Science.gov

Sample records for metalloproteinases control brain

  1. Matrix metalloproteinases in the brain and blood-brain barrier: Versatile breakers and makers.

    PubMed

    Rempe, Ralf G; Hartz, Anika Ms; Bauer, Björn

    2016-09-01

    Matrix metalloproteinases are versatile endopeptidases with many different functions in the body in health and disease. In the brain, matrix metalloproteinases are critical for tissue formation, neuronal network remodeling, and blood-brain barrier integrity. Many reviews have been published on matrix metalloproteinases before, most of which focus on the two best studied matrix metalloproteinases, the gelatinases MMP-2 and MMP-9, and their role in one or two diseases. In this review, we provide a broad overview of the role various matrix metalloproteinases play in brain disorders. We summarize and review current knowledge and understanding of matrix metalloproteinases in the brain and at the blood-brain barrier in neuroinflammation, multiple sclerosis, cerebral aneurysms, stroke, epilepsy, Alzheimer's disease, Parkinson's disease, and brain cancer. We discuss the detrimental effects matrix metalloproteinases can have in these conditions, contributing to blood-brain barrier leakage, neuroinflammation, neurotoxicity, demyelination, tumor angiogenesis, and cancer metastasis. We also discuss the beneficial role matrix metalloproteinases can play in neuroprotection and anti-inflammation. Finally, we address matrix metalloproteinases as potential therapeutic targets. Together, in this comprehensive review, we summarize current understanding and knowledge of matrix metalloproteinases in the brain and at the blood-brain barrier in brain disorders.

  2. Matrix metalloproteinases in the brain and blood–brain barrier: Versatile breakers and makers

    PubMed Central

    Rempe, Ralf G; Hartz, Anika MS

    2016-01-01

    Matrix metalloproteinases are versatile endopeptidases with many different functions in the body in health and disease. In the brain, matrix metalloproteinases are critical for tissue formation, neuronal network remodeling, and blood–brain barrier integrity. Many reviews have been published on matrix metalloproteinases before, most of which focus on the two best studied matrix metalloproteinases, the gelatinases MMP-2 and MMP-9, and their role in one or two diseases. In this review, we provide a broad overview of the role various matrix metalloproteinases play in brain disorders. We summarize and review current knowledge and understanding of matrix metalloproteinases in the brain and at the blood–brain barrier in neuroinflammation, multiple sclerosis, cerebral aneurysms, stroke, epilepsy, Alzheimer’s disease, Parkinson’s disease, and brain cancer. We discuss the detrimental effects matrix metalloproteinases can have in these conditions, contributing to blood–brain barrier leakage, neuroinflammation, neurotoxicity, demyelination, tumor angiogenesis, and cancer metastasis. We also discuss the beneficial role matrix metalloproteinases can play in neuroprotection and anti-inflammation. Finally, we address matrix metalloproteinases as potential therapeutic targets. Together, in this comprehensive review, we summarize current understanding and knowledge of matrix metalloproteinases in the brain and at the blood–brain barrier in brain disorders. PMID:27323783

  3. Cell Death Control by Matrix Metalloproteinases.

    PubMed

    Zimmermann, Dirk; Gomez-Barrera, Juan A; Pasule, Christian; Brack-Frick, Ursula B; Sieferer, Elke; Nicholson, Tim M; Pfannstiel, Jens; Stintzi, Annick; Schaller, Andreas

    2016-06-01

    In contrast to mammalian matrix metalloproteinases (MMPs) that play important roles in the remodeling of the extracellular matrix in animals, the proteases responsible for dynamic modifications of the plant cell wall are largely unknown. A possible involvement of MMPs was addressed by cloning and functional characterization of Sl2-MMP and Sl3-MMP from tomato (Solanum lycopersicum). The two tomato MMPs were found to resemble mammalian homologs with respect to gelatinolytic activity, substrate preference for hydrophobic amino acids on both sides of the scissile bond, and catalytic properties. In transgenic tomato seedlings silenced for Sl2/3-MMP expression, necrotic lesions were observed at the base of the hypocotyl. Cell death initiated in the epidermis and proceeded to include outer cortical cell layers. In later developmental stages, necrosis spread, covering the entire stem and extending into the leaves of MMP-silenced plants. The subtilisin-like protease P69B was identified as a substrate of Sl2- and Sl3-MMP. P69B was shown to colocalize with Sl-MMPs in the apoplast of the tomato hypocotyl, it exhibited increased stability in transgenic plants silenced for Sl-MMP activity, and it was cleaved and inactivated by Sl-MMPs in vitro. The induction of cell death in Sl2/3-MMP-silenced plants depended on P69B, indicating that Sl2- and Sl3-MMP act upstream of P69B in an extracellular proteolytic cascade that contributes to the regulation of cell death in tomato. © 2016 American Society of Plant Biologists. All Rights Reserved.

  4. Erythropoietin attenuates intracerebral hemorrhage by diminishing matrix metalloproteinases and maintaining blood-brain barrier integrity in mice.

    PubMed

    Li, Y; Ogle, M E; Wallace, G C; Lu, Z Y; Yu, S P; Wei, L

    2008-01-01

    The protective mechanism of recombinant human erythropoietin (rhEPO) on blood-brain barrier (BBB) after brain injury is associated with the attenuation of neuro-inflammation. We hypothesize that rhEPO treatment after intracerebral hemorrhage (ICH) modulates matrix metalloproteinase (MMP) activity, maintains BBB integrity, and reduces BBB breakdown-associated inflammation. Adult male 129S2/sv mice were subjected to autologous whole blood-induced ICH. rhEPO or saline was administered intraperitoneally immediately after surgery and for 3 more days until day of sacrifice. BBB permeability was measured by Evans blue leakage, and edema was assessed by brain water content. Immunofluorescence and Western blotting were performed to detect expression of tight junction marker occludin, type IV collagen, MMPs, tissue inhibitor of metalloproteinase (TIMP), and glial fibrillary acidic protein, rhEPO prevented Evans blue leakage, reduced brain edema, and preserved expression of occludin and collagen IV. rhEPO treatment decreased MMP-2 expression, increased TIMP-2 expression, and reduced the number of reactive astrocytes in the brain compared to saline control. We conclude that rhEPO reduces MMP activity, BBB disruption, and the glial cell inflammatory reaction 3 days after ICH. Our study provides additional evidence for the mechanism of rhEPO's neurovascular protective effects and a potential clinical application in the treatment of ICH.

  5. Roles of the Cyclooxygenase 2 Matrix Metalloproteinase 1 Pathway in Brain Metastasis of Breast Cancer*

    PubMed Central

    Wu, Kerui; Fukuda, Koji; Xing, Fei; Zhang, Yingyu; Sharma, Sambad; Liu, Yin; Chan, Michael D.; Zhou, Xiaobo; Qasem, Shadi A.; Pochampally, Radhika; Mo, Yin-Yuan; Watabe, Kounosuke

    2015-01-01

    Brain is one of the major sites of metastasis in breast cancer; however, the pathological mechanism of brain metastasis is poorly understood. One of the critical rate-limiting steps of brain metastasis is the breaching of blood-brain barrier, which acts as a selective interface between the circulation and the central nervous system, and this process is considered to involve tumor-secreted proteinases. We analyzed clinical significance of 21 matrix metalloproteinases on brain metastasis-free survival of breast cancer followed by verification in brain metastatic cell lines and found that only matrix metalloproteinase 1 (MMP1) is significantly correlated with brain metastasis. We have shown that MMP1 is highly expressed in brain metastatic cells and is capable of degrading Claudin and Occludin but not Zo-1, which are key components of blood-brain barrier. Knockdown of MMP1 in brain metastatic cells significantly suppressed their ability of brain metastasis in vivo, whereas ectopic expression of MMP1 significantly increased the brain metastatic ability of the cells that are not brain metastatic. We also found that COX2 was highly up-regulated in brain metastatic cells and that COX2-induced prostaglandins were directly able to promote the expression of MMP1 followed by augmenting brain metastasis. Furthermore, we found that COX2 and prostaglandin were able to activate astrocytes to release chemokine (C-C motif) ligand 7 (CCL7), which in turn promoted self-renewal of tumor-initiating cells in the brain and that knockdown of COX2 significantly reduced the brain metastatic ability of tumor cells. Our results suggest the COX2-MMP1/CCL7 axis as a novel therapeutic target for brain metastasis. PMID:25691572

  6. Roles of the cyclooxygenase 2 matrix metalloproteinase 1 pathway in brain metastasis of breast cancer.

    PubMed

    Wu, Kerui; Fukuda, Koji; Xing, Fei; Zhang, Yingyu; Sharma, Sambad; Liu, Yin; Chan, Michael D; Zhou, Xiaobo; Qasem, Shadi A; Pochampally, Radhika; Mo, Yin-Yuan; Watabe, Kounosuke

    2015-04-10

    Brain is one of the major sites of metastasis in breast cancer; however, the pathological mechanism of brain metastasis is poorly understood. One of the critical rate-limiting steps of brain metastasis is the breaching of blood-brain barrier, which acts as a selective interface between the circulation and the central nervous system, and this process is considered to involve tumor-secreted proteinases. We analyzed clinical significance of 21 matrix metalloproteinases on brain metastasis-free survival of breast cancer followed by verification in brain metastatic cell lines and found that only matrix metalloproteinase 1 (MMP1) is significantly correlated with brain metastasis. We have shown that MMP1 is highly expressed in brain metastatic cells and is capable of degrading Claudin and Occludin but not Zo-1, which are key components of blood-brain barrier. Knockdown of MMP1 in brain metastatic cells significantly suppressed their ability of brain metastasis in vivo, whereas ectopic expression of MMP1 significantly increased the brain metastatic ability of the cells that are not brain metastatic. We also found that COX2 was highly up-regulated in brain metastatic cells and that COX2-induced prostaglandins were directly able to promote the expression of MMP1 followed by augmenting brain metastasis. Furthermore, we found that COX2 and prostaglandin were able to activate astrocytes to release chemokine (C-C motif) ligand 7 (CCL7), which in turn promoted self-renewal of tumor-initiating cells in the brain and that knockdown of COX2 significantly reduced the brain metastatic ability of tumor cells. Our results suggest the COX2-MMP1/CCL7 axis as a novel therapeutic target for brain metastasis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Early upregulation of matrix metalloproteinases following reperfusion triggers neuroinflammatory mediators in brain ischemia in rat.

    PubMed

    Amantea, Diana; Russo, Rossella; Gliozzi, Micaela; Fratto, Vincenza; Berliocchi, Laura; Bagetta, G; Bernardi, G; Corasaniti, M Tiziana

    2007-01-01

    Abnormal expression of matrix metalloproteinases (MMPs) has been implicated in the pathophysiology of neuroinflammatory processes that accompany most central nervous system disease. In particular, early upregulation of the gelatinases MMP-2 and MMP-9 has been shown to contribute to disruption of the blood-brain barrier and to death of neurons in ischemic stroke. In situ zymography reveals a significant increase in gelatinolytic MMPs activity in the ischemic brain hemisphere after 2-h middle cerebral artery occlusion (MCAo) followed by 2-h reperfusion in rat. Accordingly, gel zymography demonstrates that expression and activity of MMP-2 and MMP-9 are enhanced in cortex and striatum ipsilateral to the ischemic insult. The latter effect appears to be instrumental for development of delayed brain damage since administration of a broad spectrum, highly specific MMPs inhibitor, GM6001, but not by its negative control, results in a significant (50%) reduction in ischemic brain volume. Increased gelatinase activity in the ischemic cortex coincides with elevation (166% vs sham) of mature interleukin-1beta (IL-1beta) after 2-h reperfusion and this does not appear to implicate a caspase-1-dependent processing of pro(31kDa)-IL-1beta to yield mature (17kDa) IL-1beta. More importantly, when administered at a neuroprotective dose GM6001 abolishes the early IL-1beta increase in the ischemic cortex and reduces the cleavage of the cytokine proform supporting the deduction that MMPs may initiate IL-1beta processing. In conclusion, development of tissue damage that follows transient ischemia implicates a crucial interplay between MMPs and mediators of neuroinflammation (e.g., IL-1beta), and this further underscores the therapeutic potential of MMPs inhibitors in the treatment of stroke.

  8. Melatonin Preserves Blood-Brain Barrier Integrity and Permeability via Matrix Metalloproteinase-9 Inhibition

    PubMed Central

    Alluri, Himakarnika; Wilson, Rickesha L.; Anasooya Shaji, Chinchusha; Wiggins-Dohlvik, Katie; Patel, Savan; Liu, Yang; Peng, Xu; Beeram, Madhava R.; Davis, Matthew L.; Huang, Jason H.; Tharakan, Binu

    2016-01-01

    Microvascular hyperpermeability that occurs at the level of the blood-brain barrier (BBB) often leads to vasogenic brain edema and elevated intracranial pressure following traumatic brain injury (TBI). At a cellular level, tight junction proteins (TJPs) between neighboring endothelial cells maintain the integrity of the BBB via TJ associated proteins particularly, zonula occludens-1 (ZO-1) that binds to the transmembrane TJPs and actin cytoskeleton intracellularly. The pro-inflammatory cytokine, interleukin-1β (IL-1β) as well as the proteolytic enzymes, matrix metalloproteinase-9 (MMP-9) are key mediators of trauma-associated brain edema. Recent studies indicate that melatonin a pineal hormone directly binds to MMP-9 and also might act as its endogenous inhibitor. We hypothesized that melatonin treatment will provide protection against TBI-induced BBB hyperpermeability via MMP-9 inhibition. Rat brain microvascular endothelial cells grown as monolayers were used as an in vitro model of the BBB and a mouse model of TBI using a controlled cortical impactor was used for all in vivo studies. IL-1β (10 ng/mL; 2 hours)-induced endothelial monolayer hyperpermeability was significantly attenuated by melatonin (10 μg/mL; 1 hour), GM6001 (broad spectrum MMP inhibitor; 10 μM; 1 hour), MMP-9 inhibitor-1 (MMP-9 specific inhibitor; 5 nM; 1 hour) or MMP-9 siRNA transfection (48 hours) in vitro. Melatonin and MMP-9 inhibitor-1 pretreatment attenuated IL-1β-induced MMP-9 activity, loss of ZO-1 junctional integrity and f-actin stress fiber formation. IL-1β treatment neither affected ZO-1 protein or mRNA expression or cell viability. Acute melatonin treatment attenuated BBB hyperpermeability in a mouse controlled cortical impact model of TBI in vivo. In conclusion, one of the protective effects of melatonin against BBB hyperpermeability occurs due to enhanced BBB integrity via MMP-9 inhibition. In addition, acute melatonin treatment provides protection against BBB

  9. Matrix Metalloproteinase Expression in Contusional Traumatic Brain Injury: A Paired Microdialysis Study.

    PubMed

    Guilfoyle, Mathew R; Carpenter, Keri L H; Helmy, Adel; Pickard, John D; Menon, David K; Hutchinson, Peter J A

    2015-10-15

    Matrix metalloproteinases (MMPs) are extracellular enzymes that have been implicated in the pathophysiology of blood-brain barrier (BBB) breakdown, contusion expansion, and vasogenic edema after traumatic brain injury (TBI). Specifically, in focal injury models, increased MMP-9 expression has been observed in pericontusional brain, and MMP-9 inhibitors reduce brain swelling and final lesion volume. The aim of this study was to examine whether there is a similarly localized increase of MMP concentrations in patients with contusional TBI. Paired microdialysis catheters were inserted into 12 patients with contusional TBI (with or without associated mass lesion) targeting pericontusional and radiologically normal brain defined on admission computed tomography scan. Microdialysate was pooled every 8 h and analyzed for MMP-1, -2, -7, -9, and -10 using a multiplex immunoassay. Concentrations of MMP-1, -2, and -10 were similar at both monitoring sites and did not show discernible temporal trends. Overall, there was a gradual increase in MMP-7 concentrations in both normal and injured brain over the monitoring period, although this was not consistent in every patient. MMP-9 concentrations were elevated in pericontusional, compared to normal, brain, with the maximal difference at the earliest monitoring times (i.e., <24 h postinjury). Repeated-measures analysis of variance showed that MMP-9 concentrations were significantly higher in pericontusional brain (p=0.03) and within the first 72 h of injury, compared with later in the monitoring period (p=0.04). No significant differences were found for the other MMPs assayed. MMP-9 concentrations are increased in pericontusional brain early post-TBI and may represent a potential therapeutic target to reduce hemorrhagic progression and vasogenic edema.

  10. Selective inhibition of matrix metalloproteinase-9 attenuates secondary damage resulting from severe traumatic brain injury.

    PubMed

    Hadass, Orr; Tomlinson, Brittany N; Gooyit, Major; Chen, Shanyan; Purdy, Justin J; Walker, Jennifer M; Zhang, Chunyang; Giritharan, Andrew B; Purnell, Whitley; Robinson, Christopher R; Shin, Dmitriy; Schroeder, Valerie A; Suckow, Mark A; Simonyi, Agnes; Sun, Grace Y; Mobashery, Shahriar; Cui, Jiankun; Chang, Mayland; Gu, Zezong

    2013-01-01

    Traumatic brain injury (TBI) is a leading cause of death and long-term disability. Following the initial insult, severe TBI progresses to a secondary injury phase associated with biochemical and cellular changes. The secondary injury is thought to be responsible for the development of many of the neurological deficits observed after TBI and also provides a window of opportunity for therapeutic intervention. Matrix metalloproteinase-9 (MMP-9 or gelatinase B) expression is elevated in neurological diseases and its activation is an important factor in detrimental outcomes including excitotoxicity, mitochondrial dysfunction and apoptosis, and increases in inflammatory responses and astrogliosis. In this study, we used an experimental mouse model of TBI to examine the role of MMP-9 and the therapeutic potential of SB-3CT, a mechanism-based gelatinase selective inhibitor, in ameliorating the secondary injury. We observed that activation of MMP-9 occurred within one day following TBI, and remained elevated for 7 days after the initial insult. SB-3CT effectively attenuated MMP-9 activity, reduced brain lesion volumes and prevented neuronal loss and dendritic degeneration. Pharmacokinetic studies revealed that SB-3CT and its active metabolite, p-OH SB-3CT, were rapidly absorbed and distributed to the brain. Moreover, SB-3CT treatment mitigated microglial activation and astrogliosis after TBI. Importantly, SB-3CT treatment improved long-term neurobehavioral outcomes, including sensorimotor function, and hippocampus-associated spatial learning and memory. These results demonstrate that MMP-9 is a key target for therapy to attenuate secondary injury cascades and that this class of mechanism-based gelatinase inhibitor-with such desirable pharmacokinetic properties-holds considerable promise as a potential pharmacological treatment of TBI.

  11. proMetalloproteinase-10 is associated with brain damage and clinical outcome in acute ischemic stroke.

    PubMed

    Rodríguez, J A; Sobrino, T; Orbe, J; Purroy, A; Martínez-Vila, E; Castillo, J; Páramo, J A

    2013-08-01

    Matrix metalloproteinases (MMPs) mediate tissue injury during stroke but also neurovascular remodeling and we have shown that MMP-10 is involved in atherothrombosis. The purpose of this study was to examine the relationship between proMMP-10 and clinical outcome, assessing inflammatory and proteolytic markers, in patients with acute ischemic stroke. We prospectively studied 76 patients with ischemic stroke treated with tPA within the first 3 h from symptom onset, compared with 202 non-tPA-treated ischemic stroke patients and 83 asymptomatic subjects. Stroke severity was assessed with the National Institutes of Health Stroke Scale (NIHSS). Hemorrhagic transformation (HT) and severe brain edema were diagnosed by cranial CT. Good functional outcome was defined as a modified Rankin scale score ≤ 2 at 90 days. Serum levels of MMP-9, proMMP-10, TIMP-1, tumor necrosis factor-α (TNFα), interleukin-6 and cellular fibronectin were measured at admission. The effect of TNFα on endothelial proMMP-10 was assessed in vitro. Serum proMMP-10 concentration in ischemic stroke patients, non-treated or treated with t-PA, which was higher than age-matched healthy subjects (P < 0.0001), was independently associated with higher infarct volume, severe brain edema, neurological deterioration and poor functional outcome at 3 months (all P < 0.05), but not with HT. proMMP-10 levels were also independently and positively associated with circulating levels of TNFα (P < 0.0001), which induced its endothelial expression in vitro, both mRNA and protein. MMP-9, however, was only associated with HT and severe edema (all P < 0.05). Increased serum proMMP-10 after acute ischemic stroke, associated with TNFα, is a new marker of brain damage and poor outcome. © 2013 International Society on Thrombosis and Haemostasis.

  12. Matrix Metalloproteinase-12 Induces Blood-Brain Barrier Damage After Focal Cerebral Ischemia.

    PubMed

    Chelluboina, Bharath; Klopfenstein, Jeffrey D; Pinson, David M; Wang, David Z; Vemuganti, Raghu; Veeravalli, Krishna Kumar

    2015-12-01

    Matrix metalloproteinases (MMPs) have a central role in compromising the integrity of the blood-brain barrier (BBB). The role of MMP-12 in brain damage after ischemic stroke remains unknown. The main objective of the current study is to investigate the effect of MMP-12 suppression at an early time point before reperfusion on the BBB damage in rats. Sprague-Dawley rats were subjected to middle cerebral artery occlusion and reperfusion. MMP-12 shRNA-expressing plasmids formulated as nanoparticles were administered at a dose of 1 mg/kg body weight. The involvement of MMP-12 on BBB damage was assessed by performing various techniques, including Evans blue dye extravasation, 2,3,5-triphenyltetrazolium chloride staining, immunoblot, gelatin zymography, and immunofluorescence analysis. MMP-12 is upregulated ≈31-, 47-, and 66-fold in rats subjected 1-, 2-, or 4-hour ischemia, respectively, followed by 1-day reperfusion. MMP-12 suppression protected the BBB integrity by inhibiting the degradation of tight-junction proteins. Either intravenous or intra-arterial delivery of MMP-12 shRNA-expressing plasmid significantly reduced the percent Evans blue dye extravasation and infarct size. Furthermore, MMP-12 suppression reduced the endogenous levels of other proteases, such as tissue-type plasminogen activator and MMP-9, which are also known to be the key players involved in BBB damage. These results demonstrate the adverse role of MMP-12 in acute brain damage that occurs after ischemic stroke and, thereby, suggesting that MMP-12 suppression could be a promising therapeutic target for cerebral ischemia. © 2015 American Heart Association, Inc.

  13. Differential regulation of matrix metalloproteinases in varicella zoster virus-infected human brain vascular adventitial fibroblasts.

    PubMed

    Nagel, Maria A; Choe, Alexander; Rempel, April; Wyborny, Ann; Stenmark, Kurt; Gilden, Don

    2015-11-15

    Upon reactivation, varicella zoster virus (VZV) spreads transaxonally, infects cerebral arteries and causes ischemic or hemorrhagic stroke, as well as aneurysms. The mechanism(s) of VZV-induced aneurysm formation is unknown. However, matrix metalloproteinases (MMPs), which digest extracellular structural proteins in the artery wall, play a role in cerebral and aortic artery aneurysm formation and rupture. Here, we examined the effect of VZV infection on expression of MMP-1, -2, -3, and -9 in primary human brain vascular adventitial fibroblasts (BRAFS). At 6 days post-infection, VZV- and mock-infected BRAFs were analyzed for mRNA levels of MMP-1, -2, -3 and -9 by RT-PCR and for corresponding total intra- and extracellular protein levels by multiplex ELISA. The activity of MMP-1 was also measured in a substrate cleavage assay. Compared to mock-infected BRAFs, MMP-1, MMP-3 and MMP-9 transcripts, cell lysate protein and conditioned supernatant protein were all increased in VZV-infected BRAFs, whereas MMP-2 transcripts, cell lysate protein and conditioned supernatant protein were decreased. MMP-1 from the conditioned supernatant of VZV-infected BRAFs showed increased cleavage activity on an MMP-1-specific substrate compared to mock-infected BRAFs. Differential regulation of MMPs in VZV-infected BRAFs may contribute to aneurysm formation in VZV vasculopathy. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Zinc-triggered induction of tissue plasminogen activator by brain-derived neurotrophic factor and metalloproteinases.

    PubMed

    Hwang, Ih-Yeon; Sun, Eun-Sun; An, Ji Hak; Im, Hana; Lee, Sun-Ho; Lee, Joo-Yong; Han, Pyung-Lim; Koh, Jae-Young; Kim, Yang-Hee

    2011-09-01

    Tissue plasminogen activator (tPA) is necessary for hippocampal long-term potentiation. Synaptically released zinc also contributes to long-term potentiation, especially in the hippocampal CA3 region. Using cortical cultures, we examined whether zinc increased the concentration and/or activity of tPA. Two hours after a 10-min exposure to 300 μM zinc, expression of tPA and its substrate, plasminogen, were significantly increased, as was the proteolytic activity of tPA. In contrast, increasing extracellular or intracellular calcium levels did not affect the expression or secretion of tPA. Changing zinc influx or chelating intracellular zinc also failed to alter tPA/plasminogen induction by zinc, indicating that zinc acts extracellularly. Zinc-mediated extracellular activation of matrix metalloproteinase (MMP) underlies the up-regulation of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase (Trk) signaling. Consistent with these findings, co-treatment with a neutralizing antibody against BDNF or specific inhibitors of MMPs or Trk largely reversed tPA/plasminogen induction by zinc. Treatment of cortical cultures with p-aminophenylmercuric acetate, an MMP activator, MMP-2, or BDNF alone induced tPA/plasminogen expression. BDNF mRNA and protein expression was also increased by zinc and mediated by MMPs. Thus, an extracellular zinc-dependent, MMP- and BDNF-mediated synaptic mechanism may regulate the levels and activity of tPA.

  15. Association between the cerebral inflammatory and matrix metalloproteinase responses after severe traumatic brain injury in humans.

    PubMed

    Roberts, Derek J; Jenne, Craig N; Léger, Caroline; Kramer, Andreas H; Gallagher, Clare N; Todd, Stephanie; Parney, Ian F; Doig, Christopher J; Yong, V Wee; Kubes, Paul; Zygun, David A

    2013-10-15

    An increasing number of preclinical investigations have suggested that the degree of expression of the matrix metalloproteinase (MMP) family of endopeptidases may explain some of the variability in neurological damage after traumatic brain injury (TBI). As cytokines are a prominent stimulus for MMP expression in animals, we conducted a prospective multimodal monitoring study and determined their association with temporal MMP expression after severe TBI in eight critically ill adults. High cutoff, cerebral microdialysis (n=8); external ventricular drainage (n=3); and arterial and jugular venous bulb catheters were used to measure the concentration of nine cytokines and eight MMPs in microdialysate, cerebrospinal fluid (CSF), and plasma over 6 days. Severe TBI was associated with a robust central inflammatory response, which was largely similar between microdialysate and CSF. At all time points after injury, this response was predominated by the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-8. Use of univariate generalized estimating equations suggested that the concentration of several MMPs varied with cytokine levels in microdialysate. The largest of these changes included increases in microdialysate concentrations of MMP-8 and MMP-9 with increases in the levels of IL-1α and -2 and IL-1α and -2 and TNF-α, respectively. In contrast, the microdialysate level of MMP-7 decreased with increases in microdialysate concentrations of IL-1β, -2, and -6. These findings support the observations of animal studies that cross-talk exists between the neuroinflammatory and MMP responses after acute brain injury. Further study is needed to determine whether this link between cerebral inflammation and MMP expression may have clinical relevance to the care of patients with TBI.

  16. Matrix Metalloproteinase Inhibition Lowers Mortality and Brain Injury in Experimental Pneumococcal Meningitis

    PubMed Central

    Liechti, Fabian D.; Grandgirard, Denis; Leppert, David

    2014-01-01

    Pneumococcal meningitis (PM) results in high mortality rates and long-lasting neurological deficits. Hippocampal apoptosis and cortical necrosis are histopathological correlates of neurofunctional sequelae in rodent models and are frequently observed in autopsy studies of patients who die of PM. In experimental PM, inhibition of matrix metalloproteinases (MMPs) and/or tumor necrosis factor (TNF)-converting enzyme (TACE) has been shown to reduce brain injury and the associated impairment of neurocognitive function. However, none of the compounds evaluated in these studies entered clinical development. Here, we evaluated two second-generation MMP and TACE inhibitors with higher selectivity and improved oral availability. Ro 32-3555 (Trocade, cipemastat) preferentially inhibits collagenases (MMP-1, -8, and -13) and gelatinase B (MMP-9), while Ro 32-7315 is an efficient inhibitor of TACE. PM was induced in infant rats by the intracisternal injection of live Streptococcus pneumoniae. Ro 32-3555 and Ro 32-7315 were injected intraperitoneally, starting at 3 h postinfection. Antibiotic (ceftriaxone) therapy was initiated at 18 h postinfection, and clinical parameters (weight, clinical score, mortality rate) were recorded. Myeloperoxidase activities, concentrations of cytokines and chemokines, concentrations of MMP-2 and MMP-9, and collagen concentrations were measured in the cerebrospinal fluid. Animals were sacrificed at 42 h postinfection, and their brains were assessed by histomorphometry for hippocampal apoptosis and cortical necrosis. Both compounds, while exhibiting disparate MMP and TACE inhibitory profiles, decreased hippocampal apoptosis and cortical injury. Ro 32-3555 reduced mortality rates and cerebrospinal fluid TNF, interleukin-1β (IL-1β) and collagen levels, while Ro 32-7315 reduced weight loss and cerebrospinal fluid TNF and IL-6 levels. PMID:24491581

  17. Cell Death Control by Matrix Metalloproteinases1[OPEN

    PubMed Central

    Zimmermann, Dirk; Sieferer, Elke; Pfannstiel, Jens

    2016-01-01

    In contrast to mammalian matrix metalloproteinases (MMPs) that play important roles in the remodeling of the extracellular matrix in animals, the proteases responsible for dynamic modifications of the plant cell wall are largely unknown. A possible involvement of MMPs was addressed by cloning and functional characterization of Sl2-MMP and Sl3-MMP from tomato (Solanum lycopersicum). The two tomato MMPs were found to resemble mammalian homologs with respect to gelatinolytic activity, substrate preference for hydrophobic amino acids on both sides of the scissile bond, and catalytic properties. In transgenic tomato seedlings silenced for Sl2/3-MMP expression, necrotic lesions were observed at the base of the hypocotyl. Cell death initiated in the epidermis and proceeded to include outer cortical cell layers. In later developmental stages, necrosis spread, covering the entire stem and extending into the leaves of MMP-silenced plants. The subtilisin-like protease P69B was identified as a substrate of Sl2- and Sl3-MMP. P69B was shown to colocalize with Sl-MMPs in the apoplast of the tomato hypocotyl, it exhibited increased stability in transgenic plants silenced for Sl-MMP activity, and it was cleaved and inactivated by Sl-MMPs in vitro. The induction of cell death in Sl2/3-MMP-silenced plants depended on P69B, indicating that Sl2- and Sl3-MMP act upstream of P69B in an extracellular proteolytic cascade that contributes to the regulation of cell death in tomato. PMID:27208293

  18. Altered expression of tight junction proteins and matrix metalloproteinases in thiamine-deficient mouse brain.

    PubMed

    Beauchesne, Elizabeth; Desjardins, Paul; Hazell, Alan S; Butterworth, Roger F

    2009-09-01

    Wernicke's encephalopathy (WE) in humans is a metabolic disorder caused by thiamine deficiency (TD). In both humans and experimental animals, TD leads to selective neuronal cell death in diencephalic and brainstem structures. Neuropathologic features of WE include petechial hemorrhagic lesions, and blood-brain barrier (BBB) breakdown has been suggested to play an important role in the pathogenesis of TD. The goal of the present study was to examine expression of the tight junction (TJ) protein occludin, its associated scaffolding proteins zona occludens (ZO-1 and ZO-2), and to measure matrix metalloproteinase (MMP) levels as a function of regional BBB permeability changes in thiamine-deficient mice. TD was induced in 12-week-old male C57Bl/6 mice by feeding a thiamine-deficient diet and administration of the central thiamine antagonist pyrithiamine. BBB permeability was measured by IgG extravasation; expression of occludin, ZO-1 and ZO-2 was measured by Western blot analysis and RT-PCR, structural integrity of the BBB was assessed using occludin and ZO-1 immunostaining, and MMPs levels were measured by gelatin zymography and immunohistochemistry. Studies were performed in vulnerable (medial thalamus) versus spared (frontal cortex) regions of the brain. Hemorrhagic lesions, selective increases in brain IgG extravasation, a concomitant loss in protein expression of occludin, ZO-1 and ZO-2, as well as decreased and disrupted patterns of occludin and ZO-1 immunostaining were observed in the medial thalamus of thiamine-deficient mice. MMP-9 levels were also selectively increased in the medial thalamus of these animals, and were found to be localized in the vascular endothelium, as well as in cells with an apparent polymorphonuclear morphology. No changes of TJ gene expression were observed. These results indicate that alterations in TJ proteins occur in TD, and offer a plausible explanation for the selective increase in BBB permeability in thiamine-deficient animals

  19. Gelatinolytic activity of matrix metalloproteinase-2 and matrix metalloproteinase-9 in rat brain after implantation of 9L rat glioma cells.

    PubMed

    Zhao, J X; Yang, L P; Wang, Y F; Qin, L P; Liu, D Q; Bai, C X; Nan, X; Shi, S S; Pei, X J

    2007-05-01

    The matrix metalloproteinases (MMPs) have come to be highlighted by their close relation to the cell invasion of gliomas. The inhibitors of MMPs have undergone extensive development because of its effectiveness against tumor invasion and angiogenesis. Therefore, a suitable animal model is necessary for searching new MMPs inhibitors against gliomas. In this study, we established an experimental model by implanting 9L glioma cells stereotactically into Fisher344 (F344) rat's brain, and the expression and enzymatic activity of MMP-2 and MMP-9 in 9L glioma cells and in tumor tissue was determined by means of reverse transcription polymerase chain reaction (RT-PCR), sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) zymography, in situ film zymography and immunostaining. The results of RT-PCR showed that the mRNA level of MMP-2 in 9L glioma cells was higher than that of MMP-9, and the mRNA expression of MMP-9 was increased along with the growth of malignant gliomas. SDS-PAGE zymography revealed that the expression of MMP-2 and MMP-9 were significantly increased in tumor tissues, and the MMP-9 wasn't detected in normal tissue. The positive stain of MMP-2 and MMP-9 was enhanced with the growth of malignant gliomas, especially for MMP-9. The expression of active gelatinase was found in tumor tissue. In conclusion, the expression of active MMP-2 and MMP-9 was increased in 9L/F344 rat brain during the growth of malignant gliomas at different time intervals, which indicate that 9L/F344 animal model may be a prospective animal model to test new MMPs inhibitors.

  20. Metallothinein 1E Enhances Glioma Invasion through Modulation Matrix Metalloproteinases-2 and 9 in U87MG Mouse Brain Tumor Model

    PubMed Central

    Hur, Hyuk; Ryu, Hyang-Hwa; Li, Chun-Hao; Kim, In Young; Jang, Woo-Youl

    2016-01-01

    Malignant glioma cells invading surrounding normal brain are inoperable and resistant to radio- and chemotherapy, and eventually lead to tumor regrowth. Identification of genes related to motility is important for understanding the molecular biological behavior of invasive gliomas. According to our previous studies, Metallothionein 1E (MT1E) was identified to enhance migration of human malignant glioma cells. The purpose of this study was to confirm that MT1E could modulate glioma invasion in vivo. Firstly we established 2 cell lines; MTS23, overexpressed by MT1E complementary DNA construct and pV12 as control. The expression of matrix metalloproteinases (MMP)-2, -9 and a disintegrin and metalloproteinase 17 were increased in MTS23 compared with pV12. Furthermore it was confirmed that MT1E could modulate MMPs secretion and translocation of NFkB p50 and B-cell lymphoma-3 through small interfering ribonucleic acid knocked U87MG cells. Then MTS23 and pV12 were injected into intracranial region of 5 week old male nude mouse. After 4 weeks, for brain tissues of these two groups, histological analysis, and immunohistochemical stain of MMP-2, 9 and Nestin were performed. As results, the group injected with MTS23 showed irregular margin and tumor cells infiltrating the surrounding normal brain, while that of pV12 (control) had round and clear margin. And regrowth of tumor cells in MTS23 group was observed in another site apart from tumor cell inoculation. MT1E could enhance tumor proliferation and invasion of malignant glioma through regulation of activation and expression of MMPs. PMID:27847566

  1. Brain controlled robots

    PubMed Central

    Kawato, Mitsuo

    2008-01-01

    In January 2008, Duke University and the Japan Science and Technology Agency (JST) publicized their successful control of a brain-machine interface for a humanoid robot by a monkey brain across the Pacific Ocean. The activities of a few hundred neurons were recorded from a monkey’s motor cortex in Miguel Nicolelis’s lab at Duke University, and the kinematic features of monkey locomotion on a treadmill were decoded from neural firing rates in real time. The decoded information was sent to a humanoid robot, CB-i, in ATR Computational Neuroscience Laboratories located in Kyoto, Japan. This robot was developed by the JST International Collaborative Research Project (ICORP) as the “Computational Brain Project.” CB-i’s locomotion-like movement was video-recorded and projected on a screen in front of the monkey. Although the bidirectional communication used a conventional Internet connection, its delay was suppressed below one over several seconds, partly due to a video-streaming technique, and this encouraged the monkey’s voluntary locomotion and influenced its brain activity. This commentary introduces the background and future directions of the brain-controlled robot. PMID:19404467

  2. Brain controlled robots.

    PubMed

    Kawato, Mitsuo

    2008-06-01

    In January 2008, Duke University and the Japan Science and Technology Agency (JST) publicized their successful control of a brain-machine interface for a humanoid robot by a monkey brain across the Pacific Ocean. The activities of a few hundred neurons were recorded from a monkey's motor cortex in Miguel Nicolelis's lab at Duke University, and the kinematic features of monkey locomotion on a treadmill were decoded from neural firing rates in real time. The decoded information was sent to a humanoid robot, CB-i, in ATR Computational Neuroscience Laboratories located in Kyoto, Japan. This robot was developed by the JST International Collaborative Research Project (ICORP) as the "Computational Brain Project." CB-i's locomotion-like movement was video-recorded and projected on a screen in front of the monkey. Although the bidirectional communication used a conventional Internet connection, its delay was suppressed below one over several seconds, partly due to a video-streaming technique, and this encouraged the monkey's voluntary locomotion and influenced its brain activity. This commentary introduces the background and future directions of the brain-controlled robot.

  3. Dendritic Cell Transmigration through Brain Microvessel Endothelium Is Regulated by MIP-1α Chemokine and Matrix Metalloproteinases1

    PubMed Central

    Zozulya, Alla L.; Reinke, Emily; Baiu, Dana C.; Karman, Jozsef; Sandor, Matyas; Fabry, Zsuzsanna

    2007-01-01

    Dendritic cells (DCs) accumulate in the CNS during inflammatory diseases, but the exact mechanism regulating their traffic into the CNS remains to be defined. We now report that MIP-1α increases the transmigration of bone marrow-derived, GFP-labeled DCs across brain microvessel endothelial cell monolayers. Furthermore, occludin, an important element of endothelial tight junctions, is reorganized when DCs migrate across brain capillary endothelial cell monolayers without causing significant changes in the barrier integrity as measured by transendothelial electrical resistance. We show that DCs produce matrix metalloproteinases (MMP) -2 and -9 and GM6001, an MMP inhibitor, decreases both baseline and MIP-1α -induced DC transmigration. These observations suggest that DC transmigration across brain endothelial cell monolayers is partly MMP dependent. The migrated DCs express higher levels of CD40, CD80, and CD86 costimulatory molecules and induce T cell proliferation, indicating that the transmigration of DCs across brain endothelial cell monolayers contributes to the maintenance of DC Ag-presenting function. The MMP dependence of DC migration across brain endothelial cell monolayers raises the possibility that MMP blockers may decrease the initiation of T cell recruitment and neuroinflammation in the CNS. PMID:17182592

  4. Huoxue Rongluo Tablet reduces matrix metalloproteinase-9 expression in infarcted brain tissue.

    PubMed

    Zhou, Desheng; Li, Mei; Hu, Hua; Chen, Yao; Yang, Yang; Zhong, Jie; Liu, Lijuan

    2013-12-05

    Huoxue Rongluo Tablet was made of tall gastrodis tuber, dahurian angelica root, honeysuckle stem, grassleaf sweetflag rhizome, common flowering quince fruit, figwort root, red peony root and peach seed at a ratio of 3:2:6:2:3:3:3:3. Huoxue Rongluo Tablet is a well-established and common pre-scription for the treatment of cerebral infarction. In this study, a rat model of cerebral ischemia was established and the animals were intragastrically administered Huoxue Rongluo Tablet. This treat-ment reduced infarct volume, decreased matrix metalloproteinase-9 expression, and improved neurological function. Moreover, the effects of Huoxue Rongluo Tablet were better than those of buflomedil pyridoxal phosphate. These results indicate that Huoxue Rongluo Tablet is effective in treating cerebral infarction by regulating matrix metalloproteinase-9 protein expression.

  5. Huoxue Rongluo Tablet reduces matrix metalloproteinase-9 expression in infarcted brain tissue

    PubMed Central

    Zhou, Desheng; Li, Mei; Hu, Hua; Chen, Yao; Yang, Yang; Zhong, Jie; Liu, Lijuan

    2013-01-01

    Huoxue Rongluo Tablet was made of tall gastrodis tuber, dahurian angelica root, honeysuckle stem, grassleaf sweetflag rhizome, common flowering quince fruit, figwort root, red peony root and peach seed at a ratio of 3:2:6:2:3:3:3:3. Huoxue Rongluo Tablet is a well-established and common pre-scription for the treatment of cerebral infarction. In this study, a rat model of cerebral ischemia was established and the animals were intragastrically administered Huoxue Rongluo Tablet. This treat-ment reduced infarct volume, decreased matrix metalloproteinase-9 expression, and improved neurological function. Moreover, the effects of Huoxue Rongluo Tablet were better than those of buflomedil pyridoxal phosphate. These results indicate that Huoxue Rongluo Tablet is effective in treating cerebral infarction by regulating matrix metalloproteinase-9 protein expression. PMID:25206642

  6. Prognostic impact of polymorphism of matrix metalloproteinase-2 and metalloproteinase tissue inhibitor-2 promoters in breast cancer in Tunisia: case-control study.

    PubMed

    Ben Néjima, Dalel; Ben Zarkouna, Yosr; Gammoudi, Amor; Manai, Mohamed; Boussen, Hamouda

    2015-05-01

    Matrix metalloproteinases (MMPs) are proteolytic enzymes that play important roles in tumor invasion and metastasis by degrading extracellular matrix components. Genetic variations in promoter regions of MMP genes, affecting their expression, have been associated with susceptibility to cancers. The aim of this study was to investigate the susceptibility and prognostic implications of the matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-2 (TIMP-2) polymorphism in Tunisian breast cancer patients. MMP-2 genotypes were determined by real-time polymerase chain reaction (RT-PCR), and TIMP-2 genotypes were identified using a PCR-restriction fragment length polymorphism (RFLP) method in 210 breast cancer patients and 250 frequency-matched control women. Association of the clinicopathological parameters and the genetic markers with risk of breast cancer was assessed using univariate analyses. We found that the variant MMP-2 genotype (-1306CT or TT) was associated with substantially reduced risk of breast cancer [odds ratio (OR), 0.49; 95 % confidence interval (95 % CI), 0.033-0.73], compared with the CC genotype. For TIMP-2, a moderately reduced risk of the cancer (OR, 0.57; 95 % CI, 0.37-0.87) was also associated with the variant allele (-418GC or CC), compared with the GG common allele. Furthermore, polymorphisms in both genes seem to have additive effects and the highest risk for breast cancer has been observed in those with MMP-2 CC genotype and TIMP-2 GC or CC genotype (p = 0.006). A significant association was also found between the CC genotype and the aggressive forms of breast cancer as defined by advanced stages at the time of diagnosis and metastasis. This is the first report on the association of MMP-2 and TIMP-2 gene polymorphisms in breast cancer in Tunisian population. Our results suggest that the presence of the variant allele in the promoter of MMP-2 or TIMP-2 may be a protective factor for the development of breast cancer.

  7. Host matrix metalloproteinases in cerebral malaria: new kids on the block against blood–brain barrier integrity?

    PubMed Central

    2014-01-01

    Cerebral malaria (CM) is a life-threatening complication of falciparum malaria, associated with high mortality rates, as well as neurological impairment in surviving patients. Despite disease severity, the etiology of CM remains elusive. Interestingly, although the Plasmodium parasite is sequestered in cerebral microvessels, it does not enter the brain parenchyma: so how does Plasmodium induce neuronal dysfunction? Several independent research groups have suggested a mechanism in which increased blood–brain barrier (BBB) permeability might allow toxic molecules from the parasite or the host to enter the brain. However, the reported severity of BBB damage in CM is variable depending on the model system, ranging from mild impairment to full BBB breakdown. Moreover, the factors responsible for increased BBB permeability are still unknown. Here we review the prevailing theories on CM pathophysiology and discuss new evidence from animal and human CM models implicating BBB damage. Finally, we will review the newly-described role of matrix metalloproteinases (MMPs) and BBB integrity. MMPs comprise a family of proteolytic enzymes involved in modulating inflammatory response, disrupting tight junctions, and degrading sub-endothelial basal lamina. As such, MMPs represent potential innovative drug targets for CM. PMID:24467887

  8. Optimal level activity of matrix metalloproteinases is critical for adult visual plasticity in the healthy and stroke-affected brain

    PubMed Central

    Pielecka-Fortuna, Justyna; Kalogeraki, Evgenia; Fortuna, Michal G; Löwel, Siegrid

    2015-01-01

    The ability of the adult brain to undergo plastic changes is of particular interest in medicine, especially regarding recovery from injuries or improving learning and cognition. Matrix metalloproteinases (MMPs) have been associated with juvenile experience-dependent primary visual cortex (V1) plasticity, yet little is known about their role in this process in the adult V1. Activation of MMPs is a crucial step facilitating structural changes in a healthy brain; however, upon brain injury, upregulated MMPs promote the spread of a lesion and impair recovery. To clarify these seemingly opposing outcomes of MMP-activation, we examined the effects of MMP-inhibition on experience-induced plasticity in healthy and stoke-affected adult mice. In healthy animals, 7-day application of MMP-inhibitor prevented visual plasticity. Additionally, treatment with MMP-inhibitor once but not twice following stroke rescued plasticity, normally lost under these conditions. Our data imply that an optimal level of MMP-activity is crucial for adult visual plasticity to occur. DOI: http://dx.doi.org/10.7554/eLife.11290.001 PMID:26609811

  9. Optimal level activity of matrix metalloproteinases is critical for adult visual plasticity in the healthy and stroke-affected brain.

    PubMed

    Pielecka-Fortuna, Justyna; Kalogeraki, Evgenia; Fortuna, Michal G; Löwel, Siegrid

    2015-11-26

    The ability of the adult brain to undergo plastic changes is of particular interest in medicine, especially regarding recovery from injuries or improving learning and cognition. Matrix metalloproteinases (MMPs) have been associated with juvenile experience-dependent primary visual cortex (V1) plasticity, yet little is known about their role in this process in the adult V1. Activation of MMPs is a crucial step facilitating structural changes in a healthy brain; however, upon brain injury, upregulated MMPs promote the spread of a lesion and impair recovery. To clarify these seemingly opposing outcomes of MMP-activation, we examined the effects of MMP-inhibition on experience-induced plasticity in healthy and stoke-affected adult mice. In healthy animals, 7-day application of MMP-inhibitor prevented visual plasticity. Additionally, treatment with MMP-inhibitor once but not twice following stroke rescued plasticity, normally lost under these conditions. Our data imply that an optimal level of MMP-activity is crucial for adult visual plasticity to occur.

  10. Membrane-type 1 metalloproteinase is upregulated in microglia/brain macrophages in neurodegenerative and neuroinflammatory diseases.

    PubMed

    Langenfurth, Anika; Rinnenthal, Jan Leo; Vinnakota, Katyayni; Prinz, Vincent; Carlo, Anne-Sophie; Stadelmann, Christine; Siffrin, Volker; Peaschke, Susann; Endres, Matthias; Heppner, Frank; Glass, Rainer; Wolf, Susanne A; Kettenmann, Helmut

    2014-03-01

    We previously reported that glioma cells induce the expression of membrane-type 1 metalloproteinase (MT1-MMP or MMP-14) in tumor-associated microglia/macrophages and promote tumor growth, whereas MMP-14 expression in microglia under physiological conditions is very low. Here, we show that the increase in MMP-14 expression is also found in microglia/macrophages associated with neurodegenerative and neuroinflammatory pathologies in mouse models as well as in human biopsies or post-mortem tissue. We found that microglial/macrophage MMP-14 expression was upregulated in Alzheimer's disease tissue, in active lesions of multiple sclerosis, and in tissue from stage II stroke as well as in the corresponding mouse models for the human diseases. In contrast, we observed no upregulation for MMP-14 in microglia/macrophages in the early phase of stroke or in the corresponding mouse model, in human amyotrophic lateral sclerosis (ALS) tissue or in a mouse model of ALS as well as in human cases of acute brain trauma. These data indicate that MMP-14 expression is not a general marker for activated microglia/macrophages but is upregulated in defined stages of neuroinflammatory and neurodegenerative diseases and that there is generally a good match between mouse models and human brain pathologies. Copyright © 2013 Wiley Periodicals, Inc.

  11. Interlukin-18 Is a Pivot Regulatory Factor on Matrix Metalloproteinase-13 Expression and Brain Astrocytic Migration.

    PubMed

    Chen, Jia-Hong; Tsai, Chon-Haw; Lin, Hsiao-Yun; Huang, Chien-Fang; Leung, Yuk-Man; Lai, Sheng-Wei; Tsai, Cheng-Fang; Chang, Pei-Chun; Lu, Dah-Yuu; Lin, Chingju

    2016-11-01

    The expression of matrix metalloproteinase-13 (MMP-13) has been shown to be elevated in some pathophysiological conditions and is involved in the degradation of extracellular matrix in astrocytes. In current study, the function of MMP-13 was further investigated. The conditioned medium (CM) collected from activated microglia increased interleukin (IL)-18 production and enhanced MMP-13 expression in astrocytes. Furthermore, treatment with recombinant IL-18 increased MMP-13 protein and mRNA levels in astrocytes. Recombinant IL-18 stimulation also increased the enzymatic activity of MMP-13 and the migratory activity of astrocytes, while administration of MMP-13 or pan-MMP inhibitors antagonized IL-18-induced migratory activity of astrocytes. In addition, administration of recombinant IL-18 to astrocytes led to the phosphorylation of JNK, Akt, or PKCδ, and treatment of astrocytes with JNK, PI3 kinase/Akt, or PKCδ inhibitors significantly decreased the IL-18-induced migratory activity. Taken together, the results suggest that IL-18-induced MMP-13 expression in astrocytes is regulated by JNK, PI3 kinase/Akt, and PKCδ signaling pathways. These findings also indicate that IL-18 is an important regulator leading to MMP-13 expression and cell migration in astrocytes.

  12. Coadministration of branched-chain amino acids and lipopolysaccharide causes matrix metalloproteinase activation and blood-brain barrier breakdown.

    PubMed

    Scaini, Giselli; Morais, Meline O S; Galant, Leticia S; Vuolo, Francieli; Dall'Igna, Dhébora M; Pasquali, Matheus A B; Ramos, Vitor M; Gelain, Daniel P; Moreira, Jose Claudio F; Schuck, Patrícia F; Ferreira, Gustavo C; Soriano, Francisco G; Dal-Pizzol, Felipe; Streck, Emilio L

    2014-10-01

    Maple syrup urine disease (MSUD) is an inborn error of metabolism caused by a severe deficiency in the activity of the branched-chain α-keto acid dehydrogenase complex, leading to accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine, and valine. Infections have a significant role in precipitating acute metabolic decompensation in patients with MSUD; however, the mechanisms underlying the neurotoxicity in this disorder are poorly understood. In this study, we subjected rats to the coadministration of lipopolysaccharide (LPS), which is a major component of gram-negative bacteria cell walls, and high concentrations of BCAA (H-BCAA) to determine their effects on the permeability of the blood-brain barrier (BBB) and on the levels of matrix metalloproteinases (MMP-2 and MMP-9). Our results demonstrated that the coadministration of H-BCAA and LPS causes breakdown of the BBB and increases the levels of MMP-2 and MMP-9 in the hippocampus of these rats. On the other hand, examination of the cerebral cortex of the 10- and 30-day-old rats revealed a significant difference in Evan's Blue content after coadministration of H-BCAA and LPS, as MMP-9 levels only increased in the cerebral cortex of the 10-day-old rats. In conclusion, these results suggest that the inflammatory process associated with high levels of BCAA causes BBB breakdown. Thus, we suggest that BBB breakdown is relevant to the perpetuation of brain inflammation and may be related to the brain dysfunction observed in MSUD patients.

  13. White Matter Injury After Subarachnoid Hemorrhage: Role of Blood-Brain Barrier Disruption and Matrix Metalloproteinase-9.

    PubMed

    Egashira, Yusuke; Zhao, Hao; Hua, Ya; Keep, Richard F; Xi, Guohua

    2015-10-01

    We recently observed early white matter injury after experimental subarachnoid hemorrhage (SAH), but the underlying mechanisms are uncertain. This study investigated the potential role of matrix metalloproteinase (MMP)-9 in blood-brain barrier (BBB) disruption and consequent white matter injury. SAH was induced by endovascular perforation in adult male mice. The following 3 experiments were devised: (1) mice underwent magnetic resonance imaging at 24 h after SAH and were euthanized to determine BBB disruption and MMP-9 activation in white matter; (2) to investigate the role of MMP-9 in BBB disruption, lesion volumes on magnetic resonance imaging were compared between wild-type (WT) and MMP-9 knockout (MMP-9-/-) mice at 24 h after SAH; (3) WT and MMP-9-/- mice underwent magnetic resonance imaging at 1 and 8 days after SAH to detect time-dependent changes in brain injury. Brains were used to investigate myelin integrity in white matter. In WT mice with SAH, white matter showed BBB disruption (albumin leakage) and T2 hyperintensity on magnetic resonance imaging. MMP-9 activity was elevated at 24 h after SAH. MMP-9-/- mice had less white matter T2 hyperintensity after SAH than WT mice. At 8 days after SAH, WT mice had decreased myelin integrity and MMP-9-/- mice developed less white matter injury. SAH causes BBB disruption and consequent injury in white matter. MMP-9 plays an important role in those pathologies and could be a therapeutic target for SAH-induced white matter injury. © 2015 American Heart Association, Inc.

  14. Association between Serum Tissue Inhibitor of Matrix Metalloproteinase-1 Levels and Mortality in Patients with Severe Brain Trauma Injury

    PubMed Central

    Lorente, Leonardo; Martín, María M.; López, Patricia; Ramos, Luis; Blanquer, José; Cáceres, Juan J.; Solé-Violán, Jordi; Solera, Jorge; Cabrera, Judith; Argueso, Mónica; Ortiz, Raquel; Mora, María L.; Lubillo, Santiago; Jiménez, Alejandro; Borreguero-León, Juan M.; González, Agustín; Orbe, Josune; Rodríguez, José A.; Páramo, José A.

    2014-01-01

    Objective Matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) play a role in neuroinflammation after brain trauma injury (TBI). Previous studies with small sample size have reported higher circulating MMP-2 and MMP-9 levels in patients with TBI, but no association between those levels and mortality. Thus, the aim of this study was to determine whether serum TIMP-1 and MMP-9 levels are associated with mortality in patients with severe TBI. Methods This was a multicenter, observational and prospective study carried out in six Spanish Intensive Care Units. Patients with severe TBI defined as Glasgow Coma Scale (GCS) lower than 9 were included, while those with Injury Severity Score (ISS) in non-cranial aspects higher than 9 were excluded. Serum levels of TIMP-1, MMP-9 and tumor necrosis factor (TNF)-alpha, and plasma levels of tissue factor (TF) and plasminogen activator inhibitor (PAI)-1 plasma were measured in 100 patients with severe TBI at admission. Endpoint was 30-day mortality. Results Non-surviving TBI patients (n = 27) showed higher serum TIMP-1 levels than survivor ones (n = 73). We did not find differences in MMP-9 serum levels. Logistic regression analysis showed that serum TIMP-1 levels were associated 30-day mortality (OR = 1.01; 95% CI = 1.001–1.013; P = 0.03). Survival analysis showed that patients with serum TIMP-1 higher than 220 ng/mL presented increased 30-day mortality than patients with lower levels (Chi-square = 5.50; P = 0.02). The area under the curve (AUC) for TIMP-1 as predictor of 30-day mortality was 0.73 (95% CI = 0.624–0.844; P<0.001). An association between TIMP-1 levels and APACHE-II score, TNF- alpha and TF was found. Conclusions The most relevant and new findings of our study, the largest series reporting data on TIMP-1 and MMP-9 levels in patients with severe TBI, were that serum TIMP-1 levels were associated with TBI mortality and could be used as a

  15. Association between serum tissue inhibitor of matrix metalloproteinase-1 levels and mortality in patients with severe brain trauma injury.

    PubMed

    Lorente, Leonardo; Martín, María M; López, Patricia; Ramos, Luis; Blanquer, José; Cáceres, Juan J; Solé-Violán, Jordi; Solera, Jorge; Cabrera, Judith; Argueso, Mónica; Ortiz, Raquel; Mora, María L; Lubillo, Santiago; Jiménez, Alejandro; Borreguero-León, Juan M; González, Agustín; Orbe, Josune; Rodríguez, José A; Páramo, José A

    2014-01-01

    Matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) play a role in neuroinflammation after brain trauma injury (TBI). Previous studies with small sample size have reported higher circulating MMP-2 and MMP-9 levels in patients with TBI, but no association between those levels and mortality. Thus, the aim of this study was to determine whether serum TIMP-1 and MMP-9 levels are associated with mortality in patients with severe TBI. This was a multicenter, observational and prospective study carried out in six Spanish Intensive Care Units. Patients with severe TBI defined as Glasgow Coma Scale (GCS) lower than 9 were included, while those with Injury Severity Score (ISS) in non-cranial aspects higher than 9 were excluded. Serum levels of TIMP-1, MMP-9 and tumor necrosis factor (TNF)-alpha, and plasma levels of tissue factor (TF) and plasminogen activator inhibitor (PAI)-1 plasma were measured in 100 patients with severe TBI at admission. Endpoint was 30-day mortality. Non-surviving TBI patients (n = 27) showed higher serum TIMP-1 levels than survivor ones (n = 73). We did not find differences in MMP-9 serum levels. Logistic regression analysis showed that serum TIMP-1 levels were associated 30-day mortality (OR = 1.01; 95% CI = 1.001-1.013; P = 0.03). Survival analysis showed that patients with serum TIMP-1 higher than 220 ng/mL presented increased 30-day mortality than patients with lower levels (Chi-square = 5.50; P = 0.02). The area under the curve (AUC) for TIMP-1 as predictor of 30-day mortality was 0.73 (95% CI = 0.624-0.844; P<0.001). An association between TIMP-1 levels and APACHE-II score, TNF- alpha and TF was found. The most relevant and new findings of our study, the largest series reporting data on TIMP-1 and MMP-9 levels in patients with severe TBI, were that serum TIMP-1 levels were associated with TBI mortality and could be used as a prognostic biomarker of mortality in TBI patients.

  16. Plasma levels of mature brain-derived neurotrophic factor (BDNF) and matrix metalloproteinase-9 (MMP-9) in treatment-resistant schizophrenia treated with clozapine.

    PubMed

    Yamamori, Hidenaga; Hashimoto, Ryota; Ishima, Tamaki; Kishi, Fukuko; Yasuda, Yuka; Ohi, Kazutaka; Fujimoto, Michiko; Umeda-Yano, Satomi; Ito, Akira; Hashimoto, Kenji; Takeda, Masatoshi

    2013-11-27

    Brain-derived neurotrophic factor (BDNF) regulates the survival and growth of neurons, and influences synaptic efficiency and plasticity. Peripheral BDNF levels in patients with schizophrenia have been widely reported in the literature. However, it is still controversial whether peripheral levels of BDNF are altered in patients with schizophrenia. The peripheral BDNF levels previously reported in patients with schizophrenia were total BDNF (proBDNF and mature BDNF) as it was unable to specifically measure mature BDNF due to limited BDNF antibody specificity. In this study, we examined whether peripheral levels of mature BDNF were altered in patients with treatment-resistant schizophrenia. Matrix metalloproteinase-9 (MMP-9) levels were also measured, as MMP-9 plays a role in the conversion of proBDNF to mature BDNF. Twenty-two patients with treatment-resistant schizophrenia treated with clozapine and 22 age- and sex-matched healthy controls were enrolled. The plasma levels of mature BDNF and MMP-9 were measured using ELISA kits. No significant difference was observed for mature BDNF however, MMP-9 was significantly increased in patients with schizophrenia. The significant correlation was observed between mature BDNF and MMP-9 plasma levels. Neither mature BDNF nor MMP-9 plasma levels were associated clinical variables. Our results do not support the view that peripheral BDNF levels are associated with schizophrenia. MMP-9 may play a role in the pathophysiology of schizophrenia and serve as a biomarker for schizophrenia.

  17. Filamin A controls matrix metalloproteinase activity and regulates cell invasion in human fibrosarcoma cells

    PubMed Central

    Baldassarre, Massimiliano; Razinia, Ziba; N. Brahme, Nina; Buccione, Roberto; Calderwood, David A.

    2012-01-01

    Summary Filamins are an important family of actin-binding proteins that, in addition to bundling actin filaments, link cell surface adhesion proteins, signaling receptors and channels to the actin cytoskeleton, and serve as scaffolds for an array of intracellular signaling proteins. Filamins are known to regulate the actin cytoskeleton, act as mechanosensors that modulate tissue responses to matrix density, control cell motility and inhibit activation of integrin adhesion receptors. In this study, we extend the repertoire of filamin activities to include control of extracellular matrix (ECM) degradation. We show that knockdown of filamin increases matrix metalloproteinase (MMP) activity and induces MMP2 activation, enhancing the ability of cells to remodel the ECM and increasing their invasive potential, without significantly altering two-dimensional random cell migration. We further show that within filamin A, the actin-binding domain is necessary, but not sufficient, to suppress the ECM degradation seen in filamin-A-knockdown cells and that dimerization and integrin binding are not required. Filamin mutations are associated with neuronal migration disorders and a range of congenital malformations characterized by skeletal dysplasia and various combinations of cardiac, craniofacial and intestinal anomalies. Furthermore, in breast cancers loss of filamin A has been correlated with increased metastatic potential. Our data suggest that effects on ECM remodeling and cell invasion should be considered when attempting to provide cellular explanations for the physiological and pathological effects of altered filamin expression or filamin mutations. PMID:22595522

  18. Controllability of structural brain networks

    NASA Astrophysics Data System (ADS)

    Gu, Shi; Pasqualetti, Fabio; Cieslak, Matthew; Telesford, Qawi K.; Yu, Alfred B.; Kahn, Ari E.; Medaglia, John D.; Vettel, Jean M.; Miller, Michael B.; Grafton, Scott T.; Bassett, Danielle S.

    2015-10-01

    Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states drawn from the network organization of white matter microstructure. Our results suggest that densely connected areas, particularly in the default mode system, facilitate the movement of the brain to many easily reachable states. Weakly connected areas, particularly in cognitive control systems, facilitate the movement of the brain to difficult-to-reach states. Areas located on the boundary between network communities, particularly in attentional control systems, facilitate the integration or segregation of diverse cognitive systems. Our results suggest that structural network differences between cognitive circuits dictate their distinct roles in controlling trajectories of brain network function.

  19. Tissue inhibitor of matrix metalloproteinases-1 loaded poly(lactic-co-glycolic acid) nanoparticles for delivery across the blood–brain barrier

    PubMed Central

    Chaturvedi, Mayank; Molino, Yves; Sreedhar, Bojja; Khrestchatisky, Michel; Kaczmarek, Leszek

    2014-01-01

    Aim The aim of this study was to develop poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) for delivery of a protein – tissue inhibitor of matrix metalloproteinases 1 (TIMP-1) – across the blood–brain barrier (BBB) to inhibit deleterious matrix metalloproteinases (MMPs). Materials and methods The NPs were formulated by multiple-emulsion solvent-evaporation, and for enhancing BBB penetration, they were coated with polysorbate 80 (Ps80). We compared Ps80-coated and uncoated NPs for their toxicity, binding, and BBB penetration on primary rat brain capillary endothelial cell cultures and the rat brain endothelial 4 cell line. These studies were followed by in vivo studies for brain delivery of these NPs. Results Results showed that neither Ps80-coated nor uncoated NPs caused significant opening of the BBB, and essentially they were nontoxic. NPs without Ps80 coating had more binding to endothelial cells compared to Ps80-coated NPs. Penetration studies showed that TIMP-1 NPs + Ps80 had 11.21%±1.35% penetration, whereas TIMP-1 alone and TIMP-1 NPs without Ps80 coating did not cross the endothelial monolayer. In vivo studies indicated BBB penetration of intravenously injected TIMP-1 NPs + Ps80. Conclusion The study demonstrated that Ps80 coating of NPs does not cause significant toxic effects to endothelial cells and that it can be used to enhance the delivery of protein across endothelial cell barriers, both in vitro and in vivo. PMID:24531257

  20. Synapse loss regulated by matrix metalloproteinases in traumatic brain injury is associated with hypoxia inducible factor-1alpha expression.

    PubMed

    Ding, Jamie Y; Kreipke, Christian W; Schafer, Patrick; Schafer, Steven; Speirs, Susan L; Rafols, José A

    2009-05-01

    The present study assessed the role of matrix metalloproteinase-2 (MMP-2) and -9 in synapse loss after traumatic brain injury (TBI) and the role of hypoxia inducible factor-1alpha (HIF-1alpha), a transcription factor up-regulated during hypoxia, in the regulation of MMP-2 and -9 expression post-TBI. Adult male Sprague-Dawley rats (n=6 per group, 400 g-425 g) were injured using Marmarou's closed-head acceleration impact model and allowed to survive for 1, 4, 24 and 48 h. In another set of experiments, 30 min after TBI, animals were treated with Minocycline (inhibitor of MMPs), or 2-Methoxyestradiol (2ME2, inhibitor of HIF-1alpha) and sacrificed at 4 h after injury. Relative amounts of synaptophysin, a presynaptic vesicular protein, HIF-1alpha, as well as MMP-2 and -9 were assessed by real-time PCR and Western blotting. Activity levels of MMP-2 and -9 were determined by zymography. Synaptophysin expression was significantly (p<0.05) decreased at 1 h through 48 h after TBI. A significant increase in gene and protein expressions of HIF-1alpha, MMP-2 and -9, as well as enzyme activity of MMP-2 and -9 at the same time points was also detected. Inhibition of either MMPs or HIF-1alpha significantly reversed the TBI-induced decrease in synaptophysin. Inhibition of HIF-1alpha reduced expression of MMP-2 and -9. This study showed an early detection of a correlation between synaptic loss and MMP expression after TBI. The data also supports a role for HIF-1alpha in the MMP regulatory cascade in synapse loss after TBI, suggesting potential targets for reducing loss of synaptic terminals.

  1. Synapse Loss Regulated by Matrix Metalloproteinases in Traumatic Brain Injury Is Associated with Hypoxia-Inducible Factor-1α Expression

    PubMed Central

    Ding, Jamie Y.; Kreipke, Christian W.; Schafer, Patrick; Schafer, Steven; Speirs, Susan L.; Rafols, José A.

    2009-01-01

    The present study assessed the role of matrix metalloproteinase-2 (MMP-2) and -9 in synapse loss after traumatic brain injury (TBI) and the role of hypoxia inducible factor-1α (HIF-1α a transcription factor upregulated during hypoxia, in the regulation of MMP-2 and -9 expression post TBI. Adult male Sprague-Dawley rats (n=6 per group, 400g-425g) were injured using Marmarou's closed head acceleration impact model and allowed to survive for 1, 4, 24 and 48 hours. In another set of experiments, 30 minutes after TBI, animals were treated with Minocycline (inhibitor of MMPs), or 2-Methoxyestradiol (2ME2, inhibitor of HIF-1α) and sacrificed at 4 hours after injury. Relative amounts of synaptophysin, a presynaptic vesicular protein, HIF-1α, as well as MMP-2 and -9 were assessed by real-time PCR and Western blotting. Activity levels of MMP-2 and -9 were determined by zymography. Synaptophysin expression was significantly (p<0.05) decreased at 1 hour through 48 hours after TBI. A significant increase in gene and protein expressions of HIF-1α, MMP-2 and -9, as well as enzyme activity of MMP-2 and -9 at the same time points was also detected. Inhibition of either MMPs or HIF-1α significantly reversed the TBI-induced decrease in synaptophysin. Inhibition of HIF-1α reduced expression of MMP-2 and -9. This study showed an early detection of a correlation between synaptic loss and MMP expression after TBI. The data also supports a role for HIF-1α in the MMP regulatory cascade in synapse loss after TBI, suggesting potential targets for reducing loss of synaptic terminals. PMID:19285046

  2. Handling Metalloproteinases.

    PubMed

    Fridrich, Sven; Karmilin, Konstantin; Stöcker, Walter

    2016-02-02

    Substrate cleavage by metalloproteinases involves nucleophilic attack on the scissile peptide bond by a water molecule that is polarized by a catalytic metal, usually a zinc ion, and a general base, usually the carboxyl group of a glutamic acid side chain. The zinc ion is most often complexed by imidazole nitrogens of histidine side chains. This arrangement suggests that the physiological pH optimum of most metalloproteinases is in the neutral range. In addition to their catalytic metal ion, many metalloproteinases contain additional transition metal or alkaline earth ions, which are structurally important or modulate the catalytic activity. As a consequence, these enzymes are generally sensitive to metal chelators. Moreover, the catalytic metal can be displaced by adventitious metal ions from buffers or biological fluids, which may fundamentally alter the catalytic function. Therefore, handling, purification, and assaying of metalloproteinases require specific precautions to warrant their stability. Copyright © 2016 John Wiley & Sons, Inc.

  3. O-Phenyl Carbamate and Phenyl Urea Thiiranes as Selective Matrix Metalloproteinase-2 Inhibitors that Cross the Blood-Brain Barrier

    PubMed Central

    Gooyit, Major; Song, Wei; Mahasenan, Kiran V.; Lichtenwalter, Katerina; Suckow, Mark A.; Schroeder, Valerie A.; Wolter, William R.; Mobashery, Shahriar; Chang, Mayland

    2013-01-01

    Brain metastasis occurs in 20% to 40% of cancer patients. Treatment is mostly palliative and the inability of most drugs to penetrate the brain presents one of the greatest challenges in the development of therapeutics for brain metastasis. Matrix metalloproteinase-2 (MMP-2) plays important roles in invasion and vascularization of the central nervous system and represents a potential target for treatment of brain metastasis. Carbonate, O-phenyl carbamate, urea, and N-phenyl carbamate derivatives of SB-3CT, a selective and potent gelatinase inhibitor were synthesized and evaluated. The O-phenyl carbamate and urea variants were selective and potent inhibitors of MMP-2. Carbamate 5b was metabolized to the potent gelatinase inhibitor 2, which was present at therapeutic concentrations in the brain. In contrast, phenyl urea 6b crossed the blood-brain barrier, however higher doses would result in therapeutic brain concentrations. Carbamate 5b and urea 6b show potential for intervention of MMP-2-dependent diseases, such as brain metastasis. PMID:24028490

  4. O-phenyl carbamate and phenyl urea thiiranes as selective matrix metalloproteinase-2 inhibitors that cross the blood-brain barrier.

    PubMed

    Gooyit, Major; Song, Wei; Mahasenan, Kiran V; Lichtenwalter, Katerina; Suckow, Mark A; Schroeder, Valerie A; Wolter, William R; Mobashery, Shahriar; Chang, Mayland

    2013-10-24

    Brain metastasis occurs in 20-40% of cancer patients. Treatment is mostly palliative, and the inability of most drugs to penetrate the brain presents one of the greatest challenges in the development of therapeutics for brain metastasis. Matrix metalloproteinase-2 (MMP-2) plays important roles in invasion and vascularization of the central nervous system and represents a potential target for treatment of brain metastasis. Carbonate, O-phenyl carbamate, urea, and N-phenyl carbamate derivatives of SB-3CT, a selective and potent gelatinase inhibitor, were synthesized and evaluated. The O-phenyl carbamate and urea variants were selective and potent inhibitors of MMP-2. Carbamate 5b was metabolized to the potent gelatinase inhibitor 2, which was present at therapeutic concentrations in the brain. In contrast, phenyl urea 6b crossed the blood-brain barrier, however, higher doses would result in therapeutic brain concentrations. Carbamate 5b and urea 6b show potential for intervention of MMP-2-dependent diseases such as brain metastasis.

  5. Exposure to vehicle emissions results in altered blood brain barrier permeability and expression of matrix metalloproteinases and tight junction proteins in mice

    PubMed Central

    2013-01-01

    Background Traffic-generated air pollution-exposure is associated with adverse effects in the central nervous system (CNS) in both human exposures and animal models, including neuroinflammation and neurodegeneration. While alterations in the blood brain barrier (BBB) have been implicated as a potential mechanism of air pollution-induced CNS pathologies, pathways involved have not been elucidated. Objectives To determine whether inhalation exposure to mixed vehicle exhaust (MVE) mediates alterations in BBB permeability, activation of matrix metalloproteinases (MMP) -2 and −9, and altered tight junction (TJ) protein expression. Methods Apolipoprotein (Apo) E−/− and C57Bl6 mice were exposed to either MVE (100 μg/m3 PM) or filtered air (FA) for 6 hr/day for 30 days and resulting BBB permeability, expression of ROS, TJ proteins, markers of neuroinflammation, and MMP activity were assessed. Serum from study mice was applied to an in vitro BBB co-culture model and resulting alterations in transport and permeability were quantified. Results MVE-exposed Apo E−/− mice showed increased BBB permeability, elevated ROS and increased MMP-2 and −9 activity, compared to FA controls. Additionally, cerebral vessels from MVE-exposed mice expressed decreased levels of TJ proteins, occludin and claudin-5, and increased levels of inducible nitric oxide synthase (iNOS) and interleukin (IL)-1β in the parenchyma. Serum from MVE-exposed animals also resulted in increased in vitro BBB permeability and altered P-glycoprotein transport activity. Conclusions These data indicate that inhalation exposure to traffic-generated air pollutants promotes increased MMP activity and degradation of TJ proteins in the cerebral vasculature, resulting in altered BBB permeability and expression of neuroinflammatory markers. PMID:24344990

  6. Heregulin-HER3-HER2 signaling promotes matrix metalloproteinase-dependent blood-brain-barrier transendothelial migration of human breast cancer cell lines.

    PubMed

    Momeny, Majid; Saunus, Jodi M; Marturana, Flavia; McCart Reed, Amy E; Black, Debra; Sala, Gianluca; Iacobelli, Stefano; Holland, Jane D; Yu, Dihua; Da Silva, Leonard; Simpson, Peter T; Khanna, Kum Kum; Chenevix-Trench, Georgia; Lakhani, Sunil R

    2015-02-28

    HER2-positive breast tumors are associated with a high risk of brain relapse. HER3 is thought to be an indispensible signaling substrate for HER2 (encoded by ERBB2) and is induced in breast cancer-brain metastases, though the molecular mechanisms by which this oncogenic dimer promotes the development of brain metastases are still elusive. We studied the effects of the HER3-HER2 ligand, heregulin (neuregulin-1, broadly expressed in the brain), on luminal breast cancer cell lines in vitro. Treatment of SKBr3 (ERBB2-amplified), MDA-MB-361 (ERBB2-amplified, metastatic brain tumor-derived) and MCF7 (HER2-positive, not ERBB2-amplified) cells with exogenous heregulin increased proliferation and adhesive potential, concomitant with induction of cyclin D1 and ICAM-1, and suppression of p27. All three cell lines invaded through matrigel toward a heregulin chemotactic signal in transwell experiments, associated with activation of extracellular cathepsin B and matrix metalloproteinase-9 (MMP-9). Moreover, heregulin induced breast cancer cell transmigration across a tight barrier of primary human brain microvascular endothelia. This was dependent on the activity of HER2, HER3 and MMPs, and was completely abrogated by combination HER2-HER3 blockade using Herceptin® and the humanized HER3 monoclonal antibody, EV20. Collectively these data suggest mechanisms by which the HER3-HER2 dimer promotes development of metastatic tumors in the heregulin-rich brain microenvironment.

  7. Heregulin-HER3-HER2 signaling promotes matrix metalloproteinase-dependent blood-brain-barrier transendothelial migration of human breast cancer cell lines

    PubMed Central

    Momeny, Majid; Saunus, Jodi M.; Marturana, Flavia; McCart Reed, Amy E.; Black, Debra; Sala, Gianluca; Iacobelli, Stefano; Holland, Jane D.; Yu, Dihua; Da Silva, Leonard; Simpson, Peter T.; Khanna, Kum Kum; Chenevix-Trench, Georgia; Lakhani, Sunil R.

    2015-01-01

    HER2-positive breast tumors are associated with a high risk of brain relapse. HER3 is thought to be an indispensible signaling substrate for HER2 (encoded by ERBB2) and is induced in breast cancer-brain metastases, though the molecular mechanisms by which this oncogenic dimer promotes the development of brain metastases are still elusive. We studied the effects of the HER3-HER2 ligand, heregulin (neuregulin-1, broadly expressed in the brain), on luminal breast cancer cell lines in vitro. Treatment of SKBr3 (ERBB2-amplified), MDA-MB-361 (ERBB2-amplified, metastatic brain tumor-derived) and MCF7 (HER2-positive, not ERBB2-amplified) cells with exogenous heregulin increased proliferation and adhesive potential, concomitant with induction of cyclin D1 and ICAM-1, and suppression of p27. All three cell lines invaded through matrigel toward a heregulin chemotactic signal in transwell experiments, associated with activation of extracellular cathepsin B and matrix metalloproteinase-9 (MMP-9). Moreover, heregulin induced breast cancer cell transmigration across a tight barrier of primary human brain microvascular endothelia. This was dependent on the activity of HER2, HER3 and MMPs, and was completely abrogated by combination HER2-HER3 blockade using Herceptin® and the humanized HER3 monoclonal antibody, EV20. Collectively these data suggest mechanisms by which the HER3-HER2 dimer promotes development of metastatic tumors in the heregulin-rich brain microenvironment. PMID:25668816

  8. Methamphetamine transiently increases the blood-brain barrier permeability in the hippocampus: role of tight junction proteins and matrix metalloproteinase-9.

    PubMed

    Martins, Tânia; Baptista, Sofia; Gonçalves, Joana; Leal, Ermelindo; Milhazes, Nuno; Borges, Fernanda; Ribeiro, Carlos F; Quintela, Oscar; Lendoiro, Elena; López-Rivadulla, Manuel; Ambrósio, António F; Silva, Ana P

    2011-09-09

    Methamphetamine (METH) is a powerful stimulant drug of abuse that has steadily gained popularity worldwide. It is known that METH is highly neurotoxic and causes irreversible damage of brain cells leading to neurological and psychiatric abnormalities. Recent studies suggested that METH-induced neurotoxicity might also result from its ability to compromise blood-brain barrier (BBB) function. Due to the crucial role of BBB in the maintenance of brain homeostasis and protection against toxic molecules and pathogenic organisms, its dysfunction could have severe consequences. In this study, we investigated the effect of an acute high dose of METH (30mg/kg) on BBB permeability after different time points and in different brain regions. For that, young adult mice were sacrificed 1h, 24h or 72h post-METH administration. METH increased BBB permeability, but this effect was detected only at 24h after administration, being therefore a transitory effect. Interestingly, we also found that the hippocampus was the most susceptible brain region to METH, comparing to frontal cortex and striatum. Moreover, in an attempt to identify the key players in METH-induced BBB dysfunction we further investigated potential alterations in tight junction (TJ) proteins and matrix metalloproteinase-9 (MMP-9). METH was able to decrease the protein levels of zonula occludens (ZO)-1, claudin-5 and occludin in the hippocampus 24h post-injection, and increased the activity and immunoreactivity of MMP-9. The pre-treatment with BB-94 (30mg/kg), a matrix metalloproteinase inhibitor, prevented the METH-induced increase in MMP-9 immunoreactivity in the hippocampus. Overall, the present data demonstrate that METH transiently increases the BBB permeability in the hippocampus, which can be explained by alterations on TJ proteins and MMP-9.

  9. Brain catechol synthesis - Control by brain tyrosine concentration

    NASA Technical Reports Server (NTRS)

    Wurtman, R. J.; Larin, F.; Mostafapour, S.; Fernstrom, J. D.

    1974-01-01

    Brain catechol synthesis was estimated by measuring the rate at which brain dopa levels rose following decarboxylase inhibition. Dopa accumulation was accelerated by tyrosine administration, and decreased by treatments that lowered brain tyrosine concentrations (for example, intraperitoneal tryptophan, leucine, or parachlorophenylalanine). A low dose of phenylalanine elevated brain tyrosine without accelerating dopa synthesis. Our findings raise the possibility that nutritional and endocrine factors might influence brain catecholamine synthesis by controlling the availability of tyrosine.

  10. A Cannabinoid Receptor 2 Agonist Prevents Thrombin-Induced Blood-Brain Barrier Damage via the Inhibition of Microglial Activation and Matrix Metalloproteinase Expression in Rats.

    PubMed

    Li, Lin; Tao, Yihao; Tang, Jun; Chen, Qianwei; Yang, Yang; Feng, Zhou; Chen, Yujie; Yang, Liming; Yang, Yunfeng; Zhu, Gang; Feng, Hua; Chen, Zhi

    2015-12-01

    Thrombin mediates the life-threatening cerebral edema and blood-brain barrier (BBB) damage that occurs after intracerebral hemorrhage (ICH). We previously found that the selective cannabinoid receptor 2 (CB2R) agonist JWH-133 reduced brain edema and neurological deficits following germinal matrix hemorrhage (GMH). We explored whether CB2R stimulation ameliorated thrombin-induced brain edema and BBB permeability as well as the possible molecular mechanism involved. A total of 144 Sprague-Dawley (S-D) rats received a thrombin (20 U) injection in the right basal ganglia. JWH-133 (1.5 mg/kg) or SR-144528 (3.0 mg/kg) and vehicle were intraperitoneally (i.p.) injected 1 h after surgery. Brain water content measurement, Evans blue (EB) extravasation, Western blot, and immunofluorescence were used to study the effects of a CB2R agonist 24 h after surgery. The results demonstrated that JWH-133 administration significantly decreased thrombin-induced brain edema and reduced the number of Iba-1-positive microglia. JWH-133 also decreased the number of P44/P42(+)/Iba-1(+) microglia, lowered Evans blue extravasation, and inhibited the elevated matrix metallopeptidase (MMP)-9 and matrix metallopeptidase (MMP)-12 activities. However, a selective CB2R antagonist (SR-144528) reversed these effects. We demonstrated that CB2R stimulation reduced thrombin-induced brain edema and alleviated BBB damage. We also found that matrix metalloproteinase suppression may be partially involved in these processes.

  11. Molecular Control of Vascular Tube Morphogenesis and Stabilization: Regulation by Extracellular Matrix, Matrix Metalloproteinases, and Endothelial Cell-Pericyte Interactions

    NASA Astrophysics Data System (ADS)

    Davis, George E.; Stratman, Amber N.; Sacharidou, Anastasia

    Recent studies have revealed a critical role for both extracellular matrices and matrix metalloproteinases in the molecular control of vascular morphogenesis and stabilization in three-dimensional (3D) tissue environments. Key interactions involve endothelial cells (ECs) and pericytes, which coassemble to affect vessel formation, remodeling, and stabilization events during development and postnatal life. EC-pericyte interactions control extracellular matrix remodeling events including vascular basement membrane matrix assembly, a necessary step for endothelial tube maturation and stabilization. ECs form tube networks in 3D extracellular matrices in a manner dependent on integrins, membrane-type metalloproteinases, and the Rho GTPases, Cdc42 and Rac1. Recent work has defined an EC lumen signaling complex of proteins composed of these proteins that controls 3D matrix-specific signaling events required for these processes. The EC tube formation process results in the creation of a network of proteolytically generated vascular guidance tunnels. These tunnels are physical matrix spaces that regulate vascular tube remodeling and represent matrix conduits into which pericytes are recruited to allow dynamic cell-cell interactions with ECs. These dynamic EC-pericyte interactions induce vascular basement membrane matrix deposition, leading to vessel maturation and stabilization.

  12. Neutrophil infiltration increases matrix metalloproteinase-9 in the ischemic brain after occlusion/reperfusion of the middle cerebral artery in rats.

    PubMed

    Justicia, Carles; Panés, Julián; Solé, Sònia; Cervera, Alvaro; Deulofeu, Ramon; Chamorro, Angel; Planas, Anna M

    2003-12-01

    Matrix metalloproteinase-9 (MMP-9) activity increases in the brain during the first day after focal ischemia and might be involved in the pathogenesis of tissue damage. We previously showed MMP-9 in the extracellular space of brain parenchyma along with neutrophil recruitment after ischemia. In the present study, we tested whether neutrophils were a direct source of enhanced MMP-9 in the ischemic brain. Neutrophil infiltration was prevented either by injecting an antibody against ICAM-1, which abrogates neutrophil adhesion to the endothelial vessel wall, or by inducing neutropenia. One-hour intraluminal middle cerebral artery occlusion with reperfusion was induced, and studies were performed at 24 hours. Circulating neutrophils expressed 95-kDa MMP-9 and dimers, and infiltrated neutrophils stained positive for MMP-9. The expression of MMP-9 (mainly 95-kDa proform and dimers and, to a lesser extent, 88-kDa form) increased in brain after ischemia/reperfusion. Treatments preventing neutrophil infiltration failed to preclude the ischemia-induced increase in 88-kDa MMP-9 form and gelatinase activity in neurons and blood vessels. However, these treatments prevented the major increase in 95-kDa MMP-9 form and dimers. We conclude that neutrophil infiltration highly contributes to enhanced MMP-9 in the ischemic brain by releasing MMP-9 proform, which might participate in the tissular inflammatory reaction.

  13. Metalloproteinases: a Functional Pathway for Myeloid Cells.

    PubMed

    Chou, Jonathan; Chan, Matilda F; Werb, Zena

    2016-04-01

    Myeloid cells have diverse roles in regulating immunity, inflammation, and extracellular matrix turnover. To accomplish these tasks, myeloid cells carry an arsenal of metalloproteinases, which include the matrix metalloproteinases and the adamalysins. These enzymes have diverse substrate repertoires, and are thus involved in mediating proteolytic cascades, cell migration, and cell signaling. Dysregulation of metalloproteinases contributes to pathogenic processes, including inflammation, fibrosis, and cancer. Metalloproteinases also have important nonproteolytic functions in controlling cytoskeletal dynamics during macrophage fusion and enhancing transcription to promote antiviral immunity. This review highlights the diverse contributions of metalloproteinases to myeloid cell functions.

  14. Nerve regeneration following spinal cord injury using matrix metalloproteinase-sensitive, hyaluronic acid-based biomimetic hydrogel scaffold containing brain-derived neurotrophic factor.

    PubMed

    Park, Jonghyuck; Lim, Eunjeong; Back, Seungkeun; Na, Heungsik; Park, Yongdoo; Sun, Kyung

    2010-06-01

    Spinal cord injury leads to the permanent loss of motor and sensory function in the body. To enhance spinal cord regeneration, we used a hyaluronic acid-based hydrogel as a three-dimensional biomimetic scaffold for peptides and growth factors. Three components were used to provide guidance cues: a matrix metalloproteinase peptide crosslinker, an IKVAV (Ile- Lys-Val-Ala-Val) peptide derived from laminin, and brain-derived neurotrophic factor (BDNF). Human mesenchymal stem cells (hMSCs) were cultured in hydrogels in vitro for 10 days to induce neuronal differentiation of hMSCs. Based on gene-expression data, the matrix metalloproteinase-sensitive peptide, IKVAV peptide, and BDNF were critical in the differentiation of hMSCs. Remodeling activity was found to be a key factor in guiding neural differentiation of stem cells. To test this approach in vivo, we used the spinal cord injured rat model and five different hydrogel compositions. Samples were injected into the intrathecal space, and animals were monitored for 6 weeks. Compared to all other groups, animals injected with BDNF-containing hydrogels showed the greatest improvement on locomotive tests (Basso-Beattie-Bresnahan score) during the initial stage after injury. These results suggest that hyaluronic acid-based hydrogels containing IKVAV and BDNF create microenvironments that foster differentiation of stem cells along the neural cell lineage, and they could be used to facilitate nerve regeneration after spinal cord injury.

  15. Controlled Biodegradation of Self-Assembling β-hairpin Peptide Hydrogels by Proteolysis with Matrix Metalloproteinase-13

    PubMed Central

    Giano, Michael C.; Pochan, Darrin J.; Schneider, Joel P.

    2011-01-01

    Controlled biodegradation specific to matrix metalloproteinase-13 was incorporated into the design of self-assembling β-hairpin peptide hydrogels. Degrading Peptides (DP peptides) are a series of five peptides that have varying proteolytic susceptibilities towards MMP-13. These peptides undergo environmentally triggered folding and self-assembly under physiologically relevant conditions (150 mM NaCl, pH 7.6) to form self supporting hydrogels. In the presence of enzyme, gels prepared from distinct peptides are degraded at rates that differ according to the primary sequence of the single peptide comprising the gel. Material degradation was monitored by oscillatory shear rheology over the course of 14 days, where overall degradation of the gels vary from 5% to 70%. Degradation products were analyzed by HPLC and identified by electrospray-ionization mass spectrometry. This data shows that proteolysis of the parent peptides constituting each gel occurs at the intended sequence location. DP hydrogels show specificity to MMP-13 and are only minimally cleaved by matrix metalloproteinase-3 (MMP-3), another common enzyme present during tissue injury. In vitro migration assays performed with SW1353 cells show that migration rates through each gel differs according to peptide sequence, which is consistent with the proteolysis studies using exogenous MMP-13. PMID:21683437

  16. Control of allergen-induced inflammation and hyperresponsiveness by the metalloproteinase ADAMTS-12.

    PubMed

    Paulissen, Geneviève; El Hour, Mehdi; Rocks, Natacha; Guéders, Maud M; Bureau, Fabrice; Foidart, Jean-Michel; Lopez-Otin, Carlos; Noel, Agnès; Cataldo, Didier D

    2012-10-15

    A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) constitute a family of endopeptidases related to matrix metalloproteinases. These proteinases have been largely implicated in tissue remodeling associated with pathological processes. Among them, ADAMTS12 was identified as an asthma-associated gene in a human genome screening program. However, its functional implication in asthma is not yet documented. The present study aims at investigating potential ADAMTS-12 functions in experimental models of allergic airways disease. Two different in vivo protocols of allergen-induced airways disease were applied to the recently generated Adamts12-deficient mice and corresponding wild-type mice. In this study, we provide evidence for a protective effect of ADAMTS-12 against bronchial inflammation and hyperresponsiveness. In the absence of Adamts12, challenge with different allergens (OVA and house dust mite) led to exacerbated eosinophilic inflammation in the bronchoalveolar lavage fluid and in lung tissue, along with airway dysfunction assessed by increased airway responsiveness following methacholine exposure. Furthermore, mast cell counts and ST2 receptor and IL-33 levels were higher in the lungs of allergen-challenged Adamts12-deficient mice. The present study provides, to our knowledge, the first experimental evidence for a contribution of ADAMTS-12 as a key mediator in airways disease, interfering with immunological processes leading to inflammation and airway hyperresponsiveness.

  17. Reversal of West Nile virus-induced blood-brain barrier disruption and tight junction proteins degradation by matrix metalloproteinases inhibitor

    PubMed Central

    Verma, Saguna; Kumar, Mukesh; Gurjav, Ulziijargal; Lum, Stephanie; Nerurkar, Vivek R.

    2011-01-01

    Though compromised blood-brain barrier (BBB) is a pathological hallmark of WNV- associated neurological sequelae, underlying mechanisms are unclear. We characterized the expression of matrix metalloproteinases (MMP) in WNV-infected human brain-microvascular endothelial cells (HBMVE) and -cortical astrocytes (HBCA), components of BBB and their role in BBB disruption. Expression of multiple MMPs was significantly induced in WNV-infected HBCA cells. Naïve HBMVE cells incubated with the supernatant from WNV-infected HBCA cells demonstrated loss of tight junction proteins, which was rescued in the presence of MMP inhibitor, GM6001. Further, supernatant from WNV-infected HBCA cells compromised the in-vitro BBB models integrity. Our data suggests astrocytes as one of the sources of MMP in the brain, which mediates BBB disruption allowing unrestricted entry of immune cells into the brain, thereby contributing to WNV-neuropathogenesis. Because of the unavailability of WNV antivirals and vaccines, use of MMP inhibitors as an adjunct therapy to ameliorate WNV disease progression is warranted. PMID:19922973

  18. Propofol post-conditioning protects the blood brain barrier by decreasing matrix metalloproteinase-9 and aquaporin-4 expression and improves the neurobehavioral outcome in a rat model of focal cerebral ischemia-reperfusion injury.

    PubMed

    Ji, Feng-Tao; Liang, Jian-Jun; Miao, Li-Ping; Wu, Qiang; Cao, Ming-Hui

    2015-08-01

    Propofol, an intravenous anesthetic, inhibits neuronal apoptosis induced by ischemic stroke, protects the brain from ischemia/reperfusion injury and improves neuronal function. However, whether propofol is able to protect the blood brain barrier (BBB) and the underlying mechanisms have remained to be elucidated. In the present study, a rat model of cerebral ischemia/reperfusion was established, using a thread embolism to achieve middle cerebral artery occlusion. Rats were treated with propofol (propofol post-conditioning) or physiological saline (control) administered by intravenous injection 30 min following reperfusion. Twenty-four hours following reperfusion, neurobehavioral manifestations were assessed. The levels of cephaloedema, damage to the BBB and expression levels of matrix metalloproteinase-9 (MMP-9), aquaporin-4 (AQP-4) and phosphorylated c-Jun N-terminal kinase (pJNK) were determined in order to evaluate the effects of propofol on the BBB. In comparison to the cerebral ischemia/reperfusion group, the levels of brain water content and Evans blue content, as well as the expression levels of MMP-9, AQP-4 and pJNK were significantly reduced in the propofol post-conditioning group. These results indicated that propofol post-conditioning improved the neurobehavioral manifestations and attenuated the BBB damage and cephaloedema induced following cerebral ischemia/reperfusion. This effect may be due to the inhibition of MMP-9 and AQP-4 expression, and the concurrent decrease in JNK phosphorylation.

  19. Postnatal disruption of the disintegrin/metalloproteinase ADAM10 in brain causes epileptic seizures, learning deficits, altered spine morphology, and defective synaptic functions.

    PubMed

    Prox, Johannes; Bernreuther, Christian; Altmeppen, Hermann; Grendel, Jasper; Glatzel, Markus; D'Hooge, Rudi; Stroobants, Stijn; Ahmed, Tariq; Balschun, Detlef; Willem, Michael; Lammich, Sven; Isbrandt, Dirk; Schweizer, Michaela; Horré, Katrien; De Strooper, Bart; Saftig, Paul

    2013-08-07

    The metalloproteinase ADAM10 is of importance for Notch-dependent cortical brain development. The protease is tightly linked with α-secretase activity toward the amyloid precursor protein (APP) substrate. Increasing ADAM10 activity is suggested as a therapy to prevent the production of the neurotoxic amyloid β (Aβ) peptide in Alzheimer's disease. To investigate the function of ADAM10 in postnatal brain, we generated Adam10 conditional knock-out (A10cKO) mice using a CaMKIIα-Cre deleter strain. The lack of ADAM10 protein expression was evident in the brain cortex leading to a reduced generation of sAPPα and increased levels of sAPPβ and endogenous Aβ peptides. The A10cKO mice are characterized by weight loss and increased mortality after weaning associated with seizures. Behavioral comparison of adult mice revealed that the loss of ADAM10 in the A10cKO mice resulted in decreased neuromotor abilities and reduced learning performance, which were associated with altered in vivo network activities in the hippocampal CA1 region and impaired synaptic function. Histological and ultrastructural analysis of ADAM10-depleted brain revealed astrogliosis, microglia activation, and impaired number and altered morphology of postsynaptic spine structures. A defect in spine morphology was further supported by a reduction of the expression of NMDA receptors subunit 2A and 2B. The reduced shedding of essential postsynaptic cell adhesion proteins such as N-Cadherin, Nectin-1, and APP may explain the postsynaptic defects and the impaired learning, altered network activity, and synaptic plasticity of the A10cKO mice. Our study reveals that ADAM10 is instrumental for synaptic and neuronal network function in the adult murine brain.

  20. Engineering autoactivating forms of matrix metalloproteinase-9 and expression of the active enzyme in cultured cells and transgenic mouse brain.

    PubMed

    Fisher, Katherine E; Fei, Qing; Laird, Ellen R; Stock, Jeffrey L; Allen, Melanie R; Sahagan, Barbara G; Strick, Christine A

    2002-07-02

    Matrix metalloproteinases (MMPs) are hypothesized to play an important role in the pathogenesis of several central nervous system disorders. Increased levels of expression of MMP-9 (gelatinase B) and MMP-2 (gelatinase A) have been observed in Alzheimer's disease, stroke, multiple sclerosis, and amyotrophic lateral sclerosis. This suggests an aberrant regulation of MMPs that could lead to inappropriate expression of MMP activity. To allow us to evaluate the effect of increased levels of active MMP-9 in the central nervous system, mutant forms of the enzyme were designed to autocatalytically remove the pro domain, yielding active enzyme. This was accomplished by modifying residues in the cysteine switch autoinhibitor region of the propeptide. Stable cell lines and transgenic mice that express G100L and D103N autoactive forms of human MMP-9 were developed to study the role of dysregulation of MMP-9 in disease.

  1. Targeting matrix metalloproteinases with intravenous doxycycline in severe sepsis--A randomised placebo-controlled pilot trial.

    PubMed

    Nukarinen, Eija; Tervahartiala, Taina; Valkonen, Miia; Hynninen, Marja; Kolho, Elina; Pettilä, Ville; Sorsa, Timo; Backman, Janne; Hästbacka, Johanna

    2015-09-01

    An overwhelming inflammatory process is the hallmark of severe sepsis and septic shock. Matrix metalloproteinases (MMPs)-8 and -9 are released from neutrophils and activated in sepsis to participate in inflammation in several ways. High levels of MMP-8 may associate with increased ICU mortality. The activity of MMP-8 and -9 is regulated by a natural inhibitor, tissue inhibitor of metalloproteinases-1 (TIMP-1). Moreover, MMPs are chemically inhibited by tetracycline-group antibiotics, such as doxycycline. We therefore aimed to study plasma concentration and MMP inhibition after intravenous doxycycline in critically ill patients with severe sepsis and septic shock in a prospective, randomised, placebo-controlled double-blinded pilot trial. Twenty-four patients with severe sepsis or septic shock were randomised in 3 groups. Group 1 received 200, 100 and 100mg, group 2 100, 50 and 50mg of intravenous doxycycline and group 3 placebo on three consecutive days. We measured doxycycline concentrations from baseline up to day 5. MMPs and TIMP-1 concentrations were measured from baseline up to day 10 of study and we compared their changes over time from baseline to 72 h and from baseline to 120 h. Data from 23 patients were analysed. At 72 h all patients in group 1 showed doxycycline concentrations >1 mg/l, whereas none in group 2 did. No serious adverse effects of the drug were recorded. We observed no differences over time up to 72 or up to 120 h in the concentrations or activities of MMP-8, -9 or TIMP-1 in any of the groups. We found intravenous doxycycline 100, 50 and 50mg to be adequate to achieve a sub-antimicrobial concentration in patients with severe sepsis or septic shock but having no impact on MMP-8, -9 or TIMP-1 concentrations or activities.

  2. Self-Control and the Developing Brain

    ERIC Educational Resources Information Center

    Tarullo, Amanda R.; Obradovic, Jelena; Gunnar, Megan R.

    2009-01-01

    Self-control is a skill that children need to succeed academically, socially, and emotionally. Brain regions essential to self-control are immature at birth and develop slowly throughout childhood. From ages 3 to 6 years, as these brain regions become more mature, children show improved ability to control impulses, shift their attention flexibly,…

  3. Self-Control and the Developing Brain

    ERIC Educational Resources Information Center

    Tarullo, Amanda R.; Obradovic, Jelena; Gunnar, Megan R.

    2009-01-01

    Self-control is a skill that children need to succeed academically, socially, and emotionally. Brain regions essential to self-control are immature at birth and develop slowly throughout childhood. From ages 3 to 6 years, as these brain regions become more mature, children show improved ability to control impulses, shift their attention flexibly,…

  4. Optimizing dentin bond durability: control of collagen degradation by matrix metalloproteinases and cysteine cathepsins

    PubMed Central

    Tjäderhane, Leo; Nascimento, Fabio D.; Breschi, Lorenzo; Mazzoni, Annalisa; Tersariol, Ivarne L.S.; Geraldeli, Saulo; Tezvergil-Mutluay, Arzu; Carrilho, Marcela R.; Carvalho, Ricardo M.; Tay, Franklin R.; Pashley, David H.

    2012-01-01

    Objectives Contemporary adhesives lose their bond strength to dentin regardless of the bonding system used. This loss relates to the hydrolysis of collagen matrix of the hybrid layers. The preservation of the collagen matrix integrity is a key issue in the attempts to improve the dentin bonding durability. Methods Dentin contains collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins, which are responsible for the hydrolytic degradation of collagen matrix in the bonded interface. Results The identities, roles and function of collagenolytic enzymes in mineralized dentin has been gathered only within last 15 years, but they have already been demonstrated to have an important role in dental hard tissue pathologies, including the degradation of the hybrid layer. Identifying responsible enzymes facilitates the development of new, more efficient methods to improve the stability of dentin-adhesive bond and durability of bond strength. Significance Understanding the nature and role of proteolytic degradation of dentin-adhesive interfaces has improved immensely and has practically grown to a scientific field of its own within only 10 years, holding excellent promise that stable resin-dentin bonds will be routinely available in a daily clinical setting already in a near future. PMID:22901826

  5. β-Dystroglycan cleavage by matrix metalloproteinase-2/-9 disturbs aquaporin-4 polarization and influences brain edema in acute cerebral ischemia.

    PubMed

    Yan, W; Zhao, X; Chen, H; Zhong, D; Jin, J; Qin, Q; Zhang, H; Ma, S; Li, G

    2016-06-21

    Dystroglycan (DG) is widely expressed in various tissues, and throughout the cerebral microvasculature. It consists of two subunits, α-DG and β-DG, and the cleavage of the latter by matrix metalloproteinase (MMP)-2 and -9 underlies a number of physiological and pathological processes. However, the involvement of MMP-2/-9-mediated β-DG cleavage in cerebral ischemia remains uncertain. In astrocytes, DG is crucial for maintaining the polarization of aquaporin-4 (AQP4), which plays a role in the regulation of cytotoxic and vasogenic edema. The present study aimed to explore the effects of MMP-2/-9-mediated β-DG cleavage on AQP4 polarization and brain edema in acute cerebral ischemia. A model of cerebral ischemia was established via permanent middle cerebral artery occlusion (pMCAO) in male C57BL/6 mice. Western blotting, real-time polymerase chain reaction (PCR), immunohistochemical staining, immunofluorescent staining, electron microscopy, and light microscopy were used. Captopril was applied as a selective MMP-2/-9 inhibitor. Recombinant mouse MMP (rmMMP)-2 and -9 were used in an in vitro cleavage experiment. The present study demonstrated evidence of β-DG cleavage by MMP-2/-9 in pMCAO mouse brains; this cleavage was implicated in AQP4 redistribution and brain edema in cerebral ischemia. In addition, captopril exacerbated cytotoxic edema and ameliorated vasogenic edema at 24h after pMCAO, and alleviated brain edema and neurological deficit at 48h and 72h. In conclusion, this study provides novel insight into the effects of MMP-2/-9-mediated β-DG cleavage in acute cerebral ischemia. Such findings might facilitate the development of a therapeutic strategy for the optimization of MMP-2/-9 targeted treatment in cerebral ischemia. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Activation of protein tyrosine kinases and matrix metalloproteinases causes blood-brain barrier injury: Novel mechanism for neurodegeneration associated with alcohol abuse.

    PubMed

    Haorah, James; Schall, Kathy; Ramirez, Servio H; Persidsky, Yuri

    2008-01-01

    Blood-brain barrier (BBB) formed by brain microvascular endothelial cells (BMVEC) regulates the passage of molecules and leukocytes in and out of the brain. Activation of matrix metalloproteinases (MMPs) and alteration of basement membrane (BM) associated with BBB injury was documented in stroke patients. While chronic alcoholism is a risk factor for developing stroke, underlying mechanisms are not well understood. We hypothesized that ethanol (EtOH)-induced protein tyrosine kinase (PTK) signaling resulted a loss of BBB integrity via MMPs activation and degradation of BM component, collagen IV. Treatment of BMVEC with EtOH or acetaldehyde (AA) for 2-48 h increased MMP-1, -2 and -9 activities or decreased the levels of tissue inhibitors of MMPs (TIMP-1, -2) in a PTK-dependent manner without affecting protein tyrosine phosphatase activity. Enhanced PTK activity after EtOH exposure correlated with increased phosphorylated proteins of selective receptor and nonreceptor PTKs. Up-regulation of MMPs activities and protein contents paralleled a decrease in collagen IV content, and inhibitors of EtOH metabolism, MMP-2 and -9, or PTK reversed all these effects. Using human BMVEC assembled into BBB models, we found that EtOH/AA diminished barrier tightness, augmented permeability, and monocyte migration across the BBB via activation of PTKs and MMPs. These findings suggest that alcohol associated BBB injury could be mediated by MMPs via BM protein degradation and could serve as a comorbidity factor for neurological disorders like stroke or neuroinflammation. Furthermore, our preliminary experiments indicated that human astrocytes secreted high levels of MMP-1 and -9 following exposure to EtOH, suggesting the role of BM protein degradation and BBB compromise as a result of glial activation by ethanol. These results provide better understanding of multifaceted effects of alcohol on the brain and could help develop new therapeutic interventions.

  7. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2.

    PubMed

    Eum, Sung Yong; Jaraki, Dima; András, Ibolya E; Toborek, Michal

    2015-09-15

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs.

  8. Molecular insights and therapeutic targets for blood-brain barrier disruption in ischemic stroke: critical role of matrix metalloproteinases and tissue-type plasminogen activator

    PubMed Central

    Jin, Rong; Yang, Guojun; Li, Guohong

    2010-01-01

    Blood-brain barrier (BBB) disruption, mediated through matrix metalloproteinases (MMPs) and other mechanisms, is a critical event during ischemic stroke. Tissue plasminogen activator (tPA) is the only FDA-approved thrombolytic therapy for acute ischemic stroke, but the efficacy and safety of its therapeutic application is limited by narrow treatment time windows and side effects. Thus, there is a pressing need to develop combinational therapy that could offset tPA side effects and improve efficacy in clinical practice. Recent experimental studies indicate that tPA has previously unidentified functions in the brain beyond its well established thrombolytic activity, which might contribute to tPA-related side effects through MMPs (mainly MMP-9) and several signaling pathways involved in LDL receptor-related protein (LRP), activated protein C (APC) and protease-activated receptor 1 (PAR-1), platelet-derived growth factor C (PDGF-C), and N-methyl-D-aspartate (NMDA) receptor. Therapeutic targeting of MMPs and/or tPA-related signaling pathways might offer promising new approaches to combination therapies for ischemic stroke. This review provides an overview of the relationship between structural components and function of the BBB/neurovascular unit with respect to ischemic stroke. We discuss how MMPs and tPA contribute to BBB disruption during ischemic stroke and highlight recent findings of molecular signaling pathways involved in neurotoxicity of tPA therapy. PMID:20302940

  9. [Metalloproteinases in meningoencephalitis].

    PubMed

    Pastuszka, Ewa; Pabin, Agata; Radkowski, Marek

    2008-01-01

    Meningoencephalitis remains a devastating disease with high morbidity and mortality. Despite advances in antibiotic treatment and critical care, mortality rate in bacterial meningoencephalitis is close to 25%. Moreover, neurological and neuropsychological sequelae emerge in up to 50% of survivors. Adverse outcome is significantly associated with events secondary to meningitis and damage of the blood-brain barrier. Several studies conducted on animals confirmed that matrix-metalloproteinases (MMP), a family of enzymes with major actions in the remodeling of exracellural matrix components facilitate this process which results in acute neurological complications. Gelatinases (MMP-2, MMP-9), the most complex family member, through degradation of gelatine and collagen IV play an important role in the pathogenesis of brain's inflamatory diseases (e.g. Guillian-Barre syndrom) and contribute to spreading the disease beyond the central nervous system. Infection (bacterial, viral or fungal) can lead to increased concentration and activity of metalloproteinases due to excessive enzyme's secretion or decrease in level of its natural inhibitors. A detailed analysis of those enzymes could help in developing new diagnostic and prognostic markers for meningoencephalitis and could facilitate new treatment approaches.

  10. [The role of metalloproteinases in psoriasis].

    PubMed

    Flisiak, Iwona; Serwin, Agnieszka; Niczyporuk, Wiaczesław; Chodynicka, Bozena

    2005-01-01

    Metalloproteinases play a crucial role in the destruction processes related to inflammation and carcinogenesis as well as in wound healing, morphogenesis and growth. Destruction of extracellular matrix proteins related to these enzymes activity and following damage of basement membranes favour angiogenesis and inflammatory infiltrations in psoriasis. Metalloproteina-ses activity can be controlled on different levels: genetic expression, enzyme activation or its inhibition. In this paper we discuss recently discovered role of metalloproteinases in the pathogenesis of skin diseases, including psoriasis. The most interesting seems to be results of research on possible application of metalloproteinases inhibitors in psoriasis treatment and usefulness of these enzymes measurement in the management of this disease.

  11. Matrix metalloproteinase-7 and matrix metalloproteinase-9 in pediatric multiple sclerosis.

    PubMed

    Yılmaz, Ünsal; Unsal, Yılmaz; Gücüyener, Kıvılcım; Kıvılcım, Gücüyener; Atak, Ayşegül; Ayşegül, Atak; Aral, Arzu; Arzu, Aral; Gürkaş, Esra; Esra, Gürkaş; Demir, Ercan; Ercan, Demir; Serdaroğlu, Ayşe; Ayşe, Serdaroğlu

    2012-09-01

    Matrix metalloproteinases and their tissue inhibitors play a key role in the pathogenesis of adult-onset multiple sclerosis, and were suggested as biomarkers of response to interferon-β, an established treatment in multiple sclerosis. However, data regarding pediatric population are scarce. We determined serum levels of matrix metalloproteinase-7, matrix metalloproteinase-9, and tissue inhibitor of matrix metalloproteinase-1 in children, and evaluated effects of interferon-β therapy on these measures. Serum samples from 14 children with relapsing, remitting multiple sclerosis at baseline and at month 12, and from 15 controls, were collected. Interferon-β treatment was initiated in eight patients. Mean serum matrix metalloproteinase-9 levels and matrix metalloproteinase-9/tissue inhibitor of matrix metalloproteinase-1 ratio were higher in patients compared with controls, and were reduced significantly in treated patients at month 12, but did not change in untreated patients. Mean matrix metalloproteinase-7 levels were lower in patients compared with controls, and increased significantly in the treated group, but did not change significantly in the untreated group. In pediatric multiple sclerosis, a shift in matrix metalloproteinase-9/tissue inhibitor of matrix metalloproteinase-1 balance toward proteolytic activity is evident, and interferon-β therapy demonstrates a beneficial effect on this disturbed balance. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Activated matrix metalloproteinase-8 in saliva as diagnostic test for periodontal disease? A case-control study.

    PubMed

    Izadi Borujeni, Susan; Mayer, Matthias; Eickholz, Peter

    2015-12-01

    Untreated periodontal disease may influence general health. However, how may a physician, who is not trained in periodontal probing, detect untreated periodontitis? Activated matrix metalloproteinase-8 (aMMP-8) in saliva correlates with periodontal probing parameters. Thus, sensitivity and specificity of a chair-side test for aMMP-8 to detect periodontitis were evaluated. Thirty cases [untreated chronic periodontitis (ChP); 15 generalized moderate and 15 generalized severe] and 30 controls [probing depths (PD) ≤3 mm, vertical probing attachment level (PAL-V) ≤2 mm at <30 % of sites) were examined periodontally (PD, PAL-V, bleeding on probing). Subsequently, the aMMP-8 test was performed. The test kit becomes positive with ≥25 ng/ml aMMP-8 in the sample. The aMMP-8 test was positive in 87 % of ChP and in 40 % of controls. That corresponds to a sensitivity of 87 % and a specificity of 60 %. The sensitivity to detect generalized severe ChP was 93 % (60 % specificity). Backward stepwise logistic regression analysis to explain positive aMMP-8 tests identified exclusively ChP with an odds ratio of 9.8 (p < 0.001). Positive results of the aMMP-8 test significantly correlate with generalized ChP. The aMMP-8 test may be used by physicians to detect periodontitis in their patients.

  13. Understanding the brain by controlling neural activity

    PubMed Central

    Krug, Kristine; Salzman, C. Daniel; Waddell, Scott

    2015-01-01

    Causal methods to interrogate brain function have been employed since the advent of modern neuroscience in the nineteenth century. Initially, randomly placed electrodes and stimulation of parts of the living brain were used to localize specific functions to these areas. Recent technical developments have rejuvenated this approach by providing more precise tools to dissect the neural circuits underlying behaviour, perception and cognition. Carefully controlled behavioural experiments have been combined with electrical devices, targeted genetically encoded tools and neurochemical approaches to manipulate information processing in the brain. The ability to control brain activity in these ways not only deepens our understanding of brain function but also provides new avenues for clinical intervention, particularly in conditions where brain processing has gone awry. PMID:26240417

  14. Study on Control of Brain Temperature for Brain Hypothermia Treatment

    NASA Astrophysics Data System (ADS)

    Gaohua, Lu; Wakamatsu, Hidetoshi

    The brain hypothermia treatment is an attractive therapy for the neurologist because of its neuroprotection in hypoxic-ischemic encephalopathy patients. The present paper deals with the possibility of controlling the brain and other viscera in different temperatures from the viewpoint of system control. It is theoretically attempted to realize the special brain hypothermia treatment to cool only the head but to warm the body by using the simple apparatus such as the cooling cap, muffler and warming blanket. For this purpose, a biothermal system concerning the temperature difference between the brain and the other thoracico-abdominal viscus is synthesized from the biothermal model of hypothermic patient. The output controllability and the asymptotic stability of the system are examined on the basis of its structure. Then, the maximum temperature difference to be realized is shown dependent on the temperature range of the apparatus and also on the maximum gain determined from the coefficient matrices A, B and C of the biothermal system. Its theoretical analysis shows the realization of difference of about 2.5°C, if there is absolutely no constraint of the temperatures of the cooling cap, muffler and blanket. It is, however, physically unavailable. Those are shown by simulation example of the optimal brain temperature regulation using a standard adult database. It is thus concluded that the surface cooling and warming apparatus do no make it possible to realize the special brain hypothermia treatment, because the brain temperature cannot be cooled lower than those of other viscera in an appropriate temperature environment. This study shows that the ever-proposed good method of clinical treatment is in principle impossible in the actual brain hypothermia treatment.

  15. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2

    SciTech Connect

    Eum, Sung Yong Jaraki, Dima; András, Ibolya E.; Toborek, Michal

    2015-09-15

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1 h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24 h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs. - Highlights: • PCB153 disturbed human brain endothelial barrier through disruption of occludin. • Lipid raft-associated PP

  16. Apoptosis signal-regulating kinase 1 is involved in brain-derived neurotrophic factor (BDNF)-enhanced cell motility and matrix metalloproteinase 1 expression in human chondrosarcoma cells.

    PubMed

    Lin, Chih-Yang; Chang, Sunny Li-Yun; Fong, Yi-Chin; Hsu, Chin-Jung; Tang, Chih-Hsin

    2013-07-25

    Chondrosarcoma is the primary malignancy of bone that is characterized by a potent capacity to invade locally and cause distant metastasis, and is therefore associated with poor prognoses. Chondrosarcoma further shows a predilection for metastasis to the lungs. The brain-derived neurotrophic factor (BDNF) is a small molecule in the neurotrophin family of growth factors that is associated with the disease status and outcome of cancers. However, the effect of BDNF on cell motility in human chondrosarcoma cells is mostly unknown. Here, we found that human chondrosarcoma cell lines had significantly higher cell motility and BDNF expression compared to normal chondrocytes. We also found that BDNF increased cell motility and expression of matrix metalloproteinase-1 (MMP-1) in human chondrosarcoma cells. BDNF-mediated cell motility and MMP-1 up-regulation were attenuated by Trk inhibitor (K252a), ASK1 inhibitor (thioredoxin), JNK inhibitor (SP600125), and p38 inhibitor (SB203580). Furthermore, BDNF also promoted Sp1 activation. Our results indicate that BDNF enhances the migration and invasion activity of chondrosarcoma cells by increasing MMP-1 expression through a signal transduction pathway that involves the TrkB receptor, ASK1, JNK/p38, and Sp1. BDNF thus represents a promising new target for treating chondrosarcoma metastasis.

  17. Stachybotrys microspora triprenyl phenol-7, a novel fibrinolytic agent, suppresses superoxide production, matrix metalloproteinase-9 expression, and thereby attenuates ischemia/reperfusion injury in rat brain.

    PubMed

    Akamatsu, Yosuke; Saito, Atsushi; Fujimura, Miki; Shimizu, Hiroaki; Mekawy, Moataz; Hasumi, Keiji; Tominaga, Teiji

    2011-10-03

    Stachybotrys microspora triprenyl phenol-7 (SMTP-7) is a novel fibrinolytic agent with anti-inflammatory effect. Previous study demonstrated that SMTP-7 further ameliorated infarction volume in a mouse embolic stroke model compared with tissue type plasminogen activator (tPA), but the reason SMTP-7 has more beneficial effect than tPA has not yet been determined. In the present study, we investigated whether SMTP-7 has an intrinsic neuroprotective effect against transient focal cerebral ischemia (tFCI). Sprague-Dawley rats were subjected to tFCI by intraluminal middle cerebral artery occlusion for 2h. Following induction of tFCI, rats were randomized into two groups based on the agent administered: SMTP-7 group and vehicle group. We examined cerebral infarction volume 24h after reperfusion, and evaluated superoxide production, the expressions of nitrotyrosine and matrix metalloproteinase-9 (MMP-9), which play major roles in secondary brain injury and hemorrhagic transformation. The findings showed that SMTP-7 significantly suppressed superoxide production, the expression of nitrotyrosine and MMP-9 after tFCI, and consequently attenuated ischemic neuronal damage. These results suggest that SMTP-7 has an intrinsic neuroprotective effect on ischemia/reperfusion injury through the suppression of oxidative stress and MMP-9 activation. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Reactive Oxygen Species Control Senescence-Associated Matrix Metalloproteinase-1 through c-Jun-N-Terminal Kinase

    PubMed Central

    Dasgupta, Jaya; Kar, Supriya; Liu, Rong; Joseph, Joy; Kalayanaram, Balaraman; Remington, S. James; Chen, Cheshi; Melendez, J. Andres

    2010-01-01

    The lifetime exposure of organisms to oxidative stress influences many aging processes which involve the turnover of the extracellular matrix. In this study, we identify the redox-responsive molecular signals that drive senescence-associated (SA) matrix metalloproteinase-1 (MMP-1) expression. Precise biochemical monitoring revealed that senescent fibroblasts increase steady-state [H2O2] 3.5 fold (13.7→48.6 pM) relative to young cells. Restricting H2O2 production through low O2 exposure or by antioxidant treatments prevented SA increases in MMP-1 expression. The H2O2-dependent control of SA MMP-1 is attributed to sustained JNK activation and c-jun recruitment to the MMP-1 promoter. SA JNK activation corresponds to increases and decreases in the levels of its activating kinase (MKK-4) and inhibitory phosphatase (MKP-1), respectively. Enforced MKP-1 expression negates SA increases in JNK phosphorylation and MMP-1 production. Overall, these studies define redox-sensitive signaling networks regulating SA MMP-1 expression and link the free radical theory of aging to initiation of aberrant matrix turnover. PMID:20648623

  19. Brain ischaemia induces shedding of a BDNF-scavenger ectodomain from TrkB receptors by excitotoxicity activation of metalloproteinases and γ-secretases.

    PubMed

    Tejeda, Gonzalo S; Ayuso-Dolado, Sara; Arbeteta, Raquel; Esteban-Ortega, Gema M; Vidaurre, Oscar G; Díaz-Guerra, Margarita

    2016-04-01

    Stroke remains a leading cause of death and disability in the world with limited therapies available to restrict brain damage or improve functional recovery after cerebral ischaemia. A promising strategy currently under investigation is the promotion of brain-derived neurotrophic factor (BDNF) signalling through tropomyosin-related kinase B (TrkB) receptors, a pathway essential for neuronal survival and function. However, TrkB and BDNF-signalling are impaired by excitotoxicity, a primary pathological process in stroke also associated with neurodegenerative diseases. Pathological imbalance of TrkB isoforms is critical in neurodegeneration and is caused by calpain processing of BDNF high affinity full-length receptor (TrkB-FL) and an inversion of the transcriptional pattern of the Ntrk2 gene, to favour expression of the truncated isoform TrkB-T1 over TrkB-FL. We report here that both TrkB-FL and neuronal TrkB-T1 also undergo ectodomain shedding by metalloproteinases activated after ischaemic injury or excitotoxic damage of cortical neurons. Subsequently, the remaining membrane-bound C-terminal fragments (CTFs) are cleaved by γ-secretases within the transmembrane region, releasing their intracellular domains (ICDs) into the cytosol. Therefore, we identify TrkB-FL and TrkB-T1 as new substrates of regulated intramembrane proteolysis (RIP), a mechanism that highly contributes to TrkB-T1 regulation in ischaemia but is minor for TrkB-FL which is mainly processed by calpain. However, since the secreted TrkB ectodomain acts as a BDNF scavenger and significantly alters BDNF/TrkB signalling, the mechanism of RIP could contribute to neuronal death in excitotoxicity. These results are highly relevant since they reveal new targets for the rational design of therapies to treat stroke and other pathologies with an excitotoxic component.

  20. Matrix Metalloproteinase-2 and -9 Secreted by Leukemic Cells Increase the Permeability of Blood-Brain Barrier by Disrupting Tight Junction Proteins

    PubMed Central

    Feng, Saran; Cen, Jiannong; Huang, Yihong; Shen, Hongjie; Yao, Li; Wang, Yuanyuan; Chen, Zixing

    2011-01-01

    Central nervous system (CNS) involvement remains an important cause of morbidity and mortality in acute leukemia, the mechanisms of leukemic cell infiltration into the CNS have not yet been elucidated. The blood-brain barrier (BBB) makes CNS become a refugee to leukemic cells and serves as a resource of cells that seed extraneural sites. How can the leukemic cells disrupt this barrier and invasive the CNS, even if many of the currently available chemotherapies can not cross the BBB? Tight junction in endothelial cells occupies a central role in the function of the BBB. Except the well known role of degrading extracellular matrix in metastasis of cancer cells, here we show matrix metalloproteinase (MMP)-2 and -9, secreted by leukemic cells, mediate the BBB opening by disrupting tight junction proteins in the CNS leukemia. We demonstrated that leukemic cells impaired tight junction proteins ZO-1, claudin-5 and occludin resulting in increased permeability of the BBB. However, these alterations reduced when MMP-2 and -9 activities were inhibited by RNA interference strategy or by MMP inhibitor GM6001 in an in vitro BBB model. We also found that the disruption of the BBB in company with the down-regulation of ZO-1, claudin-5 and occludin and the up-regulation of MMP-2 and -9 in mouse brain tissues with leukemic cell infiltration by confocal imaging and the assay of in situ gelatin zymography. Besides, GM6001 protected all mice against CNS leukemia. Our findings suggest that the degradation of tight junction proteins ZO-1, claudin-5 and occludin by MMP-2 and -9 secreted by leukemic cells constitutes an important mechanism in the BBB breakdown which contributes to the invasion of leukemic cells to the CNS in acute leukemia. PMID:21857898

  1. AMMONIA INCREASES PARACELLULAR PERMEABILITY OF RAT BRAIN ENDOTHELIAL CELLS BY A MECHANISM ENCOMPASSING OXIDATIVE/NITROSATIVE STRESS AND ACTIVATION OF MATRIX METALLOPROTEINASES

    PubMed Central

    Skowrońska, Marta; Zielińska, Magdalena; Wójcik-Stanaszek, Luiza; Ruszkiewicz, Joanna; Milatovic, Dejan; Aschner, Michael; Albrecht, Jan

    2012-01-01

    Ammonia is responsible for cerebral edema (CE) associated with acute liver failure (ALF), but the role of the vasogenic mechanism has been a matter of dispute. Here, we tested the hypothesis that ammonia induces changes in blood-brain barrier (BBB) permeability by a mechanism coupled to oxidative/ nitrosative stress (ONS) evoked in the BBB-forming cerebral capillary endothelial cells. Treatment of a rat brain endothelial cell line (RBE-4) with ammonia (5 mmol/L, 24h) caused accumulation of ONS markers: reactive oxygen species (ROS), nitric oxide (NO) and peroxidation products of phospholipid-bound arachidonic acid, F2-isoprostanes (F2-IsoPs). Concurrently, ammonia increased the activity of extracellular matrix metalloproteinases (MMP-2/MMP-9), increased cell permeability to fluorescein isothiocyanate (FITC)-dextran (40 kDa), and increased the expression of y+LAT2, a transporter that mediates the uptake to the cells of the NO precursor, arginine (Arg). The increase of cell permeability was ameliorated upon co-treatment with a MMP inhibitor, SB-3CT and with an antioxidant, glutathione diethyl ester (GEE), which also reduced F2-IsoPs. Ammonia-induced ONS was attenuated by cytoprotective agents L- ornithine (Orn), phenylbutyrate (PB), and their conjugate L-ornithine phenylbutyrate (OP), an ammonia-trapping drug used to treat hyperammonemia. The results support the concept that ONS and ONS-related activation of MMPs in cerebral capillary endothelial cells contribute to the alterations in BBB permeability and to the vasogenic component of CE associated with ALF. PMID:22260250

  2. Ammonia increases paracellular permeability of rat brain endothelial cells by a mechanism encompassing oxidative/nitrosative stress and activation of matrix metalloproteinases.

    PubMed

    Skowrońska, Marta; Zielińska, Magdalena; Wójcik-Stanaszek, Luiza; Ruszkiewicz, Joanna; Milatovic, Dejan; Aschner, Michael; Albrecht, Jan

    2012-04-01

    Ammonia is responsible for cerebral edema associated with acute liver failure, but the role of the vasogenic mechanism has been a matter of dispute. Here, we tested the hypothesis that ammonia induces changes in blood-brain barrier (BBB) permeability by a mechanism coupled to oxidative/nitrosative stress (ONS) evoked in the BBB-forming cerebral capillary endothelial cells. Treatment of a rat brain endothelial cell line with ammonia (5 mmol/L, 24 h) caused accumulation of ONS markers: reactive oxygen species, nitric oxide and peroxidation products of phospholipid-bound arachidonic acid, F2-isoprostanes. Concurrently, ammonia increased the activity of extracellular matrix metalloproteinases (MMP-2/MMP-9), increased cell permeability to fluorescein isothiocyanate-dextran (40 kDa), and increased the expression of y+LAT2, a transporter that mediates the uptake to the cells of the nitric oxide precursor, arginine. The increase of cell permeability was ameliorated upon co-treatment with a MMP inhibitor, SB-3CT and with an antioxidant, glutathione diethyl ester, which also reduced F2-isoprostanes. Ammonia-induced ONS was attenuated by cytoprotective agents l-ornithine, phenylbutyrate, and their conjugate l-ornithine phenylbutyrate, an ammonia-trapping drug used to treat hyperammonemia. The results support the concept that ONS and ONS-related activation of MMPs in cerebral capillary endothelial cells contribute to the alterations in BBB permeability and to the vasogenic component of cerebral edema associated with acute liver failure. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  3. Effects of nitric oxide synthase deficiency on a disintegrin and metalloproteinase domain-containing protein 12 expression in mouse brain samples.

    PubMed

    Lendeckel, Uwe; Wolke, Carmen; Bernstein, Hans-Gert; Keilhoff, Gerburg

    2015-08-01

    A disintegrin and metalloproteinase domain-containing protein 12 (ADAM12) belongs to the ADAM family of transmembrane proteins. Via proteolysis, cell adhesion, cell-cell fusion, cell-matrix interaction and membrane protein shedding, ADAM proteins are involved in normal brain development, and also in cancer genesis and progression, and in inflammation. Therefore, neurobiological research focusing on this protein is increasing. Nitric oxide (NO), which is endogenously produced by NO synthases (NOS), is associated with glial tumors. However, knock-out of NOS produces only limited antitumor effects. The present study analyzed the expression of ADAM12 in the cortex and hippocampus of C57/BL6 wild-type mice, and endothelial NOS-, neuronal NOS-(nNOS) or inducible NOS (iNOS)-deficient (-/-) mice, at different stages of development. Expression of ADAM12 was quantified using immunoblot analysis of cortical and hippocampal tissue samples from fetal, neonatal (5 days postnatal), adult (12 weeks old) or >1 year old mice. Using reverse transcription-quantitative polymerase chain reaction, ADAM12 expression was analyzed in cultured N9, OLN93, C6 and PC12 cells, representing the four main cell types in the brain, following NOS inhibition. ADAM12 expression was low in all mouse genotypes and regions of the brain, and in fetal and neonatal mice, an increase in expression was observed with increasing age. The highest levels of expression were observed in the cortex of adult mice, iNOS(-/-) mice of >1 year and wild-type mice, and in the hippocampus of adult and iNOS(-/-) mice of >1 year. By contrast, ADAM12 expression was lowest in adult nNOS(-/-) mice. Inhibition of NOS using N(ω)-Nitro-L-arginine methyl ester hydrochloride, induced ADAM12 mRNA expression in N9 and PC12 cell lines. Inhibition of NOS using L-N(6)-(1-Iminoethyl)lysine dihydrochloride, induced ADAM12 mRNA expression in N9 and C6 cell lines. No change in ADAM12 expression was observed in OLN93 cells following NOS

  4. Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood brain barrier damage in early ischemic stroke stage

    PubMed Central

    Liu, Jie; Jin, Xinchun; Liu, Ke J.; Liu, Wenlan

    2012-01-01

    Blood brain barrier (BBB) disruption occurs early enough to be within the thrombolytic time window, and this early ischemic BBB damage is closely associated with hemorrhagic transformation and thus emerging as a promising target for reducing the hemorrhagic complications of thrombolytic stroke therapy. However, the mechanisms underlying early ischemic BBB damage remain poorly understood. Here we investigated the early molecular events of ischemic BBB damage using in vitro oxygen-glucose deprivation (OGD) and in vivo rat middle cerebral artery occlusion (MCAO) models. Exposure of bEND3 monolayer to OGD for 2 h significantly increased its permeability to FITC-labeled dextran, and promoted the secretion of metalloproteinase-2 and 9 (MMP-2/9) and cytosolic translocation of caveolin-1 (Cav-1). This same OGD treatment also led to rapid degradation of tight junction protein occludin and dissociation of claudin-5 from the cytoskeleton, which contributed to OGD-induced endothelial barrier disruption. Using selective MMP-2/9 inhibitor SB-3CT or their neutralizing antibodies or Cav-1 siRNA, we found that MMP-2 was the major enzyme mediating OGD-induced occludin degradation, while Cav-1 was responsible for claudin-5 redistribution. The interaction between Cav-1 and claudin-5 was further confirmed by coimmunoprecipitation. Consistent with these in vitro findings, we observed fluorescence tracer extravasation, increased gelatinolytic activity and elevated interstitial MMP-2 levels in ischemic subcortical tissue after 2-h MCAO. Moreover, occludin protein loss and claudin-5 redistribution were detected in ischemic cerebromicrovessels. These data indicate that cerebral ischemia initiates two rapid parallel processes, MMP-2-mediated occludin degradation and Cav-1-mediated claudin-5 redistribution, to cause BBB disruption at early stroke stages relevant to acute thrombolysis. PMID:22378877

  5. Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage.

    PubMed

    Liu, Jie; Jin, Xinchun; Liu, Ke J; Liu, Wenlan

    2012-02-29

    Blood-brain barrier (BBB) disruption occurs early enough to be within the thrombolytic time window, and this early ischemic BBB damage is closely associated with hemorrhagic transformation and thus emerging as a promising target for reducing the hemorrhagic complications of thrombolytic stroke therapy. However, the mechanisms underlying early ischemic BBB damage remain poorly understood. Here, we investigated the early molecular events of ischemic BBB damage using in vitro oxygen-glucose deprivation (OGD) and in vivo rat middle cerebral artery occlusion (MCAO) models. Exposure of bEND3 monolayer to OGD for 2 h significantly increased its permeability to FITC-labeled dextran and promoted the secretion of metalloproteinase-2 and -9 (MMP-2/9) and cytosolic translocation of caveolin-1 (Cav-1). This same OGD treatment also led to rapid degradation of tight junction protein occludin and dissociation of claudin-5 from the cytoskeleton, which contributed to OGD-induced endothelial barrier disruption. Using selective MMP-2/9 inhibitor SB-3CT (2-[[(4-phenoxyphenyl)sulfonyl]methyl]-thiirane) or their neutralizing antibodies or Cav-1 siRNA, we found that MMP-2 was the major enzyme mediating OGD-induced occludin degradation, while Cav-1 was responsible for claudin-5 redistribution. The interaction between Cav-1 and claudin-5 was further confirmed by coimmunoprecipitation. Consistent with these in vitro findings, we observed fluorescence tracer extravasation, increased gelatinolytic activity, and elevated interstitial MMP-2 levels in ischemic subcortical tissue after 2 h MCAO. Moreover, occludin protein loss and claudin-5 redistribution were detected in ischemic cerebromicrovessels. These data indicate that cerebral ischemia initiates two rapid parallel processes, MMP-2-mediated occludin degradation and Cav-1-mediated claudin-5 redistribution, to cause BBB disruption at early stroke stages relevant to acute thrombolysis.

  6. Thrombin mediates migration of rat brain astrocytes via PLC, Ca²⁺, CaMKII, PKCα, and AP-1-dependent matrix metalloproteinase-9 expression.

    PubMed

    Lin, Chih-Chung; Lee, I-Ta; Wu, Wen-Bin; Liu, Chiung-Ju; Hsieh, Hsi-Lung; Hsiao, Li-Der; Yang, Chien-Chung; Yang, Chuen-Mao

    2013-12-01

    Matrix metalloproteinase-9 (MMP-9) plays a crucial role in pathological processes of brain inflammation, injury, and neurodegeneration. Thrombin has been known as a regulator of MMP-9 expression and cells migration. However, the mechanisms underlying thrombin-induced MMP-9 expression in rat brain astrocytes (RBA-1 cells) remain unclear. Here, we demonstrated that thrombin induced the expression of pro-form MMP-9 and migration of RBA-1 cells, which were inhibited by pretreatment with the inhibitor of Gq-coupled receptor (GPAnt2A), Gi/o-coupled receptor (GPAnt2), PC-PLC (D609), PI-PLC (U73122), Ca(2+)-ATPase (thapsigargin, TG), calmodulin (CaMI), CaMKII (KN62), PKC (Gö6976 or GF109203X), MEK1/2 (PD98059), p38 MAPK (SB202190), JNK1/2 (SP600125), or AP-1 (Tanshinone IIA) or the intracellular calcium chelator (BAPTA/AM) and transfection with siRNA of PKCα, Erk2, JNK1, p38 MAPK, c-Jun, or c-Fos. In addition, thrombin-induced elevation of intracellular Ca(2+) concentration was attenuated by PPACK (a thrombin inhibitor). Thrombin further induced CaMKII phosphorylation and PKCα translocation, which were inhibited by U73122, D609, KN62, TG, or BAPTA/AM. Thrombin also induced PKCα-dependent p42/p44 MAPK and JNK1/2, but not p38 MAPK activation. Finally, we showed that thrombin enhanced c-Fos expression and c-Jun phosphorylation. c-Fos mRNA levels induced by thrombin were reduced by PD98059, SP600125, and Gö6976, but not SB202190. Thrombin stimulated in vivo binding of c-Fos to the MMP-9 promoter, which was reduced by pretreatment with SP600125 or PD98059, but not SB202190. These results concluded that thrombin activated a PLC/Ca(2+)/CaMKII/PKCα/p42/p44 MAPK and JNK1/2 pathway, which in turn triggered AP-1 activation and ultimately induced MMP-9 expression in RBA-1 cells.

  7. Brain Mechanisms of Attentional Control.

    ERIC Educational Resources Information Center

    Wilke, Thomas

    Lack of attentional control--inability to concentrate--has often made the difference between successful and unsuccessful performance on the part of athletes. Attention is controlled neurologically by a very complex interaction of a large portion of the cerebrum and is not localized to any one structure. The mechanism involves a memory retrieval…

  8. Brain Mechanisms of Attentional Control.

    ERIC Educational Resources Information Center

    Wilke, Thomas

    Lack of attentional control--inability to concentrate--has often made the difference between successful and unsuccessful performance on the part of athletes. Attention is controlled neurologically by a very complex interaction of a large portion of the cerebrum and is not localized to any one structure. The mechanism involves a memory retrieval…

  9. Multiple roles of metalloproteinases in neurological disorders.

    PubMed

    Yang, Yi; Hill, Jeff W; Rosenberg, Gary A

    2011-01-01

    Once thought to mainly act in brain to remodel the extracellular matrix, the family of metalloproteinases is important in many normal and pathological processes in the nervous system. Matrix metalloproteinases (MMPs) and A disintegrin and metalloproteinases (ADAMs) are the two major families of metalloproteinases in the brain. MMPs are comprised of several related enzymes that act on extracellular molecules. Normally, they are important in angiogenesis and neurogenesis in development. In neuroinflammatory illnesses, they disrupt the basal lamina and tight junction proteins to open the blood-brain barrier (BBB). ADAMs are important in neuroinflammation through activation of tumor necrosis factor-α (TNF-α) and their action as secretases that modulate the action of receptors on the cell surface. Four tissue inhibitors of metalloproteinases (TIMPs) are the main inhibitors of the MMPs and ADAMs. Recently, MMPs were found to affect DNA repair processes by an unexpected intranuclear action. MMPs and ADAMs have been implicated in the pathophysiology of neurodegenerative diseases such as Alzheimer's disease and vascular cognitive impairment. Growing literature on the functions of MMPs and ADAMs in the central nervous system is opening up new and exciting areas of research that may lead to novel approaches to treatment of neurological diseases. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Gut-brain mechanisms controlling glucose homeostasis

    PubMed Central

    Scarlett, Jarrad M.

    2015-01-01

    Our current understanding of glucose homeostasis is centered on glucose-induced secretion of insulin from pancreatic islets and insulin action on glucose metabolism in peripheral tissues. In addition, however, recent evidence suggests that neurocircuits located within a brain-centered glucoregulatory system work cooperatively with pancreatic islets to promote glucose homeostasis. Among key observations is evidence that, in addition to insulin-dependent mechanisms, the brain has the capacity to potently lower blood glucose levels via mechanisms that are insulin-independent, some of which are activated by signals emanating from the gastrointestinal tract. This review highlights evidence supporting a key role for a “gut-brain-liver axis” in control of glucose homeostasis by the brain-centered glucoregulatory system and the implications of this regulatory system for diabetes pathogenesis and treatment. PMID:25705395

  11. Inflammatory and metalloproteinases profiles predict three-month poor outcomes in ischemic stroke treated with thrombolysis.

    PubMed

    Gori, Anna Maria; Giusti, Betti; Piccardi, Benedetta; Nencini, Patrizia; Palumbo, Vanessa; Nesi, Mascia; Nucera, Antonia; Pracucci, Giovanni; Tonelli, Paolina; Innocenti, Eleonora; Sereni, Alice; Sticchi, Elena; Toni, Danilo; Bovi, Paolo; Guidotti, Mario; Tola, Maria Rosaria; Consoli, Domenico; Micieli, Giuseppe; Tassi, Rossana; Orlandi, Giovanni; Sessa, Maria; Perini, Francesco; Delodovici, Maria Luisa; Zedde, Maria Luisa; Massaro, Francesca; Abbate, Rosanna; Inzitari, Domenico

    2017-09-01

    Inflammatory mediators and metalloproteinases are altered in acute ischemic stroke (AIS) and play a detrimental effect on clinical severity and hemorrhagic transformation of the ischemic brain lesion. Using data from the Italian multicenter observational MAGIC (MArker bioloGici nell'Ictus Cerebrale) Study, we evaluated the effect of inflammatory and metalloproteinases profiles on three-month functional outcome, hemorrhagic transformation and mortality in 327 patients with AIS treated with intravenous thrombolys in according to SITS-MOST (Safe Implementation of Thrombolysis in Stroke-MOnitoring STudy) criteria. Circulating biomarkers were assessed at baseline and 24 h after thrombolysis. Adjusting for age, sex, baseline glycemia and National Institute of Health Stroke Scale, history of atrial fibrillation or congestive heart failure, and of inflammatory diseases or infections, baseline alpha-2macroglobulin (A2M), baseline serum amyloid protein (SAP) and pre-post tissue-plasminogen activator (tPA) variations (Δ) of metalloproteinase 9, remained significantly and independently associated with three-month death [OR (95% CI):A2M:2.99 (1.19-7.53); SAP:5.46 (1.64-18.74); Δmetalloproteinase 9:1.60 (1.12-2.27)]. The addition of baseline A2M and Δmetalloproteinase 9 or baseline SAP and Δmetalloproteinase 9 (model-2 or model-3) to clinical variables (model-1) significantly improved the area under curve for prediction of death [model-2 with A2M: p = 0.0205; model-3 with SAP: p = 0.001]. In conclusion, among AIS patients treated with thrombolysis, circulating A2M, SAP and Δmetalloproteinase 9 are independent markers of poor outcome. These results may prompt controlled clinical research about agents antagonizing their effect.

  12. The Teenage Brain: Self Control.

    PubMed

    Casey, Bj; Caudle, Kristina

    2013-04-01

    Adolescence refers to the transition from childhood to adulthood that begins with the onset of puberty and ends with successful independence from the parent. A paradox for human adolescence is why, during a time when the individual is probably faster, stronger, of higher reasoning capacity and more resistant to disease, there is such an increase in mortality relative to childhood. These untimely deaths are not due to disease, but rather to preventable forms of death (accidental fatalities, suicide and homicide) associated with adolescents putting themselves in harm's way due, in part, to diminished self control - the ability to suppress inappropriate emotions, desires and actions. This paper highlights how self control varies as a function of age, context and the individual and delineates its neurobiological basis.

  13. Direct brain control and communication in paralysis.

    PubMed

    Birbaumer, Niels; Gallegos-Ayala, Guillermo; Wildgruber, Moritz; Silvoni, Stefano; Soekadar, Surjo R

    2014-01-01

    Despite considerable growth in the field of brain-computer or brain-machine interface (BCI/BMI) research reflected in several hundred publications each year, little progress was made to enable patients in complete locked-in state (CLIS) to reliably communicate using their brain activity. Independent of the invasiveness of the BCI systems tested, no sustained direct brain control and communication was demonstrated in a patient in CLIS so far. This suggested a more fundamental theoretical problem of learning and attention in brain communication with BCI/BMI, formulated in the extinction-of-thought hypothesis. While operant conditioning and goal-directed thinking seems impaired in complete paralysis, classical conditioning of brain responses might represent the only alternative. First experimental studies in CLIS using semantic conditioning support this assumption. Evidence that quality-of-life in locked-in-state is not as limited and poor as generally believed draise doubts that "patient wills" or "advanced directives"signed long-before the locked-in-state are useful. On the contrary, they might be used as an excuse to shorten anticipated long periods of care for these patients avoiding associated financial and social burdens. Current state and availability of BCI/BMI systems urge a broader societal discourse on the pressing ethical challenges associated with the advancements in neurotechnology and BCI/BMI research.

  14. Effect of Synthetic Matrix Metalloproteinase Inhibitors on Lipopolysaccharide-Induced Blood-Brain Barrier Opening in Rodents: Differences in Response Based on Strains and Solvents

    PubMed Central

    Rosenberg, Gary A.; Estrada, Eduardo Y.; Mobashery, Shahriar

    2007-01-01

    Matrix metalloproteinase inhibitors (MMPIs) reduce blood-brain barrier (BBB) disruption and prevent cell death. Animal models of multiple sclerosis, cerebral ischemia and hemorrhage, and bacterial meningitis respond to treatment with MMPIs. We have used the intracerebral injection of lipopolysaccharide (LPS) in rat, which induces MMP production and results in a delayed opening of the BBB, to screen MMPIs to identify therapeutic agents. We hypothesized that the mouse would respond similarly to LPS and that the mouse/LPS model of BBB damage would be more useful for screening of MMPIs. Therefore, we adapted the rat LPS model to the mouse and compared the response to LPS and treatment with MMPIs. Wistar-Kyoto rats (WKY) and three strains of mice had stereotactic injections of LPS into the caudate. 14C-sucrose was used to measure permeability of the BBB 24 hours after injection. Initially, we tested three broad-spectrum MMPIs in the rat, BB-1101, BB-94, and BB-2293, and a MMP-2 selective inhibitor, IW449; both BB-1101 and BB-94 significantly suppressed LPS-induced BBB damage (p<0.05). In the 3 mouse strains, C57/BL6, C57/BL10, and C57/BL10HIIIR2, LPS significantly opened the BBB in C57/BL6, and it was the only strain that showed a reduction in BBB permeability with BB-94. Treatment with methylprednisolone and several broad spectrum MMPIs, including BB-1101, were ineffective in the C57/BL6. There was a significant reduction in BBB permeability seen with 10% dimethyl sulfoxide (DMSO) alone, which was used to dissolve the selective MMP-2 and -9 inhibitor, SB-3CT. The tetracycline derivative, minocycline, reduced the BBB injury in mouse by blocking the production of MMP-9. Our results show variability in rats and mice to LPS and MMPIs, which most likely is based on genetic make-up. Understanding these differences may provide important clues that could guide selection of MMPIs in treatment of neurological diseases. PMID:17184743

  15. Efficient foot motor control by Neymar's brain.

    PubMed

    Naito, Eiichi; Hirose, Satoshi

    2014-01-01

    How very long-term (over many years) motor skill training shapes internal motor representation remains poorly understood. We provide valuable evidence that the football brain of Neymar da Silva Santos Júnior (the Brasilian footballer) recruits very limited neural resources in the motor-cortical foot regions during foot movements. We scanned his brain activity with a 3-tesla functional magnetic resonance imaging (fMRI) while he rotated his right ankle at 1 Hz. We also scanned brain activity when three other age-controlled professional footballers, two top-athlete swimmers and one amateur footballer performed the identical task. A comparison was made between Neymar's brain activity with that obtained from the others. We found activations in the left medial-wall foot motor regions during the foot movements consistently across all participants. However, the size and intensity of medial-wall activity was smaller in the four professional footballers than in the three other participants, despite no difference in amount of foot movement. Surprisingly, the reduced recruitment of medial-wall foot motor regions became apparent in Neymar. His medial-wall activity was smallest among all participants with absolutely no difference in amount of foot movement. Neymar may efficiently control given foot movements probably by largely conserving motor-cortical neural resources. We discuss this possibility in terms of over-years motor skill training effect, use-dependent plasticity, and efficient motor control.

  16. Brain-Machine Interface Control Algorithms.

    PubMed

    Shanechi, Maryam M

    2016-12-14

    Motor brain-machine interfaces (BMI) allow subjects to control external devices by modulating their neural activity. BMIs record the neural activity, use a mathematical algorithm to estimate the subject's intended movement, actuate an external device, and provide visual feedback of the generated movement to the subject. A critical component of a BMI system is the control algorithm, termed decoder. Significant progress has been made in the design of BMI decoders in recent years resulting in proficient control in non-human primates and humans. In this review article, we discuss the decoding algorithms developed in the BMI field, with particular focus on recent designs that are informed by closed-loop control ideas. A motor BMI can be modeled as a closed-loop control system, where the controller is the brain, the plant is the prosthetic, the feedback is the biofeedback, and the control command is the neural activity. Additionally, compared to other closed-loop systems, BMIs have various unique properties. Neural activity is noisy and stochastic, and often consists of a sequence of spike trains. Neural representations of movement could be non-stationary and change over time, for example as a result of learning. We review recent decoder designs that take these unique properties into account. We also discuss the opportunities that exist at the interface of control theory, statistical inference, and neuroscience to devise a control-theoretic framework for BMI design and help develop the next-generation BMI control algorithms.

  17. Review of real brain-controlled wheelchairs

    NASA Astrophysics Data System (ADS)

    Fernández-Rodríguez, Á.; Velasco-Álvarez, F.; Ron-Angevin, R.

    2016-12-01

    This paper presents a review of the state of the art regarding wheelchairs driven by a brain-computer interface. Using a brain-controlled wheelchair (BCW), disabled users could handle a wheelchair through their brain activity, granting autonomy to move through an experimental environment. A classification is established, based on the characteristics of the BCW, such as the type of electroencephalographic signal used, the navigation system employed by the wheelchair, the task for the participants, or the metrics used to evaluate the performance. Furthermore, these factors are compared according to the type of signal used, in order to clarify the differences among them. Finally, the trend of current research in this field is discussed, as well as the challenges that should be solved in the future.

  18. When "altering brain function" becomes "mind control".

    PubMed

    Koivuniemi, Andrew; Otto, Kevin

    2014-01-01

    Functional neurosurgery has seen a resurgence of interest in surgical treatments for psychiatric illness. Deep brain stimulation (DBS) technology is the preferred tool in the current wave of clinical experiments because it allows clinicians to directly alter the functions of targeted brain regions, in a reversible manner, with the intent of correcting diseases of the mind, such as depression, addiction, anorexia nervosa, dementia, and obsessive compulsive disorder. These promising treatments raise a critical philosophical and humanitarian question. "Under what conditions does 'altering brain function' qualify as 'mind control'?" In order to answer this question one needs a definition of mind control. To this end, we reviewed the relevant philosophical, ethical, and neurosurgical literature in order to create a set of criteria for what constitutes mind control in the context of DBS. We also outline clinical implications of these criteria. Finally, we demonstrate the relevance of the proposed criteria by focusing especially on serendipitous treatments involving DBS, i.e., cases in which an unintended therapeutic benefit occurred. These cases highlight the importance of gaining the consent of the subject for the new therapy in order to avoid committing an act of mind control.

  19. Embryonal brain tumors and developmental control genes

    SciTech Connect

    Aguzzi, A.

    1995-12-31

    Cell proliferation in embryogenesis and neoplastic transformation is thought to be controlled by similar sets of regulatory genes. This is certainly true for tumors of embryonic origin, such as Ewing sarcoma, Wilms` tumor and retinoblastoma, in which developmental control genes are either activated as oncogenes to promote proliferation, or are inactivated to eliminate their growth suppressing function. However, to date little is known about the genetic events underlying the pathogenesis of medulloblastoma, the most common brain tumor in children, which still carries an unfavourable prognosis. None of the common genetic alterations identified in other neuroectodermal tumors, such as mutation of the p53 gene or amplification of tyrosine kinase receptor genes, could be uncovered as key events in the formation of medulloblastoma. The identification of regulatory genes which are expressed in this pediatric brain tumor may provide an alternative approach to gain insight into the molecular aspects of tumor formation.

  20. Brain Circuitry Controlling Sleep and Wakefulness.

    PubMed

    Horner, Richard L; Peever, John H

    2017-08-01

    This article outlines the fundamental brain mechanisms that control sleep-wake patterns and reviews how pathologic changes in these control mechanisms contribute to common sleep disorders. Discrete but interconnected clusters of cells located within the brainstem and hypothalamus comprise the circuits that generate wakefulness, non-rapid eye movement (non-REM) sleep, and REM sleep. These clusters of cells use specific neurotransmitters, or collections of neurotransmitters, to inhibit or excite their respective sleep- and wake-promoting target sites. These excitatory and inhibitory connections modulate not only the presence of wakefulness or sleep, but also the levels of arousal within those states, including the depth of sleep, degree of vigilance, and motor activity. Dysfunction or degeneration of wake- and sleep-promoting circuits is associated with narcolepsy, REM sleep behavior disorder, and age-related sleep disturbances. Research has made significant headway in identifying the brain circuits that control wakefulness, non-REM, and REM sleep and has led to a deeper understanding of common sleep disorders and disturbances.

  1. Matrix metalloproteinase inhibitors.

    PubMed

    Wojtowicz-Praga, S M; Dickson, R B; Hawkins, M J

    1997-01-01

    The matrix metalloproteinases (MMPs) are a family of at least fifteen secreted and membrane-bound zinc-endopeptidases. Collectively, these enzymes can degrade all of the components of the extracellular matrix, including fibrallar and non-fibrallar collagens, fibronectin, laminin and basement membrane glycoproteins. MMPs are thought to be essential for the diverse invasive processes of angiogenesis and tumor metastasis. Numerous studies have shown that there is a close association between expression of various members of the MMP family by tumors and their proliferative and invasive behavior and metastatic potential. In some of human cancers a positive correlation has also been demonstrated between the intensity of new blood vessel growth (angiogenesis) and the likelihood of developing metastases. Thus, control of MMP activity in these two different contexts has generated considerable interest as a possible therapeutic target. The tissue inhibitors of metalloproteinases (TIMPs) are naturally occurring proteins that specifically inhibit matrix metalloproteinases, thus maintaining balance between matrix destruction and formation. An imbalance between MMPs and the associated TIMPs may play a significant role in the invasive phenotype of malignant tumors. TIMP-1 has been shown to inhibit tumor-induced angiogenesis in experimental systems. These findings raised the possibility of using an agent that affects expression or activity of MMPs as an anti-cancer therapy. TIMPs are probably not suitable for pharmacologic applications due to their short half-life in vivo. Batimastat (BB-94) and marimastat (BB-2516) are synthetic, low-molecular weight MMP inhibitors. They have a collagen-mimicking hydroxamate structure, which facilitates chelation of the zinc ion in the active site of the MMPs. These compounds inhibit MMPs potently and specifically. Batimastat was the first synthetic MMP inhibitor studied in humans with advanced malignancies, but its usefulness has been limited by

  2. Metalloproteinases and Wound Healing

    PubMed Central

    Caley, Matthew P.; Martins, Vera L.C.; O'Toole, Edel A.

    2015-01-01

    Significance: Matrix metalloproteinases (MMPs) are present in both acute and chronic wounds. They play a pivotal role, with their inhibitors, in regulating extracellular matrix degradation and deposition that is essential for wound reepithelialization. The excess protease activity can lead to a chronic nonhealing wound. The timed expression and activation of MMPs in response to wounding are vital for successful wound healing. MMPs are grouped into eight families and display extensive homology within these families. This homology leads in part to the initial failure of MMP inhibitors in clinical trials and the development of alternative methods for modulating the MMP activity. MMP-knockout mouse models display altered wound healing responses, but these are often subtle phenotypic changes indicating the overlapping MMP substrate specificity and inter-MMP compensation. Recent Advances: Recent research has identified several new MMP modulators, including photodynamic therapy, protease-absorbing dressing, microRNA regulation, signaling molecules, and peptides. Critical Issues: Wound healing requires the controlled activity of MMPs at all stages of the wound healing process. The loss of MMP regulation is a characteristic of chronic wounds and contributes to the failure to heal. Future Directions: Further research into how MMPs are regulated should allow the development of novel treatments for wound healing. PMID:25945285

  3. Slow brain potentials after withdrawal of control.

    PubMed

    Elbert, T; Rockstroh, B; Lutzenberger, W; Birbaumer, N

    1982-01-01

    The present experiment was designed to replicate and extend the previous finding of an increased postimperative negative slow brain potential shift (PINV) in healthy subjects following an unexpected change from the condition of control over an aversive imperative stimulus to that of loss of control. Two groups of 16 male students each participated in a constant-foreperiod reaction time paradigm with two warning stimuli (WS), each of 6 s duration, followed by two imperative stimuli (IS) of either aversive (loud noise) or neutral (soft tone) quality. The experimental subjects could terminate each IS by pressing a microswitch within 300 ms of IS-onset. After they had experienced this contingency for 40 trials, control was withdrawn in that the IS lasted for 5 s during another 40-trial block, irrespective of the actual motor response of the subject. The yoked control subjects received the same stimuli and performed the same motor response as the experimental subjects, but experienced no contingency between response and IS-termination. EEGs were recorded monopolarly from Fz, Cz, and Pz. In response to the unexpectedly uncontrollable aversive IS, the experimental subjects showed a pronounced PINV over frontal areas, while no comparable PINV developed in yoked controls. Experimental subjects showed no PINV during the first trial block (control conditions), and in response to the neutral uncontrollable IS. Statistical analyses of principle components documented that the PINV can be considered an independent endogenous component.

  4. Brain mechanisms that control sleep and waking

    NASA Astrophysics Data System (ADS)

    Siegel, Jerome

    This review paper presents a brief historical survey of the technological and early research that laid the groundwork for recent advances in sleep-waking research. A major advance in this field occurred shortly after the end of World War II with the discovery of the ascending reticular activating system (ARAS) as the neural source in the brain stem of the waking state. Subsequent research showed that the brain stem activating system produced cortical arousal via two pathways: a dorsal route through the thalamus and a ventral route through the hypothalamus and basal forebrain. The nuclei, pathways, and neurotransmitters that comprise the multiple components of these arousal systems are described. Sleep is now recognized as being composed of two very different states: rapid eye movements (REMs) sleep and non-REM sleep. The major findings on the neural mechanisms that control these two sleep states are presented. This review ends with a discussion of two current views on the function of sleep: to maintain the integrity of the immune system and to enhance memory consolidation.

  5. Distinct roles for matrix metalloproteinase-2 and alpha4 integrin in autoimmune T cell extravasation and residency in brain parenchyma during experimental autoimmune encephalomyelitis.

    PubMed

    Graesser, D; Mahooti, S; Madri, J A

    2000-09-22

    Expression of alpha4 integrin by auto-reactive T cells is critical for their ability to induce EAE, an autoimmune disease of the central nervous system in mice, used as a model to study human multiple sclerosis. Having previously identified one role for alpha4 integrin in adhesion-mediated induction of matrix metalloproteinase-2 (MMP-2), an enzyme that degrades the subendothelial basement membrane matrix, we investigated independent roles for MMP-2 and alpha4 integrin during EAE. The data suggest that expression of alpha4 integrin by auto-reactive T cells is important not only in mediating MMP-2 induction to facilitate entry into the CNS, but also plays a role in maintaining residency within the CNS.

  6. How the body controls brain temperature

    PubMed Central

    Zhu, Mingming; Ackerman, Joseph J. H.; Sukstanskii, Alexander L.; Yablonskiy, Dmitriy A.

    2007-01-01

    Normal brain functioning largely depends on maintaining brain temperature. However, the mechanisms protecting brain against a cooler environment are poorly understood. Reported herein is the first detailed measurement of the brain-temperature profile. It is found to be exponential, defined by a characteristic temperature shielding length, with cooler peripheral areas and a warmer brain core approaching body temperature. Direct cerebral blood flow (CBF) measurements with microspheres show that the characteristic temperature shielding length is inversely proportional to the square root of CBF in excellent agreement with a theoretical model. This “temperature shielding effect” quantifies the means by which CBF prevents “extracranial cold” from penetrating deep brain structures. The effect is crucial for research and clinical applications; the relationship between brain, body, and extracranial temperatures can now be quantitatively predicted. PMID:16840581

  7. Graph analysis of functional brain networks for cognitive control of action in traumatic brain injury.

    PubMed

    Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P

    2012-04-01

    Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly dispersed frontal and parietal activity during performance of cognitive control tasks. We constructed binary and weighted functional networks and calculated their topological properties using a graph theoretical approach. Twenty-three adults with traumatic brain injury and 26 age-matched controls were instructed to switch between coordination modes while making spatially and temporally coupled circular motions with joysticks during event-related functional magnetic resonance imaging. Results demonstrated that switching performance was significantly lower in patients with traumatic brain injury compared with control subjects. Furthermore, although brain networks of both groups exhibited economical small-world topology, altered functional connectivity was demonstrated in patients with traumatic brain injury. In particular, compared with controls, patients with traumatic brain injury showed increased connectivity degree and strength, and higher values of local efficiency, suggesting adaptive mechanisms in this group. Finally, the degree of increased connectivity was significantly correlated with poorer switching task performance and more severe brain injury. We conclude that analysing the functional brain network connectivity provides new insights into understanding cognitive control changes following brain injury.

  8. Effects of Vitamin K on Matrix Metalloproteinase-3 and Rheumatoid Factor in Women with Rheumatoid Arthritis: A Randomized, Double-Blind, Placebo-Controlled Trial.

    PubMed

    Shishavan, Neda Ghamarzad; Gargari, Bahram Pourghassem; Kolahi, Sousan; Hajialilo, Mehrzad; Jafarabadi, Mohammad Asghari; Javadzadeh, Yousef

    2016-07-01

    Rheumatoid arthritis (RA) is an autoimmune disease characterized by an increase in some autoantibodies and proteolytic enzymes, leading to joint destruction. Although recent investigations have considered vitamin K as an anti-inflammatory nutrient with an important role in bone metabolism, there is currently limited information on its efficacy in RA. We aimed to examine the effects of vitamin K1 (phylloquinone) on the biomarker of joint destruction and autoantibody in patients with RA. This was a randomized clinical trial in which 64 women with RA who fulfilled the eligibility criteria were randomly allocated to an intervention or a control group. Vitamin K1 or placebo was administered to the participants for 8 weeks. Baseline characteristics and anthropometric measures were obtained. Clinical status using disease activity score in 28 joints (DAS-28), serum levels of matrix metalloproteinase-3 (MMP-3), and rheumatoid factor (RF) were assessed before and after the intervention. The serum level of MMP-3 compared with the baseline values did not change significantly in the groups. However, the serum concentration of RF decreased significantly in the vitamin K1 group (p = 0.041). Intergroup comparison showed no significant change in RF serum level after adjusting for relevant confounders (p > 0.05). Vitamin K1 supplementation at 10 mg/day for 8 weeks did not alter joint destruction and immune status in the patients with RA compared with the controls.

  9. TGF-β Plays a Key Role in Morphogenesis of the Pancreatic Islets of Langerhans by Controlling the Activity of the Matrix Metalloproteinase MMP-2

    PubMed Central

    Miralles, Francisco; Battelino, Tadej; Czernichow, Paul; Scharfmann, Raphael

    1998-01-01

    Islets of Langerhans are microorgans scattered throughout the pancreas, and are responsible for synthesizing and secreting pancreatic hormones. While progress has recently been made concerning cell differentiation of the islets of Langerhans, the mechanism controlling islet morphogenesis is not known. It is thought that these islets are formed by mature cell association, first differentiating in the primitive pancreatic epithelium, then migrating in the extracellular matrix, and finally associating into islets of Langerhans. This mechanism suggests that the extracellular matrix has to be degraded for proper islet morphogenesis. We demonstrated in the present study that during rat pancreatic development, matrix metalloproteinase 2 (MMP-2) is activated in vivo between E17 and E19 when islet morphogenesis occurs. We next demonstrated that when E12.5 pancreatic epithelia develop in vitro, MMP-2 is activated in an in vitro model that recapitulates endocrine pancreas development (Miralles, F., P. Czernichow, and R. Scharfmann. 1998. Development. 125: 1017–1024). On the other hand, islet morphogenesis was impaired when MMP-2 activity was inhibited. We next demonstrated that exogenous TGF-β1 positively controls both islet morphogenesis and MMP-2 activity. Finally, we demonstrated that both islet morphogenesis and MMP-2 activation were abolished in the presence of a pan-specific TGF-β neutralizing antibody. Taken together, these observations demonstrate that in vitro, TGF-β is a key activator of pancreatic MMP-2, and that MMP-2 activity is necessary for islet morphogenesis. PMID:9813100

  10. Association of genetic polymorphisms in matrix metalloproteinase-9 and coronary artery disease in the Chinese Han population: a case-control study.

    PubMed

    Wu, Hai-di; Bai, Xiao; Chen, Dong-mei; Cao, Hong-yan; Qin, Ling

    2013-09-01

    Matrix metalloproteinase-9 (MMP-9) plays an important role in inflammation and matrix degradation involved in atherosclerosis and plaque rupture. The T allele of rs3918242 has been reported to lead to a high promoter activity and associate with the extent of coronary artery disease (CAD). And some studies have reported that the G allele of rs17576 might be associated with CAD. The aim of this study was to assess the association between the polymorphisms of the MMP-9 gene and CAD in the Chinese Han population. This case-control study comprised 258 CAD cases and 153 controls from the Chinese Han Population. The genomic DNA of MMP-9 was isolated from whole blood. Polymerase chain reaction-based restriction fragment length polymorphism was used to determine the rs3918242 and rs17576 genotypes in the MMP-9 gene and the total serum levels of MMP-9 were measured using enzyme-linked immunosorbent assay in both case and control groups. Analysis of MMP-9 gene polymorphisms showed that the frequencies of the T allele and CT+TT genotypes of rs3918242 were significantly higher in the case group than in the control group (p<0.05). However, the distribution of variant genotypes of rs17576 did not differ between the case and control groups (p>0.05). The total serum level of MMP-9 was significantly higher in the case group than in the control group (p<0.05). The subjects carrying T alleles in the CAD group had higher average serum MMP-9 levels compared with CC genotypes (p<0.05). Our results suggest that the single-nucleotide polymorphism of rs3918242 in the MMP-9 gene is associated with CAD and high serum levels of MMP-9 are also associated with CAD in the Chinese Han population. Therefore, genetic variation of rs3918242 may participate in the development of CAD through influencing MMP-9 expression.

  11. Brain-controlled body movement assistance devices and methods

    DOEpatents

    Leuthardt, Eric C.; Love, Lonnie J.; Coker, Rob; Moran, Daniel W.

    2017-01-10

    Methods, devices, systems, and apparatus, including computer programs encoded on a computer storage medium, for brain-controlled body movement assistance devices. In one aspect, a device includes a brain-controlled body movement assistance device with a brain-computer interface (BCI) component adapted to be mounted to a user, a body movement assistance component operably connected to the BCI component and adapted to be worn by the user, and a feedback mechanism provided in connection with at least one of the BCI component and the body movement assistance component, the feedback mechanism being configured to output information relating to a usage session of the brain-controlled body movement assistance device.

  12. Control-related systems in the human brain

    PubMed Central

    Power, Jonathan D; Petersen, Steven E

    2013-01-01

    A fundamental question in cognitive neuroscience is how the human brain self-organizes to perform tasks. Multiple accounts of this self-organization are currently influential and in this article we survey one of these accounts. We begin by introducing a psychological model of task control and several neuroimaging signals it predicts. We then discuss where such signals are found across tasks with emphasis on brain regions where multiple control signals are present. We then present results derived from spontaneous task-free functional connectivity between control-related regions that dovetail with distinctions made by control signals present in these regions, leading to a proposal that there are at least two task control systems in the brain. This prompts consideration of whether and how such control systems distinguish themselves from other brain regions in a whole-brain context. We present evidence from whole-brain networks that such distinctions do occur and that control systems comprise some of the basic system-level organizational elements of the human brain. We close with observations from the whole-brain networks that may suggest parsimony between multiple accounts of cognitive control. PMID:23347645

  13. E74-like factor 3 (ELF3) impacts on matrix metalloproteinase 13 (MMP13) transcriptional control in articular chondrocytes under proinflammatory stress.

    PubMed

    Otero, Miguel; Plumb, Darren A; Tsuchimochi, Kaneyuki; Dragomir, Cecilia L; Hashimoto, Ko; Peng, Haibing; Olivotto, Eleonora; Bevilacqua, Michael; Tan, Lujian; Yang, Zhiyong; Zhan, Yumei; Oettgen, Peter; Li, Yefu; Marcu, Kenneth B; Goldring, Mary B

    2012-01-27

    Matrix metalloproteinase (MMP)-13 has a pivotal, rate-limiting function in cartilage remodeling and degradation due to its specificity for cleaving type II collagen. The proximal MMP13 promoter contains evolutionarily conserved E26 transformation-specific sequence binding sites that are closely flanked by AP-1 and Runx2 binding motifs, and interplay among these and other factors has been implicated in regulation by stress and inflammatory signals. Here we report that ELF3 directly controls MMP13 promoter activity by targeting an E26 transformation-specific sequence binding site at position -78 bp and by cooperating with AP-1. In addition, ELF3 binding to the proximal MMP13 promoter is enhanced by IL-1β stimulation in chondrocytes, and the IL-1β-induced MMP13 expression is inhibited in primary human chondrocytes by siRNA-ELF3 knockdown and in chondrocytes from Elf3(-/-) mice. Further, we found that MEK/ERK signaling enhances ELF3-driven MMP13 transactivation and is required for IL-1β-induced ELF3 binding to the MMP13 promoter, as assessed by chromatin immunoprecipitation. Finally, we show that enhanced levels of ELF3 co-localize with MMP13 protein and activity in human osteoarthritic cartilage. These studies define a novel role for ELF3 as a procatabolic factor that may contribute to cartilage remodeling and degradation by regulating MMP13 gene transcription.

  14. E74-like Factor 3 (ELF3) Impacts on Matrix Metalloproteinase 13 (MMP13) Transcriptional Control in Articular Chondrocytes under Proinflammatory Stress*

    PubMed Central

    Otero, Miguel; Plumb, Darren A.; Tsuchimochi, Kaneyuki; Dragomir, Cecilia L.; Hashimoto, Ko; Peng, Haibing; Olivotto, Eleonora; Bevilacqua, Michael; Tan, Lujian; Yang, Zhiyong; Zhan, Yumei; Oettgen, Peter; Li, Yefu; Marcu, Kenneth B.; Goldring, Mary B.

    2012-01-01

    Matrix metalloproteinase (MMP)-13 has a pivotal, rate-limiting function in cartilage remodeling and degradation due to its specificity for cleaving type II collagen. The proximal MMP13 promoter contains evolutionarily conserved E26 transformation-specific sequence binding sites that are closely flanked by AP-1 and Runx2 binding motifs, and interplay among these and other factors has been implicated in regulation by stress and inflammatory signals. Here we report that ELF3 directly controls MMP13 promoter activity by targeting an E26 transformation-specific sequence binding site at position −78 bp and by cooperating with AP-1. In addition, ELF3 binding to the proximal MMP13 promoter is enhanced by IL-1β stimulation in chondrocytes, and the IL-1β-induced MMP13 expression is inhibited in primary human chondrocytes by siRNA-ELF3 knockdown and in chondrocytes from Elf3−/− mice. Further, we found that MEK/ERK signaling enhances ELF3-driven MMP13 transactivation and is required for IL-1β-induced ELF3 binding to the MMP13 promoter, as assessed by chromatin immunoprecipitation. Finally, we show that enhanced levels of ELF3 co-localize with MMP13 protein and activity in human osteoarthritic cartilage. These studies define a novel role for ELF3 as a procatabolic factor that may contribute to cartilage remodeling and degradation by regulating MMP13 gene transcription. PMID:22158614

  15. Matrix Metalloproteinases and Their Multiple Roles in Alzheimer's Disease

    PubMed Central

    Wang, Xiang-Xiang; Tan, Meng-Shan; Yu, Jin-Tai; Tan, Lan

    2014-01-01

    Alzheimer's disease (AD) is the most prevalent type of dementia. Pathological changes in the AD brain include amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs), as well as neuronal death and synaptic loss. Matrix metalloproteinases (MMPs) play an important role as inflammatory components in the pathogenesis of AD. MMP-2 might be assumed to have a protective role in AD and is the major MMP which is directly linked to Aβ in the brain. Synthesis of MMP-9 can be induced by Aβ, and the enzymes appear to exert multiple effects in AD in senile plaque homoeostasis. The proaggregatory influence on tau oligomer formation in strategic brain regions may be a potential neurotoxic side effect of MMP-9. MMP-3 levels are correlated to the duration of AD and correlate with the CSF T-tau and P-tau levels in the elderly controls. Elevated brain levels of MMP-3 might result in increased MMP-9 activity and indirectly facilitate tau aggregation. At present, the clinical utility of these proteins, particularly in plasma or serum, as potential early diagnostic biomarkers for AD remains to be established. More research is needed to understand the diverse roles of these proteases to design specific drugs and devise therapeutic strategies for AD. PMID:25050378

  16. Plasma levels of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-1 correlate with disease stage and survival in colorectal cancer patients.

    PubMed

    Waas, Erwin T; Hendriks, Thijs; Lomme, Roger M L M; Wobbes, Theo

    2005-04-01

    The matrix metalloproteinases and their inhibitors are known to be involved in the process of tumor invasion and progression. Our objective was to investigate the potential diagnostic and prognostic value of plasma matrix metalloproteinase-2 and -9 and tissue inhibitor of metalloproteinase-1 in colorectal cancer. Gelatinase bioactivity and immunoreactivity of pro-matrix metalloproteinase-2 and -9, tissue inhibitor of metalloproteinase-1, and carcinoembryonic antigen were determined simultaneously in preoperative plasma and serum of colorectal cancer patients (n = 94) and in healthy controls (n = 51). Plasma pro-matrix metalloproteinase-2 levels were lower in colorectal cancer patients (P < 0.0001) than in controls, and its gelatinolytic activity revealed an inverse correlation with adverse clinicopathologic parameters, such as lymph node involvement (P = 0.017), stage (0, I, II vs. III, IV; P = 0.012), and the carcinoembryonic antigen level (P = 0.016). Pro-matrix metalloproteinase-9 levels did not differ between patients and controls. Pro-matrix metalloproteinase-2 gelatinolytic activity showed potential value in colorectal cancer diagnosis, identifying patients with 70 percent sensitivity at 95 percent specificity. Pro-matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, and carcinoembryonic antigen all showed lower sensitivities. Combining pro-matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-1 measurements increased the sensitivity significantly to 84 percent. With respect to prognosis, tissue inhibitor of metalloproteinase-1 showed value in predicting disease outcome in our patient group, whereas pro-matrix metalloproteinase-2 and -9 did not. The combination of tissue inhibitor of metalloproteinase-1 and carcinoembryonic antigen was better in predicting three-year survival than tissue inhibitor of metalloproteinase-1 alone, but it remains to be determined if the combination would be a better marker for survival than

  17. Genome-wide DNA methylation identifies trophoblast invasion-related genes: Claudin-4 and Fucosyltransferase IV control mobility via altering matrix metalloproteinase activity.

    PubMed

    Hu, Yuxiang; Blair, John D; Yuen, Ryan K C; Robinson, Wendy P; von Dadelszen, Peter

    2015-05-01

    Previously we showed that extravillous cytotrophoblast (EVT) outgrowth and migration on a collagen gel explant model were affected by exposure to decidual natural killer cells (dNK). This study investigates the molecular causes behind this phenomenon. Genome wide DNA methylation of exposed and unexposed EVT was assessed using the Illumina Infinium HumanMethylation450 BeadChip array (450 K array). We identified 444 differentially methylated CpG loci in dNK-treated EVT compared with medium control (P < 0.05). The genes associated with these loci had critical biological roles in cellular development, cellular growth and proliferation, cell signaling, cellular assembly and organization by Ingenuity Pathway Analysis (IPA). Furthermore, 23 mobility-related genes were identified by IPA from dNK-treated EVT. Among these genes, CLDN4 (encoding claudin-4) and FUT4 (encoding fucosyltransferase IV) were chosen for follow-up studies because of their biological relevance from research on tumor cells. The results showed that the mRNA and protein expressions of both CLDN4 and FUT4 in dNK-treated EVT were significantly reduced compared with control (P < 0.01 for both CLDN4 and FUT4 mRNA expression; P < 0.001 for CLDN4 and P < 0.01 for FUT4 protein expression), and were inversely correlated with DNA methylation. Knocking down CLDN4 and FUT4 by small interfering RNA reduced trophoblast invasion, possibly through the altered matrix metalloproteinase (MMP)-2 and/or MMP-9 expression and activity. Taken together, dNK alter EVT mobility at least partially in association with an alteration of DNA methylation profile. Hypermethylation of CLDN4 and FUT4 reduces protein expression. CLDN4 and FUT4 are representative genes that participate in modulating trophoblast mobility.

  18. The bilingual brain: Flexibility and control in the human cortex

    NASA Astrophysics Data System (ADS)

    Buchweitz, Augusto; Prat, Chantel

    2013-12-01

    The goal of the present review is to discuss recent cognitive neuroscientific findings concerning bilingualism. Three interrelated questions about the bilingual brain are addressed: How are multiple languages represented in the brain? how are languages controlled in the brain? and what are the real-world implications of experience with multiple languages? The review is based on neuroimaging research findings about the nature of bilingual processing, namely, how the brain adapts to accommodate multiple languages in the bilingual brain and to control which language should be used, and when. We also address how this adaptation results in differences observed in the general cognition of bilingual individuals. General implications for models of human learning, plasticity, and cognitive control are discussed.

  19. Early Beneficial Effect of Matrix Metalloproteinase Inhibition on BBB Permeability as Measured by MRI Countered by Impaired Long-Term Recovery After Stroke in Rat Brain

    PubMed Central

    Sood, Rohit; Taheri, Saeid; Candelario-Jalil, Eduardo; Estrada, Eduardo Y.; Rosenberg, Gary A.

    2008-01-01

    Proteolytic disruption of the extracellular matrix with opening of the blood-brain barrier (BBB) due to MMPs occurs in reperfusion injury after stroke. MMP inhibition blocks the early disruption of the BBB, but the long-term consequences of short-term MMP inhibition are not known. Recently, a method to quantify BBB permeability by graphical methods was described that provides a way to study both early disruption of the BBB and long-term effects on recovery in the same animal. We used a broad-spectrum MMP inhibitor, BB1101, to determine both the usefulness of the MRI method for treatment studies and the long-term effects on recovery. MRI studies were performed in control (N=6) and drug treated (N=8) groups on a dedicated 4.7T MRI scanner. Adult WKY rats had a 2 hr MCAO and an MRI study after 3 hrs of reperfusion, which consisted of T2 and diffusion-weighted technique. Additionally, a rapid T1 mapping protocol was also implemented to acquire one pre-Gd-DTPA baseline data set followed by post injection data sets at 3 min intervals for 45 min. The same animal was imaged again at 48 hrs for lesion size estimation. Data was post processed pixel-wise to generate ADC and permeability coefficient maps. Treatment with BB-1101 significantly reduced BBB permeability at 3 hrs, but failed to reduce lesion size at 48 hrs. Behavioral studies showed impairment in recovery in treated rats. MRI allowed for the monitoring of multiple parameters in the same animal. Our studies showed that BB-1101 was an excellent inhibitor of the BBB damage. However, results show that BB-1101 may be responsible for significant deterioration in neurological status of treated animals. While these preliminary results suggest that BB-1101 is useful in reducing early BBB leakage due to reperfusion injury in stroke, further studies will be needed to determine whether the later detrimental effects can be eliminated by shorter time course of drug delivery. PMID:17700631

  20. Effects of matrix metalloproteinase inhibitors on bone resorption and orthodontic tooth movement.

    PubMed

    Holliday, L S; Vakani, A; Archer, L; Dolce, C

    2003-09-01

    Matrix metalloproteinases are involved in the regulation of bone remodeling. The hypothesis that matrix metalloproteinase inhibitors may be useful for experimentally limiting orthodontic tooth movement, a process involving perturbations of normal bone remodeling, was tested. General matrix metalloproteinase inhibitors limited the resorption of bone slices by mouse marrow cultures stimulated by calcitriol, parathyroid hormone, and basic-fibroblast growth factor. Pre-coating dentin slices with short arginine-glycine aspartic acid (RGD) peptides, but not arginine-glycine-glutamic acid (RGE) controls, restored bone resorption in the presence of matrix metalloproteinase inhibitors. Orthodontic tooth movement was inhibited by local delivery of Ilomastat, a general matrix metalloproteinase inhibitor, with the use of ethylene-vinyl-acetate (ELVAX) 40, a non-biodegradable, non-inflammatory sustained-release polymer. This study shows that orthodontic tooth movement can be inhibited with the use of matrix metalloproteinase inhibitors, and suggests a mechanistic link between matrix metalloproteinase activity and the production of RGD peptides.

  1. Japanese encephalitis virus induces matrix metalloproteinase-9 expression via a ROS/c-Src/PDGFR/PI3K/Akt/MAPKs-dependent AP-1 pathway in rat brain astrocytes

    PubMed Central

    2012-01-01

    Background Japanese encephalitis virus (JEV) infection is a major cause of acute encephalopathy in children, which destroys central nervous system (CNS) cells, including astrocytes and neurons. Matrix metalloproteinase (MMP)-9 has been shown to degrade components of the basal lamina, leading to disruption of the blood-brain barrier (BBB) and to contribute to neuroinflammatory responses in many neurological diseases. However, the detailed mechanisms of JEV-induced MMP-9 expression in rat brain astrocytes (RBA-1 cells) are largely unclear. Methods In this study, the effect of JEV on expression of MMP-9 was determined by gelatin zymography, western blot analysis, RT-PCR, and promoter assay. The involvement of AP-1 (c-Jun and c-Fos), c-Src, PDGFR, PI3K/Akt, and MAPKs in these responses were investigated by using the selective pharmacological inhibitors and transfection with siRNAs. Results Here, we demonstrate that JEV induces expression of pro-form MMP-9 via ROS/c-Src/PDGFR/PI3K/Akt/MAPKs-dependent, AP-1 activation in RBA-1 cells. JEV-induced MMP-9 expression and promoter activity were inhibited by pretreatment with inhibitors of AP-1 (tanshinone), c-Src (PP1), PDGFR (AG1296), and PI3K (LY294002), and by transfection with siRNAs of c-Jun, c-Fos, PDGFR, and Akt. Moreover, JEV-stimulated AP-1 activation was inhibited by pretreatment with the inhibitors of c-Src, PDGFR, PI3K, and MAPKs. Conclusion From these results, we conclude that JEV activates the ROS/c-Src/PDGFR/PI3K/Akt/MAPKs pathway, which in turn triggers AP-1 activation and ultimately induces MMP-9 expression in RBA-1 cells. These findings concerning JEV-induced MMP-9 expression in RBA-1 cells imply that JEV might play an important role in CNS inflammation and diseases. PMID:22251375

  2. HIV-1 Tat protein increases the permeability of brain endothelial cells by both inhibiting occludin expression and cleaving occludin via matrix metalloproteinase-9.

    PubMed

    Xu, Ruifen; Feng, Xuyang; Xie, Xin; Zhang, Jin; Wu, Daocheng; Xu, Lixian

    2012-02-03

    Brain homeostasis is maintained by the blood-brain barrier (BBB), which prevents the entrance of circulating molecules and immune cells into the central nervous system. The BBB is formed by specialized brain endothelial cells that are connected by tight junctions (TJ). Previous studies have proven that the Tat protein of human immunodeficiency virus type 1 (HIV-1) alters TJ protein expression. However, the mechanisms by which the alterations occur have not been characterized in detail. In this study, primary human brain microvascular endothelial cells (HBMEC) were exposed to recombinant HIV-1 Tat protein, and the effects on occludin were observed. Tat treatment decreased occludin mRNA and protein levels. This effect was partially abrogated by addition of the RhoA inhibitor C3 exoenzyme and the p160-Rho-associated coiled kinase (ROCK) inhibitor Y-27632. Meanwhile, Tat also induced MMP-9 expression. RNA interference targeting MMP-9 reduced both the paracellular permeability of Tat-treated HBMEC and the concentration of soluble occludin in supernatants from the cells. Taken together, these results show that the HIV-1 Tat protein disrupts BBB integrity, at least in part by decreasing the production of occludin.

  3. Bowels control brain: gut hormones and obesity.

    PubMed

    Bewick, Gavin A

    2012-01-01

    Peptide hormones are released from the gastrointestinal tract in response to nutrients and communicate information regarding the current state of energy balance to the brain. These hormones regulate appetite, energy expenditure and glucose homeostasis. They can act either via the circulation at target peripheral tissues, by activation of the vagus nerve or by acting on key brain regions implicated in energy homeostasis such as the hypothalamus and brainstem. This review gives an overview of the main gut hormones implicated in the regulation of food intake and how some of these are being targeted to develop anti obesity treatments.

  4. Bowels control brain: gut hormones and obesity

    PubMed Central

    Bewick, Gavin A.

    2012-01-01

    Peptide hormones are released from the gastrointestinal tract in response to nutrients and communicate information regarding the current state of energy balance to the brain. These hormones regulate appetite, energy expenditure and glucose homeostasis. They can act either via the circulation at target peripheral tissues, by activation of the vagus nerve or by acting on key brain regions implicated in energy homeostasis such as the hypothalamus and brainstem. This review gives an overview of the main gut hormones implicated in the regulation of food intake and how some of these are being targeted to develop anti obesity treatments. PMID:23092061

  5. Role of matrix metalloproteinases and their inhibitors in pancreatic cancer.

    PubMed

    Evans, J D; Ghaneh, P; Kawesha, A; Neoptolemos, J P

    1997-01-01

    The matrix metalloproteinases are a family of proteolytic enzymes which normally have an important physiological role in tissue remodelling and wound healing, but more recently have been implicated in the proteolytic events which occur during tumour invasion. The expanding family of matrix metalloproteinases and the specific tissue inhibitors of the matrix metalloproteinases are reviewed including their classification, structure, function, regulation of activity, and tissue expression with particular reference to pancreatic cancer. The effect of synthetic matrix metalloproteinases inhibitors in preclinical studies is reviewed together with the results of ongoing clinical trials in pancreatic cancer. Pancreatic cancer is associated with the overexpression of several matrix metalloproteinases with a reduced expression of their specific inhibitors. Orally bioavailable matrix metalloproteinase inhibitors have successfully completed phase I/II clinical trials with promising results. Multicentre randomised controlled phase IIb/III clinical trials aren currently under way in pancreatic cancer. Matrix metalloproteinase inhibition may represent a novel approach to the management of pancreatic cancer not only in advanced disease, but in the adjuvant treatment setting following tumour resection either alone or in combination with existing chemotherapeutic agents.

  6. Matrix metalloproteinase (MMP) -2, -7 and -9 promoter polymorphisms in colorectal cancer in ethnic Kashmiri population - A case-control study and a mini review.

    PubMed

    Banday, Mujeeb Zafar; Sameer, Aga Syed; Mir, Ashaq Hussain; Mokhdomi, Taseem A; Chowdri, Nissar A; Haq, Ehtishamul

    2016-09-01

    Matrix metalloproteinases (MMPs) are proteolytic enzymes that play a pivotal role in the transformation and progression of tumors at all stages, especially during the invasion and metastasis. The aim of this study was to determine the genetic association of MMP2, MMP7 and MMP9 promoter polymorphisms with colorectal cancer (CRC) susceptibility and development risk in ethnic Kashmiri population. The genotype frequencies of MMP2-1306C/T, MMP7-181A/G and MMP9-1562C/T SNPs were compared between 142 CRC patients and 184 healthy controls by using PCR-RFLP method. The association between all the three MMP promoter polymorphisms and the modulation of risk of CRC was found to be significant (p≤0.05). The heterozygous genotype (CT) of MMP2-1306C/T SNP and variant genotype (GG) of MMP7-181A/G SNP showed a significant association with decreased risk for the development of CRC [OR, 0.61 (95%CI, 0.37-1.01); p=0.05 and OR, 0.43 (95%CI, 0.20-0.90); p=0.02, respectively] whereas the heterozygous genotype (CT) of MMP9-1562C/T SNP showed a significant association with increased risk for the development of colorectal cancer [OR, 1.88 (95%CI, 1.11-3.18); p=0.02]. Further, the less common MMP9-1562T allele was found to be significantly associated with an increased risk of colorectal cancer [OR, 1.74 (95%CI, 1.15-2.62); p=0.007]. Our results suggest that these MMP2, MMP7 and MMP9 promoter polymorphisms play a role as one of the key modulators of the risk of developing colorectal cancer in Kashmiri population.

  7. Baby brain: training executive control in infancy.

    PubMed

    Holmes, Joni

    2011-09-27

    A recent study shows that a relatively short period of cognitive training can improve infants’ ability to sustain and flexibly deploy attention. Thus, it appears important aspects of cognition can be modified using ‘brain-training’ techniques at an early age.

  8. Brain and cognitive reserve: Translation via network control theory.

    PubMed

    Medaglia, John Dominic; Pasqualetti, Fabio; Hamilton, Roy H; Thompson-Schill, Sharon L; Bassett, Danielle S

    2017-04-01

    Traditional approaches to understanding the brain's resilience to neuropathology have identified neurophysiological variables, often described as brain or cognitive "reserve," associated with better outcomes. However, mechanisms of function and resilience in large-scale brain networks remain poorly understood. Dynamic network theory may provide a basis for substantive advances in understanding functional resilience in the human brain. In this perspective, we describe recent theoretical approaches from network control theory as a framework for investigating network level mechanisms underlying cognitive function and the dynamics of neuroplasticity in the human brain. We describe the theoretical opportunities offered by the application of network control theory at the level of the human connectome to understand cognitive resilience and inform translational intervention.

  9. Brain-controlled interfaces: movement restoration with neural prosthetics.

    PubMed

    Schwartz, Andrew B; Cui, X Tracy; Weber, Douglas J; Moran, Daniel W

    2006-10-05

    Brain-controlled interfaces are devices that capture brain transmissions involved in a subject's intention to act, with the potential to restore communication and movement to those who are immobilized. Current devices record electrical activity from the scalp, on the surface of the brain, and within the cerebral cortex. These signals are being translated to command signals driving prosthetic limbs and computer displays. Somatosensory feedback is being added to this control as generated behaviors become more complex. New technology to engineer the tissue-electrode interface, electrode design, and extraction algorithms to transform the recorded signal to movement will help translate exciting laboratory demonstrations to patient practice in the near future.

  10. Wireless brain-machine interface using EEG and EOG: brain wave classification and robot control

    NASA Astrophysics Data System (ADS)

    Oh, Sechang; Kumar, Prashanth S.; Kwon, Hyeokjun; Varadan, Vijay K.

    2012-04-01

    A brain-machine interface (BMI) links a user's brain activity directly to an external device. It enables a person to control devices using only thought. Hence, it has gained significant interest in the design of assistive devices and systems for people with disabilities. In addition, BMI has also been proposed to replace humans with robots in the performance of dangerous tasks like explosives handling/diffusing, hazardous materials handling, fire fighting etc. There are mainly two types of BMI based on the measurement method of brain activity; invasive and non-invasive. Invasive BMI can provide pristine signals but it is expensive and surgery may lead to undesirable side effects. Recent advances in non-invasive BMI have opened the possibility of generating robust control signals from noisy brain activity signals like EEG and EOG. A practical implementation of a non-invasive BMI such as robot control requires: acquisition of brain signals with a robust wearable unit, noise filtering and signal processing, identification and extraction of relevant brain wave features and finally, an algorithm to determine control signals based on the wave features. In this work, we developed a wireless brain-machine interface with a small platform and established a BMI that can be used to control the movement of a robot by using the extracted features of the EEG and EOG signals. The system records and classifies EEG as alpha, beta, delta, and theta waves. The classified brain waves are then used to define the level of attention. The acceleration and deceleration or stopping of the robot is controlled based on the attention level of the wearer. In addition, the left and right movements of eye ball control the direction of the robot.

  11. Brain-Computer Interface Controlled Cyborg: Establishing a Functional Information Transfer Pathway from Human Brain to Cockroach Brain.

    PubMed

    Li, Guangye; Zhang, Dingguo

    2016-01-01

    An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain.

  12. Brain-Computer Interface Controlled Cyborg: Establishing a Functional Information Transfer Pathway from Human Brain to Cockroach Brain

    PubMed Central

    2016-01-01

    An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain. PMID:26982717

  13. [Metalloproteinases: therapeutic target in atherosclerosis].

    PubMed

    Jguirim-Souissi, Imen; Jelassi, Awatef; Najah, Mohamed; Rouis, Mustapha; Slimane, Mohamed Naceur

    2008-05-01

    Matrix metalloproteinases are a family of enzymes which collectively can cleave all components of the extracellular matrix. In physiological situations, the expression of matrix metalloproteinases is very low. The increase of their expression leads to several diseases as atherosclerosis, restenosis, rheumatoid arthritis and cancers. In atherosclerosis, metalloproteinases are implicated in the rupture of the atheromatous plaque and contribute to acute vascular accident. Consequently, several studies hypothesized that the inhibition of matrix metalloproteinases activity could reduce the volume of the atheromatous plaque and prevent its destabilisation and therefore could be useful in the treatment of atherosclerosis. However, clinical results have so far been inconclusive because matrix metalloproteinases inhibitors are not very specific. The development of selective inhibitors and gene transfer approaches may better suit the treatment of atherosclerosis.

  14. Clinical implications of matrix metalloproteinases.

    PubMed

    Mandal, Malay; Mandal, Amritlal; Das, Sudip; Chakraborti, Tapati; Sajal, Chakraborti

    2003-10-01

    Matrix metalloproteinases (MMPs) are a family of neutral proteinases that are important for normal development, wound healing, and a wide variety of pathological processes, including the spread of metastatic cancer cells, arthritic destruction of joints, atherosclerosis, pulmonary fibrosis, emphysema and neuroinflammation. In the central nervous system (CNS), MMPs have been shown to degrade components of the basal lamina, leading to disruption of the blood brain barrier and to contribute to the neuroinflammatory responses in many neurological diseases. Inhibition of MMPs have been shown to prevent progression of these diseases. Currently, certain MMP inhibitors have entered into clinical trials. A goal to the future should be to design selective synthetic inhibitors of MMPs that have minimum side effects. MMP inhibitors are designed in such a way that these can not only bind at the active site of the proteinases but also to have the characteristics to bind to other sites of MMPs which might be a promising route for therapy. To name a few: catechins, a component isolated from green tea; and Novastal, derived from extracts of shark cartilage are currently in clinical trials for the treatment of MMP-mediated diseases.

  15. Brain Changes Following Executive Control Training in Older Adults.

    PubMed

    Adnan, Areeba; Chen, Anthony J W; Novakovic-Agopian, Tatjana; D'Esposito, Mark; Turner, Gary R

    2017-09-01

    While older adults are able to attend to goal-relevant information, the capacity to ignore irrelevant or distracting information declines with advancing age. This decline in selective attention has been associated with poor modulation of brain activity in sensory cortices by anterior brain regions implicated in cognitive control. Here we investigated whether participation in an executive control training program would result in improved selective attention and associated functional brain changes in a sample of healthy older adults (N = 24, age 60-85 years). Participants were enrolled in a goal-oriented attentional self-regulation (GOALS) program (n = 11) or a brain health education workshop as an active control condition (n = 13). All participants performed a working memory task requiring attention to or suppression of visual stimuli based on goal-relevance during functional magnetic resonance imaging. We observed a pattern of enhanced activity in right frontal, parietal and temporal brain regions from pre- to posttraining in the GOALS intervention group, which predicted the selectivity of subsequent memory for goal-relevant stimuli. Executive control training in older adults alters functional activity in brain regions associated with attentional control, and selectively predicts behavioral outcome.

  16. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging

    PubMed Central

    Bell, Robert D.; Winkler, Ethan A.; Sagare, Abhay P.; Singh, Itender; LaRue, Barb; Deane, Rashid; Zlokovic, Berislav V.

    2010-01-01

    SUMMARY Pericytes play a key role in the development of cerebral microcirculation. The exact role of pericytes in the neurovascular unit in the adult brain and during brain aging remains, however, elusive. Using adult viable pericyte-deficient mice, we show that pericyte loss leads to brain vascular damage by two parallel pathways: (1) reduction in brain microcirculation causing diminished brain capillary perfusion, cerebral blood flow and cerebral blood flow responses to brain activation which ultimately mediates chronic perfusion stress and hypoxia, and (2) blood-brain barrier breakdown associated with brain accumulation of serum proteins and several vasculotoxic and/or neurotoxic macromolecules ultimately leading to secondary neuronal degenerative changes. We show that age-dependent vascular damage in pericyte-deficient mice precedes neuronal degenerative changes, learning and memory impairment and the neuroinflammatory response. Thus, pericytes control key neurovascular functions that are necessary for proper neuronal structure and function, and pericytes loss results in a progressive age-dependent vascular-mediated neurodegeneration. PMID:21040844

  17. Multilayer PDMS microfluidic chamber for controlling brain slice microenvironment.

    PubMed

    Blake, A J; Pearce, T M; Rao, N S; Johnson, S M; Williams, J C

    2007-07-01

    A novel three-layer microfluidic polydimethylsiloxane (PDMS) device was constructed with two fluid chambers that holds a brain slice in place with microposts while maintaining laminar perfusate flow above and below the slice. Our fabrication technique permits rapid production of PDMS layers that can be applied to brain slices of different shapes and sizes. In this study, the device was designed to fit the shape and thickness (530-700 microm) of a medullary brain slice taken from P0-P4 neonatal rats. Medullary slices in this chamber spontaneously produced rhythmic, respiratory-related motor output for up to 3 h, thereby demonstrating that brain slice viability was maintained for prolonged periods. This design is unique in that it achieves independent control of fluids through multiple channels in two separate fluid chambers. The laminar flow exhibited by the microfluidic chamber allows controlled solutions to target specific areas of the brain slice based on the input flow rates. To demonstrate this capability, a stream of Na(+)-free solution was focused on one half of a medullary slice to abolish spontaneous neural activity in only that half of the brain slice, while the other half remained active. We also demonstrated that flow of different solutions can be focused over the midline of the brain slice. The multilayer brain slice chamber design can integrate several traditional types of electrophysiology tools that are commonly used to measure neurophysiological properties of brain slices. Thus, this new microfluidic chamber is advantageous for experiments that involve controlled drug or solution delivery at high spatiotemporal resolution.

  18. Multilayer PDMS microfluidic chamber for controlling brain slice microenvironment

    PubMed Central

    Blake, A. J.; Pearce, T. M.; Rao, N. S.; Johnson, S. M.; Williams, J. C.

    2008-01-01

    A novel three-layer microfluidic polydimethylsiloxane (PDMS) device was constructed with two fluid chambers that holds a brain slice in place with microposts while maintaining laminar perfusate flow above and below the slice. Our fabrication technique permits rapid production of PDMS layers that can be applied to brain slices of different shapes and sizes. In this study, the device was designed to fit the shape and thickness (530-700 μm) of a medullary brain slice taken from P0-P4 neonatal rats. Medullary slices in this chamber spontaneously produced rhythmic, respiratory-related motor output for up to 3 h, thereby demonstrating that brain slice viability was maintained for prolonged periods. This design is unique in that it achieves independent control of fluids through multiple channels in two separate fluid chambers. The laminar flow exhibited by the microfluidic chamber allows controlled solutions to target specific areas of the brain slice based on the input flow rates. To demonstrate this capability, a stream of Na+-free solution was focused on one half of a medullary slice to abolish spontaneous neural activity in only that half of the brain slice, while the other half remained active. We also demonstrated that flow of different solutions can be focused over the midline of the brain slice. The multilayer brain slice chamber design can integrate several traditional types of electrophysiology tools that are commonly used to measure neurophysiological properties of brain slices. Thus, this new microfluidic chamber is advantageous for experiments that involve controlled drug or solution delivery at high spatiotemporal resolution. PMID:17594002

  19. Stimulation-Based Control of Dynamic Brain Networks

    PubMed Central

    Pasqualetti, Fabio; Gu, Shi; Cieslak, Matthew

    2016-01-01

    The ability to modulate brain states using targeted stimulation is increasingly being employed to treat neurological disorders and to enhance human performance. Despite the growing interest in brain stimulation as a form of neuromodulation, much remains unknown about the network-level impact of these focal perturbations. To study the system wide impact of regional stimulation, we employ a data-driven computational model of nonlinear brain dynamics to systematically explore the effects of targeted stimulation. Validating predictions from network control theory, we uncover the relationship between regional controllability and the focal versus global impact of stimulation, and we relate these findings to differences in the underlying network architecture. Finally, by mapping brain regions to cognitive systems, we observe that the default mode system imparts large global change despite being highly constrained by structural connectivity. This work forms an important step towards the development of personalized stimulation protocols for medical treatment or performance enhancement. PMID:27611328

  20. Stimulation-Based Control of Dynamic Brain Networks.

    PubMed

    Muldoon, Sarah Feldt; Pasqualetti, Fabio; Gu, Shi; Cieslak, Matthew; Grafton, Scott T; Vettel, Jean M; Bassett, Danielle S

    2016-09-01

    The ability to modulate brain states using targeted stimulation is increasingly being employed to treat neurological disorders and to enhance human performance. Despite the growing interest in brain stimulation as a form of neuromodulation, much remains unknown about the network-level impact of these focal perturbations. To study the system wide impact of regional stimulation, we employ a data-driven computational model of nonlinear brain dynamics to systematically explore the effects of targeted stimulation. Validating predictions from network control theory, we uncover the relationship between regional controllability and the focal versus global impact of stimulation, and we relate these findings to differences in the underlying network architecture. Finally, by mapping brain regions to cognitive systems, we observe that the default mode system imparts large global change despite being highly constrained by structural connectivity. This work forms an important step towards the development of personalized stimulation protocols for medical treatment or performance enhancement.

  1. Theory of feedback controlled brain stimulations for Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Sanzeni, A.; Celani, A.; Tiana, G.; Vergassola, M.

    2016-01-01

    Limb tremor and other debilitating symptoms caused by the neurodegenerative Parkinson's disease are currently treated by administering drugs and by fixed-frequency deep brain stimulation. The latter interferes directly with the brain dynamics by delivering electrical impulses to neurons in the subthalamic nucleus. While deep brain stimulation has shown therapeutic benefits in many instances, its mechanism is still unclear. Since its understanding could lead to improved protocols of stimulation and feedback control, we have studied a mathematical model of the many-body neural network dynamics controlling the dynamics of the basal ganglia. On the basis of the results obtained from the model, we propose a new procedure of active stimulation, that depends on the feedback of the network and that respects the constraints imposed by existing technology. We show by numerical simulations that the new protocol outperforms the standard ones for deep brain stimulation and we suggest future experiments that could further improve the feedback procedure.

  2. Metalloproteinases and metalloproteinase inhibitors in age-related diseases.

    PubMed

    Gargiulo, Simona; Gamba, Paola; Poli, Giuseppe; Leonarduzzi, Gabriella

    2014-01-01

    Degradation of the extracellular matrix is an important feature of embryonic development, morphogenesis, angiogenesis, tissue repair and remodeling. It is precisely regulated under physiological conditions, but when dysregulated it becomes a cause of many diseases, including atherosclerosis, osteoarthritis, diabetic vascular complications, and neurodegeneration. Various types of proteinases are implicated in extracellular matrix degradation, but the major enzymes are considered to be metalloproteinases such as matrix metalloproteinases (MMPs) and disintegrin and metalloproteinase domain (ADAMs) that include ADAMs with a thrombospondin domain (ADAMTS). This review discusses involvement of the major metalloproteinases in some age-related chronic diseases, and examines what is currently known about the beneficial effects of their inhibitors, used as new therapeutic strategies for treating or preventing the development and progression of these diseases.

  3. Optogenetics: Control of Brain Using Light

    PubMed

    Gholami Pourbadie, Hamid; Sayyah, Mohammad

    2017-09-05

    Neuronal cells communicate with each other by producing electrical signals or action potentials (APs). Different ion channels, including Na+, K+ and Ca2+ channels, are involved in generation of AP. Once an AP is generated in the soma, it travels down entire the axon length toward its terminal in a self-generating fashion that ultimately conveys information between neurons in the neural circuit. Depending on the neurotransmitter, each neuron inhibits or excites other neurons in a certain network. For instance, glutamate released from glutamatergic neurons, opens AMPA and NMDA channels permitting influx of Na+/Ca2+, which leads to postsynaptic depolarization. On the other hand, GABA released from GABAergic neurons results in Cl- influx and postsynaptic hyperpolarization. One of the major challenges in neuroscience is how actions of individual cells in the brain could underlie a certain behavior such as attention, food consumption, aggression, cognition, and movement...

  4. Temporal analysis of blood-brain barrier disruption and cerebrospinal fluid matrix metalloproteinases in rhesus monkeys subjected to transient ischemic stroke.

    PubMed

    Zhang, Yingqian; Fan, Feng; Zeng, Guojun; Zhou, Linlin; Zhang, Yinbing; Zhang, Jie; Jiao, He; Zhang, Ting; Su, Dan; Yang, Cheng; Wang, Xin; Xiao, Kai; Li, Hongxia; Zhong, Zhihui

    2016-01-01

    Blood-brain barrier (BBB) disruption plays an important role in pathophysiological progress of ischemic stroke. However, our knowledge of the dynamic change of BBB permeability and its mechanism remains limited. In the current study, we used a non-human primate (NHP) MCAO model and a serial CSF sampling method that allowed us to determine the dynamic change of BBB permeability by calculating the CSF/serum albumin ratio (AR). We showed that AR increased rapidly and significantly after ischemia, and the fold increase of AR is highly correlated with the infarction size during the subacute phase. Moreover, we determined the temporal change of MMP-1, MMP-2, MMP-3, MMP-9, MMP-10, MMP-13, TIMP-1, and TIMP-2 in CSF and serum. Each MMP and TIMP showed different change patterns when comparing their values in CSF and serum. Based on the longitudinal dataset, we showed that the fold increase of MMP-9 in serum and CSF are both correlated to infarction size. Among the measured MMPs and TIMPs, only MMP-2, MMP-13, and TIMP-2 in CSF correlated with AR to some extent. Our data suggest there is no single MMP or TIMP fully responsible for BBB breakdown, which is regulated by a much more complicated signal network and further investigations of the mechanisms are needed.

  5. Control channels in the brain and their influence on brain executive functions

    NASA Astrophysics Data System (ADS)

    Meng, Qinglei; Choa, Fow-Sen; Hong, Elliot; Wang, Zhiguang; Islam, Mohammad

    2014-05-01

    In a computer network there are distinct data channels and control channels where massive amount of visual information are transported through data channels but the information streams are routed and controlled by intelligent algorithm through "control channels". Recent studies on cognition and consciousness have shown that the brain control channels are closely related to the brainwave beta (14-40 Hz) and alpha (7-13 Hz) oscillations. The high-beta wave is used by brain to synchronize local neural activities and the alpha oscillation is for desynchronization. When two sensory inputs are simultaneously presented to a person, the high-beta is used to select one of the inputs and the alpha is used to deselect the other so that only one input will get the attention. In this work we demonstrated that we can scan a person's brain using binaural beats technique and identify the individual's preferred control channels. The identified control channels can then be used to influence the subject's brain executive functions. In the experiment, an EEG measurement system was used to record and identify a subject's control channels. After these channels were identified, the subject was asked to do Stroop tests. Binaural beats was again used to produce these control-channel frequencies on the subject's brain when we recorded the completion time of each test. We found that the high-beta signal indeed speeded up the subject's executive function performance and reduced the time to complete incongruent tests, while the alpha signal didn't seem to be able to slow down the executive function performance.

  6. Control-display mapping in brain-computer interfaces.

    PubMed

    Thurlings, Marieke E; van Erp, Jan B F; Brouwer, Anne-Marie; Blankertz, Benjamin; Werkhoven, Peter

    2012-01-01

    Event-related potential (ERP) based brain-computer interfaces (BCIs) employ differences in brain responses to attended and ignored stimuli. When using a tactile ERP-BCI for navigation, mapping is required between navigation directions on a visual display and unambiguously corresponding tactile stimuli (tactors) from a tactile control device: control-display mapping (CDM). We investigated the effect of congruent (both display and control horizontal or both vertical) and incongruent (vertical display, horizontal control) CDMs on task performance, the ERP and potential BCI performance. Ten participants attended to a target (determined via CDM), in a stream of sequentially vibrating tactors. We show that congruent CDM yields best task performance, enhanced the P300 and results in increased estimated BCI performance. This suggests a reduced availability of attentional resources when operating an ERP-BCI with incongruent CDM. Additionally, we found an enhanced N2 for incongruent CDM, which indicates a conflict between visual display and tactile control orientations. Incongruency in control-display mapping reduces task performance. In this study, brain responses, task and system performance are related to (in)congruent mapping of command options and the corresponding stimuli in a brain-computer interface (BCI). Directional congruency reduces task errors, increases available attentional resources, improves BCI performance and thus facilitates human-computer interaction.

  7. Robot Control Through Brain Computer Interface For Patterns Generation

    NASA Astrophysics Data System (ADS)

    Belluomo, P.; Bucolo, M.; Fortuna, L.; Frasca, M.

    2011-09-01

    A Brain Computer Interface (BCI) system processes and translates neuronal signals, that mainly comes from EEG instruments, into commands for controlling electronic devices. This system can allow people with motor disabilities to control external devices through the real-time modulation of their brain waves. In this context an EEG-based BCI system that allows creative luminous artistic representations is here presented. The system that has been designed and realized in our laboratory interfaces the BCI2000 platform performing real-time analysis of EEG signals with a couple of moving luminescent twin robots. Experiments are also presented.

  8. Snake venom metalloproteinases.

    PubMed

    Markland, Francis S; Swenson, Stephen

    2013-02-01

    Recent proteomic analyses of snake venoms show that metalloproteinases represent major components in most of the Crotalid and Viperid venoms. In this chapter we discuss the multiple activities of the SVMPs. In addition to hemorrhagic activity, members of the SVMP family also have fibrin(ogen)olytic activity, act as prothrombin activators, activate blood coagulation factor X, possess apoptotic activity, inhibit platelet aggregation, are pro-inflammatory and inactivate blood serine proteinase inhibitors. Clearly the SVMPs have multiple functions in addition to their well-known hemorrhagic activity. The realization that there are structural variations in the SVMPs and the early studies that led to their classification represents an important event in our understanding of the structural forms of the SVMPs. The SVMPs were subdivided into the P-I, P-II and P-III protein classes. The noticeable characteristic that distinguished the different classes was their size (molecular weight) differences and domain structure: Class I (P-I), the small SVMPs, have molecular masses of 20-30 kDa, contain only a pro domain and the proteinase domain; Class II (P-II), the medium size SVMPs, molecular masses of 30-60 kDa, contain the pro domain, proteinase domain and disintegrin domain; Class III (P-III), the large SVMPs, have molecular masses of 60-100 kDa, contain pro, proteinase, disintegrin-like and cysteine-rich domain structure. Another significant advance in the SVMP field was the characterization of the crystal structure of the first P-I class SVMP. The structures of other P-I SVMPs soon followed and the structures of P-III SVMPs have also been determined. The active site of the metalloproteinase domain has a consensus HEXXHXXGXXHD sequence and a Met-turn. The "Met-turn" structure contains a conserved Met residue that forms a hydrophobic basement for the three zinc-binding histidines in the consensus sequence. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Biothermal Model of Patient and Automatic Control System of Brain Temperature for Brain Hypothermia Treatment

    NASA Astrophysics Data System (ADS)

    Wakamatsu, Hidetoshi; Gaohua, Lu

    Various surface-cooling apparatus such as the cooling cap, muffler and blankets have been commonly used for the cooling of the brain to provide hypothermic neuro-protection for patients of hypoxic-ischemic encephalopathy. The present paper is aimed at the brain temperature regulation from the viewpoint of automatic system control, in order to help clinicians decide an optimal temperature of the cooling fluid provided for these three types of apparatus. At first, a biothermal model characterized by dynamic ambient temperatures is constructed for adult patient, especially on account of the clinical practice of hypothermia and anesthesia in the brain hypothermia treatment. Secondly, the model is represented by the state equation as a lumped parameter linear dynamic system. The biothermal model is justified from their various responses corresponding to clinical phenomena and treatment. Finally, the optimal regulator is tentatively designed to give clinicians some suggestions on the optimal temperature regulation of the patient’s brain. It suggests the patient’s brain temperature could be optimally controlled to follow-up the temperature process prescribed by the clinicians. This study benefits us a great clinical possibility for the automatic hypothermia treatment.

  10. Compact energy metabolism model: brain controlled energy supply.

    PubMed

    Göbel, Britta; Langemann, Dirk; Oltmanns, Kerstin M; Chung, Matthias

    2010-06-21

    The regulation of the energy metabolism is crucial to ensure the functionality of the entire organism. Deregulations may lead to severe pathologies such as obesity and type 2 diabetes mellitus. The decisive role of the brain as the active controller and heavy consumer in the complex whole body energy metabolism is the matter of recent research. Latest studies suggest that the brain's energy supply has the highest priority while all organs in the organism compete for the available energy resources. In our novel mathematical model, we address these new findings. We integrate energy fluxes and their control signals such as glucose fluxes, insulin signals as well as the ingestion momentum in our new dynamical system. As a novel characteristic, the hormone insulin is regarded as central feedback signal of the brain. Hereby, our model particularly contains the competition for energy between brain and body periphery. The analytical investigation of the presented dynamical system shows a stable long-term behavior of the entire energy metabolism while short time observations demonstrate the typical oscillating blood glucose variations as a consequence of food intake. Our simulation results demonstrate a realistic behavior even in situations like exercise or exhaustion, and key elements like the brain's preeminence are reflected. The presented dynamical system is a step towards a systemic understanding of the human energy metabolism and thus may shed light to defects causing diseases based on deregulations in the energy metabolism. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Enhancing Hebbian Learning to Control Brain Oscillatory Activity.

    PubMed

    Soekadar, Surjo R; Witkowski, Matthias; Birbaumer, Niels; Cohen, Leonardo G

    2015-09-01

    Sensorimotor rhythms (SMR, 8-15 Hz) are brain oscillations associated with successful motor performance, imagery, and imitation. Voluntary modulation of SMR can be used to control brain-machine interfaces (BMI) in the absence of any physical movements. The mechanisms underlying acquisition of such skill are unknown. Here, we provide evidence for a causal link between function of the primary motor cortex (M1), active during motor skill learning and retention, and successful acquisition of abstract skills such as control over SMR. Thirty healthy participants were trained on 5 consecutive days to control SMR oscillations. Each participant was randomly assigned to one of 3 groups that received either 20 min of anodal, cathodal, or sham transcranial direct current stimulation (tDCS) over M1. Learning SMR control across training days was superior in the anodal tDCS group relative to the other 2. Cathodal tDCS blocked the beneficial effects of training, as evidenced with sham tDCS. One month later, the newly acquired skill remained superior in the anodal tDCS group. Thus, application of weak electric currents of opposite polarities over M1 differentially modulates learning SMR control, pointing to this primary cortical region as a common substrate for acquisition of physical motor skills and learning to control brain oscillatory activity. Published by Oxford University Press 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  12. Efficient foot motor control by Neymar’s brain

    PubMed Central

    Naito, Eiichi; Hirose, Satoshi

    2014-01-01

    How very long-term (over many years) motor skill training shapes internal motor representation remains poorly understood. We provide valuable evidence that the football brain of Neymar da Silva Santos Júnior (the Brasilian footballer) recruits very limited neural resources in the motor-cortical foot regions during foot movements. We scanned his brain activity with a 3-tesla functional magnetic resonance imaging (fMRI) while he rotated his right ankle at 1 Hz. We also scanned brain activity when three other age-controlled professional footballers, two top-athlete swimmers and one amateur footballer performed the identical task. A comparison was made between Neymar’s brain activity with that obtained from the others. We found activations in the left medial-wall foot motor regions during the foot movements consistently across all participants. However, the size and intensity of medial-wall activity was smaller in the four professional footballers than in the three other participants, despite no difference in amount of foot movement. Surprisingly, the reduced recruitment of medial-wall foot motor regions became apparent in Neymar. His medial-wall activity was smallest among all participants with absolutely no difference in amount of foot movement. Neymar may efficiently control given foot movements probably by largely conserving motor-cortical neural resources. We discuss this possibility in terms of over-years motor skill training effect, use-dependent plasticity, and efficient motor control. PMID:25136312

  13. Encoding-based brain-computer interface controlled by non-motor area of rat brain.

    PubMed

    Lang, Yiran; Du, Ping; Shin, Hyung-Cheul

    2011-09-01

    As the needs of disabled patients are increasingly recognized in society, researchers have begun to use single neuron activity to construct brain-computer interfaces (BCI), designed to facilitate the daily lives of individuals with physical disabilities. BCI systems typically allow users to control computer programs or external devices via signals produced in the motor or pre-motor areas of the brain, rather than producing actual motor movements. However, impairments in these brain areas can hinder the application of BCI. The current paper demonstrates the feasibility of a one-dimensional (1D) machine controlled by rat prefrontal cortex (PFC) neurons using an encoding method. In this novel system, rats are able to quench thirst by varying neuronal firing rate in the PFC to manipulate a water dish that can rotate in 1D. The results revealed that control commands generated by an appropriate firing frequency in rat PFC exhibited performance improvements with practice, indicated by increasing water-drinking duration and frequency. These results demonstrated that it is possible for rats to understand an encoding-based BCI system and control a 1D machine using PFC activity to obtain reward.

  14. A natural basis for efficient brain-actuated control

    NASA Technical Reports Server (NTRS)

    Makeig, S.; Enghoff, S.; Jung, T. P.; Sejnowski, T. J.

    2000-01-01

    The prospect of noninvasive brain-actuated control of computerized screen displays or locomotive devices is of interest to many and of crucial importance to a few 'locked-in' subjects who experience near total motor paralysis while retaining sensory and mental faculties. Currently several groups are attempting to achieve brain-actuated control of screen displays using operant conditioning of particular features of the spontaneous scalp electroencephalogram (EEG) including central mu-rhythms (9-12 Hz). A new EEG decomposition technique, independent component analysis (ICA), appears to be a foundation for new research in the design of systems for detection and operant control of endogenous EEG rhythms to achieve flexible EEG-based communication. ICA separates multichannel EEG data into spatially static and temporally independent components including separate components accounting for posterior alpha rhythms and central mu activities. We demonstrate using data from a visual selective attention task that ICA-derived mu-components can show much stronger spectral reactivity to motor events than activity measures for single scalp channels. ICA decompositions of spontaneous EEG would thus appear to form a natural basis for operant conditioning to achieve efficient and multidimensional brain-actuated control in motor-limited and locked-in subjects.

  15. Mindcontrol: A Web Application for Brain Segmentation Quality Control.

    PubMed

    Keshavan, Anisha; Datta, Esha; McDonough, Ian; Madan, Christopher R; Jordan, Kesshi; Henry, Roland G

    2017-03-29

    Tissue classification plays a crucial role in the investigation of normal neural development, brain-behavior relationships, and the disease mechanisms of many psychiatric and neurological illnesses. Ensuring the accuracy of tissue classification is important for quality research and, in particular, the translation of imaging biomarkers to clinical practice. Assessment with the human eye is vital to correct various errors inherent to all currently available segmentation algorithms. Manual quality assurance becomes methodologically difficult at a large scale - a problem of increasing importance as the number of data sets is on the rise. To make this process more efficient, we have developed Mindcontrol, an open-source web application for the collaborative quality control of neuroimaging processing outputs. The Mindcontrol platform consists of a dashboard to organize data, descriptive visualizations to explore the data, an imaging viewer, and an in-browser annotation and editing toolbox for data curation and quality control. Mindcontrol is flexible and can be configured for the outputs of any software package in any data organization structure. Example configurations for three large, open-source datasets are presented: the 1000 Functional Connectomes Project (FCP), the Consortium for Reliability and Reproducibility (CoRR), and the Autism Brain Imaging Data Exchange (ABIDE) Collection. These demo applications link descriptive quality control metrics, regional brain volumes, and thickness scalars to a 3D imaging viewer and editing module, resulting in an easy-to-implement quality control protocol that can be scaled for any size and complexity of study.

  16. A natural basis for efficient brain-actuated control

    NASA Technical Reports Server (NTRS)

    Makeig, S.; Enghoff, S.; Jung, T. P.; Sejnowski, T. J.

    2000-01-01

    The prospect of noninvasive brain-actuated control of computerized screen displays or locomotive devices is of interest to many and of crucial importance to a few 'locked-in' subjects who experience near total motor paralysis while retaining sensory and mental faculties. Currently several groups are attempting to achieve brain-actuated control of screen displays using operant conditioning of particular features of the spontaneous scalp electroencephalogram (EEG) including central mu-rhythms (9-12 Hz). A new EEG decomposition technique, independent component analysis (ICA), appears to be a foundation for new research in the design of systems for detection and operant control of endogenous EEG rhythms to achieve flexible EEG-based communication. ICA separates multichannel EEG data into spatially static and temporally independent components including separate components accounting for posterior alpha rhythms and central mu activities. We demonstrate using data from a visual selective attention task that ICA-derived mu-components can show much stronger spectral reactivity to motor events than activity measures for single scalp channels. ICA decompositions of spontaneous EEG would thus appear to form a natural basis for operant conditioning to achieve efficient and multidimensional brain-actuated control in motor-limited and locked-in subjects.

  17. Brain and behavioral inhibitory control of kindergartners facing negative emotions.

    PubMed

    Farbiash, Tali; Berger, Andrea

    2016-09-01

    Inhibitory control (IC) - one of the most critical functions underlying a child's ability to self-regulate - develops significantly throughout the kindergarten years. Experiencing negative emotions imposes challenges on executive functioning and may specifically affect IC. In this study, we examined kindergartners' IC and its related brain activity during a negative emotional situation: 58 children (aged 5.5-6.5 years) performed an emotion-induction Go/NoGo task. During this task, we recorded children's performance and brain activity, focusing on the fronto-central N2 component in the event-related potential (ERP) and the power of its underlying theta frequency. Compared to Go trials, inhibition of NoGo trials was associated with larger N2 amplitudes and theta power. The negative emotional experience resulted in better IC performance and, at the brain level, in larger theta power. Source localization of this effect showed that the brain activity related to IC during the negative emotional experience was principally generated in the posterior frontal regions. Furthermore, the band power measure was found to be a more sensitive index for children's inhibitory processes than N2 amplitudes. This is the first study to focus on kindergartners' IC while manipulating their emotional experience to induce negative emotions. Our findings suggest that a kindergartner's experience of negative emotion can result in improved IC and increases in associated aspects of brain activity. Our results also suggest the utility of time-frequency analyses in the study of brain processes associated with response inhibition in young children.

  18. Prospects of brain-machine interfaces for space system control

    NASA Astrophysics Data System (ADS)

    Menon, Carlo; de Negueruela, Cristina; Millán, José del R.; Tonet, Oliver; Carpi, Federico; Broschart, Michael; Ferrez, Pierre; Buttfield, Anna; Tecchio, Franca; Sepulveda, Francisco; Citi, Luca; Laschi, Cecilia; Tombini, Mario; Dario, Paolo; Maria Rossini, Paolo; De Rossi, Danilo

    2009-02-01

    The dream of controlling and guiding computer-based systems using human brain signals has slowly but steadily become a reality. The available technology allows real-time implementation of systems that measure neuronal activity, convert their signals, and translate their output for the purpose of controlling mechanical and electronic systems. This paper describes the state of the art of non-invasive brain-machine interfaces (BMIs) and critically investigates both the current technological limits and the future potential that BMIs have for space applications. We present an assessment of the advantages that BMIs can provide and justify the preferred candidate concepts for space applications together with a vision of future directions for their implementation.

  19. Brain-controlled telepresence robot by motor-disabled people.

    PubMed

    Tonin, Luca; Carlson, Tom; Leeb, Robert; del R Millán, José

    2011-01-01

    In this paper we present the first results of users with disabilities in mentally controlling a telepresence robot, a rather complex task as the robot is continuously moving and the user must control it for a long period of time (over 6 minutes) to go along the whole path. These two users drove the telepresence robot from their clinic more than 100 km away. Remarkably, although the patients had never visited the location where the telepresence robot was operating, they achieve similar performances to a group of four healthy users who were familiar with the environment. In particular, the experimental results reported in this paper demonstrate the benefits of shared control for brain-controlled telepresence robots. It allows all subjects (including novel BMI subjects as our users with disabilities) to complete a complex task in similar time and with similar number of commands to those required by manual control.

  20. Neural mechanisms of brain-computer interface control.

    PubMed

    Halder, S; Agorastos, D; Veit, R; Hammer, E M; Lee, S; Varkuti, B; Bogdan, M; Rosenstiel, W; Birbaumer, N; Kübler, A

    2011-04-15

    Brain-computer interfaces (BCIs) enable people with paralysis to communicate with their environment. Motor imagery can be used to generate distinct patterns of cortical activation in the electroencephalogram (EEG) and thus control a BCI. To elucidate the cortical correlates of BCI control, users of a sensory motor rhythm (SMR)-BCI were classified according to their BCI control performance. In a second session these participants performed a motor imagery, motor observation and motor execution task in a functional magnetic resonance imaging (fMRI) scanner. Group difference analysis between high and low aptitude BCI users revealed significantly higher activation of the supplementary motor areas (SMA) for the motor imagery and the motor observation tasks in high aptitude users. Low aptitude users showed no activation when observing movement. The number of activated voxels during motor observation was significantly correlated with accuracy in the EEG-BCI task (r=0.53). Furthermore, the number of activated voxels in the right middle frontal gyrus, an area responsible for processing of movement observation, correlated (r=0.72) with BCI-performance. This strong correlation highlights the importance of these areas for task monitoring and working memory as task goals have to be activated throughout the BCI session. The ability to regulate behavior and the brain through learning mechanisms involving imagery such as required to control a BCI constitutes the consequence of ideo-motor co-activation of motor brain systems during observation of movements. The results demonstrate that acquisition of a sensorimotor program reflected in SMR-BCI-control is tightly related to the recall of such sensorimotor programs during observation of movements and unrelated to the actual execution of these movement sequences.

  1. Metalloproteinase-9 contributes to endothelial dysfunction in atherosclerosis via protease activated receptor-1

    PubMed Central

    Florence, Jon M.; Booshehri, Laela M.; Allen, Timothy C.; Kurdowska, Anna K.

    2017-01-01

    The atherosclerotic process begins when vascular endothelial cells undergo pro-inflammatory changes such as aberrant activation to dysfunctional phenotypes and apoptosis, leading to loss of vascular integrity. Our laboratory has demonstrated that exposure of mice to second hand smoke triggers an increase in expression of metalloproteinase-9. Further, metalloproteinase-9 released by second hand smoke—activated leukocytes may propagate pro-atherogenic alterations in endothelial cells. We have shown that levels of metalloproteinase-9 were increased in the plasma from apolipoprotein E deficient (ApoE-/-) mice exposed to second hand smoke relative to non-exposed controls. Moreover, we have collected data from two different, but complementary, treatments of second hand smoke exposed atherosclerotic mice. Animals received either cell specific metalloproteinase-9 directed siRNA to minimize metalloproteinase-9 expression in neutrophils and endothelial cells, or a pharmacological inhibitor of Bruton’s tyrosine kinase which indirectly limits metalloproteinase-9 production in neutrophils. These treatments reduced atherosclerotic changes in mice and improved overall vascular health. We also demonstrated that metalloproteinase-9 could activate endothelial cells and induce their apoptosis via cleavage of protease activated receptor-1. In summary, better understanding of metalloproteinase-9’s pathogenic capabilities as well as novel signaling pathways involved may lead to development of treatments which may provide additional benefits to atherosclerosis patients with a history of second hand smoke exposure. PMID:28166283

  2. CONTROL OF GLUTAMATE OXIDATION IN BRAIN AND LIVER MITOCHONDRIAL SYSTEMS.

    PubMed

    BALAZS, R

    1965-05-01

    1. Glutamate oxidation in brain and liver mitochondrial systems proceeds mainly through transamination with oxaloacetate followed by oxidation of the alpha-oxoglutarate formed. Both in the presence and absence of dinitrophenol in liver mitochondria this pathway accounted for almost 80% of the uptake of glutamate. In brain preparations the transamination pathway accounted for about 90% of the glutamate uptake. 2. The oxidation of [1-(14)C]- and [5-(14)C]-glutamate in brain preparations is compatible with utilization through the tricarboxylic acid cycle, either after the formation of alpha-oxoglutarate or after decarboxylation to form gamma-aminobutyrate. There is no indication of gamma-decarboxylation of glutamate. 3. The high respiratory control ratio obtained with glutamate as substrate in brain mitochondrial preparations is due to the low respiration rate in the absence of ADP: this results from the low rate of formation of oxaloacetate under these conditions. When oxaloacetate is made available by the addition of malate or of NAD(+), the respiration rate is increased to the level obtained with other substrates. 4. When the transamination pathway of glutamate oxidation was blocked with malonate, the uptake of glutamate was inhibited in the presence of ADP or ADP plus dinitrophenol by about 70 and 80% respectively in brain mitochondrial systems, whereas the inhibition was only about 50% in dinitrophenol-stimulated liver preparations. In unstimulated liver mitochondria in the presence of malonate there was a sixfold increase in the oxidation of glutamate by the glutamate-dehydrogenase pathway. Thus the operating activity of glutamate dehydrogenase is much less than the ;free' (non-latent) activity. 5. The following explanation is put forward for the control of glutamate metabolism in liver and brain mitochondrial preparations. The oxidation of glutamate by either pathway yields alpha-oxoglutarate, which is further metabolized. Since aspartate aminotransferase is

  3. Blocking human fear memory with the matrix metalloproteinase inhibitor doxycycline.

    PubMed

    Bach, D R; Tzovara, A; Vunder, J

    2017-04-04

    Learning to predict threat is a fundamental ability of many biological organisms, and a laboratory model for anxiety disorders. Interfering with such memories in humans would be of high clinical relevance. On the basis of studies in cell cultures and slice preparations, it is hypothesised that synaptic remodelling required for threat learning involves the extracellular enzyme matrix metalloproteinase (MMP) 9. However, in vivo evidence for this proposal is lacking. Here we investigate human Pavlovian fear conditioning under the blood-brain barrier crossing MMP inhibitor doxycyline in a pre-registered, randomised, double-blind, placebo-controlled trial. We find that recall of threat memory, measured with fear-potentiated startle 7 days after acquisition, is attenuated by ~60% in individuals who were under doxycycline during acquisition. This threat memory impairment is also reflected in increased behavioural surprise signals to the conditioned stimulus during subsequent re-learning, and already late during initial acquisition. Our findings support an emerging view that extracellular signalling pathways are crucially required for threat memory formation. Furthermore, they suggest novel pharmacological methods for primary prevention and treatment of posttraumatic stress disorder.Molecular Psychiatry advance online publication, 4 April 2017; doi:10.1038/mp.2017.65.

  4. Monocyte ADAM17 promotes diapedesis during transendothelial migration: identification of steps and substrates targeted by metalloproteinases.

    PubMed

    Tsubota, Yoshiaki; Frey, Jeremy M; Tai, Phillip W L; Welikson, Robert E; Raines, Elaine W

    2013-04-15

    Despite expanded definition of the leukocyte adhesion cascade and mechanisms underlying individual steps, very little is known about regulatory mechanisms controlling sequential shifts between steps. We tested the hypothesis that metalloproteinases provide a mechanism to rapidly transition monocytes between different steps. Our study identifies diapedesis as a step targeted by metalloproteinase activity. Time-lapse video microscopy shows that the presence of a metalloproteinase inhibitor results in a doubling of the time required for human monocytes to complete diapedesis on unactivated or inflamed human endothelium, under both static and physiological-flow conditions. Thus, diapedesis is promoted by metalloproteinase activity. In contrast, neither adhesion of monocytes nor their locomotion over the endothelium is altered by metalloproteinase inhibition. We further demonstrate that metalloproteinase inhibition significantly elevates monocyte cell surface levels of integrins CD11b/CD18 (Mac-1), specifically during transendothelial migration. Interestingly, such alterations are not detected for other endothelial- and monocyte-adhesion molecules that are presumed metalloproteinase substrates. Two major transmembrane metalloproteinases, a disintegrin and metalloproteinase (ADAM)17 and ADAM10, are identified as enzymes that control constitutive cleavage of Mac-1. We further establish that knockdown of monocyte ADAM17, but not endothelial ADAM10 or ADAM17 or monocyte ADAM10, reproduces the diapedesis delay observed with metalloproteinase inhibition. Therefore, we conclude that monocyte ADAM17 facilitates the completion of transendothelial migration by accelerating the rate of diapedesis. We propose that the progression of diapedesis may be regulated by spatial and temporal cleavage of Mac-1, which is triggered upon interaction with endothelium.

  5. Astragaloside IV controls collagen reduction in photoaging skin by improving transforming growth factor-β/Smad signaling suppression and inhibiting matrix metalloproteinase-1.

    PubMed

    Chen, Bin; Li, Ran; Yan, Ning; Chen, Gang; Qian, Wen; Jiang, Hui-Li; Ji, Chao; Bi, Zhi-Gang

    2015-05-01

    Exposure to ultraviolet (UV) light reduces levels of type I collagen in the dermis and results in human skin damage and premature skin aging (photoaging). This leads to a wrinkled appearance through the inhibition of transforming growth factor‑β (TGF‑β)/Smad signaling. UV irradiation increases type I collagen degradation through upregulating matrix metalloproteinase (MMP) expression. Astragaloside IV (AST) is one of the major active components extracted from Astragalus membranaceus. However, its multiple anti‑photoaging effects remain to be elucidated. In the present study, the effects of AST against collagen reduction in UV‑induced skin aging in human skin fibroblasts were investigated. The expression of type I procollagen (COL1), MMP‑1, TGF‑βRⅡ and Smad7 were determined using reverse transcription‑polymerase chain reaction, western blotting and ELISA, respectively. UV irradiation inhibits type I collagen production by suppressing the TGF‑β/Smad signaling pathway and increasing COL1 degradation by inducing MMP‑1 expression. Transforming growth factor‑β type II protein and COL1 mRNA decreased but MMP‑1 and Smad7 levels increased in the photoaging model group, which was reversed by topical application of AST. AST prevents collagen reduction from UV irradiation in photoaging skin by improving TGF‑β/Smad signaling suppression and inhibiting MMP‑1, thus AST may be a potential agent against skin photoaging.

  6. Lactate: brain fuel in human traumatic brain injury: a comparison with normal healthy control subjects.

    PubMed

    Glenn, Thomas C; Martin, Neil A; Horning, Michael A; McArthur, David L; Hovda, David A; Vespa, Paul; Brooks, George A

    2015-06-01

    We evaluated the hypothesis that lactate shuttling helps support the nutritive needs of injured brains. To that end, we utilized dual isotope tracer [6,6-(2)H2]glucose, that is, D2-glucose, and [3-(13)C]lactate techniques involving arm vein tracer infusion along with simultaneous cerebral (arterial [art] and jugular bulb [JB]) blood sampling. Traumatic brain injury (TBI) patients with nonpenetrating brain injuries (n=12) were entered into the study following consent of patients' legal representatives. Written and informed consent was obtained from control volunteers (n=6). Patients were studied 5.7±2.2 (mean±SD) days post-injury; during periods when arterial glucose concentration tended to be higher in TBI patients. As in previous investigations, the cerebral metabolic rate for glucose (CMRgluc, i.e., net glucose uptake) was significantly suppressed following TBI (p<0.001). However, lactate fractional extraction, an index of cerebral lactate uptake related to systemic lactate supply, approximated 11% in both healthy control subjects and TBI patients. Further, neither the CMR for lactate (CMRlac, i.e., net lactate release), nor the tracer-measured cerebral lactate uptake differed between healthy controls and TBI patients. The percentages of lactate tracer taken up and released as (13)CO2 into the JB accounted for 92% and 91% for control and TBI conditions, respectively, suggesting that most cerebral lactate uptake was oxidized following TBI. Comparisons of isotopic enrichments of lactate oxidation from infused [3-(13)C]lactate tracer and (13)C-glucose produced during hepatic and renal gluconeogenesis (GNG) showed that 75-80% of (13)CO2 released into the JB was from lactate and that the remainder was from the oxidation of glucose secondarily labeled from lactate. Hence, either directly as lactate uptake, or indirectly via GNG, peripheral lactate production accounted for ∼70% of carbohydrate (direct lactate uptake+uptake of glucose from lactate) consumed by the

  7. Lactate: Brain Fuel in Human Traumatic Brain Injury: A Comparison with Normal Healthy Control Subjects

    PubMed Central

    Martin, Neil A.; Horning, Michael A.; McArthur, David L.; Hovda, David A.; Vespa, Paul; Brooks, George A.

    2015-01-01

    Abstract We evaluated the hypothesis that lactate shuttling helps support the nutritive needs of injured brains. To that end, we utilized dual isotope tracer [6,6-2H2]glucose, that is, D2-glucose, and [3-13C]lactate techniques involving arm vein tracer infusion along with simultaneous cerebral (arterial [art] and jugular bulb [JB]) blood sampling. Traumatic brain injury (TBI) patients with nonpenetrating brain injuries (n=12) were entered into the study following consent of patients' legal representatives. Written and informed consent was obtained from control volunteers (n=6). Patients were studied 5.7±2.2 (mean±SD) days post-injury; during periods when arterial glucose concentration tended to be higher in TBI patients. As in previous investigations, the cerebral metabolic rate for glucose (CMRgluc, i.e., net glucose uptake) was significantly suppressed following TBI (p<0.001). However, lactate fractional extraction, an index of cerebral lactate uptake related to systemic lactate supply, approximated 11% in both healthy control subjects and TBI patients. Further, neither the CMR for lactate (CMRlac, i.e., net lactate release), nor the tracer-measured cerebral lactate uptake differed between healthy controls and TBI patients. The percentages of lactate tracer taken up and released as 13CO2 into the JB accounted for 92% and 91% for control and TBI conditions, respectively, suggesting that most cerebral lactate uptake was oxidized following TBI. Comparisons of isotopic enrichments of lactate oxidation from infused [3-13C]lactate tracer and 13C-glucose produced during hepatic and renal gluconeogenesis (GNG) showed that 75–80% of 13CO2 released into the JB was from lactate and that the remainder was from the oxidation of glucose secondarily labeled from lactate. Hence, either directly as lactate uptake, or indirectly via GNG, peripheral lactate production accounted for ∼70% of carbohydrate (direct lactate uptake+uptake of glucose from lactate) consumed by the

  8. Chitinase Dependent Control of Protozoan Cyst Burden in the Brain

    PubMed Central

    Nance, J. Philip; Vannella, Kevin M.; Worth, Danielle; David, Clément; Carter, David; Noor, Shahani; Hubeau, Cedric; Fitz, Lori; Lane, Thomas E.; Wynn, Thomas A.; Wilson, Emma H.

    2012-01-01

    Chronic infections represent a continuous battle between the host's immune system and pathogen replication. Many protozoan parasites have evolved a cyst lifecycle stage that provides it with increased protection from environmental degradation as well as endogenous host mechanisms of attack. In the case of Toxoplasma gondii, these cysts are predominantly found in the immune protected brain making clearance of the parasite more difficult and resulting in a lifelong infection. Currently, little is known about the nature of the immune response stimulated by the presence of these cysts or how they are able to propagate. Here we establish a novel chitinase-dependent mechanism of cyst control in the infected brain. Despite a dominant Th1 immune response during Toxoplasma infection there exists a population of alternatively activated macrophages (AAMØ) in the infected CNS. These cells are capable of cyst lysis via the production of AMCase as revealed by live imaging, and this chitinase is necessary for protective immunity within the CNS. These data demonstrate chitinase activity in the brain in response to a protozoan pathogen and provide a novel mechanism to facilitate cyst clearance during chronic infections. PMID:23209401

  9. A brain-computer interface controlled mail client.

    PubMed

    Yu, Tianyou; Li, Yuanqing; Long, Jinyi; Wang, Cong

    2013-01-01

    In this paper, we propose a brain-computer interface (BCI) based mail client. This system is controlled by hybrid features extracted from scalp-recorded electroencephalographic (EEG). We emulate the computer mouse by the motor imagery-based mu rhythm and the P300 potential. Furthermore, an adaptive P300 speller is included to provide text input function. With this BCI mail client, users can receive, read, write mails, as well as attach files in mail writing. The system has been tested on 3 subjects. Experimental results show that mail communication with this system is feasible.

  10. Control of aerobic glycolysis in the brain in vitro.

    PubMed

    Benjamin, A M; Verjee, Z H

    1980-09-01

    Protoveratrine-(5 microM) stimulated aerobic glycolysis of incubated rat brain cortex slices that accompanies the enhanced neuronal influx of Na+ is blocked by tetrodotoxin (3 microM) and the local anesthetics, cocaine (0.1 mM) and lidocaine (0.5 mM). On the other hand, high [K+]-stimulated aerobic glycolysis that accompanies the acetylcholine-sensitive enhanced glial uptakes of Na+ and water is unaffected by acetylcholine (2 mM). Experiments done under a variety of metabolic conditions show that there exists a better correlation between diminished ATP content of the tissue and enhanced aerobic glycolysis than between tissue ATP and the ATP-dependent synthesis of glutamine. Whereas malonate (2 mM) and amino oxyacetate (5 mM) suppress ATP content and O2 uptake, stimulate lactate formation, but have little effect on glutamine levels, fluoroacetate (3 mM) suppresses glutamine synthesis in glia, presumably by suppressing the operation of the citric acid cycle, with little effect on ATP content, O2 uptake, and lactate formation. Exogenous citrate (5 mM), which may be transported and metabolized in glia but not in neurons, inhibits lactate formation by cell free acetone-dried powder extracts of brain cortex but not by brain cortex slices. These results suggest that the neuron is the major site of stimulated aerobic glycolysis in the brain, and that under our experimental conditions glycolysis in glia is under lesser stringent metabolic control than that in the neuron. Stimulation of aerobic glycolysis by protoveratrine occurs due to diminution of the energy charge of the neuron as a result of stimulation of the sodium pump following tetrodotoxin-sensitive influx of Na+; stimulation by high [K+], NH4+, or Ca2+ deprivation occurs partly by direct stimulation of key enzymes of glycolysis and partly by a fall in the tissue ATP concentration.

  11. Brain-computer interfacing based on cognitive control.

    PubMed

    Vansteensel, Mariska J; Hermes, Dora; Aarnoutse, Erik J; Bleichner, Martin G; Schalk, Gerwin; van Rijen, Peter C; Leijten, Frans S S; Ramsey, Nick F

    2010-06-01

    Brain-computer interfaces (BCIs) translate deliberate intentions and associated changes in brain activity into action, thereby offering patients with severe paralysis an alternative means of communication with and control over their environment. Such systems are not available yet, partly due to the high performance standard that is required. A major challenge in the development of implantable BCIs is to identify cortical regions and related functions that an individual can reliably and consciously manipulate. Research predominantly focuses on the sensorimotor cortex, which can be activated by imagining motor actions. However, because this region may not provide an optimal solution to all patients, other neuronal networks need to be examined. Therefore, we investigated whether the cognitive control network can be used for BCI purposes. We also determined the feasibility of using functional magnetic resonance imaging (fMRI) for noninvasive localization of the cognitive control network. Three patients with intractable epilepsy, who were temporarily implanted with subdural grid electrodes for diagnostic purposes, attempted to gain BCI control using the electrocorticographic (ECoG) signal of the left dorsolateral prefrontal cortex (DLPFC). All subjects quickly gained accurate BCI control by modulation of gamma-power of the left DLPFC. Prelocalization of the relevant region was performed with fMRI and was confirmed using the ECoG signals obtained during mental calculation localizer tasks. The results indicate that the cognitive control network is a suitable source of signals for BCI applications. They also demonstrate the feasibility of translating understanding about cognitive networks derived from functional neuroimaging into clinical applications.

  12. Potentiated interaction between ineffective doses of budesonide and formoterol to control the inhaled cadmium-induced up-regulation of metalloproteinases and acute pulmonary inflammation in rats.

    PubMed

    Zhang, Wenhui; Zhi, Jianming; Cui, Yongyao; Zhang, Fan; Habyarimana, Adélite; Cambier, Carole; Gustin, Pascal

    2014-01-01

    The anti-inflammatory properties of glucocorticoids are well known but their protective effects exerted with a low potency against heavy metals-induced pulmonary inflammation remain unclear. In this study, a model of acute pulmonary inflammation induced by a single inhalation of cadmium in male Sprague-Dawley rats was used to investigate whether formoterol can improve the anti-inflammatory effects of budesonide. The cadmium-related inflammatory responses, including matrix metalloproteinase-9 (MMP-9) activity, were evaluated. Compared to the values obtained in rats exposed to cadmium, pretreatment of inhaled budesonide (0.5 mg/15 ml) elicited a significant decrease in total cell and neutrophil counts in bronchoalveolar lavage fluid (BALF) associated with a significant reduction of MMP-9 activity which was highly correlated with the number of inflammatory cells in BALF. Additionally, cadmium-induced lung injuries characterized by inflammatory cell infiltration within alveoli and the interstitium were attenuated by the pre-treatment of budesonide. Though the low concentration of budesonide (0.25 mg/15 ml) exerted a very limited inhibitory effects in the present rat model, its combination with an inefficient concentration of formoterol (0.5 mg/30 ml) showed an enhanced inhibitory effect on neutrophil and total cell counts as well as on the histological lung injuries associated with a potentiation of inhibition on the MMP-9 activity. In conclusion, high concentration of budesonide alone could partially protect the lungs against cadmium exposure induced-acute neutrophilic pulmonary inflammation via the inhibition of MMP-9 activity. The combination with formoterol could enhance the protective effects of both drugs, suggesting a new therapeutic strategy for the treatment of heavy metals-induced lung diseases.

  13. Overexpression and knock-down studies highlight that a disintegrin and metalloproteinase 28 controls proliferation and migration in human prostate cancer

    PubMed Central

    Rudnicka, Caroline; Mochizuki, Satsuki; Okada, Yasunori; McLaughlin, Claire; Leedman, Peter J.; Stuart, Lisa; Epis, Michael; Hoyne, Gerard; Boulos, Sherif; Johnson, Liam; Schlaich, Markus; Matthews, Vance

    2016-01-01

    Abstract Prostate cancer is one of the most prevalent cancers in men. It is critical to identify and characterize oncogenes that drive the pathogenesis of human prostate cancer. The current study builds upon previous research showing that a disintegrin and metallproteinase (ADAM)28 is involved in the pathogenesis of numerous cancers. Our novel study used overexpression, pharmacological, and molecular approaches to investigate the biological function of ADAM28 in human prostate cancer cells, with a focus on cell proliferation and migration. The results of this study provide important insights into the role of metalloproteinases in human prostate cancer. The expression of ADAM28 protein levels was assessed within human prostate tumors and normal adjacent tissue by immunohistochemistry. Immunocytochemistry and western blotting were used to assess ADAM28 protein expression in human prostate cancer cell lines. Functional assays were conducted to assess proliferation and migration in human prostate cancer cells in which ADAM28 protein expression or activity had been altered by overexpression, pharmacological inhibition, or by siRNA gene knockdown. The membrane bound ADAM28 was increased in human tumor biopsies and prostate cancer cell lines. Pharmacological inhibition of ADAM28 activity and/or knockdown of ADAM28 significantly reduced proliferation and migration of human prostate cancer cells, while overexpression of ADAM28 significantly increased proliferation and migration. ADAM28 is overexpressed in primary human prostate tumor biopsies, and it promotes human prostate cancer cell proliferation and migration. This study supports the notion that inhibition of ADAM28 may be a potential novel therapeutic strategy for human prostate cancer. PMID:27749584

  14. Overexpression and knock-down studies highlight that a disintegrin and metalloproteinase 28 controls proliferation and migration in human prostate cancer.

    PubMed

    Rudnicka, Caroline; Mochizuki, Satsuki; Okada, Yasunori; McLaughlin, Claire; Leedman, Peter J; Stuart, Lisa; Epis, Michael; Hoyne, Gerard; Boulos, Sherif; Johnson, Liam; Schlaich, Markus; Matthews, Vance

    2016-10-01

    Prostate cancer is one of the most prevalent cancers in men. It is critical to identify and characterize oncogenes that drive the pathogenesis of human prostate cancer. The current study builds upon previous research showing that a disintegrin and metallproteinase (ADAM)28 is involved in the pathogenesis of numerous cancers. Our novel study used overexpression, pharmacological, and molecular approaches to investigate the biological function of ADAM28 in human prostate cancer cells, with a focus on cell proliferation and migration. The results of this study provide important insights into the role of metalloproteinases in human prostate cancer.The expression of ADAM28 protein levels was assessed within human prostate tumors and normal adjacent tissue by immunohistochemistry. Immunocytochemistry and western blotting were used to assess ADAM28 protein expression in human prostate cancer cell lines. Functional assays were conducted to assess proliferation and migration in human prostate cancer cells in which ADAM28 protein expression or activity had been altered by overexpression, pharmacological inhibition, or by siRNA gene knockdown.The membrane bound ADAM28 was increased in human tumor biopsies and prostate cancer cell lines. Pharmacological inhibition of ADAM28 activity and/or knockdown of ADAM28 significantly reduced proliferation and migration of human prostate cancer cells, while overexpression of ADAM28 significantly increased proliferation and migration.ADAM28 is overexpressed in primary human prostate tumor biopsies, and it promotes human prostate cancer cell proliferation and migration. This study supports the notion that inhibition of ADAM28 may be a potential novel therapeutic strategy for human prostate cancer.

  15. Myocardial structure and matrix metalloproteinases.

    PubMed

    Aggeli, C; Pietri, P; Felekos, I; Rautopoulos, L; Toutouzas, K; Tsiamis, E; Stefanadis, C

    2012-01-01

    Metalloproteinases (MMPs) are enzymes which enhance proteolysis of extracellular matrix proteins. The pathophysiologic and prognostic role of MMPs has been demonstrated in numerous studies. The present review covers a wide a range of topics with regards to MMPs structural and functional properties, as well as their role in myocardial remodeling in several cardiovascular diseases. Moreover, the clinical and therapeutic implications from their assessment are highlighted.

  16. Time dependent integration of matrix metalloproteinases and their targeted substrates directs axonal sprouting and synaptogenesis following central nervous system injury

    PubMed Central

    Phillips, Linda L.; Chan, Julie L.; Doperalski, Adele E.; Reeves, Thomas M.

    2014-01-01

    Over the past two decades, many investigators have reported how extracellular matrix molecules act to regulate neuroplasticity. The majority of these studies involve proteins which are targets of matrix metalloproteinases. Importantly, these enzyme/substrate interactions can regulate degenerative and regenerative phases of synaptic plasticity, directing axonal and dendritic reorganization after brain insult. The present review first summarizes literature support for the prominent role of matrix metalloproteinases during neuroregeneration, followed by a discussion of data contrasting adaptive and maladaptive neuroplasticity that reveals time-dependent metalloproteinase/substrate regulation of postinjury synaptic recovery. The potential for these enzymes to serve as therapeutic targets for enhanced neuroplasticity after brain injury is illustrated with experiments demonstrating that metalloproteinase inhibitors can alter adaptive and maladaptive outcome. Finally, the complexity of metalloproteinase role in reactive synaptogenesis is revealed in new studies showing how these enzymes interact with immune molecules to mediate cellular response in the local regenerative environment, and are regulated by novel binding partners in the brain extracellular matrix. Together, these different examples show the complexity with which metalloproteinases are integrated into the process of neuroregeneration, and point to a promising new angle for future studies exploring how to facilitate brain plasticity. PMID:25206824

  17. Control of Synchronization of Brain Dynamics Leads to Control of Epileptic Seizures in Rodents

    PubMed Central

    Good, Levi B.; Sabesan, Shivkumar; Marsh, Steven T.; Tsakalis, Kostas; Treiman, David

    2010-01-01

    We have designed and implemented an automated, just-in-time stimulation, seizure control method using a seizure prediction method from nonlinear dynamics coupled with deep brain stimulation in the centromedial thalamic nuclei in epileptic rats. A comparison to periodic stimulation, with identical stimulation parameters, was also performed. The two schemes were compared in terms of their efficacy in control of seizures, as well as their effect on synchronization of brain dynamics. The automated just-in-time (JIT) stimulation showed reduction of seizure frequency and duration in 5 of the 6 rats, with significant reduction of seizure frequency (>50%) in 33% of the rats. This constituted a significant improvement over the efficacy of the periodic control scheme in the same animals. Actually, periodic stimulation showed an increase of seizure frequency in 50% of the rats, reduction of seizure frequency in 3 rats and significant reduction in 1 rat. Importantly, successful seizure control was highly correlated with desynchronization of brain dynamics. This study provides initial evidence for the use of closed-loop feedback control systems in epileptic seizures combining methods from seizure prediction and deep brain stimulation. PMID:19575507

  18. Effects of the FITKids randomized controlled trial on executive control and brain function.

    PubMed

    Hillman, Charles H; Pontifex, Matthew B; Castelli, Darla M; Khan, Naiman A; Raine, Lauren B; Scudder, Mark R; Drollette, Eric S; Moore, Robert D; Wu, Chien-Ting; Kamijo, Keita

    2014-10-01

    To assess the effect of a physical activity (PA) intervention on brain and behavioral indices of executive control in preadolescent children. Two hundred twenty-one children (7-9 years) were randomly assigned to a 9-month afterschool PA program or a wait-list control. In addition to changes in fitness (maximal oxygen consumption), electrical activity in the brain (P3-ERP) and behavioral measures (accuracy, reaction time) of executive control were collected by using tasks that modulated attentional inhibition and cognitive flexibility. Fitness improved more among intervention participants from pretest to posttest compared with the wait-list control (1.3 mL/kg per minute, 95% confidence interval [CI]: 0.3 to 2.4; d = 0.34 for group difference in pre-to-post change score). Intervention participants exhibited greater improvements from pretest to posttest in inhibition (3.2%, 95% CI: 0.0 to 6.5; d = 0.27) and cognitive flexibility (4.8%, 95% CI: 1.1 to 8.4; d = 0.35 for group difference in pre-to-post change score) compared with control. Only the intervention group increased attentional resources from pretest to posttest during tasks requiring increased inhibition (1.4 µV, 95% CI: 0.3 to 2.6; d = 0.34) and cognitive flexibility (1.5 µV, 95% CI: 0.6 to 2.5; d = 0.43). Finally, improvements in brain function on the inhibition task (r = 0.22) and performance on the flexibility task correlated with intervention attendance (r = 0.24). The intervention enhanced cognitive performance and brain function during tasks requiring greater executive control. These findings demonstrate a causal effect of a PA program on executive control, and provide support for PA for improving childhood cognition and brain health. Copyright © 2014 by the American Academy of Pediatrics.

  19. Inhibition of metalloproteinase activity by fruit extracts.

    PubMed

    Tate, Patricia; God, Jason; Bibb, Robert; Lu, Qi; Larcom, Lyndon L

    2004-08-30

    While the metalloproteinase enzymes are essential for development and remodeling of tissues, aberrant over expression of these enzymes contributes to several pathologic conditions. In particular, metalloproteinase over expression in cancer plays a significant role in metastasis by providing a mechanism for invasion and spread. The data presented here indicate that water extracts of raspberries, blackberries and muscadine grapes inhibit the activities of metalloproteinases 2 and 9. This inhibition could contribute to the suppression of carcinogenesis by diets high in fruit content.

  20. Brain-controlled applications using dynamic P300 speller matrices.

    PubMed

    Halder, Sebastian; Pinegger, Andreas; Käthner, Ivo; Wriessnegger, Selina C; Faller, Josef; Pires Antunes, João B; Müller-Putz, Gernot R; Kübler, Andrea

    2015-01-01

    Access to the world wide web and multimedia content is an important aspect of life. We present a web browser and a multimedia user interface adapted for control with a brain-computer interface (BCI) which can be used by severely motor impaired persons. The web browser dynamically determines the most efficient P300 BCI matrix size to select the links on the current website. This enables control of the web browser with fewer commands and smaller matrices. The multimedia player was based on an existing software. Both applications were evaluated with a sample of ten healthy participants and three end-users. All participants used a visual P300 BCI with face-stimuli for control. The healthy participants completed the multimedia player task with 90% accuracy and the web browsing task with 85% accuracy. The end-users completed the tasks with 62% and 58% accuracy. All healthy participants and two out of three end-users reported that they felt to be in control of the system. In this study we presented a multimedia application and an efficient web browser implemented for control with a BCI. Both applications provide access to important areas of modern information retrieval and entertainment. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Biomimetic Brain Machine Interfaces for the Control of Movement

    PubMed Central

    Fagg, Andrew H.; Hatsopoulos, Nicholas G.; de Lafuente, Victor; Moxon, Karen A.; Nemati, Shamim; Rebesco, James M.; Romo, Ranulfo; Solla, Sara A.; Reimer, Jake; Tkach, Dennis; Pohlmeyer, Eric A.; Miller, Lee E.

    2008-01-01

    Quite recently, it has become possible to use signals recorded simultaneously from large numbers of cortical neurons for real-time control. Such brain machine interfaces (BMIs) have allowed animal subjects and human patients to control the position of a computer cursor or robotic limb under the guidance of visual feedback. Although impressive, such approaches essentially ignore the dynamics of the musculoskeletal system, and they lack potentially critical somatosensory feedback. In this mini-symposium, we will initiate a discussion of systems that more nearly mimic the control of natural limb movement. The work that we will describe is based on fundamental observations of sensorimotor physiology that have inspired novel BMI approaches. We will focus on what we consider to be three of the most important new directions for BMI development related to the control of movement. (1) We will present alternative methods for building decoders, including structured, nonlinear models, the explicit incorporation of limb state information, and novel approaches to the development of decoders for paralyzed subjects unable to generate an output signal. (2) We will describe the real-time prediction of dynamical signals, including joint torque, force, and EMG, and the real-time control of physical plants with dynamics like that of the real limb. (3) We will discuss critical factors that must be considered to incorporate somatosensory feedback to the BMI user, including its potential benefits, the differing representations of sensation and perception across cortical areas, and the changes in the cortical representation of tactile events after spinal injury. PMID:17978021

  2. The Neurally Controlled Animat: Biological Brains Acting with Simulated Bodies.

    PubMed

    Demarse, Thomas B; Wagenaar, Daniel A; Blau, Axel W; Potter, Steve M

    2001-01-01

    The brain is perhaps the most advanced and robust computation system known. We are creating a method to study how information is processed and encoded in living cultured neuronal networks by interfacing them to a computer-generated animal, the Neurally-Controlled Animat, within a virtual world. Cortical neurons from rats are dissociated and cultured on a surface containing a grid of electrodes (multi-electrode arrays, or MEAs) capable of both recording and stimulating neural activity. Distributed patterns of neural activity are used to control the behavior of the Animat in a simulated environment. The computer acts as its sensory system providing electrical feedback to the network about the Animat's movement within its environment. Changes in the Animat's behavior due to interaction with its surroundings are studied in concert with the biological processes (e.g., neural plasticity) that produced those changes, to understand how information is processed and encoded within a living neural network. Thus, we have created a hybrid real-time processing engine and control system that consists of living, electronic, and simulated components. Eventually this approach may be applied to controlling robotic devices, or lead to better real-time silicon-based information processing and control algorithms that are fault tolerant and can repair themselves.

  3. Activity of matrix metalloproteinases during antimycobacterial therapy in mice with simulated tuberculous inflammation.

    PubMed

    Sumenkova, D V; Russkikh, G S; Poteryaeva, O N; Polyakov, L M; Panin, L E

    2013-05-01

    Matrix metalloproteinases are shown to be involved in the pathogenesis of tuberculosis inflammation. In the early stages of BCG-granuloma formation in mouse liver and lungs, the serum levels of matrix metalloproteinases 2 and 7 increased by 4.5 times and remained unchanged while the pathology developed. Antimycobacterial therapy with isoniazid reduced enzyme activity almost to the level of intact control. The decrease in activity of matrix metalloproteinases 2 and 7 that play the most prominent role in the development of destructive forms of tuberculosis is of great therapeutic importance.

  4. Unraveling the processing and activation of snake venom metalloproteinases.

    PubMed

    Portes-Junior, José A; Yamanouye, Norma; Carneiro, Sylvia M; Knittel, Paloma S; Sant'Anna, Sávio S; Nogueira, Fabio C S; Junqueira, Magno; Magalhães, Geraldo S; Domont, Gilberto B; Moura-da-Silva, Ana M

    2014-07-03

    Snake venom metalloproteinases (SVMPs) are zinc-dependent enzymes responsible for most symptoms of human envenoming. Like matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase (ADAM) proteins, SVMPs are synthesized as zymogens, and enzyme activation is regulated by hydrolysis of their prodomain, but the processing of SVMPs is still unclear. In this study, we attempted to identify the presence of prodomain in different compartments of snake venom glands as zymogens or in the free form to elucidate some mechanism involved in SVMP activation. Using antibodies obtained by immunization with a recombinant prodomain, bands of zymogen molecular mass and prodomain peptides were detected mostly in gland extracts all along the venom production cycle and in the venom collected from the lumen at the peak of venom production. Prodomain was detected in secretory cells mostly in the secretory vesicles near the Golgi. We hypothesize that the processing of SVMPs starts within secretory vesicles and continues in the lumen of the venom gland just after enzyme secretion and involves different steps compared to ADAMs and MMPs but can be used as a model for studying the relevance of peptides resulting from prodomain processing and degradation for controlling the activity of metalloproteinases.

  5. Controllable permeability of blood-brain barrier and reduced brain injury through low-intensity pulsed ultrasound stimulation.

    PubMed

    Su, Wei-Shen; Tsai, Min-Lan; Huang, Sin-Luo; Liu, Shing-Hwa; Yang, Feng-Yi

    2015-12-08

    It has been shown that the blood-brain barrier (BBB) can be locally disrupted by focused ultrasound (FUS) in the presence of microbubbles (MB) while sustaining little damage to the brain tissue. Thus, the safety issue associated with FUS-induced BBB disruption (BBBD) needs to be investigated for future clinical applications. This study demonstrated the neuroprotective effects induced by low-intensity pulsed ultrasound (LIPUS) against brain injury in the sonicated brain. Rats subjected to a BBB disruption injury received LIPUS exposure for 5 min after FUS/MB application. Measurements of BBB permeability, brain water content, and histological analysis were then carried out to evaluate the effects of LIPUS. The permeability and time window of FUS-induced BBBD can be effectively modulated with LIPUS. LIPUS also significantly reduced brain edema, neuronal death, and apoptosis in the sonicated brain. Our results show that brain injury in the FUS-induced BBBD model could be ameliorated by LIPUS and that LIPUS may be proposed as a novel treatment modality for controllable release of drugs into the brain.

  6. Learning to control brain rhythms: making a brain-computer interface possible.

    PubMed

    Pineda, Jaime A; Silverman, David S; Vankov, Andrey; Hestenes, John

    2003-06-01

    The ability to control electroencephalographic rhythms and to map those changes to the actuation of mechanical devices provides the basis for an assistive brain-computer interface (BCI). In this study, we investigate the ability of subjects to manipulate the sensorimotor mu rhythm (8-12-Hz oscillations recorded over the motor cortex) in the context of a rich visual representation of the feedback signal. Four subjects were trained for approximately 10 h over the course of five weeks to produce similar or differential mu activity over the two hemispheres in order to control left or right movement in a three-dimensional video game. Analysis of the data showed a steep learning curve for producing differential mu activity during the first six training sessions and leveling off during the final four sessions. In contrast, similar mu activity was easily obtained and maintained throughout all the training sessions. The results suggest that an intentional BCI based on a binary signal is possible. During a realistic, interactive, and motivationally engaging task, subjects learned to control levels of mu activity faster when it involves similar activity in both hemispheres. This suggests that while individual control of each hemisphere is possible, it requires more learning time.

  7. Large-scale brain network dynamics supporting adolescent cognitive control.

    PubMed

    Dwyer, Dominic B; Harrison, Ben J; Yücel, Murat; Whittle, Sarah; Zalesky, Andrew; Pantelis, Christos; Allen, Nicholas B; Fornito, Alex

    2014-10-15

    Adolescence is a time when the ability to engage cognitive control is linked to crucial life outcomes. Despite a historical focus on prefrontal cortex functioning, recent evidence suggests that differences between individuals may relate to interactions between distributed brain regions that collectively form a cognitive control network (CCN). Other research points to a spatially distinct and functionally antagonistic system--the default-mode network (DMN)--which typically deactivates during performance of control tasks. This literature implies that individual differences in cognitive control are determined either by activation or functional connectivity of CCN regions, deactivation or functional connectivity of DMN regions, or some combination of both. We tested between these possibilities using a multilevel fMRI characterization of CCN and DMN dynamics, measured during performance of a cognitive control task and during a task-free resting state, in 73 human adolescents. Better cognitive control performance was associated with (1) reduced activation of CCN regions, but not deactivation of the DMN; (2) variations in task-related, but not resting-state, functional connectivity within a distributed network involving both the CCN and DMN; (3) functional segregation of core elements of these two systems; and (4) task-dependent functional integration of a set of peripheral nodes into either one network or the other in response to prevailing stimulus conditions. These results indicate that individual differences in adolescent cognitive control are not solely attributable to the functioning of any single region or network, but are instead dependent on a dynamic and context-dependent interplay between the CCN and DMN. Copyright © 2014 the authors 0270-6474/14/3414096-13$15.00/0.

  8. Executive and language control in the multilingual brain.

    PubMed

    Kong, Anthony Pak-Hin; Abutalebi, Jubin; Lam, Karen Sze-Yan; Weekes, Brendan

    2014-01-01

    Neuroimaging studies suggest that the neural network involved in language control may not be specific to bi-/multilingualism but is part of a domain-general executive control system. We report a trilingual case of a Cantonese (L1), English (L2), and Mandarin (L3) speaker, Dr. T, who sustained a brain injury at the age of 77 causing lesions in the left frontal lobe and in the left temporo-parietal areas resulting in fluent aphasia. Dr. T's executive functions were impaired according to a modified version of the Stroop color-word test and the Wisconsin Card Sorting Test performance was characterized by frequent perseveration errors. Dr. T demonstrated pathological language switching and mixing across her three languages. Code switching in Cantonese was more prominent in discourse production than confrontation naming. Our case suggests that voluntary control of spoken word production in trilingual speakers shares neural substrata in the frontobasal ganglia system with domain-general executive control mechanisms. One prediction is that lesions to such a system would give rise to both pathological switching and impairments of executive functions in trilingual speakers.

  9. Executive and Language Control in the Multilingual Brain

    PubMed Central

    Kong, Anthony Pak-Hin; Abutalebi, Jubin; Lam, Karen Sze-Yan; Weekes, Brendan

    2014-01-01

    Neuroimaging studies suggest that the neural network involved in language control may not be specific to bi-/multilingualism but is part of a domain-general executive control system. We report a trilingual case of a Cantonese (L1), English (L2), and Mandarin (L3) speaker, Dr. T, who sustained a brain injury at the age of 77 causing lesions in the left frontal lobe and in the left temporo-parietal areas resulting in fluent aphasia. Dr. T's executive functions were impaired according to a modified version of the Stroop color-word test and the Wisconsin Card Sorting Test performance was characterized by frequent perseveration errors. Dr. T demonstrated pathological language switching and mixing across her three languages. Code switching in Cantonese was more prominent in discourse production than confrontation naming. Our case suggests that voluntary control of spoken word production in trilingual speakers shares neural substrata in the frontobasal ganglia system with domain-general executive control mechanisms. One prediction is that lesions to such a system would give rise to both pathological switching and impairments of executive functions in trilingual speakers. PMID:24868121

  10. Brain-computer interfaces for communication and control.

    PubMed

    Wolpaw, Jonathan R; Birbaumer, Niels; McFarland, Dennis J; Pfurtscheller, Gert; Vaughan, Theresa M

    2002-06-01

    For many years people have speculated that electroencephalographic activity or other electrophysiological measures of brain function might provide a new non-muscular channel for sending messages and commands to the external world - a brain-computer interface (BCI). Over the past 15 years, productive BCI research programs have arisen. Encouraged by new understanding of brain function, by the advent of powerful low-cost computer equipment, and by growing recognition of the needs and potentials of people with disabilities, these programs concentrate on developing new augmentative communication and control technology for those with severe neuromuscular disorders, such as amyotrophic lateral sclerosis, brainstem stroke, and spinal cord injury. The immediate goal is to provide these users, who may be completely paralyzed, or 'locked in', with basic communication capabilities so that they can express their wishes to caregivers or even operate word processing programs or neuroprostheses. Present-day BCIs determine the intent of the user from a variety of different electrophysiological signals. These signals include slow cortical potentials, P300 potentials, and mu or beta rhythms recorded from the scalp, and cortical neuronal activity recorded by implanted electrodes. They are translated in real-time into commands that operate a computer display or other device. Successful operation requires that the user encode commands in these signals and that the BCI derive the commands from the signals. Thus, the user and the BCI system need to adapt to each other both initially and continually so as to ensure stable performance. Current BCIs have maximum information transfer rates up to 10-25bits/min. This limited capacity can be valuable for people whose severe disabilities prevent them from using conventional augmentative communication methods. At the same time, many possible applications of BCI technology, such as neuroprosthesis control, may require higher information transfer

  11. Induced sputum-retrieved matrix metalloproteinase 9 and tissue metalloproteinase inhibitor 1 in granulomatous diseases

    PubMed Central

    Fireman, E; Kraiem, Z; Sade, O; Greif, J; Fireman, Z

    2002-01-01

    Matrix metalloproteinases (MMPs) capable of degrading various components of connective tissue matrices, and tissue inhibitor metalloproteinases (TIMPs) are considered important in lung parenchymal remodeling and repair processes in pulmonary diseases. Induced sputum (IS) is a reliable noninvasive method to investigate pathogenesis, pathophysiology and treatment of lung disease. This study was designed to determine whether IS-MMP9/TIMP1 levels demonstrate lung parenchymal remodeling in sarcoidosis (SA) and Crohn's disease (CRD) patients. Sputum was induced and processed conventionally in 13 SA patients, 18 CRD patients and 9 controls. Two-hundred cells were counted on Giemsa-stained cytopreps, and T lymphocytes subsets (CD4 = T helper and CD8 = T suppressor cytotoxic cells) were analysed by FACS using monoclonal antibodies.MMP-9 and TIMP-1 were measured using commercial ELISA kits. MMP-9 concentrations, but not those of TIMP-1, were significantly greater in the sputum supernatant in SA and CRD patients compared to controls (P = 0·018 and P = 0·0019, respectively). The molar ratio, MMP-9/TIMP-1, was significantly higher in SA and CRD patients compared to controls (P = 0·008 and P = 0·024, respectively). Gelatinase species having a molecular weight similar to that of MMP-9 were demonstrated by zymographic analysis. MMP-9 levels were highly correlated with the CD4/CD8 ratio and DLCO capacity in SA but less in CRD patients. MMP-9 levels in IS provide a sensitive marker for pulmonary damage. PMID:12390324

  12. Modeling Pediatric Brain Trauma: Piglet Model of Controlled Cortical Impact.

    PubMed

    Pareja, Jennifer C Munoz; Keeley, Kristen; Duhaime, Ann-Christine; Dodge, Carter P

    2016-01-01

    The brain has different responses to traumatic injury as a function of its developmental stage. As a model of injury to the immature brain, the piglet shares numerous similarities in regards to morphology and neurodevelopmental sequence compared to humans. This chapter describes a piglet scaled focal contusion model of traumatic brain injury that accounts for the changes in mass and morphology of the brain as it matures, facilitating the study of age-dependent differences in response to a comparable mechanical trauma.

  13. Role of brain hemispheric dominance in anticipatory postural control strategies.

    PubMed

    Cioncoloni, David; Rosignoli, Deborah; Feurra, Matteo; Rossi, Simone; Bonifazi, Marco; Rossi, Alessandro; Mazzocchio, Riccardo

    2016-07-01

    Most of the cerebral functions are asymmetrically represented in the two hemispheres. Moreover, dexterity and coordination of the distal segment of the dominant limbs depend on cortico-motor lateralization. In this study, we investigated whether postural control may be also considered a lateralized hemispheric brain function. To this aim, 15 young subjects were tested in standing position by measuring center of pressure (COP) shifts along the anteroposterior axis (COP-Y) during dynamic posturography before and after continuous Theta Burst Stimulation (cTBS) intervention applied to the dominant or non-dominant M1 hand area as well as to the vertex. We show that when subjects were expecting a forward platform translation, the COP-Y was positioned significantly backward or forward after dominant or non-dominant M1 stimulation, respectively. We postulate that cTBS applied on M1 may have disrupted the functional connectivity between intra- and interhemispheric areas implicated in the anticipatory control of postural stability. This study suggests a functional asymmetry between the two homologous primary motor areas, with the dominant hemisphere playing a critical role in the selection of the appropriate postural control strategy.

  14. The Extracellular Protease Matrix Metalloproteinase-9 Is Activated by Inhibitory Avoidance Learning and Required for Long-Term Memory

    ERIC Educational Resources Information Center

    Nagy, Vanja; Bozdagi, Ozlem; Huntley, George W.

    2007-01-01

    Matrix metalloproteinases (MMPs) are a family of extracellularly acting proteolytic enzymes with well-recognized roles in plasticity and remodeling of synaptic circuits during brain development and following brain injury. However, it is now becoming increasingly apparent that MMPs also function in normal, nonpathological synaptic plasticity of the…

  15. The Extracellular Protease Matrix Metalloproteinase-9 Is Activated by Inhibitory Avoidance Learning and Required for Long-Term Memory

    ERIC Educational Resources Information Center

    Nagy, Vanja; Bozdagi, Ozlem; Huntley, George W.

    2007-01-01

    Matrix metalloproteinases (MMPs) are a family of extracellularly acting proteolytic enzymes with well-recognized roles in plasticity and remodeling of synaptic circuits during brain development and following brain injury. However, it is now becoming increasingly apparent that MMPs also function in normal, nonpathological synaptic plasticity of the…

  16. Brain-computer interface controlled robotic gait orthosis.

    PubMed

    Do, An H; Wang, Po T; King, Christine E; Chun, Sophia N; Nenadic, Zoran

    2013-12-09

    Excessive reliance on wheelchairs in individuals with tetraplegia or paraplegia due to spinal cord injury (SCI) leads to many medical co-morbidities, such as cardiovascular disease, metabolic derangements, osteoporosis, and pressure ulcers. Treatment of these conditions contributes to the majority of SCI health care costs. Restoring able-body-like ambulation in this patient population can potentially reduce the incidence of these medical co-morbidities, in addition to increasing independence and quality of life. However, no biomedical solution exists that can reverse this loss of neurological function, and hence novel methods are needed. Brain-computer interface (BCI) controlled lower extremity prostheses may constitute one such novel approach. One able-bodied subject and one subject with paraplegia due to SCI underwent electroencephalogram (EEG) recordings while engaged in alternating epochs of idling and walking kinesthetic motor imagery (KMI). These data were analyzed to generate an EEG prediction model for online BCI operation. A commercial robotic gait orthosis (RoGO) system (suspended over a treadmill) was interfaced with the BCI computer to allow for computerized control. The subjects were then tasked to perform five, 5-min-long online sessions where they ambulated using the BCI-RoGO system as prompted by computerized cues. The performance of this system was assessed with cross-correlation analysis, and omission and false alarm rates. The offline accuracy of the EEG prediction model averaged 86.30% across both subjects (chance: 50%). The cross-correlation between instructional cues and the BCI-RoGO walking epochs averaged across all subjects and all sessions was 0.812 ± 0.048 (p-value <10(-4)). Also, there were on average 0.8 false alarms per session and no omissions. These results provide preliminary evidence that restoring brain-controlled ambulation after SCI is feasible. Future work will test the function of this system in a population of subjects with

  17. A NEW APPROACH TO KERATOCONUS DIAGNOSTICS USING MATRIX METALLOPROTEINASE-9 MARKER.

    PubMed

    Zilfyan, A; Abovyan, A

    2017-09-01

    In spite of numerous studies, the exact mechanism of the keratoconus development remains unknown. Nowadays, it is considered to be a multifactorial disorder, caused by a combination of both genetic and environmental factors. Some recent studies have indicated that IL-6 and matrix metalloproteinase-9 take crucial part in disease development. The study aims to test the association of keratoconus with elevated Matrix Metalloproteinase-9 levels in the lacrimal fluid of patients. In controlled, cross-sectional, double-masked study, the patients were examined as they attended the clinic; this method approximated random sampling. The study took place in "Shengavit" Medical Center (Yerevan). The study procedures were carried out in a standard examination room. The level of Matrix Metalloproteinase-9 was assessed using immunochromatographic analyses. In addition, a Shirmer's test was performed on all patients. In total, 90 patients (one eye of every patient) were examined. Three groups were distinguished: I (control) group - patients without any ocular pathology (n=30); II - patients with subclinical keratoconus (n=30); III - patients in the first, second, and third stages of keratoconus (n=30). In the third group (patients with obvious keratoconus), elevated levels of Matrix Metalloproteinase-9 were observed in 27 out of 30 eyes (90%). In the second group (patients with subclinical keratoconus), high levels of Matrix Metalloproteinase-9 were observed in 25 out of 30 eyes (83.33%). In the control group, only one eye out of 30 had an elevated level of Matrix Metalloproteinase-9 (3.33%). The results of the study demonstrate that the tear fluids of patients in the first to third stages of keratoconus or with subclinical keratoconus contain elevated levels of Matrix Metalloproteinase-9 as compared to the control group. Consequently, the detection of Matrix Metalloproteinase-9 in tear fluid can be used in the diagnostics of keratoconus.

  18. Reorganization and preservation of motor control of the brain in spinal cord injury: a systematic review.

    PubMed

    Kokotilo, Kristen J; Eng, Janice J; Curt, Armin

    2009-11-01

    Reorganization of brain function in people with CNS damage has been identified as one of the fundamental mechanisms involved in the recovery of sensorimotor function. Spinal cord injury (SCI) brain mapping studies during motor tasks aim for assessing the reorganization and preservation of brain networks involved in motor control. Revealing the activation of cortical and subcortical brain areas in people with SCI can indicate principal patterns of brain reorganization when the neurotrauma is distal to the brain. This review assessed brain activation after SCI in terms of intensity, volume, and somatotopic localization, as well as preservation of activation during attempted and/or imagined movements. Twenty-five studies meeting the inclusion criteria could be identified in Medline (1980 to January 2008). Relevant characteristics of studies (level of lesion, time after injury, motor task) and mapping techniques varied widely. Changes in brain activation were found in both cortical and subcortical areas of individuals with SCI. In addition, several studies described a shift in the region of brain activation. These patterns appeared to be dynamic and influenced by the level, completeness, and time after injury, as well as extent of clinical recovery. In addition, several aspects of reorganization of brain function following SCI resembled those reported in stroke. This review demonstrates that brain networks involved in different demands of motor control remain responsive even in chronic paralysis. These findings imply that therapeutic strategies aimed at restoring spinal cord function, even in people with chronic SCI, can build on preserved competent brain control.

  19. PPARα and PPARγ attenuate HIV-induced dysregulation of tight junction proteins by modulations of matrix metalloproteinase and proteasome activities

    PubMed Central

    Huang, Wen; Eum, Sung Yong; András, Ibolya E; Hennig, Bernhard; Toborek, Michal

    2009-01-01

    The blood-brain barrier (BBB) plays an important role in HIV trafficking into the brain and the development of the central nervous system complications in HIV infection. Tight junctions are the main structural and functional elements that regulate the BBB integrity. Exposure of human brain microvascular endothelial cells (hCMEC/D3 cell line) to HIV-infected monocytes resulted in decreased expression of tight junction proteins, such as junctional adhesion molecule-A (JAM)-A, occludin, and zonula occludens (ZO)-1. Control experiments involved exposure to uninfected monocytes. Alterations of tight junction protein expression were associated with increased endothelial permeability and elevated transendothelial migration of HIV-infected monocytes across an in vitro model of the BBB. Notably, overexpression of the peroxisome proliferator-activated receptor (PPAR)α or PPARγ attenuated HIV-mediated dysregulation of tight junction proteins. With the use of exogenous PPARγ agonists and silencing of PPARα or PPARγ, these protective effects were connected to down-regulation of matrix metalloproteinase (MMP) and proteasome activities. Indeed, the HIV-induced decrease in the expression of JAM-A and occludin was restored by inhibition of MMP activity. Moreover, both MMP and proteasome inhibitors attenuated HIV-mediated altered expression of ZO-1. The present data indicate that down-regulation of MMP and proteasome activities constitutes a novel mechanism of PPAR-induced protections against HIV-induced disruption of brain endothelial cells.—Huang, W., Eum, S. Y., András, I. E., Hennig, B., Toborek, M. PPARα and PPARγ attenuate HIV-induced dysregulation of tight junction proteins by modulations of matrix metalloproteinase and proteasome activities. PMID:19141539

  20. Motivation, emotion, and their inhibitory control mirrored in brain oscillations.

    PubMed

    Knyazev, Gennady G

    2007-01-01

    Recent studies suggest brain oscillations as a mechanism for cerebral integration. Such integration can exist across a number of functional domains, with different frequency rhythms associated with each domain. Here, evidence is summarized which shows that delta oscillations depend on activity of motivational systems and participate in salience detection. Theta oscillations are involved in memory and emotional regulation. Alpha oscillations participate in inhibitory processes which contribute to a variety of cognitive operations such as attention and memory. The importance of inhibitory functions associated with alpha oscillations increases during the course of evolution. In ontogenesis, these functions develop later and may be more sensitive to a variety of detrimental environmental influences. In a number of developmental stages and pathological conditions, a deficient alpha and/or increased slow-wave activity are associated with cognitive deficits and a lack of inhibitory control. It is shown that slow-wave and alpha oscillations are reciprocally related to each other. This reciprocal relationship may reflect an inhibitory control over motivational and emotional drives which is implemented by the prefrontal cortex.

  1. Brain-computer interface control along instructed paths

    NASA Astrophysics Data System (ADS)

    Sadtler, P. T.; Ryu, S. I.; Tyler-Kabara, E. C.; Yu, B. M.; Batista, A. P.

    2015-02-01

    Objective. Brain-computer interfaces (BCIs) are being developed to assist paralyzed people and amputees by translating neural activity into movements of a computer cursor or prosthetic limb. Here we introduce a novel BCI task paradigm, intended to help accelerate improvements to BCI systems. Through this task, we can push the performance limits of BCI systems, we can quantify more accurately how well a BCI system captures the user’s intent, and we can increase the richness of the BCI movement repertoire. Approach. We have implemented an instructed path task, wherein the user must drive a cursor along a visible path. The instructed path task provides a versatile framework to increase the difficulty of the task and thereby push the limits of performance. Relative to traditional point-to-point tasks, the instructed path task allows more thorough analysis of decoding performance and greater richness of movement kinematics. Main results. We demonstrate that monkeys are able to perform the instructed path task in a closed-loop BCI setting. We further investigate how the performance under BCI control compares to native arm control, whether users can decrease their movement variability in the face of a more demanding task, and how the kinematic richness is enhanced in this task. Significance. The use of the instructed path task has the potential to accelerate the development of BCI systems and their clinical translation.

  2. Human brain imaging during controlled and natural viewing

    NASA Astrophysics Data System (ADS)

    Klein, Stanley A.; Carney, Thom; Kim, David; Dandekar, Sangita; Privitera, Claudio

    2010-02-01

    Assorted technologies such as; EEG, MEG, fMRI, BEM, MRI, TMS and BCI are being integrated to understand how human visual cortical areas interact during controlled laboratory and natural viewing conditions. Our focus is on the problem of separating signals from the spatially close early visual areas. The solution involves taking advantage of known functional anatomy to guide stimulus selection and employing principles of spatial and temporal response properties that simplify analysis. The method also unifies MEG and EEG recordings and provides a means for improving existing boundary element head models. In going beyond carefully controlled stimuli, in natural viewing with scanning eye movements, assessing brain states with BCI is a most challenging task. Frequent eye movements contribute artifacts to the recordings. A linear regression method is introduced that is shown to effectively characterize these frequent artifacts and could be used to remove them. In free viewing, saccadic landings initiate visual processing epochs and could be used to trigger strictly time based analysis methods. However, temporal instabilities indicate frequency based analysis would be an important adjunct. The class of Cauchy filter functions is introduced that have narrow time and frequency properties well matched to the EEG/MEG spectrum for avoiding channel leakage.

  3. Noninvasive brain-actuated control of a mobile robot by human EEG.

    PubMed

    Millán, José del R; Renkens, Frédéric; Mouriño, Josep; Gerstner, Wulfram

    2004-06-01

    Brain activity recorded noninvasively is sufficient to control a mobile robot if advanced robotics is used in combination with asynchronous electroencephalogram (EEG) analysis and machine learning techniques. Until now brain-actuated control has mainly relied on implanted electrodes, since EEG-based systems have been considered too slow for controlling rapid and complex sequences of movements. We show that two human subjects successfully moved a robot between several rooms by mental control only, using an EEG-based brain-machine interface that recognized three mental states. Mental control was comparable to manual control on the same task with a performance ratio of 0.74.

  4. Control of energy balance by the brain renin-angiotensin system.

    PubMed

    Claflin, Kristin E; Grobe, Justin L

    2015-05-01

    The renin-angiotensin system (RAS) exists as a circulating hormone system but it is also used by various tissues of the body, including the brain, as a paracrine signaling mechanism. The local brain version of the RAS is mechanistically involved in fluid balance and blood pressure control, and there is growing appreciation for a role of the brain RAS in the control of energy balance. Here, we review major evidence for the control of energy balance by the brain RAS; outline the current understanding of the RAS components, targets, and mechanisms involved; and highlight some major questions that currently face the field.

  5. Graph Analysis of Functional Brain Networks for Cognitive Control of Action in Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H.; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P.

    2012-01-01

    Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly…

  6. Graph Analysis of Functional Brain Networks for Cognitive Control of Action in Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H.; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P.

    2012-01-01

    Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly…

  7. Role of tissue inhibitor of metalloproteinases-1 in the development of autoimmune lymphoproliferation

    PubMed Central

    Boggio, Elena; Indelicato, Manuela; Orilieri, Elisabetta; Mesturini, Riccardo; Mazzarino, Maria Clorinda; Campagnoli, Maria Francesca; Ramenghi, Ugo; Dianzani, Umberto; Chiocchetti, Annalisa

    2010-01-01

    Background Inherited defects decreasing function of the Fas death receptor cause autoimmune lymphoproliferative syndrome and its variant Dianzani’s autoimmune lymphoproliferative disease. Analysis of the lymphocyte transcriptome from a patient with this latter condition detected striking over-expression of osteopontin and tissue inhibitor of metalloproteinases-1. Since previous work on osteopontin had detected increased serum levels in these patients, associated with variations of its gene, the aim of this work was to extend the analysis to tissue inhibitor of metalloproteinases-1. Design and Methods Tissue inhibitor of metalloproteinases-1 levels were evaluated in sera and culture supernatants from patients and controls by enzyme-linked immunosorbent assay. Activation- and Fas-induced cell death were induced, in vitro, using anti-CD3 and anti-Fas antibodies, respectively. Results Tissue inhibitor of metalloproteinases-1 levels were higher in sera from 32 patients (11 with autoimmune lymphoproliferative syndrome and 21 with Dianzani’s autoimmune lymphoproliferative disease) than in 50 healthy controls (P<0.0001), unassociated with variations of the tissue inhibitor of metalloproteinases-1 gene. Both groups of patients also had increased serum levels of osteopontin. In vitro experiments showed that osteopontin increased tissue inhibitor of metalloproteinases-1 secretion by peripheral blood monocytes. Moreover, tissue inhibitor of metalloproteinases-1 significantly inhibited both Fas- and activation-induced cell death of lymphocytes. Conclusions These data suggest that high osteopontin levels may support high tissue inhibitor of metalloproteinases-1 levels in autoimmune lymphoproliferative syndrome and Dianzani’s autoimmune lymphoproliferative disease, and hence worsen the apoptotic defect in these diseases. PMID:20595097

  8. A fuzzy-based shared controller for brain-actuated simulated robotic system.

    PubMed

    Liu, Rong; Xue, Kuang-Zheng; Wang, Yong-Xuan; Yang, Le

    2011-01-01

    The primary problems of brain-computer interface (BCI) are the low channel capacity and high error rate. Therefore, an assistive motion control method is important for the brain-actuated robot to realize real-time and reliable control. To make the brain-actuated robot respond to the external environments with more flexibility, a shared control method based on fuzzy logic is proposed. Experimental results obtained with ten healthy voluntary subjects show that the proposed fuzzy-based shared controller has improved performance compared with direct control approach.

  9. Controlling ferrofluid permeability across the blood-brain barrier model

    NASA Astrophysics Data System (ADS)

    Shi, Di; Sun, Linlin; Mi, Gujie; Sheikh, Lubna; Bhattacharya, Soumya; Nayar, Suprabha; Webster, Thomas J.

    2014-02-01

    In the present study, an in vitro blood-brain barrier model was developed using murine brain endothelioma cells (b.End3 cells). Confirmation of the blood-brain barrier model was completed by examining the permeability of FITC-Dextran at increasing exposure times up to 96 h in serum-free medium and comparing such values with values from the literature. After such confirmation, the permeability of five novel ferrofluid (FF) nanoparticle samples, GGB (ferrofluids synthesized using glycine, glutamic acid and BSA), GGC (glycine, glutamic acid and collagen), GGP (glycine, glutamic acid and PVA), BPC (BSA, PEG and collagen) and CPB (collagen, PVA and BSA), was determined using this blood-brain barrier model. All of the five FF samples were characterized by zeta potential to determine their charge as well as TEM and dynamic light scattering for determining their hydrodynamic diameter. Results showed that FF coated with collagen passed more easily through the blood-brain barrier than FF coated with glycine and glutamic acid based on an increase of 4.5% in permeability. Through such experiments, diverse magnetic nanomaterials (such as FF) were identified for: (1) MRI use since they were less permeable to penetrate the blood-brain barrier to avoid neural tissue toxicity (e.g. GGB) or (2) brain drug delivery since they were more permeable to the blood-brain barrier (e.g. CPB).

  10. Controlling ferrofluid permeability across the blood–brain barrier model.

    PubMed

    Shi, Di; Sun, Linlin; Mi, Gujie; Sheikh, Lubna; Bhattacharya, Soumya; Nayar, Suprabha; Webster, Thomas J

    2014-02-21

    In the present study, an in vitro blood–brain barrier model was developed using murine brain endothelioma cells (b.End3 cells). Confirmation of the blood–brain barrier model was completed by examining the permeability of FITCDextran at increasing exposure times up to 96 h in serum-free medium and comparing such values with values from the literature. After such confirmation, the permeability of five novel ferrofluid (FF) nanoparticle samples, GGB (ferrofluids synthesized using glycine, glutamic acid and BSA), GGC (glycine, glutamic acid and collagen), GGP (glycine, glutamic acid and PVA), BPC (BSA, PEG and collagen) and CPB (collagen, PVA and BSA), was determined using this blood–brain barrier model. All of the five FF samples were characterized by zeta potential to determine their charge as well as TEM and dynamic light scattering for determining their hydrodynamic diameter. Results showed that FF coated with collagen passed more easily through the blood–brain barrier than FF coated with glycine and glutamic acid based on an increase of 4.5% in permeability. Through such experiments, diverse magnetic nanomaterials (such as FF) were identified for: (1) MRI use since they were less permeable to penetrate the blood–brain barrier to avoid neural tissue toxicity (e.g. GGB) or (2) brain drug delivery since they were more permeable to the blood–brain barrier (e.g. CPB).

  11. Brain lipid sensing and the neural control of energy balance.

    PubMed

    Magnan, Christophe; Levin, Barry E; Luquet, Serge

    2015-12-15

    Fatty acid (FA) -sensitive neurons are present in the brain, especially the hypothalamus, and play a key role in the neural control of energy and glucose homeostasis including feeding behavior, secretion insulin and action. Subpopulations of neurons in the arcuate and ventromedial hypothalamic nuclei are selectively either activated or inhibited by FA. Molecular effectors of these FA effects include ion channels such as chloride, potassium or calcium. In addition, at least half of the responses in the hypothalamic ventromedial FA neurons are mediated through interaction with the FA translocator/receptor, FAT/CD36, that does not require metabolism to activate intracellular signaling downstream. Recently, an important role of lipoprotein lipase in FA detection has also been demonstrated not only in the hypothalamus, but also in the hippocampus and striatum. Finally, FA could overload energy homeostasis via increased hypothalamic ceramide synthesis which could, in turn, contribute to the pathogenesis of diabetes of obesity and/or type 2 in predisposed individuals by disrupting the endocrine signaling pathways of insulin and/or leptin. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Epigenetic control of gene expression in the alcoholic brain.

    PubMed

    Ponomarev, Igor

    2013-01-01

    Chronic alcohol exposure causes widespread changes in brain gene expression in humans and animal models. Many of these contribute to cellular adaptations that ultimately lead to behavioral tolerance and alcohol dependence. There is an emerging appreciation for the role of epigenetic processes in alcohol-induced changes in brain gene expression and behavior. For example, chronic alcohol exposure produces changes in DNA and histone methylation, histone acetylation, and microRNA expression that affect expression of multiple genes in various types of brain cells (i.e., neurons and glia) and contribute to brain pathology and brain plasticity associated with alcohol abuse and dependence. Drugs targeting the epigenetic "master regulators" are emerging as potential therapeutics for neurodegenerative disorders and drug addiction.

  13. Riding the metalloproteinase roller coaster.

    PubMed

    Murphy, Gillian

    2017-05-12

    To many of us in the field, working on matrix metalloproteinases (MMPs) has felt like riding a roller coaster, traveling through times of both excitement and despair. I was fortunate to join the ride when it was a mere carousel of three activities thought to target the proteins that comprise the extracellular matrix (ECM). New technologies brought the thrills of discovery as we uncovered specific proteinase genes and defined specialized activities in different cellular processes. The MMPs and the sister families of "adisintegrin and metalloproteinase" (ADAMs), ADAMs with thrombospondin domains (ADAM-TS), and Astacins are now recognized as key signaling "scissors" that drive rapid changes in a plethora of cellular pathways. My many excellent colleagues and collaborators and I were enthused to contribute to the early development of the field and continue to be amazed at its growth and sophistication. In contrast, the hype and failure of early inhibitor discovery have dogged our standing with the pharmaceutical industry and grant-giving bodies. However, the true believers have kept going, and knowledge of particular functions of MMPs and their contributions to disease progression has progressed. Recognition of the strategic importance of proteinase function should inspire more work harnessing new technologies such as imaging, proteomics, and gene editing to generate a more precise understanding of individual situations. New approaches to inhibitor design and assessment are possible, and the consequent ability to precisely abrogate specific MMP activity could contribute to the fight against a number of pathologies with unmet needs. What a ride it could be! © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Lectican proteoglycans, their cleaving metalloproteinases, and plasticity in the central nervous system extracellular microenvironment

    PubMed Central

    Howell, Matthew D.; Gottschall, Paul E.

    2013-01-01

    The extracellular matrix in the central nervous system actively orchestrates and modulates changes in neural structure and function in response to experience, after injury, during disease, and with changes in neuronal activity. A component of the multi-protein, extracellular matrix aggregate in brain, the chondroitin sulfate-bearing proteoglycans known as lecticans, inhibit neurite outgrowth, alter dendritic spine shape, elicit closure of critical period plasticity, and block target reinnervation and functional recovery after injury as the major component of a glial scar. While removal of the chondroitin sulfate chains from lecticans with chondroitinase ABC improves plasticity, proteolytic cleavage of the lectican core protein may change the conformation of the matrix aggregate and also modulate neural plasticity. This review centers on the roles of the lecticans and the endogenous metalloproteinase families that proteolytically cleave lectican core proteins, the matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs), in neural plasticity. These extracellular metalloproteinases modulate structural neural plasticity—including changes in neurite outgrowth and dendritic spine remodeling—and synaptic plasticity. Some of these actions have been demonstrated to occur via cleavage of the proteoglycan core protein. Other actions of the proteases include cleavage of non-matrix substrate proteins, whereas still other actions may occur directly at the cell surface without proteolytic cleavage. The data convincingly demonstrate that metalloproteinases modulate physiological and pathophysiological neural plasticity. PMID:22626649

  15. Lectican proteoglycans, their cleaving metalloproteinases, and plasticity in the central nervous system extracellular microenvironment.

    PubMed

    Howell, M D; Gottschall, P E

    2012-08-16

    The extracellular matrix (ECM) in the central nervous system actively orchestrates and modulates changes in neural structure and function in response to experience, after injury, during disease, and with changes in neuronal activity. A component of the multi-protein, ECM aggregate in brain, the chondroitin sulfate (CS)-bearing proteoglycans (PGs) known as lecticans, inhibit neurite outgrowth, alter dendritic spine shape, elicit closure of critical period plasticity, and block target reinnervation and functional recovery after injury as the major component of a glial scar. While removal of the CS chains from lecticans with chondroitinase ABC improves plasticity, proteolytic cleavage of the lectican core protein may change the conformation of the matrix aggregate and also modulate neural plasticity. This review centers on the roles of the lecticans and the endogenous metalloproteinase families that proteolytically cleave lectican core proteins, the matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs), in neural plasticity. These extracellular metalloproteinases modulate structural neural plasticity-including changes in neurite outgrowth and dendritic spine remodeling-and synaptic plasticity. Some of these actions have been demonstrated to occur via cleavage of the PG core protein. Other actions of the proteases include cleavage of non-matrix substrate proteins, whereas still other actions may occur directly at the cell surface without proteolytic cleavage. The data convincingly demonstrate that metalloproteinases modulate physiological and pathophysiological neural plasticity. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Polymorphisms of the tissue inhibitor of metalloproteinase 3 gene are associated with resistance to high-altitude pulmonary edema (HAPE) in a Japanese population: a case control study using polymorphic microsatellite markers.

    PubMed

    Kobayashi, Nobumitsu; Hanaoka, Masayuki; Droma, Yunden; Ito, Michiko; Katsuyama, Yoshihiko; Kubo, Keishi; Ota, Masao

    2013-01-01

    High-altitude pulmonary edema (HAPE) is a hypoxia-induced, life-threatening, high permeability type of edema attributable to pulmonary capillary stress failure. Genome-wide association analysis is necessary to better understand how genetics influence the outcome of HAPE. DNA samples were collected from 53 subjects susceptible to HAPE (HAPE-s) and 67 elite Alpinists resistant to HAPE (HAPE-r). The genome scan was carried out using 400 polymorphic microsatellite markers throughout the whole genome in all subjects. In addition, six single nucleotide polymorphisms (SNPs) of the gene encoding the tissue inhibitor of metalloproteinase 3 (TIMP3) were genotyped by Taqman® SNP Genotyping Assays. The results were analyzed using case-control comparisons. Whole genome scanning revealed that allele frequencies in nine markers were statistically different between HAPE-s and HAPE-r subjects. The SNP genotyping of the TIMP3 gene revealed that the derived allele C of rs130293 was associated with resistance to HAPE [odds ratio (OR) = 0.21, P = 0.0012) and recessive inheritance of the phenotype of HAPE-s (P = 0.0012). A haplotype CAC carrying allele C of rs130293 was associated with resistance to HAPE. This genome-wide association study revealed several novel candidate genes associated with susceptibility or resistance to HAPE in a Japanese population. Among those, the minor allele C of rs130293 (C/T) in the TIMP3 gene was linked to resistance to HAPE; while, the ancestral allele T was associated with susceptibility to HAPE.

  17. Calponin control of cerebrovascular reactivity: therapeutic implications in brain trauma.

    PubMed

    Kreipke, Christian W; Rafols, Jose A

    2009-02-01

    Calponin (Cp) is an actin-binding protein first characterized in chicken gizzard smooth muscle (SM). This review discusses the role of Cp in mediating SM contraction, the biochemical process by which Cp facilitates SM contraction and the function of Cp in the brain. Recent work on the role of Cp in pathological states with emphasis on traumatic brain injury is also discussed. Based on past and present data, the case is presented for targeting Cp for novel genetic and pharmacological therapies aimed at improving outcome following traumatic brain injury (TBI).

  18. Calponin control of cerebrovascular reactivity: therapeutic implications in brain trauma

    PubMed Central

    Kreipke, Christian W; Rafols, Jose A

    2009-01-01

    Abstract Calponin (Cp) is an actin-binding protein first characterized in chicken gizzard smooth muscle (SM). This review discusses the role of Cp in mediating SM contraction, the biochemical process by which Cp facilitates SM contraction and the function of Cp in the brain. Recent work on the role of Cp in pathological states with emphasis on traumatic brain injury is also discussed. Based on past and present data, the case is presented for targeting Cp for novel genetic and pharmacological therapies aimed at improving outcome following traumatic brain injury (TBI). PMID:19278456

  19. Seizure Control and Memory Impairment Are Related to Disrupted Brain Functional Integration in Temporal Lobe Epilepsy.

    PubMed

    Park, Chang-Hyun; Choi, Yun Seo; Jung, A-Reum; Chung, Hwa-Kyoung; Kim, Hyeon Jin; Yoo, Jeong Hyun; Lee, Hyang Woon

    2017-01-01

    Brain functional integration can be disrupted in patients with temporal lobe epilepsy (TLE), but the clinical relevance of this disruption is not completely understood. The authors hypothesized that disrupted functional integration over brain regions remote from, as well as adjacent to, the seizure focus could be related to clinical severity in terms of seizure control and memory impairment. Using resting-state functional MRI data acquired from 48 TLE patients and 45 healthy controls, the authors mapped functional brain networks and assessed changes in a network parameter of brain functional integration, efficiency, to examine the distribution of disrupted functional integration within and between brain regions. The authors assessed whether the extent of altered efficiency was influenced by seizure control status and whether the degree of altered efficiency was associated with the severity of memory impairment. Alterations in the efficiency were observed primarily near the subcortical region ipsilateral to the seizure focus in TLE patients. The extent of regional involvement was greater in patients with poor seizure control: it reached the frontal, temporal, occipital, and insular cortices in TLE patients with poor seizure control, whereas it was limited to the limbic and parietal cortices in TLE patients with good seizure control. Furthermore, TLE patients with poor seizure control experienced more severe memory impairment, and this was associated with lower efficiency in the brain regions with altered efficiency. These findings indicate that the distribution of disrupted brain functional integration is clinically relevant, as it is associated with seizure control status and comorbid memory impairment.

  20. Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors

    PubMed Central

    Liu, Hesheng; Stufflebeam, Steven M.; Sepulcre, Jorge; Hedden, Trey; Buckner, Randy L.

    2009-01-01

    Cerebral lateralization is a fundamental property of the human brain and a marker of successful development. Here we provide evidence that multiple mechanisms control asymmetry for distinct brain systems. Using intrinsic activity to measure asymmetry in 300 adults, we mapped the most strongly lateralized brain regions. Both men and women showed strong asymmetries with a significant, but small, group difference. Factor analysis on the asymmetric regions revealed 4 separate factors that each accounted for significant variation across subjects. The factors were associated with brain systems involved in vision, internal thought (the default network), attention, and language. An independent sample of right- and left-handed individuals showed that hand dominance affects brain asymmetry but differentially across the 4 factors supporting their independence. These findings show the feasibility of measuring brain asymmetry using intrinsic activity fluctuations and suggest that multiple genetic or environmental mechanisms control cerebral lateralization. PMID:19918055

  1. Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors.

    PubMed

    Liu, Hesheng; Stufflebeam, Steven M; Sepulcre, Jorge; Hedden, Trey; Buckner, Randy L

    2009-12-01

    Cerebral lateralization is a fundamental property of the human brain and a marker of successful development. Here we provide evidence that multiple mechanisms control asymmetry for distinct brain systems. Using intrinsic activity to measure asymmetry in 300 adults, we mapped the most strongly lateralized brain regions. Both men and women showed strong asymmetries with a significant, but small, group difference. Factor analysis on the asymmetric regions revealed 4 separate factors that each accounted for significant variation across subjects. The factors were associated with brain systems involved in vision, internal thought (the default network), attention, and language. An independent sample of right- and left-handed individuals showed that hand dominance affects brain asymmetry but differentially across the 4 factors supporting their independence. These findings show the feasibility of measuring brain asymmetry using intrinsic activity fluctuations and suggest that multiple genetic or environmental mechanisms control cerebral lateralization.

  2. Brain glucose sensing, glucokinase and neural control of metabolism and islet function.

    PubMed

    Ogunnowo-Bada, E O; Heeley, N; Brochard, L; Evans, M L

    2014-09-01

    It is increasingly apparent that the brain plays a central role in metabolic homeostasis, including the maintenance of blood glucose. This is achieved by various efferent pathways from the brain to periphery, which help control hepatic glucose flux and perhaps insulin-stimulated insulin secretion. Also, critically important for the brain given its dependence on a constant supply of glucose as a fuel--emergency counter-regulatory responses are triggered by the brain if blood glucose starts to fall. To exert these control functions, the brain needs to detect rapidly and accurately changes in blood glucose. In this review, we summarize some of the mechanisms postulated to play a role in this and examine the potential role of the low-affinity hexokinase, glucokinase, in the brain as a key part of some of this sensing. We also discuss how these processes may become altered in diabetes and related metabolic diseases.

  3. Control of protein and energy intake - brain mechanisms.

    PubMed

    Davidenko, O; Darcel, N; Fromentin, G; Tomé, D

    2013-05-01

    The protein content of the diet has long been investigated for its influence on food behavior. High-protein diets promote satiety and reduce calorie intake, whereas results for low-protein diets are more contradictory and less established. Protein sensing might take place in the oral cavity or in the post-oral gastrointestinal tract, where specific receptors have been found. Protein signaling to the brain may act through the vagal nerve and involve gastric hormones, such as cholecystokinin and peptide YY. Other pathways are post-absorptive signaling and the direct influence of brain levels of amino acids. High-protein diet enhances the activity of brain satiety centers, mainly the nucleus of the solitary tract and arcuate nucleus, although the activity of brain reward centers might also be modified. A better understanding of the role of both homeostatic and hedonic systems is needed to fully describe the influence of protein on food intake.

  4. Spectral Variability in the Aged Brain during Fine Motor Control

    PubMed Central

    Quandt, Fanny; Bönstrup, Marlene; Schulz, Robert; Timmermann, Jan E.; Zimerman, Maximo; Nolte, Guido; Hummel, Friedhelm C.

    2016-01-01

    Physiological aging is paralleled by a decline of fine motor skills accompanied by structural and functional alterations of the underlying brain network. Here, we aim to investigate age-related changes in the spectral distribution of neuronal oscillations during fine skilled motor function. We employ the concept of spectral entropy in order to describe the flatness and peaked-ness of a frequency spectrum to quantify changes in the spectral distribution of the oscillatory motor response in the aged brain. Electroencephalogram was recorded in elderly (n = 32) and young (n = 34) participants who performed either a cued finger movement or a pinch or a whole hand grip task with their dominant right hand. Whereas young participant showed distinct, well-defined movement-related power decreases in the alpha and upper beta band, elderly participants exhibited a flat broadband, frequency-unspecific power desynchronization. This broadband response was reflected by an increase of spectral entropy over sensorimotor and frontal areas in the aged brain. Neuronal activation patterns differed between motor tasks in the young brain, while the aged brain showed a similar activation pattern in all tasks. Moreover, we found a wider recruitment of the cortical motor network in the aged brain. The present study adds to the understanding of age-related changes of neural coding during skilled motor behavior, revealing a less predictable signal with great variability across frequencies in a wide cortical motor network in the aged brain. The increase in entropy in the aged brain could be a reflection of random noise-like activity or could represent a compensatory mechanism that serves a functional role. PMID:28066231

  5. Spectral Variability in the Aged Brain during Fine Motor Control.

    PubMed

    Quandt, Fanny; Bönstrup, Marlene; Schulz, Robert; Timmermann, Jan E; Zimerman, Maximo; Nolte, Guido; Hummel, Friedhelm C

    2016-01-01

    Physiological aging is paralleled by a decline of fine motor skills accompanied by structural and functional alterations of the underlying brain network. Here, we aim to investigate age-related changes in the spectral distribution of neuronal oscillations during fine skilled motor function. We employ the concept of spectral entropy in order to describe the flatness and peaked-ness of a frequency spectrum to quantify changes in the spectral distribution of the oscillatory motor response in the aged brain. Electroencephalogram was recorded in elderly (n = 32) and young (n = 34) participants who performed either a cued finger movement or a pinch or a whole hand grip task with their dominant right hand. Whereas young participant showed distinct, well-defined movement-related power decreases in the alpha and upper beta band, elderly participants exhibited a flat broadband, frequency-unspecific power desynchronization. This broadband response was reflected by an increase of spectral entropy over sensorimotor and frontal areas in the aged brain. Neuronal activation patterns differed between motor tasks in the young brain, while the aged brain showed a similar activation pattern in all tasks. Moreover, we found a wider recruitment of the cortical motor network in the aged brain. The present study adds to the understanding of age-related changes of neural coding during skilled motor behavior, revealing a less predictable signal with great variability across frequencies in a wide cortical motor network in the aged brain. The increase in entropy in the aged brain could be a reflection of random noise-like activity or could represent a compensatory mechanism that serves a functional role.

  6. The brain melanocortin system, sympathetic control, and obesity hypertension.

    PubMed

    da Silva, Alexandre A; do Carmo, Jussara M; Wang, Zhen; Hall, John E

    2014-05-01

    Excess weight gain is the most significant, preventable cause of increased blood pressure (BP) in patients with primary (essential) hypertension and increases the risk for cardiovascular and renal diseases. In this review, we discuss the role of the brain melanocortin system in causing increased sympathetic activity in obesity and other forms of hypertension. In addition, we highlight potential mechanisms by which the brain melanocortin system modulates metabolic and cardiovascular functions.

  7. Altered expression of metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 in cervical disc herniation patients.

    PubMed

    Zhuang, H M; Xu, G T; Wen, S F; Guo, Y Y; Huang, Q

    2016-04-26

    The aim of the current study was to examine matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-2 (TIMP-2) expression in patients with cervical disc herniation (CDH). A total of 127 specimens from CDH patients undergoing posterior spinal surgery were obtained for the case group, which was divided into three subgroups: lateral protrusion (N = 102), median protrusion (N = 18), and paramedian protrusion (N = 7). Another 55 specimens from subjects who had cervical spine trauma and underwent spinal canal decompression were obtained for the control group. Routine hematoxylin and eosin staining was performed for pathological diagnosis. Immunohistochemical (IHC) analysis was used to determine MMP-2 and TIMP-2 expression. Under light microscopy, MMP-2-positive cells presented brown-yellow or dark brown staining in the cell membrane or cytoplasm. MMP-2 expression in the case group was significantly higher than that in controls (P < 0.05). Furthermore, MMP-2 expression in the lateral and median protrusion groups was significantly higher compared to that in the paramedian protrusion group (both P < 0.05), while there was no apparent difference in MMP-2 expression between the lateral and median protrusion groups (P > 0.05). IHC results showed that TIMP-2 expression in cases was significantly lower than that in controls (P < 0.05). Spearman correlation analysis indicated that MMP- 2 was negatively correlated with TIMP-2 expression (r = -0.418, P < 0.001). In conclusion, MMP-2 expression increased, whereas TIMP- 2 expression decreased in CDH patients, suggesting that MMP-2 and TIMP-2 expression may contribute to CDH development.

  8. Mitochondria-controlled signaling mechanisms of brain protection in hypoxia

    PubMed Central

    Lukyanova, Ludmila D.; Kirova, Yulia I.

    2015-01-01

    The article is focused on the role of the cell bioenergetic apparatus, mitochondria, involved in development of immediate and delayed molecular mechanisms for adaptation to hypoxic stress in brain cortex. Hypoxia induces reprogramming of respiratory chain function and switching from oxidation of NAD-related substrates (complex I) to succinate oxidation (complex II). Transient, reversible, compensatory activation of respiratory chain complex II is a major mechanism of immediate adaptation to hypoxia necessary for (1) succinate-related energy synthesis in the conditions of oxygen deficiency and formation of urgent resistance in the body; (2) succinate-related stabilization of HIF-1α and initiation of its transcriptional activity related with formation of long-term adaptation; (3) succinate-related activation of the succinate-specific receptor, GPR91. This mechanism participates in at least four critical regulatory functions: (1) sensor function related with changes in kinetic properties of complex I and complex II in response to a gradual decrease in ambient oxygen concentration; this function is designed for selection of the most efficient pathway for energy substrate oxidation in hypoxia; (2) compensatory function focused on formation of immediate adaptive responses to hypoxia and hypoxic resistance of the body; (3) transcriptional function focused on activated synthesis of HIF-1 and the genes providing long-term adaptation to low pO2; (4) receptor function, which reflects participation of mitochondria in the intercellular signaling system via the succinate-dependent receptor, GPR91. In all cases, the desired result is achieved by activation of the succinate-dependent oxidation pathway, which allows considering succinate as a signaling molecule. Patterns of mitochondria-controlled activation of GPR-91- and HIF-1-dependent reaction were considered, and a possibility of their participation in cellular-intercellular-systemic interactions in hypoxia and adaptation was

  9. Neurophotonics: optical methods to study and control the brain

    NASA Astrophysics Data System (ADS)

    Doronina-Amitonova, L. V.; Fedotov, I. V.; Fedotov, A. B.; Anokhin, K. V.; Zheltikov, A. M.

    2015-04-01

    Methods of optical physics offer unique opportunities for the investigation of brain and higher nervous activity. The integration of cutting-edge laser technologies and advanced neurobiology opens a new cross-disciplinary area of natural sciences - neurophotonics - focusing on the development of a vast arsenal of tools for functional brain diagnostics, stimulation of individual neurons and neural networks, and the molecular engineering of brain cells aimed at the diagnosis and therapy of neurodegenerative and psychic diseases. Optical fibers help to confront the most challenging problems in brain research, including the analysis of molecular-cellular mechanisms of the formation of memory and behavior. New generation optical fibers provide new solutions for the development of fundamentally new, unique tools for neurophotonics and laser neuroengineering - fiber-optic neuroendoscopes and neurointerfaces. These instruments broaden research horizons when investigating the most complex brain functions, enabling a long-term multiplex detection of fluorescent protein markers, as well as photostimulation of neuronal activity in deep brain areas in living, freely moving animals with an unprecedented spatial resolution and minimal invasiveness. This emerging technology opens new horizons for understanding learning and long-term memory through experiments with living, freely moving mammals. Here, we present a brief review of this rapidly growing field of research.

  10. Whole Brain Radiation-Induced Cognitive Impairment: Pathophysiological Mechanisms and Therapeutic Targets

    PubMed Central

    Lee, Yong Woo; Cho, Hyung Joon; Lee, Won Hee; Sonntag, William E.

    2012-01-01

    Radiation therapy, the most commonly used for the treatment of brain tumors, has been shown to be of major significance in tu-mor control and survival rate of brain tumor patients. About 200,000 patients with brain tumor are treated with either partial large field or whole brain radiation every year in the United States. The use of radiation therapy for treatment of brain tumors, however, may lead to devastating functional deficits in brain several months to years after treatment. In particular, whole brain radiation therapy results in a significant reduction in learning and memory in brain tumor patients as long-term consequences of treatment. Although a number of in vitro and in vivo studies have demonstrated the pathogenesis of radiation-mediated brain injury, the cel-lular and molecular mechanisms by which radiation induces damage to normal tissue in brain remain largely unknown. Therefore, this review focuses on the pathophysiological mechanisms of whole brain radiation-induced cognitive impairment and the iden-tification of novel therapeutic targets. Specifically, we review the current knowledge about the effects of whole brain radiation on pro-oxidative and pro-inflammatory pathways, matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) system and extracellular matrix (ECM), and physiological angiogenesis in brain. These studies may provide a foundation for defin-ing a new cellular and molecular basis related to the etiology of cognitive impairment that occurs among patients in response to whole brain radiation therapy. It may also lead to new opportunities for therapeutic interventions for brain tumor patients who are undergoing whole brain radiation therapy. PMID:24009822

  11. Whole brain radiation-induced cognitive impairment: pathophysiological mechanisms and therapeutic targets.

    PubMed

    Lee, Yong Woo; Cho, Hyung Joon; Lee, Won Hee; Sonntag, William E

    2012-07-01

    Radiation therapy, the most commonly used for the treatment of brain tumors, has been shown to be of major significance in tu-mor control and survival rate of brain tumor patients. About 200,000 patients with brain tumor are treated with either partial large field or whole brain radiation every year in the United States. The use of radiation therapy for treatment of brain tumors, however, may lead to devastating functional deficits in brain several months to years after treatment. In particular, whole brain radiation therapy results in a significant reduction in learning and memory in brain tumor patients as long-term consequences of treatment. Although a number of in vitro and in vivo studies have demonstrated the pathogenesis of radiation-mediated brain injury, the cel-lular and molecular mechanisms by which radiation induces damage to normal tissue in brain remain largely unknown. Therefore, this review focuses on the pathophysiological mechanisms of whole brain radiation-induced cognitive impairment and the iden-tification of novel therapeutic targets. Specifically, we review the current knowledge about the effects of whole brain radiation on pro-oxidative and pro-inflammatory pathways, matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) system and extracellular matrix (ECM), and physiological angiogenesis in brain. These studies may provide a foundation for defin-ing a new cellular and molecular basis related to the etiology of cognitive impairment that occurs among patients in response to whole brain radiation therapy. It may also lead to new opportunities for therapeutic interventions for brain tumor patients who are undergoing whole brain radiation therapy.

  12. Reorganization and Preservation of Motor Control of the Brain in Spinal Cord Injury: A Systematic Review

    PubMed Central

    Kokotilo, Kristen J; Eng, Janice J; Curt, Armin

    2011-01-01

    Reorganization of brain function in people with CNS damage has been identified as one of the fundamental mechanisms involved in the recovery of sensori-motor function. Spinal cord injury (SCI) brain mapping studies during motor tasks aim for assessing the reorganization and preservation of brain networks involved in motor control. Revealing the activation of cortical and sub-cortical brain areas in people with SCI can indicate principal patterns of brain reorganization when the neurotrauma is distal to the brain. This review assessed brain activation after SCI in terms of intensity, volume, and somatotopic localization, as well as preservation of activation during attempted and/or imagined movements. Twenty-five studies meeting the inclusion criteria could be identified in MEDLINE (1980 to January 2008). Relevant characteristics of studies (level of lesion, time after injury, motor task) and mapping techniques varied widely. Changes in brain activation were found in both cortical and subcortical areas of individuals with SCI. In addition, several studies described a shift in the region of brain activation. These patterns appeared to be dynamic and influenced by the level, completeness and time after injury, as well as extent of clinical recovery. In addition, several aspects of reorganization of brain function following SCI resembled those reported in stroke. This review demonstrates that brain networks involved in different demands of motor control remain responsive even in chronic paralysis. These findings imply that therapeutic strategies aiming for restoring spinal cord function even in people with chronic SCI can build on a preserved competent brain control. PMID:19604097

  13. The Potential Role of Metalloproteinases in Neurogenesis in the Gerbil Hippocampus Following Global Forebrain Ischemia

    PubMed Central

    Wójcik-Stanaszek, Luiza; Sypecka, Joanna; Szymczak, Patrycja; Ziemka-Nalecz, Malgorzata; Khrestchatisky, Michel; Rivera, Santiago; Zalewska, Teresa

    2011-01-01

    Background Matrix metalloproteinases (MMPs) have recently been considered to be involved in the neurogenic response of adult neural stem/progenitor cells. However, there is a lack of information showing direct association between the activation of MMPs and the development of neuronal progenitor cells involving proliferation and/or further differentiation in vulnerable (Cornus Ammoni-CA1) and resistant (dentate gyrus-DG) to ischemic injury areas of the brain hippocampus. Principal Findings We showed that dynamics of MMPs activation in the dentate gyrus correlated closely with the rate of proliferation and differentiation of progenitor cells into mature neurons. In contrast, in the damaged CA1 pyramidal cells layer, despite the fact that some proliferating cells exhibited antigen specific characteristic of newborn neuronal cells, these did not attain maturity. This coincides with the low, near control-level, activity of MMPs. The above results are supported by our in vitro study showing that MMP inhibitors interfered with both the proliferation and differentiation of the human neural stem cell line derived from umbilical cord blood (HUCB-NSCs) toward the neuronal lineage. Conclusion Taken together, the spatial and temporal profiles of MMPs activity suggest that these proteinases could be an important component in neurogenesis-associated processes in post-ischemic brain hippocampus. PMID:21799862

  14. Structural Dissociation of Attentional Control and Memory in Adults with and without Mild Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Niogi, Sumit N.; Mukherjee, Pratik; Ghajar, Jamshid; Johnson, Carl E.; Kolster, Rachel; Lee, Hana; Suh, Minah; Zimmerman, Robert D.; Manley, Geoffrey T.; McCandliss, Bruce D.

    2008-01-01

    Memory and attentional control impairments are the two most common forms of dysfunction following mild traumatic brain injury (TBI) and lead to significant morbidity in patients, yet these functions are thought to be supported by different brain networks. This 3 T magnetic resonance diffusion tensor imaging (DTI) study investigates whether…

  15. Predictors of successful self control during brain-computer communication

    PubMed Central

    Neumann, N; Birbaumer, N

    2003-01-01

    Objectives: Direct brain-computer communication uses self regulation of brain potentials to select letters, words, or symbols from a computer menu to re-establish communication in severely paralysed patients. However, not all healthy subjects, or all paralysed patients acquire the skill to self regulate their brain potentials, and predictors of successful learning have not been found yet. Predictors are particularly important, because only successful self regulation will in the end lead to efficient brain-computer communication. This study investigates the question whether initial performance in the self regulation of slow cortical potentials of the brain (SCPs) may be positively correlated to later performance and could thus be used as a predictor. Methods: Five severely paralysed patients diagnosed with amyotrophic lateral sclerosis were trained to produce SCP amplitudes of negative and positive polarity by means of visual feedback and operant conditioning strategies. Performance was measured as percentage of correct SCP amplitude shifts. To determine the relation between initial and later performance in SCP self regulation, Spearman's rank correlations were calculated between maximum and mean performance at the beginning of training (runs 1–30) and mean performance at two later time points (runs 64–93 and 162–191). Results: Spearman's rank correlations revealed a significant relation between maximum and mean performance in runs 1–30 and mean performance in runs 64–93 (r= 0.9 and 1.0) and maximum and mean performance in runs 1–30 and mean performance in runs 162–191 (r=1.0 and 1.0). Conclusions: Initial performance in the self regulation of SCP is positively correlated with later performance in severely paralysed patients, and thus represents a useful predictor for efficient brain-computer communication. PMID:12876247

  16. Brain-Computer Interface for Control of Wheelchair Using Fuzzy Neural Networks.

    PubMed

    Abiyev, Rahib H; Akkaya, Nurullah; Aytac, Ersin; Günsel, Irfan; Çağman, Ahmet

    2016-01-01

    The design of brain-computer interface for the wheelchair for physically disabled people is presented. The design of the proposed system is based on receiving, processing, and classification of the electroencephalographic (EEG) signals and then performing the control of the wheelchair. The number of experimental measurements of brain activity has been done using human control commands of the wheelchair. Based on the mental activity of the user and the control commands of the wheelchair, the design of classification system based on fuzzy neural networks (FNN) is considered. The design of FNN based algorithm is used for brain-actuated control. The training data is used to design the system and then test data is applied to measure the performance of the control system. The control of the wheelchair is performed under real conditions using direction and speed control commands of the wheelchair. The approach used in the paper allows reducing the probability of misclassification and improving the control accuracy of the wheelchair.

  17. Matrix metalloproteinases in metabolic syndrome.

    PubMed

    Hopps, E; Caimi, G

    2012-03-01

    Metabolic syndrome is commonly accompanied by an elevated cardiovascular risk with high morbidity and mortality. The alterations of the arterial vasculature begin with endothelial dysfunction and lead to micro- and macrovascular complications. The remodeling of the endothelial basal membrane, that promotes erosion and thrombosis, has a multifactorial pathogenesis that includes leukocyte activation, increased oxidative stress and also an altered matrix metalloproteinases (MMPs) expression. MMPs are endopeptidases which degrade extracellular matrix proteins, such as collagen, gelatins, fibronectin and laminin. They can be secreted by several cells within the vascular wall, but macrophages are determinant in the atherosclerotic plaques. Their activity is regulated by tissue inhibitors of MMP (TIMPs) and also by other molecules, such as plasmin. MMPs could be implicated in plaque instability predisposing to vascular complications. It has been demonstrated that an impaired MMP or TIMP expression is associated with higher risk of all-cause mortality. A large number of studies evaluated MMPs pattern in obesity, diabetes mellitus, arterial hypertension and dyslipidemia, all of which define metabolic syndrome according to several Consensus Statement (i.e. IDF, ATP III, AHA). However, few research have been carried out on subjects with metabolic syndrome. The evidences of an improvement in MMP/TIMP ratio with diet, exercise and medical therapy should encourage further investigations with the intent to contrast the atherosclerotic process and to reduce morbidity and mortality of this kind of patients.

  18. Secreted Metalloproteinase ADAMTS-3 Inactivates Reelin.

    PubMed

    Ogino, Himari; Hisanaga, Arisa; Kohno, Takao; Kondo, Yuta; Okumura, Kyoko; Kamei, Takana; Sato, Tempei; Asahara, Hiroshi; Tsuiji, Hitomi; Fukata, Masaki; Hattori, Mitsuharu

    2017-03-22

    The secreted glycoprotein Reelin regulates embryonic brain development and adult brain functions. It has been suggested that reduced Reelin activity contributes to the pathogenesis of several neuropsychiatric and neurodegenerative disorders, such as schizophrenia and Alzheimer's disease; however, noninvasive methods that can upregulate Reelin activity in vivo have yet to be developed. We previously found that the proteolytic cleavage of Reelin within Reelin repeat 3 (N-t site) abolishes Reelin activity in vitro, but it remains controversial as to whether this effect occurs in vivo Here we partially purified the enzyme that mediates the N-t cleavage of Reelin from the culture supernatant of cerebral cortical neurons. This enzyme was identified as a disintegrin and metalloproteinase with thrombospondin motifs-3 (ADAMTS-3). Recombinant ADAMTS-3 cleaved Reelin at the N-t site. ADAMTS-3 was expressed in excitatory neurons in the cerebral cortex and hippocampus. N-t cleavage of Reelin was markedly decreased in the embryonic cerebral cortex of ADAMTS-3 knock-out (KO) mice. Importantly, the amount of Dab1 and the phosphorylation level of Tau, which inversely correlate with Reelin activity, were significantly decreased in the cerebral cortex of ADAMTS-3 KO mice. Conditional KO mice, in which ADAMTS-3 was deficient only in the excitatory neurons of the forebrain, showed increased dendritic branching and elongation in the postnatal cerebral cortex. Our study shows that ADAMTS-3 is the major enzyme that cleaves and inactivates Reelin in the cerebral cortex and hippocampus. Therefore, inhibition of ADAMTS-3 may be an effective treatment for neuropsychiatric and neurodegenerative disorders.SIGNIFICANCE STATEMENT ADAMTS-3 was identified as the protease that cleaves and inactivates Reelin in the cerebral cortex and hippocampus. ADAMTS-3 was expressed in the excitatory neurons of the embryonic and postnatal cerebral cortex and hippocampus. Cleavage by ADAMTS-3 is the major

  19. Study Reveals Brain Biology behind Self-Control

    ERIC Educational Resources Information Center

    Sparks, Sarah D.

    2011-01-01

    A new neuroscience twist on a classic psychology study offers some clues to what makes one student able to buckle down for hours of homework before a test while his classmates party. The study published in the September 2011 edition of "Proceedings of the National Academy of Science," suggests environmental cues may "hijack" the brain's mechanisms…

  20. Study Reveals Brain Biology behind Self-Control

    ERIC Educational Resources Information Center

    Sparks, Sarah D.

    2011-01-01

    A new neuroscience twist on a classic psychology study offers some clues to what makes one student able to buckle down for hours of homework before a test while his classmates party. The study published in the September 2011 edition of "Proceedings of the National Academy of Science," suggests environmental cues may "hijack" the brain's mechanisms…

  1. Expression of extracellular matrix metalloproteinase inducer and matrix metalloproteinases during mouse embryonic development.

    PubMed

    Chen, Li; Nakai, Masaaki; Belton, Robert J; Nowak, Romana A

    2007-02-01

    Mouse embryo implantation is a highly invasive and controlled process that involves remodeling and degradation of the extracellular matrix of the uterus. Matrix metalloproteinases (MMPs) are the main proteinases facilitating this process. Extracellular matrix metalloproteinase inducer (EMMPRIN) can stimulate the production of MMPs and is required for successful implantation in the mouse. The aims of the present study were to examine the expression profiles of mRNA and proteins for EMMPRIN and MMPs in the developing mouse embryo in vitro, and to study whether EMMPRIN protein induces the production of MMPs by mouse blastocysts. EMMPRIN mRNA, detected by RT-PCR, was present at all stages of embryo development from the one-cell to the blastocyst outgrowth. EMMPRIN protein, observed by confocal microscopy, was present on the cell surface at the same stages of development as was the mRNA. Of seven MMPs studied, murine collagenase-like A (Mcol-A), murine collagenase-like B (Mcol-B) and gelatinase A (MMP-2) mRNAs were detected only in blastocyst outgrowths by RT-PCR. Gelatinase B (MMP-9) mRNA was detected both in expanded blastocysts and blastocyst outgrowths. MMP-2 and -9 proteins were detected in the cytoplasm of outgrowing trophoblast cells. Collagenase-2 (MMP-8), collagenase-3 (MMP-13), or stromelysin-1 (MMP-3) mRNAs were not present at any stage of pre- or peri-implantation mouse embryo development. Quantitative RT-PCR analyses showed that recombinant EMMPRIN protein did not stimulate MMP-2 or -9 expression by mouse blastocyst outgrowths. These data suggest that EMMPRIN may regulate physiological functions other than MMP production by mouse embryos during implantation.

  2. Modulation of Matrix Metalloproteinase 14, Tissue Inhibitor of Metalloproteinase 3, Tissue Inhibitor of Metalloproteinase 4, and Inducible Nitric Oxide Synthase in the Development of Periapical Lesions.

    PubMed

    Cassanta, Lorena Teodoro de Castro; Rodrigues, Virmondes; Violatti-Filho, Jose Roberto; Teixeira Neto, Benedito Alves; Tavares, Vinícius Marques; Bernal, Eduarda Castelo Branco Araujo; Souza, Danila Malheiros; Araujo, Marcelo Sivieri; de Lima Pereira, Sanivia Aparecida; Rodrigues, Denise Bertulucci Rocha

    2017-07-01

    Periapical cysts and granulomas are chronic lesions caused by an inflammatory immune response against microbial challenge in the root canal. Different cell types, cytokines, and molecules have been associated with periapical lesion formation and expansion. Therefore, because of the chronic inflammatory state of these lesions, the aim of this study was to evaluate the in situ expression of matrix metalloproteinase (MMP)-14 and -19, tissue inhibitor of metalloproteinase (TIMP)-3 and -4, CD68, and inducible nitric oxide synthase (iNOS) in periapical cysts and granulomas. Sixteen cases of periapical cysts and 15 cases of periapical granulomas were analyzed. Ten normal dental pulps were used as the negative control. Immunohistochemistry was performed with anti-MMP-19, anti-MMP-14, anti-TIMP-3, anti-TIMP-4, anti-iNOS, and anti-CD68 antibodies. The expression of TIMP-3, TIMP-4, iNOS, and CD68 was significantly higher in both the cyst and granuloma groups than in the control group. TIMP-4 was also significantly higher in cases of chronic apical abscess. There was also a significant difference in the expression of MMP-14 between the cyst and control groups. However, there were no differences in the expression of MMP-19 between the 3 groups. Our data suggest that the expression of MMP-14, TIMP-3, and TIMP-4 is associated with the development of periapical lesions. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Efficacy of a Metalloproteinase Inhibitor in Spinal Cord Injured Dogs

    PubMed Central

    Levine, Jonathan M.; Cohen, Noah D.; Heller, Michael; Fajt, Virginia R.; Levine, Gwendolyn J.; Kerwin, Sharon C.; Trivedi, Alpa A.; Fandel, Thomas M.; Werb, Zena; Modestino, Augusta; Noble-Haeusslein, Linda J.

    2014-01-01

    Matrix metalloproteinase-9 is elevated within the acutely injured murine spinal cord and blockade of this early proteolytic activity with GM6001, a broad-spectrum matrix metalloproteinase inhibitor, results in improved recovery after spinal cord injury. As matrix metalloproteinase-9 is likewise acutely elevated in dogs with naturally occurring spinal cord injuries, we evaluated efficacy of GM6001 solubilized in dimethyl sulfoxide in this second species. Safety and pharmacokinetic studies were conducted in naïve dogs. After confirming safety, subsequent pharmacokinetic analyses demonstrated that a 100 mg/kg subcutaneous dose of GM6001 resulted in plasma concentrations that peaked shortly after administration and were sustained for at least 4 days at levels that produced robust in vitro inhibition of matrix metalloproteinase-9. A randomized, blinded, placebo-controlled study was then conducted to assess efficacy of GM6001 given within 48 hours of spinal cord injury. Dogs were enrolled in 3 groups: GM6001 dissolved in dimethyl sulfoxide (n = 35), dimethyl sulfoxide (n = 37), or saline (n = 41). Matrix metalloproteinase activity was increased in the serum of injured dogs and GM6001 reduced this serum protease activity compared to the other two groups. To assess recovery, dogs were a priori stratified into a severely injured group and a mild-to-moderate injured group, using a Modified Frankel Scale. The Texas Spinal Cord Injury Score was then used to assess long-term motor/sensory function. In dogs with severe spinal cord injuries, those treated with saline had a mean motor score of 2 (95% CI 0–4.0) that was significantly (P<0.05; generalized linear model) less than the estimated mean motor score for dogs receiving dimethyl sulfoxide (mean, 5; 95% CI 2.0–8.0) or GM6001 (mean, 5; 95% CI 2.0–8.0). As there was no independent effect of GM6001, we attribute improved neurological outcomes to dimethyl sulfoxide, a pleotropic agent that may target diverse

  4. Development of musculoskeletal toxicity without clear benefit after administration of PG-116800, a matrix metalloproteinase inhibitor, to patients with knee osteoarthritis: a randomized, 12-month, double-blind, placebo-controlled study

    PubMed Central

    Krzeski, Piotr; Buckland-Wright, Chris; Bálint, Géza; Cline, Gary A; Stoner, Karen; Lyon, Robert; Beary, John; Aronstein, William S; Spector, Tim D

    2007-01-01

    We performed a randomized, double-blind, placebo-controlled, multicenter, parallel-group, dose-response study of the efficacy and safety of the oral administration of PG-116800, a matrix metalloproteinase (MMP) inhibitor, in patients with mild to moderate knee osteoarthritis. The primary efficacy endpoints included the progression of joint space narrowing in the osteoarthritic knee, as measured by microfocal radiography with fluoroscopic positioning, and the reduction of symptoms (pain and stiffness) and/or the improvement of function, as measured by the Western Ontario and McMaster Universities osteoarthritis index (WOMAC). Four hundred and one patients were randomly assigned to either placebo (n = 80) or one of fourdoses of PG-116800: 25 mg (n = 81), 50 mg (n = 80), 100 mg (n = 80), or 200 mg (n = 80) taken twice daily for 12 months. During the study, the 200-mg dose was discontinued based on an increased frequency of musculoskeletal adverse effects. After 1 year of treatment, no statistically significant difference was observed between placebo and PG-116800 with regard to mean changes in minimum joint space width of the knee or to WOMAC scores. The most frequent adverse effect was arthralgia (35%). Twenty-three percent of evaluable patients had at least a 30% decrease from baseline of at least onerange-of-motion measurement of either shoulder at a follow-up visit. The percentage of patients with reduction in range of motion was significantly greater in the twohighest dose groups relative to placebo. Thirteen percent of patients, half of whom were in the 200-mg group, reported hand adverse events (oedema, palmar fibrosis, Dupuytren contracture, or persistent tendon thickness or nodules). The threemost frequent shoulder adverse events were reversible arthralgia, stiffness, and myalgia, which mostly affected the twohighest dose groups. The unfavorable risk-benefit balance of the MMP inhibitor PG-116800 in patients with knee osteoarthritis precludes further

  5. Comparison of Metalloproteinase Protein and Activity Profiling

    PubMed Central

    Giricz, Orsi; Lauer, Janelle L.; Fields, Gregg B.

    2010-01-01

    Proteolytic enzymes play fundamental roles in many biological processes. Members of the matrix metalloproteinase (MMP) family have been shown to take part in processes crucial in disease progression. The present study used the ExcelArray Human MMP/TIMP Array to quantify MMP and tissue inhibitor of metalloproteinase (TIMP) production in the lysates and media of 14 cancer and one normal cell line. The overall patterns were very similar in terms of which MMPs and TIMPs were secreted in the media versus associated with the cells in the individual samples. However, more MMP was found in the media, both in amount and in variety. TIMP-1 was produced in all cell lines. MMP activity assays with three different FRET substrates were then utilized to determine if protein production correlated with function for the WM-266-4 and BJ cell lines. Metalloproteinase activity was observed for both cell lines with a general MMP substrate (Knight SSP), consistent with protein production data. However, although both cell lines promoted the hydrolysis of a more selective MMP substrate (NFF-3), metalloproteinase activity was only confirmed in the BJ cell line. The use of inhibitors to confirm metalloproteinase activities pointed to the strengths and weaknesses of in situ FRET substrate assays. PMID:20920458

  6. Control of Matrix Metalloproteinase Catalytic Activity

    PubMed Central

    Ra, Hyun-Jeong; Parks, William C.

    2008-01-01

    Summary As their name implies, MMPs were first described as proteases that degrade extracellular matrix proteins, such as collagens, elastin, proteoglycans, and laminins. However, studies of MMP function in vivo have revealed that these proteinases act on a variety of extracellular protein substrates, often to activate latent forms of effector proteins, such as antimicrobial peptides and cytokines, or to alter protein function, such as shedding of cell-surface proteins. Because their substrates are diverse, MMPs are involved in variety of homeostatic functions, such as bone remodeling, wound healing, and several aspects of immunity. However, MMPs are also involved in a number of pathological processes, such as tumor progression, fibrosis, chronic inflammation, tissue destruction, and more. A key step in regulating MMP proteolysis is the conversion of the zymogen into an active proteinase. Several proMMPs are activated in the secretion pathway by furin proprotein convertases, but for most the activation mechanisms are largely not known. In this review, we discuss both authentic and potential mechanisms of proMMP activation. PMID:17669641

  7. Riding the metalloproteinase roller coaster

    PubMed Central

    Murphy, Gillian

    2017-01-01

    To many of us in the field, working on matrix metalloproteinases (MMPs) has felt like riding a roller coaster, traveling through times of both excitement and despair. I was fortunate to join the ride when it was a mere carousel of three activities thought to target the proteins that comprise the extracellular matrix (ECM). New technologies brought the thrills of discovery as we uncovered specific proteinase genes and defined specialized activities in different cellular processes. The MMPs and the sister families of “a disintegrin and metalloproteinase” (ADAMs), ADAMs with thrombospondin domains (ADAM-TS), and Astacins are now recognized as key signaling “scissors” that drive rapid changes in a plethora of cellular pathways. My many excellent colleagues and collaborators and I were enthused to contribute to the early development of the field and continue to be amazed at its growth and sophistication. In contrast, the hype and failure of early inhibitor discovery have dogged our standing with the pharmaceutical industry and grant-giving bodies. However, the true believers have kept going, and knowledge of particular functions of MMPs and their contributions to disease progression has progressed. Recognition of the strategic importance of proteinase function should inspire more work harnessing new technologies such as imaging, proteomics, and gene editing to generate a more precise understanding of individual situations. New approaches to inhibitor design and assessment are possible, and the consequent ability to precisely abrogate specific MMP activity could contribute to the fight against a number of pathologies with unmet needs. What a ride it could be! PMID:28298437

  8. Control of Brain Development, Function, and Behavior by the Microbiome

    PubMed Central

    Sampson, Timothy R.; Mazmanian, Sarkis K.

    2015-01-01

    Animals share an intimate and life-long partnership with a myriad of resident microbial species, collectively referred to as the microbiota. Symbiotic microbes have been shown to regulate nutrition and metabolism, and are critical for the development and function of the immune system. More recently, studies have suggested that gut bacteria can impact neurological outcomes – altering behavior and potentially affecting the onset and/or severity of nervous system disorders. In this review, we highlight emerging evidence that the microbiome extends its influence to the brain via various pathways connecting the gut to the central nervous system. While understanding and appreciation of a gut microbial impact on neurological function is nascent, unraveling gut-microbiome-brain connections holds the promise of transforming the neurosciences and revealing potentially novel etiologies for psychiatric and neurodegenerative disorders. PMID:25974299

  9. Gut-Brain Cross-Talk in Metabolic Control.

    PubMed

    Clemmensen, Christoffer; Müller, Timo D; Woods, Stephen C; Berthoud, Hans-Rudolf; Seeley, Randy J; Tschöp, Matthias H

    2017-02-23

    Because human energy metabolism evolved to favor adiposity over leanness, the availability of palatable, easily attainable, and calorically dense foods has led to unprecedented levels of obesity and its associated metabolic co-morbidities that appear resistant to traditional lifestyle interventions. However, recent progress identifying the molecular signaling pathways through which the brain and the gastrointestinal system communicate to govern energy homeostasis, combined with emerging insights on the molecular mechanisms underlying successful bariatric surgery, gives reason to be optimistic that novel precision medicines that mimic, enhance, and/or modulate gut-brain signaling can have unprecedented potential for stopping the obesity and type 2 diabetes pandemics. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Spatial Brain Control Interface using Optical and Electrophysiological Measures

    DTIC Science & Technology

    2013-08-27

    reaching in macaque posterior parietal cortex, Brain Structure and Function, (02 2013): 0. doi: TOTAL: 1 (b) Papers published in non-peer-reviewed...journals: Muñoz Silva F, Heider B, Siegel RM (2012) Task-related modulation of local field potential spectral content in macaque parietal cortex during a...Barbara Heider, Ralph M. Siegel. Optical Imaging During Visually Guided Reaching in Macaque Posterior Parietal Cortex, NeuroImage (04 2012) TOTAL: 1 Books

  11. Deep brain photoreceptors control light seeking behavior in zebrafish larvae

    PubMed Central

    Fernandes, António M.; Fero, Kandice; Arrenberg, Aristides B.; Bergeron, Sadie A.; Driever, Wolfgang; Burgess, Harold A.

    2012-01-01

    Summary Most vertebrates process visual information using elaborately structured photosensory tissues including the eyes and pineal. However there is strong evidence that other tissues can detect and respond to photic stimuli [1, 2, 3]. Many reports suggest that photosensitive elements exist within the brain itself and influence physiology and behavior, however a long standing puzzle has been the identity of the neurons and photoreceptor molecules involved [4, 5]. We tested whether light cues influence behavior in zebrafish larvae through deep brain photosensors. We found that larvae lacking eyes and pineal perform a simple light-seeking behavior triggered by loss of illumination (`dark photokinesis'). Neuroanatomical considerations prompted us to test orthopedia (otpa) deficient fish which showed a profound reduction in dark photokinesis. Using targeted genetic ablations, we narrowed the photosensitive region to neurons in the preoptic area. Neurons in this region express several photoreceptive molecules, but expression of the melanopsin opn4a is selectively lost in otpa mutants, suggesting that opn4a mediates dark photokinesis. Our findings shed light on the identity and function of deep brain photoreceptors and suggest that otpa specifies an ancient population of sensory neurons that mediate behavioral responses to light. PMID:23000151

  12. The Control of Global Brain Dynamics: Opposing Actions of Frontoparietal Control and Default Mode Networks on Attention

    PubMed Central

    Hellyer, Peter J.; Shanahan, Murray; Scott, Gregory; Wise, Richard J. S.; Sharp, David J.

    2014-01-01

    Understanding how dynamic changes in brain activity control behavior is a major challenge of cognitive neuroscience. Here, we consider the brain as a complex dynamic system and define two measures of brain dynamics: the synchrony of brain activity, measured by the spatial coherence of the BOLD signal across regions of the brain; and metastability, which we define as the extent to which synchrony varies over time. We investigate the relationship among brain network activity, metastability, and cognitive state in humans, testing the hypothesis that global metastability is “tuned” by network interactions. We study the following two conditions: (1) an attentionally demanding choice reaction time task (CRT); and (2) an unconstrained “rest” state. Functional MRI demonstrated increased synchrony, and decreased metastability was associated with increased activity within the frontoparietal control/dorsal attention network (FPCN/DAN) activity and decreased default mode network (DMN) activity during the CRT compared with rest. Using a computational model of neural dynamics that is constrained by white matter structure to test whether simulated changes in FPCN/DAN and DMN activity produce similar effects, we demonstate that activation of the FPCN/DAN increases global synchrony and decreases metastability. DMN activation had the opposite effects. These results suggest that the balance of activity in the FPCN/DAN and DMN might control global metastability, providing a mechanistic explanation of how attentional state is shifted between an unfocused/exploratory mode characterized by high metastability, and a focused/constrained mode characterized by low metastability. PMID:24403145

  13. Drugs in development: bisphosphonates and metalloproteinase inhibitors

    PubMed Central

    Catterall, Jon B; Cawston, Tim E

    2003-01-01

    The destruction of bone and cartilage is characteristic of the progression of musculoskeletal diseases. The present review discusses the developments made with two different classes of drugs, the bisphosphonates and matrix metalloproteinase inhibitors. Bisphosphonates have proven to be an effective and safe treatment for the prevention of bone loss, especially in osteoporotic disease, and may have a role in the treatment of arthritic diseases. The development of matrix metalloproteinase inhibitors and their role as potential therapies are also discussed, especially in the light of the disappointing human trials data so far published. PMID:12716443

  14. [Concentration of matrix metalloproteinases and magnesium ions in patients with varicose veins of lower limbs].

    PubMed

    Kalinin, R E; Suchkov, I A; Pshennikov, A S; Kamaev, A A; Mzhavanadze, N D

    The study was aimed at investigating alterations in the concentration of matrix metalloproteinases (MMP-1, MMP-9) and the tissue inhibitor of metalloproteinase-1 (TIMP-1), as well as the level of magnesium ions (Mg(2+)) as an indicator of connective tissue dysplasia (CTD) in patients presenting with lower limb varicose veins. The study included a total of 110 people. Of these, the Study Group comprised 90 patients with lower limb varicose veins of clinical class C2-C6 (according to the CEAP classification) and the Control Group was composed of 20 apparently healthy volunteers. Samples of peripheral blood were examined. The content of MMP-9, MMP-1 and TIMP-1 in blood serum was determined by means of the quantitative solid-phase immunoenzymatic assay. The concentration of Mg(2+) was determined by the colorimetric method. We revealed a statistically significant interrelationship between the concentrations of matrix metalloproteinases and severity of varicose transformation of lower-limb veins, with the highest level of matrix metalloproteinases being observed in patients with cutaneous alterations and trophic ulcers. Determination of the level of matrix metalloproteinases and magnesium ions, characterizing connective tissue dysplasia, makes it possible to predict the development of lower limb chronic venous insufficiency and to evaluate the degree of its severity.

  15. Mitochondrial Control by DRP1 in Brain Tumor Initiating Cells

    PubMed Central

    Xie, Qi; Wu, Qiulian; Horbinski, Craig M.; Flavahan, William A.; Yang, Kailin; Zhou, Wenchao; Dombrowski, Stephen M.; Huang, Zhi; Fang, Xiaoguang; Shi, Yu; Ferguson, Ashley N.; Kashatus, David F.; Bao, Shideng; Rich, Jeremy N.

    2015-01-01

    Brain tumor initiating cells (BTICs) coopt the neuronal high affinity GLUT3 glucose transporter to withstand metabolic stress. Here, we investigated another mechanism critical to brain metabolism, mitochondrial morphology. BTICs displayed mitochondrial fragmentation relative to non-BTICs, suggesting that BTICs have increased mitochondrial fission. The essential mediator of mitochondrial fission, dynamin-related protein 1 (DRP1), was activated in BTICs and inhibited in non-BTICs. Targeting DRP1 using RNA interference or pharmacologic inhibition induced BTIC apoptosis and inhibited tumor growth. Downstream, DRP1 activity regulated the essential metabolic stress sensor, AMP-activated protein kinase (AMPK), and AMPK targeting rescued the effects of DRP1 disruption. Cyclin-dependent kinase 5 (CDK5) phosphorylated DRP1 to increase its activity in BTICs, whereas Ca2+–calmodulin-dependent protein kinase 2 (CAMK2) inhibited DRP1 in non-BTICs, suggesting tumor cell differentiation induces a regulatory switch in mitochondrial morphology. DRP1 activation correlates with poor prognosis in glioblastoma, suggesting mitochondrial dynamics may represent a therapeutic target for BTICs. PMID:25730670

  16. Mitochondrial control by DRP1 in brain tumor initiating cells.

    PubMed

    Xie, Qi; Wu, Qiulian; Horbinski, Craig M; Flavahan, William A; Yang, Kailin; Zhou, Wenchao; Dombrowski, Stephen M; Huang, Zhi; Fang, Xiaoguang; Shi, Yu; Ferguson, Ashley N; Kashatus, David F; Bao, Shideng; Rich, Jeremy N

    2015-04-01

    Brain tumor initiating cells (BTICs) co-opt the neuronal high affinity glucose transporter, GLUT3, to withstand metabolic stress. We investigated another mechanism critical to brain metabolism, mitochondrial morphology, in BTICs. BTIC mitochondria were fragmented relative to non-BTIC tumor cell mitochondria, suggesting that BTICs increase mitochondrial fission. The essential mediator of mitochondrial fission, dynamin-related protein 1 (DRP1), showed activating phosphorylation in BTICs and inhibitory phosphorylation in non-BTIC tumor cells. Targeting DRP1 using RNA interference or pharmacologic inhibition induced BTIC apoptosis and inhibited tumor growth. Downstream, DRP1 activity regulated the essential metabolic stress sensor, AMP-activated protein kinase (AMPK), and targeting AMPK rescued the effects of DRP1 disruption. Cyclin-dependent kinase 5 (CDK5) phosphorylated DRP1 to increase its activity in BTICs, whereas Ca(2+)-calmodulin-dependent protein kinase 2 (CAMK2) inhibited DRP1 in non-BTIC tumor cells, suggesting that tumor cell differentiation induces a regulatory switch in mitochondrial morphology. DRP1 activation correlated with poor prognosis in glioblastoma, suggesting that mitochondrial dynamics may represent a therapeutic target for BTICs.

  17. Evidence for an inhibitory-control theory of the reasoning brain

    PubMed Central

    Houdé, Olivier; Borst, Grégoire

    2015-01-01

    In this article, we first describe our general inhibitory-control theory and, then, we describe how we have tested its specific hypotheses on reasoning with brain imaging techniques in adults and children. The innovative part of this perspective lies in its attempt to come up with a brain-based synthesis of Jean Piaget’s theory on logical algorithms and Daniel Kahneman’s theory on intuitive heuristics. PMID:25852528

  18. Evidence for an inhibitory-control theory of the reasoning brain.

    PubMed

    Houdé, Olivier; Borst, Grégoire

    2015-01-01

    In this article, we first describe our general inhibitory-control theory and, then, we describe how we have tested its specific hypotheses on reasoning with brain imaging techniques in adults and children. The innovative part of this perspective lies in its attempt to come up with a brain-based synthesis of Jean Piaget's theory on logical algorithms and Daniel Kahneman's theory on intuitive heuristics.

  19. Circulating Total and Active Metalloproteinase-9 and Tissue Inhibitor of Metalloproteinases-1 in Patients with Systemic Lupus Erythomatosus

    PubMed Central

    Robak, Ewa; Wierzbowska, Agnieszka; Chmiela, Magdalena; Kulczycka, Liliana; Sysa-Jędrejowska, Anna; Robak, Tadeusz

    2006-01-01

    We investigated the serum concentration of total metalloproteinase-9 (tMPP-9), active MMP-9 (aMMP-9), and tissue inhibitor of metalloproteinase-1 (TIMP-1) in a group of 41 patients with SLE and 20 healthy controls. Serum levels of tMMP-9 and TIMP-1 were assessed by an enzyme-linked immunosorbent assay (ELISA) and aMMP-9 by fluorometric assay. The tMMP-9 level was lower in SLE patients (mean 262 ng/mL) than in healthy volunteers (mean 325 ng/mL) (P = .048). Similarly, aMMP-9 level was lower in SLE patients (mean 121 ng/mL) than in control group (mean 169 ng/mL) (P = .0355) and lower in active SLE (mean 54 ng/mL) than in inactive disease (mean 99 ng/mL) (P = .033). TIMP-1 level was also lower in SLE patients (mean 181 ng/mL) than in control group (mean 233 ng/mL) (P = .004). In SLE patients, a positive correlation was found between tMMP-9 and aMMP-9 (ρ = 0.568; P = .001). We also found a positive correlation of tMMP-9 and TIMP-1 with VEGF concentrations (ρ = 0.450, P = .005 and ρ = 0.387; P = .018, resp). tMMP-9, aMMP-9, and TIMP-1 serum levels are lower in SLE patients than in healthy control group. PMID:16864898

  20. Mobile phone use and the risk for malignant brain tumors: a case-control study on deceased cases and controls.

    PubMed

    Hardell, Lennart; Carlberg, Michael; Hansson Mild, Kjell

    2010-08-01

    We investigated the use of mobile or cordless phones and the risk for malignant brain tumors in a group of deceased cases. Most previous studies have either left out deceased cases of brain tumors or matched them to living controls and therefore a study matching deceased cases to deceased controls is warranted. Recall error is one issue since it has been claimed that increased risks reported in some studies could be due to cases blaming mobile phones as a cause of the disease. This should be of less importance for deceased cases and if cancer controls are used. In this study brain tumor cases aged 20-80 years diagnosed during 1997-2003 that had died before inclusion in our previous studies on the same topic were included. Two control groups were used: one with controls that had died from another type of cancer than brain tumor and one with controls that had died from other diseases. Exposure was assessed by a questionnaire sent to the next-of-kin for both cases and controls. Replies were obtained for 346 (75%) cases, 343 (74%) cancer controls and 276 (60%) controls with other diseases. Use of mobile phones gave an increased risk, highest in the >10 years' latency group yielding odds ratio (OR) = 2.4, and 95% confidence interval (CI) = 1.4-4.1. The risk increased with cumulative number of lifetime hours for use, and was highest in the >2,000 h group (OR = 3.4, 95% CI = 1.6-7.1). No clear association was found for use of cordless phones, although OR = 1.7, 95% CI = 0.8-3.4 was found in the group with >2,000 h of cumulative use. This investigation confirmed our previous results of an association between mobile phone use and malignant brain tumors.

  1. Multidimensional control using a mobile-phone based brain-muscle-computer interface.

    PubMed

    Vernon, Scott; Joshi, Sanjay S

    2011-01-01

    Many well-known brain-computer interfaces measure signals at the brain, and then rely on the brain's ability to learn via operant conditioning in order to control objects in the environment. In our lab, we have been developing brain-muscle-computer interfaces, which measure signals at a single muscle and then rely on the brain's ability to learn neuromuscular skills via operant conditioning. Here, we report a new mobile-phone based brain-muscle-computer interface prototype for severely paralyzed persons, based on previous results from our group showing that humans may actively create specified power levels in two separate frequency bands of a single sEMG signal. Electromyographic activity on the surface of a single face muscle (Auricularis superior) is recorded with a standard electrode. This analog electrical signal is imported into an Android-based mobile phone. User-modulated power in two separate frequency band serves as two separate and simultaneous control channels for machine control. After signal processing, the Android phone sends commands to external devices via Bluetooth. Users are trained to use the device via biofeedback, with simple cursor-to-target activities on the phone screen.

  2. Brain insulin controls adipose tissue lipolysis and lipogenesis.

    PubMed

    Scherer, Thomas; O'Hare, James; Diggs-Andrews, Kelly; Schweiger, Martina; Cheng, Bob; Lindtner, Claudia; Zielinski, Elizabeth; Vempati, Prashant; Su, Kai; Dighe, Shveta; Milsom, Thomas; Puchowicz, Michelle; Scheja, Ludger; Zechner, Rudolf; Fisher, Simon J; Previs, Stephen F; Buettner, Christoph

    2011-02-02

    White adipose tissue (WAT) dysfunction plays a key role in the pathogenesis of type 2 diabetes (DM2). Unrestrained WAT lipolysis results in increased fatty acid release, leading to insulin resistance and lipotoxicity, while impaired de novo lipogenesis in WAT decreases the synthesis of insulin-sensitizing fatty acid species like palmitoleate. Here, we show that insulin infused into the mediobasal hypothalamus (MBH) of Sprague-Dawley rats increases WAT lipogenic protein expression, inactivates hormone-sensitive lipase (Hsl), and suppresses lipolysis. Conversely, mice that lack the neuronal insulin receptor exhibit unrestrained lipolysis and decreased de novo lipogenesis in WAT. Thus, brain and, in particular, hypothalamic insulin action play a pivotal role in WAT functionality. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Functional connectivity in brain networks underlying cognitive control in chronic cannabis users.

    PubMed

    Harding, Ian H; Solowij, Nadia; Harrison, Ben J; Takagi, Michael; Lorenzetti, Valentina; Lubman, Dan I; Seal, Marc L; Pantelis, Christos; Yücel, Murat

    2012-07-01

    The long-term effect of regular cannabis use on brain function underlying cognitive control remains equivocal. Cognitive control abilities are thought to have a major role in everyday functioning, and their dysfunction has been implicated in the maintenance of maladaptive drug-taking patterns. In this study, the Multi-Source Interference Task was employed alongside functional magnetic resonance imaging and psychophysiological interaction methods to investigate functional interactions between brain regions underlying cognitive control. Current cannabis users with a history of greater than 10 years of daily or near-daily cannabis smoking (n=21) were compared with age, gender, and IQ-matched non-using controls (n=21). No differences in behavioral performance or magnitude of task-related brain activations were evident between the groups. However, greater connectivity between the prefrontal cortex and the occipitoparietal cortex was evident in cannabis users, as compared with controls, as cognitive control demands increased. The magnitude of this connectivity was positively associated with age of onset and lifetime exposure to cannabis. These findings suggest that brain regions responsible for coordinating behavioral control have an increased influence on the direction and switching of attention in cannabis users, and that these changes may have a compensatory role in mitigating cannabis-related impairments in cognitive control or perceptual processes.

  4. Subthalamic Nucleus Deep Brain Stimulation Changes Velopharyngeal Control in Parkinson's Disease

    ERIC Educational Resources Information Center

    Hammer, Michael J.; Barlow, Steven M.; Lyons, Kelly E.; Pahwa, Rajesh

    2011-01-01

    Purpose: Adequate velopharyngeal control is essential for speech, but may be impaired in Parkinson's disease (PD). Bilateral subthalamic nucleus deep brain stimulation (STN DBS) improves limb function in PD, but the effects on velopharyngeal control remain unknown. We tested whether STN DBS would change aerodynamic measures of velopharyngeal…

  5. Subthalamic Nucleus Deep Brain Stimulation Changes Velopharyngeal Control in Parkinson's Disease

    ERIC Educational Resources Information Center

    Hammer, Michael J.; Barlow, Steven M.; Lyons, Kelly E.; Pahwa, Rajesh

    2011-01-01

    Purpose: Adequate velopharyngeal control is essential for speech, but may be impaired in Parkinson's disease (PD). Bilateral subthalamic nucleus deep brain stimulation (STN DBS) improves limb function in PD, but the effects on velopharyngeal control remain unknown. We tested whether STN DBS would change aerodynamic measures of velopharyngeal…

  6. Enhancing brain-machine interface (BMI) control of a hand exoskeleton using electrooculography (EOG).

    PubMed

    Witkowski, Matthias; Cortese, Mario; Cempini, Marco; Mellinger, Jürgen; Vitiello, Nicola; Soekadar, Surjo R

    2014-12-16

    Brain-machine interfaces (BMIs) allow direct translation of electric, magnetic or metabolic brain signals into control commands of external devices such as robots, prostheses or exoskeletons. However, non-stationarity of brain signals and susceptibility to biological or environmental artifacts impede reliable control and safety of BMIs, particularly in daily life environments. Here we introduce and tested a novel hybrid brain-neural computer interaction (BNCI) system fusing electroencephalography (EEG) and electrooculography (EOG) to enhance reliability and safety of continuous hand exoskeleton-driven grasping motions. 12 healthy volunteers (8 male, mean age 28.1 ± 3.63y) used EEG (condition #1) and hybrid EEG/EOG (condition #2) signals to control a hand exoskeleton. Motor imagery-related brain activity was translated into exoskeleton-driven hand closing motions. Unintended motions could be interrupted by eye movement-related EOG signals. In order to evaluate BNCI control and safety, participants were instructed to follow a visual cue indicating either to move or not to move the hand exoskeleton in a random order. Movements exceeding 25% of a full grasping motion when the device was not supposed to be moved were defined as safety violation. While participants reached comparable control under both conditions, safety was frequently violated under condition #1 (EEG), but not under condition #2 (EEG/EOG). EEG/EOG biosignal fusion can substantially enhance safety of assistive BNCI systems improving their applicability in daily life environments.

  7. Serum levels of matrix metalloproteinase-10 are associated with the severity of atherosclerosis in patients with chronic kidney disease.

    PubMed

    Coll, Blai; Rodríguez, Jose A; Craver, Lourdes; Orbe, Josune; Martínez-Alonso, Montserrat; Ortiz, Alberto; Díez, Javier; Beloqui, Oscar; Borras, Merce; Valdivielso, Jose M; Fernández, Elvira; Páramo, José A

    2010-12-01

    Cardiovascular disease is the leading cause of mortality in chronic kidney disease (CKD). As matrix metalloproteinases have a major role in atherosclerosis, we hypothesized that alterations in metalloproteinases-8, -10 and their tissue inhibitor-1 can be associated with the severity of atherosclerosis in patients with kidney disease. This was evaluated in a cross-sectional, observational study of 111 patients with stages I-V kidney disease, 217 patients on dialysis and 50 healthy controls. The severity of atherosclerosis was estimated with the atherosclerosis score (AS), combining the results of ankle-brachial index and carotid ultrasound. Serum levels of the two metalloproteinases and tissue inhibitor-1 were measured by enzyme-linked immunosorbent assay and were significantly increased in patients with kidney disease compared with the healthy controls, and higher in patients on dialysis than in earlier stages of CKD. The severity of the AS was also more prevalent in the dialysis group, in which serum levels of both metalloproteinases and tissue inhibitor-1 were significantly higher. After multivariate analysis, metalloproteinase-10, dialysis, C-reactive protein, age, and male gender were associated with increased risk of atherosclerosis. Thus, patients with CKD exhibit elevated levels of circulating metalloproteinase-10, and this was independently associated with the severity of atherosclerosis and may represent a new biomarker of atherosclerotic diseases.

  8. Mobile phone use and brain tumors in children and adolescents: a multicenter case-control study.

    PubMed

    Aydin, Denis; Feychting, Maria; Schüz, Joachim; Tynes, Tore; Andersen, Tina Veje; Schmidt, Lisbeth Samsø; Poulsen, Aslak Harbo; Johansen, Christoffer; Prochazka, Michaela; Lannering, Birgitta; Klæboe, Lars; Eggen, Tone; Jenni, Daniela; Grotzer, Michael; Von der Weid, Nicolas; Kuehni, Claudia E; Röösli, Martin

    2011-08-17

    It has been hypothesized that children and adolescents might be more vulnerable to possible health effects from mobile phone exposure than adults. We investigated whether mobile phone use is associated with brain tumor risk among children and adolescents. CEFALO is a multicenter case-control study conducted in Denmark, Sweden, Norway, and Switzerland that includes all children and adolescents aged 7-19 years who were diagnosed with a brain tumor between 2004 and 2008. We conducted interviews, in person, with 352 case patients (participation rate: 83%) and 646 control subjects (participation rate: 71%) and their parents. Control subjects were randomly selected from population registries and matched by age, sex, and geographical region. We asked about mobile phone use and included mobile phone operator records when available. Odds ratios (ORs) for brain tumor risk and 95% confidence intervals (CIs) were calculated using conditional logistic regression models. Regular users of mobile phones were not statistically significantly more likely to have been diagnosed with brain tumors compared with nonusers (OR = 1.36; 95% CI = 0.92 to 2.02). Children who started to use mobile phones at least 5 years ago were not at increased risk compared with those who had never regularly used mobile phones (OR = 1.26, 95% CI = 0.70 to 2.28). In a subset of study participants for whom operator recorded data were available, brain tumor risk was related to the time elapsed since the mobile phone subscription was started but not to amount of use. No increased risk of brain tumors was observed for brain areas receiving the highest amount of exposure. The absence of an exposure-response relationship either in terms of the amount of mobile phone use or by localization of the brain tumor argues against a causal association.

  9. Glypican-1 controls brain size through regulation of fibroblast growth factor signaling in early neurogenesis

    PubMed Central

    Jen, Yi-Huei Linda; Musacchio, Michele; Lander, Arthur D

    2009-01-01

    Background Cell surface heparan sulfate proteoglycans (HSPGs) act as co-receptors for multiple families of growth factors that regulate animal cell proliferation, differentiation and patterning. Elimination of heparan sulfate during brain development is known to produce severe structural abnormalities. Here we investigate the developmental role played by one particular HSPG, glypican-1 (Gpc1), which is especially abundant on neuronal cell membranes, and is the major HSPG of the adult rodent brain. Results Mice with a null mutation in Gpc1 were generated and found to be viable and fertile. The major phenotype associated with Gpc1 loss is a highly significant reduction in brain size, with only subtle effects on brain patterning (confined to the anterior cerebellum). The brain size difference emerges very early during neurogenesis (between embryonic days 8.5 and 9.5), and remains roughly constant throughout development and adulthood. By examining markers of different signaling pathways, and the differentiation behaviors of cells in the early embryonic brain, we infer that Gpc1-/- phenotypes most likely result from a transient reduction in fibroblast growth factor (FGF) signaling. Through the analysis of compound mutants, we provide strong evidence that Fgf17 is the FGF family member through which Gpc1 controls brain size. Conclusion These data add to a growing literature that implicates the glypican family of HSPGs in organ size control. They also argue that, among heparan sulfate-dependent signaling molecules, FGFs are disproportionately sensitive to loss of HSPGs. Finally, because heterozygous Gpc1 mutant mice were found to have brain sizes half-way between homozygous and wild type, the data imply that endogenous HSPG levels quantitatively control growth factor signaling, a finding that is both novel and relevant to the general question of how the activities of co-receptors are exploited during development. PMID:19732411

  10. Effect of preservation solutions UW and EC on the expression of matrix metalloproteinase II and tissue inhibitor of metalloproteinase II genes in rat kidney.

    PubMed

    Sulikowski, Tadeusz; Domanski, Leszek; Zietek, Zbigniew; Adler, Grażyna; Pawlik, Andrzej; Ciechanowicz, Andrzej; Ciechanowski, Kazimierz; Ostrowski, Marek

    2012-01-30

    Matrix metalloproteinases and tissue inhibitor of metalloproteinases play an important role in the regulation of mesangial cell proliferation and may be involved in ischemia-reperfusion injuries. Preservation solutions are thought to diminish the ischemic injury and appropriate choice of the solution should guarantee a better graft function and good prognosis for graft survival. The aim of the study was to examine the effect of preservation solutions UW and EC on the expression of matrix metalloproteinase II and tissue inhibitor of metalloproteinase II genes in rat kidney. The study was carried out on Wistar rat kidneys divided into 3 groups: kidneys perfused with 0.9% NaCl (control group), with UW, and with EC preservation solution. The results show an enhancement of MMP-2 and TIMP-2 gene expression after 12 min of cold ischemia. This increase was more expressed in kidneys preserved with UW solution in comparison with kidneys perfused with EC solution and 0.9% NaCl. After 24 h of cold ischemia the expression of MMP-2 and TIMP-2 genes in kidney perfused with UW solution decreased, while in kidneys perfused with EC it was increased. After warm ischemia the MMP-2 and TIMP-2 gene expression increased, whereas it was significantly lower in kidneys perfused with EC solution.

  11. Human Brain Expansion during Evolution Is Independent of Fire Control and Cooking

    PubMed Central

    Cornélio, Alianda M.; de Bittencourt-Navarrete, Ruben E.; de Bittencourt Brum, Ricardo; Queiroz, Claudio M.; Costa, Marcos R.

    2016-01-01

    What makes humans unique? This question has fascinated scientists and philosophers for centuries and it is still a matter of intense debate. Nowadays, human brain expansion during evolution has been acknowledged to explain our empowered cognitive capabilities. The drivers for such accelerated expansion remain, however, largely unknown. In this sense, studies have suggested that the cooking of food could be a pre-requisite for the expansion of brain size in early hominins. However, this appealing hypothesis is only supported by a mathematical model suggesting that the increasing number of neurons in the brain would constrain body size among primates due to a limited amount of calories obtained from diets. Here, we show, by using a similar mathematical model, that a tradeoff between body mass and the number of brain neurons imposed by dietary constraints during hominin evolution is unlikely. Instead, the predictable number of neurons in the hominin brain varies much more in function of foraging efficiency than body mass. We also review archeological data to show that the expansion of the brain volume in the hominin lineage is described by a linear function independent of evidence of fire control, and therefore, thermal processing of food does not account for this phenomenon. Finally, we report experiments in mice showing that thermal processing of meat does not increase its caloric availability in mice. Altogether, our data indicate that cooking is neither sufficient nor necessary to explain hominin brain expansion. PMID:27199631

  12. Human Brain Expansion during Evolution Is Independent of Fire Control and Cooking.

    PubMed

    Cornélio, Alianda M; de Bittencourt-Navarrete, Ruben E; de Bittencourt Brum, Ricardo; Queiroz, Claudio M; Costa, Marcos R

    2016-01-01

    What makes humans unique? This question has fascinated scientists and philosophers for centuries and it is still a matter of intense debate. Nowadays, human brain expansion during evolution has been acknowledged to explain our empowered cognitive capabilities. The drivers for such accelerated expansion remain, however, largely unknown. In this sense, studies have suggested that the cooking of food could be a pre-requisite for the expansion of brain size in early hominins. However, this appealing hypothesis is only supported by a mathematical model suggesting that the increasing number of neurons in the brain would constrain body size among primates due to a limited amount of calories obtained from diets. Here, we show, by using a similar mathematical model, that a tradeoff between body mass and the number of brain neurons imposed by dietary constraints during hominin evolution is unlikely. Instead, the predictable number of neurons in the hominin brain varies much more in function of foraging efficiency than body mass. We also review archeological data to show that the expansion of the brain volume in the hominin lineage is described by a linear function independent of evidence of fire control, and therefore, thermal processing of food does not account for this phenomenon. Finally, we report experiments in mice showing that thermal processing of meat does not increase its caloric availability in mice. Altogether, our data indicate that cooking is neither sufficient nor necessary to explain hominin brain expansion.

  13. Toward brain-actuated car applications: Self-paced control with a motor imagery-based brain-computer interface.

    PubMed

    Yu, Yang; Zhou, Zongtan; Yin, Erwei; Jiang, Jun; Tang, Jingsheng; Liu, Yadong; Hu, Dewen

    2016-10-01

    This study presented a paradigm for controlling a car using an asynchronous electroencephalogram (EEG)-based brain-computer interface (BCI) and presented the experimental results of a simulation performed in an experimental environment outside the laboratory. This paradigm uses two distinct MI tasks, imaginary left- and right-hand movements, to generate a multi-task car control strategy consisting of starting the engine, moving forward, turning left, turning right, moving backward, and stopping the engine. Five healthy subjects participated in the online car control experiment, and all successfully controlled the car by following a previously outlined route. Subject S1 exhibited the most satisfactory BCI-based performance, which was comparable to the manual control-based performance. We hypothesize that the proposed self-paced car control paradigm based on EEG signals could potentially be used in car control applications, and we provide a complementary or alternative way for individuals with locked-in disorders to achieve more mobility in the future, as well as providing a supplementary car-driving strategy to assist healthy people in driving a car.

  14. Automatic Incubator-type Temperature Control System for Brain Hypothermia Treatment

    NASA Astrophysics Data System (ADS)

    Gaohua, Lu; Wakamatsu, Hidetoshi

    An automatic air-cooling incubator is proposed to replace the manual water-cooling blanket to control the brain tissue temperature for brain hypothermia treatment. Its feasibility is theoretically discussed as follows: First, an adult patient with the cooling incubator is modeled as a linear dynamical patient-incubator biothermal system. The patient is represented by an 18-compartment structure and described by its state equations. The air-cooling incubator provides almost same cooling effect as the water-cooling blanket, if a light breeze of speed around 3 m/s is circulated in the incubator. Then, in order to control the brain temperature automatically, an adaptive-optimal control algorithm is adopted, while the patient-blanket therapeutic system is considered as a reference model. Finally, the brain temperature of the patient-incubator biothermal system is controlled to follow up the given reference temperature course, in which an adaptive algorithm is confirmed useful for unknown environmental change and/or metabolic rate change of the patient in the incubating system. Thus, the present work ensures the development of the automatic air-cooling incubator for a better temperature regulation of the brain hypothermia treatment in ICU.

  15. Clinical usefulness of brain-computer interface-controlled functional electrical stimulation for improving brain activity in children with spastic cerebral palsy: a pilot randomized controlled trial

    PubMed Central

    Kim, Tae-Woo; Lee, Byoung-Hee

    2016-01-01

    [Purpose] Evaluating the effect of brain-computer interface (BCI)-based functional electrical stimulation (FES) training on brain activity in children with spastic cerebral palsy (CP) was the aim of this study. [Subjects and Methods] Subjects were randomized into a BCI-FES group (n=9) and a functional electrical stimulation (FES) control group (n=9). Subjects in the BCI-FES group received wrist and hand extension training with FES for 30 minutes per day, 5 times per week for 6 weeks under the BCI-based program. The FES group received wrist and hand extension training with FES for the same amount of time. Sensorimotor rhythms (SMR) and middle beta waves (M-beta) were measured in frontopolar regions 1 and 2 (Fp1, Fp2) to determine the effects of BCI-FES training. [Results] Significant improvements in the SMR and M-beta of Fp1 and Fp2 were seen in the BCI-FES group. In contrast, significant improvement was only seen in the SMR and M-beta of Fp2 in the control group. [Conclusion] The results of the present study suggest that BCI-controlled FES training may be helpful in improving brain activity in patients with cerebral palsy and may be applied as effectively as traditional FES training. PMID:27799677

  16. Clinical usefulness of brain-computer interface-controlled functional electrical stimulation for improving brain activity in children with spastic cerebral palsy: a pilot randomized controlled trial.

    PubMed

    Kim, Tae-Woo; Lee, Byoung-Hee

    2016-09-01

    [Purpose] Evaluating the effect of brain-computer interface (BCI)-based functional electrical stimulation (FES) training on brain activity in children with spastic cerebral palsy (CP) was the aim of this study. [Subjects and Methods] Subjects were randomized into a BCI-FES group (n=9) and a functional electrical stimulation (FES) control group (n=9). Subjects in the BCI-FES group received wrist and hand extension training with FES for 30 minutes per day, 5 times per week for 6 weeks under the BCI-based program. The FES group received wrist and hand extension training with FES for the same amount of time. Sensorimotor rhythms (SMR) and middle beta waves (M-beta) were measured in frontopolar regions 1 and 2 (Fp1, Fp2) to determine the effects of BCI-FES training. [Results] Significant improvements in the SMR and M-beta of Fp1 and Fp2 were seen in the BCI-FES group. In contrast, significant improvement was only seen in the SMR and M-beta of Fp2 in the control group. [Conclusion] The results of the present study suggest that BCI-controlled FES training may be helpful in improving brain activity in patients with cerebral palsy and may be applied as effectively as traditional FES training.

  17. Brain-bladder control network: the unsolved 21st century urological mystery.

    PubMed

    Kitta, Takeya; Mitsui, Takahiko; Kanno, Yukiko; Chiba, Hiroki; Moriya, Kimihiko; Shinohara, Nobuo

    2015-04-01

    A review of functional brain imaging studies of bladder control in participants with normal control and pathological conditions. In the normal condition, bladder and urethral afferents received in the periaqueductal gray relay the information to the insula, the anterior cingulate cortex and the prefrontal cortex. During the storage phase, these superior regions control the pontine micturition center to inhibit voiding. In overactive bladder patients, brain responses are different. Cortical responses become exaggerated, especially in the anterior cingulate cortex and the supplementary motor area. That is what presumably evokes the "urgency". The supplementary motor area is activated during contraction of the pelvic floor muscles, and provides protection against incontinence. We believe that functional brain imaging studies are promising not only for the understanding of bladder dysfunction, but also as an aid to the development of therapeutic options for chronic disorders.

  18. On the structure and functions of gelatinase B/matrix metalloproteinase-9 in neuroinflammation.

    PubMed

    Vandooren, Jennifer; Van Damme, Jo; Opdenakker, Ghislain

    2014-01-01

    The blood-brain barrier (BBB) is a specific structure that is composed of two basement membranes (BMs) and that contributes to the control of neuroinflammation. As long as the BBB is intact, extravasated leukocytes may accumulate between two BMs, generating vascular cuffs. Specific matrix metalloproteinases, MMP-2 and MMP-9, have been shown to cleave BBB beta-dystroglycan and to disintegrate thereby the parenchymal BM, resulting in encephalomyelitis. This knowledge has been added to the molecular basis of the REGA model to understand the pathogenesis of multiple sclerosis, and it gives further ground for the use of MMP inhibitors for the treatment of acute neuroinflammation. MMP-9 is associated with central nervous system inflammation and occurs in various forms: monomers and multimers. None of the various neurological and neuropathologic functions of MMP-9 have been associated with either molecular structure or molecular form, and therefore, in-depth structure-function studies are needed before medical intervention with MMP-9-specific inhibitors is initiated.

  19. The regulation of matrix metalloproteinases and their inhibitors.

    PubMed

    Clark, Ian M; Swingler, Tracey E; Sampieri, Clara L; Edwards, Dylan R

    2008-01-01

    The matrix metalloproteinases (MMP) are a family of 23 enzymes in man. These enzymes were originally described as cleaving extracellular matrix (ECM) substrates with a predominant role in ECM homeostasis, but it is now clear that they have much wider functionality. Control over MMP and/or tissue inhibitor of metalloproteinases (TIMP) activity in vivo occurs at different levels and involves factors such as regulation of gene expression, activation of zymogens and inhibition of active enzymes by specific inhibitors. Whilst these enzymes and inhibitors have clear roles in physiological tissue turnover and homeostasis, if control of their expression or activity is lost, they contribute to a number of pathologies including e.g. cancer, arthritis and cardiovascular disease. The expression of many MMPs and TIMPs is regulated at the level of transcription by a variety of growth factors, cytokines and chemokines, though post-transcriptional pathways may contribute to this regulation in specific cases. The contribution of epigenetic modifications has also been uncovered in recent years. The promoter regions of many of these genes have been, at least partly, characterised including the role of identified single nucleotide polymorphisms. This article aims to review current knowledge across these gene families and use a bioinformatic approach to fill the gaps where no functional data are available.

  20. Embryonic cerebrospinal fluid in brain development: neural progenitor control.

    PubMed

    Gato, Angel; Alonso, M Isabel; Martín, Cristina; Carnicero, Estela; Moro, José Antonio; De la Mano, Aníbal; Fernández, José M F; Lamus, Francisco; Desmond, Mary E

    2014-08-28

    Due to the effort of several research teams across the world, today we have a solid base of knowledge on the liquid contained in the brain cavities, its composition, and biological roles. Although the cerebrospinal fluid (CSF) is among the most relevant parts of the central nervous system from the physiological point of view, it seems that it is not a permanent and stable entity because its composition and biological properties evolve across life. So, we can talk about different CSFs during the vertebrate life span. In this review, we focus on the CSF in an interesting period, early in vertebrate development before the formation of the choroid plexus. This specific entity is called "embryonic CSF." Based on the structure of the compartment, CSF composition, origin and circulation, and its interaction with neuroepithelial precursor cells (the target cells) we can conclude that embryonic CSF is different from the CSF in later developmental stages and from the adult CSF. This article presents arguments that support the singularity of the embryonic CSF, mainly focusing on its influence on neural precursor behavior during development and in adult life.

  1. Embryonic cerebrospinal fluid in brain development: neural progenitor control

    PubMed Central

    Gato, Angel; Alonso, M. Isabel; Martín, Cristina; Carnicero, Estela; Moro, José Antonio; De la Mano, Aníbal; Fernández, José M. F.; Lamus, Francisco; Desmond, Mary E.

    2014-01-01

    Due to the effort of several research teams across the world, today we have a solid base of knowledge on the liquid contained in the brain cavities, its composition, and biological roles. Although the cerebrospinal fluid (CSF) is among the most relevant parts of the central nervous system from the physiological point of view, it seems that it is not a permanent and stable entity because its composition and biological properties evolve across life. So, we can talk about different CSFs during the vertebrate life span. In this review, we focus on the CSF in an interesting period, early in vertebrate development before the formation of the choroid plexus. This specific entity is called “embryonic CSF.” Based on the structure of the compartment, CSF composition, origin and circulation, and its interaction with neuroepithelial precursor cells (the target cells) we can conclude that embryonic CSF is different from the CSF in later developmental stages and from the adult CSF. This article presents arguments that support the singularity of the embryonic CSF, mainly focusing on its influence on neural precursor behavior during development and in adult life. PMID:25165044

  2. The Gut's Little Brain in Control of Intestinal Immunity

    PubMed Central

    de Jonge, Wouter J.

    2013-01-01

    The gut immune system shares many mediators and receptors with the autonomic nervous system. Good examples thereof are the parasympathetic (vagal) and sympathetic neurotransmitters, for which many immune cell types in a gut context express receptors or enzymes required for their synthesis. For some of these the relevance for immune regulation has been recently defined. Earlier and more recent studies in neuroscience and immunology have indicated the anatomical and cellular basis for bidirectional interactions between the nervous and immune systems. Sympathetic immune modulation is well described earlier, and in the last decade the parasympathetic vagal nerve has been put forward as an integral part of an immune regulation network via its release of Ach, a system coined “the cholinergic anti-inflammatory reflex.” A prototypical example is the inflammatory reflex, comprised of an afferent arm that senses inflammation and an efferent arm: the cholinergic anti-inflammatory pathway, that inhibits innate immune responses. In this paper, the current understanding of how innate mucosal immunity can be influenced by the neuronal system is summarized, and cell types and receptors involved in this interaction will be highlighted. Focus will be given on the direct neuronal regulatory mechanisms, as well as current advances regarding the role of microbes in modulating communication in the gut-brain axis. PMID:23691339

  3. Meditation and the Brain: Attention, Control and Emotion**

    PubMed Central

    Mograbi, Gabriel José Corrêa

    2011-01-01

    Meditation has been for long time avoided as a scientific theme because of its complexity and its religious connotations. Fortunately, in the last years, it has increasingly been studied within different neuroscientific experimental protocols. Attention and concentration are surely among the most important topics in these experiments. Notwithstanding this, inhibition of emotions and discursive thoughts are equally important to understand what is at stake during those types of mental processes. I philosophically and technically analyse and compare results from neuroimaging studies, produced by leading authorities on the theme, dealing with two types of meditation: “one-pointed concentration” and “compassion meditation”. Analysing “one-pointed concentration”, I show the differences between novice and expert meditation practitioners in terms of brain activity and connectivity, considering the relationship among increased attention and concentration and decreased activity in areas related to discursive thought and emotion. Analysing “compassion meditation”, I show the importance of the limbic circuitry in emotion sharing. I follow the same strategy of comparing novice and expert meditation practitioners. The conclusion establishes a common structure to those different ways of dealing with emotion during meditation. PMID:21694979

  4. Sex, Drugs and Gluttony: How the Brain Controls Motivated Behaviors

    PubMed Central

    Hull, Elaine M.

    2011-01-01

    Bart Hoebel has forged a view of an integrated neural network that mediates both natural rewards and drug use. He pioneered the use of microdialysis, and also effectively used electrical stimulation, lesions, microinjections, and immunohistochemistry. He found that feeding, stimulant drug administration, and electrical stimulation of the lateral hypothalamus (LH) all increased dopamine (DA) release in the nucleus accumbens (NAc). However, whereas DA in the NAc enhanced motivation, DA in the LH inhibited motivated behaviors. The Hull lab has pursued some of those ideas. We have suggested that serotonin (5-HT) in the perifornicalLH inhibits sexual behavior by inhibiting orexin/hypocretin neurons (OX/HCRT), which would otherwise excite neurons in the mesocorticolimbic DA tract. We have shown that DA release in the medial preoptic area (MPOA) is very important for male sexual behavior, and that testosterone, glutamate, nitric oxide (NO) and previous sexual experience promote MPOA DA release and mating. Future research should follow Bart Hoebel’s emphasis on neural systems and interactions among brain areas and neurotransmitters. PMID:21554895

  5. Sex, drugs and gluttony: how the brain controls motivated behaviors.

    PubMed

    Hull, Elaine M

    2011-07-25

    Bart Hoebel has forged a view of an integrated neural network that mediates both natural rewards and drug use. He pioneered the use of microdialysis, and also effectively used electrical stimulation, lesions, microinjections, and immunohistochemistry. He found that feeding, stimulant drug administration, and electrical stimulation of the lateral hypothalamus (LH) all increased dopamine (DA) release in the nucleus accumbens (NAc). However, whereas DA in the NAc enhanced motivation, DA in the LH inhibited motivated behaviors. The Hull lab has pursued some of those ideas. We have suggested that serotonin (5-HT) in the perifornical LH inhibits sexual behavior by inhibiting orexin/hypocretin neurons (OX/HCRT), which would otherwise excite neurons in the mesocorticolimbic DA tract. We have shown that DA release in the medial preoptic area (MPOA) is very important for male sexual behavior, and that testosterone, glutamate, nitric oxide (NO) and previous sexual experience promote MPOA DA release and mating. Future research should follow Bart Hoebel's emphasis on neural systems and interactions among brain areas and neurotransmitters. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Functional brain organization of preparatory attentional control in visual search.

    PubMed

    Bourke, Patrick; Brown, Steven; Ngan, Elton; Liotti, Mario

    2013-09-12

    Looking for an object that may be present in a cluttered visual display requires an advanced specification of that object to be created and then matched against the incoming visual input. Here, fast event-related fMRI was used to identify the brain networks that are active when preparing to search for a visual target. By isolating the preparation phase of the task it has been possible to show that for an identical stimulus, different patterns of cortical activation occur depending on whether participants anticipate a 'feature' or a 'conjunction' search task. When anticipating a conjunction search task, there was more robust activation in ventral occipital areas, new activity in the transverse occipital sulci and right posterior intraparietal sulcus. In addition, preparing for either type of search activated ventral striatum and lateral cerebellum. These results suggest that when participants anticipate a demanding search task, they develop a different advanced representation of a visually identical target stimulus compared to when they anticipate a nondemanding search.

  7. The costs and benefits of brain dopamine for cognitive control.

    PubMed

    Cools, Roshan

    2016-09-01

    Cognitive control helps us attain our goals by resisting distraction and temptations. Dopaminergic drugs are well known to enhance cognitive control. However, there is great variability in the effects of dopaminergic drugs across different contexts, with beneficial effects on some tasks but detrimental effects on other tasks. The mechanisms underlying this variability across cognitive task demands remain unclear. I aim to elucidate this across-task variability in dopaminergic drug efficacy by going beyond classic models that emphasize the importance of dopamine in the prefrontal cortex for cognitive control and working memory. To this end, I build on recent advances in cognitive neuroscience that highlight a role for dopamine in cost-benefit decision making. Specifically, I reconceptualize cognitive control as involving not just prefrontal dopamine but also modulation of cost-benefit decision making by striatal dopamine. This approach will help us understand why we sometimes fail to (choose to) exert cognitive control while also identifying mechanistic factors that predict dopaminergic drug effects on cognitive control. WIREs Cogn Sci 2016, 7:317-329. doi: 10.1002/wcs.1401 For further resources related to this article, please visit the WIREs website.

  8. Towards brain-activity-controlled information retrieval: Decoding image relevance from MEG signals.

    PubMed

    Kauppi, Jukka-Pekka; Kandemir, Melih; Saarinen, Veli-Matti; Hirvenkari, Lotta; Parkkonen, Lauri; Klami, Arto; Hari, Riitta; Kaski, Samuel

    2015-05-15

    We hypothesize that brain activity can be used to control future information retrieval systems. To this end, we conducted a feasibility study on predicting the relevance of visual objects from brain activity. We analyze both magnetoencephalographic (MEG) and gaze signals from nine subjects who were viewing image collages, a subset of which was relevant to a predetermined task. We report three findings: i) the relevance of an image a subject looks at can be decoded from MEG signals with performance significantly better than chance, ii) fusion of gaze-based and MEG-based classifiers significantly improves the prediction performance compared to using either signal alone, and iii) non-linear classification of the MEG signals using Gaussian process classifiers outperforms linear classification. These findings break new ground for building brain-activity-based interactive image retrieval systems, as well as for systems utilizing feedback both from brain activity and eye movements. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Control over brain activation and pain learned by using real-time functional MRI

    PubMed Central

    deCharms, R. Christopher; Maeda, Fumiko; Glover, Gary H.; Ludlow, David; Pauly, John M.; Soneji, Deepak; Gabrieli, John D. E.; Mackey, Sean C.

    2005-01-01

    If an individual can learn to directly control activation of localized regions within the brain, this approach might provide control over the neurophysiological mechanisms that mediate behavior and cognition and could potentially provide a different route for treating disease. Control over the endogenous pain modulatory system is a particularly important target because it could enable a unique mechanism for clinical control over pain. Here, we found that by using real-time functional MRI (rtfMRI) to guide training, subjects were able to learn to control activation in the rostral anterior cingulate cortex (rACC), a region putatively involved in pain perception and regulation. When subjects deliberately induced increases or decreases in rACC fMRI activation, there was a corresponding change in the perception of pain caused by an applied noxious thermal stimulus. Control experiments demonstrated that this effect was not observed after similar training conducted without rtfMRI information, or using rtfMRI information derived from a different brain region, or sham rtfMRI information derived previously from a different subject. Chronic pain patients were also trained to control activation in rACC and reported decreases in the ongoing level of chronic pain after training. These findings show that individuals can gain voluntary control over activation in a specific brain region given appropriate training, that voluntary control over activation in rACC leads to control over pain perception, and that these effects were powerful enough to impact severe, chronic clinical pain. PMID:16352728

  10. An asynchronous wheelchair control by hybrid EEG-EOG brain-computer interface.

    PubMed

    Wang, Hongtao; Li, Yuanqing; Long, Jinyi; Yu, Tianyou; Gu, Zhenghui

    2014-10-01

    Wheelchair control requires multiple degrees of freedom and fast intention detection, which makes electroencephalography (EEG)-based wheelchair control a big challenge. In our previous study, we have achieved direction (turning left and right) and speed (acceleration and deceleration) control of a wheelchair using a hybrid brain-computer interface (BCI) combining motor imagery and P300 potentials. In this paper, we proposed hybrid EEG-EOG BCI, which combines motor imagery, P300 potentials, and eye blinking to implement forward, backward, and stop control of a wheelchair. By performing relevant activities, users (e.g., those with amyotrophic lateral sclerosis and locked-in syndrome) can navigate the wheelchair with seven steering behaviors. Experimental results on four healthy subjects not only demonstrate the efficiency and robustness of our brain-controlled wheelchair system but also indicate that all the four subjects could control the wheelchair spontaneously and efficiently without any other assistance (e.g., an automatic navigation system).

  11. Control tissue in brain banking: the importance of thorough neuropathological assessment.

    PubMed

    Nolan, M; Troakes, C; King, A; Bodi, I; Al-Sarraj, S

    2015-07-01

    Historically, control brain tissue was classified as such mainly by clinical history, and underwent limited neuropathological analysis. Significant progress has been made in recent years with the collection of more extensive clinical information and more specific classifications of neurodegenerative disease, aided by advances in histological processing and increasingly sensitive detection methods. We hypothesised that this may have resulted in certain pathologies previously going unidentified, due to insufficient block sampling and an inadequate range of stains, resulting in the disease not being recognised. We therefore investigated the significance of changes to our own protocols for examining control brain tissue before and after 2007. Control cases that were originally assessed before 2007 were re-assessed using our current staining protocol and antibodies, and compared with age-matched cases post-2007. We found that almost all cases that were originally described as neuropathologically normal displayed some level of pathology after re-analysis, with four cases displaying what we have termed 'major' pathology that previously went unidentified, emphasising on a small scale the importance of accurate neuropathological analysis of control tissue, and highlighting the inherent difficulty of traditionally classifying tissue simply as 'disease' or 'control'. We hope our findings will stimulate debate within the brain banking community, with the eventual aim being standardisation of protocols for assessing controls across brain banks.

  12. Electroencephalography(EEG)-based instinctive brain-control of a quadruped locomotion robot.

    PubMed

    Jia, Wenchuan; Huang, Dandan; Luo, Xin; Pu, Huayan; Chen, Xuedong; Bai, Ou

    2012-01-01

    Artificial intelligence and bionic control have been applied in electroencephalography (EEG)-based robot system, to execute complex brain-control task. Nevertheless, due to technical limitations of the EEG decoding, the brain-computer interface (BCI) protocol is often complex, and the mapping between the EEG signal and the practical instructions lack of logic associated, which restrict the user's actual use. This paper presents a strategy that can be used to control a quadruped locomotion robot by user's instinctive action, based on five kinds of movement related neurophysiological signal. In actual use, the user drives or imagines the limbs/wrists action to generate EEG signal to adjust the real movement of the robot according to his/her own motor reflex of the robot locomotion. This method is easy for real use, as the user generates the brain-control signal through the instinctive reaction. By adopting the behavioral control of learning and evolution based on the proposed strategy, complex movement task may be realized by instinctive brain-control.

  13. Motor cortical control of movement speed with implications for brain-machine interface control

    PubMed Central

    Golub, Matthew D.; Yu, Byron M.; Schwartz, Andrew B.

    2014-01-01

    Motor cortex plays a substantial role in driving movement, yet the details underlying this control remain unresolved. We analyzed the extent to which movement-related information could be extracted from single-trial motor cortical activity recorded while monkeys performed center-out reaching. Using information theoretic techniques, we found that single units carry relatively little speed-related information compared with direction-related information. This result is not mitigated at the population level: simultaneously recorded population activity predicted speed with significantly lower accuracy relative to direction predictions. Furthermore, a unit-dropping analysis revealed that speed accuracy would likely remain lower than direction accuracy, even given larger populations. These results suggest that the instantaneous details of single-trial movement speed are difficult to extract using commonly assumed coding schemes. This apparent paucity of speed information takes particular importance in the context of brain-machine interfaces (BMIs), which rely on extracting kinematic information from motor cortex. Previous studies have highlighted subjects' difficulties in holding a BMI cursor stable at targets. These studies, along with our finding of relatively little speed information in motor cortex, inspired a speed-dampening Kalman filter (SDKF) that automatically slows the cursor upon detecting changes in decoded movement direction. Effectively, SDKF enhances speed control by using prevalent directional signals, rather than requiring speed to be directly decoded from neural activity. SDKF improved success rates by a factor of 1.7 relative to a standard Kalman filter in a closed-loop BMI task requiring stable stops at targets. BMI systems enabling stable stops will be more effective and user-friendly when translated into clinical applications. PMID:24717350

  14. Controlled low-flow reperfusion after warm brain ischemia reduces reperfusion injury in canine model.

    PubMed

    Munakata, Hiroshi; Okada, Kenji; Hasegawa, Tomomi; Hino, Yutaka; Kano, Hiroya; Matsumori, Masamichi; Okita, Yutaka

    2010-05-01

    Acute occlusion of the carotid artery caused by acute type A aortic dissection (AAD) induces on-going warm brain ischemia. The purpose of this study was to elucidate the hypothesis that low-flow reperfusion could mitigate reperfusion injury after warm ischemic damage to the brain. Experiments were performed using a canine global brain ischemia model, with 15 minutes of ischemia followed by 3 hours reperfusion, which was established by a simple brain reperfusion circuit with a roller pump. The right common carotid artery (RCCA) flow ratio was determined as the mean RCCA flow during reperfusion divided by the mean RCCA flow during pre-ischemia. Animals were divided into two groups according to the RCCA flow ratio; low RCCA flow ratio of 0.3 to 0.6 (Group L, n=5) and control RCCA flow ratio of 1.0 to 1.4 (Group C, n=5). At the 3-hour reperfusion time point, physiological and histopathological assessments were performed in both groups. Electroencephalographic activity recovered in four of five animals (80%) animals in Group L, whereas no recovery (0%) in activity was observed in Group C. Brain water content in Group L animals was significantly less than that in Group C. Apoptosis, number of perivascular edematous regions and NFkappaB expression were apparently suppressed in Group L compared with Group C. There were significant positive correlations of RCCA flow with brain water content, apoptosis and number of perivascular edematous regions. Controlled low-flow reperfusion mitigated reperfusion-induced brain edema and apoptosis, leading to rescue of brain function in the canine model.

  15. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface.

    PubMed

    Neuper, Christa; Scherer, Reinhold; Wriessnegger, Selina; Pfurtscheller, Gert

    2009-02-01

    This study investigates the impact of a continuously presented visual feedback in the form of a grasping hand on the modulation of sensorimotor EEG rhythms during online control of a brain-computer interface (BCI). Two groups of participants were trained to use left or right hand motor imagery to control a specific output signal on a computer monitor: the experimental group controlled a moving hand performing an object-related grasp ('realistic feedback'), whereas the control group controlled a moving bar ('abstract feedback'). Continuous feedback was realized by using the outcome of a real-time classifier which was based on EEG signals recorded from left and right central sites. The classification results show no difference between the two feedback groups. For both groups, ERD/ERS analysis revealed a significant larger ERD during feedback presentation compared to an initial motor imagery screening session without feedback. Increased ERD during online BCI control was particularly found for the lower alpha (8-10 Hz) and for the beta bands (16-20, 20-24 Hz). The present study demonstrates that visual BCI feedback clearly modulates sensorimotor EEG rhythms. When the feedback provides equivalent information on both the continuous and final outcomes of mental actions, the presentation form (abstract versus realistic) does not influence the performance in a BCI, at least in initial training sessions. The present results are of practical interest for classifier development and BCI use in the field of motor restoration.

  16. Rewiring the Brain: Potential Role of the Premotor Cortex in Motor Control, Learning, and Recovery of Function Following Brain Injury

    PubMed Central

    Kantak, Shailesh S.; Stinear, James W.; Buch, Ethan R.; Cohen, Leonardo G.

    2016-01-01

    The brain is a plastic organ with a capability to reorganize in response to behavior and/or injury. Following injury to the motor cortex or emergent corticospinal pathways, recovery of function depends on the capacity of surviving anatomical resources to recover and repair in response to task-specific training. One such area implicated in poststroke reorganization to promote recovery of upper extremity recovery is the premotor cortex (PMC). This study reviews the role of distinct subdivisions of PMC: dorsal (PMd) and ventral (PMv) premotor cortices as critical anatomical and physiological nodes within the neural networks for the control and learning of goal-oriented reach and grasp actions in healthy individuals and individuals with stroke. Based on evidence emerging from studies of intrinsic and extrinsic connectivity, transcranial magnetic stimulation, functional neuroimaging, and experimental studies in animals and humans, the authors propose 2 distinct patterns of reorganization that differentially engage ipsilesional and contralesional PMC. Research directions that may offer further insights into the role of PMC in motor control, learning, and poststroke recovery are also proposed. This research may facilitate neuroplasticity for maximal recovery of function following brain injury. PMID:21926382

  17. Control of a brain-computer interface without spike sorting

    NASA Astrophysics Data System (ADS)

    Fraser, George W.; Chase, Steven M.; Whitford, Andrew; Schwartz, Andrew B.

    2009-10-01

    Two rhesus monkeys were trained to move a cursor using neural activity recorded with silicon arrays of 96 microelectrodes implanted in the primary motor cortex. We have developed a method to extract movement information from the recorded single and multi-unit activity in the absence of spike sorting. By setting a single threshold across all channels and fitting the resultant events with a spline tuning function, a control signal was extracted from this population using a Bayesian particle-filter extraction algorithm. The animals achieved high-quality control comparable to the performance of decoding schemes based on sorted spikes. Our results suggest that even the simplest signal processing is sufficient for high-quality neuroprosthetic control.

  18. Deep-brain stimulator and control of Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Harbaugh, Robert; Abraham, Jose K.

    2004-07-01

    The design of a novel feedback sensor system with wireless implantable polymer MEMS sensors for detecting and wirelessly transmitting physiological data that can be used for the diagnosis and treatment of various neurological disorders, such as Parkinson's disease, epilepsy, head injury, stroke, hydrocephalus, changes in pressure, patient movements, and tremors is presented in this paper. The sensor system includes MEMS gyroscopes, accelerometers, and pressure sensors. This feedback sensor system focuses on the development and integration of implantable systems with various wireless sensors for medical applications, particularly for the Parkinson's disease. It is easy to integrate and modify the sensor network feed back system for other neurological disorders mentioned above. The monitoring and control of tremor in Parkinson's disease can be simulated on a skeleton via wireless telemetry system communicating with electroactive polymer actuator, and microsensors attached to the skeleton hand and legs. Upon sensing any abnormal motor activity which represent the characteristic rhythmic motion of a typical Parkinson's (PD) patient, these sensors will generate necessary control pulses which will be transmitted to a hat sensor system on the skeleton head. Tiny inductively coupled antennas attached to the hat sensor system can receive these control pulses, demodulate and deliver it to actuate the parts of the skeleton to control the abnormal motor activity. This feedback sensor system can further monitor and control depending on the amplitude of the abnormal motor activity. This microsystem offers cost effective means of monitoring and controlling of neurological disorders in real PD patients. Also, this network system offers a remote monitoring of the patients conditions without visiting doctors office or hospitals. The data can be monitored using PDA and can be accessed using internet (or cell phone). Cellular phone technology will allow a health care worker to be

  19. Continuous shared control for stabilizing reaching and grasping with brain-machine interfaces.

    PubMed

    Kim, Hyun K; Biggs, S James; Schloerb, David W; Carmena, Jose M; Lebedev, Mikhail A; Nicolelis, Miguel A L; Srinivasan, Mandayam A

    2006-06-01

    Research on brain-machine interfaces (BMI's) is directed toward enabling paralyzed individuals to manipulate their environment through slave robots. Even for able-bodied individuals, using a robot to reach and grasp objects in unstructured environments can be a difficult telemanipulation task. Controlling the slave directly with neural signals instead of a hand-master adds further challenges, such as uncertainty about the intended trajectory coupled with a low update rate for the command signal. To address these challenges, a continuous shared control (CSC) paradigm is introduced for BMI where robot sensors produce reflex-like reactions to augment brain-controlled trajectories. To test the merits of this approach, CSC was implemented on a 3-degree-of-freedom robot with a gripper bearing three co-located range sensors. The robot was commanded to follow eighty-three reach-and-grasp trajectories estimated previously from the outputs of a population of neurons recorded from the brain of a monkey. Five different levels of sensor-based reflexes were tested. Weighting brain commands 70% and sensor commands 30% produced the best task performance, better than brain signals alone by more than seven-fold. Such a marked performance improvement in this test case suggests that some level of machine autonomy will be an important component of successful BMI systems in general.

  20. Brain activity in predictive sensorimotor control for landings: an EEG pilot study.

    PubMed

    Baumeister, J; von Detten, S; van Niekerk, S-M; Schubert, M; Ageberg, E; Louw, Q A

    2013-12-01

    Landing from a jump is related to predictive sensorimotor control. Frontal, central and parietal brain areas are known to play a role in this process based on online sensory feedback. This can be measured by EEG. However, there is only limited knowledge about brain activity during predictive preparation for drop landings (DL). The purpose is to demonstrate changes in brain activity in preparation for DL in different conditions. After resting, 10 athletes performed a series of DLs and were asked to concentrate on the landing preparation for 10 s before an auditory signal required them to drop land from a 30 cm platform. This task was executed before and after a standardized fatigue protocol. EEG spectral power was calculated during DL preparation. Frontal Theta power was increased during preparation compared to rest. Parietal Alpha-2 power demonstrated higher values in preparation after fatigue condition while lower limb kinematics remained unchanged. Cortical activity in frontal and parietal brain areas is sensitive for predictive sensorimotor control of drop landings. Frontal Theta power demonstrates an increase and is related to higher attentional control. In a fatigued condition the parietal Alpha-2 power increase might be related to a deactivation in the somatosensory brain areas.

  1. Stereotactic radiotherapy following surgery for brain metastasis: Predictive factors for local control and radionecrosis.

    PubMed

    Doré, M; Martin, S; Delpon, G; Clément, K; Campion, L; Thillays, F

    2017-02-01

    To evaluate local control and adverse effects after postoperative hypofractionated stereotactic radiosurgery in patients with brain metastasis. We reviewed patients who had hypofractionated stereotactic radiosurgery (7.7Gy×3 prescribed to the 70% isodose line, with 2mm planning target volume margin) following resection from March 2008 to January 2014. The primary endpoint was local failure defined as recurrence within the surgical cavity. Secondary endpoints were distant failure rates and the occurrence of radionecrosis. Out of 95 patients, 39.2% had metastatic lesions from a non-small cell lung cancer primary tumour. The median Graded Prognostic Assessment score was 3 (48% of patients). One-year local control rates were 84%. Factors associated with improved local control were no cavity enhancement on pre-radiation MRI (P<0.00001), planning target volume less than 12cm(3) (P=0.005), Graded Prognostic Assessment score 2 or above (P=0.009). One-year distant cerebral control rates were 56%. Thirty-three percent of patients received whole brain radiation therapy. Histologically proven radionecrosis of brain tissue occurred in 7.2% of cases. The size of the preoperative lesion and the volume of healthy brain tissue receiving 21Gy (V21) were both predictive of the incidence of radionecrosis (P=0.010 and 0.036, respectively). Adjuvant hypofractionated stereotactic radiosurgery to the postoperative cavity in patients with brain metastases results in excellent local control in selected patients, helps delay the use of whole brain radiation, and is associated with a relatively low risk of radionecrosis. Copyright © 2016 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  2. An FDES-Based Shared Control Method for Asynchronous Brain-Actuated Robot.

    PubMed

    Liu, Rong; Wang, Yong-Xuan; Zhang, Lin

    2016-06-01

    The asynchronous brain-computer interface (BCI) offers more natural human-machine interaction. However, it is still considered insufficient to control rapid and complex sequences of movements for a robot without any advanced control method. This paper proposes a new shared controller based on the supervisory theory of fuzzy discrete event system (FDES) for brain-actuated robot control. The developed supervisory theory allows the more reliable control mode to play a dominant role in the robot control which is beneficial to reduce misoperation and improve the robustness of the system. The experimental procedures consist of real-time direct manual control and BCI control tests from ten volunteers. Both tests have shown that the proposed method significantly improves the performance and robustness of the robotic control. In an online BCI experiment, eight of the participants successfully controlled the robot to circumnavigate obstacles and reached the target with a three mental states asynchronous BCI while the other two participants failed in all the BCI control sessions. Furthermore, the FDES-based shared control method also helps to reduce the workload. It can be stated that the asynchronous BCI, in combination with FDES-based shared controller, is feasible for the real-time and robust control of robotics.

  3. Brain monoamine oxidase activity in schizophrenics and controls.

    PubMed

    Reveley, M A; Glover, V; Sandler, M; Spokes, E G

    1981-06-01

    Postmortem samples of caudate nucleus and frontal cortex from schizophrenic, schizophrenic-like, and control subjects were examined for monoamine oxidase activity using dopamine, phenylethylamine, and 5-hydroxytryptamine as substrates. There were no significant differences between the diagnostic groups with any of the three substrates. Neither was there a difference between the sexes, nor a consistent relationship of enzyme activity to age.

  4. Matrix metalloproteinase-2 promoter variability in psoriasis.

    PubMed

    Vasku, Vladimir; Bienertova Vasku, Julie; Slonková, Veronika; Kanková, Katerina; Vasku, Anna

    2009-07-01

    The expression of matrix metalloproteinase-2 was observed to be significantly upregulated in psoriasis. The aim of this study was to associate the DNA polymorphic variants in MMP-2 promoter gene with psoriasis and/or with psoriasis phenotypes related to psoriasis and comorbid heredity. In the total of 582 Czech Caucasian individuals (386 patients with psoriasis and 196 controls of similar age and sex distribution without personal or family history of chronic disease of the skin), four MMP-2 promoter polymorphisms (-1575G/A, -1306C/T, -790T/G and -735C/T) were detected by PCR methods. A significant association of GG genotype of -790 MMP-2 polymorphism with psoriasis was observed (Pcorr = 0.04). Although no significant case-control differences in frequency of associated GG(-1575)CC(-1306)TT(-790) MMP-2 promoter genotype were observed, the genotype was found to be significantly less frequent in patients with family history of psoriasis (close as well as distant), family history of diabetes and personal history of allergy (2/11 vs. 55/32, odds ratio (OR) for GGCCTT 0.11, 95% confidential interval 0.02-0.50, Pcorr = 0.01). The significant difference between psoriatic patients with positive anamnestic data on diabetes, psoriasis and allergy compared with psoriatic patients that have only positive family history of diabetes was also observed (2/11 vs. 38/31, P = 0.009, Pcorr = 0.04; OR 0.15, 95% CI = 0.03-0.72 for psoriatic patients with GGCCTT genotype and family history of psoriasis, diabetes and personal history of allergy). To conclude, the associated GGCCTT genotype in the promoter of MMP-2 gene was less frequent in patients with positive family history of psoriasis, diabetes and personal history of allergy compared with psoriatic patients without them (2/11 vs. 68/57, P = 0.007, Pcorr = 0.04; OR = 0.15, 95% CI = 0.03-0.72 for psoriatic patients with family history of psoriasis and diabetes and with allergy). Based on our results, we suggest that the MMP-2 located in

  5. Brain-machine interfacing control of whole-body humanoid motion

    PubMed Central

    Bouyarmane, Karim; Vaillant, Joris; Sugimoto, Norikazu; Keith, François; Furukawa, Jun-ichiro; Morimoto, Jun

    2014-01-01

    We propose to tackle in this paper the problem of controlling whole-body humanoid robot behavior through non-invasive brain-machine interfacing (BMI), motivated by the perspective of mapping human motor control strategies to human-like mechanical avatar. Our solution is based on the adequate reduction of the controllable dimensionality of a high-DOF humanoid motion in line with the state-of-the-art possibilities of non-invasive BMI technologies, leaving the complement subspace part of the motion to be planned and executed by an autonomous humanoid whole-body motion planning and control framework. The results are shown in full physics-based simulation of a 36-degree-of-freedom humanoid motion controlled by a user through EEG-extracted brain signals generated with motor imagery task. PMID:25140134

  6. Brain-machine interfacing control of whole-body humanoid motion.

    PubMed

    Bouyarmane, Karim; Vaillant, Joris; Sugimoto, Norikazu; Keith, François; Furukawa, Jun-Ichiro; Morimoto, Jun

    2014-01-01

    We propose to tackle in this paper the problem of controlling whole-body humanoid robot behavior through non-invasive brain-machine interfacing (BMI), motivated by the perspective of mapping human motor control strategies to human-like mechanical avatar. Our solution is based on the adequate reduction of the controllable dimensionality of a high-DOF humanoid motion in line with the state-of-the-art possibilities of non-invasive BMI technologies, leaving the complement subspace part of the motion to be planned and executed by an autonomous humanoid whole-body motion planning and control framework. The results are shown in full physics-based simulation of a 36-degree-of-freedom humanoid motion controlled by a user through EEG-extracted brain signals generated with motor imagery task.

  7. Brain stimulation reveals crucial role of overcoming self-centeredness in self-control

    PubMed Central

    Soutschek, Alexander; Ruff, Christian C.; Strombach, Tina; Kalenscher, Tobias; Tobler, Philippe N.

    2016-01-01

    Neurobiological models of self-control predominantly focus on the role of prefrontal brain mechanisms involved in emotion regulation and impulse control. We provide evidence for an entirely different neural mechanism that promotes self-control by overcoming bias for the present self, a mechanism previously thought to be mainly important for interpersonal decision-making. In two separate studies, we show that disruptive transcranial magnetic stimulation (TMS) of the temporo-parietal junction—a brain region involved in overcoming one’s self-centered perspective—increases the discounting of delayed and prosocial rewards. This effect of TMS on temporal and social discounting is accompanied by deficits in perspective-taking and does not reflect altered spatial reorienting and number recognition. Our findings substantiate a fundamental commonality between the domains of self-control and social decision-making and highlight a novel aspect of the neurocognitive processes involved in self-control. PMID:27774513

  8. Brain-computer interfaces for control of neuroprostheses: from synchronous to asynchronous mode of operation.

    PubMed

    Müller-Putz, Gernot R; Scherer, Reinhold; Pfurtscheller, Gert; Rupp, Rüdiger

    2006-07-01

    Transferring a brain-computer interface (BCI) from the laboratory environment into real world applications is directly related to the problem of identifying user intentions from brain signals without any additional information in real time. From the perspective of signal processing, the BCI has to have an uncued or asynchronous design. Based on the results of two clinical applications, where 'thought' control of neuroprostheses based on movement imagery in tetraplegic patients with a high spinal cord injury has been established, the general steps from a synchronous or cue-guided BCI to an internally driven asynchronous brain-switch are discussed. The future potential of BCI methods for various control purposes, especially for functional rehabilitation of tetraplegics using neuroprosthetics, is outlined.

  9. Rapid control of male typical behaviors by brain-derived estrogens

    PubMed Central

    Cornil, Charlotte A.; Ball, Gregory F.; Balthazart, Jacques

    2012-01-01

    Beside their genomic mode of action, estrogens also activate a variety of cellular signaling pathways through non-genomic mechanisms. Until recently, little was known regarding the functional significance of such actions in males and the mechanism that control local estrogen concentration with a spatial and time resolution compatible with these non-genomic actions had rarely been examined. Here, we review evidence that estrogens rapidly modulate a variety of behaviors in male vertebrates. Then, we present in vitro work supporting the existence of a control mechanism of local brain estrogen synthesis by aromatase along with in vivo evidence that rapid changes in aromatase activity also occur in a region-specific manner in response to changes in the social or environmental context. Finally, we suggest that the brain estrogen provision may also play a significant role in females. Together these data bolster the hypothesis that brain-derived estrogens should be considered as neuromodulators. PMID:22983088

  10. Rapid control of male typical behaviors by brain-derived estrogens.

    PubMed

    Cornil, Charlotte A; Ball, Gregory F; Balthazart, Jacques

    2012-10-01

    Beside their genomic mode of action, estrogens also activate a variety of cellular signaling pathways through non-genomic mechanisms. Until recently, little was known regarding the functional significance of such actions in males and the mechanisms that control local estrogen concentration with a spatial and time resolution compatible with these non-genomic actions had rarely been examined. Here, we review evidence that estrogens rapidly modulate a variety of behaviors in male vertebrates. Then, we present in vitro work supporting the existence of a control mechanism of local brain estrogen synthesis by aromatase along with in vivo evidence that rapid changes in aromatase activity also occur in a region-specific manner in response to changes in the social or environmental context. Finally, we suggest that the brain estrogen provision may also play a significant role in females. Together these data bolster the hypothesis that brain-derived estrogens should be considered as neuromodulators.

  11. Monoaminergic control of brain states and sensory processing: Existing knowledge and recent insights obtained with optogenetics.

    PubMed

    Lőrincz, Magor L; Adamantidis, Antoine R

    2017-04-01

    Monoamines are key neuromodulators involved in a variety of physiological and pathological brain functions. Classical studies using physiological and pharmacological tools have revealed several essential aspects of monoaminergic involvement in regulating the sleep-wake cycle and influencing sensory responses but many features have remained elusive due to technical limitations. The application of optogenetic tools led to the ability of monitoring and controlling neuronal populations with unprecedented temporal precision and neurochemical specificity. Here, we focus on recent advances in revealing the roles of some monoamines in brain state control and sensory information processing. We summarize the central position of monoamines in integrating sensory processing across sleep-wake states with an emphasis on research conducted using optogenetic techniques. Finally, we discuss the limitations and perspectives of new integrated experimental approaches in understanding the modulatory mechanisms of monoaminergic systems in the mammalian brain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A balance of activity in brain control and reward systems predicts self-regulatory outcomes

    PubMed Central

    Chen, Pin-Hao A.; Huckins, Jeremy F.; Hofmann, Wilhelm; Kelley, William M.; Heatherton, Todd F.

    2017-01-01

    Abstract Previous neuroimaging work has shown that increased reward-related activity following exposure to food cues is predictive of self-control failure. The balance model suggests that self-regulation failures result from an imbalance in reward and executive control mechanisms. However, an open question is whether the relative balance of activity in brain systems associated with executive control (vs reward) supports self-regulatory outcomes when people encounter tempting cues in daily life. Sixty-nine chronic dieters, a population known for frequent lapses in self-control, completed a food cue-reactivity task during an fMRI scanning session, followed by a weeklong sampling of daily eating behaviors via ecological momentary assessment. We related participants’ food cue activity in brain systems associated with executive control and reward to real-world eating patterns. Specifically, a balance score representing the amount of activity in brain regions associated with self-regulatory control, relative to automatic reward-related activity, predicted dieters’ control over their eating behavior during the following week. This balance measure may reflect individual self-control capacity and be useful for examining self-regulation success in other domains and populations. PMID:28158874

  13. Development of Automatic Controller of Brain Temperature Based on the Conditions of Clinical Use

    NASA Astrophysics Data System (ADS)

    Utsuki, Tomohiko; Wakamatsu, Hidetoshi

    A new automatic controller of brain temperature was developed based on the inevitable conditions of its clinical use from the viewpoint of various kinds of feasibility, in particular, electric power consumption of less than 1,500W in ICU. The adaptive algorithm was employed to cope with individual time-varying characteristic change of patients. The controller under water-surface cooling hypothermia requires much power for the frequent regulation of the water temperature of cooling blankets. Thus, in this study, the power consumption of the controller was checked by several kinds of examinations involving the control simulation of brain temperature using a mannequin with thermal characteristics similar to that of adult patients. The required accuracy of therapeutic brain hypothermia, i.e. control deviation within ±0.1C was experimentally confirmed using “root mean square of the control error”, despite the present controller consumes less energy comparing with the one in the case of our conventional controller, where it can still keeps remaining power margin more than 300W even in the full operation. Thereby, the clinically required water temperature was also confirmed within the limit of power supply, thus its practical application is highly expected with less physical burden of medical staff inclusive of more usability and more medical cost performance.

  14. Brain-Computer Interface for Control of Wheelchair Using Fuzzy Neural Networks

    PubMed Central

    Akkaya, Nurullah; Aytac, Ersin; Günsel, Irfan; Çağman, Ahmet

    2016-01-01

    The design of brain-computer interface for the wheelchair for physically disabled people is presented. The design of the proposed system is based on receiving, processing, and classification of the electroencephalographic (EEG) signals and then performing the control of the wheelchair. The number of experimental measurements of brain activity has been done using human control commands of the wheelchair. Based on the mental activity of the user and the control commands of the wheelchair, the design of classification system based on fuzzy neural networks (FNN) is considered. The design of FNN based algorithm is used for brain-actuated control. The training data is used to design the system and then test data is applied to measure the performance of the control system. The control of the wheelchair is performed under real conditions using direction and speed control commands of the wheelchair. The approach used in the paper allows reducing the probability of misclassification and improving the control accuracy of the wheelchair. PMID:27777953

  15. Jet Engine Control Using Ethernet with a BRAIN (Postprint)

    DTIC Science & Technology

    2008-07-01

    ARINC - 664 , TTEthernet 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR 18. NUMBER OF PAGES 24 19a. NAME OF RESPONSIBLE...Ethernets F.1.1 ARINC 664 Another broadband technology that has gained significant traction with aerospace and industrial control is Ethernet. In...aerospace applications, ARINC 664 [ARI05] or AFDX™ (a full-duplex, profiled, switched Ethernet) has established itself as the de facto standard on large air

  16. Mitochondrial quality control systems sustain brain mitochondrial bioenergetics in early stages of type 2 diabetes.

    PubMed

    Santos, R X; Correia, S C; Alves, M G; Oliveira, P F; Cardoso, S; Carvalho, C; Seiça, R; Santos, M S; Moreira, P I

    2014-09-01

    Mitochondria have a crucial role in the supply of energy to the brain. Mitochondrial alterations can lead to detrimental consequences on the function of brain cells and are thought to have a pivotal role in the pathogenesis of several neurologic disorders. This study was aimed to evaluate mitochondrial function, fusion-fission and biogenesis and autophagy in brain cortex of 6-month-old Goto-Kakizaki (GK) rats, an animal model of nonobese type 2 diabetes (T2D). No statistically significant alterations were observed in mitochondrial respiratory chain and oxidative phosphorylation system. A significant decrease in the protein levels of OPA1, a protein that facilitates mitochondrial fusion, was observed in brain cortex of GK rats. Furthermore, a significant decrease in the protein levels of LC3-II and a significant increase in protein levels of mTOR phosphorylated at serine residue 2448 were observed in GK rats suggesting a suppression of autophagy in diabetic brain cortex. No significant alterations were observed in the parameters related to mitochondrial biogenesis. Altogether, these results demonstrate that during the early stages of T2D, brain mitochondrial function is maintained in part due to a delicate balance between mitochondrial fusion-fission and biogenesis and autophagy. However, future studies are warranted to evaluate the role of mitochondrial quality control pathways in late stages of T2D.

  17. Systemic matrix metalloproteinase-8 response in chronic tonsillitis.

    PubMed

    Ilmarinen, Taru; Lont, Triin; Hagström, Jaana; Tervahartiala, Taina; Sorsa, Timo; Haglund, Caj; Munck-Wickland, Eva; Ramqvist, Torbjörn; Dalianis, Tina; Aaltonen, Leena-Maija

    2017-04-01

    The development of several life-long diseases, such as coronary heart disease, is affected by low-grade systemic inflammation. Data on the potential long-term health effects of chronic tonsillitis are limited. Many inflammatory conditions present with enhanced systemic matrix metalloproteinase (MMP)-8 response. In head and neck cancer, high plasma level of tissue inhibitor of metalloproteinase (TIMP)-1 predicts poor prognosis. We analyzed S-MMP-8 with immunofluorometric assay and S-TIMP-1 with an immunosorbent assay in 175 consecutive patients undergoing tonsillectomy for benign tonsillar disease, and in 33 control patients with tonsillar squamous cell carcinoma. Tonsillar human papillomavirus (HPV) status was determined by PCR. In patients with benign tonsillar disease, chronic tonsillitis without hypertrophy was associated with enhanced systemic MMP-8 response. Compared to patients with benign tonsillar disease, patients with tonsillar squamous cell carcinoma had significantly higher concentrations of S-MMP-8 and S-TIMP-1. Neither S-MMP-8 nor S-TIMP-1 correlated with tonsillar HPV positivity.

  18. Regulation and involvement of matrix metalloproteinases in vascular diseases

    PubMed Central

    Amin, Matthew; Pushpakumar, Sathnur; Muradashvili, Nino; Kundu, Sourav; Tyagi, Suresh C.; Sen, Utpal

    2017-01-01

    Matrix metalloproteinases (MMPs) are a family of zinc dependent endopeptidases whose main function is to degrade and deposit structural proteins within the extracellular matrix (ECM). A dysregulation of MMPs is linked to vascular diseases. MMPs are classified into collagenases, gelatinases, membrane-type, metalloelastase, stromelysins, matrilysins, enamelysins, and unclassified subgroups. The production of MMPs is stimulated by factors such as oxidative stress, growth factors and inflammation which lead to its up- or down-regulation with subsequent ECM remodeling. Normally, excess activation of MMPs is controlled by their endogenous inhibitors, tissue inhibitors of metalloproteinases (TIMPs). An imbalance of MMPs and TIMPs has been implicated in hypertension, atherosclerotic plaque formation and instability, aortic aneurysms and varicose vein wall remodeling. Also, recent evidence suggests epigenetic regulation of some MMPs in angiogenesis and atherosclerosis. Over the years, pharmacological inhibitors of MMPs have been used to modify or prevent the development of the disease with some success. In this review, we discuss recent advances in MMP biology, and their involvement in the manifestation of vascular disease. PMID:26709763

  19. Developmental brain trajectories in children with ADHD and controls: a longitudinal neuroimaging study.

    PubMed

    Silk, Timothy J; Genc, Sila; Anderson, Vicki; Efron, Daryl; Hazell, Philip; Nicholson, Jan M; Kean, Michael; Malpas, Charles B; Sciberras, Emma

    2016-03-11

    The symptom profile and neuropsychological functioning of individuals with Attention Deficit/Hyperactivity Disorder (ADHD), change as they enter adolescence. It is unclear whether variation in brain structure and function parallels these changes, and also whether deviations from typical brain development trajectories are associated with differential outcomes. This paper describes the Neuroimaging of the Children's Attention Project (NICAP), a comprehensive longitudinal multimodal neuroimaging study. Primary aims are to determine how brain structure and function change with age in ADHD, and whether different trajectories of brain development are associated with variations in outcomes including diagnostic persistence, and academic, cognitive, social and mental health outcomes. NICAP is a multimodal neuroimaging study in a community-based cohort of children with and without ADHD. Approximately 100 children with ADHD and 100 typically developing controls will be scanned at a mean age of 10 years (range; 9-11years) and will be re-scanned at two 18-month intervals (ages 11.5 and 13 years respectively). Assessments include a structured diagnostic interview, parent and teacher questionnaires, direct child cognitive/executive functioning assessment and magnetic resonance imaging (MRI). MRI acquisition techniques, collected at a single site, have been selected to provide optimized information concerning structural and functional brain development. This study will allow us to address the primary aims by describing the neurobiological development of ADHD and elucidating brain features associated with differential clinical/behavioral outcomes. NICAP data will also be explored to assess the impact of sex, ADHD presentation, ADHD severity, comorbidities and medication use on brain development trajectories. Establishing which brain regions are associated with differential clinical outcomes, may allow us to improve predictions about the course of ADHD.

  20. Metalloproteinases: potential therapeutic targets for rheumatoid arthritis.

    PubMed

    Itoh, Yoshifumi

    2015-01-01

    In different inflammatory diseases, many metalloproteinases are over expressed and thought to promote progression of the disease. Understanding roles of these enzymes in disease progression as well as in normal homeostasis is crucial to identify target enzymes for the disease. Rheumatoid arthritis (RA) is one of the autoimmune inflammatory diseases in which around 1-2 % of the world populations are suffered from. Roles of metalloproteinases are well documented in RA, but so far none of them is proposed to be a target enzyme. However, there are at least three enzymes that can potentially be molecular targets to inhibit progression of RA. Understanding roles of these enzymes in more detail and developing highly selective inhibitors to these enzymes would be essential for novel antimetalloproteinase therapies in future.

  1. Glycolysis-mediated control of blood-brain barrier development and function.

    PubMed

    Salmina, Alla B; Kuvacheva, Natalia V; Morgun, Andrey V; Komleva, Yulia K; Pozhilenkova, Elena A; Lopatina, Olga L; Gorina, Yana V; Taranushenko, Tatyana E; Petrova, Lyudmila L

    2015-07-01

    The blood-brain barrier (BBB) consists of differentiated cells integrating in one ensemble to control transport processes between the central nervous system (CNS) and peripheral blood. Molecular organization of BBB affects the extracellular content and cell metabolism in the CNS. Developmental aspects of BBB attract much attention in recent years, and barriergenesis is currently recognized as a very important and complex mechanism of CNS development and maturation. Metabolic control of angiogenesis/barriergenesis may be provided by glucose utilization within the neurovascular unit (NVU). The role of glycolysis in the brain has been reconsidered recently, and it is recognized now not only as a process active in hypoxic conditions, but also as a mechanism affecting signal transduction, synaptic activity, and brain development. There is growing evidence that glycolysis-derived metabolites, particularly, lactate, affect barriergenesis and functioning of BBB. In the brain, lactate produced in astrocytes or endothelial cells can be transported to the extracellular space via monocarboxylate transporters (MCTs), and may act on the adjoining cells via specific lactate receptors. Astrocytes are one of the major sources of lactate production in the brain and significantly contribute to the regulation of BBB development and functioning. Active glycolysis in astrocytes is required for effective support of neuronal activity and angiogenesis, while endothelial cells regulate bioavailability of lactate for brain cells adjusting its bidirectional transport through the BBB. In this article, we review the current knowledge with regard to energy production in endothelial and astroglial cells within the NVU. In addition, we describe lactate-driven mechanisms and action of alternative products of glucose metabolism affecting BBB structural and functional integrity in developing and mature brain.

  2. Morphologic and biochemical characterization of brain injury in a model of controlled blast overpressure exposure.

    PubMed

    Svetlov, Stanislav I; Prima, Victor; Kirk, Daniel R; Gutierrez, Hector; Curley, Kenneth C; Hayes, Ronald L; Wang, Kevin K W

    2010-10-01

    Existing experimental approaches for studies of blast impact in small animals are insufficient and lacking consistency. Here, we present a comprehensive model, with repeatable blast signatures of controlled duration, peak pressure, and transmitted impulse, accurately reproducing blast impact in laboratory animals. Rat survival, brain pathomorphology, and levels of putative biomarkers of brain injury glial fibrillary acid protein (GFAP), neuron-specific enolase, and ubiquitin C-terminal hydrolase (UCH)-L1 were examined in brain, cerebrospinal fluid (CSF), and blood after 10 msec of 358 kPa peak overpressure blast exposure. The high-speed imaging demonstrated a strong head acceleration/jolting accompanied by typical intracranial hematomas and brain swelling. Microscopic injury was revealed by prominent silver staining in deep brain areas, including the nucleus subthalamicus zone, suggesting both diffused and focal neurodegeneration. GFAP and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), markers of astroglia and oligodendroglia, accumulated substantially in the hippocampus 24 hours after blast and persisted for 30 days postblast. However, GFAP content in the blood significantly increased 24 hours after injury, followed by a decline and subsequent accumulation in CSF in a time-dependent fashion. A similar profile is shown for UCH-L1 increase in blood, whereas increased CSF levels of UCH-L1 persisted throughout 14 days after blast and varied significantly in individual rats. Neuron-specific enolase levels in blood were significantly elevated within 24 hours and 48 hours postblast. The proposed model of controlled nonpenetrating blast in rats demonstrates the critical pathologic and biochemical signatures of blast brain injury that may be triggered by cerebrovascular responses, including blood-brain barrier disruption, glia responses, and neuroglial alterations.

  3. Control of adult neurogenesis by programmed cell death in the mammalian brain.

    PubMed

    Ryu, Jae Ryun; Hong, Caroline Jeeyeon; Kim, Joo Yeon; Kim, Eun-Kyoung; Sun, Woong; Yu, Seong-Woon

    2016-04-21

    The presence of neural stem cells (NSCs) and the production of new neurons in the adult brain have received great attention from scientists and the public because of implications to brain plasticity and their potential use for treating currently incurable brain diseases. Adult neurogenesis is controlled at multiple levels, including proliferation, differentiation, migration, and programmed cell death (PCD). Among these, PCD is the last and most prominent process for regulating the final number of mature neurons integrated into neural circuits. PCD can be classified into apoptosis, necrosis, and autophagic cell death and emerging evidence suggests that all three may be important modes of cell death in neural stem/progenitor cells. However, the molecular mechanisms that regulate PCD and thereby impact the intricate balance between self-renewal, proliferation, and differentiation during adult neurogenesis are not well understood. In this comprehensive review, we focus on the extent, mechanism, and biological significance of PCD for the control of adult neurogenesis in the mammalian brain. The role of intrinsic and extrinsic factors in the regulation of PCD at the molecular and systems levels is also discussed. Adult neurogenesis is a dynamic process, and the signals for differentiation, proliferation, and death of neural progenitor/stem cells are closely interrelated. A better understanding of how adult neurogenesis is influenced by PCD will help lead to important insights relevant to brain health and diseases.

  4. Task-related changes in functional properties of the human brain network underlying attentional control.

    PubMed

    Kida, Tetsuo; Kakigi, Ryusuke

    2013-01-01

    Previous studies have demonstrated task-related changes in brain activation and inter-regional connectivity but the temporal dynamics of functional properties of the brain during task execution is still unclear. In the present study, we investigated task-related changes in functional properties of the human brain network by applying graph-theoretical analysis to magnetoencephalography (MEG). Subjects performed a cue-target attention task in which a visual cue informed them of the direction of focus for incoming auditory or tactile target stimuli, but not the sensory modality. We analyzed the MEG signal in the cue-target interval to examine network properties during attentional control. Cluster-based non-parametric permutation tests with the Monte-Carlo method showed that in the cue-target interval, beta activity was desynchronized in the sensori-motor region including premotor and posterior parietal regions in the hemisphere contralateral to the attended side. Graph-theoretical analysis revealed that, in beta frequency, global hubs were found around the sensori-motor and prefrontal regions, and functional segregation over the entire network was decreased during attentional control compared to the baseline. Thus, network measures revealed task-related temporal changes in functional properties of the human brain network, leading to the understanding of how the brain dynamically responds to task execution as a network.

  5. Teaching brain-machine interfaces as an alternative paradigm to neuroprosthetics control.

    PubMed

    Iturrate, Iñaki; Chavarriaga, Ricardo; Montesano, Luis; Minguez, Javier; Millán, José del R

    2015-09-10

    Brain-machine interfaces (BMI) usually decode movement parameters from cortical activity to control neuroprostheses. This requires subjects to learn to modulate their brain activity to convey all necessary information, thus imposing natural limits on the complexity of tasks that can be performed. Here we demonstrate an alternative and complementary BMI paradigm that overcomes that limitation by decoding cognitive brain signals associated with monitoring processes relevant for achieving goals. In our approach the neuroprosthesis executes actions that the subject evaluates as erroneous or correct, and exploits the brain correlates of this assessment to learn suitable motor behaviours. Results show that, after a short user's training period, this teaching BMI paradigm operated three different neuroprostheses and generalized across several targets. Our results further support that these error-related signals reflect a task-independent monitoring mechanism in the brain, making this teaching paradigm scalable. We anticipate this BMI approach to become a key component of any neuroprosthesis that mimics natural motor control as it enables continuous adaptation in the absence of explicit information about goals. Furthermore, our paradigm can seamlessly incorporate other cognitive signals and conventional neuroprosthetic approaches, invasive or non-invasive, to enlarge the range and complexity of tasks that can be accomplished.

  6. Teaching brain-machine interfaces as an alternative paradigm to neuroprosthetics control

    PubMed Central

    Iturrate, Iñaki; Chavarriaga, Ricardo; Montesano, Luis; Minguez, Javier; Millán, José del R.

    2015-01-01

    Brain-machine interfaces (BMI) usually decode movement parameters from cortical activity to control neuroprostheses. This requires subjects to learn to modulate their brain activity to convey all necessary information, thus imposing natural limits on the complexity of tasks that can be performed. Here we demonstrate an alternative and complementary BMI paradigm that overcomes that limitation by decoding cognitive brain signals associated with monitoring processes relevant for achieving goals. In our approach the neuroprosthesis executes actions that the subject evaluates as erroneous or correct, and exploits the brain correlates of this assessment to learn suitable motor behaviours. Results show that, after a short user’s training period, this teaching BMI paradigm operated three different neuroprostheses and generalized across several targets. Our results further support that these error-related signals reflect a task-independent monitoring mechanism in the brain, making this teaching paradigm scalable. We anticipate this BMI approach to become a key component of any neuroprosthesis that mimics natural motor control as it enables continuous adaptation in the absence of explicit information about goals. Furthermore, our paradigm can seamlessly incorporate other cognitive signals and conventional neuroprosthetic approaches, invasive or non-invasive, to enlarge the range and complexity of tasks that can be accomplished. PMID:26354145

  7. Automatic control system of brain temperature by air-surface cooling for therapeutic hypothermia.

    PubMed

    Utsuki, T

    2013-01-01

    An automatic control system of brain temperature by air-surface cooling was developed for therapeutic hypothermia, which is increasingly recommended for hypoxic-ischemic encephalopathy after cardiac arrest and neonatal asphyxia in several guidelines pertinent to resuscitation. Currently, water-surface cooling is the most widespread cooling method in therapeutic hypothermia. However, it requires large electric power for precise control and also needs water-cooling blankets which have potential for compression of patients by its own weight and for water leakage in ICU. Air-surface cooling does not have such problems and is more suitable for clinical use than water-surface cooling, because air has lower specific heat and density as well as the impossibility of the contamination in ICU by its leakage. In the present system, brain temperature of patients is automatically controlled by suitable adjustment of the temperature of the air blowing into the cooling blankets. This adjustment is carried out by the regulation of mixing cool and warm air using proportional control valves. The computer in the developed control apparatus suitably calculates the air temperature and rotation angle of the valves every sampling time on the basis of the optimal-adaptive control algorithm. Thus, the proposed system actualizes automatic control of brain temperature by the inputting only the clinically desired temperature of brain. The control performance of the suggested system was verified by the examination using the mannequin in substitution for an adult patient. In the result, the control error of the head temperature of the mannequin was 0.12 °C on average in spite of the lack of the production capacity of warm air after the re-warming period. Thus, this system serves as a model for the clinically applied system.

  8. The Association between Mild Traumatic Brain Injury History and Cognitive Control

    ERIC Educational Resources Information Center

    Pontifex, Matthew B.; O'Connor, Phillip M.; Broglio, Steven P.; Hillman, Charles H.

    2009-01-01

    The influence of multiple mild traumatic brain injuries (mTBIs) on neuroelectric and task performance indices of the cognitive control of action monitoring was assessed in individuals with and without a history of concussion. Participants completed a standard clinical neurocognitive assessment and the error-related negativity of the…

  9. Excessive sleep need following traumatic brain injury: a case-control study of 36 patients.

    PubMed

    Sommerauer, Michael; Valko, Philipp O; Werth, Esther; Baumann, Christian R

    2013-12-01

    Increased sleep need following traumatic brain injury, referred to in this study as post-traumatic pleiosomnia, is common, but so far its clinical impact and therapeutic implications have not been characterized. We present a case-control study of 36 patients with post-traumatic pleiosomnia, defined by an increased sleep need of at least 2 h per 24 h after traumatic brain injury, compared to 36 controls. We assessed detailed history, sleep-activity patterns with sleep logs and actigraphy, nocturnal sleep with polysomnography and daytime sleep propensity with multiple sleep latency tests. Actigraphy recordings revealed that traumatic brain injury (TBI) patients had longer estimated sleep durations than controls (10.8 h per 24 h, compared to 7.3 h). When using sleep logs, TBI patients underestimated their sleep need. During nocturnal sleep, patients had higher amounts of slow-wave sleep than controls (20 versus 13.8%). Multiple sleep latency tests revealed excessive daytime sleepiness in 15 patients (42%), and 10 of them had signs of chronic sleep deprivation. We conclude that post-traumatic pleiosomnia may be even more frequent than reported previously, because affected patients often underestimate their actual sleep need. Furthermore, these patients exhibit an increase in slow-wave sleep which may reflect recovery mechanisms, intrinsic consequences of diffuse brain damage or relative sleep deprivation.

  10. The Association between Mild Traumatic Brain Injury History and Cognitive Control

    ERIC Educational Resources Information Center

    Pontifex, Matthew B.; O'Connor, Phillip M.; Broglio, Steven P.; Hillman, Charles H.

    2009-01-01

    The influence of multiple mild traumatic brain injuries (mTBIs) on neuroelectric and task performance indices of the cognitive control of action monitoring was assessed in individuals with and without a history of concussion. Participants completed a standard clinical neurocognitive assessment and the error-related negativity of the…

  11. Brain mechanisms controlling decision making and motor planning.

    PubMed

    Ramakrishnan, Arjun; Murthy, Aditya

    2013-01-01

    Accumulator models of decision making provide a unified framework to understand decision making and motor planning. In these models, the evolution of a decision is reflected in the accumulation of sensory information into a motor plan that reaches a threshold, leading to choice behavior. While these models provide an elegant framework to understand performance and reaction times, their ability to explain complex behaviors such as decision making and motor control of sequential movements in dynamic environments is unclear. To examine and probe the limits of online modification of decision making and motor planning, an oculomotor "redirect" task was used. Here, subjects were expected to change their eye movement plan when a new saccade target appeared. Based on task performance, saccade reaction time distributions, computational models of behavior, and intracortical microstimulation of monkey frontal eye fields, we show how accumulator models can be tested and extended to study dynamic aspects of decision making and motor control. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Matrix Metalloproteinases, Synaptic Injury, and Multiple Sclerosis

    PubMed Central

    Szklarczyk, Arek; Conant, Katherine

    2010-01-01

    Multiple sclerosis (MS) is a disease of the central nervous system in which immune mediated damage to myelin is characteristic. For an overview of this condition and its pathophysiology, please refer to one of many excellent published reviews (Sorensen and Ransohoff, 1998; Weiner, 2009). To follow, is a discussion focused on the possibility that synaptic injury occurs in at least a subset of patients, and that matrix metalloproteinases (MMPs) play a role in such. PMID:21423441

  13. Assessing brain structural associations with working-memory related brain patterns in schizophrenia and healthy controls using linked independent component analysis

    PubMed Central

    Brandt, Christine Lycke; Doan, Nhat Trung; Tønnesen, Siren; Agartz, Ingrid; Hugdahl, Kenneth; Melle, Ingrid; Andreassen, Ole A.; Westlye, Lars T.

    2015-01-01

    Schizophrenia (SZ) is a psychotic disorder with significant cognitive dysfunction. Abnormal brain activation during cognitive processing has been reported, both in task-positive and task-negative networks. Further, structural cortical and subcortical brain abnormalities have been documented, but little is known about how task-related brain activation is associated with brain anatomy in SZ compared to healthy controls (HC). Utilizing linked independent component analysis (LICA), a data-driven multimodal analysis approach, we investigated structure–function associations in a large sample of SZ (n = 96) and HC (n = 142). We tested for associations between task-positive (fronto-parietal) and task-negative (default-mode) brain networks derived from fMRI activation during an n-back working memory task, and brain structural measures of surface area, cortical thickness, and gray matter volume, and to what extent these associations differed in SZ compared to HC. A significant association (p < .05, corrected for multiple comparisons) was found between a component reflecting the task-positive fronto-parietal network and another component reflecting cortical thickness in fronto-temporal brain regions in SZ, indicating increased activation with increased thickness. Other structure–function associations across, between and within groups were generally moderate and significant at a nominal p-level only, with more numerous and stronger associations in SZ compared to HC. These results indicate a complex pattern of moderate associations between brain activation during cognitive processing and brain morphometry, and extend previous findings of fronto-temporal brain abnormalities in SZ by suggesting a coupling between cortical thickness of these brain regions and working memory-related brain activation. PMID:26509112

  14. Neutrophil activator of matrix metalloproteinase-2 (NAM).

    PubMed

    Rollo, Ellen E; Hymowitz, Michelle; Schmidt, Cathleen E; Montana, Steve; Foda, Hussein; Zucker, Stanley

    2006-01-01

    We have isolated a novel soluble factor(s), neutrophil activator of matrix metalloproteinases (NAM), secreted by unstimulated normal human peripheral blood neutrophils that causes the activation of cell secreted promatrix metalloproteinase-2 (proMMP-2). Partially purified preparations of NAM have been isolated from the conditioned media of neutrophils employing gelatin-Sepharose chromatography and differential membrane filter centrifugation. NAM activity, as assessed by exposing primary human umbilical vein endothelial cells (HUVEC) or HT1080 cells to NAM followed by gelatin zymography, was seen within one hour. Tissue inhibitor of metalloproteinase-2 (TIMP-2) and hydroxamic acid derived inhibitors of MMPs (CT1746 and BB94) abrogated the activation of proMMP-2 by NAM, while inhibitors of serine and cysteine proteases showed no effect. NAM also produced an increase in TIMP-2 binding to HUVEC and HT1080 cell surfaces that was inhibited by TIMP-2, CT1746, and BB94. Time-dependent increases in MT1-MMP protein and mRNA were seen following the addition of NAM to cells. These data support a role for NAM in cancer dissemination.

  15. Estrogens and the control of energy homeostasis: a brain perspective.

    PubMed

    López, Miguel; Tena-Sempere, Manuel

    2015-08-01

    Despite their prominent roles in the control of reproduction, estrogens pervade many other bodily functions. Key metabolic pathways display marked sexual differences, and estrogens are potent modulators of energy balance, as evidenced in extreme conditions of estrogen deficiency characterized by hyperphagia and decreased energy expenditure, and leading to obesity. Compelling evidence has recently demonstrated that, in addition to their peripheral effects, the actions of estrogens on energy homeostasis are exerted at central levels, to regulate almost every key aspect of metabolic homeostasis, from feeding to energy expenditure, to glucose and lipid metabolism. We review herein the state-of-the-art of the role of estrogens in the regulation of energy balance, with a focus on their central effects and modes of action. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Induced sensorimotor brain plasticity controls pain in phantom limb patients

    PubMed Central

    Yanagisawa, Takufumi; Fukuma, Ryohei; Seymour, Ben; Hosomi, Koichi; Kishima, Haruhiko; Shimizu, Takeshi; Yokoi, Hiroshi; Hirata, Masayuki; Yoshimine, Toshiki; Kamitani, Yukiyasu; Saitoh, Youichi

    2016-01-01

    The cause of pain in a phantom limb after partial or complete deafferentation is an important problem. A popular but increasingly controversial theory is that it results from maladaptive reorganization of the sensorimotor cortex, suggesting that experimental induction of further reorganization should affect the pain, especially if it results in functional restoration. Here we use a brain–machine interface (BMI) based on real-time magnetoencephalography signals to reconstruct affected hand movements with a robotic hand. BMI training induces significant plasticity in the sensorimotor cortex, manifested as improved discriminability of movement information and enhanced prosthetic control. Contrary to our expectation that functional restoration would reduce pain, the BMI training with the phantom hand intensifies the pain. In contrast, BMI training designed to dissociate the prosthetic and phantom hands actually reduces pain. These results reveal a functional relevance between sensorimotor cortical plasticity and pain, and may provide a novel treatment with BMI neurofeedback. PMID:27807349

  17. Matrix metalloproteinases, tissue inhibitors of MMPs and TACE in experimental cerebral malaria.

    PubMed

    Van den Steen, Philippe E; Van Aelst, Ilse; Starckx, Sofie; Maskos, Klaus; Opdenakker, Ghislain; Pagenstecher, Axel

    2006-09-01

    Cerebral malaria (CM) is a life-threatening disorder and a major medical problem in developing countries. It is caused by the sequestration of malaria-infected erythrocytes onto brain endothelia, followed by blood-brain barrier (BBB) damage and neurological deficit. In the present study, matrix metalloproteinases (MMPs) were analysed in a mouse model of CM with Plasmodium berghei ANKA. Increased numbers of gelatinase B (MMP-9)-positive cells, which were also CD11b(+), were detected in the brain. In addition, activation of gelatinase B occurred in CM brains, and not in brains of mice with non-CM. However, selective genetic knockout of gelatinase B did not alter the clinical evolution of experimental CM. To study other protease balances, the mRNA expression levels of nine matrix metalloproteinases (MMPs), five membrane-type MMPs, TNF-alpha converting enzyme (TACE) and the four tissue inhibitors of metalloproteinases (TIMPs) were analysed during CM in different organs. Significant alterations in expression were observed, including increases of the mRNAs of MMP-3, -8, -13 and -14 in the spleen, MMP-8, -12, -13 and -14 in the liver and MMP-8 and -13 in the brain. Net gelatinolytic activity, independent of gelatinase B and inhibitable with EDTA, was detected in situ in the endothelia of blood vessels in CM brains, but not in brains of mice with non-CM, suggesting that metalloproteases, different from gelatinase B, are active in the BBB environment in CM. The increase in MMP expression in the brain was significantly less pronounced after infection of C57Bl/6 mice with the noncerebral strain P. berghei NK65, but it was similar in CM-susceptible C57Bl/6 and CM-resistant Balb/C mice upon infection with P. berghei ANKA. Furthermore, in comparison with C57Bl/6 mice, a larger increase in TIMP-1 and a marked, >30-fold induction in MMP-3 were found in the brains of Balb/C mice, suggesting possible protective roles for TIMP-1 and MMP-3.

  18. Activities of matrix metalloproteinases and tissue inhibitor of metalloproteinase-2 in idiopathic hemotympanum and otitis media with effusion

    PubMed Central

    Moon, Sung K.; Linthicum, Fred H.; Yang, Hae Dong; Lee, Seung Joo; Park, Keehyun

    2008-01-01

    Conclusion The expression profile of matrix metalloproteinases (MMP) and tissue inhibitor of metalloproteinase-2 (TIMP-2) was specific to the type of middle ear effusion. Further studies are necessary for elucidating its correlation with the sequelae of otitis media with effusion (OME) and idiopathic hemotympanum. Objectives We aimed to investigate the relative activities of gelatinases (MMP-2 and 9), stromelysin-1 (MMP-3), matrilysin-1 (MMP-7) as well as measuring TIMP-2 levels in the serous and mucous effusions of OME and hemorrhagic effusion of the idiopathic hemotympanum. Method Middle ear effusions were collected from patients with OME and idiopathic hemotympanum, and were classified as mucoid, serous or hemorrhagic. MMP activity in the effusion samples was examined by gelatin and casein zymography. Levels of TIMP-2 were measured by ELISA. Human temporal bones sections, with and without otitis media (OM), were examined histologically. Results One case showed tympanic membrane thinning in the OM group, but none in the control group. While MMP-2 was present in all effusions, the active form of MMP-2 was found only in mucous effusions. MMP-3 and MMP-7 activity was detected only in the mucous effusions. MMP-9 exhibited activity in all effusions, with the highest levels in mucous effusions. TIMP-2 levels were markedly elevated in serous effusions. PMID:17851959

  19. Deficiency of the protein-tyrosine phosphatase DEP-1/PTPRJ promotes matrix metalloproteinase-9 expression in meningioma cells.

    PubMed

    Petermann, Astrid; Stampnik, Yvonn; Cui, Yan; Morrison, Helen; Pachow, Doreen; Kliese, Nadine; Mawrin, Christian; Böhmer, Frank-D

    2015-05-01

    Brain-invasive growth of a subset of meningiomas is associated with less favorable prognosis. The molecular mechanisms causing invasiveness are only partially understood, however, the expression of matrix metalloproteinases (MMPs) has been identified as a contributing factor. We have previously found that loss of density enhanced phosphatase-1 (DEP-1, also designated PTPRJ), a transmembrane protein-tyrosine phosphatase, promotes meningioma cell motility and invasive growth in an orthotopic xenotransplantation model. We have now analyzed potential alterations of the expression of genes involved in motility control, caused by DEP-1 loss in meningioma cell lines. DEP-1 depleted cells exhibited increased expression of mRNA encoding MMP-9, and the growth factors EGF and FGF-2. The increase of MMP-9 expression in DEP-1 depleted cells was also readily detectable at the protein level by zymography. MMP-9 upregulation was sensitive to chemical inhibitors of growth factor signal transduction. Conversely, MMP-9 mRNA levels could be stimulated with growth factors (e.g. EGF) and inflammatory cytokines (e.g. TNFα). Increase of MMP-9 expression by DEP-1 depletion, or growth factor/cytokine stimulation qualitatively correlated with increased invasiveness in vitro scored as transmigration through matrigel-coated membranes. The studies suggest induction of MMP-9 expression promoted by DEP-1 deficiency, or potentially by growth factors and inflammatory cytokines, as a mechanism contributing to meningioma brain invasiveness.

  20. Cognitive control of drug craving inhibits brain reward regions in cocaine abusers

    SciTech Connect

    Volkow, N.D.; Fowler, J.; Wang, G.J.; Telang, F.; Logan, J.; Jayne, M.; Ma, Y.; Pradhan, K.; Wong, C.T.; Swanson, J.M.

    2010-01-01

    Loss of control over drug taking is considered a hallmark of addiction and is critical in relapse. Dysfunction of frontal brain regions involved with inhibitory control may underlie this behavior. We evaluated whether addicted subjects when instructed to purposefully control their craving responses to drug-conditioned stimuli can inhibit limbic brain regions implicated in drug craving. We used PET and 2-deoxy-2[18F]fluoro-D-glucose to measure brain glucose metabolism (marker of brain function) in 24 cocaine abusers who watched a cocaine-cue video and compared brain activation with and without instructions to cognitively inhibit craving. A third scan was obtained at baseline (without video). Statistical parametric mapping was used for analysis and corroborated with regions of interest. The cocaine-cue video increased craving during the no-inhibition condition (pre 3 {+-} 3, post 6 {+-} 3; p < 0.001) but not when subjects were instructed to inhibit craving (pre 3 {+-} 2, post 3 {+-} 3). Comparisons with baseline showed visual activation for both cocaine-cue conditions and limbic inhibition (accumbens, orbitofrontal, insula, cingulate) when subjects purposefully inhibited craving (p < 0.001). Comparison between cocaine-cue conditions showed lower metabolism with cognitive inhibition in right orbitofrontal cortex and right accumbens (p < 0.005), which was associated with right inferior frontal activation (r = -0.62, p < 0.005). Decreases in metabolism in brain regions that process the predictive (nucleus accumbens) and motivational value (orbitofrontal cortex) of drug-conditioned stimuli were elicited by instruction to inhibit cue-induced craving. This suggests that cocaine abusers may retain some ability to inhibit craving and that strengthening fronto-accumbal regulation may be therapeutically beneficial in addiction.

  1. Matrix metalloproteinase-2 gene variants and abdominal aortic aneurysm.

    PubMed

    Smallwood, L; Warrington, N; Allcock, R; van Bockxmeer, F; Palmer, L J; Iacopetta, B; Golledge, J; Norman, P E

    2009-08-01

    To investigate associations between two polymorphisms of the matrix metalloproteinase-2 gene (MMP2) and the incidence and progression of abdominal aortic aneurysm (AAA). Cases and controls were recruited from a trial of screening for AAAs. The association between two variants of MMP2 (-1360C>T, and +649C>T) in men with AAA (n=678) and in controls (n=659) was examined using multivariate analyses. The association with AAA expansion (n=638) was also assessed. In multivariate analyses with adjustments for multiple testing, no association between either SNP and AAA presence or expansion was detected. MMP2 -1360C>T and +649C>T variants are not risk factors for AAA.

  2. Digit ratio (2D:4D) in primary brain tumor patients: A case-control study.

    PubMed

    Bunevicius, Adomas; Tamasauskas, Sarunas; Deltuva, Vytenis Pranas; Tamasauskas, Arimantas; Sliauzys, Albertas; Bunevicius, Robertas

    2016-12-01

    The second-to-fourth digit ratio (2D:4D) reflects prenatal estrogen and testosterone exposure, and is established in utero. Sex steroids are implicated in development and progression of primary brain tumors. To investigate whether there is a link between 2D:4D ratio and primary brain tumors, and age at presentation. Digital images of the right and left palms of 85 primary brain tumor patients (age 56.96±13.68years; 71% women) and 106 (age 54.31±13.68years; 68% women) gender and age matched controls were obtained. The most common brain tumor diagnoses were meningioma (41%), glioblastoma (20%) and pituitary adenoma (16%). Right and left 2D:4D ratios, and right minus left 2D:4D (Dr-l) were compared between patients and controls, and were correlated with age. Right and left 2D:4D ratios were significantly lower in primary brain tumor patients relative to controls (t=-4.28, p<0.001 and t=-3.69, p<0.001, respectively). The Dr-l was not different between brain tumor patients and controls (p=0.27). In meningioma and glioma patients, age at presentation correlated negatively with left 2D:4D ratio (rho=-0.42, p=0.01 and rho=-0.36, p=0.02, respectively) and positively with Dr-l (rho=0.45, p=0.009 and rho=0.65, p=0.04, respectively). Right and left hand 2D:4D ratios are lower in primary brain tumor patients relative to healthy individuals suggesting greater prenatal testosterone and lower prenatal estrogen exposure in brain tumor patients. Greater age at presentation is associated with greater Dr-l and with lower left 2D:4D ratio of meningioma and glioma patients. Due to small sample size our results should be considered preliminary and interpreted with caution. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Brain-machine interface control of a manipulator using small-world neural network and shared control strategy.

    PubMed

    Li, Ting; Hong, Jun; Zhang, Jinhua; Guo, Feng

    2014-03-15

    The improvement of the resolution of brain signal and the ability to control external device has been the most important goal in BMI research field. This paper describes a non-invasive brain-actuated manipulator experiment, which defined a paradigm for the motion control of a serial manipulator based on motor imagery and shared control. The techniques of component selection, spatial filtering and classification of motor imagery were involved. Small-world neural network (SWNN) was used to classify five brain states. To verify the effectiveness of the proposed classifier, we replace the SWNN classifier by a radial basis function (RBF) networks neural network, a standard multi-layered feed-forward backpropagation network (SMN) and a multi-SVM classifier, with the same features for the classification. The results also indicate that the proposed classifier achieves a 3.83% improvement over the best results of other classifiers. We proposed a shared control method consisting of two control patterns to expand the control of BMI from the software angle. The job of path building for reaching the 'end' point was designated as an assessment task. We recorded all paths contributed by subjects and picked up relevant parameters as evaluation coefficients. With the assistance of two control patterns and series of machine learning algorithms, the proposed BMI originally achieved the motion control of a manipulator in the whole workspace. According to experimental results, we confirmed the feasibility of the proposed BMI method for 3D motion control of a manipulator using EEG during motor imagery. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Associations between regional brain physiology and trait impulsivity, motor inhibition, and impaired control over drinking

    PubMed Central

    Weafer, Jessica; Dzemidzic, Mario; Eiler, William; Oberlin, Brandon G.; Wang, Yang; Kareken, David A.

    2015-01-01

    Trait impulsivity and poor inhibitory control are well-established risk factors for alcohol misuse, yet little is known about the associated neurobiological endophenotypes. Here we examined correlations among brain physiology and self-reported trait impulsive behavior, impaired control over drinking, and a behavioral measure of response inhibition. A sample of healthy drinkers (n=117) completed a pulsed arterial spin labeling (PASL) scan to quantify resting regional cerebral blood flow (rCBF), and measures of self-reported impulsivity (Eysenck I7 Impulsivity scale) and impaired control over drinking. A subset of subjects (n=40) performed a stop signal task during blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging to assess brain regions involved in response inhibition. Eysenck I7 scores were inversely related to blood flow in the right precentral gyrus. Significant BOLD activation during response inhibition occurred in an overlapping right frontal motor/premotor region. Moreover, impaired control over drinking was associated with reduced BOLD response in the same region. These findings suggest that impulsive personality and impaired control over drinking are associated with brain physiology in areas implicated in response inhibition. This is consistent with the idea that difficulty controlling behavior is due in part to impairment in motor restraint systems. PMID:26065376

  5. Recasting brain-machine interface design from a physical control system perspective.

    PubMed

    Zhang, Yin; Chase, Steven M

    2015-10-01

    With the goal of improving the quality of life for people suffering from various motor control disorders, brain-machine interfaces provide direct neural control of prosthetic devices by translating neural signals into control signals. These systems act by reading motor intent signals directly from the brain and using them to control, for example, the movement of a cursor on a computer screen. Over the past two decades, much attention has been devoted to the decoding problem: how should recorded neural activity be translated into the movement of the cursor? Most approaches have focused on this problem from an estimation standpoint, i.e., decoders are designed to return the best estimate of motor intent possible, under various sets of assumptions about how the recorded neural signals represent motor intent. Here we recast the decoder design problem from a physical control system perspective, and investigate how various classes of decoders lead to different types of physical systems for the subject to control. This framework leads to new interpretations of why certain types of decoders have been shown to perform better than others. These results have implications for understanding how motor neurons are recruited to perform various tasks, and may lend insight into the brain's ability to conceptualize artificial systems.

  6. Scoring Systems to Estimate Intracerebral Control and Survival Rates of Patients Irradiated for Brain Metastases;Brain metastases; Radiation therapy; Local control; Survival; Prognostic scores

    SciTech Connect

    Rades, Dirk; Dziggel, Liesa; Haatanen, Tiina; Veninga, Theo; Lohynska, Radka; Dunst, Juergen; Schild, Steven E.

    2011-07-15

    Purpose: To create and validate scoring systems for intracerebral control (IC) and overall survival (OS) of patients irradiated for brain metastases. Methods and Materials: In this study, 1,797 patients were randomly assigned to the test (n = 1,198) or the validation group (n = 599). Two scoring systems were developed, one for IC and another for OS. The scores included prognostic factors found significant on multivariate analyses. Age, performance status, extracerebral metastases, interval tumor diagnosis to RT, and number of brain metastases were associated with OS. Tumor type, performance status, interval, and number of brain metastases were associated with IC. The score for each factor was determined by dividing the 6-month IC or OS rate (given in percent) by 10. The total score represented the sum of the scores for each factor. The score groups of the test group were compared with the corresponding score groups of the validation group. Results: In the test group, 6-month IC rates were 17% for 14-18 points, 49% for 19-23 points, and 77% for 24-27 points (p < 0.0001). IC rates in the validation group were 19%, 52%, and 77%, respectively (p < 0.0001). In the test group, 6-month OS rates were 9% for 15-19 points, 41% for 20-25 points, and 78% for 26-30 points (p < 0.0001). OS rates in the validation group were 7%, 39%, and 79%, respectively (p < 0.0001). Conclusions: Patients irradiated for brain metastases can be given scores to estimate OS and IC. IC and OS rates of the validation group were similar to the test group demonstrating the validity and reproducibility of both scores.

  7. Head or brain injuries and Alzheimer's disease: A nested case-control register study.

    PubMed

    Tolppanen, Anna-Maija; Taipale, Heidi; Hartikainen, Sirpa

    2017-06-07

    Many previous studies have been limited by self- or proxy-reported injury or short follow-up. We investigated whether head or brain injuries are associated with Alzheimer's disease (AD), possible modifying factors and dose-response relationship. Nested register-based case-control study of all community dwellers who received clinically verified AD diagnosis in Finland in 2005 to 2011 (n = 70,719) and one to four matched controls for each case (n of controls = 282,862). The magnitude of association between hospital-treated head and/or brain injuries was strongly dependent on the lag time between exposure and outcome. With a 5-year lag time, head injury (adjusted odds ratio; 95% confidence interval 1.19; 1.15-1.23) or brain injury (1.23; 1.18-1.29) was associated with higher risk of AD. Dose-response relationship with number and severity of injuries was observed. Associations were stronger in those with earlier onset of AD. Stronger associations with shorter lag times indicate that head and/or brain injuries may also reflect the ongoing AD disease process. Copyright © 2017 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  8. Reduced brain activation during inhibitory control in children with COMT Val/Val genotype.

    PubMed

    Cope, Lora M; Hardee, Jillian E; Soules, Mary E; Burmeister, Margit; Zucker, Robert A; Heitzeg, Mary M

    2016-12-01

    Behavioral undercontrol is a well-established risk factor for substance use disorder, identifiable at an early age well before the onset of substance use. However, the biological mechanistic structure underlying the behavioral undercontrol/substance use relationship is not well understood. The enzyme catechol O-methyltransferase (COMT) catabolizes dopamine and norepinephrine in the prefrontal cortex and striatum, brain regions involved in behavioral control. The goal of this work was to investigate the association between genetic variation in COMT functioning and fronto-striatal brain functioning during successful inhibitory control, a critical aspect of behavioral control. Participants were 65 (22 female) 7-12 year olds who were genotyped for the functional COMT Val(158)Met (rs4680) single-nucleotide polymorphism and underwent functional magnetic resonance imaging while performing a go/no-go task. The majority of the sample (80%) had at least one parent with a history of alcohol use disorder and were thus at heightened risk for substance use disorders. There was a significant main effect of genotype on brain activation in left and right putamen during successful versus failed inhibition and in right inferior frontal gyrus/insula during successful inhibition versus baseline. Follow-up tests revealed that Met homozygotes had greater activation in each region relative to Val homozygotes. These results are relevant for understanding how specific genes influence brain functioning related to underlying risk factors for substance use disorders and other disinhibitory psychopathologies.

  9. Brain Circuit for Cognitive Control is Shared by Task and Language Switching.

    PubMed

    De Baene, Wouter; Duyck, Wouter; Brass, Marcel; Carreiras, Manuel

    2015-09-01

    Controlling multiple languages during speech production is believed to rely on functional mechanisms that are (at least partly) shared with domain-general cognitive control in early, highly proficient bilinguals. Recent neuroimaging results have indeed suggested a certain degree of neural overlap between language control and nonverbal cognitive control in bilinguals. However, this evidence is only indirect. Direct evidence for neural overlap between language control and nonverbal cognitive control can only be provided if two prerequisites are met: Language control and nonverbal cognitive control should be compared within the same participants, and the task requirements of both conditions should be closely matched. To provide such direct evidence for the first time, we used fMRI to examine the overlap in brain activation between switch-specific activity in a linguistic switching task and a closely matched nonlinguistic switching task, within participants, in early, highly proficient Spanish-Basque bilinguals. The current findings provide direct evidence that, in these bilinguals, highly similar brain circuits are involved in language control and domain-general cognitive control.

  10. Speaking and cognitive distractions during EEG-based brain control of a virtual neuroprosthesis-arm.

    PubMed

    Foldes, Stephen T; Taylor, Dawn M

    2013-12-21

    Brain-computer interface (BCI) systems have been developed to provide paralyzed individuals the ability to command the movements of an assistive device using only their brain activity. BCI systems are typically tested in a controlled laboratory environment were the user is focused solely on the brain-control task. However, for practical use in everyday life people must be able to use their brain-controlled device while mentally engaged with the cognitive responsibilities of daily activities and while compensating for any inherent dynamics of the device itself. BCIs that use electroencephalography (EEG) for movement control are often assumed to require significant mental effort, thus preventing users from thinking about anything else while using their BCI. This study tested the impact of cognitive load as well as speaking on the ability to use an EEG-based BCI. Six participants controlled the two-dimensional (2D) movements of a simulated neuroprosthesis-arm under three different levels of cognitive distraction. The two higher cognitive load conditions also required simultaneously speaking during BCI use. On average, movement performance declined during higher levels of cognitive distraction, but only by a limited amount. Movement completion time increased by 7.2%, the percentage of targets successfully acquired declined by 11%, and path efficiency declined by 8.6%. Only the decline in percentage of targets acquired and path efficiency were statistically significant (p < 0.05). People who have relatively good movement control of an EEG-based BCI may be able to speak and perform other cognitively engaging activities with only a minor drop in BCI-control performance.

  11. Stochastic optimal control as a theory of brain-machine interface operation.

    PubMed

    Lagang, Manuel; Srinivasan, Lakshminarayan

    2013-02-01

    The closed-loop operation of brain-machine interfaces (BMI) provides a framework to study the mechanisms behind neural control through a restricted output channel, with emerging clinical applications to stroke, degenerative disease, and trauma. Despite significant empirically driven improvements in closed-loop BMI systems, a fundamental, experimentally validated theory of closed-loop BMI operation is lacking. Here we propose a compact model based on stochastic optimal control to describe the brain in skillfully operating canonical decoding algorithms. The model produces goal-directed BMI movements with sensory feedback and intrinsically noisy neural output signals. Various experimentally validated phenomena emerge naturally from this model, including performance deterioration with bin width, compensation of biased decoders, and shifts in tuning curves between arm control and BMI control. Analysis of the model provides insight into possible mechanisms underlying these behaviors, with testable predictions. Spike binning may erode performance in part from intrinsic control-dependent constraints, regardless of decoding accuracy. In compensating decoder bias, the brain may incur an energetic cost associated with action potential production. Tuning curve shifts, seen after the mastery of a BMI-based skill, may reflect the brain's implementation of a new closed-loop control policy. The direction and magnitude of tuning curve shifts may be altered by decoder structure, ensemble size, and the costs of closed-loop control. Looking forward, the model provides a framework for the design and simulated testing of an emerging class of BMI algorithms that seek to directly exploit the presence of a human in the loop.

  12. A Brain-Machine Interface for Control of Medically-Induced Coma

    PubMed Central

    Liberman, Max; Solt, Ken; Brown, Emery N.

    2013-01-01

    Medically-induced coma is a drug-induced state of profound brain inactivation and unconsciousness used to treat refractory intracranial hypertension and to manage treatment-resistant epilepsy. The state of coma is achieved by continually monitoring the patient's brain activity with an electroencephalogram (EEG) and manually titrating the anesthetic infusion rate to maintain a specified level of burst suppression, an EEG marker of profound brain inactivation in which bursts of electrical activity alternate with periods of quiescence or suppression. The medical coma is often required for several days. A more rational approach would be to implement a brain-machine interface (BMI) that monitors the EEG and adjusts the anesthetic infusion rate in real time to maintain the specified target level of burst suppression. We used a stochastic control framework to develop a BMI to control medically-induced coma in a rodent model. The BMI controlled an EEG-guided closed-loop infusion of the anesthetic propofol to maintain precisely specified dynamic target levels of burst suppression. We used as the control signal the burst suppression probability (BSP), the brain's instantaneous probability of being in the suppressed state. We characterized the EEG response to propofol using a two-dimensional linear compartment model and estimated the model parameters specific to each animal prior to initiating control. We derived a recursive Bayesian binary filter algorithm to compute the BSP from the EEG and controllers using a linear-quadratic-regulator and a model-predictive control strategy. Both controllers used the estimated BSP as feedback. The BMI accurately controlled burst suppression in individual rodents across dynamic target trajectories, and enabled prompt transitions between target levels while avoiding both undershoot and overshoot. The median performance error for the BMI was 3.6%, the median bias was -1.4% and the overall posterior probability of reliable control was 1 (95

  13. A brain-machine interface for control of medically-induced coma.

    PubMed

    Shanechi, Maryam M; Chemali, Jessica J; Liberman, Max; Solt, Ken; Brown, Emery N

    2013-10-01

    Medically-induced coma is a drug-induced state of profound brain inactivation and unconsciousness used to treat refractory intracranial hypertension and to manage treatment-resistant epilepsy. The state of coma is achieved by continually monitoring the patient's brain activity with an electroencephalogram (EEG) and manually titrating the anesthetic infusion rate to maintain a specified level of burst suppression, an EEG marker of profound brain inactivation in which bursts of electrical activity alternate with periods of quiescence or suppression. The medical coma is often required for several days. A more rational approach would be to implement a brain-machine interface (BMI) that monitors the EEG and adjusts the anesthetic infusion rate in real time to maintain the specified target level of burst suppression. We used a stochastic control framework to develop a BMI to control medically-induced coma in a rodent model. The BMI controlled an EEG-guided closed-loop infusion of the anesthetic propofol to maintain precisely specified dynamic target levels of burst suppression. We used as the control signal the burst suppression probability (BSP), the brain's instantaneous probability of being in the suppressed state. We characterized the EEG response to propofol using a two-dimensional linear compartment model and estimated the model parameters specific to each animal prior to initiating control. We derived a recursive Bayesian binary filter algorithm to compute the BSP from the EEG and controllers using a linear-quadratic-regulator and a model-predictive control strategy. Both controllers used the estimated BSP as feedback. The BMI accurately controlled burst suppression in individual rodents across dynamic target trajectories, and enabled prompt transitions between target levels while avoiding both undershoot and overshoot. The median performance error for the BMI was 3.6%, the median bias was -1.4% and the overall posterior probability of reliable control was 1 (95

  14. Control of abdominal muscles by brain stem respiratory neurons in the cat

    NASA Technical Reports Server (NTRS)

    Miller, Alan D.; Ezure, Kazuhisa; Suzuki, Ichiro

    1985-01-01

    The nature of the control of abdominal muscles by the brain stem respiratory neurons was investigated in decerebrate unanesthetized cats. First, it was determined which of the brain stem respiratory neurons project to the lumbar cord (from which the abdominal muscles receive part of their innervation), by stimulating the neurons monopolarly. In a second part of the study, it was determined if lumbar-projecting respiratory neurons make monosynaptic connections with abdominal motoneurons; in these experiments, discriminate spontaneous spikes of antidromically acivated expiratory (E) neurons were used to trigger activity from both L1 and L2 nerves. A large projection was observed from E neurons in the caudal ventral respiratory group to the contralateral upper lumber cord. However, cross-correlation experiments found only two (out of 47 neuron pairs tested) strong monosynaptic connections between brain stem neurons and abdominal motoneurons.

  15. The sensory circumventricular organs: brain targets for circulating signals controlling ingestive behavior.

    PubMed

    Fry, Mark; Ferguson, Alastair V

    2007-07-24

    Sensory circumventricular organs (CVOs) are specialized areas of the brain that lack a normal blood-brain barrier, and therefore are in constant contact with signaling molecules circulating in the bloodstream. Neurons of the CVOs are well endowed with a wide spectrum of receptors for hormones and other signaling molecules, and they have strong connections to hypothalamic and brainstem nuclei. Therefore, lying at the blood-brain interface, the sensory CVOs are in a unique position of being able to detect and integrate humoral and neural information and relay the resulting signals to autonomic control centers of the hypothalamus and medulla. This review focuses primarily on the roles played by the sensory CVOs in fluid balance and energy metabolism.

  16. Control of abdominal muscles by brain stem respiratory neurons in the cat

    NASA Technical Reports Server (NTRS)

    Miller, Alan D.; Ezure, Kazuhisa; Suzuki, Ichiro

    1985-01-01

    The nature of the control of abdominal muscles by the brain stem respiratory neurons was investigated in decerebrate unanesthetized cats. First, it was determined which of the brain stem respiratory neurons project to the lumbar cord (from which the abdominal muscles receive part of their innervation), by stimulating the neurons monopolarly. In a second part of the study, it was determined if lumbar-projecting respiratory neurons make monosynaptic connections with abdominal motoneurons; in these experiments, discriminate spontaneous spikes of antidromically acivated expiratory (E) neurons were used to trigger activity from both L1 and L2 nerves. A large projection was observed from E neurons in the caudal ventral respiratory group to the contralateral upper lumber cord. However, cross-correlation experiments found only two (out of 47 neuron pairs tested) strong monosynaptic connections between brain stem neurons and abdominal motoneurons.

  17. Executive control function, brain activation and white matter hyperintensities in older adults

    PubMed Central

    Venkatraman, Vijay K.; Aizenstein, Howard; Guralnik, Jack; Newman, Anne B.; Glynn, Nancy W.; Taylor, Christopher; Studenski, Stephanie; Launer, Lenore; Pahor, Marco; Williamson, Jeff; Rosano, Caterina

    2009-01-01

    Context Older adults responding to executive control function (ECF) tasks show greater brain activation on functional MRI (fMRI). It is not clear whether greater fMRI activation indicates a strategy to compensate for underlying brain structural abnormalities while maintaining higher performance. Objective To identify the patterns of fMRI activation in relationship with ECF performance and with brain structural abnormalities. Design Cross-sectional analysis. Main variables of interest: fMRI activation, accuracy while performing an ECF task (Digit Symbol Substitution Test), volume of white matter hyperintensities and of total brain atrophy. Setting Cohort of community-dwelling older adults. Participants Data were obtained on 25 older adults (20 women, 81 years mean age). Outcome Measure Accuracy (number of correct response / total number of responses) while performing the Digit Symbol Substitution Test. Results Greater accuracy was significantly associated with greater peak fMRI activation, from ECF regions, including left middle frontal gyrus and right posterior parietal cortex. Greater WMH was associated with lower activation within accuracy-related regions. The interaction of accuracy by white matter hyperintensities volume was significant within the left posterior parietal region. Specifically, the correlation of white matter hyperintensities volume with fMRI activation varied as a function of accuracy and it was positive for greater accuracy. Associations with brain atrophy were not significant. Conclusions Recruitment of additional areas and overall greater brain activation in older adults is associated with higher performance. Posterior parietal activation may be particularly important to maintain higher accuracy in the presence of underlying brain connectivity structural abnormalities. PMID:19922803

  18. Relaxed genetic control of cortical organization in human brains compared with chimpanzees

    PubMed Central

    Gómez-Robles, Aida; Hopkins, William D.; Schapiro, Steven J.; Sherwood, Chet C.

    2015-01-01

    The study of hominin brain evolution has focused largely on the neocortical expansion and reorganization undergone by humans as inferred from the endocranial fossil record. Comparisons of modern human brains with those of chimpanzees provide an additional line of evidence to define key neural traits that have emerged in human evolution and that underlie our unique behavioral specializations. In an attempt to identify fundamental developmental differences, we have estimated the genetic bases of brain size and cortical organization in chimpanzees and humans by studying phenotypic similarities between individuals with known kinship relationships. We show that, although heritability for brain size and cortical organization is high in chimpanzees, cerebral cortical anatomy is substantially less genetically heritable than brain size in humans, indicating greater plasticity and increased environmental influence on neurodevelopment in our species. This relaxed genetic control on cortical organization is especially marked in association areas and likely is related to underlying microstructural changes in neural circuitry. A major result of increased plasticity is that the development of neural circuits that underlie behavior is shaped by the environmental, social, and cultural context more intensively in humans than in other primate species, thus providing an anatomical basis for behavioral and cognitive evolution. PMID:26627234

  19. Relaxed genetic control of cortical organization in human brains compared with chimpanzees.

    PubMed

    Gómez-Robles, Aida; Hopkins, William D; Schapiro, Steven J; Sherwood, Chet C

    2015-12-01

    The study of hominin brain evolution has focused largely on the neocortical expansion and reorganization undergone by humans as inferred from the endocranial fossil record. Comparisons of modern human brains with those of chimpanzees provide an additional line of evidence to define key neural traits that have emerged in human evolution and that underlie our unique behavioral specializations. In an attempt to identify fundamental developmental differences, we have estimated the genetic bases of brain size and cortical organization in chimpanzees and humans by studying phenotypic similarities between individuals with known kinship relationships. We show that, although heritability for brain size and cortical organization is high in chimpanzees, cerebral cortical anatomy is substantially less genetically heritable than brain size in humans, indicating greater plasticity and increased environmental influence on neurodevelopment in our species. This relaxed genetic control on cortical organization is especially marked in association areas and likely is related to underlying microstructural changes in neural circuitry. A major result of increased plasticity is that the development of neural circuits that underlie behavior is shaped by the environmental, social, and cultural context more intensively in humans than in other primate species, thus providing an anatomical basis for behavioral and cognitive evolution.

  20. A history of optogenetics: the development of tools for controlling brain circuits with light.

    PubMed

    Boyden, Edward S

    2011-01-01

    Understanding how different kinds of neuron in the brain work together to implement sensations, feelings, thoughts, and movements, and how deficits in specific kinds of neuron result in brain diseases, has long been a priority in basic and clinical neuroscience. "Optogenetic" tools are genetically encoded molecules that, when targeted to specific neurons in the brain, enable their activity to be driven or silenced by light. These molecules are microbial opsins, seven-transmembrane proteins adapted from organisms found throughout the world, which react to light by transporting ions across the lipid membranes of cells in which they are genetically expressed. These tools are enabling the causal assessment of the roles that different sets of neurons play within neural circuits, and are accordingly being used to reveal how different sets of neurons contribute to the emergent computational and behavioral functions of the brain. These tools are also being explored as components of prototype neural control prosthetics capable of correcting neural circuit computations that have gone awry in brain disorders. This review gives an account of the birth of optogenetics and discusses the technology and its applications.

  1. Afferent and efferent activity control in the design of brain computer interfaces for motor rehabilitation.

    PubMed

    Cho, Woosang; Vidaurre, Carmen; Hoffmann, Ulrich; Birbaumer, Niels; Ramos-Murguialday, Ander

    2011-01-01

    Stroke is a cardiovascular accident within the brain resulting in motor and sensory impairment in most of the survivors. A stroke can produce complete paralysis of the limb although sensory abilities are normally preserved. Functional electrical stimulation (FES), robotics and brain computer interfaces (BCIs) have been used to induce motor rehabilitation. In this work we measured the brain activity of healthy volunteers using electroencephalography (EEG) during FES, passive movements, active movements, motor imagery of the hand and resting to compare afferent and efferent brain signals produced during these motor related activities and to define possible features for an online FES-BCI. In the conditions in which the hand was moved we limited the movement range in order to control the afferent flow. Although we observed that there is a subject dependent frequency and spatial distribution of efferent and afferent signals, common patterns between conditions and subjects were present mainly in the low beta frequency range. When averaging all the subjects together the most significant frequency bin comparing each condition versus rest was exactly the same for all conditions but motor imagery. These results suggest that to implement an on-line FES-BCI, afferent brain signals resulting from FES have to be filtered and time-frequency-spatial features need to be used.

  2. A closed-loop brain computer interface for real-time seizure detection and control.

    PubMed

    Liang, Sheng-Fu; Shaw, Fu-Zen; Young, Chung-Ping; Chang, Da-Wei; Liao, Yi-Cheng

    2010-01-01

    The worldwide prevalence of epilepsy is approximately 1%, and 25% of epilepsy patients cannot be treated sufficiently by available therapies. Brain stimulation with closed-loop seizure control has recently been proposed as an innovative and effective alternative. In this paper, a portable closed-loop brain computer interface for seizure control was developed and shown with several aspects of advantages, including high seizure detection rate (92-99% during wake-sleep states), low false detection rate (1.2-2.5%), and small size. The seizure detection and electrical stimulation latency was not greater than 0.6 s after seizure onset. A wireless communication feature also provided flexibility for subjects freeing from the hassle of wires. Experimental data from freely moving rats supported the functional possibility of a real-time closed-loop seizure controller.

  3. Development of Visual Motion Perception for Prospective Control: Brain and Behavioral Studies in Infants

    PubMed Central

    Agyei, Seth B.; van der Weel, F. R. (Ruud); van der Meer, Audrey L. H.

    2016-01-01

    During infancy, smart perceptual mechanisms develop allowing infants to judge time-space motion dynamics more efficiently with age and locomotor experience. This emerging capacity may be vital to enable preparedness for upcoming events and to be able to navigate in a changing environment. Little is known about brain changes that support the development of prospective control and about processes, such as preterm birth, that may compromise it. As a function of perception of visual motion, this paper will describe behavioral and brain studies with young infants investigating the development of visual perception for prospective control. By means of the three visual motion paradigms of occlusion, looming, and optic flow, our research shows the importance of including behavioral data when studying the neural correlates of prospective control. PMID:26903908

  4. Brain functional plasticity associated with the emergence of expertise in extreme language control.

    PubMed

    Hervais-Adelman, Alexis; Moser-Mercer, Barbara; Golestani, Narly

    2015-07-01

    We used functional magnetic resonance imaging (fMRI) to longitudinally examine brain plasticity arising from long-term, intensive simultaneous interpretation training. Simultaneous interpretation is a bilingual task with heavy executive control demands. We compared brain responses observed during simultaneous interpretation with those observed during simultaneous speech repetition (shadowing) in a group of trainee simultaneous interpreters, at the beginning and at the end of their professional training program. Age, sex and language-proficiency matched controls were scanned at similar intervals. Using multivariate pattern classification, we found distributed patterns of changes in functional responses from the first to second scan that distinguished the interpreters from the controls. We also found reduced recruitment of the right caudate nucleus during simultaneous interpretation as a result of training. Such practice-related change is consistent with decreased demands on multilingual language control as the task becomes more automatized with practice. These results demonstrate the impact of simultaneous interpretation training on the brain functional response in a cerebral structure that is not specifically linguistic, but that is known to be involved in learning, in motor control, and in a variety of domain-general executive functions. Along with results of recent studies showing functional and structural adaptations in the caudate nuclei of experts in a broad range of domains, our results underline the importance of this structure as a central node in expertise-related networks. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Restoration of grasp following paralysis through brain-controlled stimulation of muscles.

    PubMed

    Ethier, C; Oby, E R; Bauman, M J; Miller, L E

    2012-05-17

    Patients with spinal cord injury lack the connections between brain and spinal cord circuits that are essential for voluntary movement. Clinical systems that achieve muscle contraction through functional electrical stimulation (FES) have proven to be effective in allowing patients with tetraplegia to regain control of hand movements and to achieve a greater measure of independence in daily activities. In existing clinical systems, the patient uses residual proximal limb movements to trigger pre-programmed stimulation that causes the paralysed muscles to contract, allowing use of one or two basic grasps. Instead, we have developed an FES system in primates that is controlled by recordings made from microelectrodes permanently implanted in the brain. We simulated some of the effects of the paralysis caused by C5 or C6 spinal cord injury by injecting rhesus monkeys with a local anaesthetic to block the median and ulnar nerves at the elbow. Then, using recordings from approximately 100 neurons in the motor cortex, we predicted the intended activity of several of the paralysed muscles, and used these predictions to control the intensity of stimulation of the same muscles. This process essentially bypassed the spinal cord, restoring to the monkeys voluntary control of their paralysed muscles. This achievement is a major advance towards similar restoration of hand function in human patients through brain-controlled FES. We anticipate that in human patients, this neuroprosthesis would allow much more flexible and dexterous use of the hand than is possible with existing FES systems.

  6. Brain Diseases

    MedlinePlus

    The brain is the control center of the body. It controls thoughts, memory, speech, and movement. It regulates the function of many organs. When the brain is healthy, it works quickly and automatically. However, ...

  7. Matrix Metalloproteinases -8 and -9 and Tissue Inhibitor of Metalloproteinase-1 in Burn Patients. A Prospective Observational Study

    PubMed Central

    Hästbacka, Johanna; Fredén, Filip; Hult, Maarit; Bergquist, Maria; Wilkman, Erika; Vuola, Jyrki; Sorsa, Timo; Tervahartiala, Taina; Huss, Fredrik

    2015-01-01

    Introduction Matrix metalloproteinases (MMPs) -8 and -9 are released from neutrophils in acute inflammation and may contribute to permeability changes in burn injury. In retrospective studies on sepsis, levels of MMP-8, MMP-9, and tissue inhibitor of metalloproteinase-1 (TIMP-1) differed from those of healthy controls, and TIMP-1 showed an association with outcome. Our objective was to investigate the relationship between these proteins and disease severity and outcome in burn patients. Methods In this prospective, observational, two-center study, we collected plasma samples from admission to day 21 post-burn, and burn blister fluid samples on admission. We compared MMP-8, -9, and TIMP-1 levels between TBSA<20% (N = 19) and TBSA>20% (N = 30) injured patients and healthy controls, and between 90-day survivors and non-survivors. MMP-8, -9, and TIMP-1 levels at 24-48 hours from injury, their maximal levels, and their time-adjusted means were compared between groups. Correlations with clinical parameters and the extent of burn were analyzed. MMP-8, -9, and TIMP-1 levels in burn blister fluids were also studied. Results Plasma MMP-8 and -9 were higher in patients than in healthy controls (P<0.001 and P = 0.016), but only MMP-8 differed between the TBSA<20% and TBSA>20% groups. MMP-8 and -9 were not associated with clinical severity or outcome measures. TIMP-1 differed significantly between patients and controls (P<0.001) and between TBSA<20% and TBSA>20% groups (P<0.002). TIMP-1 was associated with 90-day mortality and correlated with the extent of injury and clinical measures of disease severity. TIMP-1 may serve as a new biomarker in outcome prognostication of burn patients. PMID:25945788

  8. Irradiation Alters MMP-2/TIMP-2 System and Collagen Type IV Degradation in Brain

    SciTech Connect

    Lee, Won Hee; Warrington, Junie P.; Sonntag, William E.; Lee, Yong Woo

    2012-04-01

    Purpose: Blood-brain barrier (BBB) disruption is one of the major consequences of radiation-induced normal tissue injury in the central nervous system. We examined the effects of whole-brain irradiation on matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) and extracellular matrix (ECM) degradation in the brain. Methods and Materials: Animals received either whole-brain irradiation (a single dose of 10 Gy {gamma}-rays or a fractionated dose of 40 Gy {gamma}-rays, total) or sham-irradiation and were maintained for 4, 8, and 24 h following irradiation. mRNA expression levels of MMPs and TIMPs in the brain were analyzed by real-time reverse transcriptase-polymerase chain reaction (PCR). The functional activity of MMPs was measured by in situ zymography, and degradation of ECM was visualized by collagen type IV immunofluorescent staining. Results: A significant increase in mRNA expression levels of MMP-2, MMP-9, and TIMP-1 was observed in irradiated brains compared to that in sham-irradiated controls. In situ zymography revealed a strong gelatinolytic activity in the brain 24 h postirradiation, and the enhanced gelatinolytic activity mediated by irradiation was significantly attenuated in the presence of anti-MMP-2 antibody. A significant reduction in collagen type IV immunoreactivity was also detected in the brain at 24 h after irradiation. In contrast, the levels of collagen type IV were not significantly changed at 4 and 8 h after irradiation compared with the sham-irradiated controls. Conclusions: The present study demonstrates for the first time that radiation induces an imbalance between MMP-2 and TIMP-2 levels and suggests that degradation of collagen type IV, a major ECM component of BBB basement membrane, may have a role in the pathogenesis of brain injury.

  9. Autonomous control for mechanically stable navigation of microscale implants in brain tissue to record neural activity.

    PubMed

    Anand, Sindhu; Kumar, Swathy Sampath; Muthuswamy, Jit

    2016-08-01

    Emerging neural prosthetics require precise positional tuning and stable interfaces with single neurons for optimal function over a lifetime. In this study, we report an autonomous control to precisely navigate microscale electrodes in soft, viscoelastic brain tissue without visual feedback. The autonomous control optimizes signal-to-noise ratio (SNR) of single neuronal recordings in viscoelastic brain tissue while maintaining quasi-static mechanical stress conditions to improve stability of the implant-tissue interface. Force-displacement curves from microelectrodes in in vivo rodent experiments are used to estimate viscoelastic parameters of the brain. Using a combination of computational models and experiments, we determined an optimal movement for the microelectrodes with bidirectional displacements of 3:2 ratio between forward and backward displacements and a inter-movement interval of 40 s for minimizing mechanical stress in the surrounding brain tissue. A regulator with the above optimal bidirectional motion for the microelectrodes in in vivo experiments resulted in significant reduction in the number of microelectrode movements (0.23 movements/min) and longer periods of stable SNR (53 % of the time) compared to a regulator using a conventional linear, unidirectional microelectrode movement (with 1.48 movements/min and stable SNR 23 % of the time).

  10. Cerebrospinal fluid control of neurogenesis induced by retinoic acid during early brain development.

    PubMed

    Alonso, M I; Martín, C; Carnicero, E; Bueno, D; Gato, A

    2011-07-01

    Embryonic-cerebrospinal fluid (E-CSF) plays crucial roles in early brain development including the control of neurogenesis. Although FGF2 and lipoproteins present in the E-CSF have previously been shown to be involved in neurogenesis, the main factor triggering this process remains unknown. E-CSF contains all-trans-retinol and retinol-binding protein involved in the synthesis of retinoic acid (RA), a neurogenesis inducer. In early chick embryo brain, only the mesencephalic-rombencephalic isthmus (IsO) is able to synthesize RA. Here we show that in chick embryo brain development: (1) E-CSF helps to control RA synthesis in the IsO by means of the RBP and all-trans-retinol it contains; (2) E-CSF has retinoic acid activity, which suggests it may act as a diffusion pathway for RA; and (3) the influence of E-CSF on embryonic brain neurogenesis is to a large extent due to its involvement in RA synthesis. These data help to understand neurogenesis from neural progenitor cells.

  11. Emulation of computer mouse control with a noninvasive brain computer interface

    NASA Astrophysics Data System (ADS)

    McFarland, Dennis J.; Krusienski, Dean J.; Sarnacki, William A.; Wolpaw, Jonathan R.

    2008-06-01

    Brain-computer interface (BCI) technology can provide nonmuscular communication and control to people who are severely paralyzed. BCIs can use noninvasive or invasive techniques for recording the brain signals that convey the user's commands. Although noninvasive BCIs are used for simple applications, it has frequently been assumed that only invasive BCIs, which use electrodes implanted in the brain, will be able to provide multidimensional sequential control of a robotic arm or a neuroprosthesis. The present study shows that a noninvasive BCI using scalp-recorded electroencephalographic (EEG) activity and an adaptive algorithm can provide people, including people with spinal cord injuries, with two-dimensional cursor movement and target selection. Multiple targets were presented around the periphery of a computer screen, with one designated as the correct target. The user's task was to use EEG to move a cursor from the center of the screen to the correct target and then to use an additional EEG feature to select the target. If the cursor reached an incorrect target, the user was instructed not to select it. Thus, this task emulated the key features of mouse operation. The results indicate that people with severe motor disabilities could use brain signals for sequential multidimensional movement and selection.

  12. Hypothermia for Traumatic Brain Injury in Children-A Phase II Randomized Controlled Trial.

    PubMed

    Beca, John; McSharry, Brent; Erickson, Simon; Yung, Michael; Schibler, Andreas; Slater, Anthony; Wilkins, Barry; Singhal, Ash; Williams, Gary; Sherring, Claire; Butt, Warwick

    2015-07-01

    To perform a pilot study to assess the feasibility of performing a phase III trial of therapeutic hypothermia started early and continued for at least 72 hours in children with severe traumatic brain injury. Multicenter prospective randomized controlled phase II trial. All eight of the PICUs in Australia and New Zealand and one in Canada. Children 1-15 years old with severe traumatic brain injury and who could be randomized within 6 hours of injury. The control group had strict normothermia to a temperature of 36-37°C for 72 hours. The intervention group had therapeutic hypothermia to a temperature of 32-33°C for 72 hours followed by slow rewarming at a rate compatible with maintaining intracranial pressure and cerebral perfusion pressure. Of 764 children admitted to PICU with traumatic brain injury, 92 (12%) were eligible and 55 (7.2%) were recruited. There were five major protocol violations (9%): three related to recruitment and consent processes and two to incorrect temperature management. Rewarming took a median of 21.5 hours (16-35 hr) and was performed without compromise in the cerebral perfusion pressure. There was no increase in any complications, including infections, bleeding, and arrhythmias. There was no difference in outcomes 12 months after injury; in the therapeutic hypothermia group, four (17%) had a bad outcome (pediatric cerebral performance category, 4-6) and three (13%) died, whereas in the normothermia group, three (12%) had a bad outcome and one (4%) died. Early therapeutic hypothermia in children with severe traumatic brain injury does not improve outcome and should not be used outside a clinical trial. Recruitment rates were lower and outcomes were better than expected. Conventional randomized controlled trials in children with severe traumatic brain injury are unlikely to be feasible. A large international trials group and alternative approaches to trial design will be required to further inform practice.

  13. Cerebrospinal fluid matrix metalloproteinases are elevated in cerebral adrenoleukodystrophy and correlate with MRI severity and neurologic dysfunction.

    PubMed

    Thibert, Kathryn A; Raymond, Gerald V; Nascene, David R; Miller, Weston P; Tolar, Jakub; Orchard, Paul J; Lund, Troy C

    2012-01-01

    X-linked adrenoleukodystrophy results from mutations in the ABCD1 gene disrupting the metabolism of very-long-chain fatty acids. The most serious form of ALD, cerebral adrenoleukodystrophy (cALD), causes neuroinflammation and demyelination. Neuroimaging in cALD shows inflammatory changes and indicates blood-brain-barrier (BBB) disruption. We hypothesize that disruption may occur through the degradation of the extracellular matrix defining the BBB by matrix metalloproteinases (MMPs). MMPs have not been evaluated in the setting of cALD. We used a multiplex assay to correlate the concentration of MMPs in cerebrospinal fluid and plasma to the severity of brain inflammation as determined by the ALD MRI (Loes) score and the neurologic function score. There were significant elevations of MMP2, MMP9, MMP10, TIMP1, and total protein in the CSF of boys with cALD compared to controls. Levels of MMP10, TIMP1, and total protein in CSF showed significant correlation [p<0.05 for each with pre-transplant MRI Loes Loes scores (R(2) = 0.34, 0.20, 0.55 respectively). Levels of TIMP1 and total protein in CSF significantly correlated with pre-transplant neurologic functional scores (R(2) = 0.22 and 0.48 respectively), and levels of MMP10 and total protein in CSF significantly correlated with one-year post-transplant functional scores (R(2) = 0.38 and 0.69). There was a significant elevation of MMP9 levels in plasma compared to control, but did not correlate with the MRI or neurologic function scores. MMPs were found to be elevated in the CSF of boys with cALD and may mechanistically contribute to the breakdown of the blood-brain-barrier. MMP concentrations directly correlate to radiographic and clinical neurologic severity. Interestingly, increased total protein levels showed superior correlation to MRI score and neurologic function score before and at one year after transplant.

  14. Incorporating feedback from multiple sensory modalities enhances brain-machine interface control

    PubMed Central

    Suminski, Aaron J.; Tkach, Dennis C.; Fagg, Andrew H.; Hatsopoulos, Nicholas G.

    2011-01-01

    The brain typically utilizes a rich supply of feedback from multiple sensory modalities to control movement in healthy individuals. In many individuals, these afferent pathways, as well as their efferent counterparts, are compromised by disease or injury resulting in significant impairments and reduced quality of life. Brain-machine interfaces (BMI) offer the promise of recovered functionality to these individuals by allowing them to control a device using their thoughts. Most current BMI implantations use visual feedback for closed-loop control; however, it has been suggested that the inclusion of additional feedback modalities may lead to improvements in control. We demonstrate for the first time that kinesthetic feedback can be used together with vision to significantly improve control of a cursor driven by neural activity of the primary motor cortex (MI). Using an exoskeletal robot, the monkey's arm was moved to passively follow a cortically-controlled visual cursor, thereby providing the monkey with kinesthetic information about the cursor's motion. When visual and proprioceptive feedback were congruent, both the time to successfully reach a target decreased and the cursor paths became straighter, as compared with incongruent feedback conditions. This enhanced performance was accompanied by a significant increase in the amount of movement-related information contained in the spiking activity of neurons in MI. These findings suggest that BMI control can be significantly improved in paralyzed patients with residual kinesthetic sense and provide the groundwork for augmenting cortically-controlled BMIs with multiple forms of natural or surrogate sensory feedback. PMID:21159949

  15. Effects of multicomponent training of cognitive control on cognitive function and brain activation in older adults.

    PubMed

    Kim, Hoyoung; Chey, Jeanyung; Lee, Sanghun

    2017-06-01

    The aim of this study was to investigate the changes in cognitive functions and brain activation after multicomponent training of cognitive control in non-demented older adults, utilizing neuropsychological tests and fMRI. We developed and implemented a computerized Multicomponent Training of Cognitive Control (MTCC), characterized by task variability and adaptive procedures, in order to maximize training effects in cognitive control and transfer to other cognitive domains. Twenty-seven community-dwelling adults, aged 64-77 years, without any history of neurological or psychiatric problems, participated in this study (14 in the training group and 13 in the control group). The MTCC was administered to the participants assigned to the training group for 8 weeks, while those in the control group received no training. Neuropsychological tests and fMRI were administered prior to and after the training. Trained participants showed improvements in cognitive control, recognition memory and general cognitive functioning. Furthermore, the MTCC led to an increased brain activation of the regions adjacent to the baseline cognitive control-related areas in the frontoparietal network. Future studies are necessary to confirm our hypothesis that MTCC improves cognitive functioning of healthy elderly individuals by expanding their frontoparietal network that is involved in cognitive control. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. [Research of controlling of smart home system based on P300 brain-computer interface].

    PubMed

    Wang, Jinjia; Yang, Chengjie

    2014-08-01

    Using electroencephalogram (EEG) signal to control external devices has always been the research focus in the field of brain-computer interface (BCI). This is especially significant for those disabilities who have lost capacity of movements. In this paper, the P300-based BCI and the microcontroller-based wireless radio frequency (RF) technology are utilized to design a smart home control system, which can be used to control household appliances, lighting system, and security devices directly. Experiment results showed that the system was simple, reliable and easy to be populirised.

  17. Hybrid EEG-EOG brain-computer interface system for practical machine control.

    PubMed

    Punsawad, Yunyong; Wongsawat, Yodchanan; Parnichkun, Manukid

    2010-01-01

    Practical issues such as accuracy with various subjects, number of sensors, and time for training are important problems of existing brain-computer interface (BCI) systems. In this paper, we propose a hybrid framework for the BCI system that can make machine control more practical. The electrooculogram (EOG) is employed to control the machine in the left and right directions while the electroencephalogram (EEG) is employed to control the forword, no action, and complete stop motions of the machine. By using only 2-channel biosignals, the average classification accuracy of more than 95% can be achieved.

  18. Control of a specific motor program by a small brain area in zebrafish

    PubMed Central

    Fajardo, Otto; Zhu, Peixin; Friedrich, Rainer W.

    2013-01-01

    Complex motor behaviors are thought to be coordinated by networks of brain nuclei that may control different elementary motor programs. Transparent zebrafish larvae offer the opportunity to analyze the functional organization of motor control networks by optical manipulations of neuronal activity during behavior. We examined motor behavior in transgenic larvae expressing channelrhodopsin-2 throughout many neurons in the brain. Wide-field optical stimulation triggered backward and rotating movements caused by the repeated execution of J-turns, a specific motor program that normally occurs during prey capture. Although optically-evoked activity was widespread, behavioral responses were highly coordinated and lateralized. 3-D mapping of behavioral responses to local optical stimuli revealed that J-turns can be triggered specifically in the anterior-ventral optic tectum (avOT) and/or the adjacent pretectum. These results suggest that the execution of J-turns is controlled by a small group of neurons in the midbrain that may act as a command center. The identification of a brain area controlling a defined motor program involved in prey capture is a step toward a comprehensive analysis of neuronal circuits mediating sensorimotor behaviors of zebrafish. PMID:23641200

  19. Toward the complete control of brain metastases using surveillance screening and stereotactic radiosurgery.

    PubMed

    Wolf, Amparo; Kvint, Svetlana; Chachoua, Abraham; Pavlick, Anna; Wilson, Melissa; Donahue, Bernadine; Golfinos, John G; Silverman, Joshua; Kondziolka, Douglas

    2017-02-17

    OBJECTIVE The incidence of brain metastases is increasing with improved systemic therapies, many of which have a limited impact on intracranial disease. Stereotactic radiosurgery (SRS) is a first-line management option for brain metastases. The purpose of this study was to determine if there is a threshold tumor size below which local control (LC) rates approach 100%, and to relate these findings to the use of routine surveillance brain imaging. METHODS From a prospective registry, 200 patients with 1237 brain metastases were identified who underwent SRS between December 2012 and May 2015. The median imaging follow-up duration was 7.9 months, and the median margin dose was 18 Gy. The maximal diameter and volume of tumors were measured. Histological analysis included 96 patients with non-small cell lung cancers (NSCLCs), 40 with melanoma, 35 with breast cancer, and 29 with other histologies. RESULTS Almost 50% of brain metastases were NSCLCs and commonly measured less than 6 mm in maximal diameter or 70 mm(3) in volume. Thirty-three of 1237 tumors had local progression at a median of 8.8 months. The 1- and 2-year actuarial LC rates were 97% and 93%, respectively. LC of 100% was achieved for all intracranial metastases less than 100 mm(3) in volume or 6 mm in diameter. Patients whose tumors at first SRS were less than 10 mm maximal diameter or a volume of 250 mm(3) had improved overall survival. CONCLUSIONS SRS can achieve LC rates approaching 100% for subcentimeter metastases. The earlier initial detection and prompt treatment of small intracranial metastases may prevent the development of neurological symptoms and the need for resection, and improve overall survival. To identify tumors when they are small, routine surveillance brain imaging should be considered as part of the standard of care for lung, breast, and melanoma metastases. ■ CLASSIFICATION OF EVIDENCE Type of question: prognostic; study design: retrospective cohort; evidence: Class II.

  20. Development of Demand-Controlled Deep Brain Stimulation Techniques Based on Stochastic Phase Resetting

    NASA Astrophysics Data System (ADS)

    Tass, Peter A.

    2003-05-01

    Stimulation techniques are discussed here which make it possible to effectively desynchronize a synchronized cluster of globally coupled phase oscillators in the presence of noise. To this end composite stimuli are used which consist of a first, stronger stimulus followed by a second, weaker stimulus after a constant time delay. The first stimulus controls the dynamics of the cluster by resetting it, whereas the second stimulus desynchronizes the cluster by hitting it in a vulnerable state. The first, resetting stimulus can be a strong single pulse, a high-frequency pulse train or a low-frequency pulse train. The cluster's resynchronization can effectively be blocked by repeated administration of a composite stimulus. Demand controlled deep brain stimulation with these desynchronizing stimulation techniques is suggested for the therapy of patients suffering from tremor-dominant Parkinson's disease or essential tremor as a milder and more efficient therapy compared to the standard permanent high-frequency deep brain stimulation.

  1. apterous Brain Neurons Control Receptivity to Male Courtship in Drosophila Melanogaster Females

    PubMed Central

    Aranha, Márcia M.; Herrmann, Dennis; Cachitas, Hugo; Neto-Silva, Ricardo M.; Dias, Sophie; Vasconcelos, Maria Luísa

    2017-01-01

    Courtship behaviours allow animals to interact and display their qualities before committing to reproduction. In fly courtship, the female decides whether or not to mate and is thought to display receptivity by slowing down to accept the male. Very little is known on the neuronal brain circuitry controlling female receptivity. Here we use genetic manipulation and behavioural studies to identify a novel set of neurons in the brain that controls sexual receptivity in the female without triggering the postmating response. We show that these neurons, defined by the expression of the transcription factor apterous, affect the modulation of female walking speed during courtship. Interestingly, we found that the apterous neurons required for female receptivity are neither doublesex nor fruitless positive suggesting that apterous neurons are not specified by the sex-determination cascade. Overall, these findings identify a neuronal substrate underlying female response to courtship and highlight the central role of walking speed in the receptivity behaviour. PMID:28401905

  2. A technique for brain temperature control during ischemia, suitable for measurements with ion-sensitive microelectrodes.

    PubMed

    Ekholm, A; Siesjö, B K

    1992-10-01

    A technique is described for maintaining rat brain temperature constant during ischemia, a technique that also allows measurements with, and calibration of, ion-sensitive microelectrodes under defined temperature conditions. The brain temperature is controlled by a stream of air of defined temperature and humidity, which is perfused through a box enclosing the animal's head. A device for calibration of ion-sensitive microelectrodes is temperature controlled by similar principles. The air stream is delivered by a heater/humidifier that is standard in many commercial respirators/ventilators. When the relative humidity of the air stream is greater than 98%, the neocortical temperature can be maintained within less than 0.5 degrees C during 15 min of ischemia. The biological applicability of the technique is discussed.

  3. Meditation, mindfulness and executive control: the importance of emotional acceptance and brain-based performance monitoring.

    PubMed

    Teper, Rimma; Inzlicht, Michael

    2013-01-01

    Previous studies have documented the positive effects of mindfulness meditation on executive control. What has been lacking, however, is an understanding of the mechanism underlying this effect. Some theorists have described mindfulness as embodying two facets-present moment awareness and emotional acceptance. Here, we examine how the effect of meditation practice on executive control manifests in the brain, suggesting that emotional acceptance and performance monitoring play important roles. We investigated the effect of meditation practice on executive control and measured the neural correlates of performance monitoring, specifically, the error-related negativity (ERN), a neurophysiological response that occurs within 100 ms of error commission. Meditators and controls completed a Stroop task, during which we recorded ERN amplitudes with electroencephalography. Meditators showed greater executive control (i.e. fewer errors), a higher ERN and more emotional acceptance than controls. Finally, mediation pathway models further revealed that meditation practice relates to greater executive control and that this effect can be accounted for by heightened emotional acceptance, and to a lesser extent, increased brain-based performance monitoring.

  4. Meditation, mindfulness and executive control: the importance of emotional acceptance and brain-based performance monitoring

    PubMed Central

    Inzlicht, Michael

    2013-01-01

    Previous studies have documented the positive effects of mindfulness meditation on executive control. What has been lacking, however, is an understanding of the mechanism underlying this effect. Some theorists have described mindfulness as embodying two facets—present moment awareness and emotional acceptance. Here, we examine how the effect of meditation practice on executive control manifests in the brain, suggesting that emotional acceptance and performance monitoring play important roles. We investigated the effect of meditation practice on executive control and measured the neural correlates of performance monitoring, specifically, the error-related negativity (ERN), a neurophysiological response that occurs within 100 ms of error commission. Meditators and controls completed a Stroop task, during which we recorded ERN amplitudes with electroencephalography. Meditators showed greater executive control (i.e. fewer errors), a higher ERN and more emotional acceptance than controls. Finally, mediation pathway models further revealed that meditation practice relates to greater executive control and that this effect can be accounted for by heightened emotional acceptance, and to a lesser extent, increased brain-based performance monitoring. PMID:22507824

  5. Prenatal Origins of Temperament: Fetal Growth, Brain Structure, and Inhibitory Control in Adolescence

    PubMed Central

    Schlotz, Wolff; Godfrey, Keith M.; Phillips, David I.

    2014-01-01

    Objective Individual differences in the temperamental dimension of effortful control are constitutionally based and have been associated with an adverse prenatal developmental environment, with structural brain alterations presenting a potential mechanism. We investigated this hypothesis for anatomically defined brain regions implicated in cognitive and inhibitory motor control. Methods Twenty-seven 15–16 year old participants with low, medium, or high fetal growth were selected from a longitudinal birth cohort to maximize variation and represent the full normal spectrum of fetal growth. Outcome measures were parent ratings of attention and inhibitory control, thickness and surface area of the orbitofrontal cortex (lateral (LOFC) and medial (MOFC)) and right inferior frontal gyrus (rIFG), and volumetric measures of the striatum and amygdala. Results Lower birth weight was associated with lower inhibitory control, smaller surface area of LOFC, MOFC and rIFG, lower caudate volume, and thicker MOFC. A mediation model found a significant indirect effect of birth weight on inhibitory control via caudate volume. Conclusions Our findings support a neuroanatomical mechanism underlying potential long-term consequences of an adverse fetal developmental environment for behavioral inhibitory control in adolescence and have implications for understanding putative prenatal developmental origins of externalizing behavioral problems and self-control. PMID:24802625

  6. Exercise therapy, cardiorespiratory fitness and their effect on brain volumes: a randomised controlled trial in patients with schizophrenia and healthy controls.

    PubMed

    Scheewe, Thomas W; van Haren, Neeltje E M; Sarkisyan, Gayane; Schnack, Hugo G; Brouwer, Rachel M; de Glint, Maria; Hulshoff Pol, Hilleke E; Backx, Frank J G; Kahn, René S; Cahn, Wiepke

    2013-07-01

    The objective of this study was to examine exercise effects on global brain volume, hippocampal volume, and cortical thickness in schizophrenia patients and healthy controls. Irrespective of diagnosis and intervention, associations between brain changes and cardiorespiratory fitness improvement were examined. Sixty-three schizophrenia patients and fifty-five healthy controls participated in this randomised controlled trial. Global brain volumes, hippocampal volume, and cortical thickness were estimated from 3-Tesla MRI scans. Cardiorespiratory fitness was assessed with a cardiopulmonary ergometer test. Subjects were assigned exercise therapy or occupational therapy (patients) and exercise therapy or life-as-usual (healthy controls) for six months 2h weekly. Exercise therapy effects were analysed for subjects who were compliant at least 50% of sessions offered. Significantly smaller baseline cerebral (grey) matter, and larger third ventricle volumes, and thinner cortex in most areas of the brain were found in patients versus controls. Exercise therapy did not affect global brain and hippocampal volume or cortical thickness in patients and controls. Cardiorespiratory fitness improvement was related to increased cerebral matter volume and lateral and third ventricle volume decrease in patients and to thickening in the left hemisphere in large areas of the frontal, temporal and cingulate cortex irrespective of diagnosis. One to 2h of exercise therapy did not elicit significant brain volume changes in patients or controls. However, cardiorespiratory fitness improvement attenuated brain volume changes in schizophrenia patients and increased thickness in large areas of the left cortex in both schizophrenia patients and healthy controls.

  7. Matrix metalloproteinases in plants: a brief overview.

    PubMed

    Marino, Giada; Funk, Christiane

    2012-05-01

    Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases belonging to the metzincin clan. MMPs have been characterized in detail in mammals, and they have been shown to play key roles in many physiological and pathological processes. Plant MMP-like proteases exist, but relatively few have been characterized. It has been speculated that plant MMPs are involved in remodeling of the plant extracellular matrix during growth, development and stress response. However, the precise functions and physiological substrates in higher plants remain to be determined. In this brief overview, we summarize the current knowledge of MMPs in higher plants and algae.

  8. Matrix metalloproteinases in destructive lung disease.

    PubMed

    Houghton, A McGarry

    2015-01-01

    Matrix metalloproteinases (MMPs) play essential physiologic roles in numerous processes ranging from development to wound repair. Unfortunately, given the broad substrate specificity of the MMP family as a whole, aberrant degradation of extracellular matrix proteins can result in destructive disease. Emphysema, the result of destroyed lung elastin and collagen matrix, is the prototypical example of such a destructive process. More recent data has highlighted that MMPs play much more elaborate physiologic and pathophysiologic roles than simple matrix protein cleavage. Key pathophysiological roles for MMPs in emphysema will be discussed herein.

  9. Speech networks at rest and in action: interactions between functional brain networks controlling speech production.

    PubMed

    Simonyan, Kristina; Fuertinger, Stefan

    2015-04-01

    Speech production is one of the most complex human behaviors. Although brain activation during speaking has been well investigated, our understanding of interactions between the brain regions and neural networks remains scarce. We combined seed-based interregional correlation analysis with graph theoretical analysis of functional MRI data during the resting state and sentence production in healthy subjects to investigate the interface and topology of functional networks originating from the key brain regions controlling speech, i.e., the laryngeal/orofacial motor cortex, inferior frontal and superior temporal gyri, supplementary motor area, cingulate cortex, putamen, and thalamus. During both resting and speaking, the interactions between these networks were bilaterally distributed and centered on the sensorimotor brain regions. However, speech production preferentially recruited the inferior parietal lobule (IPL) and cerebellum into the large-scale network, suggesting the importance of these regions in facilitation of the transition from the resting state to speaking. Furthermore, the cerebellum (lobule VI) was the most prominent region showing functional influences on speech-network integration and segregation. Although networks were bilaterally distributed, interregional connectivity during speaking was stronger in the left vs. right hemisphere, which may have underlined a more homogeneous overlap between the examined networks in the left hemisphere. Among these, the laryngeal motor cortex (LMC) established a core network that fully overlapped with all other speech-related networks, determining the extent of network interactions. Our data demonstrate complex interactions of large-scale brain networks controlling speech production and point to the critical role of the LMC, IPL, and cerebellum in the formation of speech production network.

  10. Speech networks at rest and in action: interactions between functional brain networks controlling speech production

    PubMed Central

    Fuertinger, Stefan

    2015-01-01

    Speech production is one of the most complex human behaviors. Although brain activation during speaking has been well investigated, our understanding of interactions between the brain regions and neural networks remains scarce. We combined seed-based interregional correlation analysis with graph theoretical analysis of functional MRI data during the resting state and sentence production in healthy subjects to investigate the interface and topology of functional networks originating from the key brain regions controlling speech, i.e., the laryngeal/orofacial motor cortex, inferior frontal and superior temporal gyri, supplementary motor area, cingulate cortex, putamen, and thalamus. During both resting and speaking, the interactions between these networks were bilaterally distributed and centered on the sensorimotor brain regions. However, speech production preferentially recruited the inferior parietal lobule (IPL) and cerebellum into the large-scale network, suggesting the importance of these regions in facilitation of the transition from the resting state to speaking. Furthermore, the cerebellum (lobule VI) was the most prominent region showing functional influences on speech-network integration and segregation. Although networks were bilaterally distributed, interregional connectivity during speaking was stronger in the left vs. right hemisphere, which may have underlined a more homogeneous overlap between the examined networks in the left hemisphere. Among these, the laryngeal motor cortex (LMC) established a core network that fully overlapped with all other speech-related networks, determining the extent of network interactions. Our data demonstrate complex interactions of large-scale brain networks controlling speech production and point to the critical role of the LMC, IPL, and cerebellum in the formation of speech production network. PMID:25673742

  11. A generalizable adaptive brain-machine interface design for control of anesthesia.

    PubMed

    Yuxiao Yang; Shanechi, Maryam M

    2015-08-01

    Brain-machine interfaces (BMIs) for closed-loop control of anesthesia have the potential to automatically monitor and control brain states under anesthesia. Since a variety of anesthetic states are needed in different clinical scenarios, designing a generalizable BMI architecture that can control a wide range of anesthetic states is essential. In addition, drug dynamics are non-stationary over time and could change with the depth of anesthesia. Hence for precise control, a BMI needs to track these non-stationarities online. Here we design a BMI architecture that generalizes to control of various anesthetic states and their associated neural signatures, and is adaptive to time-varying drug dynamics. We provide a systematic approach to build general parametric models that quantify the anesthetic state and describe the drug dynamics. Based on these models, we develop an adaptive closed-loop controller within the framework of stochastic optimal feedback control. This controller tracks the non-stationarities in drug dynamics, achieves tight control in a time-varying environment, and removes the need for an offline system identification session. For robustness, the BMI also ensures small drug infusion rate variations at steady state. We test the BMI architecture for control of two common anesthetic states, i.e., burst suppression in medically-induced coma and unconsciousness in general anesthesia. Using numerical experiments, we find that the BMI generalizes to control of both these anesthetic states; in a time-varying environment, even without initial knowledge of model parameters, the BMI accurately controls these two different anesthetic states, reducing bias and error more than 70 times and 9 times, respectively, compared with a non-adaptive system.

  12. Timing and Sequence of Brain Activity in Top-Down Control of Visual-Spatial Attention

    PubMed Central

    Grent-‘t-Jong, Tineke; Woldorff, Marty G

    2007-01-01

    Recent brain imaging studies using functional magnetic resonance imaging (fMRI) have implicated a frontal-parietal network in the top-down control of attention. However, little is known about the timing and sequence of activations within this network. To investigate these timing questions, we used event-related electrical brain potentials (ERPs) and a specially designed visual-spatial attentional-cueing paradigm, which were applied as part of a multi-methodological approach that included a closely corresponding event-related fMRI study using an identical paradigm. In the first 400 ms post cue, attention-directing and control cues elicited similar general cue-processing activity, corresponding to the more lateral subregions of the frontal-parietal network identified with the fMRI. Following this, the attention-directing cues elicited a sustained negative-polarity brain wave that was absent for control cues. This activity could be linked to the more medial frontal–parietal subregions similarly identified in the fMRI as specifically involved in attentional orienting. Critically, both the scalp ERPs and the fMRI-seeded source modeling for this orienting-related activity indicated an earlier onset of frontal versus parietal contribution (∼400 versus ∼700 ms). This was then followed (∼800–900 ms) by pretarget biasing activity in the region-specific visual-sensory occipital cortex. These results indicate an activation sequence of key components of the attentional-control brain network, providing insight into their functional roles. More specifically, these results suggest that voluntary attentional orienting is initiated by medial portions of frontal cortex, which then recruit medial parietal areas. Together, these areas then implement biasing of region-specific visual-sensory cortex to facilitate the processing of upcoming visual stimuli. PMID:17199410

  13. [Structural properties and functional importance of metzincin metalloproteinases].

    PubMed

    Balaban, N P; Rudakova, N L; Sharipova, M R

    2013-01-01

    Here wediscuss known properties of metzincin metalloproteinases, their structure, physiological roles in the cell and potential medical uses. We also present results describing a novel extracellular metzincin metalloproteinase from Bacillus pumilus with a unique combination of properties typical for both astacins and adamalysins.

  14. A self-paced motor imagery based brain-computer interface for robotic wheelchair control.

    PubMed

    Tsui, Chun Sing Louis; Gan, John Q; Hu, Huosheng

    2011-10-01

    This paper presents a simple self-paced motor imagery based brain-computer interface (BCI) to control a robotic wheelchair. An innovative control protocol is proposed to enable a 2-class self-paced BCI for wheelchair control, in which the user makes path planning and fully controls the wheelchair except for the automatic obstacle avoidance based on a laser range finder when necessary. In order for the users to train their motor imagery control online safely and easily, simulated robot navigation in a specially designed environment was developed. This allowed the users to practice motor imagery control with the core self-paced BCI system in a simulated scenario before controlling the wheelchair. The self-paced BCI can then be applied to control a real robotic wheelchair using a protocol similar to that controlling the simulated robot. Our emphasis is on allowing more potential users to use the BCI controlled wheelchair with minimal training; a simple 2-class self paced system is adequate with the novel control protocol, resulting in a better transition from offline training to online control. Experimental results have demonstrated the usefulness of the online practice under the simulated scenario, and the effectiveness of the proposed self-paced BCI for robotic wheelchair control.

  15. How does a specific learning and memory system in the mammalian brain gain control of behavior?

    PubMed

    McDonald, Robert J; Hong, Nancy S

    2013-11-01

    This review addresses a fundamental, yet poorly understood set of issues in systems neuroscience. The issues revolve around conceptualizations of the organization of learning and memory in the mammalian brain. One intriguing, and somewhat popular, conceptualization is the idea that there are multiple learning and memory systems in the mammalian brain and they interact in different ways to influence and/or control behavior. This approach has generated interesting empirical and theoretical work supporting this view. One issue that needs to be addressed is how these systems influence or gain control of voluntary behavior. To address this issue, we clearly specify what we mean by a learning and memory system. We then review two types of processes that might influence which memory system gains control of behavior. One set of processes are external factors that can affect which system controls behavior in a given situation including task parameters like the kind of information available to the subject, types of training experience, and amount of training. The second set of processes are brain mechanisms that might influence what memory system controls behavior in a given situation including executive functions mediated by the prefrontal cortex; switching mechanisms mediated by ascending neurotransmitter systems, the unique role of the hippocampus during learning. The issue of trait differences in control of different learning and memory systems will also be considered in which trait differences in learning and memory function are thought to potentially emerge from differences in level of prefrontal influence, differences in plasticity processes, differences in ascending neurotransmitter control, differential access to effector systems like motivational and motor systems. Finally, we present scenarios in which different mechanisms might interact. This review was conceived to become a jumping off point for new work directed at understanding these issues. The outcome of

  16. Multiple mechanisms control brain aromatase activity at the genomic and non-genomic level.

    PubMed

    Balthazart, Jacques; Baillien, Michelle; Charlier, Thierry D; Cornil, Charlotte A; Ball, Gregory F

    2003-09-01

    Evidence has recently accumulated indicating that aromatase activity in the preoptic area is modulated in parallel by both slow (hours to days) genomic and rapid (minutes to hours) non-genomic mechanisms. We review here these two types of control mechanisms and their potential contribution to various aspects of brain physiology in quail. High levels of aromatase mRNA, protein and activity (AA) are present in the preoptic area of this species where the transcription of aromatase is controlled mainly by steroids. Estrogens acting in synergy with androgens play a key role in this control and both androgen and estrogen receptors (ER; alpha and beta subtypes) are present in the preoptic area even if they are not necessarily co-localized in the same cells as aromatase. Steroids have more pronounced effects on aromatase transcription in males than in females and this sex difference could be caused, in part, by a sexually differentiated expression of the steroid receptor coactivator 1 in this area. The changes in aromatase concentration presumably control seasonal variations as well as sex differences in brain estrogen production. Aromatase activity in hypothalamic homogenates is also rapidly (within minutes) down-regulated by exposure to conditions that enhance protein phosphorylation such as the presence of high concentrations of calcium, magnesium and ATP. Similarly, pharmacological manipulations such as treatment with thapsigargin or stimulation of various neurotransmitter receptors (alpha-amino-3-hydroxy-methyl-4-isoxazole propionic acid (AMPA), kainate, and N-methyl-D-aspartate (NMDA)) leading to enhanced intracellular calcium concentrations depress within minutes the aromatase activity measured in quail preoptic explants. The effects of receptor stimulation are presumably direct: electrophysiological data confirm the presence of these receptors in the membrane of aromatase-expressing cells. Inhibitors of protein kinases interfere with these processes and Western

  17. Control of metabolism by nutrient-regulated nuclear receptors acting in the brain.

    PubMed

    Bantubungi, Kadiombo; Prawitt, Janne; Staels, Bart

    2012-07-01

    Today, we are witnessing a rising incidence of obesity worldwide. This increase is due to a sedentary life style, an increased caloric intake and a decrease in physical activity. Obesity contributes to the appearance of type 2 diabetes, dyslipidemia and cardiovascular complications due to atherosclerosis, and nephropathy. Therefore, the development of new therapeutic strategies may become a necessity. Given the metabolism controlling properties of nuclear receptors in peripheral organs (such as liver, adipose tissues, pancreas) and their implication in various processes underlying metabolic diseases, they constitute interesting therapeutic targets for obesity, dyslipidemia, cardiovascular disease and type 2 diabetes. The recent identification of the central nervous system as a player in the control of peripheral metabolism opens new avenues to our understanding of the pathophysiology of obesity and type 2 diabetes and potential novel ways to treat these diseases. While the metabolic functions of nuclear receptors in peripheral organs have been extensively investigated, little is known about their functions in the brain, in particular with respect to brain control of energy homeostasis. This review provides an overview of the relationships between nuclear receptors in the brain, mainly at the hypothalamic level, and the central regulation of energy homeostasis. In this context, we will particularly focus on the role of PPARα, PPARγ, LXR and Rev-erbα. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Specialized brain regions and sensory inputs that control locomotion in leeches

    PubMed Central

    Mullins, Olivia J.; Brodfuehrer, Peter D.; Jusufović, Saša; Hackett, John T.; Friesen, W. Otto

    2011-01-01

    Locomotor systems are often controlled by specialized cephalic neurons and undergo modulation by sensory inputs. In many species, dedicated brain regions initiate and maintain behavior and set the duration and frequency of the locomotor episode. In the leech, removing the entire head brain enhances swimming, but the individual roles of its components, the supra- and subesophageal ganglia, in the control of locomotion are unknown. Here we describe the influence of these two structures and that of the tail brain on rhythmic swimming in isolated nerve cord preparations and in nearly-intact leeches suspended in an aqueous, “swim-enhancing” environment. We found that, in isolated preparations, swim episode duration and swim burst frequency are greatly increased when the supraesophageal ganglion is removed, but the subesophageal ganglion is intact. The prolonged swim durations observed with the anterior-most ganglion removed were abolished by removal of the tail ganglion. Experiments on the nearly intact leeches show that, in these preparations, the subesophageal ganglion acts to decrease cycle period but, unexpectedly, also decreases swim duration. These results suggest that the supraesophageal ganglion is the primary structure that constrains leech swimming; however, the control of swim duration in the leech is complex, especially in the intact animal. PMID:22037913

  19. Apoptotic markers in cultured fibroblasts correlate with brain metabolites and regional brain volume in antipsychotic-naive first-episode schizophrenia and healthy controls.

    PubMed

    Batalla, A; Bargalló, N; Gassó, P; Molina, O; Pareto, D; Mas, S; Roca, J M; Bernardo, M; Lafuente, A; Parellada, E

    2015-08-25

    Cultured fibroblasts from first-episode schizophrenia patients (FES) have shown increased susceptibility to apoptosis, which may be related to glutamate dysfunction and progressive neuroanatomical changes. Here we determine whether apoptotic markers obtained from cultured fibroblasts in FES and controls correlate with changes in brain glutamate and N-acetylaspartate (NAA) and regional brain volumes. Eleven antipsychotic-naive FES and seven age- and gender-matched controls underwent 3-Tesla magnetic resonance imaging scanning. Glutamate plus glutamine (Glx) and NAA levels were measured in the anterior cingulate (AC) and the left thalamus (LT). Hallmarks of apoptotic susceptibility (caspase-3-baseline activity, phosphatidylserine externalization and chromatin condensation) were measured in fibroblast cultures obtained from skin biopsies after inducing apoptosis with staurosporine (STS) at doses of 0.25 and 0.5 μM. Apoptotic biomarkers were correlated to brain metabolites and regional brain volume. FES and controls showed a negative correlation in the AC between Glx levels and percentages of cells with condensed chromatin (CC) after both apoptosis inductions (STS 0.5 μM: r = -0.90; P = 0.001; STS 0.25 μM: r = -0.73; P = 0.003), and between NAA and cells with CC (STS 0.5 μM induction r = -0.76; P = 0.002; STS 0.25 μM r = -0.62; P = 0.01). In addition, we found a negative correlation between percentages of cells with CC and regional brain volume in the right supratemporal cortex and post-central region (STS 0.25 and 0.5 μM; P < 0.05 family-wise error corrected (FWEc)). We reveal for the first time that peripheral markers of apoptotic susceptibility may correlate with brain metabolites, Glx and NAA, and regional brain volume in FES and controls, which is consistent with the neuroprogressive theories around the onset of the schizophrenia illness.

  20. Certain forms of matrix metalloproteinase-9 accumulate in the extracellular space after microdialysis probe implantation and middle cerebral artery occlusion/reperfusion.

    PubMed

    Planas, Anna M; Justicia, Carles; Solé, Sònia; Friguls, Bibiana; Cervera, Alvaro; Adell, Albert; Chamorro, Angel

    2002-08-01

    Matrix metalloproteinases (MMPs) are activated in focal cerebral ischemia. The activation of MMP-9 is involved in blood-brain barrier breakdown and tissue remodeling. The MMPs are released to the extracellular space, but the form and fate of secreted enzymes in brain are unknown. Using microdialysis in vivo, the authors studied whether ischemia-induced MMP-9 in brain tissue was related to free MMP-9 in the extracellular fluid. A microdialysis probe was placed into the right striatum and microdialysis was initiated 24 hours later in controls (n = 7). One hour prior to microdialysis, a group of rats (n = 7) was subjected to 1-hour occlusion of the right middle cerebral artery, followed by reperfusion. Dialysates were collected at discrete time points up to 24 hours, and subjected to zymography and Western blot analysis. The MMP-9 was released after ischemia and accumulated in the extracellular space at 24 hours (P < 0.05). Free MMP-9 forms include mainly the 95-kd proform, and, to a lesser extent, dimers and cleaved active forms (70 kd), but not the 88-kd form found in tissue. Probe implantation and microdialysis increased free MMP-9 in the dialysate. This increase was concomitant with neutrophil infiltration after the mechanical lesion, as myeloperoxidase was found by means of Western blot analysis in the brain hemisphere subjected to microdialysis (P < 0.005), and immunohistochemistry revealed the presence of myeloperoxidase stain surrounding the site of probe implantation. The results suggest that certain forms of MMP-9 are released and accumulate in the extracellular space after brain injury, and that vascular alterations and neutrophil recruitment elicit MMP-9 activation in the brain after focal ischemia and trauma.

  1. Simultaneous interpreters vs. professional multilingual controls: Group differences in cognitive control as well as brain structure and function.

    PubMed

    Becker, Maxi; Schubert, Torsten; Strobach, Tilo; Gallinat, Jürgen; Kühn, Simone

    2016-07-01

    There is a vast amount of literature indicating that multiple language expertise leads to positive transfer effects onto other non-language cognitive domains possibly due to enhanced cognitive control. However, there is hardly any evidence about underlying mechanisms on how complex behavior like simultaneous interpreting benefits cognitive functioning in other non-language domains. Therefore, we investigated whether simultaneous interpreters (SIs) exhibit cognitive benefits in tasks measuring aspects of cognitive control compared to a professional multilingual control group. We furthermore investigated in how far potential cognitive benefits are related to brain structure (using voxel-based morphometry) and function (using regions-of-interest-based functional connectivity and graph-analytical measures on low-frequency BOLD signals in resting-state brain data). Concerning cognitive control, the results reveal that SIs exhibit less mixing costs in a task switching paradigm and a dual-task advantage compared to professional multilingual controls. In addition, SIs show more gray matter volume in the left frontal pole (BA 10) compared to controls. Graph theoretical analyses revealed that this region exhibits higher network values for global efficiency and degree and is functionally more strongly connected to the left inferior frontal gyrus and middle temporal gyrus in SIs compared to controls. Thus, the data provide evidence that SIs possess cognitive benefits in tasks measuring cognitive control. It is discussed in how far the central role of the left frontal pole and its stronger functional connectivity to the left inferior frontal gyrus represents a correlate of the neural mechanisms for the observed behavioral effects.

  2. Diffuse damage in pediatric traumatic brain injury: a comparison of automated versus operator-controlled quantification methods.

    PubMed

    Bigler, Erin D; Abildskov, Tracy J; Wilde, Elisabeth A; McCauley, Stephen R; Li, Xiaoqi; Merkley, Tricia L; Fearing, Michael A; Newsome, Mary R; Scheibel, Randall S; Hunter, Jill V; Chu, Zili; Levin, Harvey S

    2010-04-15

    This investigation had two main objectives: 1) to assess the comparability of volumes determined by operator-controlled image quantification with automated image analysis in evaluating atrophic brain changes related to traumatic brain injury (TBI) in children, and 2) to assess the extent of diffuse structural changes throughout the brain as determined by reduced volume of a brain structure or region of interest (ROI). Operator-controlled methods used ANALYZE software for segmentation and tracing routines of pre-defined brain structures and ROIs. For automated image analyses, the open-access FreeSurfer program was used. Sixteen children with moderate-to-severe TBI were compared to individually matched, typically developing control children and the volumes of 18 brain structures and/or ROIs were compared between the two methods. Both methods detected atrophic changes but differed in the magnitude of the atrophic effect with the best agreement in subcortical structures. The volumes of all brain structures/ROIs were smaller in the TBI group regardless of method used; overall effect size differences were minimal for caudate and putamen but moderate to large for all other measures. This is reflective of the diffuse nature of TBI and its widespread impact on structural brain integrity, indicating that both FreeSurfer and operator-controlled methods can reliably assess cross-sectional volumetric changes in pediatric TBI. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Homeostasis of brain dynamics in epilepsy: a feedback control systems perspective of seizures.

    PubMed

    Chakravarthy, Niranjan; Tsakalis, Kostas; Sabesan, Shivkumar; Iasemidis, Leon

    2009-03-01

    In an effort to understand basic functional mechanisms that can produce epileptic seizures, some key features are introduced in coupled lumped-parameter neural population models that produce "seizure"-like events and dynamics similar to the ones during the route of the epileptic brain towards seizures. In these models, modified from existing ones in the literature, internal feedback mechanisms are incorporated to maintain the normal low level of synchronous behavior in the presence of coupling variations. While the internal feedback is developed using basic feedback systems principles, it is also functionally equivalent to actual neurophysiological mechanisms such as homeostasis that act to maintain normal activity in neural systems that are subject to extrinsic and intrinsic perturbations. Here it is hypothesized that a plausible cause of seizures is a pathology in the internal feedback action; normal internal feedback quickly regulates an abnormally high coupling between the neural populations, whereas pathological internal feedback can lead to "seizure"-like high amplitude oscillations. Several external seizure-control paradigms, that act to achieve the operational objective of maintaining normal levels of synchronous behavior, are also developed and tested in this paper. In particular, closed-loop "modulating" control with predefined stimuli, and closed-loop feedback decoupling control are considered. Among these, feedback decoupling control is the consistently successful and robust seizure-control strategy. The proposed model and remedies are consistent with a variety of recent observations in the human and animal epileptic brain, and with theories from nonlinear systems, adaptive systems, optimization, and neurophysiology. The results from the analysis of these models have two key implications, namely, developing a basic theory for epilepsy and other brain disorders, and the development of a robust seizure-control device through electrical stimulation and

  4. Longitudinal Brain Volume Changes in Preterm and Term Control Subjects During Late Childhood and Adolescence

    PubMed Central

    Ment, Laura R.; Kesler, Shelli; Vohr, Betty; Katz, Karol H.; Baumgartner, Heidi; Schneider, Karen C.; Delancy, Susan; Silbereis, John; Duncan, Charles C.; Constable, R. Todd; Makuch, Robert W.; Reiss, Allan L.

    2009-01-01

    OBJECTIVE Although preterm very low birth weight infants have a high prevalence of neuroanatomical abnormalities when evaluated at term-equivalent age, patterns of brain growth in prematurely born infants during school age and adolescence remain largely unknown. Our goal was to test the hypothesis that preterm birth results in long-term dynamic changes in the developing brain. METHODS We performed serial volumetric MRI studies at ages 8 and 12 years in 55 preterm infants born weighing 600 to 1250 g and 20 term control children who participated in the follow-up component of a prospective, randomized, placebo-controlled intraventricular hemorrhage prevention study. RESULTS Total brain volumes increased 2% to 3% between the ages of 8 and 12 years for both preterm and term children. These changes involved reductions in cerebral gray matter while white matter increased. Between 8 and 12 years of age, preterm subjects experienced a 2% decrease in left cerebral gray matter compared with a 10% reduction in left cerebral gray for term controls. For right cerebral gray matter, preterm children experienced a 3% decrease in volume between years 8 and 12, compared with 9% for term controls (group-by-time). In contrast, preterm subjects had a 10% increase in cerebral white matter volumes bilaterally between ages 8 and 12 years, compared with >26% increases for both hemispheres for term controls. Significant differences in regional volume changes between study groups were found in bilateral temporal gray and in parietal white matter. CONCLUSIONS Preterm birth continues to perturb the trajectory of cerebral development during late childhood and early adolescence with preterm children, showing both lower gray matter reduction and less white matter gain over time compared with term control subjects. PMID:19171615

  5. Local control after stereotactic radiosurgery for brain metastases in patients with melanoma with and without BRAF mutation and treatment.

    PubMed

    Ly, David; Bagshaw, Hilary P; Anker, Christopher J; Tward, Jonathan D; Grossmann, Kenneth F; Jensen, Randy L; Shrieve, Dennis C

    2015-08-01

    BRAF inhibitors improve progression-free and overall survival in patients with metastatic melanoma. Brain metastases are common, and stereotactic radiosurgery (SRS) has been used, resulting in excellent local control. Because BRAF inhibitors are associated with intracranial responses, the authors hypothesized that BRAF inhibitors would improve local control in patients with melanoma who are receiving SRS for brain metastases. The authors retrospectively identified patients with metastatic melanoma who had been tested for BRAF mutation and treated with SRS for brain metastases. Patients with previous resection, multiple brain metastases, or multiple courses of SRS were eligible. SRS was delivered in a single fraction to a median dose of 2000 cGy. Patients with a BRAF mutation were treated with a BRAF inhibitor on the basis of physician preference. The authors identified 52 patients who were treated in 82 treatment sessions for 185 brain metastases and 13 tumor beds. At a median follow-up of 10.5 months, the 1-year local control rate was 69.2%. At 1 year, the local control rate for brain metastases in patients with BRAF mutation with BRAF treatment was 85.0%, and the local control rate for brain metastases in those without BRAF treatment was 51.5% (p = 0.0077). The rates of distant brain failure, freedom from whole-brain radiation, and overall survival were not different on the basis of BRAF mutation status or inhibitor therapy. The number of new intratumoral hemorrhages after SRS was increased significantly in patients with BRAF treatment. Treatment with BRAF inhibitors was associated with improved local control after SRS in patients with melanoma and brain metastases. An increased number of intratumoral hemorrhages was associated with BRAF inhibitor therapy.

  6. Brain limbic system-based intelligent controller application to lane change manoeuvre

    NASA Astrophysics Data System (ADS)

    Kim, Changwon; Langari, Reza

    2011-12-01

    This paper presents the application of a novel neuromorphic control strategy for lane change manoeuvres in the highway environment. The lateral dynamics of a vehicle with and without wind disturbance are derived and utilised to implement a control strategy based on the brain limbic system. To show the robustness of the proposed controller, several disturbance conditions including wind, uncertainty in the cornering stiffness, and changes in the vehicle mass are investigated. To demonstrate the performance of the suggested strategy, simulation results of the proposed method are compared with the human driver model-based control scheme, which has been discussed in the literature. The simulation results demonstrate the superiority of the proposed controller in energy efficiency, driving comfort, and robustness.

  7. Motor prediction in Brain-Computer Interfaces for controlling mobile robots.

    PubMed

    Geng, Tao; Gan, John Q

    2008-01-01

    EEG-based Brain-Computer Interface (BCI) can be regarded as a new channel for motor control except that it does not involve muscles. Normal neuromuscular motor control has two fundamental components: (1) to control the body, and (2) to predict the consequences of the control command, which is called motor prediction. In this study, after training with a specially designed BCI paradigm based on motor imagery, two subjects learnt to predict the time course of some features of the EEG signals. It is shown that, with this newly-obtained motor prediction skill, subjects can use motor imagery of feet to directly control a mobile robot to avoid obstacles and reach a small target in a time-critical scenario.

  8. Brain Training Game Boosts Executive Functions, Working Memory and Processing Speed in the Young Adults: A Randomized Controlled Trial

    PubMed Central

    Nouchi, Rui; Taki, Yasuyuki; Takeuchi, Hikaru; Hashizume, Hiroshi; Nozawa, Takayuki; Kambara, Toshimune; Sekiguchi, Atsushi; Miyauchi, Carlos Makoto; Kotozaki, Yuka; Nouchi, Haruka; Kawashima, Ryuta

    2013-01-01

    Background Do brain training games work? The beneficial effects of brain training games are expected to transfer to other cognitive functions. Yet in all honesty, beneficial transfer effects of the commercial brain training games in young adults have little scientific basis. Here we investigated the impact of the brain training game (Brain Age) on a wide range of cognitive functions in young adults. Methods We conducted a double-blind (de facto masking) randomized controlled trial using a popular brain training game (Brain Age) and a popular puzzle game (Tetris). Thirty-two volunteers were recruited through an advertisement in the local newspaper and randomly assigned to either of two game groups (Brain Age, Tetris). Participants in both the Brain Age and the Tetris groups played their game for about 15 minutes per day, at least 5 days per week, for 4 weeks. Measures of the cognitive functions were conducted before and after training. Measures of the cognitive functions fell into eight categories (fluid intelligence, executive function, working memory, short-term memory, attention, processing speed, visual ability, and reading ability). Results and Discussion Our results showed that commercial brain training game improves executive functions, working memory, and processing speed in young adults. Moreover, the popular puzzle game can engender improvement attention and visuo-spatial ability compared to playing the brain training game. The present study showed the scientific evidence which the brain training game had the beneficial effects on cognitive functions (executive functions, working memory and processing speed) in the healthy young adults. Conclusions Our results do not indicate that everyone should play brain training games. However, the commercial brain training game might be a simple and convenient means to improve some cognitive functions. We believe that our findings are highly relevant to applications in educational and clinical fields. Trial

  9. Brain training game boosts executive functions, working memory and processing speed in the young adults: a randomized controlled trial.

    PubMed

    Nouchi, Rui; Taki, Yasuyuki; Takeuchi, Hikaru; Hashizume, Hiroshi; Nozawa, Takayuki; Kambara, Toshimune; Sekiguchi, Atsushi; Miyauchi, Carlos Makoto; Kotozaki, Yuka; Nouchi, Haruka; Kawashima, Ryuta

    2013-01-01

    Do brain training games work? The beneficial effects of brain training games are expected to transfer to other cognitive functions. Yet in all honesty, beneficial transfer effects of the commercial brain training games in young adults have little scientific basis. Here we investigated the impact of the brain training game (Brain Age) on a wide range of cognitive functions in young adults. We conducted a double-blind (de facto masking) randomized controlled trial using a popular brain training game (Brain Age) and a popular puzzle game (Tetris). Thirty-two volunteers were recruited through an advertisement in the local newspaper and randomly assigned to either of two game groups (Brain Age, Tetris). Participants in both the Brain Age and the Tetris groups played their game for about 15 minutes per day, at least 5 days per week, for 4 weeks. Measures of the cognitive functions were conducted before and after training. Measures of the cognitive functions fell into eight categories (fluid intelligence, executive function, working memory, short-term memory, attention, processing speed, visual ability, and reading ability). Our results showed that commercial brain training game improves executive functions, working memory, and processing speed in young adults. Moreover, the popular puzzle game can engender improvement attention and visuo-spatial ability compared to playing the brain training game. The present study showed the scientific evidence which the brain training game had the beneficial effects on cognitive functions (executive functions, working memory and processing speed) in the healthy young adults. Our results do not indicate that everyone should play brain training games. However, the commercial brain training game might be a simple and convenient means to improve some cognitive functions. We believe that our findings are highly relevant to applications in educational and clinical fields. UMIN Clinical Trial Registry 000005618.

  10. Increased matrix metalloproteinase 9 activity in mild cognitive impairment.

    PubMed

    Bruno, Martin A; Mufson, Elliott J; Wuu, Joanne; Cuello, A Claudio

    2009-12-01

    Nerve growth factor (NGF)-dependent cholinergic basal forebrain neurons degenerate during the progression of Alzheimer disease (AD). Elevated proNGF and reduced levels of the TrkA high-affinity NGF receptor occur in prodromal and advanced stages of AD. We recently described a protease cascade responsible for the conversion of proNGF to mature NGF (mNGF) in which matrix metalloproteinase 9 (MMP-9) degrades mNGF in the extracellular space. To determine whether this proteolytic cascade is altered during the progression of AD, we examined human frontal and parietal cortex tissues from aged subjects with a clinical diagnosis of AD, mild cognitive impairment, or no cognitive impairment. The analysis demonstrated greater MMP-9 activity in both AD and mild cognitive impairment compared with no cognitive impairment brain samples (p < 0.01), which supports the notion that a metabolic failure in the NGF-maturation/degradation pathway may be associated with an exacerbated degradation of mNGF in the cerebral cortex in early AD. Moreover, there were inverse correlations between Global Cognitive Score and Mini-Mental State Examination score and MMP-9 activity. These findings suggest that a reduction in mNGF as a consequence of MMP-9-mediated degradation may in part underlie the pathogenesis of cognitive deficits in mild cognitive impairment and AD.

  11. Increased Matrix Metalloproteinase-9 Activity in Mild Cognitive Impairment

    PubMed Central

    Bruno, Martin A.; Mufson, Elliott J.; Wuu, Joanne; Cuello, A. Claudio

    2010-01-01

    Nerve growth factor (NGF)-dependent cholinergic basal forebrain neurons degenerate during the progression of Alzheimer disease (AD). Elevated proNGF and reduced levels of the TrkA high-affinity NGF receptor occur in prodromal and advanced stages of AD. We recently described a protease cascade responsible for the conversion of proNGF to mature NGF (mNGF) in which matrix metalloproteinase 9 (MMP-9) degrades mNGF in the extracellular space. To determine whether this proteolytic cascade is altered during the progression of AD, we examined human frontal and parietal cortex tissue from aged subjects with a clinical diagnosis of AD, mild cognitive impairment (MCI) or no cognitive impairment (NCI). The analysis demonstrated greater MMP-9 activity in both AD and MCI compared to NCI brain samples (p < 0.01), which supports the notion that a metabolic failure in the NGF-maturation/degradation pathway may be associated with an exacerbated degradation of mNGF in the cerebral cortex in early AD. Moreover, there were inverse correlations between Global Cognitive Score and Mini-Mental State Examination score and MMP-9 activity. These findings suggest that a reduction in mNGF as a consequence of MMP-9-mediated degradation may in part underlie the pathogenesis of cognitive deficits in MCI and AD. PMID:19915485

  12. Multivariate morphological brain signatures predict chronic abdominal pain patients from healthy control subjects

    PubMed Central

    Labus, Jennifer S.; Van Horn, John D.; Gupta, Arpana; Alaverdyan, Mher; Torgerson, Carinna; Ashe-McNalley, Cody; Irimia, Andrei; Hong, Jui-Yang; Naliboff, Bruce; Tillisch, Kirsten; Mayer, Emeran A.

    2015-01-01

    Irritable bowel syndrome (IBS) is the most common chronic visceral pain disorder. The pathophysiology of IBS is incompletely understood, however evidence strongly suggests dysregulation of the brain-gut axis. The aim of this study was to apply multivariate pattern analysis to identify an IBS-related morphometric brain signature which could serve as a central biological marker and provide new mechanistic insights into the pathophysiology of IBS. Parcellation of 165 cortical and subcortical regions was performed using Freesurfer and the Destrieux and Harvard-Oxford atlases. Volume, mean curvature, surface area and cortical thickness were calculated for each region. Sparse partial least squares-discriminant analysis was applied to develop a diagnostic model using a training set of 160 females (80 healthy controls, 80 IBS). Predictive accuracy was assessed in an age matched holdout test set of 52 females (26 health controls, 26 IBS). A two-component classification algorithm comprised of the morphometry of 1) primary somato-sensory and motor regions, and 2) multimodal network regions, explained 36% of the variance. Overall predictive accuracy of the classification algorithm was 70%. Small effect size associations were observed between the somatosensory and motor signature and non-gastrointestinal somatic symptoms. The findings demonstrate the predictive accuracy of a classification algorithm based solely on regional brain morphometry is not sufficient but they do provide support for the utility of multivariate pattern analysis for identifying meaningful neurobiological markers in IBS. Perspective This article presents the development, optimization, and testing of a classification algorithm for discriminating female IBS patients from healthy controls using only brain morphometry data. The results provide support for utility of multivariate pattern analysis for identifying meaningful neurobiological markers in IBS. PMID:25906347

  13. Driving safety after brain damage: follow-up of twenty-two patients with matched controls.

    PubMed

    Katz, R T; Golden, R S; Butter, J; Tepper, D; Rothke, S; Holmes, J; Sahgal, V

    1990-02-01

    Driving after brain damage is a vital issue, considering the large number of patients who suffer from cerebrovascular and traumatic encephalopathy. The ability to operate a motor vehicle is an integral part of independence for most adults and so should be preserved whenever possible. The physician may estimate a patient's ability to drive safely based on his own examination, the evaluation of a neuropsychologist, and a comprehensive driving evaluation--testing, driving simulation, behind-the-wheel observation--with a driving specialist. This study sought to evaluate the ability of brain-damaged individuals to operate a motor vehicle safely at follow-up. These patients had been evaluated (by a physician, a neuropsychologist, and a driving specialist) and were judged able to operate a motor vehicle safely after their cognitive insult. Twenty-two brain-damaged patients who were evaluated at our institution were successfully followed up to five years (mean interval of 2.67 years). Patients were interviewed by telephone. Their driving safely was compared with a control group consisting of a close friend or spouse of each patient. Statistical analysis revealed no difference between patient and control groups in the type of driving, the incidence of speeding tickets, near accidents, and accidents, and the cost of vehicle damage when accidents occurred. The patient group was further divided into those who had, and those who had not experienced driving difficulties so that initial neuropsychologic testing could be compared. No significant differences were noted in any aspect of the neuropsychologic test battery. We conclude that selected brain-damaged patients who have passed a comprehensive driving assessment as outlined were as fit to drive as were their normal matched controls.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Tumorigenic Potential of Extracellular Matrix Metalloproteinase Inducer

    PubMed Central

    Zucker, Stanley; Hymowitz, Michelle; Rollo, Ellen E.; Mann, Richard; Conner, Cathleen E.; Cao, Jian; Foda, Hussein D.; Tompkins, David C.; Toole, Bryan P.

    2001-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN), a glycoprotein present on the cancer cell plasma membrane, enhances fibroblast synthesis of matrix metalloproteinases (MMPs). The demonstration that peritumoral fibroblasts synthesize most of the MMPs in human tumors rather than the cancer cells themselves has ignited interest in the role of EMMPRIN in tumor dissemination. In this report we have demonstrated a role for EMMPRIN in cancer progression. Human MDA-MB-436 breast cancer cells, which are tumorigenic but slow growing in vivo, were transfected with EMMPRIN cDNA and injected orthotopically into mammary tissue of female NCr nu/nu mice. Green fluorescent protein was used to visualize metastases. In three experiments, breast cancer cell clones transfected with EMMPRIN cDNA were considerably more tumorigenic and invasive than plasmid-transfected cancer cells. Increased gelatinase A and gelatinase B expression (demonstrated by in situ hybridization and gelatin substrate zymography) was demonstrated in EMMPRIN-enhanced tumors. In contrast to de novo breast cancers in humans, human tumors transplanted into mice elicited minimal stromal or inflammatory cell reactions. Based on these experimental studies and our previous demonstration that EMMPRIN is prominently displayed in human cancer tissue, we propose that EMMPRIN plays an important role in cancer progression by increasing synthesis of MMPs. PMID:11395366

  15. Deficiency of brain ATP-binding cassette transporter A-1 exacerbates blood-brain barrier and white matter damage after stroke.

    PubMed

    Cui, Xu; Chopp, Michael; Zacharek, Alex; Karasinska, Joanna M; Cui, Yisheng; Ning, Ruizhuo; Zhang, Yi; Wang, Yun; Chen, Jieli

    2015-03-01

    The ATP-binding cassette transporter A-1 (ABCA1) gene is a key target of the transcription factors liver X receptors. Liver X receptor activation has anti-inflammatory and neuroprotective effects in animal ischemic stroke models. Here, we tested the hypothesis that brain ABCA1 reduces blood-brain barrier (BBB) and white matter (WM) impairment in the ischemic brain after stroke. Adult brain-specific ABCA1-deficient (ABCA1(-B/-B)) and floxed-control (ABCA1(fl/fl)) mice were subjected to permanent distal middle cerebral artery occlusion and were euthanized 7 days after distal middle cerebral artery occlusion. Functional outcome, infarct volume, BBB leakage, and WM damage were analyzed. Compared with ABCA1(fl/fl) mice, ABCA1(-B/-B) mice showed marginally (P=0.052) increased lesion volume but significantly increased BBB leakage and WM damage in the ischemic brain and more severe neurological deficits. Brain ABCA1-deficient mice exhibited increased the level of matrix metalloproteinase-9 and reduced the level of insulin-like growth factor 1 in the ischemic brain. BBB leakage was inversely correlated (r=-0.073; P<0.05) with aquaporin-4 expression. Reduction of insulin-like growth factor 1 and aquaporin-4, but upregulation of matrix metalloproteinase-9 expression were also found in the primary astrocyte cultures derived from ABCA1(-B/-B) mice. Cultured primary cortical neurons derived from C57BL/6 wild-type mice with ABCA1(-B/-B) astrocyte-conditioned medium exhibited decreased neurite outgrowth compared with culture with ABCA1(fl/fl) astrocyte-conditioned medium. ABCA1(-B/-B) primary cortical neurons show significantly decreased neurite outgrowth, which was attenuated by insulin-like growth factor 1 treatment. We demonstrate that brain ABCA1 deficiency increases BBB leakage, WM/axonal damage, and functional deficits after stroke. Concomitant reduction of insulin-like growth factor 1 and upregulation of matrix metalloproteinase-9 may contribute to brain ABCA1 deficiency

  16. Effects of l-Carnitine Supplementation on Serum Inflammatory Factors and Matrix Metalloproteinase Enzymes in Females with Knee Osteoarthritis: A Randomized, Double-Blind, Placebo-Controlled Pilot Study.

    PubMed

    Malek Mahdavi, Aida; Mahdavi, Reza; Kolahi, Sousan

    2016-01-01

    Considering the importance of inflammation in the pathogenesis of osteoarthritis (OA) and induction of pain, this study was aimed to investigate the effect of L-carnitine supplementation on serum inflammatory mediators and OA-associated pain in females with knee OA. In this clinical trial, 72 females with mild to moderate knee osteoarthritis started the study, divided into 2 groups to receive 750 mg/day L-carnitine (n = 36) or placebo (n = 36) for 8 weeks. Serum levels of Interleukine-1β (IL-1β), high-sensitivity C-reactive protein (hs-CRP), matrix metalloproteinases (MMPs)-1 and -13, and visual analog scale (VAS) for pain were assessed before and after supplementation. Data were analyzed by t test, Wilcoxon signed rank test, Mann-Whitney U test, and analysis of covariance. Only 69 patients (33 in the L-carnitine group and 36 in the placebo group) completed the study. L-Carnitine supplementation decreased serum IL-1β and MMP-1 levels significantly (p = 0.001 and p = 0.021, respectively); however, serum hs-CRP and MMP-13 levels did not change significantly (p > 0.05). In the placebo group, serum IL-1β levels increased significantly (p = 0.011), whereas other studied biomarkers did not change significantly. The mean VAS score decreased significantly in the L-carnitine and placebo groups by 52.67% and 21.82%, respectively (p < 0.001). Significant differences were only observed between the 2 groups in serum IL-1β (p < 0.001) and MMP-1 (p = 0.006) levels and mean VAS score (p = 0.002) after adjusting for baseline values and covariates. Despite observed beneficial effects of short-term supplementation of L-carnitine in decreasing serum inflammatory mediators and improving pain in knee OA patients, further studies are needed to achieve concise conclusions.

  17. Establishment of minimal positive-control conditions to ensure brain safety during rapid development of emergency vaccines.

    PubMed

    Baek, Hyekyung; Kim, Kwang Ho; Park, Min Young; Kim, Kyeongryun; Ko, Bokyeong; Seo, Hyung Seok; Kim, Byoung Soo; Hahn, Tae-Wook; Yi, Sun Shin

    2017-08-31

    With the increase in international human and material exchanges, contagious and infectious epidemics are occurring. One of the effective methods of epidemic inhibition is the rapid development and supply of vaccines. Considering the safety of the brain during vaccine development is very important. However, manuals for brain safety assays for new vaccines are not uniform or effective globally. Therefore, the aim of this study is to establish a positive-control protocol for an effective brain safety test to enhance rapid vaccine development. The blood-brain barrier's tight junctions provide selective defense of the brain; however, it is possible to destroy these important microstructures by administering lipopolysaccharides (LPSs), thereby artificially increasing the permeability of brain parenchyma. In this study, test conditions are established so that the degree of brain penetration or brain destruction of newly developed vaccines can be quantitatively identified. The most effective conditions were suggested by measuring time-dependent expressions of tight junction biomarkers (zonula occludens-1 [ZO-1] and occludin) in two types of mice (C57BL/6 and ICR) following exposure to two types of LPS (Salmonella and Escherichia). In the future, we hope that use of the developed positive-control protocol will help speed up the determination of brain safety of novel vaccines.

  18. Dimensionality of brain networks linked to life-long individual differences in self-control

    PubMed Central

    Berman, Marc G.; Yourganov, Grigori; Askren, Mary K.; Ayduk, Ozlem; Casey, B.J.; Gotlib, Ian H.; Kross, Ethan; McIntosh, Anthony R.; Strother, Stephen; Wilson, Nicole L.; Zayas, Vivian; Mischel, Walter; Shoda, Yuichi; Jonides, John

    2012-01-01

    The ability to delay gratification in childhood has been linked to positive outcomes in adolescence and adulthood. Here we examine a subsample of participants from a seminal longitudinal study of self-control throughout a subject’s lifespan. Self control, first studied in children at age 4, is now reexamined 40 years later, on a task that required control over the contents of working memory. We examine whether patterns of brain activation on this task can reliably distinguish participants with consistently low and high self-control abilities (low vs. high delayers). We find that low delayers recruit significantly higher-dimensional neural networks when performing the task compared to high delayers. High delayers are also more homogeneous as a group in their neural patterns compared to low delayers. From these brain patterns we can predict with 71% accuracy, whether a participant is a high or low delayer. The present results suggest that dimensionality of neural networks is a biological predictor of self-control abilities. PMID:23340413

  19. Soft brain-machine interfaces for assistive robotics: A novel control approach.

    PubMed

    Schiatti, Lucia; Tessadori, Jacopo; Barresi, Giacinto; Mattos, Leonardo S; Ajoudani, Arash

    2017-07-01

    Robotic systems offer the possibility of improving the life quality of people with severe motor disabilities, enhancing the individual's degree of independence and interaction with the external environment. In this direction, the operator's residual functions must be exploited for the control of the robot movements and the underlying dynamic interaction through intuitive and effective human-robot interfaces. Towards this end, this work aims at exploring the potential of a novel Soft Brain-Machine Interface (BMI), suitable for dynamic execution of remote manipulation tasks for a wide range of patients. The interface is composed of an eye-tracking system, for an intuitive and reliable control of a robotic arm system's trajectories, and a Brain-Computer Interface (BCI) unit, for the control of the robot Cartesian stiffness, which determines the interaction forces between the robot and environment. The latter control is achieved by estimating in real-time a unidimensional index from user's electroencephalographic (EEG) signals, which provides the probability of a neutral or active state. This estimated state is then translated into a stiffness value for the robotic arm, allowing a reliable modulation of the robot's impedance. A preliminary evaluation of this hybrid interface concept provided evidence on the effective execution of tasks with dynamic uncertainties, demonstrating the great potential of this control method in BMI applications for self-service and clinical care.

  20. Dimensionality of brain networks linked to life-long individual differences in self-control.

    PubMed

    Berman, Marc G; Yourganov, Grigori; Askren, Mary K; Ayduk, Ozlem; Casey, B J; Gotlib, Ian H; Kross, Ethan; McIntosh, Anthony R; Strother, Stephen; Wilson, Nicole L; Zayas, Vivian; Mischel, Walter; Shoda, Yuichi; Jonides, John

    2013-01-01

    The ability to delay gratification in childhood has been linked to positive outcomes in adolescence and adulthood. Here we examine a subsample of participants from a seminal longitudinal study of self-control throughout a subject's life span. Self-control, first studied in children at age 4 years, is now re-examined 40 years later, on a task that required control over the contents of working memory. We examine whether patterns of brain activation on this task can reliably distinguish participants with consistently low and high self-control abilities (low versus high delayers). We find that low delayers recruit significantly higher-dimensional neural networks when performing the task compared with high delayers. High delayers are also more homogeneous as a group in their neural patterns compared with low delayers. From these brain patterns, we can predict with 71% accuracy, whether a participant is a high or low delayer. The present results suggest that dimensionality of neural networks is a biological predictor of self-control abilities.

  1. Error-preceding brain activity reflects (mal-)adaptive adjustments of cognitive control: a modeling study.

    PubMed

    Steinhauser, Marco; Eichele, Heike; Juvodden, Hilde T; Huster, Rene J; Ullsperger, Markus; Eichele, Tom

    2012-01-01

    Errors in choice tasks are preceded by gradual changes in brain activity presumably related to fluctuations in cognitive control that promote the occurrence of errors. In the present paper, we use connectionist modeling to explore the hypothesis that these fluctuations reflect (mal-)adaptive adjustments of cognitive control. We considered ERP data from a study in which the probability of conflict in an Eriksen-flanker task was manipulated in sub-blocks of trials. Errors in these data were preceded by a gradual decline of N2 amplitude. After fitting a connectionist model of conflict adaptation to the data, we analyzed simulated N2 amplitude, simulated response times (RTs), and stimulus history preceding errors in the model, and found that the model produced the same pattern as obtained in the empirical data. Moreover, this pattern is not found in alternative models in which cognitive control varies randomly or in an oscillating manner. Our simulations suggest that the decline of N2 amplitude preceding errors reflects an increasing adaptation of cognitive control to specific task demands, which leads to an error when these task demands change. Taken together, these results provide evidence that error-preceding brain activity can reflect adaptive adjustments rather than unsystematic fluctuations of cognitive control, and therefore, that these errors are actually a consequence of the adaptiveness of human cognition.

  2. APOE-by-sex interactions on brain structure and metabolism in healthy elderly controls.

    PubMed

    Sampedro, Frederic; Vilaplana, Eduard; de Leon, Mony J; Alcolea, Daniel; Pegueroles, Jordi; Montal, Victor; Carmona-Iragui, María; Sala, Isabel; Sánchez-Saudinos, María-Belén; Antón-Aguirre, Sofía; Morenas-Rodríguez, Estrella; Camacho, Valle; Falcón, Carles; Pavía, Javier; Ros, Domènec; Clarimón, Jordi; Blesa, Rafael; Lleó, Alberto; Fortea, Juan

    2015-09-29

    The APOE effect on Alzheimer Disease (AD) risk is stronger in women than in men but its mechanisms have not been established. We assessed the APOE-by-sex interaction on core CSF biomarkers, brain metabolism and structure in healthy elderly control individuals (HC). Cross-sectional study. HC from the Alzheimer's Disease Neuroimaging Initiative with available CSF (n = 274) and/or 3T-MRI (n = 168) and/or a FDG-PET analyses (n = 328) were selected. CSF amyloid-β1-42 (Aβ1-42), total-tau (t-tau) and phospho-tau (p-tau181p) levels were measured by Luminex assays. We analyzed the APOE-by-sex interaction on the CSF biomarkers in an analysis of covariance (ANCOVA). FDG uptake was analyzed by SPM8 and cortical thickness (CTh) was measured by FreeSurfer. FDG and CTh difference maps were derived from interaction and group analyses. APOE4 carriers had lower CSF Aβ1-42 and higher CSF p-tau181p values than non-carriers, but there was no APOE-by-sex interaction on CSF biomarkers. The APOE-by-sex interaction on brain metabolism and brain structure was significant. Sex stratification showed that female APOE4 carriers presented widespread brain hypometabolism and cortical thinning compared to female non-carriers whereas male APOE4 carriers showed only a small cluster of hypometabolism and regions of cortical thickening compared to male non-carriers. The impact of APOE4 on brain metabolism and structure is modified by sex. Female APOE4 carriers show greater hypometabolism and atrophy than male carriers. This APOE-by-sex interaction should be considered in clinical trials in preclinical AD where APOE4 status is a selection criterion.

  3. Power-Frequency Magnetic Fields and Childhood Brain Tumors: A Case-Control Study in Japan

    PubMed Central

    Saito, Tomohiro; Nitta, Hiroshi; Kubo, Osami; Yamamoto, Seiichiro; Yamaguchi, Naohito; Akiba, Suminori; Honda, Yasushi; Hagihara, Jun; Isaka, Katsuo; Ojima, Toshiyuki; Nakamura, Yosikazu; Mizoue, Tetsuya; Ito, Satoko; Eboshida, Akira; Yamazaki, Shin; Sokejima, Shigeru; Kurokawa, Yoshika; Kabuto, Michinori

    2010-01-01

    Background The strength of the association between brain tumors in children and residential power-frequency magnetic fields (MF) has varied in previous studies, which may be due in part to possible misclassification of MF exposure. This study aimed to examine this association in Japan by improving measurement techniques, and by extending measurement to a whole week. Methods This population-based case-control study encompassed 54% of Japanese children under 15 years of age. After excluding ineligible targeted children, 55 newly diagnosed brain tumor cases and 99 sex-, age-, and residential area-matched controls were included in the analyses. The MF exposures of each set of matching cases and controls were measured in close temporal proximity to control for seasonal variation; the average difference was 12.4 days. The mean interval between diagnosis and MF measurements was 1.1 years. The weekly mean MF level was defined as the exposure. The association was evaluated using conditional logistic regression analysis that controlled for possible confounding factors. Results The odds ratios (95% CI) for exposure categories of 0.1 to 0.2, 0.2 to 0.4, and above 0.4 µT, against a reference category of <0.1 µT, were 0.74 (0.17–3.18), 1.58 (0.25–9.83), and 10.9 (1.05–113), respectively, after adjusting for maternal education. This dose-response pattern was stable when other variables were included in the model as possible confounding factors. Conclusions A positive association was found between high-level exposure—above 0.4 µT—and the risk of brain tumors. This association could not be explained solely by confounding factors or selection bias. PMID:19915304

  4. Empathic control through coordinated interaction of amygdala, theory of mind and extended pain matrix brain regions.

    PubMed

    Bruneau, Emile G; Jacoby, Nir; Saxe, Rebecca

    2015-07-01

    Brain regions in the "pain matrix", can be activated by observing or reading about others in physical pain. In previous research, we found that reading stories about others' emotional suffering, by contrast, recruits a different group of brain regions mostly associated with thinking about others' minds. In the current study, we examined the neural circuits responsible for deliberately regulating empathic responses to others' pain and suffering. In Study 1, a sample of college-aged participants (n=18) read stories about physically painful and emotionally distressing events during functional magnetic resonance imaging (fMRI), while either actively empathizing with the main character or trying to remain objective. In Study 2, the same experiment was performed with professional social workers, who are chronically exposed to human suffering (n=21). Across both studies activity in the amygdala was associated with empathic regulation towards others' emotional pain, but not their physical pain. In addition, psychophysiological interaction (PPI) analysis and Granger causal modeling (GCM) showed that amygdala activity while reading about others' emotional pain was preceded by and positively coupled with activity in the theory of mind brain regions, and followed by and negatively coupled with activity in regions associated with physical pain and bodily sensations. Previous work has shown that the amygdala is critically involved in the deliberate control of self-focused distress - the current results extend the central importance of amygdala activity to the control of other-focused empathy, but only when considering others' emotional pain. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. [Integrating role of voluntary postural control recovery during rehabilitation of patients with traumatic brain injury].

    PubMed

    Zhavoronkova, L A; Zharikova, A V; Maksakova, O A

    2011-01-01

    Results of complex clinical, stabilographic and electroencephalographic (EEG) examination of 20 patients (28 +/- 6.9 years) suffered a severe traumatic brain injury (STBI) are presented. The examination was carried out in early terms after the STBI before and after a course of stabilographic training (ST) with a visual feedback as compared to a group of 18 healthy volunteers (26 +/- 5.8 years). The 4- to 6-week course of ST consisted of 8-15 sessions. Before the course, the patients experienced problems in different kinds of activity, maximum in the motor sphere. The EEG study revealed a decrease in the power and coherence of the alpha rhythm and an increase in the power of the slow spectral bands (delta). The ST restored not only the postural control of patients, but also reduced the defects in other spheres. The EEG study showed an increase in the alpha-rhythm power maximum in the occipital-parietal areas and a tendency to normalization of its regional specificity. In all examined patients, the interhemispheric coherence increased for different EEG-rhythms, especially of the alpha-band, in the central and parietal brain areas. The described EEG changes can be a marker of the integrating role of postural control and an important stage in restoration of integrative brain activity in early terms after the STBI accompanied by improvement of damaged functions.

  6. Precise spatial and temporal control of oxygen within in vitro brain slices via microfluidic gas channels.

    PubMed

    Mauleon, Gerardo; Fall, Christopher P; Eddington, David T

    2012-01-01

    The acute brain slice preparation is an excellent model for studying the details of how neurons and neuronal tissue respond to a variety of different physiological conditions. But open slice chambers ideal for electrophysiological and imaging access have not allowed the precise spatiotemporal control of oxygen in a way that might realistically model stroke conditions. To address this problem, we have developed a microfluidic add-on to a commercially available perfusion chamber that diffuses oxygen throughout a thin membrane and directly to the brain slice. A microchannel enables rapid and efficient control of oxygen and can be modified to allow different regions of the slice to experience different oxygen conditions. Using this novel device, we show that we can obtain a stable and homogeneous oxygen environment throughout the brain slice and rapidly alter the oxygen tension in a hippocampal slice. We also show that we can impose different oxygen tensions on different regions of the slice preparation and measure two independent responses, which is not easily obtainable with current techniques.

  7. Affective Aspects of Perceived Loss of Control and Potential Implications for Brain-Computer Interfaces.

    PubMed

    Grissmann, Sebastian; Zander, Thorsten O; Faller, Josef; Brönstrup, Jonas; Kelava, Augustin; Gramann, Klaus; Gerjets, Peter

    2017-01-01

    Most brain-computer interfaces (BCIs) focus on detecting single aspects of user states (e.g., motor imagery) in the electroencephalogram (EEG) in order to use these aspects as control input for external systems. This communication can be effective, but unaccounted mental processes can interfere with signals used for classification and thereby introduce changes in the signal properties which could potentially impede BCI classification performance. To improve BCI performance, we propose deploying an approach that potentially allows to describe different mental states that could influence BCI performance. To test this approach, we analyzed neural signatures of potential affective states in data collected in a paradigm where the complex user state of perceived loss of control (LOC) was induced. In this article, source localization methods were used to identify brain dynamics with source located outside but affecting the signal of interest originating from the primary motor areas, pointing to interfering processes in the brain during natural human-machine interaction. In particular, we found affective correlates which were related to perceived LOC. We conclude that additional context information about the ongoing user state might help to improve the applicability of BCIs to real-world scenarios.

  8. Affective Aspects of Perceived Loss of Control and Potential Implications for Brain-Computer Interfaces

    PubMed Central

    Grissmann, Sebastian; Zander, Thorsten O.; Faller, Josef; Brönstrup, Jonas; Kelava, Augustin; Gramann, Klaus; Gerjets, Peter

    2017-01-01

    Most brain-computer interfaces (BCIs) focus on detecting single aspects of user states (e.g., motor imagery) in the electroencephalogram (EEG) in order to use these aspects as control input for external systems. This communication can be effective, but unaccounted mental processes can interfere with signals used for classification and thereby introduce changes in the signal properties which could potentially impede BCI classification performance. To improve BCI performance, we propose deploying an approach that potentially allows to describe different mental states that could influence BCI performance. To test this approach, we analyzed neural signatures of potential affective states in data collected in a paradigm where the complex user state of perceived loss of control (LOC) was induced. In this article, source localization methods were used to identify brain dynamics with source located outside but affecting the signal of interest originating from the primary motor areas, pointing to interfering processes in the brain during natural human-machine interaction. In particular, we found affective correlates which were related to perceived LOC. We conclude that additional context information about the ongoing user state might help to improve the applicability of BCIs to real-world scenarios. PMID:28769776

  9. Intrinsic brain connectivity predicts impulse control disorders in patients with Parkinson's disease.

    PubMed

    Tessitore, Alessandro; De Micco, Rosa; Giordano, Alfonso; di Nardo, Federica; Caiazzo, Giuseppina; Siciliano, Mattia; De Stefano, Manuela; Russo, Antonio; Esposito, Fabrizio; Tedeschi, Gioacchino

    2017-09-26

    Impulse control disorders can be triggered by dopamine replacement therapies in patients with PD. Using resting-state functional MRI, we investigated the intrinsic brain network connectivity at baseline in a cohort of drug-naive PD patients who successively developed impulse control disorders over a 36-month follow-up period compared with patients who did not. Baseline 3-Tesla MRI images of 30 drug-naive PD patients and 20 matched healthy controls were analyzed. The impulse control disorders' presence and severity at follow-up were assessed by the Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease Rating Scale. Single-subject and group-level independent component analysis was used to investigate functional connectivity differences within the major resting-state networks. We also compared internetwork connectivity between patients. Finally, a multivariate Cox regression model was used to investigate baseline predictors of impulse control disorder development. At baseline, decreased connectivity in the default-mode and right central executive networks and increased connectivity in the salience network were detected in PD patients with impulse control disorders at follow-up compared with those without. Increased default-mode/central executive internetwork connectivity was significantly associated with impulse control disorders development (P < 0.05). Our findings demonstrated that abnormal brain connectivity in the three large-scale networks characterizes drug-naive PD patients who will eventually develop impulse control disorders while on dopaminergic treatment. We hypothesize that these divergent cognitive and limbic network connectivity changes could represent a potential biomarker and an additional risk factor for the emergence of impulse control disorders. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  10. Matrix Metalloproteinase-1 and Matrix Metalloproteinase-9 in the Aqueous Humor of Diabetic Macular Edema Patients

    PubMed Central

    Choi, Jin A.; Jee, Donghyun

    2016-01-01

    Purpose To assess the concentrations of matrix metalloproteinase (MMP)-1 and MMP-9 in the aqueous humor of diabetic macular edema (DME) patients. Method The concentrations of MMP-1 and MMP-9 in the aqueous humors of 15 cataract patients and 25 DME patients were compared. DME patients were analyzed according to the diabetic retinopathy (DR) stage, diabetes mellitus (DM) duration, pan-retinal photocoagulation (PRP) treatment, recurrence within 3 months, HbA1C (glycated hemoglobin) level, and axial length. Results The concentrations of MMP-1 and MMP-9 of the DME groups were higher than those of the control group (p = 0.005 and p = 0.002, respectively). There was a significant difference in MMP-1 concentration between the mild non-proliferative diabetic retinopathy (NPDR) group and the proliferative diabetic retinopathy (PDR) group (p = 0.012). MMP-1 concentrations were elevated in PRP-treated patients (p = 0.005). There was a significant difference in MMP-9 concentrations between the mild NPDR group and the PDR group (p < 0.001), and between the moderate and severe NPDR group and the PDR group (p < 0.001). The MMP-9 concentrations in PRP treated patients, DM patients with diabetes ≥ 10 years and recurrent DME within 3months were elevated (p = 0.023, p = 0.011, and p = 0.027, respectively). In correlation analyses, the MMP-1 level showed a significant correlation with age (r = -0.48, p = 0.01,), and the MMP-9 level showed significant correlations with axial length (r = -0.59, p < 0.01) and DM duration (r = 049, p = 0.01). Conclusions Concentrations of MMP-1 and MMP-9 were higher in the DME groups than in the control group. MMP-9 concentrations also differed depending on DR staging, DM duration, PRP treatment, and degree of axial myopia. MMP-9 may be more important than MMP-1 in the induction of DM complications in eyes. PMID:27467659

  11. Amyloid precursor protein regulates migration and metalloproteinase gene expression in prostate cancer cells

    SciTech Connect

    Miyazaki, Toshiaki; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Inoue, Satoshi

    2014-09-26

    Highlights: • APP knockdown reduced proliferation and migration of prostate cancer cells. • APP knockdown reduced expression of metalloproteinase and EMT-related genes. • APP overexpression promoted LNCaP cell migration. • APP overexpression increased expression of metalloproteinase and EMT-related genes. - Abstract: Amyloid precursor protein (APP) is a type I transmembrane protein, and one of its processed forms, β-amyloid, is considered to play a central role in the development of Alzheimer’s disease. We previously showed that APP is a primary androgen-responsive gene in prostate cancer and that its increased expression is correlated with poor prognosis for patients with prostate cancer. APP has also been implicated in several human malignancies. Nevertheless, the mechanism underlying the pro-proliferative effects of APP on cancers is still not well-understood. In the present study, we explored a pathophysiological role for APP in prostate cancer cells using siRNA targeting APP (siAPP). The proliferation and migration of LNCaP and DU145 prostate cancer cells were significantly suppressed by siAPP. Differentially expressed genes in siAPP-treated cells compared to control siRNA-treated cells were identified by microarray analysis. Notably, several metalloproteinase genes, such as ADAM10 and ADAM17, and epithelial–mesenchymal transition (EMT)-related genes, such as VIM, and SNAI2, were downregulated in siAPP-treated cells as compared to control cells. The expression of these genes was upregulated in LNCaP cells stably expressing APP when compared with control cells. APP-overexpressing LNCaP cells exhibited enhanced migration in comparison to control cells. These results suggest that APP may contribute to the proliferation and migration of prostate cancer cells by modulating the expression of metalloproteinase and EMT-related genes.

  12. MRI-controlled interstitial ultrasound brain therapy: An initial in-vivo study

    NASA Astrophysics Data System (ADS)

    N'Djin, W. Apoutou; Burtnyk, Mathieu; Lipsman, Nir; Bronskill, Michael; Schwartz, Michael; Kucharczyk, Walter; Chopra, Rajiv

    2012-11-01

    The recent emergence at the clinical level of minimally-invasive focal therapy such as laser-induced thermal therapy (LITT) has demonstrated promise in the management of brain metastasis [1], although control over the spatial pattern of heating is limited. Delivery of HIFU from minimally-invasive applicators enables high spatial control of the heat deposition in biological tissues, large treatment volumes and high treatment rate in well chosen conditions [2,3]. In this study, the feasibility of MRI-guided interstitial ultrasound therapy in brain was studies in-vivo in a porcine model. A prototype system originally developed for transurethral ultrasound therapy [4,5,6] was used in this study. Two burr holes of 12 mm in diameter were created in the animal's skull to allow the insertion of the therapeutic ultrasound applicator (probe) into the brain at two locations (right and left frontal lobe). A 4-element linear ultrasound transducer (f = 8 MHz) was mounted at the tip of a 25-cm linear probe (6 mm in diameter). The target boundary was traced to cover in 2D a surface compatible with the treatment of a 2 cm brain tumor. Acoustic power of each element and rotation rate of the device were adjusted in real-time based on MR-thermometry feedback control to optimize heat deposition at the target boundary [2,4,5]. Two MRT-controlled ultrasound brain treatments per animal have been performed using a maximal surface acoustic power of 10W.cm-2. In all cases, it was possible to increase accurately the temperature of the brain tissues in the targeted region over the 55°C threshold necessary for the creation of irreversible thermal lesion. Tissue changes were visible on T1w contrast-enhanced images immediately after treatment. These changes were also evident on T2w FSE images taken 2 hours after the 1st treatment and correlated well with the temperature image. On average, the targeted volume was 4.7 ± 2.3 cm3 and the 55°C treated volume was 6.7 ± 4.4 cm3. The volumetric

  13. Control of a 2 DoF robot using a brain-machine interface.

    PubMed

    Hortal, Enrique; Ubeda, Andrés; Iáñez, Eduardo; Azorín, José M

    2014-09-01

    In this paper, a non-invasive spontaneous Brain-Machine Interface (BMI) is used to control the movement of a planar robot. To that end, two mental tasks are used to manage the visual interface that controls the robot. The robot used is a PupArm, a force-controlled planar robot designed by the nBio research group at the Miguel Hernández University of Elche (Spain). Two control strategies are compared: hierarchical and directional control. The experimental test (performed by four users) consists of reaching four targets. The errors and time used during the performance of the tests are compared in both control strategies (hierarchical and directional control). The advantages and disadvantages of each method are shown after the analysis of the results. The hierarchical control allows an accurate approaching to the goals but it is slower than using the directional control which, on the contrary, is less precise. The results show both strategies are useful to control this planar robot. In the future, by adding an extra device like a gripper, this BMI could be used in assistive applications such as grasping daily objects in a realistic environment. In order to compare the behavior of the system taking into account the opinion of the users, a NASA Tasks Load Index (TLX) questionnaire is filled out after two sessions are completed.

  14. Pericytes: brain-immune interface modulators

    PubMed Central

    Hurtado-Alvarado, Gabriela; Cabañas-Morales, Adrian M.; Gómez-Gónzalez, Beatriz

    2014-01-01

    The premise that the central nervous system is immune-privileged arose from the fact that direct contact between immune and nervous cells is hindered by the blood–brain barrier. However, the blood–brain barrier also comprises the interface between the immune and nervous systems by secreting chemo-attractant molecules and by modulating immune cell entry into the brain. The majority of published studies on the blood–brain barrier focus on endothelial cells (ECs), which are a critical component, but not the only one; other cellular components include astroglia, microglia, and pericytes. Pericytes are poorly studied in comparison with astrocytes or ECs; they are mesenchymal cells that can modify their ultrastructure and gene expression in response to changes in the central nervous system microenvironment. Pericytes have a unique synergistic relationship with brain ECs in the regulation of capillary permeability through secretion of cytokines, chemokines, nitric oxide, matrix metalloproteinases, and by means of capillary contraction. Those pericyte manifestations are related to changes in blood–brain barrier permeability by an increase in endocytosis-mediated transport and by tight junction disruption. In addition, recent reports demonstrate that pericytes control the migration of leukocytes in response to inflammatory mediators by up-regulating the expression of adhesion molecules and releasing chemo-attractants; however, under physiological conditions they appear to be immune-suppressors. Better understanding of the immune properties of pericytes and their participation in the effects of brain infections, neurodegenerative diseases, and sleep loss will be achieved by analyzing pericyte ultrastructure, capillary coverage, and protein expression. That knowledge may provide a mechanism by which pericytes participate in the maintenance of the proper function of the brain-immune interface. PMID:24454281

  15. Brain-Emulating Cognition and Control Architecture (BECCA) v. 0.2 beta

    SciTech Connect

    ROHRER, BRANDON; & MORROW, JAMES

    2009-06-16

    BECCA is a learning and control method based on the function of the human brain. The goal behind its creation is to learn to control robots in unfamiliar environments in a way that is very robust, similar to the way that an infant learns to interact with her environment by trial and error. As of this release, this software contains an application for controlling robot hardware through a socket. The code was created so as to make it extensible to new applications. It is modular, object-oriented code in which the portions of the code that are specific to one robot are easily separable from those portions that are the constant between implementations. BECCA makes very few assumptions about the robot and environment it is learning, and so is applicable to a wide range of learning and control problems.

  16. Brain-computer interfaces for dissecting cognitive processes underlying sensorimotor control.

    PubMed

    Golub, Matthew D; Chase, Steven M; Batista, Aaron P; Yu, Byron M

    2016-04-01

    Sensorimotor control engages cognitive processes such as prediction, learning, and multisensory integration. Understanding the neural mechanisms underlying these cognitive processes with arm reaching is challenging because we currently record only a fraction of the relevant neurons, the arm has nonlinear dynamics, and multiple modalities of sensory feedback contribute to control. A brain-computer interface (BCI) is a well-defined sensorimotor loop with key simplifying advantages that address each of these challenges, while engaging similar cognitive processes. As a result, BCI is becoming recognized as a powerful tool for basic scientific studies of sensorimotor control. Here, we describe the benefits of BCI for basic scientific inquiries and review recent BCI studies that have uncovered new insights into the neural mechanisms underlying sensorimotor control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A split-brain case study on the hemispheric lateralization of inhibitory control.

    PubMed

    D'Alberto, Nicholas; Funnell, Margaret; Potter, Alexandra; Garavan, Hugh

    2017-05-01

    Understanding the neurobiological mechanisms underlying inhibitory control is crucial given its role in various disease states and substance abuse/misuse. Neuroimaging research examining inhibitory control has yielded conflicting results on the relative importance of the left and right hemisphere during successful inhibition of a motor response. In the current study, a split-brain patient was examined in order to assess the independent inhibitory capabilities of each hemisphere. The patient's right hemisphere exhibited superior inhibitory ability compared to his left hemisphere on three inhibitory control tasks. Although inferior to the right, the left hemisphere inhibited motor responses on inhibitory trials in all three tasks. The results from this study support the dominance of the right hemisphere in inhibitory control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Brain-Emulating Cognition and Control Architecture (BECCA) v. 0.2 beta

    SciTech Connect

    ROHRER, BRANDON; & MORROW, JAMES

    2009-06-16

    BECCA is a learning and control method based on the function of the human brain. The goal behind its creation is to learn to control robots in unfamiliar environments in a way that is very robust, similar to the way that an infant learns to interact with her environment by trial and error. As of this release, this software contains an application for controlling robot hardware through a socket. The code was created so as to make it extensible to new applications. It is modular, object-oriented code in which the portions of the code that are specific to one robot are easily separable from those portions that are the constant between implementations. BECCA makes very few assumptions about the robot and environment it is learning, and so is applicable to a wide range of learning and control problems.

  19. Cognitive control, cognitive reserve, and memory in the aging bilingual brain

    PubMed Central

    Grant, Angela; Dennis, Nancy A.; Li, Ping

    2014-01-01

    In recent years bilingualism has been linked to both advantages in executive control and positive impacts on aging. Such positive cognitive effects of bilingualism have been attributed to the increased need for language control during bilingual processing and increased cognitive reserve, respectively. However, a mechanistic explanation of how bilingual experience contributes to cognitive reserve is still lacking. The current paper proposes a new focus on bilingual memory as an avenue to explore the relationship between executive control and cognitive reserve. We argue that this focus will enhance our understanding of the functional and structural neural mechanisms underlying bilingualism-induced cognitive effects. With this perspective we discuss and integrate recent cognitive and neuroimaging work on bilingual advantage, and suggest an account that links cognitive control, cognitive reserve, and brain reserve in bilingual aging and memory. PMID:25520695

  20. A combination strategy based brain-computer interface for two-dimensional movement control

    NASA Astrophysics Data System (ADS)

    Xia, Bin; Maysam, Oladazimi; Veser, Sandra; Cao, Lei; Li, Jie; Jia, Jie; Xie, Hong; Birbaumer, Niels

    2015-08-01

    Objective. Two-dimensional (2D) movement control is an important issue in brain-computer interfaces (BCIs) research because being able to move, for example, a cursor with the brain will enable patients with motor disabilities to control their environment. However, it is still a challenge to continuously control 2D movement with a non-invasive BCI system. In this paper, we developed a 2D cursor control with motor imagery BCI tasks allowing users to move a cursor to any position by using a combination strategy. With this strategy, a user can combine multiple motor imagery tasks, alternatively or simultaneously, to control 2D movements. Approach. After a training session, six participants took part in the first control strategy experiment (the center-out experiment) to verify the effectiveness of the cursor control. Three of the six participants performed an additional experiment, in which they were required to move the cursor to hit five targets in a given sequence. Main results. The average hit rate was more than 95.6% and the trajectories were close to the shortest path. The average hit rate was more than 95.6% and the trajectories were close to the shortest path in the center-out experiment. In the additional experiment, three participants achieved a 100% hit rate with a short trajectory. Significance. The results demonstrated that users were able to effectively control the 2D movement using the proposed strategy. The present system may be used as a tool to interact with the external world.

  1. Language control in bilingual adults with and without history of mild traumatic brain injury.

    PubMed

    Ratiu, Ileana; Azuma, Tamiko

    2017-03-01

    Adults with a history of traumatic brain injury often show deficits in executive functioning (EF), including the ability to inhibit, switch, and attend to tasks. These abilities are critical for language processing in bilinguals. This study examined the effect of mild traumatic brain injury (mTBI) on EF and language processing in bilinguals using behavioral and eye-tracking measures. Twenty-two bilinguals with a history of mTBI and twenty healthy control bilinguals were administered executive function and language processing tasks. Bilinguals with a history of mTBI showed deficits in specific EFs and had higher rates of language processing errors than healthy control bilinguals. Additionally, individuals with a history of mTBI have different patterns of eye movements during reading than healthy control bilinguals. These data suggest that language processing deficits are related to underlying EF abilities. The findings provide important information regarding specific EF and language control deficits in bilinguals with a history mTBI.

  2. Using the electrocorticographic speech network to control a brain-computer interface in humans

    NASA Astrophysics Data System (ADS)

    Leuthardt, Eric C.; Gaona, Charles; Sharma, Mohit; Szrama, Nicholas; Roland, Jarod; Freudenberg, Zac; Solis, Jamie; Breshears, Jonathan; Schalk, Gerwin

    2011-06-01

    Electrocorticography (ECoG) has emerged as a new signal platform for brain-computer interface (BCI) systems. Classically, the cortical physiology that has been commonly investigated and utilized for device control in humans has been brain signals from the sensorimotor cortex. Hence, it was unknown whether other neurophysiological substrates, such as the speech network, could be used to further improve on or complement existing motor-based control paradigms. We demonstrate here for the first time that ECoG signals associated with different overt and imagined phoneme articulation can enable invasively monitored human patients to control a one-dimensional computer cursor rapidly and accurately. This phonetic content was distinguishable within higher gamma frequency oscillations and enabled users to achieve final target accuracies between 68% and 91% within 15 min. Additionally, one of the patients achieved robust control using recordings from a microarray consisting of 1 mm spaced microwires. These findings suggest that the cortical network associated with speech could provide an additional cognitive and physiologic substrate for BCI operation and that these signals can be acquired from a cortical array that is small and minimally invasive.

  3. Brain mechanisms for predictive control by switching internal models: implications for higher-order cognitive functions.

    PubMed

    Imamizu, Hiroshi; Kawato, Mitsuo

    2009-07-01

    Humans can guide their actions toward the realization of their intentions. Flexible, rapid and precise realization of intentions and goals relies on the brain learning to control its actions on external objects and to predict the consequences of this control. Neural mechanisms that mimic the input-output properties of our own body and other objects can be used to support prediction and control, and such mechanisms are called internal models. We first summarize functional neuroimaging, behavioral and computational studies of the brain mechanisms related to acquisition, modular organization, and the predictive switching of internal models mainly for tool use. These mechanisms support predictive control and flexible switching of intentional actions. We then review recent studies demonstrating that internal models are crucial for the execution of not only immediate actions but also higher-order cognitive functions, including optimization of behaviors toward long-term goals, social interactions based on prediction of others' actions and mental states, and language processing. These studies suggest that a concept of internal models can consistently explain the neural mechanisms and computational principles needed for fundamental sensorimotor functions as well as higher-order cognitive functions.

  4. Beyond intuitive anthropomorphic control: recent achievements using brain computer interface technologies

    NASA Astrophysics Data System (ADS)

    Pohlmeyer, Eric A.; Fifer, Matthew; Rich, Matthew; Pino, Johnathan; Wester, Brock; Johannes, Matthew; Dohopolski, Chris; Helder, John; D'Angelo, Denise; Beaty, James; Bensmaia, Sliman; McLoughlin, Michael; Tenore, Francesco

    2017-05-01

    Brain-computer interface (BCI) research has progressed rapidly, with BCIs shifting from animal tests to human demonstrations of controlling computer cursors and even advanced prosthetic limbs, the latter having been the goal of the Revolutionizing Prosthetics (RP) program. These achievements now include direct electrical intracortical microstimulation (ICMS) of the brain to provide human BCI users feedback information from the sensors of prosthetic limbs. These successes raise the question of how well people would be able to use BCIs to interact with systems that are not based directly on the body (e.g., prosthetic arms), and how well BCI users could interpret ICMS information from such devices. If paralyzed individuals could use BCIs to effectively interact with such non-anthropomorphic systems, it would offer them numerous new opportunities to control novel assistive devices. Here we explore how well a participant with tetraplegia can detect infrared (IR) sources in the environment using a prosthetic arm mounted camera that encodes IR information via ICMS. We also investigate how well a BCI user could transition from controlling a BCI based on prosthetic arm movements to controlling a flight simulator, a system with different physical dynamics than the arm. In that test, the BCI participant used environmental information encoded via ICMS to identify which of several upcoming flight routes was the best option. For both tasks, the BCI user was able to quickly learn how to interpret the ICMSprovided information to achieve the task goals.

  5. Using the Electrocorticographic Speech Network to Control a Brain-Computer Interface in Humans

    PubMed Central

    Leuthardt, Eric C.; Gaona, Charles; Sharma, Mohit; Szrama, Nicholas; Roland, Jarod; Freudenberg, Zac; Solis, Jamie; Breshears, Jonathan; Schalk, Gerwin

    2013-01-01

    Electrocorticography (ECoG) has emerged as a new signal platform for brain-computer interface (BCI) systems. Classically, the cortical physiology that has been commonly investigated and utilized for device control in humans has been brain signals from sensorimotor cortex. Hence, it was unknown whether other neurophysiological substrates, such as the speech network, could be used to further improve on or complement existing motor-based control paradigms. We demonstrate here for the first time that ECoG signals associated with different overt and imagined phoneme articulation can enable invasively monitored human patients to control a one-dimensional computer cursor rapidly and accurately. This phonetic content was distinguishable within higher gamma frequency oscillations and enabled users to achieve final target accuracies between 68 and 91% within 15 minutes. Additionally, one of the patients achieved robust control using recordings from a microarray consisting of 1 mm spaced microwires. These findings suggest that the cortical network associated with speech could provide an additional cognitive and physiologic substrate for BCI operation and that these signals