Science.gov

Sample records for metalloproteinase-induced epithelial-mesenchymal transition

  1. Change in cell shape is required for matrix metalloproteinase-induced epithelial-mesenchymal transition of mammary epithelial cells

    SciTech Connect

    Nelson, Celeste M.; Khauv, Davitte; Bissell, Mina J.; Radisky, Derek C.

    2008-06-26

    Cell morphology dictates response to a wide variety of stimuli, controlling cell metabolism, differentiation, proliferation, and death. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells acquire migratory characteristics, and in the process convert from a 'cuboidal' epithelial structure into an elongated mesenchymal shape. We had shown previously that matrix metalloproteinase-3 (MMP3) can stimulate EMT of cultured mouse mammary epithelial cells through a process that involves increased expression of Rac1b, a protein that stimulates alterations in cytoskeletal structure. We show here that cells treated with MMP-3 or induced to express Rac1b spread to cover a larger surface, and that this induction of cell spreading is a requirement of MMP-3/Rac1b-induced EMT. We find that limiting cell spreading, either by increasing cell density or by culturing cells on precisely defined micropatterned substrata, blocks expression of characteristic markers of EMT in cells treated with MMP-3. These effects are not caused by general disruptions in cell signaling pathways, as TGF-{beta}-induced EMT is not affected by similar limitations on cell spreading. Our data reveal a previously unanticipated cell shape-dependent mechanism that controls this key phenotypic alteration and provide insight into the distinct mechanisms activated by different EMT-inducing agents.

  2. Epithelial-Mesenchymal Transition

    PubMed Central

    Klymkowsky, Michael W.; Savagner, Pierre

    2009-01-01

    Epithelial-mesenchymal transition (EMT) describes a series of rapid changes in cellular phenotype. During EMT, epithelial cells down-modulate cell-cell adhesion structures, alter their polarity, reorganize their cytoskeleton, and become isolated, motile, and resistant to anoikis. The term EMT is often applied to distinct biological events as if it were a single conserved process, but in fact EMT-related processes can vary in intensity from a transient loss of cell polarity to the total cellular reprogramming, as found by transcriptional analysis. Based on clinical observations, it is more appropriate in most cases to describe the emergence of an EMT-like phenotype during tumor progression. Although EMT implies complete trans-differentiation, EMT-like emphasizes the intermediary phenotype associated with tumor cell renewal and adaptation to specific microenvironments. Here, we categorize the various EMT-like phenotypes found in human carcinomas that, depending on the tumor type, may or not represent analogous stages in tumor progression. We based these categories on the global tumor phenotype. The tumor microenvironment, which is associated with stromal reactions, hypoxia, paucity of nutrients, impaired differentiation, and activation of various EMT-associated pathways, modulates overall tumor phenotype and leads to tumor heterogeneity. PMID:19342369

  3. Biomarkers for epithelial-mesenchymal transitions.

    PubMed

    Zeisberg, Michael; Neilson, Eric G

    2009-06-01

    Somatic cells that change from one mature phenotype to another exhibit the property of plasticity. It is increasingly clear that epithelial and endothelial cells enjoy some of this plasticity, which is easily demonstrated by studying the process of epithelial-mesenchymal transition (EMT). Published reports from the literature typically rely on ad hoc criteria for determining EMT events; consequently, there is some uncertainty as to whether the same process occurs under different experimental conditions. As we discuss in this Personal Perspective, we believe that context and various changes in plasticity biomarkers can help identify at least three types of EMT and that using a collection of criteria for EMT increases the likelihood that everyone is studying the same phenomenon - namely, the transition of epithelial and endothelial cells to a motile phenotype.

  4. Transcriptional regulation of epithelial-mesenchymal transition.

    PubMed

    Teng, Yingqi; Zeisberg, Michael; Kalluri, Raghu

    2007-02-01

    It has become increasingly obvious that the notion of a terminally differentiated cell is likely a simplified concept. Epithelial-mesenchymal transition (EMT), during which epithelial cells assume a mesenchymal phenotype, is a key event occurring during normal development and pathological processes. Multiple extracellular stimuli and transcriptional regulators can trigger EMT, but how such distinct signaling pathways orchestrate the complex cellular events that facilitate EMT is not well understood. In this issue of the JCI, Venkov et al. report on their examination of fibroblasts resulting from EMT and describe a novel protein-DNA complex that is essential for transcription of fibroblast-specific protein 1 (FSP1) and sufficient to induce early EMT events (see the related article beginning on page 482). Collectively, their results suggest that this complex is an important regulator of the EMT transcriptome.

  5. Transcriptional regulation of epithelial-mesenchymal transition

    PubMed Central

    Teng, Yingqi; Zeisberg, Michael; Kalluri, Raghu

    2007-01-01

    It has become increasingly obvious that the notion of a terminally differentiated cell is likely a simplified concept. Epithelial-mesenchymal transition (EMT), during which epithelial cells assume a mesenchymal phenotype, is a key event occurring during normal development and pathological processes. Multiple extracellular stimuli and transcriptional regulators can trigger EMT, but how such distinct signaling pathways orchestrate the complex cellular events that facilitate EMT is not well understood. In this issue of the JCI, Venkov et al. report on their examination of fibroblasts resulting from EMT and describe a novel protein-DNA complex that is essential for transcription of fibroblast-specific protein 1 (FSP1) and sufficient to induce early EMT events (see the related article beginning on page 482). Collectively, their results suggest that this complex is an important regulator of the EMT transcriptome. PMID:17273552

  6. Clinical significance of epithelial-mesenchymal transition

    PubMed Central

    2014-01-01

    The concept of epithelial-mesenchymal transition (EMT), a process where cells change their epithelial towards a mesenchymal phenotype, has gained overwhelming attention especially in the cancer research community. Thousands of scientific reports investigated changes in gene, mRNA and protein expression compatible with EMT and their possible correlation with tumor invasion, metastatic spread or patient prognosis; however, up to now, a proof of clinical significance of the concept is still missing. This review, with a main focus on the role of EMT in tumors, will summarize the basic molecular events underlying EMT including the signaling pathways capable of its induction as well as changes in EMT-associated protein expression and will very briefly touch the role of microRNAs in EMT. We then outline protein markers that are used most frequently for the assessment of EMT in research and diagnostic evaluation of tumor specimens and depict the link between EMT, a cancer stem cell (CSC) phenotype and resistance to conventional antineoplastic therapies. Furthermore, we evaluate a possible correlation between EMT marker expression and patient prognosis as well as current therapeutic concepts targeting the EMT process to slow down or prevent metastatic spread of malignant tumors. PMID:25050175

  7. Epithelial-mesenchymal transition in gastric cancer

    PubMed Central

    Huang, Lei; Wu, Ruo-Lin; Xu, A-Man

    2015-01-01

    Gastric cancer (GC) is one of the most common malignancies worldwide with poor prognosis for lack of early detection and effective treatment modalities. The significant influence of tumor microenvironment on malignant cells has been extensively investigated in this targeted-therapy era. Epithelial-mesenchymal transition (EMT) is a highly conserved and fundamental process that is critical for embryogenesis and some other pathophysiological processes, especially tumor genesis and progression. Aberrant gastric EMT activation could endow gastric epithelial cells with increased mesenchymal characteristics and less epithelial features, and promote cancer cell stemness, initiation, invasion, metastasis, and chemo-resistance with cellular adhesion molecules especially E-cadherin concomitantly repressed, which allows tumor cells to disseminate and spread throughout the body. Some pathogens, stress, and hypoxia could induce and aggravate GC via EMT, which is significantly correlated with prognosis. GC EMT is modulated by diverse micro-environmental, membrane, and intracellular cues, and could be triggered by various overexpressed transcription factors, which are downstream of several vital cross-talking signaling pathways including TGF-β, Wnt/β-catenin, Notch, etc. microRNAs also contribute significantly to GC EMT modulation. There are currently some agents which could suppress GC EMT, shedding light on novel anti-malignancy strategies. Investigating potential mechanisms modulating GC cell EMT and discovering novel EMT regulators will further elucidate GC biology, and may provide new biomarkers for early GC detection and potentially efficient targets for preventative and curative anti-GC intervention approaches to prevent local and distant invasions. PMID:26807164

  8. Epithelial-mesenchymal transition in liver fibrosis

    PubMed Central

    ZHAO, YA-LEI; ZHU, RONG-TAO; SUN, YU-LING

    2016-01-01

    Liver fibrosis is the result of a sustained wound healing response to sustained chronic liver injury, which includes viral, alcoholic and autoimmune hepatitis. Hepatic regeneration is the dominant outcome of liver damage. The outcomes of successful repair are the replacement of dead epithelial cells with healthy epithelial cells, and reconstruction of the normal hepatic structure and function. Prevention of the development of epithelial-mesenchymal transition (EMT) may control and even reverse liver fibrosis. EMT is a critical process for an epithelial cell to undergo a conversion to a mesenchymal phenotype, and is believed to be an inflammation-induced response, which may have a central role in liver fibrosis. The origin of fibrogenic cells in liver fibrosis remains controversial. Numerous studies have investigated the origin of all fibrogenic cells within the liver and the mechanism of the signaling pathways that lead to the activation of EMT programs during numerous chronic liver diseases. The present study aimed to summarize the evidence to explain the possible role of EMT in liver fibrosis. PMID:26998262

  9. TFDP3 Regulates Epithelial-Mesenchymal Transition in Breast Cancer

    PubMed Central

    Yin, Kailin; Liu, Yanchen; Chu, Ming; Wang, Yuedan

    2017-01-01

    Breast cancer remains a lethal disease to women due to lymph node metastasis, the tumor microenvironment, secondary resistance and other unknown factors. Several important transcription factors involved in this disease, such as PTEN, p53 and beta-catenin, have been identified and researched in-depth as candidates for targeted therapy in breast cancer. TFDP3 is a new, promising candidate for transcriptional regulation in breast cancer, although it was first identified in hepatocellular carcinoma. Here, we demonstrate that TFDP3 is expressed in a variety of malignancies, normal testis tissue and breast cancer cell lines and thus provide evidence that TFDP3 is a cancer-testis antigen. We illustrate that overexpression or silencing TFDP3 interferes with epithelial-mesenchymal transition but does not influence cell proliferation, indicating that the TFDP3 protein acts as a transcription factor during epithelial-mesenchymal transition. These data highlight that TFDP3 is expressed in breast cancer, that it is a member of the cancer-testis antigen family and that it functions as a regulator in epithelial-mesenchymal transition. PMID:28114432

  10. MET: roles in epithelial-mesenchymal transition and cancer stemness

    PubMed Central

    Jeon, Hye-Min

    2017-01-01

    In a number of cancers, deregulated MET pathway leads to aberrantly activated proliferative and invasive signaling programs that promote malignant transformation, cell motility and migration, angiogenesis, survival in hypoxia, and invasion. A better understanding of oncogenic MET signaling will help us to discover effective therapeutic approaches and to identify which tumors are likely to respond to MET-targeted cancer therapy. In this review, we will summarize the roles of MET signaling in cancer, with particular focus on epithelial-mesenchymal transition (EMT) and cancer stemness. Then, we will provide update on MET targeting agents and discuss the challenges that should be overcome for the development of an effective therapy. PMID:28164090

  11. Epithelial mesenchymal transition in lung cancer cells: A quantitative analysis.

    PubMed

    Sarkar, Atasi; Barui, A; Sengupta, S; Chatterjee, J; Ghorai, S; Mukherjee, Anirban

    2015-01-01

    Cellular auto-fluorescence along with morphological and cytoskeletal features were assessed in lung cancer cells undergoing induced epithelial mesenchymal transition (EMT). During EMT progression, significant increase was observed in cellular aspect ratio (AR), filamentous (F)-actin and green auto-fluorescence intensities while blue intensity decreased. These features were provided to a kernel classification framework. The classification accuracy were impressive, thus these features along with the classification technique can be considered as suitable tools for automated grading of lung cancer cells undergoing EMT progression.

  12. Collective and individual migration following the epithelial-mesenchymal transition.

    PubMed

    Wong, Ian Y; Javaid, Sarah; Wong, Elisabeth A; Perk, Sinem; Haber, Daniel A; Toner, Mehmet; Irimia, Daniel

    2014-11-01

    During cancer progression, malignant cells in the tumour invade surrounding tissues. This transformation of adherent cells to a motile phenotype has been associated with the epithelial-mesenchymal transition (EMT). Here, we show that EMT-activated cells migrate through micropillar arrays as a collectively advancing front that scatters individual cells. Individual cells with few neighbours dispersed with fast, straight trajectories, whereas cells that encountered many neighbours migrated collectively with epithelial biomarkers. We modelled these emergent dynamics using a physical analogy to phase transitions during binary-mixture solidification, and validated it using drug perturbations, which revealed that individually migrating cells exhibit diminished chemosensitivity. Our measurements also indicate a degree of phenotypic plasticity as cells interconvert between individual and collective migration. The study of multicellular behaviours with single-cell resolution should enable further quantitative insights into heterogeneous tumour invasion.

  13. Collective and Individual Migration following the Epithelial-Mesenchymal Transition

    PubMed Central

    Wong, Ian Y.; Javaid, Sarah; Wong, Elisabeth A.; Perk, Sinem; Haber, Daniel A.; Toner, Mehmet; Irimia, Daniel

    2014-01-01

    During cancer progression, malignant cells in the tumour invade surrounding tissues. This transformation of adherent cells to a motile phenotype has been associated with the epithelial mesenchymal transition (EMT). Here, we show that EMT-activated cells migrate through micropillar arrays as a collectively advancing front that scatters individual cells. Individual cells with few neighbours dispersed with fast, straight trajectories, whereas cells that encountered many neighbours migrated collectively with epithelial biomarkers. We modelled these emergent dynamics using a physical analogy to solidification phase transitions in binary mixtures, and validated it using drug perturbations, which revealed that individually migrating cells exhibit diminished chemosensitivity. Our measurements also indicate a degree of phenotypic plasticity as cells interconvert between individual and collective migration. The study of multicellular behaviours with single-cell resolution should enable further quantitative insights into heterogeneous tumour invasion. PMID:25129619

  14. Collective and individual migration following the epithelial-mesenchymal transition

    NASA Astrophysics Data System (ADS)

    Wong, Ian Y.; Javaid, Sarah; Wong, Elisabeth A.; Perk, Sinem; Haber, Daniel A.; Toner, Mehmet; Irimia, Daniel

    2014-11-01

    During cancer progression, malignant cells in the tumour invade surrounding tissues. This transformation of adherent cells to a motile phenotype has been associated with the epithelial-mesenchymal transition (EMT). Here, we show that EMT-activated cells migrate through micropillar arrays as a collectively advancing front that scatters individual cells. Individual cells with few neighbours dispersed with fast, straight trajectories, whereas cells that encountered many neighbours migrated collectively with epithelial biomarkers. We modelled these emergent dynamics using a physical analogy to phase transitions during binary-mixture solidification, and validated it using drug perturbations, which revealed that individually migrating cells exhibit diminished chemosensitivity. Our measurements also indicate a degree of phenotypic plasticity as cells interconvert between individual and collective migration. The study of multicellular behaviours with single-cell resolution should enable further quantitative insights into heterogeneous tumour invasion.

  15. TRIM37 promotes epithelial-mesenchymal transition in colorectal cancer

    PubMed Central

    Hu, Cheng-En; Gan, Jun

    2017-01-01

    There is substantial research on the oncogenic role of tripartite motif containing 37 (TRIM37); however, its importance in colorectal cancer (CRC) remains to be elucidated. The present study used reverse transcription-quantitative polymerase chain reaction, immunohistochemistry and western blotting to detect the expression level of TRIM37 in CRC. The importance of TRIM37 in cell proliferation, invasion and metastasis of CRC were investigated through overexpressing or knocking-down of TRIM37 in CRC cell lines, to observe its function. The present study revealed that TRIM37 was overexpressed in human CRC tissues. High TRIM37 expression resulted in increased CRC proliferation, migration and invasion. Mechanistically, it was confirmed that TRIM37 enhanced invasion and metastasis of CRC via the epithelial-mesenchymal transition pathway. In conclusion, the present study suggested that TRIM3 may contribute to CRC and act as a potential therapeutic target for CRC treatment. PMID:28098873

  16. Sirtuins and Cancer: Role in the Epithelial-Mesenchymal Transition

    PubMed Central

    Della-Morte, David; Capuani, Barbara; Silvestris, Franco

    2016-01-01

    The human sirtuins (SIRT1–SIRT7) enzymes are a highly conserved family of NAD+-dependent histone deacetylases, which play a critical role in the regulation of a large number of metabolic pathways involved in stress response and aging. Cancer is an age-associated disease, and sirtuins may have a considerable impact on a plethora of processes that regulate tumorigenesis. In particular, growing evidence suggests that sirtuins may modulate epithelial plasticity by inducing transcriptional reprogramming leading to epithelial-mesenchymal transition (EMT), invasion, and metastases. Though commonly regarded as EMT inducers, sirtuins may also suppress this process, and their functional properties seem to largely depend on the cellular context, stage of cancer development, tissue of origin, and microenvironment architecture. Here, we review the role of sirtuins in cancer biology with particular emphasis on their role in EMT. PMID:27379175

  17. Evidence for epithelial-mesenchymal transitions in adult liver cells.

    PubMed

    Sicklick, Jason K; Choi, Steve S; Bustamante, Marcia; McCall, Shannon J; Pérez, Elizabeth Hernández; Huang, Jiawen; Li, Yin-Xiong; Rojkind, Marcos; Diehl, Anna Mae

    2006-10-01

    Both myofibroblastic hepatic stellate cells (HSC) and hepatic epithelial progenitors accumulate in damaged livers. In some injured organs, the ability to distinguish between fibroblastic and epithelial cells is sometimes difficult because cells undergo epithelial-mesenchymal transitions (EMT). During EMT, cells coexpress epithelial and mesenchymal cell markers. To determine whether EMT occurs in adult liver cells, we analyzed the expression profile of primary HSC, two HSC lines, and hepatic epithelial progenitors. As expected, all HSC expressed HSC markers. Surprisingly, these markers were also expressed by epithelial progenitors. In addition, one HSC line expressed typical epithelial progenitor mRNAs, and these epithelial markers were inducible in the second HSC line. In normal and damaged livers, small ductular-type cells stained positive for an HSC marker. In conclusion, HSC and hepatic epithelial progenitors both coexpress epithelial and mesenchymal markers, providing evidence that EMT occurs in adult liver cells.

  18. Epithelial-mesenchymal transition in prostate cancer: an overview.

    PubMed

    Montanari, Micaela; Rossetti, Sabrina; Cavaliere, Carla; D'Aniello, Carmine; Malzone, Maria Gabriella; Vanacore, Daniela; Di Franco, Rossella; La Mantia, Elvira; Iovane, Gelsomina; Piscitelli, Raffaele; Muscariello, Raffaele; Berretta, Massimiliano; Perdonà, Sisto; Muto, Paolo; Botti, Gerardo; Bianchi, Attilio Antonio Montano; Veneziani, Bianca Maria; Facchini, Gaetano

    2017-05-23

    Prostate cancer is a main urological disease associated with significant morbidity and mortality. Radical prostatectomy and radiotherapy are potentially curative for localized prostate cancer, while androgen deprivation therapy is the initial systemic therapy for metastatic prostate disease. However, despite temporary response, most patients relapse and evolve into castration resistant cancer.Epithelial-mesenchymal transition (EMT) is a complex gradual process that occurs during embryonic development and/or tumor progression. During this process, cells lose their epithelial characteristics and acquire mesenchymal features. Increasing evidences indicate that EMT promotes prostate cancer metastatic progression and it is closely correlated with increased stemness and drug resistance.In this review, we discuss the main molecular events that directly or indirectly govern the EMT program in prostate cancer, in order to better define the role and the mechanisms underlying this process in prostate cancer progression and therapeutic resistance.

  19. Metadherin regulates epithelial-mesenchymal transition in carcinoma.

    PubMed

    Wang, Zhao; Tang, Zheng-Yan; Yin, Zhuo; Wei, Yong-Bao; Liu, Long-Fei; Yan, Bin; Zhou, Ke-Qin; Nian, Ye-Qi; Gao, Yun-Liang; Yang, Jin-Rui

    2016-01-01

    Metadherin (MTDH) was first identified in primary human fetal astrocytes exposed to HIV-1 in 2002 and then recognized as an important oncogene mediating tumorigenesis, progression, invasiveness, and metastasis of carcinomas. Epithelial-mesenchymal transition (EMT) is a vital process in embryonic development, organ repair, and cancer progression. MTDH and EMT have also been proved to be related to the prognosis of patients with cancers. Recent studies reveal a relationship between MTDH overexpression and EMT in some malignancies. This review highlights the overexpression of MTDH and EMT in cancers and their correlations in clinical studies. Positive correlations have been established between MTDH and mesenchymal biomarkers, and negative correlations between MTDH and epithelial biomarkers have also been established. Furthermore, experiments reveal EMT regulated by MTDH, and some signal pathways have been established. Some anticancer drugs targeting MTDH and EMT are introduced in this review. Some perspectives concerning EMT regulation by MTDH are also presented in this review.

  20. Targeting epithelial-mesenchymal transition and cancer stem cells for chemoresistant ovarian cancer

    PubMed Central

    Deng, Junli; Wang, Li; Chen, Hongmin; Hao, Jingli; Ni, Jie; Chang, Lei; Duan, Wei; Graham, Peter; Li, Yong

    2016-01-01

    Chemoresistance is the main challenge for the recurrent ovarian cancer therapy and responsible for treatment failure and unfavorable clinical outcome. Understanding mechanisms of chemoresistance in ovarian cancer would help to predict disease progression, develop new therapies and personalize systemic therapy. In the last decade, accumulating evidence demonstrates that epithelial-mesenchymal transition and cancer stem cells play important roles in ovarian cancer chemoresistance and metastasis. Treatment of epithelial-mesenchymal transition and cancer stem cells holds promise for improving current ovarian cancer therapies and prolonging the survival of recurrent ovarian cancer patients in the future. In this review, we focus on the role of epithelial-mesenchymal transition and cancer stem cells in ovarian cancer chemoresistance and explore the therapeutic implications for developing epithelial-mesenchymal transition and cancer stem cells associated therapies for future ovarian cancer treatment. PMID:27304054

  1. Signaling mechanisms of the epithelial-mesenchymal transition

    PubMed Central

    Gonzalez, David M.; Medici, Damian

    2015-01-01

    The epithelial-mesenchymal transition (EMT) is an essential mechanism in embryonic development and tissue repair. EMT also contributes to the progression of disease, including organ fibrosis and cancer. EMT, as well as a similar transition occurring in vascular endothelial cells called endothelial-mesenchymal transition (EndMT), results from the induction of transcription factors that alter gene expression to promote loss of cell-cell adhesion, leading to a shift in cytoskeletal dynamics and a change from epithelial morphology and physiology to the mesenchymal phenotype. Transcription program switching in EMT is induced by signaling pathways mediated by transforming growth factor β (TGF-b) and bone morphogenetic protein (BMP), Wnt–β-catenin, Notch, Hedgehog, and receptor tyrosine kinases. These pathways are activated by various dynamic stimuli from the local microenvironment, including growth factors and cytokines, hypoxia, and contact with the surrounding extracellular matrix (ECM). We discuss how these pathways crosstalk and respond to signals from the microenvironment to regulate the expression and function of EMT-inducing transcription factors in development, physiology, and disease. Understanding these mechanisms will enable the therapeutic control of EMT to promote tissue regeneration, treat fibrosis, and prevent cancer metastasis. PMID:25249658

  2. Signaling mechanisms of the epithelial-mesenchymal transition.

    PubMed

    Gonzalez, David M; Medici, Damian

    2014-09-23

    The epithelial-mesenchymal transition (EMT) is an essential mechanism in embryonic development and tissue repair. EMT also contributes to the progression of disease, including organ fibrosis and cancer. EMT, as well as a similar transition occurring in vascular endothelial cells called endothelial-mesenchymal transition (EndMT), results from the induction of transcription factors that alter gene expression to promote loss of cell-cell adhesion, leading to a shift in cytoskeletal dynamics and a change from epithelial morphology and physiology to the mesenchymal phenotype. Transcription program switching in EMT is induced by signaling pathways mediated by transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP), Wnt-β-catenin, Notch, Hedgehog, and receptor tyrosine kinases. These pathways are activated by various dynamic stimuli from the local microenvironment, including growth factors and cytokines, hypoxia, and contact with the surrounding extracellular matrix (ECM). We discuss how these pathways crosstalk and respond to signals from the microenvironment to regulate the expression and function of EMT-inducing transcription factors in development, physiology, and disease. Understanding these mechanisms will enable the therapeutic control of EMT to promote tissue regeneration, treat fibrosis, and prevent cancer metastasis. Copyright © 2014, American Association for the Advancement of Science.

  3. Epithelial-mesenchymal transition in tissue repair and fibrosis.

    PubMed

    Stone, Rivka C; Pastar, Irena; Ojeh, Nkemcho; Chen, Vivien; Liu, Sophia; Garzon, Karen I; Tomic-Canic, Marjana

    2016-09-01

    The epithelial-mesenchymal transition (EMT) describes the global process by which stationary epithelial cells undergo phenotypic changes, including the loss of cell-cell adhesion and apical-basal polarity, and acquire mesenchymal characteristics that confer migratory capacity. EMT and its converse, MET (mesenchymal-epithelial transition), are integral stages of many physiologic processes and, as such, are tightly coordinated by a host of molecular regulators. Converging lines of evidence have identified EMT as a component of cutaneous wound healing, during which otherwise stationary keratinocytes (the resident skin epithelial cells) migrate across the wound bed to restore the epidermal barrier. Moreover, EMT plays a role in the development of scarring and fibrosis, as the matrix-producing myofibroblasts arise from cells of the epithelial lineage in response to injury but are pathologically sustained instead of undergoing MET or apoptosis. In this review, we summarize the role of EMT in physiologic repair and pathologic fibrosis of tissues and organs. We conclude that further investigation into the contribution of EMT to the faulty repair of fibrotic wounds might identify components of EMT signaling as common therapeutic targets for impaired healing in many tissues. Graphical Abstract Model for injury-triggered EMT activation in physiologic wound repair (left) and fibrotic wound healing (right).

  4. Mechanisms of Epithelial-Mesenchymal Transition by TGF-β

    PubMed Central

    Wendt, Michael K.; Allington, Tressa M.; Schiemann, William P.

    2010-01-01

    Summary The formation of epithelial cell barriers results from the defined spatiotemporal differentiation of stem cells into a specialized and polarized epithelium, a process termed mesenchymal-epithelial transition. The reverse process, epithelial-mesenchymal transition (EMT), is a metastable process that enables polarized epithelial cells acquire a motile fibroblastoid phenotype. Physiological EMT also plays an essential role in promoting tissue healing, remodeling, or repair in response to a variety of pathological insults. On the other hand, pathophysiological EMT is a critical step in mediating the acquisition of metastatic phenotypes by localized carcinomas. Although metastasis clearly is the most lethal aspect of cancer, our knowledge of the molecular events that govern its development, including those underlying EMT, remain relatively undefined. Transforming growth factor-β (TGF-β) is a multifunctional cytokine that oversees and directs all aspects of cell development, differentiation, and homeostasis, as well as suppresses their uncontrolled proliferation and transformation. Quite dichotomously, tumorigenesis subverts the tumor suppressing function of TGF-β, and in doing so, converts TGF-β to a tumor promoter that stimulates pathophysiological EMT and metastasis. It therefore stands to reason that determining how TGF-β induces EMT in developing neoplasms will enable science and medicine to produce novel pharmacological agents capable of preventing its ability to do so, thereby improving the clinical course of cancer patients. Here we review the cellular, molecular, and microenvironmental mechanisms used by TGF-β to mediate its stimulation of EMT in normal and malignant cells. PMID:19852727

  5. Gli promotes epithelial-mesenchymal transition in human lung adenocarcinomas

    PubMed Central

    Jin, Joy Q.; Woodard, Gavitt A.; Tolani, Bhairavi; Luh, Thomas M.; Giroux-Leprieur, Etienne; Mo, Minli; Chen, Zhao; Che, Juanjuan; Zhang, Zhenfa; Zhou, Yong; Wang, Lei; Hao, Xishan; Jablons, David; Wang, Changli; He, Biao

    2016-01-01

    Adenocarcinoma is the most common type of lung cancer. Epithelial-mesenchymal transition (EMT) is required for tumor invasion/metastasis and the components that control this process are potential therapeutic targets. This study we examined the role of Gli in lung adenocarcinoma and whether its activation regulates metastasis through EMT in lung adenocarcinoma. We found that tumors with high Gli expression had significantly lower E-Cadherin expression in two independent cohorts of patients with lung adenocarcinoma that we studied. In vitro up-regulation of SHh resulted in increased cell migration while small molecule inhibitors of Smo or Gli significantly reduced cell mobility both in a wound healing assay and in a 3D cell invasion assay. Inhibition of Gli in vivo decreased tumor growth and induced an increase in E-Cadherin expression. Our results indicate that Gli may be critical for lung adenocarcinoma metastasis and that a novel Gli inhibitor shows promise as a therapeutic agent by preventing cell migration and invasion in vitro and significantly reducing tumor growth and increasing E-Cadherin expression in vivo. PMID:27533453

  6. Osteopontin—A Master Regulator of Epithelial-Mesenchymal Transition

    PubMed Central

    Kothari, Anai N.; Arffa, Matthew L.; Chang, Victor; Blackwell, Robert H.; Syn, Wing-Kin; Zhang, Jiwang; Mi, Zhiyong; Kuo, Paul C.

    2016-01-01

    Osteopontin (OPN) plays an important functional role in both physiologic and pathologic states. OPN is implicated in the progression of fibrosis, cancer, and metastatic disease in several organ systems. The epithelial-mesenchymal transition (EMT), first described in embryology, is increasingly being recognized as a significant contributor to fibrotic phenotypes and tumor progression. Several well-established transcription factors regulate EMT and are conserved across tissue types and organ systems, including TWIST, zinc finger E-box-binding homeobox (ZEB), and SNAIL-family members. Recent literature points to an important relationship between OPN and EMT, implicating OPN as a key regulatory component of EMT programs. In this review, OPN’s interplay with traditional EMT activators, both directly and indirectly, will be discussed. Also, OPN’s ability to restructure the tissue and tumor microenvironment to indirectly modify EMT will be reviewed. Together, these diverse pathways demonstrate that OPN is able to modulate EMT and provide new targets for directing therapeutics. PMID:27023622

  7. Tempol effect on epithelial-mesenchymal transition induced by hyperglycemia

    PubMed Central

    Jafari, Mohammad; Dadras, Farahnaz; Ghadimipour, Hamid Reza; Seif Rabiei, Mohamad Ali; Khoshjou, Farhad

    2017-01-01

    Background One of common mechanisms in pathophysiology of chronic kidney diseases is epithelial-mesenchymal transition (EMT). On the other hand oxidative stress has been known to participate in kidney damage of diabetic nephropathy (DN). Objectives We studied if tempol, a well-known antioxidant agent, can ameliorate EMT in DN induced in male rats. Materials and Methods Twenty-seven male rats were equally divided in to 4 groups. Group I (control or C), group II (diabetic or D), group III (T) rats which was given tempol (100 mg/kg/day) by gavages for 28 days and group IV (D&T) was diabetic rats that also received same dose of tempol. After treatment, their kidneys were studied by immunohistochemicalstaining. Results Pathological changes in the kidney were detected concurrently with increasing kidney weight and urinary albumin excretion. In addition, EMT indices, i.e. decline of E-cadherin and increase of α SMA staining were significantly emerged in the renal tubular cells of diabetic group and were partially modified in diabetic group which were simultaneously treated by tempol. Conclusions Tempol can modify, but not significantly, EMT induced by DN. PMID:28042546

  8. A proximal activator of transcription in epithelial-mesenchymal transition

    PubMed Central

    Venkov, Christo D.; Link, Andrew J.; Jennings, Jennifer L.; Plieth, David; Inoue, Tsutomu; Nagai, Kojiro; Xu, Carol; Dimitrova, Yoana N.; Rauscher, Frank J.; Neilson, Eric G.

    2007-01-01

    Epithelial-mesenchymal transition (EMT) is an important mechanism for phenotypic conversion in normal development and disease states such as tissue fibrosis and metastasis. While this conversion of epithelia is under tight transcriptional control, few of the key transcriptional proteins are known. Fibroblasts produced by EMT express a gene encoding fibroblast-specific protein 1 (FSP1), which is regulated by a proximal cis-acting promoter element called fibroblast transcription site–1 (FTS-1). In mass spectrometry, chromatin immunoprecipitation, and siRNA studies, we used FTS-1 as a unique probe for mediators of EMT and identified a complex of 2 proteins, CArG box–binding factor–A (CBF-A) and KRAB-associated protein 1 (KAP-1), that bind this site. Epithelial cells engineered to conditionally express recombinant CBF-A (rCBF-A) activate the transcription of FSP1 and undergo EMT. The FTS-1 response element also exists in the promoters modulating a broader EMT transcriptome, including Twist, and Snail, as well as E-cadherin, β-catenin, ZO 1, vimentin, α1(I) collagen, and α–smooth muscle actin, and the induction of rCBF-A appropriately alters their expression as well. We believe formation of the CBF-A/KAP-1/FTS-1 complex is sufficient for the induction of FSP1 and a novel proximal activator of EMT. PMID:17273560

  9. A proximal activator of transcription in epithelial-mesenchymal transition.

    PubMed

    Venkov, Christo D; Link, Andrew J; Jennings, Jennifer L; Plieth, David; Inoue, Tsutomu; Nagai, Kojiro; Xu, Carol; Dimitrova, Yoana N; Rauscher, Frank J; Neilson, Eric G

    2007-02-01

    Epithelial-mesenchymal transition (EMT) is an important mechanism for phenotypic conversion in normal development and disease states such as tissue fibrosis and metastasis. While this conversion of epithelia is under tight transcriptional control, few of the key transcriptional proteins are known. Fibroblasts produced by EMT express a gene encoding fibroblast-specific protein 1 (FSP1), which is regulated by a proximal cis-acting promoter element called fibroblast transcription site-1 (FTS-1). In mass spectrometry, chromatin immunoprecipitation, and siRNA studies, we used FTS-1 as a unique probe for mediators of EMT and identified a complex of 2 proteins, CArG box-binding factor-A (CBF-A) and KRAB-associated protein 1 (KAP-1), that bind this site. Epithelial cells engineered to conditionally express recombinant CBF-A (rCBF-A) activate the transcription of FSP1 and undergo EMT. The FTS-1 response element also exists in the promoters modulating a broader EMT transcriptome, including Twist, and Snail, as well as E-cadherin, beta-catenin, ZO 1, vimentin, alpha1(I) collagen, and alpha-smooth muscle actin, and the induction of rCBF-A appropriately alters their expression as well. We believe formation of the CBF-A/KAP-1/FTS-1 complex is sufficient for the induction of FSP1 and a novel proximal activator of EMT.

  10. Epithelial-mesenchymal transitions in bronchopulmonary dysplasia of newborn rats.

    PubMed

    Yang, Haiping; Fu, Jianhua; Xue, Xindong; Yao, Li; Qiao, Lin; Hou, Ana; Jin, Linlin; Xing, Yujiao

    2014-11-01

    Bronchopulmonary dysplasia (BPD) is a major threat to the health of premature infants yet its pathogenesis is not fully understood. Epithelial-mesenchymal transition (EMT) of lung epithelial cells may lead to BPD. To investigate the potential occurrence of EMT in a newborn rat model of BPD. Newborn rats were exposed to a hyperoxic environment within 12 hr of birth. Lung tissue and isolated alveolar epithelial type II cells (AT2 cells) were collected on Days 1, 3, 7, 14, and 21 after hyperoxic exposure. Pathological changes in lung tissue, alveolar development, ultrastructural changes in AT2 cells, co-expression of surfactant associated surfactant protein C (SPC), and α-smooth muscle actin (α-SMA) were investigated. The relative expression of SPC, α-SMA, E-cadherin, and N-cadherin were investigated in lung tissue and isolated AT2 cells. In lung tissue, alveolar development was attenuated from Day 7 onwards in the BPD model group; co-expression of SPC and α-SMA and ultrastructural changes typical of EMT were observed in AT2 cells from rats in the BPD group. SPC and α-SMA expression levels were higher in tissue samples from the BPD group than in control samples. Beginning on Day 7, evidence of a switch from E-cadherin to N-cadherin expression was observed in BPD lung tissue sample and in isolated AT2 cells. EMT of AT2 cells occurred in the hyperoxia-induced newborn rat BPD model and resulted in attenuated alveolar development as a portion of the myofibroblasts accumulated in the lung originated from AT2 cells via EMT. © 2014 Wiley Periodicals, Inc.

  11. Role of Epithelial-Mesenchyme Transition in Chlamydia Pathogenesis.

    PubMed

    Igietseme, Joseph U; Omosun, Yusuf; Stuchlik, Olga; Reed, Matthew S; Partin, James; He, Qing; Joseph, Kahaliah; Ellerson, Debra; Bollweg, Brigid; George, Zenas; Eko, Francis O; Bandea, Claudiu; Liu, Hsi; Yang, Genyan; Shieh, Wun-Ju; Pohl, Jan; Karem, Kevin; Black, Carolyn M

    2015-01-01

    Chlamydia trachomatis genital infection in women causes serious adverse reproductive complications, and is a strong co-factor for human papilloma virus (HPV)-associated cervical epithelial carcinoma. We tested the hypothesis that Chlamydia induces epithelial-mesenchyme transition (EMT) involving T cell-derived TNF-alpha signaling, caspase activation, cleavage inactivation of dicer and dysregulation of micro-RNA (miRNA) in the reproductive epithelium; the pathologic process of EMT causes fibrosis and fertility-related epithelial dysfunction, and also provides the co-factor function for HPV-related cervical epithelial carcinoma. Using a combination of microarrays, immunohistochemistry and proteomics, we showed that chlamydia altered the expression of crucial miRNAs that control EMT, fibrosis and tumorigenesis; specifically, miR-15a, miR-29b, miR-382 and MiR-429 that maintain epithelial integrity were down-regulated, while miR-9, mi-R-19a, miR-22 and miR-205 that promote EMT, fibrosis and tumorigenesis were up-regulated. Chlamydia induced EMT in vitro and in vivo, marked by the suppression of normal epithelial cell markers especially E-cadherin but up-regulation of mesenchymal markers of pathological EMT, including T-cadherin, MMP9, and fibronectin. Also, Chlamydia upregulated pro-EMT regulators, including the zinc finger E-box binding homeobox protein, ZEB1, Snail1/2, and thrombospondin1 (Thbs1), but down-regulated anti-EMT and fertility promoting proteins (i.e., the major gap junction protein connexin 43 (Cx43), Mets1, Add1Scarb1 and MARCKSL1). T cell-derived TNF-alpha signaling was required for chlamydial-induced infertility and caspase inhibitors prevented both infertility and EMT. Thus, chlamydial-induced T cell-derived TNF-alpha activated caspases that inactivated dicer, causing alteration in the expression of reproductive epithelial miRNAs and induction of EMT. EMT causes epithelial malfunction, fibrosis, infertility, and the enhancement of tumorigenesis of HPV

  12. Role of Epithelial-Mesenchyme Transition in Chlamydia Pathogenesis

    PubMed Central

    Igietseme, Joseph U.; Omosun, Yusuf; Stuchlik, Olga; Reed, Matthew S.; Partin, James; He, Qing; Joseph, Kahaliah; Ellerson, Debra; Bollweg, Brigid; George, Zenas; Eko, Francis O.; Bandea, Claudiu; Liu, Hsi; Yang, Genyan; Shieh, Wun-Ju; Pohl, Jan; Karem, Kevin; Black, Carolyn M.

    2015-01-01

    Chlamydia trachomatis genital infection in women causes serious adverse reproductive complications, and is a strong co-factor for human papilloma virus (HPV)-associated cervical epithelial carcinoma. We tested the hypothesis that Chlamydia induces epithelial-mesenchyme transition (EMT) involving T cell-derived TNF-alpha signaling, caspase activation, cleavage inactivation of dicer and dysregulation of micro-RNA (miRNA) in the reproductive epithelium; the pathologic process of EMT causes fibrosis and fertility-related epithelial dysfunction, and also provides the co-factor function for HPV-related cervical epithelial carcinoma. Using a combination of microarrays, immunohistochemistry and proteomics, we showed that chlamydia altered the expression of crucial miRNAs that control EMT, fibrosis and tumorigenesis; specifically, miR-15a, miR-29b, miR-382 and MiR-429 that maintain epithelial integrity were down-regulated, while miR-9, mi-R-19a, miR-22 and miR-205 that promote EMT, fibrosis and tumorigenesis were up-regulated. Chlamydia induced EMT in vitro and in vivo, marked by the suppression of normal epithelial cell markers especially E-cadherin but up-regulation of mesenchymal markers of pathological EMT, including T-cadherin, MMP9, and fibronectin. Also, Chlamydia upregulated pro-EMT regulators, including the zinc finger E-box binding homeobox protein, ZEB1, Snail1/2, and thrombospondin1 (Thbs1), but down-regulated anti-EMT and fertility promoting proteins (i.e., the major gap junction protein connexin 43 (Cx43), Mets1, Add1Scarb1 and MARCKSL1). T cell-derived TNF-alpha signaling was required for chlamydial-induced infertility and caspase inhibitors prevented both infertility and EMT. Thus, chlamydial-induced T cell-derived TNF-alpha activated caspases that inactivated dicer, causing alteration in the expression of reproductive epithelial miRNAs and induction of EMT. EMT causes epithelial malfunction, fibrosis, infertility, and the enhancement of tumorigenesis of HPV

  13. Epithelial-mesenchymal transition and senescence: two cancer-related processes are crossing paths

    PubMed Central

    Smit, Marjon A.; Peeper, Daniel S.

    2010-01-01

    The epithelial-mesenchymal transition is involved in several physiological processes. However, it is also believed to contribute to cancer progression. Conversely, cellular senescence constitutes a failsafe program against cancer progression. Interestingly, EMT and senescence seem to cross paths, with several factors playing dominant roles in both settings. Here, we describe recent observations that link these important cellular processes. PMID:20975209

  14. The mutually regulatory loop of epithelial-mesenchymal transition and immunosuppression in cancer progression.

    PubMed

    Chen, Limo; Heymach, John V; Qin, F Xiao-Feng; Gibbons, Don L

    2015-05-01

    Epithelial-mesenchymal transition and immunosuppression are crucial for cancer metastasis and treatment resistance. The mechanism by which these distinct processes are co-opted remains incompletely understood. Our recent work has exposed the "dirty affairs" of the 2 at the tumor site, thus calling for a combined therapy to break such a dangerous liaison.

  15. TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition.

    PubMed

    Zhang, Heng; Liu, Chen-Ying; Zha, Zheng-Yu; Zhao, Bin; Yao, Jun; Zhao, Shimin; Xiong, Yue; Lei, Qun-Ying; Guan, Kun-Liang

    2009-05-15

    The TAZ transcription co-activator has been shown to promote cell proliferation and to induce epithelial-mesenchymal transition. Recently we have demonstrated that TAZ is phosphorylated and inhibited by the Hippo tumor suppressor pathway, which is altered in human cancer. The mechanism of TAZ-mediated transcription is unclear. We demonstrate here that TEAD is a key downstream transcription factor mediating the function of TAZ. Disruption of TEAD-TAZ binding or silencing of TEAD expression blocked the function of TAZ to promote cell proliferation and to induce epithelial-mesenchymal transition, demonstrating TEAD as a key downstream effector of TAZ. We also identified CTGF, a gene that regulates cell adhesion, proliferation, and migration, as a direct target of TAZ and TEAD. Our study establishes a functional partnership between TAZ and TEAD under negative regulation by the Hippo signaling pathway.

  16. Epithelial-mesenchymal transition: molecular pathways of hepatitis viruses-induced hepatocellular carcinoma progression.

    PubMed

    Panebianco, Concetta; Saracino, Chiara; Pazienza, Valerio

    2014-08-01

    Hepatocellular carcinoma is the fifth most common tumor and the third cause of death for cancer in the world. Among the main causative agents of this tumor is the chronic infection by hepatitis viruses B and C, which establish a context of chronic inflammation degenerating in fibrosis, cirrhosis, and, finally, cancer. Recent findings, however, indicate that hepatitis viruses are not only responsible for cancer onset but also for its progression towards metastasis. Indeed, they are able to promote epithelial-mesenchymal transition, a process of cellular reprogramming underlying tumor spread. In this manuscript, we review the currently known molecular mechanisms by which hepatitis viruses induce epithelial-mesenchymal transition and, thus, hepatocellular carcinoma progression.

  17. Testing the differential adhesion hypothesis across the epithelial-mesenchymal transition

    NASA Astrophysics Data System (ADS)

    Pawlizak, Steve; Fritsch, Anatol W.; Grosser, Steffen; Ahrens, Dave; Thalheim, Tobias; Riedel, Stefanie; Kießling, Tobias R.; Oswald, Linda; Zink, Mareike; Manning, M. Lisa; Käs, Josef A.

    2015-08-01

    We analyze the mechanical properties of three epithelial/mesenchymal cell lines (MCF-10A, MDA-MB-231, MDA-MB-436) that exhibit a shift in E-, N- and P-cadherin levels characteristic of an epithelial-mesenchymal transition associated with processes such as metastasis, to quantify the role of cell cohesion in cell sorting and compartmentalization. We develop a unique set of methods to measure cell-cell adhesiveness, cell stiffness and cell shapes, and compare the results to predictions from cell sorting in mixtures of cell populations. We find that the final sorted state is extremely robust among all three cell lines independent of epithelial or mesenchymal state, suggesting that cell sorting may play an important role in organization and boundary formation in tumours. We find that surface densities of adhesive molecules do not correlate with measured cell-cell adhesion, but do correlate with cell shapes, cell stiffness and the rate at which cells sort, in accordance with an extended version of the differential adhesion hypothesis (DAH). Surprisingly, the DAH does not correctly predict the final sorted state. This suggests that these tissues are not behaving as immiscible fluids, and that dynamical effects such as directional motility, friction and jamming may play an important role in tissue compartmentalization across the epithelial-mesenchymal transition.

  18. Combined proteasome and histone deacetylase inhibition attenuates epithelial-mesenchymal transition through E-cadherin in esophageal cancer cells.

    PubMed

    Taylor, Matthew D; Liu, Yuan; Nagji, Alykhan S; Theodosakis, Nicholas; Jones, David R

    2010-05-01

    Metastasis is thought to be governed partially by induction of epithelial-mesenchymal transition. Combination of proteasome and histone deacetylase inhibitors has shown significant promise, but no studies have investigated this in esophageal cancer. This study investigated effects of vorinostat (histone deacetylase inhibitor) and bortezomib (proteasome inhibitor) on esophageal cancer epithelial-mesenchymal transition. Three-dimensional tumor spheroids mimicking tumor architecture were created with esophageal squamous and adenocarcinoma cancer cells. Cells were treated with tumor necrosis factor alpha (to simulate proinflammatory tumor milieu) and transforming growth factor beta (cytokine critical for induction of epithelial-mesenchymal transition). Tumor models were then treated with vorinostat, bortezomib, or both. Cytotoxic assays assessed cell death. Messenger RNA and protein expressions of metastasis suppressor genes were assessed. After treatment, Boyden chamber invasion assays were performed. Combined therapy resulted in 3.7-fold decrease in adenocarcinoma cell invasion (P = .002) and 2.8-fold decrease in squamous cell invasion (P = .003). Three-dimensional invasion assays demonstrated significant decrease in epithelial-mesenchymal transition after combined therapy. Quantitative reverse transcriptase polymerase chain reaction and Western blot analyses revealed robust rescue of E-cadherin transcription and protein expression after combined therapy. Importantly, inhibition of the E-cadherin gene resulted in abolition of the salutary benefits of combined therapy, highlighting the importance of this metastasis suppressor gene in the epithelial-mesenchymal transition process. Combined vorinostat and bortezomib therapy significantly decreased esophageal cancer epithelial-mesenchymal transition. This combined therapeutic effect on esophageal cancer epithelial-mesenchymal transition was associated with upregulation of E-cadherin protein expression. 2010 The American

  19. Hyaluronan: a critical component of epithelial-mesenchymal and epithelial-carcinoma transitions.

    PubMed

    Toole, Bryan P; Zoltan-Jones, Alexandra; Misra, Suniti; Ghatak, Shibnath

    2005-01-01

    Hyaluronan plays a central role in the transition of epithelia to mesenchyme in the embryo and in the acquisition of transformed properties in carcinoma cells. In some cases, hyaluronan is both essential and sufficient for induction of epithelial-mesenchymal transitions (EMTs). Underlying its role are the effects of hyaluronan on receptor kinase activities, cell survival pathways, and multidrug transporters. A more complete understanding of the mechanisms whereby hyaluronan exerts its influences on cell behavior will enhance our understanding of normal and pathological EMTs and may lead to improved therapies for cancer patients.

  20. Yes-associated protein (YAP) expression is involved in epithelial-mesenchymal transition in hepatocellular carcinoma.

    PubMed

    Wang, S; Li, H; Wang, G; Zhang, T; Fu, B; Ma, M; Quan, Z; Chen, G

    2016-02-01

    To investigate biological impact of the downregulation of yes-associated protein (YAP) through RNA interference in the process of epithelial-mesenchymal transition in MHCC97H and MHCC97L. MHCC97H and MHCC97L cells were transiently transfected by YAP-siRNA. Furthermore, protein expressions and mRNA levels of characteristic markers of epithelial-mesenchymal transition (E-cadherin, N-cadherin) were examined by Western blotting and real-time polymerase chain reaction, and transwell invasion assay was used to detect changes of invasiveness of MHCC97H and MHCC97L cells. The transfected group with YAP-siRNA in MHCC97H after 72 h by Western blotting showed obviously higher expression of E-cadherin compared with the control group (P < 0.05), and lower expression of N-cadherin (P < 0.05). In MHCC97L cells, the expression of E-cadherin was also significantly increased (P < 0.05); however, N-cadherin expression did not significantly change (P > 0.05). Moreover, compared with the control group, Transwell invasion assay showed that the number of the transfected groups was significantly decreased in MHCC97H and MHCC97L cell lines (both P < 0.05). The result of real-time polymerase chain reaction indicated that mRNA levels of E-cadherin increased (P < 0.05), but the mRNA levels of N-cadherin did not significantly change (P > 0.05) in these two cell lines, indicating some effects of post-transcriptional regulation mechanism after silencing YAP. YAP expression in human hepatocellular carcinoma cell lines MHCC97H and MHCC97L is closely related with the characteristic markers of epithelial-mesenchymal transition, N-cadherin and E-cadherin expression.

  1. Insulin resistance and necroinflammation drives ductular reaction and epithelial-mesenchymal transition in chronic hepatitis C

    PubMed Central

    Svegliati-Baroni, Gianluca; Faraci, Graziella; Fabris, Luca; Saccomanno, Stefania; Cadamuro, Massimiliano; Pierantonelli, Irene; Trozzi, Luciano; Bugianesi, Elisabetta; Guido, Maria; Strazzabosco, Mario; Benedetti, Antonio; Marchesini, Giulio

    2013-01-01

    Objective To study the mechanism(s) linking insulin resistance (IR) to hepatic fibrosis and the role of the epithelial component in tissue repair and fibrosis in chronic hepatitis C (CHC). Design Prospective observational study. Setting Tertiary care academic centre. Patients 78 consecutive patients with CHC. Main outcome measures IR, calculated by the oral glucose insulin sensitivity during oral glucose tolerance test; necroinflammatory activity and fibrosis, defined according to Ishak’s score; steatosis, graded as 0 (<5% of hepatocytes), 1 (5–33%), 2 (33–66%) and 3 (>66%). To evaluate the role of the epithelial component in tissue repair and fibrosis, the expansion of the ductular reaction (DR) was calculated by keratin-7 (CK7) morphometry. Nuclear expression of Snail, downregulation of E-cadherin and expression of fibroblast specific protein-1 (FSP1) and vimentin by CK7-positive cells were used as markers of epithelial-mesenchymal transition in DR elements. Results IR, the degree of necroinflammation and expansion of the DR (stratified as reactive ductular cells (RDCs), hepatic progenitor cells and intermediate hepatobiliary cells according to morphological criteria) were all associated with the stage of fibrosis. Nuclear Snail expression, E-cadherin downregulation and vimentin upregulation were observed in RDCs. By dual immunofluorescence for CK7 and FSP1, the number of RDCs undergoing epithelial-mesenchymal transition progressively increased together with the necroinflammatory score. By multivariate analysis, total inflammation and insulin resistance were the only factors significantly predicting the presence of advanced fibrosis (Ishak score ≥3) and the expansion of RDCs. Conclusion This study indicates that IR is associated with the degree of necroinflammatory injury in CHC and contributes to hepatic fibrosis by stimulating the expansion of RDCs that express epithelial-mesenchymal transition markers. PMID:20966027

  2. Clinical significance of epithelial-mesenchymal transition and cancer stem cells.

    PubMed

    Topcul, Mehmet; Cetin, Idil

    2016-01-01

    Purpose: Spread of cancer cells from the organ of the origin of them to another location, namely metastasis, is one of the most important factors that complicate the treatment of cancer. Therefore, research for the treatment of metastatic disease is gaining importance, especially for advanced cancers. This research focuses on the mechanisms that facilitate the metastatic tendency of cancer cells. Therefore, epithelial-mesenchymal transition (EMT) mechanism that helps the cells become metastatic and cancer stem cells (CSCs) present in the heterogeneous tumor mass are in the center of these researches.

  3. MicroRNA control of epithelial-mesenchymal transition and metastasis.

    PubMed

    Zhang, Jinsong; Ma, Li

    2012-12-01

    The great majority of cancer deaths are due to metastasis, which remains a poorly understood pathological process. The formation of a metastasis reflects a succession of complex steps leading to the macroscopic outgrowth of disseminated tumor cells at the secondary site. In the past 5 years, certain microRNAs (miRNAs) have been shown to regulate either a single step or multiple steps of metastasis, doing so by downregulating the expression of their target genes. In this review, we discuss recent studies on the functions and molecular mechanisms of miRNAs in regulating epithelial-mesenchymal transition (EMT) and cancer metastasis.

  4. Epithelial-mesenchymal transition as a therapeutic target for overcoming chemoresistance in pancreatic cancer

    PubMed Central

    Elaskalani, Omar; Razak, Norbaini Binti Abdol; Falasca, Marco; Metharom, Pat

    2017-01-01

    Pancreatic cancer has one of the worst prognoses among all cancers due to the late manifestation of identifiable symptoms and high resistance to chemo- and radiation therapies. In recent years, a cancer development phase termed epithelial-mesenchymal transition (EMT) has gained increasing research focus. The process is implicated in tumour metastasis, and emerging evidence suggests EMT also contributes or induces chemoresistance in several cancers. Nevertheless, the applicability of therapeutic targeting of EMT faces many challenges. In this mini-review, we summarise the evidence supporting the role of EMT in pancreatic cancer progression, focusing particularly on its association with chemoresistance. PMID:28144398

  5. TGF-β induced epithelial-mesenchymal transition modeling

    NASA Astrophysics Data System (ADS)

    Xenitidis, P.; Seimenis, I.; Kakolyris, S.; Adamopoulos, A.

    2015-09-01

    Epithelial cells may undergo a process called epithelial to mesenchymal transition (EMT). During EMT, cells lose their epithelial characteristics and acquire a migratory ability. Transforming growth factor-beta (TGF-β) signaling is considered to play an important role in EMT by regulating a set of genes through a gene regulatory network (GRN). This work aims at TGF-β induced EMT GRN modeling using publicly available experimental data (gene expression microarray data). The time-series network identification (TSNI) algorithm was used for inferring the EMT GRN. Receiver operating characteristic (ROC) and precision-recall (P-R) curves were constructed and the areas under them were used for evaluating the algorithm performance regarding network inference.

  6. Lung cancer exosomes as drivers of epithelial mesenchymal transition

    PubMed Central

    Rahman, Mohammad A.; Barger, Jennifer F.; Lovat, Francesca; Gao, Min; Otterson, Gregory A.; Nana-Sinkam, Patrick

    2016-01-01

    Exosomes, a subgroup of extracellular vesicles (EVs), have been shown to serve as a conduit for the exchange of genetic information between cells. Exosomes are released from all types of cells but in abundance from cancer cells. The contents of exosomes consist of proteins and genetic material (mRNA, DNA and miRNA) from the cell of origin. In this study, we examined the effects of exosomes derived from human lung cancer serum and both highly metastatic and non-metastatic cells on recipient human bronchial epithelial cells (HBECs). We found that exosomes derived from highly metastatic lung cancer cells and human late stage lung cancer serum induced vimentin expression, and epithelial to mesenchymal transition (EMT) in HBECs. Exosomes derived from highly metastatic cancer cells as well as late stage lung cancer serum induce migration, invasion and proliferation in non-cancerous recipient cells. Our results suggest that cancer derived exosomes could be a potential mediator of EMT in the recipient cells. PMID:27363026

  7. Epithelial-mesenchymal transitions of bile duct epithelial cells in primary hepatolithiasis.

    PubMed

    Zhao, Lijin; Yang, Rigao; Cheng, Long; Wang, Maijian; Jiang, Yan; Wang, Shuguang

    2010-07-01

    The purpose of this study was to explore the role of epithelial-mesenchymal transition in the pathogenesis of hepatolithiasis. Thirty-one patients with primary hepatolithiasis were enrolled in this study. Expressions of E-cadherin, alpha-catenin, alpha-SMA, vimentin, S100A4, TGF-beta1 and P-smad2/3 in hepatolithiasis bile duct epithelial cells were examined by immunohistochemistry staining. The results showed that the expressions of the epithelial markers E-cadherin and alpha-catenin were frequently lost in hepatolithiasis (32.3% and 25.9% of cases, respectively), while the mesenchymal markers vimentin, alpha-SMA and S100A4 were found to be present in hepatolithiasis (35.5%, 29.0%, and 32.3% of cases, respectively). The increased mesenchymal marker expression was correlated with decreased epithelial marker expression. The expressions of TGF-beta1 and P-smad2/3 in hepatolithiasis were correlated with the expression of S100A4. These data indicate that TGF-beta1-mediated epithelial-mesenchymal transition might be involved in the formation of hepatolithiasis.

  8. Hippo transducer TAZ promotes epithelial mesenchymal transition and supports pancreatic cancer progression

    PubMed Central

    Xie, Dacheng; Cui, Jiujie; Xia, Tian; Jia, Zhiliang; Wang, Liang; Wei, Wenfei; Zhu, Anna; Gao, Yong; Xie, Keping; Quan, Ming

    2015-01-01

    Transcriptional co-activator with PDZ binding motif (TAZ) is a transducer of the Hippo pathway and promotes cancer development and progression. In the present study, we sought to determine the roles and underlying mechanisms of elevated expression and activation of TAZ in pancreatic cancer development and progression. The mechanistic role of TAZ and Hippo signaling in promotion of pancreatic cancer development and progression was examined using cell culture, molecular biology, and mouse models. The relevance of our experimental and mechanistic findings was validated using human pancreatic tumor specimens. We found that TAZ expression was markedly higher in pancreatic tumors than in normal pancreatic tissue. Further analysis of the correlation of TAZ expression with tissue microarray clinicopathologic parameters revealed that this expression was positively associated with tumor differentiation. Also, TAZ expression was higher in pancreatic cancer cell lines than in pancreatic ductal epithelial cells. TAZ activation in pancreatic cancer cells promoted their proliferation, migration, invasion, and epithelial-mesenchymal transition. Further mechanistic studies demonstrated that aberrant expression and activation of TAZ in pancreatic cancer cells resulted from suppression of the expression of Merlin, a positive regulator upstream of the Hippo pathway, and that the oncogenic function of TAZ in pancreatic cancer cells was mediated by TEA/ATTS domain transcription factors. Therefore, TAZ functioned as an oncogene and promoted pancreatic cancer epithelial-mesenchymal transition and progression. TAZ thus may be a target for effective therapeutic strategies for pancreatic cancer. PMID:26416426

  9. CCN1 induces a reversible epithelial-mesenchymal transition in gastric epithelial cells.

    PubMed

    Chai, Jianyuan; Norng, Manith; Modak, Cristina; Reavis, Kevin M; Mouazzen, Wasim; Pham, Jennifer

    2010-08-01

    CCN1 is a matricellular protein that activates many genes related to wound healing and tissue remodeling in fibroblasts, but its effect on epithelial cells remains unclear. This study examined the role of CCN1 in epithelial wound healing using rat gastric epithelial cells and rat stomach ulcer as in vitro and in vivo models, respectively. We found that CCN1 expression is highly upregulated in the epithelial cells adjacent to a wound and remains high until the wound is healed. Upregulation of CCN1 activates a transient epithelial-mesenchymal transition in the epithelial cells at the migrating front and drives wound closure. Once the wound is healed, these epithelial cells and their progeny can resume their original epithelial phenotype. We also found that CCN1-induced E-cadherin loss is not due to transcriptional regulation but rather protein degradation due to the collapse of adherens junctions, which is contributed by beta-catenin translocation. CCN1-activated integrin-linked kinase mediates this process. Finally, our in vivo study showed that locally neutralizing CCN1 drastically impairs wound closure, whereas local injection of recombinant CCN1 protein induces expression of vimentin and smooth muscle alpha-actin in normal gastric mucosal epithelial cells and accelerates re-epithelialization during ulcer healing. In conclusion, our study indicates that CCN1 can induce reversible epithelial-mesenchymal transition, and this feature may have great value for clinical wound healing.

  10. The epithelial mesenchymal transition process may contribute to the pathogenesis of amniotic band syndrome.

    PubMed

    Romero-Valdovinos, M; Bobadilla-Sandoval, N; Flisser, A; Vadillo-Ortega, F

    2014-09-01

    The etiology of the amniotic band syndrome is unknown, and has been subject of debate since the time of Hippocrates. The most accepted theories fail to cover all the abnomalities found in affected children. During organogenesis the epithelial-mesenchymal transition process (EMTP) participates in adequate formation of different organs from three embryo layers. Altered activation of EMTP occurs when the epithelial homeostasis is disturbed, the resulting myofibroblasts are able to secrete extracellular matrix proteins and deposit them on the tissues contributing to a fibrotic phenotype. If injury occurs during organogenesis, wound healing could be exaggerated and fibrotic response could be triggered. The molecule that regulates both of these processes (EMTP and fibrosis) is the transforming growth factor β (TGFβ); indeed null animals for TGFβ isoforms show similar defects than those seen in the amniotic band syndrome. Based on documented evidence this review intends to explain how the epithelial mesenchymal transition process may contribute to the pathogenesis of amniotic band syndrome. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. The epithelial-mesenchymal transition (EMT) is regulated by oncoviruses in cancer.

    PubMed

    Chen, Xue; Bode, Ann M; Dong, Zigang; Cao, Ya

    2016-09-01

    The epithelial-mesenchymal transition (EMT), defined as transdifferentiation of epithelial cells into mesenchymal cells, is critical for embryonic development, wound healing, tissue regeneration, organ fibrosis, and cancer progression. Recently, the role of EMT in carcinogenesis has attracted much attention. Oncoviruses, including human papillomaviruses (HPVs), Epstein-Barr virus (EBV), and hepatitis B and C viruses (HBVs, HCVs), are known to be involved in the etiology of cancer and have been found to play important roles in cancer metastasis, especially in the EMT process. The HPV encoded oncoproteins E6 and E7 (E6/E7), EBV latent membrane protein-1 and -2A, EBV nuclear antigen, HBV-encoded X antigen, and nonstructural HCV protein 5A are all involved in the regulation of EMT. This review primarily focuses on the role of oncoviruses and their encoded proteins or signaling pathways in the EMT process. Understanding their roles will help us in the development of effective strategies for prevention and treatment of virus-related cancers.-Chen, X., Bode, A. M., Dong, Z., Cao, Y. The epithelial-mesenchymal transition (EMT) is regulated by oncoviruses in cancer.

  12. Furin promotes epithelial-mesenchymal transition in pancreatic cancer cells via Hippo-YAP pathway.

    PubMed

    Zhang, Youli; Zhou, Meng; Wei, Hong; Zhou, Hailang; He, Junbo; Lu, Ying; Wang, Dawei; Chen, Baoding; Zeng, Jian; Peng, Wanxin; Du, Fengyi; Gong, Aihua; Xu, Min

    2017-04-01

    Furin, a well-characterized proprotein convertase, plays an important role in many diseases and links to tumor metastasis. However, the role of furin in pancreatic cancer progression remains to be elucidated. In the present study, we found that furin promotes the growth and the epithelial-mesenchymal transition (EMT) of pancreatic cancer cells. First, we found that furin knockdown significantly inhibited proliferation, invasion and migration in BxPC3 and SW1990 cells, while furin overexpression promoted the above behavior in PANC1 and PaTu8988 cells. Further evidence revealed that furin knockdown resulted in the upregulation of E-cadherin (epithelial marker), and the downregulation of N-cadherin and Vimentin (mesenchymal markers) in BxPC3 and SW1990 cells, whereas furin overexpression remarkably led to the opposite effects in PANC1 and PaTu8988 cells. Furthermore, our data showed that Furin knockdown, furin inhibitor D6R or overexpression significantly affected YAP phosphoration level and total YAP protein level, indicating that furin was involved in Hippo-YAP pathway. It is suggested that furin promotes epithelial-mesenchymal transition in pancreatic cancer cells probably via Hippo-YAP pathway and may be a potential target for anti-pancreatic cancer.

  13. Testing the differential adhesion hypothesis across the epithelial-mesenchymal transition

    NASA Astrophysics Data System (ADS)

    Pawlizak, Steve; Fritsch, Anatol; Grosser, Steffen; Oswald, Linda; Manning, Lisa; Kas, Josef

    We analyze the properties of three epithelial/mesenchymal cell lines that exhibit a shift in cadherin levels characteristic of an epithelial-mesenchymal transition (EMT) associated with processes such as metastasis, to quantify the role of cell cohesion in cell sorting and compartmentalization. We develop a unique set of methods to measure cell-cell adhesiveness, cell stiffness and cell shapes, and compare the results to predictions from cell sorting in mixtures of cell populations. We find that the final sorted state is extremely robust among all three cell lines independent of epithelial or mesenchymal state, suggesting that cell sorting may play an important role in organization and boundary formation in tumours. We find that surface densities of adhesive molecules do not correlate with measured cell-cell adhesion, but do correlate with cell shapes, cell stiffness and the rate at which cells sort, in accordance with an extended differential adhesion hypothesis (DAH). Surprisingly, the DAH does not correctly predict the final sorted state. This suggests that these tissues are not behaving as immiscible fluids, and that dynamical effects such as directional motility, friction and jamming may play an important role in tissue compartmentalization across the EMT.

  14. Epithelial-mesenchymal transition (EMT): A biological process in the development, stem cell differentiation, and tumorigenesis.

    PubMed

    Chen, Tong; You, Yanan; Jiang, Hua; Wang, Zack Z

    2017-01-12

    The lineage transition between epithelium and mesenchyme is a process known as epithelial-mesenchymal transition (EMT), by which polarized epithelial cells lose their adhesion property and obtain mesenchymal cell phenotypes. EMT is a biological process that is often involved in embryogenesis and diseases, such as cancer invasion and metastasis. The EMT and the reverse process, mesenchymal-epithelial transition (MET), also play important roles in stem cell differentiation and de-differentiation (or reprogramming). In this review, we will discuss current research progress of EMT in embryonic development, cellular differentiation and reprogramming, and cancer progression, all of which are representative models for researches of stem cell biology in normal and in diseases. Understanding of EMT and MET may help to identify specific markers to distinguish normal stem cells from cancer stem cells in future.

  15. Expression of Proteins Involved in Epithelial-Mesenchymal Transition as Predictors of Metastasis and Survival in Breast Cancer Patients

    DTIC Science & Technology

    2015-01-01

    distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The purpose of this research is to investigate protein expression and promoter region DNA ... DNA and methylation assay. 15. SUBJECT TERMS Breast cancer; molecular epidemiology; epithelial-mesenchymal transition; metastasis; metastasis...suppressor genes; immunohistochemistry; DNA methylation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF

  16. Classification of epithelial-mesenchymal transition phenotypes in esophageal squamous cell carcinoma is strongly associated with patient prognosis.

    PubMed

    Sung, Chang Ohk; Park, Cheol-Keun; Kim, Seok-Hyung

    2011-08-01

    Epithelial-mesenchymal transition is characterized by a loss of cell adhesion and increased cell mobility due to cells gaining a mesenchymal phenotype. During the epithelial-mesenchymal transition process, tumor cells are expected to lose their epithelial phenotype and gradually and sequentially acquire a mesenchymal phenotype. Epithelial-mesenchymal transition is a dynamic and reversible process, which has been observed in patient tissues to display a wide spectrum of phenotypes. However, very little is known about the clinical significance of the different phenotypes of the epithelial-mesenchymal transition. Based on the expression pattern of various epithelial-mesenchymal transition-related proteins, we divided 168 esophageal squamous cell carcinomas into different phenotypes, including complete type; incomplete type, including hybrid type and null type; and a wild type. The clinical significance of each phenotype was investigated. Of the 168 cases, 31 were categorized as complete type, 53 as incomplete type (hybrid type, 26 cases; null type, 27 cases), and 84 as wild type. Epithelial-mesenchymal transition phenotype was significantly associated with tumor size (P=0.021), differentiation (P=0.001), and invasion depth (P<0.001). Overall survival and disease-free survival rates were significantly worse in the complete type, better in the incomplete type, and best in the wild type. Within the incomplete type group, the hybrid type survival curve was similar to that of the complete type, whereas the overall survival of the null type was similar to the wild type. Complete type had a noticeable poorer prognostic effect on survival in patients with early invasion (pT≤2) than it had on survival among patients with advanced invasion (pT≥3). The complete phenotype was an independent prognostic factor for both overall (P=0.009) and disease-free survival (P<0.001). In conclusion, classification of epithelial-mesenchymal transition phenotypes has novel clinical

  17. PLK1 promotes epithelial-mesenchymal transition and metastasis of gastric carcinoma cells

    PubMed Central

    Cai, Xiao Peng; Chen, Liang Dong; Song, Hai Bin; Zhang, Chun Xiao; Yuan, Ze Wei; Xiang, Zhen Xian

    2016-01-01

    Cancer cell epithelial-mesenchymal transition (EMT) is the crucial event for cancer progression and plays a vital role in the metastasis of cancer cells. Activation of Polo-like kinase 1 (PLK1) signaling has been implicated as the critical event in several tumor metastasis and EMT, however, whether PLK1 participates in gastric carcinoma metastasis and EMT still remains unclear. For this study, we elucidated the potential physiological function of PLK1 in the metastasis of gastric tumors, as well its distinct role in cells EMT and subsequently determined the mechanism involved in PLK1 regulated. Immunoblotting assay and Oncomine data mining analysis indicated that PLK1 expression was highly up-regulated in gastric carcinoma. Kaplan-Meier survival analysis for the relationship between survival outcomes and PLK1 expression in gastric carcinoma was performed with an online Kaplan-Meier plotter (http://kmplot.com/analysis/). Over-expression of PLK1 in gastric cancer cells SGC-7901 and MKN-28 significantly promoted cells profound morphological changes and enhanced metastatic ability of tumor cells. On the contrary, silencing of PLK1 induced mesenchymal epithelial transition (MET)-like morphological and inhibited the metastatic process. Furthermore, we found that the metastatic characters promoting effects of PLK1 in gastric carcinoma was related to the activation of protein kinase B (AKT). Our mechanistic investigations revealed that AKT inhibition reversed PLK1-induced EMT, blocked gastric carcinoma cells invasiveness and metastasis. Additionally, over-expression of AKT promoted the migratory and invasion ability of the two cell lines, which was disrupted by PLK1 down-regulation. To conclude, our findings demonstrate that PLK1 accelerates the metastasis and epithelial-mesenchyme transition of gastric cancer cells through regulating the AKT pathway. PMID:27830001

  18. Mechanisms of disease: epithelial-mesenchymal transition and back again: does cellular plasticity fuel neoplastic progression?

    SciTech Connect

    Bissell, Mina J; Turley, Eva A.; Veiseh, Mandana; Radisky, Derek C.; Bissell, Mina J.

    2008-02-13

    Epithelial-mesenchymal transition (EMT) is a conversion that facilitates organ morphogenesis and tissue remodeling in physiological processes such as embryonic development and wound healing. A similar phenotypic conversion is also detected in fibrotic diseases and neoplasia, which is associated with disease progression. EMT in cancer epithelial cells often seems to be an incomplete and bi-directional process. In this Review, we discuss the phenomenon of EMT as it pertains to tumor development, focusing on exceptions to the commonly held rule that EMT promotes invasion and metastasis. We also highlight the role of the RAS-controlled signaling mediators, ERK1, ERK2 and PI3-kinase, as microenvironmental responsive regulators of EMT.

  19. Inflammatory microenvironment contributes to epithelial-mesenchymal transition in gastric cancer

    PubMed Central

    Ma, Hui-Ying; Liu, Xin-Zhou; Liang, Chun-Min

    2016-01-01

    Gastric cancer (GC) is the fifth most common malignancy in the world. The major cause of GC is chronic infection with Helicobacter pylori (H. pylori). Infection with H. pylori leads to an active inflammatory microenvironment that is maintained by immune cells such as T cells, macrophages, natural killer cells, among other cells. Immune cell dysfunction allows the initiation and accumulation of mutations in GC cells, inducing aberrant proliferation and protection from apoptosis. Meanwhile, immune cells can secrete certain signals, including cytokines, and chemokines, to alter intracellular signaling pathways in GC cells. Thus, GC cells obtain the ability to metastasize to lymph nodes by undergoing the epithelial-mesenchymal transition (EMT), whereby epithelial cells lose their epithelial attributes and acquire a mesenchymal cell phenotype. Metastasis is a leading cause of death for GC patients, and the involved mechanisms are still under investigation. In this review, we summarize the current research on how the inflammatory environment affects GC initiation and metastasis via EMT. PMID:27547005

  20. Targeting Epithelial-Mesenchymal Transition (EMT) to Overcome Drug Resistance in Cancer.

    PubMed

    Du, Bowen; Shim, Joong Sup

    2016-07-22

    Epithelial-mesenchymal transition (EMT) is known to play an important role in cancer progression, metastasis and drug resistance. Although there are controversies surrounding the causal relationship between EMT and cancer metastasis, the role of EMT in cancer drug resistance has been increasingly recognized. Numerous EMT-related signaling pathways are involved in drug resistance in cancer cells. Cells undergoing EMT show a feature similar to cancer stem cells (CSCs), such as an increase in drug efflux pumps and anti-apoptotic effects. Therefore, targeting EMT has been considered a novel opportunity to overcome cancer drug resistance. This review describes the mechanism by which EMT contributes to drug resistance in cancer cells and summarizes new advances in research in EMT-associated drug resistance.

  1. Molecular mechanisms of microRNAs in regulating epithelial-mesenchymal transitions in human cancers.

    PubMed

    Tang, Jinlong; Li, Yuan; Wang, Jingyu; Wen, Zhineng; Lai, Maode; Zhang, Honghe

    2016-02-28

    The epithelial-mesenchymal transition (EMT) provides a strong driving force in the progression of various human cancers and the development of chemoresistance. Recently, numbers of studies have demonstrated that microRNAs (miRNAs), by post-transcriptionally silencing EMT-related molecules, can promote or inhibit the EMT process and play pivotal roles in effectively manipulating the occurrence, development, invasion, and metastasis of cancers. MiRNAs can also control the EMT or be controlled by genetic modification and mutual regulation, especially negative feedback. Therefore, miRNAs can be viewed as either oncogenes or tumor suppressor genes to facilitate or retard the EMT, resulting in far-reaching impact on tumor metastasis and effective diagnosis, treatment, and prognosis.

  2. CYB5R1 links epithelial-mesenchymal transition and poor prognosis in colorectal cancer

    PubMed Central

    Lamprecht, Sebastian; Engel, Jutta; Hermeking, Heiko; Kirchner, Thomas; Horst, David

    2016-01-01

    Colorectal cancers show significant tumor cell heterogeneity within the same core genetic background. Epithelial-mesenchymal transition (EMT) is an important functional aspect of this heterogeneity and hallmark of colorectal cancer progression. Here, we identify CYB5R1, an enzyme involved in oxidative stress protection and drug metabolism, as an indicator of EMT in colon cancer. We demonstrate high CYB5R1 expression in colorectal cancer cells undergoing EMT at the infiltrative tumor edge and reveal an extraordinarily strong association of CYB5R1 expression with two core EMT gene expression signatures in a large independent colon cancer data set from The Cancer Genome Atlas (TCGA). Furthermore, we demonstrate that CYB5R1 is required for an infiltrative tumor cell phenotype, and robustly linked with poor prognosis in colorectal cancer. Our findings have important implications for colon cancer cells undergoing EMT and may be exploited for diagnostic and therapeutic purposes. PMID:27120783

  3. The epithelial-mesenchymal transition in cancer: a potential critical topic for translational proteomic research.

    PubMed

    Bottoni, Patrizia; Isgrò, Maria Antonietta; Scatena, Roberto

    2016-01-01

    The epithelial-mesenchymal transition (EMT) is a morphogenetic process that results in a loss of epithelial characteristics and the acquisition of a mesenchymal phenotype. First described in embryogenesis, the EMT has been recently implicated in carcinogenesis and tumor progression. In addition, recent evidence has shown that stem-like cancer cells present the hallmarks of the EMT. Some of the molecular mechanisms related to the interrelationships between cancer pathophysiology and the EMT are well-defined. Nevertheless, the precise molecular mechanism by which epithelial cancer cells acquire the mesenchymal phenotype remains largely unknown. This review focuses on various proteomic strategies with the goal of better understanding the physiological and pathological mechanisms of the EMT process.

  4. ΔNp63α and microRNAs: leveraging the epithelial-mesenchymal transition

    PubMed Central

    Stacy, Andrew J.; Craig, Michael P.; Sakaram, Suraj; Kadakia, Madhavi

    2017-01-01

    The epithelial-mesenchymal transition (EMT) is a cellular reprogramming mechanism that is an underlying cause of cancer metastasis. Recent investigations have uncovered an intricate network of regulation involving the TGFβ Wnt, and Notch signaling pathways and small regulatory RNA species called microRNAs (miRNAs). The activity of a transcription factor vital to the maintenance of epithelial stemness, ?Np63a, has been shown to modulate the activity of these EMT pathways to either repress or promote EMT. Furthermore, ?Np63a is a known regulator of miRNA, including those directly involved in EMT. This review discusses the evidence of ?Np63a as a master regulator of EMT components and miRNA, highlighting the need for a deeper understanding of its role in EMT. This expanded knowledge may provide a basis for new developments in the diagnosis and treatment of metastatic cancer. PMID:27924063

  5. Discoidin domain receptor 2 is a critical regulator of epithelial-mesenchymal transition

    PubMed Central

    Walsh, Logan A.; Nawshad, Ali; Medici, Damian

    2011-01-01

    Discoidin domain receptor 2 (DDR2) is a collagen receptor that is expressed during epithelial-mesenchymal transition (EMT), a cellular transformation that mediates many stages of embryonic development and disease. However, the functional significance of this receptor in EMT is unknown. Here we show that Transforming Growth Factor-beta1 (TGF-β1), a common stimulator of EMT, promotes increased expression of type I collagen and DDR2. Inhibiting expression of COL1A1 or DDR2 with siRNA is sufficient to perturb activity of the NF-βB and LEF-1 transcription factors and to inhibit EMT and cell migration induced by TGF-β1. Furthermore, knockdown of DDR2 expression with siRNA inhibits EMT directly induced by type I collagen. These data establish a critical role for type I collagen-dependent DDR2 signaling in the regulation of EMT. PMID:21477649

  6. Induction of epithelial-mesenchymal transition with O-glycosylated oncofetal fibronectin

    PubMed Central

    Ding, Yao; Gelfenbeyn, Kirill; Freire-de-Lima, Leonardo; Handa, Kazuko; Hakomori, Sen-itiroh

    2012-01-01

    Epithelial-mesenchymal transition (EMT) has been shown to play a key role in embryogenesis and cancer progression. We previously found that fibronectin (FN) carrying O-GalNAc at a specific site is selectively expressed in cancer and fetal cells/tissues, and termed oncofetal FN (onfFN). Here, we show that (i) a newly-established monoclonal antibody against FN lacking the O-GalNAc, termed normalFN (norFN), is useful for isolation of onfFN, (ii) onfFN, but not norFN, can induce EMT in human lung carcinoma cells, (iii) onfFN has a synergistic effect with transforming growth factor (TGF)β1 in EMT induction. PMID:22641031

  7. New views on the neural crest epithelial-mesenchymal transition and neuroepithelial interkinetic nuclear migration

    PubMed Central

    Erickson, Carol A

    2009-01-01

    By developing a technique for imaging the avian neural crest epithelial-mesenchymal transition (EMT), we have discovered cellular behaviors that challenge current thinking on this important developmental event, including the probability that complete disassembly of the adherens junctions may not control whether or not a neural epithelial cell undergoes an EMT. Further, neural crest cells can adopt multiple modes of cell motility in order to emigrate from the neuroepithelium. We also gained insights into interkinetic nuclear migration (INM). For example, the movement of the nucleus from the basal to apical domain may not require microtubule motors nor an intact nuclear envelope, and the nucleus does not always need to reach the apical surface in order for cytokinesis to occur. These studies illustrate the value of live-cell imaging to elucidate cellular processes. PMID:20195454

  8. Dynamic Chromatin Modification Sustains Epithelial-Mesenchymal Transition following Inducible Expression of Snail-1

    PubMed Central

    Javaid, Sarah; Zhang, Jianmin; Anderssen, Endre; Black, Josh C.; Wittner, Ben S.; Tajima, Ken; Ting, David T.; Smolen, Gromoslaw A.; Zubrowski, Matthew; Desai, Rushil; Maheswaran, Shyamala; Ramaswamy, Sridhar; Whetstine, Johnathan R.; Haber, Daniel A.

    2014-01-01

    SUMMARY Epithelial-mesenchymal transition (EMT) is thought to contribute to cancer metastasis, but its underlying mechanisms are not well understood. To define early steps in this cellular transformation, we analyzed human mammary epithelial cells with tightly regulated expression of Snail-1, a master regulator of EMT. After Snail-1 induction, epithelial markers were repressed within 6 hr, and mesenchymal genes were induced at 24 hr. Snail-1 binding to its target promoters was transient (6–48 hr) despite continued protein expression, and it was followed by both transient and long-lasting chromatin changes. Pharmacological inhibition of selected histone acetylation and demethylation pathways suppressed the induction as well as the maintenance of Snail-1-mediated EMT. Thus, EMT involves an epigenetic switch that may be prevented or reversed with the use of small-molecule inhibitors of chromatin modifiers. PMID:24360956

  9. EEF1D modulates proliferation and epithelial-mesenchymal transition in oral squamous cell carcinoma.

    PubMed

    Flores, Isadora L; Kawahara, Rebeca; Miguel, Márcia C C; Granato, Daniela C; Domingues, Romênia R; Macedo, Carolina C S; Carnielli, Carolina M; Yokoo, Sami; Rodrigues, Priscila C; Monteiro, Bárbara V B; Oliveira, Carine E; Salmon, Cristiane R; Nociti, Francisco H; Lopes, Márcio A; Santos-Silva, Alan; Winck, Flavia V; Coletta, Ricardo D; Paes Leme, Adriana F

    2016-05-01

    EEF1D (eukaryotic translation elongation factor 1δ) is a subunit of the elongation factor 1 complex of proteins that mediates the elongation process during protein synthesis via enzymatic delivery of aminoacyl-tRNAs to the ribosome. Although the functions of EEF1D in the translation process are recognized, EEF1D expression was found to be unbalanced in tumours. In the present study, we demonstrate the overexpression of EEF1D in OSCC (oral squamous cell carcinoma), and revealed that EEF1D and protein interaction partners promote the activation of cyclin D1 and vimentin proteins. EEF1D knockdown in OSCC reduced cell proliferation and induced EMT (epithelial-mesenchymal transition) phenotypes, including cell invasion. Taken together, these results define EEF1D as a critical inducer of OSCC proliferation and EMT. © 2016 Authors; published by Portland Press Limited.

  10. Sorafenib inhibits macrophage-mediated epithelial-mesenchymal transition in hepatocellular carcinoma

    PubMed Central

    Lian, Zhe-Xiong; Li, Xingsheng; Hou, Xin

    2016-01-01

    Tumor-associated macrophages, crucial components of the microenvironment in hepatocellular carcinoma, hamper anti-cancer immune responses. The aim of the present study was to investigate the effect of sorafenib on the formation of the tumor microenvironment, especially the relationship between polarized macrophages and hepatocytes. Macrophage infiltration was reduced in patients with hepatocellular carcinoma who were treated with sorafenib. In vitro, sorafenib abolished polarized macrophage-induced epithelial mesenchymal transition (EMT) and migration of hepatocellular carcinoma cells but not normal hepatocytes. Moreover, sorafenib attenuated HGF secretion in polarized macrophages, and decreased plasma HGF in patients with hepatocellular carcinoma. Additionally, sorafenib abolished the polarized macrophage-induced activation of the HGF receptor Met in hepatocellular carcinoma cells. Our findings suggest that sorafenib inhibits polarized macrophage-induced EMT in hepatocellular carcinoma cells via the HGF-Met signaling pathway. These results contribute to our understanding of the immunological mechanisms that underlie the protective effects of sorafenib in hepatocellular carcinoma therapy. PMID:27203677

  11. Immunohistochemical Localization of Epithelial Mesenchymal Transition Markers in Cyclosporine A Induced Gingival Overgrowth

    PubMed Central

    Arora, Hitesh; Madapusi, Balaji Thodur; Ramamurti, Anjana; Narasimhan, Malathi; Periasamy, Soundararajan

    2016-01-01

    Introduction Cyclosporine, an immunosuppressive agent used in the management of renal transplant patients is known to produce Drug Induced Gingival Overgrowth (DIGO) as a side effect. Several mechanisms have been elucidated to understand the pathogenesis of DIGO. Recently, epithelial mesenchymal transition has been proposed as a mechanism underlying fibrosis of various organs. Aim The aim of the study was to investigate if Epithelial Mesenchymal Transition (EMT) operates in Cyclosporine induced gingival overgrowth. Materials and Methods The study involved obtaining gingival tissue samples from healthy individuals (n=17) and subjects who exhibited cyclosporine induced gingival overgrowth (n=18). Presence and distribution of E-Cadherin, S100 A4 and alpha smooth muscle actin (α-SMA) was assessed using immunohistochemistry and cell types involved in their expression were determined. The number of α– SMA positive fibroblasts were counted in the samples. Results In control group, there was no loss of E-Cadherin and a pronounced staining was seen in the all layers of the epithelium in all the samples analysed (100%). S100 A4 staining was noted in langerhans cells, fibroblasts, endothelial cells and endothelial lined blood capillaries in Connective Tissue (CT) of all the samples (100%) while α - SMA staining was seen only on the endothelial lined blood capillaries in all the samples (100%). However in DIGO, there was positive staining of E-Cadherin only in the basal and suprabasal layers of the epithelium in all the samples (100%). Moreover there was focal loss of E-Cadherin in the epithelium in eight out of 18 samples (44%). A break in the continuity of the basement membrane was noted in three out of 18 samples (16%) on H & E staining. Conclusion Based on the analysis of differential staining of the markers, it can be concluded that EMT could be one of the mechanistic pathways underlying the pathogenesis of DIGO. PMID:27656563

  12. Diverse pathways of epithelial mesenchymal transition related with cancer progression and metastasis and potential effects of endocrine disrupting chemicals on epithelial mesenchymal transition process.

    PubMed

    Lee, Hae-Miru; Hwang, Kyung-A; Choi, Kyung-Chul

    2017-12-05

    Endocrine disrupting chemicals (EDCs) are natural or synthetic compounds that interfere with normal functions of natural hormones in the body, leading to a disruption of the endocrine system. Specifically, EDCs have the potential to cause formation of several hormone-dependent cancers, including breast, ovarian, and prostate cancers. Epithelial mesenchymal transition (EMT) process by which epithelial cells lose their cell polarity and cell-cell adhesion and acquire mesenchymal phenotype is closely associated with malignant transformation and the initiation of cancer metastasis. As a key epithelial marker responsible for adherens junction, E-cadherin enables the cells to maintain epithelial phenotypes. EMT event is induced by E-cadherin loss which can be carried out by many transcription factors (TFs), including Snail, Slug, ZEB1, ZEB2, Kruppel-like factor 8 (KLF8), and Twist. N-cadherin, fibronectin, and vimentin are mesenchymal markers needed for cellular migration. The EMT process is regulated by several signaling pathways mediated by transforming growth factor β (TGF-β), Wnt-β-catenin, Notch, Hedgehog, and receptor tyrosine kinases. In the present article, we reviewed the current understanding of cancer progression effects of synthetic chemical EDCs such as bisphenol A (BPA), phthalates, tetrachlorodibenzo-p-dioxin (TCDD), and triclosan by focusing their roles in the EMT process. Collectively, the majority of previous studies revealed that BPA, phthalates, TCDD, and triclosan have the potential to induce cancer metastasis through regulating EMT markers and migration via several signaling pathways associated with the EMT program. Therefore, it is considered that the exposure to these EDCs can increase the risk aggravating the disease for the patients suffering cancer and that more regulations about the use of these EDCs are needed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Classification of circulating tumor cells by epithelial-mesenchymal transition markers.

    PubMed

    Wu, Shiyang; Liu, Suyan; Liu, Zhiming; Huang, Jiefeng; Pu, Xiaoyu; Li, Jing; Yang, Dinghua; Deng, Haijun; Yang, Ning; Xu, Jiasen

    2015-01-01

    In cancer, epithelial-mesenchymal transition (EMT) is associated with metastasis. Characterizing EMT phenotypes in circulating tumor cells (CTCs) has been challenging because epithelial marker-based methods have typically been used for the isolation and detection of CTCs from blood samples. The aim of this study was to use the optimized CanPatrol CTC enrichment technique to classify CTCs using EMT markers in different types of cancers. The first step of this technique was to isolate CTCs via a filter-based method; then, an RNA in situ hybridization (RNA-ISH) method based on the branched DNA signal amplification technology was used to classify the CTCs according to EMT markers. Our results indicated that the efficiency of tumor cell recovery with this technique was at least 80%. When compared with the non-optimized method, the new method was more sensitive and more CTCs were detected in the 5-ml blood samples. To further validate the new method, 164 blood samples from patients with liver, nasopharyngeal, breast, colon, gastric cancer, or non-small-cell lung cancer (NSCLC) were collected for CTC isolation and characterization. CTCs were detected in 107 (65%) of 164 blood samples, and three CTC subpopulations were identified using EMT markers, including epithelial CTCs, biophenotypic epithelial/mesenchymal CTCs, and mesenchymal CTCs. Compared with the earlier stages of cancer, mesenchymal CTCs were more commonly found in patients in the metastatic stages of the disease in different types of cancers. Circulating tumor microemboli (CTM) with a mesenchymal phenotype were also detected in the metastatic stages of cancer. Classifying CTCs by EMT markers helps to identify the more aggressive CTC subpopulation and provides useful evidence for determining an appropriate clinical approach. This method is suitable for a broad range of carcinomas.

  14. MicroRNAs and epithelial-mesenchymal transition in prostate cancer

    PubMed Central

    Sekhon, Kirandeep; Bucay, Nathan; Majid, Shahana; Dahiya, Rajvir; Saini, Sharanjot

    2016-01-01

    Prostate cancer (PCa) is a leading cause of male cancer-related deaths. A significant fraction of prostate tumors are very aggressive, often metastasizing to bone, causing significant morbidity and mortality. Also, PCa is associated with high rates of recurrence, often attributed to the existence of cancer stem cells. Epithelial-mesenchymal transition (EMT), a process characterized by decreased expression of epithelial genes and increased expression of mesenchymal genes, plays a critical role in tumor invasion, metastasis and recurrence. In PCa, EMT has been implicated particularly in the context of metastatic disease and microRNAs have emerged as critical post-transcriptional regulators of PCa EMT. In this review, we summarize the role of miRNAs in PCa EMT that play a role in progression, metastasis and recurrence. Studies till date suggest that microRNAs mediate efficient and reversible control of PCa EMT via multiple mechanisms including either by (i) directly repressing single or multiple EMT-TFs or regulating cytoskeletal components (epithelial/mesenchymal genes) or (ii) regulating key signaling pathways involved in EMT. Oncogenic microRNAs often act as EMT promoters by repressing epithelial characteristics and tumor suppressive miRNAs act by inhibiting mesenchymal progression. Further, EMT is mechanistically linked to stem cell signatures in PCa and several miRNAs implicated in EMT have been reported to influence PCa stem cells. Loss of EMT-inhibiting miRNAs and/or gain of EMT promoting miRNAs lead to induction of PCa EMT, leading to tumor progression, metastasis and recurrence. Restoring expression of tumor suppressive miRNAs and inhibiting oncogenic miRNAs represent potential therapeutic opportunities to prevent disease metastasis and recurrence. PMID:27588490

  15. The Role of BRCA1 in Suppressing Epithelial-Mesenchymal Transition in Mammary Gland and Tumor Development

    DTIC Science & Technology

    2015-09-01

    in p18- deficient mice activates epithelial -to-mesenchymal transition (EMT) and induces dedifferentiation of luminal stem cells (LSCs), which...tumorigenesis. 15. SUBJECT TERMS Brca1 suppresses EMT and stem cell dedifferentiation 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION OF ABSTRACT 18... epithelial -mesenchymal transition (EMT)-inducing transcription factors in p18 deficient luminal and tumor cells . Germline mutation of Brca1 converts p18

  16. PSME3 induces epithelial-mesenchymal transition with inducing the expression of CSC markers and immunosuppression in breast cancer.

    PubMed

    Yi, Ziying; Yang, Dejuan; Liao, Xuelian; Guo, Fuchun; Wang, Yongsheng; Wang, Xiaoyi

    2017-09-15

    Proteasome activator subunit 3 (PSME3) plays a key role in breast cancer by regulating the cell cycle. However, its role in other pathogenesis-related features of breast cancer is unclear. In this study, we found that overexpression of PSME3 induced the epithelial-mesenchymal transition and contributed to induce the expression of cancer stem cell markers of the MDA-MB-231 cell line, thus increasing the migration, and invasion of the cells. Moreover, overexpression of PSME3 reduced the chemotaxis of CD8(+) T cells and induced the apoptosis of T cells in vitro. Furthermore, PSME3 knockdown increased the number of CD8(+) T cells in vivo and reduced the subcutaneous tumor growth rate. These findings revealed that PSME3 induces epithelial-mesenchymal transition with inducing the expression of CSC markers and influencing the tumor immune microenvironment in breast cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells

    SciTech Connect

    Kikuta, Kazuhiro; Masamune, Atsushi; Watanabe, Takashi; Ariga, Hiroyuki; Itoh, Hiromichi; Hamada, Shin; Satoh, Kennichi; Egawa, Shinichi; Unno, Michiaki; Shimosegawa, Tooru

    2010-12-17

    Research highlights: {yields} Recent studies have shown that pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. {yields} Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and scattered, fibroblast-like appearance. {yields} PSCs decreased the expression of epithelial markers but increased that of mesenchymal markers, along with increased migration. {yields} This study suggests epithelial-mesenchymal transition as a novel mechanism by which PSCs contribute to the aggressive behavior of pancreatic cancer cells. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Because epithelial-mesenchymal transition (EMT) plays a critical role in the progression of pancreatic cancer, we hypothesized that PSCs promote EMT in pancreatic cancer cells. Panc-1 and SUIT-2 pancreatic cancer cells were indirectly co-cultured with human PSCs isolated from patients undergoing operation for pancreatic cancer. The expression of epithelial and mesenchymal markers was examined by real-time PCR and immunofluorescent staining. The migration of pancreatic cancer cells was examined by scratch and two-chamber assays. Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and a scattered, fibroblast-like appearance. The expression of E-cadherin, cytokeratin 19, and membrane-associated {beta}-catenin was decreased, whereas vimentin and Snail (Snai-1) expression was increased more in cancer cells co-cultured with PSCs than in mono-cultured cells. The migration of pancreatic cancer cells was increased by co-culture with PSCs. The PSC-induced decrease of E-cadherin expression was not altered

  18. Role and prognostic significance of the epithelial-mesenchymal transition factor ZEB2 in ovarian cancer

    PubMed Central

    Prislei, Silvia; Martinelli, Enrica; Zannoni, Gian Franco; Petrillo, Marco; Filippetti, Flavia; Mariani, Marisa; Mozzetti, Simona; Raspaglio, Giuseppina; Scambia, Giovanni; Ferlini, Cristiano

    2015-01-01

    ZEB2 is a key factor in epithelial-mesenchymal transition (EMT), a program controlling cell migration in embryonic development and adult tissue homeostasis. We demonstrated a role of ZEB2 in migration and anchorage-independent cell growth in ovarian cancer, as shown by ZEB2 silencing. We found that the RNA-binding protein HuR bound the 3′UTR of ZEB2 mRNA, acting as a positive regulator of ZEB2 protein expression. In Hey ovarian cell line, HuR silencing decreased ZEB2 and ZEB1 nuclear expression and impaired migration. In hypoglycemic conditions ZEB2 expression decreased, along with ZEB1, vimentin and cytoplasmic HuR, and a reduced cellular migration ability was observed. Analysis of ZEB2 and HuR expression in ovarian cancers revealed that nuclear ZEB2 is localized in tumor leading edge and co-localizes with cytoplasmic HuR. In a series of 143 ovarian cancer patients high expression of ZEB2 mRNA significantly correlated with a poor prognosis in term of both overall survival and progression- free survival. Moreover, at immunohistochemical evaluation, we found that prognostic significance of ZEB2 protein relies on its nuclear expression and co-localization with cytoplasmic HuR. In conclusion our findings indicated that nuclear ZEB2 may enhance progression of EMT transition and acquisition of an aggressive phenotype in ovarian cancer. PMID:26136338

  19. Fluid shear stress induces epithelial-mesenchymal transition (EMT) in Hep-2 cells

    PubMed Central

    Shen, Yang; Zhang, Yingying; Yin, Hongmei; Zeng, Ye; Liu, Jingxia; Yan, Zhiping; Liu, Xiaoheng

    2016-01-01

    Laryngeal squamous cell carcinoma (LSCC) is one of the most commonly diagnosed malignancies with high occurrence of tumor metastasis, which usually exposes to fluid shear stress (FSS) in lymphatic channel and blood vessel. Epithelial-mesenchymal transition (EMT) is an important mechanism that induces metastasis and invasion of tumors. We hypothesized that FSS induced a progression of EMT in laryngeal squamous carcinoma. Accordingly, the Hep-2 cells were exposed to 1.4 dyn/cm2 FSS for different durations. Our results showed that most of cells changed their morphology from polygon to elongated spindle with well-organized F-actin and abundant lamellipodia/filopodia in protrusions. After removing the FSS, cells gradually recovered their flat polygon morphology. FSS induced Hep-2 cells to enhance their migration capacity in a time-dependent manner. In addition, FSS down-regulated E-cadherin, and simultaneously up-regulated N-cadherin, translocated β-catenin into the nucleus. These results confirmed that FSS induced the EMT in Hep-2 cells, and revealed a reversible mesenchymal-epithelial transition (MET) process when FSS was removed. We further examined the time-expressions of signaling cascades, and demonstrated that FSS induces the EMT and enhances cell migration depending on integrin-ILK/PI3K-AKT-Snail signaling events. The current study suggests that FSS, an important biophysical factor in tumor microenvironment, is a potential determinant of cell behavior and function regulation. PMID:27096955

  20. Tangzhiqing Granules Alleviate Podocyte Epithelial-Mesenchymal Transition in Kidney of Diabetic Rats.

    PubMed

    Xu, Haiyan; Wang, Xu; Liu, Mingming; He, Xueyuan

    2017-01-01

    This study discussed the effect of Tangzhiqing granules on podocyte epithelial-mesenchymal transition in kidney of diabetic rats. The diabetic rats were divided randomly into five groups: DM group treated with vehicle, Tangzhiqing granules low-dose treatment group, Tangzhiqing granules middle-dose treatment group, and Tangzhiqing granules high-dose treatment group. Eight Wistar rats used as control group were given saline solution. The intervention was all intragastric administration for 8 weeks. At the end of the 8 weeks, biochemical parameters and kidney weight/body weight ratio were measured. The kidney tissues were observed under light microscope and transmission electron microscopy. To search for the underlying mechanism, we examined the epithelial-to-mesenchymal transition (EMT) related molecular markers and TGF-β/smad signaling pathway key proteins expression. The results showed that Tangzhiqing granules relieved the structural damage and functional changes of diabetic kidneys. Kidney podocyte EMT related molecular markers nephrin and CD2AP expression were increased, when desmin and α-SMA levels were decreased by Tangzhiqing granules in diabetic rats. Further TGF-β/smad signaling pathway key proteins TGF-β1 and p-smad2/3 levels were decreased in diabetic rats after treatment with Tangzhiqing granules. These findings suggest that Tangzhiqing granules may protect the podocytes of diabetic nephropathy rats via alleviating podocyte EMT and likely activating TGFβ/smad signaling pathway.

  1. FGFR signaling maintains a drug persistent cell population following epithelial-mesenchymal transition.

    PubMed

    Brown, Wells S; Akhand, Saeed Salehin; Wendt, Michael K

    2016-12-13

    An emerging characteristic of drug resistance in cancer is the induction of epithelial-mesenchymal transition (EMT). However, the mechanisms of EMT-mediated drug resistance remain poorly defined. Therefore, we conducted long-term treatments of human epidermal growth factor receptor-2 (Her2)-transformed breast cancer cells with either the EGFR/Her2 kinase inhibitor, Lapatinib or TGF-β, a known physiological inducer of EMT. Both of these treatment regimes resulted in robust EMT phenotypes, but upon withdrawal a subpopulation of TGF-β induced cells readily underwent mesenchymal-epithelial transition, where as Lapatinib-induced cells failed to reestablish an epithelial population. The mesenchymal population that remained following TGF-β stimulation and withdrawal was quickly selected for during subsequent Lapatinib treatment, manifesting in inherent drug resistance. The Nanostring cancer progression gene panel revealed a dramatic upregulation of fibroblast growth factor receptor 1 (FGFR1) and its cognate ligand FGF2 in both acquired and inherent resistance. Mechanistically, FGF:Erk1/2 signaling functions to stabilize the EMT transcription factor Twist and thus maintain the mesenchymal and drug resistant phenotype. Finally, Lapatinib resistant cells could be readily eliminated using recently characterized covalent inhibitors of FGFR. Overall our data demonstrate that next-generation targeting of FGFR can be used in combination with Her2-targeted therapies to overcome resistance in this breast cancer subtype.

  2. FGFR signaling maintains a drug persistent cell population following epithelial-mesenchymal transition

    PubMed Central

    Brown, Wells S.; Akhand, Saeed Salehin; Wendt, Michael K.

    2016-01-01

    An emerging characteristic of drug resistance in cancer is the induction of epithelial-mesenchymal transition (EMT). However, the mechanisms of EMT-mediated drug resistance remain poorly defined. Therefore, we conducted long-term treatments of human epidermal growth factor receptor-2 (Her2)-transformed breast cancer cells with either the EGFR/Her2 kinase inhibitor, Lapatinib or TGF-β, a known physiological inducer of EMT. Both of these treatment regimes resulted in robust EMT phenotypes, but upon withdrawal a subpopulation of TGF-β induced cells readily underwent mesenchymal-epithelial transition, where as Lapatinib-induced cells failed to reestablish an epithelial population. The mesenchymal population that remained following TGF-β stimulation and withdrawal was quickly selected for during subsequent Lapatinib treatment, manifesting in inherent drug resistance. The Nanostring cancer progression gene panel revealed a dramatic upregulation of fibroblast growth factor receptor 1 (FGFR1) and its cognate ligand FGF2 in both acquired and inherent resistance. Mechanistically, FGF:Erk1/2 signaling functions to stabilize the EMT transcription factor Twist and thus maintain the mesenchymal and drug resistant phenotype. Finally, Lapatinib resistant cells could be readily eliminated using recently characterized covalent inhibitors of FGFR. Overall our data demonstrate that next-generation targeting of FGFR can be used in combination with Her2-targeted therapies to overcome resistance in this breast cancer subtype. PMID:27825137

  3. Dynamic actin remodeling during epithelial-mesenchymal transition depends on increased moesin expression.

    PubMed

    Haynes, Jennifer; Srivastava, Jyoti; Madson, Nikki; Wittmann, Torsten; Barber, Diane L

    2011-12-01

    Remodeling of actin filaments is necessary for epithelial-mesenchymal transition (EMT); however, understanding of how this is regulated in real time is limited. We used an actin filament reporter and high-resolution live-cell imaging to analyze the regulated dynamics of actin filaments during transforming growth factor-β-induced EMT of mammary epithelial cells. Progressive changes in cell morphology were accompanied by reorganization of actin filaments from thin cortical bundles in epithelial cells to thick, parallel, contractile bundles that disassembled more slowly but remained dynamic in transdifferentiated cells. We show that efficient actin filament remodeling during EMT depends on increased expression of the ezrin/radixin/moesin (ERM) protein moesin. Cells suppressed for moesin expression by short hairpin RNA had fewer, thinner, and less stable actin bundles, incomplete morphological transition, and decreased invasive capacity. These cells also had less α-smooth muscle actin and phosphorylated myosin light chain in cortical patches, decreased abundance of the adhesion receptor CD44 at membrane protrusions, and attenuated autophosphorylation of focal adhesion kinase. Our findings suggest that increased moesin expression promotes EMT by regulating adhesion and contractile elements for changes in actin filament organization. We propose that the transciptional program driving EMT controls progressive remodeling of actin filament architectures.

  4. Epithelioid peritoneal mesothelioma: a hybrid phenotype within a mesenchymal-epithelial/epithelial-mesenchymal transition framework

    PubMed Central

    Bozzi, Fabio; Brich, Silvia; Dagrada, Gian Paolo; Negri, Tiziana; Conca, Elena; Cortelazzi, Barbara; Belfiore, Antonino; Perrone, Federica; Gualeni, Ambra Vittoria; Gloghini, Annunziata; Cabras, Antonello; Brenca, Monica; Maestro, Roberta; Zaffaroni, Nadia; Casali, Paolo; Bertulli, Rossella; Deraco, Marcello; Pilotti, Silvana

    2016-01-01

    The aim of this study was to reconsider the biological characteristics of epithelioid malignant peritoneal mesothelioma (E-MpM) in the light of new concepts about epithelial mesenchymal transition and mesenchymal epithelial reverse transition (EMT/MErT) and the role of epigenetic reprogramming in this context. To this end we profiled surgical specimens and derived cells cultures by a number of complementary approaches i.e. immunohistochemistry, immunofluorescence, in situ hybridization, biochemistry, pluripotent stem cell arrays, treatments with cytokines, growth factors and specific inhibitors. The analyses of the surgical specimens showed that i) EZH2 is expressed throughout the spectrum of MpM, ii) that E-MpM (including the high-grade undifferentiated form) are characterised by c-MYC and miRNA 17-5p expression, and iii) that progression to sarcomatoid MpM is dictated by EMT regulators. They also showed that E-MpM expressed c-MET and are enriched in E- and P-cadherins- and VEGFR2-expressing CSCs, thus strongly supporting a role for MErT reprogramming in endowing E-MpM tumour cells with stemness and plasticity, and hence with a drug resistant phenotype. The cell culture-based experiments confirmed the stemness traits and plasticity of E-MpM, and support the view that EZH2 is a druggable target in this tumor. PMID:27705913

  5. Tangzhiqing Granules Alleviate Podocyte Epithelial-Mesenchymal Transition in Kidney of Diabetic Rats

    PubMed Central

    Xu, Haiyan; Liu, Mingming; He, Xueyuan

    2017-01-01

    This study discussed the effect of Tangzhiqing granules on podocyte epithelial-mesenchymal transition in kidney of diabetic rats. The diabetic rats were divided randomly into five groups: DM group treated with vehicle, Tangzhiqing granules low-dose treatment group, Tangzhiqing granules middle-dose treatment group, and Tangzhiqing granules high-dose treatment group. Eight Wistar rats used as control group were given saline solution. The intervention was all intragastric administration for 8 weeks. At the end of the 8 weeks, biochemical parameters and kidney weight/body weight ratio were measured. The kidney tissues were observed under light microscope and transmission electron microscopy. To search for the underlying mechanism, we examined the epithelial-to-mesenchymal transition (EMT) related molecular markers and TGF-β/smad signaling pathway key proteins expression. The results showed that Tangzhiqing granules relieved the structural damage and functional changes of diabetic kidneys. Kidney podocyte EMT related molecular markers nephrin and CD2AP expression were increased, when desmin and α-SMA levels were decreased by Tangzhiqing granules in diabetic rats. Further TGF-β/smad signaling pathway key proteins TGF-β1 and p-smad2/3 levels were decreased in diabetic rats after treatment with Tangzhiqing granules. These findings suggest that Tangzhiqing granules may protect the podocytes of diabetic nephropathy rats via alleviating podocyte EMT and likely activating TGFβ/smad signaling pathway. PMID:28163747

  6. Tumor progression, metastasis, and modulators of epithelial-mesenchymal transition in endometrioid endometrial carcinoma: an update.

    PubMed

    Makker, Annu; Goel, Madhu Mati

    2016-02-01

    Endometrioid endometrial carcinoma (EEC), also known as type 1 endometrial cancer (EC), accounts for over 70-80% of all cases that are usually associated with estrogen stimulation and often develops in a background of atypical endometrial hyperplasia. The increased incidence of EC is mainly confined to this type of cancer. Most EEC patients present at an early stage and generally have a favorable prognosis; however, up to 30% of EEC present as high risk tumors, which have invaded deep into the myometrium at diagnosis and progressively lead to local or extra pelvic metastasis. The poor survival of advanced EC is related to the lack of effective therapies, which can be attributed to poor understanding of the molecular mechanisms underlying the progression of disease toward invasion and metastasis. Multiple lines of evidence illustrate that epithelial-mesenchymal transition (EMT)-like events are central to tumor progression and malignant transformation, endowing the incipient cancer cell with invasive and metastatic properties. The aim of this review is to summarize the current knowledge on molecular events associated with EMT in progression, invasion, and metastasis of EEC. Further, the role of epigenetic modifications and microRNA regulation, tumor microenvironment, and microcystic elongated and fragmented glands like invasion pattern have been discussed. We believe this article may perhaps stimulate further research in this field that may aid in identifying high risk patients within this clinically challenging patient group and also lead to the recognition of novel targets for the prevention of metastasis - the most fatal consequence of endometrial carcinogenesis.

  7. Elk-3 Contributes to the Progression of Liver Fibrosis by Regulating the Epithelial-Mesenchymal Transition.

    PubMed

    Li, Tian Zhu; Kim, Sung Min; Hur, Wonhee; Choi, Jung Eun; Kim, Jung-Hee; Hong, Sung Woo; Lee, Eun Byul; Lee, Joon Ho; Yoon, Seung Kew

    2017-01-15

    The role of Elk-3 in the epithelial-mesenchymal transition (EMT) during liver fibrogenesis remains unclear. Here, we determined the expression of Elk-3 in in vitro and in vivo models and in human liver fibrotic tissues. We also investigated the molecular relationships among Elk-3, early growth response-1 (Egr-1), and the mitogen activated protein kinases (MAPK) pathway during EMT in hepatocytes. We established an in vitro EMT model in which normal mouse hepatocyte cell lines were treated with transforming growth factor (TGF)-β1 and a CCl₄-induced liver fibrosis model. Characteristics of EMT were determined by evaluating the expression levels of related markers. The expression of Elk-3 and its target Egr-1 were analyzed using Western blotting. Gene silencing of Elk-3 was performed using an siRNA knockdown system. The expression levels of mesenchymal markers were increased during TGF-β1-induced EMT of hepatocytes. The expression levels of Elk-3 and Egr-1 were significantly (p<0.05) increased during the EMT of hepatocytes, in CCl₄-induced mouse liver fibrotic tissues, and in human liver cirrhotic tissues. Silencing of Elk-3 and inhibition of the Ras-Elk-3 pathway with an inhibitor suppressed the expression of EMT-related markers. Moreover, Elk-3 expression was regulated by p38 MAPK phosphorylation during EMT. Elk-3 contributes to the progression of liver fibrosis by modulating the EMT via the regulation of Egr-1 under MAPK signaling.

  8. Phenylbutyric acid inhibits epithelial-mesenchymal transition during bleomycin-induced lung fibrosis.

    PubMed

    Zhao, Hui; Qin, Hou-Ying; Cao, Lin-Feng; Chen, Yuan-Hua; Tan, Zhu-Xia; Zhang, Cheng; Xu, De-Xiang

    2015-01-05

    A recent report showed that unfolded protein response (UPR) signaling was activated during bleomycin (BLM)-induced pulmonary fibrosis. Phenylbutyric acid (PBA) is an endoplasmic reticulum (ER) chemical chaperone that inhibits the UPR signaling. The present study investigated the effects of PBA on BLM-induced epithelial-mesenchymal transition (EMT) and pulmonary fibrosis. For induction of pulmonary fibrosis, all mice except controls were intratracheally injected with a single dose of BLM (3.0mg/kg). In PBA+BLM group, mice were intraperitoneally injected with PBA (150mg/kg) daily. Three weeks after BLM injection, EMT was measured and pulmonary fibrosis was evaluated. BLM-induced pulmonary UPR activation was inhibited by PBA. Moreover, BLM-induced pulmonary nuclear factor kappa B (NF-κB) p65 activation was blocked by PBA. In addition, BLM-induced up-regulation of pulmonary inflammatory cytokines was repressed by PBA. Further analysis showed that BLM-induced α-smooth muscle actin (α-SMA), a marker for EMT, was significantly attenuated by PBA. Moreover, BLM-induced pulmonary collagen (Col1α1 and Col1α2) was obviously inhibited by PBA. Importantly, BLM-induced pulmonary fibrosis, as determined using Sirius red staining, was obviously alleviated by PBA. Taken together, these results suggest that PBA alleviates ER stress-mediated EMT in the pathogenesis of BLM-induced pulmonary fibrosis.

  9. Overexpression of metadherin mediates metastasis of osteosarcoma by regulating epithelial-mesenchymal transition.

    PubMed

    Tang, J; Shen, L; Yang, Q; Zhang, C

    2014-10-01

    Osteosarcoma (OS) is one of the most common primary malignant bone tumours of childhood and adolescence, and is characterized by high propensity for metastasis (specially to the lung), which is the main cause of death. However, molecular mechanisms underlying metastasis of OS are still poorly understood. Metadherin (MTDH) was identified to be significantly upregulated in OS tissues that had metastasized compared to OS without metastasis, using a two-dimensional approach of electrophoresis, coupled with mass spectrometry. To understand the function of MTDH in OS, OS cell lines U2OS and SOSP-M were transfected with retroviral shRNA vector against MTDH. It was found that metastatic propensity as well as cell proliferation were significantly reduced in both U2OS and SOSP-M. Migration and invasion of U2OS and SOSP-M cells were significantly lower after knock-down of MTDH. In addition, epithelial-mesenchymal transition (EMT) was reduced after knock-down of MTDH. Clinicopathologically, overexpression of MTDH was significantly associated with metastasis and poor survival of patients with OS. Taken together, our results demonstrate that MTDH mediated metastasis of OS through regulating EMT. This could be an ideal therapeutic target against metastasis of OS. © 2014 John Wiley & Sons Ltd.

  10. The relationship between platinum drug resistance and epithelial-mesenchymal transition.

    PubMed

    Brozovic, Anamaria

    2017-02-01

    One of the most commonly used chemotherapeutics, platinum drugs are used to treat a wide range of cancer types. Although many cancers initially respond well to those drugs, drug resistance occurs frequently and different molecular mechanisms have been associated with it. However, predictive biomarkers of cellular response in specific tumour types still do not exist. Epithelial-mesenchymal transition (EMT) is a malignant cancer phenotype characterized by aggressive invasion and metastasis, and resistance to apoptosis. Recent studies indicate that EMT accompanies the development of drug resistance to a number of cancer chemotherapies. The link between these two phenomena is still not elucidated, although several important molecules involved in both these complex processes, such as transcription factors (SNAIL, TWIST, ZEB, etc.) and miRNAs (miRNA-200 family, miR-15, miR-186, etc.) have been recognized as important. This article reviews numerous unresolved issues regarding platinum drugs resistance and EMT, the complexity of the signalling networks that regulate those two phenomena and their importance in tumour response and spreading which are becoming focuses of interest of many scientists. This article also presents molecules involved in platinum resistance and EMT as possible targets for new cancer therapy.

  11. Mechanisms of fibrogenesis in liver cirrhosis: The molecular aspects of epithelial-mesenchymal transition

    PubMed Central

    Lee, Sun-Jae; Kim, Kyung-Hyun; Park, Kwan-Kyu

    2014-01-01

    Liver injuries are repaired by fibrosis and regeneration. The cause of fibrosis and diminished regeneration, especially in liver cirrhosis, is still unknown. Epithelial-mesenchymal transition (EMT) has been found to be associated with liver fibrosis. The possibility that EMT could contribute to hepatic fibrogenesis reinforced the concept that activated hepatic stellate cells are not the only key players in the hepatic fibrogenic process and that other cell types, either hepatic or bone marrow-derived cells could contribute to this process. Following an initial enthusiasm for the discovery of this novel pathway in fibrogenesis, more recent research has started to cast serious doubts upon the real relevance of this phenomenon in human fibrogenetic disorders. The debate on the authenticity of EMT or on its contribution to the fibrogenic process has become very animated. The overall result is a general confusion on the meaning and on the definition of several key aspects. The aim of this article is to describe how EMT participates to hepatic fibrosis and discuss the evidence of supporting this possibility in order to reach reasonable and useful conclusions. PMID:24799989

  12. Electrospun fibrous scaffolds promote breast cancer cell alignment and epithelial-mesenchymal transition.

    PubMed

    Saha, Sharmistha; Duan, Xinrui; Wu, Laying; Lo, Pang-Kuo; Chen, Hexin; Wang, Qian

    2012-01-31

    In this work we created electrospun fibrous scaffolds with random and aligned fiber orientations in order to mimic the three-dimensional structure of the natural extracellular matrix (ECM). The rigidity and topography of the ECM environment have been reported to alter cancer cell behavior. However, the complexity of the in vivo system makes it difficult to isolate and study such extracellular topographical cues that trigger cancer cells' response. Breast cancer cells were cultured on these fibrous scaffolds for 3-5 days. The cells showed elongated spindle-like morphology in the aligned fibers, whereas they maintained a mostly flat stellar shape in the random fibers. Gene expression profiling of these cells post seeding showed up-regulation of transforming growth factor β-1 (TGFβ-1) along with other mesenchymal biomarkers, suggesting that these cells undergo epithelial-mesenchymal transitions in response to the polymer scaffold. The results of this study indicate that the topographical cue may play a significant role in tumor progression.

  13. The Network of Epithelial-mesenchymal transition: potential new targets for tumor resistance

    PubMed Central

    Nantajit, Danupon; Lin, Dong; Li, Jian Jian

    2014-01-01

    Purpose In multiple cell metazoans, the ability of polarized epithelial cells to convert to motile mesenchymal cells in order to relocate to another location is governed by a unique process termed epithelial-mesenchymal transition (EMT). While being an essential process of cellular plasticity for normal tissue and organ developments, EMT is found to be involved in an array of malignant phenotypes of tumor cells including proliferation and invasion, angiogenesis, stemness of cancer cells and resistance to chemo-radiotherapy. Although EMT is being extensively studied and demonstrated to play a key role in tumor metastasis and in sustaining tumor hallmarks, there is a lack of clear picture of the overall EMT signaling network, wavering the potential clinical trials targeting EMT. Methods In this review, we highlight the potential key therapeutic targets of EMT linked with tumor aggressiveness, hypoxia, angiogenesis and cancer stem cells, emphasizing on an emerging EMT-associated NF-κB/HER2/STAT3 pathway in radioresistance of breast cancer stem cells. Results Further definition of cancer stem cell repopulation due to EMT-controlled tumor microenvironment will help to understand how tumors exploit the EMT mechanisms for their survival and expansion advantages. Conclusions The knowledge of EMT will offer more effective targets in clinical trials to treat therapy-resistant metastatic lesions. PMID:25270087

  14. CCR7 regulates Twist to induce the epithelial-mesenchymal transition in pancreatic ductal adenocarcinoma.

    PubMed

    Li, Kexin; Xu, Baofeng; Xu, Guangying; Liu, Rui

    2016-01-01

    As reported, the CC chemokine receptor 7 (CCR7) trigger a series of signaling cascades in the epithelial-mesenchymal transition (EMT) of some malignancies. Meanwhile, Twist promotes EMT in pancreatic ductal adenocarcinoma (PDAC) progression. Here, effects of Twist on CCR7-induced EMT in the PDAC were investigated in detail. The immunohistochemistry was used to detect the expression of Twist, and then, in vitro assays were applied. The expression rate of Twist was 72.0 % in PDAC samples and closely correlated with tumor-node-metastasis (TNM) stage and invasion. When PDAC cell line PANC1 was subjected to CCL19 stimulation, the expression of p-ERK, p-AKT, Twist, N-cadherin, MMP9, and α-smooth muscle actin (α-SMA) was induced, while the GSK1120212, BEZ235, and MK2206 prohibited the increase of Twist and EMT biomarkers. For another thing, the si-Twist treatment attenuated CCL19-stimulated EMT occurrence, migration, and invasion phenotypes of PANC1 cells. In conclusion, CCR7 pathway up-regulates Twist expression via ERK and PI3K/AKT signaling to manage the EMT of PDAC. Our work allows for clinical gene or protein-targeted regimen of PDAC patients in the near future.

  15. Phosphorylation and Reorganization of Keratin Networks: Implications for Carcinogenesis and Epithelial Mesenchymal Transition

    PubMed Central

    Kim, Hyun Ji; Choi, Won Jun; Lee, Chang Hoon

    2015-01-01

    Metastasis is one of hallmarks of cancer and a major cause of cancer death. Combatting metastasis is highly challenging. To overcome these difficulties, researchers have focused on physical properties of metastatic cancer cells. Metastatic cancer cells from patients are softer than benign cancer or normal cells. Changes of viscoelasticity of cancer cells are related to the keratin network. Unexpectedly, keratin network is dynamic and regulation of keratin network is important to the metastasis of cancer. Keratin is composed of heteropolymer of type I and II. Keratin connects from the plasma membrane to nucleus. Several proteins including kinases, and protein phosphatases bind to keratin intermediate filaments. Several endogenous compounds or toxic compounds induce phosphorylation and reorganization of keratin network in cancer cells, leading to increased migration. Continuous phosphorylation of keratin results in loss of keratin, which is one of the features of epithelial mesenchymal transition (EMT). Therefore, several proteins involved in phosphorylation and reorganization of keratin also have a role in EMT. It is likely that compounds controlling phosphorylation and reorganization of keratin are potential candidates for combating EMT and metastasis. PMID:26157545

  16. Hedgehog Signaling Regulates Epithelial-Mesenchymal Transition in Pancreatic Cancer Stem-Like Cells

    PubMed Central

    Wang, Feng; Ma, Ling; Zhang, Zhengkui; Liu, Xiaoran; Gao, Hongqiao; Zhuang, Yan; Yang, Pei; Kornmann, Marko; Tian, Xiaodong; Yang, Yinmo

    2016-01-01

    Hedgehog (Hh) signaling is crucially involved in tumorigenesis. This study aimed to assess the role of Hh signaling in the regulation of epithelial-mesenchymal transition (EMT), stemness properties and chemoresistance of human pancreatic Panc-1 cancer stem cells (CSCs). Panc-1 cells were transfected with recombinant lentiviral vectors to silence SMO and serum-free floating-culture system was used to isolate Panc-1 tumorspheres. The expression of CSC and EMT markers was detected by flow cytometry, real-time RT-PCR and Western blot analysis. Malignant behaviors of Panc-1 CSC were evaluated by tumorigenicity assays and nude mouse lung metastasis model. We found that tumorspheres derived from pancreatic cancer cell line Panc-1 possessed self-renewal, differentiation and stemness properties. Hh pathway and EMT were active in Panc-1 tumorspheres. Inhibition of Hh signaling by SMO knockdown inhibited self-renewal, EMT, invasion, chemoresistance, pulmonary metastasis, tumorigenesis of pancreatic CSCs. In conclusion, Hh signaling contributes to the maintenance of stem-like properties and chemoresistance of pancreatic CSC and promotes the tumorigenesis and metastasis of pancreatic cancer. Hh pathway is a potential molecular target for the development of therapeutic strategies for pancreatic CSCs. PMID:26918054

  17. Targeting epithelial-mesenchymal transition: Metal organic network nano-complexes for preventing tumor metastasis.

    PubMed

    Fan, Jin-Xuan; Zheng, Di-Wei; Rong, Lei; Zhu, Jing-Yi; Hong, Sheng; Li, Cao; Xu, Zu-Shun; Cheng, Si-Xue; Zhang, Xian-Zheng

    2017-09-01

    Tumor metastasis is the leading cause of death in cancer patients, and epithelial-mesenchymal transition (EMT) is an essential step in tumor metastasis. Unfortunately, during the chemotherapy, EMT could be induced under the selective pressure of clinical cytotoxic drugs. Here, to solve this problem, we have synthesized multi-functional epigallocatechin gallate/iron nano-complexes (EIN) as a versatile coating material to improve conventional therapies. In vitro studies showed that this strategy could eliminate EMT-type cancer cells. Mechanism studies also revealed that EIN was able to down-regulate the downstream expression of metastasis-associated factors, decrease the migration ability of cancer cells and prevent cancer cells from gaining drug resistance. In vivo investigation revealed that EIN had superior ability to enhance the therapeutic effect of conventional nanomedicines and inhibit the EMT process. Our study indicates the promising use of EIN to make up for the deficiencies of chemotherapy may provide insights into systematic cancer therapy to overcome tumor metastasis and drug resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Cytoplasmic PML promotes TGF-β-associated epithelial-mesenchymal transition and invasion in prostate cancer.

    PubMed

    Buczek, M E; Miles, A K; Green, W; Johnson, C; Boocock, D J; Pockley, A G; Rees, R C; Hulman, G; van Schalkwyk, G; Parkinson, R; Hulman, J; Powe, D G; Regad, T

    2016-06-30

    Epithelial-mesenchymal transition (EMT) is a key event that is involved in the invasion and dissemination of cancer cells. Although typically considered as having tumour-suppressive properties, transforming growth factor (TGF)-β signalling is altered during cancer and has been associated with the invasion of cancer cells and metastasis. In this study, we report a previously unknown role for the cytoplasmic promyelocytic leukaemia (cPML) tumour suppressor in TGF-β signalling-induced regulation of prostate cancer-associated EMT and invasion. We demonstrate that cPML promotes a mesenchymal phenotype and increases the invasiveness of prostate cancer cells. This event is associated with activation of TGF-β canonical signalling pathway through the induction of Sma and Mad related family 2 and 3 (SMAD2 and SMAD3) phosphorylation. Furthermore, the cytoplasmic localization of promyelocytic leukaemia (PML) is mediated by its nuclear export in a chromosomal maintenance 1 (CRM1)-dependent manner. This was clinically tested in prostate cancer tissue and shown that cytoplasmic PML and CRM1 co-expression correlates with reduced disease-specific survival. In summary, we provide evidence of dysfunctional TGF-β signalling occurring at an early stage in prostate cancer. We show that this disease pathway is mediated by cPML and CRM1 and results in a more aggressive cancer cell phenotype. We propose that the targeting of this pathway could be therapeutically exploited for clinical benefit.

  19. Role of epithelial-mesenchymal transition involved molecules in the progression of cutaneous melanoma.

    PubMed

    Murtas, Daniela; Maxia, Cristina; Diana, Andrea; Pilloni, Luca; Corda, Claudia; Minerba, Luigi; Tomei, Sara; Piras, Franca; Ferreli, Caterina; Perra, Maria Teresa

    2017-08-21

    Epithelial-mesenchymal transition (EMT) has been suggested to have a driving role in the acquisition of a metastatic potential by melanoma cells. Important hallmarks of EMT include both E-cadherin downregulation and increased expression of N-cadherin. This switch in distinct classes of adhesion molecules leads melanoma cells to lose contact with adjacent keratinocytes and interact instead with stromal fibroblasts and endothelial cells, thus promoting dermal and vascular melanoma invasion. Consequently, tumor cells migrate to distant host tissues and establish metastases. A key regulator in the induction of EMT in melanoma is the Notch1 signaling pathway that, when activated, is prompt to upregulate N-cadherin expression. By means of this strategy, melanoma cells gain enhanced survival, proliferation and invasion properties, driving the tumor toward a more aggressive phenotype. On the basis of these statements, the present study aimed to investigate the possible association between N-cadherin and Notch1 presence in primary cutaneous melanomas and lymph node metastases. Our results from immunohistochemical analysis confirmed a positive correlation between N-cadherin and Notch1 presence in the same tumor samples. Moreover, this study highlighted that a concomitant high expression of N-cadherin and Notch1, both in primary lesions and in lymph node metastases, predicts an adverse clinical outcome in melanoma patients. Therefore, N-cadherin and Notch1 co-presence can be monitored as a predictive factor in early- and advanced-stage melanomas and open additional therapeutic targets for the restraint of melanoma metastasis.

  20. Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells

    PubMed Central

    Celià-Terrassa, Toni; Meca-Cortés, Óscar; Mateo, Francesca; Martínez de Paz, Alexia; Rubio, Nuria; Arnal-Estapé, Anna; Ell, Brian J.; Bermudo, Raquel; Díaz, Alba; Guerra-Rebollo, Marta; Lozano, Juan José; Estarás, Conchi; Ulloa, Catalina; ρlvarez-Simón, Daniel; Milà, Jordi; Vilella, Ramón; Paciucci, Rosanna; Martínez-Balbás, Marian; García de Herreros, Antonio; Gomis, Roger R.; Kang, Yibin; Blanco, Jerónimo; Fernández, Pedro L.; Thomson, Timothy M.

    2012-01-01

    Malignant progression in cancer requires populations of tumor-initiating cells (TICs) endowed with unlimited self renewal, survival under stress, and establishment of distant metastases. Additionally, the acquisition of invasive properties driven by epithelial-mesenchymal transition (EMT) is critical for the evolution of neoplastic cells into fully metastatic populations. Here, we characterize 2 human cellular models derived from prostate and bladder cancer cell lines to better understand the relationship between TIC and EMT programs in local invasiveness and distant metastasis. The model tumor subpopulations that expressed a strong epithelial gene program were enriched in highly metastatic TICs, while a second subpopulation with stable mesenchymal traits was impoverished in TICs. Constitutive overexpression of the transcription factor Snai1 in the epithelial/TIC-enriched populations engaged a mesenchymal gene program and suppressed their self renewal and metastatic phenotypes. Conversely, knockdown of EMT factors in the mesenchymal-like prostate cancer cell subpopulation caused a gain in epithelial features and properties of TICs. Both tumor cell subpopulations cooperated so that the nonmetastatic mesenchymal-like prostate cancer subpopulation enhanced the in vitro invasiveness of the metastatic epithelial subpopulation and, in vivo, promoted the escape of the latter from primary implantation sites and accelerated their metastatic colonization. Our models provide new insights into how dynamic interactions among epithelial, self-renewal, and mesenchymal gene programs determine the plasticity of epithelial TICs. PMID:22505459

  1. Transcriptional factors for epithelial-mesenchymal transition are associated with mesenchymal differentiation in gliosarcoma.

    PubMed

    Nagaishi, Masaya; Paulus, Werner; Brokinkel, Benjamin; Vital, Anne; Tanaka, Yuko; Nakazato, Yoichi; Giangaspero, Felice; Ohgaki, Hiroko

    2012-09-01

    Gliosarcoma is a rare variant of glioblastoma characterized by a biphasic pattern of glial and mesenchymal differentiation. It is unclear whether mesenchymal differentiation in gliosarcomas is because of extensive genomic instability and/or to a mechanism similar to epithelial-mesenchymal transition (EMT). In the present study, we assessed 40 gliosarcomas for immunoreactivity of Slug, Twist, matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9), which are involved in EMT in epithelial tumors. Nuclear Slug expression was observed in >50% of neoplastic cells in mesenchymal tumor areas of 33 (83%) gliosarcomas, but not in glial areas (P < 0.0001). Nuclear Twist expression was observed in >50% of neoplastic cells in mesenchymal tumor areas of 35 (88%) gliosarcomas, but glial tumor areas were largely negative except in four cases (P < 0.0001). Expression of MMP-2 and MMP-9 was also significantly more extensive in mesenchymal than in glial tumor areas. None of 20 ordinary glioblastomas showed Slug or Twist expression in >10% neoplastic cells. Thus, expression of Slug, Twist, MMP-2 and MMP-9 was characteristic of mesenchymal tumor areas of gliosarcomas, suggesting that mechanisms involved in the EMT in epithelial neoplasms may play roles in mesenchymal differentiation in gliosarcomas. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.

  2. Fisetin inhibits migration, invasion and epithelial-mesenchymal transition of LMP1-positive nasopharyngeal carcinoma cells.

    PubMed

    Li, Rong; Zhao, Yinhai; Chen, Jin; Shao, Songjun; Zhang, Xiujuan

    2014-02-01

    Fisetin (3,3',4',7-tetrahydroxyflavone) has been reported to possess certain anticancer properties. It may inhibit tumor cell proliferation, metastasis and induce apoptosis. However, the effects of fisetin in preventing the metastasis of nasopharyngeal carcinoma (NPC) cells remain to be determined. The epithelial-mesenchymal transition (EMT) is involved in several metastatic malignancies including NPC. It has been reported that the Epstein-Barr virus latent membrane protein-1 (LMP1) induced EMT and is associated with the metastasis of NPC. The aim of this study was to examine the effects of fisetin in preventing the migration and invasion of LMP1-expressing NPC cells (CNE1-LMP1 cells), as well as to investigate whether fisetin may inhibit the molecular changes associated with EMT induced by LMP1. The investigation demonstrated that fisetin suppressed the migration and invasion of CNE1-LMP1 cells under non-cytotoxic concentrations. Fisetin inhibited molecular changes associated with EMT induced by LMP1, upregulated the epithelial marker, E-cadherin protein, and downregulated the mesenchymal marker, vimentin protein, levels. Fisetin also significantly reduced the levels of Twist protein, an EMT regulator. The investigation suggested that fisetin inhibits the migration and invasion of LMP1-positive NPC cells, and the molecular mechanism involves fisetin reversing the EMT induced by LMP1 and downregulates the expression of Twist. This study indicated that fisetin serves as a potential candidate for the treatment of cancer metastasis.

  3. Nimotuzumab Inhibits Cholangiocarcinoma Cell Metastasis via Suppression of the Epithelial-Mesenchymal Transition Process.

    PubMed

    Padthaisong, Sureerat; Thanee, Malinee; Techasen, Anchalee; Namwat, Nisana; Yongvanit, Puangrat; Liwatthakun, Aekkaphod; Hankla, Khittisak; Sangkhamanon, Sakkarn; Loilome, Watcharin

    2017-07-01

    Changes in epidermal growth factor receptor (EGFR) are commonly found in cancer progression, signaling a poor outcome in patients. In the present study, we aimed to investigate whether nimotuzumab could be of benefit for cholangiocarcinoma (CCA) treatment. The expression of EGFR was explored using immunohistochemical staining in cases divided into groups with low and high expression. The effect of nimotuzumab on CCA cell growth, metastasis and the molecular mechanisms by which nimotuzumab inhibits CCA cell metastasis were evaluated. The expression of EGFR was high in 55% of patients with CCA. This was significantly correlated with a shorter survival of patients. CCA cells treated with nimotuzumab showed inhibited cell growth. Moreover, nimotuzumab inhibited CCA cell metastasis via induction of E-cadherin and suppression of zinc finger protein SNAI1 (SNAIL1), vimentin and matrix metalloproteinase 9 (MMP9) expression. Nimotuzumab appears to inhibit cell metastasis via suppression of the epithelial-mesenchymal transition process. Therefore, nimotuzumab should be considered as a potential therapeutic agent against CCA. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  4. Epithelial mesenchymal transition traits in honey-driven keratinocyte wound healing: comparison among different honeys.

    PubMed

    Ranzato, Elia; Martinotti, Simona; Burlando, Bruno

    2012-01-01

    Honey has been used since ancient times for wound repair, but the subjacent mechanisms are almost unknown. We have tried to elucidate the modulatory role of honey in an in vitro model of HaCaT keratinocyte re-epithelialization by using acacia, buckwheat, and manuka honeys. Scratch wound and migration assays showed similar increases of re-epithelialization rates and chemoattractant effects in the presence of different types of honey (0.1%, v/v). However, the use of kinase and calcium inhibitors suggested the occurrence of different mechanisms. All honeys activated cyclin-dependent kinase 2, focal adhesion kinase, and rasGAP SH3 binding protein 1. However, vasodilator-stimulated phosphoprotein, integrin-β3, cdc25C, and p42/44 mitogen activated protein kinase showed variable activation pattern. Re-epithelialization recapitulates traits of epithelial-mesenchymal transition (EMT) and the induction of this process was evaluated by a polymerase chain reaction array, revealing marked differences among honeys. Manuka induced few significant changes in the expression of EMT-regulatory genes, while the other two honeys acted on a wider number of genes and partially showed a common profile of up- and down-regulation. In conclusion, our findings have shown that honey-driven wound repair goes through the activation of keratinocyte re-epithelialization, but the ability of inducing EMT varies sensibly among honeys, according to their botanical origin.

  5. Targeted silencing of CXCR4 inhibits epithelial-mesenchymal transition in oral squamous cell carcinoma.

    PubMed

    Duan, Yuansheng; Zhang, Shu; Wang, Longlong; Zhou, Xuan; He, Qinghua; Liu, Su; Yue, Kai; Wang, Xudong

    2016-09-01

    Aberrant overexpression of C-X-C chemokine receptor type 4 (CXCR4) is a critical event during tumor metastasis. It has been previously reported that the expression of CXCR4 is linked with epithelial-mesenchymal transition (EMT) in oral squamous cell carcinoma (OSCC) tissues derived from patients. The present study addresses the role of CXCR4 in EMT in tongue squamous cell carcinoma (TSCCA) cells in vitro and in xenograft models. Small interfering (si) RNA sequences targeting the CXCR4 gene were transfected into TSCCA cells. Cell migration, invasion, apoptosis and EMT markers were determined in TSCCA cells using wound healing and Transwell assays, Annexin V/propdidum iodide double staining and western blot analysis, respectively. In vivo, tumor growth was assessed by subcutaneous inoculation of cells into BALB/c nude mice. Phenotypic EMT markers and regulatory factors were detected in the tumor tissues derived from the mice. In vitro, silencing of CXCR4 expression suppressed cell migration and invasion, and induced apoptosis. The protein expression of the EMT-associated markers N-cadherin and matrix metalloproteinases 2/9 were attenuated, while E-cadherin was increased. In vivo, CXCR4 siRNA inhibited tumor growth, and EMT-associated proteins had similar expression patterns to the experimental results observed in vitro. In conclusion, the present study demonstrated that CXCR4 silencing suppressed EMT in OSCC, thus affecting tumor metastasis.

  6. Modeling TGF-β signaling pathway in epithelial-mesenchymal transition

    NASA Astrophysics Data System (ADS)

    Laise, Pasquale; Fanelli, Duccio; Lió, Pietro; Arcangeli, Annarosa

    2012-03-01

    The epithelial-mesenchymal transition (EMT) consists in a morphological change in epithelial cells characterized by the loss of the cell adhesion and the acquisition of mesenchymal phenotype. This process plays a crucial role in the embryonic development and in regulating the tissue homeostasis in the adult, but it proves also fundamental for the development of cancer metastasis. Experimental evidences have shown that the EMT depends on the TGF-β signaling pathway, which in turn regulates the transcriptional cellular activity. In this work, a dynamical model of the TGF-β pathway is proposed and calibrated versus existing experimental data on lung cancer A549 cells. The analysis combines Bayesian Markov Chain Monte Carlo (MCMC) and standard Ordinary Differential Equations (ODEs) techniques to interpolate the gene expression data via an iterative adjustments of the parameters involved. The kinetic of the Smad proteins phosphorylation, as predicted within the model is found in excellent agreement with available experiments, an observation that confirms the adequacy of the proposed mathematical picture.

  7. Effect of steroid hormones, estrogen and progesterone, on epithelial mesenchymal transition in ovarian cancer development.

    PubMed

    Jeon, So-Ye; Hwang, Kyung-A; Choi, Kyung-Chul

    2016-04-01

    As the primary female sex steroid hormones, estrogens and progesterone play important roles to regulate growth, differentiation, and function of a broad range of target tissues in the human body and maintain the function of female reproductive tissues. Ovarian cancer is the most cause of cancer death in gynecological malignancy. Despite enormous outcomes in the understanding of ovarian cancer pathology, this disease has resulted in poor survival rates since most patients are asymptomatic until the disease has been metastasized. The exact molecular events leading to metastasis of ovarian tumor cells have not yet been well elucidated, although it is recognized that the acquisition of capacity for migration and invasiveness would be a necessary prerequisite. During metastasis, epithelial-mesenchymal transition (EMT) is an important process, in which epithelial cells lose their intracellular adhesion and cell polarity and acquire increased motility and invasive properties to become mesenchymal like cells. The process of cancer cells to undergo EMT is regulated through the up- and down- regulation of a multiple cellular markers and signaling proteins. In this review, we focused the roles of women sex steroid hormones, estrogen and progesterone, in ovarian cancer, especially the ovarian cancer undergoing EMT and metastatic process. All things considered, we may suggest that progesterone is a potent hormone which inhibits the growth of human ovarian cancer cells and development to metastasis whereas estrogen may act as a risk factor of ovarian cancer progression and that progesterone therapy may be an alternative clinically effective tool for the treatment of human ovarian cancer.

  8. Soluble factors regulated by epithelial-mesenchymal transition mediate tumour angiogenesis and myeloid cell recruitment.

    PubMed

    Suarez-Carmona, Meggy; Bourcy, Morgane; Lesage, Julien; Leroi, Natacha; Syne, Laïdya; Blacher, Silvia; Hubert, Pascale; Erpicum, Charlotte; Foidart, Jean-Michel; Delvenne, Philippe; Birembaut, Philippe; Noël, Agnès; Polette, Myriam; Gilles, Christine

    2015-08-01

    Epithelial-mesenchymal transition (EMT) programmes provide cancer cells with invasive and survival capacities that might favour metastatic dissemination. Whilst signalling cascades triggering EMT have been extensively studied, the impact of EMT on the crosstalk between tumour cells and the tumour microenvironment remains elusive. We aimed to identify EMT-regulated soluble factors that facilitate the recruitment of host cells in the tumour. Our findings indicate that EMT phenotypes relate to the induction of a panel of secreted mediators, namely IL-8, IL-6, sICAM-1, PAI-1 and GM-CSF, and implicate the EMT-transcription factor Snail as a regulator of this process. We further show that EMT-derived soluble factors are pro-angiogenic in vivo (in the mouse ear sponge assay), ex vivo (in the rat aortic ring assay) and in vitro (in a chemotaxis assay). Additionally, conditioned medium from EMT-positive cells stimulates the recruitment of myeloid cells. In a bank of 40 triple-negative breast cancers, tumours presenting features of EMT were significantly more angiogenic and infiltrated by a higher quantity of myeloid cells compared to tumours with little or no EMT. Taken together, our results show that EMT programmes trigger the expression of soluble mediators in cancer cells that stimulate angiogenesis and recruit myeloid cells in vivo, which might in turn favour cancer spread.

  9. P300 promotes migration, invasion and epithelial-mesenchymal transition in a nasopharyngeal carcinoma cell line

    PubMed Central

    Liao, Zhi-Wei; Zhao, Lei; Cai, Mu-Yan; Xi, Mian; He, Li-Ru; Yu, Fang; Zhou, Tong-Chong; Liu, Meng-Zhong

    2017-01-01

    A previous study demonstrated that p300 is overexpressed in nasopharyngeal carcinoma (NPC), and that its expression is an independent prognostic factor. The aim of the present study is to investigate the role of p300 in human NPC development. A small hairpin (sh) RNA lentiviral expression vector targeting the p300 gene was constructed to suppress the expression of p300 in NPC cells. Knockdown of p300 was verified by reverse transcription-quantitative polymerase chain reaction and western blotting. Wound-healing, invasion, immunofluorescence and immunoprecipitation assays were performed to assess the influence of p300 on nasopharyngeal tumorigenesis and metastasis in vitro. The expression of p300 was upregulated in NPC cell lines. After knockdown of p300, the migration and invasion ability of shp300 cells were significantly inhibited (P<0.05). Furthermore, the depletion of p300 expression in NPC cell lines resulted in the upregulation of epithelial phenotype marker E-cadherin and α-catenin, and downregulation of mesenchymal phenotype markers N-cadherin and vimentin. p300 promotes epithelial-mesenchymal transition (EMT) through the acetylation of Smad2 and Smad3 in the tumor growth factor-β signaling pathway. In conclusion, p300 may be involved in the invasion and metastasis of NPC through the induction of EMT. PMID:28356956

  10. Regulation of Epithelial-Mesenchymal Transition in Breast Cancer Cells by Cell Contact and Adhesion

    PubMed Central

    Cichon, Magdalena A; Nelson, Celeste M; Radisky, Derek C

    2015-01-01

    Epithelial-mesenchymal transition (EMT) is a physiological program that is activated during cancer cell invasion and metastasis. We show here that EMT-related processes are linked to a broad and conserved program of transcriptional alterations that are influenced by cell contact and adhesion. Using cultured human breast cancer and mouse mammary epithelial cells, we find that reduced cell density, conditions under which cell contact is reduced, leads to reduced expression of genes associated with mammary epithelial cell differentiation and increased expression of genes associated with breast cancer. We further find that treatment of cells with matrix metalloproteinase-3 (MMP-3), an inducer of EMT, interrupts a defined subset of cell contact-regulated genes, including genes encoding a variety of RNA splicing proteins known to regulate the expression of Rac1b, an activated splice isoform of Rac1 known to be a key mediator of MMP-3-induced EMT in breast, lung, and pancreas. These results provide new insights into how MMPs act in cancer progression and how loss of cell–cell interactions is a key step in the earliest stages of cancer development. PMID:25698877

  11. Enhanced proliferation, invasion, and epithelial-mesenchymal transition of nicotine-promoted gastric cancer by periostin

    PubMed Central

    Liu, Yu; Liu, Bao-An

    2011-01-01

    AIM: To investigate the contribution of periostin in nicotine-promoted gastric cancer cell proliferation, survival, invasion, drug resistance, and epithelial-mesenchymal transition (EMT). METHODS: Gastric cancer cells were treated with nicotine and periostin protein expression was determined by immunoblotting. Periostin mRNA in gastric cancer cells was silenced using small interfering RNA (siRNA) techniques and periostin gene expression was evaluated by quantitative reverse transcription-polymerase chain reaction. Gastric cancer cells transfected with control or periostin siRNA plasmid were compared in terms of cell proliferation using the methylthiazolyldiphenyl-tetrazolium bromide assay. Cell apoptosis was compared using annexin V-fluoresceine isothiocyanate and propidium iodine double staining. Tumor invasion was determined using the Boyden chamber invasion assay, and the EMT marker Snail expression was evaluated by immunoblotting. RESULTS: Nicotine upregulated periostin in gastric cancer cells through a COX-2 dependent pathway, which was blocked by the COX-2-specific inhibitor NS398. Periostin mRNA expression was decreased by ~87.2% by siRNA in gastric cancer cells, and stable periostin-silenced cells were obtained by G418 screening. Periostin-silenced gastric cancer cells exhibited reduced cell proliferation, elevated sensitivity to chemotherapy with 5-fluorouracil, and decreased cell invasion and Snail expression (P < 0.05). CONCLUSION: Periostin is a nicotine target gene in gastric cancer and plays a role in gastric cancer cell growth, invasion, drug resistance, and EMT facilitated by nicotine. PMID:21677839

  12. Klebsiella pneumoniae Is Able to Trigger Epithelial-Mesenchymal Transition Process in Cultured Airway Epithelial Cells

    PubMed Central

    Leone, Laura; Mazzetta, Francesca; Martinelli, Daniela; Valente, Sabatino; Alimandi, Maurizio; Raffa, Salvatore; Santino, Iolanda

    2016-01-01

    The ability of some bacterial pathogens to activate Epithelial-Mesenchymal Transition normally is a consequence of the persistence of a local chronic inflammatory response or depends on a direct interaction of the pathogens with the host epithelial cells. In this study we monitored the abilities of the K. pneumoniae to activate the expression of genes related to EMT-like processes and the occurrence of phenotypic changes in airway epithelial cells during the early steps of cell infection. We describe changes in the production of intracellular reactive oxygen species and increased HIF-1α mRNA expression in cells exposed to K. pneumoniae infection. We also describe the upregulation of a set of transcription factors implicated in the EMT processes, such as Twist, Snail and ZEB, indicating that the morphological changes of epithelial cells already appreciable after few hours from the K. pneumoniae infection are tightly regulated by the activation of transcriptional pathways, driving epithelial cells to EMT. These effects appear to be effectively counteracted by resveratrol, an antioxidant that is able to exert a sustained scavenging of the intracellular ROS. This is the first report indicating that strains of K. pneumoniae may promote EMT-like programs through direct interaction with epithelial cells without the involvement of inflammatory cells. PMID:26812644

  13. CD146, an epithelial-mesenchymal transition inducer, is associated with triple-negative breast cancer.

    PubMed

    Zeng, Qiqun; Li, Weidong; Lu, Di; Wu, Zhenzhen; Duan, Hongxia; Luo, Yongting; Feng, Jing; Yang, Dongling; Fu, Li; Yan, Xiyun

    2012-01-24

    The epithelial-mesenchymal transition (EMT) plays an important role in breast cancer metastasis, especially in the most aggressive and lethal subtype, "triple-negative breast cancer" (TNBC). Here, we report that CD146 is a unique activator of EMTs and significantly correlates with TNBC. In epithelial breast cancer cells, overexpression of CD146 down-regulated epithelial markers and up-regulated mesenchymal markers, significantly promoted cell migration and invasion, and induced cancer stem cell-like properties. We further found that RhoA pathways positively regulated CD146-induced EMTs via the key EMT transcriptional factor Slug. An orthotopic breast tumor model demonstrated that CD146-overexpressing breast tumors showed a poorly differentiated phenotype and displayed increased tumor invasion and metastasis. We confirmed these findings by conducting an immunohistochemical analysis of 505 human primary breast tumor tissues and found that CD146 expression was significantly associated with high tumor stage, poor prognosis, and TNBC. CD146 was expressed at abnormally high levels (68.9%), and was strongly associated with E-cadherin down-regulation in TNBC samples. Taken together, these findings provide unique evidence that CD146 promotes breast cancer progression by induction of EMTs via the activation of RhoA and up-regulation of Slug. Thus, CD146 could be a therapeutic target for breast cancer, especially for TNBC.

  14. Examination of Epithelial Mesenchymal Transition in Keloid Tissues and Possibility of Keloid Therapy Target

    PubMed Central

    Tosa, Mamiko; Egawa, Seiko; Murakami, Masahiro; Mohammad, Ghazizadeh; Ogawa, Rei

    2016-01-01

    Background: Keloid is a fibroproliferative skin disorder that is characterized by collagen accumulation and blood vessel proliferation in the reticular layer of the dermis. It is caused by prolonged inflammation after cutaneous injury. Several studies suggested recently that epithelial mesenchymal transition (EMT) is involved in the development of fibrosis. This study assessed whether EMT also participates in keloid development and/or aggravation. Methods: Resected keloid (n = 19) and normal skin (n = 13) samples were subjected to immunohistochemical, immunofluorescent, and Western blot analyses of their expression of epidermal (E-cadherin) and mesenchymal (vimentin) proteins. Results: Immunohistochemical analysis showed that the keloid tissues had more vimentin-positive cells in the epidermis than the normal tissues. When normal primary keratinocytes were cultured with proinflammatory cytokines, the cobblestone-shaped cells changed to a spindle shape and many vimentin-positive cells were detected. When immortalized HaCaT keratinocytes were cocultured in split-well plates with normal or keloid-derived fibroblasts, they also underwent EMT, as indicated by their greater vimentin expression on Western blot analysis compared with HaCaT cells that were cultured alone. Conclusions: EMT was observed in keloid specimens. EMT was induced by inflammatory cytokines and fibroblasts. EMT may be involved in keloid generation and/or aggravation and may have potential as a keloid treatment target. PMID:27975033

  15. Honokiol inhibits bladder cancer cell invasion through repressing SRC-3 expression and epithelial-mesenchymal transition.

    PubMed

    Shen, Lan; Zhang, Fang; Huang, Ruimin; Yan, Jun; Shen, Bing

    2017-10-01

    Urinary bladder cancer (UBC) is one of the most common urological cancer types. Muscle invasive bladder cancer possesses high propensity for metastasis with poor prognosis. Honokiol is a lignan isolated from Magnolia officinalis with high bioavailability and potent anticancer effects. The results of the present study demonstrated that honokiol significantly inhibited UBC cell migration and invasion in a dose-dependent manner compared with the vehicle-treated control group. In addition, honokiol treatment suppressed epithelial-mesenchymal transition by induction of E-cadherin and repression of N-cadherin. Honokiol was capable of significantly downregulating the expression of cell invasion-associated genes, steroid receptor coactivator-3 (SRC-3), matrix metalloproteinase (MMP)-2 and Twist1. Notably, the inhibition of UBC cell invasion by honokiol was reversed by reintroduction of oncoprotein SRC-3 expression, with the restoration of MMP-2 and Twist1, and reduction of E-cadherin expression. Furthermore, the results of the luciferase assay confirmed that SRC-3 could regulate Twist1 promoter activity. Taken together, the results of the present study suggest that honokiol is a promising agent against UBC cell invasion via downregulation of SRC-3 and its target genes.

  16. Role of cellular cytoskeleton in epithelial-mesenchymal transition process during cancer progression

    PubMed Central

    SUN, BO; FANG, YANTIAN; LI, ZHENYANG; CHEN, ZONGYOU; XIANG, JIANBIN

    2015-01-01

    Currently, cancer metastases remain a major clinical problem that highlights the importance of recognition of the metastatic process in cancer diagnosis and treatment. A critical process associated with the metastasis process is the transformation of epithelial cells toward the motile mesenchymal state, a process called epithelial-mesenchymal transition (EMT). Increasing evidence suggests the crucial role of the cytoskeleton in the EMT process. The cytoskeleton is composed of the actin cytoskeleton, the microtubule network and the intermediate filaments that provide structural design and mechanical strength that is necessary for the EMT. The dynamic reorganization of the actin cytoskeleton is a prerequisite for the morphology, migration and invasion of cancer cells. The microtubule network is the cytoskeleton that provides the driving force during cell migration. Intermediate filaments are significantly rearranged, typically switching from cytokeratin-rich to vimentin-rich networks during the EMT process, accompanied by a greatly enhanced cell motility capacity. In the present review, the recent novel insights into the different cytoskeleton underlying EMT are summarized. There are numerous advances in our understanding of the fundamental role of the cytoskeleton in cancer cell invasion and migration. PMID:26405532

  17. Epithelial-Mesenchymal Transition in Keratocystic Odontogenic Tumor: Possible Role in Locally Aggressive Behavior

    PubMed Central

    Zhong, Wen-Qun; Chen, Gang; Zhang, Wei; Ren, Jian-Gang; Wu, Zhong-Xing; Zhao, Yi; Liu, Bing; Zhao, Yi-Fang

    2015-01-01

    The aim of this study is to clarify whether epithelial-mesenchymal transition (EMT) is involved in the pathogenesis and development of keratocystic odontogenic tumor (KCOT). The expression levels of EMT-related proteins and genes in normal oral mucosa (OM), radicular cyst (RC), and KCOT were determined and compared by real-time quantitative PCR and immunohistochemistry. Our data showed that the expression of epithelial markers E-cadherin and Pan-cytokeratin was significantly downregulated in KCOT with upregulation of mesenchymal markers N-cadherin compared to OM and RC. Importantly, TGF-β, a potent EMT inducer, and Slug, a master transcription factor, were also found highly expressed in KCOT. In addition, the results from Spearman rank correlation test and clustering analysis revealed the close relationship between Slug and MMP-9, which was further evidenced by double-labeling immunofluorescence that revealed a synchronous distribution for Slug with MMP-9 in KCOT samples. All the data suggested EMT might be involved in the locally aggressive behavior of KCOT. PMID:25879017

  18. Ezrin contributes to cervical cancer progression through induction of epithelial-mesenchymal transition.

    PubMed

    Kong, Jienan; Di, Chunchan; Piao, Junjie; Sun, Jie; Han, Longzhe; Chen, Liyan; Yan, Guanghai; Lin, Zhenhua

    2016-04-12

    Cervical cancer is the third most common cancer in females worldwide. The treatment options for advanced cervical cancer are limited, leading to high mortality. Ezrin is a membrane-cytoskeleton-binding protein recently reported to act as a tumor promoter, and we previously indicated that the aberrant localization and overexpression of Ezrin could be an independent effective biomarker for prognostic evaluation of cervical cancers. In this study, we identified Ezrin as a regulator of epithelial-mesenchymal transition (EMT) and metastasis in cervical cancer. Ezrin knock-down inhibited anchorage-independent growth, cell migration, and invasion of cervical cancer cell lines in vitro and in vivo. EMT was inhibited in Ezrin-depleted cells, with up-regulation of E-cadherin and Cytokeratin-18 (CK-18) and down-regulation of mesenchymal markers. Ezrin knock-down also induced Akt phosphorylation. These results implicate Ezrin as an EMT regulator and tumor promoter in cervical cancer, and down-regulation of Ezrin suppressed cervical cancer progression, possibly via the phosphoinositide 3-kinase/Akt pathway. Furthermore, the expression pattern of Ezrin protein was closely related with the lymphovascular invasion status of cervical cancer by immunohistochemistry, and the survival analysis revealed that the cervical cancer patients with the perinuclear Ezrin expression pattern had longer survival time than those with the cytoplasmic Ezrin expression pattern. Ezrin thus represents a promising target for the development of novel and effective strategies aimed at preventing the progression of cervical cancer.

  19. CUX1/Wnt signaling regulates Epithelial Mesenchymal Transition in EBV infected epithelial cells

    SciTech Connect

    Malizia, Andrea P.; Lacey, Noreen; Walls, Dermot; Egan, Jim J.; Doran, Peter P.

    2009-07-01

    Idiopathic pulmonary fibrosis (IPF) is a refractory and lethal interstitial lung disease characterized by alveolar epithelial cells apoptosis, fibroblast proliferation and extra-cellular matrix protein deposition. EBV, localised to alveolar epithelial cells of pulmonary fibrosis patients is associated with a poor prognosis. A strategy based on microarray-differential gene expression analysis to identify molecular drivers of EBV-associated lung fibrosis was utilized. Alveolar epithelial cells were infected with EBV to identify genes whose expression was altered following TGF{beta}1-mediated lytic phase. EBV lytic reactivation by TGF{beta}1 drives a selective alteration in CUX1 variant (a) (NCBI accession number NM{sub 1}81552) expression, inducing activation of non-canonical Wnt pathway mediators, implicating it in Epithelial Mesenchymal Transition (EMT), the molecular event underpinning scar production in tissue fibrosis. The role of EBV in EMT can be attenuated by antiviral strategies and inhibition of Wnt signaling by using All-Trans Retinoic Acids (ATRA). Activation of non-canonical Wnt signaling pathway by EBV in epithelial cells suggests a novel mechanism of EMT via CUX1 signaling. These data present a framework for further description of the link between infectious agents and fibrosis, a significant disease burden.

  20. MAEL expression links epithelial-mesenchymal transition and stem cell properties in colorectal cancer.

    PubMed

    Li, Qingguo; Wei, Ping; Huang, Ben; Xu, Ye; Li, Xinxiang; Li, Yaqi; Cai, Sanjun; Li, Dawei

    2016-12-01

    MAEL plays a central role during spermatogenesis by repressing transposable elements and preventing their mobilisation, however, its role on cancers is unclear. In this study, MAEL expression was analysed in a tissue microarray containing 185 samples of primary colon cancer tumor samples and human colon cancer cell lines. The effect of MAEL on cell proliferation, tumorigenesis, metastasis and drug resistance was examined in vitro and in vivo. Immunoprecipitation assay, confocal immunofluorescent analysis and luciferase assay were used for mechanism study. As results, MAEL was significantly upregulated in colon cancer patient tissue samples, and elevated MAEL protein levels positively correlated with overall survival and disease free survival of colon cancer patients. Using in vitro and in vivo models, we demonstrated that MAEL expression was correlated with cell proliferation, invasion and drug resistance of colon cancer cells by inducing epithelial-mesenchymal transition and stemness characteristics. Mechanistically, our study demonstrated that MAEL interacts with Snail and inhibit E-cadherin promoter activity. Collectively, MAEL is an oncogene that plays an important role in the development and progression of colon cancer, which may be a novel potential therapeutic target for colon cancer. © 2016 UICC.

  1. A novel regulatory role for tissue transglutaminase in epithelial-mesenchymal transition in cystic fibrosis.

    PubMed

    Nyabam, Samuel; Wang, Zhuo; Thibault, Thomas; Oluseyi, Ayinde; Basar, Rameeza; Marshall, Lindsay; Griffin, Martin

    2016-09-01

    Cystic fibrosis (CF) is a genetic disorder caused by mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) for which there is no overall effective treatment. Recent work indicates tissue transglutaminase (TG2) plays a pivotal intracellular role in proteostasis in CF epithelia and that the pan TG inhibitor cysteamine improves CFTR stability. Here we show TG2 has another role in CF pathology linked with TGFβ1 activation and signalling, induction of epithelial-mesenchymal transition (EMT), CFTR stability and induction of matrix deposition. We show that increased TG2 expression in normal and CF bronchial epithelial cells increases TGFβ1 levels, promoting EMT progression, and impairs tight junctions as measured by Transepithelial Electric Resistance (TEER) which can be reversed by selective inhibition of TG2 with an observed increase in CFTR stability. Our data indicate that selective inhibition of TG2 provides a potential therapeutic avenue for reducing fibrosis and increasing CFTR stability in CF. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. PDK1 Regulates Vascular Remodeling and Promotes Epithelial-Mesenchymal Transition in Cardiac Development▿

    PubMed Central

    Feng, Qiuting; Di, Ruomin; Tao, Fang; Chang, Zai; Lu, Shuangshuang; Fan, Wenjing; Shan, Congjia; Li, Xinli; Yang, Zhongzhou

    2010-01-01

    One essential downstream signaling pathway of receptor tyrosine kinases (RTKs), such as vascular endothelial growth factor receptor (VEGFR) and the Tie2 receptor, is the phosphoinositide-3 kinase (PI3K)-phosphoinositide-dependent protein kinase 1 (PDK1)-Akt/protein kinase B (PKB) cascade that plays a critical role in development and tumorigenesis. However, the role of PDK1 in cardiovascular development remains unknown. Here, we deleted PDK1 specifically in endothelial cells in mice. These mice displayed hemorrhage and hydropericardium and died at approximately embryonic day 11.5 (E11.5). Histological analysis revealed defective vascular remodeling and development and disrupted integrity between the endothelium and trabeculae/myocardium in the heart. The atrioventricular canal (AVC) cushion and valves failed to form, indicating a defect in epithelial-mesenchymal transition (EMT), together with increased endothelial apoptosis. Consistently, ex vivo AVC explant culture showed impeded mesenchymal outgrowth. Snail protein was reduced and was absent from the nucleus in AVC cells. Delivery of the Snail S6A mutant to the AVC explant effectively rescued EMT defects. Furthermore, adenoviral Akt delivery rescued EMT defects in AVC explant culture, and deletion of PTEN delayed embryonic lethality of PDK1 endothelial deletion mice by 1 day and rendered normal development of the AVC cushion in the PDK1-deficient heart. Taken together, these results have revealed an essential role of PDK1 in cardiovascular development through activation of Akt and Snail. PMID:20457809

  3. YKL-40 promotes the migration and invasion of prostate cancer cells by regulating epithelial mesenchymal transition.

    PubMed

    Hao, Hailong; Wang, Lei; Chen, Huiqing; Xie, Liwu; Bai, Tao; Liu, Hongyu; Wang, Dongwen

    2017-01-01

    This study aims to observe the expression of YKL-40 in prostate cancer and whether YKL-40 can affect the migration and invasion of tumor cells by regulating epithelial mesenchymal transition. We collected 14 cases of prostate cancer tissues and adjacent tissues in this study. The expression levels of YKL-40 in the tissues were analyzed by western blotting and immunohistochemical methods. The expression of YKL-40 in human prostate cancer cell line DU145 and PC3 was detected by fluorescence quantitative PCR and western blotting methods. The expression levels of YKL-40 in different cells were up-regulated or down- regulated by lentivirus to observe the changes of cell migration and invasion. The expression levels of EMT related genes were analyzed by RT-PCR and Western blotting methods. The expression level of YKL-40 in prostate cancer tissues was significantly higher than that in adjacent tissues (P<0.01), and it was higher in DU145 cells than that in PC3 cells (P<0.05). The expression level of YKL-40 was positively correlated with cell migration and invasion. YKL-40 can regulate the expression of EMT related genes (Twist, Snail, Slug, N-cadherin, Vimentin and E-cadherin). The expression level of YKL-40 was positively correlated with the migration and invasion of prostate cells, it affects cancer metastasis by regulating EMT.

  4. SATB1 promotes epithelial-mesenchymal transition and metastasis in prostate cancer.

    PubMed

    Qi, Honggang; Fu, Xinyang; Li, Yeping; Pang, Xiang; Chen, Sansan; Zhu, Xiaojun; Li, Fei; Tan, Wanlong

    2017-04-01

    Special AT-rich sequence-binding protein-1 (SATB1) is associated with cancer progression and poor clinical outcome. The present study aims to evaluate whether SATB1 affects the biological behaviors of prostate cancer (PCa), and furthermore, to elucidate whether this effect works through the epithelial-mesenchymal transition (EMT) pathway. Firstly, the expression of SATB1 was investigated in a series of PCa tissues as well as in a panel of PCa cell lines. Cell proliferation, migration and invasion were evaluated in SATB1 knockdown and overexpressed PCa cell lines by MTT and Transwell assays. The results showed that the expression of SATB1 was markedly upregulated in PCa tissues and all PCa cell lines (P<0.001). Ectopic expression of SATB1 promoted PCa cell proliferation and migration. Knockdown of SATB1 repressed the ability of cell proliferation and migration of PCa cells. In addition, inhibition of SATB1 could reverse the EMT processes through upregulation of E-cadherin and downregulation of vimentin. The present study provided evidence that SATB1 may act as a potential therapeutic target in PCa patients.

  5. H19 promotes endometrial cancer progression by modulating epithelial-mesenchymal transition.

    PubMed

    Zhao, Le; Li, Zhen; Chen, Wei; Zhai, Wen; Pan, Jingjing; Pang, Huan; Li, Xu

    2017-01-01

    Endometrial cancer is one of the most common types of gynecological malignancy worldwide. Novel biomarkers and therapeutic targets are imperative for improving patients' survival. Previous studies have suggested the long non-coding RNA H19 as a potential cancer biomarker. To investigate the role of H19 in endometrial cancer, the present study examined the expression pattern of H19 in endometrial cancer tissues by quantitative polymerase chain reaction, and characterized its function in the endometrial cancer cell line via knocking down its expression with small interfering RNAs. It was found that H19 level was significantly higher in tumor tissues than in paratumoral tissues. Knockdown of H19 did not affect the growth rate of HEC-1-B endometrial cancer cells, but significantly suppressed in vitro migration and invasion of HEC-1-B cells. Furthermore, H19 downregulation decreased Snail level and increased E-cadherin expression without affecting vimentin level, indicating partial reversion of epithelial-mesenchymal transition (EMT). The present findings suggested that H19 contributed to the aggressiveness of endometrial cancer by modulating EMT process.

  6. Nrf2 inhibits epithelial-mesenchymal transition by suppressing snail expression during pulmonary fibrosis

    PubMed Central

    Zhou, Wencheng; Mo, Xiaoting; Cui, Wenhui; Zhang, Zhihui; Li, Delin; Li, Liucheng; Xu, Liang; Yao, Hongwei; Gao, Jian

    2016-01-01

    Epithelial-mesenchymal transition (EMT) is a phenotype conversion that plays a critical role in the development of pulmonary fibrosis (PF). It is known that snail could regulate the progression of EMT. Nuclear factor erythroid 2 related factor 2 (Nrf2), a key regulator of antioxidant defense system, protects cells against oxidative stress. However, it is not known whether Nrf2 regulates snail thereby modulating the development of PF. Here, bleomycin (BLM) was intratracheally injected into both Nrf2-knockout (Nrf2−/−) and wild-type mice to compare the development of PF. Rat type II alveolar epithelial cells (RLE-6TN) were treated with a specific Nrf2 activator sulforaphane, or transfected with Nrf2 and snail siRNAs to determine their effects on transforming growth factor β1 (TGF-β1)-induced EMT. We found that BLM-induced EMT and lung fibrosis were more severe in Nrf2−/− mice compared to wild-type mice. In vitro, sulforaphane treatment attenuated TGF-β1-induced EMT, accompanied by the down-regulation of snail. Inversely, silencing Nrf2 by siRNA enhanced TGF-β1-induced EMT along with increased expression of snail. Interestingly, when snail was silenced by siRNA, sulforaphane treatment was unable to reduce the progression of EMT in RLE-6TN cells. These findings suggest that Nrf2 attenuates EMT and fibrosis process by regulating the expression of snail in PF. PMID:27982105

  7. Snail1 is involved in the renal epithelial-mesenchymal transition

    SciTech Connect

    Yoshino, Jun; Monkawa, Toshiaki Tsuji, Mihoko; Inukai, Mai; Itoh, Hiroshi; Hayashi, Matsuhiko

    2007-10-12

    The pathological significance of the tubular epithelial-mesenchymal transition (EMT) in kidney diseases is becoming increasingly recognized, and the transcription factor Snail1 plays a critical role in EMT. The results of this study show that Snail1 mRNA and protein were upregulated in the tubular epithelial cells of the obstructed kidneys in a rat model of unilateral ureteral obstruction and in human proximal tubule HKC-8 cells treated with TGF-{beta}1. Glycogen synthase kinase-3{beta} (GSK-3{beta}) regulates the Snail1 level by degrading Snail1 protein. The level of the phosphorylated inactive form of GSK-3{beta} was increased in the tubular epithelial cells of the obstructed kidney. TGF-{beta}1 increased the phosphorylated form of GSK-3{beta} in HKC-8 cells, and inhibition of GSK-3{beta} by the selective inhibitors lithium and TDZD-8 caused Snail1 protein to accumulate. This study demonstrated that Snail1 is involved in renal tubular EMT and that TGF-{beta}1 regulates Snail1 at the transcription and protein degradation levels.

  8. Systems biology approaches to understanding Epithelial Mesenchymal Transition (EMT) in mucosal remodeling and signaling in asthma

    PubMed Central

    2014-01-01

    A pathological hallmark of asthma is chronic injury and repair, producing dysfunction of the epithelial barrier function. In this setting, increased oxidative stress, growth factor- and cytokine stimulation, together with extracellular matrix contact produces transcriptional reprogramming of the epithelial cell. This process results in epithelial-mesenchymal transition (EMT), a cellular state associated with loss of epithelial polarity, expression of mesenchymal markers, enhanced mobility and extracellular matrix remodeling. As a result, the cellular biology of the EMT state produces characteristic changes seen in severe, refractory asthma: myofibroblast expansion, epithelial trans-differentiation and subepithelial fibrosis. EMT also induces profound changes in epithelial responsiveness that affects innate immune signaling that may have impact on the adaptive immune response and effectiveness of glucocorticoid therapy in severe asthma. We discuss how this complex phenotype is beginning to be understood using systems biology-level approaches through perturbations coupled with high throughput profiling and computational modeling. Understanding the distinct changes induced by EMT at the systems level may provide translational strategies to reverse the altered signaling and physiology of refractory asthma. PMID:24982697

  9. Critical Roles of p53 in Epithelial-Mesenchymal Transition and Metastasis of Hepatocellular Carcinoma Cells

    PubMed Central

    Wang, Zheng; Jiang, Yuhui; Guan, Dongxian; Li, Jingjing; Yin, Hongkun; Pan, Yi; Xie, Dong; Chen, Yan

    2013-01-01

    Hepatocellular carcinoma (HCC) is one of the most malignant tumors and the biggest obstacle in curing HCC is its high metastasis potential. Alteration of p53 is the most frequent genetic change found in HCC. Although the biological function of p53 in tumor initiation and progression has been well characterized, whether or not p53 is implicated in metastasis of HCC is largely unknown. In this study, we analyzed the potential functions of p53 in epithelial-mesenchymal transition (EMT) and metastasis of HCC cells. Both insulin- and TGF-β1-induced changes of critical EMT markers were greatly enhanced by p53 knockdown in HCC cells. The insulin- and TGF-β1-stimulated migration of HCC cells were enhanced by p53 knockdown. Furthermore, in vivo metastasis of HCC cells using different mouse models was robustly enhanced by p53 knockdown. In addition, we found that p53 regulation on EMT and metastasis involves β-catenin signaling. The nuclear accumulation and transcriptional activity of β-catenin was modulated by p53. The enhanced EMT phenotype, cell migration and tumor metastasis of HCC cells by p53 knockdown were abrogated by inhibiting β-catenin signal pathway. In conclusion, this study reveals that p53 plays a pivotal role in EMT and metastasis of HCC cells via its regulation on β-catenin signaling. PMID:24023784

  10. Kisspeptin-10 inhibits the migration of breast cancer cells by regulating epithelial-mesenchymal transition.

    PubMed

    Song, Guo-Qing; Zhao, Yi

    2015-02-01

    Breast cancer is the leading cause of cancer-related death in women. Kisspeptin-10 (KP-10) is a shorter fragment of KISS1. In the present study, we demonstrated the antitumor effects of KP-10 on human breast cancer cell lines, MDA-MB-231 and MDA-MB-157, both in vitro and in vivo. KP-10 was observed to induce apoptosis and inhibit the mobility of MDA-MB-231 and MDA-MB-157 cells. Correspondingly, KP-10 suppressed tumor growth in established xenograft tumor models and improved the survival rate of tumor-bearing mice. The formation of intratumoral microvessels was inhibited following treatment with KP-10. Finally, we confirmed that KP-10 inhibited cell mobility via epithelial-mesenchymal transition (EMT). Overall, the present study demonstrated that KP-10 suppressed breast cancer and human umbilical vein endothelial cell (HUVEC) growth both in vivo and in vitro. KP-10 is a novel regulator of EMT in breast cancer cells. However, additional studies are needed to confirm these results in other cell types.

  11. Expression of Epithelial-Mesenchymal Transition Regulating Transcription Factors in Head and Neck Squamous Cell Carcinomas.

    PubMed

    Göppel, Juliane; Möckelmann, Nikolaus; Münscher, Adrian; Sauter, Guido; Schumacher, Udo

    2017-10-01

    The transcription factors Twist, Snail, Slug, ZEB1 and ZEB2 regulate epithelial-mesenchymal transition (EMT) and their expression has been associated with a poor prognosis in several cancer entities. The aim of this analysis was to investigate in parallel the expression of all of these transcription factors in head and neck squamous cell carcinomas (HNSCCs) in order to gain insight into their possible co-expression. Tumor tissue samples were immunohistochemically stained using antibodies against these transcription factors. The staining intensity and cellular distribution of the immunoreactivity was recorded. In general, transcription factor immunoreactivity was noted in the nucleus of both cancer and stromal cells. The highest immunoreactivity was observed for Twist. Snail, Slug, ZEB1 and ZEB2 showed a much lesser immunoreactivity in cancer cells and they were expressed independently from each other. Twist is the major transcription factor active in HNSCC; the other transcription factors of EMT seem to be of less importance in this tumor entity. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  12. CAMK1D amplification implicated in epithelial-mesenchymal transition in basal-like breast cancer.

    PubMed

    Bergamaschi, Anna; Kim, Young H; Kwei, Kevin A; La Choi, Yoon; Bocanegra, Melanie; Langerød, Anita; Han, Wonshik; Noh, Dong-Young; Huntsman, David G; Jeffrey, Stefanie S; Børresen-Dale, Anne-Lise; Pollack, Jonathan R

    2008-12-01

    Breast cancer exhibits clinical and molecular heterogeneity, where expression profiling studies have identified five major molecular subtypes. The basal-like subtype, expressing basal epithelial markers and negative for estrogen receptor (ER), progesterone receptor (PR) and HER2, is associated with higher overall levels of DNA copy number alteration (CNA), specific CNAs (like gain on chromosome 10p), and poor prognosis. Discovering the molecular genetic basis of tumor subtypes may provide new opportunities for therapy. To identify the driver oncogene on 10p associated with basal-like tumors, we analyzed genomic profiles of 172 breast carcinomas. The smallest shared region of gain spanned just seven genes at 10p13, including calcium/calmodulin-dependent protein kinase ID (CAMK1D), functioning in intracellular signaling but not previously linked to cancer. By microarray, CAMK1D was overexpressed when amplified, and by immunohistochemistry exhibited elevated expression in invasive carcinomas compared to carcinoma in situ. Engineered overexpression of CAMK1D in non-tumorigenic breast epithelial cells led to increased cell proliferation, and molecular and phenotypic alterations indicative of epithelial-mesenchymal transition (EMT), including loss of cell-cell adhesions and increased cell migration and invasion. Our findings identify CAMK1D as a novel amplified oncogene linked to EMT in breast cancer, and as a potential therapeutic target with particular relevance to clinically unfavorable basal-like tumors.

  13. Regulation of epithelial-mesenchymal transition by tumor-associated macrophages in cancer

    PubMed Central

    Zhang, Jia; Yao, Hongmei; Song, Ge; Liao, Xia; Xian, Yao; Li, Weimin

    2015-01-01

    It should be urgently better understood of the mechanism that contributes cancer aggressiveness. Epithelial-mesenchymal transition (EMT) plays a fundamental role in tumor progression and metastasis formation by invasion, resistance to cell death and senescence, resistance to chemotherapy and immunotherapy, immune surveillance, immunosuppression and inflammation, confers stem cell properties. Tumor-associated macrophages (TAMs) are key orchestrators and a set of macrophages in tumor microenvironment. They are major players in the connection between inflammation and cancer. TAMs could promote proliferation, invasion and metastasis of tumor cells, stimulate tumor angiogenesis, and inhibit anti-tumor immune response mediated by T cell followed by promoting tumor progression. Recently, studies showed that TAMs played critical role in the regulation of EMT in cancer, although the underlying mechanism of TAMs-mediated acquisition of EMT has been largely unclear. This review will discuss recent advances in our understanding of the role of TAMs in the regulation of EMT during tumorigenesis and summarize the recent ongoing experimental and pre-clinical TAMs targeted studies. PMID:26692918

  14. Epithelial mesenchymal transition and tumor budding in aggressive colorectal cancer: tumor budding as oncotarget.

    PubMed

    Zlobec, Inti; Lugli, Alessandro

    2010-11-01

    Epithelial mesenchymal transition (EMT) is proposed as a critical mechanism for the acquisition of malignant phenotypes by epithelial cells. In colorectal cancer, tumor cells having undergone EMT are histologically represented by the presence of tumor buds defined as single cells or small clusters of de-differentiated tumor cells at the invasive front. Tumor budding is not a static, histological feature rather it represents a snap-shot of a dynamic process undertaken by an aggressive tumor with the potential to disseminate and metastasize. Strong, consistent evidence shows that tumor budding is a predictor of lymph node metastasis, distant metastatic disease, local recurrence, worse overall and disease-free survival time and an independent prognostic factor. Moreover, the International Union against Cancer (UICC) recognizes tumor budding as a highly relevant, additional prognostic parameter. The aim of this review is to summarize the evidence supporting the implementation of tumor budding into diagnostic pathology and patient management and additionally to illustrate its worthiness as a potential therapeutic target.

  15. Epithelial mesenchymal transition and tumor budding in aggressive colorectal cancer: Tumor budding as oncotarget

    PubMed Central

    Zlobec, Inti; Lugli, Alessandro

    2010-01-01

    Epithelial mesenchymal transition (EMT) is proposed as a critical mechanism for the acquisition of malignant phenotypes by epithelial cells. In colorectal cancer, tumor cells having undergone EMT are histologically represented by the presence of tumor buds defined as single cells or small clusters of de-differentiated tumor cells at the invasive front. Tumor budding is not a static, histological feature rather it represents a snap-shot of a dynamic process undertaken by an aggressive tumor with the potential to disseminate and metastasize. Strong, consistent evidence shows that tumor budding is a predictor of lymph node metastasis, distant metastatic disease, local recurrence, worse overall and disease-free survival time and an independent prognostic factor. Moreover, the International Union against Cancer (UICC) recognizes tumor budding as a highly relevant, additional prognostic parameter. The aim of this review is to summarize the evidence supporting the implementation of tumor budding into diagnostic pathology and patient management and additionally to illustrate its worthiness as a potential therapeutic target. PMID:21317460

  16. Diffusion kurtosis imaging evaluating epithelial-mesenchymal transition in colorectal carcinoma xenografts model: a preliminary study.

    PubMed

    Liu, Huanhuan; Shen, Wenbin; Zhang, Caiyuan; Cui, Yanfen; Li, Jinning; Zhang, Tingting; Chen, Weibo; Wang, Dengbin

    2017-09-12

    Epithelial-mesenchymal transition (EMT) plays an important role in aggravating invasiveness and metastatic behavior of colorectal cancer (CRC). Identification of EMT is important for structuring treatment strategy, but has not yet been studied by using noninvasive imaging modality. Diffusion kurtosis imaging (DKI) is an advanced diffusion weighted model that could reflect tissue microstructural changes in vivo. In this study, EMT was induced in CRC cells (HCT116) by overexpressing Snail1 gene. We aimed to investigate the value of DKI in identifying EMT in CRC and decipher the correlations between DKI-derived parameters and EMT biomarker E-cadherin and cell proliferative index Ki-67 expression. Our results revealed that HCT116/Snail1 cells presented changes consistent with EMT resulting in significant increase in migration and invasion capacities. DKI could identify CRC with EMT, in which the DKI-derived parameter diffusivity was significantly lower, and kurtosis was significantly higher than those in the CRC/Control. Diffusivity was negatively and kurtosis was positively correlated with Ki-67 expression, whereas diffusivity was positively and kurtosis was negatively correlated with E-cadherin expression. Therefore, our study concluded that DKI can identify EMT in CRC xenograft tumors. EMT-contained CRC tumors with high Ki-67 and low E-cadherin expression were vulnerable to have lower diffusivity and higher kurtosis coefficients.

  17. Hyperglycemia Promotes the Epithelial-Mesenchymal Transition of Pancreatic Cancer via Hydrogen Peroxide

    PubMed Central

    Jiang, Zhengdong

    2016-01-01

    Diabetes mellitus (DM) and pancreatic cancer are intimately related, as approximately 85% of patients diagnosed with pancreatic cancer have impaired glucose tolerance or even DM. Our previous studies have indicated that high glucose could promote the invasive and migratory abilities of pancreatic cancer cells. We therefore explored the underlying mechanism that hyperglycemia modulates the metastatic potential of pancreatic cancer. Our data showed that streptozotocin- (STZ-) treated diabetic nude mice exhibit larger tumor size than that of the euglycemic mice. The number of nude mice that develop liver metastasis or ascites is much more in the STZ-treated group than that in the euglycemic group. Hyperglycemic mice contain a higher plasma H2O2-level than that from euglycemic mice. The injection of polyethylene glycol-conjugated catalase (PEG-CAT), an H2O2 scavenger, may reverse hyperglycemia-induced tumor metastasis. In addition, hyperglycemia could also modulate the expression of epithelial-mesenchymal transition- (EMT-) related factors in pancreatic tumor tissues, as the E-cadherin level is decreased and the expression of mesenchymal markers N-cadherin and vimentin as well as transcription factor snail is strongly increased. The injection of PEG-CAT could also reverse hyperglycemia-induced EMT. These results suggest that the association between hyperglycemia and poor prognosis of pancreatic cancer can be attributed to the alterations of EMT through the production of hydrogen peroxide. PMID:27433288

  18. Gremlin: a novel mediator of epithelial mesenchymal transition and fibrosis in chronic allograft nephropathy.

    PubMed

    Carvajal, G; Droguett, A; Burgos, M E; Aros, C; Ardiles, L; Flores, C; Carpio, D; Ruiz-Ortega, M; Egido, J; Mezzano, S

    2008-04-01

    Chronic allograft nephropathy (CAN) is the most frequent cause of chronic dysfunction and late loss of renal allografts. Epithelial mesenchymal transition (EMT) has been identified as responsible for the presence of activated interstitial fibroblasts (myofibroblasts) and transforming growth factor beta (TGF-beta)/Smad is the key signaling mediator. It has been proposed that the bone morphogenetic protein 7 (BMP-7) antagonist, Gremlin, could participate in EMT, as a downstream mediator of TGF-beta. We evaluated 33 renal allograft biopsies, 16 of which showed CAN, versus 17 controls. By in situ hybridization we studied the expression of TGF-beta and Gremlin mRNA. Gremlin, BMP-7, E-cadherin, and alpha-smooth muscle actin (alpha-SMA) proteins were evaluated by immunohistochemistry and Smad3 activation by Southwestern. In cultured human tubuloepithelial cells (HK2 cell line), Gremlin induction by TGF-beta was studied by confocal microscopy. Among renal biopsies of transplanted patients with CAN, we detected up-regulation of TGF-beta in colocalization with Gremlin (RNA and protein), mainly in areas of tubulointerstitial fibrosis. In the same tubules, we observed decreased expression of E-cadherin and induction of vimentin and alpha-SMA. BMP-7 was significantly decreased in the CAN biopsies. In addition, HK2 stimulated with TGF-beta (1 ng/mL) induced Gremlin production at 72 hours. We postulated that Gremlin is a downstream mediator of TGF-beta, suggesting a role for Gremlin in EMT observed in CAN.

  19. A sea urchin in vivo model to evaluate Epithelial-Mesenchymal Transition.

    PubMed

    Romancino, Daniele P; Anello, Letizia; Lavanco, Antonella; Buffa, Valentina; Di Bernardo, Maria; Bongiovanni, Antonella

    2017-04-01

    Epithelial-mesenchymal transition (EMT) is an evolutionarily conserved cellular program, which is a prerequisite for the metastatic cascade in carcinoma progression. Here, we evaluate the EMT process using the sea urchin Paracentrotus lividus embryo. In sea urchin embryos, the earliest EMT event is related to the acquisition of a mesenchymal phenotype by the spiculogenetic primary mesenchyme cells (PMCs) and their migration into the blastocoel. We investigated the effect of inhibiting the epidermal growth factor (EGF) signaling pathway on this process, and we observed that mesenchyme cell differentiation was blocked. In order to extend and validate our studies, we investigated the migratory capability and the level of potential epidermal growth factor receptor (EGFr) targets in a breast cancer cell line after EGF modulation. Altogether, our data highlight the sensitivity of the sea urchin embryo to anti-EMT drugs and pinpoint the sea urchin embryo as a valuable in vivo model system for studying EMT and the screening of anti-EMT candidates. © 2017 Japanese Society of Developmental Biologists.

  20. HIC1 loss promotes prostate cancer metastasis by triggering epithelial-mesenchymal transition.

    PubMed

    Hao, Mingang; Li, Yue; Wang, Jinglong; Qin, Jun; Wang, Yingying; Ding, Yufeng; Jiang, Min; Sun, Xueqing; Zu, Lidong; Chang, Kun; Lin, Guowen; Du, Jiangyuan; Korinek, Vladimir; Ye, Din-Wei; Wang, Jianhua

    2017-08-01

    Metastatic disease is the leading cause of death due to prostate cancer (PCa). Although the hypermethylated in cancer 1 (HIC1) gene has been observed to be epigenetically modified in PCa, its intrinsic role and mechanism in PCa metastasis still remain uncertain. Here, we show that hypermethylation of the HIC1 promoter markedly reduces its suppressive function in metastatic PCa tissues as compared with primary and adjacent normal prostate tissues, and is associated with poor patient survival. PCas in cancer-prone mice homozygous for a prostate-targeted Hic1 conditional knockout showed stronger metastatic behaviour than those in heterozygous mice, as a result of epithelial-mesenchymal transition (EMT). Moreover, impairment of HIC1 expression in PCa cells induced their migration and metastasis through EMT, by enhancing expression of Slug and CXCR4, both of which are critical to PCa metastasis; the CXCL12-CXCR4 axis promotes EMT by activating the extracellular signal-regulated kinase (ERK) 1/2 pathway. Taken together, our results suggest that evaluation of HIC1-CXCR4-Slug signalling may provide a potential predictor for PCa aggressiveness. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  1. Role of fucosyltransferase IV in epithelial-mesenchymal transition in breast cancer cells.

    PubMed

    Yang, X; Liu, S; Yan, Q

    2013-07-25

    Epithelial-mesenchymal transition (EMT) is a crucial step in tumor progression and has an important role during cancer invasion and metastasis. Although fucosyltransferase IV (FUT4) has been implicated in the modulation of cell migration, invasion and cancer metastasis, its role during EMT is unclear. This study explores the molecular mechanisms of the involvement of FUT4 in EMT in breast cancer cells. Breast cancer cell lines display increased expression of FUT4, which is accompanied by enhanced appearance of the mesenchymal phenotype and which can be reversed by knockdown of endogenous FUT4. Moreover, FUT4 induced activation of phosphatidylinositol 3-kinase (PI3K)/Akt, and inactivation of GSK3β and nuclear translocation of NF-κB, resulting in increased Snail and MMP-9 expression and greater cell motility. Taken together, these findings indicate that FUT4 has a role in EMT through activation of the PI3K/Akt and NF-κB signaling systems, which induce the key mediators Snail and MMP-9 and facilitate the acquisition of a mesenchymal phenotype. Our findings support the possibility that FUT4 is a novel regulator of EMT in breast cancer cells and a promising target for cancer therapy.

  2. KLF17 is a negative regulator of epithelial-mesenchymal transition and metastasis in breast cancer

    PubMed Central

    Gumireddy, Kiranmai; Li, Anping; Gimotty, Phyllis A.; Klein-Szanto, Andres J.; Showe, Louise C.; Katsaros, Dionyssios; Coukos, George; Zhang, Lin; Huang, Qihong

    2009-01-01

    Metastasis is a complex multi-step process requiring the concerted action of many genes and is the primary cause of cancer deaths. Pathways that regulate metastasis enhancement and suppression both contribute to tumor dissemination process. In order to identify novel metastasis suppressors, we set up a forward genetic screen in a mouse model. We transduced a genome-wide RNAi library into the non-metastatic 168FARN breast cancer cell line, orthotopically transplanted the cells into mouse mammary fat pads, and then selected for cells that could metastasize to the lung and identified an RNAi for the KLF17 gene. Conversely, we demonstrate that ectopic expression of KLF17 in highly metastatic 4T1 breast cancer cell line inhibited their ability to metastasize from the mammary fat pad to the lung. We also show that suppression of KLF17 expression promotes breast cancer cell invasion and epithelial-mesenchymal transition (EMT) and that KLF17 functions by directly binding to the promoter of Id-1, a key metastasis regulator in breast cancer, to inhibit its transcription. Finally, we demonstrate that KLF17 expression is significantly down-regulated in primary human breast cancer samples and that the combined expression patterns of KLF17 and Id-1 can serve as a potential biomarker for lymph node metastasis in breast cancer. PMID:19801974

  3. Curcumin inhibits invasive capabilities through epithelial mesenchymal transition in breast cancer cell lines.

    PubMed

    Gallardo, Marcela; Calaf, Gloria M

    2016-09-01

    Curcumin (diferuloyl methane) is an antioxidant that exerts antiproliferative and apoptotic effects and has anti-invasive and anti-metastatic properties. Evidence strongly implicates that epithelial-mesenchymal transition (EMT) is involved in malignant progression affecting genes such as Slug, AXL and Twist1. These genes are abnormally expressed in many tumors and favor metastasis. The purpose of this study was to determine the potential effect of curcumin on EMT, migration and invasion. Triple-positive and triple-negative breast cancer cell lines for estrogen receptor (ER), progesterone receptor (PgR) and HER/neu were used: i) MCF-10F, a normal immortalized breast epithelial cell line (negative), ii) Tumor2, a malignant and tumorigenic cell line (positive) derived from Alpha5 cell line injected into the immunologically depressed mice and transformed by 60/60 cGy doses of high LET (linear energy transfer) α particles (150 keV/µm) of radiation and estrogen, and iii) a commercially available MDA-MB‑231 (negative). The effect of curcumin (30 µM for 48 h) was evaluated on expression of EMT-related genes by RT-qPCR. Results showed that curcumin decreased E-cadherin, N-cadherin, β-catenin, Slug, AXL, Twist1, Vimentin and Fibronectin protein expression, independently of the positivity of the markers in the cell lines. Curcumin also decreased migration and invasive capabilities in comparison to their own controls. It can be concluded that curcumin influenced biochemical changes associated with EMT-related genes that seems to promote such transition and are at the core of several signaling pathways that mediate the transition. Thus, it can be suggested that curcumin is able to prevent or delay cancer progression through the interruption of this process.

  4. Preprocessing with Photoshop Software on Microscopic Images of A549 Cells in Epithelial-Mesenchymal Transition.

    PubMed

    Ren, Zhou-Xin; Yu, Hai-Bin; Shen, Jun-Ling; Li, Ya; Li, Jian-Sheng

    2015-06-01

    To establish a preprocessing method for cell morphometry in microscopic images of A549 cells in epithelial-mesenchymal transition (EMT). Adobe Photoshop CS2 (Adobe Systems, Inc.) was used for preprocessing the images. First, all images were processed for size uniformity and high distinguishability between the cell and background area. Then, a blank image with the same size and grids was established and cross points of the grids were added into a distinct color. The blank image was merged into a processed image. In the merged images, the cells with 1 or more cross points were chosen, and then the cell areas were enclosed and were replaced in a distinct color. Except for chosen cellular areas, all areas were changed into a unique hue. Three observers quantified roundness of cells in images with the image preprocess (IPP) or without the method (Controls), respectively. Furthermore, 1 observer measured the roundness 3 times with the 2 methods, respectively. The results between IPPs and Controls were compared for repeatability and reproducibility. As compared with the Control method, among 3 observers, use of the IPP method resulted in a higher number and a higher percentage of same-chosen cells in an image. The relative average deviation values of roundness, either for 3 observers or 1 observer, were significantly higher in Controls than in IPPs (p < 0.01 or 0.001). The values of intraclass correlation coefficient, both in Single Type or Average, were higher in IPPs than in Controls both for 3 observers and 1 observer. Processed with Adobe Photoshop, a chosen cell from an image was more objective, regular, and accurate, creating an increase of reproducibility and repeatability on morphometry of A549 cells in epithelial to mesenchymal transition.

  5. The epithelial-mesenchymal transition of the Drosophila mesoderm requires the Rho GTP exchange factor Pebble.

    PubMed

    Smallhorn, Masha; Murray, Michael J; Saint, Robert

    2004-06-01

    Drosophila pebble (pbl) encodes a Rho-family GTP exchange factor (GEF) required for cytokinesis. The accumulation of high levels of PBL protein during interphase and the developmentally regulated expression of pbl in mesodermal tissues suggested that the primary cytokinetic mutant phenotype might be masking other roles. Using various muscle differentiation markers, we found that Even skipped (EVE) expression in the dorsal mesoderm is greatly reduced in pbl mutant embryos. EVE expression in the dorsalmost mesodermal cells is induced in response to DPP secreted by the dorsal epidermal cells. Further analysis revealed that this phenotype is likely to be a consequence of an earlier defect. pbl mutant mesodermal cells fail to undergo the normal epithelial-mesenchymal transition (EMT) and dorsal migration that follows ventral furrow formation. This phenotype is not a secondary consequence of failed cytokinesis, as it is rescued by a mutant form of pbl that does not rescue the cytokinetic defect. In wild-type embryos, newly invaginated cells at the lateral edges of the mesoderm extend numerous protrusions. In pbl mutant embryos, however, cells appear more tightly adhered to their neighbours and extend very few protrusions. Consistent with the dependence of the mesoderm EMT and cytokinesis on actin organisation, the GTP exchange function of the PBL RhoGEF is required for both processes. By contrast, the N-terminal BRCT domains of PBL are required only for the cytokinetic function of PBL. These studies reveal that a novel PBL-mediated intracellular signalling pathway operates in mesodermal cells during the transition from an epithelial to migratory mesenchymal morphology during gastrulation.

  6. Invasive Front Grading and Epithelial-Mesenchymal Transition in Canine Oral and Cutaneous Squamous Cell Carcinomas.

    PubMed

    Nagamine, E; Hirayama, K; Matsuda, K; Okamoto, M; Ohmachi, T; Uchida, K; Kadosawa, T; Taniyama, H

    2017-09-01

    Oral and cutaneous tissues are the most frequent origin in canine squamous cell carcinoma (SSC). In SCC, changes in adhesion molecule expression and transition from epithelial to mesenchymal phenotype are thought to be important in development of invasive behavior of neoplastic cells at the leading front of the tumor. We therefore investigated histological invasive front grading and epithelial-mesenchymal transition (EMT) in both oral SCCs and cutaneous SCCs. EMT was assessed by evaluating immunohistochemical expression of E-cadherin, β-catenin, desmoglein, vimentin, and N-cadherin. Regardless of the anatomic location, invasive front grading resulted in higher histological grades than grading of the surface. Most oral SCCs were of significantly higher histologic grade than cutaneous SCCs ( P < .01). Expression of E-cadherin, β-catenin, and desmoglein was significantly lower in oral SCC compared with cutaneous SCC ( P < .01). A significant association was found between invasive front grading and loss of E-cadherin, β-catenin, and desmoglein ( P < .01). Also, vimentin-positive neoplastic cells had low immunoreactivity of these adhesion molecules, and a few of these neoplastic cells were positive for N-cadherin. These results suggest not only E-cadherin and β-catenin but also desmoglein as markers for predicting biological behavior of canine SCC. Depending on their primary sites, EMT correlates with biological behavior and therefore histological grade of canine SCC. We suggest that combining invasive front grading with assessment of immunohistochemical expression of E-cadherin, β-catenin, and desmoglein may allow more accurate prediction of biological behavior of canine SCCs.

  7. Epithelial Mesenchymal Transition (EMT) in Metastatic Breast Cancer in Omani Women.

    PubMed

    Lakhtakia, Ritu; Aljarrah, Adil; Furrukh, Muhammad; Ganguly, Shyam S

    2017-05-19

    Breast cancer (BC) in Oman affects younger women and has a more aggressive course. Clinical and biological variables like age, pregnancy, tumor size, type, grade, receptor expression and proliferation predict disease aggression but there is no direct predictor of metastasis except lymphovascular invasion. Epithelial-mesenchymal transition (EMT) is characterized by epithelial cells losing epithelial and acquiring mesenchymal morpho-immunophenotypic characteristics. In tumors, EMT-like transitions may signify a metastatic phenotype and have features in common with cancer stem cells (CSC) which show resistance to chemotherapy. This study aimed to identify EMT and CSC phenotypes in metastatic and non-metastatic breast cancer in Omani women and their association with conventional clinico-pathological predictors of BC. In a retrospective study of ninety-six Omani women with breast cancer, the association of age, pregnancy/lactation, tumor size, type, grade, ductal carcinoma insitu (DCIS), lymphovascular invasion, hormone/ HER2 receptor expression and Ki67 proliferation index (Ki67 PI) was tested with EMT/ CSC phenotype and metastasis. Young age ≤ 40 years, lymphovascular invasion and EMT had a strong association with metastasis; CSC approached significance. Vimentin expression in tumor cells, fibronectin and MMP-11 in stroma were reliable markers of EMT; dual EMT and CSC phenotype (Vim+/ CD44+/ CD 24-/low) had a strong association with apocrine variant, basal-like tumors and triple negative cancers. EMT had a strong association with Ki67 proliferation index (PI) and CSC with HER2-like tumors and distant metastasis. These select markers may be useful in metastasis-prediction in pre-treatment biopsies.

  8. Clinical significance of altering epithelial-mesenchymal transition in metastatic lymph nodes of gastric cancer.

    PubMed

    Okubo, Keishi; Uenosono, Yoshikazu; Arigami, Takaaki; Yanagita, Shigehiro; Matsushita, Daisuke; Kijima, Takashi; Amatatsu, Masahiko; Uchikado, Yasuto; Kijima, Yuko; Maemura, Kosei; Natsugoe, Shoji

    2017-02-28

    The E-cadherin, N-cadherin, and Snail genes are epithelial-mesenchymal transition (EMT)-inducible genes. Previous studies demonstrated that the expression of EMT markers in the primary tumor sites of gastric cancer correlates with tumor progression and prognosis. However, the clinical significance of the expression of these EMT markers in metastatic lymph nodes remains unclear. In the present study, we investigated the expression of these EMT markers in the primary tumor sites and metastatic lymph nodes. Immunohistochemistry was used to investigate the expression of E-cadherin, N-cadherin, and Snail in 89 primary tumors and 511 metastatic lymph nodes obtained from patients with gastric cancer. The weak expression of E-cadherin in tumors and lymph nodes increased with more lymph node metastasis and in more undifferentiated tumors. The strong expression of N-cadherin in lymph nodes correlated with more lymph nodes metastasis, an advanced stage, and poor prognosis. The weak expression of Snail in tumors correlated with lymphatic invasion. The strong expression of Snail in lymph nodes correlated with more lymph node metastasis and an advanced stage. The strong expression of Snail in tumors and its weak expression in lymph nodes correlated with more lymph node metastasis, an advanced stage, and poor prognosis. The expression of N-cadherin in metastatic lymph nodes is useful for predicting the prognosis of patients with gastric cancer. The Snail switch-namely, the positive-to-negative conversion of the Snail status-between primary tumors and lymph node metastasis may be important for confirming EMT and mesenchymal-epithelial transition.

  9. The mechanism of epithelial-mesenchymal transition induced by TGF-β1 in neuroblastoma cells.

    PubMed

    Shao, Jing-Bo; Gao, Zhi-Mei; Huang, Wen-Yan; Lu, Zhi-Bao

    2017-05-01

    Neuroblastoma is the second most common extracranial malignant solid tumor that occurs in childhood, and metastasis is one of the major causes of death in neuroblastoma patients. The epithelial-mesenchymal transition (EMT) is an important mechanism for both the initiation of tumor invasion and subsequent metastasis. Therefore, this study investigated the mechanism by which transforming growth factor (TGF)-β1 induces EMT in human neuroblastoma cells. Using quantitative RT-qPCR and western blot analyses, we found that the mRNA and protein expression levels of E-cadherin were significantly decreased, whereas that of α-SMA was significantly increased after neuroblastoma cells were treated with different concentrations of TGF-β1. A scratch test and Transwell migration assay revealed that cell migration significantly and directly correlated with the concentration of TGF-β1 indicating that TGF-β1 induced EMT in neuroblastoma cells and led to their migration. Inhibiting Smad2/3 expression did not affect the expression of the key molecules involved in EMT. Further investigation found that the expression of the glioblastoma transcription factor (Gli) significantly increased in TGF-β1-stimulated neuroblastoma cells undergoing EMT, accordingly, interfering with Gli1/2 expression inhibited TGF-β1-induced EMT in neuroblastoma cells. GANT61, which is a targeted inhibitor of Gli1 and Gli2, decreased cell viability and promoted cell apoptosis. Thus, TGF-β1 induced EMT in neuroblastoma cells to increase their migration. Specifically, EMT induced by TGF-β1 in neuroblastoma cells did not depend on the Smad signaling pathway, and the transcription factor Gli participated in TGF-β1-induced EMT independent of Smad signaling.

  10. Elk-3 Contributes to the Progression of Liver Fibrosis by Regulating the Epithelial-Mesenchymal Transition

    PubMed Central

    Li, Tian Zhu; Kim, Sung Min; Hur, Wonhee; Choi, Jung Eun; Kim, Jung-Hee; Hong, Sung Woo; Lee, Eun Byul; Lee, Joon Ho; Yoon, Seung Kew

    2017-01-01

    Background/Aims The role of Elk-3 in the epithelial-mesenchymal transition (EMT) during liver fibrogenesis remains unclear. Here, we determined the expression of Elk-3 in in vitro and in vivo models and in human liver fibrotic tissues. We also investigated the molecular relationships among Elk-3, early growth response-1 (Egr-1), and the mitogen activated protein kinases (MAPK) pathway during EMT in hepatocytes. Methods We established anin vitro EMT model in which normal mouse hepatocyte cell lines were treated with transforming growth factor (TGF)-β1 and a CCl4-induced liver fibrosis model. Characteristics of EMT were determined by evaluating the expression levels of related markers. The expression of Elk-3 and its target Egr-1 were analyzed using Western blotting. Gene silencing of Elk-3 was performed using an siRNA knockdown system. Results The expression levels of mesenchymal markers were increased during TGF-β1-induced EMT of hepatocytes. The expression levels of Elk-3 and Egr-1 were significantly (p<0.05) increased during the EMT of hepatocytes, in CCl4-induced mouse liver fibrotic tissues, and in human liver cirrhotic tissues. Silencing of Elk-3 and inhibition of the Ras-Elk-3 pathway with an inhibitor suppressed the expression of EMT-related markers. Moreover, Elk-3 expression was regulated by p38 MAPK phosphorylation during EMT. Conclusions Elk-3 contributes to the progression of liver fibrosis by modulating the EMT via the regulation of Egr-1 under MAPK signaling. PMID:27538444

  11. Epithelial-Mesenchymal Transition (EMT) gene variants and Epithelial Ovarian Cancer (EOC) risk

    PubMed Central

    Amankwah, Ernest K.; Lin, Hui-Yi; Tyrer, Jonathan P.; Lawrenson, Kate; Dennis, Joe; Chornokur, Ganna; Aben, Katja KH.; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V.; Bean, Yukie T.; Beckmann, Matthias W.; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A.; Brooks-Wilson, Angela; Bunker, Clareann H.; Butzow, Ralf; Campbell, Ian G.; Carty, Karen; Chen, Zhihua; Chen, Y. Ann; Chang-Claude, Jenny; Cook, Linda S.; Cramer, Daniel W.; Cunningham, Julie M.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Dicks, Ed; Doherty, Jennifer A.; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F.; Eccles, Diana M.; Edwards, Robert P.; Ekici, Arif B.; Fasching, Peter A.; Fridley, Brooke L.; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind; Goodman, Marc T.; Gronwald, Jacek; Harrington, Patricia; Harter, Philipp; Hasmad, Hanis N.; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A.T.; Hillemanns, Peter; Hogdall, Claus K.; Hogdall, Estrid; Hosono, Satoyo; Iversen, Edwin S.; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y.; Jim, Heather; Kellar, Melissa; Kiemeney, Lambertus A.; Krakstad, Camilla; Kjaer, Susanne K.; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Alice W.; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F.A.G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R.; McNeish, Ian; Menon, Usha; Milne, Roger L.; Modugno, Francesmary; Moysich, Kirsten B.; Ness, Roberta B.; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Paul, James; Pearce, Celeste L.; Pejovic, Tanja; Pelttari, Liisa M.; Permuth-Wey, Jennifer; Pike, Malcolm C.; Poole, Elizabeth M.; Risch, Harvey A.; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Schernhammer, Eva; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B.; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C.; Spiewankiewicz, Beata; Sucheston-Campbell, Lara; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J.; Thomsen, Lotte; Tangen, Ingvild L.; Tworoger, Shelley S.; van Altena, Anne M.; Vierkant, Robert A.; Vergote, Ignace; Walsh, Christine S.; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S.; Wicklund, Kristine G.; Wilkens, Lynne R.; Wu, Anna H.; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Kelemen, Linda E.; Berchuck, Andrew; Schildkraut, Joellen M.; Ramus, Susan J.; Goode, Ellen L.; Monteiro, Alvaro N.A.; Gayther, Simon A.; Narod, Steven A.; Pharoah, Paul D. P.; Sellers, Thomas A.; Phelan, Catherine M.

    2016-01-01

    Introduction Epithelial-mesenchymal transition (EMT) is a process whereby epithelial cells assume mesenchymal characteristics to facilitate cancer metastasis. However, EMT also contributes to the initiation and development of primary tumors. Prior studies that explored the hypothesis that EMT gene variants contribute to EOC risk have been based on small sample sizes and none have sought replication in an independent population. Methods We screened 1254 SNPs in 296 genes in a discovery phase using data from a genome-wide association study of EOC among women of European ancestry (1,947 cases and 2,009 controls) and identified 793 variants in 278 EMT-related genes that were nominally (p<0.05) associated with invasive EOC. These SNPs were then genotyped in a larger study of 14,525 invasive-cancer patients and 23,447 controls. A p-value <0.05 and a false discovery rate (FDR) <0.2 was considered statistically significant. Results In the larger dataset, GPC6/GPC5 rs17702471 was associated with the endometrioid subtype among Caucasians (OR=1.16, 95%CI=1.07–1.25, p=0.0003, FDR=0.19), while F8 rs7053448 (OR=1.69, 95%CI=1.27–2.24, p=0.0003, FDR=0.12), F8 rs7058826 (OR=1.69, 95%CI=1.27–2.24, p=0.0003, FDR=0.12), and CAPN13 rs1983383 (OR=0.79, 95%CI=0.69–0.90, p=0.0005, FDR=0.12) were associated with combined invasive EOC among Asians. In silico functional analyses revealed that GPC6/GPC5 rs17702471 coincided with DNA regulatory elements. Conclusion These results suggest that EMT gene variants do not appear to play a significant role in the susceptibility to EOC. PMID:26399219

  12. Roles of Dietary Phytoestrogens on the Regulation of Epithelial-Mesenchymal Transition in Diverse Cancer Metastasis

    PubMed Central

    Lee, Geum-A.; Hwang, Kyung-A.; Choi, Kyung-Chul

    2016-01-01

    Epithelial-mesenchymal transition (EMT) plays a key role in tumor progression. The cells undergoing EMT upregulate the expression of cell motility-related proteins and show enhanced migration and invasion. The hallmarks of EMT in cancer cells include changed cell morphology and increased metastatic capabilities in cell migration and invasion. Therefore, prevention of EMT is an important tool for the inhibition of tumor metastasis. A novel preventive therapy is needed, such as treatment of natural dietary substances that are nontoxic to normal human cells, but effective in inhibiting cancer cells. Phytoestrogens, such as genistein, resveratrol, kaempferol and 3,3′-diindolylmethane (DIM), can be raised as possible candidates. They are plant-derived dietary estrogens, which are found in tea, vegetables and fruits, and are known to have various biological efficacies, including chemopreventive activity against cancers. Specifically, these phytoestrogens may induce not only anti-proliferation, apoptosis and cell cycle arrest, but also anti-metastasis by inhibiting the EMT process in various cancer cells. There have been several signaling pathways found to be associated with the induction of the EMT process in cancer cells. Phytoestrogens were demonstrated to have chemopreventive effects on cancer metastasis by inhibiting EMT-associated pathways, such as Notch-1 and TGF-beta signaling. As a result, phytoestrogens can inhibit or reverse the EMT process by upregulating the expression of epithelial phenotypes, including E-cadherin, and downregulating the expression of mesenchymal phenotypes, including N-cadherin, Snail, Slug, and vimentin. In this review, we focused on the important roles of phytoestrogens in inhibiting EMT in many types of cancer and suggested phytoestrogens as prominent alternative compounds to chemotherapy. PMID:27231938

  13. Hypoxia-Induced Epithelial-Mesenchymal Transition Is Involved in Bleomycin-Induced Lung Fibrosis.

    PubMed

    Guo, Liang; Xu, Jun-mei; Liu, Lei; Liu, Su-mei; Zhu, Rong

    2015-01-01

    Pulmonary fibrosis is a severe disease that contributes to the morbidity and mortality of a number of lung diseases. However, the molecular and cellular mechanisms leading to lung fibrosis are poorly understood. This study investigated the roles of epithelial-mesenchymal transition (EMT) and the associated molecular mechanisms in bleomycin-induced lung fibrosis. The bleomycin-induced fibrosis animal model was established by intratracheal injection of a single dose of bleomycin. Protein expression was measured by Western blot, immunohistochemistry, and immunofluorescence. Typical lesions of lung fibrosis were observed 1 week after bleomycin injection. A progressive increase in MMP-2, S100A4, α-SMA, HIF-1α, ZEB1, CD44, phospho-p44/42 (p-p44/42), and phospho-p38 MAPK (p-p38) protein levels as well as activation of EMT was observed in the lung tissues of bleomycin mice. Hypoxia increased HIF-1α and ZEB1 expression and activated EMT in H358 cells. Also, continuous incubation of cells under mild hypoxic conditions increased CD44, p-p44/42, and p-p38 protein levels in H358 cells, which correlated with the increase in S100A4 expression. In conclusion, bleomycin induces progressive lung fibrosis, which may be associated with activation of EMT. The fibrosis-induced hypoxia may further activate EMT in distal alveoli through a hypoxia-HIF-1α-ZEB1 pathway and promote the differentiation of lung epithelial cells into fibroblasts through phosphorylation of p38 MAPK and Erk1/2 proteins.

  14. Reciprocal regulation of the cholinic phenotype and epithelial-mesenchymal transition in glioblastoma cells

    PubMed Central

    Koch, Katharina; Hartmann, Rudolf; Schröter, Friederike; Suwala, Abigail Kora; Maciaczyk, Donata; Krüger, Andrea Caroline; Willbold, Dieter; Kahlert, Ulf Dietrich; Maciaczyk, Jaroslaw

    2016-01-01

    Glioblastoma (GBM) is the most malignant brain tumor with very limited therapeutic options. Standard multimodal treatments, including surgical resection and combined radio-chemotherapy do not target the most aggressive subtype of glioma cells, brain tumor stem cells (BTSCs). BTSCs are thought to be responsible for tumor initiation, progression, and relapse. Furthermore, they have been associated with the expression of mesenchymal features as a result of epithelial-mesenchymal transition (EMT) thereby inducing tumor dissemination and chemo resistance. Using high resolution proton nuclear magnetic resonance spectroscopy (1H NMR) on GBM cell cultures we provide evidence that the expression of well-known EMT activators of the ZEB, TWIST and SNAI families and EMT target genes N-cadherin and VIMENTIN is associated with aberrant choline metabolism. The cholinic phenotype is characterized by high intracellular levels of phosphocholine and total choline derivatives and was associated with malignancy in various cancers. Both genetic and pharmacological inhibition of the cardinal choline metabolism regulator choline kinase alpha (CHKα) significantly reduces the cell viability, invasiveness, clonogenicity, and expression of EMT associated genes in GBM cells. Moreover, in some cell lines synergetic cytotoxic effects were observed when combining the standard of care chemotherapeutic temozolomide with the CHKα inhibitor V-11-0711. Taken together, specific inhibition of the enzymatic activity of CHKα is a powerful strategy to suppress EMT which opens the possibility to target chemo-resistant BTSCs through impairing their mesenchymal transdifferentiation. Moreover, the newly identified EMT-oncometabolic network may be helpful to monitor the invasive properties of glioblastomas and the success of anti-EMT therapy. PMID:27705917

  15. Human NUMB6 Induces Epithelial-Mesenchymal Transition and Enhances Breast Cancer Cells Migration and Invasion.

    PubMed

    Karaczyn, Aldona A; Adams, Tamara L; Cheng, Robert Y S; Matluk, Nicholas N; Verdi, Joseph M

    2017-02-01

    Mammalian NUMB is alternatively spliced generating four isoforms NUMB1-NUMB4 that can function as tumor suppressors. NUMB1-NUMB4 proteins, which normally determine how different cell types develop, are reduced in 21% of primary breast tumors. Our previous work has, however, indicated that two novel NUMB isoforms, NUMB5 and NUMB6 have the pro-oncogenic functions. Herein, we address a novel function of human NUMB isoform 6 (NUMB6) in promoting cancer cell migration and invasion. We found that NUMB6 induced expression of embryonic transcription factor Slug, which in turn actively repressed E-cadherin, prompting cells to undergo epithelial-mesenchymal transition (EMT). Low-metastatic breast cancer cells DB-7 stably expressing NUMB6, lost their epithelial phenotype, exhibited migratory and pro-invasive behavior, and ultimately elevated expression of mesenchymal markers. Among these markers, increased vimentin, β-catenin, and fibronectin expression elicited metalloproteinase 9 (MMP9) production. Our results revealed that NUMB6-DB-7 cells have significantly increased level of Akt1 and Akt2 phosphorylation. Therefore, antagonizing Akt signaling using a chemical inhibitor LY294002, we found that NUMB6-induced Slug expression was reduced, and ultimately accompanied with decreased cell migration and invasion. In summary, this study identified a novel molecular determinant of breast cancer progression, uncovering a potential oncogenic role for the NUMB6 protein in cancer cell migration and invasion, coupled to the maintenance of mesenchymal-like cells. J. Cell. Biochem. 118: 237-251, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Extracellular HSP70/HSP70-PCs Promote Epithelial-Mesenchymal Transition of Hepatocarcinoma Cells

    PubMed Central

    Li, Hangyu; Li, Yan; Liu, Dan; Sun, Hongzhi; Su, Dongming; Yang, Fuquan; Liu, Jingang

    2013-01-01

    Background Extracellular heat shock protein 70 and peptide complexes (eHSP70/HSP70-PCs) regulate a variety of biological behaviors in tumor cells. Whether eHSP70/HSP70-PCs are involved in the epithelial-mesenchymal transition (EMT) of tumor cells remains unclear. Aims To determine the effects of eHSP70/HSP70-PCs on EMT of hepatocarcinoma cells. Methods The expressions of E-cadherin, HSP70, α-smooth muscle actin protein (α-SMA) and p-p38 were detected immunohistochemically in liver cancer samples. Immunofluorescence, western blotting and real-time RT-PCR methods were used to analyze the effects of eHSP70/HSP70-PCs on the expressions of E-cadherin, α-SMA and p38/MAPK in vivo. Results HSP70, E-cadherin, α-SMA and p-p38 were elevated in hepatocellular carcinoma tissues. The expression of HSP70 was positively correlated with malignant differentiated liver carcinoma. The expressions of HSP70, α-SMA and p-p38 correlated with recurrence-free survival after resection. eHSP70/HSP70-PCs significantly promoted the expressions of α-SMA and p-p38 and reduced the expressions of E-cadherin in vivo. The effect was inhibited by SB203580. Conclusion The expressions of HSP70, E-cadherin, α-SMA and p-p38 may represent indicators of malignant potential and could discriminate the malignant degree of liver cancer. eHSP70/HSP70-PCs play an important role in the EMT of hepatocellular carcinoma via the p38/MAPK pathway. PMID:24386414

  17. Transposon mutagenesis identifies genes and cellular processes driving epithelial-mesenchymal transition in hepatocellular carcinoma

    PubMed Central

    Kodama, Takahiro; Newberg, Justin Y.; Kodama, Michiko; Rangel, Roberto; Yoshihara, Kosuke; Tien, Jean C.; Parsons, Pamela H.; Wu, Hao; Finegold, Milton J.; Copeland, Neal G.; Jenkins, Nancy A.

    2016-01-01

    Epithelial-mesenchymal transition (EMT) is thought to contribute to metastasis and chemoresistance in patients with hepatocellular carcinoma (HCC), leading to their poor prognosis. The genes driving EMT in HCC are not yet fully understood, however. Here, we show that mobilization of Sleeping Beauty (SB) transposons in immortalized mouse hepatoblasts induces mesenchymal liver tumors on transplantation to nude mice. These tumors show significant down-regulation of epithelial markers, along with up-regulation of mesenchymal markers and EMT-related transcription factors (EMT-TFs). Sequencing of transposon insertion sites from tumors identified 233 candidate cancer genes (CCGs) that were enriched for genes and cellular processes driving EMT. Subsequent trunk driver analysis identified 23 CCGs that are predicted to function early in tumorigenesis and whose mutation or alteration in patients with HCC is correlated with poor patient survival. Validation of the top trunk drivers identified in the screen, including MET (MET proto-oncogene, receptor tyrosine kinase), GRB2-associated binding protein 1 (GAB1), HECT, UBA, and WWE domain containing 1 (HUWE1), lysine-specific demethylase 6A (KDM6A), and protein-tyrosine phosphatase, nonreceptor-type 12 (PTPN12), showed that deregulation of these genes activates an EMT program in human HCC cells that enhances tumor cell migration. Finally, deregulation of these genes in human HCC was found to confer sorafenib resistance through apoptotic tolerance and reduced proliferation, consistent with recent studies showing that EMT contributes to the chemoresistance of tumor cells. Our unique cell-based transposon mutagenesis screen appears to be an excellent resource for discovering genes involved in EMT in human HCC and potentially for identifying new drug targets. PMID:27247392

  18. Epithelial Mesenchymal Transition Induces Aberrant Glycosylation through Hexosamine Biosynthetic Pathway Activation.

    PubMed

    Lucena, Miguel C; Carvalho-Cruz, Patricia; Donadio, Joana L; Oliveira, Isadora A; de Queiroz, Rafaela M; Marinho-Carvalho, Monica M; Sola-Penna, Mauro; de Paula, Iron F; Gondim, Katia C; McComb, Mark E; Costello, Catherine E; Whelan, Stephen A; Todeschini, Adriane R; Dias, Wagner B

    2016-06-17

    Deregulated cellular metabolism is a hallmark of tumors. Cancer cells increase glucose and glutamine flux to provide energy needs and macromolecular synthesis demands. Several studies have been focused on the importance of glycolysis and pentose phosphate pathway. However, a neglected but very important branch of glucose metabolism is the hexosamine biosynthesis pathway (HBP). The HBP is a branch of the glucose metabolic pathway that consumes ∼2-5% of the total glucose, generating UDP-GlcNAc as the end product. UDP-GlcNAc is the donor substrate used in multiple glycosylation reactions. Thus, HBP links the altered metabolism with aberrant glycosylation providing a mechanism for cancer cells to sense and respond to microenvironment changes. Here, we investigate the changes of glucose metabolism during epithelial mesenchymal transition (EMT) and the role of O-GlcNAcylation in this process. We show that A549 cells increase glucose uptake during EMT, but instead of increasing the glycolysis and pentose phosphate pathway, the glucose is shunted through the HBP. The activation of HBP induces an aberrant cell surface glycosylation and O-GlcNAcylation. The cell surface glycans display an increase of sialylation α2-6, poly-LacNAc, and fucosylation, all known epitopes found in different tumor models. In addition, modulation of O-GlcNAc levels was demonstrated to be important during the EMT process. Taken together, our results indicate that EMT is an applicable model to study metabolic and glycophenotype changes during carcinogenesis, suggesting that cell glycosylation senses metabolic changes and modulates cell plasticity.

  19. Induction of epithelial-mesenchymal transition (EMT) in breast cancer cells is calcium signal dependent.

    PubMed

    Davis, F M; Azimi, I; Faville, R A; Peters, A A; Jalink, K; Putney, J W; Goodhill, G J; Thompson, E W; Roberts-Thomson, S J; Monteith, G R

    2014-05-01

    Signals from the tumor microenvironment trigger cancer cells to adopt an invasive phenotype through epithelial-mesenchymal transition (EMT). Relatively little is known regarding key signal transduction pathways that serve as cytosolic bridges between cell surface receptors and nuclear transcription factors to induce EMT. A better understanding of these early EMT events may identify potential targets for the control of metastasis. One rapid intracellular signaling pathway that has not yet been explored during EMT induction is calcium. Here we show that stimuli used to induce EMT produce a transient increase in cytosolic calcium levels in human breast cancer cells. Attenuation of the calcium signal by intracellular calcium chelation significantly reduced epidermal growth factor (EGF)- and hypoxia-induced EMT. Intracellular calcium chelation also inhibited EGF-induced activation of signal transducer and activator of transcription 3 (STAT3), while preserving other signal transduction pathways such as Akt and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation. To identify calcium-permeable channels that may regulate EMT induction in breast cancer cells, we performed a targeted siRNA-based screen. We found that transient receptor potential-melastatin-like 7 (TRPM7) channel expression regulated EGF-induced STAT3 phosphorylation and expression of the EMT marker vimentin. Although intracellular calcium chelation almost completely blocked the induction of many EMT markers, including vimentin, Twist and N-cadherin, the effect of TRPM7 silencing was specific for vimentin protein expression and STAT3 phosphorylation. These results indicate that TRPM7 is a partial regulator of EMT in breast cancer cells, and that other calcium-permeable ion channels are also involved in calcium-dependent EMT induction. In summary, this work establishes an important role for the intracellular calcium signal in the induction of EMT in human breast cancer cells. Manipulation of

  20. Evaluating markers of epithelial-mesenchymal transition to identify cancer patients at risk for metastatic disease

    PubMed Central

    Busch, Evan L.; Keku, Temitope O.; Richardson, David B.; Cohen, Stephanie M.; Eberhard, David A.; Avery, Christy L.; Sandler, Robert S.

    2015-01-01

    Most cancer deaths are due to metastases. Markers of epithelial-mesenchymal transition (EMT) measured in primary tumor cancer cells could be helpful to assess patient risk of metastatic disease, even among those otherwise diagnosed with local disease. Previous studies of EMT markers and patient outcomes used inconsistent methods and did not compare the clinical impact of different expression cut points for the same marker. Using digital image analysis, we measured the EMT markers Snail and E-cadherin in primary tumor specimens from 190 subjects in tissue microarrays from a population-based prospective cohort of colorectal cancer patients and estimated their associations with time-to-death. After measuring continuous marker expression data, we performed a systematic search for the cut point for each marker with the best model fit between dichotomous marker expression and time-to-death. We also assessed the potential clinical impact of different cut points for the same marker. After dichotomizing expression status at the statistically-optimal cut point, we found that Snail expression was not associated with time-to-death. When measured as a weighted average of tumor cores, low E-cadherin expression was associated with a greater risk of dying within 5 years of surgery than high expression (risk difference = 33 %, 95 % confidence interval 3–62 %). Identifying a clinically-optimal cut point for an EMT marker requires trade-offs between strength and precision of the association with patient outcomes, as well as consideration of the number of patients whose treatments might change based on using the marker at a given cut point. PMID:26507436

  1. A Novel Network Profiling Analysis Reveals System Changes in Epithelial-Mesenchymal Transition

    PubMed Central

    Shimamura, Teppei; Imoto, Seiya; Shimada, Yukako; Hosono, Yasuyuki; Niida, Atsushi; Nagasaki, Masao; Yamaguchi, Rui; Takahashi, Takashi; Miyano, Satoru

    2011-01-01

    Patient-specific analysis of molecular networks is a promising strategy for making individual risk predictions and treatment decisions in cancer therapy. Although systems biology allows the gene network of a cell to be reconstructed from clinical gene expression data, traditional methods, such as Bayesian networks, only provide an averaged network for all samples. Therefore, these methods cannot reveal patient-specific differences in molecular networks during cancer progression. In this study, we developed a novel statistical method called NetworkProfiler, which infers patient-specific gene regulatory networks for a specific clinical characteristic, such as cancer progression, from gene expression data of cancer patients. We applied NetworkProfiler to microarray gene expression data from 762 cancer cell lines and extracted the system changes that were related to the epithelial-mesenchymal transition (EMT). Out of 1732 possible regulators of E-cadherin, a cell adhesion molecule that modulates the EMT, NetworkProfiler, identified 25 candidate regulators, of which about half have been experimentally verified in the literature. In addition, we used NetworkProfiler to predict EMT-dependent master regulators that enhanced cell adhesion, migration, invasion, and metastasis. In order to further evaluate the performance of NetworkProfiler, we selected Krueppel-like factor 5 (KLF5) from a list of the remaining candidate regulators of E-cadherin and conducted in vitro validation experiments. As a result, we found that knockdown of KLF5 by siRNA significantly decreased E-cadherin expression and induced morphological changes characteristic of EMT. In addition, in vitro experiments of a novel candidate EMT-related microRNA, miR-100, confirmed the involvement of miR-100 in several EMT-related aspects, which was consistent with the predictions obtained by NetworkProfiler. PMID:21687740

  2. Hepatoma-derived growth factor regulates breast cancer cell invasion by modulating epithelial--mesenchymal transition.

    PubMed

    Chen, San-Cher; Kung, Mei-Lang; Hu, Tsung-Hui; Chen, Hsuan-Yu; Wu, Jian-Ching; Kuo, Hsiao-Mei; Tsai, Han-En; Lin, Yu-Wei; Wen, Zhi-Hong; Liu, Jong-Kang; Yeh, Ming-Hsin; Tai, Ming-Hong

    2012-10-01

    Hepatoma-derived growth factor (HDGF) participates in tumourigenesis but its role in breast cancer is unclear. We set out to elucidate the expression profile and function of HDGF during breast carcinogenesis. Immunoblot and immunohistochemical studies revealed elevated HDGF expression in human breast cancer cell lines and tissues. Nuclear HDGF labelling index was positively correlated with tumour grade, stage and proliferation index, but negatively correlated with survival rate in breast cancer patients. HDGF over-expression was associated with lymph node metastasis and represented an independent prognostic factor for tumour recurrence. Gene transfer studies were performed to elucidate the influence of cellular HDGF level on the malignant behaviour and epithelial-mesenchymal transition (EMT) of breast cancer cells. Adenovirus-mediated HDGF over-expression stimulated the invasiveness and colony formation of MCF-7 cells. Moreover, HDGF over-expression promoted breast cancer cell EMT by E-cadherin down-regulation and vimentin up-regulation. Conversely, HDGF knockdown by RNA interference in MDA-MB-231 cells attenuated the malignant behaviour and elicited EMT reversal by enhancing E-cadherin expression while depleting vimentin expression. Because HDGF is a secreted protein, we evaluated the cellular function of recombinant HDGF and found that exogenously supplied HDGF enhanced the invasiveness of breast cancer cells by down-regulating E-cadherin and up-regulating vimentin at transcriptional and translational levels. In contrast, blockade of HDGF secretion with an HDGF antibody inhibited the malignant behaviours and EMT. Finally, exogenous HDGF partially reversed benzyl isothiocyanate (BITC)-induced EMT suppression. HDGF over-expression may exert a prognostic role for tumour metastasis and recurrence in breast cancer by modulating EMT. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  3. Adipocytes can induce epithelial-mesenchymal transition in breast cancer cells.

    PubMed

    Lee, YuKyung; Jung, Woo Hee; Koo, Ja Seung

    2015-09-01

    Adipocytes are known to be involved in epithelial-mesenchymal transition (EMT) in several cancers. However, the role of adipocytes in the EMT of breast cancer cells is poorly understood. The purpose of this study was to investigate the involvement of adipocytes in the EMT in breast cancer. Breast cancer cell lines MCF-7, MDA-MB-453, MDA-MB-435S, MDA-MB-231, and MDA-MB-468 were co-cultured with adipocytes and analyzed for morphological changes, proliferation activity, EMT markers, migration, and invasion. In addition, 296 human breast cancer specimens were classified according to the presence of the fibrous or adipose stroma and analyzed by immunohistochemistry for the expression of estrogen and progesterone receptors, human epidermal growth factor receptor 2, antigen Ki-67, N-cadherin, Twist-related protein 1 (TWIST1), high-mobility group AT-hook 2, TGFβ, and S100 calcium-binding protein A4 using tissue microarray. After co-culture with adipocytes, MCF-7, MDA-MB-435S, and MDA-MB-231 cells exhibited elongated spindle-like morphology and increased proliferation; MDA-MB-435S and MDA-MB-231 cells also showed increased dispersion. In all tested breast cancer cells, adipocytes induced migration and invasion. The EMT-like phenotypic changes and increased cell migration and invasion were accompanied by the upregulation of matrix metallopeptidase 9 and TWIST1. Consistently, breast cancer tumors with the adipose stroma showed higher TWIST1 expression than those with the adipose stroma; however, no difference was observed in the levels of other EMT-related proteins. Adipocytes stimulate breast cancer cells to acquire aggressive tumor phenotype by inducing EMT-associated traits, and breast cancer with the adipose stroma expresses EMT markers as breast cancer with the fibrous stroma.

  4. Elevated tropomyosin expression is associated with epithelial-mesenchymal transition of lens epithelial cells.

    PubMed

    Kubo, Eri; Hasanova, Nailia; Fatma, Nigar; Sasaki, Hiroshi; Singh, Dhirendra P

    2013-01-01

    Injury to lens epithelial cells (LECs) leads to epithelial-mesenchymal transition (EMT) with resultant fibrosis. The tropomyosin (Tpm) family of cytoskeleton proteins is involved in regulating and stabilizing actin microfilaments. Aberrant expression of Tpms leads to abnormal morphological changes with disintegration of epithelial integrity. The EMT of LECs has been proposed as a major cause of posterior capsule opacification (PCO) after cataract surgery. Using in vivo rodent PCO and human cataractous LECs, we demonstrated that the aberrant expression of rat Tpm and human Tpm1α/2β suggested their association in remodelling of the actin cytoskeleton during EMT of LECs. Expression analysis from abnormally growing LECs after lens extraction revealed elevated expression of α-smooth muscle actin (α-SMA), a marker for EMT. Importantly, these cells displayed increased expression of Tpm1α/2β following EMT/PCO formation. Expression of Tpm1α/2β was up-regulated in LECs isolated from cataractous lenses of Shumiya Cataract Rats (SCRs), compared with non-cataractous lenses. Also, LECs from human patients with nuclear cataract and anterior subcapsular fibrosis (ASF) displayed significantly increased expression of Tpm2β mRNA, suggesting that similar signalling invokes the expression of these molecules in LECs of cataractous SCR and human lenses. EMT was observed in LECs overexpressed with Tpm1α/2β, as evidenced by increased expression of α-SMA. These conditions were correlated with remodelling of actin filaments, possibly leading to EMT/PCO and ASF. The present findings may help clarify the condition of the actin cytoskeleton during morphogenetic EMT, and may contribute to development of Tpm-based inhibitors for postponing PCO and cataractogenesis.

  5. AM251 Suppresses Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells.

    PubMed

    Yoshinaga, Tomoyo; Uwabe, Kenichiro; Naito, Shoichi; Higashino, Kenichi; Nakano, Toru; Numata, Yoshito; Kihara, Akio

    2016-01-01

    Epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells is one of the causative mechanisms of kidney fibrosis. In our study, we screened lipophilic compounds using a lipid library including approximately 200 lipids to identify those that suppressed EMT induced by a transforming growth factor (TGF)-β1 stimulus. Initial screening was performed with the immortalized HK-2 renal tubule epithelial cell line. The most promising compounds were further tested in RPTEC primary renal tubule epithelial cells. We found that the synthetic lipid AM251 suppressed two hallmark events associated with EMT, the upregulation of collagen 1A1 (COL1A1) and downregulation of E-cadherin. Though AM251 is known to act as an antagonist for the cannabinoid receptor type 1 (CB1) and an agonist for the G protein-coupled receptor 55 (GRP55), the suppression of EMT by AM251 was not mediated through either receptor. Microarray analyses revealed that AM251 inhibited induction of several EMT transcription factors such as SNAIL1, which is the key inducer of EMT, and the AP-1 transcription factors FOSB and JUNB. Activation of SMAD2/3 and p38 mitogen-activated protein kinase (MAPK) was inhibited by AM251, with greater inhibition of the latter, indicating that AM251 acted upstream of SMAD/p38 MAPK in the TGF-β signaling pathway. Our findings regarding the effects of AM251 on the TGF-β signaling pathway may inform development of a novel therapeutic agent suppressing EMT, thus preventing kidney fibrosis.

  6. AM251 Suppresses Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells

    PubMed Central

    Yoshinaga, Tomoyo; Uwabe, Kenichiro; Naito, Shoichi; Higashino, Kenichi; Nakano, Toru; Numata, Yoshito

    2016-01-01

    Epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells is one of the causative mechanisms of kidney fibrosis. In our study, we screened lipophilic compounds using a lipid library including approximately 200 lipids to identify those that suppressed EMT induced by a transforming growth factor (TGF)-β1 stimulus. Initial screening was performed with the immortalized HK-2 renal tubule epithelial cell line. The most promising compounds were further tested in RPTEC primary renal tubule epithelial cells. We found that the synthetic lipid AM251 suppressed two hallmark events associated with EMT, the upregulation of collagen 1A1 (COL1A1) and downregulation of E-cadherin. Though AM251 is known to act as an antagonist for the cannabinoid receptor type 1 (CB1) and an agonist for the G protein-coupled receptor 55 (GRP55), the suppression of EMT by AM251 was not mediated through either receptor. Microarray analyses revealed that AM251 inhibited induction of several EMT transcription factors such as SNAIL1, which is the key inducer of EMT, and the AP-1 transcription factors FOSB and JUNB. Activation of SMAD2/3 and p38 mitogen-activated protein kinase (MAPK) was inhibited by AM251, with greater inhibition of the latter, indicating that AM251 acted upstream of SMAD/p38 MAPK in the TGF-β signaling pathway. Our findings regarding the effects of AM251 on the TGF-β signaling pathway may inform development of a novel therapeutic agent suppressing EMT, thus preventing kidney fibrosis. PMID:27936102

  7. Redox mechanisms switch on hypoxia-dependent epithelial-mesenchymal transition in cancer cells.

    PubMed

    Cannito, Stefania; Novo, Erica; Compagnone, Alessandra; Valfrè di Bonzo, Lorenzo; Busletta, Chiara; Zamara, Elena; Paternostro, Claudia; Povero, Davide; Bandino, Andrea; Bozzo, Francesca; Cravanzola, Carlo; Bravoco, Vittoria; Colombatto, Sebastiano; Parola, Maurizio

    2008-12-01

    Epithelial-mesenchymal transition (EMT) and hypoxia are considered as crucial events favouring invasion and metastasis of many cancer cells. In this study, different human neoplastic cell lines of epithelial origin were exposed to hypoxic conditions in order to investigate whether hypoxia per se may trigger EMT programme as well as to mechanistically elucidate signal transduction mechanisms involved. The following human cancer cell lines were used: HepG2 (from human hepatoblastoma), PANC-1 (from pancreatic carcinoma), HT-29 (from colon carcinoma) and MCF-7 (from breast carcinoma). Cancer cells were exposed to carefully controlled hypoxic conditions and investigated for EMT changes and signal transduction by using morphological, cell and molecular biology techniques. All cancer cells responded to hypoxia within 72 h by classic EMT changes (fibroblastoid phenotype, SNAIL and beta-catenin nuclear translocation and changes in E-cadherin) and by increased migration and invasiveness. This was involving very early inhibition of glycogen synthase kinase-3beta (GSK-3beta), early SNAIL translocation as well as later and long-lasting activation of Wnt/beta-catenin-signalling machinery. Experimental manipulation, including silencing of hypoxia-inducible factor (HIF)-1alpha and the specific inhibition of mitochondrial generation of reactive oxygen species (ROS), revealed that early EMT-related events induced by hypoxia (GSK-3beta inhibition and SNAIL translocation) were dependent on transient intracellular increased generation of ROS whereas late migration and invasiveness were sustained by HIF-1alpha- and vascular endothelial growth factor (VEGF)-dependent mechanisms. These findings indicate that in cancer cells, early redox mechanisms can switch on hypoxia-dependent EMT programme whereas increased invasiveness is sustained by late and HIF-1alpha-dependent release of VEGF.

  8. NDRG1 attenuates epithelial-mesenchymal transition of nasopharyngeal cancer cells via blocking Smad2 signaling.

    PubMed

    Hu, Zhi-Yan; Xie, Wei-Bing; Yang, Fang; Xiao, Li-Wei; Wang, Xiao-Yan; Chen, Shi-You; Li, Zu-Guo

    2015-09-01

    N-myc downstream-regulated gene 1 (NDRG1) has been implicated in tumorigenesis and metastasis in different cancers. However, its role in nasopharyngeal carcinoma remains unknown. We found that NDRG1 expression level was high in nasopharyngeal cancer 5-8F cells but low in 5-8F-LN cells with lymphatic metastasis potential. Knockdown of NDRG1 by shRNA promoted 5-8F cell proliferation, migration, and invasion in vitro and its tumorigenesis in vivo. Moreover, NDRG1 deficiency induced an epithelial-mesenchymal transition (EMT) of 5-8F cells as shown by an attenuation of E-cadherin and an induction of N-cadherin and vimentin expression. NDRG1 knockdown also enhanced Smad2 expression and phosphorylation. Smad2 signaling was attenuated in 5-8F cells but was significantly activated in 5-8F-LN cells. Knockdown of Smad2 restored E-cadherin but attenuated N-cadherin expression in NDRG1-deficient 5-8F cells, suggesting a reduction of EMT. Consistently, blockade of Smad2 in 5-8F-LN cells increased E-cadherin while diminishing N-cadherin and vimentin expression. These data indicate that Smad2 mediates the NDRG1 deficiency-induced EMT of 5-8F cells. In tumors derived from NDRG1-deficient 5-8F cells, E-cadherin expression was inhibited while vimentin and Smad2 were increased in a large number of cancer cells. Most importantly, NDRG1 expression was attenuated in human nasopharyngeal carcinoma tissues, resulted in a lower survival rate in patients. The NDRG1 was further decreased in the detached nasopharyngeal cancer cells, which was associated with a further reduced survival rate in patients with lymphatic metastasis. Taken together, these results demonstrated that NDRG1 prevents nasopharyngeal tumorigenesis and metastasis via inhibiting Smad2-mediated EMT of nasopharyngeal cells.

  9. Epithelial-mesenchymal transition, proliferation, and angiogenesis in locally advanced cervical cancer treated with chemoradiotherapy.

    PubMed

    Rojas-Puentes, Leonardo; Cardona, Andrés F; Carranza, Hernán; Vargas, Carlos; Jaramillo, Luis F; Zea, Delma; Cetina, Lucely; Wills, Beatriz; Ruiz-Garcia, Erika; Arrieta, Oscar

    2016-08-01

    We evaluated the association between epithelial-mesenchymal transition (EMT)-derived markers and expression of proteins associated with cell proliferation and tumor growth, as well as their prognostic roles, in 61 patients (mean age 52 ± 10 years) with locally advanced cervical cancer, all of whom were treated with chemoradiation and intracavitary brachytherapy. We used immunohistochemical analysis to assess the expression of proteins targeted in our investigation. Various statistical analyses were then conducted to assess protein marker associations with survival outcomes. Forty-six percent of the patients were positive for human papilloma virus. Median progression-free survival (PFS) was 6.6 months (95% confidence interval [CI]: 4.0-9.1, whereas overall survival (OS) was 30.0 months (95% CI: 11-48). Multivariate analysis demonstrated that vascular endothelial growth factor (VEGF) (P = 0.002), epidermal growth factor receptor (EGFR) (P = 0.001), and TWIST2 (P = 0.001) expression levels, as well as a tumor size <6 cm (P = 0.02), influenced OS. Changes in TWIST2 levels and loss of E-cadherin expression were correlated with VEGF and EGFR levels; furthermore, patients with high TWIST2 expression had shorter OS (P = 0.0001), as those with loss of E-cadherin (P = 0.02). OS was even shorter when positive EGFR or VEGF expression was related with EMT markers (positive EGFR + negative E-cadherin: median 14 months, 95% CI: 3-24; negative EGFR + positive E-cadherin: median 31 months, 95% CI: 14-NA; P = 0.02.). The presence of EMT markers was associated with proliferative and pro-angiogenic protein expression and influenced the prognosis of locally advanced cervical cancer. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  10. Cripto-1 promotes epithelial-mesenchymal transition in prostate cancer via Wnt/β-catenin signaling.

    PubMed

    Liu, Yan; Qin, Zhenbang; Yang, Kuo; Liu, Ranlu; Xu, Yong

    2017-03-01

    The Cripto-1 (CR-1) derived EGF-CFC family was overexpressed in tumor development enhancing proliferation, epithelial-mesenchymal transition (EMT) and migration of tumor cells. However, correlation between CR-1 and prostate cancer (PCa) remains still unclear. In the present study, we proved that CR-1 was expressed in PCa and its function was in the progression of PCa. Compared with benign prostatic hyperplasia (BPH) tissues, we confirmed that PCa tissues had high expression of CR-1 by immunohistochemistry and statistical data showed that CR-1 promoted properties of EMT in PCa tissues, including the downregulation of the cell adhesion molecules β-catenin (membrane) and E-cadherin while upregulating transcription factors β-catenin. Overexpression of CR-1 had close relationship with PSA, Gleason, clinical staging and lymph node metastasis in PCa patients. Then, we found that PC-3 cells transfected with CR-1-shRNA inhibited EMT using RT-PCR, RT-qPCR, western blotting and immunofluorescence. Also, we evaluated cell invasive ability in vitro by transwell and wound-healing assay. Our data showed that transfected CR-1-shRNA altered EMT including β-catenin, E-cadherin, c-myc, GSK-3, p-GSK and Wnt/β-catenin pathway in PC-3. It also suppressed PC-3 cell migration. Additionally, our results displayed that Licl had antitumor activity against PC-3 through the inhibition of Wnt/β-catenin pathway. Inhibition of cell viability was dose-time dependent. The present study proved that CR-1 regulates EMT of PCa by Wnt/β-catenin pathway. Hence, CR-1 may provide a new biological marker, and possibly contributes to clinical treatment against PCa.

  11. Sonic hedgehog-mediated epithelial-mesenchymal transition in renal tubulointerstitial fibrosis.

    PubMed

    Bai, Yongheng; Lu, Hong; Lin, Chengcheng; Xu, Yaya; Hu, Dannü; Liang, Yong; Hong, Weilong; Chen, Bicheng

    2016-05-01

    The sonic hedgehog (SHH) signaling pathway plays a critical role in embryonic development, tissue regeneration and organogenesis. The activation of SHH signaling produces profibrogenic effects in various tissues, such as the liver and the biliary ducts. However, the role of SHH signaling in renal fibrogenesis remains to be elucidated. For this purpose, in the present study, we evaluated the hypothesis that activated SHH signaling promotes the acquisition of a myofibroblastic phenotype through the epithelial-mesenchymal transition (EMT), resulting in renal interstitial fibrosis (RIF). Kidney samples from rats subjected to unilateral or bilateral ureteral obstruction exhibited the enhanced expression of SHH-pathway proteins, mesenchymal markers and the decreased expression of epithelial markers. Overactive SHH signaling as well as tubular EMT and RIF in the obstructed kidneys were inhibited by recanalization of the ureter. In vitro, SHH signaling was activated during EMT induction and extracellular matrix (ECM) deposition was observed in transforming growth factor-β1 (TGF-β1)-treated renal tubular epithelial cells [RTECs; NRK-52E cell line]. Exogenous SHH activated SHH signaling and resulted in the upregulated expression of mesenchymal genes, the profibrogenic cytokine TGF-β1, and the downregulated expression of epithelial markers. The blockade of SHH signaling with cyclopamine abolished SHH-mediated EMT as well as the acquisition of a myofibroblastic phenotype, and decreased TGF-β1 expression and ECM production. Thus, taken together, these findings demonstrate that the activation of the SHH signaling pathway promotes the induction of EMT and renal tubulointerstitial fibrosis. The pharmacological inhibition of SHH signaling may potentially be of therapeutic value in the management of fibrotic kidney diseases.

  12. MAPK pathway mediates epithelial-mesenchymal transition induced by paraquat in alveolar epithelial cells.

    PubMed

    Huang, Min; Wang, Ya-Peng; Zhu, Ling-Qin; Cai, Qian; Li, Hong-Hui; Yang, Hui-Fang

    2016-11-01

    Epithelial-mesenchymal transition (EMT) is believed to be involved in lung fibrosis process induced by paraquat (PQ); however, the molecular mechanism of this process has not been clearly established. The present study investigated the potential involvement of EMT after PQ poisoning. The expressions of EMT markers, such as E-cadherin and α-smooth muscle actin (α-SMA), at multiple time points after exposure to different concentrations of PQ were evaluated by western blot analysis. Following PQ treatment, EMT induction was observed under microscopy. Related fibrosis genes, including Matrix metalloproteinase 2 (MMP-2), Matrix metalloproteinase 9 (MMP-9), collagens type I (COL I), and type III (COL III), were also evaluated by measuring their mRNA levels using RT-PCR analysis. Signaling pathways were analyzed using selective pharmacological inhibitors for MAPK. Cell migration ability was evaluated by scratch wound and Transwell assays. The data showed that PQ-induced epithelial RLE-6NT cells to develop mesenchymal cell characteristics, as indicated by a significant decrease in the epithelial marker E-cadherin and a significant increase in the extracellular matrix (ECM) marker α-smooth muscle actin in a dose and time-dependent manner. Moreover, PQ-treated RLE-6NT cells had an EMT-like phenotype with elevated expression of MMP-2, MMP-9, and COL I and COL III and enhanced migration ability. Signal pathway analysis revealed that PQ-induced EMT led to ERK-1 and Smad2 phosphorylation through activation of the MAPK pathway. The results of the current study indicate that PQ-induced pulmonary fibrosis occurs via EMT, which is mediated by the MAPK pathway. This implies that the MAPK pathway is a promising therapeutic target in alveolar epithelial cells. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1407-1414, 2016. © 2015 Wiley Periodicals, Inc.

  13. Podocalyxin influences malignant potential by controlling epithelial-mesenchymal transition in lung adenocarcinoma.

    PubMed

    Kusumoto, Hidenori; Shintani, Yasushi; Kanzaki, Ryu; Kawamura, Tomohiro; Funaki, Soichiro; Minami, Masato; Nagatomo, Izumi; Morii, Eiichi; Okumura, Meinoshin

    2017-03-01

    Epithelial-mesenchymal transition (EMT) plays an important role in the progression of lung carcinoma. Podocalyxin (PODXL), which belongs to the CD34 family and regulates cell morphology, has been linked to EMT in lung cancer, and PODXL overexpression is associated with poor prognosis in several different classes of cancers. The aim of this study was to clarify the role of PODXL overexpression in EMT in lung cancer, and to determine the prognostic value of PODXL overexpression in tumors from lung cancer patients. The morphology, EMT marker expression, and migration and invasion abilities of engineered A549 PODXL-knockdown (KD) or PODXL-overexpression (OE) lung adenocarcinoma cells were examined. PODXL expression levels were assessed by immunohistochemistry in 114 human clinical lung adenocarcinoma specimens and correlated with clinical outcomes. PODXL-KD cells were epithelial in shape, whereas PODXL-OE cells displayed mesenchymal morphology. Epithelial markers were upregulated in PODXL-KD cells and downregulated in PODXL-OE cells, whereas mesenchymal markers were downregulated in the former and upregulated in the latter. A highly selective inhibitor of phosphatidylinositol 3-kinase-Akt signaling attenuated EMT of PODXL-OE cells, while a transforming growth factor inhibitor did not, suggesting that PODXL induces EMT of lung adenocarcinoma cells via the phosphatidylinositol 3-kinase pathway. In lung adenocarcinoma clinical specimens, PODXL expression was detected in minimally invasive and invasive adenocarcinoma, but not in non-invasive adenocarcinoma. Disease free survival and cancer-specific survival were significantly worse for patients whose tumors overexpressed PODXL. PODXL overexpression induces EMT in lung adenocarcinoma and contributes to tumor progression. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  14. Mesenchymal stem cells protect from hypoxia-induced alveolar epithelial-mesenchymal transition.

    PubMed

    Uzunhan, Yurdagül; Bernard, Olivier; Marchant, Dominique; Dard, Nicolas; Vanneaux, Valérie; Larghero, Jérôme; Gille, Thomas; Clerici, Christine; Valeyre, Dominique; Nunes, Hilario; Boncoeur, Emilie; Planès, Carole

    2016-03-01

    Administration of bone marrow-derived human mesenchymal stem cells (hMSC) reduces lung inflammation, fibrosis, and mortality in animal models of lung injury, by a mechanism not completely understood. We investigated whether hMSC would prevent epithelial-mesenchymal transition (EMT) induced by hypoxia in primary rat alveolar epithelial cell (AEC). In AEC cultured on semipermeable filters, prolonged hypoxic exposure (1.5% O2 for up to 12 days) induced phenotypic changes consistent with EMT, i.e., a change in cell morphology, a decrease in transepithelial resistance (Rte) and in the expression of epithelial markers [zonula occludens-1 (ZO-1), E-cadherin, AQP-5, TTF-1], together with an increase in mesenchymal markers [vimentin, α-smooth muscle actin (α-SMA)]. Expression of transcription factors driving EMT such as SNAIL1, ZEB1, and TWIST1 increased after 2, 24, and 48 h of hypoxia, respectively. Hypoxia also induced TGF-β1 mRNA expression and the secretion of active TGF-β1 in apical medium, and the expression of connective tissue growth factor (CTGF), two inducers of EMT. Coculture of AEC with hMSC partially prevented the decrease in Rte and in ZO-1, E-cadherin, and TTF-1 expression, and the increase in vimentin expression induced by hypoxia. It also abolished the increase in TGF-β1 expression and in TGF-β1-induced genes ZEB1, TWIST1, and CTGF. Finally, incubation with human recombinant KGF at a concentration similar to what was measured in hMSC-conditioned media restored the expression of TTF-1 and prevented the increase in TWIST1, TGF-β1, and CTGF in hypoxic AEC. Our results indicate that hMSC prevent hypoxia-induced alveolar EMT through the paracrine modulation of EMT signaling pathways and suggest that this effect is partly mediated by KGF. Copyright © 2016 the American Physiological Society.

  15. Arsenic Exposure Perturbs Epithelial-Mesenchymal Cell Transition and Gene Expression In a Collagen Gel Assay

    PubMed Central

    Lencinas, Alejandro; Broka, Derrick M.; Konieczka, Jay H.; Klewer, Scott E.; Antin, Parker B.; Camenisch, Todd D.; Runyan, Raymond B.

    2010-01-01

    Arsenic is a naturally occurring metalloid and environmental contaminant. Arsenic exposure in drinking water is reported to cause cancer of the liver, kidneys, lung, bladder, and skin as well as birth defects, including neural tube, facial, and vasculogenic defects. The early embryonic period most sensitive to arsenic includes a variety of cellular processes. One key cellular process is epithelial-mesenchymal transition (EMT) where epithelial sheets develop into three-dimensional structures. An embryonic prototype of EMT is found in the atrioventricular (AV) canal of the developing heart, where endothelia differentiate to form heart valves. Effects of arsenic on this cellular process were examined by collagen gel invasion assay (EMT assay) using explanted AV canals from chicken embryo hearts. AV canals treated with 12.5–500 ppb arsenic showed a loss of mesenchyme at 12.5 ppb, and mesenchyme formation was completely inhibited at 500 ppb. Altered gene expression in arsenic-treated explants was investigated by microarray analysis. Genes whose expression was altered consistently at exposure levels of 10, 25, and 100 ppb were identified, and results showed that 25 ppb in vitro was particularly effective. Three hundred and eighty two genes were significantly altered at this exposure level. Cytoscape analysis of the microarray data using the chicken interactome identified four clusters of altered genes based on published relationships and pathways. This analysis identified cytoskeleton and cell adhesion–related genes whose disruption is consistent with an altered ability to undergo EMT. These studies show that EMT is sensitive to arsenic and that an interactome-based approach can be useful in identifying targets. PMID:20308225

  16. HDAC inhibitors induce epithelial-mesenchymal transition in colon carcinoma cells.

    PubMed

    Ji, Meiying; Lee, Eun Jeoung; Kim, Ki Bae; Kim, Yangmi; Sung, Rohyun; Lee, Sang-Jeon; Kim, Don Soo; Park, Seon Mee

    2015-05-01

    The effects of histone deacetylase (HDAC) inhibitors on epithelial-mesenchymal transition (EMT) differ in various types of cancers. We investigated the EMT phenotype in four colon cancer cell lines when challenged with HDAC inhibitors trichostatin A (TSA) and valproic acid (VPA) with or without transforming growth factor-β1 (TGF-β1) treatment. Four colon cancer cell lines with different phenotypes in regards to tumorigenicity, microsatellite stability and DNA mutation were used. EMT phenotypes were assessed by the expression of E-cadherin and vimentin using western blot analysis, immunofluorescence, quantitative real-time RT-PCR following treatment with TSA (100 or 200 nM) or VPA (0.5 mM) with or without TGF-β1 (5 ng/ml) for 24 h. Biological EMT phenotypes were also evaluated by cell morphology, migration and invasion assays. TSA or VPA induced mesenchymal features in the colon carcinoma cells by a decrease in E-cadherin and an increase in vimentin expression at the mRNA and protein levels. Confocal microscopy revealed membranous attenuation or nuclear translocation of E-cadherin and enhanced expression of vimentin. These responses occurred after 6 h and increased until 24 h. Colon cancer cells changed from a round or rectangular shape to a spindle shape with increased migration and invasion ability following TSA or VPA treatment. The susceptibility to EMT changes induced by TSA or VPA was comparable in microsatellite stable (SW480 and HT29) and microsatellite unstable cells (DLD1 and HCT116). TSA or VPA induced a mesenchymal phenotype in the colon carcinoma cells and these effects were augmented in the presence of TGF-β1. HDAC inhibitors require careful caution before their application as new anticancer drugs for colon cancers.

  17. Ketamine Inhalation Ameliorates Ovalbumin-Induced Murine Asthma by Suppressing the Epithelial-Mesenchymal Transition

    PubMed Central

    Song, Li; Sen, Shi; Sun, Yuhong; Zhou, Jun; Mo, Liqun; He, Yanzheng

    2016-01-01

    Background Asthma accounts for 0.4% of all deaths worldwide, a figure that increases annually. Ketamine induces bronchial smooth muscle relaxation, and increasing evidence suggests that its anti-inflammatory properties might protect against lung injury and ameliorate asthma. However, there is a lack of evidence of the usefulness and mechanism of ketamine in acute asthma exacerbation. This study aimed to analyze the therapeutic effects and mechanism of action of ketamine on acute ovalbumin (OVA)-induced murine asthma. Material/Methods In vivo, BALB/c mice with OVA-induced asthma were treated with or without ketamine (25 or 50 mg/mL). Serum, lung sections, and mononuclear cell suspensions from the lung were collected for histological, morphometric, immunofluorescence, microRNA, quantitative polymerase chain reaction, regulatory T cell identification, cytokine, and Western blotting analyses. In vitro, bronchial epithelial cells were cultured to analyze the effect and mechanism of ketamine on epithelial-mesenchymal transition (EMT) and transforming growth factor-β (TGF-β) signaling. Results The inhalation of ketamine 25 or 50 mg/mL markedly suppressed OVA-induced airway hyper-responsiveness and airway inflammation, significantly increased the percentage of CD4+CD25+ T cells, and significantly decreased OVA-induced up-regulation of TGF-β1 and the EMT. MiR-106a was present at higher amounts in OVA-induced lung samples and was suppressed by ketamine treatment. The in vitro results showed that TGF-β1-induced EMT was suppressed by ketamine via miR-106a level regulation. Conclusions Ketamine ameliorates lung fibrosis in OVA-induced asthmatic mice by suppressing EMT and regulating miR-106a level, while ketamine inhalation might be a new therapeutic approach to the treatment of allergic asthma. PMID:27418244

  18. Fourier transform infra-red spectroscopic signatures for lung cells' epithelial mesenchymal transition: A preliminary report

    NASA Astrophysics Data System (ADS)

    Sarkar, Atasi; Sengupta, Sanghamitra; Mukherjee, Anirban; Chatterjee, Jyotirmoy

    2017-02-01

    Infra red (IR) spectral characterization can provide label-free cellular metabolic signatures of normal and diseased circumstances in a rapid and non-invasive manner. Present study endeavoured to enlist Fourier transform infra red (FTIR) spectroscopic signatures for lung normal and cancer cells during chemically induced epithelial mesenchymal transition (EMT) for which global metabolic dimension is not well reported yet. Occurrence of EMT was validated with morphological and immunocytochemical confirmation. Pre-processed spectral data was analyzed using ANOVA and principal component analysis-linear discriminant analysis (PCA-LDA). Significant differences observed in peak area corresponding to biochemical fingerprint (900-1800 cm- 1) and high wave-number (2800-3800 cm- 1) regions contributed to adequate PCA-LDA segregation of cells undergoing EMT. The findings were validated by re-analysis of data using another in-house built binary classifier namely vector valued regularized kernel approximation (VVRKFA), in order to understand EMT progression. To improve the classification accuracy, forward feature selection (FFS) tool was employed in extracting potent spectral signatures by eliminating undesirable noise. Gradual increase in classification accuracy with EMT progression of both cell types indicated prominence of the biochemical alterations. Rapid changes in cellular metabolome noted in cancer cells within first 24 h of EMT induction along with higher classification accuracy for cancer cell groups in comparison to normal cells might be attributed to inherent differences between them. Spectral features were suggestive of EMT triggered changes in nucleic acid, protein, lipid and bound water contents which can emerge as the useful markers to capture EMT related cellular characteristics.

  19. Schisandrin B Attenuates Cancer Invasion and Metastasis Via Inhibiting Epithelial-Mesenchymal Transition

    PubMed Central

    Liu, Kun; Ding, Zonghui; Hu, Xun

    2012-01-01

    Background Metastasis is the major cause of cancer related death and targeting the process of metastasis has been proposed as a strategy to combat cancer. Therefore, to develop candidate drugs that target the process of metastasis is very important. In the preliminary studies, we found that schisandrin B (Sch B), a naturally-occurring dibenzocyclooctadiene lignan with very low toxicity, could suppress cancer metastasis. Methodology BALB/c mice were inoculated subcutaneously or injected via tail vein with murine breast cancer 4T1 cells. Mice were divided into Sch B-treated and control groups. The primary tumor growth, local invasion, lung and bone metastasis, and survival time were monitored. Tumor biopsies were examined immuno- and histo-pathologically. The inhibitory activity of Sch B on TGF-β induced epithelial-mesenchymal transition (EMT) of 4T1 and primary human breast cancer cells was assayed. Principal Findings Sch B significantly suppressed the spontaneous lung and bone metastasis of 4T1 cells inoculated s.c. without significant effect on primary tumor growth and significantly extended the survival time of these mice. Sch B did not inhibit lung metastasis of 4T1 cells that were injected via tail vein. Delayed start of treatment with Sch B in mice with pre-existing tumors did not reduce lung metastasis. These results suggested that Sch B acted at the step of local invasion. Histopathological evidences demonstrated that the primary tumors in Sch B group were significantly less locally invasive than control tumors. In vitro assays demonstrated that Sch B could inhibit TGF-β induced EMT of 4T1 cells and of primary human breast cancer cells. Conclusions Sch B significantly suppresses the lung and bone metastasis of 4T1 cells via inhibiting EMT, suggesting its potential application in targeting the process of cancer metastasis. PMID:22848381

  20. Role of the urokinase-fibrinolytic system in epithelial-mesenchymal transition during lung injury.

    PubMed

    Marudamuthu, Amarnath Satheesh; Bhandary, Yashodhar Prabhakar; Shetty, Shwetha Kumari; Fu, Jian; Sathish, Venkatachalem; Prakash, Ys; Shetty, Sreerama

    2015-01-01

    Alveolar type II epithelial (ATII) cell injury precedes development of pulmonary fibrosis. Mice lacking urokinase-type plasminogen activator (uPA) are highly susceptible, whereas those deficient in plasminogen activator inhibitor (PAI-1) are resistant to lung injury and pulmonary fibrosis. Epithelial-mesenchymal transition (EMT) has been considered, at least in part, as a source of myofibroblast formation during fibrogenesis. However, the contribution of altered expression of major components of the uPA system on ATII cell EMT during lung injury is not well understood. To investigate whether changes in uPA and PAI-1 by ATII cells contribute to EMT, ATII cells from patients with idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease, and mice with bleomycin-, transforming growth factor β-, or passive cigarette smoke-induced lung injury were analyzed for uPA, PAI-1, and EMT markers. We found reduced expression of E-cadherin and zona occludens-1, whereas collagen-I and α-smooth muscle actin were increased in ATII cells isolated from injured lungs. These changes were associated with a parallel increase in PAI-1 and reduced uPA expression. Further, inhibition of Src kinase activity using caveolin-1 scaffolding domain peptide suppressed bleomycin-, transforming growth factor β-, or passive cigarette smoke-induced EMT and restored uPA expression while suppressing PAI-1. These studies show that induction of PAI-1 and inhibition of uPA during fibrosing lung injury lead to EMT in ATII cells. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. Induction of epithelial-mesenchymal transition (EMT) in breast cancer cells is calcium signal dependent

    PubMed Central

    Davis, Felicity M.; Azimi, Iman; Faville, Richard A.; Peters, Amelia A.; Jalink, Kees; Putney, James W.; Goodhill, Geoffrey J.; Thompson, Erik W.; Roberts-Thomson, Sarah J.; Monteith, Gregory R.

    2014-01-01

    Signals from the tumor microenvironment trigger cancer cells to adopt an invasive phenotype through epithelial-mesenchymal transition (EMT). Relatively little is known regarding key signal transduction pathways that serve as cytosolic bridges between cell surface receptors and nuclear transcription factors to induce EMT. A better understanding of these early EMT events may identify potential targets for the control of metastasis. One rapid intracellular signaling pathway that has not yet been explored during EMT induction is calcium. Here we show that stimuli used to induce EMT produce a transient increase in cytosolic calcium levels in human breast cancer cells. Attenuation of the calcium signal by intracellular calcium chelation significantly reduced epidermal growth factor (EGF)- and hypoxia-induced EMT. Intracellular calcium chelation also inhibited EGF-induced activation of signal transducer and activator of transcription 3 (STAT3), while preserving other signal transduction pathways such as Akt and extracellular signal regulated kinase 1/2 (ERK1/2) phosphorylation. To identify calcium-permeable channels that may regulate EMT induction in breast cancer cells, we performed a targeted siRNA-based screen. We found that transient receptor potential-melastatin-like 7 (TRPM7) channel expression regulated EGF-induced STAT3 phosphorylation and expression of the EMT marker vimentin. While intracellular calcium chelation almost completely blocked the induction of many EMT markers, including vimentin, Twist and N-cadherin, the effect of TRPM7 silencing was specific for vimentin protein expression and STAT3 phosphorylation. These results indicate that TRPM7 is a partial regulator of EMT in breast cancer cells, and that other calcium-permeable ion channels are also involved in calcium-dependent EMT induction. In summary, this work establishes an important role for the intracellular calcium signal in the induction of EMT in human breast cancer cells. Manipulation of calcium

  2. Chidamide alleviates TGF-β-induced epithelial-mesenchymal transition in lung cancer cell lines.

    PubMed

    Lin, Sheng-Hao; Wang, Bing-Yen; Lin, Ching-Hsiung; Chien, Peng-Ju; Wu, Yueh-Feng; Ko, Jiunn-Liang; Chen, Jeremy J W

    2016-07-01

    Transforming growth factor-β (TGF-β)-induced epithelial-mesenchymal transition is a critical process in the initiation of metastasis of various types of cancer. Chidamide is a class I histone deacetylase inhibitor with anti-tumor activity. This study investigated the effects of chidamide on TGF-β-mediated suppression of E-cadherin expression in adenocarcinomic lung epithelial cells and the molecular mechanisms involved in these effects. Western blot analysis, confocal microscopy, Quantitative methyl-specific PCR and bisulfite sequencing were used to evaluate the effects of different treatments on chidamide ameliorating TGF-β induced-E-cadherin loss. H3 acetylation binding to the promoter of E-cadherin was detected by chromatin immunoprecipitations (CHIP). We found that chidamide reduced the level of lung cancer cell migration observed using a Boyden chamber assay (as an indicator of metastatic potential). Chidamide inhibited TGF-β-induced SMAD2 phosphorylation and attenuated TGF-β-induced loss of E-cadherin expression in lung cancer cells by Western blotting and confocal microscopy, respectively. Quantitative methyl-specific PCR and bisulfite sequencing revealed that TGF-β-enhanced E-cadherin promoter methylation was ameliorated in cells treated with chidamide. We demonstrated that histone H3 deacetylation within the E-cadherin promoter was required for TGF-β-induced E-cadherin loss; cell treatment with chidamide increased the H3 acetylation detected by CHIP. Taken together, our results demonstrate that TGF-β suppressed E-cadherin expression by regulating promoter methylation and histone H3 acetylation. Chidamide significantly enhanced E-cadherin expression in TGF-β-treated cells and inhibited lung cancer cell migration. These findings indicate that chidamide has a potential therapeutic use due to its capacity to prevent cancer cell metastasis.

  3. Regulatory Roles of Dclk1 in Epithelial Mesenchymal Transition and Cancer Stem Cells.

    PubMed

    Chandrakesan, P; Panneerselvam, J; Qu, D; Weygant, N; May, R; Bronze, M S; Houchen, C W

    2016-04-01

    The identification of functionally relevant subpopulations of therapy-resistant cancer cells is a challenge. These cells, intrinsically resistant to conventional therapy, can cause recurrence. Evidence has suggested that therapy-resistant cancer cells are likely epithelial-mesenchymal transition (EMT) cells and/or stem-like cells called cancer stem cells (CSCs). EMT, a normal embryological process that converts epithelial cells into mesenchymal cells, is frequently activated during cancer development and progression. CSCs are a small subpopulation of cancer cells within a tumor mass that have the ability to self-renew and maintain tumor-initiating capacity by giving rise to heterogeneous lineages of cancer cells that comprise the whole tumor. Although the origin of CSCs and EMT cells remains to be fully explored, a growing body of evidence has indicated that the biology of EMT and CSCs is strongly linked. Doublecortin-like kinase 1 (DCLK1), a cancer stem cell marker, is functionally involved in maintaining cancer stemness and the process of EMT important for cancer initiation, cancer metastasis, and secondary tumor formation. Therefore, targeting these cells may provide new strategies to overcome tumor heterogeneity, therapeutic resistance, and cancer relapse. In this review, we will provide a potential mechanistic link between EMT induction and the emergence of CSCs for the origin and progression of cancer. We will highlight the functional activity of DCLK1 in supporting EMT and cancer cell self-renewal, which will lead us to a better understanding of DCLK1 expression in cancer development and progression, and help us to develop targeted therapies for effective cancer treatment.

  4. Fourier transform infra-red spectroscopic signatures for lung cells' epithelial mesenchymal transition: A preliminary report.

    PubMed

    Sarkar, Atasi; Sengupta, Sanghamitra; Mukherjee, Anirban; Chatterjee, Jyotirmoy

    2017-02-15

    Infra red (IR) spectral characterization can provide label-free cellular metabolic signatures of normal and diseased circumstances in a rapid and non-invasive manner. Present study endeavoured to enlist Fourier transform infra red (FTIR) spectroscopic signatures for lung normal and cancer cells during chemically induced epithelial mesenchymal transition (EMT) for which global metabolic dimension is not well reported yet. Occurrence of EMT was validated with morphological and immunocytochemical confirmation. Pre-processed spectral data was analyzed using ANOVA and principal component analysis-linear discriminant analysis (PCA-LDA). Significant differences observed in peak area corresponding to biochemical fingerprint (900-1800cm(-1)) and high wave-number (2800-3800cm(-1)) regions contributed to adequate PCA-LDA segregation of cells undergoing EMT. The findings were validated by re-analysis of data using another in-house built binary classifier namely vector valued regularized kernel approximation (VVRKFA), in order to understand EMT progression. To improve the classification accuracy, forward feature selection (FFS) tool was employed in extracting potent spectral signatures by eliminating undesirable noise. Gradual increase in classification accuracy with EMT progression of both cell types indicated prominence of the biochemical alterations. Rapid changes in cellular metabolome noted in cancer cells within first 24h of EMT induction along with higher classification accuracy for cancer cell groups in comparison to normal cells might be attributed to inherent differences between them. Spectral features were suggestive of EMT triggered changes in nucleic acid, protein, lipid and bound water contents which can emerge as the useful markers to capture EMT related cellular characteristics.

  5. Interaction with neutrophils promotes gastric cancer cell migration and invasion by inducing epithelial-mesenchymal transition.

    PubMed

    Zhang, Wen; Gu, Jianmei; Chen, Jingyan; Zhang, Peng; Ji, Runbi; Qian, Hui; Xu, Wenrong; Zhang, Xu

    2017-09-06

    Emerging evidence has revealed that neutrophils have phenotypic and functional plasticity. Neutrophils could be polarized towards a pro-tumor phenotype by tumor-derived factors. In the present study, we investigated the role of the interaction with neutrophils on the functions of gastric cancer cells in vitro. Human promyelocytic leukemia HL-60 cells were induced to differentiate into neutrophil-like cells (HL-60N) using dimethyl sulfoxide (DMSO). Human gastric cancer cells were co-cultured with HL-60N cells or treated with the conditioned medium (CM) of cancer-activated HL-60N cells. The migration and invasion of gastric cancer cells were significantly enhanced while their proliferation was minimally altered. The expression of pro-inflammatory factors including IL-6, IL-8, IL-1β, and TNFα was significantly increased in cancer-activated HL-60N cells, which induced the activation of the ERK pathway and epithelial-mesenchymal transition (EMT) in gastric cancer cells. Blocking the ERK pathway activation reversed the promoting effects of cancer-activated HL-60N cells on gastric cancer cell migration and invasion. In addition, mouse gastric cancer cell derived CM could also increase the expression of pro-inflammatory factors in mouse bone marrow neutrophils, which in turn enhanced the migration and invasion of mouse gastric cancer cells. Collectively, our findings revealed that the interaction with neutrophils promoted gastric cancer cell migration and invasion through the activation of the ERK pathway and the induction of EMT, indicating that neutrophils may play an important role in gastric cancer metastasis. Therefore, targeting neutrophil-cancer cell interaction may provide a new strategy for the treatment of gastric cancer.

  6. Epithelial-Mesenchymal Transition (EMT) Gene Variants and Epithelial Ovarian Cancer (EOC) Risk.

    PubMed

    Amankwah, Ernest K; Lin, Hui-Yi; Tyrer, Jonathan P; Lawrenson, Kate; Dennis, Joe; Chornokur, Ganna; Aben, Katja K H; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V; Bean, Yukie T; Beckmann, Matthias W; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A; Brooks-Wilson, Angela; Bunker, Clareann H; Butzow, Ralf; Campbell, Ian G; Carty, Karen; Chen, Zhihua; Chen, Y Ann; Chang-Claude, Jenny; Cook, Linda S; Cramer, Daniel W; Cunningham, Julie M; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Dicks, Ed; Doherty, Jennifer A; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F; Eccles, Diana M; Edwards, Robert P; Ekici, Arif B; Fasching, Peter A; Fridley, Brooke L; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G; Glasspool, Rosalind; Goodman, Marc T; Gronwald, Jacek; Harrington, Patricia; Harter, Philipp; Hasmad, Hanis N; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A T; Hillemanns, Peter; Hogdall, Claus K; Hogdall, Estrid; Hosono, Satoyo; Iversen, Edwin S; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Jim, Heather; Kellar, Melissa; Kiemeney, Lambertus A; Krakstad, Camilla; Kjaer, Susanne K; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D; Lee, Alice W; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F A G; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; McNeish, Ian; Menon, Usha; Milne, Roger L; Modugno, Francesmary; Moysich, Kirsten B; Ness, Roberta B; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Paul, James; Pearce, Celeste L; Pejovic, Tanja; Pelttari, Liisa M; Permuth-Wey, Jennifer; Pike, Malcolm C; Poole, Elizabeth M; Risch, Harvey A; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Rzepecka, Iwona K; Salvesen, Helga B; Schernhammer, Eva; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C; Spiewankiewicz, Beata; Sucheston-Campbell, Lara; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Thomsen, Lotte; Tangen, Ingvild L; Tworoger, Shelley S; van Altena, Anne M; Vierkant, Robert A; Vergote, Ignace; Walsh, Christine S; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S; Wicklund, Kristine G; Wilkens, Lynne R; Wu, Anna H; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Kelemen, Linda E; Berchuck, Andrew; Schildkraut, Joellen M; Ramus, Susan J; Goode, Ellen L; Monteiro, Alvaro N A; Gayther, Simon A; Narod, Steven A; Pharoah, Paul D P; Sellers, Thomas A; Phelan, Catherine M

    2015-12-01

    Epithelial-mesenchymal transition (EMT) is a process whereby epithelial cells assume mesenchymal characteristics to facilitate cancer metastasis. However, EMT also contributes to the initiation and development of primary tumors. Prior studies that explored the hypothesis that EMT gene variants contribute to epithelial ovarian carcinoma (EOC) risk have been based on small sample sizes and none have sought replication in an independent population. We screened 15,816 single-nucleotide polymorphisms (SNPs) in 296 genes in a discovery phase using data from a genome-wide association study of EOC among women of European ancestry (1,947 cases and 2,009 controls) and identified 793 variants in 278 EMT-related genes that were nominally (P < 0.05) associated with invasive EOC. These SNPs were then genotyped in a larger study of 14,525 invasive-cancer patients and 23,447 controls. A P-value <0.05 and a false discovery rate (FDR) <0.2 were considered statistically significant. In the larger dataset, GPC6/GPC5 rs17702471 was associated with the endometrioid subtype among Caucasians (odds ratio (OR) = 1.16, 95% CI = 1.07-1.25, P = 0.0003, FDR = 0.19), whereas F8 rs7053448 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), F8 rs7058826 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), and CAPN13 rs1983383 (OR = 0.79, 95% CI = 0.69-0.90, P = 0.0005, FDR = 0.12) were associated with combined invasive EOC among Asians. In silico functional analyses revealed that GPC6/GPC5 rs17702471 coincided with DNA regulatory elements. These results suggest that EMT gene variants do not appear to play a significant role in the susceptibility to EOC.

  7. The Role of Epithelial Mesenchymal Transition Markers in Thyroid Carcinoma Progression

    PubMed Central

    Montemayor-Garcia, Celina; Hardin, Heather; Guo, Zhenying; Larrain, Carolina; Buehler, Darya; Asioli, Sofia; Chen, Herbert; Lloyd, Ricardo V.

    2013-01-01

    Understanding the molecular mechanisms involved in thyroid cancer progression may provide targets for more effective treatment of aggressive thyroid cancers. Epithelial-mesenchymal transition (EMT) is a major pathologic mechanism in tumor progression and is linked to the acquisition of stem-like properties of cancer cells. We examined expression of ZEB1 which activates EMT by binding to the E-box elements in the E-cadherin promoter, and expression of E-cadherin in normal and neoplastic thyroid tissues in a tissue microarray (TMA) which included 127 neoplasms and 10 normal thyroid specimens. Thyroid follicular adenomas (FA, n=32), follicular thyroid carcinomas (FTC, n=28), and papillary thyroid carcinomas (PTC, n=57) all expressed E-cadherin and were mostly negative for ZEB1 while most anaplastic thyroid carcinomas (ATC, n=10) were negative for E-cadherin, but positive for ZEB1. A validation set of 10 whole sections of ATCs showed 90% of cases positive for ZEB1 and all cases were negative for E-cadherin. Analysis of three cell lines (normal thyroid, NTHY-OR13-1; PTC, TPC-1 and ATC, THJ-21T) showed that the ATC cell line expressed the highest levels of ZEB1 while the normal thyroid cell line expressed the highest levels of E-Cadherin. Quantitative RT-PCR analyses showed that Smad7 mRNA was significantly higher in ATC than in any other group (p<0.05). These results indicate that ATCs show evidence of EMT including decreased expression of E-cadherin and increased expression of ZEB1 compared to well differentiated thyroid carcinomas and that increased expression of Smad7 may be associated with thyroid tumor progression. PMID:24126800

  8. Dynamic transcription factor networks in epithelial-mesenchymal transition in breast cancer models.

    PubMed

    Siletz, Anaar; Schnabel, Michael; Kniazeva, Ekaterina; Schumacher, Andrew J; Shin, Seungjin; Jeruss, Jacqueline S; Shea, Lonnie D

    2013-01-01

    The epithelial-mesenchymal transition (EMT) is a complex change in cell differentiation that allows breast carcinoma cells to acquire invasive properties. EMT involves a cascade of regulatory changes that destabilize the epithelial phenotype and allow mesenchymal features to manifest. As transcription factors (TFs) are upstream effectors of the genome-wide expression changes that result in phenotypic change, understanding the sequential changes in TF activity during EMT provides rich information on the mechanism of this process. Because molecular interactions will vary as cells progress from an epithelial to a mesenchymal differentiation program, dynamic networks are needed to capture the changing context of molecular processes. In this study we applied an emerging high-throughput, dynamic TF activity array to define TF activity network changes in three cell-based models of EMT in breast cancer based on HMLE Twist ER and MCF-7 mammary epithelial cells. The TF array distinguished conserved from model-specific TF activity changes in the three models. Time-dependent data was used to identify pairs of TF activities with significant positive or negative correlation, indicative of interdependent TF activity throughout the six-day study period. Dynamic TF activity patterns were clustered into groups of TFs that change along a time course of gene expression changes and acquisition of invasive capacity. Time-dependent TF activity data was combined with prior knowledge of TF interactions to construct dynamic models of TF activity networks as epithelial cells acquire invasive characteristics. These analyses show EMT from a unique and targetable vantage and may ultimately contribute to diagnosis and therapy.

  9. Functional cooperation of RKTG with p53 in tumorigenesis and epithelial-mesenchymal transition.

    PubMed

    Jiang, Yuhui; Xie, Xiaoduo; Li, Zhigang; Wang, Zheng; Zhang, Yixuan; Ling, Zhi-Qiang; Ling, Zhiqiang; Pan, Yi; Wang, Zhenzhen; Chen, Yan

    2011-04-15

    Raf kinase trapping to Golgi (RKTG) is a potential tumor suppressor gene due to its negative roles in regulating Ras/Raf/MEK/ERK (extracellular signal-regulated kinase) pathway and GPCR (G protein-coupled receptor) Gβγ subunit signaling. Interestingly, RKTG-deficient mice are free of tumors, although they are prone to form skin cancer on carcinogen administration. On the other hand, p53 is a well-characterized tumor suppressor gene and p53 heterozygous mice develop sarcoma and other tumors starting from 12 months of age. In RKTG-null mouse embryonic fibroblasts, lypophosphatidic acid (LPA), but not EGF (epidermal growth factor), could stimulate hyperphosphorylation of AKT and GSK3β, accompanied by increases in phosphorylation of p53 at Ser15 and accumulation of p53, as well as its target genes p21 and p16. Spontaneous skin cancer-like tumors were detected in about 25% of RKTG nullizygous and p53 heterozygous mice within 7 months of age. Hyperplasia and epithelial-mesenchymal transition (EMT) were observed in the tumor-overlying epidermis, in which LOH of p53 occurred and EMT features emerged. In p53-mutated A431 epithelial carcinoma cells, knockdown of RKTG led to enhancement of LPA-stimulated AKT and GSK3β phosphorylation, together with increased accumulation of β-catenin and appearance of EMT features that were antagonized by p53 overexpression. In HepG2 epithelial cells, LPA-stimulated AKT phosphorylation and EMT features reached maximum when both RKTG and p53 were simultaneously silenced. In summary, these results not only indicate that RKTG has an in vivo tumor suppressor function to cooperate with p53 in tumorigenesis but also suggest that p53 has an EMT checkpoint function and the loss of this function can combine with loss of RKTG to drive EMT and tumor progression.

  10. Sub-circuits of a gene regulatory network control a developmental epithelial-mesenchymal transition.

    PubMed

    Saunders, Lindsay R; McClay, David R

    2014-04-01

    Epithelial-mesenchymal transition (EMT) is a fundamental cell state change that transforms epithelial to mesenchymal cells during embryonic development, adult tissue repair and cancer metastasis. EMT includes a complex series of intermediate cell state changes including remodeling of the basement membrane, apical constriction, epithelial de-adhesion, directed motility, loss of apical-basal polarity, and acquisition of mesenchymal adhesion and polarity. Transcriptional regulatory state changes must ultimately coordinate the timing and execution of these cell biological processes. A well-characterized gene regulatory network (GRN) in the sea urchin embryo was used to identify the transcription factors that control five distinct cell changes during EMT. Single transcription factors were perturbed and the consequences followed with in vivo time-lapse imaging or immunostaining assays. The data show that five different sub-circuits of the GRN control five distinct cell biological activities, each part of the complex EMT process. Thirteen transcription factors (TFs) expressed specifically in pre-EMT cells were required for EMT. Three TFs highest in the GRN specified and activated EMT (alx1, ets1, tbr) and the 10 TFs downstream of those (tel, erg, hex, tgif, snail, twist, foxn2/3, dri, foxb, foxo) were also required for EMT. No single TF functioned in all five sub-circuits, indicating that there is no EMT master regulator. Instead, the resulting sub-circuit topologies suggest EMT requires multiple simultaneous regulatory mechanisms: forward cascades, parallel inputs and positive-feedback lock downs. The interconnected and overlapping nature of the sub-circuits provides one explanation for the seamless orchestration by the embryo of cell state changes leading to successful EMT.

  11. Foxn1 Transcription Factor Regulates Wound Healing of Skin through Promoting Epithelial-Mesenchymal Transition

    PubMed Central

    Gawronska-Kozak, Barbara; Grabowska, Anna; Kur-Piotrowska, Anna; Kopcewicz, Marta

    2016-01-01

    Transcription factors are key molecules that finely tune gene expression in response to injury. We focused on the role of a transcription factor, Foxn1, whose expression is limited to the skin and thymus epithelium. Our previous studies showed that Foxn1 inactivity in nude mice creates a pro-regenerative environment during skin wound healing. To explore the mechanistic role of Foxn1 in the skin wound healing process, we analyzed post-injured skin tissues from Foxn1::Egfp transgenic and C57BL/6 mice with Western Blotting, qRT-PCR, immunofluorescence and flow cytometric assays. Foxn1 expression in non-injured skin localized to the epidermis and hair follicles. Post-injured skin tissues showed an intense Foxn1-eGFP signal at the wound margin and in leading epithelial tongue, where it co-localized with keratin 16, a marker of activated keratinocytes. This data support the concept that suprabasal keratinocytes, expressing Foxn1, are key cells in the process of re-epithelialization. The occurrence of an epithelial-mesenchymal transition (EMT) was confirmed by high levels of Snail1 and Mmp-9 expression as well as through co-localization of vimentin/E-cadherin-positive cells in dermis tissue at four days post-wounding. Involvement of Foxn1 in the EMT process was verified by co-localization of Foxn1-eGFP cells with Snail1 in histological sections. Flow cytometric analysis showed the increase of double positive E-cadherin/N-cadherin cells within Foxn1-eGFP population of post-wounded skin cells isolates, which corroborated histological and gene expression analyses. Together, our findings indicate that Foxn1 acts as regulator of the skin wound healing process through engagement in re-epithelization and possible involvement in scar formation due to Foxn1 activity during the EMT process. PMID:26938103

  12. Foxn1 Transcription Factor Regulates Wound Healing of Skin through Promoting Epithelial-Mesenchymal Transition.

    PubMed

    Gawronska-Kozak, Barbara; Grabowska, Anna; Kur-Piotrowska, Anna; Kopcewicz, Marta

    2016-01-01

    Transcription factors are key molecules that finely tune gene expression in response to injury. We focused on the role of a transcription factor, Foxn1, whose expression is limited to the skin and thymus epithelium. Our previous studies showed that Foxn1 inactivity in nude mice creates a pro-regenerative environment during skin wound healing. To explore the mechanistic role of Foxn1 in the skin wound healing process, we analyzed post-injured skin tissues from Foxn1::Egfp transgenic and C57BL/6 mice with Western Blotting, qRT-PCR, immunofluorescence and flow cytometric assays. Foxn1 expression in non-injured skin localized to the epidermis and hair follicles. Post-injured skin tissues showed an intense Foxn1-eGFP signal at the wound margin and in leading epithelial tongue, where it co-localized with keratin 16, a marker of activated keratinocytes. This data support the concept that suprabasal keratinocytes, expressing Foxn1, are key cells in the process of re-epithelialization. The occurrence of an epithelial-mesenchymal transition (EMT) was confirmed by high levels of Snail1 and Mmp-9 expression as well as through co-localization of vimentin/E-cadherin-positive cells in dermis tissue at four days post-wounding. Involvement of Foxn1 in the EMT process was verified by co-localization of Foxn1-eGFP cells with Snail1 in histological sections. Flow cytometric analysis showed the increase of double positive E-cadherin/N-cadherin cells within Foxn1-eGFP population of post-wounded skin cells isolates, which corroborated histological and gene expression analyses. Together, our findings indicate that Foxn1 acts as regulator of the skin wound healing process through engagement in re-epithelization and possible involvement in scar formation due to Foxn1 activity during the EMT process.

  13. Autophagy plays a role in FSTL1-induced epithelial mesenchymal transition and airway remodeling in asthma.

    PubMed

    Liu, Tian; Liu, Yahui; Miller, Marina; Cao, Liuzhao; Zhao, Jiping; Wu, Jinxiang; Wang, Junfei; Liu, Lin; Li, Shuo; Zou, Minfang; Xu, Jiawei; Broide, David H; Dong, Liang

    2017-07-01

    Asthma is a chronic disease related to airway hyperresponsiveness and airway remodeling. Airway remodeling is the important reason of refractory asthma and is associated with differentiation of airway epithelia into myofibroblasts via epithelial-mesenchymal transition (EMT) to increase the process of subepithelial fibrosis. There is growing evidence that autophagy modulates remodeling. However, the underlying molecular mechanisms of these effects are still unclear. In this study, we hypothesized that Follistatin-like 1 (FSTL1) promotes EMT and airway remodeling by intensifying autophagy. With the use of transmission electron microscopy (TEM), double-membrane autophagosomes were detected in the airways of patients and mice. More autophagosomes were in patients with asthma and OVA-challenged mice compared with healthy controls. The expression of FSTL1 and beclin-1 was upregulated in the airways of patients with asthma and OVA-challenged mice, accompanied by airway EMT and remodeling. In OVA-challenged Fstl1(+/-) mice, the degree of airway remodeling and autophagy was decreased compared with control mice. The effects of FSTL1 on autophagy and EMT were also tested in 16HBE cells in vitro. Additionally, inhibition of autophagy by using LY-294002 and siRNA-ATG5 reduced the FSTL1-induced EMT in 16HBE cells, as measured by E-cadherin, N-cadherin, and vimentin expression. In line herewith, administration of LY-294002 reduced the expression of autophagy, EMT, and airway remodeling markers in FSTL1-challenged WT mice. Taken together, our study suggests that FSTL1 may induce EMT and airway remodeling by activating autophagy. These findings may provide novel avenues for therapeutic research targeting the autophagy and FSTL1 pathway, which may be beneficial to patients with refractory asthma. Copyright © 2017 the American Physiological Society.

  14. Cardiac Epithelial-Mesenchymal Transition Is Blocked by Monomethylarsonous Acid (III)

    PubMed Central

    Huang, Tianfang; Barnett, Joey V.; Camenisch, Todd D.

    2014-01-01

    Arsenic exposure during embryonic development can cause ischemic heart pathologies later in adulthood which may originate from impairment in proper blood vessel formation. The arsenic-associated detrimental effects are mediated by arsenite (iAsIII) and its most toxic metabolite, monomethylarsonous acid [MMA (III)]. The impact of MMA (III) on coronary artery development has not yet been studied. The key cellular process that regulates coronary vessel development is the epithelial-mesenchymal transition (EMT). During cardiac EMT, activated epicardial progenitor cells transform to mesenchymal cells to form the cellular components of coronary vessels. Smad2/3 mediated TGFβ2 signaling, the key regulator of cardiac EMT, is disrupted by arsenite exposure. In this study, we compared the cardiac toxicity of MMA (III) with arsenite. Epicardial progenitor cells are 15 times more sensitive to MMA (III) cytotoxicity when compared with arsenite. MMA (III) caused a significant blockage in epicardial cellular transformation and invasion at doses 10 times lower than arsenite. Key EMT genes including TGFβ ligands, TβRIII, Has2, CD44, Snail1, TBX18, and MMP2 were down regulated by MMA (III) exposure. MMA (III) disrupted Smad2/3 activation at a dose 20 times lower than arsenite. Both arsenite and MMA (III) significantly inhibited Erk1/2 and Erk5 phosphorylation. Nuclear translocation of Smad2/3 and Erk5 was also blocked by arsenical exposure. However, p38 activation, as well as smooth muscle differentiation, was refractory to the inhibition by the arsenicals. Collectively, these findings revealed that MMA (III) is a selective disruptor of cardiac EMT and as such may predispose to arsenic-associated cardiovascular disorders. PMID:25145660

  15. Epigenetic coordination of signaling pathways during the epithelial-mesenchymal transition

    PubMed Central

    2013-01-01

    Background The epithelial-mesenchymal transition (EMT) is a de-differentiation process required for wound healing and development. In tumors of epithelial origin aberrant induction of EMT contributes to cancer progression and metastasis. Studies have begun to implicate epigenetic reprogramming in EMT; however, the relationship between reprogramming and the coordination of cellular processes is largely unexplored. We have previously developed a system to study EMT in a canonical non-small cell lung cancer (NSCLC) model. In this system we have shown that the induction of EMT results in constitutive NF-κB activity. We hypothesized a role for chromatin remodeling in the sustained deregulation of cellular signaling pathways. Results We mapped sixteen histone modifications and two variants for epithelial and mesenchymal states. Combinatorial patterns of epigenetic changes were quantified at gene and enhancer loci. We found a distinct chromatin signature among genes in well-established EMT pathways. Strikingly, these genes are only a small minority of those that are differentially expressed. At putative enhancers of genes with the ‘EMT-signature’ we observed highly coordinated epigenetic activation or repression. Furthermore, enhancers that are activated are bound by a set of transcription factors that is distinct from those that bind repressed enhancers. Upregulated genes with the ‘EMT-signature’ are upstream regulators of NF-κB, but are also bound by NF-κB at their promoters and enhancers. These results suggest a chromatin-mediated positive feedback as a likely mechanism for sustained NF-κB activation. Conclusions There is highly specific epigenetic regulation at genes and enhancers across several pathways critical to EMT. The sites of these changes in chromatin state implicate several inducible transcription factors with critical roles in EMT (NF-κB, AP-1 and MYC) as targets of this reprogramming. Furthermore, we find evidence that suggests that these

  16. Leptin promotes metastasis by inducing an epithelial-mesenchymal transition in A549 lung cancer cells.

    PubMed

    Feng, Helin; Liu, Qingyi; Zhang, Ning; Zheng, Lihua; Sang, Meixiang; Feng, Jiangang; Zhang, Jinming; Wu, Xiangyun; Shan, Baoen

    2013-01-01

    Leptin, an adipocyte-derived cytokine associated with obesity, has been reported to participate in carcinogenesis. Epithelial-mesenchymal transition (EMT) is also considered as a key event in tumor metastasis. The aim of this study is to investigate the mechanism of leptin in the promotion of EMT leading to metastasis in A549 lung cancer cells. We investigated the effect of leptin on migration of A549 cells using wound healing and transwell assays. The incidence of EMT in A549 cells was examined by real-time PCR and immunofluorescence staining. The expression of TGF-β in A549 cells was detected by real-time PCR, and blocking of TGF-β in A549 cells was achieved by siRNA techniques. Additional work was performed using 100 patient samples, which included samples from 50 patients diagnosed with lung cancer and an additional 50 patients diagnosed with lung cancer with metastatic bone lesions. Leptin expression was measured using immunohistochemistry techniques. We demonstrated that leptin can effectively enhance the metastasis of human lung cancer A549 cell line using both wound healing and transwell assays. We also found the incidence of EMT in A549 cells after leptin exposure. Furthermore, we detected the expression of TGF-β in A549 cells, which had been reported to play an important role in inducing EMT. We showed that leptin can significantly upregulate TGF-β at both the mRNA and protein levels in A549 cells. Using siRNA to block the expression of TGF-β in A549 cells, we confirmed the role of TGF-β in the promotion of metastasis and induction of EMT. Furthermore, we found that in patient samples leptin was present at higher levels in samples associated with diagnosis of lung cancer bone metastases tissue than lung cancer tissue. Our results indicated that leptin promoted the metastasis of A549 human lung cancer cell lines by inducing EMT in a TGF-β-dependent manner.

  17. Cell Surface Glycan Alterations in Epithelial Mesenchymal Transition Process of Huh7 Hepatocellular Carcinoma Cell

    PubMed Central

    Kang, Xiaonan; Sun, Chun; Jiang, Kai; Huang, Li; Lu, Yu; Sui, Jingzhe; Qin, Xue; Liu, Yinkun

    2013-01-01

    Background and Objective Due to recurrence and metastasis, the mortality of Hepatocellular carcinoma (HCC) is high. It is well known that the epithelial mesenchymal transition (EMT) and glycan of cell surface glycoproteins play pivotal roles in tumor metastasis. The goal of this study was to identify HCC metastasis related differential glycan pattern and their enzymatic basis using a HGF induced EMT model. Methodology HGF was used to induce HCC EMT model. Lectin microarray was used to detect the expression of cell surface glycan and the difference was validated by lectin blot and fluorescence cell lectin-immunochemistry. The mRNA expression levels of glycotransferases were determined by qRT-PCR. Results After HGF treatment, the Huh7 cell lost epithelial characteristics and obtained mesenchymal markers. These changes demonstrated that HGF could induce a typical cell model of EMT. Lectin microarray analysis identified a decreased affinity in seven lectins ACL, BPL, JAC, MPL, PHA-E, SNA, and SBA to the glycan of cell surface glycoproteins. This implied that glycan containing T/Tn-antigen, NA2 and bisecting GlcNAc, Siaα2-6Gal/GalNAc, terminal α or βGalNAc structures were reduced. The binding ability of thirteen lectins, AAL, LCA, LTL, ConA, NML, NPL, DBA, HAL, PTL II, WFL, ECL, GSL II and PHA-L to glycan were elevated, and a definite indication that glycan containing terminal αFuc and ± Sia-Le, core fucose, α-man, gal-β(α) GalNAc, β1,6 GlcNAc branching and tetraantennary complex oligosaccharides structures were increased. These results were further validated by lectin blot and fluorescence cell lectin-immunochemistry. Furthermore, the mRNA expression level of Mgat3 decreased while that of Mgat5, FucT8 and β3GalT5 increased. Therefore, cell surface glycan alterations in the EMT process may coincide with the expression of glycosyltransferase. Conclusions The findings of this study systematically clarify the alterations of cell surface glycan in cancer EMT, and

  18. Inhibition of SDF-1/CXCR4-induced epithelial-mesenchymal transition by kisspeptin-10.

    PubMed

    Gründker, Carsten; Bauerschmitz, Gerd; Knapp, Juliane; Schmidt, Elena; Olbrich, Theresa; Emons, Günter

    2015-07-01

    Recently we have shown that breast cancer cell invasion was dramatically increased when co-cultured with MG63 cells. In addition we have generated mesenchymal transformed MCF-7 breast cancer cells (MCF-7-EMT), showing significantly increased invasion in contrast to wild type MCF-7 cells (MCF-7 WT). In this study we have analyzed whether stromal derived factor-1 (SDF-1) is responsible for MCF-7 and T-47-D breast cancer cell invasion and epithelial-mesenchymal-transition (EMT). In addition we have analyzed whether kisspeptin-10 (KP-10) treatment affects SDF-1-induced invasion and EMT. Invasion was quantified by assessment of MCF-7 and T-47-D breast cancer cell migration rate through an artificial basement membrane in a modified Boyden chamber during co-culture with MG63 cells or after treatment with SDF-1α, SDF-1β or the combination of both isoforms. Induction of EMT was verified by analysis of protein expression of epithelial marker E-cadherin (CDH1) and mesenchymal markers N-cadherin (CDH2) and Vimentin (VIM). The role of SDF-1 for invasion and induction of EMT in breast cancer cells was analyzed by blocking SDF-1 secretion during co-culture with MG63 cells. In addition effects of KP-10 treatment on SDF-1-induced invasion and EMT were analyzed. Breast cancer cell invasion was significantly increased when co-cultured with MG63 cells. During co-culture SDF-1 protein expression of MG63 cells was significantly induced. The increased breast cancer cell invasion could be blocked by anti-SDF-1 antibodies. Treatment of breast cancer cells in monoculture (without MG63) with SDF-1α, SDF-1β or the combination of both isoforms resulted in a significant escalation of breast cancer cell invasion and induction of EMT. Protein expression of mesenchymal markers CDH2 and VIM was clearly elevated, whereas protein expression of epithelial marker CDH1 was clearly decreased. The SDF-1-induced increase of cell invasion was significantly reduced after treatment with KP-10. In addition

  19. Expression of epithelial-mesenchymal transition markers at the invasive front of oral squamous cell carcinoma

    PubMed Central

    COSTA, Liana Cristina Melo Carneiro; LEITE, Camila Ferreira; CARDOSO, Sérgio Vitorino; LOYOLA, Adriano Mota; de FARIA, Paulo Rogério; SOUZA, Paulo Eduardo Alencar; HORTA, Martinho Campolina Rebello

    2015-01-01

    Oral squamous cell carcinoma (OSCC) is one of the most common malignances. In epithelial-mesenchymal transition (EMT), epithelial cells switch to mesenchymal-like cells exhibiting high mobility. This migratory phenotype is significant during tumor invasion and metastasis. Objective : The aim of this study is to evaluate the expression of the EMT markers E-cadherin, N-cadherin and vimentin in OSCC. Material and Methods : Immunohistochemical detection of E-cadherin, N-cadherin and vimentin was performed on 20 OSCC samples. Differences in the expression of each protein at the invasive front (IF) and in the central/superficial areas (CSA) of the tumor were assessed. Differences in the expression of each protein at the IF of both histologically high- and low-invasive OSCCs were evaluated. Associations among expression of proteins at the IF were assessed. Correlations between the expression levels of each protein at the IF and the tumor stage and clinical nodal status were also evaluated. Results : Reduced expression of E-cadherin was detected in 15 samples (75%). E-cadherin expression was reduced at the IF when compared to the CSA and in high-invasive tumors when compared to low-invasive tumors. All samples were negative for N-cadherin, even though one sample showed an inconspicuous expression. Positive expression of vimentin was observed in 6 samples (30%). Nevertheless, there was no difference in vimentin expression between the IF and the CSA regions or between the low- and high-invasive tumors. Furthermore, no association was observed among protein expression levels at the IF. Finally, no correlations were observed between each protein’s expression levels and tumor stage or clinical nodal status. Conclusions : Reduced E-cadherin expression at the IF and its association with histological invasiveness suggest that this protein is a noteworthy EMT marker in OSCC. Although vimentin was also detected as an EMT marker, its expression was neither limited to the IF nor was

  20. Trichostatin A Inhibits Epithelial Mesenchymal Transition Induced by TGF-β1 in Airway Epithelium

    PubMed Central

    Shin, Jae-Min; Lee, Heung-Man

    2016-01-01

    Background and Objectives Tissue remodeling is believed to cause recalcitrant chronic rhinosinusitis (CRS). Epithelial-mesenchymal transition (EMT) is a novel clinical therapeutic target in many chronic airway diseases related with tissue remodeling. The aim of this study was to investigate the effect of trichostatin A (TSA) on transforming growth factor (TGF)-β1-induced EMT in airway epithelium and nasal tissue. Materials and Methods A549 cells, primary nasal epithelial cells (PNECs), or inferior nasal turbinate organ culture were exposed to TSA prior to stimulation with TGF-β1. Expression levels of E-cadherin, vimentin, fibronectin, α-smooth muscle actin (SMA), histone deacetylase 2 (HDAC2), and HDAC4 were determined by western blotting and/or immunofluorescent staining. Hyperacetylation of histone H2 and H4 by TSA was measured by western blotting. After siHDAC transfection, the effects of HDAC2 and HDAC4 silencing on expression of E-cadherin, vimentin, fibronectin, α-SMA, HDAC2, and HDAC4 in TGF-β1-induced A549 were determined by RT-PCR and/or western blotting. We assessed the change in migration capacity of A549 cells by using cell migration assay and transwell invasion assay. Results TGF-β1 altered mRNA and protein expression levels of EMT markers including E-cadherin, vimentin, fibronectin, α-SMA, slug, and snail in A549 cells. Inhibition and silencing of HDAC2 and HDAC4 by TSA and siRNA enhanced TGF-β1-induced EMT in A549 cells. TSA blocked the effect of TGF-β1 on the migratory ability of A549 cells. In experiments using PNECs and inferior turbinate organ cultures, TSA suppressed expression of EMT markers induced by TGF-β1. Conclusions We showed that EMT is induced by TGF-β1 in airway epithelial cells and nasal tissue via activation of HDAC2 and HDAC4, and that inhibition of HDAC2 and HDAC4 by TSA reduces TGF-β1-induced EMT. This observation indicates that histone deacetylase inhibitors such as TSA could be potential candidates for treatment of

  1. Chemokine ligand 20 enhances progression of hepatocellular carcinoma via epithelial-mesenchymal transition

    PubMed Central

    Hou, Ke-Zhu; Fu, Zhi-Qiang; Gong, Hua

    2015-01-01

    AIM: To identify the mechanisms of chemokine ligand 20 (CCL20)-induced hepatocellular carcinoma (HCC) metastasis and evaluate it as a prognostic marker. METHODS: Expression of CCL20 was evaluated by immunohistochemistry in HCC tissues from 62 patients who underwent curative resection. The relationship between CCL20 expression and clinicopathologic features was analyzed. Univariate and multivariate analyses were performed to evaluate its predictive value for recurrence and survival of HCC patients. The expression levels of epithelial-mesenchymal transition (EMT)-and signaling pathway-related proteins were evaluated by Western blotting and immunocytochemistry. The effects of CCL20 on HCC cell proliferation and migration were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenoltetrazolium bromide (MTT) and Transwell assays. RESULTS: CCL20 immunoreactivity was detected in all 62 patient specimens. CCL20 expression was associated with preoperative alpha-fetoprotein level (P = 0.043), tumor size (P = 0.000), tumor number (P = 0.008), vascular invasion (P = 0.014), and tumor differentiation (P = 0.007). Patients with high CCL20 expression had poorer recurrence-free and overall survivals compared to those with low CCL20 expression (both P < 0.001). CCL20 induced EMT-like changes in HCC cells and increased their proliferation and migration ability (P < 0.05). Western blotting and immunofluorescence staining showed that CCL20 induced an EMT-like phenotype in HCC cells, and increased expression of phosphorylated AKT, β-catenin and vimentin, and decreased E-cadherin expression (P < 0.05). The correlation analysis revealed that high CCL20 expression in HCC tissue specimens was negatively correlated with E-cadherin expression (13.33%, 4/30), and positively correlated with vimentin (90.0%, 27/30), β-catenin (96.67%, 29/30) and p-AKT (76.67%, 23/30) expression. CONCLUSION: CCL20 expression is associated with HCC recurrence and patient survival and promotes HCC cell

  2. The increase of microRNA-21 during lung fibrosis and its contribution to epithelial-mesenchymal transition in pulmonary epithelial cells

    PubMed Central

    2013-01-01

    Background The excess and persistent accumulation of fibroblasts due to aberrant tissue repair results in fibrotic diseases such as idiopathic pulmonary fibrosis. Recent reports have revealed significant changes in microRNAs during idiopathic pulmonary fibrosis and evidence in support of a role for microRNAs in myofibroblast differentiation and the epithelial-mesenchymal transition in the context of fibrosis. It has been reported that microRNA-21 is up-regulated in myofibroblasts during fibrosis and promotes transforming growth factor-beta signaling by inhibiting Smad7. However, expression changes in microRNA-21 and the role of microRNA-21 in epithelial-mesenchymal transition during lung fibrosis have not yet been defined. Methods Lungs from saline- or bleomycin-treated C57BL/6 J mice and lung specimens from patients with idiopathic pulmonary fibrosis were analyzed. Enzymatic digestions were performed to isolate single lung cells. Lung epithelial cells were isolated by flow cytometric cell sorting. The expression of microRNA-21 was analyzed using both quantitative PCR and in situ hybridization. To induce epithelial-mesenchymal transition in culture, isolated mouse lung alveolar type II cells were cultured on fibronectin-coated chamber slides in the presence of transforming growth factor-β, thus generating conditions that enhance epithelial-mesenchymal transition. To investigate the role of microRNA-21 in epithelial-mesenchymal transition, we transfected cells with a microRNA-21 inhibitor. Total RNA was isolated from the freshly isolated and cultured cells. MicroRNA-21, as well as mRNAs of genes that are markers of alveolar epithelial or mesenchymal cell differentiation, were quantified using quantitative PCR. Results The lung epithelial cells isolated from the bleomycin-induced lung fibrosis model system had decreased expression of epithelial marker genes, whereas the expression of mesenchymal marker genes was increased. MicroRNA-21 was significantly upregulated

  3. Impact of Brachyury on epithelial-mesenchymal transitions and chemosensitivity in non-small cell lung cancer.

    PubMed

    Xu, Ke; Liu, Bin; Liu, Yongyu

    2015-07-01

    The objective of the current study was to investigate the impact of Brachyury on epithelial-mesenchymal transitions and chemosensitivity in non-small cell lung cancer (NSCLC). In 115 archived NSCLC tissue samples, the expression of Brachyury was observed to be significantly higher than that in adjacent normal lung tissues. In addition, the current study demonstrated that the expression of Brachyury is closely associated with TNM staging, lymph node metastasis and the prognosis of NSCLC, although not with patient age, gender or tumor differentiation. Brachyury expression is also accompanied by the downregulation of E-cadherin and the upregulation of N-cadherin. Brachyury may promote lung cancer through induction of epithelial-mesenchymal transition, which leads to metastasis and consequent poor prognosis in patients with lung cancer. Furthermore, the present study observed that interfering with Brachyury increases the sensitivity of cells to chemotherapeutic treatment with cisplatin. These results, in combination with those of additional studies, suggest that Brachyury may be used as a novel target for the prevention and treatment of lung cancer.

  4. miR-495 promotes the chemoresistance of SCLC through the epithelial-mesenchymal transition via Etk/BMX

    PubMed Central

    Wei, Ting; Zhu, Weiliang; Fang, Shun; Zeng, Xiangpin; Huang, Jie; Yang, Jie; Zhang, Jian; Guo, Linlang

    2017-01-01

    miR-495 serves as an oncogenic miRNA or a tumor suppressor in different types of cancer. However, its role in the drug resistance of small cell lung cancer (SCLC) remains unidentified. In this study, we investigated whether miR-495 regulates the chemoresistance of SCLC through the epithelial-mesenchymal transition (EMT) via Epithelial and endothelial tyrosine kinase (Etk/BMX) using two drug-resistant cell lines. Loss- and gain-of-function experiments showed miR-495 regulated cell proliferation, tumor growth and drug resistance. miR-495 suppression or Etk/BMX elevation in SCLC specimens was correlated with poor pathologic stage and survival time. Etk/BMX was one of the directly targeted genes of miR-495. Ectopic expression of Etk/BMX obviously rescued the miR-495 elevation elevation-induced inhibition of drug resistance. Etk/BMX over-expression led to higher levels of EMT mesenchymal factors (Zeb-2, Twist, Vim) and lower levels of the epithelial molecule β-catenin, while suppression of Etk/BMX showed the opposite trend. Knockdown of Zeb-2 and Twist inhibited the chemoresistance of cells. Our study revealed that miR-495 promoted the chemoresistance of SCLC through the epithelial-mesenchymal transition via Etk/BMX. miR-495 re-expression or Etk/BMX depletion is a promising strategy for interfering with chemoresistance in SCLC. PMID:28401017

  5. Expression of microRNA-133 inhibits epithelial-mesenchymal transition in lung cancer cells by directly targeting FOXQ1.

    PubMed

    Xiao, Bo; Liu, Huazhen; Gu, Zeyun; Ji, Cheng

    2016-10-01

    MicroRNA (miR) was implicated in the tumorigenesis of many types of cancer, but no study was conducted on the exact role of miR-133 in lung cancer. We have identified miR-133 as a putative regulator of FOXQ1 expression, and investigated the potential involvement of miR-133 in the migration and invasion of lung cancer cells, as well as the underlying molecular mechanism. MiR-133 directly targeted and down-regulated FOXQ1 expression, which in turn reduced TGF-β level. MiR-133 was down-regulated in lung cancer cell lines A549 and HCC827, and its re-expression significantly inhibited the migration and invasion of the lung cancer cells. Further investigation revealed that this inhibition was caused by reversing the epithelial-mesenchymal transition, evidenced by miR-133 induced elevation of epithelial marker E-cadherin, and reduction of mesenchymal marker Vimentin. Our study is the first to identify miR-133 as a biomarker for lung cancer. It functions to down-regulate FOXQ1, and inhibit epithelial-mesenchymal transition, which antagonizes lung cancer tumorigenesis. Therefore our data support the role of miR-133 as a potential molecular therapeutic tool in treating lung cancer. Copyright © 2015 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Human equilibrative nucleoside transporter-1 knockdown tunes cellular mechanics through epithelial-mesenchymal transition in pancreatic cancer cells.

    PubMed

    Lee, Yeonju; Koay, Eugene J; Zhang, Weijia; Qin, Lidong; Kirui, Dickson K; Hussain, Fazle; Shen, Haifa; Ferrari, Mauro

    2014-01-01

    We report cell mechanical changes in response to alteration of expression of the human equilibrative nucleoside transporter-1 (hENT1), a most abundant and widely distributed plasma membrane nucleoside transporter in human cells and/or tissues. Modulation of hENT1 expression level altered the stiffness of pancreatic cancer Capan-1 and Panc 03.27 cells, which was analyzed by atomic force microscopy (AFM) and correlated to microfluidic platform. The hENT1 knockdown induced reduction of cellular stiffness in both of cells up to 70%. In addition, cellular phenotypic changes such as cell morphology, migration, and expression level of epithelial-mesenchymal transition (EMT) markers were observed after hENT1 knockdown. Cells with suppressed hENT1 became elongated, migrated faster, and had reduced E-cadherin and elevated N-cadherin compared to parental cells which are consistent with epithelial-mesenchymal transition (EMT). Those cellular phenotypic changes closely correlated with changes in cellular stiffness. This study suggests that hENT1 expression level affects cellular phenotype and cell elastic behavior can be a physical biomarker for quantify hENT1 expression and detect phenotypic shift. Furthermore, cell mechanics can be a critical tool in detecting disease progression and response to therapy.

  7. [TAK1 promotes epithelial-mesenchymal transition of lens epithelial cells].

    PubMed

    Dong, N; Tang, X; Yuan, X Y; Song, H; Li, J

    2016-04-11

    Transforming growth factor-β-activated kinase-1 (TAK1) is thought to play a key role in the initiation of Smad-independent TGF-β signaling. This study investigated the role of TAK1 in the epithelial-mesenchymal transition (EMT) lens epithelial cells. TAK1 was overexpressed in the HLE B-3 cell line by transfecting TAK1-pcDNA3 and TAK1-binding protein 1 (TAB1)-pcDNA3 plasmids. The expression levels of TAK1, phospho-TAK1, E-cadherin, and fibronectin were detected by Western blot analysis and immunocytofluorescence to analyze the effects of overexpression. The levels of α-SMA and type I collagen were analyzed by real-time PCR. Quantitative data were analyzed by Student's t test or one-way analysis of variance (ANOVA) (multiple comparisons using LSD test). Western blot analysis showed in the TAK1-pcDNA3 plasmids group, expression of TAK1 proteins (1.00±0.03) with a maximum upregulation of approximately 80% at 24 h than it was in the control group (0.19±0.09)(t=8.02, P< 0.01); Western blot analysis showed in the TAB1-pcDNA3 plasmids group, expression of TAB1 proteins (1.00±0.02) with a maximum upregulation of approximately 78% at 24 h than it was in the control group (0.22±0.08)(t=7.63, P<0.01). The levels of E-cadherin/Beta-actin had significant differences among control, overexpression of TAK1 together with TAB1, overexpression of TAK1, and overexpression of TAB1 (1.00±0.02, 0.12±0.03, 0.98±0.09, 0.92±0.08;F=31.03, P<0.01). The levels of fibronectin/Beta-actin had significant differences among control, overexpression of TAK1 together with TAB1, overexpression of TAK1, and overexpression of TAB1 (0.11±0.03, 1.00±0.05, 0.16±0.04, 0.21±0.05;F=35.12, P<0.01). Overexpression of TAK1 with TAB1 resulted in upregulated expression of fibronectin, and downregulated expression of E-cadherin. The expression of E-cadherin was increased and the expression of fibronectin was decreased by TAK1 siRNA and TAK1 chemical inhibitors in the presence of TGF-β2. These data

  8. Suppression of colorectal cancer metastasis by nigericin through inhibition of epithelial-mesenchymal transition.

    PubMed

    Zhou, Hou-Min; Dong, Tao-Tao; Wang, Lin-Lin; Feng, Bo; Zhao, Hong-Chao; Fan, Xiu-Ke; Zheng, Min-Hua

    2012-06-07

    To evaluate the effect of nigericin on colorectal cancer and to explore its possible mechanism. The human colorectal cancer (CRC) cell lines HT29 and SW480 were treated with nigericin or oxaliplatin under the conditions specified. Cell viability assay and invasion and metastasis assay were performed to evaluate the effect of nigericin on CRC cells. Sphere-forming assay and soft agar colony-forming assay were implemented to assess the action of nigericin on the cancer stem cell properties of CRC cells undergone epithelial-mesenchymal transition (EMT). Compared with oxaliplatin, nigericin showed more toxicity for the HT29 cell line (IC50, 12.92 ± 0.25 μmol vs 37.68 ± 0.34 μmol). A similar result was also obtained with the SW116 cell line (IC50, 15.86 ± 0.18 μmol vs 41.02 ± 0.23 μmol). A Boyden chamber assay indicated that a significant decrease in the number of HT29 cells migrating through polyvinylidene fluoride membrane was observed in the nigericin-treated group, relative to the vehicle-treated group [11 ± 2 cells per high-power field (HPF) vs 19.33 ± 1.52 cells per HPF, P < 0.05]. Compared to the control group, the numbers of HT29 cells invading through the Matrigel-coated membrane also decreased in the nigericin-treated group (6.66 ± 1.52 cells per HPF vs 14.66 ± 1.52 cells per HPF, P < 0.05). Nigericin also reduced the proportion of CD133+ cells from 83.57% to 63.93%, relative to the control group (P < 0.05). Nigericin decreased the number of spheres relative to the control group (0.14 ± 0.01 vs 0.35 ± 0.01, P < 0.05), while oxaliplatin increased the number of spheres relative to the control group (0.75 ± 0.02 vs 0.35 ± 0.01; P < 0.05). Nigericin also showed a decreased ability to form colonies under anchorage-independent conditions in a standard soft agar assay after 14 d in culture, relative to the control group (1.66 ± 0.57 vs 7 ± 1.15, P < 0.05), whereas the colony numbers were higher in the oxaliplatin group relative to the vehicle

  9. Suppression of colorectal cancer metastasis by nigericin through inhibition of epithelial-mesenchymal transition

    PubMed Central

    Zhou, Hou-Min; Dong, Tao-Tao; Wang, Lin-Lin; Feng, Bo; Zhao, Hong-Chao; Fan, Xiu-Ke; Zheng, Min-Hua

    2012-01-01

    AIM: To evaluate the effect of nigericin on colorectal cancer and to explore its possible mechanism. METHODS: The human colorectal cancer (CRC) cell lines HT29 and SW480 were treated with nigericin or oxaliplatin under the conditions specified. Cell viability assay and invasion and metastasis assay were performed to evaluate the effect of nigericin on CRC cells. Sphere-forming assay and soft agar colony-forming assay were implemented to assess the action of nigericin on the cancer stem cell properties of CRC cells undergone epithelial-mesenchymal transition (EMT). RESULTS: Compared with oxaliplatin, nigericin showed more toxicity for the HT29 cell line (IC50, 12.92 ± 0.25 μmol vs 37.68 ± 0.34 μmol). A similar result was also obtained with the SW116 cell line (IC50, 15.86 ± 0.18 μmol vs 41.02 ± 0.23 μmol). A Boyden chamber assay indicated that a significant decrease in the number of HT29 cells migrating through polyvinylidene fluoride membrane was observed in the nigericin-treated group, relative to the vehicle-treated group [11 ± 2 cells per high-power field (HPF) vs 19.33 ± 1.52 cells per HPF, P < 0.05]. Compared to the control group, the numbers of HT29 cells invading through the Matrigel-coated membrane also decreased in the nigericin-treated group (6.66 ± 1.52 cells per HPF vs 14.66 ± 1.52 cells per HPF, P < 0.05). Nigericin also reduced the proportion of CD133+ cells from 83.57% to 63.93%, relative to the control group (P < 0.05). Nigericin decreased the number of spheres relative to the control group (0.14 ± 0.01 vs 0.35 ± 0.01, P < 0.05), while oxaliplatin increased the number of spheres relative to the control group (0.75 ± 0.02 vs 0.35 ± 0.01; P < 0.05). Nigericin also showed a decreased ability to form colonies under anchorage-independent conditions in a standard soft agar assay after 14 d in culture, relative to the control group (1.66 ± 0.57 vs 7 ± 1.15, P < 0.05), whereas the colony numbers were higher in the oxaliplatin group

  10. Overexpression of microRNA-194 suppresses the epithelial-mesenchymal transition in targeting stem cell transcription factor Sox3 in endometrial carcinoma stem cells.

    PubMed

    Gong, Baolan; Yue, Yan; Wang, Renxiao; Zhang, Yi; Jin, Quanfang; Zhou, Xi

    2017-06-01

    The epithelial-mesenchymal transition is the key process driving cancer metastasis. MicroRNA-194 inhibits epithelial-mesenchymal transition in several cancers and its downregulation indicates a poor prognosis in human endometrial carcinoma. Self-renewal factor Sox3 induces epithelial-mesenchymal transition at gastrulation and is also involved epithelial-mesenchymal transition in several cancers. We intended to determine the roles of Sox3 in inducing epithelial-mesenchymal transition in endometrial cancer stem cells and the possible role of microRNA-194 in controlling Sox3 expression. Firstly, we found that Sox3 and microRNA-194 expressions were associated with the status of endometrial cancer stem cells in a panel of endometrial carcinoma tissue, the CD133+ cell was higher in tumorsphere than in differentiated cells, and overexpression of microRNA-194 would decrease CD133+ cell expression. Silencing of Sox3 in endometrial cancer stem cell upregulated the epithelial marker E-cadherin, downregulated the mesenchymal marker vimentin, and significantly reduced cell invasion in vitro; overexpression of Sox3 reversed these phenotypes. Furthermore, we discovered that the expression of Sox3 was suppressed by microRNA-194 through direct binding to the Sox3 3'-untranslated region. Ectopic expression of microRNA-194 in endometrial cancer stem cells induced a mesenchymal-epithelial transition by restoring E-cadherin expression, decreasing vimentin expression, and inhibiting cell invasion in vitro. Moreover, overexpression of microRNA-194 inhibited endometrial cancer stem cell invasion or metastasis in vivo by injection of adenovirus microRNA-194. These findings demonstrate the novel mechanism by which Sox3 contributes to endometrial cancer stem cell invasion and suggest that repression of Sox3 by microRNA-194 may have therapeutic potential to suppress endometrial carcinoma metastasis. The cancer stem cell marker, CD133, might be the surface marker of endometrial cancer stem

  11. A prospective epigenetic paradigm between cellular senescence and epithelial-mesenchymal transition in organismal development and aging.

    PubMed

    Kishi, Shuji; Bayliss, Peter E; Hanai, Jun-Ichi

    2015-01-01

    Epigenetic states can govern the plasticity of a genome to be adaptive to environments where many stress stimuli and insults compromise the homeostatic system with age. Although certain elastic power may autonomously reset, reprogram, rejuvenate, or reverse the organismal aging process, enforced genetic manipulations could at least reset and reprogram epigenetic states beyond phenotypic plasticity and elasticity in cells, which can be further manipulated into organisms. The question, however, remains how we can rejuvenate intrinsic resources and infrastructures in a noninvasive manner, particularly in a whole complex aging organism. Given inevitable increase of cancer with age, presumably any failure of resetting, reprogramming, or even rejuvenation could be a prominent causative factor of malignancy. Accompanied by progressive deteriorations of physiological functions in organisms with advancing age, aging-associated cancer risk may essentially arise from unforeseen complications in cellular senescence. At the cellular level, epithelial-mesenchymal plasticity (dynamic and reversible transitions between epithelial and mesenchymal phenotypic states) is enabled by underlying shifts in epigenetic regulation. Thus, the epithelial-mesenchymal transition (EMT) and its reversal (mesenchymal-epithelial transition [MET]) function as a key of cellular transdifferentiation programs. On the one hand, the EMT-MET process was initially appreciated in developmental biology, but is now attracting increasing attention in oncogenesis and senescence, because the process is involved in the malignant progression vs regression of cancer. On the other hand, senescence is often considered the antithesis of early development, but yet between these 2 phenomena, there may be common factors and governing mechanisms such as the EMT-MET program, to steer toward rejuvenation of the biological aging system, thereby precisely controlling or avoiding cancer through epigenetic interventions

  12. AURKA promotes cancer metastasis by regulating epithelial-mesenchymal transition and cancer stem cell properties in hepatocellular carcinoma.

    PubMed

    Chen, Chenlin; Song, Guangyuan; Xiang, Jue; Zhang, Hongcheng; Zhao, Shaoyun; Zhan, Yinchu

    2017-04-29

    AURKA (aurora kinase A) has been confirmed as an oncogene in cancer development; however, its role and underlying mechanisms in the metastasis of hepatocellular carcinoma (HCC) remain unknown. In this study, We found that AURKA was up-regulated in HCC tissues and correlated with pathological stage and distant metastasis. Further found that AURKA was involved in the cancer metastases after radiation in HCC. While overexpression of AURKA induced epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) behaviors though PI3K/AKT pathway, silencing AURKA suppressed radiation-enhanced cell invasiveness of HCC. Taken together, our results suggested that AURKA contributed in metastasis of irradiated residul HCC though facilitating EMT and CSC properties, suggesting the potential clinical application of AURKA inhibitors in radiotherapy for patients with HCC. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Intratumoral stages of metastatic cells: a synthesis of ontogeny, Rho/Rac GTPases, epithelial-mesenchymal transitions, and more.

    PubMed

    Bustelo, Xosé R

    2012-09-01

    Metastasis is one of the clinical parameters that has a strong negative influence on the prognosis of cancer patients. In recent years, significant advances have furthered our understanding of this process at the molecular and biological levels. This paper will discuss recent discoveries relating to the earliest, intra-tumoral stages of metastasis in cancer cells, specifically focusing on: (i) the development of metastatic traits during primary tumorigenesis; (ii) intrinsic and extrinsic cancer cell programs associated with malignant traits; (iii) the intra-tumoral migration patterns of cancer cells and the dynamic roles played by the Rho/Rac GTPases and epithelial-mesenchymal transitions in this process; and (iv) the genetic strategies used by metastatic cancer cells to promote intra-tumoral cell migration and their subsequent escape to peripheral tissues. Finally, the therapeutic and diagnostic relevance of this information will be discussed, as well as potential future developments. Copyright © 2012 WILEY Periodicals, Inc.

  14. A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition

    PubMed Central

    Xu, Wenting; Yang, Zhen; Lu, Nonghua

    2015-01-01

    Tumor metastasis is not only a sign of disease severity but also a major factor causing treatment failure and cancer-related death. Therefore, studies on the molecular mechanisms of tumor metastasis are critical for the development of treatments and for the improvement of survival. The epithelial-mesenchymal transition (EMT) is an orderly, polygenic biological process that plays an important role in tumor cell invasion, metastasis and chemoresistance. The complex, multi-step process of EMT involves multiple regulatory mechanisms. Specifically, the PI3K/Akt signaling pathway can affect the EMT in a variety of ways to influence tumor aggressiveness. A better understanding of the regulatory mechanisms related to the EMT can provide a theoretical basis for the early prediction of tumor progression as well as targeted therapy. PMID:26241004

  15. Interleukin-23 promotes the epithelial-mesenchymal transition of oesophageal carcinoma cells via the Wnt/β-catenin pathway.

    PubMed

    Chen, Deyu; Li, Wei; Liu, Shenzha; Su, Yuting; Han, Guohu; Xu, Chenchen; Liu, Hongli; Zheng, Tingting; Zhou, Yuepeng; Mao, Chaoming

    2015-02-27

    As the eighth most common malignant tumour worldwide, oesophageal cancer (OC) is often diagnosed during the metastasis of its advanced stage. Interleukin (IL)-23 is an immunomodulatory cytokine that has recently been identified as a cancer-associated factor. However, the role of IL-23 in the evolution of OC remains unclear. In the present study, we found that IL-23 was significantly expressed in the tumours of OC patients suffering metastasis and demonstrated that IL-23 contributed to epithelial-mesenchymal transition (EMT) through the Wnt/β-catenin pathway, promoting the migration and invasion of OC cells. In conclusion, IL-23 plays a pivotal role in the development of OC via EMT.

  16. Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton.

    PubMed

    Wicki, Andreas; Lehembre, François; Wick, Nikolaus; Hantusch, Brigitte; Kerjaschki, Dontscho; Christofori, Gerhard

    2006-04-01

    The expression of podoplanin, a small mucin-like protein, is upregulated in the invasive front of a number of human carcinomas. We have investigated podoplanin function in cultured human breast cancer cells, in a mouse model of pancreatic beta cell carcinogenesis, and in human cancer biopsies. Our results indicate that podoplanin promotes tumor cell invasion in vitro and in vivo. Notably, the expression and subcellular localization of epithelial markers are unaltered, and mesenchymal markers are not induced in invasive podoplanin-expressing tumor cells. Rather, podoplanin induces collective cell migration by filopodia formation via the downregulation of the activities of small Rho family GTPases. In conclusion, podoplanin induces an alternative pathway of tumor cell invasion in the absence of epithelial-mesenchymal transition (EMT).

  17. G15 sensitizes epithelial breast cancer cells to doxorubicin by preventing epithelial-mesenchymal transition through inhibition of GPR30

    PubMed Central

    Liu, Yu; Du, Fei-Ya; Chen, Wei; Fu, Pei-Fen; Yao, Min-Ya; Zheng, Shu-Sen

    2015-01-01

    Resistance to single or multiple chemotherapeutic drugs is a major obstacle in breast cancer therapy. Recent studies have suggested that GPR30 is implicated in mediating cancer cell proliferation. The aim of this study was to examine the anti-tumor effects of the GPR30 antagonist G15 in breast cancer. We found that low concentrations of G15 had little effect on breast cancer cell viability, but could enhance doxorubicin sensitivity in MDA-MB-231 and MCF-7 cells with epithelial phenotypes. In addition, G15 prevented epithelial breast cancer cells undergoing epithelial-mesenchymal transition (EMT) after doxorubicin induction. Moreover, downregulation of GPR30 suppressed the EMT in breast cancer cells. These results support that G15 enhanced doxorubicin sensitivity and prevented the EMT in epithelial breast cancer cells by inhibiting GPR30 expression. PMID:26175858

  18. A link between lipid metabolism and epithelial-mesenchymal transition provides a target for colon cancer therapy.

    PubMed

    Sánchez-Martínez, Ruth; Cruz-Gil, Silvia; Gómez de Cedrón, Marta; Álvarez-Fernández, Mónica; Vargas, Teodoro; Molina, Susana; García, Belén; Herranz, Jesús; Moreno-Rubio, Juan; Reglero, Guillermo; Pérez-Moreno, Mirna; Feliu, Jaime; Malumbres, Marcos; Ramírez de Molina, Ana

    2015-11-17

    The alterations in carbohydrate metabolism that fuel tumor growth have been extensively studied. However, other metabolic pathways involved in malignant progression, demand further understanding. Here we describe a metabolic acyl-CoA synthetase/stearoyl-CoA desaturase ACSL/SCD network causing an epithelial-mesenchymal transition (EMT) program that promotes migration and invasion of colon cancer cells. The mesenchymal phenotype produced upon overexpression of these enzymes is reverted through reactivation of AMPK signaling. Furthermore, this network expression correlates with poorer clinical outcome of stage-II colon cancer patients. Finally, combined treatment with chemical inhibitors of ACSL/SCD selectively decreases cancer cell viability without reducing normal cells viability. Thus, ACSL/SCD network stimulates colon cancer progression through conferring increased energetic capacity and invasive and migratory properties to cancer cells, and might represent a new therapeutic opportunity for colon cancer treatment.

  19. NEDD9 may regulate hepatocellular carcinoma cell metastasis by promoting epithelial-mesenchymal-transition and stemness via repressing Smad7

    PubMed Central

    Li, Xiao; Zhu, Shaojun; Yue, Shuqiang

    2017-01-01

    Overexpression of neural precursor cell expressed, developmentally downregulated 9 (NEDD9) is a prognostic marker of many cancers, including hepatocellular carcinoma (HCC). However, the functions and mechanisms of NEDD9 are unclear. We found that upregulation of NEDD9 promoted migration, invasion and cell-to-extracellular matrix adhesion of HCC cells. NEDD9 also induced the epithelial-mesenchymal transition (EMT) and expression of matrix metalloprotein 2 (MMP2). Increased aldehyde dehydrogenase (ALDH) activity and CD133-positive cells were observed in HCC cells with high expression of NEDD9, corresponding to greater sphere formation in cancer stem cells (CSCs). NEDD9 deregulated Smad7 expression to inhibit Smad signaling and binding to the FAK-Src-Crk complex. We propose that this is the mechanism by which NEDD9 induced CSC properties. PMID:27974675

  20. CRH suppressed TGFβ1-induced Epithelial-Mesenchymal Transition via induction of E-cadherin in breast cancer cells.

    PubMed

    Jin, Lai; Chen, Jiandong; Li, Li; Li, Chuanhua; Chen, Cheng; Li, Shengnan

    2014-04-01

    Since its discovery in biopsies from breast cancer patients, the effect of corticotropin-releasing hormone (CRH) on carcinoma progression is still unclear. Transforming growth factorβ1 (TGFβ1) promotes Epithelial-Mesenchymal Transition (EMT) and induces Snail1 and Twist1 expressions. Loss of epithelial cadherin (E-cadherin) mainly repressed by Snail1 and Twist1, has been considered as hallmark of Epithelial-Mesenchymal Transition (EMT). Two breast cancer cell lines, MCF-7 and MDA-MB-231 were used to investigate the effect of CRH on TGFβ1-induced EMT by transwell chamber. And HEK293 cells were transiently transfected with CRHR1 or CRHR2 to explore the definite effects of CRH receptor. We reported that CRH inhibited migration of human breast cancer cells through downregulation of Snail1 and Twist1, and subsequent upregulation of E-cadherin. CRH inhibited TGFβ1-mediated migration of MCF-7 via both CRHR1 and CRHR2 while this inhibition in MDA-MB-231 was mainly via CRHR2. Ectopic re-expression of CRHR1 or CRHR2 respectively in HEK293 cells increased E-cadherin expression after CRH stimulation. Furthermore, CRH repressed expression of mesenchymal marker, N-cadherin and induced expression of Occludin, inhibiting EMT in MCF-7 & MDA-MB-231. Our results suggest that CRH may function as a tumor suppressor, at least partly by regulating TGFβ1-mediated EMT. These results may contribute to uncovering the effect of CRH in breast tumorigenesis and progression.

  1. [Bcl-2 associated athanogene 3 affects the epithelial-mesenchymal transition in human cervical cancer].

    PubMed

    Wei, L; Qin, X P; Zhao, X X; Wang, W

    2017-08-25

    Objective: To investigate the expression of Bcl-2 associated athanogene 3 (BAG3) in cervical cancer tissues and cells and its role in epithelial mesenchymal transition (EMT) of cervical cancer. Methods: (1) Cervical cancer samples were collected from September 2015 to March 2017 in the Qilu Hospital of Shandong University and Shangdong Provincial Hospital. While, 50 normal tissues were collected from August 2015 to March 2017 in the Dezhou Municiple Hospital, which were obtained from patients with uterine myoma underwent hysterectomy and patients with cervical biopsy. Reverse transcription (RT)-PCR and western blot were used to detect the expression of BAG3 mRNA and protein, and their clinical significances were analyzed. (2) The expression of BAG3 mRNA and protein was detected using RT-PCR and western blot method in HeLa and SiHa cell lines and normal cervical epithelial cells. The experiment was divided into two groups, BAG3 small interfering RNA transfected group (si-BAG3) and the control group transfected with small interfering RNA (siRNA). Cell counting kit 8 (CCK-8) analysis was used to detect cell proliferation of two groups. Wound-healing and transwell assay were used to detect the migration and invasion ability of HeLa and SiHa cells. The xenograft model of cervical cancer in nude mice was used to observe the effect of BAG3 on tumor xenografts and the tumor-related biomarkers were tested by western blot. Results: (1) The expression levels of BAG3 mRNA and protein in cervical carcinoma tissues were 1.20±0.15 and 1.10±0.16, which were significantly higher than that in normal cervical tissue, 0.23±0.04 and 0.29±0.03 (both P<0.01). The results showed that the expression levels of BAG3 mRNA and protein were significantly correlated with cervical carcinoma staging and lymph node metastasis (P<0.05).However, its expression was not correlated with the patient's age, pathological grade, and diameter of tumor (all P>0.05). (2) Compared with normal cervical

  2. Hypoxia-inducible factor-1alpha suppresses squamous carcinogenic progression and epithelial-mesenchymal transition.

    PubMed

    Scortegagna, Marzia; Martin, Rebecca J; Kladney, Raleigh D; Neumann, Robert G; Arbeit, Jeffrey M

    2009-03-15

    Hypoxia-inducible factor-1 (HIF-1) is a known cancer progression factor, promoting growth, spread, and metastasis. However, in selected contexts, HIF-1 is a tumor suppressor coordinating hypoxic cell cycle suppression and apoptosis. Prior studies focused on HIF-1 function in established malignancy; however, little is known about its role during the entire process of carcinogenesis from neoplasia induction to malignancy. Here, we tested HIF-1 gain of function during multistage murine skin chemical carcinogenesis in K14-HIF-1alpha(Pro402A564G) (K14-HIF-1alphaDPM) transgenic mice. Transgenic papillomas appeared earlier and were more numerous (6 +/- 3 transgenic versus 2 +/- 1.5 nontransgenic papillomas per mouse), yet they were more differentiated, their proliferation was lower, and their malignant conversion was profoundly inhibited (7% in transgenic versus 40% in nontransgenic mice). Moreover, transgenic cancers maintained squamous differentiation whereas epithelial-mesenchymal transformation was frequent in nontransgenic malignancies. Transgenic basal keratinocytes up-regulated the HIF-1 target N-myc downstream regulated gene-1, a known tumor suppressor gene in human malignancy, and its expression was maintained in transgenic papillomas and cancer. We also discovered a novel HIF-1 target gene, selenium binding protein-1 (Selenbp1), a gene of unknown function whose expression is lost in human cancer. Thus, HIF-1 can function as a tumor suppressor through transactivation of genes that are themselves targets for negative selection in human cancers.

  3. Upregulation of H19 indicates a poor prognosis in gallbladder carcinoma and promotes epithelial-mesenchymal transition

    PubMed Central

    Wang, Shou-Hua; Wu, Xiao-Cai; Zhang, Ming-Di; Weng, Ming-Zhe; Zhou, Di; Quan, Zhi-Wei

    2016-01-01

    The imprinted oncofetal long non-coding RNA H19 has been reported to be involved in many kinds of human cancers. However, whether lncRNA H19 implicate in oncogenesis and cancer progression in gallbladder cancer remain largely unknown. In the present study, compared with adjacent normal tissues, the level of H19 was significantly upregulated in gallbladder cancer tissues and was positively associated with lymphatic metastasis and tumor size. The overall survival is shorter in those who had higher H19 expression among GBC patients. In vitro, both TGF-β1 and IL-6 treatment induced upregulation of H19, downregulated the protein level of E-cadherin while increased Vimentin, indicating an epithelial-mesenchymal transition (EMT) phenotype in GBC. The overexpression of H19 in GBC cells enhanced tumor invasion and promoted EMT by upregulated transcription factor Twist1. On the contrary, Loss of function studies indicated that H19 interference in GBC suppressed tumor cell invasion and promoted mesenchymal-epithelial transition (MET) via suppressing Twist expression. In vivo, the volume of the tumors in H19-inteference group was significantly decreased compared to those in the control group of nude mice. Both western-blot and immunohistochemistry confirmed that a MET phenotype existed in the H19 interference group when compared to control group. These results defined H19 as a novel prognostic factor for GBC, and indicated that it might play important regulatory roles in the EMT process. PMID:27073719

  4. SIRT1 promotes epithelial-mesenchymal transition and metastasis in colorectal cancer by regulating Fra-1 expression.

    PubMed

    Cheng, Feifei; Su, Li; Yao, Chao; Liu, Limei; Shen, Junjie; Liu, Chungang; Chen, Xuejiao; Luo, Yongli; Jiang, Lupin; Shan, Juanjuan; Chen, Jun; Zhu, Wei; Shao, Jimin; Qian, Cheng

    2016-06-01

    Understanding molecular mechanisms of colorectal cancer (CRC) metastasis is urgently required for targeted therapy and prognosis of metastatic CRC. In this study, we explored potential effects of silent mating type information regulation 2 homolog 1 (SIRT1) on CRC metastasis. Our data showed that ectopic expression of SIRT1 markedly increased the migration and invasion of CRC cells. In contrast, silencing SIRT1 repressed this behavior in aggressive CRC cells. Tumor xenograft experiments revealed that knockdown of SIRT1 impaired CRC metastasis in vivo. Silencing SIRT1 in CRC cells induced mesenchymal-epithelial transition (MET), which is the reverse process of epithelial-mesenchymal transition (EMT) and characterized by a gain of epithelial and loss of mesenchymal markers. We provided a mechanistic insight toward regulation of Fra-1 by SIRT1 and demonstrated a direct link between the SIRT1-Fra-1 axis and EMT. Moreover, SIRT1 expression correlated positively with Fra-1 expression, metastasis and overall survival in patients with CRC. Taken together, our data provide a novel mechanistic role of SIRT1 in CRC metastasis, suggesting that SIRT1 may serve as a potential therapeutic target for metastatic CRC.

  5. Low doses ionizing radiation enhances the invasiveness of breast cancer cells by inducing epithelial-mesenchymal transition

    SciTech Connect

    Zhang, Xin; Li, Xiaoyan; Zhang, Ning; Yang, Qifeng; Moran, Meena S.

    2011-08-19

    Highlights: {yields} Low doses ionizing irradiation would enhance the invasiveness of breast cancer cells by inducing EMT. {yields} Low doses ionizing radiation induced morphologic changes in breast cancer cells. {yields} Low doses ionizing radiation led to upregulation of mesenchymal markers and down-regulation of epithelial markers. {yields} Low doses ionizing radiation increased migration and invasion of breast cancer cells. -- Abstract: Epithelial-mesenchymal transition (EMT) is a process cellular morphologic and molecular alterations facilitate cell invasion. We hypothesized that low dose ionizing irradiation (LDIR) enhances the invasiveness of breast cancer cells by inducing EMT. The effects of LDIR on cellular morphology and the EMT markers of MCF-7 breast cancer cells were analyzed by western blot/RT-PCR and migration/invasion was examined using the transwell assay. We found that LDIR led to the phenotypic changes of EMT in MCF-7 cells and down-regulation of epithelial differentiation markers and transcriptional induction of mesenchymal markers. Furthermore, the radiated cells demonstrated enhanced migration/invasion MCF-7 cells compared with non-radiated cells. In summary, LDIR promotes the invasiveness of breast cancer cells through epithelial to mesenchymal transition. These findings may ultimately provide a new targeted approach for improving the therapeutic effectiveness of radiation in breast cancer.

  6. Overexpression of RACK1 Promotes Metastasis by Enhancing Epithelial-Mesenchymal Transition and Predicts Poor Prognosis in Human Glioma

    PubMed Central

    Lv, Qiao-Li; Huang, Yuan-Tao; Wang, Gui-Hua; Liu, Yan-Ling; Huang, Jin; Qu, Qiang; Sun, Bao; Hu, Lei; Cheng, Lin; Chen, Shu-Hui; Zhou, Hong-Hao

    2016-01-01

    Emerging studies show that dysregulation of the receptor of activated protein kinase C1 (RACK1) plays a crucial role in tumorigenesis and progression of various cancers. However, the biological function and underlying mechanism of RACK1 in glioma remains poorly defined. Here, we found that RACK1 was significantly up-regulated in glioma tissues compared with normal brain tissues, being closely related to clinical stage of glioma both in mRNA and protein levels. Moreover, Kaplan-Meier analysis demonstrated that patients with high RACK1 expression had a poor prognosis (p = 0.0062, HR = 1.898, 95% CI: 1.225–3.203). In vitro functional assays indicated that silencing of RACK1 could dramatically promote apoptosis and inhibit cell proliferation, migration, and invasion of glioma cells. More importantly, knockdown of RACK1 led to a vast accumulation of cells in G0/G1 phase and their reduced proportions at the S phase by suppressing the expression of G1/S transition key regulators Cyclin D1 and CDK6. Additionally, this forced down-regulation of RACK1 significantly suppressed migration and invasion via inhibiting the epithelial-mesenchymal transition (EMT) markers, such as MMP2, MMP9, ZEB1, N-Cadherin, and Integrin-β1. Collectively, our study revealed that RACK1 might act as a valuable prognostic biomarker and potential therapeutic target for glioma. PMID:27763568

  7. Tetraspanin TM4SF5 mediates loss of contact inhibition through epithelial-mesenchymal transition in human hepatocarcinoma

    PubMed Central

    Lee, Sin-Ae; Lee, Sung-Yul; Cho, Ik-Hyun; Oh, Min-A; Kang, Eun-Sil; Kim, Yong-Bae; Seo, Woo Duck; Choi, Suyong; Nam, Ju-Ock; Tamamori-Adachi, Mimi; Kitajima, Shigetaka; Ye, Sang-Kyu; Kim, Semi; Hwang, Yoon-Jin; Kim, In-San; Park, Ki Hun; Lee, Jung Weon

    2008-01-01

    The growth of normal cells is arrested when they come in contact with each other, a process known as contact inhibition. Contact inhibition is lost during tumorigenesis, resulting in uncontrolled cell growth. Here, we investigated the role of the tetraspanin transmembrane 4 superfamily member 5 (TM4SF5) in contact inhibition and tumorigenesis. We found that TM4SF5 was overexpressed in human hepatocarcinoma tissue. TM4SF5 expression in clinical samples and in human hepatocellular carcinoma cell lines correlated with enhanced p27Kip1 expression and cytosolic stabilization as well as morphological elongation mediated by RhoA inactivation. These TM4SF5-mediated effects resulted in epithelial-mesenchymal transition (EMT) via loss of E-cadherin expression. The consequence of this was aberrant cell growth, as assessed by S-phase transition in confluent conditions, anchorage-independent growth, and tumor formation in nude mice. The TM4SF5-mediated effects were abolished by suppressing the expression of either TM4SF5 or cytosolic p27Kip1, as well as by reconstituting the expression of E-cadherin. Our observations have revealed a role for TM4SF5 in causing uncontrolled growth of human hepatocarcinoma cells through EMT. PMID:18357344

  8. Evidence for circulating cancer stem-like cells and epithelial-mesenchymal transition phenotype in the pleurospheres derived from lung adenocarcinoma using liquid biopsy.

    PubMed

    Mirza, Sheefa; Jain, Nayan; Rawal, Rakesh

    2017-03-01

    Lung cancer stem cells are supposed to be the main drivers of tumor initiation, maintenance, drug resistance, and relapse of the disease. Hence, identification of the cellular and molecular aspects of these cells is a prerequisite for targeted therapy of lung cancer. Currently, analysis of circulating tumor cells has the potential to become the main diagnostic technique to monitor disease progression or therapeutic response as it is non-invasive. However, accurate detection of circulating tumor cells has remained a challenge, as epithelial cell markers used so far are not always trustworthy for detecting circulating tumor cells, especially during epithelial-mesenchymal transition. As cancer stem cells are the only culprit to initiate metastatic tumors, our aim was to isolate and characterize circulating tumor stem cells rather than circulating tumor cells from the peripheral blood of NSCLC adenocarcinoma as limited data are available addressing the gene expression profiling of lung cancer stem cells. Here, we reveal that CD44(+)/CD24(-) population in circulation not only exhibit stem cell-related genes but also possess epithelial-mesenchymal transition characteristics. In conclusion, the use of one or more cancer stem cell markers along with epithelial, mesenchymal and epithelial mesenchymal transition markers will prospectively provide the most precise assessment of the threat for recurrence and metastatic disease and has a great potential for forthcoming applications in harvesting circulating tumor stem cells and their downstream applications. Our results will aid in developing diagnostic and prognostic modalities and personalized treatment regimens like dendritic cell-based immunotherapy that can be utilized for targeting and eliminating circulating tumor stem cells, to significantly reduce the possibility of relapse and improve clinical outcomes.

  9. Downregulation of FBP1 Promotes Tumor Metastasis and Indicates Poor Prognosis in Gastric Cancer via Regulating Epithelial-Mesenchymal Transition.

    PubMed

    Li, Jing; Wang, Ying; Li, Qing-Guo; Xue, Jin-Jun; Wang, Zhu; Yuan, Xin; Tong, Jian-Dong; Xu, Li-Chun

    2016-01-01

    Recent studies indicated that some glycolytic enzymes are complicated, multifaceted proteins rather than simple components of the glycolytic pathway. FBP1 plays a vital role in glucose metabolism, but its role in gastric cancer tumorigenesis and metastasis has not been fully understood. The prognostic value of FBP1 was first studied in The Cancer Genome Atlas (TCGA) database and validated in in-house database. The effect of FBP1 on cell proliferation and metastasis was examined in vitro. Nonparametric test and Log-rank test were used to evaluate the clinical significance of FBP1 expression. In the TCGA cohort, FBP1 mRNA level were shown to be predictive of overall survival in gastric cancer (P = 0.029). In the validation cohort, FBP1 expression were inversely correlated with advanced N stage (P = 0.021) and lymphovascular invasion (P = 0.011). Multivariate Cox regression analysis demonstrated that FBP1 was an independent predictor for both overall survival (P = 0.004) and disease free survival (P<0.001). Functional studies demonstrated that ectopic FBP1 expression inhibited proliferation and invasion in gastric cancer cells, while silencing FBP1 expression had opposite effects (P<0.05). Mechanically, FBP1 serves as a tumor suppressor by inhibiting epithelial-mesenchymal transition (EMT). Downregulation of FBP1 promotes gastric cancer metastasis by facilitating EMT and acts as a potential prognostic factor and therapeutic target in gastric cancer.

  10. Zebrafish keratocyte explant cultures as a wound healing model system: differential gene expression & morphological changes support epithelial-mesenchymal transition.

    PubMed

    McDonald, Timothy M; Pascual, Agnes S; Uppalapati, Chandana K; Cooper, Kimbal E; Leyva, Kathryn J; Hull, Elizabeth E

    2013-07-15

    The control of collective cell migration of zebrafish keratocyte sheets in explant culture is of interest for cell migration and epithelial wound healing and depends on the gene expression profile. In a zebrafish genome array, ∼17.5% of the probe sets were differentially expressed greater than two-fold (p≤0.003) between 1 and 7 days of explant culture. Among the differentially expressed genes were a variety of wound healing-related genes and many of the biomarkers for epithelial-mesenchymal transition (EMT), including a switch from keratin and E-cadherin to vimentin and N-cadherin expression and several EMT-related transcription factors were found to be differentially expressed. Supporting evidence for EMT is seen in both morphological change and rearrangement of the actin cytoskeleton and in expression of cadherins during explant culture with a visible disassembly of the cell sheet. TGFβ1 and TNFα expression were analyzed by qPCR at various time points and peak differential expression of both cytokines occurred at 3 days, indicating that the EMT process is ongoing under conditions routinely used in the study of fish keratocyte motility. These data establish that an EMT process is occurring during zebrafish keratocyte explant culture and support the use of this system as a wound healing model. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Tead2 expression levels control the subcellular distribution of Yap and Taz, zyxin expression and epithelial-mesenchymal transition.

    PubMed

    Diepenbruck, Maren; Waldmeier, Lorenz; Ivanek, Robert; Berninger, Philipp; Arnold, Phil; van Nimwegen, Erik; Christofori, Gerhard

    2014-04-01

    The cellular changes during an epithelial-mesenchymal transition (EMT) largely rely on global changes in gene expression orchestrated by transcription factors. Tead transcription factors and their transcriptional co-activators Yap and Taz have been previously implicated in promoting an EMT; however, their direct transcriptional target genes and their functional role during EMT have remained elusive. We have uncovered a previously unanticipated role of the transcription factor Tead2 during EMT. During EMT in mammary gland epithelial cells and breast cancer cells, levels of Tead2 increase in the nucleus of cells, thereby directing a predominant nuclear localization of its co-factors Yap and Taz via the formation of Tead2-Yap-Taz complexes. Genome-wide chromatin immunoprecipitation and next generation sequencing in combination with gene expression profiling revealed the transcriptional targets of Tead2 during EMT. Among these, zyxin contributes to the migratory and invasive phenotype evoked by Tead2. The results demonstrate that Tead transcription factors are crucial regulators of the cellular distribution of Yap and Taz, and together they control the expression of genes critical for EMT and metastasis.

  12. Expression of epithelial-mesenchymal transition-related genes increases with copy number in multiple cancer types

    PubMed Central

    Qu, Hong

    2016-01-01

    Epithelial-mesenchymal transition (EMT) is a cellular process through which epithelial cells transform into mesenchymal cells. EMT-implicated genes initiate and promote cancer metastasis because mesenchymal cells have greater invasive and migration capacities than epithelial cells. In this pan-cancer analysis, we explored the relationship between gene expression changes and copy number variations (CNVs) for EMT-implicated genes. Based on curated 377 EMT-implicated genes from the literature, we identified 212 EMT-implicated genes associated with more frequent copy number gains (CNGs) than copy number losses (CNLs) using data from The Cancer Genome Atlas (TCGA). Then by correlating these CNV data with TCGA gene expression data, we identified 71 EMT-implicated genes with concordant CNGs and gene up-regulation in 20 or more tumor samples. Of those, 14 exhibited such concordance in over 110 tumor samples. These 14 genes were predominantly apoptosis regulators, which may implies that apoptosis is critical during EMT. Moreover, the 71 genes with concordant CNG and up-regulation were largely involved in cellular functions such as phosphorylation cascade signaling. This is the first observation of concordance between CNG and up-regulation of specific genes in hundreds of samples, which may indicate that somatic CNGs activate gene expression by increasing the gene dosage. PMID:27029057

  13. Galangin inhibits cell invasion by suppressing the epithelial-mesenchymal transition and inducing apoptosis in renal cell carcinoma.

    PubMed

    Cao, Jingyi; Wang, Hainan; Chen, Feifei; Fang, Jianzheng; Xu, Aiming; Xi, Wei; Zhang, Shengli; Wu, Gang; Wang, Zengjun

    2016-05-01

    Galangin, a flavonoid extracted from the root of the Alpinia officinarum Hence, has been shown to have anticancer properties against several types of cancer cells. However, the influence of galangin on human renal cancer cells remains to be elucidated. In the present study, proliferation of 786‑0 and Caki‑1 cells was suppressed following exposure to various doses of galangin. Cell invasion and wound healing assays were used to observe the effect of galangin on invasion and migration. The results demonstrated that Galangin inhibited cell invasion by suppressing the epithelial mesenchymal transition (EMT), with an increase in the expression of E‑cadherin and decreased expression levels of N‑cadherin and vimentin. The apoptosis induced by galangin was analyzed by flow cytometry. The results revealed that galangin induced apoptosis in a dose‑dependent manner. The accumulation of reactive oxygen species (ROS) is an important contributing factor for the apoptosis of various types of cancer cell. The dichlorofluorescein-diacetate method was used to determine the level of ROS. Galangin induced the accumulation of intracellular ROS and malondialdehyde, and decreased the activities of total antioxidant and superoxide dismutase in renal cell carcinoma cells. Galangin exerted an antiproliferative effect and inhibited renal cell carcinoma invasion by suppressing the EMT. This treatment also induced apoptosis, accompanied by the production of ROS. Therefore, the present data suggested that galangin may have beneficial effects by preventing renal cell carcinoma growth, inhibiting cell invasion via the EMT and inducing cell apoptosis.

  14. Galangin inhibits cell invasion by suppressing the epithelial-mesenchymal transition and inducing apoptosis in renal cell carcinoma

    PubMed Central

    CAO, JINGYI; WANG, HAINAN; CHEN, FEIFEI; FANG, JIANZHENG; XU, AIMING; XI, WEI; ZHANG, SHENGLI; WU, GANG; WANG, ZENGJUN

    2016-01-01

    Galangin, a flavonoid extracted from the root of the Alpinia officinarum Hence, has been shown to have anticancer properties against several types of cancer cells. However, the influence of galangin on human renal cancer cells remains to be elucidated. In the present study, proliferation of 786-0 and Caki-1 cells was suppressed following exposure to various doses of galangin. Cell invasion and wound healing assays were used to observe the effect of galangin on invasion and migration. The results demonstrated that Galangin inhibited cell invasion by suppressing the epithelial mesenchymal transition (EMT), with an increase in the expression of E-cadherin and decreased expression levels of N-cadherin and vimentin. The apoptosis induced by galangin was analyzed by flow cytometry. The results revealed that galangin induced apoptosis in a dose-dependent manner. The accumulation of reactive oxygen species (ROS) is an important contributing factor for the apoptosis of various types of cancer cell. The dichlorofluorescein-diacetate method was used to determine the level of ROS. Galangin induced the accumulation of intracellular ROS and malondialdehyde, and decreased the activities of total antioxidant and superoxide dismutase in renal cell carcinoma cells. Galangin exerted an antiproliferative effect and inhibited renal cell carcinoma invasion by suppressing the EMT. This treatment also induced apoptosis, accompanied by the production of ROS. Therefore, the present data suggested that galangin may have beneficial effects by preventing renal cell carcinoma growth, inhibiting cell invasion via the EMT and inducing cell apoptosis. PMID:27035542

  15. MDA-9/Syntenin-Slug transcriptional complex promote epithelial-mesenchymal transition and invasion/metastasis in lung adenocarcinoma

    PubMed Central

    Wang, Lu-Kai; Pan, Szu-Hua; Chang, Yih-Leong; Hung, Pei-Fang; Kao, Shih-Han; Wang, Wen-Lung; Lin, Ching-Wen; Yang, Shuenn-Chen; Liang, Chen-Hsien; Wu, Chen-Tu; Hsiao, Tzu-Hung

    2016-01-01

    Melanoma differentiation-associated gene-9 (MDA-9)/Syntenin is a novel therapeutic target because it plays critical roles in cancer progression and exosome biogenesis. Here we show that Slug, a key epithelial-mesenchymal-transition (EMT) regulator, is a MDA-9/Syntenin downstream target. Mitogen EGF stimulation increases Slug expression and MDA-9/Syntenin nuclear translocation. MDA-9/Syntenin uses its PDZ1 domain to bind with Slug, and this interaction further leads to HDAC1 recruitment, up-regulation of Slug transcriptional repressor activity, enhanced Slug-mediated EMT, and promotion of cancer invasion and metastasis. The PDZ domains and nuclear localization of MDA-9/Syntenin are both required for promoting Slug-mediated cancer invasion. Clinically, patients with high MDA-9/Syntenin and high Slug expressions were associated with poor overall survival compared to those with low expression in lung adenocarcinomas. Our findings provide evidence that MDA-9/Syntenin acts as a pivotal adaptor of Slug and it transcriptionally enhances Slug-mediated EMT to promote cancer invasion and metastasis. PMID:26561205

  16. The expression of SIRT1 regulates the metastaticplasticity of chondrosarcoma cells by inducing epithelial-mesenchymal transition

    PubMed Central

    Feng, Helin; Wang, Jin; Xu, Jianfa; Xie, Congcong; Gao, Fulu; Li, Zhiyong

    2017-01-01

    SIRT1 belongs to the mammalian sirtuin family and plays an important role in deacetylating histone and nonhistone proteins. It is reported that SIRT1 is associated with tumor metastasis in several kinds of tumors. However, the effect of SIRT1 on the metastasis of chondrosarcoma cells is still unknown. In this study, we demonstrated that up and down-regulation of SIRT1 expression could significantly change the invasive and metastatic potential in chondrosarcoma cell line. Besides that, the result from the nude mice confirmed the effect of SIRT1 on metastasis of chondrosarcoma cells. Furthermore, we also found that SIRT1 effectively enhanced the metastasis by inducing epithelial-mesenchymal transition (EMT) in chondrosarcoma cells. Inhibition the expression of SIRT1 could block the incidence of metastasis and EMT in chondrosarcoma cells. In addition, we also observed that SIRT1 could enhance the expression of Twist which is a key transcriptional factor of EMT. A clinicopathological analysis showed that SIRT1 expression was significantly correlated with the poor prognosis of pelvis chondrosarcoma. Kaplan-Meier survival curves revealed that positive SIRT1 expression was associated with poor prognosis in patients with pelvis chondrosarcoma. Taken together, these results indicate that SIRT1 may promote the metastasis of chondrosarcoma by inducing EMT and can be a potential molecular target for chondrosarcoma therapy. PMID:28112277

  17. Kukoamine A inhibits human glioblastoma cell growth and migration through apoptosis induction and epithelial-mesenchymal transition attenuation

    PubMed Central

    Wang, Qiaoping; Li, Haiyan; Sun, Zhen; Dong, Lihua; Gao, Ling; Liu, Chunlan; Wang, Xiujie

    2016-01-01

    Cortex lycii radicis is the dried root bark of Lycium chinense, a traditional Chinese herb used in multiple ailments. The crude extract of Cortex lycii radicis has growth inhibition effect on GBM cells. Kukoamine A (KuA) is a spermine alkaloid derived from it. KuA possesses antioxidant, anti-inflammatory activities, but its anticancer activity is unknown. In this study, the growth and migration inhibition effect of KuA on human GBM cells and the possible mechanism of its activity were investigated. After KuA treatment, proliferation and colony formation of GBM cells were decreased significantly; apoptotic cells were increased; the cell cycle was arrested G0/G1 phase; the migration and invasion were decreased, the growth of tumors initiated from GBM cells was inhibited significantly; the expressions of 5-Lipoxygenase (5-LOX) were decreased, apoptotic proteins, Bax and caspase-3 were increased, and antiapoptotic protein Bcl-2 was decreased significantly; The expressions of CCAAT/enhancer binding protein β (C/EBPβ), N-cadherin, vimentin, twist and snail+slug were decreased significantly, while the expression of E-cadherin was increased significantly in KuA treated GBM cells and tumor tissues. KuA inhibited human glioblastoma cell growth and migration in vitro and in vivo through apoptosis induction and epithelial-mesenchymal transition attenuation by downregulating expressions of 5-LOX and C/EBPβ. PMID:27824118

  18. FCN2 inhibits epithelial-mesenchymal transition-induced metastasis of hepatocellular carcinoma via TGF-β/Smad signaling.

    PubMed

    Yang, Guangchao; Liang, Yingjian; Zheng, Tongsen; Song, Ruipeng; Wang, Jiabei; Shi, Huawen; Sun, Boshi; Xie, Changming; Li, Yuejin; Han, Jihua; Pan, Shangha; Lan, Yaliang; Liu, Xirui; Zhu, Mingxi; Wang, Yan; Liu, Lianxin

    2016-08-10

    Hepatocellular carcinoma (HCC) is currently still a major cause of cancer-related deaths. Identifying early metastatic biomarkers and therapeutic targets for HCC is of great importance. Emerging evidence suggest that epithelial-mesenchymal transitions (EMTs) play important roles in tumor metastasis and recurrence. Understanding molecular mechanisms that regulate the EMT process is crucial for improving HCC. In this study, we find Ficolin-2 (FCN2) plays an essential role in metastasis and EMT of HCC. FCN2 expression is downregulated in HCC cells and tissues. Low level of FCN2 in HCCs is correlated with aggressive metastatic features, and would be a prognostic factor for overall disease-free survival of HCC patients. Ectopic expression of FCN2 markedly inhibits HCC cells migration, invasion as well as EMT in vitro and in vivo. Moreover, TGF-β is found contribute to the function of FCN2 in suppressing metastasis and EMT of HCC. Collectively, our data suggest that FCN2 may have prognostic value in HCC metastasis. Additionally, the FCN2/ TGF-β/EMT axis identified in this study provides novel insight into the mechanisms of HCC metastasis, which may facilitate the development of new therapeutics against HCC.

  19. De-SUMOylation of FOXC2 by SENP3 promotes the epithelial-mesenchymal transition in gastric cancer cells

    PubMed Central

    Wang, Ming; Yu, Ya-nan; Yang, Kai; Chen, Qin; Yu, Bin; Wang, Wei; Li, Qi-wei; Wang, Jian; Hou, Zhao-yuan; Fang, Jing-yuan; Yeh, Edward T.; Yang, Jie; Yi, Jing

    2014-01-01

    The impact of cellular oxidative stress in promoting the epithelial-mesenchymal transition (EMT) has been noticed. Our previous study shows that SENP3, a redox-sensitive SUMO2/3-specific protease, accumulates in a variety of cancers, but whether SENP3 and SUMOylation involve in the regulation of EMT is unclear. The present study uncovers a novel role of SENP3 in promoting the EMT process in gastric cancer via regulating an EMT-inducing transcription factor, forkhead box C2 (FOXC2). We demonstrate that the expression of mesenchymal marker genes and cell migration ability are enhanced in SENP3-overexpressing gastric cancer cells and attenuated in SENP3-knockdown cells. A nude mouse model and a set of patient's specimens suggest the correlation between SENP3 and gastric cancer metastasis. Biochemical assays identify FOXC2 as a substrate of SENP3. Meanwhile N-cadherin is verified as a target gene of FOXC2, which is transcriptionally activated by a SUMO-less FOXC2. Additionally, reactive oxygen species-induced de-SUMOylation of FOXC2 can be blocked by silencing endogenous SENP3. In conclusion, SENP3, which is increased in gastric cancer cells, potentiates the transcriptional activity of FOXC2 through de-SUMOylation, in favor of the induction of specific mesenchymal gene expression in gastric cancer metastasis. PMID:25216525

  20. CCR7 pathway induces epithelial-mesenchymal transition through up-regulation of Snail signaling in gastric cancer.

    PubMed

    Zhang, Jianping; Zhou, Yunzhe; Yang, Yonggang

    2015-02-01

    The chemokine receptor 7 (CCR7) and Snail signaling have been linked to various types of cancers. The associations between these signalings and the epithelial-mesenchymal transition (EMT) are not clear in gastric cancer. Here, the expression of CCR7 and Snail was detected in gastric cancer by immunohistochemistry and Western blot. Meanwhile, gastric cancer cells were subjected to CCL19, si-control, and si-Snail treatment. Cell cycle, migration, and invasion were also analyzed. The expression patterns of CCR7 and Snail were similar in either gastric cancer tissues or cells. The increased expression of CCR7 was closely associated with the increased Snail expression, which both were closely correlated with metastasis, stage and differentiation, and poor prognosis. The increased p-ERK, p-AKT, Snail, and MMP9 expression and the decreased E-cadherin were confirmed in MGC803 cells in a dose-dependent manner in response to CCL19 treatment. However, the blockade of Snail abrogated the up-regulation of MMP9 and down-regulation of E-cadherin. CCR7-induced ERK and PI3K pathway regulated Snail signaling. Besides si-Snail treatment led to MGC803 cell cycle arrest and affected the migration and invasion. In conclusion, our study suggested that CCR7 promotes Snail expression to induce the EMT, resulting in cell cycle progression, migration, and invasion in gastric cancer. CCR7-Snail pathway provided more potential regimens for cancer therapy.

  1. The mitotic checkpoint regulator RAE1 induces aggressive breast cancer cell phenotypes by mediating epithelial-mesenchymal transition.

    PubMed

    Oh, Ji Hoon; Hur, Ho; Lee, Ji-Yeon; Kim, Yeejeong; Seo, Younsoo; Kim, Myoung Hee

    2017-02-09

    The gene RAE1 encodes ribonucleic acid export 1 (RAE1), which is involved in mRNA export and is known to serve as a mitotic checkpoint regulator. In addition, RAE1 haplo-insufficiency leads to chromosome missegregation and early aging-associated phenotypes. In humans, a positive correlation has been found between RAE1 copy number abnormalities and gene amplification in breast cancer cells. However, the precise functional role of RAE1 in breast cancer remains to be determined. An in silico analysis of data retrieved from GENT and cBio-Portal identified RAE1 upregulation in breast cancer tissues relative to normal breast cells. Functional studies of various cell lines showed that RAE1 induced invasive and migratory abilities by regulating epithelial-mesenchymal transition signals. A tissue microarray was constructed to demonstrate the interrelationship between clinicopathological features and RAE1 expression. Immunohistochemistry revealed a positive correlation between RAE1 expression and a high histologic grade. Furthermore, RAE1 overexpression was associated with considerably poorer disease-free survival and distant metastasis-free survival, especially in patients with oestrogen receptor-positive tumours. In summary, RAE1 may be a prognostic marker and therapeutic intervention target in malignant breast cancers.

  2. Long Non-Coding RNAs: Key Regulators of Epithelial-Mesenchymal Transition, Tumour Drug Resistance and Cancer Stem Cells

    PubMed Central

    Heery, Richard; Finn, Stephen P.; Cuffe, Sinead; Gray, Steven G.

    2017-01-01

    Epithelial mesenchymal transition (EMT), the adoption by epithelial cells of a mesenchymal-like phenotype, is a process co-opted by carcinoma cells in order to initiate invasion and metastasis. In addition, it is becoming clear that is instrumental to both the development of drug resistance by tumour cells and in the generation and maintenance of cancer stem cells. EMT is thus a pivotal process during tumour progression and poses a major barrier to the successful treatment of cancer. Non-coding RNAs (ncRNA) often utilize epigenetic programs to regulate both gene expression and chromatin structure. One type of ncRNA, called long non-coding RNAs (lncRNAs), has become increasingly recognized as being both highly dysregulated in cancer and to play a variety of different roles in tumourigenesis. Indeed, over the last few years, lncRNAs have rapidly emerged as key regulators of EMT in cancer. In this review, we discuss the lncRNAs that have been associated with the EMT process in cancer and the variety of molecular mechanisms and signalling pathways through which they regulate EMT, and finally discuss how these EMT-regulating lncRNAs impact on both anti-cancer drug resistance and the cancer stem cell phenotype. PMID:28430163

  3. Polychlorinated biphenyls impair endometrial receptivity in vitro via regulating mir-30d expression and epithelial mesenchymal transition.

    PubMed

    Cai, Jia-Li; Liu, Lan-Lan; Hu, Yuqin; Jiang, Xiao-Ming; Qiu, Hui-Ling; Sha, Ai-Guo; Wang, Chong-Gang; Zuo, Zheng-Hong; Ren, Jian-Zhi

    2016-07-15

    Polychlorinated biphenyls (PCBs) are ubiquitous legacy persistent pollutants and epidemiological data showed that PCB burdens were associated with failed implantation in human. However, the mechanism how PCB exposure affects the embryo implantation is not clear. Using an in vitro model for human embryo implantation employing the human choriocarcinoma cell line JAR and the human endometrial cell line Ishikawa, we have shown that PCB mixture Aroclor 1254 at environmental-relevant concentrations (2.5, 12.5, and 62.5μM) dose-dependently impaired the endometrial receptivity by reducing the adhesion of JAR spheroid attachment and increasing the spheroid outgrowth. The receptive-up-regulated micro-RNA, mir-30d was also down-regulated in endometrial cells by the exposure. Following transient transfection of mir-30d mimic, the disrupted attachment and outgrowth of JAR spheroids was partially restored in the model. By measurement of cadherin switch and vimentin expression, the PCB exposure also activated epithelial mesenchymal transition (EMT) in endometrial cells. In accordance, mir-30d mimic suppressed the EMT markers induced by PCBs. Luciferase reporter assay confirmed that the EMT regulator Snai1 was targeted by mir-30d, and the expression of Snai1 was dose-dependently up-regulated by PCB exposure. Taken together, our study revealed that PCBs may affect the receptivity of endometrial cells by impairing the interaction between receptivity-up-regulated microRNA and EMT process.

  4. Transformation of Mouse Liver Cells by Methylcholanthrene Leads to Phenotypic Changes Associated with Epithelial-mesenchymal Transition

    PubMed Central

    Oh, Jiyun; Kwak, Jae-Hwan; Kwon, Do-young; Kim, A-Young; Oh, Dal-Seok; Je, Nam Kyung

    2014-01-01

    Environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs) have been implicated in cancer development and progression. However, the effects of PAHs on carcinogenesis are still poorly understood. Here, we characterized a mouse cancer cell line BNL 1ME A. 7R.1 (1MEA) derived by transformation of non-tumorigenic liver cell line BNL CL.2 (BNL) using 3-methylcholanthrene (3MC), a carcinogenic PAH. RT-PCR and immunoblot analysis were used to determine the expression level of mRNA and proteins, respectively. To determine functionality, cell motility was assessed in vitro using a transwell migration assay. Both mRNA and protein levels of E-cadherin were significantly decreased in 1MEA cells in comparison with BNL cells. While the expression levels of mesenchymal markers and related transcription factors were enhanced in 1MEA cells, which could lead to increase in cell motility. Indeed, we found that 7-day exposure of BNL cells to 3-MC reduced the level of the adhesion molecule and epithelial marker Ecadherin and increased reciprocally the level of the mesenchymal marker vimentin in a dose-dependent manner. Taken together, these results indicate that the process of epithelial-mesenchymal transition (EMT) may be activated during premalignant transformation induced by 3-MC. A mechanism study to elucidate the relation between 3-MC exposure and EMT is underway in our laboratory. PMID:25584145

  5. Transformation of Mouse Liver Cells by Methylcholanthrene Leads to Phenotypic Changes Associated with Epithelial-mesenchymal Transition.

    PubMed

    Oh, Jiyun; Kwak, Jae-Hwan; Kwon, Do-Young; Kim, A-Young; Oh, Dal-Seok; Je, Nam Kyung; Lee, Jaewon; Jung, Young-Suk

    2014-12-01

    Environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs) have been implicated in cancer development and progression. However, the effects of PAHs on carcinogenesis are still poorly understood. Here, we characterized a mouse cancer cell line BNL 1ME A. 7R.1 (1MEA) derived by transformation of non-tumorigenic liver cell line BNL CL.2 (BNL) using 3-methylcholanthrene (3MC), a carcinogenic PAH. RT-PCR and immunoblot analysis were used to determine the expression level of mRNA and proteins, respectively. To determine functionality, cell motility was assessed in vitro using a transwell migration assay. Both mRNA and protein levels of E-cadherin were significantly decreased in 1MEA cells in comparison with BNL cells. While the expression levels of mesenchymal markers and related transcription factors were enhanced in 1MEA cells, which could lead to increase in cell motility. Indeed, we found that 7-day exposure of BNL cells to 3-MC reduced the level of the adhesion molecule and epithelial marker Ecadherin and increased reciprocally the level of the mesenchymal marker vimentin in a dose-dependent manner. Taken together, these results indicate that the process of epithelial-mesenchymal transition (EMT) may be activated during premalignant transformation induced by 3-MC. A mechanism study to elucidate the relation between 3-MC exposure and EMT is underway in our laboratory.

  6. Metformin inhibits gastric cancer cells metastatic traits through suppression of epithelial-mesenchymal transition in a glucose-independent manner

    PubMed Central

    Valaee, Shiva; Yaghoobi, Mohammad Mehdi

    2017-01-01

    Epithelial-mesenchymal transition (EMT), which is mainly recognized by upregulation of mesenchymal markers and movement of cells, is a critical stage occurred during embryo development and spreading cancerous cells. Metformin is an antidiabetic drug used in treatment of type 2 diabetes. EMT inhibitory effect of metformin has been studied in several cancers; however, it remains unknown in gastric cancer. The aim of the present study was to investigate the metformin effects on inhibition of EMT-related genes as well as migration and invasion of AGS gastric cancer cell line. Moreover, to study the effect of glucose on metformin-mediated EMT inhibition, all experiments were performed in two glucose levels, similar to non-fasting blood sugar (7.8 mM) and hyperglycemic (17.5 mM) conditions. The results showed reduction of mesenchymal markers, including vimentin and β-catenin, and induction of epithelial marker, E-cadherin, by metformin in both glucose concentrations. Furthermore, wound-healing and invasion assays showed a significant decrease in cell migration and invasion after metformin treatment in both glucose levels. In conclusion, our results indicated that metformin strongly inhibited EMT of gastric cancer cells in conditions mimicking normo and hyperglycemic blood sugar. PMID:28334027

  7. A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-β mediated epithelial-mesenchymal transition

    PubMed Central

    Vincent, Theresa; Neve, Etienne P. A.; Johnson, Jill R.; Kukalev, Alexander; Rojo, Federico; Albanell, Joan; Pietras, Kristian; Virtanen, Ismo; Philipson, Lennart; Leopold, Philip L.; Crystal, Ronald G.; de Herreros, Antonio Garcia; Moustakas, Aristidis; Pettersson, Ralf F.; Fuxe, Jonas

    2013-01-01

    Epithelial-mesenchymal transitions (EMT) are essential for organogenesis and triggered in carcinoma progression into an invasive state1. Transforming growth factor-β (TGF-β) cooperates with signalling pathways, such as Ras and Wnt, to induce EMT2-5, but the molecular mechanisms are not clear. Here, we report that SMAD3 and SMAD4 interact and form a complex with SNAIL1, a transcriptional repressor and promoter of EMT6, 7. The SNAIL1-SMAD3/4 complex was targeted to the gene promoters of CAR, a tight junction protein, and E-cadherin during TGF-β-driven EMT in breast epithelial cells. SNAIL1 and SMAD3/4 acted as co-repressors of CAR, occludin, claudin-3 and E-cadherin promoters in transfected cells. Conversely, co-silencing of SNAIL1 and SMAD4 by siRNA inhibited the repression of CAR and occludin during EMT. Moreover, loss of CAR and E-cadherin correlated with nuclear co-expression of SNAIL1 and SMAD3/4 in a mouse model of breast carcinoma and at the invasive fronts of human breast cancer. We propose that activation of a SNAIL1-SMAD3/4 transcriptional complex represents a novel mechanism of gene repression during EMT. PMID:19597490

  8. Reversibility of the Snail-induced epithelial-mesenchymal transition revealed by the Cre-loxP system.

    PubMed

    Ozawa, Masayuki; Kobayashi, Wakako

    2015-03-13

    The epithelial-mesenchymal transition (EMT), a key process in the tumor metastatic cascade, is characterized by the loss of cell-cell junctions and cell polarity, as well as the acquisition of migratory and invasive properties. Snail is an EMT-inducer whose expression in several different epithelial cells, e.g., Madin-Darby canine kidney (MDCK), leads to EMT. To further understand EMT induced by Snail expression, the Cre-loxP site-specific recombination system was used to investigate its reversibility. Transfection of MDCK cells with loxP-flanked Snail (Snail-loxP) resulted in EMT induction, which included the acquisition of a spindle-shaped fibroblastic morphology, the downregulation of epithelial markers, and the upregulation of mesenchymal markers. DNA methylation of the E-cadherin promoter, which often occurs during E-cadherin downregulation, was not observed in Snail+ cells. After Cre-mediated excision of Snail-loxP, the cells reacquired an epithelial morphology, upregulated epithelial markers, and downregulated mesenchymal markers. Thus, EMT induced by Snail expression was reversible.

  9. Methylation decreases the Bin1 tumor suppressor in ESCC and restoration by decitabine inhibits the epithelial mesenchymal transition.

    PubMed

    Wang, Xuexiao; Wang, Jiali; Jia, Yunlong; Wang, Yu; Han, Xiaonan; Duan, Yuqing; Lv, Wei; Ma, Ming; Liu, Lihua

    2017-01-31

    Bridging integrator-1 (Bin1), as a tumor suppressor, is frequently attenuated or even abolished in multiple primary cancers. A reduced expression of Bin1 caused by DNA methylation, has been reported in breast and prostate cancers. However, the methylation status of Bin1 and potent biological functions in esophageal squamous cell carcinoma (ESCC) remain unclear. In a previous study, we showed that the Bin1 expression was low in ESCC tissues. Herein, we further characterized this mechanism, confirming that gene hypermethylation was significantly correlated with the aberrant attenuation of Bin1. In addition, the Bin1 hypermethylation was associated with the poorer clinical parameters and shorter survival times of ESCC patients. Methylation-specific reverse transcription-polymerase chain reaction (MS-RT-PCR) showed that Bin1 was hypermethylated in several ESCC cell lines, which might be the main cause of reduced Bin1 expression. In addition, treatment with the de-methylation agent Decitabine (DAC) could restore Bin1 expression and evidently restrained ESCC cell malignant behaviors, particularly the epithelial mesenchymal transition (EMT) via reactivating the PTEN/AKT signaling pathway to inhibit matrix metalloproteinase (MMP)-2 and MMP-9 expression in vitro and in vivo. In conclusion, these results demonstrated that Bin1 methylation could augment the malignant biological behaviors of ESCC and predict the poor prognosis for ESCC patients, thus indicating the potential clinical application value of DAC-based de-methylation therapy in ESCC.

  10. Emodin ameliorates bleomycin-induced pulmonary fibrosis in rats by suppressing epithelial-mesenchymal transition and fibroblast activation

    PubMed Central

    Guan, Ruijuan; Wang, Xia; Zhao, Xiaomei; Song, Nana; Zhu, Jimin; Wang, Jijiang; Wang, Jin; Xia, Chunmei; Chen, Yonghua; Zhu, Danian; Shen, Linlin

    2016-01-01

    Aberrant activation of TGF-β1 is frequently encountered and promotes epithelial-mesenchymal transition (EMT) and fibroblast activation in pulmonary fibrosis. The present study investigated whether emodin mediates its effect via suppressing TGF-β1-induced EMT and fibroblast activation in bleomycin (BLM)-induced pulmonary fibrosis in rats. Here, we found that emodin induced apoptosis and inhibited cellular proliferation, migration and differentiation in TGF-β1-stimulated human embryonic lung fibroblasts (HELFs). Emodin suppressed TGF-β1-induced EMT in a dose- and time-dependent manner in alveolar epithelial A549 cells. Emodin also inhibited TGF-β1-induced Smad2, Smad3 and Erk1/2 activation, suggesting that Smad2/3 and Erk1/2 inactivation mediated the emodin-induced effects on TGF-β1-induced EMT. Additionally, we provided in vivo evidence suggesting that emodin apparently alleviated BLM-induced pulmonary fibrosis and improved pulmonary function by inhibiting TGF-β1 signaling and subsequently repressing EMT, fibroblast activation and extracellular matrix (ECM) deposition. Taken together, our data suggest that emodin mediates its effects mainly via inhibition of EMT and fibroblast activation and thus has a potential for the treatment of pulmonary fibrosis. PMID:27774992

  11. TGF beta-mediated RhoA expression is necessary for epithelial-mesenchymal transition in the embryonic chick heart.

    PubMed

    Tavares, André Luiz P; Mercado-Pimentel, Melania E; Runyan, Raymond B; Kitten, Gregory T

    2006-06-01

    Endothelia in the atrioventricular canal (AVC) of the embryonic heart undergo an epithelial-mesenchymal transition (EMT) and migrate into the underlying extracellular matrix. We explore here whether RhoA mediates this EMT. RhoA was detected in all cells of the chick heart during the stages studied. Expression was elevated when EMT was actively occurring. Explants treated with C3 exoenzyme in collagen gel cultures showed a significant decrease in mesenchymal cell numbers. siRNA was used to inhibit RhoA mRNA, and both activated endothelial and mesenchymal cells decreased significantly with treatment. Loss of RhoA produced a reduction of RhoB, cyclin-b2, and beta-catenin messages showing that these genes are regulated downstream of RhoA. In contrast, runx-2 was not reduced. Inhibition of TGFbeta3 or TGFbeta2 activity caused a large reduction of RhoA message. These data place RhoA in TGFbeta regulated pathways for both endothelial activation and mesenchymal invasion and demonstrate a functional requirement during EMT.

  12. FGF4 induces epithelial-mesenchymal transition by inducing store-operated calcium entry in lung adenocarcinoma

    PubMed Central

    Qi, Lisha; Song, Wangzhao; Li, Lingmei; Cao, Lu; Yu, Yue; Song, Chunmin; Wang, Yalei; Zhang, Fei; Li, Yang; Zhang, Bin; Cao, Wenfeng

    2016-01-01

    Several fibroblast growth factor (FGF) isoforms act to stimulate epithelial-mesenchymal transition (EMT) during cancer progression. FGF4 and FGF7 are two ligands of FGF receptor 2 (FGFR2). Using two lung adenocarcinoma (ADC) cell lines, A549 and H1299, we showed that FGF4, but not FGF7, altered cell morphology, promoted EMT-associated protein expression, and enhanced cell proliferation, migration/invasion and colony initiation. In addition, FGF4 increased store-operated calcium entry (SOCE) and expression of the calcium signal-associated protein Orai1. The SOCE inhibitor 2,5-di-tert-butylhydroquinone (BHQ) or Orai1 knockdown reversed all of the EMT-promoting effects of FGF4. BHQ also inhibited FGF4-induced EMT in a mouse xenograft model. Finally, 60 human lung ADC samples and 21 sets of matched specimens (primary and metastatic foci in lymph nodes from one patient) were used to confirm the clinicopathologic significance of FGF4 and its correlation with E-cadherin, Vimentin and Orai1 expression. Our study thus shows that FGF4 induces EMT by elevating SOCE in lung ADC. PMID:27677589

  13. Role of Annexin A2 in the EGF-induced epithelial-mesenchymal transition in human CaSki cells.

    PubMed

    Cui, Lei; Song, Jian; Wu, Liting; Cheng, Luhui; Chen, Aijun; Wang, Yanlin; Huang, Yingdi; Huang, Liming

    2017-01-01

    The epidermal growth factor receptor (EGF-R) signaling pathway is thought to have an important role in the development and progression of several carcinomas, as it is associated with cell proliferation, differentiation and migration. Activation of EGF-R signaling regulates epithelial-mesenchymal transition (EMT)-associated invasion and migration in normal and malignant epithelial cells. However, the specific mechanisms have not yet been fully elucidated. The present study utilized wound healing assays, western blotting, flow cytometry and MTT assays to demonstrate that Annexin A2 (ANXA2) is a key regulatory factor in EGF-induced EMT in CaSki cervical cancer cells. Moreover, the increased expression levels of ANXA2 promoted cell viability and migration in human CaSki cells. It was also found that silencing ANXA2 partially reverses EGF-induced EMT and inhibits cell viability and migration in CaSki cells. These findings suggest that ANXA2 is a key regulator of EGF-induced EMT in CaSki cervical cancer cells.

  14. TGF-β signal rewiring sustains epithelial-mesenchymal transition of circulating tumor cells in prostate cancer xenograft hosts

    PubMed Central

    Huang, Guangcun; Osmulski, Pawel A.; Bouamar, Hakim; Mahalingam, Devalingam; Lin, Chun-Lin; Liss, Michael A.; Kumar, Addanki Pratap; Chen, Chun-Liang; Thompson, Ian M.; Sun, Lu-Zhe; Gaczynska, Maria E.; Huang, Tim H.-M.

    2016-01-01

    Activation of TGF-β signaling is known to promote epithelial-mesenchymal transition (EMT) for the development of metastatic castration-resistant prostate cancer (mCRPC). To determine whether targeting TGF-β signaling alone is sufficient to mitigate mCRPC, we used the CRISPR/Cas9 genome-editing approach to generate a dominant-negative mutation of the cognate receptor TGFBRII that attenuated TGF-β signaling in mCRPC cells. As a result, the delicate balance of oncogenic homeostasis is perturbed, profoundly uncoupling proliferative and metastatic potential of TGFBRII-edited tumor xenografts. This signaling disturbance triggered feedback rewiring by enhancing ERK signaling known to promote EMT-driven metastasis. Circulating tumor cells displaying upregulated EMT genes had elevated biophysical deformity and an increase in interactions with chaperone macrophages for facilitating metastatic extravasation. Treatment with an ERK inhibitor resulted in decreased aggressive features of CRPC cells in vitro. Therefore, combined targeting of TGF-β and its backup partner ERK represents an attractive strategy for treating mCRPC patients. PMID:27780930

  15. Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation

    PubMed Central

    Liu, Ching-Yi; Lin, Hsi-Hui; Tang, Ming-Jer; Wang, Yang-Kao

    2015-01-01

    Modulations of cytoskeletal organization and focal adhesion turnover correlate to tumorigenesis and epithelial-mesenchymal transition (EMT), the latter process accompanied by the loss of epithelial markers and the gain of mesenchymal markers (e.g., vimentin). Clinical microarray results demonstrated that increased levels of vimentin mRNA after chemotherapy correlated to a poor prognosis of breast cancer patients. We hypothesized that vimentin mediated the reorganization of cytoskeletons to maintain the mechanical integrity in EMT cancer cells. By using knockdown strategy, the results showed reduced cell proliferation, impaired wound healing, loss of directional migration, and increased large membrane extension in MDA-MB 231 cells. Vimentin depletion also induced reorganization of cytoskeletons and reduced focal adhesions, which resulted in impaired mechanical strength because of reduced cell stiffness and contractile force. In addition, overexpressing vimentin in MCF7 cells increased cell stiffness, elevated cell motility and directional migration, reoriented microtubule polarity, and increased EMT phenotypes due to the increased β1-integrin and the loss of junction protein E-cadherin. The EMT-related transcription factor slug was also mediated by vimentin. The current study demonstrated that vimentin serves as a regulator to maintain intracellular mechanical homeostasis by mediating cytoskeleton architecture and the balance of cell force generation in EMT cancer cells. PMID:25965826

  16. Downregulation of FBP1 Promotes Tumor Metastasis and Indicates Poor Prognosis in Gastric Cancer via Regulating Epithelial-Mesenchymal Transition

    PubMed Central

    Li, Qing-Guo; Xue, Jin-Jun; Wang, Zhu; Yuan, Xin; Tong, Jian-Dong; Xu, Li-Chun

    2016-01-01

    Background Recent studies indicated that some glycolytic enzymes are complicated, multifaceted proteins rather than simple components of the glycolytic pathway. FBP1 plays a vital role in glucose metabolism, but its role in gastric cancer tumorigenesis and metastasis has not been fully understood. Methods The prognostic value of FBP1 was first studied in The Cancer Genome Atlas (TCGA) database and validated in in-house database. The effect of FBP1 on cell proliferation and metastasis was examined in vitro. Nonparametric test and Log-rank test were used to evaluate the clinical significance of FBP1 expression. Results In the TCGA cohort, FBP1 mRNA level were shown to be predictive of overall survival in gastric cancer (P = 0.029). In the validation cohort, FBP1 expression were inversely correlated with advanced N stage (P = 0.021) and lymphovascular invasion (P = 0.011). Multivariate Cox regression analysis demonstrated that FBP1 was an independent predictor for both overall survival (P = 0.004) and disease free survival (P<0.001). Functional studies demonstrated that ectopic FBP1 expression inhibited proliferation and invasion in gastric cancer cells, while silencing FBP1 expression had opposite effects (P<0.05). Mechanically, FBP1 serves as a tumor suppressor by inhibiting epithelial-mesenchymal transition (EMT). Conclusions Downregulation of FBP1 promotes gastric cancer metastasis by facilitating EMT and acts as a potential prognostic factor and therapeutic target in gastric cancer. PMID:27978536

  17. Transcriptional silencing of ETS-1 abrogates epithelial-mesenchymal transition resulting in reduced motility of pancreatic cancer cells.

    PubMed

    Li, Chunyan; Wang, Zhonghan; Chen, Yan; Zhou, Min; Zhang, Haijun; Chen, Rong; Shi, Fangfang; Wang, Cailian; Rui, Zongdao

    2015-02-01

    v-ets erythroblastosis virus E26 oncogene homolog 1 (ETS-1) plays crucial roles in a spectrum of malignancies. ETS-1 has gained attention in cancer research for its importance in cell migration, invasion and proliferation. In the present study, we focused on the effect of ETS-1 on epithelial-mesenchymal transition (EMT), which is characterized by reduced E-cadherin expression and increased N-cadherin expression. We found that ETS-1 mRNA expression was positively correlated with N-cadherin and negatively correlated with E-cadherin mRNA expression in five pancreatic cancer cell lines. To elucidate the functionality of ETS-1 on EMT in pancreatic cancer cells, we constructed a green fluorescent protein (GFP)-expressing plasmid carrying ETS-1 short hairpin RNA (shRNA), and transfected Panc-1 cells with the plasmid. We detected reduced N-cadherin and vascular endothelial growth factor yet higher E-cadherin expression in the ETS-1-silenced cells compared with the control group. In addition, we observed reduced cell migration and increased adhesion in these cells. Our data showed that ETS-1 actively functioned as a regulator of EMT in Panc-1 cells, and provide additional evidence supporting a fundamental role for ETS-1 in metastatic pancreatic cancer cells. These results suggest that analysis of ETS-1 expression levels may provide an avenue for evaluating prognosis in pancreatic cancer.

  18. Inhibition of RAB1A suppresses epithelial-mesenchymal transition and proliferation of triple-negative breast cancer cells.

    PubMed

    Xu, Hui; Qian, Mingping; Zhao, Bingkun; Wu, Chenyang; Maskey, Niraj; Song, Hongming; Li, Dengfeng; Song, Jialu; Hua, Kaiyao; Fang, Lin

    2017-03-01

    RAB1A acts as an oncogene in various cancers, and emerging evidence has verified that RAB1A is an mTORC1 activator in hepatocellular and colorectal cancer, but the role of RAB1A in breast cancer remains unclear. In this investigation, RAB1A siRNA was successfully transfected in MDA-MB-231 and BT-549 human triple-negative breast cancer cells, and verified by real‑time quantitative polymerase chain reaction and western blotting. Then, MTT cell proliferation, colony formation, cell invasion and wound healing assays were performed to characterize the function of RAB1A in the breast cancer cell lines. Downregulation of RAB1A inhibited cellular growth, cell migration, cell invasion and cell epithelial-mesenchymal transition. Furthermore, compared with NC siRNA transfected cells, RAB1A siRNA transfected breast cancer cells inhibited the phosphorylation of S6K1, the effector molecular of mTORC1. Collectively, our data suggested that RAB1A acts as an oncogene by regulating cellular proliferation, growth, invasion and metastasis via activation of mTORC1 pathway in triple-negative breast cancer.

  19. MicroRNAs involved in regulating epithelial-mesenchymal transition and cancer stem cells as molecular targets for cancer therapeutics.

    PubMed

    Xia, H; Hui, K M

    2012-11-01

    One of the major challenges in cancer gene therapy is the identification of functionally relevant tumor-specific genes as the therapeutic targets. MicroRNAs (miRNAs) are a class of small, 22-25 nucleotides, endogenously expressed noncoding RNA. miRNAs are important genetic regulators: one miRNA can possibly target multiple genes and they can function as tumor promoters (oncogenic miRNAs, oncomirs) or tumor suppressors (anti-oncomirs). Therefore, the identification of misregulated miRNAs in cellular signaling pathways related to oncogenesis can have profound implications for cancer therapy. The epithelial-mesenchymal transition (EMT) converts epithelial cells into mesenchymal cells, a normal embryological process that frequently get activated during cancer invasion and metastasis. Recent evidence also supports the presence of a small subset of self-renewing, stem-like cells within the tumor mass that possess the capacity to seed new tumors and they have been termed 'cancer stem cells (CSC)'. Conceivably, these CSCs could provide a resource for cells that cause therapy resistance. Although the cell origin of CSCs remains to be fully elucidated, a growing body of evidence has demonstrated that the biology of EMT and CSCs is tightly linked with the sequences and compositions of miRNA molecules. Therefore, targeting miRNAs involved in EMT and CSCs regulation can provide novel miRNA-based therapeutic strategies in oncology.

  20. FHIT suppresses epithelial-mesenchymal transition (EMT) and metastasis in lung cancer through modulation of microRNAs.

    PubMed

    Suh, Sung-Suk; Yoo, Ji Young; Cui, Ri; Kaur, Balveen; Huebner, Kay; Lee, Taek-Kyun; Aqeilan, Rami I; Croce, Carlo M

    2014-10-01

    Metastasis is the principal cause of cancer death and occurs through multiple, complex processes that involve the concerted action of many genes. A number of studies have indicated that the Fragile Histidine Triad (FHIT) gene product, FHIT, functions as a tumor suppressor in a variety of common human cancers. Although there are suggestions of a role for FHIT loss in progression of various cancers, a role for such loss in metastasis has not been defined. Here, via in vivo and in vitro assays, we reveal that the enforced expression of FHIT significantly suppresses metastasis, accompanied by inhibition of the epithelial-mesenchymal transition (EMT), a process involved in metastasis through coordinate modulation of EMT-related genes. Specifically, miR-30c, a FHIT-upregulated microRNA, contributes to FHIT function in suppression of EMT and metastasis by directly targeting metastasis genes Metadherin (MTDH), High-mobility group AT-hook 2 (HMGA2), and the mesenchymal markers, Vimentin (VIM) and Fibronectin (FN1), in human lung cancer. Finally, we demonstrate that the expression pattern of FHIT and miR-30c is inversely correlated with that of MTDH and HMGA2 in normal tissue, non-metastatic and metastatic tumors, serving as a potential biomarker for metastasis in lung cancer.

  1. FHIT Suppresses Epithelial-Mesenchymal Transition (EMT) and Metastasis in Lung Cancer through Modulation of MicroRNAs

    PubMed Central

    Suh, Sung-Suk; Yoo, Ji Young; Cui, Ri; Kaur, Balveen; Huebner, Kay; Lee, Taek-Kyun; Aqeilan, Rami I.; Croce, Carlo M.

    2014-01-01

    Metastasis is the principal cause of cancer death and occurs through multiple, complex processes that involve the concerted action of many genes. A number of studies have indicated that the Fragile Histidine Triad (FHIT) gene product, FHIT, functions as a tumor suppressor in a variety of common human cancers. Although there are suggestions of a role for FHIT loss in progression of various cancers, a role for such loss in metastasis has not been defined. Here, via in vivo and in vitro assays, we reveal that the enforced expression of FHIT significantly suppresses metastasis, accompanied by inhibition of the epithelial-mesenchymal transition (EMT), a process involved in metastasis through coordinate modulation of EMT-related genes. Specifically, miR-30c, a FHIT-upregulated microRNA, contributes to FHIT function in suppression of EMT and metastasis by directly targeting metastasis genes Metadherin (MTDH), High-mobility group AT—hook 2 (HMGA2), and the mesenchymal markers, Vimentin (VIM) and Fibronectin (FN1), in human lung cancer. Finally, we demonstrate that the expression pattern of FHIT and miR-30c is inversely correlated with that of MTDH and HMGA2 in normal tissue, non-metastatic and metastatic tumors, serving as a potential biomarker for metastasis in lung cancer. PMID:25340791

  2. Transforming Growth Factor-β-Induced RBFOX3 Inhibition Promotes Epithelial-Mesenchymal Transition of Lung Cancer Cells

    PubMed Central

    Kim, Yong-Eun; Kim, Jong Ok; Park, Ki-Sun; Won, Minho; Kim, Kyoon Eon; Kim, Kee K.

    2016-01-01

    The RNA-binding protein Rbfox3 is a well-known splicing regulator that is used as a marker for post-mitotic neurons in various vertebrate species. Although recent studies indicate a variable expression of Rbfox3 in non-neuronal tissues, including lung tissue, its cellular function in lung cancer remains largely unknown. Here, we report that the number of RBFOX3-positive cells in tumorous lung tissue is lower than that in normal lung tissue. As the transforming growth factor-β (TGF-β) signaling pathway is important in cancer progression, we investigated its role in RBFOX3 expression in A549 lung adenocarcinoma cells. TGF-β1 treatment inhibited RBFOX3 expression at the transcriptional level. Further, RBFOX3 depletion led to a change in the expression levels of a subset of proteins related to epithelial-mesenchymal transition (EMT), such as E-cadherin and Claudin-1, during TGF-β1-induced EMT. In immunofluorescence microscopic analysis, mesenchymal morphology was more prominent in RBFOX3-depleted cells than in control cells. These findings show that TGF-β-induced RBFOX3 inhibition plays an important role in EMT and propose a novel role for RBFOX3 in cancer progression. PMID:27432190

  3. The Lnc RNA SPRY4-IT1 Modulates Trophoblast Cell Invasion and Migration by Affecting the Epithelial-Mesenchymal Transition

    PubMed Central

    Zuo, Qing; Huang, Shiyun; Zou, Yanfen; Xu, Yetao; Jiang, Ziyan; Zou, Shan; Xu, Haoqing; Sun, Lizhou

    2016-01-01

    Preeclampsia is a common, pregnancy-specific disease and a major contributor to maternal and foetal morbidity and mortality. Some placental abnormalities, including deficient implantation, abnormal trophoblast cell function, and improper placental vascular development, are believed to lead to preeclampsia. The long noncoding RNA SPRY4-IT1 is more highly expressed in preeclamptic human placentas than in normal placentas. We assessed the role of epithelial-mesenchymal transition (EMT)-associated invasion and migration in HTR-8/SVneo trophoblast cells. Overexpression of SPRY4-IT1 suppressed trophoblast cell migration and invasion, whereas reduced expression of SPRY4-IT1 prevented the EMT process. Mechanistically, an RNA immunoprecipitation experiment showed that SPRY4-IT1 bound directly to HuR and mediated the β-catenin expression associated with EMT in HTR-8/SVneo cells. Moreover, the expression levels of genes in the WNT family, such as WNT3 and WNT5B, were changed after transfection of HTR-8/SVneo with SPRY4-IT1. Together, our results highlight the roles of SPRY4-IT1 in causing trophoblast cell dysfunction by acting through the Wnt/β-catenin pathway, and consequently in impairing spiral artery remodelling. These results suggest a new potential therapeutic target for intervention against preeclampsia. PMID:27853262

  4. Integrated analyses identify the involvement of microRNA-26a in epithelial-mesenchymal transition during idiopathic pulmonary fibrosis.

    PubMed

    Liang, H; Gu, Y; Li, T; Zhang, Y; Huangfu, L; Hu, M; Zhao, D; Chen, Y; Liu, S; Dong, Y; Li, X; Lu, Y; Yang, B; Shan, H

    2014-05-22

    Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive, and highly lethal fibrotic lung disease with poor treatment and unknown etiology. Emerging evidence suggests that epithelial-mesenchymal transition (EMT) has an important role in repair and scar formation following epithelial injury during pulmonary fibrosis. Although some miRNAs have been shown to be dysregulated in the pathophysiological processes of IPF, limited studies have payed attention on the participation of miRNAs in EMT in lung fibrosis. In our study, we identified and constructed a regulation network of differentially expressed IPF miRNAs and EMT genes. Additionally, we found the downregulation of miR-26a in mice with experimental pulmonary fibrosis. Further studies showed that miR-26a regulated HMGA2, which is a key factor in the process of EMT and had the maximum number of regulating miRNAs in the regulation network. More importantly, inhibition of miR-26a resulted in lung epithelial cells transforming into myofibroblasts in vitro and in vivo, whereas forced expression of miR-26a alleviated TGF-β1- and BLM-induced EMT in A549 cells and in mice, respectively. Taken together, our study deciphered the essential role of miR-26a in the pathogenesis of EMT in pulmonary fibrosis, and suggests that miR-26a may be a potential therapeutic target for IPF.

  5. Palbociclib inhibits epithelial-mesenchymal transition and metastasis in breast cancer via c-Jun/COX-2 signaling pathway

    PubMed Central

    Zheng, Qiufan; Shi, Dingbo; Xia, Wen; Tian, Yun; Tang, Yanlai; Wang, Jingshu; Xiao, Xiangshen; Deng, Wuguo; Wang, Shusen

    2015-01-01

    Palbociclib, a highly selective CDK4/6 inhibitor, has been shown to be a novel anti-tumor agent that suppresses breast cancer cell proliferation. However, its anti-metastasis activity remains controversial. In the present study, we evaluated whether palbociclib prevented breast cancer cell metastasis and revealed its regulatory mechanism. We found that palbociclib inhibited migration and invasion in the breast cancer cells MDA-MB-231 and T47D. The epithelial-mesenchymal transition (EMT) markers, vimentin and Snail, were down-regulated with palbociclib treatment. Moreover, we revealed that this inhibition was mediated by the c-Jun/COX-2 pathway. COX-2 was decreased after palbociclib treatment. The production of PGE2 was also reduced along with COX-2. Additionally, our data showed that c-Jun, a crucial transcriptional regulator of COX-2, was down-regulated by palbociclib. We found that palbociclib weakened the COX-2 promoter binding activity of c-Jun and prevented its translocation from the cytoplasm to cell nuclei. Bioluminescence imaging and tail intravenous injection were used to evaluate the anti-metastasis effect of palbociclib in vivo. The data demonstrated that palbociclib reduced breast cancer metastasis to the lung. These results therefore demonstrated that the anti-metastasis activity of palbociclib is mediated via the c-Jun/COX-2 signaling pathway by inhibiting EMT in breast cancer cells. PMID:26540629

  6. Epithelial-mesenchymal transition as a fundamental underlying pathogenic process in COPD airways: fibrosis, remodeling and cancer.

    PubMed

    Nowrin, Kaosia; Sohal, Sukhwinder Singh; Peterson, Gregory; Patel, Rahul; Walters, Eugene Haydn

    2014-10-01

    Chronic obstructive pulmonary disease (COPD) is a complex condition, frequently with a mix of airway and lung parenchymal damage. However, the earliest changes are in the small airways, where most of the airflow limitation occurs. The pathology of small airway damage seems to be wall fibrosis and obliteration, but the whole airway is involved in a 'field effect'. Our novel observations on active epithelial-mesenchymal transition (EMT) in the airways of smokers, particularly in those with COPD, are changing the understanding of this airway pathology and the aetiology of COPD. EMT involves a cascade of regulatory changes that destabilise the epithelium with a motile and mesenchymal epithelial cell phenotype emerging. One important manifestation of EMT activity involves up-regulation of specific key transcription factors (TFs), such as Smads, Twist, and β-catenin. Such TFs can be used as EMT biomarkers, in recognisable patterns reflecting the potential major drivers of the process; for example, TGFβ, Wnt, and integrin-linked kinase systems. Thus, understanding the relative changes in TF activity during EMT may provide rich information on the mechanisms driving this whole process, and how they may change over time and with therapy. We have sought to review the current literature on EMT and the relative expression of specific TF activity, to define the networks likely to be involved in a similar process in the airways of patients with smoking-related COPD.

  7. Motility and stem cell properties induced by the epithelial-mesenchymal transition require destabilization of lipid rafts

    PubMed Central

    Prijic, Sara; Chen, Xiaoling; Levental, Ilya; Chang, Jeffrey T.

    2016-01-01

    The Epithelial-Mesenchymal Transition (EMT) is a developmental program that provides cancer cells with the characteristics necessary for metastasis, including increased motility and stem cell properties. The cellular and molecular mechanisms underlying this process are not yet fully understood, hampering efforts to develop therapeutics. In recent years, it has become apparent that EMT is accompanied by wholesale changes in diverse signaling pathways that are initiated by proteins at the plasma membrane (PM). The PM contains thousands of lipid and protein species that are dynamically and spatially organized into lateral membrane domains, an example of which are lipid rafts. Since one of the major functions of rafts is modulation of signaling originating at the PM, we hypothesized that the signaling changes occurring during an EMT are associated with alterations in PM organization. To test this hypothesis, we used Giant Plasma Membrane Vesicles (GPMVs) to study the organization of intact plasma membranes isolated from live cells. We observed that induction of EMT significantly destabilized lipid raft domains. Further, this reduction in stability was crucial for the maintenance of the stem cell phenotype and EMT-induced remodeling of PM-orchestrated pathways. Exogenously increasing raft stability by feeding cells with ω-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) repressed these phenotypes without altering EMT markers, and inhibited the metastatic capacity of breast cancer cells. Hence, modulating raft properties regulates cell phenotype, suggesting a novel approach for targeting the impact of EMT in cancer. PMID:27303921

  8. Endogenous Nodal promotes melanoma undergoing epithelial-mesenchymal transition via Snail and Slug in vitro and in vivo

    PubMed Central

    Guo, Qiang; Ning, Fen; Fang, Rui; Wang, Hong-Sheng; Zhang, Ge; Quan, Mei-Yu; Cai, Shao-Hui; Du, Jun

    2015-01-01

    Nodal, an important embryonic morphogen, has been reported to modulate tumorigenesis. Epithelial-mesenchymal transition (EMT) plays an important role in cancer metastasis. We have previously reported that recombinant Nodal treatment can promote melanoma undergoing EMT, but the effects of endogenous Nodal on EMT are still unknown. Here we generated both Nodal-overexpression and -knockdown stable cell lines to investigate the in vitro and in vivo characteristics of Nodal-induced EMT in murine melanoma cells. Nodal-overexpression cells displayed increased migration ability, accompanied by typical phenotype changes of EMT. In contrast, Nodal-knockdown stable cells repressed the EMT phenotype as well as reduced cell motility. Results of animal experiments confirmed that overexpression of Nodal can promote the metastasis of melanoma tumor in vivo. Mechanistically, we found that Nodal-induced expression of Snail and Slug involves its activation of ALK/Smads and PI3k/AKT pathways, which is an important process in the Nodal-induced EMT. However, we also found that the EMT phenotype was not completely inhibited by blocking the paracrine activity of Nodal in Nodal overexpression cell line suggesting the presence of additional mechanism(s) in the Nodal-induced EMT. This study provides a better understanding of Nodal function in melanoma, and suggests targeting Nodal as a potential strategy for melanoma therapey. PMID:26269769

  9. Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation.

    PubMed

    Liu, Ching-Yi; Lin, Hsi-Hui; Tang, Ming-Jer; Wang, Yang-Kao

    2015-06-30

    Modulations of cytoskeletal organization and focal adhesion turnover correlate to tumorigenesis and epithelial-mesenchymal transition (EMT), the latter process accompanied by the loss of epithelial markers and the gain of mesenchymal markers (e.g., vimentin). Clinical microarray results demonstrated that increased levels of vimentin mRNA after chemotherapy correlated to a poor prognosis of breast cancer patients. We hypothesized that vimentin mediated the reorganization of cytoskeletons to maintain the mechanical integrity in EMT cancer cells. By using knockdown strategy, the results showed reduced cell proliferation, impaired wound healing, loss of directional migration, and increased large membrane extension in MDA-MB 231 cells. Vimentin depletion also induced reorganization of cytoskeletons and reduced focal adhesions, which resulted in impaired mechanical strength because of reduced cell stiffness and contractile force. In addition, overexpressing vimentin in MCF7 cells increased cell stiffness, elevated cell motility and directional migration, reoriented microtubule polarity, and increased EMT phenotypes due to the increased β1-integrin and the loss of junction protein E-cadherin. The EMT-related transcription factor slug was also mediated by vimentin. The current study demonstrated that vimentin serves as a regulator to maintain intracellular mechanical homeostasis by mediating cytoskeleton architecture and the balance of cell force generation in EMT cancer cells.

  10. Cooperation between snail and LEF-1 transcription factors is essential for TGF-beta1-induced epithelial-mesenchymal transition.

    PubMed

    Medici, Damian; Hay, Elizabeth D; Goodenough, Daniel A

    2006-04-01

    Transforming growth factor beta 1 (TGF-beta1) has been shown to induce epithelial-mesenchymal transition (EMT) during various stages of embryogenesis and progressive disease. This alteration in cellular morphology is typically characterized by changes in cell polarity and loss of adhesion proteins such as E-cadherin. Here we demonstrate that EMT is associated with loss of claudin-1, claudin-2, occludin, and E-cadherin expression within 72 h of exposure to TGF-beta1 in MDCKII cells. It has been suggested that this expression loss occurs through TGF-beta1 in a Smad-independent mechanism, involving MEK and PI3K pathways, which have previously been shown to induce expression of the Snail (SNAI-1) gene. Here we show that these pathways are responsible for loss of tight junctions and a partial loss of E-cadherin. However, our results also demonstrate that a complete loss of E-cadherin and transformation to the mesenchymal phenotype are dependent on Smad signaling, which subsequently stimulates formation of beta-catenin/LEF-1 complexes that induce EMT.

  11. Palbociclib inhibits epithelial-mesenchymal transition and metastasis in breast cancer via c-Jun/COX-2 signaling pathway.

    PubMed

    Qin, Ge; Xu, Fei; Qin, Tao; Zheng, Qiufan; Shi, Dingbo; Xia, Wen; Tian, Yun; Tang, Yanlai; Wang, Jingshu; Xiao, Xiangshen; Deng, Wuguo; Wang, Shusen

    2015-12-08

    Palbociclib, a highly selective CDK4/6 inhibitor, has been shown to be a novel anti-tumor agent that suppresses breast cancer cell proliferation. However, its anti-metastasis activity remains controversial. In the present study, we evaluated whether palbociclib prevented breast cancer cell metastasis and revealed its regulatory mechanism. We found that palbociclib inhibited migration and invasion in the breast cancer cells MDA-MB-231 and T47D. The epithelial-mesenchymal transition (EMT) markers, vimentin and Snail, were down-regulated with palbociclib treatment. Moreover, we revealed that this inhibition was mediated by the c-Jun/COX-2 pathway. COX-2 was decreased after palbociclib treatment. The production of PGE2 was also reduced along with COX-2. Additionally, our data showed that c-Jun, a crucial transcriptional regulator of COX-2, was down-regulated by palbociclib. We found that palbociclib weakened the COX-2 promoter binding activity of c-Jun and prevented its translocation from the cytoplasm to cell nuclei. Bioluminescence imaging and tail intravenous injection were used to evaluate the anti-metastasis effect of palbociclib in vivo. The data demonstrated that palbociclib reduced breast cancer metastasis to the lung. These results therefore demonstrated that the anti-metastasis activity of palbociclib is mediated via the c-Jun/COX-2 signaling pathway by inhibiting EMT in breast cancer cells.

  12. γ-Secretase inhibitor inhibits bladder cancer cell drug resistance and invasion by reducing epithelial-mesenchymal transition.

    PubMed

    Wang, Yibing; Wang, Gongxian; Zhang, Xiali; Zhou, Xiaocheng; Liu, Zhihuan; Huang, Liang; Liu, Rensheng; Lang, Bin; Xu, Xiaoyuan; Liu, Weipeng; Fu, Longlong; Fu, Bin

    2015-08-01

    A previous study by our group demonstrated that the expression levels of Notch 1 and Jagged 1 in bladder cancer cells was significantly lower compared with those in normal bladder mucosa, while the expression levels of Notch 1 and Jagged 1 in invasive bladder cancer were higher compared with those in superficial bladder cancer. The present study investigated the effect of the Notch signaling pathway on the drug resistance and invasiveness of bladder cancer cells. It was demonstrated that complete inhibition of the Notch signaling pathway induced significant morphological changes and inhibited cell proliferation and migration (P<0.05). Reverse transcription quantitative polymerase chain reaction and western blot analyses revealed that the mRNA and protein expression levels of E-cadherin were upregulated (P<0.05) and the mRNA and protein expression levels of N-cadherin, vimentin and α-smooth muscle actin were downregulated (P<0.05). The present study concluded that complete inhibition of the Notch signaling pathway inhibited cell proliferation and invasion, and reduced drug resistance in bladder cancer cells, a phenomenon which may be associated with the inhibition of the epithelial-mesenchymal transition.

  13. TIM-3 expression in human osteosarcoma: Correlation with the expression of epithelial-mesenchymal transition-specific biomarkers

    PubMed Central

    SHANG, YONGJUN; LI, ZHANYONG; LI, HONG; XIA, HAIBO; LIN, ZHENHUA

    2013-01-01

    Signals from the T cell Ig- and mucin-domain-containing molecules (TIMs) have been demonstrated to be actively involved in regulating the progression of carcinomas. However, the expression and distribution of these molecules in osteosarcoma, the most common primary bone malignancy with poor prognosis, have not been investigated. In this study, the expression of TIMs was examined in nine invasive human osteosarcomas using immunohistochemistry, and the phenotypes were detected by dual immunofluorescence staining. Using immunohistochemistry, it was observed that only TIM-3, rather than TIM-1 or TIM-4, was expressed in these tumor specimens, where it was localized in the cytoplasm and plasma membrane of tumor cells. Dual immunofluorescence staining revealed that the expression of TIM-3 was observed in all cell types investigated, including CD68+ macrophages, CD31+ endothelial cells, CK-18+ epithelial cells and PCNA+ tumor cells. Notably, in sarcoma cells, TIM-3 was co-expressed with certain biomarkers of epithelial-mesenchymal transition (EMT), including vimentin, Slug, Snail and Smad. These combined results suggest that TIM-3 triggers tumor cells to acquire features of aggressive EMT and may be involved in the pathogenesis of this malignancy. PMID:24137353

  14. Tacrolimus Modulates TGF-β Signaling to Induce Epithelial-Mesenchymal Transition in Human Renal Proximal Tubule Epithelial Cells

    PubMed Central

    Bennett, Jason; Cassidy, Hilary; Slattery, Craig; Ryan, Michael P.; McMorrow, Tara

    2016-01-01

    Epithelial-mesenchymal transition (EMT), a process which describes the trans-differentiation of epithelial cells into motile mesenchymal cells, is pivotal in stem cell behavior, development and wound healing, as well as contributing to disease processes including fibrosis and cancer progression. Maintenance immunosuppression with calcineurin inhibitors (CNIs) has become routine management for renal transplant patient, but unfortunately the nephrotoxicity of these drugs has been well documented. HK-2 cells were exposed to Tacrolimus (FK506) and EMT markers were assessed by RT PCR and western blot. FK506 effects on TGF-β mRNA were assessed by RT PCR and TGF-β secretion was measured by ELISA. The impact of increased TGF-β secretion on Smad signaling pathways was investigated. The impact of inhibition of TGF-β signaling on EMT processes was assessed by scratch-wound assay. The results presented in this study suggest that FK506 initiates EMT processes in the HK-2 cell line, with altered expression of epithelial and myofibroblast markers evident. Additionally, the study demonstrates that FK506 activation of the TGF-β/ SMAD pathways is an essential step in the EMT process. Overall the results demonstrate that EMT is heavily involved in renal fibrosis associated with CNI nephrotoxicity. PMID:27128949

  15. Essential role of Notch4/STAT3 signaling in epithelial-mesenchymal transition of tamoxifen-resistant human breast cancer.

    PubMed

    Bui, Quyen Thu; Im, Ji Hye; Jeong, Sung Baek; Kim, Young-Mi; Lim, Sung Chul; Kim, Bumseok; Kang, Keon Wook

    2017-04-01

    We previously demonstrated that tamoxifen (TAM)-resistant human breast cancer (TAMR-MCF-7) cells showed increased expression of mesenchymal marker proteins compared to the parent MCF-7 cells. Notch is functionally important in the promotion of epithelial-mesenchymal transition (EMT) during both development and tumor progression. Notch1 and Notch4 have been reported as prognostic markers in human breast cancer. Here, we indicated that Notch4, but not Notch1, plays a critical role in the regulation of EMT signaling in TAMR-MCF-7 cells. Notch4 suppression by either Notch inhibitors or Notch4 siRNA attenuated EMT signaling. Tyrosine-phosphorylated STAT3 protein is known as a crucial signaling molecule in the regulation of tumorigenesis and metastasis. We found that TAMR-MCF-7 cells exhibited constitutive STAT3 phosphorylation, and Notch inhibition reduced the level of activated STAT3 in TAMR-MCF-7 cells. An intrasplenic injection model of liver metastases was performed using TAMR-MCF-7 cells. Mice injected with N-[N-(3,5-Difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT, 10 mg/kg) formed smaller splenic tumors and showed a reduced micrometastatic tumor burden in their livers compared with the control group treated with vehicle. To conclude, Notch4 could be a potential target to prevent metastasis in TAM-resistant breast cancer.

  16. LSD1 mediates MYCN control of epithelial-mesenchymal transition through silencing of metastatic suppressor NDRG1 gene.

    PubMed

    Ambrosio, Susanna; Amente, Stefano; Saccà, Carmen D; Capasso, Mario; Calogero, Raffaele A; Lania, Luigi; Majello, Barbara

    2017-01-17

    Neuroblastoma (NB) with MYCN amplification is a highly aggressive and metastatic tumor in children. The high recurrence rate and resistance of NB cells to drugs urgently demands a better therapy for this disease. We have recently found that MYCN interacts with the lysine-specific demethylase 1 (LSD1), a histone modifier that participates in key aspects of gene transcription. In cancer cells, LSD1 contributes to the genetic reprogramming that underlies to Epithelial-Mesenchymal Transition (EMT) and tumor metastasis. Here, we show that LSD1 affects motility and invasiveness of NB cells by modulating the transcription of the metastasis suppressor NDRG1 (N-Myc Downstream-Regulated Gene 1). At mechanistic level, we found that LSD1 co-localizes with MYCN at the promoter region of the NDRG1 gene and inhibits its expression. Pharmacological inhibition of LSD1 relieves repression of NDRG1 by MYCN and affects motility and invasiveness of NB cells. These effects were reversed by overexpressing NDRG1. In NB tissues, high levels of LSD1 correlate with low levels of NDRG1 and reduced patients survival. Collectively, our findings elucidate a mechanism of how MYCN/LSD1 control motility and invasiveness of NB cells through transcription regulation of NDRG1 expression and suggest that pharmacological targeting of LSD1 represents a valuable approach for NB therapy.

  17. The mitotic checkpoint regulator RAE1 induces aggressive breast cancer cell phenotypes by mediating epithelial-mesenchymal transition

    PubMed Central

    Oh, Ji Hoon; Hur, Ho; Lee, Ji-Yeon; Kim, Yeejeong; Seo, Younsoo; Kim, Myoung Hee

    2017-01-01

    The gene RAE1 encodes ribonucleic acid export 1 (RAE1), which is involved in mRNA export and is known to serve as a mitotic checkpoint regulator. In addition, RAE1 haplo-insufficiency leads to chromosome missegregation and early aging-associated phenotypes. In humans, a positive correlation has been found between RAE1 copy number abnormalities and gene amplification in breast cancer cells. However, the precise functional role of RAE1 in breast cancer remains to be determined. An in silico analysis of data retrieved from GENT and cBio-Portal identified RAE1 upregulation in breast cancer tissues relative to normal breast cells. Functional studies of various cell lines showed that RAE1 induced invasive and migratory abilities by regulating epithelial-mesenchymal transition signals. A tissue microarray was constructed to demonstrate the interrelationship between clinicopathological features and RAE1 expression. Immunohistochemistry revealed a positive correlation between RAE1 expression and a high histologic grade. Furthermore, RAE1 overexpression was associated with considerably poorer disease-free survival and distant metastasis-free survival, especially in patients with oestrogen receptor-positive tumours. In summary, RAE1 may be a prognostic marker and therapeutic intervention target in malignant breast cancers. PMID:28181567

  18. Diallyl disulfide suppresses epithelial-mesenchymal transition, invasion and proliferation by downregulation of LIMK1 in gastric cancer.

    PubMed

    Su, Bo; Su, Jian; Zeng, Ying; Liu, Fang; Xia, Hong; Ma, Yan-Hua; Zhou, Zhi-Gang; Zhang, Shuo; Yang, Bang-Min; Wu, You-Hua; Zeng, Xi; Ai, Xiao-Hong; Ling, Hui; Jiang, Hao; Su, Qi

    2016-03-01

    Diallyl disulfide (DADS) has been shown to have multi-targeted antitumor activities. We have previously discovered that it has a repressive effect on LIM kinase-1 (LIMK1) expression in gastric cancer MGC803 cells. This suggests that DADS may inhibit epithelial-mesenchymal transition (EMT) by downregulating LIMK1, resulting in the inhibition of invasion and growth in gastric cancer. In this study, we reveal that LIMK1 expression is correlated with tumor differentiation, invasion depth, clinical stage, lymph node metastasis, and poor prognosis. DADS downregulated the Rac1-Pak1/Rock1-LIMK1 pathway in MGC803 cells, as shown by decreased p-LIMK1 and p-cofilin1 levels, and suppressed cell migration and invasion. Knockdown and overexpression experiments performed in vitro demonstrated that downregulating LIMK1 with DADS resulted in restrained EMT that was coupled with decreased matrix metalloproteinase-9 (MMP-9) and increased tissue inhibitor of metalloproteinase-3 (TIMP-3) expression. In in vitro and in vivo experiments, the DADS-induced suppression of cell proliferation was enhanced and antagonized by the knockdown and overexpression of LIMK1, respectively. Similar results were observed for DADS-induced changes in the expression of vimentin, CD34, Ki-67, and E-cadherin in xenografted tumors. These results indicate that downregulation of LIMK1 by DADS could explain the inhibition of EMT, invasion and proliferation in gastric cancer cells.

  19. S100A7 promotes the migration, invasion and metastasis of human cervical cancer cells through epithelial-mesenchymal transition.

    PubMed

    Tian, Tian; Li, Xukun; Hua, Zhen; Ma, Jianlin; Wu, Xiaowei; Liu, Zhihua; Chen, Hongyan; Cui, Zhumei

    2017-02-15

    S100A7 is an EF-hand calcium-binding protein that has been suggested to be implicated in cell proliferation, migration, invasion and tumor metastasis. However, its role in cervical cancer has not yet been fully clarified. The present study used immunohistochemistry analysis of S100A7 in clinical specimens of cervical cancer to show that S100A7 expression was significantly upregulated in cervical cancer tissues compared with normal cervical tissues and S100A7 expression in high grade cervical intraepithelial neoplasm (CIN) was significantly higher than cervical cancer. Statistical analysis showed that S100A7 expression was associated with tumor grade (P <0.01) and lymph node metastasis (P <0.05). Functional studies showed that overexpression of S100A7 in cervical cancer cells promoted migration, invasion and metastasis of cervical cancer cells without influencing cell proliferation. Furthermore, S100A7 was found to be secreted into the conditioned media and extracellular S100A7 enhanced cell migration and invasion. Mechanistically, S100A7 bound to RAGE and activated ERK signaling pathway. And S100A7 enhanced cell mesenchymal properties and induced epithelial-mesenchymal transition. In summary, these data reveal a crucial role for S100A7 in regulating cell migration, invasion, metastasis and EMT of cervical cancer and suggest that targeting S100A7 may offer a new targeted strategy for cervical cancer.

  20. Oncometabolite D-2-Hydroxyglurate Directly Induces Epithelial-Mesenchymal Transition and is Associated with Distant Metastasis in Colorectal Cancer

    PubMed Central

    Colvin, Hugh; Nishida, Naohiro; Konno, Masamitsu; Haraguchi, Naotsugu; Takahashi, Hidekazu; Nishimura, Junichi; Hata, Taishi; Kawamoto, Koichi; Asai, Ayumu; Tsunekuni, Kenta; Koseki, Jun; Mizushima, Tsunekazu; Satoh, Taroh; Doki, Yuichiro; Mori, Masaki; Ishii, Hideshi

    2016-01-01

    Deranged metabolism is a hallmark of cancer, playing a significant role in driving the disease process. One such example is the induction of carcinogenesis by the oncometabolite D-2 hydroxyglutarate (D-2HG), which is produced by the mutated enzyme isocitrate dehydrogenase (IDH) occurring in subsets of leukaemias and brain tumours. The oncogenic property of D-2HG appears to stem from its ability to interfere with the activities of α-ketoglutarate-dependent dioxygenases, including the Jumonji family histone demethylases. Here, we find in colorectal cancer cells that even in the absence of IDH mutation, the levels of D-2HG and its enantiomer L-2HG were elevated through glutamine anaplerosis. D-2HG, but not L-2HG, increased the trimethylation of histone H3 lysine 4 of the promoter region of ZEB1, a master regulator of epithelial-mesenchymal transition (EMT), and increased the expression of the ZEB1 gene to directly induce EMT in colorectal cancer cells. EMT promotes the ability of cancer cells to invade the local tissue and enter into the bloodstream, leading to distant organ metastasis. D-2HG levels were elevated in colorectal cancer specimens, particularly in those associated with distant metastasis, supporting the observations in vitro and implicating the contribution of D-2HG in metastasis, the major cause of death in this disease. PMID:27824159

  1. AGR2 promotes the proliferation, migration and regulates epithelial-mesenchymal transition in salivary adenoid cystic carcinoma

    PubMed Central

    Ma, Si-Rui; Mao, Liang; Deng, Wei-Wei; Li, Yi-Cun; Bu, Lin-Lin; Yu, Guang-Tao; Zhang, Wen-Feng; Sun, Zhi-Jun

    2017-01-01

    Salivary adenoid cystic carcinoma (AdCC) is a common head and neck cancer with the propensity for local spread and distant metastasis. In our previous study, elevated expression of Anterior gradient 2 (AGR2) was detected in head and neck squamous cell carcinoma (HNSCC), associated with epithelial-mesenchymal transition (EMT) and cancer stemness. However, to date, the expression and function of AGR2 in AdCC has yet to be elucidated. In the present study, human AdCC tissue microarrays including 18 cases of normal salivary gland (NSG), 12 cases of pleomorphic adenoma (PMA) and 72 cases of AdCC were employed for immunohistochemical staining analysis. Results indicated that AGR2, which was remarkably correlated with Ki-67, transforming growth factor beta-1 (TGF-β1) and CD147, was significantly elevated in human salivary AdCC tissues. Knockdown of AGR2 significantly repressed the proliferation and migration of human SACC-83 and SACC-LM cell lines. Additionally, AGR2 silencing obviously reversed the EMT phenomena induced by TGF-β1. Taken together, our present study revealed the potential pro-metastasis role of AGR2 in AdCC, indicating that AGR2 might be a novel therapeutic target of AdCC with distant metastasis. PMID:28337279

  2. GOLPH3 induces epithelial-mesenchymal transition via Wnt/β-catenin signaling pathway in epithelial ovarian cancer.

    PubMed

    Sun, Jing; Yang, Xiaoming; Zhang, Ru; Liu, Suqing; Gan, Xupei; Xi, Xiaowei; Zhang, Zhenbo; Feng, Youji; Sun, Yunyan

    2017-03-23

    Golgi phosphoprotein 3 (GOLPH3), a newly recognized oncogene, is associated with tumor growth, metastasis, and poor prognosis in several types of cancer. However, its biological role and underlying mechanism in epithelial ovarian cancer (EOC) remain poorly understood. Here, we found that GOLPH3 was overexpressed in EOC tissues and cell lines. This overexpression promoted the migration and invasion of EOC cells. Moreover, GOLPH3 upregulated the expression of epithelial-mesenchymal transition (EMT) markers, such as N-cadherin and Snail, and the Wnt/β-catenin-related genes cyclin-D1 and c-Myc, which were restored via silencing of GOLPH3 expression. Furthermore, the inhibitor and activator of the Wnt/β-catenin pathway, XAV939 and LiCl, enhanced or decreased, respectively, the effect of GOLPH3 on EMT, which further confirmed that GOLPH3 promoted EMT progression via activation of Wnt/β-catenin signaling. In addition, we found that EDD, the human hyperplastic discs gene, was consistent with GOLPH3 expression and also promoted the EMT process and activated Wnt/β-catenin signaling. These findings demonstrate that EDD might be a downstream factor of GOLPH3. Taken together, our findings demonstrate the existence of a GOLPH3-Wnt/β-catenin-EMT axis in EOC and provide a new therapeutic target to treat EOC.

  3. Silencing of LRRFIP1 reverses the epithelial-mesenchymal transition via inhibition of the Wnt/β-catenin signaling pathway.

    PubMed

    Douchi, Daisuke; Ohtsuka, Hideo; Ariake, Kyohei; Masuda, Kunihiro; Kawasaki, Shuhei; Kawaguchi, Kei; Fukase, Koji; Oikawa, Masaya; Motoi, Fuyuhiko; Naitoh, Takeshi; Katayose, Yu; Egawa, Shinichi; Unno, Michiaki

    2015-08-28

    The canonical Wnt/β-catenin signaling pathway has been shown to promote the epithelial-mesenchymal transition (EMT), which is a crucial process in multiple embryonic developmental processes and the progression of carcinomas. We recently provided evidence that leucine-rich repeat flightless-1-interacting protein 1 (LRRFIP1) promotes cancer metastasis and invasion. In the present study, we identified the signaling elements targeted by LRRFIP1 for promotion of the EMT in pancreatic and lung cancer. LRRFIP1 silencing reversed the EMT, as shown by increased expression of E-cadherin (an epithelial marker) and decreased expression of vimentin (a mesenchymal marker). Silencing of LRRFIP1 up-regulated phosphorylation of β-catenin and decreased its nuclear localization by targeting the β-catenin destruction complex. The expression of β-catenin and E-cadherin in the plasma membrane fraction was increased in LRRFIP1 silenced cancer cells, and the migration and invasion capabilities were strongly inhibited. In addition, this protein was highly expressed at the invasion front of malignant tissue collected from pancreatic cancer patients. Consequently, our data strongly suggested that LRRFIP1 played an important role in the invasion of carcinoma cells. Our data provide experimental evidence that LRRFIP1 is an attractive candidate for targeted therapy in human cancers.

  4. TUSC3 promotes colorectal cancer progression and epithelial-mesenchymal transition (EMT) through WNT/β-catenin and MAPK signalling.

    PubMed

    Gu, Ye; Wang, Qian; Guo, Kang; Qin, Weizhao; Liao, Wenting; Wang, Shuang; Ding, Yanqing; Lin, Jie

    2016-05-01

    Colorectal cancer (CRC) is one of the most common malignancies and is the second leading cause of cancer death in humans. Tumour suppressor candidate 3 (TUSC3) plays an important role in embryogenesis and metabolism. Deletion of TUSC3 often causes non-syndromic mental retardation. Even though TUSC3 deregulation is frequently observed in epithelial cancers, the function of TUSC3 in CRC has remained unknown. In this study, we observed greater expression of TUSC3 at the mRNA and protein level in clinical colorectal tumour samples compared with paired normal tissues. Gain- and loss-of-function analyses were performed to evaluate the functional significance of TUSC3 in CRC initiation and progression. Immunoblotting, immunofluorescence, and co-immunoprecipitation analyses were used to identify potential pathways with which TUSC3 might be involved. Overexpression of TUSC3 in CRC cells induced epithelial-mesenchymal transition (EMT) in CRC cells, accompanied by down-regulation of the epithelial marker, E-cadherin, and up-regulation of the mesenchymal marker, vimentin. Increased proliferation, migration, and invasion, as well as accelerated xenograft tumour growth, were observed in TUSC3-overexpressing CRC cells, while opposite effects were achieved in TUSC3-silenced cells. In conclusion, our study demonstrated the oncogenic role of TUSC3 in CRC and showed that TUSC3 may be responsible for alternations in the proliferation ability, aggressiveness, and invasive/metastatic potential of CRC through regulating the MAPK, PI3K/Akt, and Wnt/β-catenin signalling pathways.

  5. Interplay between microRNAs and WNT/β-catenin signalling pathway regulates epithelial-mesenchymal transition in cancer.

    PubMed

    Ghahhari, Nastaran Mohammadi; Babashah, Sadegh

    2015-08-01

    The WNT/β-catenin signalling implies its significance in maintaining an epithelial cell phenotype, proper cell-cell junctions, and tissue homeostasis. Dysregulation of the members of this pathway involves in the development of cancer and an epithelial-mesenchymal transition (EMT) required for metastasis. Loss of E-cadherin is the major contributor to an EMT process and is largely influenced by the WNT/β-catenin signalling. An E-cadherin/β-catenin complex maintains epithelial integrity and disturbance of this complex and WNT/β-catenin pathway will ultimately lead to the nuclear translocation of β-catenin and transcription of EMT-promoting genes. WNT/β-catenin signalling is controlled by microRNAs (miRNAs), several of which are either up- or downregulated during EMT. The strong association between the expression of the WNT signalling components with miRNAs in the initiation and achievement of an EMT phenotype is suggestive of introducing these miRNAs as therapeutic targets against metastatic tumours. Therefore, this review aims to describe these putative miRNAs in altering the WNT/β-catenin signalling in EMT, and whether targeting them is a useful therapeutic option for human invasive tumours.

  6. PRRX1 promotes epithelial-mesenchymal transition through the Wnt/β-catenin pathway in gastric cancer.

    PubMed

    Guo, Jinbao; Fu, Zhongxue; Wei, Jinlai; Lu, Weidong; Feng, Jihong; Zhang, Shouru

    2015-01-01

    Carcinoma cells hijack the epithelial-mesenchymal transition (EMT) for tumor dissemination. Paired-related homeobox 1 (PRRX1) has been identified as a new EMT inducer. However, the function of PRRX1 in gastric cancer has not been elucidated. In this study, we observed that PRRX1 expression levels were upregulated and positively correlated with metastasis and EMT markers in human gastric cancer specimens. PRRX1 overexpression had distinct effects on the cell morphology, proliferation, migration and invasion of BGC823 and SGC7901 gastric cancer cells both in vitro and in xenografts. PRRX1 overexpression resulted in the regulation of the EMT molecular markers N-cadherin, E-cadherin and vimentin as well as the levels of intranuclear β-catenin and the Wnt/β-catenin target c-Myc. Furthermore, the inhibition of the Wnt/β-catenin pathway by XAV939 offset the effects of PRRX1 overexpression. These findings demonstrate that PRRX1 promotes EMT in gastric cancer cells through the activation of Wnt/β-catenin signaling and that PRRX1 upregulation is closely correlated with gastric cancer metastasis.

  7. Interaction between Wnt/β-catenin pathway and microRNAs regulates epithelial-mesenchymal transition in gastric cancer (Review).

    PubMed

    Wu, Cunen; Zhuang, Yuwen; Jiang, Shan; Liu, Shenlin; Zhou, Jinyong; Wu, Jian; Teng, Yuhao; Xia, Baomei; Wang, Ruiping; Zou, Xi

    2016-06-01

    Gastric cancer (GC) is the third primary cause of cancer-related mortality and one of the most common type of malignant diseases worldwide. Despite remarkable progress in multimodality therapy, advanced GC with high aggressiveness always ends in treatment failure. Epithelial-mesenchymal transition (EMT) has been widely recognized to be a key process associating with GC evolution, during which cancer cells go through phenotypic variations and acquire the capability of migration and invasion. Wnt/β-catenin pathway has established itself as an EMT regulative signaling due to its maintenance of epithelial integrity as well as tight adherens junctions while mutations of its components will lead to GC initiation and diffusion. The E-cadherin/β-catenin complex plays an important role in stabilizing β-catenin at cell membrane while disruption of this compound gives rise to nuclear translocation of β-catenin, which accounts for upregulation of EMT biomarkers and unfavorable prognosis. Additionally, several microRNAs positively or negatively modify EMT by reciprocally acting with certain target genes of Wnt/β-catenin pathway in GC. Thus, this review centers on the strong associations between Wnt/β-catenin pathway and microRNAs during alteration of EMT in GC, which may induce advantageous therapeutic strategies for human gastric cancer.

  8. Dysregulation of Fra1 expression by Wnt/β-catenin signalling promotes glioma aggressiveness through epithelial-mesenchymal transition.

    PubMed

    Zhang, Li; Liu, Huaijun; Mu, Xiaodan; Cui, Jianling; Peng, Zhigang

    2017-04-28

    Aberrant expression of Fos-related antigen-1 (Fra1) is commonly elevated in various malignant cancers and is strongly implicated in invasion and metastasis. However, the molecular mechanisms underlying its dysregulation in human glioma remain poorly understood. In the present study, we demonstrate that up-regulation of Fra1 plays a crucial role in the glioma aggressiveness and epithelial-mesenchymal transition (EMT) activated by Wnt/β-catenin signal pathway. In glioma cells, activation of Wnt/β-catenin signalling by Wnt3a administration obviously induced EMT and directly activated the transcription of Fra1. Phenotype experiments revealed that up-regulation of Fra1 induced by Wnt/β-catenin signalling drove the EMT of glioma cells. Furthermore, it was found that the cisplatin resistance acquired by Wnt/β-catenin signalling activation depended on increased expression of Fra1. Analysis of clinical specimens verified a positive correlation between Fra1 and β-catenin as well as a poor prognosis in glioma patients with double-high expressions of them. These findings indicate that an aberrant Wnt/β-catenin signalling leads to the EMT and drug resistance of glioma via Fra1 induction, which suggests novel therapeutic strategies for the malignant disease.

  9. NANOG regulates epithelial-mesenchymal transition and chemoresistance through activation of the STAT3 pathway in epithelial ovarian cancer.

    PubMed

    Liu, Suqing; Sun, Jing; Cai, Bin; Xi, Xiaowei; Yang, Liu; Zhang, Zhenbo; Feng, Youji; Sun, Yunyan

    2016-07-01

    NANOG is a key transcription factor that is overexpressed and plays an important role in various cancers. Its overexpression is associated with highly tumorigenic, drug-resistant, and poor prognosis. However, the underlying mechanism of action of NANOG in ovarian cancer remains unclear. Epithelial-mesenchymal transition (EMT), which is a critical process in cancer invasion and metastasis, is also associated with drug resistance. We determined whether NANOG is associated with EMT and chemoresistance in epithelial ovarian cancer cells. NANOG expression was increased in epithelial ovarian cancer cells (HEY and SKOV3) compared with normal epithelial ovarian cells (Moody). Low expression of NANOG increased the expression of E-cadherin and decreased the expression of vimentin, β-catenin, and Snail. Furthermore, the cell migration and invasion abilities were decreased. The multidrug resistance genes MDR-1 and GST-π were also downregulated when NANOG was lowly expressed. The cells that were transfected with the si-NANOG plasmid were more sensitive to cisplatin compared with the cells that were transfected with empty vector. The data demonstrated that Stat3 was correlated with NANOG-mediated EMT and drug resistance. The silencing of Stat3 expression abrogated NANOG-mediated EMT changes and increased the sensitivity of the cells to chemotherapy. These results suggest that NANOG mediates EMT and drug resistance through activation of the Stat3 pathway in epithelial ovarian cancer.

  10. Twist induces epithelial-mesenchymal transition in cervical carcinogenesis by regulating the TGF-β/Smad3 signaling pathway.

    PubMed

    Fan, Qiong; Qiu, Mei-Ting; Zhu, Zhu; Zhou, Jin-Hua; Chen, Limo; Zhou, Ye; Gu, Wei; Wang, Li-Hua; Li, Zhu-Nan; Xu, Ying; Cheng, Wei-Wei; Wu, Dan; Bao, Wei

    2015-10-01

    Epithelial-mesenchymal transition (EMT) is associated with the metastasis and poor prognosis of cervical cancer. However, the underlying mechanisms are poorly defined. In the present study, we investigated whether Twist plays a direct role in human cervical cancer using immunohistochemical and western blot analyses. Immunohistochemical analysis revealed that Twist is highly expressed in cervical cancer, which correlates with poor tumor pathological differentiation or lymph node metastasis (P<0.05). Depletion of Twist by stable shRNA-mediated knockdown decreased the migratory ability of cancer cell lines in vitro. Suppression or overexpression of Twist also resulted in an altered expression of the molecular mediators of EMT. Furthermore, exogenous TGF-β promoted EMT by upregulating the expression of Twist through the TGF-β/Smad3 pathway, and this effect was eliminated by Twist depletion in cancer cells as demonstrated in the in vitro study. The use of in vivo models revealed a decreased tumor proliferation potential in Twist-depleted cancer cells. The results suggested a novel function for Twist in the promotion of EMT via TGF-β/Smad3 signaling pathway. Thus, Twist constitutes a potential therapeutic target in human cervical cancer.

  11. Ionizing Radiation Promotes Migration and Invasion of Cancer Cells Through Transforming Growth Factor-Beta-Mediated Epithelial-Mesenchymal Transition

    SciTech Connect

    Zhou Yongchun; Liu Junye; Li Jing; Zhang Jie; Xu Yuqiao; Zhang Huawei; Qiu Lianbo; Ding Guirong; Su Xiaoming; Mei Shi; Guo Guozhen

    2011-12-01

    Purpose: To examine whether ionizing radiation enhances the migratory and invasive abilities of cancer cells through transforming growth factor (TGF-{beta})-mediated epithelial-mesenchymal transition (EMT). Methods and Materials: Six cancer cell lines originating from different human organs were irradiated by {sup 60}Co {gamma}-ray at a total dose of 2 Gy, and the changes associated with EMT, including morphology, EMT markers, migration and invasion, were observed by microscope, Western blot, immunofluorescence, scratch assay, and transwell chamber assay, respectively. Then the protein levels of TGF-{beta} in these cancer cells were detected by enzyme-linked immunosorbent assay, and the role of TGF-{beta} signaling pathway in the effect of ionizing radiation on EMT was investigate by using the specific inhibitor SB431542. Results: After irradiation with {gamma}-ray at a total dose of 2 Gy, cancer cells presented the mesenchymal phenotype, and compared with the sham-irradiation group the expression of epithelial markers was decreased and of mesenchymal markers was increased, the migratory and invasive capabilities were strengthened, and the protein levels of TGF-{beta} were enhanced. Furthermore, events associated with EMT induced by IR in A549 could be reversed through inhibition of TGF-{beta} signaling. Conclusions: These results suggest that EMT mediated by TGF-{beta} plays a critical role in IR-induced enhancing of migratory and invasive capabilities in cancer cells.

  12. Upregulation of PTEN suppresses invasion in Tca8113 tongue cancer cells through repression of epithelial-mesenchymal transition (EMT).

    PubMed

    Xie, Siming; Lu, Zhiyuan; Lin, Yanzhu; Shen, Lijia; Yin, Cao

    2016-05-01

    We previously discovered that the expression of the tumor suppressor phosphatase and tensin homolog (PTEN) was downregulated in the majority patients with tongue squamous cell carcinoma (TSCC). The aim of this study was to investigate the role of PTEN overexpression in the regulation of epithelial-mesenchymal transition (EMT) of the tongue squamous carcinoma cell line Tca8113 as well as explore the underlying mechanism. GV230 (containing the PTEN gene) and empty vectors were transfected into Tca8113 cells. After stable transfection, the messenger RNA (mRNA) and protein levels of PTEN were validated using quantitative real-time PCR (qPCR) and Western blot analysis. The growth and cell cycle were analyzed using Cell Counting Kit-8 (CCK-8) and flow cytometry, respectively. The invasion ability was measured with a transwell assay. The effects of PTEN overexpression on EMT and Hedgehog signaling were assessed by comparing Tca8113-PTEN cells with control and negative control cell groups. We found that PTEN expression was significantly upregulated after transfection. Meanwhile, upregulated PTEN inhibited the proliferation and invasion of Tca8113 cells. In addition, we observed changes in the EMT- and Hedgehog-associated proteins. These data demonstrated that PTEN upregulation could reduce invasion by inhibiting the process of EMT in Tca8113 cells, which might be related to the Hedgehog signaling pathway.

  13. Ginsenoside Rg3 inhibits epithelial-mesenchymal transition (EMT) and invasion of lung cancer by down-regulating FUT4.

    PubMed

    Tian, Lili; Shen, Dachuan; Li, Xiaodong; Shan, Xiu; Wang, Xiaoqi; Yan, Qiu; Liu, Jiwei

    2016-01-12

    The epithelial-mesenchymal transition (EMT) is an important factor in lung cancer metastasis, and targeting EMT is a potential therapeutic strategy. Fucosyltransferase IV (FUT4) and its synthetic cancer sugar antigen Lewis Y (LeY) was abnormally elevated in many cancers. In this study, a traditional Chinese medicine ginsenoside Rg3 was used to investigate whether its inhibition to EMT and invasion of lung cancer is by the glycobiology mechanism. We found that Rg3 treatment (25, 50, 100 μg/ml) inhibited cell migration and invasion by wound-healing and transwell assays. Rg3 could significantly alter EMT marker proteins with increased E-cadherin, but decreased Snail, N-cadherin and Vimentin expression. Rg3 also down-regulated FUT4 gene and protein expression in lung cancer cells by qPCR, Western blot and immunofluorescence. After FUT4 down-regulated with shFUT4, EMT was obviously inhibited. Furthermore, the activation of EGFR through decreased LeY biosynthesis was inhibited, which blocked the downstream MAPK and NF-κB signal pathways. In addition, Rg3 reduced tumor volume and weight in xenograft mouse model, and significantly decreased tumor metastasis nodules in lung tissues by tail vein injection. In conclusion, Rg3 inhibits EMT and invasion of lung cancer by down-regulating FUT4 mediated EGFR inactivation and blocking MAPK and NF-κB signal pathways. Rg3 may be a potentially effective agent for the treatment of lung cancer.

  14. Role of Annexin A2 in the EGF-induced epithelial-mesenchymal transition in human CaSki cells

    PubMed Central

    Cui, Lei; Song, Jian; Wu, Liting; Cheng, Luhui; Chen, Aijun; Wang, Yanlin; Huang, Yingdi; Huang, Liming

    2017-01-01

    The epidermal growth factor receptor (EGF-R) signaling pathway is thought to have an important role in the development and progression of several carcinomas, as it is associated with cell proliferation, differentiation and migration. Activation of EGF-R signaling regulates epithelial-mesenchymal transition (EMT)-associated invasion and migration in normal and malignant epithelial cells. However, the specific mechanisms have not yet been fully elucidated. The present study utilized wound healing assays, western blotting, flow cytometry and MTT assays to demonstrate that Annexin A2 (ANXA2) is a key regulatory factor in EGF-induced EMT in CaSki cervical cancer cells. Moreover, the increased expression levels of ANXA2 promoted cell viability and migration in human CaSki cells. It was also found that silencing ANXA2 partially reverses EGF-induced EMT and inhibits cell viability and migration in CaSki cells. These findings suggest that ANXA2 is a key regulator of EGF-induced EMT in CaSki cervical cancer cells. PMID:28123570

  15. Metronomic Cordycepin Therapy Prolongs Survival of Oral Cancer-Bearing Mice and Inhibits Epithelial-Mesenchymal Transition.

    PubMed

    Su, Nai-Wen; Wu, Shu-Hua; Chi, Chih-Wen; Liu, Chung-Ji; Tsai, Tung-Hu; Chen, Yu-Jen

    2017-04-13

    Cordycepin (3'-deoxyadenosine) is a natural compound abundantly found in Cordyceps sinesis in natural and fermented sources. In this study, we examined the effects of cordycepin in a human oral squamous cell carcinoma (OSCC) xenograft model. Cordycepin was administered in a regular, low-dose and prolonged schedule metronomic therapy. Two doses of cordycepin (25 mg/kg, 50 mg/kg) were administrated five days a week for eight consecutive weeks. The tumor volumes were reduced and survival time was significantly prolonged from 30.3 ± 0.9 days (control group) to 56 days (50 mg/kg group, the day of tumor-bearing mice were sacrificed for welfare consideration). The weights of mice did not change and liver, renal, and hematologic functions were not compromised. Cordycepin inhibited the OSCC cell viability in vitro (IC50 122.4-125.2 μM). Furthermore, morphological characteristics of apoptosis, increased caspase-3 activity and G2/M cell cycle arrest were observed. In wound healing assay, cordycepin restrained the OSCC cell migration. Cordycepin upregulated E-cadherin and downregulated N-cadherin protein expression, implying inhibition of epithelial-mesenchymal transition (EMT). The immunohistochemical staining of xenograft tumor with E-cadherin and vimentin validated in vitro results. In conclusion, metronomic cordycepin therapy showed effective tumor control, prolonged survival and low toxicities. Cytotoxicity against cancer cells with apoptotic features and EMT inhibition were observed.

  16. Wheatgrass extract inhibits hypoxia-inducible factor-1-mediated epithelial-mesenchymal transition in A549 cells

    PubMed Central

    Do, Nam Yong; Shin, Hyun-Jae

    2017-01-01

    BACKGROUND/OBJECTIVES Epithelial-mesenchymal transition (EMT) is involved in not only cancer development and metastasis but also non-cancerous conditions. Hypoxia is one of the proposed critical factors contributing to formation of chronic rhinosinusitis or nasal polyposis. Wheatgrass (Triticum aestivum) has antioxidant, anti-aging, and anti-inflammatory effects. In this study, we analyzed whether wheatgrass has an inhibitory effect on the EMT process in airway epithelial cells. MATERIALS/METHODS A549 human lung adenocarcinoma cells were incubated in hypoxic conditions (CO2 5%/O2 1%) for 24 h in the presence of different concentrations of wheatgrass extract (50, 75, 100, and 150 µg/mL) and changes in expression of epithelial or mesenchymal markers were evaluated by immunoblotting and immunofluorescence. Accordingly, associated EMT-related transcriptional factors, Snail and Smad, were also evaluated. RESULTS Hypoxia increased expression of N-cadherin and reduced expression of E-cadherin. Mechanistically, E-cadherin levels were recovered during hypoxia by silencing hypoxia inducible factor (HIF)-1α or administering wheatgrass extract. Wheatgrass inhibited the hypoxia-mediated EMT by reducing the expression of phosphorylated Smad3 (pSmad3) and Snail. It suppressed the hypoxia-mediated EMT processes of airway epithelial cells via HIF-1α and the pSmad3 signaling pathway. CONCLUSION These results suggest that wheatgrass has potential as a therapeutic or supplementary agent for HIF-1-related diseases. PMID:28386380

  17. Stem cell conditioned culture media attenuated albumin-induced epithelial-mesenchymal transition in renal tubular cells.

    PubMed

    Hu, Junping; Zhu, Qing; Li, Pin-Lan; Wang, Weili; Yi, Fan; Li, Ningjun

    2015-01-01

    Proteinuria-induced epithelial-mesenchymal transition (EMT) plays an important role in progressive renal tubulointerstitial fibrosis in chronic renal disease. Stem cell therapy has been used for different diseases. Stem cell conditioned culture media (SCM) exhibits similar beneficial effects as stem cell therapy. The present study tested the hypothesis that SCM inhibits albumin-induced EMT in cultured renal tubular cells. Rat renal tubular cells were treated with/without albumin (20 µmg/ml) plus SCM or control cell media (CCM). EMT markers and inflammatory factors were measured by Western blot and fluorescent images. Albumin induced EMT as shown by significant decreases in levels of epithelial marker E-cadherin, increases in mesenchymal markers fibroblast-specific protein 1 and α-smooth muscle actin, and elevations in collagen I. SCM inhibited all these changes. Meanwhile, albumin induced NF-κB translocation from cytosol into nucleus and that SCM blocked the nuclear translocation of NF-κB. Albumin also increased the levels of pro-inflammatory factor monocyte chemoattractant protein-1 (MCP)-1 by nearly 30 fold compared with control. SCM almost abolished albumin-induced increase of MCP-1. These results suggest that SCM attenuated albumin-induced EMT in renal tubular cells via inhibiting activation of inflammatory factors, which may serve as a new therapeutic approach for chronic kidney diseases. © 2015 S. Karger AG, Basel.

  18. TUFT1 regulates metastasis of pancreatic cancer through HIF1-Snail pathway induced epithelial-mesenchymal transition.

    PubMed

    Zhou, Bin; Zhan, Hanxiang; Tin, Lamtin; Liu, Shanglong; Xu, Jianwei; Dong, Yanan; Li, Xiaoyu; Wu, Liqun; Guo, Weidong

    2016-11-01

    Pancreatic cancer (PC) is usually lethal because of late diagnosis and early metastasis. Analysis of data from online database showed that TUFT1 is highly expressed in liver metastases of PC, and was associated with shorter overall survival. However, the role of TUFT1 in PC remains unknown. In this study, we show for the first time that TUFT1 is overexpressed in PC tissues compared with adjacent normal pancreas tissues, and TUFT1 expression is significantly associated with lymph node metastasis and advanced PC stage (P <0.05). Depletion or overexpression of endogenous TUFT1 correspondingly inhibited or promoted PC cell migration and metastasis in vitro and in vivo, and affected expression of epithelial-mesenchymal transition (EMT)-related proteins, E-cadherin and vimentin. We also provide evidence that TUFT1 induced EMT by altering the expression of Snail; that TUFT1 is associated with expression and activity of HIF1; and that TUFT1 might affect HIF1-Snail signaling in regulating EMT. Collectively, these results indicate that TUFT1 could be a novel diagnostic and therapeutic target for PC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. The lipid-transfer protein Nir2 enhances epithelial-mesenchymal transition and facilitates breast cancer metastasis.

    PubMed

    Keinan, Omer; Kedan, Amir; Gavert, Nancy; Selitrennik, Michael; Kim, SoHui; Karn, Thomas; Becker, Sven; Lev, Sima

    2014-11-01

    The involvement of epithelial-mesenchymal transition (EMT) in breast cancer metastasis has been demonstrated in many studies. However, the intracellular proteins and signaling pathways that regulate EMT have not been fully identified. Here, we show that the lipid-transfer protein Nir2 (also known as PITPNM1) enhances EMT in mammary epithelial and breast cancer cells. Nir2 overexpression decreases the expression of epithelial markers and concomitantly increases the expression of mesenchymal markers, whereas silencing of Nir2 expression by small hairpin RNA (shRNA) has opposite effects. Additionally, Nir2 expression is increased during EMT and affects cell morphology, whereas Nir2 depletion attenuates growth factor-induced cell migration. These effects of Nir2 on EMT-associated processes are mainly mediated through the PI3K/AKT and the ERK1/2 pathways. Nir2 depletion also inhibits cell invasion in vitro and lung metastasis in animal models. Immunohistochemical analysis of breast cancer tissue samples reveals a correlation between high Nir2 expression and tumor grade, and Kaplan-Meier survival curves correlate Nir2 expression with poor disease outcome. These results suggest that Nir2 not only enhances EMT in vitro and breast cancer metastasis in animal models, but also contributes to breast cancer progression in human patients. © 2014. Published by The Company of Biologists Ltd.

  20. Knockdown of BAG3 induces epithelial-mesenchymal transition in thyroid cancer cells through ZEB1 activation.

    PubMed

    Meng, X; Kong, D-H; Li, N; Zong, Z-H; Liu, B-Q; Du, Z-X; Guan, Y; Cao, L; Wang, H-Q

    2014-02-27

    The process by which epithelial features are lost in favor of a mesenchymal phenotype is referred to as epithelial-mesenchymal transition (EMT). Most carcinomas use this mechanism to evade into neighboring tissues. Reduction or a loss of E-cadherin expression is a well-established hallmark of EMT. As a potent suppressor of E-cadherin, transcription factor ZEB1 is one of the key inducers of EMT, whose expression promotes tumorigenesis and metastasis of carcinomas. Bcl-2-associated athanogene 3 (BAG3) affects multifaceted cellular functions, including proliferation, apoptosis, cell adhesion and invasion, viral infection, and autophagy. Recently, we have reported a novel role of BAG3 implicated in EMT, while the mechanisms are poorly elucidated. The current study demonstrated that knockdown of BAG3 induced EMT, and increased cell migratory and invasiveness in thyroid cancer cells via transcriptional activation of ZEB1. We also found that BAG3 knockdown led to nuclear accumulation of β-catenin, which was responsible for the transcriptional activation of ZEB1. These results indicate BAG3 as a regulator of ZEB1 expression in EMT and as a regulator of metastasis in thyroid cancer cells, providing potential targets to prevent and/or treat thyroid cancer cell invasion and metastasis.

  1. Ginsenoside Rg3 inhibits epithelial-mesenchymal transition (EMT) and invasion of lung cancer by down-regulating FUT4

    PubMed Central

    Li, Xiaodong; Shan, Xiu; Wang, Xiaoqi; Yan, Qiu; Liu, Jiwei

    2016-01-01

    The epithelial-mesenchymal transition (EMT) is an important factor in lung cancer metastasis, and targeting EMT is a potential therapeutic strategy. Fucosyltransferase IV (FUT4) and its synthetic cancer sugar antigen Lewis Y (LeY) was abnormally elevated in many cancers. In this study, a traditional Chinese medicine ginsenoside Rg3 was used to investigate whether its inhibition to EMT and invasion of lung cancer is by the glycobiology mechanism. We found that Rg3 treatment (25, 50, 100 μg/ml) inhibited cell migration and invasion by wound-healing and transwell assays. Rg3 could significantly alter EMT marker proteins with increased E-cadherin, but decreased Snail, N-cadherin and Vimentin expression. Rg3 also down-regulated FUT4 gene and protein expression in lung cancer cells by qPCR, Western blot and immunofluorescence. After FUT4 down-regulated with shFUT4, EMT was obviously inhibited. Furthermore, the activation of EGFR through decreased LeY biosynthesis was inhibited, which blocked the downstream MAPK and NF-κB signal pathways. In addition, Rg3 reduced tumor volume and weight in xenograft mouse model, and significantly decreased tumor metastasis nodules in lung tissues by tail vein injection. In conclusion, Rg3 inhibits EMT and invasion of lung cancer by down-regulating FUT4 mediated EGFR inactivation and blocking MAPK and NF-κB signal pathways. Rg3 may be a potentially effective agent for the treatment of lung cancer. PMID:26636541

  2. The tumor microenvironment: An irreplaceable element of tumor budding and epithelial-mesenchymal transition-mediated cancer metastasis.

    PubMed

    Li, Hui; Xu, Fangying; Li, Si; Zhong, Anjing; Meng, Xianwen; Lai, Maode

    2016-07-03

    Tumor budding occurs at the invasive front of cancer; the tumor cells involved have metastatic and stemness features, indicating a poor prognosis. Tumor budding is partly responsible for cancer metastasis, and its initiation is based on the epithelial-mesenchymal transition (EMT) process. The EMT process involves the conversion of epithelial cells into migratory and invasive cells, and is a profound event in tumorigenesis. The EMT, associated with the formation of cancer stem cells (CSCs) and resistance to therapy, results from a combination of gene mutation, epigenetic regulation, and microenvironmental control. Tumor budding can be taken to represent the EMT in vivo. The EMT process is under the influence of the tumor microenvironment as well as tumor cells themselves. Here, we demonstrate that the tumor microenvironment dominates EMT development and impacts cancer metastasis, as well as promotes CSC formation and mediates drug resistance. In this review, we mainly discuss components of the microenvironment, such as the extracellular matrix (ECM), inflammatory cytokines, metabolic products, and hypoxia, that are involved in and impact on the acquisition of tumor-cell motility and dissemination, the EMT, metastatic tumor-cell formation, tumor budding and CSCs, and cancer metastasis, including subsequent chemo-resistance. From our point of view, the tumor microenvironment now constitutes a promising target for cancer therapy.

  3. Epigenetic silencing of HIC1 promotes epithelial-mesenchymal transition and drives progression in esophageal squamous cell carcinoma

    PubMed Central

    Li, Pei; Liu, Xiang; Dong, Zi-Ming; Ling, Zhi-Qiang

    2015-01-01

    Downregulation of the novel tumor suppressor gene HIC1 (hypermethylated in cancer 1) occurs frequently in various tumors where it causes tumor progression and metastasis. In this study, we investigated a role of HIC1 in esophageal squamous cell carcinoma (ESCC) and the underlying mechanisms. Downregulation of HIC1 occurred in approximately 70% of primary ESCCs at both mRNA and protein level where it was associated significantly with vascular invasion, advanced clinical stage, lymph node metastasis, and poor disease free survival (DFS). The promoter methylation analyses suggested that loss of HIC1 expression was mediated by epigenetic mechanisms. Functional studies established that ectopic re-expression of HIC1 in ESCC cells inhibited cell proliferation, clonogenicity, cell motility, tumor formation and epithelial-mesenchymal transition (EMT). Our results decipher the mechanism through which HIC1 deficiency induce ESCC cells to undergo EMT and promote tumor progression and metastasis through activation of EphA2 signaling pathway. Together, loss of the regulation of EphA2 pathway through HIC1 epigenetic silencing could be an important mechanism in the ESCC progression. We identify a novel pathway that linking HIC1 downregulation to EphA2-inducing EMT in ESCC cells and may shed light on the development of novel anti-tumor therapeutics. PMID:26510908

  4. IL-8 induces the epithelial-mesenchymal transition of renal cell carcinoma cells through the activation of AKT signaling

    PubMed Central

    Zhou, Nan; Lu, Fuding; Liu, Cheng; Xu, Kewei; Huang, Jian; Yu, Dexin; Bi, Liangkuan

    2016-01-01

    The epithelial-mesenchymal transition (EMT) process has increasingly been examined due to its role in the progression of human tumors. Renal cell carcinoma (RCC) is one of the most common urological tumors that results in patient mortality. Previous studies have demonstrated that the EMT process is closely associated with the metastasis of RCC; however, the underlying molecular mechanism has not been determined yet. The present study revealed that interleukin (IL)-8 was highly expressed in metastatic RCC. IL-8 could induce the EMT of an RCC cell line by enhancing N-cadherin expression and decreasing E-cadherin expression. Furthermore, IL-8 could induce AKT phosphorylation, and the phosphatidylinositol-4,5-bisphosphate 3-kinase inhibitor LY294002 could inhibit the EMT of RCC cells that was induced by IL-8. Therefore, these results suggest that IL-8 is able to promote the EMT of RCC through the activation of the AKT signal transduction pathway, and this may provide a possible molecular mechanism for RCC metastasis. PMID:27588140

  5. Epstein-Barr virus nuclear antigen 1 (EBNA1) protein induction of epithelial-mesenchymal transition in nasopharyngeal carcinoma cells.

    PubMed

    Wang, Lu; Tian, Wen-Dong; Xu, Xia; Nie, Biao; Lu, Juan; Liu, Xiong; Zhang, Bao; Dong, Qi; Sunwoo, John B; Li, Gang; Li, Xiang-Ping

    2014-02-01

    The Epstein-Barr virus (EBV)-encoded EB nuclear antigen 1 (EBNA1) protein is required for maintenance and transmission of the viral episome in EBV-infected cells. The objective of this study was to investigate the role of EBNA1 protein in nasopharyngeal carcinoma (NPC). Tissue samples from 48 patients with NPC and 12 patients with chronic nasopharyngitis were subjected to immunohistochemical analysis of EBNA1 expression. EBNA1 combinational DNA was used to overexpress EBNA1 protein in NPC cell lines to assess tumor cell epithelial-mesenchymal transition (EMT), colony formation, migration and invasion, and gene expression. EBNA1 protein was highly expressed in NPC tissue specimens, and its expression was associated with NPC lymph node metastasis. EBNA1 expression affected NPC cell morphology and the expression of EMT markers in vitro. Furthermore, overexpression of EBNA1 inhibited the expression of microRNA 200a (miR-200a) and miR-200b and, in turn, up-regulated expression of their target genes, zinc finger E-box binding homeobox 1 ( ZEB1) and ZEB2, which are well known mediators of EMT. In addition, EBNA1-regulated miR-200a and miR-200b expression was mediated by transforming growth factor-β1. The current findings provided novel insight into the vital role of EBNA1 in manipulating a molecular switch of EMT in EBV-positive NPC cells. © 2013 American Cancer Society.

  6. Little evidence for epithelial-mesenchymal transition in a murine model of airway fibrosis induced by repeated naphthalene exposure.

    PubMed

    Watanabe, Osamu; Tsuji, Takao; Kikuchi, Ryota; Itoh, Masayuki; Nakamura, Hiroyuki; Aoshiba, Kazutetsu

    2016-10-01

    Recent evidence suggests that epithelial-mesenchymal transition (EMT) is involved in the pathogenesis of airway obstructive diseases, such as chronic obstructive pulmonary disease, asthma and bronchiolitis obliterans syndrome after lung transplantation. However, whether EMT occurs in an experimental model of airway fibrosis is not well known. We explored evidence of EMT in a murine model of airway fibrosis induced by repeated exposure to naphthalene. Mice were administered intraperitoneal injections of naphthalene or corn oil vehicle once weekly for 14 consecutive weeks. The animals were sacrificed 5days after the final injection of naphthalene or corn oil vehicle. EMT was evaluated in lung tissue sections using immunohistochemistry and immunofluorescence. Repeated naphthalene exposure induced loss of club cells, hyperplasia of epithelial cells and peribronchial fibrosis. However, we did not find any loss of E-cadherin expression or any acquisition of vimentin, S100A4 or αSMA in epithelial cells in control or naphthalene-exposed mice. These results suggest that EMT does not contribute significantly to naphthalene-induced airway fibrosis in mice. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. NUMB negatively regulates the epithelial-mesenchymal transition of triple-negative breast cancer by antagonizing Notch signaling

    PubMed Central

    Zhang, Jianchao; Shao, Ximing; Sun, Haiyan; Liu, Ke; Ding, Zhihao; Chen, Juntao; Fang, Lijing; Su, Wu; Hong, Yang; Li, Huashun; Li, Hongchang

    2016-01-01

    Triple-negative breast cancer (TNBC), an aggressive subtype of breast cancer with higher rates of early relapse and metastasis, is frequently associated with aberrant activation of epithelial-mesenchymal transition (EMT). Nonetheless, how EMT is initiated and regulated during TNBC progression is not well understood. Here, we report that NUMB is a negative regulator of EMT in both human mammary epithelial cells and breast cancer cells. Reduced NUMB expression was significantly associated with elevated EMT in TNBC. Conversely, overexpression of NUMB strongly attenuated the EMT program and metastasis of TNBC cell lines. Interestingly, we showed that NUMB employs different molecular mechanisms to regulate EMT. In normal mammary epithelial cells and breast cancer cells expressing wild-type p53, NUMB suppressed EMT by stabilizing p53. However, in TNBC cells, loss of NUMB facilitated the EMT program by activating Notch signaling. Consistent with these findings, low NUMB expression and high Notch activity were significantly correlated with the TNBC subtype in patients. Collectively, these findings reveal novel molecular mechanisms of NUMB in the regulation of breast tumor EMT, especially in TNBC. PMID:27506933

  8. Regulation of matrix stiffness on the epithelial-mesenchymal transition of breast cancer cells under hypoxia environment

    NASA Astrophysics Data System (ADS)

    Lv, Yonggang; Chen, Can; Zhao, Boyuan; Zhang, Xiaomei

    2017-06-01

    Substrate stiffness and hypoxia are associated with tumor development and progression, respectively. However, the synergy of them on the biological behavior of human breast cancer cell is still largely unknown. This study explored how substrate stiffness regulates the cell phenotype, viability, and epithelial-mesenchymal transition (EMT) of human breast cancer cells MCF-7 under hypoxia (1% O2). TRITC-phalloidin staining showed that MCF-7 cells transformed from round to irregular polygon with stiffness increase either in normoxia or hypoxia. While being accompanied with the upward tendency from a 0.5- to a 20-kPa substrate, the percentage of cell apoptosis was significantly higher in hypoxia than that in normoxia, especially on the 20-kPa substrate. Additionally, it was hypoxia, but not normoxia, that promoted the EMT of MCF-7 by upregulating hypoxia-inducible factor-1α (HIF-1α), vimentin, Snail 1, and matrix metalloproteinase 2 (MMP 2) and 9 (MMP 9), and downregulating E-cadherin simultaneously regardless of the change of substrate stiffness. In summary, this study discovered that hypoxia and stiffer substrate (20 kPa) could synergistically induce phenotype change, apoptosis, and EMT of MCF-7 cells. Results of this study have an important significance on further exploring the synergistic effect of stiffness and hypoxia on the EMT of breast cancer cells and its molecular mechanism.

  9. Epithelial-mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients

    PubMed Central

    Tan, Tuan Zea; Miow, Qing Hao; Miki, Yoshio; Noda, Tetsuo; Mori, Seiichi; Huang, Ruby Yun-Ju; Thiery, Jean Paul

    2014-01-01

    Epithelial-mesenchymal transition (EMT) is a reversible and dynamic process hypothesized to be co-opted by carcinoma during invasion and metastasis. Yet, there is still no quantitative measure to assess the interplay between EMT and cancer progression. Here, we derived a method for universal EMT scoring from cancer-specific transcriptomic EMT signatures of ovarian, breast, bladder, lung, colorectal and gastric cancers. We show that EMT scoring exhibits good correlation with previously published, cancer-specific EMT signatures. This universal and quantitative EMT scoring was used to establish an EMT spectrum across various cancers, with good correlation noted between cell lines and tumours. We show correlations between EMT and poorer disease-free survival in ovarian and colorectal, but not breast, carcinomas, despite previous notions. Importantly, we found distinct responses between epithelial- and mesenchymal-like ovarian cancers to therapeutic regimes administered with or without paclitaxelin vivo and demonstrated that mesenchymal-like tumours do not always show resistance to chemotherapy. EMT scoring is thus a promising, versatile tool for the objective and systematic investigation of EMT roles and dynamics in cancer progression, treatment response and survival. PMID:25214461

  10. Diallyl disulfide suppresses epithelial-mesenchymal transition, invasion and proliferation by downregulation of LIMK1 in gastric cancer

    PubMed Central

    Liu, Fang; Xia, Hong; Ma, Yan-Hua; Zhou, Zhi-Gang; Zhang, Shuo; Yang, Bang-Min; Wu, You-Hua; Zeng, Xi; Ai, Xiao-Hong; Ling, Hui; Jiang, Hao; Su, Qi

    2016-01-01

    Diallyl disulfide (DADS) has been shown to have multi-targeted antitumor activities. We have previously discovered that it has a repressive effect on LIM kinase-1 (LIMK1) expression in gastric cancer MGC803 cells. This suggests that DADS may inhibit epithelial-mesenchymal transition (EMT) by downregulating LIMK1, resulting in the inhibition of invasion and growth in gastric cancer. In this study, we reveal that LIMK1 expression is correlated with tumor differentiation, invasion depth, clinical stage, lymph node metastasis, and poor prognosis. DADS downregulated the Rac1-Pak1/Rock1-LIMK1 pathway in MGC803 cells, as shown by decreased p-LIMK1 and p-cofilin1 levels, and suppressed cell migration and invasion. Knockdown and overexpression experiments performed in vitro demonstrated that downregulating LIMK1 with DADS resulted in restrained EMT that was coupled with decreased matrix metalloproteinase-9 (MMP-9) and increased tissue inhibitor of metalloproteinase-3 (TIMP-3) expression. In in vitro and in vivo experiments, the DADS-induced suppression of cell proliferation was enhanced and antagonized by the knockdown and overexpression of LIMK1, respectively. Similar results were observed for DADS-induced changes in the expression of vimentin, CD34, Ki-67, and E-cadherin in xenografted tumors. These results indicate that downregulation of LIMK1 by DADS could explain the inhibition of EMT, invasion and proliferation in gastric cancer cells. PMID:26871290

  11. The tumor microenvironment: An irreplaceable element of tumor budding and epithelial-mesenchymal transition-mediated cancer metastasis

    PubMed Central

    Li, Hui; Xu, Fangying; Li, Si; Zhong, Anjing; Meng, Xianwen; Lai, Maode

    2016-01-01

    ABSTRACT Tumor budding occurs at the invasive front of cancer; the tumor cells involved have metastatic and stemness features, indicating a poor prognosis. Tumor budding is partly responsible for cancer metastasis, and its initiation is based on the epithelial-mesenchymal transition (EMT) process. The EMT process involves the conversion of epithelial cells into migratory and invasive cells, and is a profound event in tumorigenesis. The EMT, associated with the formation of cancer stem cells (CSCs) and resistance to therapy, results from a combination of gene mutation, epigenetic regulation, and microenvironmental control. Tumor budding can be taken to represent the EMT in vivo. The EMT process is under the influence of the tumor microenvironment as well as tumor cells themselves. Here, we demonstrate that the tumor microenvironment dominates EMT development and impacts cancer metastasis, as well as promotes CSC formation and mediates drug resistance. In this review, we mainly discuss components of the microenvironment, such as the extracellular matrix (ECM), inflammatory cytokines, metabolic products, and hypoxia, that are involved in and impact on the acquisition of tumor-cell motility and dissemination, the EMT, metastatic tumor-cell formation, tumor budding and CSCs, and cancer metastasis, including subsequent chemo-resistance. From our point of view, the tumor microenvironment now constitutes a promising target for cancer therapy. PMID:26743180

  12. MYC associated zinc finger protein promotes the invasion and metastasis of hepatocellular carcinoma by inducing epithelial mesenchymal transition

    PubMed Central

    Liu, Wei; Ren, Yuan; Bei, Chunhua; Qin, Linyuan; Miao, Xueyan; Tang, Fen; Tang, Guifang; Tan, Shengkui

    2016-01-01

    MYC associated zinc finger protein (MAZ) plays a key role in regulation of gene expression and tumor development. Studies have shown that deregulated expression of MAZ is closely related to the progression of tumors such as glioblastoma, breast cancer, prostate cancer and liposarcoma. However, the role of MAZ in hepatocellular carcinoma (HCC) has not been fully elucidated. Here, we found that expression of MAZ was increased in HCC and correlated to the distant metastasis of HCC. Moreover, we found that MAZ had a relationship with zinc finger E-box binding homeobox 1 and 2 (ZEB1 and ZEB2), two important mesenchymal markers in epithelial-mesenchymal transition (EMT) that were over-expressed in HCC. After knocking-down MAZ expression in HCC cell lines using RNA interruption, HCC cell proliferation, tumorigenesis, invasion and migration were significantly inhibited. In addition, we found that expression of other EMT markers was also changed besides ZEB1 and ZEB2 by decreasing MAZ expression, both detected in vivo and in vitro assays. Therefore, we conclude that MAZ can promote the invasion and metastasis of HCC by inducing EMT. PMID:27861158

  13. Crosstalk between epithelial-mesenchymal transition and castration resistance mediated by Twist1/AR signaling in prostate cancer.

    PubMed

    Shiota, Masaki; Itsumi, Momoe; Takeuchi, Ario; Imada, Kenjiro; Yokomizo, Akira; Kuruma, Hidetoshi; Inokuchi, Junichi; Tatsugami, Katsunori; Uchiumi, Takeshi; Oda, Yoshinao; Naito, Seiji

    2015-12-01

    Although invasive and metastatic progression via the epithelial-mesenchymal transition (EMT) and acquisition of resistance to castration are both critical steps in prostate cancer, the molecular mechanism of this interaction remains unclear. In this study, we aimed to elucidate the interaction of signaling between castration resistance and EMT, and to apply this information to the development of a novel therapeutic concept using transforming growth factor-β (TGF-β) inhibitor SB525334 combined with androgen-deprivation therapy against prostate cancer using an in vivo model. This study revealed that an EMT inducer (TGF-β) induced full-length androgen receptor (AR) and AR variant expression. In addition, a highly invasive clone showed augmented full-length AR and AR variant expression as well as acquisition of castration resistance. Conversely, full-length AR and AR as well as Twist1 and mesenchymal molecules variant expression were up-regulated in castration-resistant LNCaP xenograft. Finally, TGF-β inhibitor suppressed Twist1 and AR expression as well as prostate cancer growth combined with castration. Taken together, these results demonstrate that Twist1/AR signaling was augmented in castration resistant as well as mesenchymal-phenotype prostate cancer, indicating the molecular mechanism of mutual and functional crosstalk between EMT and castration resistance, which may play a crucial role in prostate carcinogenesis and progression.

  14. Endothelin-1 promotes epithelial-mesenchymal transition in human chondrosarcoma cells by repressing miR-300.

    PubMed

    Wu, Min-Huan; Huang, Pei-Han; Hsieh, Mingli; Tsai, Chun-Hao; Chen, Hsien-Te; Tang, Chih-Hsin

    2016-10-25

    Chondrosarcoma is a malignant tumor of mesenchymal origin predominantly composed of cartilage-producing cells. This type of bone cancer is extremely resistant to radiotherapy and chemotherapy. Surgical resection is the primary treatment, but is often difficult and not always practical for metastatic disease, so more effective treatments are needed. In particular, it would be helpful to identify molecular markers as targets for therapeutic intervention. Endothelin-1 (ET-1), a potent vasoconstrictor, has been shown to enhance chondrosarcoma angiogenesis and metastasis. We report that ET-1 promotes epithelial-mesenchymal transition (EMT) in human chondrosarcoma cells. EMT is a key pathological event in cancer progression, during which epithelial cells lose their junctions and apical-basal polarity and adopt an invasive phenotype. Our study verifies that ET-1 induces the EMT phenotype in chondrosarcoma cells via the AMP-activated protein kinase (AMPK) pathway. In addition, we show that ET-1 increases EMT by repressing miR-300, which plays an important role in EMT-enhanced tumor metastasis. We also show that miR-300 directly targets Twist, which in turn results in a negative regulation of EMT. We found a highly positive correlation between ET-1 and Twist expression levels as well as tumor stage in chondrosarcoma patient specimens. Therefore, ET-1 may represent a potential novel molecular therapeutic target in chondrosarcoma metastasis.

  15. Regulation of matrix stiffness on the epithelial-mesenchymal transition of breast cancer cells under hypoxia environment.

    PubMed

    Lv, Yonggang; Chen, Can; Zhao, Boyuan; Zhang, Xiaomei

    2017-06-01

    Substrate stiffness and hypoxia are associated with tumor development and progression, respectively. However, the synergy of them on the biological behavior of human breast cancer cell is still largely unknown. This study explored how substrate stiffness regulates the cell phenotype, viability, and epithelial-mesenchymal transition (EMT) of human breast cancer cells MCF-7 under hypoxia (1% O2). TRITC-phalloidin staining showed that MCF-7 cells transformed from round to irregular polygon with stiffness increase either in normoxia or hypoxia. While being accompanied with the upward tendency from a 0.5- to a 20-kPa substrate, the percentage of cell apoptosis was significantly higher in hypoxia than that in normoxia, especially on the 20-kPa substrate. Additionally, it was hypoxia, but not normoxia, that promoted the EMT of MCF-7 by upregulating hypoxia-inducible factor-1α (HIF-1α), vimentin, Snail 1, and matrix metalloproteinase 2 (MMP 2) and 9 (MMP 9), and downregulating E-cadherin simultaneously regardless of the change of substrate stiffness. In summary, this study discovered that hypoxia and stiffer substrate (20 kPa) could synergistically induce phenotype change, apoptosis, and EMT of MCF-7 cells. Results of this study have an important significance on further exploring the synergistic effect of stiffness and hypoxia on the EMT of breast cancer cells and its molecular mechanism.

  16. VEGF elicits epithelial-mesenchymal transition (EMT) in prostate intraepithelial neoplasia (PIN)-like cells via an autocrine loop

    SciTech Connect

    Gonzalez-Moreno, Oscar; Lecanda, Jon; Green, Jeffrey E.; Segura, Victor; Catena, Raul; Serrano, Diego; Calvo, Alfonso

    2010-02-15

    Vascular endothelial growth factor (VEGF) is overexpressed during the transition from prostate intraepithelial neoplasia (PIN) to invasive carcinoma. We have mimicked such a process in vitro using the PIN-like C3(1)/Tag-derived Pr-111 cell line, which expresses low levels of VEGF and exhibits very low tumorigenicity in vivo. Elevated expression of VEGF164 in Pr-111 cells led to a significant increase in tumorigenicity, invasiveness, proliferation rates and angiogenesis. Moreover, VEGF164 induced strong changes in cell morphology and cell transcriptome through an autocrine mechanism, with changes in TGF-beta1- and cytoskeleton-related pathways, among others. Further analysis of VEGF-overexpressing Pr-111 cells or following exogenous addition of recombinant VEGF shows acquisition of epithelial-mesenchymal transition (EMT) features, with an increased expression of mesenchymal markers, such as N-cadherin, Snail1, Snail2 (Slug) and vimentin, and a decrease in E-cadherin. Administration of VEGF led to changes in TGF-beta1 signaling, including reduction of Smad7 (TGF-beta inhibitory Smad), increase in TGF-betaR-II, and translocation of phospho-Smad3 to the nucleus. Our results suggest that increased expression of VEGF in malignant cells during the transition from PIN to invasive carcinoma leads to EMT through an autocrine loop, which would promote tumor cell invasion and motility. Therapeutic blockade of VEGF/TGF-beta1 in PIN lesions might impair not only tumor angiogenesis, but also the early dissemination of malignant cells outside the epithelial layer.

  17. Activation of LINE-1 Retrotransposon Increases the Risk of Epithelial-Mesenchymal Transition and Metastasis in Epithelial Cancer

    PubMed Central

    Rangasamy, D.; Lenka, N.; Ohms, S.; Dahlstrom, J.E.; Blackburn, A.C.; Board, P.G.

    2015-01-01

    Epithelial cancers comprise 80-90% of human cancers. During the process of cancer progression, cells lose their epithelial characteristics and acquire stem-like mesenchymal features that are resistant to chemotherapy. This process, termed the epithelial-mesenchymal transition (EMT), plays a critical role in the development of metastases. Because of the unique migratory and invasive properties of cells undergoing the EMT, therapeutic control of the EMT offers great hope and new opportunities for treating cancer. In recent years, a plethora of genes and noncoding RNAs, including miRNAs, have been linked to the EMT and the acquisition of stem cell-like properties. Despite these advances, questions remain unanswered about the molecular processes underlying such a cellular transition. In this article, we discuss how expression of the normally repressed LINE-1 (or L1) retrotransposons activates the process of EMT and the development of metastases. L1 is rarely expressed in differentiated stem cells or adult somatic tissues. However, its expression is widespread in almost all epithelial cancers and in stem cells in their undifferentiated state, suggesting a link between L1 activity and the proliferative and metastatic behaviour of cancer cells. We present an overview of L1 activity in cancer cells including how genes involved in proliferation, invasive and metastasis are modulated by L1 expression. The role of L1 in the differential expression of the let-7 family of miRNAs (that regulate genes involved in the EMT and metastasis) is also discussed. We also summarize recent novel insights into the role of the L1-encoded reverse transcriptase enzyme in epithelial cell plasticity that suggest it might be a potential therapeutic target that could reverse the EMT and the metastasis-associated stem cell-like properties of cancer cells. PMID:26321759

  18. Myocardial Tbx20 regulates early atrioventricular canal formation and endocardial epithelial-mesenchymal transition via Bmp2.

    PubMed

    Cai, Xiaoqiang; Nomura-Kitabayashi, Aya; Cai, Weibin; Yan, Jianyun; Christoffels, Vincent M; Cai, Chen-Leng

    2011-12-15

    During early embryogenesis, the formation of the cardiac atrioventricular canal (AVC) facilitates the transition of the heart from a linear tube into a chambered organ. However, the genetic pathways underlying this developmental process are poorly understood. The T-box transcription factor Tbx20 is expressed predominantly in the AVC of early heart tube. It was shown that Tbx20 activates Nmyc1 and suppresses Tbx2 expression to promote proliferation and specification of the atrial and ventricular chambers, yet it is not known if Tbx20 is involved in early AVC development. Here, we report that mice lacking Tbx20 in the AVC myocardium fail to form the AVC constriction, and the endocardial epithelial-mesenchymal transition (EMT) is severely perturbed. Tbx20 maintains expression of a variety of genes, including Bmp2, Tbx3 and Hand1 in the AVC myocardium. Intriguingly, we found Bmp2 downstream genes involved in the EMT initiation are also downregulated. In addition, re-expression of Bmp2 in the AVC myocardium substantially rescues the EMT defects resulting from the lack of Tbx20, suggesting Bmp2 is one of the key downstream targets of Tbx20 in AVC development. Our data support a complex signaling network with Tbx20 suppressing Tbx2 in the AVC myocardium but also indirectly promoting Tbx2 expression through Bmp2. The spatiotemporal expression of Tbx2 in the AVC appears to be balanced between these two opposing signals. Overall, our study provides genetic evidence that Tbx20 has essential roles in regulating AVC development that coordinate early cardiac chamber formation.

  19. Myocardial Tbx20 regulates early atrioventricular canal formation and endocardial epithelial-mesenchymal transition via Bmp2

    PubMed Central

    Cai, Xiaoqiang; Nomura-Kitabayashi, Aya; Cai, Weibin; Yan, Jianyun; Christoffels, Vincent M.; Cai, Chen-Leng

    2011-01-01

    During early embryogenesis, the formation of the cardiac atrioventricular canal (AVC) facilitates the transition of the heart from a linear tube into a chambered organ. However, the genetic pathways underlying this developmental process are poorly understood. The T-box transcription factor Tbx20 is expressed predominantly in the AVC of early heart tube. It was shown that Tbx20 activates Nmyc1 and suppresses Tbx2 expression to promote proliferation and specification of the atrial and ventricular chambers, yet it is not known if Tbx20 is involved in early AVC development. Here, we report that mice lacking Tbx20 in the AVC myocardium fail to form the AVC constriction, and the endocardial epithelial-mesenchymal transition (EMT) is severely perturbed. Tbx20 maintains expression of a variety of genes, including Bmp2, Tbx3 and Hand1 in the AVC myocardium. Intriguingly, we found Bmp2 downstream genes involved in the EMT initiation are also downregulated. In addition, re-expression of Bmp2 in the AVC myocardium substantially rescues the EMT defects resulting from the lack of Tbx20, suggesting Bmp2 is one of the key downstream targets of Tbx20 in AVC development. Our data support a complex signaling network with Tbx20 suppressing Tbx2 in the AVC myocardium but also indirectly promoting Tbx2 expression through Bmp2. The spatiotemporal expression of Tbx2 in the AVC appears to be balanced between these two opposing signals. Overall, our study provides genetic evidence that Tbx20 has essential roles in regulating AVC development that coordinate early cardiac chamber formation. PMID:21983003

  20. Luteolin suppresses gastric cancer progression by reversing epithelial-mesenchymal transition via suppression of the Notch signaling pathway.

    PubMed

    Zang, Ming-de; Hu, Lei; Fan, Zhi-Yuan; Wang, He-Xiao; Zhu, Zheng-Lun; Cao, Shu; Wu, Xiong-Yan; Li, Jian-Fang; Su, Li-Ping; Li, Chen; Zhu, Zheng-Gang; Yan, Min; Liu, Bing-Ya

    2017-02-27

    Gastric cancer (GC) is one of the most malignant tumors and the second leading cause of cancer-related deaths in the world. Luteolin, a flavonoid present in many fruits and green plants, suppresses cancer progression. The effects of luteolin on GC cells and their underlying mechanisms remain unclear. Effects of luteolin on cell proliferation, migration, invasion, and apoptosis were examined in vitro and in vivo by cell counting kit-8 (CCK-8), transwell assays, and flow cytometry, respectively. Real-time reverse transcription polymerase chain reaction (RT-PCR) and Western blots were performed to evaluate Notch1 signaling and activation of epithelial-mesenchymal transition (EMT) in GC cells treated with or without luteolin. Immunohistochemistry was performed to examine proliferation and Notch1 expression in xenograft tumors. Luteolin significantly inhibited cell proliferation, invasion, and migration in a dose-dependent and time-dependent manner and promoted cell apoptosis. Luteolin reversed EMT by shrinking the cytoskeleton and by inducing the expression of epithelial biomarker E-cadherin and downregulating the mesenchymal biomarkers N-cadherin, vimentin and Snail. Furthermore, Notch1 signaling was inhibited by luteolin, and downregulation of Notch1 had similar effects as luteolin treatment on cell proliferation, migration, and apoptosis. In addition, luteolin suppressed tumor growth in vivo. A higher expression of Notch1 correlated with a poor overall survival and a poor time to first progression. Furthermore, co-immunoprecipitation analysis revealed that activated Notch1 and β-catenin formed a complex and regulated cell proliferation, migration, and invasion. In this study, GC progression was inhibited by luteolin through suppressing Notch1 signaling and reversing EMT, suggesting that luteolin may serve as an effective anti-tumor drug in GC treatment.

  1. IL-6 promotes growth and epithelial-mesenchymal transition of CD133+ cells of non-small cell lung cancer.

    PubMed

    Lee, Soo Ok; Yang, Xiaodong; Duan, Shanzhou; Tsai, Ying; Strojny, Laura R; Keng, Peter; Chen, Yuhchyau

    2016-02-09

    We examined IL-6 effects on growth, epithelial-mesenchymal transition (EMT) process, and metastatic ability of CD133+ and CD133- cell subpopulations isolated from three non-small cell lung cancer (NSCLC) cell lines: A549, H157, and H1299. We developed IL-6 knocked-down and scramble (sc) control cells of A549 and H157 cell lines by lentiviral infection system, isolated CD133+ and CD133- sub-populations, and investigated the IL-6 role in self-renewal/growth of these cells. IL-6 showed either an inhibitory or lack of effect in modulating growth of CD133- cells depending on intracellular IL-6 levels, but there was higher self-renewal ability of IL-6 expressing CD133+ cells than IL-6 knocked down cells, confirming the promoter role of IL-6 in CD133+ cells growth. We then examined tumor growth of xenografts developed from CD133+ cells of A549IL-6si vs. A549sc cell lines. Consistently, there was retarded growth of tumors developed from A549IL-6si, CD133+ cells compared to tumors originating from A549sc, CD133+ cells. The effect of IL-6 in promoting CD133+ self-renewal was due to hedgehog (Hhg) and Erk signaling pathway activation and higher Bcl-2/Bcl-xL expression. We also investigated whether IL-6 regulates the EMT process of CD133- and CD133+ cells differently. Expression of the EMT/metastasis-associated molecules in IL-6 expressing cells was higher than in IL-6 knocked down cells. Together, we demonstrated dual roles of IL-6 in regulating growth of CD133- and CD133+ subpopulations of lung cancer cells and significant regulation of IL-6 on EMT/metastasis increase in CD133+ cells, not in CD133- cells.

  2. α-Solanine inhibits invasion of human prostate cancer cell by suppressing epithelial-mesenchymal transition and MMPs expression.

    PubMed

    Shen, Kun-Hung; Liao, Alex Chien-Hwa; Hung, Jui-Hsiang; Lee, Wei-Jiunn; Hu, Kai-Chieh; Lin, Pin-Tsen; Liao, Ruei-Fang; Chen, Pin-Shern

    2014-08-11

    α-Solanine, a naturally occurring steroidal glycoalkaloid found in nightshade (Solanum nigrum Linn.), was found to inhibit proliferation and induce apoptosis of tumor cells. However, the mechanism involved in suppression of cancer cell metastasis by α-solanine remains unclear. This study investigates the suppression mechanism of α-solanine on motility of the human prostate cancer cell PC-3. Results show that α-solanine reduces the viability of PC-3 cells. When treated with non-toxic doses of α-solanine, cell invasion is markedly suppressed by α-solanine. α-Solanine also significantly elevates epithelial marker E-cadherin expression, while it concomitantly decreases mesenchymal marker vimentin expression, suggesting it suppresses epithelial-mesenchymal transition (EMT). α-Solanine reduces the mRNA level of matrix metalloproteinase-2 (MMP-2), MMP-9 and extracellular inducer of matrix metalloproteinase (EMMPRIN), but increases the expression of reversion-inducing cysteine-rich protein with kazal motifs (RECK), and tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2. Immunoblotting assays indicate α-solanine is effective in suppressing the phosphorylation of phosphatidylinositide-3 kinase (PI3K), Akt and ERK. Moreover, α-solanine downregulates oncogenic microRNA-21 (miR-21) and upregulates tumor suppressor miR-138 expression. Taken together, the results suggest that inhibition of PC-3 cell invasion by α-solanine may be, at least in part, through blocking EMT and MMPs expression. α-Solanine also reduces ERK and PI3K/Akt signaling pathways and regulates expression of miR-21 and miR-138. These findings suggest an attractive therapeutic potential of α-solanine for suppressing invasion of prostate cancer cell.

  3. JARID2 promotes invasion and metastasis of hepatocellular carcinoma by facilitating epithelial-mesenchymal transition through PTEN/AKT signaling

    PubMed Central

    Lei, Xiong; Xu, Jiang-Feng; Chang, Rui-Min; Fang, Feng; Zuo, Chao-Hui; Yang, Lian-Yue

    2016-01-01

    JARID2 is crucial for maintenance of pluripotency and differentiation of embryonic stem cells. However, little is known about the role of JARID2 in metastasis of hepatocellular carcinoma (HCC). This study found that JARID2 expression was significantly higher in HCC tissues than that in adjacent non-tumor liver tissues (ANLTs), and its expression level correlated with HCC metastasis. High JARID2 expression was significantly correlated with multiple tumor nodules, high Edmondson-Steiner grade, microvascular invasion, advanced TNM stage and advanced BCLC stage (all P < 0.05) and indicated poor prognosis of HCC in training and validation cohorts (all P < 0.05) totaling 182 patients. High JARID2 expression was an independent and significant risk factor for disease-free survival (DFS; P = 0.017) and overall survival (OS; P = 0.041) after curative liver resection in training cohort, and also validated as an independent and significant risk factor for DFS (P = 0.033) and OS (P = 0.031) in validation cohort. Moreover, down-regulation of JARID2 dramatically inhibited HCC cell migration, invasion, proliferation in vitro and metastasis in vivo, whereas overexpression of JARID2 significantly increased migration, invasion, proliferation in vitro and metastasis in vivo. Mechanistically, the data showed that JARID2 exerted its function by repressing PTEN expression through increasing H3K27 trimethylation (H3K27me3) at PTEN promoter region, which subsequently resulted in activation of protein kinase B (AKT) and enhanced epithelial-mesenchymal transition (EMT). In conclusion, this study revealed that JARID2 promotes invasion and metastasis of HCC by facilitating EMT through PTEN/AKT signaling. PMID:27259236

  4. Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells.

    PubMed

    Bao, Bin; Wang, Zhiwei; Ali, Shadan; Kong, Dejuan; Li, Yiwei; Ahmad, Aamir; Banerjee, Sanjeev; Azmi, Asfar S; Miele, Lucio; Sarkar, Fazlul H

    2011-08-01

    Activation of Notch-1 is known to be associated with the development and progression of human malignancies including pancreatic cancer. Emerging evidence suggest that the acquisition of epithelial-mesenchymal transition (EMT) phenotype and induction of cancer stem cell (CSC) or cancer stem-like cell phenotype are interrelated and contributes to tumor recurrence and drug resistance. The molecular mechanism(s) by which Notch-1 contributes to the acquisition of EMT phenotype and CSC self-renewal capacity has not been fully elucidated. Here we show that forced over-expression of Notch-1 leads to increased cell growth, clonogenicity, migration and invasion of AsPC-1 cells. Moreover, over-expression of Notch-1 led to the induction of EMT phenotype by activation of mesenchymal cell markers such as ZEB1, CD44, EpCAM, and Hes-1. Here we also report, for the first time, that over-expression of Notch-1 leads to increased expression of miR-21, and decreased expression of miR-200b, miR-200c, let-7a, let-7b, and let-7c. Re-expression of miR-200b led to decreased expression of ZEB1, and vimentin, and increased expression of E-cadherin. Over-expression of Notch-1 also increased the formation of pancreatospheres consistent with expression of CSC surface markers CD44 and EpCAM. Finally, we found that genistein, a known natural anti-tumor agent inhibited cell growth, clonogenicity, migration, invasion, EMT phenotype, formation of pancreatospheres and expression of CD44 and EpCAM. These results suggest that the activation of Notch-1 signaling contributes to the acquisition of EMT phenotype, which is in part mediated through the regulation of miR-200b and CSC self-renewal capacity, and these processes could be attenuated by genistein treatment.

  5. [Molecular networks and mechanisms of epithelial-mesenchymal transition regulated by miRNAs in the malignant melanoma cell line].

    PubMed

    Dong, Wang; Yongjun, Li; Nan, Ding; Junyun, Wang; Qiong, Yang; Yaran, Yang; Yanming, Li; Xiangdong, Fang; Hua, Zhao

    2015-07-01

    Melanoma is a malignant cutaneous cancer of high metastasis and lethal rates. Epithelial-mesenchymal transition (EMT) plays an important role in the embryonic developmental process that is often activated during tumorigenesis and metastasis. In this study, we integrated of mRNA and miRNA transcriptome sequencing data of melanocyte and melanoma cell lines to identify genes involved in the process of tumor EMT in the first place, and uncovered 11 miRNAs including miR-130a-3p, miR-130b-3p, miR-125a-5p, miR-30a-3p, miR-195-5p, miR-345-5p, miR-509-3-5p, miR-374a-5p, miR-509-5p, miR-148a-3p and miR-330-3p, negatively related with EMT genes using the Mirsystem software. Bioinformatics analysis with target genes of these miRNAs revealed two networks closely related with cellular development and cell-to-cell interactions, as well as multiple signaling pathways participating in EMT. Validation of the 11 miRNAs with molecular biology experiments demonstrated that four miRNAs regulated oncogenes in melanomas, including miR-195-5p, miR-130a-3p, miR-509-5p, and miR-509-3-5p. Our study integrates two kinds of omics data to screen for EMT-related miRNAs, providing a new research idea in the precision genomics of cancer research.

  6. Gene expression profiling reveals epithelial mesenchymal transition (EMT) genes can selectively differentiate eribulin sensitive breast cancer cells.

    PubMed

    Dezső, Zoltán; Oestreicher, Judith; Weaver, Amy; Santiago, Stephanie; Agoulnik, Sergei; Chow, Jesse; Oda, Yoshiya; Funahashi, Yasuhiro

    2014-01-01

    Eribulin mesylate is a synthetic macrocyclic ketone analog of the marine sponge natural product halichondrin B. Eribulin is a mechanistically unique inhibitor of microtubule dynamics. In this study, we investigated whether selective signal pathways were associated with eribulin activity compared to paclitaxel, which stabilizes microtubules, based on gene expression profiling of cell line panels of breast, endometrial, and ovarian cancer in vitro. We determined the sets of genes that were differentially altered between eribulin and paclitaxel treatment in breast, endometrial, and ovarian cancer cell line panels. Our unsupervised clustering analyses revealed that expression profiles of gene sets altered with treatments were correlated with the in vitro antiproliferative activities of the drugs. Several tubulin isotypes had significantly lower expression in cell lines treated with eribulin compared to paclitaxel. Pathway enrichment analyses of gene sets revealed that the common pathways altered between treatments in the 3 cancer panels were related to cytoskeleton remodeling and cell cycle regulation. The epithelial-mesenchymal transition (EMT) pathway was enriched in genes with significantly altered expression between the two drugs for breast and endometrial cancers, but not for ovarian cancer. Expression of genes from the EMT pathway correlated with eribulin sensitivity in breast cancer and with paclitaxel sensitivity in endometrial cancer. Alteration of expression profiles of EMT genes between sensitive and resistant cell lines allowed us to predict drug sensitivity for breast and endometrial cancers. Gene expression analysis showed that gene sets that were altered between eribulin and paclitaxel correlated with drug in vitro antiproliferative activities in breast and endometrial cancer cell line panels. Among the panels, breast cancer provided the strongest differentiation between eribulin and paclitaxel sensitivities based on gene expression. In addition, EMT

  7. Epithelial-mesenchymal transition and FOXA genes during tobacco smoke carcinogen induced transformation of human bronchial epithelial cells.

    PubMed

    Bersaas, Audun; Arnoldussen, Yke Jildouw; Sjøberg, Mari; Haugen, Aage; Mollerup, Steen

    2016-09-01

    Lung cancer is largely an environmentally caused disease with poor prognosis. An in vitro transformation model of human bronchial epithelial cells (HBEC) was used to study long-term effects of tobacco smoke carcinogens on epithelial-mesenchymal transition (EMT) and the forkhead box transcription factors FOXA1 and FOXA2. CDK4 and hTERT immortalized HBEC2 and HBEC12 cell lines were exposed weekly to either cigarette smoke condensate (CSC), benzo[a]pyrene, or methylnitrosourea. Transformed cell lines were established from soft-agar colonies after 12weeks of exposure. HBEC12 was transformed by all exposures while HBEC2 was only transformed by CSC. Untransformed HBEC2 showed little invasive capacity, whereas transformed cell lines completely closed the gap in a matrigel scratch wound assay. CDH1 was down-regulated in all of the transformed cell lines. In contrast, CDH2 was up-regulated in both HBEC2 and one of the HBEC12 transformed cell lines. Furthermore, transformed cells showed activation of EMT markers including SNAI1, ZEB1, VIM, and MMP2. All transformed cell lines had significant down-regulation of FOXA1 and FOXA2, indicating a possible role in cell transformation and EMT. ChIP analysis showed increased binding of Histone-H3 and macroH2A in FOXA1 and FOXA2 in the transformed HBEC2 cell lines, indicating a compact chromatin. In conclusion, long-term carcinogen exposure lead to down-regulation of FOXA1 and FOXA2 concomitantly with the occurrence of EMT and in vitro transformation in HBEC cells. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. CCL21/CCR7 axis activating chemotaxis accompanied with epithelial-mesenchymal transition in human breast carcinoma.

    PubMed

    Li, Fei; Zou, Zhigeng; Suo, Ning; Zhang, Zongpu; Wan, Fangzhu; Zhong, Guangxin; Qu, Yan; Ntaka, Kwanele Siphelele; Tian, Hua

    2014-09-01

    Secondary lymphoid tissue chemokine (SLC/CCL21) and its receptor CCR7 have been implicated in lymph node metastasis, whereas the mechanism of which remains unclear. Epithelial-mesenchymal transition (EMT) plays an important role in invasion and migration of cancer cells. We presumed that CCL21/CCR7 axis activates EMT process to induce cancer cell invasion and metastasis. Firstly, the expressions of CCR7 and EMT markers were examined by immunohistochemical staining in the primary breast carcinoma tissues from 60 patients who underwent radical mastectomy. Then, we investigated whether CCL21/CCR7 induces EMT process during mediating cancer cell invasion or migration in vitro. By immunohistolochemistry, high expressions of CCR7, Slug and N-cadherin were seen in 60, 65, and 76.67 % of tumors, respectively, and significantly associated with lymph node metastases as well as clinical pathological stage. Furthermore, the CCR7 expression was significantly correlated to Slug and N-cadherin. In vitro, stimulating breast cancer cell lines 1428, MCF-7 and MDA-MB-231 with CCL21, the invasion and migration of tumor cells were promoted, and simultaneously, EMT phenotype of tumor cells was enhanced, including down-regulation of E-cadherin, up-regulation of Slug, Vimentin and N-cadherin at both protein and mRNA levels. Inversely, knockdown of CCR7 by shRNA suppressed tumor cell invasion, migration and EMT phenotype induced by CCL21. These results indicated that CCL21/CCR7 axis could activate EMT process during chemotaxis of breast carcinoma cells.

  9. MEG3 Long Noncoding RNA Contributes to the Epigenetic Regulation of Epithelial-Mesenchymal Transition in Lung Cancer Cell Lines.

    PubMed

    Terashima, Minoru; Tange, Shoichiro; Ishimura, Akihiko; Suzuki, Takeshi

    2017-01-06

    Histone methylation is implicated in a number of biological and pathological processes, including cancer development. In this study, we investigated the molecular mechanism for the recruitment of Polycomb repressive complex-2 (PRC2) and its accessory component, JARID2, to chromatin, which regulates methylation of lysine 27 of histone H3 (H3K27), during epithelial-mesenchymal transition (EMT) of cancer cells. The expression of MEG3 long noncoding RNA (lncRNA), which could interact with JARID2, was clearly increased during transforming growth factor-β (TGF-β)-induced EMT of human lung cancer cell lines. Knockdown of MEG3 inhibited TGF-β-mediated changes in cell morphology and cell motility characteristic of EMT and counteracted TGF-β-dependent changes in the expression of EMT-related genes such as CDH1, ZEB family, and the microRNA-200 family. Overexpression of MEG3 influenced the expression of these genes and enhanced the effects of TGF-β in their expressions. Chromatin immunoprecipitation (ChIP) revealed that MEG3 regulated the recruitment of JARID2 and EZH2 and histone H3 methylation on the regulatory regions of CDH1 and microRNA-200 family genes for transcriptional repression. RNA immunoprecipitation and chromatin isolation by RNA purification assays indicated that MEG3 could associate with JARID2 and the regulatory regions of target genes to recruit the complex. This study demonstrated a crucial role of MEG3 lncRNA in the epigenetic regulation of the EMT process in lung cancer cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. N-acetylglucosaminyltransferase V modulates radiosensitivity and migration of small cell lung cancer through epithelial-mesenchymal transition.

    PubMed

    Huang, Chunyue; Huang, Miaojuan; Chen, Wenxia; Zhu, Weiliang; Meng, Hui; Guo, Linlang; Wei, Ting; Zhang, Jian

    2015-11-01

    N-acetylglucosaminyltransferase V (Gnt-V) has been linked to the migration of various human cancers. Recently we have found that inhibition of Gnt-V increases the radiosensitivity of cancer cells. However, the mechanisms by which Gnt-V mediates radiosensitivity and migration, especially in small cell lung cancer (SCLC) remain unknown. In our study, two SCLC cell lines (H1688 and H146) were used to investigate whether Gnt-V modulated the radiosensitivity and migration of SCLC cells through the epithelial-mesenchymal transition (EMT). The results showed that the expression of Gnt-V correlated with the N stage in patients with SCLC. Overexpression of Gnt-V led to a further increase in the relative viable cell number and survival fraction with a decrease in apoptosis rate and Bax/Bcl-2 ratio, when the cells were treated with irradiation. By contrast, knockdown of Gnt-V with irradiation resulted in a further decrease in the relative viable cell number and survival fraction but an increase in apoptosis rate and Bax/Bcl-2 ratio. Cells expressing high levels of Gnt-V increased migration whereas low levels of Gnt-V suppressed cell migration. Besides, the transient knockdown of ZEB2 led to an increase in radiosensitivity and an inhibition in the migration of SCLC cells. Furthermore, Gnt-V was negatively correlated with E-cadherin expression but positively correlated with N-cadherin, vimentin and ZEB2 expression. Finally, an in vivo study revealed that upregulation of Gnt-V caused tumour growth more quickly, as well as the expression of EMT-related markers (N-cadherin, vimentin and ZEB2). Taken together, the study suggested that an elevation of Gnt-V could lead to the radiosensitivity and migration of SCLC cells by inducing EMT, thereby highlighting Gnt-V as a potential therapeutic target for the prevention of EMT-associated tumour radioresistance and migration.

  11. Human papillomavirus oncoproteins differentially modulate epithelial-mesenchymal transition in 5-FU-resistant cervical cancer cells.

    PubMed

    Vishnoi, Kanchan; Mahata, Sutapa; Tyagi, Abhishek; Pandey, Arvind; Verma, Gaurav; Jadli, Mohit; Singh, Tejveer; Singh, Sukh Mahendra; Bharti, Alok C

    2016-10-01

    Etiological role of viral proteins E6 and E7 of high-risk HPV in cervical carcinogenesis is well established. However, their contribution in chemoresistance and epithelial-mesenchymal transition (EMT) that leads to advanced metastatic lesions and chemoresistance is poorly defined. In the present study, contribution of viral oncoproteins in acquisition of EMT character during onset of chemoresistance was assessed. A chemoresistant cell line (SiHaCR) was developed from an established HPV16-positive cervical cancer cell line, SiHa, by escalating selection pressure of 5-fluorouracil (5-FU). Expression of Survivin, ABCG2, Snail, Slug, Twist, and Vimentin was examined in SiHa and SiHaCR cells by reverse transcriptase-PCR (RT-PCR) and immunoblotting assays. Mesenchymal phenotype in SiHaCR cells was confirmed by assessment of migration and invasion potentials. SiHaCR cells displayed elevated level of functional and molecular markers associated with chemoresistance (Survivin, ABCG2) and EMT (Snail, Slug, Twist, Vimentin) and reduced E-cadherin. SiHaCR also showed increased levels of HPV16 E6 and E7 transcripts. Specific silencing of HPV16 E6, but not E7 using corresponding siRNA, demonstrated a differential involvement of HPV oncogenes in manifestation of EMT. HPV16 E6 silencing resulted in reduction of Slug and Twist expression. However, the expression of Snail and Vimentin was only marginally affected. In contrast, there was an increase in the expression of E-cadherin. A reduced migration and invasion capabilities were observed only in E6-silenced SiHaCR cells, which further confirmed functional contribution of HPV16 E6 in manifestation of EMT. Taken together, our study demonstrated an active involvement of HPV16 E6 in regulation of EMT, which promotes chemoresistance in cervical cancer.

  12. Epithelial mesenchymal-like transition occurs in a subset of cells in castration resistant prostate cancer bone metastases.

    PubMed

    Haider, Maahum; Zhang, Xiaotun; Coleman, Ilsa; Ericson, Nolan; True, Lawrence D; Lam, Hung-Ming; Brown, Lisha G; Ketchanji, Melanie; Nghiem, Belinda; Lakely, Bryce; Coleman, Roger; Montgomery, Bruce; Lange, Paul H; Roudier, Martine; Higano, Celestia S; Bielas, Jason H; Nelson, Peter S; Vessella, Robert L; Morrissey, Colm

    2016-03-01

    TGFβ is a known driver of epithelial-mesenchymal transition (EMT) which is associated with tumor aggressiveness and metastasis. However, EMT has not been fully explored in clinical specimens of castration-resistant prostate cancer (CRPC) metastases. To assess EMT in CRPC, gene expression analysis was performed on 149 visceral and bone metastases from 62 CRPC patients and immunohistochemical analysis was performed on 185 CRPC bone and visceral metastases from 42 CRPC patients. In addition, to assess the potential of metastases to seed further metastases the mitochondrial genome was sequenced at different metastatic sites in one patient. TGFβ was increased in bone versus visceral metastases. While primarily cytoplasmic; nuclear and cytoplasmic Twist were significantly higher in bone than in visceral metastases. Slug and Zeb1 were unchanged, with the exception of nuclear Zeb1 being significantly higher in visceral metastases. Importantly, nuclear Twist, Slug, and Zeb1 were only present in a subset of epithelial cells that had an EMT-like phenotype. Underscoring the relevance of EMT-like cells, mitochondrial sequencing revealed that metastases could seed additional metastases in the same patient. In conclusion, while TGFβ expression and EMT-associated protein expression is present in a considerable number of CRPC visceral and bone metastases, nuclear Twist, Slug, and Zeb1 localization and an EMT-like phenotype (elongated nuclei and cytoplasmic compartment) was only present in a small subset of CRPC bone metastases. Mitochondrial sequencing from different metastases in a CRPC patient provided evidence for the seeding of metastases from previously established metastases, highlighting the biological relevance of EMT-like behavior in CRPC metastases.

  13. Identification of biomechanical force as a novel inducer of epithelial-mesenchymal transition features in mechanical stretched skin

    PubMed Central

    Zhou, Jia; Wang, Jing; Zhang, Ning; Zhang, Yifan; Li, Qingfeng

    2015-01-01

    Biomechanical cues of the microenvironment are recognized as potent regulators of cell behaviors. Skin regeneration induced by tissue expansion has been confirmed by results of experimental and clinical studies. However, it is still unknown whether skin regeneration induced by mechanical factor is the same biological process as skin morphogenesis during embryonic development. In order to explore the potential role of biomechanical force (BioF) in skin regeneration and whether epithelial-mesenchymal transition (EMT) is induced by BioF, continuous mechanical tension (CMT) at 10% elongation was applied to human keratinocytes in vitro for 12, 24, 48 and 72 hours. Cell proliferation and differentiation were analyzed, including the expression of markers of EMT: vimentin, FSP1, E-cadherin and N-cadherin. Normal and mechanical stretched skin specimens collected from mice were examined by immunofluorescence analysis and RT-PCR. We found that BioF promoted the proliferation and inhibited differentiation of keratinocytes in vitro. The expression of markers of EMT vimentin, FSP1, E-cadherin and N-cadherin were transiently up-regulated by BioF. Keratinocytes activation, epidermal thickening and EMT features were also observed in the stretched epidermis of mice, compared to normal mice. Furthermore, the mechanism of BioF induced EMT was found to be the enhanced autocrine effect of TNF-α, in part, and direct activation of the NF-κB pathway. Collectively, BioF promoted the proliferation of keratinocytes by transiently inducing some EMT features. BioF, as a vital biomechanical cue of the microenvironment of skin, was identified to be a novel inducer of EMT, regulating keratinocytes’ proliferation, differentiation and homeostasis of skin tissue. PMID:26807167

  14. The multifaceted role of the embryonic gene Cripto-1 in cancer, stem cells and epithelial-mesenchymal transition

    PubMed Central

    Klauzinska, Malgorzata; Castro, Nadia P.; Rangel, Maria Cristina; Spike, Benjamin T.; Gray, Peter C.; Bertolette, Daniel; Cuttitta, Frank; Salomon, David

    2014-01-01

    Cripto-1 (CR-1)/Teratocarcinoma-derived growth factor1 (TDGF-1) is a cell surface glycosylphosphatidylinositol (GPI)-linked glycoprotein that can function either in cis (autocrine) or in trans (paracrine). The cell membrane cis form is found in lipid rafts and endosomes while the trans acting form lacking the GPI anchor is soluble. As a member of the epidermal growth factor (EGF)/Cripto-1-FRL-1-Cryptic (CFC) family, CR-1 functions as an obligatory co-receptor for the transforming growth factor-β (TGF-β) family members, Nodal and growth and differentiation factors 1 and 3 (GDF1/3) by activating Alk4/Alk7 signaling pathways that involve Smads 2, 3 and 4. In addition, CR-1 can activate non-Smad-dependent signaling elements such as PI3K, Akt and MAPK. Both of these pathways depend upon the 78 kDa glucose regulated protein (GRP78). Finally, CR-1 can facilitate signaling through the canonical Wnt/β-catenin and Notch/Cbf-1 pathways by functioning as a chaperone protein for LRP5/6 and Notch, respectively. CR-1 is essential for early embryonic development and maintains embryonic stem cell pluripotentiality. CR-1 performs an essential role in the etiology and progression of several types of human tumors where it is expressed in a population of cancer stem cells (CSCs) and facilitates epithelial-mesenchymal transition (EMT). In this context, CR-1 can significantly enhance tumor cell migration, invasion and angiogenesis. Collectively, these facts suggest that CR-1 may be an attractive target in the diagnosis, prognosis and therapy of several types of human cancer. PMID:25153355

  15. Tissue transglutaminase induces Epithelial-Mesenchymal-Transition and the acquisition of stem cell like characteristics in colorectal cancer cells.

    PubMed

    Ayinde, Oluseyi; Wang, Zhuo; Griffin, Martin

    2017-02-16

    Human colon cancer cell lines (CRCs) RKO, SW480 and SW620 were investigated for TG2 involvement in tumour advancement and aggression. TG2 expression correlated with tumour advancement and expression of markers of epithelial-mesenchymal transition (EMT). The metastatic cell line SW620 showed high TG2 expression compared to the primary tumour cell lines SW480 and RKO and could form tumour spheroids under non- adherent conditions. TG2 manipulation in the CRCs by shRNA or TG2 transduction confirmed the relationship between TG2 and EMT. TGFβ1 expression in CRC cells, and its level in the cell medium and extracellular matrix was increased in primary tumour CRCs overexpressing TG2 and could regulate TG2 expression and EMT by both canonical (RKO) and non-canonical (RKO and SW480) signalling. TGFβ1 regulation was not observed in the metastatic SW620 cell line, but TG2 knockdown or inhibition in SW620 reversed EMT. In SW620, TG2 expression and EMT was associated with increased presence of nuclear β-catenin which could be mediated by association of TG2 with the Wnt signalling co-receptor LRP5. TG2 inhibition/knockdown increased interaction between β-catenin and ubiquitin shown by co-immunoprecipitation, suggesting that TG2 could be important in β-catenin regulation. β-Catenin and TG2 was also upregulated in SW620 spheroid cells enriched with cancer stem cell marker CD44 and TG2 inhibition/knockdown reduced the spheroid forming potential of SW620 cells. Our data suggests that TG2 could hold both prognostic and therapeutic significance in colon cancer.

  16. Inhibition of Proliferation and Epithelial Mesenchymal Transition in Retinal Pigment Epithelial Cells by Heavy Chain-Hyaluronan/Pentraxin 3

    PubMed Central

    He, Hua; Kuriyan, Ajay E.; Su, Chen-Wei; Mahabole, Megha; Zhang, Yuan; Zhu, Ying-Ting; Flynn, Harry W.; Parel, Jean-Marie; Tseng, Scheffer C. G.

    2017-01-01

    Proliferative vitreoretinopathy (PVR) is mediated by proliferation and epithelial mesenchymal transition (EMT) of retinal pigment epithelium (RPE). Because heavy chain-hyaluronic acid/pentraxin 3 (HC-HA/PTX3) purified from human amniotic membrane exerts anti-inflammatory and anti-scarring actions, we hypothesized that HC-HA/PTX3 could inhibit these PVR-related processes in vitro. In this study, we first optimized an ARPE-19 cell culture model to mimic PVR by defining cell density, growth factors, and cultivation time. Using this low cell density culture model and HA as a control, we tested effects of HC-HA/PTX3 on the cell viability (cytotoxicity), proliferation (EGF + FGF-2) and EMT (TGF-β1). Furthermore, we determined effects of HC-HA/PTX3 on cell migration (EGF + FGF-2 + TGF-β1) and collagen gel contraction (TGF-β1). We found both HA and HC-HA/PTX3 were not toxic to unstimulated RPE cells. Only HC-HA/PTX3 dose-dependently inhibited proliferation and EMT of stimulated RPE cells by down-regulating Wnt (β-catenin, LEF1) and TGF-β (Smad2/3, collagen type I, α-SMA) signaling, respectively. Additionally, HA and HC-HA/PTX3 inhibited migration but only HC-HA/PTX3 inhibited collagen gel contraction. These results suggest HC-HA/PTX3 is a non-toxic, potent inhibitor of proliferation and EMT of RPE in vitro, and HC-HA/PTX3’s ability to inhibit PVR formation warrants evaluation in an animal model. PMID:28252047

  17. Muscadine grape skin extract reverts snail-mediated epithelial mesenchymal transition via superoxide species in human prostate cancer cells

    PubMed Central

    2014-01-01

    Background Snail transcription factor can induce epithelial-mesenchymal transition (EMT), associated with decreased cell adhesion-associated molecules like E-cadherin, increased mesenchymal markers like vimentin, leading to increased motility, invasion and metastasis. Muscadine grape skin extract (MSKE) has been shown to inhibit prostate cancer cell growth and induce apoptosis without affecting normal prostate epithelial cells. We investigated novel molecular mechanisms by which Snail promotes EMT in prostate cancer cells via Reactive Oxygen Species (ROS) and whether it can be antagonized by MSKE. Methods ARCaP and LNCaP cells overexpressing Snail were utilized to examine levels of reactive oxygen species (ROS), specifically, superoxide, in vitro using Dihydroethidium (DHE) or HydroCy3 dyes. Mitosox staining was performed to determine whether the source of ROS was mitochondrial in origin. We also investigated the effect of Muscadine grape skin extract (MSKE) on EMT marker expression by western blot analysis. Migration and cell viability using MTS proliferation assay was performed following MSKE treatments. Results Snail overexpression in ARCaP and LNCaP cells was associated with increased concentration of mitochondrial superoxide, in vitro. Interestingly, MSKE decreased superoxide levels in ARCaP and LNCaP cells. Additionally, MSKE and Superoxide Dismutase (SOD) reverted EMT as evidenced by decreased vimentin levels and re-induction of E-cadherin expression in ARCaP-Snail cells after 3 days, concomitant with reduced cell migration. MSKE also decreased Stat-3 activity in ARCaP-Snail cells. Conclusions This study shows that superoxide species may play a role in Snail transcription factor-mediated EMT. Therefore, therapeutic targeting of Snail with various antioxidants such as MSKE may prove beneficial in abrogating EMT and ROS-mediated tumor progression in human prostate cancer. PMID:24617993

  18. Tumor budding at the invasive front of colorectal cancer may not be associated with the epithelial-mesenchymal transition.

    PubMed

    Yamada, Noriyuki; Sugai, Tamotsu; Eizuka, Makoto; Tsuchida, Koudai; Sugimoto, Ryo; Mue, Yoshiharu; Suzuki, Masamichi; Osakabe, Mitsumasa; Uesugi, Noriyuki; Ishida, Kazuyuki; Otsuka, Kouki; Matsumoto, Takayuki

    2017-02-01

    Tumor budding is thought to reflect the epithelial-mesenchymal transition (EMT). However, the molecular mechanism linking tumor buds and the EMT remains unclear. Here, we examined the induction of tumor budding and EMT and their association with EMT-related proteins (ZEB1, TWIST, SNAIL, and SLUG) in colorectal cancer (CRC). Immunohistochemical expression of pan-cytokeratin was examined for identification of tumor budding in 101 CRCs. Grading of tumor budding was classified into low- and high-grade groups. Tissue microarray was conducted to identify tumor budding sites. The expression of E-cadherin, ZEB1, TWIST, SNAIL, and SLUG was examined in areas of tumor budding and the surrounding tumor stroma using a double-immunostaining method. Specifically, pan-cytokeratin and EMT-related proteins were assessed by double immunostaining. Low or no expression of E-cadherin was found in areas of tumor budding. Moreover, ZEB1, TWIST, SNAIL, and SLUG were not expressed in regions of tumor budding. However, the expression level of ZEB1 in the stromal cells surrounding tumor budding was significantly more frequent than that of TWIST, SNAI, and SLUG. In addition, the expression of EMT-related proteins in surrounding stromal cells was significantly greater in areas of high-grade tumor budding than in low-grade areas. Our present results suggest that EMT-related proteins play a minor role in forming tumor buds. In addition, our findings suggest the existence of subtypes of stromal cells in CRC with phenotypical and functional heterogeneity. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. RUNX3 regulates vimentin expression via miR-30a during epithelial-mesenchymal transition in gastric cancer cells.

    PubMed

    Liu, Zhifang; Chen, Long; Zhang, Xinchao; Xu, Xia; Xing, Huaixin; Zhang, Yingjie; Li, Wenjuan; Yu, Han; Zeng, Jiping; Jia, Jihui

    2014-04-01

    Runt-related transcription factor 3 (RUNX3) is a putative tumour suppressor via regulating the expression of a series of target genes. Clinical studies demonstrated that loss of RUNX3 expression is associated with gastric cancer progression and poor prognosis, but the underlying mechanism is not entirely clear. Accumulating evidence shows that the epithelial-mesenchymal transition (EMT) plays an important role in cancer relapse and metastasis. Therefore, we addressed whether RUNX3 has a role in the EMT in gastric cancer. Knockdown of RUNX3 promoted cell invasion and increased the protein expression of the mesenchymal marker vimentin in human gastric cancer cells. Overexpression of RUNX3 suppressed cell invasion and decreased the protein expression of vimentin in the cells and inhibited gastric cancer cells colonization in nude mice. Furthermore, overexpression of RUNX3 increased the expression of microRNA-30a (miR-30a), and miR-30a directly targeted the 3' untranslated region of vimentin and decreased its protein level. miR-30a inhibitor abrogated RUNX3-mediated inhibition of cell invasion and downregulation of vimentin. Thus, RUNX3 suppressed gastric cancer cell invasion and vimentin expression by activating miR-30a. In gastric cancer patients, levels of RUNX3 were positively correlated with miR-30a and negatively associated with the levels of vimentin. Collectively, our data suggest a novel molecular mechanism for the tumour suppressor activity of RUNX3. Effective therapy targeting the RUNX3 pathway may help control gastric cancer cell invasion and metastasis by inhibiting the EMT.

  20. Role of epithelial-mesenchymal transition (EMT) and fibroblast function in cerium oxide nanoparticles-induced lung fibrosis.

    PubMed

    Ma, Jane; Bishoff, Bridget; Mercer, R R; Barger, Mark; Schwegler-Berry, Diane; Castranova, Vincent

    2017-05-15

    The emission of cerium oxide nanoparticles (CeO2) from diesel engines, using cerium compounds as a catalyst to lower the diesel exhaust particles, is a health concern. We have previously shown that CeO2 induced pulmonary inflammation and lung fibrosis. The objective of the present study was to investigate the modification of fibroblast function and the role of epithelial-mesenchymal transition (EMT) in CeO2-induced fibrosis. Male Sprague-Dawley rats were exposed to CeO2 (0.15 to 7mg/kg) by a single intratracheal instillation and sacrificed at various times post-exposure. The results show that at 28days after CeO2 (3.5mg/kg) exposure, lung fibrosis was evidenced by increased soluble collagen in bronchoalveolar lavage fluid, elevated hydroxyproline content in lung tissues, and enhanced sirius red staining for collagen in the lung tissue. Lung fibroblasts and alveolar type II (ATII) cells isolated from CeO2-exposed rats at 28days post-exposure demonstrated decreasing proliferation rate when compare to the controls. CeO2 exposure was cytotoxic and altered cell function as demonstrated by fibroblast apoptosis and aggregation, and ATII cell hypertrophy and hyperplasia with increased surfactant. The presence of stress fibers, expressed as α-smooth muscle actin (SMA), in CeO2-exposed fibroblasts and ATII cells was significantly increased compared to the control. Immunohistofluorescence analysis demonstrated co-localization of TGF-β or α-SMA with prosurfactant protein C (SPC)-stained ATII cells. These results demonstrate that CeO2 exposure affects fibroblast function and induces EMT in ATII cells that play a role in lung fibrosis. These findings suggest potential adverse health effects in response to CeO2 nanoparticle exposure. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Identification of biomechanical force as a novel inducer of epithelial-mesenchymal transition features in mechanical stretched skin.

    PubMed

    Zhou, Jia; Wang, Jing; Zhang, Ning; Zhang, Yifan; Li, Qingfeng

    2015-01-01

    Biomechanical cues of the microenvironment are recognized as potent regulators of cell behaviors. Skin regeneration induced by tissue expansion has been confirmed by results of experimental and clinical studies. However, it is still unknown whether skin regeneration induced by mechanical factor is the same biological process as skin morphogenesis during embryonic development. In order to explore the potential role of biomechanical force (BioF) in skin regeneration and whether epithelial-mesenchymal transition (EMT) is induced by BioF, continuous mechanical tension (CMT) at 10% elongation was applied to human keratinocytes in vitro for 12, 24, 48 and 72 hours. Cell proliferation and differentiation were analyzed, including the expression of markers of EMT: vimentin, FSP1, E-cadherin and N-cadherin. Normal and mechanical stretched skin specimens collected from mice were examined by immunofluorescence analysis and RT-PCR. We found that BioF promoted the proliferation and inhibited differentiation of keratinocytes in vitro. The expression of markers of EMT vimentin, FSP1, E-cadherin and N-cadherin were transiently up-regulated by BioF. Keratinocytes activation, epidermal thickening and EMT features were also observed in the stretched epidermis of mice, compared to normal mice. Furthermore, the mechanism of BioF induced EMT was found to be the enhanced autocrine effect of TNF-α, in part, and direct activation of the NF-κB pathway. Collectively, BioF promoted the proliferation of keratinocytes by transiently inducing some EMT features. BioF, as a vital biomechanical cue of the microenvironment of skin, was identified to be a novel inducer of EMT, regulating keratinocytes' proliferation, differentiation and homeostasis of skin tissue.

  2. Inhibition of Epithelial-mesenchymal Transition in Response to Treatment with Metformin and Y27632 in Breast Cancer Cell Lines.

    PubMed

    Leonel, Camila; Ferreira, Lívia Carvalho; Borin, Thaiz Ferraz; Moschetta, Marina Gobbe; Freitas, Gabriela Scavacini; Haddad, Michel Raineri; de Camargos Pinto Robles, João Antonio; Aparecida Pires de Campos Zuccari, Debora

    2017-01-01

    ROCK-1 expression is associated with the malignant character of tumors, while inhibiting this molecule results in a significant suppression of tumor metastasis. Likewise, transforming growth factor beta (TGF-β) is associated with this malignancy by having the ability to induce epithelial-mesenchymal transition (EMT). Metformin, a drug used in the treatment of diabetes, has previously been shown to inhibit EMT in breast cancer cells. The aim of this study is to evaluate the TGF-β1 action model for induction of EMT and the action of metformin and ROCK-1 inhibitor (Y27632) in EMT process in breast cancer cell lines. MCF-7 and MDA-MB-231 cell lines were treated with metformin and Y27632, after induction of EMT by TGF-β1, to examine the effects on cell migration as well as the protein expression of the ROCK-1 markers, vimentin, E-cadherin, CD44 and CD24 by immunocitochemistry. There was a lower protein expression of ROCK-1, vimentin, CD44 and CD24 in both cell lines after treatment with metformin and Y27632. In MDA-MB-231 cells, E-cadherin expression was increased in all treatment groups. Treatment of MDA-MB-231 cell line with metformin and Y27632 significantly reduced the invasion of these cells. This study confirms the benefits of metformin and Y27632 as potential therapeutic agents in mammary tumors, by blocking EMT process and metastatic potential. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Hypoxia-induced downregulation of miR-30c promotes epithelial-mesenchymal transition in human renal cell carcinoma.

    PubMed

    Huang, Jiwei; Yao, Xiaoying; Zhang, Jin; Dong, Baijun; Chen, Qi; Xue, Wei; Liu, Dongming; Huang, Yiran

    2013-12-01

    MicroRNAs (miRNAs), which negatively regulate protein expression by binding protein-coding mRNAs, have been integrated into cancer development and progression as either oncogenes or tumor suppressor genes. miR-30c was reported to be downregulated in several types of cancer. However, its role in human renal cell carcinoma (RCC) remains largely unknown. Here, we show that miR-30c is significantly downregulated in human RCC tissues and cell lines. We found that miR-30c downregulation could be induced by hypoxia in RCC cells in a hypoxia-inducible factors (HIFs) dependent manner. Repression of miR-30c through its inhibitor resulted in reduction of E-cadherin production and promotion of epithelial-mesenchymal transition (EMT), while overexpression of miR-30c inhibited EMT in RCC cells. We identified Slug as a direct target of miR-30c in RCC cells. Slug was upregulated in RCC tissues and its expression could be induced by hypoxia, which is consistent with downregulation of miR-30c by hypoxia. Forced overexpression of Slug in 786-O cells reduced E-cadherin production, and promoted EMT as well as cell migration. Moreover, Slug overexpression abrogated the inhibitory role of miR-30c in regulating EMT and cell migration, indicating miR-30c regulates EMT through Slug in RCC cells. Our findings propose a model that hypoxia induces EMT in RCC cells through downregulation of miR-30c, which leads to subsequent increase of Slug expression and repression of E-cadherin production, and suggest a potential application of miR-30c in RCC treatment.

  4. Oestrogen-induced epithelial-mesenchymal transition of endometrial epithelial cells contributes to the development of adenomyosis.

    PubMed

    Chen, Yi-Jen; Li, Hsin-Yang; Huang, Chi-Hung; Twu, Nae-Fang; Yen, Ming-Shyen; Wang, Peng-Hui; Chou, Teh-Ying; Liu, Yen-Ni; Chao, Kuan-Chong; Yang, Muh-Hwa

    2010-11-01

    Adenomyosis is an oestrogen-dependent disease caused by a downward extension of the endometrium into the uterine myometrium. Epithelial-mesenchymal transition (EMT) endows cells with migratory and invasive properties and can be induced by oestrogen. We hypothesized that oestrogen-induced EMT is critical in the pathogenesis of adenomyosis. We first investigated whether EMT occurred in adenomyotic lesions and whether it correlated with serum 17β-oestradiol (E2) levels. Immunohistochemistry was performed on adenomyotic lesions and corresponding eutopic endometrium samples from women with adenomyosis. Endometria from women without endometrial disorders were used as a control. In the epithelial component of adenomyotic lesions, vimentin expression was up-regulated and E-cadherin expression was down-regulated compared to the eutopic endometrium, suggesting that EMT occurs in adenomyosis. In adenomyosis, the serum E2 level was negatively correlated with E-cadherin expression in the epithelial components of the eutopic endometrium and adenomyotic lesions, suggesting the involvement of oestrogen-induced EMT in endometrial cells. In oestrogen receptor-positive Ishikawa endometrial epithelial cells, oestrogen induced a morphological change to a fibroblast-like phenotype, a shift from epithelial marker expression to mesenchymal marker expression, increased migration and invasion, and up-regulation of the EMT regulator Slug. Raloxifene, a selective oestrogen receptor modulator, abrogated these effects. To determine the role of oestrogen-induced EMT in the implantation of ectopic endometrium, we xenotransplanted eutopic endometrium or adenomyotic lesions from adenomyosis patients into ovariectomized SCID mice. The implantation of endometrium was oestrogen-dependent and was suppressed by raloxifene. Collectively, these data highlight the crucial role of oestrogen-induced EMT in the development of adenomyosis and suggest that raloxifene may be a potential therapeutic agent for

  5. Snail-induced epithelial-mesenchymal transition in gastric carcinoma cells and generation of cancer stem cell characteristics.

    PubMed

    Yang, Y J; Li, Z B; Zhang, G R; Wu, L J; Yu, J Y; Hu, L J; Zhou, Y L; Wang, H D; Liang, D

    2016-08-29

    Biological changes in Snail-overexpressed SGC7901 cells were studied by establishing a pEGFP-C1-Snail carrier. The significance of Snail in epithelial-mesenchymal transition (EMT) as well as the invasion and metastatic capacity of gastric cancer cells was also discussed; moreover, we attempted to verify the probable cancer stem cell characteristics of Snail-overexpressed cells. A pEGFP-C1-Snail eukaryotic expression plasmid was constructed and pEGFP-C1(-) and pEGFP-C1-Snail plasmids were extracted and transfected into SGC7901 cells using Lipofectamine 2000. Stably expressed SGC7901-N [control group containing pEGFP-C1(-)] and SGC7901-S (test group containing pEGFP-C1-Snail) cells were screened using a G418 resistance medium. Snail, E-cadherin, b-catenin, vimentin, and fibronectin gene and protein expressions were detected by real-time quantitative PCR, western blot, and immunofluorescence. Cell invasion and metastasis were tested by scratch test, invasion assay, and an adhesion experiment. The positive rate of aldehyde dehydrogenase-1 (ALDH-1) expression was analyzed by flow cytometry. The results indicated the occurrence of EMT, accompanied by morphological changes in the cells and a weakening of the cell adhesion capacity. We also observed a decrease in the expression of epithelial markers E-cadherin and b-catenin and an increase in mesenchymal (Snail and vimentin) marker expression. Moreover, the cells showed increased invasiveness and metastatic capacity, and decreased proliferative ability. Moreover, the Snail-treated SGC7901 cells moved towards the scratch and produced fewer clones compared to the control cells. Owing to its capacity for self-renewal, SGC7901-S cells produced new clones and expressed ALDH-1. Therefore, we concluded that Snail overexpression induced EMT and endowed cells with tumor stem cell characteristics.

  6. Propolis inhibits TGF-β1-induced epithelial-mesenchymal transition in human alveolar epithelial cells via PPARγ activation.

    PubMed

    Kao, Hui-Fang; Chang-Chien, Pei-Wen; Chang, Wen-Tsan; Yeh, Trai-Ming; Wang, Jiu-Yao

    2013-03-01

    Emerging evidence suggests that the transforming growth factor (TGF)-β1-induced epithelial-mesenchymal transition (EMT) of alveolar epithelial cells (AEC) may contribute to airway remodeling in severe asthma and fibrotic lung diseases. Studies have shown that extracts from propolis protect chemical-induced cardiac and liver fibrosis in animals. This study assesses the inhibitory effect of propolis on TGF-β1-induced EMT in serum-deprived A549 cells (human AECs). Experimental results show progressive cell morphological changes, decreased E-cadherin, increased N-cadherin production, intracellular F-actin rearrangement, increased reactive oxygen species (ROS) production, and increased cell motility with increasing TGF-β1 concentration. A549 cells pretreated with propolis and then treated with TGF-β1 for 24 h regained epithelial cell morphology, decreased the production of N-cadherin and ROS, and had reduced motility. Propolis prevents the effects of TGF-β1-induced Smad2 and AKT activation pathways and Snail expression. Moreover, propolis pretreatment may prevent the TGF-β1-induced down-regulation of nuclear hormone receptors and peroxisome proliferator-activated receptor gamma (PPARγ) protein in A549 cells, whose effect was blocked by adding PPARγ antagonist, GW9662. Two active components of propolis, caffeic acid phenethyl ester (CAPE) and pinocembrin (PIN), only had partial effects on TGF-β1-induced EMT in A549 cells. The results of this study suggest that natural propolis extracts may prevent TGF-β1-induced EMT in immortalized type II AECs via multiple inhibitory pathways, which may be clinically applied in the prevention and/or treatment of EMT-related fibrotic diseases as well as airway remodeling in chronic asthma. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. MicroRNA-19 triggers epithelial-mesenchymal transition of lung cancer cells accompanied by growth inhibition.

    PubMed

    Li, Jing; Yang, Sheng; Yan, Wen; Yang, Jie; Qin, Yu-Juan; Lin, Xiao-Lin; Xie, Rao-Ying; Wang, Sheng-Chun; Jin, Wen; Gao, Fei; Shi, Jun-Wen; Zhao, Wen-Tao; Jia, Jun-Shuang; Shen, Hong-Fen; Ke, Jie-Rong; Liu, Bin; Zhao, Yi-Qiao; Huang, Wen-Hua; Yao, Kai-Tai; Li, Dan-Juan; Xiao, Dong

    2015-09-01

    The miR-19 family (miR-19a and miR-19b-1) are key oncogenic components of the miR-17-92 cluster. Overexpression of miR-19 is strongly associated with cancer invasion and metastasis, and poor prognosis of cancer patients. However, the underlying mechanisms remain largely unknown. In the present study, we found that enforced expression of miR-19 including miR-19a and miR-19b-1 triggered epithelial-mesenchymal transition (EMT) of lung cancer cells A549 and HCC827 as shown by mesenchymal-like morphological conversion, downregulation of epithelial proteins (e.g., E-cadherin, ZO-1 (zona occludens 1), and α-catenin), upregulation of mesenchymal proteins (e.g., vimentin, fibronectin 1, N-cadherin, and snail1), formation of stress fibers, and reduced cell adhesion. In addition, enhanced migration and invasion were observed in the cancer cells A549 and HCC827 undergoing EMT. In contrast, silencing of endogenous miR-19 reversed EMT and reduced the migration and invasion abilities of A549 and HCC827 cells. DNA microarray results revealed significant changes of the expression of genes related to EMT, migration, and metastasis of miR-19-expressing A549 cells. Moreover, siRNA-mediated knockdown of PTEN, a target of miR-19, also resulted in EMT, migration, and invasion of A549 and HCC827 cells, suggesting that PTEN is involved in miR-19-induced EMT, migration and invasion of lung cancer cells. Furthermore, lung cancer cells undergoing EMT induced by miR-19 demonstrated reduced proliferation in vitro and in vivo, and enhanced resistance to apoptosis caused by TNF-α. Taken together, these findings suggest that miR-19 triggers EMT, which has an important role in the invasion and migration of lung cancer cells, accompanied by the reduced proliferation of cells.

  8. Ganglioside GM3 participates in the TGF-β1-induced epithelial-mesenchymal transition of human lens epithelial cells.

    PubMed

    Kim, Seok-Jo; Chung, Tae-Wook; Choi, Hee-Jung; Kwak, Choong-Hwan; Song, Kwon-Ho; Suh, Seok-Jong; Kwon, Kyung-Min; Chang, Young-Chae; Park, Young-Guk; Chang, Hyeun Wook; Kim, Kyoung-Sook; Kim, Cheorl-Ho; Lee, Young-Choon

    2013-01-01

    TGF-β (transforming growth factor-β)-induced EMT (epithelial-mesenchymal transition) induces the proliferation and migration of the HLE (human lens epithelial) cells. Ganglioside GM3, simple sialic-acid-containing glycosphingolipids on mammalian cell membranes, regulates various pathological phenomena such as insulin resistance and tumour progression. However, the relationship between ganglioside GM3 and TGF-β-induced EMT in the HLE B-3 cells is poorly understood. In the present study we demonstrated that ganglioside GM3 was involved in TGF-β1-induced EMT in HLE B-3 cells. Our results indicated that the expression of ganglioside GM3 and GM3 synthase mRNA were significantly increased in TGF-β1-induced HLE B-3 cells. Reporter gene analysis also demonstrated that transcriptional activation of the GM3 synthase gene was regulated by Sp1 (specificity protein 1) in HLE B-3 cells upon TGF-β1 stimulation. Interestingly, the inhibition of ganglioside GM3 expression by d-PDMP [d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol] and GM3 synthase shRNA (short hairpin RNA) resulted significantly in the suppression of cell migration and EMT-related signalling in HLE B-3 cells stimulated by TGF-β. Furthermore, exogenous treatment of ganglioside GM3 rescued the expression of EMT molecules and cell migration suppressed by the depletion of ganglioside GM3 in TGF-β1-induced HLE B-3 cells. We also found that ganglioside GM3 interacted with TGFβRs (TGF-β receptors) in TGF-β1-induced HLE B-3 cells. Taken together, these results suggest that ganglioside GM3 induced by TGF-β1 regulates EMT by potential interaction with TGFβRs.

  9. STC2 promotes the epithelial-mesenchymal transition of colorectal cancer cells through AKT-ERK signaling pathways

    PubMed Central

    He, Yu; Wang, Xixi; Liang, Ziwei; Liu, Jingjing; Zhang, Peng; Zhu, Hongxia; Xu, Ningzhi; Liang, Shufang

    2016-01-01

    The STC2 protein involves in carcinogenesis and progression of many cancers. It remains unclear how STC2 regulates the epithelial-mesenchymal transition (EMT) process and colorectal cancer (CRC) development. Here we systematically investigated STC2-activated early occurrence of EMT and CRC cell migration in vitro, clinical associations of STC2 with CRC development and patient survival. The secretion and expression level of STC2 were both greatly increased in EMT cells and CRC cells compared with the normal epithelial NCM460 cells. And the conditioned media from EMT cells stimulated epithelia and colon cancer cells to obtain EMT characteristics. STC2 overexpression promoted CRC cell growth and cell migration in vitro, and STC2 enhanced tumor growth in a mouse CRC-xenograft model. Corresponding to EMT marker expression changes, several critical signaling pathway molecules including pERK, pAKT, PI3K and Ras were remarkably increased either in NCM460 cells transfected with STC2 plasmids or in cells induced with exogenous STC2 protein. However blocking AKT-ERK signaling pathways attenuated STC2-activated EMT process. Furthermore the elevated STC2 expressions were also confirmed in 77 clinical tumor tissues and sera from CRC patients, and the increased STC2 in tumor tissues and sera correlated with tumor pathologic stage and poor survival for CRC patients. In conclusion, STC2 promotes CRC tumorigenesis and EMT progression through activating ERK/MEK and PI3K/AKT signaling pathways. STC2 protein is also a potential tumor biomarker for CRC diagnosis and prognosis. PMID:27662663

  10. GSTA3 Attenuates Renal Interstitial Fibrosis by Inhibiting TGF-Beta-Induced Tubular Epithelial-Mesenchymal Transition and Fibronectin Expression

    PubMed Central

    Xiao, Yun; Liu, Jishi; Peng, Yu; Xiong, Xuan; Huang, Ling; Yang, Huixiang; Zhang, Jian; Tao, Lijian

    2016-01-01

    Tubular epithelial-mesenchymal transition (EMT) has been widely accepted as the underlying mechanisms of renal interstitial fibrosis (RIF). The production of reactive oxygen species (ROS) plays a vital role in tubular EMT process. The purpose of this study was to investigate the involved molecular mechanisms in TGF-beta-induced EMT and identify the potential role of glutathione S-transferase alpha 3 (GSTA3) in this process. The iTRAQ screening was performed to identify protein alterations of the rats underwent unilateral-ureteral obstruction (UUO). Protein expression of GSTA3 in patients with obstructive nephropathy and UUO rats was detected by immunohistochemistry. Protein and mRNA expression of GSTA3 in UUO rats and NRK-52E cells were determined by Western blot and RT-PCR. siRNA and overexpression plasmid were transfected specifically to assess the role of GSTA3 in RIF. The generation of ROS was measured by dichlorofluorescein fluorescence analysis. GSTA3 protein and mRNA expression was significantly reduced in UUO rats. Immunohistochemical analysis revealed that GSTA3 expression was reduced in renal cortex in UUO rats and patients with obstructive nephropathy. Treating with TGF-β1 down-regulated GSTA3 expression in NRK-52E cells, which have been found to be correlated with the decreased expression in E-cadherin and megalin and increased expression in α-smooth muscle actin. Furthermore, knocking down GSTA3 in NRK-52 cells led to increased production of ROS and tubular EMT, whereas overexpressing GSTA3 ameliorated ROS production and prevented the occurrence of tubular EMT. GSTA3 plays a protective role against tubular EMT in renal fibrosis, suggesting GSTA3 is a potential therapeutic target for RIF. PMID:27602565

  11. Cytokeratin 18 is necessary for initiation of TGF-β1-induced epithelial-mesenchymal transition in breast epithelial cells.

    PubMed

    Jung, Hyejung; Kim, Bomin; Moon, Byung In; Oh, Eok-Soo

    2016-12-01

    During epithelial-mesenchymal transition (EMT), epithelial cells lose key phenotypic markers (e.g., E-cadherin and cytokeratin 18) and acquire mesenchymal markers (e.g., N-cadherin and vimentin). Although the loss of cytokeratin 18 is a hallmark of EMT, the regulatory role of cytokeratin 18 in EMT is not yet fully understood. Here, we report that cytokeratin 18 is involved in the regulation of transforming growth factor-beta1 (TGF-β1)-induced EMT in breast epithelial cells. When MCF10A cells were treated with TGF-β1 for 24 h, considerable morphological changes, indicative of the early stages of EMT (e.g., loss of cell-cell contact), were observed and cytokeratin 18 was downregulated. However, E-cadherin levels were not altered until a later time point. This suggests that cytokeratin 18 may play an active role during the earlier stages of EMT. Consistent with this notion, siRNA-mediated knockdown of cytokeratin 18 delayed TGF-β1-mediated EMT, and the associated downregulation of E-cadherin reduced the phosphorylation/nuclear localization of smad 2/3 and decreased the expression levels of snail and slug (which inhibit E-cadherin expression in epithelial cells as an early response to TGF-β1). Taken together, these results suggest that cytokeratin 18 critically contributes to initiating TGF-β1-induced EMT via the smad 2/3-mediated regulation of snail and slug expression in breast epithelial cells.

  12. Long noncoding RNA MALAT1 promotes brain metastasis by inducing epithelial-mesenchymal transition in lung cancer.

    PubMed

    Shen, Liqin; Chen, Lei; Wang, Yongsheng; Jiang, Xiaochun; Xia, Hongping; Zhuang, Zhixiang

    2015-01-01

    Brain metastasis often has a poor prognosis in patients with advanced non-small cell lung cancer (NSCLC). Therefore, it is urgent to identify factors associated with lung cancer brain metastasis. Metastasis associated lung adenocarcinoma transcript 1 (MALAT1) also known as noncoding nuclear-enriched abundant transcript 2 is a long noncoding RNA, which is highly conserved amongst mammals. It has been shown to be increased in a variety of tumors including NSCLC and regulate the expression of metastasis-associated genes. However, the role of MALAT1 in lung cancer brain metastasis has not been investigated. In this study, we examined the level of MALAT1 in 78 cases of NSCLC samples with 19 brain metastasis and 59 non-brain metastasis by qRT-PCR. We observed that the level of MALAT1 was significantly higher in brain metastasis than that of non brain metastasis samples (P < 0.001). The level of MALAT1 was associated with patients' survival. To investigate the role of MALAT1 in brain metastasis, we established a highly invasive and metastatic cell subline using the brain metastasis lung cancer cell H1915. We found that MALAT1 is increased in highly invasive subline of brain metastasis lung cancer cells. Further functional studies indicate that silencing MALAT1 inhibits highly invasive subline of brain metastasis lung cancer cell migration and metastasis by inducing epithelial-mesenchymal transition (EMT). Therefore, increased level of long noncoding RNA MALAT1 promotes lung cancer brain metastasis by inducing EMT, which may be a promising prognosis factor and therapeutic target to treat lung cancer brain metastasis in future.

  13. Wnt Signaling Induces Epithelial-Mesenchymal Transition with Proliferation in ARPE-19 Cells upon Loss of Contact Inhibition

    PubMed Central

    Chen, Hung-Chi; Zhu, Ying-Ting; Chen, Szu-Yu; Tseng, Scheffer C. G.

    2014-01-01

    Proliferation and epithelial-mesenchymal transition (EMT) of the retinal pigment epithelium (RPE) are hallmarks of proliferative vitreoretinopathy. This study aims at clarifying the role of growth factors, i.e. epidermal growth factor (EGF), fibroblast growth factor-2 (FGF-2), and transforming growth factor-β1 (TGF-β1) in controlling how RPE proliferates while undergoing EMT. When contact inhibition of post-confluent ARPE-19 cells was disrupted by EGTA, an increase of BrdU labeling was noted only in the presence of EGF and/or FGF-2, and was accompanied by EMT as evidenced by the loss of a normal RPE phenotype (altered cytolocalization of RPE65, N-cadherin, ZO-1, and Na,K-ATPase) and the gain of a mesenchymal phenotype (increased expression of vimentin, S100A4, and α-SMA). EMT with proliferation by EGTA plus EGF+FGF-2 was accompanied by activation of canonical Wnt signaling (judged by the TCF/LEF promoter activity, increased nuclear levels of and interaction between β-catenin and LEF1 proteins, and the replication by overexpression of β-catenin), abolished by concomitant addition of XAV939, a Wnt inhibitor, but not associated with suppression of Hippo signaling (negative expression of nuclear TAZ or YAP and cytoplasmic p-TAZ or p-YAP). The causative role of Wnt signaling on EMT with proliferation was confirmed by overexpression of stable S33Y β-catenin with EGTA treatment. In addition, contact inhibition disrupted by EGTA in the presence of TGF-β1 also led to EMT but suppressed proliferation and Wnt signaling. The Wnt signaling triggered by EGF+FGF-2 was sufficient and synergized with TGF-β1 in activating the Smad/ZEB1/2 signaling responsible for EMT. These findings establish a framework for further dissecting how RPE might partake in a number of proliferative vitreoretinopathies characterized by EMT. PMID:22391957

  14. Tim-3 facilitates osteosarcoma proliferation and metastasis through the NF-κB pathway and epithelial-mesenchymal transition.

    PubMed

    Feng, Z M; Guo, S M

    2016-09-02

    The aim of this study was to investigate the expression of T-cell immunoglobulin mucin domain molecule-3 (Tim-3) in osteosarcoma tissues, and analyze its effect on cell proliferation and metastasis in an osteosarcoma cell line. Tim-3 mRNA and protein expression in osteosarcoma tissue was detected by reverse transcriptase-polymerase chain reaction and immunohistochemistry, respectively. Additionally, the cell viability, apoptosis rate, and invasive ability of the osteosarcoma cell line MG-63 were tested using the methyl thiazolyl tetrazolium assay, Annexin V-propidium iodide flow cytometry, and a Transwell assay, respectively, following Tim-3 interference using small interfering RNA (siRNA). We also analyzed the expression of Snail, E-cadherin, vimentin, and nuclear factor (NF)-kB in the cells by western blot. We observed that Tim-3 mRNA and protein was significantly overexpressed in osteosarcoma tissues, compared to the adjacent normal tissue (P < 0.01). Moreover, MG-63 cells transfected with the Tim-3 siRNA presented lower cell viability, a greater number of apoptotic cells, and decreased invasive ability (P < 0.01), compared to control cells. Additionally, we observed a decrease in Snail and vimentin expression, an increase in the E-cadherin level, and an increase in NF-kB p65 phosphorylation (P < 0.01) in Tim-3 siRNA-transfected MG-63 cells. Based on these results, we concluded that Tim-3 is highly expressed in osteosarcoma tissue. Moreover, we speculated that interfering in Tim-3 expression could significantly suppress osteosarcoma cell (MG-63) proliferation and metastasis via the NF-kB/Snail signaling pathway and epithelial-mesenchymal transition.

  15. ZEB1 is neither sufficient nor required for epithelial-mesenchymal transition in LS174T colorectal cancer cells.

    PubMed

    Jägle, Sabine; Dertmann, Annika; Schrempp, Monika; Hecht, Andreas

    2017-01-22

    Epithelial-mesenchymal transition (EMT) is implicated in metastases formation and acquired therapy resistance in several tumor entities. The two transcription factors SNAIL1 and ZEB1 are thought to be master regulators of EMT and to form a core regulatory network required for EMT-associated transcriptional reprogramming. Yet, inducible EMT models show the sequential upregulation first of SNAIL1 and only subsequently of ZEB1. Therefore, SNAIL1 and ZEB1 might be differentially needed for the onset and propagation of EMT. Here we used LS174T colorectal adenocarcinoma cells which do not express endogenous EMT-inducing transcription factors, to investigate whether ZEB1 is an obligatory downstream mediator of Snail1-induced EMT, and to test whether ZEB1 could elicit an EMT in a background of naïve epithelial cells by itself. However, CRISPR/Cas9-mediated knockout of ZEB1 did not affect the ability of ectopically expressed Snail1 to trigger a complete EMT in ZEB1-deficient LS174T cells. In contrast to Snail1, ectopic ZEB1 had only minor effects on cell morphology and invasive growth in three-dimensional spheroid cultures. In agreement with this, expression of ZEB1 did not lead to repression of epithelial marker genes, and mesenchymal markers were not upregulated by ZEB1. Likewise, ectopic ZEB1 expression did not confer increased chemoresistance. We conclude that ZEB1 is neither required nor sufficient for EMT in LS174T colorectal cancer cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Prognostic significance of epithelial-mesenchymal transition proteins Twist and Foxc2 in phyllodes tumours of the breast.

    PubMed

    Lim, Jeffrey Chun Tatt; Koh, Valerie Cui Yun; Tan, Jane Sie Yong; Tan, Wai Jin; Thike, Aye Aye; Tan, Puay Hoon

    2015-02-01

    Epithelial-mesenchymal transition (EMT), an important process during embryonic development, is reportedly exploited during tumour progression. Deregulation of EMT-related molecules has been shown in many malignancies, including breast carcinoma. We aim to investigate the clinical relevance and prognostic significance of EMT proteins, Twist and Foxc2, in breast phyllodes tumours (PTs). The study cohort comprised 271 PTs diagnosed from 2003 to 2010. Of these, 188 (69.4 %) were benign, 60 (22.1 %) borderline, and 23 (8.5 %) malignant. Immunohistochemistry for Twist and Foxc2 was performed on tissue microarray sections. Percentage of tumour cells stained was evaluated and correlated with clinicopathological parameters and clinical outcome. Twist and Foxc2 stromal nuclear expression was associated with tumour grade (P = 0.038 and 0.012). Foxc2 stromal nuclear expression was positively correlated with epithelial expression (P < 0.001), tumour relapse, and metastasis (P = 0.037). Furthermore, stromal nuclear immunoreactivity of Twist and Foxc2 was interrelated (P < 0.001). Tumours expressing Foxc2 and those co-expressing both Twist and Foxc2 revealed a shorter time to recurrence (P < 0.001 and 0.001) and death (P = 0.044 and 0.015). Twist and Foxc2 stromal expression in PTs was significantly correlated with tumour grade and worse histological features. In addition, expression of Foxc2 and co-expression of Twist and Foxc2 in the stroma of PTs contributed to poorer prognosis. Clinical relevance of EMT-related molecules may be worthy of further investigation in PTs.

  17. Nicotine-induced epithelial-mesenchymal transition via Wnt/β-catenin signaling in human airway epithelial cells.

    PubMed

    Zou, Weifeng; Zou, Yimin; Zhao, Zhuxiang; Li, Bing; Ran, Pixin

    2013-02-15

    Epithelial-mesenchymal transition (EMT) has been proposed to be a mechanism in airway remodeling, which is a characteristic of chronic obstructive pulmonary disease (COPD). Studies have shown that cigarette smoke and nicotine are factors that induce Wnt/β-catenin activation, which is a pathway that has also been implicated in EMT. The main aim of this study was to test whether human bronchial epithelial cells are able to undergo EMT in vitro following nicotine stimulation via the Wnt3a/β-catenin signaling pathway. We show that nicotine activates the Wnt3a signal pathway, which leads to the translocation of β-catenin into the nucleus and activation of β-catenin/Tcf-dependent transcription in the human bronchial epithelial cell (HBEC) line. This accumulation was accompanied by an increase in smooth muscle actin, vimentin, matrix metalloproteinases-9, and type I collagen expression as well as downregulation of E-cadherin, which are typical characteristics of EMT. We also noted that the release of TGF-β(1) from these cells was stimulated by nicotine. Knockdown of Wnt3a with small interfering RNA (siRNA) prevented these effects, implying that β-catenin activation in these responses is Wnt3a dependent. Furthermore, specific knockdown of TGF-β(1) with TGF-β(1) siRNA partially prevented nicotine-induced EMT, suggesting that TGF-β(1) has a role in nicotine-mediated EMT in HBECs. These results suggest that HBECs are able to undergo EMT in vitro upon nicotine stimulation via the Wnt3a/β-catenin signaling pathway.

  18. Wnt signaling induces epithelial-mesenchymal transition with proliferation in ARPE-19 cells upon loss of contact inhibition.

    PubMed

    Chen, Hung-Chi; Zhu, Ying-Ting; Chen, Szu-Yu; Tseng, Scheffer C G

    2012-05-01

    Proliferation and epithelial-mesenchymal transition (EMT) of the retinal pigment epithelium (RPE) are hallmarks of proliferative vitreoretinopathy. This study aims at clarifying the role of growth factors, such as epidermal growth factor (EGF), fibroblast growth factor-2 (FGF-2), and transforming growth factor-β1 (TGF-β1), in controlling how RPE proliferates while undergoing EMT. When contact inhibition of post-confluent ARPE-19 cells was disrupted by EGTA, an increase of BrdU labeling was noted only in the presence of EGF and/or FGF-2, and was accompanied by EMT as evidenced by the loss of a normal RPE phenotype (altered cytolocalization of RPE65, N-cadherin, ZO-1, and Na,K-ATPase) and the gain of a mesenchymal phenotype (increased expression of vimentin, S100A4, and α-smooth muscle actin). EMT with proliferation by EGTA+EGF+FGF-2 was accompanied by activation of canonical Wnt signaling (judged by the TCF/LEF promoter activity, increased nuclear levels of and interaction between β-catenin and LEF1 proteins, and the replication by overexpression of β-catenin), abolished by concomitant addition of XAV939, a Wnt inhibitor, but not associated with suppression of Hippo signaling (negative expression of nuclear TAZ or YAP and cytoplasmic p-TAZ or p-YAP). The causative role of Wnt signaling on EMT with proliferation was confirmed by overexpression of stable S33Y β-catenin with EGTA treatment. In addition, contact inhibition disrupted by EGTA in the presence of TGF-β1 also led to EMT, but suppressed proliferation and Wnt signaling. The Wnt signaling triggered by EGF+FGF-2 was sufficient and synergized with TGF-β1 in activating the Smad/ZEB1/2 signaling responsible for EMT. These findings establish a framework for further dissecting how RPE might partake in a number of proliferative vitreoretinopathies characterized by EMT.

  19. ZEB1 promotes the progression and metastasis of cervical squamous cell carcinoma via the promotion of epithelial-mesenchymal transition

    PubMed Central

    Ma, Yihui; Zheng, Xiangyu; Zhou, Jun; Zhang, Ying; Chen, Kuisheng

    2015-01-01

    Objective: The process of epithelial-mesenchymal transition (EMT) clearly contributes to cancer metastasis. The aim of this study was to investigate the expression of the EMT-related transcription repressor ZEB1 and the expression of EMT-associated markers (E-cadherin, β-catenin and N-cadherin) in cervical squamous cell carcinoma. In addition, the role of ZEB1 and these EMT-associated markers in the progression and metastasis of cervical squamous cell carcinoma was explored. Methods: The expression of ZEB1, E-cadherin, β-catenin and N-cadherin was evaluated in 81 specimens of cervical squamous cell carcinoma by immunohistochemistry; the clinicopathological significance of these markers was then analyzed. Results: 1) Of the 81 samples, 37 cases (45.7%) were positive for ZEB1, and nuclear expression of ZEB1 in tumor cells was positively associated with the differentiation status of the tumor tissue (P < 0.05), vascular invasion (P < 0.05) and lymph node metastasis (P < 0.05). 2) The loss of E-cadherin and β-catenin expression in tumor cells and the acquisition of N-cadherin expression were positively associated with the differentiation status of the tumor tissue (P < 0.05) and with the occurrence of vascular invasion (P < 0.05). 3) A significant negative correlation was observed between ZEB1 and E-cadherin expression (Spearman = -0.636, P < 0.05) and between ZEB1 and β-catenin expression (Spearman = -0.417, P < 0.05). Moreover, a significant positive correlation was observed between ZEB1 and N-cadherin expression (Spearman = 0.557, P < 0.05). Conclusions: These results emphasize the role of EMT in cervical squamous cell carcinoma. The upregulation of ZEB1 is associated with the abnormal expression of E-cadherin, β-catenin and N-cadherin, which might promote the progression and metastasis of cervical squamous cell carcinoma. PMID:26617850

  20. IGF-1 contributes to the expansion of melanoma-initiating cells through an epithelial-mesenchymal transition process.

    PubMed

    Le Coz, Vincent; Zhu, Chaobin; Devocelle, Aurore; Vazquez, Aimé; Boucheix, Claude; Azzi, Sandy; Gallerne, Cindy; Eid, Pierre; Lecourt, Séverine; Giron-Michel, Julien

    2016-12-13

    Melanoma is a particularly virulent human cancer, due to its resistance to conventional treatments and high frequency of metastasis. Melanomas contain a fraction of cells, the melanoma-initiating cells (MICs), responsible for tumor propagation and relapse. Identification of the molecular pathways supporting MICs is, therefore, vital for the development of targeted treatments. One factor produced by melanoma cells and their microenvironment, insulin-like growth factor-1 (IGF- 1), is linked to epithelial-mesenchymal transition (EMT) and stemness features in several cancers.We evaluated the effect of IGF-1 on the phenotype and chemoresistance of B16-F10 cells. IGF-1 inhibition in these cells prevented malignant cell proliferation, migration and invasion, and lung colony formation in immunodeficient mice. IGF-1 downregulation also markedly inhibited EMT, with low levels of ZEB1 and mesenchymal markers (N-cadherin, CD44, CD29, CD105) associated with high levels of E-cadherin and MITF, the major regulator of melanocyte differentiation. IGF-1 inhibition greatly reduced stemness features, including the expression of key stem markers (SOX2, Oct-3/4, CD24 and CD133), and the functional characteristics of MICs (melanosphere formation, aldehyde dehydrogenase activity, side population). These features were associated with a high degree of sensitivity to mitoxantrone treatment.In this study, we deciphered new connections between IGF-1 and stemness features and identified IGF-1 as instrumental for maintaining the MIC phenotype. The IGF1/IGF1-R nexus could be targeted for the development of more efficient anti-melanoma treatments. Blocking the IGF-1 pathway would improve the immune response, decrease the metastatic potential of tumor cells and sensitize melanoma cells to conventional treatments.

  1. Bone Morphogenetic Protein-7 Suppresses TGFβ2-Induced Epithelial-Mesenchymal Transition in the Lens: Implications for Cataract Prevention

    PubMed Central

    Shu, Daisy Y.; Wojciechowski, Magdalena C.; Lovicu, Frank J.

    2017-01-01

    Purpose Epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) is a key pathologic mechanism underlying cataract. Two members of the transforming growth factor-β (TGFβ) superfamily, TGFβ and bone morphogenetic protein-7 (BMP-7) have functionally distinct roles in EMT. While TGFβ is a potent inducer of EMT, BMP-7 counteracts the fibrogenic activity of TGFβ. We examine the modulating effect of BMP-7 on TGFβ-induced EMT in LECs. Methods Rat lens epithelial explants were treated exogenously with TGFβ2 alone or in combination with BMP-7 for up to 5 days. Expression levels of E-cadherin, β-catenin, α-smooth muscle actin (α-SMA), and phosphorylated downstream Smads were determined using immunofluorescence and Western blotting. Reverse transcriptase quantitative PCR (RT-qPCR) was used to study gene expression levels of EMT markers and downstream BMP target genes, including the Inhibitors of differentiation (Id). Results Transforming growth factor-β2 induced LECs to transdifferentiate into myofibroblastic cells. Addition of BMP-7 suppressed TGFβ2-induced α-SMA protein levels and mesenchymal gene expression, with retention of E-cadherin and β-catenin expression to the cell membrane. Addition of BMP-7 prevented lens capsular wrinkling and cellular loss associated with TGFβ2-induced EMT over the 5-day treatment period. The inhibitory effect of BMP-7 was accompanied by an early induction of pSmad1/5 and suppression of TGFβ2-induced pSmad2/3. Treatment with TGFβ2 alone suppressed gene expression of Id2/3 and addition of BMP-7 restored Id2/3 expression. Conclusions Exogenous administration of BMP-7 abrogated TGFβ2-induced EMT in rat lens epithelial explants. Understanding the complex interplay between the TGFβ- and BMP-7–associated Smad signaling pathways and their downstream target genes holds therapeutic promise in cataract prevention. PMID:28152139

  2. The NRF2-heme oxygenase-1 system modulates cyclosporine A-induced epithelial-mesenchymal transition and renal fibrosis

    PubMed Central

    Shin, Dong-ha; Park, Hyun-Min; Jung, Kyeong-Ah; Choi, Han-Gon; Kim, Jung-Ae; Kim, Dae-Duk; Kim, Sang Geon; Kang, Keon Wook; Ku, Sae Kwang; Kensler, Thomas W.; Kwak, Mi-Kyoung

    2013-01-01

    Epithelial-mesenchymal transition (EMT) is an underlying mechanism of tissue fibrosis by generating myofibroblasts, which serve as the primary source of extracellular matrix production from tissue epithelial cells. Recently, it has been suggested that EMT is implicated in immunosuppressive cyclosporine A (CsA)-induced renal fibrosis. In the present study, the potential role of NRF2, which is the master regulator of genes associated with the cellular antioxidant defense system, in CsA-induced EMT-renal fibrosis has been investigated. Pre-treatment of rat tubular epithelial NRK-52E cells with sulforaphane, an activator of NRF2, could prevent EMT gene changes such as the loss of E-cadherin and the increase of α-smooth muscle actin (α-SMA) expression. Conversely, genetic inhibition of NRF2 in these cells aggravated changes in CsA-induced EMT markers. These in vitro observations could be confirmed in vivo: CsA-treatment developed severe renal damage and fibrosis with increased expression of α-SMA in NRF2-deficient mice compared to wild-type mice. NRF2-mediated amelioration of CsA-EMT changes could be accounted in part by the regulation of heme oxygenase-1 (HO-1). CsA treatment increased HO-1 expression in an NRF2-dependent manner in NRK cells as well as murine fibroblasts. Induction of HO-1 by CsA appears to be advantageous by counteracting EMT gene changes: specific increase of HO-1 expression by cobalt protoporphyrin prevented CsA-mediated α-SMA induction, while genetic inhibition of HO-1 by siRNA substantially enhanced α-SMA induction compared to control cells. Collectively, our current results suggest that the NRF2-HO-1 system plays a protective role against CsA-induced renal fibrosis by modulating EMT gene changes. PMID:20096777

  3. CD133/Src Axis Mediates Tumor Initiating Property and Epithelial-Mesenchymal Transition of Head and Neck Cancer

    PubMed Central

    Chen, Yu-Syuan; Wu, Meng-Ju; Huang, Chih-Yang; Lin, Shu-Chun; Chuang, Tsung-Hsien; Yu, Cheng-Chia; Lo, Jeng-Fan

    2011-01-01

    Background Head and Neck squamous cell carcinoma (HNSCC) is a human lethal cancer with clinical, pathological, phenotypical and biological heterogeneity. Caner initiating cells (CICs), which are responsible for tumor growth and coupled with gain of epithelial-mesenchymal transition (EMT), have been identified. Previously, we enriched a subpopulation of head and neck cancer initiating cells (HN-CICs) with up-regulation of CD133 and enhancement of EMT. Others demonstrate that Src kinase interacts with and phosphorylates the cytoplasmic domain of CD133. However, the physiological function of CD133/Src signaling in HNSCCs has not been uncovered. Methodology/Principal Finding Herein, we determined the critical role of CD133/Src axis modulating stemness, EMT and tumorigenicity of HNSCC and HN-CICs. Initially, down-regulation of CD133 significantly reduced the self-renewal ability and expression of stemness genes, and promoted the differentiation and apoptotic capability of HN-CICs. Additionally, knockdown of CD133 in HN-CICs also lessened both in vitro malignant properties including cell migration/cell invasiveness/anchorage independent growth, and in vivo tumor growth by nude mice xenotransplantation assay. In opposite, overexpression of CD133 enhanced the stemness properties and tumorigenic ability of HNSCCs. Lastly, up-regulation of CD133 increased phosphorylation of Src coupled with EMT transformation in HNSCCs, on the contrary, silence of CD133 or treatment of Src inhibitor inversely abrogated above phenotypic effects, which were induced by CD133 up-regulation in HNSCCs or HN-CICs. Conclusion/Significance Our results suggested that CD133/Src signaling is a regulatory switch to gain of EMT and of stemness properties in HNSCC. Finally, CD133/Src axis might be a potential therapeutic target for HNSCC by eliminating HN-CICs. PMID:22140506

  4. Epithelial-mesenchymal transition in keloid tissues and TGF-β1-induced hair follicle outer root sheath keratinocytes.

    PubMed

    Yan, Li; Cao, Rui; Wang, Lianzhao; Liu, Yuanbo; Pan, Bo; Yin, Yanhua; Lv, Xiaoyan; Zhuang, Qiang; Sun, Xuejian; Xiao, Ran

    2015-01-01

    Keloid is a skin fibrotic disease with the characteristics of recurrence and invasion, its pathogenesis still remains unrevealed. The epithelial-mesenchymal transition (EMT) is critical for wound healing, fibrosis, recurrence, and invasion of cancer. We sought to investigate the EMT in keloid and the mechanism through which the EMT regulates keloid formation. In keloid tissues, the expressions of EMT-associated markers and transforming growth factor (TGF)-β1/Smad3 signaling were examined by immunohistochemistry. In the keloid epidermis and dermal tissue, the expressions of genes related to the regulation of skin homeostasis, fibroblast growth factor receptor 2 (FGFR2) and p63, were analyzed using quantitative real-time polymerase chain reaction. The results showed that accompanying the loss of the epithelial marker E-cadherin and the gain of the mesenchymal markers fibroblast-specific protein 1 (FSP1) and vimentin in epithelial cells from epidermis and skin appendages, and in endothelial cells from dermal microvessels, enhanced TGF-β1 expression and Smad3 phosphorylation were noted in keloid tissues. Moreover, alternative splicing of the FGFR2 gene switched the predominantly expressed isoform from FGFR2-IIIb to -IIIc, concomitant with the decreased expression of ΔNp63 and TAp63, which changes might partially account for abnormal epidermis and appendages in keloids. In addition, we found that TGF-β1-induced hair follicle outer root sheath keratinocytes (ORSKs) and normal skin epithelial cells underwent EMT in vitro with ORSKs exhibiting more obvious EMT changes and more similar expression profiles for EMT-associated and skin homeostasis-related genes as in keloid tissues, suggesting that ORSKs might play crucial roles in the EMT in keloids. Our study provided insights into the molecular mechanisms mediating the EMT pathogenesis of keloids.

  5. h-Prune is associated with poor prognosis and epithelial-mesenchymal transition in patients with colorectal liver metastases.

    PubMed

    Hashimoto, Masakazu; Kobayashi, Tsuyoshi; Tashiro, Hirotaka; Arihiro, Koji; Kikuchi, Akira; Ohdan, Hideki

    2016-08-15

    The prognosis of patients with colorectal liver metastases (CRLM) remains low despite advances in chemotherapy and surgery. The expression of h-prune (human homolog of Drosophila prune protein; HGNC13420), an exopolyphosphatase, is correlated with progression and aggressiveness in several cancers and promotes migration and invasion. We investigated the role of h-prune in CRLM. To investigate the role of h-prune, immunohistochemical analysis for h-prune was performed in 87 surgically resected specimens of CRLM obtained between 2001 and 2009 at the Hiroshima University Hospital. Immunohistochemical analysis revealed positive staining for h-prune in 24 (28%) cases. The overall survival rate was significantly lower in h-prune-positive cases than in h-prune-negative cases (p = 0.003). Multivariate analysis showed that h-prune positivity was the only independent factor related to poor overall survival of patients after curative hepatectomy of CRLM. In vitro and in vivo, h-prune-knocked-down and h-prune-overexpressing cells were analyzed. In vitro, h-prune was associated with increased cell motility and upregulation of epithelial-mesenchymal transition (EMT) markers. In a mouse model, h-prune was associated with invasion of the tumor and distant metastases. In summary, h-prune expression is a useful marker to identify high-risk patients for resectable colorectal liver metastasis. h-Prune expression is necessary for cancer cell motility and EMT and is associated with liver and lung metastasis in colorectal cancer cells. h-Prune could be a new prognostic marker and molecular target for CRLM. © 2016 UICC.

  6. Endoplasmic reticulum stress induces epithelial-mesenchymal transition through autophagy via activation of c-Src kinase.

    PubMed

    Moon, Soo Young; Kim, Hyo Sang; Nho, Kyeong Woo; Jang, Young Joo; Lee, Sang Koo

    2014-01-01

    Endoplasmic reticulum (ER) stress has been implicated in inducing epithelial-mesenchymal transition (EMT). ER stress is also known to induce autophagy. However, it is unclear whether ER stress-induced autophagy contributes to EMT. We hypothesized that ER stress might induce EMT through autophagy via activation of c-Src kinase in tubular epithelial cells. All experiments were performed using HK-2 cells. Protein expression was measured by Western blot analysis. Immunofluorescence and small interfering RNA (siRNA) experiments were performed. Chemical ER stress inducers such as tunicamycin (TM, 0.2 μM) and thapsigargin (TG, 0.2 μM) induced EMT, as shown by upregulation of α-smooth muscle actin and downregulation of E-cadherin. ER stress inhibitors such as 4-PBA and salubrinal suppressed both TM- and TG-induced EMT. TM and TG also induced autophagy, as evidenced by upregulation of LC3-II and beclin-1, which were abolished by pretreatment with ER stress inhibitors. Transfection with siRNA targeting ER stress protein (IRE-1) blocked the TM- or TG-induced EMT and autophagy. Autophagy inhibitors such as 3-methyladenine and bafilomycin inhibited the TM- or TG-induced EMT. Transfection with siRNA targeting autophagy protein (beclin-1) also blocked the TM- or TG-induced EMT. Both TM and TG induced activation of c-Src kinase. Inhibitor of c-Src kinase (PP2) suppressed the TM- or TG-induced autophagy and EMT. ER stress by TM or TG induced EMT through autophagy via activation of c-Src kinase in tubular epithelial cells. 2014 S. Karger AG, Basel

  7. Promoter methylation and expression of SOCS-1 affect clinical outcome and epithelial-mesenchymal transition in colorectal cancer.

    PubMed

    Kang, Xiao-Chun; Chen, Mei-Ling; Yang, Fang; Gao, Bao-Qin; Yang, Qing-Hui; Zheng, Wei-Wei; Hao, Sha

    2016-05-01

    Abnormal DNA methylation can cause gene silencing in colorectal cancer (CRC) patients. A gene that is suspected to have a crucial role in various types of cancers is the suppressor of cytokine signaling 1 (SOCS-1). Thus, this study will analyze the ramifications of SOCS-1 promoter methylation in CRC patients. This study will also test the therapeutic effects of hypomethylation as a possible CRC therapy. First, 97CRC patients' tumor and adjacent normal tissues were collected. Next, the methylation status of the SOCS-1 promoter region was assessed by methylation-specific polymerase chain reaction (MS-PCR); SOCS-1 protein and mRNA expression were also measured. A 48-month median follow-up period was used for the survival analysis of research participants. Lastly, to analyze the changes in cell invasion and migration in conjunction with protein and mRNA expression, the demethylating agent 5-azacytidine was applied in vitro to human CRC cells. The results showed increased SOCS-1 hypermethylation in CRC samples compared to controls. Methylated SOCS-1 was associated with significant suppression of SOCS-1 expression in tumors. Additionally, SOCS-1 hypermethylation was significantly correlated with lymph node metastasis and TNM stage. The study also found a poor overall survival rate to be significantly correlated with reduced expression of SOCS-1. After 5-azacytidine treatment, reduced in vitro DNA methylation and increased SOCS-1 expression were observed, and decreased cell migration and epithelial-mesenchymal transition biomarker expression alteration were further confirmed. In colorectal cancer tissues, the rate of methylation in the SOCS-1 promoter region is high. Through promoter hypermethylation, the SOCS-1 gene was severely down-regulated in the CRC tissue samples, thereby revealing a plausible therapeutic target for CRC therapy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. [Expression of sal-like 4 in primary hepatocellular carcinoma and its association with epithelial-mesenchymal transition].

    PubMed

    Xu, J; Wang, J; Hu, Y; Wang, X X; Cheng, L L; Yu, H Y

    2016-07-20

    Objective: To investigate the expression of sal-like 4 (SALL4) in tissues of primary hepatocellular carcinoma (HCC) and its association with epithelial-mesenchymal transition (EMT) and clinicopathological characteristics. Methods: Immunohistochemistry and nucleic acid in situ hybridization were used to measure the mRNA expression of SALL4, epithelial cadherin (E-cadherin), vimentin, and Snail in 72 HCC samples, 2 fetal liver samples, and 2 normal adult liver tissue samples. Results: Strong expression of SALL4 was observed in hepatoblasts in fetal liver, but SALL4 expression was not observed in primitive hematopoietic cells and normal adult hepatocytes or biliary epithelial cells. In the HCC samples, the positive rate of SALL4 was 47.2% (34/72), showing focal positive nuclear staining. The HCC patients with microscopic microvascular tumor thrombus and portal vein tumor thrombus, a serum alpha-fetoprotein level of≥ 350 ng/ml, International Union Against Cancer (UICC) stage III+IV, and an age of < 46 years showed higher positive expression of SALL4 than those with no microscopic microvascular tumor thrombus or portal vein tumor thrombus, a serum alpha-fetoprotein level of < 350 ng/ml, UICC stage I+II, and an age of≥46 years. The HCC patients with positive SALL4 showed lower postoperative disease-free survival rate and overall survival rate than those with negative SALL4 (P < 0.05). Sixty percent of the patients with microvascular tumor thrombus (21/35) showed positive expression of SALL4. The positive rate of SALL4 was negatively correlated with E-cadherin (r = -0.434, P < 0.01), but positively correlated with vimentin and Snail (vimentin: r = 0.516, P < 0.01; Snail: r = 0.571, P < 0.01). Conclusion: In patients with primary HCC, the expression of SALL4 greatly affects EMT, which helps with the research on invasion and metastasis of liver cancer and prognostic evaluation.

  9. The vitamin D analog, MART-10, represses metastasis potential via downregulation of epithelial-mesenchymal transition in pancreatic cancer cells.

    PubMed

    Chiang, Kun-Chun; Yeh, Chun-Nan; Hsu, Jun-Te; Jan, Yi-Yin; Chen, Li-Wei; Kuo, Sheng-Fong; Takano, Masashi; Kittaka, Atsushi; Chen, Tai C; Chen, Wen-Tsung; Pang, Jong-Hwei S; Yeh, Ta-Sen; Juang, Horng-Heng

    2014-11-28

    Pancreatic cancer (PDA) is a devastating disease and there is no effective treatment available at present. To develop new regiments against PDA is urgently needed. Previously we have shown that vitamin D analog, MART-10 (19-nor-2α-(3-hydroxypropyl)-1α,25(OH)2D3), exerted potent antiproliferative effect on PDA in vitro and in vivo without causing hypercalcemia. Since metastasis is the major cause of PDA-related death, we therefore investigate the anti-metastasis effect of MART-10 on PDA. Our results showed that both 1α,25(OH)2D3 and MART-10 repressed migration and invasion of BxPC-3 and PANC cells with MART-10 much more potent than 1α,25(OH)2D3. 1α,25(OH)2D3 and MART-10 inhibited epithelial-mesenchymal transition (EMT) in pancreatic cancer cells through downregulation of Snail, Slug, and Vimentin expression in BxPC-3 and PANC cells. MART-10 further blocked cadherin switch (from E-cadherin to N-cadherin) in BxPC-3 cells. The F-actin synthesis in the cytoplasm of BxPC-3 cells was also repressed by 1α,25(OH)2D3 and MART-10 as determined by immunofluorescence stain. Both 1α,25(OH)2D3 and MART-10 decreased MMP-2 and -9 secretion in BxPC-3 cells as determined by western blot and zymography. Collectively, MART-10 should be deemed as a promising regimen against PDA.

  10. FGF1-FGFR1 axis promotes tongue squamous cell carcinoma (TSCC) metastasis through epithelial-mesenchymal transition (EMT).

    PubMed

    Jiao, Jiuyang; Zhao, Xiaopeng; Liang, Yancan; Tang, Dongxiao; Pan, Chaobin

    2015-10-23

    Increasing evidences suggest a close association between tumor metastasis and the inflammatory factors secreted by tumor microenvironment. It has been reported that epithelial mesenchymal-transition (EMT) plays a significant role during multiple types of tumor metastasis and progression induced by inflammatory factor from tumor microenvironment. Previous researches implied that fibroblast growth factor 1 (FGF1) can promote tumor progression and cause poor prognosis in several types of malignant tumors via interacting with its receptor fibroblast growth factor receptor 1 (FGFR1). However, the effects of FGF1-FGFR1 on tongue squamous cell carcinoma (TSCC) are not yet completely understood. In the present study, we evaluated the effects and function of FGF1-FGFR1 axis on TSCC metastasis. In addition, we investigated whether the EMT pathway is involved in these effects, thus modulating the TSCC progression. The expression of FGFR1 was measured both in tongue cancer cell lines and tissues by qRT-PCR and western blot. We found that FGFR1 was up-regulated in TSCC tissues compared to non-neoplastic tongue tissues. Additionally, overexpression of FGFR1 is positively associated with poor differentiation and metastasis potential. Furthermore, the function of FGF1-FGFR1 was examined in TSCC cell line. The results implied that FGF1 can obviously promote Cal27 cells migration and invasion abilities through FGFR1, while the motile and invasive capabilities can be severely attenuated when knockdown the expression of FGFR1 by specific siRNAs. Further investigation results show that FGF1-FGFR1 axis promotes TSCC metastasis by modulating EMT pathway. However, this effect can be inhibited by blocking the FGF1-FGFR1 axis using FGFR1 specific siRNAs. In conclusion, our findings of the present study provide the evidences that FGF1-FGFR1 axis promotes the TSCC metastasis through the EMT pathway.

  11. Cancer upregulated gene 2 induces epithelial-mesenchymal transition of human lung cancer cells via TGF-β signaling.

    PubMed

    Kaowinn, Sirichat; Kim, Jeonghyo; Lee, Jaebeom; Shin, Dong Hoon; Kang, Chi-Dug; Kim, Dae-Kee; Lee, Soojin; Kang, Min Kyung; Koh, Sang Seok; Kim, Seong-Jin; Chung, Young-Hwa

    2017-01-17

    Cancer upregulated gene 2 (CUG2) enhances cell migration and invasion, but the underlying mechanism has not been revealed. Herein, CUG2 decreased the expression of E-cadherin and increased the expression of N-cadherin and vimentin, characteristics of the epithelial-mesenchymal transition (EMT). A CUG2 deletion mutant, lacking interaction with nucleophosmin 1 (NPM1), or suppression of NPM1 reduced wound healing and cell invasion, indicating that CUG2-mediated EMT requires NPM1. CUG2 enhanced activation of Smad2/3 and expression of Snail and Twist, while the CUG2 silence decreased these TGF-β signaling pathways, leading to suppression of EMT. NPM silence also inhibited the CUG2-induced TGF-β signaling. These results suggest that TGF-β signaling is involved in CUG2-induced EMT. Treatment with EW-7197, a novel inhibitor of TGF-β signaling, diminished CUG2-mediated EMT and inhibition of Akt, ERK, JNK, and p38 MAPK, non-canonical TGF-β signaling molecules, also decreased expression of Smad2/3, Snail and Twist, leading to inhibition of EMT. The results confirm that TGF-β signaling is essential for CUG2-mediated EMT. Interestingly, TGF-β enhanced CUG2 expression. We further found that both CUG2-induced TGF-β production and TGF-β-induced CUG2 up-regulation required a physical interaction between Sp1 and Smad2/3 in the CUG2 and TGF-β promoter, as demonstrated by a promoter reporter assay, immunoprecipitation, and ChIP assay. These results indicated close crosstalk between CUG2 and TGF-β. Conversely, suppression of CUG2 or NPM1 did not completely inhibit TGF-β-induced EMT, indicating that the effect of TGF-β on EMT is dominant over the effect of CUG2 on EMT. Collectively, our findings suggest that CUG2 induces the EMT via TGF-β signaling.

  12. Vasohibin-2 is required for epithelial-mesenchymal transition of ovarian cancer cells by modulating TGF-β signaling.

    PubMed

    Norita, Rie; Suzuki, Yasuhiro; Furutani, Yutaka; Takahashi, Kazuki; Yoshimatsu, Yasuhiro; Podyma-Inoue, Katarzyna A; Watabe, Tetsuro; Sato, Yasufumi

    2017-01-08

    Vasohibin-2 (VASH2) is a homologue of VASH1, an endothelium-derived angiogenesis inhibitor. VASH2 is mainly expressed in cancer cells, and has been implicated in the progression of cancer by inducing angiogenesis and tumor growth. While VASH2 has been recently reported to be involved in epithelial-mesenchymal transition (EMT), its precise roles are obscure. The aim of the present study was to clarify the role of VASH2 in the EMT of cancer cells in relation to TGF-β signaling, which is a major stimulator of the EMT. Decreased expression of VASH2 in ovarian cancer cells significantly repressed the expression of TGF-β type I receptor (TβRI), namely ALK5. TGF-β1-induced phosphorylation of Smad2 and Smad3 was markedly decreased in VASH2 knockdown cells while the expression of Smad2 and Smad3 was unchanged. Accordingly, the responses to TGF-β1 shown by promoter assay and PAI-1 expression were significantly attenuated in VASH2 knockdown cells. Furthermore, knockdown of VASH2 in cancer cells abrogated the TGF-β1-induced reduced expression of epithelial markers including E-cadherin, and the elevated expression of mesenchymal markers including fibronectin, ZEB2 and Snail2, suggesting that endogenous VASH2 is required for TGF-β1-induced EMT. In accordance with these results, the effects of TGF-β1 on cell morphology, migration, invasion and MMP2 expression were also abrogated when VASH2 was knocked-down. These results indicate that VASH2 played a significant role in the EMT by modulating the TGF-β signaling. We propose that VASH2 would be a novel molecular target for the prevention of the EMT in cancers. This article is protected by copyright. All rights reserved.

  13. Glypican-5 suppresses Epithelial-Mesenchymal Transition of the lung adenocarcinoma by competitively binding to Wnt3a

    PubMed Central

    Xu, Youtao; Mao, Qixing; Wang, Jie; Dong, Gaochao; Xu, Lin; Yang, Xin; Yin, Rong

    2016-01-01

    We previously demonstrated that Glypican-5 (GPC5), one of the members of heparan sulfate proteoglycan, was a novel tumor metastasis suppressor in lung adenocarcinoma (LAC). However, it remains unclear how GPC5 suppresses lung cancer metastasis. Here, we found over-expression GPC5 induced significant Epithelial-Mesenchymal Transition (EMT) process of A549 cells in vitro. Bioinformatic analysis of RNA sequencing data indicated that GPC5 was co-expressed with EMT related markers, E-cadherin and Vimentin. Wnt/β-catenin signaling pathway was also significantly enriched after overexpressing GPC5. Further in vitro experiments demonstrated that overexpressing GPC5 could block the translocation of β-catenin from cytoplasm to nucleus and therefore inactivate the Wnt/β-catenin signaling pathway by competitively binding to Wnt3a. Subsequent rescue experiments demonstrated that GPC5-induced metastatic phenotype and EMT process suppression were significantly reversed when cells cultured in Wnt3a conditioned media. By establishing the metastatic model in severe combined immune deficiency (SCID) mice, we also demonstrated that overexpressing GPC5 suppressed LAC migration and accordingly alerted EMT related markers, which including up-regulated E-cadherin and down-regulated Vimentin in both lung and liver metastasis. Finally, clinical samples of LAC further validated that GPC5 expression was positively correlated with E-cadherin, and negatively correlated with both Twist1 and MMP2. Taken together, these data suggested that GPC5 is able to suppress the LAC metastasis by competitively binding to Wnt3a and inactivating the Wnt/β-catenin signaling pathway. Our findings expanded the role and the molecular mechanism of GPC5 on malignant bionomics of LAC. PMID:27806326

  14. Specific N-glycan alterations are coupled in epithelial-mesenchymal transition induced by EGF in GE11 epithelial cells.

    PubMed

    Xu, Qingsong; Qu, Chen; Wang, Wenjing; Gu, Jianguo; Du, Yuguang; Song, Linsheng

    2017-02-01

    Epithelial-mesenchymal transition (EMT) is a phenomenon in cancer progression during which cancer cells undergo remarkable alteration acquiring highly invasive property. The aim of this study was to evaluate specific N-glycan alterations during EMT induced by epidermal growth factor (EGF) in GE11 epithelial cells. Herein, we demonstrated that EGF activated epidermal growth factor receptor (EGFR)/Akt/extracellular signal-regulated kinase (ERK) phosphorylation and promoted GE11 cell proliferation. Meanwhile, EGF stimulated the epithelial cells to undergo morphological alteration, destroying cell-cell inter-contact and exhibiting mesenchymal cells higher metastatic potential. A wound-healing assay showed the migratory ability increased 1.5-fold after EGF treatment. Moreover, the relative intensity of N-cadherin versus E-cadherin increased 2.6-fold, and the E-cadherin distribution in cell-cell junctions became jagged and faint after EGF incubation for 72 h. Interestingly, the amounts of bisecting GlcNAc structure were dramatically declined, by contrast, the formation of β1,6 GlcNAc branches on cell surface was upregulated during EMT induced by EGF. To understand the roles of N-glycans in EGF-induced EMT, the cells were stably transfected with N-acetylglucosaminyltransferase III (GnT-III), which catalyzes the bisecting GlcNAc structure formation. As the markers for EMT, EGF-induced E-cadherin decrease and fibronectin increase were delayed in GnT-III-overexpressing cells. Taken together, these results demonstrated that specific N-glycan alterations were coupled in EMT induced by EGF, which might be contributed to diagnosis and therapy of tumor metastasis.

  15. Muscadine grape skin extract reverts snail-mediated epithelial mesenchymal transition via superoxide species in human prostate cancer cells.

    PubMed

    Burton, Liza J; Barnett, Petrina; Smith, Basil; Arnold, Rebecca S; Hudson, Tamaro; Kundu, Kousik; Murthy, Niren; Odero-Marah, Valerie A

    2014-03-12

    Snail transcription factor can induce epithelial-mesenchymal transition (EMT), associated with decreased cell adhesion-associated molecules like E-cadherin, increased mesenchymal markers like vimentin, leading to increased motility, invasion and metastasis. Muscadine grape skin extract (MSKE) has been shown to inhibit prostate cancer cell growth and induce apoptosis without affecting normal prostate epithelial cells. We investigated novel molecular mechanisms by which Snail promotes EMT in prostate cancer cells via Reactive Oxygen Species (ROS) and whether it can be antagonized by MSKE. ARCaP and LNCaP cells overexpressing Snail were utilized to examine levels of reactive oxygen species (ROS), specifically, superoxide, in vitro using Dihydroethidium (DHE) or HydroCy3 dyes. Mitosox staining was performed to determine whether the source of ROS was mitochondrial in origin. We also investigated the effect of Muscadine grape skin extract (MSKE) on EMT marker expression by western blot analysis. Migration and cell viability using MTS proliferation assay was performed following MSKE treatments. Snail overexpression in ARCaP and LNCaP cells was associated with increased concentration of mitochondrial superoxide, in vitro. Interestingly, MSKE decreased superoxide levels in ARCaP and LNCaP cells. Additionally, MSKE and Superoxide Dismutase (SOD) reverted EMT as evidenced by decreased vimentin levels and re-induction of E-cadherin expression in ARCaP-Snail cells after 3 days, concomitant with reduced cell migration. MSKE also decreased Stat-3 activity in ARCaP-Snail cells. This study shows that superoxide species may play a role in Snail transcription factor-mediated EMT. Therefore, therapeutic targeting of Snail with various antioxidants such as MSKE may prove beneficial in abrogating EMT and ROS-mediated tumor progression in human prostate cancer.

  16. IL-13/STAT6 signaling plays a critical role in the epithelial-mesenchymal transition of colorectal cancer cells

    PubMed Central

    Liu, Hong; Wan, Ledong; Zhang, Honghe; Huang, Qiong; Xu, Enping; Lai, Maode

    2016-01-01

    Colorectal cancer (CRC) is one of the most common causes of cancer-related death worldwide due to the distant metastases. Compelling evidence has reported that epithelial-mesenchymal transition (EMT) is involved in promoting cancer invasion and metastasis. However, the precise molecular events that initiate this complex EMT process remain poorly understood. Here, we showed that the pleiotropic cytokine interleukin-13 (IL-13) could induce an aggressive phenotype displaying EMT by enhancing the expression of EMT-promoting factor ZEB1. Importantly, STAT6 signaling inhibitor and STAT6 knockdown significantly reversed IL-13-induced EMT and ZEB1 induction in CRC cells, whereas ectopic STAT6 expression in STAT6null CRC cell line markedly promoted EMT in the present of IL-13. ChIP-PCR and Luciferase assays revealed that activated STAT6 directly bound to the promoter of ZEB1. Otherwise, we found IL-13 also up-regulated the stem cell markers (nanog, CD44, CD133 and CD166) and promoted cell migration and invasion through STAT6 pathway. We also found that siRNA-mediated knockdown of IL-13Rα1 could reverse IL-13-induced ZEB1 and EMT changes by preventing STAT6 signaling. Finally, we demonstrated positive correlation between IL-13Rα1 and ZEB1 at mRNA levels in human CRC samples. Taken together, our findings first demonstrated that IL-13/IL-13Rα1/STAT6/ZEB1 pathway plays a critical role in promoting EMT and aggressiveness of CRC. PMID:27533463

  17. GSTA3 Attenuates Renal Interstitial Fibrosis by Inhibiting TGF-Beta-Induced Tubular Epithelial-Mesenchymal Transition and Fibronectin Expression.

    PubMed

    Xiao, Yun; Liu, Jishi; Peng, Yu; Xiong, Xuan; Huang, Ling; Yang, Huixiang; Zhang, Jian; Tao, Lijian

    2016-01-01

    Tubular epithelial-mesenchymal transition (EMT) has been widely accepted as the underlying mechanisms of renal interstitial fibrosis (RIF). The production of reactive oxygen species (ROS) plays a vital role in tubular EMT process. The purpose of this study was to investigate the involved molecular mechanisms in TGF-beta-induced EMT and identify the potential role of glutathione S-transferase alpha 3 (GSTA3) in this process. The iTRAQ screening was performed to identify protein alterations of the rats underwent unilateral-ureteral obstruction (UUO). Protein expression of GSTA3 in patients with obstructive nephropathy and UUO rats was detected by immunohistochemistry. Protein and mRNA expression of GSTA3 in UUO rats and NRK-52E cells were determined by Western blot and RT-PCR. siRNA and overexpression plasmid were transfected specifically to assess the role of GSTA3 in RIF. The generation of ROS was measured by dichlorofluorescein fluorescence analysis. GSTA3 protein and mRNA expression was significantly reduced in UUO rats. Immunohistochemical analysis revealed that GSTA3 expression was reduced in renal cortex in UUO rats and patients with obstructive nephropathy. Treating with TGF-β1 down-regulated GSTA3 expression in NRK-52E cells, which have been found to be correlated with the decreased expression in E-cadherin and megalin and increased expression in α-smooth muscle actin. Furthermore, knocking down GSTA3 in NRK-52 cells led to increased production of ROS and tubular EMT, whereas overexpressing GSTA3 ameliorated ROS production and prevented the occurrence of tubular EMT. GSTA3 plays a protective role against tubular EMT in renal fibrosis, suggesting GSTA3 is a potential therapeutic target for RIF.

  18. Peroxisome Proliferator Activated Receptor-γ Activation Inhibits Tumor Metastasis by Antagonizing Smad3 Mediated Epithelial Mesenchymal Transition

    PubMed Central

    Reka, Ajaya Kumar; Kurapati, Himabindu; Narala, Venkata R; Bommer, Guido; Chen, Jun; Standiford, Theodore J.; Keshamouni, Venkateshwar G.

    2011-01-01

    Epithelial-mesenchymal transition (EMT) was shown to confer tumor cells with abilities essential for metastasis, including migratory phenotype, invasiveness, and resistance to apoptosis, evading immune surveillance and tumor stem cell traits. Therefore, inhibition of EMT can be an important therapeutic strategy to inhibit tumor metastasis. Here we demonstrate that activation of peroxisome proliferator activated receptor (PPAR) -γ inhibits TGF-β-induced EMT in lung cancer cells and prevents metastasis by antagonizing Smad3 function. Activation of PPAR-γ by synthetic ligands (Troglitazone and Rosiglitazone) or by a constitutively-active form of PPAR-γ prevents TGF-β-induced loss of E-cadherin expression and inhibited the induction of mesenchymal markers (vimentin, N-cadherin, fibronectin) and MMPs. Consistently, activation of PPAR-γ also inhibited EMT-induced migration and invasion of lung cancer cells. Furthermore, effects of PPAR-γ ligands were attenuated by siRNA mediated knockdown of PPAR-γ, indicating that the ligand induced responses are PPAR-γ dependent. Selective knockdown of Smad2 and Smad3 by siRNA demonstrated that TGF-β-induced EMT is Smad3 dependent in lung cancer cells. Activation of PPAR-γ inhibits TGF-β-induced Smad transcriptional activity but had no effect on the phosphorylation or nuclear translocation of Smads. Consistently PPAR-γ activation prevented TGF-ß-induced transcriptional repression of E-cadherin promoter and inhibited transcriptional activation of N-cadherin promoter. Finally, treatment of mice with troglitazone or knockdown of Smad3 in tumor cells both significantly inhibited TGF-β-induced experimental metastasis in Scid-Beige mice. Together, with the low toxicity profile of PPAR-γ ligands, our data demonstrates that these ligands may serve as potential therapeutic agents to inhibit metastasis. PMID:21159608

  19. Hibiscus sabdariffa polyphenols prevent palmitate-induced renal epithelial mesenchymal transition by alleviating dipeptidyl peptidase-4-mediated insulin resistance.

    PubMed

    Huang, Chien-Ning; Wang, Chau-Jong; Yang, Yi-Sun; Lin, Chih-Li; Peng, Chiung-Huei

    2016-01-01

    Diabetic nephropathy has a significant socioeconomic impact, but its mechanism is unclear and needs to be examined. Hibiscus sabdariffa polyphenols (HPE) inhibited high glucose-induced angiotensin II receptor-1 (AT-1), thus attenuating renal epithelial mesenchymal transition (EMT). Recently, we reported HPE inhibited dipeptidyl-peptidase-4 (DPP-4, the enzyme degrades type 1 glucagon-like peptide (GLP-1)), which mediated insulin resistance signals leading to EMT. Since free fatty acids can realistically bring about insulin resistance, using the palmitate-stimulated cell model in contrast with type 2 diabetic rats, in this study we examined if insulin resistance causes renal EMT, and the preventive effect of HPE. Our findings reveal that palmitate hindered 30% of glucose uptake. Treatment with 1 mg mL(-1) of HPE and the DPP-4 inhibitor linagliptin completely recovered insulin sensitivity and palmitate-induced signal cascades. HPE inhibited DPP-4 activity without altering the levels of DPP-4 and the GLP-1 receptor (GLP-1R). HPE decreased palmitate-induced phosphorylation of Ser307 of insulin receptor substrate-1 (pIRS-1 (S307)), AT-1 and vimentin, while increasing phosphorylation of phosphatidylinositol 3-kinase (pPI3K). IRS-1 knockdown revealed its essential role in mediating downstream AT-1 and EMT. In type 2 diabetic rats, it suggests that HPE concomitantly decreased the protein levels of DPP-4, AT-1, vimentin, and fibronectin, but reversed the in vivo compensation of GLP-1R. In conclusion, HPE improves insulin sensitivity by attenuating DPP-4 and the downstream signals, thus decreasing AT-1-mediated tubular-interstitial EMT. HPE could be an adjuvant to prevent diabetic nephropathy.

  20. Trps1 Regulates Biliary Epithelial-Mesenchymal Transition and Has Roles during Biliary Fibrosis in Liver Grafts: A Preliminary Study

    PubMed Central

    Zhe, Cheng; Yu, Fan; Tian, Ju; Zheng, Shuguo

    2015-01-01

    Objective To investigate the role(s) of Trps1 in non-anastomotic biliary stricture (NABS) following liver transplantation. Methods Immunohistochemical and histological techniques were used to detect Trps1, E-cadherin, CK19, vimentin, α-SMA, and collagen deposition. Human intrahepatic biliary epithelial cells (HIBECs) were infected with a Trps1 adenovirus, or transfected with Trps1 short-interfering RNAs (siRNAs). Reverse transcription polymerase chain reaction (RT-PCR) assays and western blotting were used to determine expression levels of epithelial and mesenchymal markers, and Trps1 in HIBECs. Results Expression of Trps1 and epithelial markers was down-regulated or absent in NABS liver samples. Mesenchymal markers were seen in biliary epithelial cells (BECs), with collagen deposited around the bile duct. Trps1 expression positively correlated with epithelial markers. Expression of epithelial marker mRNAs and proteins in HIBECs decreased with prolonged cold preservation (CP), while mesenchymal marker expression increased. A 12-h CP period led to increased Trps1 mRNA and protein levels. Expression of E-cadherin was increased in HIBECs following Trps1 adenovirus infection and CP/reperfusion injury (CPRI), with vimentin expression levels reduced and CPRI-mediated epithelial-mesenchymal transition (EMT) inhibited. Transfection of HIBECs with Trps1 siRNAs in conjunction with CPRI revealed that E-cadherin expression was decreased, vimentin expression was increased, and CPRI-mediated EMT was promoted. Conclusion Trps1 is involved in NABS pathogenesis following liver transplantation and negatively correlates with BEC EMT and biliary fibrosis in liver grafts. Trps1 demonstrates antagonistic effects that could reverse EMT. PMID:25886207

  1. NUBPL, a novel metastasis-related gene, promotes colorectal carcinoma cell motility by inducing epithelial-mesenchymal transition.

    PubMed

    Wang, Yuhui; Wu, Nan; Sun, Donglin; Sun, Haiming; Tong, Dandan; Liu, Duo; Pang, Bo; Li, Su; Wei, Jia; Dai, Jialin; Liu, Yang; Bai, Jing; Geng, Jingshu; Fu, Songbin; Jin, Yan

    2017-06-01

    Nucleotide binding protein-like, NUBPL, is an assembly factor for human mitochondrial complex I, which is the biggest member of the mitochondrial respiratory chain. However, the relationship between NUBPL and carcinoma progression remains unknown. In this study, NUBPL was characterized for its role in colorectal cancer (CRC) and the underlying molecular mechanisms. Data (n = 197) from the Oncomine database revealed that mRNA levels of NUBPL were remarkably overexpressed in CRC tissues compared with normal tissues. In addition, immunohistochemical analysis of 75 pairs of CRC and non-tumor tissues showed that the expression level of NUBPL was significantly higher in CRC tissues, and its expression level was positively associated with lymph node metastasis (P = 0.028) and advanced staging (P = 0.030). Expression of NUBPL in metastatic lymph nodes of CRC patients was also detected by immunohistochemical staining and high expression levels of NUBPL were observed. Overexpression of NUBPL significantly promoted the migration and invasion ability of CRC cell lines SW480 and SW620, whereas knockdown of NUBPL lead to an opposite effect. Our further study found that NUBPL could induce epithelial-mesenchymal transition (EMT), characterized by downregulation of epithelial markers (E-cadherin) and upregulation of mesenchymal markers (N-cadherin and vimentin). Moreover, NUBPL was able to activate ERK, which is believed to promote EMT and tumor metastasis. Inhibition of ERK suppressed the NUBPL-induced changes in EMT and cell motility. These data showed that NUBPL plays a vital role in CRC migration and invasion by inducing EMT and activating ERK. It might be a novel therapeutic target for CRC. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  2. Trps1 regulates biliary epithelial-mesenchymal transition and has roles during biliary fibrosis in liver grafts: a preliminary study.

    PubMed

    Zhe, Cheng; Yu, Fan; Tian, Ju; Zheng, Shuguo

    2015-01-01

    To investigate the role(s) of Trps1 in non-anastomotic biliary stricture (NABS) following liver transplantation. Immunohistochemical and histological techniques were used to detect Trps1, E-cadherin, CK19, vimentin, α-SMA, and collagen deposition. Human intrahepatic biliary epithelial cells (HIBECs) were infected with a Trps1 adenovirus, or transfected with Trps1 short-interfering RNAs (siRNAs). Reverse transcription polymerase chain reaction (RT-PCR) assays and western blotting were used to determine expression levels of epithelial and mesenchymal markers, and Trps1 in HIBECs. Expression of Trps1 and epithelial markers was down-regulated or absent in NABS liver samples. Mesenchymal markers were seen in biliary epithelial cells (BECs), with collagen deposited around the bile duct. Trps1 expression positively correlated with epithelial markers. Expression of epithelial marker mRNAs and proteins in HIBECs decreased with prolonged cold preservation (CP), while mesenchymal marker expression increased. A 12-h CP period led to increased Trps1 mRNA and protein levels. Expression of E-cadherin was increased in HIBECs following Trps1 adenovirus infection and CP/reperfusion injury (CPRI), with vimentin expression levels reduced and CPRI-mediated epithelial-mesenchymal transition (EMT) inhibited. Transfection of HIBECs with Trps1 siRNAs in conjunction with CPRI revealed that E-cadherin expression was decreased, vimentin expression was increased, and CPRI-mediated EMT was promoted. Trps1 is involved in NABS pathogenesis following liver transplantation and negatively correlates with BEC EMT and biliary fibrosis in liver grafts. Trps1 demonstrates antagonistic effects that could reverse EMT.

  3. Radiation driven epithelial-mesenchymal transition is mediated by Notch signaling in breast cancer

    PubMed Central

    Suh, Yongjoon; Yoo, Ki-Chun; Cui, Yan-Hong; Kim, Min-Jung; Lee, Hae-June; Kim, In-Gyu; Lee, Su-Jae

    2016-01-01

    Epithelial to mesenchymal transition (EMT) is developmental process associated with cancer metastasis. Here, we found that breast carcinoma cells adopt epithelial-to-mesenchymal transition (EMT) in response to fractionated-radiation. Importantly, we show that Notch signaling is highly activated in fractionally-irradiated tumors as compared to non-irradiated tumors that are accompanied by an EMT. Moreover, we uncovered the mechanism of Notch-driven EMT, in which Notch enhanced EMT through IL-6/JAK/STAT3 signaling axis in mammary tumor cells. Collectively, we present converging evidence from our studies that Notch2 is a critical mediator of radiation-induced EMT and responsible for induced malignant tumor growth. PMID:27462787

  4. Epithelial-mesenchymal, mesenchymal-epithelial, and endothelial-mesenchymal transitions in malignant tumors: An update

    PubMed Central

    Gurzu, Simona; Turdean, Sabin; Kovecsi, Attila; Contac, Anca Otilia; Jung, Ioan

    2015-01-01

    Epithelial-to-mesenchymal transition (EMT) represents conversion of an epithelial cell in an elongated cell with mesenchymal phenotype, which can occur in physiologic and pathologic processes such as embryogenesis (type 1 EMT), wound healing and/or fibrosis (type 2 EMT) and malignant tumors (type 3 EMT). The proliferation rate, metastasizing and recurrence capacity, as also the individualized response at chemotherapics, in both epithelial and mesenchymal malignant tumors is known to be influenced by reversible switch between EMT and mesenchymal-to-epithelial transition (MET). Although much research work has already been done in these fields, the specific molecular pathways of EMT, relating to the tumor type and tumor localization, are yet to be elucidated. In this paper, based on the literature and personal experience of the authors, an update in the field of EMT vs MET in epithelial and mesenchymal tumors is presented. The authors tried to present the latest data about the particularities of these processes, and also of the so-called endothelial-to-mesenchymal transition, based on tumor location. The EMT-angiogenesis link is discussed as a possible valuable parameter for clinical follow-up and targeted therapeutic oncologic management. The paper begins with presentation of the basic aspects of EMT, its classification and assessment possibilities, and concludes with prognostic and therapeutic perspectives. The particularities of EMT and MET in gastric and colorectal carcinomas, pancreatic cancer, hepatocellular and cholangiocarcinomas, and lung, breast and prostate cancers, respectively in sarcomas and gastrointestinal stromal tumors are presented in detail. PMID:25984514

  5. ED-B fibronectin expression is a marker of epithelial-mesenchymal transition in translational oncology.

    PubMed

    Petrini, Iacopo; Barachini, Serena; Carnicelli, Vittoria; Galimberti, Sara; Modeo, Letizia; Boni, Roberto; Sollini, Martina; Erba, Paola Anna

    2017-01-17

    Fibronectin is a component of the extracellular matrix that links collagen fibers to integrins on the cell's surface. The splicing isoforms, containing the ED-B domain, are not expressed in adult tissues but only in tumor stroma or during embryonic development. Fibroblasts and endothelial cells express ED-B fibronectin during angiogenesis. Also cancer cells can synthetize ED-B fibronectin, but its function in tumor growth needs to be further elucidated.We evaluated the expression of ED-B fibronectin in prostate cancer cell lines: PC3 and DU145. Using TGF-β, we induced epithelial to mesenchymal transition in culture and observed an increase of ED-B fibronectin expression. Thereafter, we evaluated the expression of ED-B fibronectin in multipotent mesangiogenic progenitor cells, and in mesenchymal stromal cells. The expression of ED-B fibronectin was much higher in mesenchymal than prostate cancer cells even after the epithelial to mesenchymal transition.Epithelial to mesenchymal transition is a key step for tumor progression contributing to the metastatic spread. Therefore, circulating cancer cells could seed into the metastatic niche taking advantage from the ED-B fibronectin that secrete their own.

  6. Comprehensive proteome quantification reveals NgBR as a new regulator for epithelial-mesenchymal transition of breast tumor cells.

    PubMed

    Zhao, Baofeng; Xu, Bo; Hu, Wenquan; Song, Chunxia; Wang, Fangjun; Liu, Zhong; Ye, Mingliang; Zou, Hanfa; Miao, Qing R

    2015-01-01

    Nogo-B receptor (NgBR) is a type I receptor and specifically binds to ligand Nogo-B. Our previous work has shown that NgBR is highly expressed in human breast invasive ductal carcinoma. Here, comprehensive proteome quantification was performed to examine the alteration of protein expression profile in MDA-MB-231 breast tumor cells after knocking down NgBR using lentivirus-mediated shRNA approach. Among a total of 1771 proteins feasibly quantified, 994 proteins were quantified in two biological replicates with RSD <50%. There are 122 proteins significantly down-regulated in NgBR knockdown MDA-MB-231 breast tumor cells, such as vimentin and S100A4, well-known markers for mesenchymal cells, and CD44, a stemness indicator. The decrease of vimentin, S100A4 and CD44 protein expression levels was further confirmed by Western blot analysis. MDA-MB-231 cells are typical breast invasive ductal carcinoma cells showing mesenchymal phenotype. Cell morphology analysis demonstrates NgBR knockdown in MDA-MB-231 cells results in reversibility of epithelial-mesenchymal transition (EMT), which is one of the major mechanisms involved in breast cancer metastasis. Furthermore, we demonstrated that NgBR knockdown in MCF-7 cells significantly prevented the TGF-β-induced EMT process as determined by the morphology change, and staining of E-cadherin intercellular junction as well as the decreased expression of vimentin. Our previous publication showed that NgBR is highly expressed in human breast invasive ductal carcinoma. However, the roles of NgBR and NgBR-mediated signaling pathway in breast tumor cells are still unclear. Here, we not only demonstrated that the quantitative proteomics analysis is a powerful tool to investigate the global biological function of NgBR, but also revealed that NgBR is involved in the transition of breast epithelial cells to mesenchymal stem cells, which is one of the major mechanisms involved in breast cancer metastasis. These findings provide new insights

  7. Cytoskeletal re-arrangement in TGF-β1-induced alveolar epithelial-mesenchymal transition studied by atomic force microscopy and high-content analysis.

    PubMed

    Buckley, Stephen T; Medina, Carlos; Davies, Anthony M; Ehrhardt, Carsten

    2012-04-01

    Epithelial-mesenchymal transition (EMT) is closely implicated in the pathogenesis of idiopathic pulmonary fibrosis. Associated with this phenotypic transition is the acquisition of an elongated cell morphology and establishment of stress fibers. The extent to which these EMT-associated changes influence cellular mechanics is unclear. We assessed the biomechanical properties of alveolar epithelial cells (A549) following exposure to TGF-β1. Using atomic force microscopy, changes in cell stiffness and surface membrane features were determined. Stimulation with TGF-β1 gave rise to a significant increase in stiffness, which was augmented by a collagen I matrix. Additionally, TGF-β1-treated cells exhibited a rougher surface profile with notable protrusions. Simultaneous quantitative examination of the morphological attributes of stimulated cells using an image-based high-content analysis system revealed dramatic alterations in cell shape, F-actin content and distribution. Together, these investigations point to a strong correlation between the cytoskeletal-associated cellular architecture and the mechanical dynamics of alveolar epithelial cells undergoing EMT. From the Clinical Editor: Epithelial-mesenchymal transition is implicated in the pathogenesis of pulmonary fibrosis. Using atomic force microscopy, the authors demonstrate a strong correlation between the cytoskeletal-associated cellular architecture and the mechanical dynamics of alveolar epithelial cells undergoing mesenchymal transition.

  8. Epithelial--mesenchymal and mesenchymal--epithelial transitions in carcinoma progression.

    PubMed

    Hugo, Honor; Ackland, M Leigh; Blick, Tony; Lawrence, Mitchell G; Clements, Judith A; Williams, Elizabeth D; Thompson, Erik W

    2007-11-01

    Like a set of bookends, cellular, molecular, and genetic changes of the beginnings of life mirror those of one of the most common cause of death--metastatic cancer. Epithelial to mesenchymal transition (EMT) is an important change in cell phenotype which allows the escape of epithelial cells from the structural constraints imposed by tissue architecture, and was first recognized by Elizabeth Hay in the early to mid 1980's to be a central process in early embryonic morphogenesis. Reversals of these changes, termed mesenchymal to epithelial transitions (METs), also occur and are important in tissue construction in normal development. Over the last decade, evidence has mounted for EMT as the means through which solid tissue epithelial cancers invade and metastasize. However, demonstrating this potentially rapid and transient process in vivo has proven difficult and data connecting the relevance of this process to tumor progression is still somewhat limited and controversial. Evidence for an important role of MET in the development of clinically overt metastases is starting to accumulate, and model systems have been developed. This review details recent advances in the knowledge of EMT as it occurs in breast development and carcinoma and prostate cancer progression, and highlights the role that MET plays in cancer metastasis. Finally, perspectives from a clinical and translational viewpoint are discussed.

  9. Resveratrol inhibits epithelial-mesenchymal transition of retinal pigment epithelium and development of proliferative vitreoretinopathy

    PubMed Central

    Ishikawa, Keijiro; He, Shikun; Terasaki, Hiroto; Nazari, Hossein; Zhang, Huiming; Spee, Christine; Kannan, Ram; Hinton, David R

    2015-01-01

    Proliferative vitreoretinopathy (PVR) is a serious complication of retinal detachment and ocular trauma, and its recurrence may lead to irreversible vision loss. Epithelial to mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells is a critical step in the pathogenesis of PVR, which is characterized by fibrotic membrane formation and traction retinal detachment. In this study, we investigated the potential impact of resveratrol (RESV) on EMT and the fibrotic process in cultured RPE cells and further examined the preventive effect of RESV on PVR development using a rabbit model of PVR. We found that RESV induces mesenchymal to epithelial transition (MET) and inhibits transforming growth factor-β2(TGF-β2)-induced EMT of RPE cells by deacetylating SMAD4. The effect of RESV on MET was dependent on sirtuin1 activation. RESV suppressed proliferation, migration and fibronectin synthesis induced by platelet-derived growth factor-BB or TGF-β2. In vivo, RESV inhibited the progression of experimental PVR in rabbit eyes. Histological findings showed that RESV reduced fibrotic membrane formation and decreased α-SMA expression in the epiretinal membranes. These results suggest the potential use of RESV as a therapeutic agent to prevent the development of PVR by targeting EMT of RPE. PMID:26552368

  10. The human NANOS3 gene contributes to lung tumour invasion by inducing epithelial-mesenchymal transition.

    PubMed

    Grelet, Simon; Andries, Vanessa; Polette, Myriam; Gilles, Christine; Staes, Katrien; Martin, Anne-Pascaline; Kileztky, Claire; Terryn, Christine; Dalstein, Véronique; Cheng, Chun-Wen; Shen, Chen-Yang; Birembaut, Philippe; Van Roy, Frans; Nawrocki-Raby, Béatrice

    2015-09-01

    We have explored the role of the human NANOS3 gene in lung tumour progression. We show that NANOS3 is over-expressed by invasive lung cancer cells and is a prognostic marker for non-small cell lung carcinomas (NSCLCs). NANOS3 gene expression is restricted in testis and brain and is regulated by epigenetic events. It is up-regulated in cultured cells undergoing epithelial - mesenchymal transition (EMT). NANOS3 over-expression in human NSCLC cell lines enhances their invasiveness by up-regulating EMT, whereas its silencing induces mesenchymal - epithelial transition. NANOS3 represses E-cadherin at the transcriptional level and up-regulates vimentin post-transcriptionally. Also, we show that NANOS3 binds mRNAs encoding vimentin and regulates the length of their poly(A) tail. Finally, NANOS3 can also protect vimentin mRNA from microRNA-mediated repression. We thus demonstrate a role for NANOS3 in the acquisition of invasiveness by human lung tumour cells and propose a new mechanism of post-transcriptional regulation of EMT. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  11. Loss of ATM accelerates pancreatic cancer formation and epithelial-mesenchymal transition.

    PubMed

    Russell, Ronan; Perkhofer, Lukas; Liebau, Stefan; Lin, Qiong; Lechel, André; Feld, Fenja M; Hessmann, Elisabeth; Gaedcke, Jochen; Güthle, Melanie; Zenke, Martin; Hartmann, Daniel; von Figura, Guido; Weissinger, Stephanie E; Rudolph, Karl-Lenhard; Möller, Peter; Lennerz, Jochen K; Seufferlein, Thomas; Wagner, Martin; Kleger, Alexander

    2015-07-29

    Pancreatic ductal adenocarcinoma (PDAC) is associated with accumulation of particular oncogenic mutations and recent genetic sequencing studies have identified ataxia telangiectasia-mutated (ATM) mutations in PDAC cohorts. Here we report that conditional deletion of ATM in a mouse model of PDAC induces a greater number of proliferative precursor lesions coupled with a pronounced fibrotic reaction. ATM-targeted mice display altered TGFβ-superfamily signalling and enhanced epithelial-to-mesenchymal transition (EMT) coupled with shortened survival. Notably, our mouse model recapitulates many features of more aggressive human PDAC subtypes. Particularly, we report that low expression of ATM predicts EMT, a gene signature specific for Bmp4 signalling and poor prognosis in human PDAC. Our data suggest an intimate link between ATM expression and pancreatic cancer progression in mice and men.

  12. Upregulation of TrkB promotes epithelial-mesenchymal transition and anoikis resistance in endometrial carcinoma.

    PubMed

    Bao, Wei; Qiu, Haifeng; Yang, Tingting; Luo, Xin; Zhang, Huijuan; Wan, Xiaoping

    2013-01-01

    Mechanisms governing the metastasis of endometrial carcinoma (EC) are poorly defined. Recent data support a role for the cell surface receptor tyrosine kinase TrkB in the progression of several human tumors. Here we present evidence for a direct role of TrkB in human EC. Immunohistochemical analysis revealed that TrkB and its secreted ligand, brain-derived neurotrophic factor (BDNF), are more highly expressed in EC than in normal endometrium. High TrkB levels correlated with lymph node metastasis (p<0.05) and lymphovascular space involvement (p<0.05) in EC. Depletion of TrkB by stable shRNA-mediated knockdown decreased the migratory and invasive capacity of cancer cell lines in vitro and resulted in anoikis in suspended cells. Conversely, exogenous expression of TrkB increased cell migration and invasion and promoted anoikis resistance in suspension culture. Furthermore, over-expression of TrkB or stimulation by BDNF resulted in altered the expression of molecular mediators of the epithelial-to-mesenchymal transition (EMT). RNA interference (RNAi)-mediated depletion of the downstream regulator, Twist, blocked TrkB-induced EMT-like transformation. The use of in vivo models revealed decreased peritoneal dissemination in TrkB-depleted EC cells. Additionally, TrkB-depleted EC cells underwent mesenchymal-to-epithelial transition and anoikis in vivo. Our data support a novel function for TrkB in promoting EMT and resistance to anoikis. Thus, TrkB may constitute a potential therapeutic target in human EC.

  13. MiR-338* targeting smoothened to inhibit pulmonary fibrosis by epithelial-mesenchymal transition

    PubMed Central

    Zhuang, Yi; Dai, Jinghong; Wang, Yongsheng; Zhang, Huan; Li, Xinxiu; Wang, Chunli; Cao, Mengshu; Liu, Yin; Ding, Jingjing; Cai, Hourong; Zhang, Deping; Wang, Yaping

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease involving pulmonary injury associated with tissue repair, dysfunction and fibrosis. Recent studies indicate that some microRNAs (miRNAs) may play critical roles in the pathogenesis of pulmonary fibrosis. In this study, we aim to investigate whether miR-338* (miR-338-5p), which has been found to be associated with tumor progression, is associated with pathological process of pulmonary fibrosis. Balb/c mice were treated with bleomycin (BLM) to establish IPF models. Targtscan was used to predict the downstream target of miR-338*. Morphological changes were observed with light microscope and epithelial to mesenchymal transition (EMT) markers were detected by western blot. The expression of miR-338* or downstream target SMO was analyzed by real-time quantitative RT-PCR, northern blot or western blot. MiR-338* was down-regulated in the lung tissue from mice with bleomycin-induced pulmonary fibrosis. The smoothened (SMO) is a direct target of miR-338*, and knocking-down the expression of SMO could partially rescue the fibrotic phenotype of TGF-β-induced NuLi-1 cells. Over-expression of SMO led to the fibrotic phenotype of NuLi-1 cells even without TGF-β treatment. These findings showed that the over-expression of SMO contributed to the fibrotic phenotype of NuLi-1 cells by affecting the epithelial-to-mesenchymal transition (EMT) procedure. Furthermore, in vivo, lentivirus-mediated over-expression of miR-338* can alleviate lung fibrosis induced by bleomycin in mice. In conclusion, our results suggest that miR-338* can target SMO to reduce the EMT procedure and thus postpone the development of pulmonary fibrosis. PMID:27508042

  14. Alpha-lipoic acid ameliorates the epithelial mesenchymal transition induced by unilateral ureteral obstruction in mice

    PubMed Central

    Cho, Hyun Seop; Kim, Jin Hyun; Jang, Ha Nee; Lee, Tae Won; Jung, Myeong Hee; Kim, Tae Ho; Chang, Se-Ho; Park, Dong Jun

    2017-01-01

    The epithelial-to-mesenchymal transition (EMT) is one of mechanisms that induce renal interstitial fibrosis. Understanding EMT in renal fibrosis has important therapeutic implications for patients with kidney disease. Alpha-lipoic acid (ALA) is a natural compound with antioxidant properties. Studies for ALA are performed in acute kidney injury with renal tubular apoptosis, renal inflammation, and oxidative stress. We investigated the effects of ALA on EMT-mediated renal interstitial fibrosis in mice with unilateral ureteral obstruction (UUO). UUO mice developed severe tubular atrophy and tubulointerstitial fibrosis, with a robust EMT response and ECM deposition after 7 postoperative days. In contrast, ALA-treated UUO mice showed only moderate injury and minimal fibrosis and also larger reductions in the expression of ECM proteins, inflammatory factors, and EMT markers. ALA was shown to be involved in the suppression of infiltrating macrophages associated with EMT and the progression of interstitial fibrosis. It also lessened the destruction of the tubular basement membrane, by reducing the expression of matrix metalloproteinases. This is the first study to show that ALA modulates EMT in a UUO mouse model. Our results suggest that ALA merits further exploration as a therapeutic agent in the prevention and treatment of chronic kidney disease. PMID:28378840

  15. LOXL2 drives epithelial-mesenchymal transition via activation of IRE1-XBP1 signalling pathway

    PubMed Central

    Cuevas, Eva P.; Eraso, Pilar; Mazón, María J.; Santos, Vanesa; Moreno-Bueno, Gema; Cano, Amparo; Portillo, Francisco

    2017-01-01

    Epithelial-to-Mesenchymal Transition (EMT) is a key process contributing to the aggressiveness of cancer cells. EMT is triggered by activation of different transcription factors collectively known as EMT-TFs. Different cellular cues and cell signalling networks activate EMT at transcriptional and posttranscriptional level in different biological and pathological situations. Among them, overexpression of LOXL2 (lysyl oxidase-like 2) induces EMT independent of its catalytic activity. Remarkably, perinuclear/cytoplasmic accumulation of LOXL2 is a poor prognosis marker of squamous cell carcinomas and is associated to basal breast cancer metastasis by mechanisms no yet fully understood. Here, we report that overexpression of LOXL2 promotes its accumulation in the Endoplasmic Reticulum where it interacts with HSPA5 leading to activation of the IRE1-XBP1 signalling pathway of the ER-stress response. LOXL2-dependent IRE1-XBP1 activation induces the expression of several EMT-TFs: SNAI1, SNAI2, ZEB2 and TCF3 that are direct transcriptional targets of XBP1. Remarkably, inhibition of IRE1 blocks LOXL2-dependent upregulation of EMT-TFs thus hindering EMT induction. PMID:28332555

  16. Mitochondrial retrograde signaling induces epithelial-mesenchymal transition and generates breast cancer stem cells.

    PubMed

    Guha, M; Srinivasan, S; Ruthel, G; Kashina, A K; Carstens, R P; Mendoza, A; Khanna, C; Van Winkle, T; Avadhani, N G

    2014-11-06

    Metastatic breast tumors undergo epithelial-to-mesenchymal transition (EMT), which renders them resistant to therapies targeted to the primary cancers. The mechanistic link between mtDNA (mitochondrial DNA) reduction, often seen in breast cancer patients, and EMT is unknown. We demonstrate that reducing mtDNA content in human mammary epithelial cells (hMECs) activates Calcineurin (Cn)-dependent mitochondrial retrograde signaling pathway, which induces EMT-like reprogramming to fibroblastic morphology, loss of cell polarity, contact inhibition and acquired migratory and invasive phenotype. Notably, mtDNA reduction generates breast cancer stem cells. In addition to retrograde signaling markers, there is an induction of mesenchymal genes but loss of epithelial markers in these cells. The changes are reversed by either restoring the mtDNA content or knockdown of CnAα mRNA, indicating the causal role of retrograde signaling in EMT. Our results point to a new therapeutic strategy for metastatic breast cancers targeted to the mitochondrial retrograde signaling pathway for abrogating EMT and attenuating cancer stem cells, which evade conventional therapies. We report a novel regulatory mechanism by which low mtDNA content generates EMT and cancer stem cells in hMECs.

  17. Platelet derived growth factor B and epithelial mesenchymal transition of peritoneal mesothelial cells.

    PubMed

    Patel, Pranali; West-Mays, Judy; Kolb, Martin; Rodrigues, Juan-Carlos; Hoff, Catherine M; Margetts, Peter J

    2010-03-01

    Platelet derived growth factor (PDGF) is involved in wound healing in various organ systems. Its potential role in the context of peritoneal injury following long-term peritoneal dialysis is unclear. We used an adenovirus expressing the B chain of PDGF (AdPDGF-B) to assess its effect on pro-fibrotic pathways in the peritoneal membrane. To assess the transforming growth factor (TGF) beta independent effects of PDGF, we over-expressed PDGF-B in the peritoneum of either wild-type mice (Smad3+/+) or those with a deletion of the TGFbeta signaling protein Smad3 (Smad3(-/-)). PDGF-B induced sustained angiogenesis in both Smad3+/+ and Smad3(-/-) mice. Despite increased collagen gene expression, collagen accumulation was transient and fibrogenesis was associated with induction of collagenase activity. We observed epithelial to mesenchymal transition (EMT) involving the peritoneal mesothelial cells, as shown by increased SNAIL and decreased E-Cadherin expression with evidence of mesothelial cells expressing both epithelial and mesenchymal markers. Unlike TGFbeta-induced EMT, PDGF-B exposure did not lead to mobilization of the mesothelial cells; they remained as a single monolayer throughout the observation period. This "non-invasive" EMT phenomenon is a novel finding and may have implications concerning the role of EMT in peritoneal fibrosis and injury to other organ systems. The observed effects were similar in Smad3(-/-) and Smad3+/+ animals, suggesting that the PDGF-B effects were independent of TGFbeta or Smad signaling.

  18. WNT2 Promotes Cervical Carcinoma Metastasis and Induction of Epithelial-Mesenchymal Transition

    PubMed Central

    Xu, Jing; Zhang, Lan; Wang, Jianhua; Huang, Long; Huang, Shuting; Yuan, Linjing; Jia, Weihua; Yu, Xingjuan; Luo, Rongzhen; Zheng, Min

    2016-01-01

    Background Previously, we found an 11-gene signature could predict pelvic lymph node metastasis (PLNM), and WNT2 is one of the key genes in the signature. This study explored the expression and underlying mechanism of WNT2 in PLNM of cervical cancer. Methods WNT2 expression level in cervical cancer was detected using western blotting, quantitative PCR, and immunohistochemistry. Two WNT2-specific small interfering RNAs (siRNAs) were used to explore the effects of WNT2 on invasive and metastatic ability of cancer cells, and to reveal the possible mechanism of WNT2 affecting epithelial—mesenchymal transition (EMT). The correlation between WNT2 expression and PLNM was further investigated in clinical cervical specimens. Results Both WNT2 mRNA and protein expression was upregulated in cervical cancer. High WNT2 expression was significantly associated with tumor size, lymphovascular space involvement, positive parametrium, and most importantly, PLNM. PLNM and WNT2 expression were independent prognostic factors for overall survival and disease-free survival. WNT2 knockdown inhibited SiHa cell motility and invasion and reversed EMT by inhibiting the WNT2/β-catenin pathway. WNT2 overexpression in cervical cancer was associated with β-catenin activation and induction of EMT, which further contributed to metastasis in cervical cancer. Conclusion WNT2 might be a novel predictor of PLNM and a promising prognostic indicator in cervical cancer. PMID:27513465

  19. Curcumin Suppresses Intestinal Fibrosis by Inhibition of PPARγ-Mediated Epithelial-Mesenchymal Transition

    PubMed Central

    Jiang, Bin; Wang, Hui; Shen, Cunsi; Chen, Hao

    2017-01-01

    Intestinal fibrotic stricture is a major complication of Crohn's disease (CD) and epithelial-to-mesenchymal transition (EMT) is considered as an important contributor to the formation of intestinal fibrosis by increasing extracellular matrix (ECM) proteins. Curcumin, a compound derived from rhizomes of Curcuma, has been demonstrated with a potent antifibrotic effect. However, its effect on intestinal fibrosis and the potential mechanism is not completely understood. Here we found that curcumin pretreatment significantly represses TGF-β1-induced Smad pathway and decreases its downstream α-smooth muscle actin (α-SMA) gene expression in intestinal epithelial cells (IEC-6); in contrast, curcumin increases expression of E-cadherin and peroxisome proliferator-activated receptor γ (PPARγ) in IEC-6. Moreover, curcumin promotes nuclear translocation of PPARγ and the inhibitory effect of curcumin on EMT could be reversed by PPARγ antagonist GW9662. Consistently, in the rat model of intestinal fibrosis induced by 2,4,5-trinitrobenzene sulphonic acid (TNBS), oral curcumin attenuates intestinal fibrosis by increasing the expression of PPARγ and E-cadherin and decreasing the expression of α-SMA, FN, and CTGF in colon tissue. Collectively, these results indicated that curcumin is able to prevent EMT progress in intestinal fibrosis by PPARγ-mediated repression of TGF-β1/Smad pathway. PMID:28203261

  20. Epithelial mesenchymal transition from a natural gestational orchestration to a bizarre cancer disturbance.

    PubMed

    Shirkoohi, Reza

    2013-01-01

    The epithelial to mesenchymal transition (EMT), a pathologic phenomenon in cancer, has a twin in the embryonic period of life. In the first one, its promotion will cause metastasis to become a life-threatening stage of cancer, while in the second it will lead to organogenesis, which is necessary for all living creatures. There is one more from this phenomenon, which occurs during the wound healing process and if dys-regulated can lead to fibrosis. In both there are stimulants in common and one that are different. Stages start from cell-cell junction dissociation followed by morphological changes and behavioral and essence alterations. To control the EMT as a bizarre disturbance in cancer and metastasis, initially it is better to understand the wonder of natural gestational orchestration in early life. In this review, first the structure of the two heads of the spectrum is described followed by the cellular and micro-environmental alterations during this phenomenon. Understanding cellular behavior in this process and what makes them invasive resistant stemness cells will be of great importance in highlighting roads to cancer treatment.

  1. miR-34c attenuates epithelial-mesenchymal transition and kidney fibrosis with ureteral obstruction

    PubMed Central

    Morizane, Ryuji; Fujii, Shizuka; Monkawa, Toshiaki; Hiratsuka, Ken; Yamaguchi, Shintaro; Homma, Koichiro; Itoh, Hiroshi

    2014-01-01

    micro RNAs (miRNAs) are small non-coding RNAs that act as posttranscriptional repressors by binding to the 3′-UTR of target mRNAs. On the other hand, mesenchymal-epithelial transition (EMT) and kidney fibrosis is a pathological process of chronic kidney disease (CKD), and its relationship to miRNAs is becoming recognized as a potential target for CKD therapies. To find new miRNAs involved in EMT, we examined miRNA expression in experimental models of EMT and renal epithelialization using microarray, and found that miR-34c attenuates EMT induced by TGF-β in a mouse tubular cell line. To confirm the effects of miR-34c in vivo, we administered the precursor of miR-34c to mice with unilateral ureteral obstruction, and miR-34c decreased kidney fibrosis area and the expression of connective tissue growth factor, α-SMA, collagen type 1, collagen type 3 and fibronectin. In conclusion, our study showed miR-34c attenuates EMT and kidney fibrosis of mice with ureteral obstruction. PMID:24694752

  2. Roles of GSK-3 and microRNAs on epithelial mesenchymal transition and cancer stem cells.

    PubMed

    McCubrey, James A; Fitzgerald, Timothy L; Yang, Li V; Lertpiriyapong, Kvin; Steelman, Linda S; Abrams, Stephen L; Montalto, Giuseppe; Cervello, Melchiorre; Neri, Luca M; Cocco, Lucio; Martelli, Alberto M; Laidler, Piotr; Dulińska-Litewka, Joanna; Rakus, Dariusz; Gizak, Agnieszka; Nicoletti, Ferdinando; Falzone, Luca; Candido, Saverio; Libra, Massimo

    2017-02-21

    Various signaling pathways exert critical roles in the epithelial to mesenchymal transition (EMT) and cancer stem cells (CSCs). The Wnt/beta-catenin, PI3K/PTEN/Akt/mTORC, Ras/Raf/MEK/ERK, hedgehog (Hh), Notch and TP53 pathways elicit essential regulatory influences on cancer initiation, EMT and progression. A common kinase involved in all these pathways is moon-lighting kinase glycogen synthase kinase-3 (GSK-3). These pathways are also regulated by micro-RNAs (miRs). TP53 and components of these pathways can regulate the expression of miRs. Targeting members of these pathways may improve cancer therapy in those malignancies that display their abnormal regulation. This review will discuss the interactions of the multi-functional GSK-3 enzyme in the Wnt/beta-catenin, PI3K/PTEN/Akt/mTORC, Ras/Raf/MEK/ERK, Hh, Notch and TP53 pathways. The regulation of these pathways by miRs and their effects on CSC generation, EMT, invasion and metastasis will be discussed.

  3. PROP1 triggers epithelial-mesenchymal transition-like process in pituitary stem cells

    PubMed Central

    Pérez Millán, María Inés; Brinkmeier, Michelle L; Mortensen, Amanda H; Camper, Sally A

    2016-01-01

    Mutations in PROP1 are the most common cause of hypopituitarism in humans; therefore, unraveling its mechanism of action is highly relevant from a therapeutic perspective. Our current understanding of the role of PROP1 in the pituitary gland is limited to the repression and activation of the pituitary transcription factor genes Hesx1 and Pou1f1, respectively. To elucidate the comprehensive PROP1-dependent gene regulatory network, we conducted genome-wide analysis of PROP1 DNA binding and effects on gene expression in mutant mice, mouse isolated stem cells and engineered mouse cell lines. We determined that PROP1 is essential for stimulating stem cells to undergo an epithelial to mesenchymal transition-like process necessary for cell migration and differentiation. Genomic profiling reveals that PROP1 binds to genes expressed in epithelial cells like Claudin 23, and to EMT inducer genes like Zeb2, Notch2 and Gli2. Zeb2 activation appears to be a key step in the EMT process. Our findings identify PROP1 as a central transcriptional component of pituitary stem cell differentiation. DOI: http://dx.doi.org/10.7554/eLife.14470.001 PMID:27351100

  4. Roles of GSK-3 and microRNAs on epithelial mesenchymal transition and cancer stem cells

    PubMed Central

    McCubrey, James A.; Fitzgerald, Timothy L.; Yang, Li V.; Lertpiriyapong, Kvin; Steelman, Linda S.; Abrams, Stephen L.; Montalto, Giuseppe; Cervello, Melchiorre; Neri, Luca M.; Cocco, Lucio; Martelli, Alberto M.; Laidler, Piotr; Dulińska-Litewka, Joanna; Rakus, Dariusz; Gizak, Agnieszka; Nicoletti, Ferdinando; Falzone, Luca; Candido, Saverio; Libra, Massimo

    2017-01-01

    Various signaling pathways exert critical roles in the epithelial to mesenchymal transition (EMT) and cancer stem cells (CSCs). The Wnt/beta-catenin, PI3K/PTEN/Akt/mTORC, Ras/Raf/MEK/ERK, hedgehog (Hh), Notch and TP53 pathways elicit essential regulatory influences on cancer initiation, EMT and progression. A common kinase involved in all these pathways is moon-lighting kinase glycogen synthase kinase-3 (GSK-3). These pathways are also regulated by micro-RNAs (miRs). TP53 and components of these pathways can regulate the expression of miRs. Targeting members of these pathways may improve cancer therapy in those malignancies that display their abnormal regulation. This review will discuss the interactions of the multi-functional GSK-3 enzyme in the Wnt/beta-catenin, PI3K/PTEN/Akt/mTORC, Ras/Raf/MEK/ERK, Hh, Notch and TP53 pathways. The regulation of these pathways by miRs and their effects on CSC generation, EMT, invasion and metastasis will be discussed. PMID:27999207

  5. Epithelial-mesenchymal transition in colorectal cancer metastasis: A system review.

    PubMed

    Cao, Hui; Xu, Enping; Liu, Hong; Wan, Ledong; Lai, Maode

    2015-08-01

    Tumor metastasis is a multi-step process by which tumor cells disseminate from their primary site and form secondary tumors at a distant site. And metastasis is the major cause of death in the vast majority of cancer patients. However, the mechanisms underlying each step remain obscure. In the past decade, a developmental program epithelial-to-mesenchymal transition (EMT) has been increasingly recognized to play pivotal and intricate roles in promoting carcinoma invasion and metastasis. The EMT process is very complex and controlled by various families of transcriptional regulators through different signaling pathways. In this system review, we focus on the molecular network of the EMT program and its malignant phenotypes associated with metastasis in colorectal cancer (CRC), including cancer stem cells, tumor budding, circulating tumor cells and drug resistance. A better understanding of the molecular regulation of the dynamic EMT program during tumor metastasis will help to provide much-needed therapeutic interventions to target this program when treating metastatic CRC. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. The gene expression landscape of breast cancer is shaped by tumor protein p53 status and epithelial-mesenchymal transition

    PubMed Central

    2012-01-01

    Introduction Gene expression data derived from clinical cancer specimens provide an opportunity to characterize cancer-specific transcriptional programs. Here, we present an analysis delineating a correlation-based gene expression landscape of breast cancer that identifies modules with strong associations to breast cancer-specific and general tumor biology. Methods Modules of highly connected genes were extracted from a gene co-expression network that was constructed based on Pearson correlation, and module activities were then calculated using a pathway activity score. Functional annotations of modules were experimentally validated with an siRNA cell spot microarray system using the KPL-4 breast cancer cell line, and by using gene expression data from functional studies. Modules were derived using gene expression data representing 1,608 breast cancer samples and validated in data sets representing 971 independent breast cancer samples as well as 1,231 samples from other cancer forms. Results The initial co-expression network analysis resulted in the characterization of eight tightly regulated gene modules. Cell cycle genes were divided into two transcriptional programs, and experimental validation using an siRNA screen showed different functional roles for these programs during proliferation. The division of the two programs was found to act as a marker for tumor protein p53 (TP53) gene status in luminal breast cancer, with the two programs being separated only in luminal tumors with functional p53 (encoded by TP53). Moreover, a module containing fibroblast and stroma-related genes was highly expressed in fibroblasts, but was also up-regulated by overexpression of epithelial-mesenchymal transition factors such as transforming growth factor beta 1 (TGF-beta1) and Snail in immortalized human mammary epithelial cells. Strikingly, the stroma transcriptional program related to less malignant tumors for luminal disease and aggressive lymph node positive disease among

  7. Donor-derived stem-cells and epithelial mesenchymal transition in squamous cell carcinoma in transplant recipients.

    PubMed

    Verneuil, Laurence; Leboeuf, Christophe; Bousquet, Guilhem; Brugiere, Charlotte; Elbouchtaoui, Morad; Plassa, Louis-François; Peraldi, Marie-Noelle; Lebbé, Celeste; Ratajczak, Philippe; Janin, Anne

    2015-12-08

    Skin squamous-cell-carcinoma (SCC), is the main complication in long-term kidney-transplant recipients, and it can include donor-derived cells. Preclinical models demonstrated the involvement of epithelial mesenchymal transition (EMT) in the progression of skin SCC, and the role of Snail, an EMT transcription factor, in cancer stem-cell survival and expansion.Here, we studied stem-cells and EMT expression in SCCs and concomitant actinic keratoses (AK) in kidney-transplant recipients. In SCC and AK in 3 female recipients of male kidney-transplants, donor-derived Y chromosome in epidermal stem cells was assessed using combined XY-FISH/CD133 immunostaining, and digital-droplet-PCR on laser-microdissected CD133 expressing epidermal cells.For EMT study, double immunostainings of CD133 with vimentin or snail and slug, electron microscopy and immunostainings of keratinocytes junctions were performed. Digital droplet PCR was used to check CDH1 (E-cadherin) expression level in laser-microdissected cells co-expressing CD133 and vimentin or snail and slug.The numbers of Y-chromosome were assessed using digital droplet PCR in laser-microdissected cells co-expressing CD133 and vimentin, or snail and slug, and in CD133 positive cells not expressing any EMT maker. We identified donor-derived stem-cells in basal layers and invasive areas in all skin SCCs and in concomitant AKs, but not in surrounding normal skin.The donor-derived stem-cells expressed the EMT markers, vimentin, snail and slug in SCCs but not in AKs. The expression of the EMT transcription factor, SNAI1, was higher in stem-cells when they expressed vimentin. They were located in invasive areas of SCCs. In these areas, the expressions of claudin-1 and desmoglein 1 were reduced or absent, and within the basal layer there were features of basal membrane disappearance.Donor-derived stem cells were in larger numbers in stem cells co-expressing vimentin or snail and slug than in stem cells not expressing any EMT marker

  8. CCL22 and IL-37 inhibit the proliferation and epithelial-mesenchymal transition process of NSCLC A549 cells.

    PubMed

    Chen, Yu-Hua; Zhou, Bi-Yun; Wu, Xian-Jing; Xu, Jun-Fa; Zhang, Jun-Ai; Chen, Yong-Hua; Liang, Si-Si

    2016-10-01

    In the present study, we aimed to investigate the effects of CC chemokine ligand 22 (CCL22) and interleukin-37 (IL-37) on the proliferation and epithelial-mesenchymal transition (EMT) of non-small cell lung cancer (NSCLC) A549 cells. pDsRed-CCL22 and pEGFP-IL-37 plasmids were constructed. A549 cells were divided into six groups: the control, the pDsRed-N1 blank plasmid, the pEGFP-C1 blank plasmid, the pDsRed-CCL22 plasmid, the pEGFP‑IL-37 plasmid and the pDsRed-CCL22 + pEGFP-IL-37 plasmid group. Expression levels and localization of CCL22 and IL-37 in cells were detected by confocal microscopy. Phase-contrast microscopy was applied for observing cellular morphology. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) was used for detecting the mRNA levels of vimentin, N-cadherin and E-cadherin, and their protein expression levels were tested using western blotting. Constructed plasmids expressed CCL22 and IL-37, both of which had a co-localization in the cell membrane. MTT assay and cell observation results revealed that CCL22 and IL-37 inhibited the proliferation and EMT process of the A549 cells. The results of RT-qPCR and western blotting revealed that decreased vimentin and N-cadherin mRNA and protein expression levels, and increased E-cadherin mRNA and protein expression levels were found in the pDsRed-CCL22 plasmid, pEGFP-IL-37 plasmid and pDsRed‑CCL22 + pEGFP‑IL-37 plasmid groups when compared with the control, the pDsRed-N1 blank plasmid and the pEGFP-C1 blank plasmid groups (all P<0.05), and decreased vimentin and N-cadherin mRNA and protein expression levels and increased E-cadherin mRNA and protein expression levels were found in the pDsRed‑CCL22 + pEGFP‑IL-37 plasmid group when compared with the pDsRed-CCL22 plasmid and the pEGFP‑IL-37 plasmid groups (all P<0.05). CCL22 and IL-37 with a co-localization in the A549 cells inhibited the proliferation and EMT process in A549 cells. The antitumor effects of CCL22 and IL

  9. Evidence for epithelial-mesenchymal transition in cancer stem cells of head and neck squamous cell carcinoma.

    PubMed

    Chen, Chao; Wei, Yan; Hummel, Michael; Hoffmann, Thomas K; Gross, Manfred; Kaufmann, Andreas M; Albers, Andreas E

    2011-01-27

    Initiation, growth, recurrence, and metastasis of head and neck squamous cell carcinomas (HNSCC) have been related to the behavior of cancer stem cells (CSC) that can be identified by their aldehyde-dehydrogenase-isoform-1 (ALDH1) activity. We quantified and enriched ALDH1(+) cells within HNSCC cell lines and subsequently characterized their phenotypical and functional properties like invasion capacity and epithelial-mesenchymal transition (EMT). Spheroid culture enriched CSC from five HNSCC cell lines by up to 5-fold. In spheroid-derived cells (SDC) and the parental monolayer-derived cell line ALDH1, CD44, CD24, E-Cadherin, α-SMA, and Vimentin expression was compared by flow-cytometry and immunofluorescence together with proliferation and cell cycle analysis. Invasion activity was evaluated by Matrigel assay and expression of stemness-related transcription factors (TF) Nanog, Oct3/4, Sox2 and EMT-related genes Snail1 and 2, and Twist by real-time PCR. All cell lines formed spheroids that could self-renew and be serially re-passaged. ALDH1 expression was significantly higher in SDC. ALDH1(+) cells showed increased colony-formation. The proportion of cells with a putative CSC marker constellation of CD44(+)/CD24(-) was highly variable (0.5% to 96%) in monolayer and spheroid cultures and overlapped in 0%-33% with the CD44(+)/CD24(-)/ALDH1(+) cell subset. SDC had significantly higher invading activity. mRNA of the stemness-related genes Sox2, Nanog, and Oct3/4 was significantly increased in SDC of all cell lines. Twist was significantly increased in two while Snail2 showed a significant increase in one and a significant decrease in SDC of two cell lines. SDC had a higher G0 phase proportion, showed high-level expression of α-SMA and Vimentin, but significantly decreased E-Cadherin expression. HNSCC-lines harbor potential CSC, characterized by ALDH1 and stemness marker TF expression as well as properties like invasiveness, quiescence, and EMT. CSC can be enriched by

  10. Rac1 overexpression is correlated with epithelial mesenchymal transition and predicts poor prognosis in non-small cell lung cancer

    PubMed Central

    Zhou, Yujuan; Liao, Qianjin; Han, Yaqian; Chen, Jie; Liu, Zhigang; Ling, Hang; Zhang, Jing; Yang, Wenjuan; Oyang, Linda; Xia, Longzheng; Wang, Li; Wang, Heran; Xue, Lei; Wang, Hui; Hu, Bingqiang

    2016-01-01

    Objective: Ras-related C3 botulinum toxin substrate1(Rac1) and epithelial mesenchymal transition (EMT) are key therapeutic targets in cancer. We investigated the clinical significance of Rac1 and markers of EMT expression in non-small cell lung cancer (NSCLC), and their possible correlation with EMT phenotype. Methods: Immunohistochemistry was used to assess the expression of Rac1, Snail1, Twist1, N-cadherin (N-cad), Vimentin (Vim), and E-cadherin (E-cad) in 153 NSCLC paraffin-embedded specimens and 45 normal specimens adjacent to tumors. The correlation of Rac1 and EMT markers with clinicopathological characteristics and the relationship between the protein levels and progression-free survival (PFS) and overall survival (OS) were analyzed. Results: Compared with non-tumor tissues, the NSCLC tissues showed marked elevation in the levels of Rac1, Snail1, Twist1, N-cad, and Vim levels, whereas the E-cad levels were significantly decreased (P < 0.05). The aberrant expression of Rac1 and EMT markers was significantly associated with TNM stage and metastasis (P < 0.05). Increased expression of Rac1 may be associated with poor OS and PFS compared with low expression (P<0.001 and P=0.004). Significant correlations were observed between the EMT markers expressed and OS or PFS(P<0.01). In addition, multivariate analysis indicated that the expression of Rac1, Snail1, Twist1, N-cad, Vim, and E-cad was an independent prognostic factor in NSCLC. Interestingly, Rac1 expression was positively correlated with Snail1, Twist1, N-cad, and Vim levels (r=0.563, r=0.440, r=0.247 r=0.536, P<0.01, respectively) and negatively correlated with E-cad levels (r=-0.464, P<0.001) in NSCLC tissues. Rac1, Twist, Snail1, Vim and N-cad were highly expressed in lung cancer patients resistant to radiotherapy, while E-cad was poorly expressed. Conclusion: Rac1 may promote NSCLC progression and metastasis via EMT, which may be considered as a potential therapeutic target. PMID:27877226

  11. [Transforming growth factor-β1 and Snail1 mediate tubular epithelial-mesenchymal transition in diabetic rats].

    PubMed

    Fang, Kai-Yun; Lou, Jing-Lei; Xiao, Ying; Shi, Ming-Juan; Gui, Hua-Zheng; Guo, Bing; Zhang, Guo-Zhong

    2008-02-25

    The present study was aimed to explore the expressions of transforming growth factor-β1 (TGF-β1) and Snail1 in renal tissues of diabetic rats, and their role in tubular epithelial-mesenchymal transition (TEMT). Induced diabetic rats were randomly divided into 2-, 4-, 8-, 12-, 16-, 20-, 24-week and 16wA, 20wA, 24wA groups. The rats in 16wA, 20wA and 24wA groups were treated with insulin to control blood glucose to the normal level from the 13th week. The age-matched rats were set as controls. Blood glucose, 24-hour urine protein, serum creatinine (Scr), kidney index of rats were measured. PAS staining was used to observe the renal pathological changes. Immunohistochemical staining and (or) Western blot were employed to determine the expressions of TGF-β1, Snail1, E-cadherin, α-smooth muscle actin (α-SMA) and fibronectin (FN) proteins. The expressions of Snail1 and E-cadherin mRNAs in renal cortex were examined by RT-PCR. Blood glucose, 24-hour urine protein, Scr and kidney index increased remarkably in diabetic rats as compared with those in the control groups (P<0.05, P<0.01) and insulin-treated rats (P<0.01). TGF-β1 and Snail1 protein expressions could not be detected by immunohistochemical staining in the normal renal tissues, however, the strongly positive staining was observed in diabetic rat renal tubules. A time-dependent loss of TGF-β1 and Snail1 expressions was detected in the kidney of insulin-treated rats. In diabetic rats tubular α-SMA positive staining was seen at the 16th week. E-cadherin expression was lost in diabetic rats. The expressions of TGF-β1, Snail1 proteins and Snail1 mRNA were significantly up-regulated in diabetic rats, while down-regulated in insulin-treated rats (P<0.01). The expressions of E-cadherin protein and mRNA in the cortex were contrary to the expressions of TGF-β1 and Snail1. Therefore, TGF-β1 and Snail1 are possibly involved in the pathogenesis of TEMT in diabetic nephropathy rats.

  12. The p63 Protein Isoform ΔNp63α Inhibits Epithelial-Mesenchymal Transition in Human Bladder Cancer Cells

    PubMed Central

    Tran, Mai N.; Choi, Woonyoung; Wszolek, Matthew F.; Navai, Neema; Lee, I-Ling C.; Nitti, Giovanni; Wen, Sijin; Flores, Elsa R.; Siefker-Radtke, Arlene; Czerniak, Bogdan; Dinney, Colin; Barton, Michelle; McConkey, David J.

    2013-01-01

    Epithelial-mesenchymal transition (EMT) is a physiological process that plays important roles in tumor metastasis, “stemness,” and drug resistance. EMT is typically characterized by the loss of the epithelial marker E-cadherin and increased expression of EMT-associated transcriptional repressors, including ZEB1 and ZEB2. The miR-200 family and miR-205 prevent EMT through suppression of ZEB1/2. p53 has been implicated in the regulation of miR-200c, but the mechanisms controlling miR-205 expression remain elusive. Here we report that the p53 family member and p63 isoform, ΔNp63α, promotes miR-205 transcription and controls EMT in human bladder cancer cells. ΔNp63α, E-cadherin and miR-205 were coexpressed in a panel of bladder cancer cell lines (n = 28) and a cohort of primary bladder tumors (n = 98). Stable knockdown of ΔNp63α in the “epithelial” bladder cancer cell line UM-UC6 decreased the expression of miR-205 and induced the expression of ZEB1/2, effects that were reversed by expression of exogenous miR-205. Conversely, overexpression of ΔNp63α in the “mesenchymal” bladder cancer cell line UM-UC3 induced miR-205 and suppressed ZEB1/2. ΔNp63α knockdown reduced the expression of the primary and mature forms of miR-205 and the miR-205 “host” gene (miR-205HG) and decreased binding of RNA Pol II to the miR-205HG promoter, inhibiting miR-205HG transcription. Finally, high miR-205 expression was associated with adverse clinical outcomes in bladder cancer patients. Together, our data demonstrate that ΔNp63α-mediated expression of miR-205 contributes to the regulation of EMT in bladder cancer cells and identify miR-205 as a molecular marker of the lethal subset of human bladder cancers. PMID:23239884

  13. Paeoniflorin suppresses TGF-β mediated epithelial-mesenchymal transition in pulmonary fibrosis through a Smad-dependent pathway

    PubMed Central

    Ji, Yu; Dou, Yan-nong; Zhao, Qian-wen; Zhang, Ji-zhou; Yang, Yan; Wang, Ting; Xia, Yu-feng; Dai, Yue; Wei, Zhi-feng

    2016-01-01

    Aim: Paeoniflorin has shown to attenuate bleomycin-induced pulmonary fibrosis (PF) in mice. Because the epithelial-mesenchymal transition (EMT) in type 2 lung endothelial cells contributes to excessive fibroblasts and myofibroblasts during multiple fibrosis of tissues, we investigated the effects of paeoniflorin on TGF-β mediated pulmonary EMT in bleomycin-induced PF mice. Methods: PF was induced in mice by intratracheal instillation of bleomycin (5 mg/kg). The mice were orally treated with paeoniflorin or prednisone for 21 d. After the mice were sacrificed, lung tissues were collected for analysis. An in vitro EMT model was established in alveolar epithelial cells (A549 cells) incubated with TGF-β1 (2 ng/mL). EMT identification and the expression of related proteins were performed using immunohistochemistry, transwell assay, ELISA, Western blot and RT-qPCR. Results: In PF mice, paeoniflorin (50, 100 mg·kg−1·d−1) or prednisone (6 mg·kg−1·d−1) significantly decreased the expression of FSP-1 and α-SMA, and increased the expression of E-cadherin in lung tissues. In A549 cells, TGF-β1 stimulation induced EMT, as shown by the changes in cell morphology, the increased cell migration, and the increased vimentin and α-SMA expression as well as type I and type III collagen levels, and by the decreased E-cadherin expression. In contrast, effects of paeoniflorin on EMT disappeared when the A549 cells were pretreated with TGF-β1 for 24 h. TGF-β1 stimulation markedly increased the expression of Snail and activated Smad2/3, Akt, ERK, JNK and p38 MAPK in A549 cells. Co-incubation with paeoniflorin (1–30 μmol/L) dose-dependently attenuated TGF-β1-induced expression of Snail and activation of Smad2/3, but slightly affected TGF-β1-induced activation of Akt, ERK, JNK and p38 MAPK. Moreover, paeoniflorin markedly increased Smad7 level, and decreased ALK5 level in A549 cells. Conclusion: Paeoniflorin suppresses the early stages of TGF-β mediated EMT in alveolar

  14. Effects of exogenous recombinant human bone morphogenic protein-7 on the corneal epithelial mesenchymal transition and fibrosis

    PubMed Central

    Chung, Jin Kwon; Park, Shin Ae; Hwang, Hee Sun; Kim, Kwang Sung; Cho, Yang Je; You, Yong Sung; Kim, Young Sik; Jang, Ju Woong; Lee, Sung Jin

    2017-01-01

    AIM To evaluate the effect of exogenous recombinant human bone morphogenic protein-7 (rhBMP-7) on transforming growth factor-β (TGF-β)-induced epithelial mesenchymal cell transition (EMT) and assessed its antifibrotic effect via topical application. METHODS The cytotoxic effect of rhBMP-7 was evaluated and the EMT of human corneal epithelial cells (HECEs) was induced by TGF-β. HECEs were then cultured in the presence of rhBMP-7 and/or hyaluronic acid (HA). EMT markers, fibronectin, E-cadherin, α-smooth muscle actin (α-SMA), and matrix metaloproteinase-9 (MMP-9), were evaluated. The level of corneal fibrosis and the reepithelization rate were evaluated using a rabbit keratectomy model. Expression of α-SMA in keratocytes were quantified following treatment with different concentrations of rhBMP-7. RESULTS Treatment with rhBMP-7 attenuated TGF-β-induced EMT in HECEs. It significantly attenuated fibronectin secretion (31.6%; P<0.05), the α-SMA protein level (72.2%; P<0.01), and MMP-9 expression (23.6%, P<0.05) in HECEs compared with cells grown in the presence of TGF-β alone. E-cadherin expression was significantly enhanced (289.7%; P<0.01) in the presence of rhBMP-7. Topical application of rhBMP-7 combined with 0.1% HA significantly reduced the amount of α-SMA+ cells by 43.18% (P<0.05) at a concentration of 2.5 µg/mL and by 47.73% (P<0.05) at 25 µg/mL, compared with the control group, without disturbing corneal reepithelization. CONCLUSION rhBMP-7 attenuates TGF-β-induced EMT in vitro, and topical application of rhBMP-7 reduces keratocyte myodifferentiation during the early wound healing stages in vivo without hindering reepithelization. Topical rhBMP-7 application as biological eye drops seems to be feasible in diseases involving TGF-β-related corneal fibrosis with corneal reepithelization disorders.

  15. Effects of PPAR gamma ligands on TGF-beta1-induced epithelial-mesenchymal transition in alveolar epithelial cells.

    PubMed

    Tan, Xiahui; Dagher, Hayat; Hutton, Craig A; Bourke, Jane E

    2010-02-23

    Transforming growth factor beta1 (TGF-beta1)-mediated epithelial mesenchymal transition (EMT) of alveolar epithelial cells (AEC) may contribute to lung fibrosis. Since PPAR gamma ligands have been shown to inhibit fibroblast activation by TGF-beta1, we assessed the ability of the thiazolidinediones rosiglitazone (RGZ) and ciglitazone (CGZ) to regulate TGF-beta1-mediated EMT of A549 cells, assessing changes in cell morphology, and expression of cell adhesion molecules E-cadherin (epithelial cell marker) and N-cadherin (mesenchymal cell marker), and collagen 1 alpha 1 (COL1A1), CTGF and MMP-2 mRNA. Serum-deprived A549 cells (human AEC cell line) were pre-incubated with RGZ and CGZ (1 - 30 microM) in the absence or presence of the PPAR gamma antagonist GW9662 (10 microM) before TGFbeta-1 (0.075-7.5 ng/ml) treatment for up to 72 hrs. Changes in E-cadherin, N-cadherin and phosphorylated Smad2 and Smad3 levels were analysed by Western blot, and changes in mRNA levels including COL1A1 assessed by RT-PCR. TGFbeta-1 (2.5 ng/ml)-induced reductions in E-cadherin expression were associated with a loss of epithelial morphology and cell-cell contact. Concomitant increases in N-cadherin, MMP-2, CTGF and COL1A1 were evident in predominantly elongated fibroblast-like cells. Neither RGZ nor CGZ prevented TGF beta 1-induced changes in cell morphology, and PPAR gamma-dependent inhibitory effects of both ligands on changes in E-cadherin were only evident at submaximal TGF-beta1 (0.25 ng/ml). However, both RGZ and CGZ inhibited the marked elevation of N-cadherin and COL1A1 induced by TGF-beta1 (2.5 ng/ml), with effects on COL1A1 prevented by GW9662. Phosphorylation of Smad2 and Smad3 by TGF-beta1 was not inhibited by RGZ or CGZ. RGZ and CGZ inhibited profibrotic changes in TGF-beta1-stimulated A549 cells independently of inhibition of Smad phosphorylation. Their inhibitory effects on changes in collagen I and E-cadherin, but not N-cadherin or CTGF, appeared to be PPAR gamma

  16. Epithelial mesenchymal transition (EMT) and non-small cell lung cancer (NSCLC): a mutual association with airway disease.

    PubMed

    Mahmood, Malik Quasir; Ward, Chris; Muller, Hans Konrad; Sohal, Sukhwinder Singh; Walters, Eugene Haydn

    2017-03-01

    NSCLC is a leading cause of morbidity and mortality worldwide. It includes adeno- and squamous cell carcinoma. In the background, COPD and smoking play a vital role in development of NSCLC. Local progression and metastasis of NSCLC has been associated with various mechanisms, but in particular by a process called epithelial mesenchymal transition (EMT), which is implicated in COPD pathogenesis. In this study, we have investigated whether expression of EGFR (activation marker) and S100A4, vimentin and N-cadherin (as EMT) is different both in central and leading edge of NSCLC and to what extent related to EMT activity of both small and large airways, stage and differentiation of NSCLC. We have investigated EMT biomarkers (S100A4, vimentin, and N-cadherin), an epithelial activation marker (EGFR) and a vascularity marker (Type-IV collagen) in surgically resected tissue from patients with NSCLC (adeno- and squamous cell carcinoma), and compared them with expression in the corresponding non-tumorous airways. EGFR, S100A4, vimentin, N-cadherin expression was higher in tumor cells located at the peripheral leading edge of NSCLC when compared with centrally located tumor cells of same subjects (P < 0.01). Type-IV collagen-expressing blood vessels were also more at the leading edge in comparison with central parts of NSCLC. EGFR and S100A4 expression was related to differentiation status (P < 0.05) and TNM stage (P < 0.05) of NSCLC. Moreover, EMT markers in the leading edge were significantly related to airway EMT activity, while peripheral edge vascularity of squamous cell carcinoma only was significantly related to large airway Rbm vascularity (P < 0.05). EGFR- and EMT-related protein expression was markedly high in the peripheral leading edge of NSCLCs and related to tumor characteristics associated with poor prognosis. The relationships between EMT-related tumor biomarker expression and those in the airway epithelium and Rbm provide a background for utility of

  17. Alpha B-crystallin promotes the invasion and metastasis of colorectal cancer via epithelial-mesenchymal transition.

    PubMed

    Shi, Chuanbing; Yang, Xiaojun; Bu, Xiaodong; Hou, Ning; Chen, Pingsheng

    2017-08-05

    Alpha B-crystallin (CRYAB, HSPB5) is a protein that was first discovered in the lens of the eye. It is a member of the small heat-shock protein family (sHsps). CRYAB functions primarily as a molecular chaperone to prevent the aggregation and degradation of damaged unfolded proteins due to cellular damage resulting from heat shock, radiation, oxidative stress, and other insults, thereby promoting cell survival and preventing apoptosis. In recent years, the role of CRYAB in tumorigenesis, tumor invasion, and metastasis has received increasing attention. CRYAB is highly expressed in a variety of cancers, including breast cancer, head and neck cancer, and kidney cancer, and is likely associated with the prognosis of cancer. However, few studies have examined CRYAB in colorectal cancer (CRC). To study the effect of CRYAB on CRC, we transfected the CRC cell line SW480, which expresses high levels of CRYAB, with a lentiviral vector that inhibits CRYAB expression. The messenger RNA (mRNA) and protein expression of CRYAB was examined in the transfected SW480 cells (Si-CRYAB) using quantitative real-time polymerase chain reaction (qPCR) and Western blotting (WB) assays. Moreover, a growth curve was plotted to examine the proliferation of Si-CRYAB cells, and transwell assays were used to examine the migration of Si-CRYAB cells. Apoptosis and the cell cycle were examined in Si-CRYAB cells using flow cytometry (FCM), and the tumorigenic capability of Si-CRYAB cells was assessed in a nude mouse tumor model. Immunohistochemistry (IHC) was employed to examine CRYAB protein expression and the markers of epithelial-mesenchymal transition (EMT), such as E-cadherin, fibronectin, vimentin, and slug, in tumor tissues from nude mice and clinical invasive CRC and hepatic metastasis specimens. The qPCR and WB results showed that CRYAB was downregulated at the protein and mRNA level in Si-CRYAB cells, and the growth curve indicated that the proliferation of Si-CRYAB cells was reduced

  18. Epithelial-mesenchymal transition (EMT) phenotype at invasion front of squamous cell carcinoma of the penis influences oncological outcomes.

    PubMed

    da Cunha, Isabela Werneck; Souza, Maria José L; da Costa, Walter Henriques; Amâncio, Alice M; Fonseca, Francisco Paulo; Zequi, Stenio de Cassio; Lopes, Ademar; Guimarães, Gustavo Cardoso; Soares, Fernando

    2016-10-01

    Our aims were to evaluate epithelial-mesenchymal transition (EMT) as a useful prognostic marker in penile carcinoma (PC), and establish an objective criterion to define EMT in PC specimens. A total of 149 consecutive cases surgically treated for PC were retrospectively selected. E-cadherin (E-CAD) and vimentin immunohistochemical expressions were evaluated. A combined analysis was performed using both markers to determine EMT status. To establish a normal control to E-CAD expression, we included 14 cases from circumcisions from patients without any neoplastic disease and 77 cases of tumor-free margins. The analyses of tumor samples were evaluated in 2 different areas of the tumor. The first one was in the tumor core. The second analyses were performed on the deepest infiltrative edge of the tumor, nominated invasion front. Cases were classified into EMT absent group, partial EMT group and complete EMT group. Overall survival (OS) and cancer-specific survival (CSS) were analyzed. Kaplan-Meier curves and the log-rank test were used. Cox proportional hazards model was used to determine which variables influenced survival. Tumor specimens presented a significant loss of expression of E-CAD when compared with normal epithelium. Vimentin expression in more than 10% of tumor cells was observed in 50 cases. EMT status was associated with histologic grade, pattern of invasion, lymph node metastasis, and perineural and vascular invasion. Further, 10-year OS and CSS rates in patients with presence and absence of complete EMT status were 38.0% and 55.6%; and 48.0% and 91.9%, respectively. EMT status significantly affected CSS and OS rates even after patients were grouped based on lymph node involvement status. The presence of complete EMT status was associated with both CSS and OS rates. Patients in the complete EMT group had a higher risk of death from cancer (hazard ratio = 7.6, P<0.001) and overall death (hazard ratio = 3.0, P<0.001). Our study represents an evidence of the

  19. Insufficient radiofrequency ablation promotes epithelial-mesenchymal transition of hepatocellular carcinoma cells through Akt and ERK signaling pathways

    PubMed Central

    2013-01-01

    Background Residual tumor progression after insufficient radiofrequency ablation (RFA) has been recently reported. However, whether epithelial-mesenchymal transition (EMT), which is a key process that drives cancer metastasis, is involved in the tumor progression after insufficient RFA is not well understood. Methods Human hepatocellular carcinoma (HCC) cell lines SMMC7721 and Huh7 were used. Insufficient RFA was simulated using a water bath (47°C 5 min, 10 min, 15 min, 20 min and 25 min gradually). MTT assay was used to evaluate the proliferation of HCC cells in vitro. Migration and invasion of HCC cells were determined by transwell assay. The molecular changes in HCC cells after insufficient RFA were evaluated by western blot. LY294002 and PD98059 were used to treat HCC cells. An ectopic nude mice model and a tail vein metastatic assay were used to evaluate the growth and metastatic potential of SMMC7721 cells in vivo after insufficient RFA. Results SMMC7721 and Huh7 cells after insufficient RFA (named as SMMC7721-H and Huh7-H respectively) exhibited enhanced proliferation, migration and invasion (6.4% and 23.6%, 33.2% and 66.1%, and 44.1% and 57.4% increase respectively) in vitro. Molecular changes of EMT were observed in SMMC7721-H and Huh7-H cells. LY294002 and PD98059 inhibited the EMT of SMMC7721-H and Huh7-H cells. SMMC7721-H cells also exhibited larger tumor size (1440.8 ± 250.3 mm3 versus 1048.56 ± 227.6 mm3) and more lung metastasis (97.4% increase) than SMMC7721 cells in vivo. Higher expression of PCNA, N-cadherin and MMP-2 and MMP-9, was also observed in SMMC7721-H tumors. Conclusions Insufficient RFA could directly promote the invasiveness and metastasis of HCC cells. Insufficient RFA may promote the EMT of HCC cells through Akt and ERK signaling pathways. PMID:24168056

  20. Donor-derived stem-cells and epithelial mesenchymal transition in squamous cell carcinoma in transplant recipients

    PubMed Central

    Verneuil, Laurence; Leboeuf, Christophe; Bousquet, Guilhem; Brugiere, Charlotte; Elbouchtaoui, Morad; Plassa, Louis-François; Peraldi, Marie-Noelle; Lebbé, Celeste; Ratajczak, Philippe; Janin, Anne

    2015-01-01

    Background Skin squamous-cell-carcinoma (SCC), is the main complication in long-term kidney-transplant recipients, and it can include donor-derived cells. Preclinical models demonstrated the involvement of epithelial mesenchymal transition (EMT) in the progression of skin SCC, and the role of Snail, an EMT transcription factor, in cancer stem-cell survival and expansion. Here, we studied stem-cells and EMT expression in SCCs and concomitant actinic keratoses (AK) in kidney-transplant recipients. Methods In SCC and AK in 3 female recipients of male kidney-transplants, donor-derived Y chromosome in epidermal stem cells was assessed using combined XY-FISH/CD133 immunostaining, and digital-droplet-PCR on laser-microdissected CD133 expressing epidermal cells. For EMT study, double immunostainings of CD133 with vimentin or snail and slug, electron microscopy and immunostainings of keratinocytes junctions were performed. Digital droplet PCR was used to check CDH1 (E-cadherin) expression level in laser-microdissected cells co-expressing CD133 and vimentin or snail and slug. The numbers of Y-chromosome were assessed using digital droplet PCR in laser-microdissected cells co-expressing CD133 and vimentin, or snail and slug, and in CD133 positive cells not expressing any EMT maker. Results We identified donor-derived stem-cells in basal layers and invasive areas in all skin SCCs and in concomitant AKs, but not in surrounding normal skin. The donor-derived stem-cells expressed the EMT markers, vimentin, snail and slug in SCCs but not in AKs. The expression of the EMT transcription factor, SNAI1, was higher in stem-cells when they expressed vimentin. They were located in invasive areas of SCCs. In these areas, the expressions of claudin-1 and desmoglein 1 were reduced or absent, and within the basal layer there were features of basal membrane disappearance. Donor-derived stem cells were in larger numbers in stem cells co-expressing vimentin or snail and slug than in stem cells

  1. Serum Markers of Epithelial Mesenchymal Transition as Predictors of HCV-induced Liver Fibrosis, Cirrhosis and Hepatocellular Carcinoma

    PubMed Central

    Zoheiry, Mona M; Hasan, Shaimaa AA; El-Ahwany, Eman; Nagy, Faten M; Taleb, Hoda Abu; Nosseir, Mona; Magdy, Mona; Meshaal, Safa; EL-Talkawy, Mohamed Darwish; Raafat, Inas

    2015-01-01

    Introduction Hepatitis C virus (HCV) is a major cause of chronic liver disease in Egypt, leading to hepatic fibrosis, liver cirrhosis (LC), and hepatocellular carcinoma (HCC). Liver fibrosis is characterized by excessive deposition of extracellular matrix (ECM). Newly-recognized pathogenic mechanisms point to the epithelial-mesenchymal transition (EMT) of hepatocytes to matrix synthesizing (myo-) fibroblasts. Transforming growth factor-beta (TGF-β1), bone morphogenic protein (BMP)-7, and connective tissue growth factor (CTGF) are biomarkers reflecting the EMT process. YKL-40 is a glycoprotein member of ECM and plays a role in cancer cell proliferation. The purpose of this study was to determine the serum biomarkers of EMT and its impact on the fibrogenic process and tumorigenesis in HCV-genotype 4 patients. Methods In this case-control study that was conducted in 2013–2014, 97 HCV-infected patients were subjected to clinical examination, laboratory investigations, and liver biopsy. According to the histopathologic examination, they were classified to F0 (14 cases), F1 (17 cases), F2 (15 cases), F3 (18 cases), F4 (22 cases), and HCC (11 cases). Fifteen age- and gender-matched subjects were included as normal controls. Serum levels of TGF-β1, BMP-7, CTGF, YKL-40 were assessed, and the TGF-β1/BMP-7 ratios were calculated. The data were analyzed by plotting the receiver operating characteristic curve (ROC), Pearson product-moment correlation coefficient, and Spearman’s rank correlation coefficient (Spearman’s rho). Results Serum levels of TGF-β1, BMP-7, CTGF, and YKL-40 were significantly increased in all patient groups compared to controls (p < 0.001). LC exhibited the highest CTGF level and YKL-40 was highest in HCC. The TGF-β1/ BMP-7 ratios reflected the progression of EMT from CHC to LC, however, there was no significant difference between LC and HCC. TGF-β1/ BMP-7 ratio is considered to reflect positive correlation with CTGF in LC group (r = 0.629; p

  2. Hepatic stellate cells promote upregulation of epithelial cell adhesion molecule and epithelial-mesenchymal transition in hepatic cancer cells.

    PubMed

    Nagahara, Teruya; Shiraha, Hidenori; Sawahara, Hiroaki; Uchida, Daisuke; Takeuchi, Yasuto; Iwamuro, Masaya; Kataoka, Junro; Horiguchi, Shigeru; Kuwaki, Takeshi; Onishi, Hideki; Nakamura, Shinichiro; Takaki, Akinobu; Nouso, Kazuhiro; Yamamoto, Kazuhide

    2015-09-01

    Microenvironment plays an important role in epithelial-mesenchymal transition (EMT) and stemness of cells in hepatocellular carcinoma (HCC). Epithelial cell adhesion molecule (EpCAM) is known as a tumor stemness marker of HCC. To investigate the relationship between microenvironment and stemness, we performed an in vitro co-culture assay. Four HCC cell lines (HepG2, Hep3B, HuH-7 and PLC/PRF/5) were co-cultured with the TWNT-1 immortalized hepatic stellate cells (HSCs), which create a microenvironment with HCC. Cell proliferation ability was analyzed by flow cytometry (FCM) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, while migration ability was assessed by a wound healing assay. Expression of EpCAM was analyzed by immunoblotting and FCM. HCC cell lines were co-cultured with TWNT-1 treated with small interfering RNA (siRNA) for TGF-β and HB-EGF; we then analyzed proliferation, migration ability and protein expression using the methods described above. Proliferation ability was unchanged in HCC cell lines co-cultured with TWNT-1. Migration ability was increased in HCC cell lines (HepG2, Hep3B, HuH-7 and PLC/PRF/5) directly (216.2±67.0, 61.0±22.0, 124.0±66.2 and 51.5±40.3%) and indirectly (102.5±22.0, 84.6±30.9, 86.1±25.7 and 73.9±29.7%) co-cultured with TWNT-1 compared with the HCC uni-culture. Immunoblot analysis revealed increased EpCAM expression in the HCC cell lines co-cultured with TWNT-1. Flow cytometry revealed that the population of E-cadherin-/N-cadherin+ and EpCAM-positive cells increased and accordingly, EMT and stemness in the HCC cell line were activated. These results were similar in the directly and indirectly co-cultured samples, indicating that humoral factors were at play. Conversely, HCC cell lines co-cultured with siRNA‑treated TWNT-1 showed decreased migration ability, a decreased population of EpCAM-positive and E-cadherin-/N-cadherin+ cells. Taken together, humoral factors secreted from TWNT-1

  3. Alpha1-Antitrypsin Attenuates Renal Fibrosis by Inhibiting TGF-β1-Induced Epithelial Mesenchymal Transition

    PubMed Central

    Cho, Jang-Hee; Ryu, Hye-Myung; Oh, Eun-Joo; Yook, Ju-Min; Ahn, Ji-Sun; Jung, Hee-Yeon; Choi, Ji-Young; Park, Sun-Hee; Kim, Yong-Lim; Kwak, Ihm Soo; Kim, Chan-Duck

    2016-01-01

    Alpha1-antitrypsin (AAT) exerts its anti-inflammatory effect through regulating the activity of serine proteinases. This study evaluated the inhibitory effects of AAT against the transforming growth factor (TGF)-β1 induced epithelial-to-mesenchymal transition (EMT) in unilateral ureter obstruction (UUO) mice and Madin-Darby canine kidney (MDCK) cells. C57BL/6 mice with induced UUO were injected intraperitoneally with AAT (80 mg/Kg) or vehicle for 7 days. MDCK cells were treated with TGF-β1 (2 ng/mL) for 48 hours to induce EMT, and co-treated with AAT (10 mg/mL) to inhibit the EMT. Masson’s trichrome and Sirius red staining was used to estimate the extent of renal fibrosis in UUO mice. The expression of alpha-smooth muscle actin (α-SMA), vimentin, fibronectin, collagen I, and E-cadherin in MDCK cells and kidney tissue were evaluated. Masson’s and Sirius red staining revealed that the area of renal fibrosis was significantly smaller in AAT treated UUO group compared with that of UUO and vehicle treated UUO groups. AAT treatment attenuated upregulation of Smad2/3 phosphorylation in UUO mouse model. Co-treatment of MDCK cells with TGF-β1 and AAT significantly attenuated the changes in the expression of α-SMA, vimentin, fibronectin, collagen I, and E-cadherin. AAT also decreased the phosphorylated Smad3 expression and the phosphorylated Smad3/Smad3 ratio in MDCK cells. AAT treatment inhibited EMT induced by TGF-β1 in MDCK cells and attenuated renal fibrosis in the UUO mouse model. The results of this work suggest that AAT could inhibit the process of EMT through the suppression of TGF-β/Smad3 signaling. PMID:27607429

  4. Na, K-ATPase subunits as markers for epithelial-mesenchymal transition in cancer and fibrosis

    PubMed Central

    Rajasekaran, Sigrid A.; Huynh, Thu P.; Wolle, Daniel G.; Espineda, Cromwell E.; Inge, Landon J.; Skay, Anna; Lassman, Charles; Nicholas, Susanne B.; Harper, Jeffrey F.; Reeves, Anna E.; Ahmed, Mansoor M.; Leatherman, James M; Mullin, James M.; Rajasekaran, Ayyappan K.

    2010-01-01

    Epithelial-to-mesenchymal transition (EMT) is an important developmental process, participates in tissue repair and occurs during pathological processes of tumor invasiveness, metastasis and tissue fibrosis. The molecular mechanisms leading to EMT are poorly understood. While it is well documented that transforming growth factor (TGF)-β plays a central role in the induction of EMT, the targets of TGF-β signaling are poorly defined. We have shown earlier that Na,K-ATPase β1-subunit levels are highly reduced in poorly differentiated kidney carcinoma cells in culture and in patients’ tumor samples. In this study, we provide evidence that Na,K-ATPase is a new target of TGF-β1-mediated EMT in renal epithelial cells, a model system used in studies of both cancer progression and fibrosis. We show that following treatment with TGF-β1 the surface expression of the β1-subunit of Na,K-ATPase is reduced, prior to well-characterized EMT markers and is associated with the acquisition of a mesenchymal phenotype. RNAi mediated knockdown confirmed the specific involvement of the Na,K-ATPase β1-subunit in the loss of the epithelial phenotype and exogenous over-expression of the Na,K-ATPase β1-subunit attenuated TGF-β1-mediated EMT. We further show that both Na,K-ATPase α- and β-subunit levels are highly reduced in renal fibrotic tissues. These findings for the first time reveal that Na,K-ATPase is a target of TGF-β1-mediated EMT and is associated with the progression of EMT in both cancer and fibrosis. PMID:20501797

  5. Regulatory Roles of Dclk1 in Epithelial Mesenchymal Transition and Cancer Stem Cells

    PubMed Central

    Chandrakesan, P; Panneerselvam, J; Qu, D; Weygant, N; May, R; Bronze, MS; Houchen, CW

    2016-01-01

    The identification of functionally relevant subpopulations of therapy-resistant cancer cells is a challenge. These cells, intrinsically resistant to conventional therapy, can cause recurrence. Evidence has suggested that therapy-resistant cancer cells are likely epithelial–mesenchymal transition (EMT) cells and/or stem-like cells called cancer stem cells (CSCs). EMT, a normal embryological process that converts epithelial cells into mesenchymal cells, is frequently activated during cancer development and progression. CSCs are a small subpopulation of cancer cells within a tumor mass that have the ability to self-renew and maintain tumor-initiating capacity by giving rise to heterogeneous lineages of cancer cells that comprise the whole tumor. Although the origin of CSCs and EMT cells remains to be fully explored, a growing body of evidence has indicated that the biology of EMT and CSCs is strongly linked. Doublecortin-like kinase 1 (DCLK1), a cancer stem cell marker, is functionally involved in maintaining cancer stemness and the process of EMT important for cancer initiation, cancer metastasis, and secondary tumor formation. Therefore, targeting these cells may provide new strategies to overcome tumor heterogeneity, therapeutic resistance, and cancer relapse. In this review, we will provide a potential mechanistic link between EMT induction and the emergence of CSCs for the origin and progression of cancer. We will highlight the functional activity of DCLK1 in supporting EMT and cancer cell self-renewal, which will lead us to a better understanding of DCLK1 expression in cancer development and progression, and help us to develop targeted therapies for effective cancer treatment. PMID:27335684

  6. Alpha1-Antitrypsin Attenuates Renal Fibrosis by Inhibiting TGF-β1-Induced Epithelial Mesenchymal Transition.

    PubMed

    Cho, Jang-Hee; Ryu, Hye-Myung; Oh, Eun-Joo; Yook, Ju-Min; Ahn, Ji-Sun; Jung, Hee-Yeon; Choi, Ji-Young; Park, Sun-Hee; Kim, Yong-Lim; Kwak, Ihm Soo; Kim, Chan-Duck

    2016-01-01

    Alpha1-antitrypsin (AAT) exerts its anti-inflammatory effect through regulating the activity of serine proteinases. This study evaluated the inhibitory effects of AAT against the transforming growth factor (TGF)-β1 induced epithelial-to-mesenchymal transition (EMT) in unilateral ureter obstruction (UUO) mice and Madin-Darby canine kidney (MDCK) cells. C57BL/6 mice with induced UUO were injected intraperitoneally with AAT (80 mg/Kg) or vehicle for 7 days. MDCK cells were treated with TGF-β1 (2 ng/mL) for 48 hours to induce EMT, and co-treated with AAT (10 mg/mL) to inhibit the EMT. Masson's trichrome and Sirius red staining was used to estimate the extent of renal fibrosis in UUO mice. The expression of alpha-smooth muscle actin (α-SMA), vimentin, fibronectin, collagen I, and E-cadherin in MDCK cells and kidney tissue were evaluated. Masson's and Sirius red staining revealed that the area of renal fibrosis was significantly smaller in AAT treated UUO group compared with that of UUO and vehicle treated UUO groups. AAT treatment attenuated upregulation of Smad2/3 phosphorylation in UUO mouse model. Co-treatment of MDCK cells with TGF-β1 and AAT significantly attenuated the changes in the expression of α-SMA, vimentin, fibronectin, collagen I, and E-cadherin. AAT also decreased the phosphorylated Smad3 expression and the phosphorylated Smad3/Smad3 ratio in MDCK cells. AAT treatment inhibited EMT induced by TGF-β1 in MDCK cells and attenuated renal fibrosis in the UUO mouse model. The results of this work suggest that AAT could inhibit the process of EMT through the suppression of TGF-β/Smad3 signaling.

  7. Regorafenib (Stivarga) pharmacologically targets epithelial-mesenchymal transition in colorectal cancer

    PubMed Central

    Fan, Li-Ching; Teng, Hao-Wei; Shiau, Chung-Wai; Tai, Wei-Tien; Hung, Man-Hsin; Yang, Shung-Haur; Jiang, Jeng-Kai; Chen, Kuen-Feng

    2016-01-01

    Epithelial-to-mesenchymal transition (EMT) is well-known to evoke cancer invasion/metastasis, leading to a high frequency of mortality in patients with metastatic colorectal cancer (mCRC). Protein tyrosine phosphatase (PTPase)-targeted therapy has been identified as a novel cancer therapeutic. Previously, we proved that sorafenib with anti-EMT potency prevents TGF-β1-induced EMT/invasion by directly activating SH2-domain-containing phosphatase 1 (SHP-1)-dependent p-STAT3Tyr705 suppression in hepatocellular carcinoma. Regorafenib has a closely related chemical structure as sorafenib and is approved for the pharmacotherapy of mCRC. Herein, we evaluate whether regorafenib activates PTPase SHP-1 in the same way as sorafenib to abolish EMT-related invasion/metastasis in CRC. Notably, regorafenib exerted potent anti-EMT activity to curb TGF-β1-induced EMT/invasion in vitro as well inhibited lung metastatic outgrowth of SW480 mesenchymal cells in vivo. Mechanistically, regorafenib-enhanced SHP-1 activity significantly impeded TGF-β1-induced EMT/invasion via low p-STAT3Tyr705 level as proved by a SHP-1 inhibitor or siRNA-mediated SHP-1 depletion. Conversely, overexpression of SHP-1 further enhanced the inhibitory effects of regorafenib on TGF-β1-induced p-STAT3Tyr705 and EMT/invasion. Regorafenib directly activates SHP-1 by potently relieving the autoinhibited N-SH2 domain of SHP-1 to inhibit TGF-β1-induced p-STAT3Tyr705 and EMT/invasion. Importantly, the clinical evidence indicated that SHP-1 was positively correlated with E-cadherin and that significantly determined the overall survival of CRC patients. This result further confirms our in vitro data that SHP-1 is a negative regulatory PTPase in EMT regulation and serves as a pharmacological target for mCRC therapy. Collectively, activating PTPase SHP-1 by regorafenib focusing on its anti-EMT activity might be a useful pharmacotherapy for mCRC. PMID:27580057

  8. Site-specific Disruption of the Oct4/Sox2 Protein Interaction Reveals Coordinated Mesendodermal Differentiation and the Epithelial-Mesenchymal Transition*

    PubMed Central

    Pan, Xiao; Cang, Xiaohui; Dan, Songsong; Li, Jingchao; Cheng, Jie; Kang, Bo; Duan, Xiaotao; Shen, Binghui; Wang, Ying-Jie

    2016-01-01

    Although the Oct4/Sox2 complex is crucial for maintaining the pluripotency of stem cells, the molecular basis underlying its regulation during lineage-specific differentiation remains unknown. Here, we revealed that the highly conserved Oct4/Lys-156 is important for maintaining the stability of the Oct4 protein and the intermolecular salt bridge between Oct4/Lys-151 and Sox2/Asp-107 that contributes to the Oct4/Sox2 interaction. Post-translational modifications at Lys-156 and K156N, a somatic mutation detected in bladder cancer patients, both impaired the Lys-151–Asp-107 salt bridge and the Oct4/Sox2 interaction. When produced as a recombinant protein or overexpressed in pluripotent stem cells, Oct4/K156N, with reduced binding to Sox2, significantly down-regulated the stemness genes that are cooperatively controlled by the Oct4/Sox2 complex and specifically up-regulated the mesendodermal genes and the SNAIL family genes that promote the epithelial-mesenchymal transition. Thus, we conclude that Oct4/Lys-156-modulated Oct4/Sox2 interaction coordinately controls the epithelial-mesenchymal transition and mesendoderm specification induced by specific differentiation signals. PMID:27369080

  9. Sulforaphane inhibits TGF-β-induced epithelial-mesenchymal transition of hepatocellular carcinoma cells via the reactive oxygen species-dependent pathway.

    PubMed

    Wu, Jinsheng; Han, Jingli; Hou, Benxin; Deng, Chengwei; Wu, Huanliang; Shen, Liangfang

    2016-05-01

    Sulforaphane is recognized as a safe antitumor agent derived from various cruciferous vegetables, including broccoli. It has been demonstrated that sulforaphase is a potent antitumor agent in diverse cancers. However, its effect on hepatocellular carcinoma remains largely unknown. Here, we show that sulforaphane inhibits TGF-β-induced epithelial-mesenchymal transition of hepatocellular carcinoma cell via the reactive oxygen species-dependent pathway. We found sulforaphane inhibited hepatocellular carcinoma cell proliferation in a dose- and time-dependent manner. Sulforaphane induced G0/G1 phase cell cycle arrest and promoted cell apoptosis. A set of experiments showed that sulforaphase inhibited hepatocellular carcinoma cell migration and invasion, inhibited the formation of fibroblast like mesenchymal cells and the expression of Vimentin, but increased the expression of E-cadherin, suggesting sulforaphane suppresses epithelial-mesenchymal transition (EMT) process. Cotreatment with N-acetyl-L-cysteine inhibited sulforaphane-inhibited invasion and upregulation of E-cadherin and almost completely abolished the sulforaphane-induced expression of Vimentin. The effect of sulforaphane on the growth of hepatocellular carcinoma cells was confirmed by a xenograft tumor growth model. All our finding indicated that sulforaphane is a promising and safe strategy for treating hepatocellular carcinoma.

  10. Notch1 induces epithelial-mesenchymal transition and the cancer stem cell phenotype in breast cancer cells and STAT3 plays a key role.

    PubMed

    Zhang, Xiaojin; Zhao, Xiaoai; Shao, Shan; Zuo, Xiaoxiao; Ning, Qian; Luo, Minna; Gu, Shanzhi; Zhao, Xinhan

    2015-03-01

    Breast cancer is the most common malignancy in women. The Notch signaling pathway has been shown to be associated with the development and progression of many human cancers, including breast cancer, but the precise mechanism remains unknown. Here, the influence of Notch1 signaling in mammary epithelial cells was studied. We showed that Notch1 promotes proliferation in MCF7 and MCF10A cells. Transwell assay indicated that Notch1 overexpression promotes cell migration and the invasion of breast cancer cells. We showed that MCF7 and MCF10A cells overexpressing Notch1 acquired features of epithelial-mesenchymal transition (EMT) and displayed a cancer stem cell (CSC) phenotype. The expression levels of the epithelial markers E-cadherin and occludin were decreased, while the expression levels of the mesenchymal markers N-cadherin, vimentin and fibronectin were increased in cells overexpressing Notch1. We demonstrated that Notch1 induced phosphorylation of the signal transducer and activator of transcription 3 (STAT3) in breast cancer cells and increased the expression of p65 and interleukin (IL)-1β. Inhibition of STAT3 activity by JSI124 reduced the expression of p65 and IL-1. Treatment of MCF7-notch1 and MCF10A-notch1 cells with JSI124 also reduced the expression of N-cadherin, markers of epithelial mesenchymal transition and increased the expression of E-cadherin. Our results suggest that Notch1 promotes EMT and the CSC phenotype through induction of STAT3.

  11. High-throughput mRNA and miRNA profiling of epithelial-mesenchymal transition in MDCK cells.

    PubMed

    Shukla, Priyank; Vogl, Claus; Wallner, Barbara; Rigler, Doris; Müller, Mathias; Macho-Maschler, Sabine

    2015-11-16

    Epithelial-mesenchymal transition (EMT) is an important process in embryonic development, especially during gastrulation and organ formation. Furthermore EMT is widely observed in pathological conditions, e.g., fibrosis, tumor progression and metastasis. Madin-Darby Canine Kidney (MDCK) cells are widely used for studies of EMT and epithelial plasticity. MDCK cells show an epithelial phenotype, while oncogenic Ras-transformed MDCK (MDCK-Ras) cells undergo EMT and show a mesenchymal phenotype. RNA-Seq and miRNA-Seq analyses were performed on MDCK and MDCK-Ras cells. Data were validated by qRT-PCR. Gene signature analyses were carried out to identify pathways and gene ontology terms. For selected miRNAs target prediction was performed. With RNA-Seq, mRNAs of approximately half of the genes known for dog were detected. These were screened for differential regulation during Ras-induced EMT. We went further and performed gene signature analyses and found Gene Ontology (GO) terms and pathways important for epithelial polarity and implicated in EMT. Among the identified pathways, TGFβ1 emerged as a central signaling factor in many EMT related pathways and biological processes. With miRNA-Seq, approximately half of the known canine miRNAs were found expressed in MDCK and MDCK-Ras cells. Furthermore, among differentially expressed miRNAs, miRNAs that are known to be important regulators of EMT were detected and new candidates were predicted. New dog miRNAs were discovered after aligning our reads to that of other species in miRBase. Importantly, we could identify 25 completely novel miRNAs with a stable hairpin structure. Two of these novel miRNAs were differentially expressed. We validated the two novel miRNAs with the highest read counts by RT-qPCR. Target prediction of a particular novel miRNA highly expressed in mesenchymal MDCK-Ras cells revealed that it targets components of epithelial cell junctional complexes. Combining target prediction for the most upregulated mi

  12. Type I collagen promotes epithelial-mesenchymal transition through ILK-dependent activation of NF-κB and LEF-1

    PubMed Central

    Medici, Damian; Nawshad, Ali

    2010-01-01

    Collagen I has been shown to promote epithelial-mesenchymal transition (EMT), a critical process of embryonic development and disease progression. However, little is known about the signaling mechanisms by which collagen I induces this cellular transformation. Here we show that collagen I causes ILK-dependent phosphorylation of IκB and subsequent nuclear translocation of active NF-κB, which in turn promotes increased expression of the Snail and LEF-1 transcription factors. ILK also causes inhibitory phosphorylation of GSK-3β, a kinase that prevents functional activation of both Snail and LEF-1. These transcription factors alter expression of epithelial and mesenchymal markers to initiate EMT and stimulate cell migration. These data provide a foundation for understanding the mechanisms by which collagen I stimulates EMT and identify potential therapeutic targets for suppressing this transition in pathological conditions. PMID:20018240

  13. Oncogenic potential of histone-variant H2A.Z.1 and its regulatory role in cell cycle and epithelial-mesenchymal transition in liver cancer.

    PubMed

    Yang, Hee Doo; Kim, Pum-Joon; Eun, Jung Woo; Shen, Qingyu; Kim, Hyung Seok; Shin, Woo Chan; Ahn, Young Min; Park, Won Sang; Lee, Jung Young; Nam, Suk Woo

    2016-03-08

    H2A.Z is a highly conserved H2A variant, and two distinct H2A.Z isoforms, H2A.Z.1 and H2A.Z.2, have been identified as products of two non-allelic genes, H2AFZ and H2AFV. H2A.Z has been reported to be overexpressed in breast, prostate and bladder cancers, but most studies did not clearly distinguish between isoforms. One recent study reported a unique role for the H2A.Z isoform H2A.Z.2 as a driver of malignant melanoma. Here we first report that H2A.Z.1 plays a pivotal role in the liver tumorigenesis by selectively regulating key molecules in cell cycle and epithelial-mesenchymal transition (EMT). H2AFZ expression was significantly overexpressed in a large cohort of hepatocellular carcinoma (HCC) patients, and high expression of H2AFZ was significantly associated with their poor prognosis. H2A.Z.1 overexpression was demonstrated in a subset of human HCC and cell lines. H2A.Z.1 knockdown suppressed HCC cell growth by transcriptional deregulation of cell cycle proteins and caused apoptotic cell death of HCC cells. We also observed that H2A.Z.1 knockdown reduced the metastatic potential of HCC cells by selectively modulating epithelial-mesenchymal transition regulatory proteins such as E-cadherin and fibronectin. In addition, H2A.Z.1 knockdown reduced the in vivo tumor growth rate in a mouse xenograft model. In conclusion, our findings suggest the oncogenic potential of H2A.Z.1 in liver tumorigenesis and that it plays established role in accelerating cell cycle transition and EMT during hepatocarcinogenesis. This makes H2A.Z.1 a promising target in liver cancer therapy.

  14. Oncogenic potential of histone-variant H2A.Z.1 and its regulatory role in cell cycle and epithelial-mesenchymal transition in liver cancer

    PubMed Central

    Eun, Jung Woo; Shen, Qingyu; Kim, Hyung Seok; Shin, Woo Chan; Ahn, Young Min; Park, Won Sang; Lee, Jung Young; Nam, Suk Woo

    2016-01-01

    H2A.Z is a highly conserved H2A variant, and two distinct H2A.Z isoforms, H2A.Z.1 and H2A.Z.2, have been identified as products of two non-allelic genes, H2AFZ and H2AFV. H2A.Z has been reported to be overexpressed in breast, prostate and bladder cancers, but most studies did n