer and activator of transcription-3 (STAT3) plays an important role in tumor cell invasion and metastasis. The aim of the present study was to investigate the effects of STAT3 knockdown in nude mouse xenografts of pancreatic cancer cells and underlying gene expression. Methods A STAT3 shRNA lentiviral vector was constructed and infected into SW1990 cells. qRT-PCR and western immunoblot were performed to detect gene expression. Nude mouse xenograft assays were used to assess changes in phenotypes of these stable cells in vivo. HE staining was utilized to evaluate tumor cell invasion and immunohistochemistry was performed to analyze gene expression. Results STAT3 shRNA successfully silenced expression of STAT3 mRNA and protein in SW1990 cells compared to control cells. Growth rate of the STAT3-silenced tumor cells in nude mice was significantly reduced compared to in the control vector tumors and parental cells-generated tumors. Tumor invasion into the vessel and muscle were also suppressed in the STAT3-silenced tumors compared to controls. Collagen IV expression was complete and continuous surrounding the tumors of STAT3-silenced SW1990 cells, whereas collagen IV expression was incomplete and discontinuous surrounding the control tumors. Moreover, microvessel density was significantly lower in STAT3-silenced tumors than parental or control tumors of SW1990 cells. In addition, MMP-7 expression was reduced in STAT3-silenced tumors compared to parental SW1990 xenografts and controls. In contrast, expression of IL-1β and IgT7α was not altered. Conclusion These data clearly demonstrate that STAT3 plays an important role in regulation of tumor growth, invasion, and angiogenesis, which could be act by reducing MMP-7 expression in pancreatic cancer cells. PMID:21991388

  15. cag Pathogenicity island-dependent upregulation of matrix metalloproteinase-7 in infected patients with Helicobacter pylori.

    PubMed

    Sadeghiani, Marzieh; Bagheri, Nader; Shahi, Heshmat; Reiisi, Somayeh; Rahimian, Ghorbanali; Rashidi, Reza; Mahsa, Majid; Shafigh, Mohammedhadi; Salimi, Elaheh; Rafieian-Kopaei, Mahmoud; Hashemzadeh-Chaleshtori, Morteza; Shirzad, Hedayatollah

    2017-07-12

    Helicobacter pylori (H. pylori) infection has been involved in the pathogenesis of most important gastroduodenal diseases. Matrix metalloproteinases (MMPs) are a large family of zincendopeptidases which play important roles in degradation of extracellular matrix (ECM) and various inflammatory diseases. Therefore, we examined MMP-7 mRNA levels in the gastric mucosa of patients with H. pylori infection and evaluated the effects of virulence factors, such as vacA (vacuolating cytotoxin A) and cagA (cytotoxin-associated gene), in H. pylori-infected patients upon the MMP-7 mRNA mucosal levels. We also determined the correlation between mucosal MMP-7 mRNA levels and the types of disease. Total RNA was extracted from gastric biopsies of 50 H. pylori-infected patients and 50 uninfected individuals. Mucosal MMP-7 mRNA expression level in H. pylori-infected and non-infected gastric biopsies was determined by real-time polymerase chain reaction (PCR). The presences of cagA and vacA virulence factors was evaluated using PCR. MMP-7 expression was significantly higher in biopsies of patients infected with H .pylori compared to uninfected individuals. In addition, mucosal MMP-7 mRNA expression in H. pylori-infected patients significantly associated with the cagA status and the types of disease. Our results suggest that MMP-7 might be involved in the pathogenesis of H. pylori. Peptic ulcer was associated with cag pathogenicity island-dependent MMP-7 upregulation.

  16. The origins of cellular life.

    PubMed

    Koonin, Eugene V

    2014-07-01

    All life on earth can be naturally classified into cellular life forms and virus-like selfish elements, the latter being fully dependent on the former for their reproduction. Cells are reproducers that not only replicate their genome but also reproduce the cellular organization that depends on semipermeable, energy-transforming membranes and cannot be recovered from the genome alone, under the famous dictum of Rudolf Virchow, Omnis cellula e cellula. In contrast, simple selfish elements are replicators that can complete their life cycles within the host cell starting from genomic RNA or DNA alone. The origin of the cellular organization is the central and perhaps the hardest problem of evolutionary biology. I argue that the origin of cells can be understood only in conjunction with the origin and evolution of selfish genetic elements. A scenario of precellular evolution is presented that involves cohesion of the genomes of the emerging cellular life forms from primordial pools of small genetic elements that eventually segregated into hosts and parasites. I further present a model of the coevolution of primordial membranes and membrane proteins, discuss protocellular and non-cellular models of early evolution, and examine the habitats on the primordial earth that could have been conducive to precellular evolution and the origin of cells.

  17. Classifying cellular automata using grossone

    NASA Astrophysics Data System (ADS)

    D'Alotto, Louis

    2016-10-01

    This paper proposes an application of the Infinite Unit Axiom and grossone, introduced by Yaroslav Sergeyev (see [7] - [12]), to the development and classification of one and two-dimensional cellular automata. By the application of grossone, new and more precise nonarchimedean metrics on the space of definition for one and two-dimensional cellular automata are established. These new metrics allow us to do computations with infinitesimals. Hence configurations in the domain space of cellular automata can be infinitesimally close (but not equal). That is, they can agree at infinitely many places. Using the new metrics, open disks are defined and the number of points in each disk computed. The forward dynamics of a cellular automaton map are also studied by defined sets. It is also shown that using the Infinite Unit Axiom, the number of configurations that follow a given configuration, under the forward iterations of cellular automaton maps, can now be computed and hence a classification scheme developed based on this computation.

  18. Continuum representations of cellular solids

    NASA Astrophysics Data System (ADS)

    Neilsen, M. K.

    1993-09-01

    Cellular materials consist of interconnected struts or plates which form cells. The struts or plates are constructed from a variety of metals, polymers, ceramics, and wood products. Cellular materials are often used in impact limiters for shipping containers to protect the contents from accidental impact events. These materials exhibit a variety of complex behavior when subjected to crushing loads. This research focuses on the development of continuum representations of cellular solids that can be used in the finite element analysis of shipping container accidents. A significant portion of this work is the development of a new methodology to relate localized deformations to appropriate constitutive descriptions. This methodology provides the insight needed to select constitutive descriptions for cellular solids that capture the localized deformations that are observed experimentally. Constitutive relations are developed for two different cellular materials, aluminum honeycomb and polyurethane foam. These constitutive relations are based on plasticity and continuum damage theories. Plasticity is used to describe the permanent deformation exhibited by both aluminum honeycomb and polyurethane foam. Continuum damage is needed to capture the change in elastic parameters due to cracking of the polyurethane cell wall materials. The new constitutive description of polyurethane foam is implemented in both static and dynamic finite element codes, and analytical and numerical predictions are compared with available experimental data.

  19. Continuum representations of cellular solids

    SciTech Connect

    Neilsen, M.K.

    1993-09-01

    Cellular materials consist of interconnected struts or plates which form cells. The struts or plates are constructed from a variety of metals, polymers, ceramics and wood products. Cellular materials are often used in impact limiters for shipping containers to protect the contents from accidental impact events. These materials exhibit a variety of complex behavior when subjected to crushing loads. This research focuses on the development of continuum representations of cellular solids that can be used in the finite element analysis of shipping container accidents. A significant portion of this work is the development of a new methodology to relate localized deformations to appropriate constitutive descriptions. This methodology provides the insight needed to select constitutive descriptions for cellular solids that capture the localized deformations that are observed experimentally. Constitutive relations are developed for two different cellular materials, aluminum honeycomb and polyurethane foam. These constitutive relations are based on plasticity and continuum damage theories. Plasticity is used to describe the permanent deformation exhibited by both aluminum honeycomb and polyurethane foam. Continuum damage is needed to capture the change in elastic parameters due to cracking of the polyurethane cell wall materials. The new constitutive description of polyurethane foam is implemented in both static and dynamic finite element codes, and analytical and numerical predictions are compared with available experimental data.

  20. Health Promotion

    PubMed Central

    Karmali-Rawji, Shameela; Kassim-Lakha, Shaheen; Taylor, Karmel

    1992-01-01

    Perceived lack or loss of control, stress, a rapidly again population and rising costs of health care necessitate effective health promotion and disease prevention in the elderly. In a collaborative health promotion effort, the private sector, public sector, and community partners have joined to increase the South Asian elders' sense of control over the decisions and circumstances that affect their everyday lives. The project was designed to help elders come to terms with the fragmentation of their extended families, cultural alienation, decreased autonomy, need for information, and greater risk of cardiovascular disease. Imagesp622-a

  1. Viral Activation of Cellular Metabolism

    PubMed Central

    Sanchez, Erica L.; Lagunoff, Michael

    2015-01-01

    To ensure optimal environments for their replication and spread, viruses have evolved to alter many host cell pathways. In the last decade, metabolomic studies have shown that eukaryotic viruses induce large-scale alterations in host cellular metabolism. Most viruses examined to date induce aerobic glycolysis also known as the Warburg effect. Many viruses tested also induce fatty acid synthesis as well as glutaminolysis. These modifications of carbon source utilization by infected cells can increase available energy for virus replication and virion production, provide specific cellular substrates for virus particles and create viral replication niches while increasing infected cell survival. Each virus species also likely requires unique metabolic changes for successful spread and recent research has identified additional virus-specific metabolic changes induced by many virus species. A better understanding of the metabolic alterations required for each virus may lead to novel therapeutic approaches through targeted inhibition of specific cellular metabolic pathways. PMID:25812764

  2. Fracture mechanics of cellular glass

    NASA Technical Reports Server (NTRS)

    Zwissler, J. G.; Adams, M. A.

    1981-01-01

    The fracture mechanics of cellular glasses (for the structural substrate of mirrored glass for solr concentrator reflecting panels) are discussed. Commercial and developmental cellular glasses were tested and analyzed using standard testing techniques and models developed from linear fracture mechanics. Two models describing the fracture behavior of these materials were developed. Slow crack growth behavior in cellular glass was found to be more complex than that encountered in dense glasses or ceramics. The crack velocity was found to be strongly dependent upon water vapor transport to the tip of the moving crack. The existence of a static fatigue limit was not conclusively established, however, it is speculated that slow crack growth behavior in Region 1 may be slower, by orders of magnitude, than that found in dense glasses.

  3. Cellular-based preemption system

    NASA Technical Reports Server (NTRS)

    Bachelder, Aaron D. (Inventor)

    2011-01-01

    A cellular-based preemption system that uses existing cellular infrastructure to transmit preemption related data to allow safe passage of emergency vehicles through one or more intersections. A cellular unit in an emergency vehicle is used to generate position reports that are transmitted to the one or more intersections during an emergency response. Based on this position data, the one or more intersections calculate an estimated time of arrival (ETA) of the emergency vehicle, and transmit preemption commands to traffic signals at the intersections based on the calculated ETA. Additional techniques may be used for refining the position reports, ETA calculations, and the like. Such techniques include, without limitation, statistical preemption, map-matching, dead-reckoning, augmented navigation, and/or preemption optimization techniques, all of which are described in further detail in the above-referenced patent applications.

  4. Cellular models for Parkinson's disease.

    PubMed

    Falkenburger, Björn H; Saridaki, Theodora; Dinter, Elisabeth

    2016-10-01

    Developing new therapeutic strategies for Parkinson's disease requires cellular models. Current models reproduce the two most salient changes found in the brains of patients with Parkinson's disease: The degeneration of dopaminergic neurons and the existence of protein aggregates consisting mainly of α-synuclein. Cultured cells offer many advantages over studying Parkinson's disease directly in patients or in animal models. At the same time, the choice of a specific cellular model entails the requirement to focus on one aspect of the disease while ignoring others. This article is intended for researchers planning to use cellular models for their studies. It describes for commonly used cell types the aspects of Parkinson's disease they model along with technical advantages and disadvantages. It might also be helpful for researchers from other fields consulting literature on cellular models of Parkinson's disease. Important models for the study of dopaminergic neuron degeneration include Lund human mesencephalic cells and primary neurons, and a case is made for the use of non-dopaminergic cells to model pathogenesis of non-motor symptoms of Parkinson's disease. With regard to α-synuclein aggregates, this article describes strategies to induce and measure aggregates with a focus on fluorescent techniques. Cellular models reproduce the two most salient changes of Parkinson's disease, the degeneration of dopaminergic neurons and the existence of α-synuclein aggregates. This article is intended for researchers planning to use cellular models for their studies. It describes for commonly used cell types and treatments the aspects of Parkinson's disease they model along with technical advantages and disadvantages. Furthermore, this article describes strategies to induce and measure aggregates with a focus on fluorescent techniques. This article is part of a special issue on Parkinson disease.

  5. Promoting Health.

    ERIC Educational Resources Information Center

    Mechanic, David

    1990-01-01

    Argues that culture change or modification of the social structure is necessary for effective health promotion because health behavior is closely tied to basic group structures and processes. Examines the health attitudes of Mormons, low income and minority groups, and developing Islamic nations, emphasizing attitudes towards education and women.…

  6. Cellular therapy in bone-tendon interface regeneration

    PubMed Central

    Rothrauff, Benjamin B; Tuan, Rocky S

    2014-01-01

    The intrasynovial bone-tendon interface is a gradual transition from soft tissue to bone, with two intervening zones of uncalcified and calcified fibrocartilage. Following injury, the native anatomy is not restored, resulting in inferior mechanical properties and an increased risk of re-injury. Recent in vivo studies provide evidence of improved healing when surgical repair of the bone-tendon interface is augmented with cells capable of undergoing chondrogenesis. In particular, cellular therapy in bone-tendon healing can promote fibrocartilage formation and associated improvements in mechanical properties. Despite these promising results in animal models, cellular therapy in human patients remains largely unexplored. This review highlights the development and structure-function relationship of normal bone-tendon insertions. The natural healing response to injury is discussed, with subsequent review of recent research on cellular approaches for improved healing. Finally, opportunities for translating in vivo findings into clinical practice are identified. PMID:24326955

  7. Cellular automaton for chimera states

    NASA Astrophysics Data System (ADS)

    García-Morales, Vladimir

    2016-04-01

    A minimalistic model for chimera states is presented. The model is a cellular automaton (CA) which depends on only one adjustable parameter, the range of the nonlocal coupling, and is built from elementary cellular automata and the majority (voting) rule. This suggests the universality of chimera-like behavior from a new point of view: Already simple CA rules based on the majority rule exhibit this behavior. After a short transient, we find chimera states for arbitrary initial conditions, the system spontaneously splitting into stable domains separated by static boundaries, some synchronously oscillating and the others incoherent. When the coupling range is local, nontrivial coherent structures with different periodicities are formed.

  8. Cellular automata for traffic simulations

    NASA Astrophysics Data System (ADS)

    Wolf, Dietrich E.

    1999-02-01

    Traffic phenomena such as the transition from free to congested flow, lane inversion and platoon formation can be accurately reproduced using cellular automata. Being computationally extremely efficient, they simulate large traffic systems many times faster than real time so that predictions become feasible. A riview of recent results is given. The presence of metastable states at the jamming transition is discussed in detail. A simple new cellular automation is introduced, in which the interaction between cars is Galilei-invariant. It is shown that this type of interaction accounts for metastable states in a very natural way.

  9. Synthetic biology in cellular immunotherapy

    PubMed Central

    Chakravarti, Deboki; Wong, Wilson W.

    2015-01-01

    The adoptive transfer of genetically engineered T cells with cancer-targeting receptors has shown tremendous promise for eradicating tumors in clinical trials. This form of cellular immunotherapy presents a unique opportunity to incorporate advanced systems and synthetic biology approaches to create cancer therapeutics with novel functions. Here, we first review the development of synthetic receptors, switches, and circuits to control the location, duration, and strength of T cell activity against tumors. In addition, we discuss the cellular engineering and genome editing of host cells (or the chassis) to improve the efficacy of cell-based cancer therapeutics, and to reduce the time and cost of manufacturing. PMID:26088008

  10. Cellular basis of Alzheimer's disease.

    PubMed

    Bali, Jitin; Halima, Saoussen Ben; Felmy, Boas; Goodger, Zoe; Zurbriggen, Sebastian; Rajendran, Lawrence

    2010-12-01

    Alzheimer's disease (AD) is the most common form of neurodegenerative disease. A characteristic feature of the disease is the presence of amyloid-β (Aβ) which either in its soluble oligomeric form or in the plaque-associated form is causally linked to neurodegeneration. Aβ peptide is liberated from the membrane-spanning -amyloid precursor protein by sequential proteolytic processing employing β- and γ-secretases. All these proteins involved in the production of Aβ peptide are membrane associated and hence, membrane trafficking and cellular compartmentalization play important roles. In this review, we summarize the key cellular events that lead to the progression of AD.

  11. Context-dependent effects of cellular senescence in cancer development

    PubMed Central

    Lecot, Pacome; Alimirah, Fatouma; Desprez, Pierre-Yves; Campisi, Judith; Wiley, Christopher

    2016-01-01

    Cellular senescence is an established tumour-suppressive mechanism that prevents the proliferation of premalignant cells. However, several lines of evidence show that senescent cells, which often persist in vivo, can also promote tumour progression in addition to other age-related pathologies via the senescence-associated secretory phenotype (SASP). Moreover, new insights suggest the SASP can facilitate tissue repair. Here, we review the beneficial and detrimental roles of senescent cells, highlighting conditions under which the senescence response does and does not promote pathology, particularly cancer. By better understanding the context-dependent effects of cellular senescence, it may be feasible to limit its detrimental properties while preserving its beneficial effects, and develop novel therapeutic strategies to prevent or treat cancer and possibly other age-associated diseases. PMID:27140310

  12. Cellular monitoring systems for the assessment of space environmental factors

    NASA Astrophysics Data System (ADS)

    Hellweg, C. E.; Arenz, A.; Meier, M. M.; Baumstark-Khan, C.

    Harmful environmental factors - namely ionizing radiation - will continue to influence future manned space missions. The Cellular Biodiagnostic group at the German Aerospace Center (DLR) develops cellular monitoring systems, which include bacterial and mammalian cell systems capable of recognizing DNA damage as a consequence of the presence of genotoxic conditions. Such bioassay or biosensor systems will complement the physical detector systems used in space, insofar as they yield intrinsically biologically weighted measures of cellular responses. Furthermore, synergistic mutagenic and cancerogenic impacts of the radiation environment together with other potentially genotoxic constituents of the space habitat can be quantified using such systems, whose signals are especially relevant for the molecular damage to the DNA or the chromosomes. The experiment Cellular Responses to Radiation in Space (CERASP) has been selected by NASA to be performed on the International Space Station. It will supply basic information on the cellular response to radiation applied in microgravity. One of the biological end-points under investigation will be survival reflected by radiation-dependent reduction of constitutive expression of the enhanced variant of green fluorescent protein (EGFP), originally isolated from the bioluminescent jellyfish Aequorea victoria. A second end-point will be gene activation by space flight conditions in mammalian cells, based on fluorescent promoter reporter systems using the destabilized EGFP variant (d2EGFP). The promoter element to be investigated will reflect the activity of the NF-kB stress response pathway as an anti-apoptotic radiation response. DNA damage will be measured by fluorescent analysis of DNA unwinding (FADU). The systems have worked properly for terrestrial applications during the first experiments. Experiments using accelerated particles produced at the French heavy ion accelerator GANIL have given insights into cellular mechanisms

  13. Cellularized Bilayer Pullulan-Gelatin Hydrogel for Skin Regeneration.

    PubMed

    Nicholas, Mathew N; Jeschke, Marc G; Amini-Nik, Saeid

    2016-05-01

    Skin substitutes significantly reduce the morbidity and mortality of patients with burn injuries and chronic wounds. However, current skin substitutes have disadvantages related to high costs and inadequate skin regeneration due to highly inflammatory wounds. Thus, new skin substitutes are needed. By combining two polymers, pullulan, an inexpensive polysaccharide with antioxidant properties, and gelatin, a derivative of collagen with high water absorbency, we created a novel inexpensive hydrogel-named PG-1 for "pullulan-gelatin first generation hydrogel"-suitable for skin substitutes. After incorporating human fibroblasts and keratinocytes onto PG-1 using centrifugation over 5 days, we created a cellularized bilayer skin substitute. Cellularized PG-1 was compared to acellular PG-1 and no hydrogel (control) in vivo in a mouse excisional skin biopsy model using newly developed dome inserts to house the skin substitutes and prevent mouse skin contraction during wound healing. PG-1 had an average pore size of 61.69 μm with an ideal elastic modulus, swelling behavior, and biodegradability for use as a hydrogel for skin substitutes. Excellent skin cell viability, proliferation, differentiation, and morphology were visualized through live/dead assays, 5-bromo-2'-deoxyuridine proliferation assays, and confocal microscopy. Trichrome and immunohistochemical staining of excisional wounds treated with the cellularized skin substitute revealed thicker newly formed skin with a higher proportion of actively proliferating cells and incorporation of human cells compared to acellular PG-1 or control. Excisional wounds treated with acellular or cellularized hydrogels showed significantly less macrophage infiltration and increased angiogenesis 14 days post skin biopsy compared to control. These results show that PG-1 has ideal mechanical characteristics and allows ideal cellular characteristics. In vivo evidence suggests that cellularized PG-1 promotes skin regeneration and may

  14. Leptin Promotes Glioblastoma

    PubMed Central

    Lawrence, Johnathan E.; Cook, Nicholas J.; Rovin, Richard A.; Winn, Robert J.

    2012-01-01

    The hormone leptin has a variety of functions. Originally known for its role in satiety and weight loss, leptin more recently has been shown to augment tumor growth in a variety of cancers. Within gliomas, there is a correlation between tumor grade and tumor expression of leptin and its receptor. This suggests that autocrine signaling within the tumor microenvironment may promote the growth of high-grade gliomas. Leptin does this through stimulation of cellular pathways that are also advantageous for tumor growth and recurrence: antiapoptosis, proliferation, angiogenesis, and migration. Conversely, a loss of leptin expression attenuates tumor growth. In animal models of colon cancer and melanoma, a decline in the expression and secretion of leptin resulted in a reduction of tumor growth. In these models, positive mental stimulation through environmental enrichment decreased leptin secretion and improved tumor outcome. This review explores the link between leptin and glioblastoma. PMID:22263109

  15. Symmetry of integrable cellular automaton

    NASA Astrophysics Data System (ADS)

    Hikami, Kazuhiro; Inoue, Rei

    2001-03-01

    We study an integrable cellular automaton which is called the box-ball system (BBS). The BBS can be derived directly from the integrable differential-difference equation by either ultradiscretization or crystallization. We clarify the integrable structure and the hidden symmetry of the BBS.

  16. Fracture mechanics of cellular glass

    SciTech Connect

    Zwissler, J.G.; Adams, M.A.

    1981-02-01

    Cellular glasses are prime candidate materials for the structural substrate of mirrored glass for solar concentrator reflecting panels. These materials are brittle, however, and susceptible to mechanical failure from slow crack growth caused by a stress corrosion mechanism. The results are detailed of one part of a program established to develop improved cellular glasses and to characterize the behavior of these and commercially available materials. Commercial and developmental cellular glasses were tested and analyzed using standard testing techniques and models developed from linear fracture mechanics. Two models describing the fracture behavior of these materials are developed. Slow crack growth behavior in cellular glass was found to be more complex than that encountered in dense glasses or ceramics. The crack velocity was found to be strongly dependent upon water vapor transport to the tip of the moving crack. The existence of a static fatigue limit was not conclusively established, however, it is speculated that slow crack growth behavior in Region I may be slower, by orders of magnitude, than that found in dense glasses.

  17. Cellular Automata and the Humanities.

    ERIC Educational Resources Information Center

    Gallo, Ernest

    1994-01-01

    The use of cellular automata to analyze several pre-Socratic hypotheses about the evolution of the physical world is discussed. These hypotheses combine characteristics of both rigorous and metaphoric language. Since the computer demands explicit instructions for each step in the evolution of the automaton, such models can reveal conceptual…

  18. Health Promotion

    DTIC Science & Technology

    1986-03-11

    Dependents Schools and Section 6 schools. (4) Information on the health consequences of smoking shall be incorporated with the information on alcohol...departments. 2. A Health Promotion Coordinating Committee shall be established to enhance communication among the Military Services, recommend joint policy...about the patient’s tobacco use, including use of smokeless tobacco products; to advise him or her of the risks associated with use, the health bcnefits

  19. Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence.

    PubMed

    Wang, Julie C; Bennett, Martin

    2012-07-06

    Atherosclerosis is classed as a disease of aging, such that increasing age is an independent risk factor for the development of atherosclerosis. Atherosclerosis is also associated with premature biological aging, as atherosclerotic plaques show evidence of cellular senescence characterized by reduced cell proliferation, irreversible growth arrest and apoptosis, elevated DNA damage, epigenetic modifications, and telomere shortening and dysfunction. Not only is cellular senescence associated with atherosclerosis, there is growing evidence that cellular senescence promotes atherosclerosis. This review examines the pathology of normal vascular aging, the evidence for cellular senescence in atherosclerosis, the mechanisms underlying cellular senescence including reactive oxygen species, replication exhaustion and DNA damage, the functional consequences of vascular cell senescence, and the possibility that preventing accelerated cellular senescence is a therapeutic target in atherosclerosis.

  20. Mitochondrial effectors of cellular senescence: beyond the free radical theory of aging

    PubMed Central

    Ziegler, Dorian V; Wiley, Christopher D; Velarde, Michael C

    2015-01-01

    Cellular senescence is a process that results from a variety of stresses, leading to a state of irreversible growth arrest. Senescent cells accumulate during aging and have been implicated in promoting a variety of age-related diseases. Mitochondrial stress is an effective inducer of cellular senescence, but the mechanisms by which mitochondria regulate permanent cell growth arrest are largely unexplored. Here, we review some of the mitochondrial signaling pathways that participate in establishing cellular senescence. We discuss the role of mitochondrial reactive oxygen species (ROS), mitochondrial dynamics (fission and fusion), the electron transport chain (ETC), bioenergetic balance, redox state, metabolic signature, and calcium homeostasis in controlling cellular growth arrest. We emphasize that multiple mitochondrial signaling pathways, besides mitochondrial ROS, can induce cellular senescence. Together, these pathways provide a broader perspective for studying the contribution of mitochondrial stress to aging, linking mitochondrial dysfunction and aging through the process of cellular senescence. PMID:25399755

  1. Cellular Traction Stresses Mediate Extracellular Matrix Degradation by Invadopodia

    PubMed Central

    Jerrell, Rachel J.; Parekh, Aron

    2014-01-01

    During tumorigenesis, matrix rigidity can drive oncogenic transformation via altered cellular proliferation and migration. Cells sense extracellular matrix (ECM) mechanical properties with intracellular tensile forces generated by actomyosin contractility. These contractile forces are transmitted to the matrix surface as traction stresses which mediate mechanical interactions with the ECM. Matrix rigidity has been shown to increase proteolytic ECM degradation by cytoskeletal structures known as invadopodia that are critical for cancer progression suggesting that cellular contractility promotes invasive behavior. However, both increases and decreases in traction stresses have been associated with metastatic behavior. Therefore, the role of cellular contractility in invasive migration leading to metastasis is unclear. To determine the relationship between cellular traction stresses and invadopodia activity, we characterized the invasive and contractile properties of an aggressive carcinoma cell line utilizing polyacrylamide gels of different rigidities. We found that ECM degradation and traction stresses were linear functions of matrix rigidity. Using calyculin A to augment myosin contractility, we also found that traction stresses were strongly predictive of ECM degradation. Overall, our data suggest that cellular force generation may play an important part in invasion and metastasis by mediating invadopodia activity in response to the mechanical properties of the tumor microenvironment. PMID:24412623

  2. Peroxisome Metabolism and Cellular Aging

    PubMed Central

    Titorenko, Vladimir I.; Terlecky, Stanley R.

    2010-01-01

    The essential role of peroxisomes in fatty acid oxidation, anaplerotic metabolism, and hydrogen peroxide turnover is well established. Recent findings suggest these and other related biochemical processes governed by the organelle may also play a critical role in regulating cellular aging. The goal of this review is to summarize and integrate into a model, the evidence that peroxisome metabolism actually helps define the replicative and chronological age of a eukaryotic cell. In this model, peroxisomal reactive oxygen species (ROS) are seen as altering organelle biogenesis and function, and eliciting changes in the dynamic communication networks that exist between peroxisomes and other cellular compartments. At low levels, peroxisomal ROS activate an anti-aging program in the cell; at concentrations beyond a specific threshold, a pro-aging course is triggered. PMID:21083858

  3. Cellular solidification of transparent monotectics

    NASA Technical Reports Server (NTRS)

    Kaulker, W. F.

    1986-01-01

    Understanding how liquid phase particles are engulfed or pushed during freezing of a monotectic is addressed. The additional complication is that the solid-liquid interface is nonplanar due to constitutional undercooling. Some evidence of particle pushing where the particles are the liquid phase of the montectic was already observed. Cellular freezing of the succinonitrile-glycerol system also occurred. Only a few compositions were tested at that time. The starting materials were not especially pure so that cellular interface observed was likely due to the presence of unkown impurities, the major portion of which was water. Topics addressed include: the effort of modeling the particle pushing process using the computer, establishing an apparatus for the determination of phase diagrams, and the measurement of the temperature gradients with a specimen which will solidify on the temperature gradient microscope stage.

  4. Energetic costs of cellular computation.

    PubMed

    Mehta, Pankaj; Schwab, David J

    2012-10-30

    Cells often perform computations in order to respond to environmental cues. A simple example is the classic problem, first considered by Berg and Purcell, of determining the concentration of a chemical ligand in the surrounding media. On general theoretical grounds, it is expected that such computations require cells to consume energy. In particular, Landauer's principle states that energy must be consumed in order to erase the memory of past observations. Here, we explicitly calculate the energetic cost of steady-state computation of ligand concentration for a simple two-component cellular network that implements a noisy version of the Berg-Purcell strategy. We show that learning about external concentrations necessitates the breaking of detailed balance and consumption of energy, with greater learning requiring more energy. Our calculations suggest that the energetic costs of cellular computation may be an important constraint on networks designed to function in resource poor environments, such as the spore germination networks of bacteria.

  5. Energetic costs of cellular computation

    PubMed Central

    Mehta, Pankaj; Schwab, David J.

    2012-01-01

    Cells often perform computations in order to respond to environmental cues. A simple example is the classic problem, first considered by Berg and Purcell, of determining the concentration of a chemical ligand in the surrounding media. On general theoretical grounds, it is expected that such computations require cells to consume energy. In particular, Landauer’s principle states that energy must be consumed in order to erase the memory of past observations. Here, we explicitly calculate the energetic cost of steady-state computation of ligand concentration for a simple two-component cellular network that implements a noisy version of the Berg–Purcell strategy. We show that learning about external concentrations necessitates the breaking of detailed balance and consumption of energy, with greater learning requiring more energy. Our calculations suggest that the energetic costs of cellular computation may be an important constraint on networks designed to function in resource poor environments, such as the spore germination networks of bacteria. PMID:23045633

  6. Optofluidic Detection for Cellular Phenotyping

    PubMed Central

    Tung, Yi-Chung; Huang, Nien-Tsu; Oh, Bo-Ram; Patra, Bishnubrata; Pan, Chi-Chun; Qiu, Teng; Paul, K. Chu; Zhang, Wenjun; Kurabayashi, Katsuo

    2012-01-01

    Quantitative analysis of the output of processes and molecular interactions within a single cell is highly critical to the advancement of accurate disease screening and personalized medicine. Optical detection is one of the most broadly adapted measurement methods in biological and clinical assays and serves cellular phenotyping. Recently, microfluidics has obtained increasing attention due to several advantages, such as small sample and reagent volumes, very high throughput, and accurate flow control in the spatial and temporal domains. Optofluidics, which is the attempt to integrate optics with microfluidic, shows great promise to enable on-chip phenotypic measurements with high precision, sensitivity, specificity, and simplicity. This paper reviews the most recent developments of optofluidic technologies for cellular phenotyping optical detection. PMID:22854915

  7. Hox Targets and Cellular Functions

    PubMed Central

    Sánchez-Herrero, Ernesto

    2013-01-01

    Hox genes are a group of genes that specify structures along the anteroposterior axis in bilaterians. Although in many cases they do so by modifying a homologous structure with a different (or no) Hox input, there are also examples of Hox genes constructing new organs with no homology in other regions of the body. Hox genes determine structures though the regulation of targets implementing cellular functions and by coordinating cell behavior. The genetic organization to construct or modify a certain organ involves both a genetic cascade through intermediate transcription factors and a direct regulation of targets carrying out cellular functions. In this review I discuss new data from genome-wide techniques, as well as previous genetic and developmental information, to describe some examples of Hox regulation of different cell functions. I also discuss the organization of genetic cascades leading to the development of new organs, mainly using Drosophila melanogaster as the model to analyze Hox function. PMID:24490109

  8. Modal equations for cellular convection

    NASA Technical Reports Server (NTRS)

    Gough, D. O.; Spiegel, E. A.; Toomre, J.

    1975-01-01

    We expand the fluctuating flow variables of Boussinesq convection in the planform functions of linear theory. Our proposal is to consider a drastic truncation of this expansion as a possible useful approximation scheme for studying cellular convection. With just one term included, we obtain a fairly simple set of equations which reproduces some of the qualitative properties of cellular convection and whose steady-state form has already been derived by Roberts (1966). This set of 'modal equations' is analyzed at slightly supercritical and at very high Rayleigh numbers. In the latter regime the Nusselt number varies with Rayleigh number just as in the mean-field approximation with one horizontal scale when the boundaries are rigid. However, the Nusselt number now depends also on the Prandtl number in a way that seems compatible with experiment. The chief difficulty with the approach is the absence of a deductive scheme for deciding which planforms should be retained in the truncated expansion.

  9. Glycosylation regulates prestin cellular activity.

    PubMed

    Rajagopalan, Lavanya; Organ-Darling, Louise E; Liu, Haiying; Davidson, Amy L; Raphael, Robert M; Brownell, William E; Pereira, Fred A

    2010-03-01

    Glycosylation is a common post-translational modification of proteins and is implicated in a variety of cellular functions including protein folding, degradation, sorting and trafficking, and membrane protein recycling. The membrane protein prestin is an essential component of the membrane-based motor driving electromotility changes (electromotility) in the outer hair cell (OHC), a central process in auditory transduction. Prestin was earlier identified to possess two N-glycosylation sites (N163, N166) that, when mutated, marginally affect prestin nonlinear capacitance (NLC) function in cultured cells. Here, we show that the double mutant prestin(NN163/166AA) is not glycosylated and shows the expected NLC properties in the untreated and cholesterol-depleted HEK 293 cell model. In addition, unlike WT prestin that readily forms oligomers, prestin(NN163/166AA) is enriched as monomers and more mobile in the plasma membrane, suggesting that oligomerization of prestin is dependent on glycosylation but is not essential for the generation of NLC in HEK 293 cells. However, in the presence of increased membrane cholesterol, unlike the hyperpolarizing shift in NLC seen with WT prestin, cells expressing prestin(NN163/166AA) exhibit a linear capacitance function. In an attempt to explain this finding, we discovered that both WT prestin and prestin(NN163/166AA) participate in cholesterol-dependent cellular trafficking. In contrast to WT prestin, prestin(NN163/166AA) shows a significant cholesterol-dependent decrease in cell-surface expression, which may explain the loss of NLC function. Based on our observations, we conclude that glycosylation regulates self-association and cellular trafficking of prestin(NN163/166AA). These observations are the first to implicate a regulatory role for cellular trafficking and sorting in prestin function. We speculate that the cholesterol regulation of prestin occurs through localization to and internalization from membrane microdomains by

  10. Cellular Analogs of Operant Behavior.

    DTIC Science & Technology

    1992-07-31

    selective PI antagonist SCH23390, blocks CAI cellular operant FIG. 4. Chlorpromazine blocks dopamine-reintorced operant conditioning conditioning in...hand. when I mM REINF). When I rn’M chlorpromazine was added to the dopamine solution SCH23390 i I mM) was added to the dopamine solution (DA + SCH...rate was suppressed below the saline control. Neurons that had treatment gro’- !icated in parentheses. *Differs from SALINE, received chlorpromazine

  11. Cellular Detection of Infrared Sources

    DTIC Science & Technology

    1990-02-27

    depending on wavelength) is 2 to 10 Urn. Phototaxis is measured by the quantitation of the locomotion of the cells in tlic vicinity of the beam. PROGRESS...Northwestern University Medical School, Chicago CONTRACT TITLE: Cellular Detection of Infrared Sources RESEARCH OBJECTIVE: a. Test for phototaxis of...passes. The wavelength of the beam is variable and its diameter (depending on wavelength) is 2 to 10 am. Phototaxis is measured by the quantitation of the

  12. Xtoys: Cellular automata on xwindows

    SciTech Connect

    Creutz, M.

    1995-08-15

    Xtoys is a collection of xwindow programs for demonstrating simulations of various statistical models. Included are xising, for the two dimensional Ising model, xpotts, for the q-state Potts model, xautomalab, for a fairly general class of totalistic cellular automata, xsand, for the Bak-Tang-Wiesenfield model of self organized criticality, and xfires, a simple forest fire simulation. The programs should compile on any machine supporting xwindows.

  13. Innate cellular immunity and xenotransplantation

    PubMed Central

    Wang, Hui; Yang, Yong-Guang

    2012-01-01

    Purpose of review This review assesses the recent progress in xenograft rejection by innate immune responses, with a focus on innate cellular xenoreactivity. Recent findings Current literature was reviewed for new insights into the role of innate cellular immunity in xenograft rejection. Increasing evidence confirms that vigorous innate immune cell activation is accounted for by a combination of xenoantigen recognition by activating receptors, and incompatibility in inhibitory receptor-ligand interactions. Although both innate humoral and cellular xenoimmune responses are predominantly elicited by preformed and induced xenoreactive antibodies in nonhuman primates following porcine xenotransplantation, innate immune cells can also be activated by xenografts in the absence of antibodies. The latter antibody-independent response will likely persist in recipients even when adaptive xenoimmune responses are suppressed. In addition to xenograft rejection by recipient innate immune cells, phagocytic cells within liver xenografts are also deleterious to recipients by causing thrombocytopenia. Summary Strategies of overcoming innate immune responses are required for successful clinical xenotransplantation. In addition to developing better immunosuppressive and tolerance induction protocols, endeavors towards further genetic modifications of porcine source animals are ultimately important for successful clinical xenotransplantation. PMID:22262106

  14. Cellular Functions of Tissue Transglutaminase

    PubMed Central

    Nurminskaya, Maria V.; Belkin, Alexey M.

    2013-01-01

    Transglutaminase 2 (TG2 or tissue transglutaminase) is a highly complex multifunctional protein that acts as transglutaminase, GTPase/ATPase, protein disulfide isomerase, and protein kinase. Moreover, TG2 has many well-documented nonenzymatic functions that are based on its noncovalent interactions with multiple cellular proteins. A vast array of biochemical activities of TG2 accounts for its involvement in a variety of cellular processes, including adhesion, migration, growth, survival, apoptosis, differentiation, and extracellular matrix organization. In turn, the impact of TG2 on these processes implicates this protein in various physiological responses and pathological states, contributing to wound healing, inflammation, autoimmunity, neurodegeneration, vascular remodeling, tumor growth and metastasis, and tissue fibrosis. TG2 is ubiquitously expressed and is particularly abundant in endothelial cells, fibroblasts, osteoblasts, monocytes/macrophages, and smooth muscle cells. The protein is localized in multiple cellular compartments, including the nucleus, cytosol, mitochondria, endolysosomes, plasma membrane, and cell surface and extracellular matrix, where Ca2+, nucleotides, nitric oxide, reactive oxygen species, membrane lipids, and distinct protein–protein interactions in the local microenvironment jointly regulate its activities. In this review, we discuss the complex biochemical activities and molecular interactions of TG2 in the context of diverse subcellular compartments and evaluate its wide ranging and cell type-specific biological functions and their regulation. PMID:22364871

  15. [Cellular phones and public health].

    PubMed

    Leventhal, Alex; Karsenty, Eric; Sadetzki, Siegal

    2004-08-01

    The increased use of mobile cellular phone by the public is associated with a wave of contradictory reports about the possible health effects, due to the exposure of the users to electromagnetic non-ionizing radiation. This article reviews the state of the art of the present knowledge concerning the biological and medical effects of exposure to cellular phones, with an emphasis on its possible carcinogenic effect. Health conditions, which have been ascribed to the use of mobile phones mainly include some types of cancer and changes of brain activity. However, the balance of evidence from available studies has not yet supported these claims. Following the recommendation of special international expert committees, the IARC (International Association for Research on Cancer) is conducting a multi-center study to determine the possible effect of cellular phone use on brain and salivary gland tumors. Israel is one of the participants of this study. The only established health effect associated with the use of such technology is an increased risk for road accidents, unrelated to the amount of radiation emitted by phone. The challenge posed by this new technology to health authorities all over the world has lead to the definition of a new principle, the so-called "prudent avoidance", used as guidelines for the definition of an adequate public health policy. The public policy in Israel has used the prudent avoidance principles, while awaiting the results of the multi-national epidemiological studies.

  16. Viral activation of cellular metabolism.

    PubMed

    Sanchez, Erica L; Lagunoff, Michael

    2015-05-01

    To ensure optimal environments for their replication and spread, viruses have evolved to alter many host cell pathways. In the last decade, metabolomic studies have shown that eukaryotic viruses induce large-scale alterations in host cellular metabolism. Most viruses examined to date induce aerobic glycolysis also known as the Warburg effect. Many viruses tested also induce fatty acid synthesis as well as glutaminolysis. These modifications of carbon source utilization by infected cells can increase available energy for virus replication and virion production, provide specific cellular substrates for virus particles and create viral replication niches while increasing infected cell survival. Each virus species also likely requires unique metabolic changes for successful spread and recent research has identified additional virus-specific metabolic changes induced by many virus species. A better understanding of the metabolic alterations required for the replication of each virus may lead to novel therapeutic approaches through targeted inhibition of specific cellular metabolic pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Rapid detection of biothreat agents based on cellular machinery.

    SciTech Connect

    Lane, Todd W.; Gantt, Richard W.

    2004-12-01

    This research addresses rapid and sensitive identification of biological agents in a complex background. We attempted to devise a method by which the specificity of the cellular transcriptional machinery could be used to detect and identify bacterial bio-terror agents in a background of other organisms. Bacterial cells contain RNA polymerases and transcription factors that transcribe genes into mRNA for translation into proteins. RNA polymerases in conjunction with transcription factors recognize regulatory elements (promoters) upstream of the gene. These promoters are, in many cases, recognized by the polymerase and transcription factor combinations of one species only. We have engineered a plasmid, for Escherichia coli, containing the virA promoter from the target species Shigella flexneri. This promoter was fused to a reporter gene Green Fluorescent Protein (GFP). In theory the indicator strain (carrying the plasmid) is mixed with the target strain and the two are lysed. The cellular machinery from both cells mixes and the GFP is produced. This report details the results of testing this system.

  18. Cellular dynamics of RNA modification.

    PubMed

    Yi, Chengqi; Pan, Tao

    2011-12-20

    Five decades of research have identified more than 100 ribonucleosides that are post-transcriptionally modified. Many modified nucleosides are conserved throughout bacteria, archaea, and eukaryotes, while some are unique to each branch of life. However, the cellular and functional dynamics of RNA modification remain largely unexplored, mostly because of the lack of functional hypotheses and experimental methods for quantification and large-scale analysis. Many RNA modifications are not essential for life, which parallels the observation that many well-characterized protein and DNA modifications are not essential for life. Instead, increasing evidence indicates that RNA modifications can play regulatory roles in cells, especially in response to stress conditions. In this Account, we review some examples of RNA modification that are dynamically controlled in cells. We also discuss some recently developed methods that have enhanced the ability to study the cellular dynamics of RNA modification. We discuss four specific examples of RNA modification in detail here. We begin with 4-thio uridine (s(4)U), which can act as a cellular sensor of near-UV light. Then we consider queuosine (Q), which is a potential biomarker for malignancy. Next we examine N(6)-methyl adenine (m(6)A), which is the prevalent modification in eukaryotic messenger RNAs (mRNAs). Finally, we discuss pseudouridine (ψ), which is inducible by nutrient deprivation. We then consider two recent technical advances that have stimulated the study of the cellular dynamics in modified ribonucleosides. The first is a genome-wide method that combines primer extension with a microarray. It was used to study the N(1)-methyl adenine (m(1)A) hypomodification in human transfer RNA (tRNA). The second is a quantitative mass spectrometric method used to investigate dynamic changes in a wide range of tRNA modifications under stress conditions in yeast. In addition, we discuss potential mechanisms that control dynamic

  19. In trans promoter activation by enhancers in transient transfection.

    PubMed

    Smirnov, N A; Akopov, S B; Didych, D A; Nikolaev, L G

    2017-03-01

    Earlier, it was reported that the strong cytomegalovirus enhancer can activate the cytomegalovirus promoter in trans, i.e. as a separate plasmid co-transfected with a promoter-reporter gene construct. Here we demonstrate that the ability of enhancers to activate promoters in trans in transient transfection experiments is a property of not only viral regulatory elements but also of various genomic enhancers and promoters. Enhancer-promoter activation in trans is promoter- and cell type-specific, and accompanied by physical interaction between promoter and enhancer as revealed by chromosome conformation capture assays. Thus, promoter activation in transient co-transfection of promoters and enhancers shares a number of important traits with long-distance promoter activation by enhancers in living cells and may therefore serve as a model of this fundamental cellular process.

  20. 47 CFR 22.970 - Unacceptable interference to part 90 non-cellular 800 MHz licensees from cellular radiotelephone...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-cellular 800 MHz licensees from cellular radiotelephone or part 90-800 MHz cellular systems. 22.970 Section...-cellular 800 MHz licensees from cellular radiotelephone or part 90-800 MHz cellular systems. (a) Definition... the 800 MHz band from cellular radiotelephone or part 90-800 MHz cellular systems will be deemed to...

  1. Primitive control of cellular metabolism

    NASA Technical Reports Server (NTRS)

    Mitz, M. A.

    1974-01-01

    It is pointed out that control substances must have existed from the earliest times in the evolution of life and that the same control mechanisms must exist today. The investigation reported is concerned with the concept that carbon dioxide is a primitive regulator of cell function. The effects of carbon dioxide on cellular materials are examined, taking into account questions of solubilization, dissociation, changes of charge, stabilization, structural changes, wettability, the exclusion of other gases, the activation of compounds, changes in plasticity, and changes in membrane permeability.

  2. Cellular immune responses to HIV

    NASA Astrophysics Data System (ADS)

    McMichael, Andrew J.; Rowland-Jones, Sarah L.

    2001-04-01

    The cellular immune response to the human immunodeficiency virus, mediated by T lymphocytes, seems strong but fails to control the infection completely. In most virus infections, T cells either eliminate the virus or suppress it indefinitely as a harmless, persisting infection. But the human immunodeficiency virus undermines this control by infecting key immune cells, thereby impairing the response of both the infected CD4+ T cells and the uninfected CD8+ T cells. The failure of the latter to function efficiently facilitates the escape of virus from immune control and the collapse of the whole immune system.

  3. Primitive control of cellular metabolism

    NASA Technical Reports Server (NTRS)

    Mitz, M. A.

    1974-01-01

    It is pointed out that control substances must have existed from the earliest times in the evolution of life and that the same control mechanisms must exist today. The investigation reported is concerned with the concept that carbon dioxide is a primitive regulator of cell function. The effects of carbon dioxide on cellular materials are examined, taking into account questions of solubilization, dissociation, changes of charge, stabilization, structural changes, wettability, the exclusion of other gases, the activation of compounds, changes in plasticity, and changes in membrane permeability.

  4. Symmetry analysis of cellular automata

    NASA Astrophysics Data System (ADS)

    García-Morales, V.

    2013-01-01

    By means of B-calculus [V. García-Morales, Phys. Lett. A 376 (2012) 2645] a universal map for deterministic cellular automata (CAs) has been derived. The latter is shown here to be invariant upon certain transformations (global complementation, reflection and shift). When constructing CA rules in terms of rules of lower range a new symmetry, “invariance under construction” is uncovered. Modular arithmetic is also reformulated within B-calculus and a new symmetry of certain totalistic CA rules, which calculate the Pascal simplices modulo an integer number p, is then also uncovered.

  5. Therapeutic cloning and cellular reprogramming.

    PubMed

    Rodriguez, Ramon M; Ross, Pablo J; Cibelli, Jose B

    2012-01-01

    Embryonic stem cells are capable of differentiating into any cell-type present in an adult organism, and constitute a renewable source of tissue for regenerative therapies. The transplant of allogenic stem cells is challenging due to the risk of immune rejection. Nevertheless, somatic cell reprogramming techniques allow the generation of isogenic embryonic stem cells, genetically identical to the patient. In this chapter we will discuss the cellular reprogramming techniques in the context of regenerative therapy and the biological and technical barriers that they will need to overcome before clinical use.

  6. Reversibility of a Symmetric Linear Cellular Automata

    NASA Astrophysics Data System (ADS)

    Del Rey, A. Martín; Sánchez, G. Rodríguez

    The characterization of the size of the cellular space of a particular type of reversible symmetric linear cellular automata is introduced in this paper. Specifically, it is shown that those symmetric linear cellular with 2k + 1 cells, and whose transition matrix is a k-diagonal square band matrix with nonzero entries equal to 1 are reversible. Furthermore, in this case the inverse cellular automata are explicitly computed. Moreover, the reversibility condition is also studied for a general number of cells.

  7. Protein accounting in the cellular economy.

    PubMed

    Vázquez-Laslop, Nora; Mankin, Alexander S

    2014-04-24

    Knowing the copy number of cellular proteins is critical for understanding cell physiology. By being able to measure the absolute synthesis rates of the majority of cellular proteins, Li et al. gain insights into key aspects of translation regulation and fundamental principles of cellular strategies to adjust protein synthesis according to the functional needs.

  8. Endothelial Cellular Responses to Biodegradable Metal Zinc.

    PubMed

    Ma, Jun; Zhao, Nan; Zhu, Donghui

    Biodegradable zinc (Zn) metals, a new generation of biomaterials, have attracted much attention due to their excellent biodegradability, bioabsorbability, and adaptability to tissue regeneration. Compared with magnesium (Mg) and iron (Fe), Zn exhibits better corrosion and mechanical behaviors in orthopedic and stent applications. After implantation, Zn containing material will slowly degrade, and Zn ions (Zn(2+)) will be released to the surrounding tissue. For stent applications, the local Zn(2+)concentration near endothelial tissue/cells could be high. However, it is unclear how endothelia will respond to such high concentrations of Zn(2+), which is pivotal to vascular remodeling and regeneration. Here, we evaluated the short-term cellular behaviors of primary human coronary artery endothelial cells (HCECs) exposed to a concentration gradient (0-140 μM) of extracellular Zn(2+). Zn(2+) had an interesting biphasic effect on cell viability, proliferation, spreading, and migration. Generally, low concentrations of Zn(2+) promoted viability, proliferation, adhesion, and migration, while high concentrations of Zn(2+) had opposite effects. For gene expression profiles, the most affected functional genes were related to cell adhesion, cell injury, cell growth, angiogenesis, inflammation, vessel tone, and coagulation. These results provide helpful information and guidance for Zn-based alloy design as well as the controlled release of Zn(2+)in stent and other related medical applications.

  9. Cellular senescence: many roads, one final destination.

    PubMed

    Saab, Raya

    2010-04-13

    Cellular senescence is a tumor-suppressor mechanism that has been shown to occur in response to multiple signals, including oncogenic stress, DNA damage, oxidative stress, telomere shortening, and other tumor-promoting insults. Over the past decade, much has been uncovered regarding the phenotype of this tumor-suppressor response and the underlying pathways necessary for its establishment. However, we have also learned that the intricate details of signaling pathways underlying senescence as a tumor-suppressor response are very much context dependent. In addition, cross-talk among pathways, and negative and positive feedback loops, all complicate our understanding of this process. This short review attempts to summarize what is known to date regarding senescence in tumor suppression, both in vitro and in vivo. Further insights into pathways necessary for senescence will hopefully identify appropriate targets for interventions to not only induce senescence as a treatment of cancerous lesions, but also to maintain this state in premalignant lesions in an effort to prevent progression to cancer.

  10. Putting the Rit in cellular resistance

    PubMed Central

    Cai, Weikang; Shi, Geng-Xian; Andres, Douglas A.

    2013-01-01

    Cells mobilize diverse signaling pathways to protect against stress-mediated injury. Ras family GTPases play critical roles in this process, controlling the activation and integration of multiple regulatory cascades. p38 mitogen-activated protein kinase (MAPK) signaling serves as a critical fulcrum in this process, regulating networks that stimulate cellular apoptosis but also promote cell survival. However, this functional dichotomy is incompletely understood, particularly regulation of p38-dependent survival. Here, we discuss our recent evidence that the Rit GTPase associates with and is required for stress-mediated activation of a scaffolded p38-MK2-HSP27-Akt pro-survival signaling cascade. Drosophila lacking D-Ric, a Rit homologue, are susceptible to a variety of environmental stresses, while embryonic fibroblasts derived from Rit knockout mice display blunted stress-dependent signaling and decreased viability. Conversely, expression of constitutively active Rit triggers p38-Akt-dependent cell survival. Together, our studies establish Rit as the central regulator of an evolutionarily conserved, p38-dependent signaling cascade that functions as a critical survival mechanism in response to stress. PMID:23802035

  11. Cellular senescence and tumor suppressor gene p16.

    PubMed

    Rayess, Hani; Wang, Marilene B; Srivatsan, Eri S

    2012-04-15

    Cellular senescence is an irreversible arrest of cell growth. Biochemical and morphological changes occur during cellular senescence, including the formation of a unique cellular morphology such as flattened cytoplasm. Function of mitochondria, endoplasmic reticulum and lysosomes are affected resulting in the inhibition of lysosomal and proteosomal pathways. Cellular senescence can be triggered by a number of factors including, aging, DNA damage, oncogene activation and oxidative stress. While the molecular mechanism of senescence involves p16 and p53 tumor suppressor genes and telomere shortening, this review is focused on the mechanism of p16 control. The p16-mediated senescence acts through the retinoblastoma (Rb) pathway inhibiting the action of the cyclin dependant kinases leading to G1 cell cycle arrest. Rb is maintained in a hypophosphorylated state resulting in the inhibition of transcription factor E2F1. Regulation of p16 expression is complex and involves epigenetic control and multiple transcription factors. PRC1 (Pombe repressor complex (1) and PRC2 (Pombe repressor complex (2) proteins and histone deacetylases play an important role in the promoter hypermethylation for suppressing p16 expression. While transcription factors YY1 and Id1 suppress p16 expression, transcription factors CTCF, Sp1 and Ets family members activate p16 transcription. Senescence occurs with the inactivation of suppressor elements leading to the enhanced expression of p16. Copyright © 2011 UICC.

  12. Cellular senescence and tumor suppressor gene p16

    PubMed Central

    Rayess, Hani; Wang, Marilene B.; Srivatsan, Eri S.

    2011-01-01

    Cellular senescence is an irreversible arrest of cell growth. Biochemical and morphological changes occur during cellular senescence, including the formation of a unique cellular morphology such as flattened cytoplasm. Function of mitochondria, endoplasmic reticulum and lysosomes are affected resulting in the inhibition of lysosomal and proteosomal pathways. Cellular senescence can be triggered by a number of factors including, aging, DNA damage, oncogene activation and oxidative stress. While the molecular mechanism of senescence involves p16 and p53 tumor suppressor genes and telomere shortening, this review is focused on the mechanism of p16 control. The p16 mediated senescence acts through the retinoblastoma (Rb) pathway inhibiting the action of the cyclin dependant kinases leading to G1 cell cycle arrest. Rb is maintained in a hypophosphorylated state resulting in the inhibition of transcription factor E2F1. Regulation of p16 expression is complex and involves epigenetic control and multiple transcription factors. PRC1 (Pombe repressor complex 1) and PRC2 (Pombe repressor complex 2) proteins and histone deacetylases play an important role in the promoter hypermethylation for suppressing p16 expression. While transcription factors YY1 and Id1 suppress p16 expression, transcription factors CTCF, Sp1, and Ets family members activate p16 transcription. Senescence occurs with the inactivation of suppressor elements leading to the enhanced expression of p16. PMID:22025288

  13. Quantitative Analysis of Cellular Senescence in Culture and In Vivo.

    PubMed

    Zhao, Jing; Fuhrmann-Stroissnigg, Heike; Gurkar, Aditi U; Flores, Rafael R; Dorronsoro, Akaitz; Stolz, Donna B; St Croix, Claudette M; Niedernhofer, Laura J; Robbins, Paul D

    2017-01-05

    Cellular senescence refers to the irreversible growth arrest of normally dividing cells in response to various types of stress. Cellular senescence is induced by telomere shortening due to repeated cell division, which causes a DNA damage response, as well as genotoxic, oxidative, and inflammatory stress. Strong mitogenic signaling, such as oncogene activation, also drives cells into a senescent state. Senescent cells express a specific subset of genes, termed the senescence-associated secretory phenotype (SASP), including pro-inflammatory factors, growth factors, and matrix metalloproteinases, which together promote non-cell autonomous, secondary senescence. Clearance of senescent cells that accumulate with age improves health span, implicating cellular senescence as a contributing factor to the aging process. Thus, there is a need for methods to identify and quantify cellular senescence, both in cultured cells and in vivo. Here, methods for the most well-characterized and widely used senescent assays are described, from cell morphology and senescence-associated β-galactosidase (SA-βgal) staining to nuclear biomarkers, SASP, and altered levels of tumor suppressors. © 2017 by John Wiley & Sons, Inc.

  14. Micromechanics of cellularized biopolymer networks

    PubMed Central

    Jones, Christopher A. R.; Cibula, Matthew; Feng, Jingchen; Krnacik, Emma A.; McIntyre, David H.; Levine, Herbert; Sun, Bo

    2015-01-01

    Collagen gels are widely used in experiments on cell mechanics because they mimic the extracellular matrix in physiological conditions. Collagen gels are often characterized by their bulk rheology; however, variations in the collagen fiber microstructure and cell adhesion forces cause the mechanical properties to be inhomogeneous at the cellular scale. We study the mechanics of type I collagen on the scale of tens to hundreds of microns by using holographic optical tweezers to apply pN forces to microparticles embedded in the collagen fiber network. We find that in response to optical forces, particle displacements are inhomogeneous, anisotropic, and asymmetric. Gels prepared at 21 °C and 37 °C show qualitative difference in their micromechanical characteristics. We also demonstrate that contracting cells remodel the micromechanics of their surrounding extracellular matrix in a strain- and distance-dependent manner. To further understand the micromechanics of cellularized extracellular matrix, we have constructed a computational model which reproduces the main experiment findings. PMID:26324923

  15. Cellular dynamics and embryonic morphogenesis

    NASA Astrophysics Data System (ADS)

    Zallen, Jennifer

    2007-11-01

    The elongated body axis is a characteristic feature of many multicellular animals. Axis elongation occurs largely through cell rearrangements that are coordinated across a large cell population and driven by an asymmetric distribution of cytoskeletal and junctional proteins [1]. To visualize cellular dynamics during this process, we performed time-lapse confocal imaging of cell behavior in the Drosophila embryo. These studies revealed that rearranging cells display a steady increase in topological disorder that is accompanied by the formation of transient structures where 5-11 cells meet [2,3]. These multicellular rosettes form and resolve in a directional fashion to produce a local change in the aspect ratio of the cellular assembly, contributing to an overall change in tissue structure. We propose that higher-order rosette structures link local cell interactions to global tissue reorganization during morphogenesis. [1] J. Zallen and E. Wieschaus, Developmental Cell 6, 343 (2004). [2] J. Zallen and R. Zallen, J. Phys.: Condens. Matter 16, S5073 (2004). [3] J. Blankenship et al., Developmental Cell 11, 459 (2006).

  16. Cellular uptake of metallated cobalamins.

    PubMed

    Tran, Mai Thanh Quynh; Stürup, Stefan; Lambert, Ian Henry; Gammelgaard, Bente; Furger, Evelyne; Alberto, Roger

    2016-03-01

    Cellular uptake of vitamin B12-cisplatin conjugates was estimated via detection of their metal constituents (Co, Pt, and Re) by inductively coupled plasma mass spectrometry (ICP-MS). Vitamin B12 (cyano-cob(iii)alamin) and aquo-cob(iii)alamin [Cbl-OH2](+), which differ in the β-axial ligands (CN(-) and H2O, respectively), were included as control samples. The results indicated that B12 derivatives delivered cisplatin to both cellular cytosol and nuclei with an efficiency of one third compared to the uptake of free cisplatin cis-[Pt(II)Cl2(NH3)2]. In addition, uptake of charged B12 derivatives including [Cbl-OH2](+), [{Co}-CN-{cis-PtCl(NH3)2}](+), [{Re}-{Co}-CN-{cis-PtCl(NH3)2}](+), and [{Co}-CN-{trans-Pt(Cyt)(NH3)2}](2+) (Cyt = cytarabin) was high compared to neutral B12, which implied the existence of an additional internalization pathway for charged B12 vitamin analogs. The affinities of the charged B12 derivatives to the B12 transporters HC, IF and TC were similar to that of native vitamin B12.

  17. Cellular Biology of Prion Diseases

    PubMed Central

    Harris, David A.

    1999-01-01

    Prion diseases are fatal neurodegenerative disorders of humans and animals that are important because of their impact on public health and because they exemplify a novel mechanism of infectivity and biological information transfer. These diseases are caused by conformational conversion of a normal host glycoprotein (PrPC) into an infectious isoform (PrPSc) that is devoid of nucleic acid. This review focuses on the current understanding of prion diseases at the cell biological level. The characteristics of the diseases are introduced, and a brief history and description of the prion hypothesis are given. Information is then presented about the structure, expression, biosynthesis, and possible function of PrPC, as well as its posttranslational processing, cellular localization, and trafficking. The latest findings concerning PrPSc are then discussed, including cell culture systems used to generate this pathogenic isoform, the subcellular distribution of the protein, its membrane attachment, proteolytic processing, and its kinetics and sites of synthesis. Information is also provided on molecular models of the PrPC→PrPSc conversion reaction and the possible role of cellular chaperones. The review concludes with suggestions of several important avenues for future investigation. PMID:10398674

  18. Cellular senescence and protein degradation

    PubMed Central

    Deschênes-Simard, Xavier; Lessard, Frédéric; Gaumont-Leclerc, Marie-France; Bardeesy, Nabeel; Ferbeyre, Gerardo

    2014-01-01

    Autophagy and the ubiquitin–proteasome pathway (UPP) are the major protein degradation systems in eukaryotic cells. Whereas the former mediate a bulk nonspecific degradation, the UPP allows a rapid degradation of specific proteins. Both systems have been shown to play a role in tumorigenesis, and the interest in developing therapeutic agents inhibiting protein degradation is steadily growing. However, emerging data point to a critical role for autophagy in cellular senescence, an established tumor suppressor mechanism. Recently, a selective protein degradation process mediated by the UPP was also shown to contribute to the senescence phenotype. This process is tightly regulated by E3 ubiquitin ligases, deubiquitinases, and several post-translational modifications of target proteins. Illustrating the complexity of UPP, more than 600 human genes have been shown to encode E3 ubiquitin ligases, a number which exceeds that of the protein kinases. Nevertheless, our knowledge of proteasome-dependent protein degradation as a regulated process in cellular contexts such as cancer and senescence remains very limited. Here we discuss the implications of protein degradation in senescence and attempt to relate this function to the protein degradation pattern observed in cancer cells. PMID:24866342

  19. Cellular functions of the microprocessor.

    PubMed

    Macias, Sara; Cordiner, Ross A; Cáceres, Javier F

    2013-08-01

    The microprocessor is a complex comprising the RNase III enzyme Drosha and the double-stranded RNA-binding protein DGCR8 (DiGeorge syndrome critical region 8 gene) that catalyses the nuclear step of miRNA (microRNA) biogenesis. DGCR8 recognizes the RNA substrate, whereas Drosha functions as an endonuclease. Recent global analyses of microprocessor and Dicer proteins have suggested novel functions for these components independent of their role in miRNA biogenesis. A HITS-CLIP (high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation) experiment designed to identify novel substrates of the microprocessor revealed that this complex binds and regulates a large variety of cellular RNAs. The microprocessor-mediated cleavage of several classes of RNAs not only regulates transcript levels, but also modulates alternative splicing events, independently of miRNA function. Importantly, DGCR8 can also associate with other nucleases, suggesting the existence of alternative DGCR8 complexes that may regulate the fate of a subset of cellular RNAs. The aim of the present review is to provide an overview of the diverse functional roles of the microprocessor.

  20. Cellular monosaccharide patterns of Neisseriaceae.

    PubMed

    Jantzen, E; Bryn, K; Bovre, K

    1976-08-01

    Sixty-four strains of Neisseria, Moraxella, and Acinetobacter were screened for cellular monosaccharides by gas-liquid chromatography and other chromatographic techniques. The four sugars ribose, glucose, glucosamine, and 2-keto-3-deoxyoctonate (KDO) were detected in all strains. Heptose was detected only in "true neisseriae" (Neisseria gonorrhoeae, N. meningitidis, N. sicca, N. cinerea, N. flavescens, and N. elongata) and in the tentaively named species Moraxella urethralis. Some marked interspecies dissimilarities within groups were revealed. Thus, N. ovis and M. atlantae were characterized by the presence of mannose. Intraspecies differences were also encountered. N. meningitidis strains of serogroups B and C were distinguished from strains of serogroup A by their sialic acid content. This sugar was also detected in two out of three examined strains of M. nonliquefaciens. In Acinetobacter, heterogeneity of monosaccharide patterns was rather pronounced. The results show the applicability of gas chromatographic "monosaccharide" profiles fo whole cells or extracted carbohydrate in bacterial classification and identification, including differentiation at the subspecies level. In addition, such profiles may be useful for monitoring during purification of cellular polysaccharides.

  1. Melanoma screening with cellular phones.

    PubMed

    Massone, Cesare; Hofmann-Wellenhof, Rainer; Ahlgrimm-Siess, Verena; Gabler, Gerald; Ebner, Christoph; Soyer, H Peter

    2007-05-30

    Mobile teledermatology has recently been shown to be suitable for teledermatology despite limitations in image definition in preliminary studies. The unique aspect of mobile teledermatology is that this system represents a filtering or triage system, allowing a sensitive approach for the management of patients with emergent skin diseases. In this study we investigated the feasibility of teleconsultation using a new generation of cellular phones in pigmented skin lesions. 18 patients were selected consecutively in the Pigmented Skin Lesions Clinic of the Department of Dermatology, Medical University of Graz, Graz (Austria). Clinical and dermoscopic images were acquired using a Sony Ericsson with a built-in two-megapixel camera. Two teleconsultants reviewed the images on a specific web application (http://www.dermahandy.net/default.asp) where images had been uploaded in JPEG format. Compared to the face-to-face diagnoses, the two teleconsultants obtained a score of correct telediagnoses of 89% and of 91.5% reporting the clinical and dermoscopic images, respectively. The present work is the first study performing mobile teledermoscopy using cellular phones. Mobile teledermatology has the potential to become an easy applicable tool for everyone and a new approach for enhanced self-monitoring for skin cancer screening in the spirit of the eHealth program of the European Commission Information for Society and Media.

  2. Melanoma Screening with Cellular Phones

    PubMed Central

    Massone, Cesare; Hofmann-Wellenhof, Rainer; Ahlgrimm-Siess, Verena; Gabler, Gerald; Ebner, Christoph; Peter Soyer, H.

    2007-01-01

    Background Mobile teledermatology has recently been shown to be suitable for teledermatology despite limitations in image definition in preliminary studies. The unique aspect of mobile teledermatology is that this system represents a filtering or triage system, allowing a sensitive approach for the management of patients with emergent skin diseases. Methodology/Principal Findings In this study we investigated the feasibility of teleconsultation using a new generation of cellular phones in pigmented skin lesions. 18 patients were selected consecutively in the Pigmented Skin Lesions Clinic of the Department of Dermatology, Medical University of Graz, Graz (Austria). Clinical and dermoscopic images were acquired using a Sony Ericsson with a built-in two-megapixel camera. Two teleconsultants reviewed the images on a specific web application (http://www.dermahandy.net/default.asp) where images had been uploaded in JPEG format. Compared to the face-to-face diagnoses, the two teleconsultants obtained a score of correct telediagnoses of 89% and of 91.5% reporting the clinical and dermoscopic images, respectively. Conclusions/Significance The present work is the first study performing mobile teledermoscopy using cellular phones. Mobile teledermatology has the potential to become an easy applicable tool for everyone and a new approach for enhanced self-monitoring for skin cancer screening in the spirit of the eHealth program of the European Commission Information for Society and Media. PMID:17534433

  3. CELLULAR PATHOGENESIS OF DIABETIC GASTROENTEROPATHY

    PubMed Central

    Ördög, Tamás; Hayashi, Yujiro; Gibbons, Simon J.

    2010-01-01

    SUMMARY Gastroenteropathy manifesting in upper gastrointestinal symptoms, delayed gastric emptying, constipation, diarrhea and fecal incontinence occurs frequently in patients with diabetes mellitus and represents a significant health care burden. Current treatments are largely symptomatic and ineffective. Better understanding of the cellular and molecular pathogenesis of these disorders is required for the development of more effective therapies. Recent advances in our understanding of the inherent, high-level complexities of the control systems that execute and regulate gastrointestinal motility, together with the utilization of new experimental models and sophisticated physiological, morphological and molecular techniques have lead to the realization that diabetic gastroenteropathies cannot be ascribed to any singular defect or dysfunction. In fact, these disorders are multifactorial and involve a spectrum of metabolic and dystrophic changes that can potentially affect all key components of motor control including the systemic autonomic and enteric nervous systems, interstitial cells of Cajal and smooth muscle cells. Candidate pathomechanisms are also varied and include imbalance between pro- and anti-oxidative factors, altered trophic stimuli to mature cells and their progenitors, and, possibly, autoimmune factors. The goal of this paper is to review the cellular changes underlying diabetic gastroenteropathies and their potential causes, with particular focus on functional interactions between various cell types. It is proposed that diabetic gastroenteropathies should be considered a form of gastrointestinal neuromuscular dystrophy rather than a “functional” disorder. Future research should identify ways to block cytotoxic factors, support the regeneration of damaged cells and translate the experimental findings into new treatment modalities. PMID:19829287

  4. Promoting Retention

    PubMed Central

    Hall, LaToya N.; Ficker, Lisa J.; Chadiha, Letha A.; Green, Carmen R.; Jackson, James S.; Lichtenberg, Peter A.

    2016-01-01

    Objectives: The objectives of this study were to evaluate the capability of a research volunteer registry to retain community-dwelling African American older adults, and to explore demographic and health factors associated with retention. Method: A logistic regression model was used to determine the influence of demographics, health factors, and registry logic model activities on retention in a sample of 1,730 older African American adults. Results: Almost 80% of participants active in the volunteer research registry between January 2012 and June 2015 were retained. Employment, being referred to research studies, a higher number of medical conditions, and more follow-up contacts were associated with an increased likelihood of retention. Older age, more months in the registry, and more mobility problems decreased the likelihood of retention. Discussion: These results suggest the Michigan Center for Urban African American Aging Research logic model promotes retention through involving older African American adults in research through study referrals and intensive follow-up. The loss of participants due to age- and mobility-related issues indicate the registry may be losing its most vulnerable participants. PMID:28138501

  5. Cellular viability effects of fatty acid amide hydrolase inhibition on cerebellar neurons

    PubMed Central

    2011-01-01

    The endocannabinoid anandamide (ANA) participates in the control of cell death inducing the formation of apoptotic bodies and DNA fragmentation. The aim of this study was to evaluate whether the ANA degrading enzyme, the fatty acid amide hydrolase (FAAH), would induce cellular death. Experiments were performed in cerebellar granule neurons cultured with the FAAH inhibitor, URB597 (25, 50 or 100 nM) as well as endogenous lipids such as oleoylethanolamide (OEA) or palmitoylethanolamide (PEA) and cellular viability was determined by MTT test. Neurons cultured with URB597 (25, 50 or 100 nM) displayed a decrease in cellular viability. In addition, if cultured with OEA (25 nM) or PEA (100 nM), cellular death was found. These results further suggest that URB597, OEA or PEA promote cellular death. PMID:21854612

  6. Hyperglycemia Induces Cellular Hypoxia through Production of Mitochondrial ROS Followed by Suppression of Aquaporin-1.

    PubMed

    Sada, Kiminori; Nishikawa, Takeshi; Kukidome, Daisuke; Yoshinaga, Tomoaki; Kajihara, Nobuhiro; Sonoda, Kazuhiro; Senokuchi, Takafumi; Motoshima, Hiroyuki; Matsumura, Takeshi; Araki, Eiichi

    2016-01-01

    We previously proposed that hyperglycemia-induced mitochondrial reactive oxygen species (mtROS) generation is a key event in the development of diabetic complications. Interestingly, some common aspects exist between hyperglycemia and hypoxia-induced phenomena. Thus, hyperglycemia may induce cellular hypoxia, and this phenomenon may also be involved in the pathogenesis of diabetic complications. In endothelial cells (ECs), cellular hypoxia increased after incubation with high glucose (HG). A similar phenomenon was observed in glomeruli of diabetic mice. HG-induced cellular hypoxia was suppressed by mitochondria blockades or manganese superoxide dismutase (MnSOD) overexpression, which is a specific SOD for mtROS. Overexpression of MnSOD also increased the expression of aquaporin-1 (AQP1), a water and oxygen channel. AQP1 overexpression in ECs suppressed hyperglycemia-induced cellular hypoxia, endothelin-1 and fibronectin overproduction, and apoptosis. Therefore, hyperglycemia-induced cellular hypoxia and mtROS generation may promote hyperglycemic damage in a coordinated manner.

  7. Mitophagy and Alzheimer's Disease: Cellular and Molecular Mechanisms.

    PubMed

    Kerr, Jesse S; Adriaanse, Bryan A; Greig, Nigel H; Mattson, Mark P; Cader, M Zameel; Bohr, Vilhelm A; Fang, Evandro F

    2017-02-09

    Neurons affected in Alzheimer's disease (AD) experience mitochondrial dysfunction and a bioenergetic deficit that occurs early and promotes the disease-defining amyloid beta peptide (Aβ) and Tau pathologies. Emerging findings suggest that the autophagy/lysosome pathway that removes damaged mitochondria (mitophagy) is also compromised in AD, resulting in the accumulation of dysfunctional mitochondria. Results in animal and cellular models of AD and in patients with sporadic late-onset AD suggest that impaired mitophagy contributes to synaptic dysfunction and cognitive deficits by triggering Aβ and Tau accumulation through increases in oxidative damage and cellular energy deficits; these, in turn, impair mitophagy. Interventions that bolster mitochondrial health and/or stimulate mitophagy may therefore forestall the neurodegenerative process in AD.

  8. Insulin-like growth factor-1 regulates the SIRT1-p53 pathway in cellular senescence

    PubMed Central

    Tran, Duc; Bergholz, Johann; Zhang, Haibo; He, Hanbing; Wang, Yang; Zhang, Yujun; Li, Qintong; Kirkland, James L; Xiao, Zhi-Xiong

    2014-01-01

    Cellular senescence, which is known to halt proliferation of aged and stressed cells, plays a key role against cancer development and is also closely associated with organismal aging. While increased insulin-like growth factor (IGF) signaling induces cell proliferation, survival and cancer progression, disrupted IGF signaling is known to enhance longevity concomitantly with delay in aging processes. The molecular mechanisms involved in the regulation of aging by IGF signaling and whether IGF regulates cellular senescence are still poorly understood. In this study, we demonstrate that IGF-1 exerts a dual function in promoting cell proliferation as well as cellular senescence. While acute IGF-1 exposure promotes cell proliferation and is opposed by p53, prolonged IGF-1 treatment induces premature cellular senescence in a p53-dependent manner. We show that prolonged IGF-1 treatment inhibits SIRT1 deacetylase activity, resulting in increased p53 acetylation as well as p53 stabilization and activation, thus leading to premature cellular senescence. In addition, either expression of SIRT1 or inhibition of p53 prevented IGF-1-induced premature cellular senescence. Together, these findings suggest that p53 acts as a molecular switch in monitoring IGF-1-induced proliferation and premature senescence, and suggest a possible molecular connection involving IGF-1-SIRT1-p53 signaling in cellular senescence and aging. PMID:25070626

  9. The Dynamics of Cellular Flames.

    NASA Astrophysics Data System (ADS)

    Palacios, Jose Antonio

    1995-01-01

    A quantitative description of the dynamics of two-dimensional cellular flames, produced in a laboratory experiment, is presented. The cell boundaries are extracted from a sequence of video images, in which the motion of the flames is recorded, using a computational procedure. A data structure is then created to encapsulate the motion of the cell boundaries into one-dimensional complex vectors. Four regimes are analyzed using the Karhunen-Loeve decomposition as a tool: a rotating state with alternating speeds, a fast rigid rotation, a ratcheting state described by the locking-unlocking mechanism of two rotating rings of cells, and an intermittent state with two ordered patterns. It is demonstrated that most of these cases are examples of low-dimensional spatio-temporal complexity.

  10. Regulation of cellular chromatin state

    PubMed Central

    Mishra, Rakesh K; Dhawan, Jyotsna

    2010-01-01

    The identity and functionality of eukaryotic cells is defined not just by their genomic sequence which remains constant between cell types, but by their gene expression profiles governed by epigenetic mechanisms. Epigenetic controls maintain and change the chromatin state throughout development, as exemplified by the setting up of cellular memory for the regulation and maintenance of homeotic genes in proliferating progenitors during embryonic development. Higher order chromatin structure in reversibly arrested adult stem cells also involves epigenetic regulation and in this review we highlight common trends governing chromatin states, focusing on quiescence and differentiation during myogenesis. Together, these diverse developmental modules reveal the dynamic nature of chromatin regulation providing fresh insights into the role of epigenetic mechanisms in potentiating development and differentiation. PMID:20592864

  11. REGULATORY MECHANISMS OF CELLULAR RESPIRATION

    PubMed Central

    Barron, E. S. Guzman; Nelson, Leonard; Ardao, Maria Isabel

    1948-01-01

    Oxidizing agents of sulfhydryl groups such as iodosobenzoate, alkylating agents such as iodoacetamide, and mercaptide-forming agents such as cadmium chloride, mercuric chloride, p-chloromercuribenzoate, sodium arsenite, and p-carboxyphenylarsine oxide, added in small concentrations to a suspension of sea urchin sperm produced an increase in respiration. When the concentration was increased there was an inhibition. These effects are explained by postulating the presence in the cells of two kinds of sulfhydryl groups: soluble sulfhydryl groups, which regulate cellular respiration, and fixed sulfhydryl groups, present in the protein moiety of enzymes. Small concentrations of sulfhydryl reagents combine only with the first, thus producing an increase in respiration; when the concentration is increased, the fixed sulfhydryl groups are also attacked and inhibition of respiration is the consequence. Other inhibitors of cell respiration, such as cyanide and urethanes, which do not combine with —SH groups, did not stimulate respiration in small concentration. PMID:18891144

  12. Cellular immune mechanisms in myocarditis.

    PubMed

    Noutsias, M; Patil, V J; Maisch, B

    2012-12-01

    The introduction of immunohistological techniques enabled a substantially more reliable diagnosis of inflammatory cardiomyopathy (DCMi) in endomyocardial biopsies (EMB) compared to the histological Dallas criteria. Decisive progress has been made in the understanding of cellular immune mechanisms in DCMi using immunohistological techniques, which apart from the field of diagnosis refinement have had prognostic implications and an influence on the selection criteria of DCMi patients who will likely benefit from immunosuppressive treatment. Digital image analysis systems have been employed to standardize quantification of immunohistological EMB stainings. Quantification of T cell-related genes by a methodologically validated preamplified real-time RT-PCR revealed that the T cells are characterized by differential expression of Th1-, Treg-, and CTL-related markers, while no major role could be confirmed for Th17 cells. The reported virus-associated differential T cell receptor Vbeta dominance suggests an antiviral specificity of virus-induced T cell responses in human DCMi.

  13. Thermomechanical characterisation of cellular rubber

    NASA Astrophysics Data System (ADS)

    Seibert, H.; Scheffer, T.; Diebels, S.

    2016-09-01

    This contribution discusses an experimental possibility to characterise a cellular rubber in terms of the influence of multiaxiality, rate dependency under environmental temperature and its behaviour under hydrostatic pressure. In this context, a mixed open and closed cell rubber based on an ethylene propylene diene monomer is investigated exemplarily. The present article intends to give a general idea of the characterisation method and the considerable effects of this special type of material. The main focus lies on the experimental procedure and the used testing devices in combination with the analysis methods such as true three-dimensional digital image correlation. The structural compressibility is taken into account by an approach for a material model using the Theory of Porous Media with additional temperature dependence.

  14. Pressure-actuated cellular structures.

    PubMed

    Pagitz, M; Lamacchia, E; Hol, J M A M

    2012-03-01

    Shape changing structures will play an important role in future engineering designs since rigid structures are usually only optimal for a small range of service conditions. Hence, a concept for reliable and energy-efficient morphing structures that possess a large strength to self-weight ratio would be widely applicable. We propose a novel concept for morphing structures that is inspired by the nastic movement of plants. The idea is to connect prismatic cells with tailored pentagonal and/or hexagonal cross sections such that the resulting cellular structure morphs into given target shapes for certain cell pressures. An efficient algorithm for computing equilibrium shapes as well as cross-sectional geometries is presented. The potential of this novel concept is demonstrated by several examples that range from a flagellum like propulsion device to a morphing aircraft wing.

  15. Sensing phosphatidylserine in cellular membranes.

    PubMed

    Kay, Jason G; Grinstein, Sergio

    2011-01-01

    Phosphatidylserine, a phospholipid with a negatively charged head-group, is an important constituent of eukaryotic cellular membranes. On the plasma membrane, rather than being evenly distributed, phosphatidylserine is found preferentially in the inner leaflet. Disruption of this asymmetry, leading to the appearance of phosphatidylserine on the surface of the cell, is known to play a central role in both apoptosis and blood clotting. Despite its importance, comparatively little is known about phosphatidylserine in cells: its precise subcellular localization, transmembrane topology and intracellular dynamics are poorly characterized. The recent development of new, genetically-encoded probes able to detect phosphatidylserine within live cells, however, is leading to a more in-depth understanding of the biology of this phospholipid. This review aims to give an overview of the current methods for phosphatidylserine detection within cells, and some of the recent realizations derived from their use.

  16. Zika Virus Induced Cellular Remodeling.

    PubMed

    Rossignol, Evan D; Peters, Kristen N; Connor, John H; Bullitt, Esther

    2017-03-20

    Zika virus (ZIKV) has been associated with morbidities such as Guillain-Barré, infant microcephaly, and ocular disease. The spread of this positive-sense, single-stranded RNA virus and its growing public health threat underscore gaps in our understanding of basic ZIKV virology. To advance knowledge of the virus replication cycle within mammalian cells, we use serial section three-dimensional electron tomography to demonstrate the widespread remodeling of intracellular membranes upon infection with ZIKV. We report extensive structural rearrangements of the endoplasmic reticulum and reveal stages of the ZIKV viral replication cycle. Structures associated with RNA genome replication and virus assembly are observed integrated within the endoplasmic reticulum, and we show viruses in transit through the Golgi apparatus for viral maturation, and subsequent cellular egress. This study characterizes in detail the three-dimensional ultrastructural organization of the ZIKV replication cycle stages. Our results show close adherence of the ZIKV replication cycle to the existing flavivirus replication paradigm.

  17. Cellular ageing mechanisms in osteoarthritis.

    PubMed

    Sacitharan, P K; Vincent, T L

    2016-08-01

    Age is the strongest independent risk factor for the development of osteoarthritis (OA) and for many years this was assumed to be due to repetitive microtrauma of the joint surface over time, the so-called 'wear and tear' arthritis. As our understanding of OA pathogenesis has become more refined, it has changed our appreciation of the role of ageing on disease. Cartilage breakdown in disease is not a passive process but one involving induction and activation of specific matrix-degrading enzymes; chondrocytes are exquisitely sensitive to changes in the mechanical, inflammatory and metabolic environment of the joint; cartilage is continuously adapting to these changes by altering its matrix. Ageing influences all of these processes. In this review, we will discuss how ageing affects tissue structure, joint use and the cellular metabolism. We describe what is known about pathways implicated in ageing in other model systems and discuss the potential value of targeting these pathways in OA.

  18. Cellular stress and RNA splicing.

    PubMed

    Biamonti, Giuseppe; Caceres, Javier F

    2009-03-01

    In response to physical and chemical stresses that affect protein folding and, thus, the execution of normal metabolic processes, cells activate gene-expression strategies aimed at increasing their chance of survival. One target of several stressing agents is pre-mRNA splicing, which is inhibited upon heat shock. Recently, the molecular basis of this splicing inhibition has begun to emerge. Interestingly, different mechanisms seem to be in place to block constitutive pre-mRNA splicing and to affect alternative splicing regulation. This could be important to modulate gene expression during recovery from stress. Thus, pre-mRNA splicing emerges as a central mechanism to integrate cellular and metabolic stresses into gene-expression profiles.

  19. Fundamental Limits to Cellular Sensing

    NASA Astrophysics Data System (ADS)

    ten Wolde, Pieter Rein; Becker, Nils B.; Ouldridge, Thomas E.; Mugler, Andrew

    2016-03-01

    In recent years experiments have demonstrated that living cells can measure low chemical concentrations with high precision, and much progress has been made in understanding what sets the fundamental limit to the precision of chemical sensing. Chemical concentration measurements start with the binding of ligand molecules to receptor proteins, which is an inherently noisy process, especially at low concentrations. The signaling networks that transmit the information on the ligand concentration from the receptors into the cell have to filter this receptor input noise as much as possible. These networks, however, are also intrinsically stochastic in nature, which means that they will also add noise to the transmitted signal. In this review, we will first discuss how the diffusive transport and binding of ligand to the receptor sets the receptor correlation time, which is the timescale over which fluctuations in the state of the receptor, arising from the stochastic receptor-ligand binding, decay. We then describe how downstream signaling pathways integrate these receptor-state fluctuations, and how the number of receptors, the receptor correlation time, and the effective integration time set by the downstream network, together impose a fundamental limit on the precision of sensing. We then discuss how cells can remove the receptor input noise while simultaneously suppressing the intrinsic noise in the signaling network. We describe why this mechanism of time integration requires three classes (groups) of resources—receptors and their integration time, readout molecules, energy—and how each resource class sets a fundamental sensing limit. We also briefly discuss the scheme of maximum-likelihood estimation, the role of receptor cooperativity, and how cellular copy protocols differ from canonical copy protocols typically considered in the computational literature, explaining why cellular sensing systems can never reach the Landauer limit on the optimal trade

  20. Assemblages: Functional units formed by cellular phase separation

    PubMed Central

    Wright, Peter E.

    2014-01-01

    The partitioning of intracellular space beyond membrane-bound organelles can be achieved with collections of proteins that are multivalent or contain low-complexity, intrinsically disordered regions. These proteins can undergo a physical phase change to form functional granules or other entities within the cytoplasm or nucleoplasm that collectively we term “assemblage.” Intrinsically disordered proteins (IDPs) play an important role in forming a subset of cellular assemblages by promoting phase separation. Recent work points to an involvement of assemblages in disease states, indicating that intrinsic disorder and phase transitions should be considered in the development of therapeutics. PMID:25179628

  1. HSP90: the Rosetta stone for cellular protein dynamics?

    PubMed

    Dezwaan, Diane C; Freeman, Brian C

    2008-04-15

    The Hsp90 proteomic network is expansive and includes a variety of cell processes operating within the cytoplasm and nucleoplasm. Though the functional significance of the extensive interactions has not been defined, we suggest that the Hsp90 molecular chaperone machinery promotes dynamic behaviors for client proteins that is critical to achieve homeostasis. A general rapid action by cell factors would permit both proper assembly of biological complexes and efficient transitions between distinct structures. Here, we describe why the properties that are inherent to molecular chaperones place these proteins in a unique position to drive the dynamic cellular environment.

  2. Obesity and cancer: At the crossroads of cellular metabolism and proliferation

    PubMed Central

    O’Rourke, Robert W.

    2014-01-01

    Obesity is associated with an increased risk of cancer. The mechanisms underlying this association include but are not limited to increased systemic inflammation, an anabolic hormonal milieu, and adipocyte-cancer crosstalk, aberrant stimuli that conspire to promote neoplastic transformation. Cellular proliferation is uncoupled from nutrient availability in malignant cells, promoting tumor progression. Elucidation of the mechanisms underlying the obesity-cancer connection will lead to the development of novel metabolism-based agents for cancer prevention and treatment. PMID:25264328

  3. Cellular phones: are they detrimental?

    PubMed

    Salama, Osama E; Abou El Naga, Randa M

    2004-01-01

    The issue of possible health effects of cellular phones is very much alive in the public's mind where the rapid increase in the number of the users of cell phones in the last decade has increased the exposure of people to the electromagnetic fields (EMFs). Health consequences of long term use of mobile phones are not known in detail but available data indicates the development of non specific annoying symptoms on acute exposure to mobile phone radiations. In an attempt to determine the prevalence of such cell phones associated health manifestations and the factors affecting their occurrence, a cross sectional study was conducted in five randomly selected faculties of Alexandria University. Where, 300 individuals including teaching staff, students and literate employee were equally allocated and randomly selected among the five faculties. Data about mobile phone's users and their medical history, their pattern of mobile usage and the possible deleterious health manifestations associated with cellular phone use was collected. The results revealed 68% prevalence of mobile phone usage, nearly three quarters of them (72.5%) were complainers of the health manifestations. They suffered from headache (43%), earache (38.3%), sense of fatigue (31.6%), sleep disturbance (29.5%), concentration difficulty (28.5%) and face burning sensation (19.2%). Both univariate and multivariate analysis were consistent in their findings. Symptomatic users were found to have significantly higher frequency of calls/day, longer call duration and longer total duration of mobile phone usage/day than non symptomatic users. For headache both call duration and frequency of calls/day were the significant predicting factors for its occurrence (chi2 = 18.208, p = 0.0001). For earache, in addition to call duration, the longer period of owning the mobile phone were significant predictors (chi2 = 16.996, p = 0.0002). Sense of fatigue was significantly affected by both call duration and age of the user

  4. Genetic determinants and cellular constraints in noisy gene expression

    PubMed Central

    Sanchez, Alvaro; Golding, Ido

    2014-01-01

    In individual cells, transcription is a random process obeying single-molecule kinetics. Often, it occurs in a bursty, intermittent manner. The frequency and size of these bursts affect the magnitude of temporal fluctuations in mRNA and protein content within a cell, creating variation or “noise” in gene expression. It is still unclear to what degree transcriptional kinetics are specific to each gene and determined by its promoter sequence. Alternative scenarios have been proposed, where the kinetics of transcription are governed by cellular constraints and follow universal rules across the genome. Evidence from genome-wide noise studies and from systematic perturbations of promoter sequences suggest that both scenarios—namely gene-specific versus genome-wide regulation of transcription kinetics— may be present to different degrees in bacteria, yeast and animal cells. PMID:24311680

  5. [Cellular senescence and chronic inflammation].

    PubMed

    Ohtani, Naoko

    2014-01-01

    It has recently become apparent that obesity is associated with chronic inflammation and several common types of cancer development. Although several events were proposed to be involved in these pathologies, the precise mechanisms underlying obesity-associated inflammation and cancer largely remain unclear. Here, we show that senescence-associated secretory phenotype (SASP) plays crucial roles in promoting obesity-associated hepatocellular carcinoma (HCC) development in mice. Dietary or genetic obesity induces alterations of gut microbiota, thereby increasing the levels of a bacterial metabolite that cause DNA damage. The enterohepatic circulation of the bacterial metabolites provokes SASP phenotype in hepatic stellate cells (HSCs), which in turn, secretes various inflammatory and tumour promoting factors in the liver, thus facilitating HCC development in mice after exposure to chemical carcinogen. Importantly, reducing gut bacteria efficiently prevents HCC development in obese mice. Similar results were also observed in mice lacking an SASP inducer or depleted of senescent HSCs, indicating that the induction of SASP by the gut bacterial metabolite in HSCs plays key roles in obesity-associated HCC development. Interestingly, moreover, signs of SASP were also observed in the HSCs in the area of HCC arising in patients with nonalcoholic steatohepatitis (NASH), implying that a similar pathway may contribute to at least certain aspects of obesity-associated HCC development in humans as well. These findings provide valuable new insights into the development of obesity-associated cancer.

  6. Cellular neuron and large wireless neural network

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Forrester, Thomas; Ambrose, Barry; Kazantzidis, Matheos; Lin, Freddie

    2006-05-01

    A new approach to neural networks is proposed, based on wireless interconnects (synapses) and cellular neurons, both software and hardware; with the capacity of 10 10 neurons, almost fully connected. The core of the system is Spatio-Temporal-Variant (STV) kernel and cellular axon with synaptic plasticity variable in time and space. The novel large neural network hardware is based on two established wireless technologies: RF-cellular and IR-wireless.

  7. Mechanisms of cellular therapy in respiratory diseases.

    PubMed

    Abreu, Soraia C; Antunes, Mariana A; Pelosi, Paolo; Morales, Marcelo M; Rocco, Patricia R M

    2011-09-01

    Stem cells present a variety of clinical implications in the lungs. According to their origin, these cells can be divided into embryonic and adult stem cells; however, due to the important ethical and safety limitations that are involved in the embryonic stem cell use, most studies have chosen to focus on adult stem cell therapy. This article aims to present and clarify the recent advances in the field of stem cell biology, as well as to highlight the effects of mesenchymal stem cell (MSC) therapy in the context of acute lung injury/acute respiratory distress syndrome and chronic disorders such as lung fibrosis and chronic obstructive pulmonary disease. For this purpose, we performed a critical review of adult stem cell therapies, covering the main clinical and experimental studies published in Pubmed databases in the past 11 years. Different characteristics were extracted from these articles, such as: the experimental model, strain, cellular type and administration route used as well as the positive or negative effects obtained. There is evidence for beneficial effects of MSC on lung development, repair, and remodeling. The engraftment in the injured lung does not occur easily, but several studies report that paracrine factors can be effective in reducing inflammation and promoting tissue repair. MSC releases several growth factors and anti-inflammatory cytokines that regulate endothelial and epithelial permeability and reduce the severity of inflammation. A better understanding of the mechanisms that control cell division and differentiation, as well as of their paracrine effects, is required to enable the optimal use of bone marrow-derived stem cell therapy to treat human respiratory diseases.

  8. Cellular cardiac regenerative therapy in which patients?

    PubMed

    Chachques, Juan C

    2009-08-01

    Cell-based myocardial regenerative therapy is undergoing experimental and clinical trials in order to limit the consequences of decreased contractile function and compliance of damaged ventricles owing to ischemic and nonischemic myocardial diseases. A variety of myogenic and angiogenic cell types have been proposed, such as skeletal myoblasts, mononuclear and mesenchymal bone marrow cells, circulating blood-derived progenitors, adipose-derived stromal cells, induced pluripotent stem cells, umbilical cord cells, endometrial mesenchymal stem cells, adult testis pluripotent stem cells and embryonic cells. Current indications for stem cell therapy concern patients who have had a left- or right-ventricular infarction or idiopathic dilated cardiomyopathies. Other indications and potential applications include patients with diabetic cardiomyopathy, Chagas heart disease (American trypanosomiasis), ischemic mitral regurgitation, left ventricular noncompacted myocardium and pediatric cardiomyopathy. Suitable sources of cells for cardiac implant will depend on the types of diseases to be treated. For acute myocardial infarction, a cell that reduces myocardial necrosis and augments vascular blood flow will be desirable. For heart failure, cells that replace or promote myogenesis, reverse apoptopic mechanisms and reactivate dormant cell processes will be useful. It is important to note that stem cells are not an alternative to heart transplantation; selected patients should be in an early stage of heart failure as the goal of this regenerative approach is to avoid or delay organ transplantation. Since the cell niche provides crucial support needed for stem cell maintenance, the most interesting and realistic perspectives include the association of intramyocardial cell transplantation with tissue-engineered scaffolds and multisite cardiac pacing in order to transform a passive regenerative approach into a 'dynamic cellular support', a promising method for the creation of

  9. Cellular Cholesterol Transport Proteins in Diabetic Nephropathy

    PubMed Central

    Tsun, Joseph G. S.; Yung, Susan; Chau, Mel K. M.; Shiu, Sammy W. M.; Chan, Tak Mao; Tan, Kathryn C. B.

    2014-01-01

    Background Lipid accumulation has been shown to accelerate renal injury, and the intracellular accumulation of lipids may be caused by alterations in synthesis as well as lipid uptake and efflux. We have investigated the role of cellular cholesterol transport proteins including adenosine triphosphate binding cassette transporter A1 (ABCA1), G1 (ABCG1) and scavenger receptor class B type I (SR-BI) in diabetic nephropathy. Methods Protein expression and the ability to mediate cholesterol efflux of ABCA1, ABCG1 and SR-BI was determined in human renal mesangial cells and proximal tubular epithelial cells cultured under normal or high glucose conditions. Renal expression of these cholesterol transporters was examined in a murine model of streptozotocin-induced type 1 diabetes. Results ABCA1, ABCG1 and SR-BI were expressed in both human renal mesangial cells and proximal tubular epithelial cells, and mediated cholesterol efflux to apolipoprotein AI and HDL. In vitro, hyperglycemia reduced the expression and the ability to mediate cholesterol efflux of all three cholesterol transporters (p<0.05). In vivo studies showed that intra-renal accumulation of lipids was increased in diabetic mice, particularly in mice with nephropathy. This was associated with a significant reduction in the expression of ABCA1, ABCG1 and SR-BI in the kidneys. These changes were already seen in diabetic mice without nephropathy and preceded the development of nephropathy. Diabetic mice with nephropathy had the lowest level of these cholesterol transporters. Conclusion Inducing diabetes with streptozotocin significantly reduced renal expression of ABCA1, ABCG1 and SR-BI. Defects in cholesterol export pathway in renal cells could therefore promote cholesterol accumulation and might contribute to the development of diabetic nephropathy. PMID:25181357

  10. The origins of cellular life.

    PubMed

    Schrum, Jason P; Zhu, Ting F; Szostak, Jack W

    2010-09-01

    Understanding the origin of cellular life on Earth requires the discovery of plausible pathways for the transition from complex prebiotic chemistry to simple biology, defined as the emergence of chemical assemblies capable of Darwinian evolution. We have proposed that a simple primitive cell, or protocell, would consist of two key components: a protocell membrane that defines a spatially localized compartment, and an informational polymer that allows for the replication and inheritance of functional information. Recent studies of vesicles composed of fatty-acid membranes have shed considerable light on pathways for protocell growth and division, as well as means by which protocells could take up nutrients from their environment. Additional work with genetic polymers has provided insight into the potential for chemical genome replication and compatibility with membrane encapsulation. The integration of a dynamic fatty-acid compartment with robust, generalized genetic polymer replication would yield a laboratory model of a protocell with the potential for classical Darwinian biological evolution, and may help to evaluate potential pathways for the emergence of life on the early Earth. Here we discuss efforts to devise such an integrated protocell model.

  11. Efficiency of cellular information processing

    NASA Astrophysics Data System (ADS)

    Barato, Andre C.; Hartich, David; Seifert, Udo

    2014-10-01

    We show that a rate of conditional Shannon entropy reduction, characterizing the learning of an internal process about an external process, is bounded by the thermodynamic entropy production. This approach allows for the definition of an informational efficiency that can be used to study cellular information processing. We analyze three models of increasing complexity inspired by the Escherichia coli sensory network, where the external process is an external ligand concentration jumping between two values. We start with a simple model for which ATP must be consumed so that a protein inside the cell can learn about the external concentration. With a second model for a single receptor we show that the rate at which the receptor learns about the external environment can be nonzero even without any dissipation inside the cell since chemical work done by the external process compensates for this learning rate. The third model is more complete, also containing adaptation. For this model we show inter alia that a bacterium in an environment that changes at a very slow time-scale is quite inefficient, dissipating much more than it learns. Using the concept of a coarse-grained learning rate, we show for the model with adaptation that while the activity learns about the external signal the option of changing the methylation level increases the concentration range for which the learning rate is substantial.

  12. Electrostatic Tuning of Cellular Excitability

    PubMed Central

    Börjesson, Sara I.; Parkkari, Teija; Hammarström, Sven; Elinder, Fredrik

    2010-01-01

    Abstract Voltage-gated ion channels regulate the electric activity of excitable tissues, such as the heart and brain. Therefore, treatment for conditions of disturbed excitability is often based on drugs that target ion channels. In this study of a voltage-gated K channel, we propose what we believe to be a novel pharmacological mechanism for how to regulate channel activity. Charged lipophilic substances can tune channel opening, and consequently excitability, by an electrostatic interaction with the channel's voltage sensors. The direction of the effect depends on the charge of the substance. This was shown by three compounds sharing an arachidonyl backbone but bearing different charge: arachidonic acid, methyl arachidonate, and arachidonyl amine. Computer simulations of membrane excitability showed that small changes in the voltage dependence of Na and K channels have prominent impact on excitability and the tendency for repetitive firing. For instance, a shift in the voltage dependence of a K channel with −5 or +5 mV corresponds to a threefold increase or decrease in K channel density, respectively. We suggest that electrostatic tuning of ion channel activity constitutes a novel and powerful pharmacological approach with which to affect cellular excitability. PMID:20141752

  13. Cellular neuropathology of tuberous sclerosis.

    PubMed

    Huttenlocher, P R; Wollmann, R L

    1991-01-01

    The study of cerebral lesions of TSC by special histologic methods suggests that two populations of neurons and glia occur in TSC brains. One is a population of normally differentiated cells that form a normally constituted cortical plate. The other is a group of cells that are poorly differentiated, fail to organize into a normal cortical architecture, and form a variety of abnormal cellular aggregates in cortex and in subcortical locations. The proportion of these abnormal cells varies greatly from patient to patient. In some the central nervous system appears to be entirely spared. In others, only one or a few islands of dysplastic cells occur, whereas in still others a large number, perhaps even a majority, of neuroectodermal cells in the forebrain may be affected. The proportion of total cells that undergo abnormal differentiation apparently is an important factor relative to cortical function in TSC. At present we have no explanation for this marked heterogeneity in expression of the TSC gene or genes, and it remains one of the many unsolved mysteries of this illness.

  14. Reference materials for cellular therapeutics.

    PubMed

    Bravery, Christopher A; French, Anna

    2014-09-01

    The development of cellular therapeutics (CTP) takes place over many years, and, where successful, the developer will anticipate the product to be in clinical use for decades. Successful demonstration of manufacturing and quality consistency is dependent on the use of complex analytical methods; thus, the risk of process and method drift over time is high. The use of reference materials (RM) is an established scientific principle and as such also a regulatory requirement. The various uses of RM in the context of CTP manufacturing and quality are discussed, along with why they are needed for living cell products and the analytical methods applied to them. Relatively few consensus RM exist that are suitable for even common methods used by CTP developers, such as flow cytometry. Others have also identified this need and made proposals; however, great care will be needed to ensure any consensus RM that result are fit for purpose. Such consensus RM probably will need to be applied to specific standardized methods, and the idea that a single RM can have wide applicability is challenged. Written standards, including standardized methods, together with appropriate measurement RM are probably the most appropriate way to define specific starting cell types. The characteristics of a specific CTP will to some degree deviate from those of the starting cells; consequently, a product RM remains the best solution where feasible. Each CTP developer must consider how and what types of RM should be used to ensure the reliability of their own analytical measurements.

  15. Cellular automaton for bacterial towers

    NASA Astrophysics Data System (ADS)

    Indekeu, J. O.; Giuraniuc, C. V.

    2004-05-01

    A simulation approach to the stochastic growth of bacterial towers is presented, in which a non-uniform and finite nutrient supply essentially determines the emerging structure through elementary chemotaxis. The method is based on cellular automata and we use simple, microscopic, local rules for bacterial division in nutrient-rich surroundings. Stochastic nutrient diffusion, while not crucial to the dynamics of the total population, is influential in determining the porosity of the bacterial tower and the roughness of its surface. As the bacteria run out of food, we observe an exponentially rapid saturation to a carrying capacity distribution, similar in many respects to that found in a recently proposed phenomenological hierarchical population model, which uses heuristic parameters and macroscopic rules. Complementary to that phenomenological model, the simulation aims at giving more microscopic insight into the possible mechanisms for one of the recently much studied bacterial morphotypes, known as “towering biofilm”, observed experimentally using confocal laser microscopy. A simulation suggesting a mechanism for biofilm resistance to antibiotics is also shown.

  16. Respiring cellular nano-magnets.

    PubMed

    Talib, Ayesha; Khan, Zanib; Bokhari, Habib; Hidayathula, Syed; Jilani, Ghulam; Khan, Abid Ali

    2017-11-01

    Magnetotactic bacteria provide an interesting example for the biosynthesis of magnetic (Fe3O4 or Fe3S4) nanoparticles, synthesized through a process known as biologically controlled mineralization, resulting in complex monodispersed, and nanostructures with unique magnetic properties. In this work, we report a novel aerobic bacterial strain isolated from sludge of an oil refinery. Microscopic and staining analysis revealed that it was a gram positive rod with the capability to thrive in a medium (9K) supplemented, with Fe(2+) ions at an acidic pH (~3.2). The magnetic behaviour of these cells was tested by their alignment towards a permanent magnet, and later on confirmed by magnetometry analysis. The X-ray diffraction studies proved the cellular biosynthesis of magnetite nanoparticles inside the bacteria. This novel, bio-nano-magnet, could pave the way for green synthesis of magnetic nanoparticles to be used in industrial and medical applications such as MRI, magnetic hyperthermia and ferrofluids. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Cellular telephone interference with medical equipment.

    PubMed

    Tri, Jeffrey L; Severson, Rodney P; Firl, Allen R; Hayes, David L; Abenstein, John P

    2005-10-01

    To assess the potential electromagnetic interference (EMI) effects that new or current-generation cellular telephones have on medical devices. For this study, performed at the Mayo Clinic in Rochester, Minn, between March 9, 2004, and April 24, 2004, we tested 16 different medical devices with 6 cellular telephones to assess the potential for EMI. Two of the medical devices were tested with both new and old interface modules. The 6 cellular telephones chosen represent the different cellular technology protocols in use: Code Division Multiple Access (2 models), Global System for Mobile communications, Integrated Digital Enhanced Network, Time Division Multiple Access, and analog. The cellular telephones were tested when operating at or near their maximum power output. The medical devices, connected to clinical simulators during testing, were monitored by observing the device displays and alarms. Of 510 tests performed, the incidence of clinically important interference was 1.2%; EMI was Induced in 108 tests (21.2%). Interference occurred in 7 (44%) of the 16 devices tested. Cellular telephones can interfere with medical equipment. Technology changes in both cellular telephones and medical equipment may continue to mitigate or may worsen clinically relevant interference. Compared with cellular telephones tested in previous studies, those currently in use must be closer to medical devices before any interference is noticed. However, periodic testing of cellular telephones to determine their effects on medical equipment will be required.

  18. Integration of mobile satellite and cellular systems

    NASA Technical Reports Server (NTRS)

    Drucker, Elliott H.; Estabrook, Polly; Pinck, Deborah; Ekroot, Laura

    1993-01-01

    By integrating the ground based infrastructure component of a mobile satellite system with the infrastructure systems of terrestrial 800 MHz cellular service providers, a seamless network of universal coverage can be established. Users equipped for both cellular and satellite service can take advantage of a number of features made possible by such integration, including seamless handoff and universal roaming. To provide maximum benefit at lowest posible cost, the means by which these systems are integrated must be carefully considered. Mobile satellite hub stations must be configured to efficiently interface with cellular Mobile Telephone Switching Offices (MTSO's), and cost effective mobile units that provide both cellular and satellite capability must be developed.

  19. The multicoloured world of promoter recognition complexes

    PubMed Central

    Müller, Ferenc; Tora, Làszlò

    2004-01-01

    The expression pattern of regulated genes changes dynamically depending on the developmental stage and the differentiation state of the cell. Transcription factors regulate cellular events at the gene expression level by communicating signals to the general transcription machinery that forms a preinitiation complex (PIC) at class II core promoters. Recent data strongly suggest that PICs are composed of different sets of factors at distinct promoters, reflecting the spatiotemporal profile of gene expression in multicellular organisms. Thus, today it is important to ask the question: how universal are the promoter recognition factors? This review will focus on findings that support the new idea that core promoter recognition by distinct factors is an additional level of transcriptional regulation and that this step is developmentally regulated. PMID:14685269

  20. A comparative cellular and molecular biology of longevity database.

    PubMed

    Stuart, Jeffrey A; Liang, Ping; Luo, Xuemei; Page, Melissa M; Gallagher, Emily J; Christoff, Casey A; Robb, Ellen L

    2013-10-01

    Discovering key cellular and molecular traits that promote longevity is a major goal of aging and longevity research. One experimental strategy is to determine which traits have been selected during the evolution of longevity in naturally long-lived animal species. This comparative approach has been applied to lifespan research for nearly four decades, yielding hundreds of datasets describing aspects of cell and molecular biology hypothesized to relate to animal longevity. Here, we introduce a Comparative Cellular and Molecular Biology of Longevity Database, available at ( http://genomics.brocku.ca/ccmbl/ ), as a compendium of comparative cell and molecular data presented in the context of longevity. This open access database will facilitate the meta-analysis of amalgamated datasets using standardized maximum lifespan (MLSP) data (from AnAge). The first edition contains over 800 data records describing experimental measurements of cellular stress resistance, reactive oxygen species metabolism, membrane composition, protein homeostasis, and genome homeostasis as they relate to vertebrate species MLSP. The purpose of this review is to introduce the database and briefly demonstrate its use in the meta-analysis of combined datasets.

  1. Caveolin-1, cellular senescence and age-related diseases

    PubMed Central

    Zou, Huafei; Stoppani, Elena; Volonte, Daniela; Galbiati, Ferruccio

    2011-01-01

    According to the “free radical theory” of aging, normal aging occurs as the result of tissue damages inflicted by reactive oxygen species (ROS) when ROS production exceeds the antioxidant capacity of the cell. ROS induce cellular dysfunctions such as stress-induced premature senescence (SIPS), which is believed to contribute to normal organismal aging and play a role in age-related diseases. Consistent with this hypothesis, increased oxidative damage of DNA, proteins, and lipids have been reported in aged animals and senescent cells accumulate in vivo with advancing age. Caveolin-1 acts as a scaffolding protein that concentrates and functionally regulates signaling molecules. Recently, great progress has been made toward understanding of the role of caveolin-1 in stress-induced premature senescence. Data show that caveolin-mediated signaling may contribute to explain, at the molecular level, how oxidative stress promotes the deleterious effects of cellular senescence such as aging and age-related diseases. In this review, we discuss the cellular mechanisms and functions of caveolin-1 in the context of SIPS and their relevance to the biology of aging. PMID:22100852

  2. Surface modifications of silicon nitride for cellular biosensor applications.

    PubMed

    Gustavsson, Johan; Altankov, George; Errachid, Abdelhamid; Samitier, Josep; Planell, Josep A; Engel, Elisabeth

    2008-04-01

    Thin films of silicon nitride (Si3N4) can be used in several kinds of micro-sized biosensors as a material to monitor fine environmental changes related to the process of bone formation in vitro. We found however that Si3N4 does not provide optimal conditions for osseointegration as osteoblast-like MG-63 cells tend to detach from the surface when cultured over confluence. Therefore Si3N4 was modified with self-assembled monolayers bearing functional end groups of primary amine (NH2) and carboxyl (COOH) respectively. Both these modifications enhanced the interaction with confluent cell layers and thus improve osseointegration over Si3N4. Furthermore it was observed that the NH2 functionality increased the adsorption of fibronectin (FN), promoted cell proliferation, but delayed the differentiation. We also studied the fate of pre-adsorbed and secreted FN from cells to learn more about the impact of above functionalities for the development of provisional extracellular matrix on materials interface. Taken together our data supports that Si3N4 has low tissue integration but good cellular biocompatibility and thus is appropriate in cellular biosensor applications such as the ion-sensitive field effect transistor (ISFET). COOH and NH2 chemistries generally improve the interfacial tissue interaction with the sensor and they are therefore suitable substrates for monitoring cellular growth or matrix deposition using electrical impedance spectroscopy.

  3. Cellular Scale Anisotropic Topography Guides Schwann Cell Motility

    PubMed Central

    Mitchel, Jennifer A.; Hoffman-Kim, Diane

    2011-01-01

    Directed migration of Schwann cells (SC) is critical for development and repair of the peripheral nervous system. Understanding aspects of motility specific to SC, along with SC response to engineered biomaterials, may inform strategies to enhance nerve regeneration. Rat SC were cultured on laminin-coated microgrooved poly(dimethyl siloxane) platforms that were flat or presented repeating cellular scale anisotropic topographical cues, 30 or 60 µm in width, and observed with timelapse microscopy. SC motion was directed parallel to the long axis of the topography on both the groove floor and the plateau, with accompanying differences in velocity and directional persistence in comparison to SC motion on flat substrates. In addition, feature dimension affected SC morphology, alignment, and directional persistence. Plateaus and groove floors presented distinct cues which promoted differential motility and variable interaction with the topographical features. SC on the plateau surfaces tended to have persistent interactions with the edge topography, while SC on the groove floors tended to have infrequent contact with the corners and walls. Our observations suggest the capacity of SC to be guided without continuous contact with a topographical cue. SC exhibited a range of distinct motile morphologies, characterized by their symmetry and number of extensions. Across all conditions, SC with a single extension traveled significantly faster than cells with more or no extensions. We conclude that SC motility is complex, where persistent motion requires cellular asymmetry, and that anisotropic topography with cellular scale features can direct SC motility. PMID:21949703

  4. Integrated segmentation of cellular structures

    NASA Astrophysics Data System (ADS)

    Ajemba, Peter; Al-Kofahi, Yousef; Scott, Richard; Donovan, Michael; Fernandez, Gerardo

    2011-03-01

    Automatic segmentation of cellular structures is an essential step in image cytology and histology. Despite substantial progress, better automation and improvements in accuracy and adaptability to novel applications are needed. In applications utilizing multi-channel immuno-fluorescence images, challenges include misclassification of epithelial and stromal nuclei, irregular nuclei and cytoplasm boundaries, and over and under-segmentation of clustered nuclei. Variations in image acquisition conditions and artifacts from nuclei and cytoplasm images often confound existing algorithms in practice. In this paper, we present a robust and accurate algorithm for jointly segmenting cell nuclei and cytoplasm using a combination of ideas to reduce the aforementioned problems. First, an adaptive process that includes top-hat filtering, Eigenvalues-of-Hessian blob detection and distance transforms is used to estimate the inverse illumination field and correct for intensity non-uniformity in the nuclei channel. Next, a minimum-error-thresholding based binarization process and seed-detection combining Laplacian-of-Gaussian filtering constrained by a distance-map-based scale selection is used to identify candidate seeds for nuclei segmentation. The initial segmentation using a local maximum clustering algorithm is refined using a minimum-error-thresholding technique. Final refinements include an artifact removal process specifically targeted at lumens and other problematic structures and a systemic decision process to reclassify nuclei objects near the cytoplasm boundary as epithelial or stromal. Segmentation results were evaluated using 48 realistic phantom images with known ground-truth. The overall segmentation accuracy exceeds 94%. The algorithm was further tested on 981 images of actual prostate cancer tissue. The artifact removal process worked in 90% of cases. The algorithm has now been deployed in a high-volume histology analysis application.

  5. Quantum-Dot Cellular Automata

    NASA Astrophysics Data System (ADS)

    Snider, Gregory

    2000-03-01

    Quantum-dot Cellular Automata (QCA) [1] is a promising architecture which employs quantum dots for digital computation. It is a revolutionary approach that holds the promise of high device density and low power dissipation. A basic QCA cell consists of four quantum dots coupled capacitively and by tunnel barriers. The cell is biased to contain two excess electrons within the four dots, which are forced to opposite "corners" of the four-dot cell by mutual Coulomb repulsion. These two possible polarization states of the cell will represent logic "0" and "1". Properly arranged, arrays of these basic cells can implement Boolean logic functions. Experimental results from functional QCA devices built of nanoscale metal dots defined by tunnel barriers will be presented. The experimental devices to be presented consist of Al islands, which we will call quantum dots, interconnected by tunnel junctions and lithographically defined capacitors. Aluminum/ aluminum-oxide/aluminum tunnel junctions were fabricated using a standard e-beam lithography and shadow evaporation technique. The experiments were performed in a dilution refrigerator at a temperature of 70 mK. The operation of a cell is evaluated by direct measurements of the charge state of dots within a cell as the input voltage is changed. The experimental demonstration of a functioning cell will be presented. A line of three cells demonstrates that there are no metastable switching states in a line of cells. A QCA majority gate will also be presented, which is a programmable AND/OR gate and represents the basic building block of QCA systems. The results of recent experiments will be presented. 1. C.S. Lent, P.D. Tougaw, W. Porod, and G.H. Bernstein, Nanotechnology, 4, 49 (1993).

  6. Cellular toxicity of nicotinamide metabolites.

    PubMed

    Rutkowski, Bolesław; Rutkowski, Przemysław; Słomińska, Ewa; Smolenski, Ryszard T; Swierczyński, Julian

    2012-01-01

    There are almost 100 different substances called uremic toxins. Nicotinamide derivatives are known as new family of uremic toxins. These uremic compounds play a role in an increased oxidative stress and disturbances in cellular repair processes by inhibiting poly (ADP-ribose) polymerase activity. New members of this family were discovered and described. Their toxic properties were a subject of recent studies. This study evaluated the concentration of 4-pyridone-3-carboxamid-1-β-ribonucleoside-triphosphate (4PYTP) and 4-pyridone-3-carboxamid-1-β-ribonucleoside-monophosphate (4PYMP) in erythrocytes of patients with chronic renal failure. Serum and red blood cells were collected from chronic renal failure patients on conservative treatment, those treated with hemodialysis, and at different times from those who underwent kidney transplantation. Healthy volunteers served as a control group. Nicotinamide metabolites were determined using liquid chromatography with mass spectrometry based on originally discovered and described method. Three novel compounds were described: 4-pyridone-3-carboxamid-1-β-ribonucleoside (4PYR), 4PYMP, and 4PYTP. 4PYR concentration was elevated in the serum, whereas 4PYMP and 4PYTP concentrations were augmented in erythrocytes of dialysis patients. Interestingly, concentrations of these compounds were less elevated during the treatment with erythropoietin-stimulating agents (ESAs). After successful kidney transplantation, concentrations of 4PYR and 4PYMP normalized according to the graft function, whereas that of 4PYTP was still elevated. During the incubation of erythrocytes in the presence of 4PYR, concentration of 4PYMP rose very rapidly while that of 4PYTP increased slowly. Therefore, we hypothesized that 4PYR, as a toxic compound, was actively absorbed by erythrocytes and metabolized to the 4PYMP and 4PYTP, which may interfere with function and life span of these cells.

  7. [Genetic safety of cellular therapy].

    PubMed

    Bochkov, N P; Voronina, E S; Katosova, L D; Kuleshov, N P; Nikitina, V A; Chausheva, A I

    2011-01-01

    This paper presents the main results of the study on chromosome and genome variability of mesenchymal stem cell cultures from bone marrow and adipose tissue carried out in the Laboratory of Mutagenesis, Research Centre for Medical Genetics, over the last three years. Genome stability was assessed from DNA damage using the DNA comet assay, karyotyping and registration of aneuploidy by the FISH method. We found that DNA damage rate in MSC cultures from bone marrow was 3.9% and 3.8% at the early (2-5) passages and the late (10-15) passages respectively. The cultures were characterized by high dispersion of individual values. Karyotyping showed mosaicism in both types of MSC cultures at the early and late stages of cultivation. The fraction of abnormal cells in some cultures amounted to 80-90%. Evaluation of aneuploidy in interphase cells revealed 1.34% of aneuploid cells (on the average) per one "conventional" chromosome; their overall frequency in the genome amounted to 20-40%. The frequency of aneuploid cells was similar at the early and late passages. Cultures with clones of trisomic and monosomic cells were revealed. The probability of occurrence of abnormal cells may increase by virtue of de novo mutations in the culture and as a result of positive selection of the cells existing in the organism that exhibit a higher reproduction rate in culture. Based on the experimental data on mutational process, selection of mutant cells and clone formation, it is concluded that cytogenetic control of stem cells is necessary to ensure the safety of cellular therapy.

  8. The DNA damage response in viral-induced cellular transformation.

    PubMed

    Nikitin, P A; Luftig, M A

    2012-01-31

    The DNA damage response (DDR) has emerged as a critical tumour suppressor pathway responding to cellular DNA replicative stress downstream of aberrant oncogene over-expression. Recent studies have now implicated the DDR as a sensor of oncogenic virus infection. In this review, we discuss the mechanisms by which tumour viruses activate and also suppress the host DDR. The mechanism of tumour virus induction of the DDR is intrinsically linked to the need for these viruses to promote an S-phase environment to replicate their nucleic acid during infection. However, inappropriate expression of viral oncoproteins can also activate the DDR through various mechanisms including replicative stress, direct interaction with DDR components and induction of reactive oxygen species. Given the growth-suppressive consequences of activating the DDR, tumour viruses have also evolved mechanisms to attenuate these pathways. Aberrant expression of viral oncoproteins may therefore promote tumourigenesis through increased somatic mutation and aneuploidy due to DDR inactivation. This review will focus on the interplay between oncogenic viruses and the DDR with respect to cellular checkpoint control and transformation.

  9. Cellular Manufacturing Internet Performance Support System

    SciTech Connect

    Bohley, M.C.; Schwartz, M.E.

    1998-03-04

    The objective of this project was to develop an Internet-based electronic performance support system (EPSS) for cellular manufacturing providing hardware/software specifications, process descriptions, estimated cost savings, manufacturing simulations, training information, and service resources for government and industry users of Cincinnati Milacron machine tools and products. AlliedSignal Federal Manufacturing and Technologies (ASFM and T) used expertise in the areas of Internet design and multimedia creation to develop a performance support system (PSS) for the Internet with assistance from CM's subject matter experts from engineering, manufacturing, and technical support. Reference information was both created and re-purposed from other existing formats, then made available on the Internet. On-line references on cellular manufacturing operations include: definitions of cells and cellular manufacturing; illustrations on how cellular manufacturing improves part throughput, resource utilization, part quality, and manufacturing flexibility; illustrations on how cellular manufacturing reduces labor and overhead costs; identification of critical factors driving decisions toward cellular manufacturing; a method for identifying process improvement areas using cellular manufacturing; a method for customizing the size of cells for a specific site; a simulation for making a part using cellular manufacturing technology; and a glossary of terms and concepts.

  10. A cellular viability assay to monitor drug toxicity.

    PubMed

    Hansen, Jakob; Bross, Peter

    2010-01-01

    A central part of the research in protein misfolding and its associated disorders is the development of treatment strategies based on ensuring cellular protein homeostasis. This often includes testing chemical substances or drugs for their ability to counteract protein misfolding processes and to promote correct folding. Such investigations also include assessment of how the tested chemical substances affect cellular viability, that is, their cytotoxic effect. Investigations of cytotoxicity often require testing several different concentrations and drug exposure times using cells in culture. It is therefore attractive to use a viability test that permits the analysis of many samples with little handling time. This protocol describes a simple and fast methodology to analyze viability of lymphoblastoid cells and to test putative cytotoxic effects associated with exposure to a chemical substance, here exemplified by celastrol. The natural substance celastrol has been used for many years in traditional Chinese medicine and has subsequently been shown to induce transcription of genes encoding molecular chaperones (heat shock proteins) that are involved in promoting folding of cellular proteins. The well-described colorimetric tetrazolium salt (MTT) assay, which monitors metabolic activity of cultured cells, was adapted to analyze the viability of cells exposed to celastrol. After having established a suitable cell seeding density, the dose-dependence and time-course of viability reduction of lymphoblastoid cells treated with celastrol were determined. It was found that 4- and 24-h exposure to 0.8 microM celastrol reduced the viability of lymphoblastoid cells, with the most severe effect observed at 24 h with MTT reductions approaching 30% of non-exposed cells. For a series of incubations for 24 h, it was found that concentrations as low as 0.2 microM were sufficient to affect the viability, and celastrol concentrations of 0.5 microM reduced the MTT reduction rate to

  11. Cellular monitoring systems for the assessment of space environmental factors

    NASA Astrophysics Data System (ADS)

    Hellweg, Christine E.; Arenz, Andrea; Meier, Matthias M.; Baumstark-Khan, Christa

    Detrimental environmental factors - namely ionizing radiation - will continue to affect future manned space missions. The Cellular Biodiagnostics group at the German Aerospace Center (DLR) develops cellular monitoring systems, which include bacterial and mammalian cell systems capable of responding to DNA damage as a consequence of the presence of genotoxic conditions. Such bioassays will complement the physical detector systems used in space, insofar as they yield intrinsically biologically weighted measures of cellular responses. Furthermore, synergistic toxic impacts of the radiation environment together with other potentially genotoxic constituents of the space habitat can be quantified using such systems. The biological end-point under investigation in this work is the gene activation by radiation in mammalian cells, based on fluorescent promoter reporter systems using the destabilized enhanced green fluorescent protein variant (d2EGFP). The promoter element to be investigated reflects the activity of the nuclear factor κB (NF-κB) pathway. The NF-κB family of proteins plays a major role in the inflammatory and immune response, cell proliferation and differentiation, apoptosis and tumorigenesis. After exposure to X-rays, an increase in NF-κB activation was seen only with high doses. Experiments using accelerated argon ions (95 MeV/u, LET ˜230 keV/μm) produced at the French heavy ion accelerator GANIL have shown activation of the NF-κB pathway with doses greater than 1 × 10 6 particles cm -2 (P cm -2), reaching its maximal activation at 2 × 10 7 P cm -2. These results suggest that the exceptional radiation field in space may activate the NF-κB pathway in human cells.

  12. The golgin Lava lamp mediates dynein-based Golgi movements during Drosophila cellularization.

    PubMed

    Papoulas, Ophelia; Hays, Thomas S; Sisson, John C

    2005-06-01

    Drosophila melanogaster cellularization is a dramatic form of cytokinesis in which a membrane furrow simultaneously encapsulates thousands of cortical nuclei of the syncytial embryo to generate a polarized cell layer. Formation of this cleavage furrow depends on Golgi-based secretion and microtubules. During cellularization, specific Golgi move along microtubules, first to sites of furrow formation and later to accumulate within the apical cytoplasm of the newly forming cells. Here we show that Golgi movements and furrow formation depend on cytoplasmic dynein. Furthermore, we demonstrate that Lava lamp (Lva), a golgin protein that is required for cellularization, specifically associates with dynein, dynactin, cytoplasmic linker protein-190 (CLIP-190) and Golgi spectrin, and is required for the dynein-dependent targeting of the secretory machinery. The Lva domains that bind these microtubule-dependent motility factors inhibit Golgi movement and cellularization in a live embryo injection assay. Our results provide new evidence that golgins promote dynein-based motility of Golgi membranes.

  13. Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes

    PubMed Central

    2004-01-01

    14-3-3 proteins exert an extraordinarily widespread influence on cellular processes in all eukaryotes. They operate by binding to specific phosphorylated sites on diverse target proteins, thereby forcing conformational changes or influencing interactions between their targets and other molecules. In these ways, 14-3-3s ‘finish the job’ when phosphorylation alone lacks the power to drive changes in the activities of intracellular proteins. By interacting dynamically with phosphorylated proteins, 14-3-3s often trigger events that promote cell survival – in situations from preventing metabolic imbalances caused by sudden darkness in leaves to mammalian cell-survival responses to growth factors. Recent work linking specific 14-3-3 isoforms to genetic disorders and cancers, and the cellular effects of 14-3-3 agonists and antagonists, indicate that the cellular complement of 14-3-3 proteins may integrate the specificity and strength of signalling through to different cellular responses. PMID:15167810

  14. Positive and negative effects of cellular senescence during female reproductive aging and pregnancy.

    PubMed

    Velarde, Michael C; Menon, Ramkumar

    2016-08-01

    Cellular senescence is a phenomenon occurring when cells are no longer able to divide even after treatment with growth stimuli. Because senescent cells are typically associated with aging and age-related diseases, cellular senescence is hypothesized to contribute to the age-related decline in reproductive function. However, some data suggest that senescent cells may also be important for normal physiological functions during pregnancy. Herein, we review the positive and negative effects of cellular senescence on female reproductive aging and pregnancy. We discuss how senescent cells accelerate female reproductive aging by promoting the decline in the number of ovarian follicles and increasing complications during pregnancy. We also describe how cellular senescence plays an important role in placental and fetal development as a beneficial process, ensuring proper homeostasis during pregnancy. © 2016 Society for Endocrinology.

  15. The mammary cellular hierarchy and breast cancer.

    PubMed

    Oakes, Samantha R; Gallego-Ortega, David; Ormandy, Christopher J

    2014-11-01

    Advances in the study of hematopoietic cell maturation have paved the way to a deeper understanding the stem and progenitor cellular hierarchy in the mammary gland. The mammary epithelium, unlike the hematopoietic cellular hierarchy, sits in a complex niche where communication between epithelial cells and signals from the systemic hormonal milieu, as well as from extra-cellular matrix, influence cell fate decisions and contribute to tissue homeostasis. We review the discovery, definition and regulation of the mammary cellular hierarchy and we describe the development of the concepts that have guided our investigations. We outline recent advances in in vivo lineage tracing that is now challenging many of our assumptions regarding the behavior of mammary stem cells, and we show how understanding these cellular lineages has altered our view of breast cancer.

  16. The cellular story of dishevelleds

    PubMed Central

    Kafka, Anja; Bašić-Kinda, Sandra; Pećina-Šlaus, Nives

    2014-01-01

    Dishevelled (DVL) proteins, three of which have been identified in humans, are highly conserved components of canonical and noncanonical Wnt signaling pathways. These multifunctional proteins, originally discovered in the fruit fly, through their different domains mediate complex signal transduction: DIX (dishevelled, axin) and PDZ (postsynaptic density 95, discs large, zonula occludens-1) domains serve for canonical beta-catenin signaling, while PDZ and DEP (dishevelled, Egl-10, pleckstrin) domains serve for non-canonical signaling. In canonical or beta-catenin signaling, DVL forms large molecular supercomplexes at the plasma membrane consisting of Wnt-Fz-LRP5/6-DVL-AXIN. This promotes the disassembly of the beta-catenin destruction machinery, beta-catenin accumulation, and consequent activation of Wnt signaling. Therefore, DVLs are considered to be key regulators that rescue cytoplasmic beta-catenin from degradation. The potential medical importance of DVLs is in both human degenerative disease and cancer. The overexpression of DVL has been shown to potentiate the activation of Wnt signaling and it is now apparent that up-regulation of DVLs is involved in several types of cancer. PMID:25358879

  17. The cellular story of dishevelleds.

    PubMed

    Kafka, Anja; Bašić-Kinda, Sandra; Pećina-Šlaus, Nives

    2014-10-01

    Dishevelled (DVL) proteins, three of which have been identified in humans, are highly conserved components of canonical and noncanonical Wnt signaling pathways. These multifunctional proteins, originally discovered in the fruit fly, through their different domains mediate complex signal transduction: DIX (dishevelled, axin) and PDZ (postsynaptic density 95, discs large, zonula occludens-1) domains serve for canonical beta-catenin signaling, while PDZ and DEP (dishevelled, Egl-10, pleckstrin) domains serve for non-canonical signaling. In canonical or beta-catenin signaling, DVL forms large molecular supercomplexes at the plasma membrane consisting of Wnt-Fz-LRP5/6-DVL-AXIN. This promotes the disassembly of the beta-catenin destruction machinery, beta-catenin accumulation, and consequent activation of Wnt signaling. Therefore, DVLs are considered to be key regulators that rescue cytoplasmic beta-catenin from degradation. The potential medical importance of DVLs is in both human degenerative disease and cancer. The overexpression of DVL has been shown to potentiate the activation of Wnt signaling and it is now apparent that up-regulation of DVLs is involved in several types of cancer.

  18. Markers of cellular senescence. Telomere shortening as a marker of cellular senescence

    PubMed Central

    2016-01-01

    The cellular senescence definition comes to the fact of cells irreversible proliferation disability. Besides the cell cycle arrest, senescent cells go through some morphological, biochemical, and functional changes which are the signs of cellular senescence. The senescent cells (including replicative senescence and stress-induced premature senescence) of all the tissues look alike. They are metabolically active and possess the set of characteristics in vitro and in vivo, which are known as biomarkers of aging and cellular senescence. Among biomarkers of cellular senescence telomere shortening is a rather elegant frequently used biomarker. Validity of telomere shortening as a marker for cellular senescence is based on theoretical and experimental data. PMID:26805432

  19. Markers of cellular senescence. Telomere shortening as a marker of cellular senescence.

    PubMed

    Bernadotte, Alexandra; Mikhelson, Victor M; Spivak, Irina M

    2016-01-01

    The cellular senescence definition comes to the fact of cells irreversible proliferation disability. Besides the cell cycle arrest, senescent cells go through some morphological, biochemical, and functional changes which are the signs of cellular senescence. The senescent cells (including replicative senescence and stress-induced premature senescence) of all the tissues look alike. They are metabolically active and possess the set of characteristics in vitro and in vivo, which are known as biomarkers of aging and cellular senescence. Among biomarkers of cellular senescence telomere shortening is a rather elegant frequently used biomarker. Validity of telomere shortening as a marker for cellular senescence is based on theoretical and experimental data.

  20. Cellular basis for QT dispersion.

    PubMed

    Antzelevitch, C; Shimizu, W; Yan, G X; Sicouri, S

    1998-01-01

    The cellular basis for the dispersion of the QT interval recorded at the body surface is incompletely understood. Contributing to QT dispersion are heterogeneities of repolarization time in the three-dimensional structure of the ventricular myocardium, which are secondary to regional differences in action potential duration (APD) and activation time. While differences in APD occur along the apicobasal and anteroposterior axes in both epicardium and endocardium of many species, transitions are usually gradual. Recent studies have also demonstrated important APD gradients along the transmural axis. Because transmural heterogeneities in repolarization time are more abrupt than those recorded along the surfaces of the heart, they may represent a more onerous substrate for the development of arrhythmias, and their quantitation may provide a valuable tool for evaluation of arrhythmia risk. Our data, derived from the arterially perfused canine left ventricular wedge preparation, suggest that transmural gradients of voltage during repolarization contribute importantly to the inscription of the T wave. The start of the T wave is caused by a more rapid decline of the plateau, or phase 2 of the epicardial action potential, creating a voltage gradient across the wall. The gradient increases as the epicardial action potential continues to repolarize, reaching a maximum with full repolarization of epicardium; this juncture marks the peak of the T wave. The next region to repolarize is endocardium, giving rise to the initial descending limb of the upright T wave. The last region to repolarize is the M region, contributing to the final segment of the T wave. Full repolarization of the M region marks the end of the T wave. The time interval between the peak and the end of the T wave therefore represents the transmural dispersion of repolarization. Conditions known to augment QTc dispersion, including acquired long QT syndrome (class IA or III antiarrhythmics) lead to augmentation

  1. Cellular solidification in a monotectic system

    NASA Technical Reports Server (NTRS)

    Kaukler, W. F.; Curreri, P. A.

    1987-01-01

    Succinonitrile-glycerol, SN-G, transparent organic monotectic alloy is studied with particular attention to cellular growth. The phase diagram is determined, near the monotectic composition, with greater accuracy than previous studies. A solidification interface stability diagram is determined for planar growth. The planar-to-cellular transition is compared to predictions from the Burton, Primm, Schlichter theory. A new technique to determine the solute segregation by Fourier transform infrared spectroscopy is developed. Proposed models that involve the cellular interface for alignment of monotectic second-phase spheres or rods are compared with observations.

  2. Cellular and molecular mechanisms in kidney fibrosis

    PubMed Central

    Duffield, Jeremy S.

    2014-01-01

    Fibrosis is a characteristic feature of all forms of chronic kidney disease. Deposition of pathological matrix in the interstitial space and within the walls of glomerular capillaries as well as the cellular processes resulting in this deposition are increasingly recognized as important factors amplifying kidney injury and accelerating nephron demise. Recent insights into the cellular and molecular mechanisms of fibrogenesis herald the promise of new therapies to slow kidney disease progression. This review focuses on new findings that enhance understanding of cellular and molecular mechanisms of fibrosis, the characteristics of myofibroblasts, their progenitors, and molecular pathways regulating both fibrogenesis and its resolution. PMID:24892703

  3. Regulation of cellular identity in cancer

    PubMed Central

    Roy, Nilotpal; Hebrok, Matthias

    2015-01-01

    Summary Neoplastic transformation requires changes in cellular identity. Emerging evidence increasingly points to cellular reprogramming, a process during which fully differentiated and functional cells lose aspects of their identity while gaining progenitor characteristics, as a critical early step during cancer initiation. This cell identity crisis persists even at the malignant stage in certain cancers, suggesting that reactivation of progenitor functions supports tumorigenicity. Here, we review recent findings that establish the essential role of cellular reprogramming during neoplastic transformation and the major players involved in it with a special emphasis on pancreatic cancer. PMID:26702828

  4. Passive Noise Filtering by Cellular Compartmentalization.

    PubMed

    Stoeger, Thomas; Battich, Nico; Pelkmans, Lucas

    2016-03-10

    Chemical reactions contain an inherent element of randomness, which presents itself as noise that interferes with cellular processes and communication. Here we discuss the ability of the spatial partitioning of molecular systems to filter and, thus, remove noise, while preserving regulated and predictable differences between single living cells. In contrast to active noise filtering by network motifs, cellular compartmentalization is highly effective and easily scales to numerous systems without requiring a substantial usage of cellular energy. We will use passive noise filtering by the eukaryotic cell nucleus as an example of how this increases predictability of transcriptional output, with possible implications for the evolution of complex multicellularity.

  5. Exploring the Cellular Accumulation of Metal Complexes

    PubMed Central

    Puckett, Cindy A.; Ernst, Russell J.; Barton, Jacqueline K.

    2010-01-01

    Transition metal complexes offer great potential as diagnostic and therapeutic agents, and a growing number of biological applications have been explored. To be effective, these complexes must reach their intended target inside the cell. Here we review the cellular accumulation of metal complexes, including their uptake, localization, and efflux. Metal complexes are taken up inside cells through various mechanisms, including passive diffusion and entry through organic and metal transporters. Emphasis is placed on the methods used to examine cellular accumulation, to identify the mechanism(s) of uptake, and to monitor possible efflux. Conjugation strategies that have been employed to improve the cellular uptake characteristics of metal complexes are also described. PMID:20104335

  6. High-throughput functional comparison of promoter and enhancer activities

    PubMed Central

    Nguyen, Thomas A.; Jones, Richard D.; Snavely, Andrew R.; Pfenning, Andreas R.; Kirchner, Rory; Hemberg, Martin; Gray, Jesse M.

    2016-01-01

    Promoters initiate RNA synthesis, and enhancers stimulate promoter activity. Whether promoter and enhancer activities are encoded distinctly in DNA sequences is unknown. We measured the enhancer and promoter activities of thousands of DNA fragments transduced into mouse neurons. We focused on genomic loci bound by the neuronal activity-regulated coactivator CREBBP, and we measured enhancer and promoter activities both before and after neuronal activation. We find that the same sequences typically encode both enhancer and promoter activities. However, gene promoters generate more promoter activity than distal enhancers, despite generating similar enhancer activity. Surprisingly, the greater promoter activity of gene promoters is not due to conventional core promoter elements or splicing signals. Instead, we find that particular transcription factor binding motifs are intrinsically biased toward the generation of promoter activity, whereas others are not. Although the specific biases we observe may be dependent on experimental or cellular context, our results suggest that gene promoters are distinguished from distal enhancers by specific complements of transcriptional activators. PMID:27311442

  7. Association of MMP7 -181A→G Promoter Polymorphism with Gastric Cancer Risk: INFLUENCE OF NICOTINE IN DIFFERENTIAL ALLELE-SPECIFIC TRANSCRIPTION VIA INCREASED PHOSPHORYLATION OF cAMP-RESPONSE ELEMENT-BINDING PROTEIN (CREB).

    PubMed

    Kesh, Kousik; Subramanian, Lakshmi; Ghosh, Nillu; Gupta, Vinayak; Gupta, Arnab; Bhattacharya, Samir; Mahapatra, Nitish R; Swarnakar, Snehasikta

    2015-06-05

    Elevated expression of matrix metalloproteinase7 (MMP7) has been demonstrated to play a pivotal role in cancer invasion. The -181A→G (rs11568818) polymorphism in the MMP7 promoter modulates gene expression and possibly affects cancer progression. Here, we evaluated the impact of -181A→G polymorphism on MMP7 promoter activity and its association with gastric cancer risk in eastern Indian case-control cohorts (n = 520). The GG genotype as compared with the AA genotype was predisposed (p = 0.02; odds ratio = 1.9, 95% confidence interval = 1.1-3.3) to gastric cancer risk. Stratification analysis showed that tobacco addiction enhanced gastric cancer risk in GG subjects when compared with AA subjects (p = 0.03, odds ratio = 2.46, and 95% confidence interval = 1.07-5.68). Meta-analysis revealed that tobacco enhanced the risk for cancer more markedly in AG and GG carriers. Activity and expression of MMP7 were significantly higher in GG than in AA carriers. In support, MMP7 promoter-reporter assays showed greater transcriptional activity toward A to G transition under basal/nicotine-induced/cAMP-response element-binding protein (CREB) overexpressed conditions in gastric adenocarcinoma cells. Moreover, nicotine (a major component of tobacco) treatment significantly up-regulated MMP7 expression due to enhanced CREB phosphorylation followed by its nuclear translocation in gastric adenocarcinoma cells. Furthermore, chromatin immunoprecipitation experiments revealed higher binding of phosphorylated CREB with the -181G than the -181A allele. Altogether, specific binding of phosphorylated CREB to the G allele-carrying promoter enhances MMP7 gene expression that is further augmented by nicotine due to increased CREB phosphorylation and thereby increases the risk for gastric cancer.

  8. Cellular neoplastic transformation induced by 916 MHz microwave radiation.

    PubMed

    Yang, Lei; Hao, Dongmei; Wang, Minglian; Zeng, Yi; Wu, Shuicai; Zeng, Yanjun

    2012-08-01

    There has been growing concern about the possibility of adverse health effects resulting from exposure to microwave radiations, such as those emitted by mobile phones. The purpose of this study was to investigate the cellular neoplastic transformation effects of electromagnetic fields. 916 MHz continuous microwave was employed in our study to simulate the electromagnetic radiation of mobile phone. NIH/3T3 cells were adopted in our experiment due to their sensitivity to carcinogen or cancer promoter in environment. They were divided randomly into one control group and three microwave groups. The three microwave groups were exposed to 916 MHz EMF for 2 h per day with power density of 10, 50, and 90 w/m(2), respectively, in which 10 w/m(2) was close to intensity near the antenna of mobile phone. The morphology and proliferation of NIH/3T3 cells were examined and furthermore soft agar culture and animal carcinogenesis assay were carried out to determine the neoplastic promotion. Our experiments showed NIH/3T3 cells changed in morphology and proliferation after 5-8 weeks exposure and formed clone in soft agar culture after another 3-4 weeks depending on the exposure intensity. In the animal carcinogenesis study, lumps developed on the back of SCID mice after being inoculated into exposed NIH/3T3 cells for more than 4 weeks. The results indicate that microwave radiation can promote neoplastic transformation of NIH/3T3cells.

  9. PACRG, a protein linked to ciliary motility, mediates cellular signaling.

    PubMed

    Loucks, Catrina M; Bialas, Nathan J; Dekkers, Martijn P J; Walker, Denise S; Grundy, Laura J; Li, Chunmei; Inglis, P Nick; Kida, Katarzyna; Schafer, William R; Blacque, Oliver E; Jansen, Gert; Leroux, Michel R

    2016-07-01

    Cilia are microtubule-based organelles that project from nearly all mammalian cell types. Motile cilia generate fluid flow, whereas nonmotile (primary) cilia are required for sensory physiology and modulate various signal transduction pathways. Here we investigate the nonmotile ciliary signaling roles of parkin coregulated gene (PACRG), a protein linked to ciliary motility. PACRG is associated with the protofilament ribbon, a structure believed to dictate the regular arrangement of motility-associated ciliary components. Roles for protofilament ribbon-associated proteins in nonmotile cilia and cellular signaling have not been investigated. We show that PACRG localizes to a small subset of nonmotile cilia in Caenorhabditis elegans, suggesting an evolutionary adaptation for mediating specific sensory/signaling functions. We find that it influences a learning behavior known as gustatory plasticity, in which it is functionally coupled to heterotrimeric G-protein signaling. We also demonstrate that PACRG promotes longevity in C. elegans by acting upstream of the lifespan-promoting FOXO transcription factor DAF-16 and likely upstream of insulin/IGF signaling. Our findings establish previously unrecognized sensory/signaling functions for PACRG and point to a role for this protein in promoting longevity. Furthermore, our work suggests additional ciliary motility-signaling connections, since EFHC1 (EF-hand containing 1), a potential PACRG interaction partner similarly associated with the protofilament ribbon and ciliary motility, also positively regulates lifespan.

  10. PACRG, a protein linked to ciliary motility, mediates cellular signaling

    PubMed Central

    Loucks, Catrina M.; Bialas, Nathan J.; Dekkers, Martijn P. J.; Walker, Denise S.; Grundy, Laura J.; Li, Chunmei; Inglis, P. Nick; Kida, Katarzyna; Schafer, William R.; Blacque, Oliver E.; Jansen, Gert; Leroux, Michel R.

    2016-01-01

    Cilia are microtubule-based organelles that project from nearly all mammalian cell types. Motile cilia generate fluid flow, whereas nonmotile (primary) cilia are required for sensory physiology and modulate various signal transduction pathways. Here we investigate the nonmotile ciliary signaling roles of parkin coregulated gene (PACRG), a protein linked to ciliary motility. PACRG is associated with the protofilament ribbon, a structure believed to dictate the regular arrangement of motility-associated ciliary components. Roles for protofilament ribbon–associated proteins in nonmotile cilia and cellular signaling have not been investigated. We show that PACRG localizes to a small subset of nonmotile cilia in Caenorhabditis elegans, suggesting an evolutionary adaptation for mediating specific sensory/signaling functions. We find that it influences a learning behavior known as gustatory plasticity, in which it is functionally coupled to heterotrimeric G-protein signaling. We also demonstrate that PACRG promotes longevity in C. elegans by acting upstream of the lifespan-promoting FOXO transcription factor DAF-16 and likely upstream of insulin/IGF signaling. Our findings establish previously unrecognized sensory/signaling functions for PACRG and point to a role for this protein in promoting longevity. Furthermore, our work suggests additional ciliary motility-signaling connections, since EFHC1 (EF-hand containing 1), a potential PACRG interaction partner similarly associated with the protofilament ribbon and ciliary motility, also positively regulates lifespan. PMID:27193298

  11. Transcutical imaging with cellular and subcellular resolution.

    PubMed

    Tao, Xiaodong; Lin, Hui-Hao; Lam, Tuwin; Rodriguez, Ramiro; Wang, Jing W; Kubby, Joel

    2017-03-01

    We demonstrate transcutical structural and functional imaging of neurons labeled with genetically encoded red fluorescent proteins and calcium indicators in the living Drosophila brain with cellular and subcellular resolution.

  12. Transcutical imaging with cellular and subcellular resolution

    PubMed Central

    Tao, Xiaodong; Lin, Hui-Hao; Lam, Tuwin; Rodriguez, Ramiro; Wang, Jing W.; Kubby, Joel

    2017-01-01

    We demonstrate transcutical structural and functional imaging of neurons labeled with genetically encoded red fluorescent proteins and calcium indicators in the living Drosophila brain with cellular and subcellular resolution. PMID:28663828

  13. Expression of Cellular Oncogenes in Human Malignancies

    NASA Astrophysics Data System (ADS)

    Slamon, Dennis J.; Dekernion, Jean B.; Verma, Inder M.; Cline, Martin J.

    1984-04-01

    Cellular oncogenes have been implicated in the induction of malignant transformation in some model systems in vitro and may be related to malignancies in vivo in some vertebrate species. This article describes a study of the expression of 15 cellular oncogenes in fresh human tumors from 54 patients, representing 20 different tumor types. More than one cellular oncogene was transcriptionally active in all of the tumors examined. In 14 patients it was possible to study normal and malignant tissue from the same organ. In many of these patients, the transcriptional activity of certain oncogenes was greater in the malignant than the normal tissue. The cellular fes (feline sarcoma) oncogene, not previously known to be transcribed in mammalian tissue, was found to be active in lung and hematopoietic malignancies.

  14. Measurement Techniques for Cellular Biomechanics In Vitro

    PubMed Central

    Addae-Mensah, Kweku A; Wikswo, John P

    2014-01-01

    Living cells and tissues experience mechanical forces in their physiological environments that are known to affect many cellular processes. Also of importance are the mechanical properties of cells, as well as the microforces generated by cellular processes themselves in their microenvironments. The difficulty associated with studying these phenomena in vivo has led to alternatives such as using in vitro models. The need for experimental techniques for investigating cellular biomechanics and mechanobiology in vitro has fueled an evolution in the technology used in these studies. Particularly noteworthy are some of the new biomicroelectromechanical systems (BioMEMs) devices and techniques that have been introduced to the field. We describe some of the cellular micromechanical techniques and methods that have been developed for in vitro studies, and provide summaries of the ranges of measured values of various biomechanical quantities. We also briefly address some of our experiences in using these methods and include modifications we have introduced in order to improve them. PMID:18445766

  15. The Roles of Cellular Nanomechanics in Cancer

    PubMed Central

    Yallapu, Murali M.; Katti, Kalpana S.; Katti, Dinesh R.; Mishra, Sanjay R.; Khan, Sheema; Jaggi, Meena; Chauhan, Subhash C.

    2014-01-01

    The biomechanical properties of cells and tissues may be instrumental in increasing our understanding of cellular behavior and cellular manifestations of diseases such as cancer. Nanomechanical properties can offer clinical translation of therapies beyond what are currently employed. Nanomechanical properties, often measured by nanoindentation methods using atomic force microscopy, may identify morphological variations, cellular binding forces, and surface adhesion behaviors that efficiently differentiate normal cells and cancer cells. The aim of this review is to examine current research involving the general use of atomic force microscopy/nanoindentation in measuring cellular nanomechanics; various factors and instrumental conditions that influence the nanomechanical properties of cells; and implementation of nanoindentation methods to distinguish cancer cells from normal cells or tissues. Applying these fundamental nanomechanical properties to current discoveries in clinical treatment may result in greater efficiency in diagnosis, treatment, and prevention of cancer, which ultimately can change the lives of patients. PMID:25137233

  16. Cellular senescence in aging and osteoarthritis.

    PubMed

    Toh, Wei Seong; Brittberg, Mats; Farr, Jack; Foldager, Casper Bindzus; Gomoll, Andreas H; Hui, James Hoi Po; Richardson, James B; Roberts, Sally; Spector, Myron

    2016-12-01

    - It is well accepted that age is an important contributing factor to poor cartilage repair following injury, and to the development of osteoarthritis. Cellular senescence, the loss of the ability of cells to divide, has been noted as the major factor contributing to age-related changes in cartilage homeostasis, function, and response to injury. The underlying mechanisms of cellular senescence, while not fully understood, have been associated with telomere erosion, DNA damage, oxidative stress, and inflammation. In this review, we discuss the causes and consequences of cellular senescence, and the associated biological challenges in cartilage repair. In addition, we present novel strategies for modulation of cellular senescence that may help to improve cartilage regeneration in an aging population.

  17. Exercise: the Cellular 'Fountain of Youth'

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_164328.html Exercise: The Cellular 'Fountain of Youth' Intense interval training ... TUESDAY, March 28, 2017 (HealthDay News) -- High-intensity exercise may help older adults reverse certain aspects of ...

  18. Cellular Effects of Perfluorinated Fatty Acids.

    DTIC Science & Technology

    1985-01-01

    TCDD appeared to interfere with fatty acid metabolism leading to an increase in unsaturation. Furthermore, Andersen et al. (2) proposed that such an...increase in cellular unsaturated fatty acids may lead-to excessive membrane fluidity (as indicated by induced changes in red blood cell fragility) and...TASK WORK UNITELEMENT NO. NO. NO. NO. 11. TITLE (include Security Claificati on) ~/~. Cellular Effects of Perfluorinated Fatty Ac ds 12. PERSONAL

  19. Transient inter-cellular polymeric linker.

    PubMed

    Ong, Siew-Min; He, Lijuan; Thuy Linh, Nguyen Thi; Tee, Yee-Han; Arooz, Talha; Tang, Guping; Tan, Choon-Hong; Yu, Hanry

    2007-09-01

    Three-dimensional (3D) tissue-engineered constructs with bio-mimicry cell-cell and cell-matrix interactions are useful in regenerative medicine. In cell-dense and matrix-poor tissues of the internal organs, cells support one another via cell-cell interactions, supplemented by small amount of the extra-cellular matrices (ECM) secreted by the cells. Here we connect HepG2 cells directly but transiently with inter-cellular polymeric linker to facilitate cell-cell interaction and aggregation. The linker consists of a non-toxic low molecular-weight polyethyleneimine (PEI) backbone conjugated with multiple hydrazide groups that can aggregate cells within 30 min by reacting with the aldehyde handles on the chemically modified cell-surface glycoproteins. The cells in the cellular aggregates proliferated; and maintained the cortical actin distribution of the 3D cell morphology while non-aggregated cells died over 7 days of suspension culture. The aggregates lost distinguishable cell-cell boundaries within 3 days; and the ECM fibers became visible around cells from day 3 onwards while the inter-cellular polymeric linker disappeared from the cell surfaces over time. The transient inter-cellular polymeric linker can be useful for forming 3D cellular and tissue constructs without bulk biomaterials or extensive network of engineered ECM for various applications.

  20. Recent Advances in Cellular Glycomic Analyses

    PubMed Central

    Furukawa, Jun-ichi; Fujitani, Naoki; Shinohara, Yasuro

    2013-01-01

    A large variety of glycans is intricately located on the cell surface, and the overall profile (the glycome, given the entire repertoire of glycoconjugate-associated sugars in cells and tissues) is believed to be crucial for the diverse roles of glycans, which are mediated by specific interactions that control cell-cell adhesion, immune response, microbial pathogenesis and other cellular events. The glycomic profile also reflects cellular alterations, such as development, differentiation and cancerous change. A glycoconjugate-based approach would therefore be expected to streamline discovery of novel cellular biomarkers. Development of such an approach has proven challenging, due to the technical difficulties associated with the analysis of various types of cellular glycomes; however, recent progress in the development of analytical methodologies and strategies has begun to clarify the cellular glycomics of various classes of glycoconjugates. This review focuses on recent advances in the technical aspects of cellular glycomic analyses of major classes of glycoconjugates, including N- and O-linked glycans, derived from glycoproteins, proteoglycans and glycosphingolipids. Articles that unveil the glycomics of various biologically important cells, including embryonic and somatic stem cells, induced pluripotent stem (iPS) cells and cancer cells, are discussed. PMID:24970165

  1. Sub-cellular proteomics of Medicago truncatula

    PubMed Central

    Lee, Jeonghoon; Lei, Zhentian; Watson, Bonnie S.; Sumner, Lloyd W.

    2013-01-01

    Medicago truncatula is a leading model species and substantial molecular, genetic, genomics, proteomics, and metabolomics resources have been developed for this species to facilitate the study of legume biology. Currently, over 60 proteomics studies of M. truncatula have been published. Many of these have focused upon the unique symbiosis formed between legumes and nitrogen fixing rhizobia bacteria, while others have focused on seed development and the specialized proteomes of distinct tissues/organs. These include the characterization of sub-cellular organelle proteomes such as nuclei and mitochondria, as well as proteins distributed in plasma or microsomal membranes from various tissues. The isolation of sub-cellular proteins typically requires a series of steps that are labor-intensive. Thus, efficient protocols for sub-cellular fractionation, purification, and enrichment are necessary for each cellular compartment. In addition, protein extraction, solubilization, separation, and digestion prior to mass spectral identification are important to enhance the detection of low abundance proteins and to increase the overall detectable proportion of the sub-cellular proteome. This review summarizes the sub-cellular proteomics studies in M. truncatula. PMID:23641248

  2. Oscillatory cellular patterns in three-dimensional directional solidification

    DOE PAGES

    Tourret, D.; Debierre, J. -M.; Song, Y.; ...

    2015-09-11

    We present a phase-field study of oscillatory breathing modes observed during the solidification of three-dimensional cellular arrays in micro-gravity. Directional solidification experiments conducted onboard the International Space Station have allowed for the first time to observe spatially extended homogeneous arrays of cells and dendrites while minimizing the amount of gravity-induced convection in the liquid. In situ observations of transparent alloys have revealed the existence, over a narrow range of control parameters, of oscillations in cellular arrays with a period ranging from about 25 to 125 minutes. Cellular patterns are spatially disordered, and the oscillations of individual cells are spatiotemporally uncorrelatedmore » at long distance. However, in regions displaying short-range spatial ordering, groups of cells can synchronize into oscillatory breathing modes. Quantitative phase-field simulations show that the oscillatory behavior of cells in this regime is linked to a stability limit of the spacing in hexagonal cellular array structures. For relatively high cellular front undercooling (\\ie low growth velocity or high thermal gradient), a gap appears in the otherwise continuous range of stable array spacings. Close to this gap, a sustained oscillatory regime appears with a period that compares quantitatively well with experiment. For control parameters where this gap exist, oscillations typically occur for spacings at the edge of the gap. However, after a change of growth conditions, oscillations can also occur for nearby values of control parameters where this gap just closes and a continuous range of spacings exists. In addition, sustained oscillations at to the opening of this stable gap exhibit a slow periodic modulation of the phase-shift among cells with a slower period of several hours. While long-range coherence of breathing modes can be achieved in simulations for a perfect spatial arrangement of cells as initial condition, global

  3. Oscillatory cellular patterns in three-dimensional directional solidification

    SciTech Connect

    Tourret, D.; Debierre, J. -M.; Song, Y.; Mota, F. L.; Bergeon, N.; Guerin, R.; Trivedi, R.; Billia, B.; Karma, A.

    2015-09-11

    We present a phase-field study of oscillatory breathing modes observed during the solidification of three-dimensional cellular arrays in micro-gravity. Directional solidification experiments conducted onboard the International Space Station have allowed for the first time to observe spatially extended homogeneous arrays of cells and dendrites while minimizing the amount of gravity-induced convection in the liquid. In situ observations of transparent alloys have revealed the existence, over a narrow range of control parameters, of oscillations in cellular arrays with a period ranging from about 25 to 125 minutes. Cellular patterns are spatially disordered, and the oscillations of individual cells are spatiotemporally uncorrelated at long distance. However, in regions displaying short-range spatial ordering, groups of cells can synchronize into oscillatory breathing modes. Quantitative phase-field simulations show that the oscillatory behavior of cells in this regime is linked to a stability limit of the spacing in hexagonal cellular array structures. For relatively high cellular front undercooling (\\ie low growth velocity or high thermal gradient), a gap appears in the otherwise continuous range of stable array spacings. Close to this gap, a sustained oscillatory regime appears with a period that compares quantitatively well with experiment. For control parameters where this gap exist, oscillations typically occur for spacings at the edge of the gap. However, after a change of growth conditions, oscillations can also occur for nearby values of control parameters where this gap just closes and a continuous range of spacings exists. In addition, sustained oscillations at to the opening of this stable gap exhibit a slow periodic modulation of the phase-shift among cells with a slower period of several hours. While long-range coherence of breathing modes can be achieved in simulations for a perfect spatial arrangement of cells as initial condition, global disorder is

  4. Oscillatory cellular patterns in three-dimensional directional solidification

    NASA Astrophysics Data System (ADS)

    Tourret, D.; Debierre, J.-M.; Song, Y.; Mota, F. L.; Bergeon, N.; Guérin, R.; Trivedi, R.; Billia, B.; Karma, A.

    2015-10-01

    We present a phase-field study of oscillatory breathing modes observed during the solidification of three-dimensional cellular arrays in microgravity. Directional solidification experiments conducted onboard the International Space Station have allowed us to observe spatially extended homogeneous arrays of cells and dendrites while minimizing the amount of gravity-induced convection in the liquid. In situ observations of transparent alloys have revealed the existence, over a narrow range of control parameters, of oscillations in cellular arrays with a period ranging from about 25 to 125 min. Cellular patterns are spatially disordered, and the oscillations of individual cells are spatiotemporally uncorrelated at long distance. However, in regions displaying short-range spatial ordering, groups of cells can synchronize into oscillatory breathing modes. Quantitative phase-field simulations show that the oscillatory behavior of cells in this regime is linked to a stability limit of the spacing in hexagonal cellular array structures. For relatively high cellular front undercooling (i.e., low growth velocity or high thermal gradient), a gap appears in the otherwise continuous range of stable array spacings. Close to this gap, a sustained oscillatory regime appears with a period that compares quantitatively well with experiment. For control parameters where this gap exists, oscillations typically occur for spacings at the edge of the gap. However, after a change of growth conditions, oscillations can also occur for nearby values of control parameters where this gap just closes and a continuous range of spacings exists. In addition, sustained oscillations at to the opening of this stable gap exhibit a slow periodic modulation of the phase-shift among cells with a slower period of several hours. While long-range coherence of breathing modes can be achieved in simulations for a perfect spatial arrangement of cells as initial condition, global disorder is observed in both

  5. HDAC Activity Is Required for Efficient Core Promoter Function at the Mouse Mammary Tumor Virus Promoter

    PubMed Central

    Lee, Sang C.; Magklara, Angeliki; Smith, Catharine L.

    2011-01-01

    Histone deacetylases (HDACs) have been shown to be required for basal or inducible transcription at a variety of genes by poorly understood mechanisms. We demonstrated previously that HDAC inhibition rapidly repressed transcription from the mouse mammary tumor virus (MMTV) promoter by a mechanism that does not require the binding of upstream transcription factors. In the current study, we find that HDACs work through the core promoter sequences of MMTV as well as those of several cellular genes to facilitate transcriptional initiation through deacetylation of nonhistone proteins. PMID:21253530

  6. Promoter Motifs in NCLDVs: An Evolutionary Perspective.

    PubMed

    Oliveira, Graziele Pereira; Andrade, Ana Cláudia Dos Santos Pereira; Rodrigues, Rodrigo Araújo Lima; Arantes, Thalita Souza; Boratto, Paulo Victor Miranda; Silva, Ludmila Karen Dos Santos; Dornas, Fábio Pio; Trindade, Giliane de Souza; Drumond, Betânia Paiva; La Scola, Bernard; Kroon, Erna Geessien; Abrahão, Jônatas Santos

    2017-01-20

    For many years, gene expression in the three cellular domains has been studied in an attempt to discover sequences associated with the regulation of the transcription process. Some specific transcriptional features were described in viruses, although few studies have been devoted to understanding the evolutionary aspects related to the spread of promoter motifs through related viral families. The discovery of giant viruses and the proposition of the new viral order Megavirales that comprise a monophyletic group, named nucleo-cytoplasmic large DNA viruses (NCLDV), raised new questions in the field. Some putative promoter sequences have already been described for some NCLDV members, bringing new insights into the evolutionary history of these complex microorganisms. In this review, we summarize the main aspects of the transcription regulation process in the three domains of life, followed by a systematic description of what is currently known about promoter regions in several NCLDVs. We also discuss how the analysis of the promoter sequences could bring new ideas about the giant viruses' evolution. Finally, considering a possible common ancestor for the NCLDV group, we discussed possible promoters' evolutionary scenarios and propose the term "MEGA-box" to designate an ancestor promoter motif ('TATATAAAATTGA') that could be evolved gradually by nucleotides' gain and loss and point mutations.

  7. Firefly luciferase gene contains a cryptic promoter

    PubMed Central

    Vopálenský, Václav; Mašek, Tomáš; Horváth, Ondřej; Vicenová, Blanka; Mokrejš, Martin; Pospíšek, Martin

    2008-01-01

    A firefly luciferase (FLuc) counts among the most popular reporters of present-day molecular and cellular biology. In this study, we report a cryptic promoter activity in the luc+ gene, which is the most frequently used version of the firefly luciferase. The FLuc coding region displays cryptic promoter activity both in mammalian and yeast cells. In human CCL13 and Huh7 cells, cryptic transcription from the luc+ gene is 10–16 times weaker in comparison to the strong immediate-early cytomegalovirus promoter. Additionally, we discuss a possible impact of the FLuc gene cryptic promoter on experimental results especially in some fields of the RNA-oriented research, for example, in analysis of translation initiation or analysis of miRNA/siRNA function. Specifically, we propose how this newly described cryptic promoter activity within the FLuc gene might contribute to the previous determination of the strength of the cryptic promoter found in the cDNA corresponding to the hepatitis C virus internal ribosome entry site. Our findings should appeal to the researchers to be more careful when designing firefly luciferase-based assays as well as open the possibility of performing some experiments with the hepatitis C virus internal ribosome entry site, which could not be considered until now. PMID:18697919

  8. Angiotensin II causes cellular proliferation in infantile haemangioma via angiotensin II receptor 2 activation.

    PubMed

    Itinteang, Tinte; Marsh, Reginald; Davis, Paul Frank; Tan, Swee Thong

    2015-05-01

    To investigate the effect of the angiotensin peptides and their agonists and antagonists on cellular proliferation in proliferating infantile haemangioma (IH) in vitro explants. Proliferating IH samples from six patients were cultured in vitro in the presence of angiotensin I (ATI) alone, or AT1 and the ACE inhibitor, ramipril, or ATII alone, or ATII with the ATII receptor 1 (ATIIR1) blocker, losartan, or ATII with the ATIIR2 blocker, PD123319, or the ATIIR2 agonist, CGP42112. After 6 days in culture, the IH tissue pieces were harvested, formalin-fixed and paraffin-embedded. The effect of each treatment type on cellular proliferation was evaluated by immunohistochemical staining of these tissue pieces using the proliferation marker, Ki67. There was a significant increase in cellular proliferation in the ATI and ATII treated IH tissues compared with control samples. Their effect on cellular proliferation was reduced by adding ramipril and PD123319, respectively. CGP42112, but not losartan, significantly increased cellular proliferation. Our findings suggest a key regulatory role of ATI and ATII in promoting cellular proliferation in IH, and establish a role for ACE and ATIIR2 in the proliferation of this tumour. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Impact of Adenovirus E4-ORF3 Oligomerization and Protein Localization on Cellular Gene Expression.

    PubMed

    Vink, Elizabeth I; Zheng, Yueting; Yeasmin, Rukhsana; Stamminger, Thomas; Krug, Laurie T; Hearing, Patrick

    2015-05-13

    The Adenovirus E4-ORF3 protein facilitates virus replication through the relocalization of cellular proteins into nuclear inclusions termed tracks. This sequestration event disrupts antiviral properties associated with target proteins. Relocalization of Mre11-Rad50-Nbs1 proteins prevents the DNA damage response from inhibiting Ad replication. Relocalization of PML and Daxx impedes the interferon-mediated antiviral response. Several E4-ORF3 targets regulate gene expression, linking E4-ORF3 to transcriptional control. Furthermore, E4-ORF3 was shown to promote the formation of heterochromatin, down-regulating p53-dependent gene expression. Here, we characterize how E4-ORF3 alters cellular gene expression. Using an inducible, E4-ORF3-expressing cell line, we performed microarray experiments to highlight cellular gene expression changes influenced by E4-ORF3 expression, identifying over four hundred target genes. Enrichment analysis of these genes suggests that E4-ORF3 influences factors involved in signal transduction and cellular defense, among others. The expression of mutant E4-ORF3 proteins revealed that nuclear track formation is necessary to induce these expression changes. Through the generation of knockdown cells, we demonstrate that the observed expression changes may be independent of Daxx and TRIM33 suggesting that an additional factor(s) may be responsible. The ability of E4-ORF3 to manipulate cellular gene expression through the sequestration of cellular proteins implicates a novel role for E4-ORF3 in transcriptional regulation.

  10. MicroRNA Regulation of Oxidative Stress-Induced Cellular Senescence

    PubMed Central

    Wedel, Sophia; Cavinato, Maria; Jansen-Dürr, Pidder

    2017-01-01

    Aging is a time-related process of functional deterioration at cellular, tissue, organelle, and organismal level that ultimately brings life to end. Cellular senescence, a state of permanent cell growth arrest in response to cellular stress, is believed to be the driver of the aging process and age-related disorders. The free radical theory of aging, referred to as oxidative stress (OS) theory below, is one of the most studied aging promoting mechanisms. In addition, genetics and epigenetics also play large roles in accelerating and/or delaying the onset of aging and aging-related diseases. Among various epigenetic events, microRNAs (miRNAs) turned out to be important players in controlling OS, aging, and cellular senescence. miRNAs can generate rapid and reversible responses and, therefore, are ideal players for mediating an adaptive response against stress through their capacity to fine-tune gene expression. However, the importance of miRNAs in regulating OS in the context of aging and cellular senescence is largely unknown. The purpose of our article is to highlight recent advancements in the regulatory role of miRNAs in OS-induced cellular senescence. PMID:28593022

  11. Mitochondrial effectors of cellular senescence: beyond the free radical theory of aging.

    PubMed

    Ziegler, Dorian V; Wiley, Christopher D; Velarde, Michael C

    2015-02-01

    Cellular senescence is a process that results from a variety of stresses, leading to a state of irreversible growth arrest. Senescent cells accumulate during aging and have been implicated in promoting a variety of age-related diseases. Mitochondrial stress is an effective inducer of cellular senescence, but the mechanisms by which mitochondria regulate permanent cell growth arrest are largely unexplored. Here, we review some of the mitochondrial signaling pathways that participate in establishing cellular senescence. We discuss the role of mitochondrial reactive oxygen species (ROS), mitochondrial dynamics (fission and fusion), the electron transport chain (ETC), bioenergetic balance, redox state, metabolic signature, and calcium homeostasis in controlling cellular growth arrest. We emphasize that multiple mitochondrial signaling pathways, besides mitochondrial ROS, can induce cellular senescence. Together, these pathways provide a broader perspective for studying the contribution of mitochondrial stress to aging, linking mitochondrial dysfunction and aging through the process of cellular senescence. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  12. Impact of Adenovirus E4-ORF3 Oligomerization and Protein Localization on Cellular Gene Expression

    PubMed Central

    Vink, Elizabeth I.; Zheng, Yueting; Yeasmin, Rukhsana; Stamminger, Thomas; Krug, Laurie T.; Hearing, Patrick

    2015-01-01

    The Adenovirus E4-ORF3 protein facilitates virus replication through the relocalization of cellular proteins into nuclear inclusions termed tracks. This sequestration event disrupts antiviral properties associated with target proteins. Relocalization of Mre11-Rad50-Nbs1 proteins prevents the DNA damage response from inhibiting Ad replication. Relocalization of PML and Daxx impedes the interferon-mediated antiviral response. Several E4-ORF3 targets regulate gene expression, linking E4-ORF3 to transcriptional control. Furthermore, E4-ORF3 was shown to promote the formation of heterochromatin, down-regulating p53-dependent gene expression. Here, we characterize how E4-ORF3 alters cellular gene expression. Using an inducible, E4-ORF3-expressing cell line, we performed microarray experiments to highlight cellular gene expression changes influenced by E4-ORF3 expression, identifying over four hundred target genes. Enrichment analysis of these genes suggests that E4-ORF3 influences factors involved in signal transduction and cellular defense, among others. The expression of mutant E4-ORF3 proteins revealed that nuclear track formation is necessary to induce these expression changes. Through the generation of knockdown cells, we demonstrate that the observed expression changes may be independent of Daxx and TRIM33 suggesting that an additional factor(s) may be responsible. The ability of E4-ORF3 to manipulate cellular gene expression through the sequestration of cellular proteins implicates a novel role for E4-ORF3 in transcriptional regulation. PMID:25984715

  13. Cellular and molecular pathways linking inflammation and cancer.

    PubMed

    Porta, Chiara; Larghi, Paola; Rimoldi, Monica; Totaro, Maria Grazia; Allavena, Paola; Mantovani, Alberto; Sica, Antonio

    2009-01-01

    Several experimental and epidemiological evidence indicate that, irrespective of the trigger for the development (chronic infection/inflammation or genetic alteration), a "smouldering" inflammation is associated with the most of, if not all, tumours and supports their progression. Several evidence have highlighted that tumours promote a constant influx of myelomonocytic cells that express inflammatory mediators supporting pro-tumoral functions. Myelomonocytic cells are key orchestrators of cancer-related inflammation associated with proliferation and survival of malignant cells, subversion of adaptive immune response, angiogenesis, stroma remodelling and metastasis formation. Although the connection between inflammation and cancer is unequivocal the mechanistic basis of such association are largely unknown. Recent advances in the understanding of the cellular and molecular pathways involved in cancer-related inflammation as well as their potential relevance as diagnostic, prognostic and therapeutic targets are herein discussed.

  14. CANCELLED EMT and back again: does cellular plasticity fuelneoplasticprogressi on?

    SciTech Connect

    Turley, Eva A.; Veiseh, Mandana; Radisky, Derek C.; Bissell, MinaJ.

    2007-02-24

    Epithelial-mesenchymal transition (EMT) is a cellular transdifferentiation program that facilitates organ morphogenesis and tissue remodeling in physiological processes such as embryonic development and wound healing. However, a similar phenotypic conversion is also detected in fibrotic diseases and neoplasia, in which it is associated with disease progression. EMT in cancer epithelial cells often appears to be an incomplete and bi-directional process. Here we discuss the phenomenon of EMT as it pertains to tumor development, focusing on exceptions to the commonly held rule that EMT promotes invasion and metastasis. We also highlight the role of the Ras-controlled signaling mediators, ERK1, ERK2 and PI3-kinase, as microenvironmental responsive regulators of EMT.

  15. Cellular mechanisms underlying eosinophilic and neutrophilic airway inflammation in asthma.

    PubMed

    Pelaia, Girolamo; Vatrella, Alessandro; Busceti, Maria Teresa; Gallelli, Luca; Calabrese, Cecilia; Terracciano, Rosa; Maselli, Rosario

    2015-01-01

    Asthma is a phenotypically heterogeneous chronic disease of the airways, characterized by either predominant eosinophilic or neutrophilic, or even mixed eosinophilic/neutrophilic inflammatory patterns. Eosinophilic inflammation can be associated with the whole spectrum of asthma severity, ranging from mild-to-moderate to severe uncontrolled disease, whereas neutrophilic inflammation occurs mostly in more severe asthma. Eosinophilic asthma includes either allergic or nonallergic phenotypes underlying immune responses mediated by T helper (Th)2 cell-derived cytokines, whilst neutrophilic asthma is mostly dependent on Th17 cell-induced mechanisms. These immune-inflammatory profiles develop as a consequence of a functional impairment of T regulatory (Treg) lymphocytes, which promotes the activation of dendritic cells directing the differentiation of distinct Th cell subsets. The recent advances in the knowledge of the cellular and molecular mechanisms underlying asthmatic inflammation are contributing to the identification of novel therapeutic targets, potentially suitable for the implementation of future improvements in antiasthma pharmacologic treatments.

  16. Cellular response to titanium discs coated with polyelectrolyte multilayer films

    NASA Astrophysics Data System (ADS)

    Zhan, Jing; Luo, Qiao-jie; Huang, Ying; Li, Xiao-dong

    2014-09-01

    The purpose of this study was to investigate the effects of polyelectrolyte multilayer (PEM) coatings on the biological behavior of titanium (Ti) substrates. Collagen type Ι/hyaluronic acid (Col/HA) and chitosan/hyaluronic acid (Chi/HA) multilayer PEM coatings were introduced onto Ti substrates using layer-by-layer assembly. Contact angle instruments and quartz crystal microbalance were used for film characterization. The results obtained showed that both Col/HA and Chi/HA surfaces had high hydrophilicity and promoted cell adhesion in MC3T3-E1 pre-osteoblast and human gingival fibroblast cells. In addition, the synthesis of function-related proteins and gene expression levels in both MC3T3-E1 and fibroblast cells was higher for the Col/HA coating compared with the Chi/HA coating, indicating better cellular response to the Col/HA coating.

  17. Cellular and Molecular Mechanisms Underpinning Macrophage Activation during Remyelination

    PubMed Central

    Lloyd, Amy F.; Miron, Veronique E.

    2016-01-01

    Remyelination is an example of central nervous system (CNS) regeneration, whereby myelin is restored around demyelinated axons, re-establishing saltatory conduction and trophic/metabolic support. In progressive multiple sclerosis, remyelination is limited or fails altogether which is considered to contribute to axonal damage/loss and consequent disability. Macrophages have critical roles in both CNS damage and regeneration, such as remyelination. This diverse range in functions reflects the ability of macrophages to acquire tissue microenvironment-specific activation states. This activation is dynamically regulated during efficient regeneration, with a switch from pro-inflammatory to inflammation-resolution/pro-regenerative phenotypes. Although, some molecules and pathways have been implicated in the dynamic activation of macrophages, such as NFκB, the cellular and molecular mechanisms underpinning plasticity of macrophage activation are unclear. Identifying mechanisms regulating macrophage activation to pro-regenerative phenotypes may lead to novel therapeutic strategies to promote remyelination in multiple sclerosis. PMID:27446913

  18. Neural and Cellular Mechanisms of Fear and Extinction Memory Formation

    PubMed Central

    Orsini, Caitlin A.; Maren, Stephen

    2012-01-01

    Over the course of natural history, countless animal species have evolved adaptive behavioral systems to cope with dangerous situations and promote survival. Emotional memories are central to these defense systems because they are rapidly acquired and prepare organisms for future threat. Unfortunately, the persistence and intrusion of memories of fearful experiences are quite common and can lead to pathogenic conditions, such as anxiety and phobias. Over the course of the last thirty years, neuroscientists and psychologists alike have attempted to understand the mechanisms by which the brain encodes and maintains these aversive memories. Of equal interest, though, is the neurobiology of extinction memory formation as this may shape current therapeutic techniques. Here we review the extant literature on the neurobiology of fear and extinction memory formation, with a strong focus on the cellular and molecular mechanisms underlying these processes. PMID:22230704

  19. Synthetic promoters in planta.

    PubMed

    Dey, Nrisingha; Sarkar, Shayan; Acharya, Sefali; Maiti, Indu B

    2015-11-01

    This paper reviews the importance, prospective and development of synthetic promoters reported in planta. A review of the synthetic promoters developed in planta would help researchers utilize the available resources and design new promoters to benefit fundamental research and agricultural applications. The demand for promoters for the improvement and application of transgenic techniques in research and agricultural production is increasing. Native/naturally occurring promoters have some limitations in terms of their induction conditions, transcription efficiency and size. The strength and specificity of native promoter can be tailored by manipulating its 'cis-architecture' by the use of several recombinant DNA technologies. Newly derived chimeric promoters with specific attributes are emerging as an efficient tool for plant molecular biology. In the last three decades, synthetic promoters have been used to regulate plant gene expression. To better understand synthetic promoters, in this article, we reviewed promoter structure, the scope of cis-engineering, strategies for their development, their importance in plant biology and the total number of such promoters (188) developed in planta to date; we then categorized them under different functional regimes as biotic stress-inducible, abiotic stress-inducible, light-responsive, chemical-inducible, hormone-inducible, constitutive and tissue-specific. Furthermore, we identified a set of 36 synthetic promoters that control multiple types of expression in planta. Additionally, we illustrated the differences between native and synthetic promoters and among different synthetic promoter in each group, especially in terms of efficiency and induction conditions. As a prospective of this review, the use of ideal synthetic promoters is one of the prime requirements for generating transgenic plants suitable for promoting sustainable agriculture and plant molecular farming.

  20. Cellular Senescence in Type 2 Diabetes: A Therapeutic Opportunity

    PubMed Central

    Palmer, Allyson K.; Tchkonia, Tamara; LeBrasseur, Nathan K.; Chini, Eduardo N.; Xu, Ming

    2015-01-01

    Cellular senescence is a fundamental aging mechanism that has been implicated in many age-related diseases and is a significant cause of tissue dysfunction. Accumulation of senescent cells occurs during aging and is also seen in the context of obesity and diabetes. Senescent cells may play a role in type 2 diabetes pathogenesis through direct impact on pancreatic β-cell function, senescence-associated secretory phenotype (SASP)-mediated tissue damage, and involvement in adipose tissue dysfunction. In turn, metabolic and signaling changes seen in diabetes, such as high circulating glucose, altered lipid metabolism, and growth hormone axis perturbations, can promote senescent cell formation. Thus, senescent cells might be part of a pathogenic loop in diabetes, as both a cause and consequence of metabolic changes and tissue damage. Therapeutic targeting of a basic aging mechanism such as cellular senescence may have a large impact on disease pathogenesis and could be more effective in preventing the progression of diabetes complications than currently available therapies that have limited impact on already existing tissue damage. Therefore, senescent cells and the SASP represent significant opportunities for advancement in the prevention and treatment of type 2 diabetes and its complications. PMID:26106186

  1. Integration of cellular bioenergetics with mitochondrial quality control and autophagy

    PubMed Central

    Hill, Bradford G.; Benavides, Gloria A.; Lancaster, Jack R.; Ballinger, Scott; Dell’Italia, Lou; Zhang, Jianhua; Darley-Usmar, Victor M.

    2013-01-01

    Bioenergetic dysfunction is emerging as a cornerstone for establishing a framework for understanding the pathophysiology of cardiovascular disease, diabetes, cancer and neurodegeneration. Recent advances in cellular bioenergetics have shown that many cells maintain a substantial bioenergetic reserve capacity, which is a prospective index of “healthy” mitochondrial populations. The bioenergetics of the cell are likely regulated by energy requirements and substrate availability. Additionally, the overall quality of the mitochondrial population and the relative abundance of mitochondria in cells and tissues also impinge on overall bioenergetic capacity and resistance to stress. Because mitochondria are susceptible to damage mediated by reactive oxygen/nitrogen and lipid species, maintaining a “healthy” population of mitochondria through quality control mechanisms appears to be essential for cell survival under conditions of pathological stress. Accumulating evidence suggest that mitophagy is particularly important for preventing amplification of initial oxidative insults, which otherwise would further impair the respiratory chain or promote mutations in mitochondrial DNA (mtDNA). The processes underlying the regulation of mitophagy depend on several factors including the integrity of mtDNA, electron transport chain activity, and the interaction and regulation of the autophagic machinery. The integration and interpretation of cellular bioenergetics in the context of mitochondrial quality control and genetics is the theme of this review. PMID:23092819

  2. Temsirolimus Partially Rescues the Hutchinson-Gilford Progeria Cellular Phenotype.

    PubMed

    Gabriel, Diana; Gordon, Leslie B; Djabali, Karima

    2016-01-01

    Hutchinson-Gilford syndrome (HGPS, OMIM 176670, a rare premature aging disorder that leads to death at an average age of 14.7 years due to myocardial infarction or stroke, is caused by mutations in the LMNA gene. Lamins help maintain the shape and stability of the nuclear envelope in addition to regulating DNA replication, DNA transcription, proliferation and differentiation. The LMNA mutation results in the deletion of 50 amino acids from the carboxy-terminal region of prelamin A, producing the truncated, farnesylated protein progerin. The accumulation of progerin in HGPS nuclei causes numerous morphological and functional changes that lead to premature cellular senescence. Attempts to reverse this HGPS phenotype have identified rapamycin, an inhibitor of mammalian target of rapamycin (mTOR), as a drug that is able to rescue the HGPS cellular phenotype by promoting autophagy and reducing progerin accumulation. Rapamycin is an obvious candidate for the treatment of HGPS disease but is difficult to utilize clinically. To further assess rapamycin's efficacy with regard to proteostasis, mitochondrial function and the degree of DNA damage, we tested temsirolimus, a rapamycin analog with a more favorable pharmacokinetic profile than rapamycin. We report that temsirolimus decreases progerin levels, increases proliferation, reduces misshapen nuclei, and partially ameliorates DNA damage, but does not improve proteasome activity or mitochondrial dysfunction. Our findings suggest that future therapeutic strategies should identify new drug combinations and treatment regimens that target all the dysfunctional hallmarks that characterize HGPS cells.

  3. Cellular Senescence in Type 2 Diabetes: A Therapeutic Opportunity.

    PubMed

    Palmer, Allyson K; Tchkonia, Tamara; LeBrasseur, Nathan K; Chini, Eduardo N; Xu, Ming; Kirkland, James L

    2015-07-01

    Cellular senescence is a fundamental aging mechanism that has been implicated in many age-related diseases and is a significant cause of tissue dysfunction. Accumulation of senescent cells occurs during aging and is also seen in the context of obesity and diabetes. Senescent cells may play a role in type 2 diabetes pathogenesis through direct impact on pancreatic β-cell function, senescence-associated secretory phenotype (SASP)-mediated tissue damage, and involvement in adipose tissue dysfunction. In turn, metabolic and signaling changes seen in diabetes, such as high circulating glucose, altered lipid metabolism, and growth hormone axis perturbations, can promote senescent cell formation. Thus, senescent cells might be part of a pathogenic loop in diabetes, as both a cause and consequence of metabolic changes and tissue damage. Therapeutic targeting of a basic aging mechanism such as cellular senescence may have a large impact on disease pathogenesis and could be more effective in preventing the progression of diabetes complications than currently available therapies that have limited impact on already existing tissue damage. Therefore, senescent cells and the SASP represent significant opportunities for advancement in the prevention and treatment of type 2 diabetes and its complications.

  4. mTOR Regulates Cellular Iron Homeostasis through Tristetraprolin

    PubMed Central

    Bayeva, Marina; Khechaduri, Arineh; Puig, Sergi; Chang, Hsiang-Chun; Patial, Sonika; Blackshear, Perry J.; Ardehali, Hossein

    2013-01-01

    SUMMARY Iron is an essential cofactor with unique redox properties. Iron regulatory proteins 1 and 2 (IRP1/2) have been established as important regulators of cellular iron homeostasis, but little is known about the role of other pathways in this process. Here we report that the mammalian target of rapamycin (mTOR) regulates iron homeostasis by modulating transferrin receptor 1 (TfR1) stability and altering cellular iron flux. Mechanistic studies identify tristetraprolin (TTP), a protein involved in anti-inflammatory response, as the downstream target of mTOR that binds to and enhances degradation of TfR1 mRNA. We also show that TTP is strongly induced by iron chelation, promotes downregulation of iron-requiring genes in both mammalian and yeast cells, and modulates survival in low-iron states. Taken together, our data uncover a link between metabolic, inflammatory, and iron regulatory pathways, and point towards the existence of a yeast-like TTP-mediated iron conservation program in mammals. PMID:23102618

  5. Hemodynamic and cellular response feedback in calcific aortic valve disease.

    PubMed

    Gould, Sarah T; Srigunapalan, Suthan; Simmons, Craig A; Anseth, Kristi S

    2013-07-05

    This review highlights aspects of calcific aortic valve disease that encompass the entire range of aortic valve disease progression from initial cellular changes to aortic valve sclerosis and stenosis, which can be initiated by changes in blood flow (hemodynamics) and pressure across the aortic valve. Appropriate hemodynamics is important for normal valve function and maintenance, but pathological blood velocities and pressure can have profound consequences at the macroscopic to microscopic scales. At the macroscopic scale, hemodynamic forces impart shear stresses on the surface of the valve leaflets and cause deformation of the leaflet tissue. As discussed in this review, these macroscale forces are transduced to the microscale, where they influence the functions of the valvular endothelial cells that line the leaflet surface and the valvular interstitial cells that populate the valve extracellular matrix. For example, pathological changes in blood flow-induced shear stress can cause dysfunction, impairing their homeostatic functions, and pathological stretching of valve tissue caused by elevated transvalvular pressure can activate valvular interstitial cells and latent paracrine signaling cytokines (eg, transforming growth factor-β1) to promote maladaptive tissue remodeling. Collectively, these coordinated and complex interactions adversely impact bulk valve tissue properties, feeding back to further deteriorate valve function and propagate valve cell pathological responses. Here, we review the role of hemodynamic forces in calcific aortic valve disease initiation and progression, with focus on cellular responses and how they feed back to exacerbate aortic valve dysfunction.

  6. Temsirolimus Partially Rescues the Hutchinson-Gilford Progeria Cellular Phenotype

    PubMed Central

    Gabriel, Diana; Gordon, Leslie B.

    2016-01-01

    Hutchinson-Gilford syndrome (HGPS, OMIM 176670, a rare premature aging disorder that leads to death at an average age of 14.7 years due to myocardial infarction or stroke, is caused by mutations in the LMNA gene. Lamins help maintain the shape and stability of the nuclear envelope in addition to regulating DNA replication, DNA transcription, proliferation and differentiation. The LMNA mutation results in the deletion of 50 amino acids from the carboxy-terminal region of prelamin A, producing the truncated, farnesylated protein progerin. The accumulation of progerin in HGPS nuclei causes numerous morphological and functional changes that lead to premature cellular senescence. Attempts to reverse this HGPS phenotype have identified rapamycin, an inhibitor of mammalian target of rapamycin (mTOR), as a drug that is able to rescue the HGPS cellular phenotype by promoting autophagy and reducing progerin accumulation. Rapamycin is an obvious candidate for the treatment of HGPS disease but is difficult to utilize clinically. To further assess rapamycin’s efficacy with regard to proteostasis, mitochondrial function and the degree of DNA damage, we tested temsirolimus, a rapamycin analog with a more favorable pharmacokinetic profile than rapamycin. We report that temsirolimus decreases progerin levels, increases proliferation, reduces misshapen nuclei, and partially ameliorates DNA damage, but does not improve proteasome activity or mitochondrial dysfunction. Our findings suggest that future therapeutic strategies should identify new drug combinations and treatment regimens that target all the dysfunctional hallmarks that characterize HGPS cells. PMID:28033363

  7. Antioxidant responses and cellular adjustments to oxidative stress.

    PubMed

    Espinosa-Diez, Cristina; Miguel, Verónica; Mennerich, Daniela; Kietzmann, Thomas; Sánchez-Pérez, Patricia; Cadenas, Susana; Lamas, Santiago

    2015-12-01

    Redox biological reactions are now accepted to bear the Janus faceted feature of promoting both physiological signaling responses and pathophysiological cues. Endogenous antioxidant molecules participate in both scenarios. This review focuses on the role of crucial cellular nucleophiles, such as glutathione, and their capacity to interact with oxidants and to establish networks with other critical enzymes such as peroxiredoxins. We discuss the importance of the Nrf2-Keap1 pathway as an example of a transcriptional antioxidant response and we summarize transcriptional routes related to redox activation. As examples of pathophysiological cellular and tissular settings where antioxidant responses are major players we highlight endoplasmic reticulum stress and ischemia reperfusion. Topologically confined redox-mediated post-translational modifications of thiols are considered important molecular mechanisms mediating many antioxidant responses, whereas redox-sensitive microRNAs have emerged as key players in the posttranscriptional regulation of redox-mediated gene expression. Understanding such mechanisms may provide the basis for antioxidant-based therapeutic interventions in redox-related diseases.

  8. Antioxidant responses and cellular adjustments to oxidative stress

    PubMed Central

    Espinosa-Diez, Cristina; Miguel, Verónica; Mennerich, Daniela; Kietzmann, Thomas; Sánchez-Pérez, Patricia; Cadenas, Susana; Lamas, Santiago

    2015-01-01

    Redox biological reactions are now accepted to bear the Janus faceted feature of promoting both physiological signaling responses and pathophysiological cues. Endogenous antioxidant molecules participate in both scenarios. This review focuses on the role of crucial cellular nucleophiles, such as glutathione, and their capacity to interact with oxidants and to establish networks with other critical enzymes such as peroxiredoxins. We discuss the importance of the Nrf2-Keap1 pathway as an example of a transcriptional antioxidant response and we summarize transcriptional routes related to redox activation. As examples of pathophysiological cellular and tissular settings where antioxidant responses are major players we highlight endoplasmic reticulum stress and ischemia reperfusion. Topologically confined redox-mediated post-translational modifications of thiols are considered important molecular mechanisms mediating many antioxidant responses, whereas redox-sensitive microRNAs have emerged as key players in the posttranscriptional regulation of redox-mediated gene expression. Understanding such mechanisms may provide the basis for antioxidant-based therapeutic interventions in redox-related diseases. PMID:26233704

  9. Identifying and targeting determinants of melanoma cellular invasion

    PubMed Central

    Jayachandran, Aparna; Prithviraj, Prashanth; Lo, Pu-Han; Walkiewicz, Marzena; Anaka, Matthew; Woods, Briannyn L.; Tan, BeeShin

    2016-01-01

    Epithelial-to-mesenchymal transition is a critical process that increases the malignant potential of melanoma by facilitating invasion and dissemination of tumor cells. This study identified genes involved in the regulation of cellular invasion and evaluated whether they can be targeted to inhibit melanoma invasion. We identified Peroxidasin (PXDN), Netrin 4 (NTN4) and GLIS Family Zinc Finger 3 (GLIS3) genes consistently elevated in invasive mesenchymal-like melanoma cells. These genes and proteins were highly expressed in metastatic melanoma tumors, and gene silencing led to reduced melanoma invasion in vitro. Furthermore, migration of PXDN, NTN4 or GLIS3 siRNA transfected melanoma cells was inhibited following transplantation into the embryonic chicken neural tube compared to control siRNA transfected melanoma cells. Our study suggests that PXDN, NTN4 and GLIS3 play a functional role in promoting melanoma cellular invasion, and therapeutic approaches directed toward inhibiting the action of these proteins may reduce the incidence or progression of metastasis in melanoma patients. PMID:27172792

  10. Coupled cellular therapy and magnetic targeting for airway regeneration.

    PubMed

    Ordidge, Katherine L; Gregori, Maria; Kalber, Tammy L; Lythgoe, Mark F; Janes, Sam M; Giangreco, Adam

    2014-06-01

    Airway diseases including COPD (chronic obstructive pulmonary disease), cystic fibrosis and lung cancer are leading causes of worldwide morbidity and mortality, with annual healthcare costs of billions of pounds. True regeneration of damaged airways offers the possibility of restoring lung function and protecting against airway transformation. Recently, advances in tissue engineering have allowed the development of cadaveric and biosynthetic airway grafts. Although these have produced encouraging results, the ability to achieve long-term functional airway regeneration remains a major challenge. To promote regeneration, exogenously delivered stem and progenitor cells are being trialled as cellular therapies. Unfortunately, current evidence suggests that only small numbers of exogenously delivered stem cells engraft within lungs, thereby limiting their utility for airway repair. In other organ systems, magnetic targeting has shown promise for improving long-term robust cell engraftment. This technique involves in vitro cell expansion, magnetic actuation and magnetically guided cell engraftment to sites of tissue damage. In the present paper, we discuss the utility of coupling stem cell-mediated cellular therapy with magnetic targeting for improving airway regeneration.

  11. Design of a bistable switch to control cellular uptake.

    PubMed

    Oyarzún, Diego A; Chaves, Madalena

    2015-12-06

    Bistable switches are widely used in synthetic biology to trigger cellular functions in response to environmental signals. All bistable switches developed so far, however, control the expression of target genes without access to other layers of the cellular machinery. Here, we propose a bistable switch to control the rate at which cells take up a metabolite from the environment. An uptake switch provides a new interface to command metabolic activity from the extracellular space and has great potential as a building block in more complex circuits that coordinate pathway activity across cell cultures, allocate metabolic tasks among different strains or require cell-to-cell communication with metabolic signals. Inspired by uptake systems found in nature, we propose to couple metabolite import and utilization with a genetic circuit under feedback regulation. Using mathematical models and analysis, we determined the circuit architectures that produce bistability and obtained their design space for bistability in terms of experimentally tuneable parameters. We found an activation-repression architecture to be the most robust switch because it displays bistability for the largest range of design parameters and requires little fine-tuning of the promoters' response curves. Our analytic results are based on on-off approximations of promoter activity and are in excellent qualitative agreement with simulations of more realistic models. With further analysis and simulation, we established conditions to maximize the parameter design space and to produce bimodal phenotypes via hysteresis and cell-to-cell variability. Our results highlight how mathematical analysis can drive the discovery of new circuits for synthetic biology, as the proposed circuit has all the hallmarks of a toggle switch and stands as a promising design to control metabolic phenotypes across cell cultures. © 2015 The Author(s).

  12. Design of a bistable switch to control cellular uptake

    PubMed Central

    Oyarzún, Diego A.; Chaves, Madalena

    2015-01-01

    Bistable switches are widely used in synthetic biology to trigger cellular functions in response to environmental signals. All bistable switches developed so far, however, control the expression of target genes without access to other layers of the cellular machinery. Here, we propose a bistable switch to control the rate at which cells take up a metabolite from the environment. An uptake switch provides a new interface to command metabolic activity from the extracellular space and has great potential as a building block in more complex circuits that coordinate pathway activity across cell cultures, allocate metabolic tasks among different strains or require cell-to-cell communication with metabolic signals. Inspired by uptake systems found in nature, we propose to couple metabolite import and utilization with a genetic circuit under feedback regulation. Using mathematical models and analysis, we determined the circuit architectures that produce bistability and obtained their design space for bistability in terms of experimentally tuneable parameters. We found an activation–repression architecture to be the most robust switch because it displays bistability for the largest range of design parameters and requires little fine-tuning of the promoters' response curves. Our analytic results are based on on–off approximations of promoter activity and are in excellent qualitative agreement with simulations of more realistic models. With further analysis and simulation, we established conditions to maximize the parameter design space and to produce bimodal phenotypes via hysteresis and cell-to-cell variability. Our results highlight how mathematical analysis can drive the discovery of new circuits for synthetic biology, as the proposed circuit has all the hallmarks of a toggle switch and stands as a promising design to control metabolic phenotypes across cell cultures. PMID:26674196

  13. Developing a Promotional Video

    ERIC Educational Resources Information Center

    Epley, Hannah K.

    2014-01-01

    There is a need for Extension professionals to show clientele the benefits of their program. This article shares how promotional videos are one way of reaching audiences online. An example is given on how a promotional video has been used and developed using iMovie software. Tips are offered for how professionals can create a promotional video and…

  14. Developing a Promotional Video

    ERIC Educational Resources Information Center

    Epley, Hannah K.

    2014-01-01

    There is a need for Extension professionals to show clientele the benefits of their program. This article shares how promotional videos are one way of reaching audiences online. An example is given on how a promotional video has been used and developed using iMovie software. Tips are offered for how professionals can create a promotional video and…

  15. Complexity, dynamic cellular network, and tumorigenesis.

    PubMed

    Waliszewski, P

    1997-01-01

    A holistic approach to tumorigenesis is proposed. The main element of the model is the existence of dynamic cellular network. This network comprises a molecular and an energetistic structure of a cell connected through the multidirectional flow of information. The interactions within dynamic cellular network are complex, stochastic, nonlinear, and also involve quantum effects. From this non-reductionist perspective, neither tumorigenesis can be limited to the genetic aspect, nor the initial event must be of molecular nature, nor mutations and epigenetic factors are mutually exclusive, nor a link between cause and effect can be established. Due to complexity, an unstable stationary state of dynamic cellular network rather than a group of unrelated genes determines the phenotype of normal and transformed cells. This implies relativity of tumor suppressor genes and oncogenes. A bifurcation point is defined as an unstable state of dynamic cellular network leading to the other phenotype-stationary state. In particular, the bifurcation point may be determined by a change of expression of a single gene. Then, the gene is called bifurcation point gene. The unstable stationary state facilitates the chaotic dynamics. This may result in a fractal dimension of both normal and tumor tissues. The co-existence of chaotic dynamics and complexity is the essence of cellular processes and shapes differentiation, morphogenesis, and tumorigenesis. In consequence, tumorigenesis is a complex, unpredictable process driven by the interplay between self-organisation and selection.

  16. At a glance: cellular biology for engineers.

    PubMed

    Khoshmanesh, K; Kouzani, A Z; Nahavandi, S; Baratchi, S; Kanwar, J R

    2008-10-01

    Engineering contributions have played an important role in the rise and evolution of cellular biology. Engineering technologies have helped biologists to explore the living organisms at cellular and molecular levels, and have created new opportunities to tackle the unsolved biological problems. There is now a growing demand to further expand the role of engineering in cellular biology research. For an engineer to play an effective role in cellular biology, the first essential step is to understand the cells and their components. However, the stumbling block of this step is to comprehend the information given in the cellular biology literature because it best suits the readers with a biological background. This paper aims to overcome this bottleneck by describing the human cell components as micro-plants that form cells as micro-bio-factories. This concept can accelerate the engineers' comprehension of the subject. In this paper, first the structure and function of different cell components are described. In addition, the engineering attempts to mimic various cell components through numerical modelling or physical implementation are highlighted. Next, the interaction of different cell components that facilitate complicated chemical processes, such as energy generation and protein synthesis, are described. These complex interactions are translated into simple flow diagrams, generally used by engineers to represent multi-component processes.

  17. Magnetic fields, radicals and cellular activity.

    PubMed

    Montoya, Ryan D

    2017-01-01

    Some effects of low-intensity magnetic fields on the concentration of radicals and their influence on cellular functions are reviewed. These fields have been implicated as a potential modulator of radical recombination rates. Experimental evidence has revealed a tight coupling between cellular function and radical pair chemistry from signaling pathways to damaging oxidative processes. The effects of externally applied magnetic fields on biological systems have been extensively studied, and the observed effects lack sufficient mechanistic understanding. Radical pair chemistry offers a reasonable explanation for some of the molecular effects of low-intensity magnetic fields, and changes in radical concentrations have been observed to modulate specific cellular functions. Applied external magnetic fields have been shown to induce observable cellular changes such as both inhibiting and accelerating cell growth. These and other mechanisms, such as cell membrane potential modulation, are of great interest in cancer research due to the variations between healthy and deleterious cells. Radical concentrations demonstrate similar variations and are indicative of a possible causal relationship. Radicals, therefore, present a possible mechanism for the modulation of cellular functions such as growth or regression by means of applied external magnetic fields.

  18. Association of Matrix Metalloproteinases -7, -8 and -9 and TIMP -1 with Disease Severity in Acute Pancreatitis. A Cohort Study

    PubMed Central

    Nukarinen, Eija; Lindström, Outi; Kuuliala, Krista; Kylänpää, Leena; Pettilä, Ville; Puolakkainen, Pauli; Kuuliala, Antti; Hämäläinen, Mari; Moilanen, Eeva; Repo, Heikki; Hästbacka, Johanna

    2016-01-01

    Objectives Several biomarkers for early detection of severe acute pancreatitis (SAP) have been presented. Matrix metalloproteinases (MMP) and their tissue inhibitors (TIMP) are released early in inflammation. We aimed to assess levels of MMP-7, -8, -9 and TIMP-1 in acute pancreatitis (AP) and explore their ability to detect disease severity. Our second aim was to find an association between MMPs, TIMP and creatinine. Methods We collected plasma samples for MMP-7, -8, -9 and TIMP-1 analyses from 176 patients presenting within 96 h from onset of acute pancreatitis (AP) symptoms. We used samples from 32 control subjects as comparison. The revised Atlanta Classification was utilised to assess severity of disease. Receiver operating characteristic curve analysis and Spearman´s Rho-test were utilised for statistical calculations. Results Compared with controls, patients showed higher levels of all studied markers. MMP-8 was higher in moderately severe AP than in mild AP (p = 0.005) and MMP-8, -9 and TIMP-1 were higher in severe than in mild AP (p<0.001, p = 0.005 and p = 0.019). MMP-8 detected SAP with an AUC of 0.939 [95% CI 0.894–0.984], LR+ 9.03 [5.30–15.39]. MMP-8, -9 and TIMP-1 failed to discern moderately severe AP from SAP. MMP-7 was not different between patient groups. MMP-7 and TIMP-1 correlated weakly with creatinine (Rho = 0.221 and 0.243). MMP-8 might be a useful biomarker in early detection of SAP. PMID:27561093

  19. Tauroursodeoxycholic acid reduces the invasion of MDA-MB-231 cells by modulating matrix metalloproteinases 7 and 13

    PubMed Central

    Park, Ga-Young; Han, Yu Kyeong; Han, Jeong Yoon; Lee, Chang Geun

    2016-01-01

    Tauroursodeoxycholic acid (TUDCA) is a conjugated form of UDCA that modulates several signaling pathways and acts as a chemical chaperone to relieve endoplasmic reticulum (ER) stress. The present study showed that TUDCA reduced the invasion of the MDA-MB-231 metastatic breast cancer cell line under normoxic and hypoxic conditions using an in vitro invasion assay. Quantitative polymerase chain reaction assay revealed that the reduced invasion following TUDCA treatment was associated with a decreased expression of matrix metalloproteinase (MMP)-7 and −13, which play important roles in invasion and metastasis. Inhibitors and short hairpin RNAs were used to show that the effect of TUDCA in the reduction of invasion appeared to be dependent on the protein kinase RNA-like ER kinase pathway, a downstream ER stress signaling pathway. Thus, TUDCA is a candidate anti-metastatic agent to target the ER stress pathway. PMID:27602168

  20. Matrix metalloproteinase -7, -8, -9 and -13 in gingival tissue of patients with type 1 diabetes and periodontitis.

    PubMed

    Şurlin, Petra; Oprea, Bogdan; Solomon, Sorina Mihaela; Popa, Simona Georgiana; Moţa, Maria; Mateescu, Garofiţa Olivia; Rauten, Anne Marie; Popescu, Dora Maria; Dragomir, Lucian Paul; Puiu, Ileana; Bogdan, Maria; Popescu, Mihai Raul

    2014-01-01

    There is scientific data to support the existence of a two-way relationship between diabetes and periodontitis, with diabetes increasing the risk for periodontitis, and periodontal inflammation negatively affecting the diabetic status. Our study aims to investigate the expression of MMP-7, -8, -9 and -13 in the gingiva of the young patients with aggressive periodontitis (AP) and type 1 diabetes mellitus (T1D). Gingival biopsies were harvested from five adult patients aged 19-29 years with T1D+AP with moderate (three cases) to severe (two cases) forms of AP and from four adult patients aged 18-28 years with moderate AP without T1D. The MMP-7 immunoreaction was positive in the five cases with T1D+AP with different staining patterns. The MMP-8 immunostaining was positive in all cases. The reaction was more intense in cases with T1D+AP, especially in those with severe periodontitis. The MMP-9 immunoreaction was present in all the structures of the gingival mucosa with different intensity, being frequently present surrounding the blood vessels of the chorion. In most of the patients, reaction to MMP-9 was intense, localized at the level of the cells in the superficial chorion and very rarely at the level of some dispersed cells in the connective vascular islands. MMP-13 was present in all cases, but it was more intense in the two cases with T1D+AP with probing depth (PD)>6 mm when it had similar patterns as MMP-9 staining and in one case with AP when the staining was observed strictly in the lamina propria associated with moderate chronic inflammatory infiltrate. The expression of MMP-7, -8, -9 and -13 in the gingiva of the young patients with aggressive periodontitis and T1D was positive in all studied cases supporting the hypothesis that both are inflammatory diseases with common pathogenic mechanisms involving inflammatory mediators and may be possible biomarkers of disease status.

  1. Detonation cellular structure and image proces

    NASA Astrophysics Data System (ADS)

    Shepherd, J. E.; Tieszen, S. R.

    Gaseous detonations universally exhibit an instability that is manifested as cellular patterns on witness plates (sooted foils) or open shutter photographs. The characteristic dimension or cell width lambda of the periodic cellular pattern has previously been shown to correlate with failure diameter, critical diffraction aperture dimension and direct initiation energy requirements. Due to the importance of predicting these parameters in assessing detonability hazards, a quantitative method for cell size mesurement is urgently needed. We discuss a technique based on digital image processing of sooted foil records and illustrate the results with data from experiments performed in the Heated Detonation Tube facility at Sandia. We demonstrate that image processing can be used to eliminate some of the uncertainty now present in cell size measurements. The possibility of quantifying cellular irregularity is also explored.

  2. Crack Propagation in Bamboo's Hierarchical Cellular Structure

    PubMed Central

    Habibi, Meisam K.; Lu, Yang

    2014-01-01

    Bamboo, as a natural hierarchical cellular material, exhibits remarkable mechanical properties including excellent flexibility and fracture toughness. As far as bamboo as a functionally graded bio-composite is concerned, the interactions of different constituents (bamboo fibers; parenchyma cells; and vessels.) alongside their corresponding interfacial areas with a developed crack should be of high significance. Here, by using multi-scale mechanical characterizations coupled with advanced environmental electron microscopy (ESEM), we unambiguously show that fibers' interfacial areas along with parenchyma cells' boundaries were preferred routes for crack growth in both radial and longitudinal directions. Irrespective of the honeycomb structure of fibers along with cellular configuration of parenchyma ground, the hollow vessels within bamboo culm affected the crack propagation too, by crack deflection or crack-tip energy dissipation. It is expected that the tortuous crack propagation mode exhibited in the present study could be applicable to other cellular natural materials as well. PMID:24998298

  3. Cellular Models for the Study of Prions.

    PubMed

    Holmes, Brandon B; Diamond, Marc I

    2017-02-01

    It is now established that numerous amyloid proteins associated with neurodegenerative diseases, including tau and α-synuclein, have essential characteristics of prions, including the ability to create transmissible cellular pathology in vivo. We have developed cellular bioassays that report on the various features of prion activity using genetic engineering and quantitative fluorescence-based detection systems. We have exploited these biosensors to measure the binding and uptake of tau seeds into cells in culture and to quantify seeding activity in brain samples. These cell models have also been used to propagate tau prion strains indefinitely in culture. In this review, we illustrate the utility of cellular biosensors to gain mechanistic insight into prion transmission and to study neurodegenerative diseases in a reductionist fashion.

  4. Comparative Cellular Biogerontology: Primer and Prospectus

    PubMed Central

    Miller, Richard A.; Williams, Joseph B.; Kiklevich, J. Veronika; Austad, Steve; Harper, James M.

    2010-01-01

    Most prior work on the biological basis of aging has focused on describing differences between young and old individuals but provided only limited insight into the mechanisms controlling the rate of aging. Natural selection has produced a goldmine of experimental material, in the form of species of differing aging rate, whose longevity can vary by 10-fold or more within mammalian orders, but these resources remain largely unexplored at the cellular level. In this review article we focus on one approach to comparative biogerontology: the strategy of evaluating the properties of cultured cells from organisms of varying lifespan and aging rate. In addition, we discuss problems associated with the analysis and interpretations of interspecific variation of cellular trait data among species with disparate longevity. Given the impressive array of ‘natural experiments’ in aging rate, overcoming the technical and conceptual obstacles confronting research in comparative cellular gerontology will be well worth the effort. PMID:20109583

  5. Comparative cellular biogerontology: primer and prospectus.

    PubMed

    Miller, Richard A; Williams, Joseph B; Kiklevich, J Veronika; Austad, Steve; Harper, James M

    2011-04-01

    Most prior work on the biological basis of aging has focused on describing differences between young and old individuals but provided only limited insight into the mechanisms controlling the rate of aging. Natural selection has produced a goldmine of experimental material, in the form of species of differing aging rate, whose longevity can vary by 10-fold or more within mammalian orders, but these resources remain largely unexplored at the cellular level. In this review article we focus on one approach to comparative biogerontology: the strategy of evaluating the properties of cultured cells from organisms of varying lifespan and aging rate. In addition, we discuss problems associated with the analysis and interpretations of interspecific variation of cellular trait data among species with disparate longevity. Given the impressive array of 'natural experiments' in aging rate, overcoming the technical and conceptual obstacles confronting research in comparative cellular gerontology will be well worth the effort. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Cellular automatons applied to gas dynamic problems

    NASA Technical Reports Server (NTRS)

    Long, Lyle N.; Coopersmith, Robert M.; Mclachlan, B. G.

    1987-01-01

    This paper compares the results of a relatively new computational fluid dynamics method, cellular automatons, with experimental data and analytical results. This technique has been shown to qualitatively predict fluidlike behavior; however, there have been few published comparisons with experiment or other theories. Comparisons are made for a one-dimensional supersonic piston problem, Stokes first problem, and the flow past a normal flat plate. These comparisons are used to assess the ability of the method to accurately model fluid dynamic behavior and to point out its limitations. Reasonable results were obtained for all three test cases, but the fundamental limitations of cellular automatons are numerous. It may be misleading, at this time, to say that cellular automatons are a computationally efficient technique. Other methods, based on continuum or kinetic theory, would also be very efficient if as little of the physics were included.

  7. Mesoporous silica nanoparticles inhibit cellular respiration.

    PubMed

    Tao, Zhimin; Morrow, Matthew P; Asefa, Tewodros; Sharma, Krishna K; Duncan, Cole; Anan, Abhishek; Penefsky, Harvey S; Goodisman, Jerry; Souid, Abdul-Kader

    2008-05-01

    We studied the effect of two types of mesoporous silica nanoparticles, MCM-41 and SBA-15, on mitochondrial O 2 consumption (respiration) in HL-60 (myeloid) cells, Jurkat (lymphoid) cells, and isolated mitochondria. SBA-15 inhibited cellular respiration at 25-500 microg/mL; the inhibition was concentration-dependent and time-dependent. The cellular ATP profile paralleled that of respiration. MCM-41 had no noticeable effect on respiration rate. In cells depleted of metabolic fuels, 50 microg/mL SBA-15 delayed the onset of glucose-supported respiration by 12 min and 200 microg/mL SBA-15 by 34 min; MCM-41 also delayed the onset of glucose-supported respiration. Neither SBA-15 nor MCM-41 affected cellular glutathione. Both nanoparticles inhibited respiration of isolated mitochondria and submitochondrial particles.

  8. Parametric study of double cellular detonation structure

    NASA Astrophysics Data System (ADS)

    Khasainov, B.; Virot, F.; Presles, H.-N.; Desbordes, D.

    2013-05-01

    A parametric numerical study is performed of a detonation cellular structure in a model gaseous explosive mixture whose decomposition occurs in two successive exothermic reaction steps with markedly different characteristic times. Kinetic and energetic parameters of both reactions are varied in a wide range in the case of one-dimensional steady and two-dimensional (2D) quasi-steady self-supported detonations. The range of governing parameters of both exothermic steps is defined where a "marked" double cellular structure exists. It is shown that the two-level cellular structure is completely governed by the kinetic parameters and the local overdrive ratio of the detonation front propagating inside large cells. Furthermore, since it is quite cumbersome to use detailed chemical kinetics in unsteady 2D case, the proposed work should help to identify the mixtures and the domain of their equivalence ratio where double detonation structure could be observed.

  9. Role of galactose in cellular senescence.

    PubMed

    Elzi, David J; Song, Meihua; Shiio, Yuzuru

    2016-01-01

    Cellular senescence has been proposed to play critical roles in tumor suppression and organismal aging, but the molecular mechanism of senescence remains incompletely understood. Here we report that a putative lysosomal carbohydrate efflux transporter, Spinster, induces cellular senescence in human primary fibroblasts. Administration of d-galactose synergistically enhanced Spinster-induced senescence and this synergism required the transporter activity of Spinster. Intracellular d-galactose is metabolized to galactose-1-phosphate by galactokinase. Galactokinase-deficient fibroblasts, which accumulate intracellular d-galactose, displayed increased baseline senescence. Senescence of galactokinase-deficient fibroblasts was further enhanced by d-galactose administration and was diminished by restoration of wild-type galactokinase expression. Silencing galactokinase in normal fibroblasts also induced senescence. These results suggest a role for intracellular galactose in the induction of cellular senescence.

  10. Crack propagation in bamboo's hierarchical cellular structure.

    PubMed

    Habibi, Meisam K; Lu, Yang

    2014-07-07

    Bamboo, as a natural hierarchical cellular material, exhibits remarkable mechanical properties including excellent flexibility and fracture toughness. As far as bamboo as a functionally graded bio-composite is concerned, the interactions of different constituents (bamboo fibers; parenchyma cells; and vessels.) alongside their corresponding interfacial areas with a developed crack should be of high significance. Here, by using multi-scale mechanical characterizations coupled with advanced environmental electron microscopy (ESEM), we unambiguously show that fibers' interfacial areas along with parenchyma cells' boundaries were preferred routes for crack growth in both radial and longitudinal directions. Irrespective of the honeycomb structure of fibers along with cellular configuration of parenchyma ground, the hollow vessels within bamboo culm affected the crack propagation too, by crack deflection or crack-tip energy dissipation. It is expected that the tortuous crack propagation mode exhibited in the present study could be applicable to other cellular natural materials as well.

  11. Cellular therapies for type 1 diabetes.

    PubMed

    Lee, D D; Grossman, E; Chong, A S

    2008-02-01

    Type 1 diabetes mellitus (T1DM) is a disease that results from the selective autoimmune destruction of insulin-producing beta-cells. This disease process lends itself to cellular therapy because of the single cell nature of insulin production. Murine models have provided opportunities for the study of cellular therapies for the treatment of diabetes, including the investigation of islet transplantation, and also the possibility of stem cell therapies and islet regeneration. Studies in islet transplantation have included both allo- and xeno-transplantation and have allowed for the study of new approaches for the reversal of autoimmunity and achieving immune tolerance. Stem cells from hematopoietic sources such as bone marrow and fetal cord blood, as well as from the pancreas, intestine, liver, and spleen promise either new sources of islets or may function as stimulators of islet regeneration. This review will summarize the various cellular interventions investigated as potential treatments of T1DM.

  12. Cellular complexity captured in durable silica biocomposites

    PubMed Central

    Kaehr, Bryan; Townson, Jason L.; Kalinich, Robin M.; Awad, Yasmine H.; Swartzentruber, B. S.; Dunphy, Darren R.; Brinker, C. Jeffrey

    2012-01-01

    Tissue-derived cultured cells exhibit a remarkable range of morphological features in vitro, depending on phenotypic expression and environmental interactions. Translation of these cellular architectures into inorganic materials would provide routes to generate hierarchical nanomaterials with stabilized structures and functions. Here, we describe the fabrication of cell/silica composites (CSCs) and their conversion to silica replicas using mammalian cells as scaffolds to direct complex structure formation. Under mildly acidic solution conditions, silica deposition is restricted to the molecularly crowded cellular template. Inter- and intracellular heterogeneity from the nano- to macroscale is captured and dimensionally preserved in CSCs following drying and subjection to extreme temperatures allowing, for instance, size and shape preserving pyrolysis of cellular architectures to form conductive carbon replicas. The structural and behavioral malleability of the starting material (cultured cells) provides opportunities to develop robust and economical biocomposites with programmed structures and functions. PMID:23045634

  13. Cellular immunity to Bacteroides fragilis capsular polysaccharide

    PubMed Central

    1982-01-01

    The polysaccharide capsule of Bacteroides fragilis has been shown to be important in the virulence of the organism. The capsular polysaccharide (CP) of B. fragilis has been extensively purified. Using a murine model of intraabdominal abscess formation, we have been able to demonstrate cellular immunity to the capsular polysaccharide of B. fragilis. Immunization of C57BL/10J mice with the CP over 5 wk prevents abscess formation when the mice are challenged with B. fragilis intraperitoneally. This immunity can be transferred to naive mice with spleen cells from immune animals. The immune cells bear Thy-1.2 and Ly- 2.2 antigens. The immune response has been shown to be antigen specific, but not H-2 restricted. The possibility that these immune cells are suppressor T cells is discussed. The experimental system presented provides a model for the examination of the cellular interactions responsible for abscess formation and the cellular response to bacterial pathogens. PMID:6174672

  14. Cellular Stress Response to Engineered Nanoparticles: Effect of Size, Surface Coating, and Cellular Uptake

    EPA Science Inventory

    CELLULAR STRESS RESPONSE TO ENGINEERED NANOPARTICLES: EFFECT OF SIZE, SURFACE COATING, AND CELLULAR UPTAKE RY Prasad 1, JK McGee2, MG Killius1 D Ackerman2, CF Blackman2 DM DeMarini2 , SO Simmons2 1 Student Services Contractor, US EPA, RTP, NC 2 US EPA, RTP, NC The num...

  15. Cellular Stress Response to Engineered Nanoparticles: Effect of Size, Surface Coating, and Cellular Uptake

    EPA Science Inventory

    CELLULAR STRESS RESPONSE TO ENGINEERED NANOPARTICLES: EFFECT OF SIZE, SURFACE COATING, AND CELLULAR UPTAKE RY Prasad 1, JK McGee2, MG Killius1 D Ackerman2, CF Blackman2 DM DeMarini2 , SO Simmons2 1 Student Services Contractor, US EPA, RTP, NC 2 US EPA, RTP, NC The num...

  16. Hepatitis C virus NS2 protein activates cellular cyclic AMP-dependent pathways

    SciTech Connect

    Kim, Kyoung Mi; Kwon, Shi-Nae; Kang, Ju-Il; Lee, Song Hee; Jang, Sung Key; Ahn, Byung-Yoon; Kim, Yoon Ki . E-mail: yk-kim@korea.ac.kr

    2007-05-18

    Chronic infection of the hepatitis C virus (HCV) leads to liver cirrhosis and cancer. The mechanism leading to viral persistence and hepatocellular carcinoma, however, has not been fully understood. In this study, we show that the HCV infection activates cellular cAMP-dependent pathways. Expression of a luciferase reporter gene controlled by a basic promoter with the cAMP response element (CRE) was significantly elevated in human hepatoma Huh-7 cells infected with the HCV JFH1. Analysis with viral subgenomic replicons indicated that the HCV NS2 protein is responsible for the effect. Furthermore, the level of cellular transcripts whose stability is known to be regulated by cAMP was specifically reduced in cells harboring NS2-expressing replicons. These results allude to the HCV NS2 protein having a novel function of regulating cellular gene expression and proliferation through the cAMP-dependent pathway.

  17. Retrieval algorithm for rainfall mapping from microwave links in a cellular communication network

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Uijlenhoet, Remko; Leijnse, Hidde

    2016-04-01

    Microwave links in commercial cellular communication networks hold a promise for areal rainfall monitoring and could complement rainfall estimates from ground-based weather radars, rain gauges, and satellites. It has been shown that country-wide rainfall maps can be derived from the signal attenuations of microwave links in such a network. We present a rainfall retrieval algorithm, which is employed to obtain rainfall maps from microwave links in a cellular communication network. We compare these rainfall maps to gauge-adjusted radar rainfall maps. The microwave link data set, as well as the developed code, a package in the open source scripting language "R", are freely available at GitHub (https://github.com/overeem11/RAINLINK). The purpose of this presentation is to promote rainfall mapping utilizing microwave links from cellular communication networks as an alternative or complementary means for continental-scale rainfall monitoring.

  18. Odd-skipped related 2 is epigenetically regulated in cellular quiescence

    SciTech Connect

    Kawai, Shinji; Amano, Atsuo

    2010-06-11

    Cellular behavior and development are extensively altered during the transition from cell cycle into quiescence, though the mechanism involved in establishing and maintaining quiescence is largely unknown. We found that Odd-skipped related 2 (Osr2) was up-regulated during cellular quiescence by serum starvation as well as culturing to confluence. To investigate the regulatory mechanism of Osr2 under these conditions, we characterized the mouse Osr2 promoter. CpG islands in the flanking region of the transcription start site were predominantly methylated in exponentially growing cells, resulting in silencing of Osr2 expression. In addition, CpG demethylation in quiescence caused activation of Osr2 expression, while acetylation of the H3 and H4 histones during quiescence also led to an increase in Osr2 expression. These results suggest that epigenetically regulated Osr2 plays an important role in cellular quiescence and proliferation.

  19. Tat is a multifunctional viral protein that modulates cellular gene expression and functions.

    PubMed

    Clark, Evan; Nava, Brenda; Caputi, Massimo

    2017-02-07

    The human immunodeficiency virus type I (HIV-1) has developed several strategies to condition the host environment to promote viral replication and spread. Viral proteins have evolved to perform multiple functions, aiding in the replication of the viral genome and modulating the cellular response to the infection. Tat is a small, versatile, viral protein that controls transcription of the HIV genome, regulates cellular gene expression and generates a permissive environment for viral replication by altering the immune response and facilitating viral spread to multiple tissues. Studies carried out utilizing biochemical, cellular, and genomic approaches show that the expression and activity of hundreds of genes and multiple molecular networks are modulated by Tat via multiple mechanisms.

  20. KDM5 Interacts with Foxo to Modulate Cellular Levels of Oxidative Stress

    PubMed Central

    Liu, Xingyin; Greer, Christina; Secombe, Julie

    2014-01-01

    I