Science.gov

Sample records for metallothionein-i overexpression decreases

  1. Analysis of the effects of overexpression of metallothionein-I in transgenic mice on the reproductive toxicology of cadmium

    SciTech Connect

    Dalton, T.; Kai Fu; Andrews, G.K.; Enders, G.C.; Palmiter, R.D.

    1996-01-01

    Exposure to low levels of cadmium reduces fertility. In male mice spermatogensis is highly sensitive to cadmium, whereas in females the peri-implantation period of pregnancy is sensitive. To examine the potential roles of the cadmium-binding protein, metallothionein (MT), in the reproductive toxicology of cadmium, we examined a transgenic mouse strain that overexpresses metallothionein-I (MT-I). These mice had dramatically increased steady-state levels of MT-I mRNA and MT in the testes and in the female reproductive tract during the peri-implantation period of pregnancy, and this overexpression occurred in a cell-specific and temporally regulated manner similar to that of the endogenous MT-I gene. Transgenic and control males were injected with cadmium, and the histology of the testes was examined. An injection of 7.5 {mu}mol Cd/Kg had no effect on histology of the testes in either transgenic or control mice. In contrast, an injection of 10 {mu}mol Cd/kg caused rapid changes in the histology of the testes and resulted in pronounced testicular necrosis in both control and transgenic mice. Female transgenic and control mice were mated and then injected with cadmium (30-45 {mu}mol Cd/kg) on the day of blastocyst implantation (day 4). In both of these groups, injection of cadmium reduced pregnancy rate, and no dramatic protection was afforded by maternal and/or embryonic overexpression of MT. Thus, overexpression of MT-I does not significantly protect against either of these cadmium-induced effects on fertility. 65 refs., 6 figs., 1 tab.

  2. Overexpression of metallothionein-I, a copper-regulating protein, attenuates intracellular copper dyshomeostasis and extends lifespan in a mouse model of amyotrophic lateral sclerosis caused by mutant superoxide dismutase-1.

    PubMed

    Tokuda, Eiichi; Okawa, Eriko; Watanabe, Shunsuke; Ono, Shin-Ichi

    2014-03-01

    Over 170 mutations in superoxide dismutase-1 (SOD1) cause familial amyotrophic lateral sclerosis (ALS), a lethal motor neuron disease. Although the molecular properties of SOD1 mutants differ considerably, we have recently shown that intracellular copper dyshomeostasis is a common pathogenic feature of different SOD1 mutants. Thus, the potentiation of endogenous copper regulation could be a therapeutic strategy. In this study, we investigated the effects of the overexpression of metallothionein-I (MT-I), a major copper-regulating protein, on the disease course of a mouse model of ALS (SOD1(G93A)). Using double transgenic techniques, we found that the overexpression of MT-I in SOD1(G93A) mice significantly extended the lifespan and slowed disease progression, but the effects on disease onset were modest. Genetically induced MT-I normalized copper dyshomeostasis in the spinal cord without influencing SOD1 enzymatic activity. The overexpression of MT-I in SOD1(G93A) mice markedly attenuated the pathological features of the mice, including the death of motor neurons, the degeneration of ventral root axons, the atrophy of skeletal muscles, and the activation of glial cells. Double transgenic mice also showed a decreased level of SOD1 aggregates within the glial cells of the spinal cord. Furthermore, the overexpression of MT-I in SOD1(G93A) mice reduced the number of spheroid-shaped astrocytes cleaved by active caspase-3. We concluded that therapeutic strategies aimed at the potentiation of copper regulation by MT-I could be of benefit in cases of ALS caused by SOD1 mutations.

  3. Metallothionein-I induction by stress in specific brain areas.

    PubMed

    Hidalgo, J; Campmany, L; Martí, O; Armario, A

    1991-10-01

    The distribution of metallothionein-I (MT) in several areas of the brain and its induction by immobilization stress has been studied in the rat. MT content was highest in hippocampus and midbrain and lowest in frontal cortex and pons plus medulla oblongata. Immobilization stress for 18 hours (which was accompanied by food and water deprivation) significantly increased MT levels in the frontal cortex, pons plus medulla oblongata and hypothalamus, but not in midbrain and hippocampus. The effect of stress on MT levels was specific as food and water deprivation along had no significant effect on MT levels in any of the brain areas studied. The effect of stress on MT levels was independent of changes in cytosolic Zn content; this was generally unaffected by stress or food and water deprivation but decreased in pons plus medulla oblongata from stressed rats. The results suggest that MT is induced more significantly in the brain areas that are usually involved in the response of animals to stress.

  4. Decreased proliferation kinetics of mouse myoblasts overexpressing FRG1.

    PubMed

    Chen, Steven C; Frett, Ellie; Marx, Joseph; Bosnakovski, Darko; Reed, Xylena; Kyba, Michael; Kennedy, Brian K

    2011-01-01

    Although recent publications have linked the molecular events driving facioscapulohumeral muscular dystrophy (FSHD) to expression of the double homeobox transcription factor DUX4, overexpression of FRG1 has been proposed as one alternative causal agent as mice overexpressing FRG1 present with muscular dystrophy. Here, we characterize proliferative defects in two independent myoblast lines overexpressing FRG1. Myoblasts isolated from thigh muscle of FRG1 transgenic mice, an affected dystrophic muscle, exhibit delayed proliferation as measured by decreased clone size, whereas myoblasts isolated from the unaffected diaphragm muscle proliferated normally. To confirm the observation that overexpression of FRG1 could impair myoblast proliferation, we examined C2C12 myoblasts with inducible overexpression of FRG1, finding increased doubling time and G1-phase cells in mass culture after induction of FRG1 and decreased levels of pRb phosphorylation. We propose that depressed myoblast proliferation may contribute to the pathology of mice overexpressing FRG1 and may play a part in FSHD.

  5. Prevention of gastrointestinal lead poisoning using recombinant Lactococcus lactis expressing human metallothionein-I fusion protein.

    PubMed

    Xiao, Xue; Zhang, Changbin; Liu, Dajun; Bai, Weibin; Zhang, Qihao; Xiang, Qi; Huang, Yadong; Su, Zhijian

    2016-04-05

    Low-level lead poisoning is an insidious disease that affects millions of children worldwide, leading to biochemical and neurological dysfunctions. Blocking lead uptake via the gastrointestinal tract is an important prevention strategy. With this in mind, we constructed the recombinant Lactococcus lactis strain pGSMT/MG1363, which constitutively expressed the fusion protein glutathione S-transferase (GST)-small molecule ubiquitin-like modifier protein (SUMO)-metallothionein-I (GST-SUMO-MT). The thermodynamic data indicated that the average number of lead bound to a GST-SUMO-MT molecule was 3.655 and this binding reaction was a spontaneous, exothermic and entropy-increasing process. The total lead-binding capacity of pGSMT/MG1363 was 4.11 ± 0.15 mg/g dry mass. Oral administration of pGSMT/MG1363 (1 × 10(10) Colony-Forming Units) to pubertal male rats that were also treated with 5 mg/kg of lead acetate daily significantly inhibited the increase of blood lead levels, the impairment of hepatic function and the decrease of testosterone concentration in the serum, which were all impaired in rats treated by lead acetate alone. Moreover, the administration of pGSMT/MG1363 for 6 weeks did not affect the serum concentration of calcium, magnesium, potassium or sodium ions. This study provides a convenient and economical biomaterial for preventing lead poisoning via the digestive tract.

  6. Prevention of gastrointestinal lead poisoning using recombinant Lactococcus lactis expressing human metallothionein-I fusion protein

    PubMed Central

    Xiao, Xue; Zhang, Changbin; Liu, Dajun; Bai, Weibin; Zhang, Qihao; Xiang, Qi; Huang, Yadong; Su, Zhijian

    2016-01-01

    Low-level lead poisoning is an insidious disease that affects millions of children worldwide, leading to biochemical and neurological dysfunctions. Blocking lead uptake via the gastrointestinal tract is an important prevention strategy. With this in mind, we constructed the recombinant Lactococcus lactis strain pGSMT/MG1363, which constitutively expressed the fusion protein glutathione S-transferase (GST)–small molecule ubiquitin-like modifier protein (SUMO)–metallothionein-I (GST-SUMO-MT). The thermodynamic data indicated that the average number of lead bound to a GST-SUMO-MT molecule was 3.655 and this binding reaction was a spontaneous, exothermic and entropy-increasing process. The total lead-binding capacity of pGSMT/MG1363 was 4.11 ± 0.15 mg/g dry mass. Oral administration of pGSMT/MG1363 (1 × 1010 Colony-Forming Units) to pubertal male rats that were also treated with 5 mg/kg of lead acetate daily significantly inhibited the increase of blood lead levels, the impairment of hepatic function and the decrease of testosterone concentration in the serum, which were all impaired in rats treated by lead acetate alone. Moreover, the administration of pGSMT/MG1363 for 6 weeks did not affect the serum concentration of calcium, magnesium, potassium or sodium ions. This study provides a convenient and economical biomaterial for preventing lead poisoning via the digestive tract. PMID:27045906

  7. Why does SOD overexpression sometimes enhance, sometimes decrease, hydrogen peroxide production? A minimalist explanation.

    PubMed

    Gardner, Rui; Salvador, Armindo; Moradas-Ferreira, Pedro

    2002-06-15

    Toxic effects of superoxide dismutase (SOD) overexpression are commonly attributed to increased hydrogen peroxide (H(2)O(2)) production. Still, published experiments yield contradictory evidence on whether SOD overexpression increases or decreases H(2)O(2) production. We analyzed this issue using a minimal mathematical model. The most relevant mechanisms of superoxide consumption are treated as pseudo first-order processes, and both superoxide production and the activity of enzymes other than SOD were considered constant. Even within this simple framework, SOD overexpression may increase, hold constant, or decrease H(2)O(2) production. At normal SOD levels, the outcome depends on the ratio between the rate of processes that consume superoxide without forming H(2)O(2) and the rate of processes that consume superoxide with high (>/= 1) H(2)O(2) yield. In cells or cellular compartments where this ratio is exceptionally low (< 1), a modest decrease in H(2)O(2) production upon SOD overexpression is expected. Where the ratio is higher than unity, H(2)O(2) production should increase, but at most linearly, with SOD activity. The results are consistent with the available experimental observations. According to the minimal model, only where most superoxide is eliminated through H(2)O(2)-free processes does SOD activity have the moderately large influence on H(2)O(2) production observed in some experiments.

  8. Overexpression of an outer membrane protein associated with decreased susceptibility to carbapenems in Proteus mirabilis.

    PubMed

    Tsai, Yi-Lin; Wang, Min-Cheng; Hsueh, Po-Ren; Liu, Ming-Che; Hu, Rouh-Mei; Wu, Yue-Jin; Liaw, Shwu-Jen

    2015-01-01

    Proteus mirabilis isolates commonly have decreased susceptibility to imipenem. Previously, we found P. mirabilis hfq mutant was more resistant to imipenem and an outer membrane protein (OMP) could be involved. Therefore, we investigated the role of this OMP in carbapenem susceptibility. By SDS-PAGE we found this OMP (named ImpR) was increased in hfq mutant and LC-MS/MS revealed it to be the homologue of Salmonella YbfM, which is a porin for chitobiose and subject to MicM (a small RNA) regulation. We demonstrated that ImpR overexpression resulted in increased carbapenem MICs in the laboratory strain and clinical isolates. Chitobiose induced expression of chb (a chitobiose utilization operon). Real-time RT-PCR and SDS-PAGE were performed to elucidate the relationship of hfq, impR, chb and MicM in P. mirabilis. We found MicM RNA was decreased in hfq mutant and chbBC-intergenic region (chbBC-IGR) overexpression strain (chbIGRov), while impR mRNA was increased in hfq mutant, micM mutant and chbIGRov strain. In addition, mutation of hfq or micM and overexpression of chbBC-IGR increased ImpR protein level. Accordingly, chitobiose made wild-type have higher levels of ImpR protein and are more resistant to carbapenems. Hfq- and MicM-complemented strains restored wild-type MICs. Mutation of both impR and hfq eliminated the increase in carbapenem MICs observed in hfq mutant and ImpR-complementation of hfq/impR double mutant resulted in MICs as hfq mutant, indicating that the ImpR-dependent decreased carbapenem susceptibility of hfq mutant. These indicate MicM was antisense to impR mRNA and was negatively-regulated by chbBC-IGR. Together, overexpression of ImpR contributed to the decreased carbapenem susceptibility in P. mirabilis.

  9. BMP Signaling and Podocyte Markers Are Decreased in Human Diabetic Nephropathy in Association With CTGF Overexpression

    PubMed Central

    Turk, Tamara; Leeuwis, Jan Willem; Gray, Julia; Torti, Suzy V.; Lyons, Karen M.; Nguyen, Tri Q.; Goldschmeding, Roel

    2009-01-01

    Diabetic nephropathy is characterized by decreased expression of bone morphogenetic protein-7 (BMP-7) and decreased podocyte number and differentiation. Extracellular antagonists such as connective tissue growth factor (CTGF; CCN-2) and sclerostin domain-containing-1 (SOSTDC1; USAG-1) are important determinants of BMP signaling activity in glomeruli. We studied BMP signaling activity in glomeruli from diabetic patients and non-diabetic individuals and from control and diabetic CTGF+/+ and CTGF+/− mice. BMP signaling activity was visualized by phosphorylated Smad1, -5, and -8 (pSmad1/5/8) immunostaining, and related to expression of CTGF, SOSTDC1, and the podocyte differentiation markers WT1, synaptopodin, and nephrin. In control and diabetic glomeruli, pSmad1/5/8 was mainly localized in podocytes, but both number of positive cells and staining intensity were decreased in diabetes. Nephrin and synaptopodin were decreased in diabetic glomeruli. Decrease of pSmad1/5/8 was only partially explained by decrease in podocyte number. SOSTDC1 and CTGF were expressed exclusively in podocytes. In diabetic glomeruli, SOSTDC1 decreased in parallel with podocyte number, whereas CTGF was strongly increased. In diabetic CTGF+/− mice, pSmad1/5/8 was preserved, compared with diabetic CTGF+/+ mice. In conclusion, in human diabetic nephropathy, BMP signaling activity is diminished, together with reduction of podocyte markers. This might relate to concomitant overexpression of CTGF but not SOSTDC1. (J Histochem Cytochem 57:623–631, 2009) PMID:19255250

  10. Cyclooxygenase-1 overexpression decreases Basal airway responsiveness but not allergic inflammation.

    PubMed

    Card, Jeffrey W; Carey, Michelle A; Bradbury, J Alyce; Graves, Joan P; Lih, Fred B; Moorman, Michael P; Morgan, Daniel L; DeGraff, Laura M; Zhao, Yun; Foley, Julie F; Zeldin, Darryl C

    2006-10-01

    Pharmacological inhibition or genetic disruption of cyclooxygenase (COX)-1 or COX-2 exacerbates the inflammatory and functional responses of the lung to environmentally relevant stimuli. To further examine the contribution of COX-derived eicosanoids to basal lung function and to allergic lung inflammation, transgenic (Tr) mice were generated in which overexpression of human COX-1 was targeted to airway epithelium. Although no differences in basal respiratory or lung mechanical parameters were observed, COX-1 Tr mice had increased bronchoalveolar lavage fluid PGE(2) content compared with wild-type littermates (23.0 +/- 3.6 vs 8.4 +/- 1.4 pg/ml; p < 0.05) and exhibited decreased airway responsiveness to inhaled methacholine. In an OVA-induced allergic airway inflammation model, comparable up-regulation of COX-2 protein was observed in the lungs of allergic wild-type and COX-1 Tr mice. Furthermore, no genotype differences were observed in allergic mice in total cell number, eosinophil content (70 vs 76% of total cells, respectively), and inflammatory cytokine content of bronchoalveolar lavage fluid, or in airway responsiveness to inhaled methacholine (p > 0.05). To eliminate the presumed confounding effects of COX-2 up-regulation, COX-1 Tr mice were bred into a COX-2 null background. In these mice, the presence of the COX-1 transgene did not alter allergen-induced inflammation but significantly attenuated allergen-induced airway hyperresponsiveness, coincident with reduced airway leukotriene levels. Collectively, these data indicate that COX-1 overexpression attenuates airway responsiveness under basal conditions but does not influence allergic airway inflammation.

  11. Decreased Cocaine Motor Sensitization and Self-Administration in Mice Overexpressing Cannabinoid CB2 Receptors

    PubMed Central

    Aracil-Fernández, Auxiliadora; Trigo, José M; García-Gutiérrez, María S; Ortega-Álvaro, Antonio; Ternianov, Alexander; Navarro, Daniela; Robledo, Patricia; Berbel, Pere; Maldonado, Rafael; Manzanares, Jorge

    2012-01-01

    The potential involvement of the cannabinoid CB2 receptors (CB2r) in the adaptive responses induced by cocaine was studied in transgenic mice overexpressing the CB2r (CB2xP) and in wild-type (WT) littermates. For this purpose, the acute and sensitized locomotor responses to cocaine, conditioned place preference, and cocaine intravenous self-administration were evaluated. In addition, we assessed whether CB2r were localized in neurons and/or astrocytes, and whether they colocalized with dopamine D1 and D2 receptors (D1Dr and D2Dr). Dopamine (DA) extracellular levels in the nucleus accumbens (NAcc), and gene expression of tyrosine hydroxylase (TH) and DA transporter (DAT) in the ventral tegmental area (VTA), and μ-opioid and cannabinoid CB1 receptors in the NAcc were also studied in both genotypes. CB2xP mice showed decreased motor response to acute administration of cocaine (10–20 mg/kg) and cocaine-induced motor sensitization compared with WT mice. CB2xP mice presented cocaine-induced conditioned place aversion and self-administered less cocaine than WT mice. CB2r were found in neurons and astrocytes and colocalized with D2Dr in the VTA and NAcc. No significant differences in extracellular DA levels in the NAcc were observed between genotypes after cocaine administration. Under baseline conditions, TH and DAT gene expression was higher and μ-opioid receptor gene expression was lower in CB2xP than in WT mice. However, both genotypes showed similar changes in TH and μ-opioid receptor gene expression after cocaine challenge independently of the pretreatment received. Importantly, the cocaine challenge decreased DAT gene expression to a lesser extent in cocaine-pretreated CB2xP than in cocaine-pretreated WT mice. These results revealed that CB2r are involved in cocaine motor responses and cocaine self-administration, suggesting that this receptor could represent a promising target to develop novel treatments for cocaine addiction. PMID:22414816

  12. Presenilin 1 overexpressions in Chinese hamster ovary (CHO) cells decreases the phosphorylation of retinoblastoma protein: relevance for neurodegeneration.

    PubMed

    Prat, María I; Adamo, Ana M; González, Silvia A; Affranchino, José L; Ikeda, Masaki; Matsubara, Etsuro; Shoji, Mikio; Smith, Mark A; Castaño, Eduardo M; Morelli, Laura

    2002-06-21

    Mutations in the presenilin 1 (PS1) gene have been associated to familial Alzheimer disease although the exact pathogenic mechanism is unclear. We report that stable overexpression of wild type PS1 led to a decrease in cyclin-dependent kinase 4 (CDK 4) activity and retinoblastoma tumor suppressor protein (pRb) phosphorylation that correlated with decreased levels of beta-catenin and cyclin D1. PS1 mutant D385A also precipitated a similar effect suggesting that gamma-secretase cleavage is not essential for PS1-mediated CDK 4 inhibition. We postulate that PS1 overexpression may balance the hyperphosphorylation of pRb associated with death of post mitotic neurons after injury.

  13. Overexpression of the pleiotropic regulator CodY decreases sporulation, attachment and pellicle formation in Bacillus anthracis.

    PubMed

    Gopalani, Monisha; Dhiman, Alisha; Rahi, Amit; Bhatnagar, Rakesh

    2016-01-15

    CodY, a global transcriptional regulator, primarily functions as a nutrient and energy sensor. It is activated by metabolic effectors like BCAA and GTP. In low G + C Gram positive bacteria, it facilitates coupling of changes in the cellular metabolite pool with those required in the transcriptome of the cell. This pleiotropic regulator controls the expression of a vast number of genes as the cell transits from exponential to the stationary phase. Earlier studies have shown that CodY is required for the virulence of Bacillus anthracis. We sought to investigate the effect of its overexpression on the physiology of B. anthracis. In our study, we found that cellular CodY levels were unchanged during this phase-transition. Expression of endogenous CodY remained the same in different nutrient limiting conditions. Immunoblotting studies revealed CodY presence in the whole spore lysate of B. anthracis indicating it to be a component of the spore proteome. We could also detect CodY in the secretome of B. anthracis. Further, CodY was overexpressed in B. anthracis Sterne strain and this led to a 100-fold decrease in the sporulation titer and a 2.5-fold decrease in the in vitro attachment ability of the bacteria. We also observed a decrease in the pellicle formation by CodY overexpressed strain when compared to wildtype bacilli. The CodY overexpressed strain showed chaining phenotype during growth in liquid media and pellicle.

  14. Decreased Xylitol Formation during Xylose Fermentation in Saccharomyces cerevisiae Due to Overexpression of Water-Forming NADH Oxidase

    PubMed Central

    Zhang, Guo-Chang; Ding, Wen-Tao

    2012-01-01

    The recombinant xylose-fermenting Saccharomyces cerevisiae strain harboring xylose reductase (XR) and xylitol dehydrogenase (XDH) from Scheffersomyces stipitis requires NADPH and NAD+, creates cofactor imbalance, and causes xylitol accumulation during growth on d-xylose. To solve this problem, noxE, encoding a water-forming NADH oxidase from Lactococcus lactis driven by the PGK1 promoter, was introduced into the xylose-utilizing yeast strain KAM-3X. A cofactor microcycle was set up between the utilization of NAD+ by XDH and the formation of NAD+ by water-forming NADH oxidase. Overexpression of noxE significantly decreased xylitol formation and increased final ethanol production during xylose fermentation. Under xylose fermentation conditions with an initial d-xylose concentration of 50 g/liter, the xylitol yields for of KAM-3X(pPGK1-noxE) and control strain KAM-3X were 0.058 g/g xylose and 0.191 g/g, respectively, which showed a 69.63% decrease owing to noxE overexpression; the ethanol yields were 0.294 g/g for KAM-3X(pPGK1-noxE) and 0.211 g/g for the control strain KAM-3X, which indicated a 39.33% increase due to noxE overexpression. At the same time, the glycerol yield also was reduced by 53.85% on account of the decrease in the NADH pool caused by overexpression of noxE. PMID:22156411

  15. Overexpression of Cotton GhMPK11 Decreases Disease Resistance through the Gibberellin Signaling Pathway in Transgenic Nicotiana benthamiana

    PubMed Central

    Wang, Fang; Wang, Chen; Yan, Yan; Jia, Haihong; Guo, Xingqi

    2016-01-01

    Many changes in development, growth, hormone activity and environmental stimuli responses are mediated by mitogen-activated protein kinase (MAPK) cascades. However, in plants, studies on MAPKs have mainly focused on MPK3, MPK4 and MPK6. Here, a novel group B MAPK gene, GhMPK11, was isolated from cotton (Gossypium hirsutum L.) and characterized. Both promoter and expression pattern analyses revealed that GhMPK11 is involved in defense responses and signaling pathways. GhMPK11 overexpression in Nicotiana benthamiana plants could increase gibberellin 3 (GA3) content through the regulation of GA-related genes. Interestingly, either GhMPK11 overexpression or exogenous GA3 treatment in N. benthamiana plants could enhance the susceptibility of these plants to the infectious pathogens Ralstonia solanacearum and Rhizoctonia solani. Moreover, reactive oxygen species (ROS) accumulation was increased after pathogen infiltration due to the increased expression of ROS-related gene respiratory burst oxidative homologs (RbohB) and the decreased expression or activity of ROS detoxification enzymes regulated by GA3, such as superoxide dismutases (SODs), peroxidases (PODs), catalase (CAT) and glutathione S-transferase (GST). Taken together, these results suggest that GhMPK11 overexpression could enhance the susceptibility of tobacco to pathogen infection through the GA3 signaling pathway via down-regulation of ROS detoxification enzymes. PMID:27242882

  16. [Effects of the expression of mouse metallothionein-I gene in human HeLa cell line on drug resistance].

    PubMed

    Li, X; Lü, W; Yin, S; Li, L

    2000-07-01

    Metallothionein-I (MT-I) gene was inserted into EcoRI site by using pSV2-neo plasmid vector. Recombiant plasmid was transfected into HeLa cells by DNA-calcium phosphate precipitation technique. MT-I expression colones were growing in medium including G418. The amount of MT-I expression in transfected cells was found 2.6 times higher than that of non-transfected ones. In order to observe the relationship between the expression of MT-I gene in cells and drug resistance, cells were treated with different concentrations of cisplatin and adriamycin respectively. The results indicated that cisplatin (0.1 mumol/ml) inhibited the growth of both transfected and non-transfected cells. The inhibitory rates were 34% and 82% respectively(P < 0.05). IC50(50% inhibitory concentration for cell growing) was 0.144 mumol/ml and 0.061 mumol/ml and the ratio of them was 2.36: 1 after the treatment of cisplatin 72 h later. The cells were treated with adriamycin 72 h later, the inhibitory rates of transfected and non-transfected cells were 18% and 25% separately. The rates showed no significant difference (P > 0.05). The results indicated that MT was related to drug resistance of tumor cells.

  17. Overexpression of CB2 cannabinoid receptors decreased vulnerability to anxiety and impaired anxiolytic action of alprazolam in mice.

    PubMed

    García-Gutiérrez, María S; Manzanares, Jorge

    2011-01-01

    Mice overexpressing CB2r (CB2xP) were exposed to open field (OF), light-dark box (LDB) and elevated plus maze (EPM) tests. Corticotropin-releasing factor (CRF) and pro-opiomelanocortin (POMC) mRNA were measured in paraventricular (PVN) and arcuate (ARC) nuclei of the hypothalamus after 30 minutes of restraint stress (RS). Anxiolytic effects of alprazolam (45 or 70 µg/kg, ip) were evaluated. GABA(A)α(2) and GABA(A)γ(2) mRNA were measured in the hippocampus (HIPP) and amygdala (AMY) of CB2xP and wild type (WT) mice. No differences were observed in the total distance travelled by CB2xP and WT mice in OF. Central and peripheral distances travelled significantly increased and decreased in CB2xP mice. Overexpression of CB2r reduced anxiety-like behaviours in LDB and EPM. In WT mice, RS increased CRF (82%) and POMC (42%) mRNA in the PVN and ARC nuclei, respectively. In CB2xP mice, RS also increased POMC (22%) mRNA in the ARC nucleus, but had no effect on CRF mRNA in the PVN nucleus. Administration of alprazolam was without effect in CB2xP mice. An increase of GABA(A)α(2) and GABA(A)γ(2) mRNA in the hippocampus and amygdala of CB2xP mice was observed. Our findings revealed that increased expression of CB2r significantly reduced anxiogenic-related behaviours, modified the response to stress and impaired the action of anxiolytic drugs.

  18. Intranasal NAP (davunetide) decreases tau hyperphosphorylation and moderately improves behavioral deficits in mice overexpressing α-synuclein

    PubMed Central

    Magen, Iddo; Ostritsky, Regina; Richter, Franziska; Zhu, Chunni; Fleming, Sheila M; Lemesre, Vincent; Stewart, Alistair J; Morimoto, Bruce H; Gozes, Illana; Chesselet, Marie-Françoise

    2014-01-01

    Genome-wide association studies have identified strong associations between the risk of developing Parkinson's disease (PD) and polymorphisms in the genes encoding α-synuclein and the microtubule-associated protein tau. However, the contribution of tau and its phosphorylated form (p-tau) to α-synuclein-induced pathology and neuronal dysfunction remains controversial. We have assessed the effects of NAP (davunetide), an eight-amino acid peptide that decreases tau hyperphosphorylation, in mice overexpressing wild-type human α-synuclein (Thy1-aSyn mice), a model that recapitulates aspects of PD. We found that the p-tau/tau level increased in a subcortical tissue block that includes the striatum and brain stem, and in the cerebellum of the Thy1-aSyn mice compared to nontransgenic controls. Intermittent intranasal NAP administration at 2 μg/mouse per day, 5 days a week, for 24 weeks, starting at 4 weeks of age, significantly decreased the ratio of p-tau/tau levels in the subcortical region while a higher dose of 15 μg/mouse per day induced a decrease in p-tau/tau levels in the cerebellum. Both NAP doses reduced hyperactivity, improved habituation to a novel environment, and reduced olfactory deficits in the Thy1-aSyn mice, but neither dose improved the severe deficits of motor coordination observed on the challenging beam and pole, contrasting with previous data obtained with continuous daily administration of the drug. The data reveal novel effects of NAP on brain p-tau/tau and behavioral outcomes in this model of synucleinopathy and suggest that sustained exposure to NAP may be necessary for maximal benefits. PMID:25505609

  19. Intranasal NAP (davunetide) decreases tau hyperphosphorylation and moderately improves behavioral deficits in mice overexpressing α-synuclein.

    PubMed

    Magen, Iddo; Ostritsky, Regina; Richter, Franziska; Zhu, Chunni; Fleming, Sheila M; Lemesre, Vincent; Stewart, Alistair J; Morimoto, Bruce H; Gozes, Illana; Chesselet, Marie-Françoise

    2014-10-01

    Genome-wide association studies have identified strong associations between the risk of developing Parkinson's disease (PD) and polymorphisms in the genes encoding α-synuclein and the microtubule-associated protein tau. However, the contribution of tau and its phosphorylated form (p-tau) to α-synuclein-induced pathology and neuronal dysfunction remains controversial. We have assessed the effects of NAP (davunetide), an eight-amino acid peptide that decreases tau hyperphosphorylation, in mice overexpressing wild-type human α-synuclein (Thy1-aSyn mice), a model that recapitulates aspects of PD. We found that the p-tau/tau level increased in a subcortical tissue block that includes the striatum and brain stem, and in the cerebellum of the Thy1-aSyn mice compared to nontransgenic controls. Intermittent intranasal NAP administration at 2 μg/mouse per day, 5 days a week, for 24 weeks, starting at 4 weeks of age, significantly decreased the ratio of p-tau/tau levels in the subcortical region while a higher dose of 15 μg/mouse per day induced a decrease in p-tau/tau levels in the cerebellum. Both NAP doses reduced hyperactivity, improved habituation to a novel environment, and reduced olfactory deficits in the Thy1-aSyn mice, but neither dose improved the severe deficits of motor coordination observed on the challenging beam and pole, contrasting with previous data obtained with continuous daily administration of the drug. The data reveal novel effects of NAP on brain p-tau/tau and behavioral outcomes in this model of synucleinopathy and suggest that sustained exposure to NAP may be necessary for maximal benefits.

  20. Overexpression of spinach non-symbiotic hemoglobin in Arabidopsis resulted in decreased NO content and lowered nitrate and other abiotic stresses tolerance.

    PubMed

    Bai, Xuegui; Long, Juan; He, Xiaozhao; Yan, Jinping; Chen, Xuanqin; Tan, Yong; Li, Kunzhi; Chen, Limei; Xu, Huini

    2016-05-23

    A class 1 non-symbiotic hemoglobin family gene, SoHb, was isolated from spinach. qRT-PCR showed that SoHb was induced by excess nitrate, polyethylene glycol, NaCl, H2O2, and salicylic acid. Besides, SoHb was strongly induced by application of nitric oxide (NO) donor, while was suppressed by NO scavenger, nitrate reductase inhibitor, and nitric oxide synthase inhibitor. Overexpression of SoHb in Arabidopsis resulted in decreased NO level and sensitivity to nitrate stress, as shown by reduced root length, fresh weight, the maximum photosystem II quantum ratio of variable to maximum fluorescence (Fv/Fm), and higher malondialdehyde contents. The activities and gene transcription of superoxide dioxidase, and catalase decreased under nitrate stress. Expression levels of RD22, RD29A, DREB2A, and P5CS1 decreased after nitrate treatment in SoHb-overexpressing plants, while increased in the WT plants. Moreover, SoHb-overexpressing plants showed decreased tolerance to NaCl and osmotic stress. In addition, the SoHb-overexpression lines showed earlier flower by regulating the expression of SOC, GI and FLC genes. Our results indicated that the decreasing NO content in Arabidopsis by overexpressing SoHb might be responsible for lowered tolerance to nitrate and other abiotic stresses.

  1. Overexpression of spinach non-symbiotic hemoglobin in Arabidopsis resulted in decreased NO content and lowered nitrate and other abiotic stresses tolerance

    PubMed Central

    Bai, Xuegui; Long, Juan; He, Xiaozhao; Yan, Jinping; Chen, Xuanqin; Tan, Yong; Li, Kunzhi; Chen, Limei; Xu, Huini

    2016-01-01

    A class 1 non-symbiotic hemoglobin family gene, SoHb, was isolated from spinach. qRT-PCR showed that SoHb was induced by excess nitrate, polyethylene glycol, NaCl, H2O2, and salicylic acid. Besides, SoHb was strongly induced by application of nitric oxide (NO) donor, while was suppressed by NO scavenger, nitrate reductase inhibitor, and nitric oxide synthase inhibitor. Overexpression of SoHb in Arabidopsis resulted in decreased NO level and sensitivity to nitrate stress, as shown by reduced root length, fresh weight, the maximum photosystem II quantum ratio of variable to maximum fluorescence (Fv/Fm), and higher malondialdehyde contents. The activities and gene transcription of superoxide dioxidase, and catalase decreased under nitrate stress. Expression levels of RD22, RD29A, DREB2A, and P5CS1 decreased after nitrate treatment in SoHb-overexpressing plants, while increased in the WT plants. Moreover, SoHb-overexpressing plants showed decreased tolerance to NaCl and osmotic stress. In addition, the SoHb-overexpression lines showed earlier flower by regulating the expression of SOC, GI and FLC genes. Our results indicated that the decreasing NO content in Arabidopsis by overexpressing SoHb might be responsible for lowered tolerance to nitrate and other abiotic stresses. PMID:27211528

  2. Phospholemman Overexpression Inhibits Na+-K+-ATPase in Adult Rat Cardiac Myocytes: Relevance to Decreased Na+ pump Activity in Post-Infarction Myocytes

    PubMed Central

    Zhang, Xue-Qian; Moorman, J. Randall; Ahlers, Belinda A.; Carl, Lois L.; Lake, Douglas E.; Song, Jianliang; Mounsey, J. Paul; Tucker, Amy L.; Chan, Yiu-mo; Rothblum, Lawrence I.; Stahl, Richard C.; Carey, David J.; Cheung, Joseph Y.

    2005-01-01

    Messenger RNA levels of phospholemman (PLM), a member of the FXYD family of small single-span membrane proteins with putative ion-transport regulatory properties, were increased in postinfarction (MI) rat myocytes. We tested the hypothesis that the previously observed reduction in Na+-K+-ATPase activity in MI rat myocytes was due to PLM overexpression. In rat hearts harvested 3 and 7 days post-MI, PLM protein expression was increased by 2- and 4-fold, respectively. To simulate increased PLM expression post-MI, PLM was overexpressed in normal adult rat myocytes by adenovirus-mediated gene transfer. PLM overexpression did not affect the relative level of phosphorylation on serine68 of PLM. Na+-K+-ATPase activity was measured as ouabain-sensitive Na+-K+ pump current (Ip). Compared to control myocytes overexpressing green fluorescent protein alone, Ip measured in myocytes overexpressing PLM was significantly (P<0.0001) lower at similar membrane voltages, pipette Na+ ([Na+]pip) and extracellular K+ concentrations ([K+]o). From −70 to +60 mV, neither [Na+]pip nor [K+]o required to attain half-maximal Ip was significantly different between control and PLM myocytes. This phenotype of decreased Vmax without appreciable changes in Km for Na+ and K+ in PLM overexpressed myocytes was similar to that observed in MI rat myocytes. Inhibition of Ip by PLM overexpression was not due to decreased Na+-K+-ATPase expression since there were no changes in either protein or messenger RNA levels of either α1 or α2 isoforms of Na+-K+-ATPase. In native rat cardiac myocytes, PLM co-immunoprecipitated with α-subunits of Na+-K+-ATPase. Inhibition of Na+-K+-ATPase by PLM overexpression, in addition to previously reported decrease in Na+-K+-ATPase expression, may explain altered Vmax but not Km of Na+-K+-ATPase in postinfarction rat myocytes. PMID:16195392

  3. Mitochondrial Dynamics Decrease Prior to Axon Degeneration Induced by Vincristine and are Partially Rescued by Overexpressed cytNmnat1

    PubMed Central

    Berbusse, Gregory W.; Woods, Laken C.; Vohra, Bhupinder P. S.; Naylor, Kari

    2016-01-01

    Axon degeneration is a prominent feature of various neurodegenerative diseases, such as Parkinson’s and Alzheimer’s, and is often characterized by aberrant mitochondrial dynamics. Mitochondrial fission, fusion, and motility have been shown to be particularly important in progressive neurodegeneration. Thus we investigated these imperative dynamics, as well as mitochondrial fragmentation in vincristine induced axon degradation in cultured dorsal root ganglia (DRG) neurons. CytNmnat1 inhibits axon degeneration in various paradigms including vincristine toxicity. The mechanism of its protection is not yet fully understood; therefore, we also investigated the effect of cytNmnat1 on mitochondrial dynamics in vincristine treated neurons. We observed that vincristine treatment decreases the rate of mitochondrial fission, fusion and motility and induces mitochondrial fragmentation. These mitochondrial events precede visible axon degeneration. Overexpression of cytNmnat1 inhibits axon degeneration and preserves the normal mitochondrial dynamics and motility in vincristine treated neurons. We suggest the alterations in mitochondrial structure and dynamics are early events which lead to axon degeneration and cytNmnat1 blocks axon degeneration by halting the vincristine induced changes to mitochondrial structure and dynamics. PMID:27486387

  4. Augmented hepatic injury followed by impaired regeneration in metallothionein-I/II knockout mice after treatment with thioacetamide

    SciTech Connect

    Oliver, Jordan R.; Jiang, Sean; Cherian, M. George . E-mail: mcherian@uwo.ca

    2006-02-01

    A previous study (Oliver, J.R., Mara, T.W., Cherian, M.G. 2005. Impaired hepatic regeneration in metallothionein-I/II knockout mice after partial hepatectomy. Exp. Biol. Med. 230, 61-67) has shown an impairment of liver regeneration following partial hepatectomy (PH) in metallothionein (MT)-I and MT-II gene knockout (MT-null) mice, thus suggesting a requirement for MT in cellular growth. The present study was undertaken to investigate whether MT may play a similar role in hepatic injury and regeneration after acute treatment with thioacetamide (TAA). Hepatotoxicity of TAA is caused by the generation of oxidative stress. TAA was injected ip to both wild-type (WT) and MT-null mice. Mice were killed at 6, 12, 24, 48, 60, and 72 h after injection of TAA (125 mg/kg) or 48 h after injection of saline (vehicle control), and different parameters of hepatic injury were measured. The levels of hepatic lipid peroxidation were increased at 12 h in both types of mice; however, lipid peroxidation was significantly less in WT mice than MT-null mice at 48 h after injection of TAA. Analysis of hepatic glutathione (GSH) levels after TAA injection showed depletion of GSH at 12 h in WT mice and at 6 h in MT-null mice; however, significantly more GSH was depleted early (6-24 h) in MT-null mice than WT mice. An increase in hepatic iron (Fe) levels was observed in both types of mice after injection of TAA, but Fe levels were significantly higher in MT-null mice than WT mice at 6-60 h. The levels of hepatic copper (Cu) and zinc (Zn) were significantly higher in WT mice than MT-null mice at 6-60 h for Cu, and at 24 h and 60 h for Zn, respectively. Histopathological examination showed hemorrhagic necrosis in the liver of both types of mice at 12-72 h, with hepatic injury being more prominent in MT-null mice than WT mice. The hepatic MT levels were increased in WT mice after injection of TAA, and were highest at 24-72 h. Immunohistochemical staining for MT in WT mice indicated the presence

  5. Over-expression of Arabidopsis CAP causes decreased cell expansion leading to organ size reduction in transgenic tobacco plants.

    PubMed

    Barrero, Roberto A; Umeda, Masaaki; Yamamura, Saburo; Uchimiya, Hirofumi

    2003-04-01

    Cyclase-associated proteins (CAP) are multifunctional proteins involved in Ras-cAMP signalling and regulation of the actin cytoskeleton. It has recently been demonstrated that over-expression of AtCAP1 in transgenic arabidopsis plants causes severe morphological defects owing to loss of actin filaments. To test the generality of the function of AtCAP1 in plants, transgenic tobacco plants over-expressing an arabidopsis CAP (AtCAP1) under the regulation of a glucocorticoid-inducible promoter were produced. Over-expression of AtCAP1 in transgenic tobacco plants led to growth abnormalities, in particular a reduction in the size of leaves. Morphological alterations in leaves were the result of reduced elongation of epidermal and mesophyll cells.

  6. Over-expression of OsPTR6 in rice increased plant growth at different nitrogen supplies but decreased nitrogen use efficiency at high ammonium supply.

    PubMed

    Fan, Xiaorong; Xie, Dan; Chen, Jingguang; Lu, Haiyan; Xu, Yanling; Ma, Cui; Xu, Guohua

    2014-10-01

    Nitrogen (N) plays a critical role in plant growth and productivity and PTR/NRT1 transporters are critical for rice growth. In this study, OsPTR6, a PTR/NRT1 transporter, was over-expressed in the Nipponbare rice cultivar by Agrobacterium tumefaciens transformation using the ubiquitin (Ubi) promoter. Three single-copy T2 generation transgenic lines, named OE1, OE5 and OE6, were produced and subjected to hydroponic growth experiments in different nitrogen treatments. The results showed the plant height and biomass of the over-expression lines were increased, and plant N accumulation and glutamine synthetase (GS) activities were enhanced at 5.0mmol/L NH4(+) and 2.5mmol/L NH4NO3. The expression of OsATM1 genes in over-expression lines showed that the OsPTR6 over expression increased OsAMT1.1, OsATM1.2 and OsAMT1.3 expression at 0.2 and 5.0mmol/L NH4(+) and 2.5mmol/L NH4NO3. However, nitrogen utilisation efficiency (NUE) was decreased at 5.0mmol/LNH4(+). These data suggest that over-expression of the OsPTR6 gene could increase rice growth through increasing ammonium transporter expression and glutamine synthetase activity (GSA), but decreases nitrogen use efficiency under conditions of high ammonium supply.

  7. SET overexpression decreases cell detoxification efficiency: ALDH2 and GSTP1 are downregulated, DDR is impaired and DNA damage accumulates.

    PubMed

    Almeida, Luciana O; Goto, Renata N; Pestana, Cezar R; Uyemura, Sérgio A; Gutkind, Silvio; Curti, Carlos; Leopoldino, Andréia M

    2012-12-01

    Alcohol and tobacco consumption are risk factors for head and neck squamous cell carcinoma (HNSCC). Aldehyde dehydrogenase 2 (ALDH2) and glutathione S-transferase pi 1 (GSTP1) are important enzymes for cellular detoxification and low efficiencies are implicated in cancer. We assessed the potential role of SET protein overexpression, a histone acetylation modulator accumulated in HNSCC, in gene regulation and protein activity of ALDH2 and GSTP1. SET was knocked down in HN13, HN12 and Cal27, and overexpressed in HEK293 cells; ethanol and cisplatin were the chemical agents. Cells with SET overexpression (HEK293/SET, HN13 and HN12) showed lower ALDH2 and GSTP1 mRNA levels and trichostatin A increased them (real-time PCR). Ethanol upregulated GSTP1 and ALDH2 mRNAs, whereas cisplatin upregulated GSTP1 in HEK293 cells. SET-chromatin binding revealed SET interaction with ALDH2 and GSTP1 promoters, specifically via SET NAP domain; ethanol and cisplatin abolished SET binding. ALDH2 and GSTP1 efficiency was assessed by enzymatic and comet assay. A lower ALDH2 activity was associated with greater DNA damage (tail intensity) in HEK293/SET compared with HEK293 cells, whereas HN13/siSET showed ALDH2 activity higher than HN13 cells. HN13/siSET cells showed increased tail intensity. Cisplatin-induced DNA damage response showed negative relationship between SET overexpression and BRCA2 recruitment. SET downregulated repair genes ATM, BRCA1 and CHEK2 and upregulated TP53. Cisplatin-induced cell-cycle arrest occurred in G(0) /G(1) and S in HEK293 cells, whereas HEK293/SET showed G(2) /M stalling. Overall, cisplatin was more cytotoxic for HN13 than HN13/siSET cells. Our data suggest a role for SET in cellular detoxification, DNA damage response and genome integrity.

  8. Effects of dietary copper supplementation of rats on the occurrence of metallothionein-I in liver and its secretion into blood, bile and urine.

    PubMed Central

    Bremner, I; Mehra, R K; Morrison, J N; Wood, A M

    1986-01-01

    The appearance and excretion of metallothionein-I (MT-I) was studied in rats given a diet containing 1000 mg of Cu/kg for several weeks. No significant increase in MT-I concentrations in liver, plasma or bile was detected in rats with liver copper concentrations less than 600 micrograms of Cu/g fresh wt. Above this concentration, liver MT-I concentrations increased in proportion to the increase in hepatic copper content. Plasma and bile MT-I concentrations were directly related to those in the liver and were about 10 times those in normal rats. Urinary MT-I concentration also increased 10-fold within 1 week. Fractionation of bile and urine on Sephadex G-50 revealed the presence of monomeric MT-I and a range of possible degradation products of the isoprotein. PMID:3753441

  9. Over-expression of a Zea mays L. protein phosphatase 2C gene (ZmPP2C) in Arabidopsis thaliana decreases tolerance to salt and drought.

    PubMed

    Liu, Lixia; Hu, Xiaoli; Song, Jian; Zong, Xiaojuan; Li, Dapeng; Li, Dequan

    2009-03-15

    ZmPP2C (AY621066) is a protein phosphatase type-2c previously isolated from roots of Zea mays (LD9002). In this study, constitutive expression of ZmPP2C in Arabidopsis thaliana under the control of the Cauliflower Mosaic Virus (CaMV) 35S promoter decreased plant tolerance to salt and drought during seed germination and vegetative growth. When growing on media with NaCl or mannitol, the ZmPP2C-overexpressed plants displayed more severe damages, with weaker growth phenotypes corresponding to a series of physiological changes: lower net photosynthesis rate (Pn) and free proline content, higher malondialdehyde (MDA) level, higher relative membrane permeability (RMP), and water loss. Under these stress conditions, they also showed decreased transcription of the stress-related genes RD29A, RD29B, P5CS1, and P5CS2, and ABA-related genes ABI1 and ABI2. Further, the transgenic plants became less sensitive to abscisic acid (ABA). ZmPP2C over-expression significantly attenuated ABA inhibition on seed germination and root growth of the transgenic plants. These results demonstrate that ZmPP2C is involved in plant stress signal transduction, and ZmPP2C gene over-expression in Arabidopsis thaliana may be exploited to study its potential roles in stress-induced signaling pathway.

  10. The over-expression of the β2 catalytic subunit of the proteasome decreases homologous recombination and impairs DNA double-strand break repair in human cells.

    PubMed

    Collavoli, Anita; Comelli, Laura; Cervelli, Tiziana; Galli, Alvaro

    2011-01-01

    By a human cDNA library screening, we have previously identified two sequences coding two different catalytic subunits of the proteasome which increase homologous recombination (HR) when overexpressed in the yeast Saccharomyces cerevisiae. Here, we investigated the effect of proteasome on spontaneous HR and DNA repair in human cells. To determine if the proteasome has a role in the occurrence of spontaneous HR in human cells, we overexpressed the β2 subunit of the proteasome in HeLa cells and determined the effect on intrachromosomal HR. Results showed that the overexpression of β2 subunit decreased HR in human cells without altering the cell proteasome activity and the Rad51p level. Moreover, exposure to MG132 that inhibits the proteasome activity reduced HR in human cells. We also found that the expression of the β2 subunit increases the sensitivity to the camptothecin that induces DNA double-strand break (DSB). This suggests that the β2 subunit has an active role in HR and DSB repair but does not alter the intracellular level of the Rad51p.

  11. The Over-expression of the β2 Catalytic Subunit of the Proteasome Decreases Homologous Recombination and Impairs DNA Double-Strand Break Repair in Human Cells

    PubMed Central

    Collavoli, Anita; Comelli, Laura; Cervelli, Tiziana; Galli, Alvaro

    2011-01-01

    By a human cDNA library screening, we have previously identified two sequences coding two different catalytic subunits of the proteasome which increase homologous recombination (HR) when overexpressed in the yeast Saccharomyces cerevisiae. Here, we investigated the effect of proteasome on spontaneous HR and DNA repair in human cells. To determine if the proteasome has a role in the occurrence of spontaneous HR in human cells, we overexpressed the β2 subunit of the proteasome in HeLa cells and determined the effect on intrachromosomal HR. Results showed that the overexpression of β2 subunit decreased HR in human cells without altering the cell proteasome activity and the Rad51p level. Moreover, exposure to MG132 that inhibits the proteasome activity reduced HR in human cells. We also found that the expression of the β2 subunit increases the sensitivity to the camptothecin that induces DNA double-strand break (DSB). This suggests that the β2 subunit has an active role in HR and DSB repair but does not alter the intracellular level of the Rad51p. PMID:21660142

  12. SIRT1 overexpression decreases cisplatin-induced acetylation of NF-{kappa}B p65 subunit and cytotoxicity in renal proximal tubule cells

    SciTech Connect

    Jung, Yu Jin; Lee, Jung Eun; Lee, Ae Sin; Kang, Kyung Pyo; Lee, Sik; Park, Sung Kwang; Lee, Sang Yong; Han, Myung Kwan; Kim, Duk Hoon; Kim, Won

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Cisplatin increases acetylation of NF-{kappa}B p65 subunit in HK2 cells. Black-Right-Pointing-Pointer SIRT1 overexpression decreases cisplatin-induced p65 acetylation and -cytotoxicity. Black-Right-Pointing-Pointer Resveratrol decreased cisplatin-induced cell viability through deacetylation of p65. -- Abstract: As the increased acetylation of p65 is linked to nuclear factor-{kappa}B (NF-{kappa}B) activation, the regulation of p65 acetylation can be a potential target for the treatment of inflammatory injury. Cisplatin-induced nephrotoxicity is an important issue in chemotherapy of cancer patients. SIRT1, nicotinamide adenine dinucleotide (NAD{sup +})-dependent protein deacetylase, has been implicated in a variety of cellular processes such as inflammatory injury and the control of multidrug resistance in cancer. However, there is no report on the effect of SIRT1 overexpression on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury. To investigate the effect of SIRT1 in on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury, HK2 cells were exposed with SIRT1 overexpression, LacZ adenovirus or dominant negative adenovirus after treatment with cisplatin. While protein expression of SIRT1 was decreased by cisplatin treatment compared with control buffer treatment, acetylation of NF-{kappa}B p65 subunit was significantly increased after treatment with cisplatin. Overexpression of SIRT1 ameliorated the increased acetylation of p65 of NF-{kappa}B during cisplatin treatment and cisplatin-induced cytotoxicity. Further, treatment of cisplatin-treated HK2 cells with resveratrol, a SIRT1 activator, also decreased acetylation of NF-{kappa}B p65 subunit and cisplatin-induced increase of the cell viability in HK2 cells. Our findings suggests that the regulation of acetylation of p65 of NF-{kappa}B through SIRT1 can be a possible target to attenuate cisplatin-induced renal cell damage.

  13. Over-expression of the AtGA2ox8 gene decreases the biomass accumulation and lignification in rapeseed (Brassica napus L.)*

    PubMed Central

    Zhao, Xiao-ying; Zhu, Deng-feng; Zhou, Bo; Peng, Wu-sheng; Lin, Jian-zhong; Huang, Xing-qun; He, Re-qing; Zhuo, Yu-hong; Peng, Dan; Tang, Dong-ying; Li, Ming-fang; Liu, Xuan-ming

    2010-01-01

    Gibberellin 2-oxidase (GA 2-oxidase) plays very important roles in plant growth and development. In this study, the AtGA2ox8 gene, derived from Arabidopsis (Arabidopsis thaliana), was transformed and over-expressed in rapeseed (Brassica napus L.) to assess the role of AtGA2ox8 in biomass accumulation and lignification in plants. The transgenic plants, identified by resistant selection, polymerase chain reaction (PCR) and reverse-transcription PCR (RT-PCR) analyses, and green fluorescence examination, showed growth retardation, flowering delay, and dwarf stature. The fresh weight and dry weight in transgenic lines were about 21% and 29% lower than those in wild type (WT), respectively, and the fresh to dry weight ratios were higher than that of WT. Quantitative measurements demonstrated that the lignin content in transgenic lines decreased by 10%–20%, and histochemical staining results also showed reduced lignification in transgenic lines. Quantitative real-time PCR analysis indicated that the transcript levels of lignin biosynthetic genes in transgenic lines were markedly decreased and were consistent with the reduced lignification. These results suggest that the reduced biomass accumulation and lignification in the AtGA2ox8 over-expression rapeseed might be due to altered lignin biosynthetic gene expression. PMID:20593511

  14. Overexpression of GlyI and GlyII genes in transgenic tomato (Solanum lycopersicum Mill.) plants confers salt tolerance by decreasing oxidative stress.

    PubMed

    Alvarez Viveros, María Fernanda; Inostroza-Blancheteau, Claudio; Timmermann, Tania; González, Máximo; Arce-Johnson, Patricio

    2013-04-01

    The glyoxalase system plays an important role in various physiological processes in plants, including salt stress tolerance. We report the effects of overexpressing glyoxalase I and glyoxalase II genes in transgenic tomato (Solanum lycopersicum Mill.) cv. Ailsa Craig. Stable expression of both transgenes was detected in the transformed tomato plants under salt stress. The transgenic lines overexpressing GlyI and GlyII under a high NaCl concentration (800 mM) showed reduced lipid peroxidation and the production of H2O2 in leaf tissues. A greater decrease in the chlorophyll a+b content in wild-type (WT) compared with transgenic lines was also observed. These results suggest that the over expression of two genes, GlyI and GlyII, may enhance salt stress tolerance by decreasing oxidative stress in transformed tomato plants. This work will help our understanding of the putative role of the glyoxalase system in the tolerance to abiotic stress in tomato plants.

  15. Induction of metallothionein I by phenolic antioxidants requires metal-activated transcription factor 1 (MTF-1) and zinc.

    PubMed Central

    Bi, Yongyi; Palmiter, Richard D; Wood, Kristi M; Ma, Qiang

    2004-01-01

    Phenolic antioxidants, such as tBHQ [2,5-di-(t-butyl)-1,4-hydroquinone], induce Mt1 (metallothionein 1) gene expression and accumulation of MT protein. Induction of Mt1 mRNA does not depend on protein synthesis, and correlates with oxidation-reduction functions of the antioxidants. In the present study, we analysed the biochemical pathway of the induction. Induction depends on the presence of MTF-1 (metal-activated transcription factor 1), a transcription factor that is required for metal-induced transcription of Mt1, but does not require nuclear factor erythroid 2-related factor 2, a tBHQ-activated CNC bZip (cap 'n' collar basic leucine zipper) protein, that is responsible for regulating genes encoding phase II drug-metabolizing enzymes. Moreover, tBHQ induces the expression of MRE-beta Geo, a reporter gene driven by five metal response elements that constitute an optimal MTF-1 binding site. Reconstitution of Mtf1 -null cells with MTF-1 restores induction by both zinc and tBHQ. Unlike activation of phase II genes by tBHQ, induction of Mt1 expression does not occur in the presence of EDTA, when cells are cultured in zinc-depleted medium, or in cells with reduced intracellular 'free' zinc due to overexpression of ZnT1, a zinc-efflux transporter, indicating that induction requires zinc. In addition, fluorescence imaging reveals that tBHQ increases cytoplasmic free zinc concentration by mobilizing intracellular zinc pools. These findings establish that phenolic antioxidants activate Mt1 transcription by a zinc-dependent mechanism, which involves MTF-1 binding to metal regulator elements in the Mt1 gene promoter. PMID:14998373

  16. Overexpression of Sema3a in myocardial infarction border zone decreases vulnerability of ventricular tachycardia post-myocardial infarction in rats.

    PubMed

    Chen, Ren-Hua; Li, Yi-Gang; Jiao, Kun-Li; Zhang, Peng-Pai; Sun, Yu; Zhang, Li-Ping; Fong, Xiang-Fei; Li, Wei; Yu, Yi

    2013-05-01

    The expression of the chemorepellent Sema3a is inversely related to sympathetic innervation. We investigated whether overexpression of Sema3a in the myocardial infarction (MI) border zone could attenuate sympathetic hyper-innervation and decrease the vulnerability to malignant ventricular tachyarrhythmia (VT) in rats. Survived MI rats were randomized to phosphate buffered saline (PBS, n = 12); mock lentivirus (MLV, n = 13) and lentivirus-mediated overexpression of Sema3a (SLV, n = 13) groups. Sham-operated rats served as control group (CON, n = 20). Cardiac function and electrophysiological study (PES) were performed at 1 week later. Blood and tissue samples were collected for histological analysis, epinephrine (EPI), growth-associated factor 43 (GAP43) and tyrosine hydroxylase (TH) measurements. QTc intervals were significantly shorter in SLV group than in PBS and MLV groups (168.6 ± 7.8 vs. 178.1 ± 9.5 and 180.9 ± 8.2 ms, all P < 0.01). Inducibility of VT by PES was significantly lower in the SLV group [30.8% (4/13)] than in PBS [66.7% (8/12)] and MLV [61.5% (8/13)] groups (P < 0.05). mRNA and protein expressions of Sema3a were significantly higher and the protein expression of GAP43 and TH was significantly lower at 7 days after transduction in SLV group compared with PBS, MLV and CON groups. Myocardial EPI in the border zone was also significantly lower in SLV group than in PBS and MLV group (8.73 ± 1.30 vs. 11.94 ± 1.71 and 12.24 ± 1.54 μg/g protein, P < 0.001). Overexpression of Sema3a in MI border zone could reduce the inducibility of ventricular arrhythmias by reducing sympathetic hyper-reinnervation after infarction.

  17. Decreased H2B monoubiquitination and overexpression of ubiquitin-specific protease enzyme 22 in malignant colon carcinoma.

    PubMed

    Wang, Zijing; Zhu, Linlin; Guo, Tianjiao; Wang, Yiping; Yang, Jinlin

    2015-07-01

    This study aimed to evaluate the expression of H2B monoubiquitination enzyme (uH2B) and ubiquitin-specific protease enzyme 22 (USP22) in colon carcinoma and establish a correlation between the expression of these enzymes and clinicopathological parameters. The modification levels of uH2B and USP22 in 20 noncancerous and 129 cancerous colon samples were studied by immunohistochemistry. We used a dual-rated semiquantitative method to classify the expression according to 3 levels and analyzed these results. uH2B was abundant in the normal colon epithelium, but its expression was decreased in colon cancers (P < .001); the uH2B modification level correlated with tumor differentiation (P < .001), lymph node metastasis (P = .017), distant metastasis (P = .036), and tumor stage (P = .039). The USP22 expression in colon carcinoma was higher than that in normal tissues (P = .007) and negatively correlated with the degree of differentiation (P = .006), invasion (P = .025), lymph node metastasis (P = .026), and tumor stage (P = .044). uH2B and USP22 expression negatively correlated (r = -0.401, P < .001). Patients with uH2B-negative and USP22-positive staining were found to have lower survival rates (30.737 ± 2.866 versus 51.667 ± 2.286 months, P < .001). Positive uH2B and negative USP22 expression remained a statistically significant prognostic indicator in a multivariate Cox regression analysis (hazard ratio, 2.557; 95% confidence interval, 1.043-6.269; P = .04). We conclude that uH2B displays differential staining patterns according to progressive stages of colon cancer, indicating that uH2B may play an important inhibitory role in carcinogenesis. Increased USP22 expression in colon cancer correlated with reduced uH2B expression, and this expression pattern may contribute to tumor progression.

  18. Hypersensitivity of Arabidopsis TAXIMIN1 overexpression lines to light stress is correlated with decreased sinapoyl malate abundance and countered by the antibiotic cefotaxime.

    PubMed

    Colling, Janine; Pollier, Jacob; Vanden Bossche, Robin; Makunga, Nokwanda Pearl; Pauwels, Laurens; Goossens, Alain

    2016-01-01

    Peptide signaling in plants is involved in regulating development, (1,2) ensuring cross pollination through initiation of self-incompatibility (4) and assisting with recognition of beneficial (nitrogen fixing bacteria (5)) or unfavorable organisms (pathogens (6) or herbivores (7)). Peptides function to help plants to respond to a changing environment and improve their chances of survival. Constitutive expression of the gene encoding a novel cysteine rich peptide TAXIMIN1 (TAX1) resulted in fusion of lateral organs and in abnormal fruit morphology. TAX1 signaling functions independently from transcription factors known to play a role in this process such as LATERAL ORGAN FUSION1 (LOF1). Here, we report that the TAX1 promoter is not induced by the LOF1 transcription factor and that the TAX1 peptide neither interferes with transcriptional activation by LOF1.1 or transcriptional repression by LOF1.2. Furthermore, we found that TAX1 overexpressing lines were hypersensitive to continuous light, which may be reflected by a decreased accumulation of the UV-B protecting compound sinapoyl-malate. Finally, adding the antibiotic cefotaxime to the medium surprisingly countered the light hypersensitivity phenotype of TAX1 overexpressing seedlings.

  19. Metallothioneins (I+II) and thyroid-thymus axis efficiency in old mice: role of corticosterone and zinc supply.

    PubMed

    Mocchegiani, Eugenio; Giacconi, Robertina; Cipriano, Catia; Gasparini, Nazzarena; Orlando, Fiorenza; Stecconi, Rosalia; Muzzioli, Mario; Isani, Gloria; Carpenè, Emilio

    2002-03-31

    Thymic atrophy or thymus absence causes depressed thyroid-thymus axis (TTA) efficiency in old, young propyl-thiouracil (PTU) (experimental hypothyroidism) and in young-adult thymectomised (Tx) mice, respectively. Altered zinc turnover may be also involved in depressed TTA efficiency. Zinc turnover is under the control of zinc-bound metallothioneins (Zn-MTs) synthesis. Thyroid hormones, corticosterone and nutritional zinc affect Zn-MT induction. Zn-MT releases zinc in young-adult age during transient oxidative stress for prompt immune response. In constant oxidative stress (ageing and liver regeneration after partial hepatectomy), high liver Zn-MTs, low zinc ion bioavailability and depressed TTA efficiency appear. This last finding suggested that MT might not release zinc during constant oxidative stress leading to impaired TTA efficiency. The aim of this work/study is to clarify the role of Zn-MTs (I+II) in TTA efficiency during development and ageing. The main results are (1) Old and PTU mice display high corticosterone, enhanced liver MTmRNA, low zinc and depressed TTA efficiency restored by zinc supply. Increased survival and no significant increments in basal liver Zn-MTs proteins occur in old and PTU mice after zinc supply. (2) Lot of zinc ions bound with MT in the liver from old mice than young (HPLC). (3) Young-adult Tx mice, evaluated at 15 days from thymectomy, display high MTmRNA and nutritional-endocrine-immune damage restored by zinc supply or by thymus grafts from old zinc-treated mice. (4) Young-adult Tx mice, but evaluated at 40 days from thymectomy, display natural normalisation in MTmRNA and nutritional-endocrine-immune profile with survival similar to normal mice. (5) Stressed (constant dark for 10 days) mice overexpressing MT display low zinc, depressed immunity, reduced thymic cortex, high corticosterone, altered thyroid hormones turnover showing a likeness with old mice. These findings, taken altogether, show that corticosterone is pivotal in

  20. Expression of metallothioneins I and II related to oxidative stress in the liver of aluminium-treated rats.

    PubMed

    Ghorbel, Imen; Chaabane, Mariem; Elwej, Awatef; Boudawara, Ons; Abdelhedi, Sameh; Jamoussi, Kamel; Boudawara, Tahya; Zeghal, Najiba

    2016-10-01

    Hepatotoxicity, induced by aluminium chloride (AlCl3), has been well studied but there are no reports about liver metallothionein (MT) genes induction. Therefore, it is of interest to establish the mechanism involving the relation between MT gene expression levels and the oxidative stress status in hepatic cells of aluminium-treated rats. Aluminium (Al) was administered to rats in their drinking water at a dose of 50 mg/kg body weight for three weeks. AlCl3 provoked hepatotoxicity objectified by an increase in malondialdehyde (MDA), hydrogen peroxide (H2O2), advanced oxidation protein products (AOPP), protein carbonyls (PCO) and a decrease in reduced glutathione (GSH), non-protein thiols (NPSH) and vitamin C. CAT and Glutathione peroxidase (GPx) activities were decreased while Mn-SOD gene expression, total Metallothionein content and MT I and MT II genes induction were increased. There are changes in plasma of some trace elements, albumin levels, transaminases, LDH and ALP activities. All these changes were supported by histopathological observations.

  1. Metallothionein-I/II Knockout Mice Aggravate Mitochondrial Superoxide Production and Peroxiredoxin 3 Expression in Thyroid after Excessive Iodide Exposure

    PubMed Central

    Zhang, Na; Wang, Lingyan; Duan, Qi; Lin, Laixiang; Ahmed, Mohamed; Wang, Tingting; Yao, Xiaomei

    2015-01-01

    Purpose. We aim to figure out the effect of metallothioneins on iodide excess induced oxidative stress in the thyroid. Methods. Eight-week-old MT-I/II knockout (MT-I/II KO) mice and background-matched wild-type (WT) mice were used. Mitochondrial superoxide production and peroxiredoxin (Prx) 3 expression were measured. Results. In in vitro study, more significant increases in mitochondrial superoxide production and Prx 3 expression were detected in the MT-I/II KO groups. In in vivo study, significantly higher concentrations of urinary iodine level were detected in MT-I/II KO mice in 100 HI group. Compared to the NI group, there was no significant difference existing in serum thyroid hormones level in either groups (P > 0.05), while the mitochondrial superoxide production was significantly increased in 100 HI groups with significantly increased LDH activity and decreased relative cell viability. Compared to WT mice, more significant changes were detected in MT-I/II KO mice in 100 HI groups. No significant differences were detected between the NI group and 10 HI group in both the MT-I/II KO and WT mice groups (P > 0.05). Conclusions. Iodide excess in a thyroid without MT I/II protection may result in strong mitochondrial oxidative stress, which further leads to the damage of thyrocytes. PMID:26101557

  2. Enhanced seizures and hippocampal neurodegeneration following kainic acid-induced seizures in metallothionein-I + II-deficient mice.

    PubMed

    Carrasco, J; Penkowa, M; Hadberg, H; Molinero, A; Hidalgo, J

    2000-07-01

    Metallothioneins (MTs) are major zinc binding proteins in the CNS that could be involved in the control of zinc metabolism as well as in protection against oxidative stress. Mice lacking MT-I and MT-II (MT-I + II deficient) because of targeted gene inactivation were injected with kainic acid (KA), a potent convulsive agent, to examine the neurobiological importance of these MT isoforms. At 35 mg/kg KA, MT-I + II deficient male mice showed a higher number of convulsions and a longer convulsion time than control mice. Three days later, KA-injected mice showed gliosis and neuronal injury in the hippocampus. MT-I + II deficiency decreased both astrogliosis and microgliosis and potentiated neuronal injury and apoptosis as shown by terminal deoxynucleotidyl transferase-mediated in situ end labelling (TUNEL), detection of single stranded DNA (ssDNA) and by increased interleukin-1beta-converting enzyme (ICE) and caspase-3 levels. Histochemically reactive zinc in the hippocampus was increased by KA to a greater extent in MT-I + II-deficient compared with control mice. KA-induced seizures also caused increased oxidative stress, as suggested by the malondialdehyde (MDA) and protein tyrosine nitration (NITT) levels and by the expression of MT-I + II, nuclear factor-kappaB (NF-kappaB), and Cu/Zn-superoxide dismutase (Cu/Zn-SOD). MT-I + II deficiency potentiated the oxidative stress caused by KA. Both KA and MT-I + II deficiency significantly affected the expression of MT-III, granulocyte-macrophage colony stimulating factor (GM-CSF) and its receptor (GM-CSFr). The present results indicate MT-I + II as important for neuron survival during KA-induced seizures, and suggest that both impaired zinc regulation and compromised antioxidant activity contribute to the observed neuropathology of the MT-I + II-deficient mice.

  3. Sustained overexpression of IGF-1 prevents age-dependent decrease in charge movement and intracellular Ca(2+) in mouse skeletal muscle.

    PubMed

    Wang, Zhong-Min; Messi, María Laura; Delbono, Osvaldo

    2002-03-01

    In this work we tested the hypothesis that transgenic sustained overexpression of IGF-1 prevents age-dependent decreases in charge movement and intracellular Ca(2+) in skeletal muscle fibers. To this end, short flexor digitorum brevis (FDB) muscle fibers from 5-7- and 21-24-month-old FVB (wild-type) and S1S2 (IGF-1 transgenic) mice were studied. Fibers were voltage-clamped in the whole-cell configuration of the patch-clamp technique according to described procedures (Wang, Z. M., M. L. Messi, and O. Delbono. 1999. Biophys. J. 77:2709-2716). Charge movement and intracellular Ca(2+) concentration were recorded simultaneously. The maximum charge movement (Q(max)) recorded in young wild-type and transgenic mice was (mean +/- SEM, in nC microF(-1)): 52 +/- 2.1 (n = 46) and 54 +/- 1.9 (n = 38) (non-significant, ns), respectively, whereas in old wild-type and old transgenic mice the values were 36 +/- 2.1 (n = 32) and 49 +/- 2.3 (n = 35), respectively (p < 0.01). The peak intracellular calcium [Ca(2+)](i) recorded in young wild-type and transgenic mice was (in muM): 14.5 +/- 0.9 and 16 +/- 2.1 (ns), whereas in old wild-type and transgenic mice the values were 9.9 +/- 0.1 and 14 +/- 1.1 (p < 0.01), respectively. No significant changes in the voltage distribution or steepness of the Q-V or [Ca(2+)]-V relationship were found. These data support the concept that overexpression of IGF-1 in skeletal muscle prevents age-dependent reduction in charge movement and peak [Ca(2+)](i).

  4. Overexpression of synapsin Ia in the rat calyx of Held accelerates short-term plasticity and decreases synaptic vesicle volume and active zone area

    PubMed Central

    Vasileva, Mariya; Renden, Robert; Horstmann, Heinz; Gitler, Daniel; Kuner, Thomas

    2013-01-01

    Synapsins are synaptic vesicle (SV) proteins organizing a component of the reserve pool of vesicles at most central nervous system synapses. Alternative splicing of the three mammalian genes results in multiple isoforms that may differentially contribute to the organization and maintenance of the SV pools. To address this, we first characterized the expression pattern of synapsin isoforms in the rat calyx of Held. At postnatal day 16, synapsins Ia, Ib, IIb and IIIa were present, while IIa—known to sustain repetitive transmission in glutamatergic terminals—was not detectable. To test if the synapsin I isoforms could mediate IIa-like effect, and if this depends on the presence of the E-domain, we overexpressed either synapsin Ia or synapsin Ib in the rat calyx of Held via recombinant adeno-associated virus-mediated gene transfer. Although the size and overall structure of the perturbed calyces remained unchanged, short-term depression and recovery from depression were accelerated upon overexpression of synapsin I isoforms. Using electron microscopic three-dimensional reconstructions we found a redistribution of SV clusters proximal to the active zones (AZ) alongside with a decrease of both AZ area and SV volume. The number of SVs at individual AZs was strongly reduced. Hence, our data indicate that the amount of synapsin Ia expressed in the calyx regulates the rate and extent of short-term synaptic plasticity by affecting vesicle recruitment to the AZ. Finally, our study reveals a novel contribution of synapsin Ia to define the surface area of AZs. PMID:24391547

  5. Decreased 11β-Hydroxysteroid Dehydrogenase 1 Level and Activity in Murine Pancreatic Islets Caused by Insulin-Like Growth Factor I Overexpression

    PubMed Central

    Chowdhury, Subrata; Grimm, Larson; Gong, Ying Jia Kate; Wang, Beixi; Li, Bing; Srikant, Coimbatore B.; Gao, Zu-hua; Liu, Jun-Li

    2015-01-01

    We have reported a high expression of IGF-I in pancreatic islet β-cells of transgenic mice under the metallothionein promoter. cDNA microarray analysis of the islets revealed that the expression of 82 genes was significantly altered compared to wild-type mice. Of these, 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1), which is responsible for the conversion of inert cortisone (11-dehydrocorticosterone, DHC in rodents) to active cortisol (corticosterone) in the liver and adipose tissues, has not been identified previously as an IGF-I target in pancreatic islets. We characterized the changes in its protein level, enzyme activity and glucose-stimulated insulin secretion. In freshly isolated islets, the level of 11β-HSD1 protein was significantly lower in MT-IGF mice. Using dual-labeled immunofluorescence, 11β-HSD1 was observed exclusively in glucagon-producing, islet α-cells but at a lower level in transgenic vs. wild-type animals. MT-IGF islets also exhibited reduced enzymatic activities. Dexamethasone (DEX) and DHC inhibited glucose-stimulated insulin secretion from freshly isolated islets of wild-type mice. In the islets of MT-IGF mice, 48-h pre-incubation of DEX caused a significant decrease in insulin release, while the effect of DHC was largely blunted consistent with diminished 11β-HSD1 activity. In order to establish the function of intracrine glucocorticoids, we overexpressed 11β-HSD1 cDNA in MIN6 insulinoma cells, which together with DHC caused apoptosis and a significant decrease in proliferation. Both effects were abolished with the treatment of an 11β-HSD1 inhibitor. Our results demonstrate an inhibitory effect of IGF-I on 11β-HSD1 expression and activity within the pancreatic islets, which may mediate part of the IGF-I effects on cell proliferation, survival and insulin secretion. PMID:26305481

  6. SHP-1 overexpression increases the radioresistance of NPC cells by enhancing DSB repair, increasing S phase arrest and decreasing cell apoptosis.

    PubMed

    Pan, Xiaofen; Mou, Jingjing; Liu, Sha; Sun, Ziyi; Meng, Rui; Zhou, Zhenwei; Wu, Gang; Peng, Gang

    2015-06-01

    The present study aimed to investigate the influence of SHP-1 on the radioresistance of the nasopharyngeal carcinoma (NPC) cell line CNE-2 and the relevant underlying mechanisms. The human NPC cell line CNE-2 was transfected with a lentivirus that contained the SHP-1 gene or a nonsense sequence (referred to as LP-H1802Lv201 and LP-NegLv201 cells, respectively). Cells were irradiated with different ionizing radiation (IR) doses. Cell survival, DNA double-strand breaks (DSBs), apoptosis, cell cycle distribution, and the expression of related proteins were assessed using colony formation assay, immunofluorescent assays (IFAs), flow cytometry (FCM) and western blot analyses, respectively. Compared with the control (CNE-2 cells) and LP-NegLv201 cells, LP-H1802Lv201 cells were more resistant to IR. IFAs showed that IR caused less histone H2AX phosphorylation (γH2AX) and RAD51 foci in the LP-H1802Lv201 cells. Compared with the control and LP-NegLv201 cells, LP-H1802Lv201 cells showed increased S phase arrest. After IR, the apoptotic rate of the LP-H1802Lv201 cells was lower in contrast to the control and LP-NegLv201 cells. Western blot analyses showed that IR increased the phosphorylation of ataxia telangiectasia mutated (ATM) kinase, checkpoint kinase 2 (CHK2), ataxia telangiectasia and Rad3-related (ATR) protein, checkpoint kinase 1 (CHK1) and p53. In LP-H1802Lv201 cells, the phosphorylation levels of ATM and CHK2 were significantly increased while the p53 phosphorylation level was decreased compared to these levels in the control and LP-NegLv201 cells. Phosphorylation of ATR and CHK1 did not show significant differences in the three cell groups. Overexpression of SHP-1 in the CNE-2 cells led to radioresistance and the radioresistance was related to enhanced DNA DSB repair, increased S phase arrest and decreased cell apoptosis.

  7. Infusion of Trx-1-overexpressing hucMSC prolongs the survival of acutely irradiated NOD/SCID mice by decreasing excessive inflammatory injury.

    PubMed

    Hu, JiangWei; Yang, ZaiLiang; Wang, Jun; Tang, YongYong; Liu, Hao; Zhang, Bin; Chen, Hu

    2013-01-01

    A protective reagent for ARI should have the ability to repair injured tissue caused by radiation and prevent continuous damage from secondary risk factors. Trx-1 was explored as a candidate therapy for ARI, as it scavenges reactive oxygen species, regulates cell growth and differentiation, participates in immune reactions, and inhibits apoptosis by acting inside and/or outside cells. Trx-1 can also decrease excessive inflammation in ARI by regulating the creation of inflamed media, by inhibiting the activation of complement, and by reducing the chemotaxis, adhesion, and migration of inflammatory cells. As effectively and stably expressing exogenous genes in the long term and regulating immune inflammation and tissue repair, MSC are a good choice for Trx-1 gene therapy. In this study, Trx-1-overexpressing hucMSC-Trx-1 were obtained by adenoviral vector-mediated infection. We first measured the redox capacity of hucMSC-Trx-1 with an antioxidant capacity (T-AOC) assay, a hydrogen peroxide (H2O2) content determination assay in vivo, a H2O2-induced oxidation hemolysis assay, and a lipid peroxidation assay in vitro. Then, we measured survival time, the protection of the hematopoietic system, and the regulation of inflammation in important organs in three treatment groups of NOD/SCID mice (treated with hucMSC-Trx-1, with hucMSC, and with saline) that were exposed to 4.5 Gy (60)Co-γ-ray radiation. The hucMSC-Trx-1 group achieved superior antioxidation results, protecting bone marrow hematopoietic stem cells (Lin(-)CD117(+): hucMSC-Trx-1 vs. hucMSC, P<0.05; hucMSC-Trx-1 vs. NS, P<0.01), promoting the formation of red blood cells and hemoglobin (hucMSC-Trx-1 vs. hucMSC or NS, P<0.05), reducing inflammation and damage in important organs (Bone marrow and lung: hucMSC-Trx-1 vs. NS, P<0.01; hucMSC-Trx-1 vs. hucMSC, P<0.05. Liver and intestine: hucMSC-Trx-1 vs. NS, P<0.05; hucMSC-Trx-1 vs. hucMSC, P<0.05), and prolonging survival (hucMSC-Trx-1 vs. hucMSC or NS, P<0

  8. Infusion of Trx-1-Overexpressing hucMSC Prolongs the Survival of Acutely Irradiated NOD/SCID Mice by Decreasing Excessive Inflammatory Injury

    PubMed Central

    Wang, Jun; Tang, YongYong; Liu, Hao; Zhang, Bin; Chen, Hu

    2013-01-01

    A protective reagent for ARI should have the ability to repair injured tissue caused by radiation and prevent continuous damage from secondary risk factors. Trx-1 was explored as a candidate therapy for ARI, as it scavenges reactive oxygen species, regulates cell growth and differentiation, participates in immune reactions, and inhibits apoptosis by acting inside and/or outside cells. Trx-1 can also decrease excessive inflammation in ARI by regulating the creation of inflamed media, by inhibiting the activation of complement, and by reducing the chemotaxis, adhesion, and migration of inflammatory cells. As effectively and stably expressing exogenous genes in the long term and regulating immune inflammation and tissue repair, MSC are a good choice for Trx-1 gene therapy. In this study, Trx-1-overexpressing hucMSC-Trx-1 were obtained by adenoviral vector-mediated infection. We first measured the redox capacity of hucMSC-Trx-1 with an antioxidant capacity (T-AOC) assay, a hydrogen peroxide (H2O2) content determination assay in vivo, a H2O2-induced oxidation hemolysis assay, and a lipid peroxidation assay in vitro. Then, we measured survival time, the protection of the hematopoietic system, and the regulation of inflammation in important organs in three treatment groups of NOD/SCID mice (treated with hucMSC-Trx-1, with hucMSC, and with saline) that were exposed to 4.5 Gy 60Co-γ-ray radiation. The hucMSC-Trx-1 group achieved superior antioxidation results, protecting bone marrow hematopoietic stem cells (Lin−CD117+: hucMSC-Trx-1 vs. hucMSC, P<0.05; hucMSC-Trx-1 vs. NS, P<0.01), promoting the formation of red blood cells and hemoglobin (hucMSC-Trx-1 vs. hucMSC or NS, P<0.05), reducing inflammation and damage in important organs (Bone marrow and lung: hucMSC-Trx-1 vs. NS, P<0.01; hucMSC-Trx-1 vs. hucMSC, P<0.05. Liver and intestine: hucMSC-Trx-1 vs. NS, P<0.05; hucMSC-Trx-1 vs. hucMSC, P<0.05), and prolonging survival (hucMSC-Trx-1 vs. hucMSC or NS, P<0.01). Therefore

  9. Nuclear factor erythroid-2 related factor 2 overexpressed mesenchymal stem cells transplantation, improves renal function, decreases injuries markers and increases repair markers in glycerol-induced Acute kidney injury rats

    PubMed Central

    Zhaleh, Fateme; Amiri, Fatemeh; Mohammadzadeh-Vardin, Mohammad; Bahadori, Marzie; Harati, Mitra Dehghan; Roudkenar, Mehryar Habibi; Saki, Sasan

    2016-01-01

    Objective(s): Recently cell therapy is a promising therapeutic modality for many types of disease including acute kidney injury (AKI). Due to the unique biological properties, mesenchymal stem cells (MSCs) are attractive cells in this regard. This study aims to transplant MSCs equipped with nuclear factor E2-related factor 2 (Nrf2) in rat experimental models of acute kidney and evaluate regeneration potential of injured kidney especially expression of injury and repaired biomarkers. Materials and methods: Nrf2 was overexpressed in bone marrow-derived MSCs by pcDNA.3.1 plasmid. AKI was induced using glycerol in rat models. The regenerative potential of Nrf2-overexpressed MSCs was evaluated in AKI-Induced animal models using biochemical and histological methods after transplantation. Expression of repaired genes, AQP1 and CK-18, as well as injury markers, Kim-1 and Cystatin C, was also assayed in engrafted kidney sections. Results: Our results revealed that transplantation of Nrf2-overexpressed MSCs into AKI-induced rats decreased blood urea nitrogen and creatinine and ameliorated kidney regeneration throughout 14 days. Upregulation of repaired markers and downregulation of injury markers were considerable 14 days after transplantation. Conclusions: Overexpression of Nrf2 in MSCs suggests a new strategy to increase efficiency of MSC-based cell therapy in AKI. PMID:27114803

  10. Superoxide serves as a putative signal molecule for plant cell division: overexpression of CaRLK1 promotes the plant cell cycle via accumulation of O2(-) and decrease in H2 O2.

    PubMed

    Lee, Dong Ju; Choi, Hyun Jun; Moon, Mid-Eum; Chi, Youn-Tae; Ji, Kon-Young; Choi, Doil

    2017-02-01

    Reactive oxygen species (ROS) exert both positive and negative effects on plant growth and development and therefore receive a great deal of attention in current research. A hot pepper, Capsicum annuum receptor-like kinase 1 (CaRLK1) was ectopically expressed in Nicotiana tabacum BY-2 cell and Nicotiana benthamiana plants. This ectopic expression of CaRLK1 enhanced cell division and proliferation in both heterologous systems. Apparently, CaRLK1 is involved in controlling the cell cycle, possibly by inducing expressions of cyclin B1, cyclin D3, cyclin-dependent protein kinase 3, condensin complex subunit 2 and anaphase-promoting complex subunit 11 genes. CaRLK1 overexpression also increased transcript accumulation of NADPH oxidase genes, generation of O2(-) and catalase (CAT) activity/protein levels. In parallel, it decreased cellular H2 O2 levels and cell size. Treatment with Tiron or diphenyleneiodonium (DPI) both decreased the cell division rate and O2(-) concentrations, but increased cellular H2 O2 levels. Tobacco BY-2 cells overexpressing CaRLK1 were more sensitive to amino-1,2,4-triazole (3-AT), a CAT inhibitor, than control cells, suggesting that the increased H2 O2 levels may not function as a signal for cell division and proliferation. Overexpression of CaRLK1 stimulated progression of the cell cycle from G0 /G1 phase into the S phase. It is concluded that the CaRLK1 protein plays a pivotal role in controlling the level of O2(-) as signaling molecule which promotes cell division, concomitant with a reduction in H2 O2 by the induction of CAT activity/protein.

  11. Overexpression of Pyruvate Dehydrogenase Kinase 1 and Lactate Dehydrogenase A in Nerve Cells Confers Resistance to Amyloid β and Other Toxins by Decreasing Mitochondrial Respiration and Reactive Oxygen Species Production*

    PubMed Central

    Newington, Jordan T.; Rappon, Tim; Albers, Shawn; Wong, Daisy Y.; Rylett, R. Jane; Cumming, Robert C.

    2012-01-01

    We previously demonstrated that nerve cell lines selected for resistance to amyloid β (Aβ) peptide exhibit elevated aerobic glycolysis in part due to increased expression of pyruvate dehydrogenase kinase 1 (PDK1) and lactate dehydrogenase A (LDHA). Here, we show that overexpression of either PDK1 or LDHA in a rat CNS cell line (B12) confers resistance to Aβ and other neurotoxins. Treatment of Aβ-sensitive cells with various toxins resulted in mitochondrial hyperpolarization, immediately followed by rapid depolarization and cell death, events accompanied by increased production of cellular reactive oxygen species (ROS). In contrast, cells expressing either PDK1 or LDHA maintained a lower mitochondrial membrane potential and decreased ROS production with or without exposure to toxins. Additionally, PDK1- and LDHA-overexpressing cells exhibited decreased oxygen consumption but maintained levels of ATP under both normal culture conditions and following Aβ treatment. Interestingly, immunoblot analysis of wild type mouse primary cortical neurons treated with Aβ or cortical tissue extracts from 12-month-old APPswe/PS1dE9 transgenic mice showed decreased expression of LDHA and PDK1 when compared with controls. Additionally, post-mortem brain extracts from patients with Alzheimer disease exhibited a decrease in PDK1 expression compared with nondemented patients. Collectively, these findings indicate that key Warburg effect enzymes play a central role in mediating neuronal resistance to Αβ or other neurotoxins by decreasing mitochondrial activity and subsequent ROS production. Maintenance of PDK1 or LDHA expression in certain regions of the brain may explain why some individuals tolerate high levels of Aβ deposition without developing Alzheimer disease. PMID:22948140

  12. Oral administration of Aloe vera gel powder prevents UVB-induced decrease in skin elasticity via suppression of overexpression of MMPs in hairless mice.

    PubMed

    Saito, Marie; Tanaka, Miyuki; Misawa, Eriko; Yao, Ruiquing; Nabeshima, Kazumi; Yamauchi, Kouji; Abe, Fumiaki; Yamamoto, Yuki; Furukawa, Fukumi

    2016-07-01

    This study reports the effects of oral Aloe vera gel powder (AVGP) containing Aloe sterols on skin elasticity and the extracellular matrix in ultraviolet B (UVB)-irradiated hairless mice. Ten-week-old hairless mice were fed diets containing 0.3% AVGP for 8 weeks and irradiated UVB for 6 weeks. Mice treated with AVGP showed significant prevention of the UVB-induced decrease in skin elasticity. To investigate the mechanism underlying this suppression of skin elasticity loss, we measured the expression of matrix metalloproteinase (MMP)-2, -9, and -13. AVGP prevented both the UVB-induced increases in MMPs expressions. Moreover, we investigated hyaluronic acid (HA) content of mice dorsal skin and gene expression of HA synthase-2 (Has2). In the results, AVGP oral administration prevented UVB-induced decreasing in skin HA content and Has2 expression and attenuates the UVB-induced decrease in serum adiponectin, which promotes Has2 expression. These results suggested that AVGP has the ability to prevent the skin photoaging.

  13. NF-kB overexpression and decreased immunoexpression of AR in the muscular layer is related to structural damages and apoptosis in cimetidine-treated rat vas deferens

    PubMed Central

    2013-01-01

    Background Cimetidine, histamine H2 receptors antagonist, has caused adverse effects on the male hormones and reproductive tract due to its antiandrogenic effect. In the testes, peritubular myoid cells and muscle vascular cells death has been associated to seminiferous tubules and testicular microvascularization damages, respectively. Either androgen or histamine H2 receptors have been detected in the mucosa and smooth muscular layer of vas deferens. Thus, the effect of cimetidine on this androgen and histamine-dependent muscular duct was morphologically evaluated. Methods The animals from cimetidine group (CMTG; n=5) received intraperitoneal injections of 100 mg/kg b.w. of cimetidine for 50 days; the control group (CG) received saline solution. The distal portions of vas deferens were fixed in formaldehyde and embedded in paraffin. Masson´s trichrome-stained sections were subjected to morphological and the following morphometrical analyzes: epithelial perimeter and area of the smooth muscular layer. TUNEL (Terminal deoxynucleotidyl-transferase mediated dUTP Nick End Labeling) method, NF-kB (nuclear factor kappa B) and AR (androgen receptors) immunohistochemical detection were also carried out. The birefringent collagen of the muscular layer was quantified in picrosirius red-stained sections under polarized light. The muscular layer was also evaluated under Transmission Electron Microscopy (TEM). Results In CMTG, the mucosa of vas deferens was intensely folded; the epithelial cells showed numerous pyknotic nuclei and the epithelial perimeter and the area of the muscular layer decreased significantly. Numerous TUNEL-labeled nuclei were found either in the epithelial cells, mainly basal cells, or in the smooth muscle cells which also showed typical features of apoptosis under TEM. While an enhanced NF-kB immunoexpression was found in the cytoplasm of muscle cells, a weak AR immunolabeling was detected in these cells. In CMTG, no significant difference was observed

  14. Neurobehavioral changes and alteration of gene expression in the brains of metallothionein-I/II null mice exposed to low levels of mercury vapor during postnatal development.

    PubMed

    Yoshida, Minoru; Honda, Masako; Watanabe, Chiho; Satoh, Masahiko; Yasutake, Akira

    2011-10-01

    This study examined the neurobehavioral changes and alteration in gene expression in the brains of metallothionein (MT)-I/II null mice exposed to low-levels of mercury vapor (Hg(0)) during postnatal development. MT-I/II null and wild-type mice were repeatedly exposed to Hg(0) at 0.030 mg/m(3) (range: 0.023-0.043 mg/m(3)), which was similar to the current threshold value (TLV), for 6 hr per day until the 20th day postpartum. The behavioral effects were evaluated with locomotor activity in the open field (OPF), learning ability in the passive avoidance response (PA) and spatial learning ability in the Morris water maze (MM) at 12 weeks of age. Hg(0)-exposed MT-I/II null mice showed a significant decrease in total locomotor activity in females, though learning ability and spatial learning ability were not affected. Immediately after Hg(0) exposure, mercury concentrations in the brain did not exceed 0.5 µg/g in any animals. Hg(0) exposure resulted in significant alterations in gene expression in the brains of both strains using DNA microarray analysis. The number of altered genes in MT-I/II null mice was higher than that in wild-type mice and calcium-calmodulin kinase II (Camk2a) involved in learning and memory in down-regulated genes was detected. These results provide useful information to elucidate the development of behavioral toxicity following low-level exposure to Hg(0).

  15. Overexpression of miR-199a-5p decreases esophageal cancer cell proliferation through repression of mitogen-activated protein kinase kinase kinase-11 (MAP3K11)

    PubMed Central

    Byrnes, Kimberly A.; Phatak, Pornima; Mansour, Daniel; Xiao, Lan; Zou, Tongtong; Rao, Jaladanki N.; Turner, Douglas J.; Wang, Jian-Ying; Donahue, James M.

    2016-01-01

    Studies examining the oncogenic or tumor suppressive functions of dysregulated microRNAs (miRs) in cancer cells may also identify novel miR targets, which can themselves serve as therapeutic targets. Using array analysis, we have previously determined that miR-199a-5p was the most downregulated miR in two esophageal cancer cell lines compared to esophageal epithelial cells. MiR-199a-5p is predicted to bind mitogen-activated protein kinase kinase kinase 11 (MAP3K11) mRNA with high affinity. In this study, we observed that MAP3K11 is markedly overexpressed in esophageal cancer cell lines. Forced expression of miR-199a-5p in these cells leads to a decrease in the mRNA and protein levels of MAP3K11, due to decreased MAP3K11 mRNA stability. A direct binding interaction between miR-199a-5p and MAP3K11 mRNA is demonstrated using biotin pull-down assays and heterologous luciferase reporter constructs and confirmed by mutational analysis. Finally, forced expression of miR-199a-5p decreases proliferation of esophageal cancer cells by inducing G2/M arrest. This effect is mediated, in part, by decreased transcription of cyclin D1, due to reduced MAP3K11-mediated phosphorylation of c-Jun. These findings suggest that miR-199a-5p acts as a tumor suppressor in esophageal cancer cells and that its downregulation contributes to enhanced cellular proliferation by targeting MAP3K11. PMID:26717044

  16. Overexpression of SLC34A2 is an independent prognostic indicator in bladder cancer and its depletion suppresses tumor growth via decreasing c-Myc expression and transcriptional activity.

    PubMed

    Ye, Wen; Chen, Cui; Gao, Ying; Zheng, Zou-Shan; Xu, Yi; Yun, Miao; Weng, Hui-Wen; Xie, Dan; Ye, Sheng; Zhang, Jia-Xing

    2017-02-02

    Solute carrier family 34 member 2 (SLC34A2), a pH-sensitive sodium-dependent phosphate transporter, is associated with several human cancers. In this study, we investigate the clinical significance of SLC34A2 and its function in human bladder cancer (BC). The expression dynamics of SLC34A2 were examined in two independent cohorts of BC samples by quantitative PCR, western blotting and immunohistochemical staining. In the training cohort (156 cases), we applied the X-tile program software to assess the optimal cutoff points for biomarkers in order to accurately classify patients according to clinical outcome. In the validation cohort (130 cases), the cutoff score derived from X-title analysis was investigated to determine the association of SLC34A2 expression with survival outcome. A series of in vitro and in vivo assays were then performed to elucidate the function of SLC34A2 in BC and its underlying mechanisms. Results showed that SLC34A2 was significantly upregulated in BC cell lines and clinical samples. In both two cohorts of BC samples, high expression of SLC34A2 was associated with large tumor size, advanced T status and poor patients' survival. The depletion of SLC34A2 in BC suppressed cellular viability, colony formation and anchorage-independent growth in vitro, and inhibited xenograft tumor growth in vivo, whereas overexpression of SLC34A2 had the converse effect. Simultaneously, downregulation of SLC34A2 decreased the transcriptional activity and protein expression level of c-Myc in BC cells, whereas restoration of c-Myc expression could compromise the anti-proliferation effect of SLC34A2 depletion. Furthermore, miR-214 was proved as a negative regulator of SLC34A2. Our present study illustrated that SLC34A2 has an important role in promoting proliferation and tumorigenicity of BC, and may represent a novel therapeutic target for this disease.

  17. Decreased Expression of Multidrug Resistance-Associated Protein 4 (MRP4/ABCC4) Leads to Reduced Glucuronidation of Flavonoids in UGT1A1-Overexpressing HeLa Cells: The Role of Futile Recycling.

    PubMed

    Sun, Hua; Zhou, Xiaotong; Zhang, Xingwang; Wu, Baojian

    2015-07-08

    In this study, the role of futile recycling (or deglucuronidation) in the disposition of two flavonoids (i.e., genistein and apigenin) was explored using UGT1A1-overexpressing HeLa cells (or HeLa1A1 cells). Glucuronidation of the flavonoids by HeLa1A1 cell lysate followed the substrate inhibition kinetics (Vmax = 0.10 nmol/min/mg, Km = 0.54 μM, and Ksi = 2.0 μM for genistein; Vmax = 0.19 nmol/min/mg, Km = 0.56 μM, and Ksi = 3.7 μM for apigenin). Glucuronide was efficiently generated and excreted after incubation of the cells with the aglycone (at doses of 1.25-20 nmol). The excretion rates were 0.40-0.69 and 0.84-1.1 nmol/min/mg protein for genistein glucuronide (GG) and apigenin glucuronide (AG), respectively. Furthermore, glucuronide excretion and total glucuronidation were significantly reduced in MRP4 knocked-down as compared to control cells. The alterations were well characterized by a two-compartment pharmacokinetic model incorporating the process of futile recycling (defined by a first-order rate constant, Kde). The derived Kde values were 15 and 25 h(-1) for GG and AG, respectively. This was well consistent with the in vitro observation that AG was subjected to more efficient futile recycling compared to GG. In conclusion, futile recycling was involved in cellular glucuronidation, accounting for transporter-dependent glucuronidation of flavonoids.

  18. Functional consequences of the over-expression of TRPC6 channels in HEK cells: impact on the homeostasis of zinc.

    PubMed

    Chevallet, Mireille; Jarvis, Louis; Harel, Amélie; Luche, Sylvie; Degot, Sébastien; Chapuis, Violaine; Boulay, Guylain; Rabilloud, Thierry; Bouron, Alexandre

    2014-07-01

    The canonical transient receptor potential 6 (TRPC6) protein is a non-selective cation channel able to transport essential trace elements like iron (Fe) and zinc (Zn) through the plasma membrane. Its over-expression in HEK-293 cells causes an intracellular accumulation of Zn, indicating that it could be involved in Zn transport. This finding prompted us to better understand the role played by TRPC6 in Zn homeostasis. Experiments done using the fluorescent probe FluoZin-3 showed that HEK cells possess an intracellular pool of mobilisable Zn present in compartments sensitive to the vesicular proton pump inhibitor Baf-A, which affects endo/lysosomes. TRPC6 over-expression facilitates the basal uptake of Zn and enhances the size of the pool of Zn sensitive to Baf-A. Quantitative RT-PCR experiments showed that TRPC6 over-expression does not affect the mRNA expression of Zn transporters (ZnT-1, ZnT-5, ZnT-6, ZnT-7, ZnT-9, Zip1, Zip6, Zip7, and Zip14); however it up-regulates the mRNA expression of metallothionein-I and -II. This alters the Zn buffering capacities of the cells as illustrated by the experiments done using the Zn ionophore Na pyrithione. In addition, HEK cells over-expressing TRPC6 grow slower than their parental HEK cells. This feature can be mimicked by growing HEK cells in a culture medium supplemented with 5 μM of Zn acetate. Finally, a proteomic analysis revealed that TRPC6 up-regulates the expression of the actin-associated proteins ezrin and cofilin-1, and changes the organisation of the actin cytoskeleton without changing the cellular actin content. Altogether, these data indicate that TRPC6 is participating in the transport of Zn and influences the Zn storage and buffering capacities of the cells.

  19. Appetite - decreased

    MedlinePlus

    ... cancer Ovarian cancer Stomach cancer Pancreatic cancer Other causes of decreased appetite include: Chronic liver disease Chronic kidney disease Chronic obstructive pulmonary disease (COPD) Dementia Heart failure ...

  20. Divalent metal transporter 1 (Dmt1) Mediates Copper Transport in the Duodenum of Iron-Deficient Rats and When Overexpressed in Iron-Deprived HEK-293 Cells12

    PubMed Central

    Jiang, Lingli; Garrick, Michael D.; Garrick, Laura M.; Zhao, Lin; Collins, James F.

    2013-01-01

    Intracellular copper-binding proteins (metallothionein I/II) and a copper exporter (Menkes copper-transporting ATPase) are upregulated in duodenal enterocytes from iron-deficient rats, consistent with copper accumulation in the intestinal mucosa. How copper enters enterocytes during iron deficiency is, however, not clear. Divalent metal transporter 1 (Dmt1), the predominant iron importer in the mammalian duodenum, also transports other metal ions, possibly including copper. Given this possibility and that Dmt1 expression is upregulated by iron deprivation, we sought to test the hypothesis that Dmt1 transports copper during iron deficiency. Two model systems were utilized: the Belgrade (b) rat, expressing mutant Dmt1, and an inducible Dmt1-overexpression cell culture system. Mutant rats (b/b) were fed a semipurified, AIN93G-based control diet and phenotypically normal littermates (+/b) were fed control or iron-deficient diets for ∼14 wk. An everted gut sleeve technique and a colorimetric copper quantification assay were utilized to assess duodenal copper transport. The control diet-fed +/b rats had normal hematological parameters, whereas iron-deprived +/b and b/b rats were iron deficient and Dmt1 mRNA and protein levels increased. Importantly, duodenal copper transport was similar in the control +/b and b/b rats; however, it significantly increased (∼4-fold) in the iron-deprived +/b rats. Additional experiments in Dmt1 overexpressing HEK-293 cells showed that copper (64Cu) uptake was stimulated (∼3-fold) in the presence of an iron chelator. Dmt1 transcript stabilization due to a 3′ iron-responsive element was also documented, likely contributing to increased transport activity. In summary, these studies suggest that Dmt1 enhances copper uptake into duodenal enterocytes during iron deprivation. PMID:24089420

  1. Modification of photosynthetic regulation in tomato overexpressing glutathione peroxidase.

    PubMed

    Herbette, Stephane; Menn, Aline Le; Rousselle, Patrick; Ameglio, Thierry; Faltin, Zehava; Branlard, Gérard; Eshdat, Yuval; Julien, Jean-Louis; Drevet, Joël R; Roeckel-Drevet, Patricia

    2005-06-20

    To investigate the function of glutathione peroxidase (GPX) in plants, we produced transgenic tomato plants overexpressing an eukaryotic selenium-independent GPX (GPX5). We show here that total GPX activity was increased by 50% in transgenic plants, when compared to control plants transformed with the binary vector without the insert (PZP111). A preliminary two-dimensional electrophoretic protein analysis of the GPX overexpressing plants showed notably a decrease in the accumulation of proteins identified as rubisco small subunit 1 and fructose-1,6-bisphosphate aldolase, two proteins involved in photosynthesis. These observations, together with the fact that in standard culture conditions, GPX-overexpressing plants were not phenotypically distinct from control plants prompted us to challenge the plants with a chilling treatment that is known to affect photosynthesis activity. We found that upon chilling treatment with low light level, photosynthesis was not affected in GPX-overexpressing plants while it was in control plants, as revealed by chlorophyll fluorescence parameters and fructose-1,6-biphosphatase activity. These results suggest that overexpression of a selenium-independent GPX in tomato plants modifies specifically gene expression and leads to modifications of photosynthetic regulation processes.

  2. PGM2 overexpression improves anaerobic galactose fermentation in Saccharomyces cerevisiae

    PubMed Central

    2010-01-01

    Background In Saccharomyces cerevisiae galactose is initially metabolized through the Leloir pathway after which glucose 6-phosphate enters glycolysis. Galactose is controlled both by glucose repression and by galactose induction. The gene PGM2 encodes the last enzyme of the Leloir pathway, phosphoglucomutase 2 (Pgm2p), which catalyses the reversible conversion of glucose 1-phosphate to glucose 6-phosphate. Overexpression of PGM2 has previously been shown to enhance aerobic growth of S. cerevisiae in galactose medium. Results In the present study we show that overexpression of PGM2 under control of the HXT7'promoter from an integrative plasmid increased the PGM activity 5 to 6 times, which significantly reduced the lag phase of glucose-pregrown cells in an anaerobic galactose culture. PGM2 overexpression also increased the anaerobic specific growth rate whereas ethanol production was less influenced. When PGM2 was overexpressed from a multicopy plasmid instead, the PGM activity increased almost 32 times. However, this increase of PGM activity did not further improve aerobic galactose fermentation as compared to the strain carrying PGM2 on the integrative plasmid. Conclusion PGM2 overexpression in S. cerevisiae from an integrative plasmid is sufficient to reduce the lag phase and to enhance the growth rate in anaerobic galactose fermentation, which results in an overall decrease in fermentation duration. This observation is of particular importance for the future development of stable industrial strains with enhanced PGM activity. PMID:20507616

  3. NUCKS overexpression in breast cancer

    PubMed Central

    Drosos, Yiannis; Kouloukoussa, Mirsini; Østvold, Anne Carine; Grundt, Kirsten; Goutas, Nikos; Vlachodimitropoulos, Dimitrios; Havaki, Sophia; Kollia, Panagoula; Kittas, Christos; Marinos, Evangelos; Aleporou-Marinou, Vassiliki

    2009-01-01

    Background NUCKS (Nuclear, Casein Kinase and Cyclin-dependent Kinase Substrate) is a nuclear, DNA-binding and highly phosphorylated protein. A number of reports show that NUCKS is highly expressed on the level of mRNA in several human cancers, including breast cancer. In this work, NUCKS expression on both RNA and protein levels was studied in breast tissue biopsies consisted of invasive carcinomas, intraductal proliferative lesions, benign epithelial proliferations and fibroadenomas, as well as in primary cultures derived from the above biopsies. Specifically, in order to evaluate the level of NUCKS protein in correlation with the histopathological features of breast disease, immunohistochemistry was employed on paraffin sections of breast biopsies of the above types. In addition, NUCKS expression was studied by means of Reverse Transcription PCR (RT-PCR), real-time PCR (qRT-PCR) and Western immunoblot analyses in the primary cell cultures developed from the same biopsies. Results The immunohistochemical Results showed intense NUCKS staining mostly in grade I and II breast carcinomas compared to normal tissues. Furthermore, NUCKS was moderate expressed in benign epithelial proliferations, such as adenosis and sclerosing adenosis, and highly expressed in intraductal lesions, specifically in ductal carcinomas in situ (DCIS). It is worth noting that all the fibroadenoma tissues examined were negative for NUCKS staining. RT-PCR and qRT-PCR showed an increase of NUCKS expression in cells derived from primary cultures of proliferative lesions and cancerous tissues compared to the ones derived from normal breast tissues and fibroadenomas. This increase was also confirmed by Western immunoblot analysis. Although NUCKS is a cell cycle related protein, its expression does not correlate with Ki67 expression, neither in tissue sections nor in primary cell cultures. Conclusion The results show overexpression of the NUCKS protein in a number of non malignant breast lesions and

  4. POMC overexpression in the ventral tegmental area ameliorates dietary obesity.

    PubMed

    Andino, Lourdes M; Ryder, Daniel J; Shapiro, Alexandra; Matheny, Michael K; Zhang, Yi; Judge, Melanie K; Cheng, K Y; Tümer, Nihal; Scarpace, Philip J

    2011-08-01

    The activation of proopiomelanocortin (POMC) neurons in different regions of the brain, including the arcuate nucleus of the hypothalamus (ARC) and the nucleus of the solitary tract curtails feeding and attenuates body weight. In this study, we compared the effects of delivery of a recombinant adeno-associated viral (rAAV) construct encoding POMC to the ARC with delivery to the ventral tegmental area (VTA). F344×Brown Norway rats were high-fat (HF) fed for 14 days after which self-complementary rAAV constructs expressing either green fluorescent protein or the POMC gene were injected using coordinates targeting either the VTA or the ARC. Corresponding increased POMC levels were found at the predicted injection sites and subsequent α-melanocyte-stimulating hormone levels were observed. Food intake and body weight were measured for 4 months. Although caloric intake was unaltered by POMC overexpression, weight gain was tempered with POMC overexpression in either the VTA or the ARC compared with controls. There were parallel decreases in adipose tissue reserves. In addition, levels of oxygen consumption and brown adipose tissue uncoupling protein 1 were significantly elevated with POMC treatment in the VTA. Interestingly, tyrosine hydroxylase levels were increased in both the ARC and VTA with POMC overexpression in either the ARC or the VTA. In conclusion, these data indicate a role for POMC overexpression within the VTA reward center to combat HF-induced obesity.

  5. The effects of bufadienolides on HER2 overexpressing breast cancer cells.

    PubMed

    Wang, Tianjiao; Mu, Lin; Jin, Haifeng; Zhang, Peng; Wang, Yueyue; Ma, Xiaochi; Pan, Jinjin; Miao, Jian; Yuan, Yuhui

    2016-06-01

    HER2 is a proto-oncogene frequently amplified in human breast cancer, its overexpression is correlated with tamoxifen resistance and decreased recurrence-free survival. Arenobufagin and bufalin are homogeneous bufadienolides of cardiac glycosides agents. In this research, we studied the effects of arenobufagin and bufalin on cellular survival and proliferation of HER2 overexpressing breast cancer cells and the mechanism under the results including the direct effect on HER2 downstream pathways. Our results showed that arenobufagin and bufalin could significantly inhibit the proliferation and survival of HER2 overexpressing breast cancer cells, along with the declination of SRC-1, SRC-3, nuclear transcription factor E2F1, phosphorylated AKT, and ERK. And the combination of each bufadienolide in low dose with tamoxifen could significantly enhance the inhibitory effect of tamoxifen on HER2 overexpressing breast cancer cells. All above suggest that arenobufagin and bufalin may be potential therapy adjuvants for HER2 overexpressing breast cancer therapy.

  6. Overexpression of ankyrin1 promotes pancreatic cancer cell growth

    PubMed Central

    Omura, Noriyuki; Mizuma, Masamichi; MacGregor, Anne; Hong, Seung-Mo; Ayars, Michael; Almario, Jose Alejandro; Borges, Michael; Kanda, Mitsuro; Li, Ang; Vincent, Audrey; Maitra, Anirban; Goggins, Michael

    2016-01-01

    The methylation status of a promoter influences gene expression and aberrant methylation during tumor development has important functional consequences for pancreatic and other cancers. Using methylated CpG island amplification and promoter microarrays, we identified ANK1 as hypomethylated in pancreatic cancers. Expression analysis determined ANK1 as commonly overexpressed in pancreatic cancers relative to normal pancreas. ANK1 was co-expressed with miR-486 in pancreatic cancer cells. Stable knockdown of ANK1 in the pancreatic cancer cell line AsPC1 led to changes in cell morphology, and decreases in colony formation. Stable knockdown of ANK1 also marked reduced the growth of tumors in athymic nude mice. Among patients undergoing pancreaticoduodenectomy, those with pancreatic cancers expressing ANK1 had a poorer prognosis than those without ANK1 expression. These findings indicate a role for ANK1 overexpression in mediating pancreatic cancer tumorigenicity. PMID:27144336

  7. Protective effects of catalase overexpression on UVB-induced apoptosis in normal human keratinocytes.

    PubMed

    Rezvani, Hamid Reza; Mazurier, Frédéric; Cario-André, Muriel; Pain, Catherine; Ged, Cécile; Taïeb, Alain; de Verneuil, Hubert

    2006-06-30

    UV-induced apoptosis in keratinocytes is a highly complex process in which various molecular pathways are involved. These include the extrinsic pathway via triggering of death receptors and the intrinsic pathway via DNA damage and reactive oxygen species (ROS) formation. In this study we investigated the effect of catalase and CuZn-superoxide dismutase (SOD) overexpression on apoptosis induced by UVB exposure at room temperature or 4 degrees C on normal human keratinocytes. Irradiation at low temperature reduced UV-induced apoptosis by 40% in normal keratinocytes independently of any change in p53 and with a decrease in caspase-8 activation. Catalase overexpression decreased apoptosis by 40% with a reduction of caspase-9 activation accompanied by a decrease in p53. Keeping cells at low temperature and catalase overexpression had additive effects. CuZn-SOD overexpression had no significant effect on UVB-induced apoptosis. UVB induced an increase in ROS levels at two distinct stages: immediately following irradiation and around 3 h after irradiation. Catalase overexpression inhibited only the late increase in ROS levels. We conclude that catalase overexpression has a protective role against UVB irradiation by preventing DNA damage mediated by the late ROS increase.

  8. Overexpression of decorin promoted angiogenesis in diabetic cardiomyopathy via IGF1R-AKT-VEGF signaling.

    PubMed

    Lai, Jinsheng; Chen, Fuqiong; Chen, Jing; Ruan, Guoran; He, Mengying; Chen, Chen; Tang, Jiarong; Wang, Dao Wen

    2017-03-14

    Microcirculatory dysfunction is believed to play an important role in diabetic cardiomyopathy. The small leucine-rich proteoglycan decorin is generally considered a pro-angiogenic factor. Here, we investigate whether overexpression of decorin ameliorates diabetic cardiomyopathy and its effects on angiogenesis in vivo and in vitro. Diabetes was induced through intraperitoneal injection with streptozotocin combined with a high-fat diet, and decorin was overexpressed via recombinant adeno-associated virus in Wistar rats. Six months later, cardiac function was determined using an echocardiography and cardiac catheter system. The results showed that cardiac function was decreased in diabetic rats and restored by overexpression of decorin. In addition, overexpression of decorin upregulated the expression of VEGF and attenuated the reduction in the cardiac capillary density. In the in vitro study, high glucose induced apoptosis and inhibited the capabilities of tube formation, migration and proliferation, which were all ameliorated by decorin overexpression. Meanwhile, decorin overexpression increased the expression of VEGF and IGF1R, as well as the phosphorylation level of AKT and AP-1. Nonetheless, all of these effects were abolished by pretreatment with the IGF1R antibody or AKT inhibitor. In conclusion, overexpression of decorin ameliorated diabetic cardiomyopathy and promoted angiogenesis through the IGF1R-AKT-VEGF signaling pathway in vivo and in vitro.

  9. Overexpression of decorin promoted angiogenesis in diabetic cardiomyopathy via IGF1R-AKT-VEGF signaling

    PubMed Central

    Lai, Jinsheng; Chen, Fuqiong; Chen, Jing; Ruan, Guoran; He, Mengying; Chen, Chen; Tang, Jiarong; Wang, Dao Wen

    2017-01-01

    Microcirculatory dysfunction is believed to play an important role in diabetic cardiomyopathy. The small leucine-rich proteoglycan decorin is generally considered a pro-angiogenic factor. Here, we investigate whether overexpression of decorin ameliorates diabetic cardiomyopathy and its effects on angiogenesis in vivo and in vitro. Diabetes was induced through intraperitoneal injection with streptozotocin combined with a high-fat diet, and decorin was overexpressed via recombinant adeno-associated virus in Wistar rats. Six months later, cardiac function was determined using an echocardiography and cardiac catheter system. The results showed that cardiac function was decreased in diabetic rats and restored by overexpression of decorin. In addition, overexpression of decorin upregulated the expression of VEGF and attenuated the reduction in the cardiac capillary density. In the in vitro study, high glucose induced apoptosis and inhibited the capabilities of tube formation, migration and proliferation, which were all ameliorated by decorin overexpression. Meanwhile, decorin overexpression increased the expression of VEGF and IGF1R, as well as the phosphorylation level of AKT and AP-1. Nonetheless, all of these effects were abolished by pretreatment with the IGF1R antibody or AKT inhibitor. In conclusion, overexpression of decorin ameliorated diabetic cardiomyopathy and promoted angiogenesis through the IGF1R-AKT-VEGF signaling pathway in vivo and in vitro. PMID:28290552

  10. Craniosynostosis in transgenic mice overexpressing Nell-1

    PubMed Central

    Zhang, Xinli; Kuroda, Shun’ichi; Carpenter, Dale; Nishimura, Ichiro; Soo, Chia; Moats, Rex; Iida, Keisuke; Wisner, Eric; Hu, Fei-Ya; Miao, Steve; Beanes, Steve; Dang, Catherine; Vastardis, Heleni; Longaker, Michael; Tanizawa, Katsuyuki; Kanayama, Norihiro; Saito, Naoaki; Ting, Kang

    2002-01-01

    Previously, we reported NELL-1 as a novel molecule overexpressed during premature cranial suture closure in patients with craniosynostosis (CS), one of the most common congenital craniofacial deformities. Here we describe the creation and analysis of transgenic mice overexpressing Nell-1. Nell-1 transgenic animals exhibited CS-like phenotypes that ranged from simple to compound synostoses. Histologically, the osteogenic fronts of abnormally closing/closed sutures in these animals revealed calvarial overgrowth and overlap along with increased osteoblast differentiation and reduced cell proliferation. Furthermore, anomalies were restricted to calvarial bone, despite generalized, non-tissue-specific overexpression of Nell-1. In vitro, Nell-1 overexpression accelerated calvarial osteoblast differentiation and mineralization under normal culture conditions. Moreover, Nell-1 overexpression in osteoblasts was sufficient to promote alkaline phosphatase expression and micronodule formation. Conversely, downregulation of Nell-1 inhibited osteoblast differentiation in vitro. In summary, Nell-1 overexpression induced calvarial overgrowth resulting in premature suture closure in a rodent model. Nell-1, therefore, has a novel role in CS development, perhaps as part of a complex chain of events resulting in premature suture closure. On a cellular level, Nell-1 expression may modulate and be both sufficient and required for osteoblast differentiation. PMID:12235118

  11. Conditional overexpression of connective tissue growth factor disrupts postnatal lung development.

    PubMed

    Wu, Shu; Platteau, Astrid; Chen, Shaoyi; McNamara, George; Whitsett, Jeffrey; Bancalari, Eduardo

    2010-05-01

    Connective tissue growth factor (CTGF) is a member of an emerging family of immediate-early gene products that coordinates complex biological processes during development, differentiation, and tissue repair. Overexpression of CTGF is associated with mechanical ventilation with high tidal volume and oxygen exposure in newborn lungs. However, the role of CTGF in postnatal lung development and remodeling is not well understood. In the present study, a double-transgenic mouse model was generated with doxycycline-inducible overexpression of CTGF in respiratory epithelial cells. Overexpression of CTGF from Postnatal Days 1-14 resulted in thicker alveolar septa and decreased secondary septal formation. This is correlated with increased myofibroblast differentiation and disorganized elastic fiber deposition in alveolar septa. Overexpression of CTGF also decreased alveolar capillary network formation. There were increased alpha-smooth muscle actin expression and collagen deposition, and dramatic thickening in the peribronchial/peribronchiolar and perivascular regions in the double-transgenic lungs. Furthermore, overexpression of CTGF increased integrin-linked kinase expression, activated its downstream signaling target, Akt, as well as increased mRNA expression of fibronectin. These data demonstrate that overexpression of CTGF disrupts alveologenesis and capillary formation, and induces fibrosis during the critical period of alveolar development. These histologic changes are similar to those observed in lungs of infants with bronchopulmonary dysplasia.

  12. Overexpression of DHX32 contributes to the growth and metastasis of colorectal cancer

    PubMed Central

    Lin, Huayue; Liu, Wenjuan; Fang, Zanxi; Liang, Xianming; Li, Juan; Bai, Yongying; Lin, Lingqing; You, Hanyu; Pei, Yihua; Wang, Fen; Zhang, Zhong-Ying

    2015-01-01

    Our previous work demonstrates that DHX32 is upregulated in colorectal cancer (CRC) compared to its adjacent normal tissues. However, how overexpressed DHX32 contributes to CRC remains largely unknown. In this study, we reported that DHX32 was overexpressed in human colon cancer cells. Overexpressed DHX32 promoted SW480 cancer cells proliferation, migration, and invasion, as well as decreased the susceptibility to chemotherapy agent 5-Fluorouracil. Furthermore, PCR array analyses revealed that depleting DHX32 in SW480 colon cancer cells suppressed expression of WISP1, MMP7 and VEGFA in the Wnt pathway, and anti-apoptotic gene BCL2 and CA9, however, elevated expression of pro-apoptotic gene ACSL5. The findings suggested that overexpressed DHX32 played an important role in CRC progression and metastasis and that DHX32 has the potential to serve as a biomarker and a novel therapeutic target for CRC. PMID:25782664

  13. OVEREXPRESSION OF EXTRACELLULAR SUPEROXIDE DISMUTASE DECREASES LUNG INJURY AFTER EXPOSURE TO OIL FLY ASH

    EPA Science Inventory

    The mechanism of tissue injury after exposure to air pollution particles is not known. The biological effect has been postulated to be mediated via an oxidative stress catalyzed by metals present in particulate matter (PM). We utilized a transgenic (Tg) mouse model that overexpre...

  14. Schur monotone decreasing sequences

    NASA Astrophysics Data System (ADS)

    Ganikhodjaev, Rasul; Saburov, Mansoor; Saburov, Khikmat

    2013-09-01

    In this paper, we introduce Schur monotone decreasing sequences in an n-dimensional space by considering a majorization pre-order. By means of down arrow mappings, we study omega limiting points of bounded Schur monotone decreasing sequences. We provide convergence criteria for such kinds of sequences. We prove that a Cesaro mean (or an arithmetic mean) of any bounded Schur monotone decreasing sequences converges to a unique limiting point.

  15. Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism

    PubMed Central

    2011-01-01

    Background Isobutanol can be a better biofuel than ethanol due to its higher energy density and lower hygroscopicity. Furthermore, the branched-chain structure of isobutanol gives a higher octane number than the isomeric n-butanol. Saccharomyces cerevisiae was chosen as the production host because of its relative tolerance to alcohols, robustness in industrial fermentations, and the possibility for future combination of isobutanol production with fermentation of lignocellulosic materials. Results The yield of isobutanol was improved from 0.16 to 0.97 mg per g glucose by simultaneous overexpression of biosynthetic genes ILV2, ILV3, and ILV5 in valine metabolism in anaerobic fermentation of glucose in mineral medium in S. cerevisiae. Isobutanol yield was further improved by twofold by the additional overexpression of BAT2, encoding the cytoplasmic branched-chain amino-acid aminotransferase. Overexpression of ILV6, encoding the regulatory subunit of Ilv2, in the ILV2 ILV3 ILV5 overexpression strain decreased isobutanol production yield by threefold. In aerobic cultivations in shake flasks in mineral medium, the isobutanol yield of the ILV2 ILV3 ILV5 overexpression strain and the reference strain were 3.86 and 0.28 mg per g glucose, respectively. They increased to 4.12 and 2.4 mg per g glucose in yeast extract/peptone/dextrose (YPD) complex medium under aerobic conditions, respectively. Conclusions Overexpression of genes ILV2, ILV3, ILV5, and BAT2 in valine metabolism led to an increase in isobutanol production in S. cerevisiae. Additional overexpression of ILV6 in the ILV2 ILV3 ILV5 overexpression strain had a negative effect, presumably by increasing the sensitivity of Ilv2 to valine inhibition, thus weakening the positive impact of overexpression of ILV2, ILV3, and ILV5 on isobutanol production. Aerobic cultivations of the ILV2 ILV3 ILV5 overexpression strain and the reference strain showed that supplying amino acids in cultivation media gave a substantial

  16. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    SciTech Connect

    Takabe, Piia; Bart, Geneviève; Ropponen, Antti; Rilla, Kirsi; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna

    2015-09-10

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma.

  17. [Metallothionein-I/II in brain injury repair mechanism and its application in forensic medicine].

    PubMed

    Li, Dong; Li, Ru-bo; Lin, Ju-li

    2013-10-01

    Metallothionein (MT) is a kind of metal binding protein. As an important member in metallothionein family, MT-I/II regulates metabolism and detoxication of brain metal ion and scavenges free radicals. It is capable of anti-inflammatory response and anti-oxidative stress so as to protect the brain tissue. During the repair process of brain injury, the latest study showed that MT-I/II could stimulate brain anti-inflammatory factors, growth factors, neurotrophic factors and the expression of the receptor, and promote the extension of axon of neuron, which makes contribution to the regeneration of neuron and has important effect on the recovery of brain injury. Based on the findings, this article reviews the structure, expression, distribution, adjustion, function, mechanism in the repair of brain injury of MT-I/II and its application prospect in forensic medicine. It could provide a new approach for the design and manufacture of brain injury drugs as well as for age estimation of the brain injury.

  18. Overexpression of Catalase Diminishes Oxidative Cysteine Modifications of Cardiac Proteins.

    PubMed

    Yao, Chunxiang; Behring, Jessica B; Shao, Di; Sverdlov, Aaron L; Whelan, Stephen A; Elezaby, Aly; Yin, Xiaoyan; Siwik, Deborah A; Seta, Francesca; Costello, Catherine E; Cohen, Richard A; Matsui, Reiko; Colucci, Wilson S; McComb, Mark E; Bachschmid, Markus M

    2015-01-01

    Reactive protein cysteine thiolates are instrumental in redox regulation. Oxidants, such as hydrogen peroxide (H2O2), react with thiolates to form oxidative post-translational modifications, enabling physiological redox signaling. Cardiac disease and aging are associated with oxidative stress which can impair redox signaling by altering essential cysteine thiolates. We previously found that cardiac-specific overexpression of catalase (Cat), an enzyme that detoxifies excess H2O2, protected from oxidative stress and delayed cardiac aging in mice. Using redox proteomics and systems biology, we sought to identify the cysteines that could play a key role in cardiac disease and aging. With a 'Tandem Mass Tag' (TMT) labeling strategy and mass spectrometry, we investigated differential reversible cysteine oxidation in the cardiac proteome of wild type and Cat transgenic (Tg) mice. Reversible cysteine oxidation was measured as thiol occupancy, the ratio of total available versus reversibly oxidized cysteine thiols. Catalase overexpression globally decreased thiol occupancy by ≥1.3 fold in 82 proteins, including numerous mitochondrial and contractile proteins. Systems biology analysis assigned the majority of proteins with differentially modified thiols in Cat Tg mice to pathways of aging and cardiac disease, including cellular stress response, proteostasis, and apoptosis. In addition, Cat Tg mice exhibited diminished protein glutathione adducts and decreased H2O2 production from mitochondrial complex I and II, suggesting improved function of cardiac mitochondria. In conclusion, our data suggest that catalase may alleviate cardiac disease and aging by moderating global protein cysteine thiol oxidation.

  19. The story of stolen chaperones: how overexpression of Q/N proteins cures yeast prions.

    PubMed

    Derkatch, Irina L; Liebman, Susan W

    2013-01-01

    Prions are self-seeding alternate protein conformations. Most yeast prions contain glutamine/asparagine (Q/N)-rich domains that promote the formation of amyloid-like prion aggregates. Chaperones, including Hsp104 and Sis1, are required to continually break these aggregates into smaller "seeds." Decreasing aggregate size and increasing the number of growing aggregate ends facilitates both aggregate transmission and growth. Our previous work showed that overexpression of 11 proteins with Q/N-rich domains facilitates the de novo aggregation of Sup35 into the [PSI(+)] prion, presumably by a cross-seeding mechanism. We now discuss our recent paper, in which we showed that overexpression of most of these same 11 Q/N-rich proteins, including Pin4C and Cyc8, destabilized pre-existing Q/N rich prions. Overexpression of both Pin4C and Cyc8 caused [PSI(+)] aggregates to enlarge. This is incompatible with a previously proposed "capping" model where the overexpressed Q/N-rich protein poisons, or "caps," the growing aggregate ends. Rather the data match what is expected of a reduction in prion severing by chaperones. Indeed, while Pin4C overexpression does not alter chaperone levels, Pin4C aggregates sequester chaperones away from the prion aggregates. Cyc8 overexpression cures [PSI(+)] by inducing an increase in Hsp104 levels, as excess Hsp104 binds to [PSI(+)] aggregates in a way that blocks their shearing.

  20. Enhancement of geraniol resistance of Escherichia coli by MarA overexpression.

    PubMed

    Shah, Asad Ali; Wang, Chonglong; Chung, Young-Ryun; Kim, Jae-Yean; Choi, Eui-Sung; Kim, Seon-Won

    2013-03-01

    Improvement of a microorganism's tolerance against organic solvents is required for a microbial factory producing terpenoid based biofuels. The bacterial genes, marA, imp, cls and cti have been found to increase organic solvent tolerance. Thus, the tolerance against the following terpenoids (isopentenol, geraniol, myrcene, and farnesol) was studied with overexpression of marA, imp, cls and cti genes in Escherichia coli. The marA overexpression significantly enhanced the tolerance of E. coli against geraniol, whereas there was no tolerance improvement against the terpenoids by overexpression of cls and cti genes. The imp overexpression even yielded sensitive phenotype to the tested solvents. The colony forming efficiency of the marA overexpressing E. coli was increased by 10(4)-fold in plate overlay of geraniol compared to that of wild type E. coli and a two-fold decrease of intracellular geraniol accumulation was also observed in liquid culture of geraniol. Single knock-out mutations of marA, or one of the following genes (acrA, acrB and tolC) encoding AcrAB-TolC efflux pump made E. coli hypersensitive to geraniol. The geraniol tolerance conferred by marA overexpression was attributed to the AcrAB-TolC efflux pump that is activated by MarA.

  1. Stratospheric ozone is decreasing

    NASA Astrophysics Data System (ADS)

    Kerr, Richard A.

    1988-03-01

    The recent discovery that chlorofluorocarbons create the Antarctic ozone hole every October through reactions mediated by ice particles formed at the lowest temperatures of the stratosphere is discussed. A large-scale reanalysis of measurements reveals that protective stratospheric ozone has decreased during the past 17 yrs with some decreases greatly exceeding predictions. It is noted that standard models did not, and still do not, include the ice in their reaction schemes. A tendency toward larger losses at higher colder latitudes is seen.

  2. Decreasing strabismus surgery

    PubMed Central

    Arora, A; Williams, B; Arora, A K; McNamara, R; Yates, J; Fielder, A

    2005-01-01

    Aim: To determine whether there has been a consistent change across countries and healthcare systems in the frequency of strabismus surgery in children over the past decade. Methods: Retrospective analysis of data on all strabismus surgery performed in NHS hospitals in England and Wales, on children aged 0–16 years between 1989 and 2000, and between 1994 and 2000 in Ontario (Canada) hospitals. These were compared with published data for Scotland, 1989–2000. Results: Between 1989 and 1999–2000 the number of strabismus procedures performed on children, 0–16 years, in England decreased by 41.2% from 15 083 to 8869. Combined medial rectus recession with lateral rectus resection decreased from 5538 to 3013 (45.6%) in the same period. Bimedial recessions increased from 489 to 762, oblique tenotomies from 43 to 121, and the use of adjustable sutures from 29 to 44, in 2000. In Ontario, operations for squint decreased from 2280 to 1685 (26.1%) among 0–16 year olds between 1994 and 2000. Conclusion: The clinical impression of decrease in the frequency of paediatric strabismus surgery is confirmed. In the authors’ opinion this cannot be fully explained by a decrease in births or by the method of healthcare funding. Two factors that might have contributed are better conservative strabismus management and increased subspecialisation that has improved the quality of surgery and the need for re-operation. This finding has a significant impact upon surgical services and also on the training of ophthalmologists. PMID:15774914

  3. Overexpression of several Arabidopsis histone genes increases Agrobacterium-medicated transformation and transgene expression in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Arabidopsis histone H2A-1 is important for Agrobacterium-mediated plant transformation. Mutation of HTA1, the gene encoding histone H2A-1, in the rat5 mutant results in decreased T-(transferred) DNA integration into the plant genome, whereas over-expression of HTA1 increases transformation freq...

  4. Overexpression of cellular glutathione peroxidase rescues homocyst(e)ine-induced endothelial dysfunction.

    PubMed

    Weiss, N; Zhang, Y Y; Heydrick, S; Bierl, C; Loscalzo, J

    2001-10-23

    Homocyst(e)ine (Hcy) inhibits the expression of the antioxidant enzyme cellular glutathione peroxidase (GPx-1) in vitro and in vivo, which can lead to an increase in reactive oxygen species that inactivate NO and promote endothelial dysfunction. In this study, we tested the hypothesis that overexpression of GPx-1 can restore the normal endothelial phenotype in hyperhomocyst(e)inemic states. Heterozygous cystathionine beta-synthase-deficient (CBS((-/+))) mice and their wild-type littermates (CBS((+/+))) were crossbred with mice that overexpress GPx-1 [GPx-1((tg+)) mice]. GPx-1 activity was 28% lower in CBS((-/+))/GPx-1((tg-)) compared with CBS((+/+))/GPx-1((tg-)) mice (P < 0.05), and CBS((-/+)) and CBS((+/+)) mice overexpressing GPx-1 had 1.5-fold higher GPx-1 activity compared with GPx-1 nontransgenic mice (P < 0.05). Mesenteric arterioles of CBS((-/+))/GPx-1((tg-)) mice showed vasoconstriction to superfusion with beta-methacholine and bradykinin (P < 0.001 vs. all other groups), whereas nonhyperhomocyst(e)inemic mice [CBS((+/+))/GPx-1((tg-)) and CBS((+/+))/GPx-1((tg+)) mice] demonstrated dose-dependent vasodilation in response to both agonists. Overexpression of GPx-1 in hyperhomocyst(e)inemic mice restored the normal endothelium-dependent vasodilator response. Bovine aortic endothelial cells (BAEC) were transiently transfected with GPx-1 and incubated with dl-homocysteine (HcyH) or l-cysteine. HcyH incubation decreased GPx-1 activity in sham-transfected BAEC (P < 0.005) but not in GPx-1-transfected cells. Nitric oxide release from BAEC was significantly decreased by HcyH but not cysteine, and GPx-1 overexpression attenuated this decrease. These findings demonstrate that overexpression of GPx-1 can compensate for the adverse effects of Hcy on endothelial function and suggest that the adverse vascular effects of Hcy are at least partly mediated by oxidative inactivation of NO.

  5. Overexpression of cellular glutathione peroxidase rescues homocyst(e)ine-induced endothelial dysfunction

    PubMed Central

    Weiss, Norbert; Zhang, Ying-Yi; Heydrick, Stanley; Bierl, Charlene; Loscalzo, Joseph

    2001-01-01

    Homocyst(e)ine (Hcy) inhibits the expression of the antioxidant enzyme cellular glutathione peroxidase (GPx-1) in vitro and in vivo, which can lead to an increase in reactive oxygen species that inactivate NO and promote endothelial dysfunction. In this study, we tested the hypothesis that overexpression of GPx-1 can restore the normal endothelial phenotype in hyperhomocyst(e)inemic states. Heterozygous cystathionine β-synthase-deficient (CBS(−/+)) mice and their wild-type littermates (CBS(+/+)) were crossbred with mice that overexpress GPx-1 [GPx-1(tg+) mice]. GPx-1 activity was 28% lower in CBS(−/+)/GPx-1(tg−) compared with CBS(+/+)/GPx-1(tg−) mice (P < 0.05), and CBS(−/+) and CBS(+/+) mice overexpressing GPx-1 had 1.5-fold higher GPx-1 activity compared with GPx-1 nontransgenic mice (P < 0.05). Mesenteric arterioles of CBS(−/+)/GPx-1(tg−) mice showed vasoconstriction to superfusion with β-methacholine and bradykinin (P < 0.001 vs. all other groups), whereas nonhyperhomocyst(e)inemic mice [CBS(+/+)/GPx-1(tg−) and CBS(+/+)/GPx-1(tg+) mice] demonstrated dose-dependent vasodilation in response to both agonists. Overexpression of GPx-1 in hyperhomocyst(e)inemic mice restored the normal endothelium-dependent vasodilator response. Bovine aortic endothelial cells (BAEC) were transiently transfected with GPx-1 and incubated with dl-homocysteine (HcyH) or l-cysteine. HcyH incubation decreased GPx-1 activity in sham-transfected BAEC (P < 0.005) but not in GPx-1-transfected cells. Nitric oxide release from BAEC was significantly decreased by HcyH but not cysteine, and GPx-1 overexpression attenuated this decrease. These findings demonstrate that overexpression of GPx-1 can compensate for the adverse effects of Hcy on endothelial function and suggest that the adverse vascular effects of Hcy are at least partly mediated by oxidative inactivation of NO. PMID:11606774

  6. Cardiac‐specific Hexokinase 2 Overexpression Attenuates Hypertrophy by Increasing Pentose Phosphate Pathway Flux

    PubMed Central

    McCommis, Kyle S.; Douglas, Diana L.; Krenz, Maike; Baines, Christopher P.

    2013-01-01

    Background The enzyme hexokinase‐2 (HK2) phosphorylates glucose, which is the initiating step in virtually all glucose utilization pathways. Cardiac hypertrophy is associated with a switch towards increased glucose metabolism and decreased fatty acid metabolism. Recent evidence suggests that the increased glucose utilization is compensatory to the down‐regulated fatty acid metabolism during hypertrophy and is, in fact, beneficial. Therefore, we hypothesized that increasing glucose utilization by HK2 overexpression would decrease cardiac hypertrophy. Methods and Results Mice with cardiac‐specific HK2 overexpression displayed decreased hypertrophy in response to isoproterenol. Neonatal rat ventricular myocytes (NRVMs) infected with an HK2 adenovirus similarly displayed decreased hypertrophy in response to phenylephrine. Hypertrophy increased reactive oxygen species (ROS) levels, which were attenuated by HK2 overexpression, thereby decreasing NRVM hypertrophy and death. HK2 appears to modulate ROS via the pentose phosphate pathway, as inhibition of glucose‐6‐phosphate dehydrogenase with dehydroepiandrosterone decreased the ability of HK2 to diminish ROS and hypertrophy. Conclusions These results suggest that HK2 attenuates cardiac hypertrophy by decreasing ROS accumulation via increased pentose phosphate pathway flux. PMID:24190878

  7. Capsule Depolymerase Overexpression Reduces Bacillus anthracis Virulence

    DTIC Science & Technology

    2010-01-01

    Friedlander, A. M. (2004). The NheA component of the non- hemolytic enterotoxin of Bacillus cereus is produced by Bacillus anthracis but is not required for...Capsule depolymerase overexpression reduces Bacillus anthracis virulence Angelo Scorpio,3 Donald J. Chabot, William A. Day,4 Timothy A. Hoover and...depolymerase (CapD) is a c-glutamyl transpeptidase and a product of the Bacillus anthracis capsule biosynthesis operon. In this study, we examined the

  8. Ameliorating replicative senescence of human bone marrow stromal cells by PSMB5 overexpression

    SciTech Connect

    Lu, Li; Song, Hui-Fang; Wei, Jiao-Long; Liu, Xue-Qin; Song, Wen-Hui; Yan, Ba-Yi; Yang, Gui-Jiao; Li, Ang; Yang, Wu-Lin

    2014-01-24

    Highlights: • PSMB5 overexpression restores the differentiation potential of aged hBMSCs. • PSMB5 overexpression enhances the proteasomal activity of late-stage hBMSCs. • PSMB5 overexpression inhibits replicative senescence and improved cell viability. • PSMB5 overexpression promotes cell growth by upregulating the Cyclin D1/CDK4 complex. - Abstract: Multipotent human bone marrow stromal cells (hBMSCs) potentially serve as a source for cell-based therapy in regenerative medicine. However, in vitro expansion was inescapably accompanied with cell senescence, characterized by inhibited proliferation and compromised pluripotency. We have previously demonstrated that this aging process is closely associated with reduced 20S proteasomal activity, with down-regulation of rate-limiting catalytic β-subunits particularly evident. In the present study, we confirmed that proteasomal activity directly contributes to senescence of hBMSCs, which could be reversed by overexpression of the β5-subunit (PSMB5). Knocking down PSMB5 led to decreased proteasomal activity concurrent with reduced cell proliferation in early-stage hBMSCs, which is similar to the senescent phenotype observed in late-stage cells. In contrast, overexpressing PSMB5 in late-stage cells efficiently restored the normal activity of 20S proteasomes and promoted cell growth, possibly via upregulating the Cyclin D1/CDK4 complex. Additionally, PSMB5 could enhance cell resistance to oxidative stress, as evidenced by the increased cell survival upon exposing senescent hBMSCs to hydrogen peroxide. Furthermore, PSMB5 overexpression retained the pluripotency of late-stage hBMSCs by facilitating their neural differentiation both in vitro and in vivo. Collectively, our work reveals a critical role of PSMB5 in 20S proteasome-mediated protection against replicative senescence, pointing to a possible strategy for maintaining the integrity of culture-expanded hBMSCs by manipulating the expression of PSMB5.

  9. Mitigated NSAID-induced apoptotic and autophagic cell death with Smad7 overexpression

    PubMed Central

    Lee, Ho-Jae; Park, Jong Min; Hahm, Ki Baik

    2017-01-01

    Non-steroidal anti-inflammatory drugs damaged gastrointestinal mucosa in cyclooxygenase-dependent and -independent pathway, among which apopototic or autophagic cell death in gastrointestinal cells might be one of key cytotoxic mechanisms responsible for NSAID-induced damages. Therefore, alleviating this cell death after NSAIDs can be a rescuing strategy. In this study, we explored the role of Smad7 on NSAID-induced cytotoxicity in gastric epithelial cells. Using RGM1 cells, we have compared biological changes between mock-transfected and Smad7-overexpressed cells. As results, significantly decreased cytotoxicity accompanied with decreased levels of cleaved caspase-3 and poly (ADP-ribose) polymerase, Bax, and autophagic vesicles concurrent with decreased expressions of autophagy protein 5 and microtubule-associated protein light chain 3B-II were noted in Smad7-overexpressed cells with indomethacin administration compared to mock-transfected cells. Contrast to mitigated apoptotic execution, anti-apoptotic Bcl-2 and Beclin-1 were significantly increased in Smad7-overexpressed cells compared to mock-transfected cells. Smad7 siRNA significantly reversed these protective actions of Smad7 against indomethacin, in which p38 mitogen-activated protein kinase was significantly intervened. Furthermore, indomethacin-induced Smad7 degradation through ubiquitin-proteasome pathway was relevant to increased cytotoxicity, while chloroquine as autophagy inhibitor significantly attenuated indomethacin-induced cytotoxicity through Smad7 preservation via repressed ubiquitination. Conclusively, either genetic overexpression or pharmacological induction of Smad7 significantly attenuated indomethacin-induced gastric cell damages. PMID:28163383

  10. RASSF4 Overexpression Inhibits the Proliferation, Invasion, EMT, and Wnt Signaling Pathway in Osteosarcoma Cells.

    PubMed

    Zhang, Minglei; Wang, Dapeng; Zhu, Tongtong; Yin, Ruofeng

    2017-01-02

    RASSF4, a member of the RASSF family, is broadly expressed in normal tissues but often inactivated in human cancers. Despite various studies on RASSF4, its role in osteosarcoma remains unclear. Therefore, in this study, we investigated the effects of RASSF4 expression on osteosarcoma cells and explored the underlying mechanism. The results of our study showed that RASSF4 was lowly expressed in osteosarcoma tissues and cells. RASSF4 overexpression significantly inhibited proliferation, migration, and invasion as well as the EMT process in osteosarcoma cells. Meanwhile, we found that RASSF4 overexpression markedly decreased the protein expression of β-catenin, cyclin D1, and c-Myc in osteosarcoma cells. In conclusion, our findings showed that RASSF4 overexpression inhibits proliferation, invasion, EMT, and Wnt signaling pathway in osteosarcoma cells. Thus, RASSF4 may be considered a novel target for osteosarcoma treatment.

  11. Over-expression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice.

    PubMed

    Qi, Yaocheng; Wang, Hongjuan; Zou, Yu; Liu, Cheng; Liu, Yanqi; Wang, Ying; Zhang, Wei

    2011-01-03

    In this study, we identified and functionally characterized the mitochondrial heat shock protein 70 (mtHsp70). Over-expression of mtHsp70 suppressed heat- and H(2)O(2)-induced programmed cell death (PCD) in rice protoplasts, as reflected by higher cell viability, decreased DNA laddering and chromatin condensation. Mitochondrial membrane potential (Δψ(m)) after heat shock was destroyed gradually in protoplasts, but mtHsp70 over-expression showed higher Δψ(m) relative to the vector control cells, and partially inhibited cytochrome c release from mitochondria to cytosol. Heat treatment also significantly increased reactive oxygen species (ROS) generation, a phenomenon not observed in protoplasts over-expressing mtHsp70. Together, these results suggest that mtHsp70 may suppress PCD in rice protoplasts by maintaining mitochondrial Δψ(m) and inhibiting the amplification of ROS.

  12. Hyperplasia and cellularity changes in IGF-1-overexpressing skeletal muscle of crucian carp.

    PubMed

    Li, Dongliang; Lou, Qiyong; Zhai, Gang; Peng, Xuyan; Cheng, Xiaoxia; Dai, Xiangyan; Zhuo, Zijian; Shang, Guohui; Jin, Xia; Chen, Xiaowen; Han, Dong; He, Jiangyan; Yin, Zhan

    2014-06-01

    The zebrafish skeletal muscle-specific promoter mylz2 was used to cause crucian carp overexpression of the zebrafish IGF-1 cDNA. In stable transgenic germline F1 progenies, a 5-fold increase in the level of IGF-1 in skeletal muscle was observed. Evident skeletal muscle hyperplasia was observed in the transgenic fish through histologic analysis. By analyzing the RNA sequencing transcriptome of the skeletal muscle of IGF-1 transgenic fish and nontransgenic control fish at 15 months of age, 10 966 transcripts with significant expression levels were identified with definite gene descriptions based on the corresponding zebrafish genome information. Based on the results of our RNA sequencing transcriptome profiling analysis and the results of the real-time quantitative PCR analysis performed to confirm the skeletal muscle transcriptomics analysis, several pathways, including IGF-1 signaling, aerobic metabolism, and protein degradation, were found to be activated in the IGF-1-overexpressing transgenic fish. Intriguingly, our transcriptional expression and protein assays indicated that the overexpression of IGF-1 stimulated a significant shift in the myofiber type toward a more oxidative slow muscle type. Although the body weight was surprisingly decreased by IGF-1 transgenic expression, significantly higher oxygen consumption rates were measured in IGF-1-overexpressing transgenic fish compared with their nontransgenic control fish. These results indicate that the sustained overexpression of IGF-1 in crucian carp skeletal muscle promotes myofiber hyperplasia and cellularity changes, which elicit alterations in the body energy metabolism and skeletal muscle growth.

  13. Aurora B Overexpression Causes Aneuploidy and p21Cip1 Repression during Tumor Development.

    PubMed

    González-Loyola, Alejandra; Fernández-Miranda, Gonzalo; Trakala, Marianna; Partida, David; Samejima, Kumiko; Ogawa, Hiromi; Cañamero, Marta; de Martino, Alba; Martínez-Ramírez, Ángel; de Cárcer, Guillermo; Pérez de Castro, Ignacio; Earnshaw, William C; Malumbres, Marcos

    2015-10-01

    Aurora kinase B, one of the three members of the mammalian Aurora kinase family, is the catalytic component of the chromosomal passenger complex, an essential regulator of chromosome segregation in mitosis. Aurora B is overexpressed in human tumors although whether this kinase may function as an oncogene in vivo is not established. Here, we report a new mouse model in which expression of the endogenous Aurkb locus can be induced in vitro and in vivo. Overexpression of Aurora B in cultured cells induces defective chromosome segregation and aneuploidy. Long-term overexpression of Aurora B in vivo results in aneuploidy and the development of multiple spontaneous tumors in adult mice, including a high incidence of lymphomas. Overexpression of Aurora B also results in a reduced DNA damage response and decreased levels of the p53 target p21(Cip1) in vitro and in vivo, in line with an inverse correlation between Aurora B and p21(Cip1) expression in human leukemias. Thus, overexpression of Aurora B may contribute to tumor formation not only by inducing chromosomal instability but also by suppressing the function of the cell cycle inhibitor p21(Cip1).

  14. Sensitization of Cells Overexpressing Multidrug Resistant Proteins by Pluronic P85

    PubMed Central

    Batrakova, Elena V.; Li, Shu; Alakhov, Valery Yu.; Elmquist, William F.; Miller, Donald W.; Kabanov, Alexander V.

    2011-01-01

    Purpose This study evaluated the chemosensitizing effects of Pluronic P85 (P85) on the cells expressing multidrug resistance-associated proteins, MRP1 and MRP2. Methods Cell models included MRP1- and MRP2-transfected MDCKII cells, as well as doxorubicin-selected COR-L23/R cells overexpressing MRP1. Effects of P85 on cellular accumulation and cytotoxicity of vinblastine and doxorubicin were determined. Mechanistic studies characterized the effects of P85 on ATP and reduced glutathione (GSH) intracellular levels as well as MRPs ATPase and glutathione-S-transferase (GST) activities in these cells. Results Considerable increases of vinblastine and doxorubicin accumulation in the cells overexpressing MRP1 and MRP2 in the presence of P85 were observed, while no statistically significant changes in the drug accumulation in the parental cells were found. P85 treatment caused an inhibition of MRPs ATPase activity. Furthermore, P85 induced ATP depletion in these cells similar to that previously reported for Pgp-overexpressing cells. In addition, reduction of GSH intracellular levels and decrease of GST activity following P85 treatment were observed. Finally, significant enhancement of cytotoxicity of vinblastine and doxorubicin by P85 in MRPs -overexpressing cells was demonstrated. Conclusions This study suggests that P85 can sensitize cells overexpressing MRP1 and MRP2, which could be useful for chemotherapy of cancers that display these resistant mechanisms. PMID:14620511

  15. Aurora B Overexpression Causes Aneuploidy and p21Cip1 Repression during Tumor Development

    PubMed Central

    González-Loyola, Alejandra; Fernández-Miranda, Gonzalo; Trakala, Marianna; Partida, David; Samejima, Kumiko; Ogawa, Hiromi; Cañamero, Marta; de Martino, Alba; Martínez-Ramírez, Ángel; de Cárcer, Guillermo; Pérez de Castro, Ignacio; Earnshaw, William C.

    2015-01-01

    Aurora kinase B, one of the three members of the mammalian Aurora kinase family, is the catalytic component of the chromosomal passenger complex, an essential regulator of chromosome segregation in mitosis. Aurora B is overexpressed in human tumors although whether this kinase may function as an oncogene in vivo is not established. Here, we report a new mouse model in which expression of the endogenous Aurkb locus can be induced in vitro and in vivo. Overexpression of Aurora B in cultured cells induces defective chromosome segregation and aneuploidy. Long-term overexpression of Aurora B in vivo results in aneuploidy and the development of multiple spontaneous tumors in adult mice, including a high incidence of lymphomas. Overexpression of Aurora B also results in a reduced DNA damage response and decreased levels of the p53 target p21Cip1 in vitro and in vivo, in line with an inverse correlation between Aurora B and p21Cip1 expression in human leukemias. Thus, overexpression of Aurora B may contribute to tumor formation not only by inducing chromosomal instability but also by suppressing the function of the cell cycle inhibitor p21Cip1. PMID:26240282

  16. Incomplete and transitory decrease of glycolysis

    PubMed Central

    Schoors, Sandra; Cantelmo, Anna Rita; Georgiadou, Maria; Stapor, Peter; Wang, Xingwu; Quaegebeur, Annelies; Cauwenberghs, Sandra; Wong, Brian W; Bifari, Francesco; Decimo, Ilaria; Schoonjans, Luc; De Bock, Katrien; Dewerchin, Mieke; Carmeliet, Peter

    2014-01-01

    During vessel sprouting, a migratory endothelial tip cell guides the sprout, while proliferating stalk cells elongate the branch. Tip and stalk cell phenotypes are not genetically predetermined fates, but are dynamically interchangeable to ensure that the fittest endothelial cell (EC) leads the vessel sprout. ECs increase glycolysis when forming new blood vessels. Genetic deficiency of the glycolytic activator PFKFB3 in ECs reduces vascular sprouting by impairing migration of tip cells and proliferation of stalk cells. PFKFB3-driven glycolysis promotes the tip cell phenotype during vessel sprouting, since PFKFB3 overexpression overrules the pro-stalk activity of Notch signaling. Furthermore, PFKFB3-deficient ECs cannot compete with wild-type neighbors to form new blood vessels in chimeric mosaic mice. In addition, pharmacological PFKFB3 blockade reduces pathological angiogenesis with modest systemic effects, likely because it decreases glycolysis only partially and transiently. PMID:24335389

  17. Nuclear overexpression of the overexpressed in lung cancer 1 predicts worse prognosis in gastric adenocarcinoma.

    PubMed

    Wang, Jue; Shen, Hongchang; Fu, Guobin; Zhao, Dandan; Wang, Weibo

    2017-02-07

    We have performed this retrospective study to elucidate whether elevated expression of the overexpressed in lung cancer 1 (OLC1) was related to the clinicopathological parameters and prognosis of patients with gastric adenocarcinoma. Additionally, different effects of various subcellular OLC1 expression on gastric adeno-carcinogenesis were focused on in our study. Both overall and subcellular expression of OLC1 was evaluated by immunohistochemistry(IHC) via tissue microarrays from total 393 samples. The Kaplan-Meier method and Cox's proportional hazard model were exerted to further explore the correlation between OLC1 and prognosis. Total overexpression of OLC1 was significantly associated with stage (P = 0.004) and differentiation (P = 0.009), and only the strong total expression could predict a poor prognosis (HR = 1.31, P = 0.04). There were significant associations found between nuclear overexpression and tumor invasion depth(P = 0.002), lymph node (P < 0.001), stage (P = 0.004), differentiation (P < 0.001) and smoking history (P = 0.045). Furthermore, over-expressed nuclear OLC1 protein could be an independent risk factor for gastric adenocarcinoma (univariate: HR = 1.43, P = 0.003; multivariate: HR = 1.39, P = 0.011). In general, both total and nuclear overexpression of OLC1 could be the signs of gastric adeno-carcinogenesis, which might be served as the biomarkers for diagnosis at an early stage, even at the onset of tumorigenesis. Rather than the total expression, nuclear overexpression of OLC1 was correlated with most clinicopathological parameters and could predict a poor overall survival as an independent factor for prognosis, which made it a more effective and sensitive biomarker for gastric adenocarcinoma.

  18. Overexpression of multisubunit replication factors in yeast.

    PubMed

    Burgers, P M

    1999-07-01

    Facile genetic and biochemical manipulation coupled with rapid cell growth and low cost of growth media has established the yeast Saccharomyces cerevisiae as a versatile workhorse. This article describes the use of yeast expression systems for the overproduction of complex multipolypeptide replication factors. The regulated overexpression of these factors in yeast provides for a readily accessible and inexpensive source of these factors in large quantities. The methodology is illustrated with the five-subunit replication factor C. Whole-cell extracts are prepared by blending yeast cells with glass beads or frozen yeast with dry ice. Procedures are described that maximize the yield of these factors while minimizing proteolytic degradation.

  19. Neuronal NCX1 overexpression induces stroke resistance while knockout induces vulnerability via Akt.

    PubMed

    Molinaro, Pasquale; Sirabella, Rossana; Pignataro, Giuseppe; Petrozziello, Tiziana; Secondo, Agnese; Boscia, Francesca; Vinciguerra, Antonio; Cuomo, Ornella; Philipson, Kenneth D; De Felice, Mario; Di Lauro, Roberto; Di Renzo, Gianfranco; Annunziato, Lucio

    2016-10-01

    Three different Na(+)/Ca(2+) exchanger (NCX) isoforms, NCX1, NCX2, and NCX3, are expressed in brain where they play a relevant role in maintaining Na(+) and Ca(2+) homeostasis. Although the neuroprotective roles of NCX2 and NCX3 in stroke have been elucidated, the relevance of NCX1 is still unknown because of embryonic lethality of its knocking-out, heart dysfunctions when it is overexpressed, and the lack of selectivity in currently available drugs. To overcome these limitations we generated two conditional genetically modified mice that upon tamoxifen administration showed a selective decrease or increase of NCX1 in cortical and hippocampal neurons. Interestingly, in cortex and hippocampus NCX1 overexpression increased, where NCX1 knock-out reduced, both exchanger activity and Akt1 phosphorylation, a neuronal survival signaling. More important, mice overexpressing NCX1 showed a reduced ischemic volume and an amelioration of focal and general deficits when subjected to transient middle cerebral artery occlusion. Conversely, NCX1-knock-out mice displayed a worsening of brain damage, focal and neurological deficits with a decrease in Akt phosphorylation. These results support the idea that NCX1 overexpression/activation may represent a feasible therapeutic opportunity in stroke intervention.

  20. NDRG1 overexpression promotes the progression of esophageal squamous cell carcinoma through modulating Wnt signaling pathway.

    PubMed

    Ai, Runna; Sun, Yulin; Guo, Zhimin; Wei, Wei; Zhou, Lanping; Liu, Fang; Hendricks, Denver T; Xu, Yang; Zhao, Xiaohang

    2016-09-01

    N-myc down-regulated gene 1 (NDRG1) has been shown to regulate tumor growth and metastasis in various malignant tumors and also to be dysregulated in esophageal squamous cell carcinoma (ESCC). Here, we show that NDRG1 overexpression (91.9%, 79/86) in ESCC tumor tissues is associated with poor overall survival of esophageal cancer patients. When placed in stable transfectants of the KYSE 30 ESCC cell line generated by lentiviral transduction with the ectopic overexpression of NDRG1, the expression of transducin-like enhancer of Split 2 (TLE2) was decreased sharply, however β-catenin was increased. Mechanistically, NDRG1 physically associates with TLE2 and β-catenin to affect the Wnt pathway. RNA interference and TLE2 overexpression studies demonstrate that NDRG1 fails to active Wnt pathway compared with isogenic wild-type controls. Strikingly, NDRG1 overexpression induces the epithelial mesenchymal transition (EMT) through activating the Wnt signaling pathway in ESCC cells, decreased the expression of E-cadherin and enhanced the expression of Snail. Our study elucidates a mechanism of NDRG1-regulated Wnt pathway activation and EMT via affecting TLE2 and  β-catenin expression in esophageal cancer cells. This indicates a pro-oncogenic role for NDRG1 in esophageal cancer cells whereby it modulates tumor progression.

  1. Bcl-2 overexpression does not promote axonal regeneration of the entorhino-hippocampal connections in vitro after axotomy.

    PubMed

    Solé, Marta; Fontana, Xavier; Gavín, Rosalina; Soriano, Eduardo; del Río, José Antonio

    2004-09-10

    CNS lesions trigger cell death in injured neurons and glia. Genes of the bcl-2 family play crucial roles in the control of apoptosis and cell survival in the CNS. Recently, it has been suggested that overexpression of bcl-2 induces axonal elongation and regeneration in vitro and in vivo. Here, we analyze the regenerative potential of bcl-2 overexpression in the axotomized entorhino-hippocampal connection in organotypic slice cocultures. Our results show that in slice cocultures from bcl-2-overexpressing mice, there is a decrease in the number of dead neurons in the entorhinal cortex. In addition, axonal regeneration is not enhanced after axotomy. Thus, in the entorhino-hippocampal formation in vitro, bcl-2 overexpression rescues neurons from axotomy-induced cell death but fails to enhance the regeneration of the entorhino-hippocampal connection.

  2. PGC-1β regulates HER2-overexpressing breast cancer cells proliferation by metabolic and redox pathways.

    PubMed

    Victorino, Vanessa Jacob; Barroso, W A; Assunção, A K M; Cury, V; Jeremias, I C; Petroni, R; Chausse, B; Ariga, S K; Herrera, A C S A; Panis, C; Lima, T M; Souza, H P

    2016-05-01

    Breast cancer is a prevalent neoplastic disease among women worldwide which treatments still present several side effects and resistance. Considering that cancer cells present derangements in their energetic homeostasis, and that peroxisome proliferator-activated receptor- gamma coactivator 1 (PGC-1) is crucial for cellular metabolism and redox signaling, the main objective of this study was to investigate whether there is a relationship between PGC-1 expression, the proliferation of breast cancer cells and the mechanisms involved. We initially assessed PGC-1β expression in complementary DNA (cDNA) from breast tumor of patients bearing luminal A, luminal B, and HER2-overexpressed and triple negative tumors. Our data showed that PGC-1β expression is increased in patients bearing HER2-overexpressing tumors as compared to others subtypes. Using quantitative PCR and immunoblotting, we showed that breast cancer cells with HER2-amplification (SKBR-3) have greater expression of PGC-1β as compared to a non-tumorous breast cell (MCF-10A) and higher proliferation rate. PGC-1β expression was knocked down with short interfering RNA in HER2-overexpressing cells, and cells decreased proliferation. In these PGC-1β-inhibited cells, we found increased citrate synthase activity and no marked changes in mitochondrial respiration. Glycolytic pathway was decreased, characterized by lower intracellular lactate levels. In addition, after PGC-1β knockdown, SKBR-3 cells showed increased reactive oxygen species production, no changes in antioxidant activity, and decreased expression of ERRα, a modulator of metabolism. In conclusion, we show an association of HER2-overexpression and PGC-1β. PGC-1β knockdown impairs HER2-overexpressing cells proliferation acting on ERRα signaling, metabolism, and redox balance.

  3. Effects of CYP7A1 overexpression on cholesterol and bile acid homeostasis.

    PubMed

    Pandak, W M; Schwarz, C; Hylemon, P B; Mallonee, D; Valerie, K; Heuman, D M; Fisher, R A; Redford, K; Vlahcevic, Z R

    2001-10-01

    The initial and rate-limiting step in the classic pathway of bile acid biosynthesis is 7alpha-hydroxylation of cholesterol, a reaction catalyzed by cholesterol 7alpha-hydroxylase (CYP7A1). The effect of CYP7A1 overexpression on cholesterol homeostasis in human liver cells has not been examined. The specific aim of this study was to determine the effects of overexpression of CYP7A1 on key regulatory steps involved in hepatocellular cholesterol homeostasis, using primary human hepatocytes (PHH) and HepG2 cells. Overexpression of CYP7A1 in HepG2 cells and PHH was accomplished by using a recombinant adenovirus encoding a CYP7A1 cDNA (AdCMV-CYP7A1). CYP7A1 overexpression resulted in a marked activation of the classic pathway of bile acid biosynthesis in both PHH and HepG2 cells. In response, there was decreased HMG-CoA-reductase (HMGR) activity, decreased acyl CoA:cholesterol acyltransferase (ACAT) activity, increased cholesteryl ester hydrolase (CEH) activity, and increased low-density lipoprotein receptor (LDLR) mRNA expression. Changes observed in HMGR, ACAT, and CEH mRNA levels paralleled changes in enzyme specific activities. More specifically, LDLR expression, ACAT activity, and CEH activity appeared responsive to an increase in cholesterol degradation after increased CYP7A1 expression. Conversely, accumulation of the oxysterol 7alpha-hydroxycholesterol in the microsomes after CYP7A1 overexpression was correlated with a decrease in HMGR activity.

  4. Nucleophosmin is overexpressed in thyroid tumors

    SciTech Connect

    Pianta, Annalisa; Puppin, Cinzia; Franzoni, Alessandra; Fabbro, Dora; Di Loreto, Carla; Bulotta, Stefania; Deganuto, Marta; Paron, Igor; Tell, Gianluca; Puxeddu, Efisio; Filetti, Sebastiano; Russo, Diego; Damante, Giuseppe

    2010-07-02

    Nucleophosmin (NPM) is a protein that contributes to several cell functions. Depending on the context, it can act as an oncogene or tumor suppressor. No data are available on NPM expression in thyroid cells. In this work, we analyzed both NPM mRNA and protein levels in a series of human thyroid tumor tissues and cell lines. By using immunohistochemistry, NPM overexpression was detected in papillary, follicular, undifferentiated thyroid cancer, and also in follicular benign adenomas, indicating it as an early event during thyroid tumorigenesis. In contrast, various levels of NPM mRNA levels as detected by quantitative RT-PCR were observed in tumor tissues, suggesting a dissociation between protein and transcript expression. The same behavior was observed in the normal thyroid FRTL5 cell lines. In these cells, a positive correlation between NPM protein levels, but not mRNA, and proliferation state was detected. By using thyroid tumor cell lines, we demonstrated that such a post-mRNA regulation may depend on NPM binding to p-Akt, whose levels were found to be increased in the tumor cells, in parallel with reduction of PTEN. In conclusion, our present data demonstrate for the first time that nucleophosmin is overexpressed in thyroid tumors, as an early event of thyroid tumorigenesis. It seems as a result of a dysregulation occurring at protein and not transcriptional level related to an increase of p-Akt levels of transformed thyrocytes.

  5. Pentylenetetrazol-kindling in mice overexpressing heat shock protein 70.

    PubMed

    Ammon-Treiber, Susanne; Grecksch, Gisela; Angelidis, Charalampos; Vezyraki, Patra; Höllt, Volker; Becker, Axel

    2007-04-01

    Kindling induced by the convulsant pentylenetetrazol (PTZ) is an accepted model of primary generalized epilepsy. Because seizures represent a strong distressing stimulus, stress-induced proteins such as heat shock proteins might counteract the pathology of increased neuronal excitation. Therefore, the aim of the present study was to determine whether PTZ kindling outcome parameters are influenced by heat shock protein 70 (Hsp70) overexpression in Hsp70 transgenic mice as compared to the respective wild-type mice. Kindling was performed by nine intraperitoneal injections of PTZ (ED(16) for induction of clonic-tonic seizures, every 48 h); control animals received saline instead of PTZ. Seven days after the final injection, all mice received a PTZ challenge dose. Outcome parameters included evaluation of seizure stages and overall survival rates. In addition, histopathological findings such as cell number in hippocampal subfields CA1 and CA3 were determined. The onset of the highest convulsion stage was delayed in Hsp70 transgenic mice as compared to wild-type mice, and overall survival during kindling was improved in Hsp70 transgenic mice as compared to wild-type mice. In addition, a challenge dose after termination of kindling produced less severe seizures in Hsp70 transgenic mice than in wild-type mice. PTZ kindling did not result in significant subsequent neuronal cell loss in CA1 or CA3 neither in wild-type mice nor in the Hsp70 transgenic mice. The results of the present experiments clearly demonstrate that overexpression of Hsp70 exerts protective effects regarding seizure severity and overall survival during PTZ kindling. In addition, the decreased seizure severity in Hsp70 transgenic mice after a challenge dose suggests an interference of Hsp70 with the developmental component of kindling.

  6. Statins Reduce Melanoma Development and Metastasis through MICA Overexpression.

    PubMed

    Pich, Christine; Teiti, Iotefa; Rochaix, Philippe; Mariamé, Bernard; Couderc, Bettina; Favre, Gilles; Tilkin-Mariamé, Anne-Françoise

    2013-01-01

    Survival of melanoma patients after metastases detection remains short. Several clinical trials have shown moderate efficiency in improving patient survival, and the search for pharmacological agents to enhance the immune response and reduce melanoma metastases is still necessary. Statins block the mevalonate pathway, which leads to decreases in GTPase isoprenylation and activity, particularly those of the Ras superfamily. They are widely used as hypocholesterolemic agents in cardiovascular diseases and several studies have shown that they also have protective effects against cancers. Furthermore, we have previously demonstrated that treatment of melanoma cells with inhibitors of the mevalonate pathway, such as statins, favor the development of specific adaptive immune responses against these tumors. In the present study, we tested statin impact on the innate immune response against human metastatic melanoma cells. Our data shows that treatment of two human melanoma cell lines with statins induced a weak but significant increase of MHC class I Chain-related protein A (MICA) membrane expression. Peroxisome Proliferator-Activated Receptor gamma is involved in this statin-induced MICA overexpression, which is independent of Ras and Rho GTPase signaling pathways. Interestingly, this MICA overexpression makes melanoma cells more sensitive to in vitro lysis by NK cells. The impact of statin treatment on in vivo development of melanoma tumors and metastases was investigated in nude mice, because murine NK cells, which express NKG2D receptors, are able to recognize and kill human tumor cells expressing MICA. The results demonstrated that both local tumor growth and pulmonary metastases were strongly inhibited in nude mice injected with statin-treated melanoma cells. These results suggest that statins could be effective in melanoma immunotherapy treatments.

  7. Overexpression and potential roles of NRIP1 in psoriasis

    PubMed Central

    Luan, Chao; Chen, Xu; Hu, Yu; Hao, Zhimin; Osland, Jared M.; Chen, Xundi; Gerber, Skyler D.; Chen, Min; Gu, Heng; Yuan, Rong

    2016-01-01

    Nuclear receptor interacting protein 1 (NRIP1, also known as RIP140) is a co-regulator for various transcriptional factors and nuclear receptors, and has been shown to take part in many biological and pathological processes, such as regulating mammary gland development and inflammatory response. The aim of this study is to investigate the expression of NRIP1 and to explore its roles in the pathogenesis of psoriasis. Thirty active psoriasis patients and 16 healthy volunteers were enrolled for this study. qRT-PCR analyses found that both NRIP1 and RelA/p65 were elevated in psoriatic lesions compared to psoriatic non-lesions and normal controls, and also overexpressed in peripheral blood mononuclear cell (PBMCs) of psoriasis patients. Suppression of NRIP1 in HaCaT cells could significantly inhibit cell growth and induce apoptosis, and the suppression of NRIP1 in CD4+ T cells isolated from psoriasis patients could downregulate the expression of RelA/p65 and decrease the secretion of IL-17. Furthermore, in Nrip1 knockout mice, IMQ-induced inflammation of skin was delayed and the RelA/p65 expression in lesions was reduced. In conclusion, our data suggests that NRIP1 is overexpressed both in skin and PBMCs of psoriasis patients and may be involved in the abnormal proliferation and apoptosis of keratinocytes, as well as the immune reaction through the regulation of RelA/p65. Therefore, NRIP1 may be a potential therapeutic target for psoriasis. PMID:27708240

  8. Overexpression of membrane proteins using Pichia pastoris.

    PubMed

    Bornert, Olivier; Alkhalfioui, Fatima; Logez, Christel; Wagner, Renaud

    2012-02-01

    Among the small number of expression systems validated for the mass production of eukaryotic membrane proteins (EMPs), the methylotrophic yeast Pichia pastoris stands as one of the most efficient hosts. This system has been used to produce crystallization-grade proteins for a variety of EMPs, from which high-resolution 3D structures have been determined. This unit describes a set of guidelines and instructions to overexpress membrane proteins using the P. pastoris system. Using a G protein-coupled receptor (GPCR) as a model EMP, these protocols illustrate the necessary steps, starting with the design of the DNA sequence to be expressed, through the preparation and analysis of samples containing the corresponding membrane protein of interest. In addition, recommendations are given on a series of experimental parameters that can be optimized to substantially improve the amount and/or the functionality of the expressed EMPs.

  9. Beclin1 overexpression inhibitis proliferation, invasion and migration of CaSki cervical cancer cells.

    PubMed

    Sun, Yang; Liu, Jia-hua; Sui, Yu-xia; Jin, Long; Yang, Yin; Lin, Sai-mei; Shi, Hong

    2011-01-01

    The influence of the autophagy-related gene Beclin1 on proliferation, invasion and metastasis of the cervical cancer CaSki cells and its possible mechanism in vitro were here targeted. After the overexpression vector pcDNA3.1-Beclin1 and RNA interference vector pSUPER-Beclin1 were transfected into CaSki cells in vitro, stable expression cell lines demonstration Beclin1 expression was upregulated, and VEGF and MMP-9 expression were decreased, leading to cell arrest in the G0/G1 phase of the cell cycle. MTT assays further revealed proliferation of cells was significantly inhibited in Beclin1-overexpressing transfectant cells, with invasion and metastasis also being inhibited in Transwell chamber assays. The present results suggest that Beclin1 inhibits invasion and metastasis of cervical cancer CaSki cells in vitro. Mechanisms probably involve Beclin1 inhibition of cell proliferation, and decreased expression of VEGF and MMP-9 proteins.

  10. Cardiac Specific Overexpression of Mitochondrial Omi/HtrA2 Induces Myocardial Apoptosis and Cardiac Dysfunction

    PubMed Central

    Wang, Ke; Yuan, Yuexing; Liu, Xin; Lau, Wayne Bond; Zuo, Lin; Wang, Xiaoliang; Ma, Lu; Jiao, Kun; Shang, Jianyu; Wang, Wen; Ma, Xinliang; Liu, Huirong

    2016-01-01

    Myocardial apoptosis is a significant problem underlying ischemic heart disease. We previously reported significantly elevated expression of cytoplasmic Omi/HtrA2, triggers cardiomyocytes apoptosis. However, whether increased Omi/HtrA2 within mitochondria itself influences myocardial survival in vivo is unknown. We aim to observe the effects of mitochondria-specific, not cytoplasmic, Omi/HtrA2 on myocardial apoptosis and cardiac function. Transgenic mice overexpressing cardiac-specific mitochondrial Omi/HtrA2 were generated and they had increased myocardial apoptosis, decreased systolic and diastolic function, and decreased left ventricular remodeling. Transiently or stably overexpression of mitochondria Omi/HtrA2 in H9C2 cells enhance apoptosis as evidenced by elevated caspase-3, -9 activity and TUNEL staining, which was completely blocked by Ucf-101, a specific Omi/HtrA2 inhibitor. Mechanistic studies revealed mitochondrial Omi/HtrA2 overexpression degraded the mitochondrial anti-apoptotic protein HAX-1, an effect attenuated by Ucf-101. Additionally, transfected cells overexpressing mitochondrial Omi/HtrA2 were more sensitive to hypoxia and reoxygenation (H/R) induced apoptosis. Cyclosporine A (CsA), a mitochondrial permeability transition inhibitor, blocked translocation of Omi/HtrA2 from mitochondrial to cytoplasm, and protected transfected cells incompletely against H/R-induced caspase-3 activation. We report in vitro and in vivo overexpression of mitochondrial Omi/HtrA2 induces cardiac apoptosis and dysfunction. Thus, strategies to directly inhibit Omi/HtrA2 or its cytosolic translocation from mitochondria may protect against heart injury. PMID:27924873

  11. Mesenchyme-specific overexpression of nucleolar protein 66 in mice inhibits skeletal growth and bone formation

    PubMed Central

    Chen, Qin; Zhang, Liping; de Crombrugghe, Benoit; Krahe, Ralf

    2015-01-01

    Previous studies showed that nucleolar protein 66 (NO66), the Jumonji C-domain-containing histone demethylase for methylated histone H3K4 and H3K36 (H3K36me), negatively regulates osteoblast differentiation in vitro by inhibiting the activity of transcription factor osterix (Osx). However, whether NO66 affects mammalian skeletogenesis in vivo is not yet known. Here, we generated transgenic (TG) mice overexpressing a flag-tagged NO66 transgene driven by the Prx1 (paired related homeobox 1) promoter. We found that NO66 overexpression in Prx1-expressing mesenchymal cells inhibited skeletal growth and bone formation. The inhibitory phenotype was associated with >50% decreases in chondrocyte/osteoblast proliferation and differentiation. Moreover, we found that in bones of NO66-TG mice, expression of Igf1, Igf1 receptor (Igf1r), runt-related transcription factor 2, and Osx was significantly down-regulated (P < 0.05). Consistent with these results, we observed >50% reduction in levels of phosphorylated protein kinase B (Akt) and H3K36me3 in bones of NO66-TG mice, suggesting an inverse correlation between NO66 histone demethylase and the activity of IGF1R/Akt signaling. This correlation was further confirmed by in vitro assays of C2C12 cells with NO66 overexpression. We propose that the decrease in the IGF1R/Akt signaling pathway in mice with mesenchymal overexpression of NO66 may contribute in part to the inhibition of skeletal growth and bone formation.—Chen, Q., Zhang, L., de Crombrugghe, B., Krahe, R. Mesenchyme-specific overexpression of nucleolar protein 66 in mice inhibits skeletal growth and bone formation. PMID:25746793

  12. Overexpression of Latent TGFβ Binding Protein 4 in Muscle Ameliorates Muscular Dystrophy through Myostatin and TGFβ

    PubMed Central

    Gardner, Brandon B.; Gao, Quan Q.; Hadhazy, Michele; Vo, Andy H.; Wren, Lisa; Molkentin, Jeffery D.; McNally, Elizabeth M.

    2016-01-01

    Latent TGFβ binding proteins (LTBPs) regulate the extracellular availability of latent TGFβ. LTBP4 was identified as a genetic modifier of muscular dystrophy in mice and humans. An in-frame insertion polymorphism in the murine Ltbp4 gene associates with partial protection against muscular dystrophy. In humans, nonsynonymous single nucleotide polymorphisms in LTBP4 associate with prolonged ambulation in Duchenne muscular dystrophy. To better understand LTBP4 and its role in modifying muscular dystrophy, we created transgenic mice overexpressing the protective murine allele of LTBP4 specifically in mature myofibers using the human skeletal actin promoter. Overexpression of LTBP4 protein was associated with increased muscle mass and proportionally increased strength compared to age-matched controls. In order to assess the effects of LTBP4 in muscular dystrophy, LTBP4 overexpressing mice were bred to mdx mice, a model of Duchenne muscular dystrophy. In this model, increased LTBP4 led to greater muscle mass with proportionally increased strength, and decreased fibrosis. The increase in muscle mass and reduction in fibrosis were similar to what occurs when myostatin, a related TGFβ family member and negative regulator of muscle mass, was deleted in mdx mice. Supporting this, we found that myostatin forms a complex with LTBP4 and that overexpression of LTBP4 led to a decrease in myostatin levels. LTBP4 also interacted with TGFβ and GDF11, a protein highly related to myostatin. These data identify LTBP4 as a multi-TGFβ family ligand binding protein with the capacity to modify muscle disease through overexpression. PMID:27148972

  13. MARCKS protein overexpression in inflammatory breast cancer

    PubMed Central

    Manai, Maroua; Lopez, Marc; Eghozzi, Radhia; Ayadi, Sinda; Lamine, Olfa Ben; Manai, Mohamed; Rahal, Khaled; Charafe-Jauffret, Emmanuelle; Jacquemier, Jocelyne; Viens, Patrice; Birnbaum, Daniel; Boussen, Hamouda; Chaffanet, Max; Bertucci, François

    2017-01-01

    Background Inflammatory breast cancer (IBC) is the most aggressive form of locally-advanced breast cancer. Identification of new therapeutic targets is crucial. We previously reported MARCKS mRNA overexpression in IBC in the largest transcriptomics study reported to date. Here, we compared MARCKS protein expression in IBC and non-IBC samples, and searched for correlations between protein expression and clinicopathological features. Results Tumor samples showed heterogeneity with respect to MARCKS staining: 18% were scored as MARCKS-positive (stained cells ≥ 1%) and 82% as MARCKS-negative. MARCKS expression was more frequent in IBC (36%) than in non-IBC (11%; p = 1.4E−09), independently from molecular subtypes and other clinicopathological variables. We found a positive correlation between protein and mRNA expression in the 148/502 samples previously analyzed for MARCKS mRNA expression. MARCKS protein expression was associated with other poor-prognosis features in the whole series of samples such as clinical axillary lymph node or metastatic extension, high pathological grade, ER-negativity, PR-negativity, HER2-positivity, and triple-negative and HER2+ statutes. In IBC, MARCKS expression was the sole tested variable associated with poor MFS. Materials and Methods We retrospectively analyzed MARCKS protein expression by immunohistochemistry in 502 tumors, including 133 IBC and 369 non-IBC, from Tunisian and French patients. All samples were pre-therapeutic clinical samples. We searched for correlations between MARCKS expression and clinicopathological features including the IBC versus non-IBC phenotype and metastasis-free survival (MFS). Conclusions MARCKS overexpression might in part explain the poor prognosis of IBC. As an oncogene associated with poor MFS, MARCKS might represent a new potential therapeutic target in IBC. PMID:28009981

  14. Targeted anticancer therapy: overexpressed receptors and nanotechnology.

    PubMed

    Akhtar, Mohd Javed; Ahamed, Maqusood; Alhadlaq, Hisham A; Alrokayan, Salman A; Kumar, Sudhir

    2014-09-25

    Targeted delivery of anticancer drugs to cancer cells and tissues is a promising field due to its potential to spare unaffected cells and tissues, but it has been a major challenge to achieve success in these therapeutic approaches. Several innovative approaches to targeted drug delivery have been devised based on available knowledge in cancer biology and on technological advancements. To achieve the desired selectivity of drug delivery, nanotechnology has enabled researchers to design nanoparticles (NPs) to incorporate anticancer drugs and act as nanocarriers. Recently, many receptor molecules known to be overexpressed in cancer have been explored as docking sites for the targeting of anticancer drugs. In principle, anticancer drugs can be concentrated specifically in cancer cells and tissues by conjugating drug-containing nanocarriers with ligands against these receptors. Several mechanisms can be employed to induce triggered drug release in response to either endogenous trigger or exogenous trigger so that the anticancer drug is only released upon reaching and preferentially accumulating in the tumor tissue. This review focuses on overexpressed receptors exploited in targeting drugs to cancerous tissues and the tumor microenvironment. We briefly evaluate the structure and function of these receptor molecules, emphasizing the elegant mechanisms by which certain characteristics of cancer can be exploited in cancer treatment. After this discussion of receptors, we review their respective ligands and then the anticancer drugs delivered by nanotechnology in preclinical models of cancer. Ligand-functionalized nanocarriers have delivered significantly higher amounts of anticancer drugs in many in vitro and in vivo models of cancer compared to cancer models lacking such receptors or drug carrying nanocarriers devoid of ligand. This increased concentration of anticancer drug in the tumor site enabled by nanotechnology could have a major impact on the efficiency of cancer

  15. Overexpression of Colligin 2 in Glioma Vasculature is Associated with Overexpression of Heat Shock Factor 2.

    PubMed

    Mustafa, Dana A M; Sieuwerts, Anieta M; Zheng, Ping Pin; Kros, Johan M

    2010-10-20

    In previous studies we found expression of the protein colligin 2 (heat shock protein 47 (HSP47), SERPINH1) in glioma neovasculature while not in normal brain tissue. Generally, the regulation of heat shock gene expression in eukaryotes is mediated by heat shock factors (HSF). In mammals, three heat shock transcription factors, HSF-1, -2, and -4, have been isolated. Here we investigated the relation between the expression of colligin 2 and these heat shock factors at the mRNA level using real-time reverse transcriptase PCR (qRT-PCR) in different grades of astrocytic tumorigenesis, viz., low-grade glioma and glioblastoma. Endometrium samples, representing physiological angiogenesis, were included as controls. Since colligin 2 is a chaperon for collagens, the gene expression of collagen I (COL1A1) was also investigated. The blood vessel density of the samples was monitored by expression of the endothelial marker CD31 (PECAM1). Because NG2-immunopositive pericytic cells are involved in glioma neovascularization, the expression of NG2 (CSPG4) was also measured.We demonstrate overexpression of HSF2 in both stages of glial tumorigenesis (reaching significance only in low-grade glioma) and also minor elevated levels of HSF1 as compared to normal brain. There were no differences in expression of HSF4 between low-grade glioma and normal brain while HSF4 was downregulated in glioblastoma. In the endometrium samples, none of the HSFs were upregulated. In the low-grade gliomas SERPINH appeared to be slightly overexpressed with a parallel 4-fold upregulation of COL1A1, while in glioblastoma there was over 5-fold overexpression of SERPINH1 and more than 150-fold overexpression of COL1A1. In both the lowgrade gliomas and the glioblastomas overexpression of CSPG4 was found and overexpression of PECAM1 was only found in the latter. Our data suggest that the upregulated expression of colligin 2 in glioma is accompanied by upregulation of COL1A1, CSPG4, HSF2 and to a lesser extent

  16. Fetal PGC-1α Overexpression Programs Adult Pancreatic β-Cell Dysfunction

    PubMed Central

    Valtat, Bérengère; Riveline, Jean-Pierre; Zhang, Ping; Singh-Estivalet, Amrit; Armanet, Mathieu; Venteclef, Nicolas; Besseiche, Adrien; Kelly, Daniel P.; Tronche, François; Ferré, Pascal; Gautier, Jean-François; Bréant, Bernadette; Blondeau, Bertrand

    2013-01-01

    Adult β-cell dysfunction, a hallmark of type 2 diabetes, can be programmed by adverse fetal environment. We have shown that fetal glucocorticoids (GCs) participate in this programming through inhibition of β-cell development. Here we have investigated the molecular mechanisms underlying this regulation. We showed that GCs stimulate the expression of peroxisome proliferator–activated receptor-γ coactivator-1α (PGC-1α), a coregulator of the GCs receptor (GR), and that the overexpression of PGC-1α represses genes important for β-cell development and function. More precisely, PGC-1α inhibited the expression of the key β-cell transcription factor pancreatic duodenal homeobox 1 (Pdx1). This repression required the GR and was mediated through binding of a GR/PGC-1α complex to the Pdx1 promoter. To explore PGC-1α function, we generated mice with inducible β-cell PGC-1α overexpression. Mice overexpressing PGC-1α exhibited at adult age impaired glucose tolerance associated with reduced insulin secretion, decreased β-cell mass, and β-cell hypotrophy. Interestingly, PGC-1α expression in fetal life only was sufficient to impair adult β-cell function whereas β-cell PGC-1α overexpression from adult age had no consequence on β-cell function. Altogether, our results demonstrate that the GR and PGC-1α participate in the fetal programming of adult β-cell function through inhibition of Pdx1 expression. PMID:23274887

  17. SIRT4 overexpression protects against diabetic nephropathy by inhibiting podocyte apoptosis

    PubMed Central

    Shi, Jian-Xia; Wang, Qi-Jin; Li, Hui; Huang, Qin

    2017-01-01

    Diabetic nephropathy is a diabetic complication associated with capillary damage and increased mortality. Sirtuin 4 (SIRT4) plays an important role in mitochondrial function and the pathogenesis of metabolic diseases, including aging kidneys. The aim of the present study was to investigate the association between SIRT4 and diabetic nephropathy in a glucose-induced mouse podocyte model. A CCK-8 assay showed that glucose simulation significantly inhibited podocyte proliferation in a time- and concentration-dependent manner. Reverse transcription-quantitative polymerase chain reaction and western blot analysis showed that the mRNA and protein levels of SIRT4 were notably decreased in a concentration-dependent manner in glucose-simulated podocytes. However, SIRT4 overexpression increased proliferation and suppressed apoptosis, which was accompanied by increases in mitochondrial membrane potential and reduced production of reactive oxygen species (ROS). Notably, SIRT4 overexpression downregulated the expression of apoptosis-related proteins NOX1, Bax and phosphorylated p38 and upregulated the expression of Bcl-2 in glucose-simulated podocytes. In addition, SIRT4 overexpression significantly attenuated the inflammatory response, indicated by reductions in the levels of TNF-α, IL-1β and IL-6. These results demonstrate for the first time that the overexpression of SIRT4 prevents glucose-induced podocyte apoptosis and ROS production and suggest that podocyte apoptosis represents an early pathological mechanism leading to diabetic nephropathy. PMID:28123512

  18. Diversin Is Overexpressed in Breast Cancer and Accelerates Cell Proliferation and Invasion

    PubMed Central

    Yu, Xinmiao; Wang, Minghao; Dong, Qianze; Jin, Feng

    2014-01-01

    Diversin was recently reported to play roles in Wnt and JNK pathways. However, the expression pattern and biological roles of diversin in human breast cancer have not been reported. In the present study, we found that diversin was overexpressed in breast cancer specimens by immunohistochemistry and western blot. Significant association was observed between diversin overexpression and TNM stage (p = 0.0036), nodal metastasis (p = 0.0033), negative estrogen receptor expression (p = 0.0012) and triple-negative status (p = 0.0017). Furthermore, colony formation assay and matrigel invasion assay showed that knockdown of diversin expression in MDA-MB-231 cell line with high endogenous expression decreased cell proliferation and cell invasion. Transfection of diversin plasmid in MCF-7 cell line increased cell proliferation and invasion. Further analysis showed that diversin depletion downregulated JNK phosphorylation while its overexpression upregulated JNK phosphorylation. In conclusion, our study demonstrated that diversin was overexpressed in human breast cancers. Diversin could contribute to breast cancer cell proliferation and invasion. PMID:24858714

  19. MUSCLE-SPECIFIC OVEREXPRESSION OF THE CATALYTIC SUBUNIT OF DNA POLYMERASE γ INDUCES PUPAL LETHALITY IN Drosophila melanogaster

    PubMed Central

    Martínez-Azorín, Francisco; Calleja, Manuel; Hernández-Sierra, Rosana; Farr, Carol L.; Kaguni, Laurie S.; Garesse, Rafael

    2015-01-01

    We show the physiological effects and molecular characterization of overexpression of the catalytic core of mitochondrial DNA (mtDNA) polymerase (pol γ-α) in muscle of Drosophila melanogaster. Muscle-specific overexpression of pol γ-α using the UAS/GAL4 (where UAS is upstream activation sequence) system produced more than 90% of lethality at the end of pupal stage at 25°C, and the survivor adult flies showed a significant reduction in life span. The survivor flies displayed a decreased mtDNA level that is accompanied by a corresponding decrease in the levels of the nucleoid-binding protein mitochondrial transcription factor A (mtTFA). Furthermore, an increase in apoptosis is detected in larvae and adults overexpressing pol γ-α. We suggest that the pupal lethality and reduced life span of survivor adult flies are both caused mainly by massive apoptosis of muscle cells induced by mtDNA depletion. PMID:23729397

  20. Reversal of mitochondrial proteomic loss in Type 1 diabetic heart with overexpression of phospholipid hydroperoxide glutathione peroxidase

    PubMed Central

    Baseler, Walter A.; Dabkowski, Erinne R.; Jagannathan, Rajaganapathi; Thapa, Dharendra; Nichols, Cody E.; Shepherd, Danielle L.; Croston, Tara L.; Powell, Matthew; Razunguzwa, Trust T.; Lewis, Sara E.; Schnell, David M.

    2013-01-01

    Mitochondrial dysfunction is a contributor to diabetic cardiomyopathy. Previously, we observed proteomic decrements within the inner mitochondrial membrane (IMM) and matrix of diabetic cardiac interfibrillar mitochondria (IFM) correlating with dysfunctional mitochondrial protein import. The goal of this study was to determine whether overexpression of mitochondria phospholipid hydroperoxide glutathione peroxidase 4 (mPHGPx), an antioxidant enzyme capable of scavenging membrane-associated lipid peroxides in the IMM, could reverse proteomic alterations, dysfunctional protein import, and ultimately, mitochondrial dysfunction associated with the diabetic heart. MPHGPx transgenic mice and controls were made diabetic by multiple low-dose streptozotocin injections and examined after 5 wk of hyperglycemia. Five weeks after hyperglycemia onset, in vivo analysis of cardiac contractile function revealed decreased ejection fraction and fractional shortening in diabetic hearts that was reversed with mPHGPx overexpression. MPHGPx overexpression increased electron transport chain function while attenuating hydrogen peroxide production and lipid peroxidation in diabetic mPHGPx IFM. MPHGPx overexpression lessened proteomic loss observed in diabetic IFM. Posttranslational modifications, including oxidations and deamidations, were attenuated in diabetic IFM with mPHGPx overexpression. Mitochondrial protein import dysfunction in diabetic IFM was reversed with mPHGPx overexpression correlating with protein import constituent preservation. Ingenuity Pathway Analyses indicated that oxidative phosphorylation, tricarboxylic acid cycle, and fatty acid oxidation processes most influenced in diabetic IFM were preserved by mPHGPx overexpression. Specific mitochondrial networks preserved included complex I and II, mitochondrial ultrastructure, and mitochondrial protein import. These results indicate that mPHGPx overexpression can preserve the mitochondrial proteome and provide cardioprotective

  1. Overexpression of genes encoding glycolytic enzymes in Corynebacterium glutamicum enhances glucose metabolism and alanine production under oxygen deprivation conditions.

    PubMed

    Yamamoto, Shogo; Gunji, Wataru; Suzuki, Hiroaki; Toda, Hiroshi; Suda, Masako; Jojima, Toru; Inui, Masayuki; Yukawa, Hideaki

    2012-06-01

    We previously reported that Corynebacterium glutamicum strain ΔldhAΔppc+alaD+gapA, overexpressing glyceraldehyde-3-phosphate dehydrogenase-encoding gapA, shows significantly improved glucose consumption and alanine formation under oxygen deprivation conditions (T. Jojima, M. Fujii, E. Mori, M. Inui, and H. Yukawa, Appl. Microbiol. Biotechnol. 87:159-165, 2010). In this study, we employ stepwise overexpression and chromosomal integration of a total of four genes encoding glycolytic enzymes (herein referred to as glycolytic genes) to demonstrate further successive improvements in C. glutamicum glucose metabolism under oxygen deprivation. In addition to gapA, overexpressing pyruvate kinase-encoding pyk and phosphofructokinase-encoding pfk enabled strain GLY2/pCRD500 to realize respective 13% and 20% improved rates of glucose consumption and alanine formation compared to GLY1/pCRD500. Subsequent overexpression of glucose-6-phosphate isomerase-encoding gpi in strain GLY3/pCRD500 further improved its glucose metabolism. Notably, both alanine productivity and yield increased after each overexpression step. After 48 h of incubation, GLY3/pCRD500 produced 2,430 mM alanine at a yield of 91.8%. This was 6.4-fold higher productivity than that of the wild-type strain. Intracellular metabolite analysis showed that gapA overexpression led to a decreased concentration of metabolites upstream of glyceraldehyde-3-phosphate dehydrogenase, suggesting that the overexpression resolved a bottleneck in glycolysis. Changing ratios of the extracellular metabolites by overexpression of glycolytic genes resulted in reduction of the intracellular NADH/NAD(+) ratio, which also plays an important role on the improvement of glucose consumption. Enhanced alanine dehydrogenase activity using a high-copy-number plasmid further accelerated the overall alanine productivity. Increase in glycolytic enzyme activities is a promising approach to make drastic progress in growth-arrested bioprocesses.

  2. The influence of follistatin on mechanical properties of bone tissue in growing mice with overexpression of follistatin.

    PubMed

    Gajos-Michniewicz, Anna; Pawlowska, Elzbieta; Ochedalski, Tomasz; Piastowska-Ciesielska, Agnieszka

    2012-07-01

    Mechanical competence of bones is mainly associated with tissue quality that depends on proper bone metabolism processes. An imbalance in the regulation of bone metabolism leads to pathological changes in bone tissue leading to susceptibility to bone fractures and bone deterioration processes. Bone metabolism is regulated to a large extent by the members of the transforming growth factor-β superfamily, i.e., activins and bone morphogenetic proteins. However, their function is regulated by a single-chain protein called follistatin (FS). The aim of this study was to test the hypothesis that overexpression of FS in growing mice results in impairments in bone morphology and mechanical properties. Moreover, we wanted to investigate how geometrical, structural and material properties of bone tissue change with age. The experiment was performed on growing C57BL/6 TgNK14-mFst/6J mice, overexpressing FS (F mice) versus C57BL/6J mice used as controls (C mice). To establish how overexpression of FS influences bone tissue quality, we studied mice femurs to determine geometrical, structural and material properties of the skeleton. To determine mechanical resistance of bone tissue, femurs were loaded to failure in a three-point bending test. Obtained results indicated that overexpression of FS negatively influences bone metabolism. It was found that mutation results with a significant decrease of all measured biomechanical strength variables in F mice in comparison to C mice. Overexpression of FS leads to decreased quality of skeleton, increasing susceptibility to bone fractures.

  3. O-GlcNAcase overexpression reverses coronary endothelial cell dysfunction in type 1 diabetic mice.

    PubMed

    Makino, Ayako; Dai, Anzhi; Han, Ying; Youssef, Katia D; Wang, Weihua; Donthamsetty, Reshma; Scott, Brian T; Wang, Hong; Dillmann, Wolfgang H

    2015-11-01

    Cardiovascular disease is the primary cause of morbidity and mortality in diabetes, and endothelial dysfunction is commonly seen in these patients. Increased O-linked N-acetylglucosamine (O-GlcNAc) protein modification is one of the central pathogenic features of diabetes. Modification of proteins by O-GlcNAc (O-GlcNAcylation) is regulated by two key enzymes: β-N-acetylglucosaminidase [O-GlcNAcase (OGA)], which catalyzes the reduction of protein O-GlcNAcylation, and O-GlcNAc transferase (OGT), which induces O-GlcNAcylation. However, it is not known whether reducing O-GlcNAcylation can improve endothelial dysfunction in diabetes. To examine the effect of endothelium-specific OGA overexpression on protein O-GlcNAcylation and coronary endothelial function in diabetic mice, we generated tetracycline-inducible, endothelium-specific OGA transgenic mice, and induced OGA by doxycycline administration in streptozotocin-induced type 1 diabetic mice. OGA protein expression was significantly decreased in mouse coronary endothelial cells (MCECs) isolated from diabetic mice compared with control MCECs, whereas OGT protein level was markedly increased. The level of protein O-GlcNAcylation was increased in diabetic compared with control mice, and OGA overexpression significantly decreased the level of protein O-GlcNAcylation in MCECs from diabetic mice. Capillary density in the left ventricle and endothelium-dependent relaxation in coronary arteries were significantly decreased in diabetes, while OGA overexpression increased capillary density to the control level and restored endothelium-dependent relaxation without changing endothelium-independent relaxation. We found that connexin 40 could be the potential target of O-GlcNAcylation that regulates the endothelial functions in diabetes. These data suggest that OGA overexpression in endothelial cells improves endothelial function and may have a beneficial effect on coronary vascular complications in diabetes.

  4. PGC-1α overexpression via local transfection attenuates mitophagy pathway in muscle disuse atrophy.

    PubMed

    Kang, Chounghun; Ji, Li Li

    2016-04-01

    Loss of mitochondrial structural and functional integrity plays a critical role in the pathogenesis of muscle disuse atrophy. Peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) has been suggested to modulate autophagy-lysosome pathway (mitophagy) during muscle atrophy, but clear evidence is still lacking. In the current study, we tested the hypothesis that overexpression of PGC-1α via in vivo transfection would ameliorate mitophagy in mouse tibialis anterior muscle subjected to two weeks of immobilization (IM), followed by remobilization (RM). While mitochondrial biogenesis and antioxidant enzymes are decreased, all autophagic and mitophagic protein markers such as Beclin-1, Bnip3, PINK1, parkin, Mul1 and the LC3II/LC3I ratio were increased in IM-RM muscle together with activation of FoxO pathway. Overexpression of PGC-1α significantly increased mitochondrial DNA proliferation and oxidative enzyme activity, whereas it mitigated oxidative stress and mitochondrial ubiquination in IM-RM muscle. Protein contents of PINK1, parkin and Mul1 in mitochondria decreased by approximately 50% with PGC-1α treatment. Furthermore, PGC-1α overexpression suppressed FoxO1 and FoxO3 activation along with a decreased LC3II/LC3I ratio. Importantly, PGC-1α attenuated IM-RM-induced ubiquination and degradation of mitofusion protein Mfn2. Muscle apoptotic tendency, measured by Bax/Bcl2 ratio and caspase-3 activity, were elevated with IM-RM, but unaffected by PGC-1α. We conclude that overexpression of PGC-1α by in vivo transfection can inhibit activation of mitophagy pathway in the atrophying muscle caused by immobilization.

  5. Vldlr overexpression causes hyperactivity in rats

    PubMed Central

    2012-01-01

    Background Reelin regulates neuronal positioning in cortical brain structures and neuronal migration via binding to the lipoprotein receptors Vldlr and Lrp8. Reeler mutant mice display severe brain morphological defects and behavioral abnormalities. Several reports have implicated reelin signaling in the etiology of neurodevelopmental and psychiatric disorders, including autism, schizophrenia, bipolar disorder, and depression. Moreover, it has been reported that VLDLR mRNA levels are increased in the post-mortem brain of autistic patients. Methods We generated transgenic (Tg) rats overexpressing Vldlr, and examined their histological and behavioral features. Results Spontaneous locomotor activity was significantly increased in Tg rats, without detectable changes in brain histology. Additionally, Tg rats tended to show performance deficits in the radial maze task, suggesting that their spatial working memory was slightly impaired. Thus, Vldlr levels may be involved in determining locomotor activity and memory function. Conclusions Unlike reeler mice, patients with neurodevelopmental or psychiatric disorders do not show striking neuroanatomical aberrations. Therefore, it is notable, from a clinical point of view, that we observed behavioral phenotypes in Vldlr-Tg rats in the absence of neuroanatomical abnormalities. PMID:23110844

  6. SET overexpression in HEK293 cells regulates mitochondrial uncoupling proteins levels within a mitochondrial fission/reduced autophagic flux scenario.

    PubMed

    Almeida, Luciana O; Goto, Renata N; Neto, Marinaldo P C; Sousa, Lucas O; Curti, Carlos; Leopoldino, Andréia M

    2015-03-06

    We hypothesized that SET, a protein accumulated in some cancer types and Alzheimer disease, is involved in cell death through mitochondrial mechanisms. We addressed the mRNA and protein levels of the mitochondrial uncoupling proteins UCP1, UCP2 and UCP3 (S and L isoforms) by quantitative real-time PCR and immunofluorescence as well as other mitochondrial involvements, in HEK293 cells overexpressing the SET protein (HEK293/SET), either in the presence or absence of oxidative stress induced by the pro-oxidant t-butyl hydroperoxide (t-BHP). SET overexpression in HEK293 cells decreased UCP1 and increased UCP2 and UCP3 (S/L) mRNA and protein levels, whilst also preventing lipid peroxidation and decreasing the content of cellular ATP. SET overexpression also (i) decreased the area of mitochondria and increased the number of organelles and lysosomes, (ii) increased mitochondrial fission, as demonstrated by increased FIS1 mRNA and FIS-1 protein levels, an apparent accumulation of DRP-1 protein, and an increase in the VDAC protein level, and (iii) reduced autophagic flux, as demonstrated by a decrease in LC3B lipidation (LC3B-II) in the presence of chloroquine. Therefore, SET overexpression in HEK293 cells promotes mitochondrial fission and reduces autophagic flux in apparent association with up-regulation of UCP2 and UCP3; this implies a potential involvement in cellular processes that are deregulated such as in Alzheimer's disease and cancer.

  7. Increased α-tocotrienol content in seeds of transgenic rice overexpressing Arabidopsis γ-tocopherol methyltransferase.

    PubMed

    Zhang, Gui-Yun; Liu, Ru-Ru; Xu, Geng; Zhang, Peng; Li, Yin; Tang, Ke-Xuan; Liang, Guo-Hua; Liu, Qiao-Quan

    2013-02-01

    Vitamin E comprises a group of eight lipid soluble antioxidant compounds that are an essential part of the human diet. The α-isomers of both tocopherol and tocotrienol are generally considered to have the highest antioxidant activities. γ-tocopherol methyltransferase (γ-TMT) catalyzes the final step in vitamin E biosynthesis, the methylation of γ- and δ-isomers to α- and β-isomers. In present study, the Arabidopsis γ-TMT (AtTMT) cDNA was overexpressed constitutively or in the endosperm of the elite japonica rice cultivar Wuyujing 3 (WY3) by Agrobacterium-mediated transformation. HPLC analysis showed that, in brown rice of the wild type or transgenic controls with empty vector, the α-/γ-tocotrienol ratio was only 0.7, much lower than that for tocopherol (~19.0). In transgenic rice overexpressing AtTMT driven by the constitutive Ubi promoter, most of the γ-isomers were converted to α-isomers, especially the γ- and δ-tocotrienol levels were dramatically decreased. As a result, the α-tocotrienol content was greatly increased in the transgenic seeds. Similarly, over-expression of AtTMT in the endosperm also resulted in an increase in the α-tocotrienol content. The results showed that the α-/γ-tocopherol ratio also increased in the transgenic seeds, but there was no significant effect on α-tocopherol level, which may reflect the fact that γ-tocopherol is present in very small amounts in wild type rice seeds. AtTMT overexpression had no effect on the absolute total content of either tocopherols or tocotrienols. Taken together, these results are the first demonstration that the overexpression of a foreign γ-TMT significantly shift the tocotrienol synthesis in rice, which is one of the world's most important food crops.

  8. Overexpression of Glycolate Oxidase Confers Improved Photosynthesis under High Light and High Temperature in Rice.

    PubMed

    Cui, Li-Li; Lu, Yu-Sheng; Li, Yong; Yang, Chengwei; Peng, Xin-Xiang

    2016-01-01

    While glycolate oxidase (GLO) is well known as a key enzyme for the photorespiratory metabolism in plants, its physiological function and mechanism remains to be further clarified. Our previous studies have shown that suppression of GLO in rice leads to stunted growth and inhibited photosynthesis (Pn) which is positively and linearly correlated with decreased GLO activities. It is, therefore, of interest to further understand whether Pn can be improved when GLO is up-regulated? In this study, four independent overexpression rice lines, with gradient increases in GLO activity, were generated and functionally analyzed. Phenotypic observations showed that the growth could be improved when GLO activities were increased by 60 or 100%, whereas reduced growth was noticed when the activity was further increased by 150 or 210%. As compared with WT plants, all the overexpression plants exhibited significantly improved Pn under conditions of high light and high temperature, but not under normal conditions. In addition, the overexpression plants were more resistant to the MV-induced photooxidative stress. It was further demonstrated that the antioxidant enzymes, and the antioxidant metabolite glutathione was not significantly altered in the overexpression plants. In contrast, H2O2 and salicylic acid (SA) were correspondingly induced upon the GLO overexpression. Taken together, the results suggest that GLO may play an important role for plants to cope with high light and high temperature, and that H2O2 and SA may serve as signaling molecules to trigger stress defense responses but antioxidant reactions appear not to be involved in the defense.

  9. Overexpression of Glycolate Oxidase Confers Improved Photosynthesis under High Light and High Temperature in Rice

    PubMed Central

    Cui, Li-Li; Lu, Yu-sheng; Li, Yong; Yang, Chengwei; Peng, Xin-Xiang

    2016-01-01

    While glycolate oxidase (GLO) is well known as a key enzyme for the photorespiratory metabolism in plants, its physiological function and mechanism remains to be further clarified. Our previous studies have shown that suppression of GLO in rice leads to stunted growth and inhibited photosynthesis (Pn) which is positively and linearly correlated with decreased GLO activities. It is, therefore, of interest to further understand whether Pn can be improved when GLO is up-regulated? In this study, four independent overexpression rice lines, with gradient increases in GLO activity, were generated and functionally analyzed. Phenotypic observations showed that the growth could be improved when GLO activities were increased by 60 or 100%, whereas reduced growth was noticed when the activity was further increased by 150 or 210%. As compared with WT plants, all the overexpression plants exhibited significantly improved Pn under conditions of high light and high temperature, but not under normal conditions. In addition, the overexpression plants were more resistant to the MV-induced photooxidative stress. It was further demonstrated that the antioxidant enzymes, and the antioxidant metabolite glutathione was not significantly altered in the overexpression plants. In contrast, H2O2 and salicylic acid (SA) were correspondingly induced upon the GLO overexpression. Taken together, the results suggest that GLO may play an important role for plants to cope with high light and high temperature, and that H2O2 and SA may serve as signaling molecules to trigger stress defense responses but antioxidant reactions appear not to be involved in the defense. PMID:27540387

  10. Photosynthesis of root chloroplasts developed in Arabidopsis lines overexpressing GOLDEN2-LIKE transcription factors.

    PubMed

    Kobayashi, Koichi; Sasaki, Daichi; Noguchi, Ko; Fujinuma, Daiki; Komatsu, Hirohisa; Kobayashi, Masami; Sato, Mayuko; Toyooka, Kiminori; Sugimoto, Keiko; Niyogi, Krishna K; Wada, Hajime; Masuda, Tatsuru

    2013-08-01

    In plants, genes involved in photosynthesis are encoded separately in nuclei and plastids, and tight cooperation between these two genomes is therefore required for the development of functional chloroplasts. Golden2-like (GLK) transcription factors are involved in chloroplast development, directly targeting photosynthesis-associated nuclear genes for up-regulation. Although overexpression of GLKs leads to chloroplast development in non-photosynthetic organs, the mechanisms of coordination between the nuclear gene expression influenced by GLKs and the photosynthetic processes inside chloroplasts are largely unknown. To elucidate the impact of GLK-induced expression of photosynthesis-associated nuclear genes on the construction of photosynthetic systems, chloroplast morphology and photosynthetic characteristics in greenish roots of Arabidopsis thaliana lines overexpressing GLKs were compared with those in wild-type roots and leaves. Overexpression of GLKs caused up-regulation of not only their direct targets but also non-target nuclear and plastid genes, leading to global induction of chloroplast biogenesis in the root. Large antennae relative to reaction centers were observed in wild-type roots and were further enhanced by GLK overexpression due to the increased expression of target genes associated with peripheral light-harvesting antennae. Photochemical efficiency was lower in the root chloroplasts than in leaf chloroplasts, suggesting that the imbalance in the photosynthetic machinery decreases the efficiency of light utilization in root chloroplasts. Despite the low photochemical efficiency, root photosynthesis contributed to carbon assimilation in Arabidopsis. Moreover, GLK overexpression increased CO₂ fixation and promoted phototrophic performance of the root, showing the potential of root photosynthesis to improve effective carbon utilization in plants.

  11. Overexpression of the active diacylglycerol acyltransferase variant transforms Saccharomyces cerevisiae into an oleaginous yeast.

    PubMed

    Kamisaka, Yasushi; Kimura, Kazuyoshi; Uemura, Hiroshi; Yamaoka, Masakazu

    2013-08-01

    Lipid production by Saccharomyces cerevisiae was improved by overexpression of the yeast diacylglycerol acyltransferase Dga1p lacking the N-terminal 29 amino acids (Dga1∆Np), which was previously found to be an active form in the ∆snf2 mutant. Overexpression of Dga1∆Np in the ∆snf2 mutant, however, did not increase lipid content as expected, which prompted us to search for a more suitable strain in which to study the role of Dga1∆Np in lipid accumulation. We found that the overexpression of Dga1∆Np in the ∆dga1 mutant effectively increased the lipid content up to about 45 % in the medium containing 10 % glucose. The high lipid content of the transformant was dependent on glucose concentration, nitrogen limitation, and active leucine biosynthesis. To better understand the effect of dga1 disruption on the ability of Dga1∆Np to stimulate lipid accumulation, the ∆dga1-1 mutant, in which the 3'-terminal 36 bp of the dga1 open reading frame (ORF) remained, and the ∆dga1-2 mutant, in which the 3'-terminal 36 bp were also deleted, were prepared with URA3 disruption cassettes. Surprisingly, the overexpression of Dga1∆Np in the ∆dga1-1 mutant had a lower lipid content than the original ∆dga1 mutant, whereas overexpression in the ∆dga1-2 mutant led to a high lipid content of about 45 %. These results indicated that deletion of the 3' terminal region of the dga1 ORF, rather than abrogation of genomic Dga1p expression, was crucial for the effect of Dga1∆Np on lipid accumulation. To investigate whether dga1 disruption affected gene expression adjacent to DGA1, we found that the overexpression of Esa1p together with Dga1∆Np in the ∆dga1 mutant reverted the lipid content to the level of the wild-type strain overexpressing Dga1∆Np. In addition, RT-qPCR analysis revealed that ESA1 mRNA expression in the ∆dga1 mutant was decreased compared to the wild-type strain at the early stages of culture, suggesting that lowered Esa1p expression is

  12. Transgenic overexpression of ribonucleotide reductase improves cardiac performance

    PubMed Central

    Nowakowski, Sarah G.; Kolwicz, Stephen C.; Korte, Frederick Steven; Luo, Zhaoxiong; Robinson-Hamm, Jacqueline N.; Page, Jennifer L.; Brozovich, Frank; Weiss, Robert S.; Tian, Rong; Murry, Charles E.; Regnier, Michael

    2013-01-01

    We previously demonstrated that cardiac myosin can use 2-deoxy-ATP (dATP) as an energy substrate, that it enhances contraction and relaxation with minimal effect on calcium-handling properties in vitro, and that contractile enhancement occurs with only minor elevation of cellular [dATP]. Here, we report the effect of chronically enhanced dATP concentration on cardiac function using a transgenic mouse that overexpresses the enzyme ribonucleotide reductase (TgRR), which catalyzes the rate-limiting step in de novo deoxyribonucleotide biosynthesis. Hearts from TgRR mice had elevated left ventricular systolic function compared with wild-type (WT) mice, both in vivo and in vitro, without signs of hypertrophy or altered diastolic function. Isolated cardiomyocytes from TgRR mice had enhanced contraction and relaxation, with no change in Ca2+ transients, suggesting targeted improvement of myofilament function. TgRR hearts had normal ATP and only slightly decreased phosphocreatine levels by 31P NMR spectroscopy, and they maintained rate responsiveness to dobutamine challenge. These data demonstrate long-term (at least 5-mo) elevation of cardiac [dATP] results in sustained elevation of basal left ventricular performance, with maintained β-adrenergic responsiveness and energetic reserves. Combined with results from previous studies, we conclude that this occurs primarily via enhanced myofilament activation and contraction, with similar or faster ability to relax. The data are sufficiently compelling to consider elevated cardiac [dATP] as a therapeutic option to treat systolic dysfunction. PMID:23530224

  13. Overexpression of catalase targeted to mitochondria attenuates murine cardiac aging

    PubMed Central

    Dai, Dao-Fu; Santana, Luis F.; Vermulst, Marc; Tomazela, Daniela M.; Emond, M.J.; MacCoss, Michael J.; Gollahon, Katherine; Martin, George M.; Loeb, Lawrence A.; Ladiges, Warren C.; Rabinovitch, Peter S.

    2010-01-01

    Background: Age is a major risk for cardiovascular diseases. Although mitochondrial reactive oxygen species (ROS) have been proposed as one of the causes of aging, their role in cardiac aging remains unclear. We have previously shown that overexpression of catalase targeted to mitochondria (mCAT) prolongs murine median lifespan by 17-21%. Methods and Results: We used echocardiography to study cardiac function in aging cohorts of wild type (WT) and mCAT mice. Changes found in WT mice recapitulate human aging: age-dependent increases in left ventricular mass index (LVMI) and left atrial dimension, worsening of the myocardial performance index (MPI), and a decline in diastolic function. Cardiac aging in mice is accompanied by accumulation of mitochondrial protein oxidation, increased mitochondrial DNA mutations and deletions and mitochondrial biogenesis, increased ventricular fibrosis, enlarged myocardial fiber size, decreased cardiac SERCA2 protein and activation of the calcineurin-NFAT pathway. All of these age-related changes were significantly attenuated in mCAT mice. Analysis of survival of 130 mice demonstrated that echocardiographic cardiac aging risk scores were significant predictors of mortality. The estimated attributable risk to mortality for these two parameters was 55%. Conclusion: This study shows that cardiac aging in the mouse closely recapitulates human aging and demonstrates the critical role of mitochondrial ROS in cardiac aging and the impact of cardiac aging on survival. These findings also support the potential application of mitochondrial antioxidants in ROS-related cardiovascular diseases. PMID:19451351

  14. Extrasynaptic NMDA receptor-induced tau overexpression mediates neuronal death through suppressing survival signaling ERK phosphorylation

    PubMed Central

    Sun, Xu-Ying; Tuo, Qing-Zhang; Liuyang, Zhen-Yu; Xie, Ao-Ji; Feng, Xiao-Long; Yan, Xiong; Qiu, Mei; Li, Shen; Wang, Xiu-Lian; Cao, Fu-Yuan; Wang, Xiao-Chuan; Wang, Jian-Zhi; Liu, Rong

    2016-01-01

    Intracellular accumulation of the hyperphosphorylated tau is a pathological hallmark in the brain of Alzheimer disease. Activation of extrasynaptic NMDA receptors (E-NMDARs) induces excitatory toxicity that is involved in Alzheimer's neurodegeneration. However, the intrinsic link between E-NMDARs and the tau-induced neuronal damage remains elusive. In the present study, we showed in cultured primary cortical neurons that activation of E-NMDA receptors but not synaptic NMDA receptors dramatically increased tau mRNA and protein levels, with a simultaneous neuronal degeneration and decreased neuronal survival. Memantine, a selective antagonist of E-NMDARs, reversed E-NMDARs-induced tau overexpression. Activation of E-NMDARs in wild-type mouse brains resulted in neuron loss in hippocampus, whereas tau deletion in neuronal cultures and in the mouse brains rescued the E-NMDARs-induced neuronal death and degeneration. The E-NMDARs-induced tau overexpression was correlated with a reduced ERK phosphorylation, whereas the increased MEK activity, decreased binding and activity of ERK phosphatase to ERK, and increased ERK phosphorylation were observed in tau knockout mice. On the contrary, addition of tau proteins promoted ERK dephosphorylation in vitro. Taking together, these results indicate that tau overexpression mediates the excitatory toxicity induced by E-NMDAR activation through inhibiting ERK phosphorylation. PMID:27809304

  15. Over-expression of catalase in myeloid cells confers acute protection following myocardial infarction.

    PubMed

    Cabigas, E Bernadette; Somasuntharam, Inthirai; Brown, Milton E; Che, Pao Lin; Pendergrass, Karl D; Chiang, Bryce; Taylor, W Robert; Davis, Michael E

    2014-05-21

    Cardiovascular disease is the leading cause of death in the United States and new treatment options are greatly needed. Oxidative stress is increased following myocardial infarction and levels of antioxidants decrease, causing imbalance that leads to dysfunction. Therapy involving catalase, the endogenous scavenger of hydrogen peroxide (H2O2), has been met with mixed results. When over-expressed in cardiomyocytes from birth, catalase improves function following injury. When expressed in the same cells in an inducible manner, catalase showed a time-dependent response with no acute benefit, but a chronic benefit due to altered remodeling. In myeloid cells, catalase over-expression reduced angiogenesis during hindlimb ischemia and prevented monocyte migration. In the present study, due to the large inflammatory response following infarction, we examined myeloid-specific catalase over-expression on post-infarct healing. We found a significant increase in catalase levels following infarction that led to a decrease in H2O2 levels, leading to improved acute function. This increase in function could be attributed to reduced infarct size and improved angiogenesis. Despite these initial improvements, there was no improvement in chronic function, likely due to increased fibrosis. These data combined with what has been previously shown underscore the need for temporal, cell-specific catalase delivery as a potential therapeutic option.

  16. Overexpression of PKM2 promotes mitochondrial fusion through attenuated p53 stability

    PubMed Central

    Wu, Haili; Yang, Peng; Hu, Wanglai; Wang, Yingying; Lu, Yangxu; Zhang, Lichao; Fan, Yongsheng; Xiao, Hong; Li, Zhuoyu

    2016-01-01

    M2-type pyruvate kinase (PKM2) contributes to the Warburg effect. However, it remains unknown as to whether PKM2 has an inhibitory effect on mitochondrial function. We report in this work that PKM2 overexpression inhibits the expression of Drp1 and results in the mitochondrial fusion. The ATP production was found to be decreased, the mtDNA copy number elevated and the expression level of electron transport chain (ETC) complex I, III, V depressed in PKM2 overexpressed cells. PKM2 overexpression showed a decreased p53 protein level and a shorter p53 half-life. In contrast, PKM2 knockdown resulted in increased p53 expression and prolonged half-life of p53. PKM2 could directly bind with both p53 and MDM2 and promote MDM2-mediated p53 ubiquitination. The dimeric PKM2 significantly suppressed p53 expression compared with the other PKM2 mutants. The reverse relationship between PKM2 and Drp1 was further confirmed in a large number of clinical samples. Taken together, the present results highlight a new mechanism that link PKM2 to mitochondrial function, based on p53-Drp1 axis down regulation, revealing a novel therapeutic target in patients with abnormal mitochondria. PMID:27801666

  17. Cloning and characterization of adipogenin and its overexpression enhances fat accumulation of bovine myosatellite cells.

    PubMed

    Liu, Yang; Jiang, Bijie; Fu, Changzhen; Hao, Ruijie

    2017-02-15

    Adipogenin (ADIG) is an adipocyte-specific membrane protein highly expressed in adipose tissues and is increased during the adipocyte differentiation. However, the roles and mechanisms of ADIG on fat accumulation and adipocyte differentiation in ex vivo still largely unknown. In this study, we isolated bovine myosatellite cells based on adhesion characteristics to investigate whether ADIG overexpression could promote trans-differentiation and increase fat accumulation in myosatellite cells. Immunofluorescence labeling was then used for the phenotypic characteristics of myosatellite. Our results showed that, after induction of differentiation, adenovirus mediated ADIG overexpression could upregulate expression level of PPARγ, and Oil Red O staining showed larger lipid drops compared to control groups. In consistent, key components of Hh signaling pathway were down regulated when infected with ADIG adenovirus, even though treated with inhibitor of Hh signaling pathway together could not induce further decrease. In addition, bioinformatics analysis of ADIG was also performed for its structure and function.

  18. Transgenic over-expression of mammalian heparanase delays prion disease onset and progression

    PubMed Central

    Kovalchuk Ben-Zaken, O; Nissan, I; Tzaban, S; Taraboulos, A; Zcharia, E; Matzger, S; Shafat, I; Vlodavsky, I; Tal, Y.

    2015-01-01

    Cellular heparan sulfate (HS) has a dual role in scrapie pathogenesis; it is required for PrPSc (scrapie prion protein) formation and facilitates infection of cells, mediating cellular uptake of prions. We examined the involvement of heparanase, a mammalian endoglycosidase degrading HS, in scrapie infection. In cultured cells, heparanase treatment or over-expression resulted in a profound decrease in PrPSc. Moreover, disease onset and progression were dramatically delayed in scrapie infected transgenic mice over-expressing heparanase. Together, our results provide direct in vivo evidence for the involvement of intact HS in the pathogenesis of prion disease and the protective role of heparanase both in terms of susceptibility to infection and disease progression. PMID:26168721

  19. Sustained hippocampal IL-1 beta overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology.

    PubMed

    Shaftel, Solomon S; Kyrkanides, Stephanos; Olschowka, John A; Miller, Jen-nie H; Johnson, Renee E; O'Banion, M Kerry

    2007-06-01

    Neuroinflammation is a conspicuous feature of Alzheimer disease (AD) pathology and is thought to contribute to the ultimate neurodegeneration that ensues. IL-1 beta has emerged as a prime candidate underlying this response. Here we describe a transgenic mouse model of sustained IL-1 beta overexpression that was capable of driving robust neuroinflammation lasting months after transgene activation. This response was characterized by astrocytic and microglial activation in addition to induction of proinflammatory cytokines. Surprisingly, when triggered in the hippocampus of the APPswe/PS1dE9 mouse model of AD, 4 weeks of IL-1 beta overexpression led to a reduction in amyloid pathology. Congophilic plaque area fraction and frequency as well as insoluble amyloid beta 40 (A beta 40) and A beta 42 decreased significantly. These results demonstrate a possible adaptive role for IL-1 beta-driven neuroinflammation in AD and may help explain recent failures of antiinflammatory therapeutics for this disease.

  20. Over-expression of microRNA169 confers enhanced drought tolerance to tomato.

    PubMed

    Zhang, Xiaohui; Zou, Zhe; Gong, Pengjuan; Zhang, Junhong; Ziaf, Khurram; Li, Hanxia; Xiao, Fangming; Ye, Zhibiao

    2011-02-01

    Plant miRNA regulates multiple developmental and physiological processes, including drought responses. We found that the accumulation of Sly-miR169 in tomato (Solanum lycopersicum) was induced by drought stress. Consequently, Sly-miR169 targets, namely, three nuclear factor Y subunit genes (SlNF-YA1/2/3) and one multidrug resistance-associated protein gene (SlMRP1), were significantly down-regulated by drought stress. Constitutive over-expression of a miR169 family member, Sly-miR169c, in tomato plant can efficiently down-regulate the transcripts of the target genes. Compared with non-transgenic plants, transgenic plants over-expressing Sly-miR169c displayed reduced stomatal opening, decreased transpiration rate, lowered leaf water loss, and enhanced drought tolerance. Our study is the first to provide evidence that the Sly-miR169c negatively regulates stomatal movement in tomato drought responses.

  1. Simvastatin inhibits tumor angiogenesis in HER2-overexpressing human colorectal cancer.

    PubMed

    Li, Gang; Zheng, Junhua; Xu, Bin; Ling, Jie; Qiu, Wei; Wang, Yongbing

    2017-01-01

    Overexpression of the HER2 oncogene contributes to tumor angiogenesis, which is an essential hallmark of cancer. Simvastatin has been reported to exhibit antitumor activities in several cancers; however, its roles and molecular mechanismsin the regulation of colorectal angiogenesis remain to be clarified. Here, we show that colon cancer cells express high levels of VEGF, total HER2 and phosphorylated HER2, and simvastatin apparently decreased their expression in HER2-overexpressing colon cancer cells. Simvastatin pretreatment reduced endothelial tube formation in vitro and microvessel density in vivo. Furthermore, simvastatin markedly inhibited tumor angiogenesis even in the presence of heregulin (HRG)-β1 (a HER2 co-activator) pretreatment in HER2+ tumor cells. Mechanistic investigation showed that simvastatin significantly abrogated HER2-induced tumor angiogenesis by inhibiting VEGF secretion. Together, these results provide a novel mechanism underlying the simvastatin-induced inhibition of tumor angiogenesis through regulating HER2/VEGF axis.

  2. Overexpression of 20-Oxidase Confers a Gibberellin-Overproduction Phenotype in Arabidopsis

    PubMed Central

    Huang, Shihshieh; Raman, Anuradha S.; Ream, Joel E.; Fujiwara, Hideji; Cerny, R. Eric; Brown, Sherri M.

    1998-01-01

    In the gibberellin (GA) biosynthesis pathway, 20-oxidase catalyzes the oxidation and elimination of carbon-20 to give rise to C19-GAs. All bioactive GAs are C19-GAs. We have overexpressed a cDNA encoding 20-oxidase isolated from Arabidopsis seedlings in transgenic Arabidopsis plants. These transgenic plants display a phenotype that may be attributed to the overproduction of GA. The phenotype includes a longer hypocotyl, lighter-green leaves, increased stem elongation, earlier flowering, and decreased seed dormancy. However, the fertility of the transgenic plants is not affected. Increased levels of endogenous GA1, GA9, and GA20 were detected in seedlings of the transgenic line examined. GA4, which is thought to be the predominantly active GA in Arabidopsis, was not present at increased levels in this line. These results suggest that the overexpression of this 20-oxidase increases the levels of some endogenous GAs in transgenic seedlings, which causes the GA-overproduction phenotype. PMID:9808721

  3. bcl-2 Overexpression Reduces Apoptotic Photoreceptor Cell Death in Three Different Retinal Degenerations

    NASA Astrophysics Data System (ADS)

    Chen, Jeannie; Flannery, John G.; Lavail, Matthew M.; Steinberg, Roy H.; Xu, Jun; Simon, Melvin I.

    1996-07-01

    Apoptosis of photoreceptors occurs infrequently in adult retina but can be triggered in inherited and environmentally induced retinal degenerations. The protooncogene bcl-2 is known to be a potent regulator of cell survival in neurons. We created lines of transgenic mice overexpressing bcl-2 to test for its ability to increase photoreceptor survival. Bcl-2 increased photoreceptor survival in mice with retinal degeneration caused by a defective opsin or cGMP phosphodiesterase. Overexpression of Bcl-2 in normal photoreceptors also decreased the damaging effects of constant light exposure. Apoptosis was induced in normal photoreceptors by very high levels of bcl-2. We conclude that bcl-2 is an important regulator of photoreceptor cell death in retinal degenerations.

  4. Functional characterization of CCR in birch (Betula platyphylla × Betula pendula) through overexpression and suppression analysis.

    PubMed

    Zhang, Wenbo; Wei, Rui; Chen, Su; Jiang, Jing; Li, Huiyu; Huang, Haijiao; Yang, Guang; Wang, Shuo; Wei, Hairong; Liu, Guifeng

    2015-06-01

    We cloned a Cinnamoyl-CoA Reductase gene (BpCCR1) from an apical meristem and first internode of Betula platyphylla and characterized its functions in lignin biosynthesis, wood formation and tree growth through transgenic approaches. We generated overexpression and suppression transgenic lines and analyzed them in comparison with the wild-type in terms of lignin content, anatomical characteristics, height and biomass. We found that BpCCR1 overexpression could increase lignin content up to 14.6%, and its underexpression decreased lignin content by 6.3%. Surprisingly, modification of BpCCR1 expression led to conspicuous changes in wood characteristics, including xylem vessel number and arrangement, and secondary wall thickness. The growth of transgenic trees in terms of height was also significantly influenced by the modification of BpCCR1 genes. We discuss the functions of BpCCR1 in the context of a phylogenetic tree built with CCR genes from multiple species.

  5. Sphingosine kinase 1 is overexpressed and promotes adrenocortical carcinoma progression

    PubMed Central

    Huang, Jiwei; Kong, Wen; Xue, Wei; Zhu, Yu; Zhang, Jin; Huang, Yiran

    2016-01-01

    Adrenocortical carcinoma (ACC) is a rare endocrine tumor with a very poor prognosis. Sphingosine kinase 1 (SphK1), an oncogenic kinase, has previously been found to be upregulated in various cancers. However, the role of the SphK1 in ACC has not been investigated. In this study, SphK1 mRNA and protein expression levels as well as clinicopathological significance were evaluated in ACC samples. In vitro siRNA knockdown of SphK1 in two ACC cell lines (H295R and SW13) was used to determine its effect on cellular proliferation and invasion. In addition, we further evaluated the effect of SphK1 antagonist fingolimod (FTY720) in ACC in vitro and in vivo, as a single agent or in combination with mitotane, and attempted to explore its anticarcinogenic mechanisms. Our results show a significant over-expression of SphK1 mRNA and protein expression in the carcinomas compared with adenomas (P < 0.01 for all comparisons). Functionally, konckdown of SphK1 gene expression in ACC cell lines significantly decreased cell proliferation and invasion. FTY720 could result in a decreased cell proliferation and induction of apoptosis, and the combination of mitotane and FTY720 resulted in a greater anti-proliferative effect over single agent treatment in SW13 cells. Furthermore, FTY720 could markedly inhibit tumor growth in ACC xenografts. SphK1 expression is functionally associated to cellular proliferation, apoptosis, invasion and mitotane sensitivity of ACC. Our data suggest that SphK1 might be a potential therapeutic target for the treatment of ACC. PMID:26673009

  6. CARMA3 is overexpressed in colon cancer and regulates NF-{kappa}B activity and cyclin D1 expression

    SciTech Connect

    Miao, Zhifeng; Zhao, Tingting; Wang, Zhenning; Xu, Yingying; Song, Yongxi; Wu, Jianhua; Xu, Huimian

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer CARMA3 expression is elevated in colon cancers. Black-Right-Pointing-Pointer CARMA3 promotes proliferation and cell cycle progression in colon cancer cells. Black-Right-Pointing-Pointer CARMA3 upregulates cyclinD1 through NF-{kappa}B activation. -- Abstract: CARMA3 was recently reported to be overexpressed in cancers and associated with the malignant behavior of cancer cells. However, the expression of CARMA3 and its biological roles in colon cancer have not been reported. In the present study, we analyzed the expression pattern of CARMA3 in colon cancer tissues and found that CARMA3 was overexpressed in 30.8% of colon cancer specimens. There was a significant association between CARMA3 overexpression and TNM stage (p = 0.0383), lymph node metastasis (p = 0.0091) and Ki67 proliferation index (p = 0.0035). Furthermore, knockdown of CARMA3 expression in HT29 and HCT116 cells with high endogenous expression decreased cell proliferation and cell cycle progression while overexpression of CARMA3 in LoVo cell line promoted cell proliferation and facilitated cell cycle transition. Further analysis showed that CARMA3 knockdown downregulated and its overexpression upregulated cyclin D1 expression and phospho-Rb levels. In addition, we found that CARMA3 depletion inhibited p-I{kappa}B levels and NF-{kappa}B activity and its overexpression increased p-I{kappa}B expression and NF-{kappa}B activity. NF-{kappa}B inhibitor BAY 11-7082 reversed the role of CARMA3 on cyclin D1 upregulation. In conclusion, our study found that CARMA3 is overexpressed in colon cancers and contributes to malignant cell growth by facilitating cell cycle progression through NF-{kappa}B mediated upregulation of cyclin D1.

  7. Overexpression of miR-34c inhibits high glucose-induced apoptosis in podocytes by targeting Notch signaling pathways.

    PubMed

    Liu, Xiang-Dong; Zhang, Lian-Yun; Zhu, Tie-Chui; Zhang, Rui-Fang; Wang, Shu-Long; Bao, Yan

    2015-01-01

    Recent findings have shown that microRNAs play critical roles in the pathogenesis of diabetic nephropathy. miR-34c has been found to inhibit fibrosis and the epithelial-mesenchymal transition of kidney cells. However, the role of miR-34c in diabetic nephropathy has not been well studied. The current study was designed to investigate the role and potential underlying mechanism of miR-34c in regulating diabetic nephropathy. After treating podocytes with high glucose (HG) in vitro, we found that miR-34c was downregulated and that overexpression of miR-34c inhibited HG-induced podocyte apoptosis. The direct interaction between miR-34c and the 3'-untranslated region (UTR) of Notch1 and Jagged1 was validated by dual-luciferase reporter assay. Moreover, Notch1 and Jagged1 as putative targets of miR-34c were downregulated by miR-34c overexpression in HG-treated podocytes. Overexpression of miR-34c inhibited HG-induced Notch signaling pathway activation, as indicated by decreased expression of the Notch intracellular domain (NICD) and downstream genes including Hes1 and Hey1. Furthermore, miR-34c overexpression increased the expression of the anti-apoptotic gene Bcl-2, and decreased the expression of the pro-apoptotic protein Bax and cleaved Caspase-3. Additionally, the phosphorylation of p53 was also downregulated by miR-34c overexpression. Taken together, our findings suggest that miR-34c overexpression inhibits the Notch signaling pathway by targeting Notch1 and Jaggged1 in HG-treated podocytes, representing a novel and potential therapeutic target for the treatment of diabetic nephropathy.

  8. Phenotypic effects of membrane protein overexpression in Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Melén, Karin; Blomberg, Anders; von Heijne, Gunnar

    2006-07-01

    Large-scale protein overexpression phenotype screens provide an important complement to the more common gene knockout screens. Here, we have targeted the so far poorly understood Saccharomyces cerevisiae membrane proteome and report growth phenotypes for a strain collection overexpressing 600 C-terminally tagged integral membrane proteins grown both under normal and three different stress conditions. Although overexpression of most membrane proteins reduce the growth rate in synthetic defined medium, we identify a large number of proteins that, when overexpressed, confer specific resistance to various stress conditions. Our data suggest that regulation of glycosylphosphatidylinositol anchor biosynthesis and the Na+/K+ homeostasis system constitute major downstream targets of the yeast PKA/RAS pathway and point to a possible connection between the early secretory pathway and the cells' response to oxidative stress. We also have quantified the expression levels for >550 membrane proteins, facilitating the choice of well expressing proteins for future functional and structural studies. caffeine | paraquat | salt tolerance | yeast

  9. [Overexpression of FKS1 to improve yeast autolysis-stress].

    PubMed

    Li, Jia; Wang, Jinjing; Li, Qi

    2015-09-01

    With the development of high gravity brewing, yeast cells are exposed to multiple brewing-associated stresses, such as increased osmotic pressure, enhanced alcohol concentration and nutritional imbalance. These will speed up yeast autolysis, which seriously influence beer flavor and quality. To increase yeast anti-autolytic ability, FKS1 overexpression strain was constructed by 18S rDNA. The concentration of β-1,3-glucan of overexpression strain was 62% higher than that of wild type strain. Meantime, FKS1 overexpression strain increased anti-stress ability at 8% ethanol, 0.4 mol/L NaCl and starvation stress. Under simulated autolysis, FKS1 showed good anti-autolytic ability by slower autolysis. These results confirms the potential of FKS1 overexpression to tackle yeast autolysis in high-gravity brewing.

  10. Decreased severity of collagen antibody and lipopolysaccharide-induced arthritis in human IL-32β overexpressed transgenic mice.

    PubMed

    Park, Mi Hee; Yoon, Do-Young; Ban, Jung Ok; Kim, Dae Hwan; Lee, Dong Hun; Song, Sukgil; Kim, Youngsoo; Han, Sang-Bae; Lee, Hee Pom; Hong, Jin Tae

    2015-11-17

    Interleukin (IL)-32, mainly produced by T-lymphocytes, natural killer cells, epithelial cells, and blood monocytes, is dominantly known as a pro-inflammatory cytokine. However, the role of IL-32 on inflammatory disease has been doubtful according to diverse conflicting results. This study was designed to examine the role of IL-32β on the development of collagen antibody (CAIA) and lipopolysaccharide (LPS)-induced inflammatory arthritis. Our data showed that the paw swelling volume and clinical score were significantly reduced in the CAIA and LPS-treated IL-32β transgenic mice compared with non-transgenic mice. The populations of cytotoxic T, NK and dendritic cells was inhibited and NF-κB and STAT3 activities were significantly lowered in the CAIA and LPS-treated IL-32β transgenic mice. The expression of pro-inflammatory proteins was prevented in the paw tissues of CAIA and LPS-treated IL-32β transgenic mice. In addition, IL-32β altered several cytokine levels in the blood, spleen and paw joint. Our data indicates that IL-32β comprehensively inhibits the inflammation responses in the CAIA and LPS-induced inflammatory arthritis model.

  11. Overexpression of Ferredoxin, PETF, Enhances Tolerance to Heat Stress in Chlamydomonas reinhardtii

    PubMed Central

    Lin, Yi-Hsien; Pan, Kui-You; Hung, Ching-Hui; Huang, Hsiang-En; Chen, Ching-Lian; Feng, Teng-Yung; Huang, Li-Fen

    2013-01-01

    Reactive oxygen species (ROS) produced by plants in adverse environments can cause damage to organelles and trigger cell death. Removal of excess ROS can be achieved through the ascorbate scavenger pathway to prevent plant cell death. The amount of this scavenger can be regulated by ferredoxin (FDX). Chloroplastic FDXs are electron transfer proteins that perform in distributing photosynthetic reducing power. In this study, we demonstrate that overexpression of the endogenous photosynthetic FDX gene, PETF, in Chlamydomonas reinhardtii could raise the level of reduced ascorbate and diminish H2O2 levels under normal growth conditions. Furthermore, the overexpressing PETF transgenic Chlamydomonas lines produced low levels of H2O2 and exhibited protective effects that were observed through decreased chlorophyll degradation and increased cell survival under heat-stress conditions. The findings of this study suggest that overexpression of PETF can increase the efficiency of ROS scavenging in chloroplasts to confer heat tolerance. The roles of PETF in the downregulation of the ROS level offer a method for potentially improving the tolerance of crops against heat stress. PMID:24141188

  12. Overexpression of ferredoxin, PETF, enhances tolerance to heat stress in Chlamydomonas reinhardtii.

    PubMed

    Lin, Yi-Hsien; Pan, Kui-You; Hung, Ching-Hui; Huang, Hsiang-En; Chen, Ching-Lian; Feng, Teng-Yung; Huang, Li-Fen

    2013-10-17

    Reactive oxygen species (ROS) produced by plants in adverse environments can cause damage to organelles and trigger cell death. Removal of excess ROS can be achieved through the ascorbate scavenger pathway to prevent plant cell death. The amount of this scavenger can be regulated by ferredoxin (FDX). Chloroplastic FDXs are electron transfer proteins that perform in distributing photosynthetic reducing power. In this study, we demonstrate that overexpression of the endogenous photosynthetic FDX gene, PETF, in Chlamydomonas reinhardtii could raise the level of reduced ascorbate and diminish H2O2 levels under normal growth conditions. Furthermore, the overexpressing PETF transgenic Chlamydomonas lines produced low levels of H2O2 and exhibited protective effects that were observed through decreased chlorophyll degradation and increased cell survival under heat-stress conditions. The findings of this study suggest that overexpression of PETF can increase the efficiency of ROS scavenging in chloroplasts to confer heat tolerance. The roles of PETF in the downregulation of the ROS level offer a method for potentially improving the tolerance of crops against heat stress.

  13. CREB overexpression in dorsal CA1 ameliorates long-term memory deficits in aged rats

    PubMed Central

    Yu, Xiao-Wen; Curlik, Daniel M; Oh, M Matthew; Yin, Jerry CP; Disterhoft, John F

    2017-01-01

    The molecular mechanisms underlying age-related cognitive deficits are not yet fully elucidated. In aged animals, a decrease in the intrinsic excitability of CA1 pyramidal neurons is believed to contribute to age-related cognitive impairments. Increasing activity of the transcription factor cAMP response element-binding protein (CREB) in young adult rodents facilitates cognition, and increases intrinsic excitability. However, it has yet to be tested if increasing CREB expression also ameliorates age-related behavioral and biophysical deficits. To test this hypothesis, we virally overexpressed CREB in CA1 of dorsal hippocampus. Rats received CREB or control virus, before undergoing water maze training. CREB overexpression in aged animals ameliorated the long-term memory deficits observed in control animals. Concurrently, cells overexpressing CREB in aged animals had reduced post-burst afterhyperpolarizations, indicative of increased intrinsic excitability. These results identify CREB modulation as a potential therapy to treat age-related cognitive decline. DOI: http://dx.doi.org/10.7554/eLife.19358.001 PMID:28051768

  14. Macrophage-specific overexpression of interleukin-5 attenuates atherosclerosis in LDL receptor-deficient mice.

    PubMed

    Zhao, W; Lei, T; Li, H; Sun, D; Mo, X; Wang, Z; Zhang, K; Ou, H

    2015-08-01

    Interleukin-5 (IL-5) increases the secretion of natural T15/EO6 IgM antibodies that inhibit the uptake of oxidized low-density lipoprotein (LDL) by macrophages. This study aimed to determine whether macrophage-specific expression of IL-5 in LDL receptor-deficient mice (Ldlr(-/-)) could improve cholesterol metabolism and reduce atherosclerosis. To induce macrophage-specific IL-5 expression, the pLVCD68-IL5 lentivirus was delivered into Ldlr(-/-) mice via bone marrow transplantation. The recipient mice were fed a Western-type diet for 12 weeks to induce lesion formation. We found that IL-5 was efficiently and specifically overexpressed in macrophages in recipients of pLVCD68-IL5-transduced bone marrow cells (BMC). Plasma titers of T15/EO6 IgM antibodies were significantly elevated by 58% compared with control mice transplanted with pLVCD68 lacking the IL-5 coding sequence. Plaque areas of aortas in IL-5-overexpressing mice were reduced by 43% and associated with a 2.4-fold decrease in lesion size at the aortic roots when compared with mice receiving pLVCD68-transduced BMCs. The study showed that macrophage-specific overexpression of IL-5 inhibited the progression of atherosclerotic lesions. These findings suggest that modulation of IL-5 cytokine expression represents a potential strategy for intervention of familial hypercholesterolemia and other cardiovascular diseases.

  15. Metabolic effects of transgenic melanocyte-stimulating hormone overexpression in lean and obese mice.

    PubMed

    Savontaus, Eriika; Breen, Tracy L; Kim, Andrea; Yang, Lucy M; Chua, Streamson C; Wardlaw, Sharon L

    2004-08-01

    The proopiomelanocortin-derived peptide, alpha-MSH, inhibits feeding via melanocortin receptors in the hypothalamus and genetic defects inactivating the melanocortin system have been shown to lead to obesity in experimental animals and humans. To determine whether long-term melanocortinergic activation has significant effects on body weight and composition and insulin sensitivity, transgenic mice overexpressing N-terminal proopiomelanocortin, including alpha- and gamma(3)-MSH, under the control of the cytomegalovirus-promoter were generated. The transgene was expressed in multiple tissues including the hypothalamus, in which both alpha-MSH and gamma(3)-MSH levels were increased approximately 2-fold, compared with wild-type controls. Transgene homozygous mice were also crossed with obese leptin receptor-deficient db(3J) and obese yellow A(y) mice. MSH overexpression led to uniform, dose- dependent darkening of coat color. MSH overexpression reduced weight gain and adiposity and improved glucose tolerance in lean male mice. In female transgenic mice, there was no significant effect on body weight, but there was a significant decrease in insulin levels. Obesity was attenuated in obese db(3J)/db(3J) male and female mice, but there was no improvement in glucose metabolism. In contrast, the MSH transgene improved glucose tolerance in male A(y) mice. These results support the hypothesis that long-term melanocortinergic activation could serve as a potential strategy for anti-obesity and/or antidiabetic therapy.

  16. Enhanced leavening ability of baker's yeast by overexpression of SNR84 with PGM2 deletion.

    PubMed

    Lin, Xue; Zhang, Cui-Ying; Bai, Xiao-Wen; Xiao, Dong-Guang

    2015-06-01

    Dough-leavening ability is one of the main aspects considered when selecting a baker's yeast strain for baking industry. Generally, modification of maltose metabolic pathway and known regulatory networks of maltose metabolism were used to increase maltose metabolism to improve leavening ability in lean dough. In this study, we focus on the effects of PGM2 (encoding for the phosphoglucomutase) and SNR84 (encoding for the H/ACA snoRNA) that are not directly related to both the maltose metabolic pathway and known regulatory networks of maltose metabolism on the leavening ability of baker's yeast in lean dough. The results show that the modifications on PGM2 and/or SNR84 are effective ways in improving leavening ability of baker's yeast in lean dough. Deletion of PGM2 decreased cellular glucose-1-phosphate and overexpression of SNR84 increased the maltose permease activity. These changes resulted in 11, 19 and 21% increases of the leavening ability for PGM2 deletion, SNR84 overexpression and SNR84 overexpression combining deleted PGM2, respectively.

  17. Overexpression of the protein tyrosine phosphatase PRL-2 correlates with breast tumor formation and progression.

    PubMed

    Hardy, Serge; Wong, Nau Nau; Muller, William J; Park, Morag; Tremblay, Michel L

    2010-11-01

    The PRL-1, PRL-2, and PRL-3 phosphatases are prenylated protein tyrosine phosphatases with oncogenic activity that are proposed to drive tumor metastasis. We found that PRL-2 mRNA is elevated in primary breast tumors relative to matched normal tissue, and also dramatically elevated in metastatic lymph nodes compared with primary tumors. PRL-2 knockdown in metastatic MDA-MB-231 breast cancer cells decreased anchorage-independent growth and cell migration, suggesting that the malignant phenotype of these cells is mediated at least in part through PRL-2 signaling. In different mouse mammary tumor-derived cell lines overexpressing PRL-2, we confirmed its role in anchorage-independent growth and cell migration. Furthermore, injection of PRL-2-overexpressing cells into the mouse mammary fat pad promoted extracellular signal-regulated kinase 1/2 activation and tumor formation. MMTV-PRL-2 transgenic mice engineered to overexpress the enzyme in mammary tissue did not exhibit spontaneous tumorigenesis, but they exhibited an accelerated development of mammary tumors initiated by introduction of an MMTV-ErbB2 transgene. Together, our results argue that PRL-2 plays a role in breast cancer progression.

  18. Heparanase Overexpression Reduces Hepcidin Expression, Affects Iron Homeostasis and Alters the Response to Inflammation

    PubMed Central

    Asperti, Michela; Stuemler, Tanja; Poli, Maura; Gryzik, Magdalena; Lifshitz, Lena; Meyron-Holtz, Esther G.; Vlodavsky, Israel

    2016-01-01

    Hepcidin is the key regulator of systemic iron availability that acts by controlling the degradation of the iron exporter ferroportin. It is expressed mainly in the liver and regulated by iron, inflammation, erythropoiesis and hypoxia. The various agents that control its expression act mainly via the BMP6/SMAD signaling pathway. Among them are exogenous heparins, which are strong hepcidin repressors with a mechanism of action not fully understood but that may involve the competition with the structurally similar endogenous Heparan Sulfates (HS). To verify this hypothesis, we analyzed how the overexpression of heparanase, the HS degrading enzyme, modified hepcidin expression and iron homeostasis in hepatic cell lines and in transgenic mice. The results showed that transient and stable overexpression of heparanase in HepG2 cells caused a reduction of hepcidin expression and of SMAD5 phosphorylation. Interestingly, the clones showed also altered level of TfR1 and ferritin, indices of a modified iron homeostasis. The heparanase transgenic mice showed a low level of liver hepcidin, an increase of serum and liver iron with a decrease in spleen iron content. The hepcidin expression remained surprisingly low even after treatment with the inflammatory LPS. The finding that modification of HS structure mediated by heparanase overexpression affects hepcidin expression and iron homeostasis supports the hypothesis that HS participate in the mechanisms controlling hepcidin expression. PMID:27711215

  19. CTT1 overexpression increases life span of calorie-restricted Saccharomyces cerevisiae deficient in Sod1.

    PubMed

    Rona, Germana; Herdeiro, Ricardo; Mathias, Cristiane Juliano; Torres, Fernando Araripe; Pereira, Marcos Dias; Eleutherio, Elis

    2015-06-01

    Studies using different organisms revealed that reducing calorie intake, without malnutrition, known as calorie restriction (CR), increases life span, but its mechanism is still unkown. Using the yeast Saccharomyces cerevisiae as eukaryotic model, we observed that Cu, Zn-superoxide dismutase (Sod1p) is required to increase longevity, as well as to confer protection against lipid and protein oxidation under CR. Old cells of sod1 strain also presented a premature induction of apoptosis. However, when CTT1 (which codes for cytosolic catalase) was overexpressed, sod1 and WT strains showed similar survival rates. Furthermore, CTT1 overexpression decreased lipid peroxidation and delayed the induction of apoptotic process. Superoxide is rapidly converted to hydrogen peroxide by superoxide dismutase, but it also undergoes spontaneous dismutation albeit at a slower rate. However, the quantity of peroxide produced from superoxide in this way is two-fold higher. Peroxide degradation, catalyzed by catalase, is of vital importance, because in the presence of a reducer transition metal peroxide is reduced to the highly reactive hydroxyl radical, which reacts indiscriminately with most cellular constituents. These findings might explain why overexpression of catalase was able to overcome the deficiency of Sod1p, increasing life span in response to CR.

  20. Ubiquilin overexpression reduces GFP-polyalanine-induced protein aggregates and toxicity

    SciTech Connect

    Wang Hongmin; Monteiro, Mervyn J. . E-mail: monteiro@umbi.umd.edu

    2007-08-01

    Several human disorders are associated with an increase in a continuous stretch of alanine amino acids in proteins. These so-called polyalanine expansion diseases share many similarities with polyglutamine-related disorders, including a length-dependent reiteration of amino acid induction of protein aggregation and cytotoxicity. We previously reported that overexpression of ubiquilin reduces protein aggregates and toxicity of expanded polyglutamine proteins. Here, we demonstrate a similar role for ubiquilin toward expanded polyalanine proteins. Overexpression of ubiquilin-1 in HeLa cells reduced protein aggregates and the cytotoxicity associated with expression of a transfected nuclear-targeted GFP-fusion protein containing 37-alanine repeats (GFP-A37), in a dose dependent manner. Ubiquilin coimmunoprecipitated more with GFP proteins containing a 37-polyalanine tract compared to either 7 (GFP-A7), or no alanine tract (GFP). Moreover, overexpression of ubiquilin suppressed the increased vulnerability of HeLa cell lines stably expressing the GFP-A37 fusion protein to oxidative stress-induced cell death compared to cell lines expressing GFP or GFP-A7 proteins. By contrast, siRNA knockdown of ubiquilin expression in the GFP-A37 cell line was associated with decreased cellular proliferation, and increases in GFP protein aggregates, nuclear fragmentation, and cell death. Our results suggest that boosting ubiquilin levels in cells might provide a universal and attractive strategy to prevent toxicity of proteins containing reiterative expansions of amino acids involved in many human diseases.

  1. Nrf2 mediates redox adaptation in NOX4-overexpressed non-small cell lung cancer cells.

    PubMed

    Wu, Qipeng; Yao, Bei; Li, Ning; Ma, Lei; Deng, Yanchao; Yang, Yang; Zeng, Cheng; Yang, Zhicheng; Liu, Bing

    2017-02-11

    The redox adaptation mechanisms in cancer cells are very complex and remain largely unclear. Our previous studies have confirmed that NADPH oxidase 4 (NOX4) is abundantly expressed in non-small cell lung cancer (NSCLC) and confers apoptosis resistance on NSCLC cells. However, the comprehensive mechanisms for NOX4-mediated oxidative resistance of cancer cells remain still undentified. The present study found that NOX4-derived H2O2 enhanced the nuclear factor erythroid 2-related factor 2 (Nrf2) stability via disruption of redox-dependent proteasomal degradation and stimulated its activity through activation of PI3K signaling. Specifically, the results showed that ectopic NOX4 expression did not induce apoptosis of A549 cells; however, inhibition of Nrf2 resulted in obvious apoptotic death of NOX4-overexpressed A549 cells, accompanied by a significant increase in H2O2 level and decrease in GSH content. Besides, inhibition of Nrf2 could suppress cell growth and efficiently reverse the enhancement effect of NOX4 on cell growth. The in vivo data confirmed that inhibition of Nrf2 could interfere apoptosis resistance in NOX4-overexpressed A549 tumors and led to cell growth inhibition. In conclusion, these results reveal that Nrf2 is critically involved in redox adaptation regulation in NOX4-overexpressed NSCLC cells. Therefore, NOX4 and Nrf2 may be promising combination targets against malignant progression of NSCLC.

  2. Immunohistochemical COX-2 overexpression correlates with HER-2/neu overexpression in invasive breast carcinomas: a pilot study.

    PubMed

    Çiriş, Ibrahim Metin; Bozkurt, Kemal Kürşat; Başpinar, Sirin; Kapucuoğlu, Fatma Nilgün

    2011-03-15

    Cyclooxygenase-2 (COX-2) is a prostaglandin synthase that catalyzes the synthesis of prostaglandin G2 and H2. It has been shown that COX-2 plays an important role in tumorigenesis of different tumor types and it is thought to take part in breast carcinogenesis. In the present study, we aimed to investigate the relationship of immunohistochemical COX-2 expression with clinicopathological parameters, including HER-2/neu overexpression in invasive breast carcinoma (IBC). Our study population comprised 10 normal breasts, 25 ductal carcinomas in situ (DCIS), and 51 invasive breast carcinomas. Immunohistochemical overexpressions of COX-2 and HER-2/neu were investigated in sections of formalin-fixed, paraffin-embedded blocks by 3 observers. In normal breast, DCIS and IBC, the COX-2 overexpression rate was 0%, 84%, and 58.8%, respectively. In IBC, COX-2 overexpression had a significant relationship with HER-2/neu overexpression (p=0.026) and a high histological grade (p=0.026). COX-2 expression in both DCIS (n=25) and IBC (n=51) was significantly higher than in normal breast tissue (p<0.0001). In addition, the COX-2 expression rate was significantly higher in DCIS than in IBC (p=0.042). Our results indicated that COX-2 overexpression correlates with aggressive phenotypic features, such as HER-2/neu overexpression and high histological grade in IBC. Increased expression of COX-2 in both DCIS and IBC in comparison to normal breast could indicate a role in breast carcinogenesis. COX-2 overexpression may provide a clinically useful biomarker for estimating tumor aggressiveness.

  3. Overexpressing of OsAMT1-3, a High Affinity Ammonium Transporter Gene, Modifies Rice Growth and Carbon-Nitrogen Metabolic Status

    PubMed Central

    Bao, Aili; Liang, Zhijun; Zhao, Zhuqing; Cai, Hongmei

    2015-01-01

    AMT1-3 encodes the high affinity NH4+ transporter in rice roots and is predominantly expressed under nitrogen starvation. In order to evaluate the effect of AMT1-3 gene on rice growth, nitrogen absorption and metabolism, we generated AMT1-3-overexpressing plants and analyzed the growth phenotype, yield, carbon and nitrogen metabolic status, and gene expression profiles. Although AMT1-3 mRNA accumulated in transgenic plants, these plants displayed significant decreases in growth when compared to the wild-type plants. The nitrogen uptake assay using a 15N tracer revealed poor nitrogen uptake ability in AMT1-3-overexpressing plants. We found significant decreases in AMT1-3-overexpressing plant leaf carbon and nitrogen content accompanied with a higher leaf C/N ratio. Significant changes in soluble proteins and carbohydrates were also observed in AMT1-3-overexpressing plants. In addition, metabolite profile analysis demonstrated significant changes in individual sugars, organic acids and free amino acids. Gene expression analysis revealed distinct expression patterns of genes that participate in carbon and nitrogen metabolism. Additionally, the correlation between the metabolites and gene expression patterns was consistent in AMT1-3-overexpressing plants under both low and high nitrogen growth conditions. Therefore, we hypothesized that the carbon and nitrogen metabolic imbalance caused by AMT1-3 overexpressing attributed to the poor growth and yield of transgenic plants. PMID:25915023

  4. Overexpressing of OsAMT1-3, a High Affinity Ammonium Transporter Gene, Modifies Rice Growth and Carbon-Nitrogen Metabolic Status.

    PubMed

    Bao, Aili; Liang, Zhijun; Zhao, Zhuqing; Cai, Hongmei

    2015-04-23

    AMT1-3 encodes the high affinity NH₄⁺ transporter in rice roots and is predominantly expressed under nitrogen starvation. In order to evaluate the effect of AMT1-3 gene on rice growth, nitrogen absorption and metabolism, we generated AMT1-3-overexpressing plants and analyzed the growth phenotype, yield, carbon and nitrogen metabolic status, and gene expression profiles. Although AMT1-3 mRNA accumulated in transgenic plants, these plants displayed significant decreases in growth when compared to the wild-type plants. The nitrogen uptake assay using a 15N tracer revealed poor nitrogen uptake ability in AMT1-3-overexpressing plants. We found significant decreases in AMT1-3-overexpressing plant leaf carbon and nitrogen content accompanied with a higher leaf C/N ratio. Significant changes in soluble proteins and carbohydrates were also observed in AMT1-3-overexpressing plants. In addition, metabolite profile analysis demonstrated significant changes in individual sugars, organic acids and free amino acids. Gene expression analysis revealed distinct expression patterns of genes that participate in carbon and nitrogen metabolism. Additionally, the correlation between the metabolites and gene expression patterns was consistent in AMT1-3-overexpressing plants under both low and high nitrogen growth conditions. Therefore, we hypothesized that the carbon and nitrogen metabolic imbalance caused by AMT1-3 overexpressing attributed to the poor growth and yield of transgenic plants.

  5. Impact of Heat Shock Protein A 12B Overexpression on Spinal Astrocyte Survival Against Oxygen-Glucose-Serum Deprivation/Restoration in Primary Cultured Astrocytes.

    PubMed

    Xia, Xun; Ma, Yuan; Yang, Li-Bin; Cheng, Jing-Ming; Yang, Tao; Fan, Ke-Xia; Li, Yun-Ming; Liu, En-Yu; Cheng, Lin; Huang, Hai-Dong; Gu, Jian-Wen; Kuang, Yong-Qin

    2016-08-01

    Heat shock protein A 12B (HSPA12B) is a newly discovered member of the heat shock protein 70 family. Preclinical evidence indicates that HSPA12B helps protect the brain from ischemic injury, although its specific function remains unclear. The aim of this study is to investigate whether HSPA12B overexpression can protect astrocytes from oxygen-glucose-serum deprivation/restoration (OGD/R) injury. We analyzed the effects of HSPA12B overexpression on spinal cord ischemia-reperfusion injury and spinal astrocyte survival. After ischemia-reperfusion injury, we found that HSPA12B overexpression decreased spinal cord water content and infarct volume. MTT assay showed that HSPA12B overexpression increased astrocyte survival after OGD/R treatment. Flow cytometry results showed a marked inhibition of OGD/R-induced astrocyte apoptosis. Western blot assay showed that HSPA12B overexpression significantly increased regulatory protein B-cell lymphocyte 2 (Bcl-2) levels, whereas it decreased expression of the Bax protein, which forms a heterodimer with Bcl-2. Measurements of the level of activation of caspase-3 by Caspase-Glo®3/7 Assay kit showed that HSPA12B overexpression markedly inhibited caspase-3 activation. Notably, we demonstrated that the effects of HSPA12B on spinal astrocyte survival depended on activation of the PI3K/Akt signal pathway. These findings indicate that HSPA12B protects against spinal cord ischemia-reperfusion injury and may represent a potential treatment target.

  6. Overexpression of mitochondrial uncoupling protein 1 (UCP1) induces a hypoxic response in Nicotiana tabacum leaves

    PubMed Central

    Barreto, Pedro; Okura, Vagner; Pena, Izabella A.; Maia, Renato; Maia, Ivan G.; Arruda, Paulo

    2016-01-01

    Mitochondrial uncoupling protein 1 (UCP1) decreases reactive oxygen species production under stress conditions by uncoupling the electrochemical gradient from ATP synthesis. This study combined transcriptome profiling with experimentally induced hypoxia to mechanistically dissect the impact of Arabidopsis thaliana UCP1 (AtUCP1) overexpression in tobacco. Transcriptomic analysis of AtUCP1-overexpressing (P07) and wild-type (WT) plants was carried out using RNA sequencing. Metabolite and carbohydrate profiling of hypoxia-treated plants was performed using 1H-nuclear magnetic resonance spectroscopy and high-performance anion-exchange chromatography with pulsed amperometric detection. The transcriptome of P07 plants revealed a broad induction of stress-responsive genes that were not strictly related to the mitochondrial antioxidant machinery, suggesting that overexpression of AtUCP1 imposes a strong stress response within the cell. In addition, transcripts that mapped into carbon fixation and energy expenditure pathways were broadly altered. It was found that metabolite markers of hypoxic adaptation, such as alanine and tricarboxylic acid intermediates, accumulated in P07 plants under control conditions at similar rates to WT plants under hypoxia. These findings indicate that constitutive overexpression of AtUCP1 induces a hypoxic response. The metabolites that accumulated in P07 plants are believed to be important in signalling for an improvement in carbon assimilation and induction of a hypoxic response. Under these conditions, mitochondrial ATP production is less necessary and fermentative glycolysis becomes critical to meet cell energy demands. In this scenario, the more flexible energy metabolism along with an intrinsically activated hypoxic response make these plants better adapted to face several biotic and abiotic stresses. PMID:26494730

  7. Cardiac-specific overexpression of thioredoxin 1 attenuates mitochondrial and myocardial dysfunction in septic mice.

    PubMed

    Sánchez-Villamil, Juana P; D'Annunzio, Verónica; Finocchietto, Paola; Holod, Silvia; Rebagliati, Inés; Pérez, Hernán; Peralta, Jorge G; Gelpi, Ricardo J; Poderoso, Juan J; Carreras, María C

    2016-12-01

    Sepsis-induced myocardial dysfunction is associated with increased oxidative stress and mitochondrial dysfunction. Current evidence suggests a protective role of thioredoxin-1 (Trx1) in the pathogenesis of cardiovascular diseases. However, it is unknown yet a putative role of Trx1 in sepsis-induced myocardial dysfunction, in which oxidative stress is an underlying cause. Transgenic male mice with Trx1 cardiac-specific overexpression (Trx1-Tg) and its wild-type control (wt) were subjected to cecal ligation and puncture or sham surgery. After 6, 18, and 24h, cardiac contractility, antioxidant enzymes, protein oxidation, and mitochondrial function were evaluated. Trx1 overexpression improved the average life expectancy (Trx1-Tg: 36, wt: 28h; p=0.0204). Sepsis induced a decrease in left ventricular developed pressure in both groups, while the contractile reserve, estimated as the response to β-adrenergic stimulus, was higher in Trx1-Tg in relation to wt, after 6h of the procedure. Trx1 overexpression attenuated complex I inhibition, protein carbonylation, and loss of membrane potential, and preserved Mn superoxide dismutase activity at 24h. Ultrastructural alterations in mitochondrial cristae were accompanied by reduced optic atrophy 1 (OPA1) fusion protein, and activation of dynamin-related protein 1 (Drp1) (fission protein) in wt mice at 24h, suggesting mitochondrial fusion/fission imbalance. PGC-1α gene expression showed a 2.5-fold increase in Trx1-Tg at 24h, suggesting mitochondrial biogenesis induction. Autophagy, demonstrated by electron microscopy and increased LC3-II/LC3-I ratio, was observed earlier in Trx1-Tg. In conclusion, Trx1 overexpression extends antioxidant protection, attenuates mitochondrial damage, and activates mitochondrial turnover (mitophagy and biogenesis), preserves contractile reserve and prolongs survival during sepsis.

  8. Hepatic Overexpression of Hemopexin Inhibits Inflammation and Vascular Stasis in Murine Models of Sickle Cell Disease

    PubMed Central

    Vercellotti, Gregory M; Zhang, Ping; Nguyen, Julia; Abdulla, Fuad; Chen, Chunsheng; Nguyen, Phong; Nowotny, Carlos; Steer, Clifford J; Smith, Ann; Belcher, John D

    2016-01-01

    Sickle cell disease (SCD) patients have low serum hemopexin (Hpx) levels due to chronic hemolysis. We hypothesized that in SCD mice, hepatic overexpression of hemopexin would scavenge the proximal mediator of vascular activation, heme, and inhibit inflammation and microvascular stasis. To examine the protective role of Hpx in SCD, we transplanted bone marrow from NY1DD SCD mice into Hpx-/- or Hpx+/+ C57BL/6 mice. Dorsal skin fold chambers were implanted 13 wks post-transplant, and microvascular stasis (% nonflowing venules) was evaluated in response to heme infusion. Hpx-/- sickle mice had significantly greater microvascular stasis in response to heme infusion than Hpx+/+ sickle mice (p < 0.05), demonstrating the protective effect of Hpx in SCD. We utilized Sleeping Beauty (SB) transposon-mediated gene transfer to overexpress wild-type rat Hpx (wt-Hpx) in NY1DD and Townes-SS SCD mice. Control SCD mice were treated with lactated Ringer’s solution (LRS) or a luciferase (Luc) plasmid. Plasma and hepatic Hpx were significantly increased compared with LRS and Luc controls. Microvascular stasis in response to heme infusion in NY1DD and Townes-SS mice overexpressing wt-Hpx had significantly less stasis than controls (p < 0.05). Wt-Hpx overexpression markedly increased hepatic nuclear Nrf2 expression, HO-1 activity and protein, and the heme-Hpx binding protein and scavenger receptor CD91/LRP1, and decreased NF-κB activation. Two missense (ms)-Hpx SB constructs that bound neither heme nor the Hpx receptor CD91/LRP1 did not prevent heme-induced stasis. In conclusion, increasing Hpx levels in transgenic sickle mice via gene transfer activates the Nrf2/HO-1 antioxidant axis and ameliorates inflammation and vasoocclusion. PMID:27451971

  9. Overexpression of AKR1C3 significantly enhances human prostate cancer cells resistance to radiation

    PubMed Central

    Gao, Xian-Shu; Li, Yi; Yu, Hongliang; Xiong, Wei; Yu, Hao; Wang, Wen; Li, Yingbo; Teng, Yingqi; Zhou, Demin

    2016-01-01

    Aldo-keto reductase 1C3(AKR1C3) is an enzyme involved in prostaglandins metabolism. Studies suggest that AKR1C3 has a pivotal role in the radioresistance of esophageal cancer and non-small-cell lung cancer, yet the role of AKR1C3 in prostate cancer cells radiation resistance has not yet been clarified. In our study, we established a stable overexpressing AKR1C3 cell line (AKR1C3-over) derived from the prostate cell line DU145 and its control cell line (Control). We conducted colony formation assay to determine the role of AKR1C3 in radioresistance and we used its chemical inhibitor to detect whether it can restored the sensitivity of the acquired tumor cells. Flow cytometry assay was carried out to detect IR-induced ROS accumulation. Elisa was adopted to dedect the concentration of PGF2α in the suspension of the cells after 6GY radiation. Western blotting was used to dedect the MAPK and PPAR γ. The results demonstrated that overexpression of AKR1C3 in prostate cancer can result in radioresistance and suppression of AKR1C3 via its chemical inhibitor indocin restored the sensitivity of the acquired tumor cells. According to the flow cytometry assay, ROS was decreased by 80% in DU145-over cells. Also overexpression of AKR1C3 could result in the accumulation of prostaglandin F2α (PGF2α), which can not only promote prostate cancer cell 's proliferation but also could enhance prostate cancer cells resistance to radiation and activated the MAPK pathway and inhibited the expression of PPARγ. In conclusion, we found that overexpression of AKR1C3 significantly enhanced human prostate cancer cells resistance to radiation through activation of MAPK pathway. PMID:27385003

  10. Overexpression of Mycothiol Disulfide Reductase Enhances Corynebacterium glutamicum Robustness by Modulating Cellular Redox Homeostasis and Antioxidant Proteins under Oxidative Stress

    PubMed Central

    Si, Meiru; Zhao, Chao; Zhang, Bing; Wei, Dawei; Chen, Keqi; Yang, Xu; Xiao, He; Shen, Xihui

    2016-01-01

    Mycothiol (MSH) is the dominant low-molecular-weight thiol (LMWT) unique to high-(G+C)-content Gram-positive Actinobacteria, such as Corynebacterium glutamicum, and is oxidised into its disulfide form mycothiol disulfide (MSSM) under oxidative conditions. Mycothiol disulfide reductase (Mtr), an NADPH-dependent enzyme, reduces MSSM to MSH, thus maintaining intracellular redox homeostasis. In this study, a recombinant plasmid was constructed to overexpress Mtr in C. glutamicum using the expression vector pXMJ19-His6. Mtr-overexpressing C. glutamicum cells showed increased tolerance to ROS induced by oxidants, bactericidal antibiotics, alkylating agents, and heavy metals. The physiological roles of Mtr in resistance to oxidative stresses were corroborated by decreased ROS levels, reduced carbonylation damage, decreased loss of reduced protein thiols, and a massive increase in the levels of reversible protein thiols in Mtr-overexpressing cells exposed to stressful conditions. Moreover, overexpression of Mtr caused a marked increase in the ratio of reduced to oxidised mycothiol (MSH:MSSM), and significantly enhanced the activities of a variety of antioxidant enzymes, including mycothiol peroxidase (MPx), mycoredoxin 1 (Mrx1), thioredoxin 1 (Trx1), and methionine sulfoxide reductase A (MsrA). Taken together, these results indicate that the Mtr protein functions in C. glutamicum by protecting cells against oxidative stress. PMID:27383057

  11. In vivo overexpression of tumstatin domains by tumor cells inhibits their invasive properties in a mouse melanoma model.

    PubMed

    Pasco, Sylvie; Ramont, Laurent; Venteo, Lydie; Pluot, Michel; Maquart, François-Xavier; Monboisse, Jean-Claude

    2004-12-10

    Our previous studies demonstrated that a synthetic peptide encompassing residues 185-203 of the noncollagenous (NC1) domain of the alpha3 chain of type IV collagen, named tumstatin, inhibits in vitro melanoma cell proliferation and migration. In the present study, B16F1 melanoma cells were stably transfected to overexpress the complete tumstatin domain (Tum 1-232) or its C-terminal part, encompassing residues 185-203 (Tum 183-232). Tumstatin domain overexpression inhibited B16F1 in vitro cell proliferation, anchorage-independent growth, and invasive properties. For studying the in vivo effect of overexpression, representative clones were subcutaneously injected into the left side of C57BL6 mice. In vivo tumor growth was decreased by -60% and -56%, respectively, with B16F1 cells overexpressing Tum 1-232 or Tum 183-232 compared to control cells. This inhibitory effect was associated with a decrease of in vivo cyclin D1 expression. We also demonstrated that the overexpression of Tum 1-232 or Tum 183-232 induced an in vivo down-regulation of proteolytic cascades involving matrix metalloproteinases (MMPs), especially the production or activation of MMP-2, MMP-9, MMP-13, as well as MMP-14. The plasminogen activation system was also altered in tumors with a decrease of urokinase-type plasminogen activator (u-PA) and tissue-type plasminogen activator (t-PA) and a strong increase of plasminogen activator inhibitor-1 (PAI-1). Collectively, our results demonstrate that tumstatin or its C-terminal antitumor fragment, Tum 183-232, inhibits in vivo melanoma progression by triggering an intracellular transduction pathway, which involves a cyclic AMP (cAMP)-dependent mechanism.

  12. Functional Characterization of Fission Yeast Transcription Factors by Overexpression Analysis

    PubMed Central

    Vachon, Lianne; Wood, Justin; Kwon, Eun-Joo Gina; Laderoute, Amy; Chatfield-Reed, Kate; Karagiannis, Jim; Chua, Gordon

    2013-01-01

    In Schizosaccharomyces pombe, over 90% of transcription factor genes are nonessential. Moreover, the majority do not exhibit significant growth defects under optimal conditions when deleted, complicating their functional characterization and target gene identification. Here, we systematically overexpressed 99 transcription factor genes with the nmt1 promoter and found that 64 transcription factor genes exhibited reduced fitness when ectopically expressed. Cell cycle defects were also often observed. We further investigated three uncharacterized transcription factor genes (toe1+–toe3+) that displayed cell elongation when overexpressed. Ectopic expression of toe1+ resulted in a G1 delay while toe2+ and toe3+ overexpression produced an accumulation of septated cells with abnormalities in septum formation and nuclear segregation, respectively. Transcriptome profiling and ChIP-chip analysis of the transcription factor overexpression strains indicated that Toe1 activates target genes of the pyrimidine-salvage pathway, while Toe3 regulates target genes involved in polyamine synthesis. We also found that ectopic expression of the putative target genes SPBC3H7.05c, and dad5+ and SPAC11D3.06 could recapitulate the cell cycle phenotypes of toe2+ and toe3+ overexpression, respectively. Furthermore, single deletions of the putative target genes urg2+ and SPAC1399.04c, and SPBC3H7.05c, SPACUNK4.15, and rds1+, could suppress the phenotypes of toe1+ and toe2+ overexpression, respectively. This study implicates new transcription factors and metabolism genes in cell cycle regulation and demonstrates the potential of systematic overexpression analysis to elucidate the function and target genes of transcription factors in S. pombe. PMID:23695302

  13. Physiological Response to Membrane Protein Overexpression in E. coli*

    PubMed Central

    Gubellini, Francesca; Verdon, Grégory; Karpowich, Nathan K.; Luff, Jon D.; Boël, Grégory; Gauthier, Nils; Handelman, Samuel K.; Ades, Sarah E.; Hunt, John F.

    2011-01-01

    Overexpression represents a principal bottleneck in structural and functional studies of integral membrane proteins (IMPs). Although E. coli remains the leading organism for convenient and economical protein overexpression, many IMPs exhibit toxicity on induction in this host and give low yields of properly folded protein. Different mechanisms related to membrane biogenesis and IMP folding have been proposed to contribute to these problems, but there is limited understanding of the physical and physiological constraints on IMP overexpression and folding in vivo. Therefore, we used a variety of genetic, genomic, and microscopy techniques to characterize the physiological responses of Escherichia coli MG1655 cells to overexpression of a set of soluble proteins and IMPs, including constructs exhibiting different levels of toxicity and producing different levels of properly folded versus misfolded product on induction. Genetic marker studies coupled with transcriptomic results indicate only minor perturbations in many of the physiological systems implicated in previous studies of IMP biogenesis. Overexpression of either IMPs or soluble proteins tends to block execution of the standard stationary-phase transcriptional program, although these effects are consistently stronger for the IMPs included in our study. However, these perturbations are not an impediment to successful protein overexpression. We present evidence that, at least for the target proteins included in our study, there is no inherent obstacle to IMP overexpression in E. coli at moderate levels suitable for structural studies and that the biochemical and conformational properties of the proteins themselves are the major obstacles to success. Toxicity associated with target protein activity produces selective pressure leading to preferential growth of cells harboring expression-reducing and inactivating mutations, which can produce chemical heterogeneity in the target protein population, potentially

  14. Overexpression of the truncated version of ILV2 enhances glycerol production in Saccharomyces cerevisiae.

    PubMed

    Murashchenko, Lidiia; Abbas, Charles; Dmytruk, Kostyantyn; Sibirny, Andriy

    2016-08-01

    Acetolactate synthase is a mitochondrial enzyme that catalyses the conversion of two pyruvate molecules to an acetolactate molecule with release of carbon dioxide. The overexpression of the truncated version of the corresponding gene, ILV2, that codes for presumably cytosolic acetolactate synthase in the yeast Saccharomyces cerevisiae, led to a decrease in intracellular pyruvate concentration. This recombinant strain was also characterized by a four-fold increase in glycerol production, with a concomitant 1.8-fold reduction in ethanol production, when compared to that of the wild-type strain under anaerobic conditions in a glucose alcoholic fermentation. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Podocyte-specific overexpression of human angiotensin-converting enzyme 2 attenuates diabetic nephropathy in mice.

    PubMed

    Nadarajah, Renisha; Milagres, Rosangela; Dilauro, Marc; Gutsol, Alex; Xiao, Fengxia; Zimpelmann, Joseph; Kennedy, Chris; Wysocki, Jan; Batlle, Daniel; Burns, Kevin D

    2012-08-01

    Angiotensin-converting enzyme 2 (ACE2) degrades angiotensin II to angiotensin-(1-7) and is expressed in podocytes. Here we overexpressed ACE2 in podocytes in experimental diabetic nephropathy using transgenic methods where a nephrin promoter drove the expression of human ACE2. Glomeruli from these mice had significantly increased mRNA, protein, and activity of ACE2 compared to wild-type mice. Male mice were treated with streptozotocin to induce diabetes. After 16 weeks, there was no significant difference in plasma glucose levels between wild-type and transgenic diabetic mice. Urinary albumin was significantly increased in wild-type diabetic mice at 4 weeks, whereas albuminuria in transgenic diabetic mice did not differ from wild-type nondiabetic mice. However, this effect was transient and by 16 weeks both transgenic and nontransgenic diabetic mice had similar rates of proteinuria. Compared to wild-type diabetic mice, transgenic diabetic mice had an attenuated increase in mesangial area, decreased glomerular area, and a blunted decrease in nephrin expression. Podocyte numbers decreased in wild-type diabetic mice at 16 weeks, but were unaffected in transgenic diabetic mice. At 8 weeks, kidney cortical expression of transforming growth factor-β1 was significantly inhibited in transgenic diabetic mice as compared to wild-type diabetic mice. Thus, the podocyte-specific overexpression of human ACE2 transiently attenuates the development of diabetic nephropathy.

  16. OVEREXPRESSION OF ANTIOXIDANT ENZYMES UPREGULATES ARYL HYDROCARBON RECEPTOR EXPRESSION VIA INCREASED SP1 DNA-BINDING ACTIVITY

    PubMed Central

    Tang, Tian; Lin, Xinghua; Yang, Hong; Zhou, LiChun; Wang, Zefen; Shan, Guang; Guo, ZhongMao

    2010-01-01

    We previously reported up-regulation of aryl hydrocarbon receptor (AhR) expression as a mechanism by which overexpression of Cu/Zn-superoxide dismutase (SOD) and/or catalase accelerates benzo(a)pyrene (BaP) detoxification in mouse aorta endothelial cells (MAECs). The objective of this study was to investigate the regulatory role of specificity protein-1 (Sp1) in AhR expression in MAECs that overexpress Cu/Zn-SOD and/or catalase. Our data demonstrated comparable levels of nuclear Sp1 protein in the transgenic and wild-type MAECs; however, binding of Sp1 protein to the AhR promoter region was more than 2-fold higher in MAECs overexpressing Cu/Zn-SOD and/or catalase than in wild-type cells. Inhibition of Sp1 binding to the AhR promoter by mithramycin A reduced AhR expression and eliminated the differences between wild-type MAECs, and three lines of transgenic cells. Functional promoter analysis indicated that AhR promoter activity was significantly higher in MAECs overexpressing catalase than in wild-type cells. Mutation of an AhR promoter Sp1-binding site or addition of hydrogen peroxide to the culture medium reduced AhR promoter activity, and decreased the differences between wild-type MAECs and transgenic cells overexpressing catalase. These results suggest that increased Sp1 binding to the AhR promoter region is an underlying mechanism for up-regulation of AhR expression in MAECs that overexpress Cu/Zn-SOD and/or catalase. PMID:20478378

  17. Phytochrome a overexpression inhibits hypocotyl elongation in transgenic Arabidopsis.

    PubMed Central

    Boylan, M T; Quail, P H

    1991-01-01

    To develop a model plant system for efficient functional analysis of mutagenized phytochrome polypeptides, we have overexpressed oat phytochrome A in Arabidopsis thaliana. R1 seedlings from selfed primary transformants segregated for hypocotyl length, when grown in the light, with a ratio of 3 short to 1 of normal length. When homozygous lines were established from these two size classes, accumulation of immunologically detectable oat phytochrome cosegregated with the short-hypocotyl trait. The short-hypocotyl seedlings contained substantially more spectrally active phytochrome than their normal-sized siblings, indicating that the introduced oat protein was photoreversible. The short-hypocotyl phenotype was strictly light-dependent, since no morphological effects of phytochrome overexpression could be seen in etiolated seedlings. Overexpression of only the chromophore-bearing, N-terminal domain of phytochrome A did not induce short hypocotyls in light-grown seedlings, indicating that additional sequence is essential for photoreceptor function. Similarly, overexpression of a full-length sequence mutated at the chromophore attachment site had no effect on phenotype, indicating the absence of any detectable dominant negative effect of the chromophoreless polypeptide on the activity of endogenous Arabidopsis phytochrome. Thus, the readily scorable short-hypocotyl phenotype of Arabidopsis seedlings overexpressing phytochrome A provides a simple visual assay for rapidly monitoring the biological activity of mutagenized phytochrome A polypeptides. Images PMID:11607244

  18. Targeted overexpression of amelotin disrupts the microstructure of dental enamel.

    PubMed

    Lacruz, Rodrigo S; Nakayama, Yohei; Holcroft, James; Nguyen, Van; Somogyi-Ganss, Eszter; Snead, Malcolm L; White, Shane N; Paine, Michael L; Ganss, Bernhard

    2012-01-01

    We have previously identified amelotin (AMTN) as a novel protein expressed predominantly during the late stages of dental enamel formation, but its role during amelogenesis remains to be determined. In this study we generated transgenic mice that produce AMTN under the amelogenin (Amel) gene promoter to study the effect of AMTN overexpression on enamel formation in vivo. The specific overexpression of AMTN in secretory stage ameloblasts was confirmed by Western blot and immunohistochemistry. The gross histological appearance of ameloblasts or supporting cellular structures as well as the expression of the enamel proteins amelogenin (AMEL) and ameloblastin (AMBN) was not altered by AMTN overexpression, suggesting that protein production, processing and secretion occurred normally in transgenic mice. The expression of Odontogenic, Ameloblast-Associated (ODAM) was slightly increased in secretory stage ameloblasts of transgenic animals. The enamel in AMTN-overexpressing mice was much thinner and displayed a highly irregular surface structure compared to wild type littermates. Teeth of transgenic animals underwent rapid attrition due to the brittleness of the enamel layer. The microstructure of enamel, normally a highly ordered arrangement of hydroxyapatite crystals, was completely disorganized. Tomes' process, the hallmark of secretory stage ameloblasts, did not form in transgenic mice. Collectively our data demonstrate that the overexpression of amelotin has a profound effect on enamel structure by disrupting the formation of Tomes' process and the orderly growth of enamel prisms.

  19. Clinical significance of Her2/neu overexpression in urothelial carcinomas.

    PubMed

    Alexa, Aurora; Baderca, Flavia; Zăhoi, Delia Elena; Lighezan, Rodica; Izvernariu, D; Raica, M

    2010-01-01

    HER2/neu is a defective transmembrane tyrosine kinase receptor, homologue to the epidermal growth factor receptor, showing overexpression in a large variety of tumor cells. There are no studies published so far regarding HER2/neu overexpression and sensitivity of the urothelial tumors of the urinary bladder to anti-HER2/neu therapy. There are a relatively high number of articles in the literature referring to HER2/neu expression in urothelial tumors of the urinary bladder, but only two of them had investigated HER2/neu expression in patients with urothelial tumors of the upper urinary tract. We have studied HER2/neu overexpression in 59 patients with urothelial carcinomas of the urinary tract by immunohistochemistry. Normal urothelium and the elements of the neighboring renal parenchyma were negative. Out of the 59 cases of urothelial carcinomas, 38 were negative (0 and +1) and 21 were positive: eight were moderately and 13 were intensely positive (+2 and +3). The percentage of positive cases was 35.59%. The negative cases were mostly well-differentiated, G1 tumors, no matter the T-tumor stage. Most of the cases were diagnosed as papillary or, rarely, infiltrative. There is no correlation between HER2/neu overexpression and the tumor stage. The same was true for the lymph node status. The expression intensity, however, was significantly correlated with the differentiation grade. Overexpression was most likely present in tumors with high differentiation grade (p<0.05).

  20. Over-expression of pcvA involved in vesicle-vacuolar fusion affects the conidiation and penicillin production in Penicillium chrysogenum.

    PubMed

    Xu, Xinxin; Yang, Jing; An, Yang; Pan, Yuanyuan; Liu, Gang

    2012-03-01

    Rab GTPase is required for vesicle-vacuolar fusion during the vacuolar biogenesis in fungi. Rab GTPase-encoding gene, pcvA, was cloned from Penicillium chrysogenum: it contained five introns and its predicted protein contained the conserved Rab GTPase domain involved in GTP-binding and hydrolysis. Over-expression of pcvA significantly stimulated the vesicle-vacuolar fusion but repressed the conidiation and decreased conidial tolerance against thermal stress. Penicillin production was decreased in the pcvA over-expressed strain suggesting that pcvA is involved in vesicle-vacuolar fusion participates in the penicillin biosynthesis in P. chrysogenum.

  1. Solar-wind velocity decreases

    NASA Astrophysics Data System (ADS)

    Geranios, A.

    1980-08-01

    A model is developed to account for the solar wind electron and proton temperature decreases observed following the passage of an interplanetary shock wave and during the velocity decrease of a solar wind stream. The equations of mass and energy conservation are solved for a fully ionized, electrically neutral plasma expanding radially and spherically symmetrically, taking into account the heat flux from the solor corona to the plasma along the open magnetic field lines, and the electron thermal conductivity. An analytical relationship between the temperature and the velocity of the solar wind plasma is obtained which is found to be in agreement with experimental measurements made by the Vela 5 and 6 and IMP 6 satellites from August 1969-May 1974. It is thus proposed that the observed low plasma temperatures are due to the fact that the temperature decrease of the expanding plasma exceeds the heat gain due to thermal conduction from the corona.

  2. Combinatorial Method for Overexpression of Membrane Proteins in Escherichia coli*

    PubMed Central

    Leviatan, Shani; Sawada, Keisuke; Moriyama, Yoshinori; Nelson, Nathan

    2010-01-01

    Membrane proteins constitute 20–30% of all proteins encoded by the genome of various organisms. Large amounts of purified proteins are required for activity and crystallization attempts. Thus, there is an unmet need for a heterologous membrane protein overexpression system for purification, crystallization, and activity determination. We developed a combinatorial method for overexpressing and purifying membrane proteins using Escherichia coli. This method utilizes short hydrophilic bacterial proteins, YaiN and YbeL, fused to the ends of the membrane proteins to serve as facilitating factors for expression and purification. Fourteen prokaryotic and mammalian membrane proteins were expressed using this system. Moderate to high expression was obtained for most proteins, and detergent solubilization combined with a short purification process produced stable, monodispersed membrane proteins. Five of the mammalian membrane proteins, overexpressed using our system, were reconstituted into liposomes and exhibited transport activity comparable with the native transporters. PMID:20525689

  3. Combinatorial method for overexpression of membrane proteins in Escherichia coli.

    PubMed

    Leviatan, Shani; Sawada, Keisuke; Moriyama, Yoshinori; Nelson, Nathan

    2010-07-30

    Membrane proteins constitute 20-30% of all proteins encoded by the genome of various organisms. Large amounts of purified proteins are required for activity and crystallization attempts. Thus, there is an unmet need for a heterologous membrane protein overexpression system for purification, crystallization, and activity determination. We developed a combinatorial method for overexpressing and purifying membrane proteins using Escherichia coli. This method utilizes short hydrophilic bacterial proteins, YaiN and YbeL, fused to the ends of the membrane proteins to serve as facilitating factors for expression and purification. Fourteen prokaryotic and mammalian membrane proteins were expressed using this system. Moderate to high expression was obtained for most proteins, and detergent solubilization combined with a short purification process produced stable, monodispersed membrane proteins. Five of the mammalian membrane proteins, overexpressed using our system, were reconstituted into liposomes and exhibited transport activity comparable with the native transporters.

  4. CD147 overexpression promotes tumorigenicity in Chinese hamster ovary cells.

    PubMed

    Yong, Yu-Le; Liao, Cheng-Gong; Wei, Ding; Chen, Zhi-Nan; Bian, Huijie

    2016-04-01

    CD147 overexpresses in many epithelium-originated tumors and plays an important role in tumor migration and invasion. Most studies aim at the role of CD147 in tumor progression using tumor cell models. However, the influence of abnormal overexpression of CD147 on neoplastic transformation of normal cells is unknown. Here, the role of CD147 in malignant phenotype transformation in CHO cells was investigated. Three CHO cell lines that stably overexpressed CD147 (CHO-CD147), EGFP-CD147 (CHO-EGFP-CD147), and EGFP (CHO-EGFP) were generated by transfection of plasmids containing human CD147, EGFP-human CD147, and EGFP genes into CHO cells. Cell migration and invasion were detected by wound healing and transwell matrix penetration assay. Trypan blue exclusion, MTT, cell cycle analysis, and BrdU cell proliferation assay were used to detect cell viability and cell proliferation. Annexin V-FITC analysis was performed to detect apoptosis. We found that CD147 overexpression promoted the migration and invasion of CHO cells. CD147 accelerated the G1 to S phase transition and enhanced the CHO cell proliferation. Overexpression of CD147 inhibited both early- and late-stages of apoptosis of CHO-CD147 cells, which is caused by serum deprivation. CHO-EGFP-CD147 cells showed an increased anchorage-independent growth compared with CHO-EGFP cells as detected by soft-agar colony formation assay. The tumors formed by CHO-CD147 cells in nude mice were larger and coupled with higher expression of proliferating cell nuclear antigen and Ki-67 than that of CHO cells. In conclusion, human CD147 overexpression induces malignant phenotype in CHO cells.

  5. Muscle-specific growth hormone receptor (GHR) overexpression induces hyperplasia but not hypertrophy in transgenic zebrafish.

    PubMed

    Figueiredo, Marcio Azevedo; Mareco, Edson A; Silva, Maeli Dal Pai; Marins, Luis Fernando

    2012-06-01

    Even though growth hormone (GH) transgenesis has demonstrated potential for improved growth of commercially important species, the hormone excess may result in undesired collateral effects. In this context, the aim of this work was to develop a new model of transgenic zebrafish (Danio rerio) characterized by a muscle-specific overexpression of the GH receptor (GHR) gene, evaluating the effect of transgenesis on growth, muscle structure and expression of growth-related genes. In on line of transgenic zebrafish overexpressing GHR in skeletal muscle, no significant difference in total weight in comparison to non-transgenics was observed. This can be explained by a significant reduction in expression of somatotrophic axis-related genes, in special insulin-like growth factor I (IGF-I). In the same sense, a significant increase in expression of the suppressors of cytokine signaling 1 and 3 (SOCS) was encountered in transgenics. Surprisingly, expression of genes coding for the main myogenic regulatory factors (MRFs) was higher in transgenic than non-transgenic zebrafish. Genes coding for muscle proteins did not follow the MRFs profile, showing a significant decrease in their expression. These results were corroborated by the histological analysis, where a hyperplasic muscle growth was observed in transgenics. In conclusion, our results demonstrated that GHR overexpression does not induce hypertrophic muscle growth in transgenic zebrafish probably because of SOCS impairment of the GHR/IGF-I pathway, culminating in IGF-I and muscle proteins decrease. Therefore, it seems that hypertrophy and hyperplasia follow two different routes for entire muscle growth, both of them triggered by GHR activation, but regulated by different mechanisms.

  6. SET overexpression in HEK293 cells regulates mitochondrial uncoupling proteins levels within a mitochondrial fission/reduced autophagic flux scenario

    SciTech Connect

    Almeida, Luciana O.; Goto, Renata N.; Neto, Marinaldo P.C.; Sousa, Lucas O.; Curti, Carlos; Leopoldino, Andréia M.

    2015-03-06

    We hypothesized that SET, a protein accumulated in some cancer types and Alzheimer disease, is involved in cell death through mitochondrial mechanisms. We addressed the mRNA and protein levels of the mitochondrial uncoupling proteins UCP1, UCP2 and UCP3 (S and L isoforms) by quantitative real-time PCR and immunofluorescence as well as other mitochondrial involvements, in HEK293 cells overexpressing the SET protein (HEK293/SET), either in the presence or absence of oxidative stress induced by the pro-oxidant t-butyl hydroperoxide (t-BHP). SET overexpression in HEK293 cells decreased UCP1 and increased UCP2 and UCP3 (S/L) mRNA and protein levels, whilst also preventing lipid peroxidation and decreasing the content of cellular ATP. SET overexpression also (i) decreased the area of mitochondria and increased the number of organelles and lysosomes, (ii) increased mitochondrial fission, as demonstrated by increased FIS1 mRNA and FIS-1 protein levels, an apparent accumulation of DRP-1 protein, and an increase in the VDAC protein level, and (iii) reduced autophagic flux, as demonstrated by a decrease in LC3B lipidation (LC3B-II) in the presence of chloroquine. Therefore, SET overexpression in HEK293 cells promotes mitochondrial fission and reduces autophagic flux in apparent association with up-regulation of UCP2 and UCP3; this implies a potential involvement in cellular processes that are deregulated such as in Alzheimer's disease and cancer. - Highlights: • SET, UCPs and autophagy prevention are correlated. • SET action has mitochondrial involvement. • UCP2/3 may reduce ROS and prevent autophagy. • SET protects cell from ROS via UCP2/3.

  7. DWARF overexpression induces alteration in phytohormone homeostasis, development, architecture and carotenoid accumulation in tomato.

    PubMed

    Li, Xiao-Jing; Chen, Xiao-Juan; Guo, Xie; Yin, Ling-Ling; Ahammed, Golam Jalal; Xu, Chang-Jie; Chen, Kun-Song; Liu, Chao-Chao; Xia, Xiao-Jian; Shi, Kai; Zhou, Jie; Zhou, Yan-Hong; Yu, Jing-Quan

    2016-03-01

    Brassinosteroids (BRs) play a critical role in plant growth, development and stress response; however, genetic evidence for the BR-mediated integrated regulation of plant growth still remains elusive in crop species. Here, we clarified the function of DWARF (DWF), the key BR biosynthetic gene in tomato, in the regulation of plant growth and architecture, phytohormone homeostasis and fruit development by comparing wild type, d^(im), a weak allele mutant impaired in DWF, and DWF-overexpressing plants in tomato. Results showed that increases in DWF transcripts and endogenous BR level resulted in improved germination, lateral root development, CO2 assimilation and eventually plant growth as characterized by slender and compact plant architecture. However, an increase in DWF transcript down-regulated the accumulation of gibberellin, which was associated with decreases in leaf size and thickness. BRs positively regulated lateral bud outgrowth, which was associated with decreased transcript of Aux/IAA3, and the ethylene-dependent petiole bending and fruit ripening. Notably, overexpression of DWF did not significantly alter fruit yield per plant; however, increases by 57.4% and 95.3% might be estimated in fruit yield per square metre in two transgenic lines due to their compact architecture. Significantly, BR level was positively related with the carotenoid accumulation in the fruits. Taken together, our results demonstrate that BRs are actively involved in the regulation of multiple developmental processes relating to agronomical important traits.

  8. Overexpression of Cystathionine γ-Lyase Suppresses Detrimental Effects of Spinocerebellar Ataxia Type 3

    PubMed Central

    Snijder, Pauline M; Baratashvili, Madina; Grzeschik, Nicola A; Leuvenink, Henri G D; Kuijpers, Lucas; Huitema, Sippie; Schaap, Onno; Giepmans, Ben N G; Kuipers, Jeroen; Miljkovic, Jan Lj; Mitrovic, Aleksandra; Bos, Eelke M; Szabó, Csaba; Kampinga, Harm H; Dijkers, Pascale F; den Dunnen, Wilfred F A; Filipovic, Milos R; van Goor, Harry; Sibon, Ody C M

    2015-01-01

    Spinocerebellar ataxia type 3 (SCA3) is a polyglutamine (polyQ) disorder caused by a CAG repeat expansion in the ataxin-3 (ATXN3) gene resulting in toxic protein aggregation. Inflammation and oxidative stress are considered secondary factors contributing to the progression of this neurodegenerative disease. There is no cure that halts or reverses the progressive neurodegeneration of SCA3. Here we show that overexpression of cystathionine γ-lyase, a central enzyme in cysteine metabolism, is protective in a Drosophila model for SCA3. SCA3 flies show eye degeneration, increased oxidative stress, insoluble protein aggregates, reduced levels of protein persulfidation and increased activation of the innate immune response. Overexpression of Drosophila cystathionine γ-lyase restores protein persulfidation, decreases oxidative stress, dampens the immune response and improves SCA3-associated tissue degeneration. Levels of insoluble protein aggregates are not altered; therefore, the data implicate a modifying role of cystathionine γ-lyase in ameliorating the downstream consequence of protein aggregation leading to protection against SCA3-induced tissue degeneration. The cystathionine γ-lyase expression is decreased in affected brain tissue of SCA3 patients, suggesting that enhancers of cystathionine γ-lyase expression or activity are attractive candidates for future therapies. PMID:26467707

  9. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion.

    PubMed

    Takabe, Piia; Bart, Geneviève; Ropponen, Antti; Rilla, Kirsi; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna

    2015-09-10

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells.

  10. Overexpression of {alpha}-catenin increases osteoblastic differentiation in mouse mesenchymal C3H10T1/2 cells

    SciTech Connect

    Kim, Dohee; Yang, Jae-Yeon; Shin, Chan Soo

    2009-05-15

    {alpha}- and {beta}-Catenin link cadherins to the actin-based cytoskeleton at adherens junctions and regulate cell-cell adhesion. Although roles of cadherins and canonical Wnt-/{beta}-catenin-signaling in osteoblastic differentiation have been extensively studied, the role of {alpha}-catenin is not known. Murine embryonic mesenchymal stem cells, C3H10T1/2 cells, were transduced with retrovirus encoding {alpha}-catenin (MSCV-{alpha}-catenin-HA-GFP). In the presence of Wnt-3A conditioned medium or osteogenic medium ({beta}-glycerol phosphate and ascorbic acid), cells overexpressing {alpha}-catenin showed enhanced osteoblastic differentiation as measured by alkaline phosphatase (ALP) staining and ALP activity assay compared to cells transduced with empty virus (MSCV-GFP). In addition, mRNA expression of osteocalcin and Runx2 was significantly increased compared to control. Cell aggregation assay revealed that {alpha}-catenin overexpression has significantly increased cell-cell aggregation. However, cellular {beta}-catenin levels (total, cytoplasmic-nuclear ratio) and {beta}-catenin-TCF/LEF transcriptional activity did not change by overexpression of {alpha}-catenin. Knock-down of {alpha}-catenin using siRNA decreased osteoblastic differentiation as measured by ALP assay. These results suggest that {alpha}-catenin overexpression increases osteoblastic differentiation by increasing cell-cell adhesion rather than Wnt-/{beta}-catenin-signaling.

  11. Passive transfer of interferon-γ over-expressing macrophages enhances resistance of SCID mice to Mycobacterium tuberculosis infection.

    PubMed

    Pasula, Rajamouli; Martin, William J; Kesavalu, Banu Rekha; Abdalla, Maher Y; Britigan, Bradley E

    2017-02-23

    Infection with Mycobacterium tuberculosis (M.tb) is associated with increased deaths worldwide. Alveolar macrophages (AMs) play a critical role in host defense against infection with this pathogen. In this work we tested the hypothesis that passive transfer of normal AMs, IFN-γ activated AMs, or macrophages transduced to over-express IFN-γ into the lungs of immunosuppressed SCID mice, where resident macrophages are present but not functional, would enhance alveolar immunity and increase clearance of pulmonary M.tb infection. Accordingly, SCID mice were infected with M.tb intratracheally (I.T.), following which they received either control macrophages or macrophages overexpressing IFN-γ (J774A.1). The extent of M.tb infection was assessed at 30days post-M.tb infection. SCID mice administered macrophages over-expressing IFN-γ showed a significant decrease in M.tb burden and increased survival compared to J774A.1 control macrophages or untreated mice. This was further associated with a significant increase in IFN-γ and TNF-α mRNA and protein expression, as well as NF-κB (p65) mRNA, in the lungs. The increase in IFN-γ and TNF-α lung levels was inversely proportional to the number of M.tb organisms recovered. These results provide evidence that administration of macrophages overexpressing IFN-γ inhibit M.tb growth in vivo and may enhance host defense against M.tb infection.

  12. MiRNA-34a overexpression inhibits multiple myeloma cancer stem cell growth in mice by suppressing TGIF2

    PubMed Central

    Wu, Songyan; He, Xiangfeng; Li, Miao; Shi, Fangfang; Wu, Di; Pan, Meng; Guo, Mei; Zhang, Rong; Luo, Shouhua; Gu, Ning; Dou, Jun

    2016-01-01

    Hematological malignancy originated from B-cell line, multiple myeloma (MM), is a kind of plasma cells in bone marrow hyperplasia and cause of osteoclast-mediated skeletal destruction disease. MiR-34a plays an important epigenetic regulating role in malignant tumors and presents a therapeutic potential. In this study, we investigated the effects of overexpression of miR-34a in MM cancer stem cells (CSCs) on tumor growth and bone lesions. Here we showed that miR-34a overexpression inhibited cell proliferation, colony formation, and increased CSC apoptosis in vitro. The apparent epigenetic modulation induced by miR-34a overexpression was found no only in MM RPMI8226 cells but also in CSC xenograft MM. Both bioinformatics prediction and dual-luciferase reporter assay showed that transforming growth interaction factor 2 (TGIF2) was sufficient to confer miR-34a regulation. The results of qRT-PCR and Western blot assays demonstrated that the expression of TGIF2 was significant decreased in tumor tissues from NOD/SCID mice injected with miR-34a-MM CSCs. We conclude that miR-34a overexpression in MM CSCs significantly suppressed the tumorigenicity and lytic bone lesions in mouse model by inducing apoptosis and inhibiting TGIF2 expression. PMID:28078014

  13. RAC1b overexpression stimulates proliferation and NF-kB-mediated anti-apoptotic signaling in thyroid cancer cells.

    PubMed

    Faria, Márcia; Matos, Paulo; Pereira, Teresa; Cabrera, Rafael; Cardoso, Bruno A; Bugalho, Maria João; Silva, Ana Luísa

    2017-01-01

    Overexpression of tumor-associated RAC1b has been recently highlighted as one of the most promising targets for therapeutic intervention in colon, breast, lung and pancreatic cancer. RAC1b is a hyperactive variant of the small GTPase RAC1 and has been recently shown to be overexpressed in a subset of papillary thyroid carcinomas associated with unfavorable outcome. Using the K1 PTC derived cell line as an in vitro model, we observed that both RAC1 and RAC1b were able to induce a significant increase on NF-kB and cyclin D1 reporter activity. A clear p65 nuclear localization was found in cells transfected with RAC1b-WT, confirming NF-kB canonical pathway activation. Consistently, we observed a RAC1b-mediated decrease in IκBα (NF-kB inhibitor) protein levels. Moreover, we show that RAC1b overexpression stimulates G1/S progression and protects thyroid cells against induced apoptosis, the latter through a process involving the NF-kB pathway. Present data support previous findings suggesting an important role for RAC1b in the development of follicular cell-derived thyroid malignancies and point out NF-kB activation as one of the molecular mechanisms associated with the pro-tumorigenic advantage of RAC1b overexpression in thyroid carcinomas.

  14. Overexpression of SepJ alters septal morphology and heterocyst pattern regulated by diffusible signals in Anabaena.

    PubMed

    Mariscal, Vicente; Nürnberg, Dennis J; Herrero, Antonia; Mullineaux, Conrad W; Flores, Enrique

    2016-09-01

    Filamentous, N2 -fixing, heterocyst-forming cyanobacteria grow as chains of cells that are connected by septal junctions. In the model organism Anabaena sp. strain PCC 7120, the septal protein SepJ is required for filament integrity, normal intercellular molecular exchange, heterocyst differentiation, and diazotrophic growth. An Anabaena strain overexpressing SepJ made wider septa between vegetative cells than the wild type, which correlated with a more spread location of SepJ in the septa as observed with a SepJ-GFP fusion, and contained an increased number of nanopores, the septal peptidoglycan perforations that likely accommodate septal junctions. The septa between heterocysts and vegetative cells, which are narrow in wild-type Anabaena, were notably enlarged in the SepJ-overexpressing mutant. Intercellular molecular exchange tested with fluorescent tracers was increased for the SepJ-overexpressing strain specifically in the case of calcein transfer between vegetative cells and heterocysts. These results support an association between calcein transfer, SepJ-related septal junctions, and septal peptidoglycan nanopores. Under nitrogen deprivation, the SepJ-overexpressing strain produced an increased number of contiguous heterocysts but a decreased percentage of total heterocysts. These effects were lost or altered in patS and hetN mutant backgrounds, supporting a role of SepJ in the intercellular transfer of regulatory signals for heterocyst differentiation.

  15. RAC1b overexpression stimulates proliferation and NF-kB-mediated anti-apoptotic signaling in thyroid cancer cells

    PubMed Central

    Faria, Márcia; Matos, Paulo; Pereira, Teresa; Cabrera, Rafael; Cardoso, Bruno A.; Bugalho, Maria João

    2017-01-01

    Overexpression of tumor-associated RAC1b has been recently highlighted as one of the most promising targets for therapeutic intervention in colon, breast, lung and pancreatic cancer. RAC1b is a hyperactive variant of the small GTPase RAC1 and has been recently shown to be overexpressed in a subset of papillary thyroid carcinomas associated with unfavorable outcome. Using the K1 PTC derived cell line as an in vitro model, we observed that both RAC1 and RAC1b were able to induce a significant increase on NF-kB and cyclin D1 reporter activity. A clear p65 nuclear localization was found in cells transfected with RAC1b-WT, confirming NF-kB canonical pathway activation. Consistently, we observed a RAC1b-mediated decrease in IκBα (NF-kB inhibitor) protein levels. Moreover, we show that RAC1b overexpression stimulates G1/S progression and protects thyroid cells against induced apoptosis, the latter through a process involving the NF-kB pathway. Present data support previous findings suggesting an important role for RAC1b in the development of follicular cell-derived thyroid malignancies and point out NF-kB activation as one of the molecular mechanisms associated with the pro-tumorigenic advantage of RAC1b overexpression in thyroid carcinomas. PMID:28234980

  16. Overexpression of circadian clock protein cryptochrome (CRY) 1 alleviates sleep deprivation-induced vascular inflammation in a mouse model.

    PubMed

    Qin, Bing; Deng, Yunlong

    2015-01-01

    Disturbance of the circadian clock by sleep deprivation has been proposed to be involved in the regulation of inflammation. However, the underlying mechanism of circadian oscillator components in regulating the pro-inflammatory process during sleep deprivation remains poorly understood. Using a sleep deprivation mouse model, we showed here that sleep deprivation increased the expression of pro-inflammatory cytokines expression and decreased the expression of cryptochrome 1 (CRY1) in vascular endothelial cells. Furthermore, the adhesion molecules including intercellular adhesion molecule-1, vascular cell adhesion molecule-1 and E-selectin were elevated in vascular endothelial cells and the monocytes binding to vascular endothelial cells were also increased by sleep deprivation. Interestingly, overexpression of CRY1 in a mouse model by adenovirus vector significantly inhibited the expression of inflammatory cytokines and adhesion molecules, and NF-κB signal pathway activation, as well as the binding of monocytes to vascular endothelial cells. Using a luciferase reporter assay, we found that CRY1 could repress the transcriptional activity of nuclear factor (NF)-κB in vitro. Subsequently, we demonstrated that overexpression of CRY1 inhibited the basal concentration of cyclic adenosine monophosphate (cAMP), leading to decreased protein kinase A activity, which resulted in decreased phosphorylation of p65. Taken together, these results suggested that the overexpression of CRY1 inhibited sleep deprivation-induced vascular inflammation that might be associated with NF-κB and cAMP/PKA pathways.

  17. Calbindins decreased after space flight

    NASA Technical Reports Server (NTRS)

    Sergeev, I. N.; Rhoten, W. B.; Carney, M. D.

    1996-01-01

    Exposure of the body to microgravity during space flight causes a series of well-documented changes in Ca2+ metabolism, yet the cellular and molecular mechanisms leading to these changes are poorly understood. Calbindins, vitamin D-dependent Ca2+ binding proteins, are believed to have a significant role in maintaining cellular Ca2+ homeostasis. In this study, we used biochemical and immunocytochemical approaches to analyze the expression of calbindin-D28k and calbindin-D9k in kidneys, small intestine, and pancreas of rats flown for 9 d aboard the space shuttle. The effects of microgravity on calbindins in rats from space were compared with synchronous Animal Enclosure Module controls, modeled weightlessness animals (tail suspension), and their controls. Exposure to microgravity resulted in a significant and sustained decrease in calbindin-D28k content in the kidney and calbindin-D9k in the small intestine of flight animals, as measured by enzyme-linked immunosorbent assay (ELISA). Modeled weightlessness animals exhibited a similar decrease in calbindins by ELISA. Immunocytochemistry (ICC) in combination with quantitative computer image analysis was used to measure in situ the expression of calbindins in the kidney and the small intestine, and the expression of insulin in pancreas. There was a large decrease of immunoreactivity in renal distal tubular cell-associated calbindin-D28k and in intestinal absorptive cell-associated calbindin-D9k of space flight and modeled weightlessness animals compared with matched controls. No consistent difference in pancreatic insulin immunoreactivity between space flight, modeled weightlessness, and controls was observed. Regression analysis of results obtained by quantitative ICC and ELISA for space flight, modeled weightlessness animals, and their controls demonstrated a significant correlation. These findings after a short-term exposure to microgravity or modeled weightlessness suggest that a decreased expression of calbindins

  18. Abetalipoproteinemia induced by overexpression of ORP150 in mice.

    PubMed

    Kobayashi, Tomohiro; Iguchi, Taisen; Ohta, Yasuhiko

    2007-06-01

    ORP150 is an endoplasmic-resident, hypoxic stress-induced protein, but little is known about the effects of its systemic overexpression. We have produced a transgenic strain of mice that overexpress ORP150 (ORP-Tg mice). These mice exhibit severe growth retardation concomitant with vacuolar degeneration in the heart. To investigate the cause of the observed growth retardation in response to ORP150 overexpression, we conducted a clinical evaluation of the ORP-Tg mice. Blood analysis showed significantly lower concentrations of serum triglyceride, cholesterol, glucose and insulin. The triglyceride components that were reduced in ORP-Tg mice were localized mainly at the origin and in the pre-beta fraction on agarose gel electrophoresis, corresponding to chylomicrons and very low-density lipoproteins. A lipid-loading test of ORP-Tg mice revealed reduced triglyceride uptake, which mainly was due to suppressed uptake of very low-density lipoproteins. An intraperitoneal glucose tolerance test indicated that the ORP-Tg mice have a significantly higher rate of glucose degradation. These findings suggest that overexpression of ORP150 in mice leads to abetalipoproteinemia with alteration of glucose and lipid metabolism. These data could provide clues for a therapeutic target of dyslipidemia or diabetes.

  19. Moesin overexpression is a unique biomarker of adenomyosis.

    PubMed

    Ohara, Rena; Michikami, Hiroo; Nakamura, Yuko; Sakata, Akiko; Sakashita, Shingo; Satomi, Kaishi; Shiba-Ishii, Aya; Kano, Junko; Yoshikawa, Hiroyuki; Noguchi, Masayuki

    2014-03-01

    Adenomyosis is characterized by extension of endometrial glands and stromal cells into the myometrium. Here we proved that 'moesin' is a unique biomarker of adenomyosis. We selected two cases of adenomyosis that had been surgically resected and fixed with formalin. Proteins were extracted from the infiltrating adenomyosis lesions and normal endometrium by tissue microdissection. The extracted proteins were examined using a LC-MS/MS system and the expression profiles of each region were compared. Two hundred and sixty proteins were detected, among which 73 were expressed more in adenomyosis than in normal endometrium. Among these proteins, we focused on overexpression of moesin in adenomyosis. Expression of moesin estimated semiquantitatively using an immunohistochemistry score was higher in adenomyosis than in normal endometrium. In particular, moesin was significanly overexpressed in stromal cells of adenomyosis than in those of normal endometrium. Relative to normal endometrium, moesin was also overexpressed at the RNA level in 9 of 14 cases of adenomyosis and at the protein level in all 14 cases. We also detected activated (phosphorylated) moesin in adenomyosis lesions. The present findings suggest that moesin is characteristically overexpressed and activated in adenomyosis, and that moesin activation may be related to extension of adenomyosis in the myometrium.

  20. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) overexpression in human colorectal cancer.

    PubMed

    Mansilla, Francisco; da Costa, Kerry-Ann; Wang, Shuli; Kruhøffer, Mogens; Lewin, Tal M; Orntoft, Torben F; Coleman, Rosalind A; Birkenkamp-Demtröder, Karin

    2009-01-01

    The alteration of the choline metabolite profile is a well-established characteristic of cancer cells. In colorectal cancer (CRC), phosphatidylcholine is the most prominent phospholipid. In the present study, we report that lysophosphatidylcholine acyltransferase 1 (LPCAT1; NM_024830.3), the enzyme that converts lysophosphatidylcholine into phosphatidylcholine, was highly overexpressed in colorectal adenocarcinomas when compared to normal mucosas. Our microarray transcription profiling study showed a significant (p < 10(-8)) transcript overexpression in 168 colorectal adenocarcinomas when compared to ten normal mucosas. Immunohistochemical analysis of colon tumors with a polyclonal antibody to LPCAT1 confirmed the upregulation of the LPCAT1 protein. Overexpression of LPCAT1 in COS7 cells localized the protein to the endoplasmic reticulum and the mitochondria and increased LPCAT1 specific activity 38-fold. In cultured cells, overexpressed LPCAT1 enhanced the incorporation of [(14)C]palmitate into phosphatidylcholine. COS7 cells transfected with LPCAT1 showed no growth rate alteration, in contrast to the colon cancer cell line SW480, which significantly (p < 10(-5)) increased its growth rate by 17%. We conclude that LPCAT1 may contribute to total choline metabolite accumulation via phosphatidylcholine remodeling, thereby altering the CRC lipid profile, a characteristic of malignancy.

  1. Laboratory and field studies of guayule modified to overexpress HMGR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report the genetic modification of guayule to overexpress the isoprenoid pathway enzyme HMGR. The rubber content of two-month old in vitro transformed plantlets showed a 65% increase in rubber over the control for one line (HMGR6), and lower resin for another (HMGR2). In field evaluations HMGR6...

  2. Tumor Necrosis Factor–α Overexpression in Lung Disease

    PubMed Central

    Lundblad, Lennart K. A.; Thompson-Figueroa, John; Leclair, Timothy; Sullivan, Michael J.; Poynter, Matthew E.; Irvin, Charles G.; Bates, Jason H. T.

    2005-01-01

    Rationale: Tumor necrosis factor α (TNF-α) has been implicated as a key cytokine in many inflammatory lung diseases. These effects are currently unclear, because a transgenic mouse overexpressing TNF-α in the lung has been shown in separate studies to produce elements of both emphysema and pulmonary fibrosis. Objectives: We sought to elucidate the phenotypic effects of TNF-α overexpression in a mouse model. Measurements: We established the phenotype by measuring lung impedance and thoracic gas volume, and using micro–computed tomography and histology. Main Results: We found that airways resistance in this mouse was not different to control mice, but that lung tissue dampening, elastance, and hysteresivity were significantly elevated. Major heterogeneous abnormalities of the parenchyma were also apparent in histologic sections and in micro–computed tomography images of the lung. These changes included airspace enlargement, loss of small airspaces, increased collagen, and thickened pleural septa. We also found significant increases in lung and chest cavity volumes in the TNF-α–overexpressing mice. Conclusions: We conclude that TNF-α overexpression causes pathologic changes consistent with both emphysema and pulmonary fibrosis combined with a general lung inflammation, and consequently does not model any single human disease. Our study thus confirms the pleiotropic effects of TNF-α, which has been implicated in multiple inflammatory disorders, and underscores the necessity of using a wide range of investigative techniques to link gene expression and phenotype in animal models of disease. PMID:15805183

  3. Overexpression of Jazf1 reduces body weight gain and regulates lipid metabolism in high fat diet.

    PubMed

    Jang, Woo Young; Bae, Ki Beom; Kim, Sung Hyun; Yu, Dong Hun; Kim, Hei Jung; Ji, Young Rae; Park, Seo Jin; Park, Si Jun; Kang, Min-Cheol; Jeong, Ja In; Park, Sang-Joon; Lee, Sang Gyu; Lee, Inkyu; Kim, Myoung Ok; Yoon, Duhak; Ryoo, Zae Young

    2014-02-14

    Jazf1 is a 27 kDa nuclear protein containing three putative zinc finger motifs that is associated with diabetes mellitus and prostate cancer; however, little is known about the role that this gene plays in regulation of metabolism. Recent evidence indicates that Jazf1 transcription factors bind to the nuclear orphan receptor TR4. This receptor regulates PEPCK, the key enzyme involved in gluconeogenesis. To elucidate Jazf1's role in metabolism, we fed a 60% fat diet for up to 15 weeks. In Jazf1 overexpression mice, weight gain was found to be significantly decreased. The expression of Jazf1 in the liver also suppressed lipid accumulation and decreased droplet size. These results suggest that Jazf1 plays a critical role in the regulation of lipid homeostasis. Finally, Jazf1 may provide a new therapeutic target in the management of obesity and diabetes.

  4. SUN2 Overexpression Deforms Nuclear Shape and Inhibits HIV

    PubMed Central

    Amraoui, Sonia; di Nunzio, Francesca; Kieffer, Camille; Porrot, Françoise; Opp, Silvana; Diaz-Griffero, Felipe; Casartelli, Nicoletta

    2016-01-01

    ABSTRACT In a previous screen of putative interferon-stimulated genes, SUN2 was shown to inhibit HIV-1 infection in an uncharacterized manner. SUN2 is an inner nuclear membrane protein belonging to the linker of nucleoskeleton and cytoskeleton complex. We have analyzed here the role of SUN2 in HIV infection. We report that in contrast to what was initially thought, SUN2 is not induced by type I interferon, and that SUN2 silencing does not modulate HIV infection. However, SUN2 overexpression in cell lines and in primary monocyte-derived dendritic cells inhibits the replication of HIV but not murine leukemia virus or chikungunya virus. We identified HIV-1 and HIV-2 strains that are unaffected by SUN2, suggesting that the effect is specific to particular viral components or cofactors. Intriguingly, SUN2 overexpression induces a multilobular flower-like nuclear shape that does not impact cell viability and is similar to that of cells isolated from patients with HTLV-I-associated adult T-cell leukemia or with progeria. Nuclear shape changes and HIV inhibition both mapped to the nucleoplasmic domain of SUN2 that interacts with the nuclear lamina. This block to HIV replication occurs between reverse transcription and nuclear entry, and passaging experiments selected for a single-amino-acid change in capsid (CA) that leads to resistance to overexpressed SUN2. Furthermore, using chemical inhibition or silencing of cyclophilin A (CypA), as well as CA mutant viruses, we implicated CypA in the SUN2-imposed block to HIV infection. Our results demonstrate that SUN2 overexpression perturbs both nuclear shape and early events of HIV infection. IMPORTANCE Cells encode proteins that interfere with viral replication, a number of which have been identified in overexpression screens. SUN2 is a nuclear membrane protein that was shown to inhibit HIV infection in such a screen, but how it blocked HIV infection was not known. We show that SUN2 overexpression blocks the infection of certain

  5. Effects of angiotensin type 2 receptor overexpression in the rostral ventrolateral medulla on blood pressure and urine excretion in normal rats.

    PubMed

    Gao, Lie; Wang, Weizhong; Wang, Wei; Li, Hongwei; Sumners, Colin; Zucker, Irving H

    2008-02-01

    Central angiotensin II plays a critical role in the regulation of cardiovascular function and autonomic activity, in part, via angiotensin type 1 receptors in the rostral ventrolateral medulla (RVLM). Increasing evidence indicates that angiotensin II can also act on angiotensin type 2 receptors (AT(2)Rs) to exert antagonistic effects. In the current study we determined the effects of overexpression of AT(2)R in the RVLM on sodium and water excretion and on blood pressure in conscious rats. The overexpression of AT(2)R was induced by bilateral microinjection of the AT(2)R adenovirus (Ad5-SYN-AT2R-IRES-EGFP, 2.5 x 10(6) infection units in 0.5 microL; Ad5-SYN-EGFP as the control, 2.5 x 10(6) infection units in 0.5 microL) into the RVLM of rats. Immunofluorescence staining showed that microinjection of AT(2)R adenovirus into the RVLM evoked local overexpression. Significant overexpression of AT(2)R in the RVLM began at 24 hours and was sustained up to 12 days after microinjection. Overexpression of AT(2)R in the RVLM significantly decreased the nocturnal arterial blood pressure and increased the 24-hour urine excretion at days 2, 3, and 4 after gene delivery compared with the control rats. These alterations were abolished by the microinfusion of captopril into the RVLM and were enhanced by angiotensin II infusion. Overexpression of AT(2)R in the RVLM also significantly decreased the urine concentration of noradrenaline and 24-hour noradrenaline excretion (1.1+/-0.5 microg in control rats and 2.4+/-0.5 microg in AT(2)R rats; P<0.05). These results suggest that overexpression of AT(2)R in the RVLM induced a diuresis that may be mediated, in part, by sympathoinhibition.

  6. KLF5 overexpression attenuates cardiomyocyte inflammation induced by oxygen-glucose deprivation/reperfusion through the PPARγ/PGC-1α/TNF-α signaling pathway.

    PubMed

    Li, Yang; Li, Jian; Hou, Zhiwen; Yu, Yang; Yu, Bo

    2016-12-01

    The primary physiological function of Krüppel-like zinc-finger transcription factor (KLF5) is the regulation of cardiovascular remodeling. Vascular remodeling is closely related to the amelioration of various ischemic diseases. However, the underlying correlation of KLF5 and ischemia is not clear. In this study, we aim to investigate the role of KLF5 in myocardial ischemia reperfusion (IR) injury and the potential mechanisms involved. Cultured H9C2 cells were subjected to oxygen-glucose deprivation/reperfusion (OGD/Rep) to mimic myocardial IR injury in vivo. Expressions of KLF5 and PPARγ were distinctly inhibited, and PGC-1α expression was activated at 24h after myocardial OGD/Rep injury. After myocardial OGD/Rep injury, we found that KLF5 overexpression down-regulated levels of TNF-α, IL-1β, IL-6 and IL-8. Through the analysis of lactate dehydrogenase (LDH) release, we demonstrate that KLF5 overexpression reduced the release of OGD/Rep-induced LDH. KLF5 overexpression significantly enhanced cell activity and decreased cell apoptosis during OGD/Rep injury. Compared with the OGD/Rep group, cells overexpressing KLF5 showed anti-apoptotic effects, such as decreased expression of Bax and cleaved caspase-3 as well as increased Bcl-2 expression. KLF5 overexpression activated PPARγ, a protein involved in OGD/Rep injury, and increased levels of PGC-1α, while TNF-α expression was remarkably inhibited. In addition, GW9662, a PPARγ receptor antagonist, reversed the expression of PPARγ/PGC-1α/TNF-α and cell activity induced by KLF5 overexpression. The effects of KLF5 overexpression on PPARγ/PGC-1α/TNF-α and cell activity were abolished by co-treatment with GW9662. Taken together, these results suggest that KLF5 can efficiently alleviate OGD/Rep-induced myocardial injury, perhaps through regulation of the PPARγ/PGC-1α/TNF-α pathway.

  7. Decreasing Fires in Mediterranean Europe.

    PubMed

    Turco, Marco; Bedia, Joaquín; Di Liberto, Fabrizio; Fiorucci, Paolo; von Hardenberg, Jost; Koutsias, Nikos; Llasat, Maria-Carmen; Xystrakis, Fotios; Provenzale, Antonello

    2016-01-01

    Forest fires are a serious environmental hazard in southern Europe. Quantitative assessment of recent trends in fire statistics is important for assessing the possible shifts induced by climate and other environmental/socioeconomic changes in this area. Here we analyse recent fire trends in Portugal, Spain, southern France, Italy and Greece, building on a homogenized fire database integrating official fire statistics provided by several national/EU agencies. During the period 1985-2011, the total annual burned area (BA) displayed a general decreasing trend, with the exception of Portugal, where a heterogeneous signal was found. Considering all countries globally, we found that BA decreased by about 3020 km2 over the 27-year-long study period (i.e. about -66% of the mean historical value). These results are consistent with those obtained on longer time scales when data were available, also yielding predominantly negative trends in Spain and France (1974-2011) and a mixed trend in Portugal (1980-2011). Similar overall results were found for the annual number of fires (NF), which globally decreased by about 12600 in the study period (about -59%), except for Spain where, excluding the provinces along the Mediterranean coast, an upward trend was found for the longer period. We argue that the negative trends can be explained, at least in part, by an increased effort in fire management and prevention after the big fires of the 1980's, while positive trends may be related to recent socioeconomic transformations leading to more hazardous landscape configurations, as well as to the observed warming of recent decades. We stress the importance of fire data homogenization prior to analysis, in order to alleviate spurious effects associated with non-stationarities in the data due to temporal variations in fire detection efforts.

  8. Decreasing Fires in Mediterranean Europe

    PubMed Central

    Turco, Marco; Bedia, Joaquín; Di Liberto, Fabrizio; Fiorucci, Paolo; von Hardenberg, Jost; Koutsias, Nikos; Llasat, Maria-Carmen; Xystrakis, Fotios; Provenzale, Antonello

    2016-01-01

    Forest fires are a serious environmental hazard in southern Europe. Quantitative assessment of recent trends in fire statistics is important for assessing the possible shifts induced by climate and other environmental/socioeconomic changes in this area. Here we analyse recent fire trends in Portugal, Spain, southern France, Italy and Greece, building on a homogenized fire database integrating official fire statistics provided by several national/EU agencies. During the period 1985-2011, the total annual burned area (BA) displayed a general decreasing trend, with the exception of Portugal, where a heterogeneous signal was found. Considering all countries globally, we found that BA decreased by about 3020 km2 over the 27-year-long study period (i.e. about -66% of the mean historical value). These results are consistent with those obtained on longer time scales when data were available, also yielding predominantly negative trends in Spain and France (1974-2011) and a mixed trend in Portugal (1980-2011). Similar overall results were found for the annual number of fires (NF), which globally decreased by about 12600 in the study period (about -59%), except for Spain where, excluding the provinces along the Mediterranean coast, an upward trend was found for the longer period. We argue that the negative trends can be explained, at least in part, by an increased effort in fire management and prevention after the big fires of the 1980’s, while positive trends may be related to recent socioeconomic transformations leading to more hazardous landscape configurations, as well as to the observed warming of recent decades. We stress the importance of fire data homogenization prior to analysis, in order to alleviate spurious effects associated with non-stationarities in the data due to temporal variations in fire detection efforts. PMID:26982584

  9. Thermoelectric device exhibiting decreased stress

    SciTech Connect

    Heath, D.L.; Chou, D.J.

    1985-02-05

    A thermoelectric device exhibiting both structural integrity and decreased stress across the device notwithstanding the application of thermally cycled temperature differentials thereacross includes, electrically interconnected thermoelectric elements and a rigidly affixed substrate. Thermal stress is relieved by using flexible conductors to interconnect the thermoelectric elements, and by the use of a flexile joint to attach a second substrate to the remainder of the device. Complete elimination of the second substrate may also be used to eliminate stress. Presence of the rigidly affixed substrate gives the device sufficient structural integrity to enable it to withstand rugged conditions.

  10. Technologies for Decreasing Mining Losses

    NASA Astrophysics Data System (ADS)

    Valgma, Ingo; Väizene, Vivika; Kolats, Margit; Saarnak, Martin

    2013-12-01

    In case of stratified deposits like oil shale deposit in Estonia, mining losses depend on mining technologies. Current research focuses on extraction and separation possibilities of mineral resources. Selective mining, selective crushing and separation tests have been performed, showing possibilities of decreasing mining losses. Rock crushing and screening process simulations were used for optimizing rock fractions. In addition mine backfilling, fine separation, and optimized drilling and blasting have been analyzed. All tested methods show potential and depend on mineral usage. Usage in addition depends on the utilization technology. The questions like stability of the material flow and influences of the quality fluctuations to the final yield are raised.

  11. Over-expression of Trxo1 increases the viability of tobacco BY-2 cells under H2O2 treatment

    PubMed Central

    Ortiz-Espín, Ana; Locato, Vittoria; Camejo, Daymi; Schiermeyer, Andreas; De Gara, Laura; Sevilla, Francisca; Jiménez, Ana

    2015-01-01

    Background and Aims Reactive oxygen species (ROS), especially hydrogen peroxide, play a critical role in the regulation of plant development and in the induction of plant defence responses during stress adaptation, as well as in plant cell death. The antioxidant system is responsible for controlling ROS levels in these processes but redox homeostasis is also a key factor in plant cell metabolism under normal and stress situations. Thioredoxins (Trxs) are ubiquitous small proteins found in different cell compartments, including mitochondria and nuclei (Trxo1), and are involved in the regulation of target proteins through reduction of disulphide bonds, although their role under oxidative stress has been less well studied. This study describes over-expression of a Trxo1 for the first time, using a cell-culture model subjected to an oxidative treatment provoked by H2O2. Methods Control and over-expressing PsTrxo1 tobacco (Nicotiana tabacum) BY-2 cells were treated with 35 mm H2O2 and the effects were analysed by studying the growth dynamics of the cultures together with oxidative stress parameters, as well as several components of the antioxidant systems involved in the metabolism of H2O2. Analysis of different hallmarks of programmed cell death was also carried out. Key Results Over-expression of PsTrxo1 caused significant differences in the response of TBY-2 cells to high concentrations of H2O2, namely higher and maintained viability in over-expressing cells, whilst the control line presented a severe decrease in viability and marked indications of oxidative stress, with generalized cell death after 3 d of treatment. In over-expressing cells, an increase in catalase activity, decreases in H2O2 and nitric oxide contents and maintenance of the glutathione redox state were observed. Conclusions A decreased content of endogenous H2O2 may be responsible in part for the delayed cell death found in over-expressing cells, in which changes in oxidative parameters and

  12. Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton.

    PubMed

    Liu, Guanze; Li, Xuelin; Jin, Shuangxia; Liu, Xuyan; Zhu, Longfu; Nie, Yichun; Zhang, Xianlong

    2014-01-01

    The SNAC1 gene belongs to the stress-related NAC superfamily of transcription factors. It was identified from rice and overexpressed in cotton cultivar YZ1 by Agrobacterium tumefaciens-mediated transformation. SNAC1-overexpressing cotton plants showed more vigorous growth, especially in terms of root development, than the wild-type plants in the presence of 250 mM NaCl under hydroponic growth conditions. The content of proline was enhanced but the MDA content was decreased in the transgenic cotton seedlings under drought and salt treatments compared to the wild-type. Furthermore, SNAC1-overexpressing cotton plants also displayed significantly improved tolerance to both drought and salt stresses in the greenhouse. The performances of the SNAC1-overexpressing lines under drought and salt stress were significantly better than those of the wild-type in terms of the boll number. During the drought and salt treatments, the transpiration rate of transgenic plants significantly decreased in comparison to the wild-type, but the photosynthesis rate maintained the same at the flowering stage in the transgenic plants. These results suggested that overexpression of SNAC1 improve more tolerance to drought and salt in cotton through enhanced root development and reduced transpiration rates.

  13. Generation of Osteosarcomas From a Combination of Rb Silencing and c-Myc Overexpression in Human Mesenchymal Stem Cells.

    PubMed

    Wang, Jir-You; Wu, Po-Quei; Chen, Paul Chih-Hsueh; Lee, Chia-Wen; Chen, Wei-Ming; Hung, Shih-Chieh

    2016-09-07

    : Osteosarcoma (OS) was a malignant tumor occurring with unknown etiology that made prevention and early diagnosis difficult. Mesenchymal stem cells (MSCs), which were found in bone marrow, were claimed to be a possible origin of OS but with little direct evidence. We aimed to characterize OS cells transformed from human MSCs (hMSCs) and identify their association with human primary OS cells and patient survival. Genetic modification with p53 or retinoblastoma (Rb) knockdown and c-Myc or Ras overexpression was applied for hMSC transformation. Transformed cells were assayed for proliferation, differentiation, tumorigenecity, and gene expression profile. Only the combination of Rb knockdown and c-Myc overexpression successfully transformed hMSCs derived from four individual donors, with increasing cell proliferation, decreasing cell senescence rate, and increasing ability to form colonies and spheres in serum-free medium. These transformed cells lost the expression of certain surface markers, increased in osteogenic potential, and decreased in adipogenic potential. After injection in immunodeficient mice, these cells formed OS-like tumors, as evidenced by radiographic analyses and immunohistochemistry of various OS markers. Microarray with cluster analysis revealed that these transformed cells have gene profiles more similar to patient-derived primary OS cells than their normal MSC counterparts. Most importantly, comparison of OS patient tumor samples revealed that a combination of Rb loss and c-Myc overexpression correlated with a decrease in patient survival. This study successfully transformed human MSCs to OS-like cells by Rb knockdown and c-Myc overexpression that may be a useful platform for further investigation of preventive and target therapy for human OS.

  14. Generation of Osteosarcomas from a Combination of Rb Silencing and c-Myc Overexpression in Human Mesenchymal Stem Cells.

    PubMed

    Wang, Jir-You; Wu, Po-Kuei; Chen, Paul Chih-Hsueh; Lee, Chia-Wen; Chen, Wei-Ming; Hung, Shih-Chieh

    2017-02-01

    Osteosarcoma (OS) was a malignant tumor occurring with unknown etiology that made prevention and early diagnosis difficult. Mesenchymal stem cells (MSCs), which were found in bone marrow, were claimed to be a possible origin of OS but with little direct evidence. We aimed to characterize OS cells transformed from human MSCs (hMSCs) and identify their association with human primary OS cells and patient survival. Genetic modification with p53 or retinoblastoma (Rb) knockdown and c-Myc or Ras overexpression was applied for hMSC transformation. Transformed cells were assayed for proliferation, differentiation, tumorigenecity, and gene expression profile. Only the combination of Rb knockdown and c-Myc overexpression successfully transformed hMSCs derived from four individual donors, with increasing cell proliferation, decreasing cell senescence rate, and increasing ability to form colonies and spheres in serum-free medium. These transformed cells lost the expression of certain surface markers, increased in osteogenic potential, and decreased in adipogenic potential. After injection in immunodeficient mice, these cells formed OS-like tumors, as evidenced by radiographic analyses and immunohistochemistry of various OS markers. Microarray with cluster analysis revealed that these transformed cells have gene profiles more similar to patient-derived primary OS cells than their normal MSC counterparts. Most importantly, comparison of OS patient tumor samples revealed that a combination of Rb loss and c-Myc overexpression correlated with a decrease in patient survival. This study successfully transformed human MSCs to OS-like cells by Rb knockdown and c-Myc overexpression that may be a useful platform for further investigation of preventive and target therapy for human OS. Stem Cells Translational Medicine 2017;6:512-526.

  15. Regulation of cell growth and apoptosis through lactate dehydrogenase C over-expression in Chinese hamster ovary cells.

    PubMed

    Fu, Tuo; Zhang, Cunchao; Jing, Yu; Jiang, Cheng; Li, Zhenhua; Wang, Shengyu; Ma, Kai; Zhang, Dapeng; Hou, Sheng; Dai, Jianxin; Kou, Geng; Wang, Hao

    2016-06-01

    Lactate has long been credited as a by-product, which jeopardizes cell growth and productivity when accumulated over a certain concentration during the manufacturing process of therapeutic recombinant proteins by Chinese hamster ovary (CHO) cells. A number of efforts to decrease the lactate concentration have been developed; however, the accumulation of lactate is still a critical issue by the late stage of fed-batch culture. Therefore, a lactate-tolerant cell line was developed through over-expression of lactate dehydrogenase C (LDH-C). In fed-batch culture, sodium lactate or sodium pyruvate was supplemented into the culture medium to simulate the environment of lactate accumulation, and LDH-C over-expression increased the highest viable cell density by over 30 and 50 %, respectively, on day 5, meanwhile the viability was also improved significantly since day 5 compared with that of the control. The percentages of cells suffering early and late apoptosis decreased by 3.2 to 12.5 and 2.0 to 4.3 %, respectively, from day 6 onwards in the fed-batch culture when 40 mM sodium pyruvate was added compared to the control. The results were confirmed by mitochondrial membrane potential assay. In addition, the expression of cleaved caspases 3 and 7 decreased in cells over-expressing LDH-C, suggesting the mitochondrial pathway was involved in the LDH-C regulated anti-apoptosis. In conclusion, a novel cell line with higher lactate tolerance, lowered lactate production, and alleviated apoptosis response was developed by over-expression of LDH-C, which may potentially represent an efficient and labor-saving approach in generating recombinant proteins.

  16. MiR-30a Decreases Multidrug Resistance (MDR) of Gastric Cancer Cells

    PubMed Central

    Li, Chunying; Zou, Jinhai; Zheng, Guoqi; Chu, Jiankun

    2016-01-01

    Background The effectiveness of chemotherapy for gastric cancer is largely limited by either intrinsic or acquired drug resistance. In this study, we aimed to explore the association between miR-30a dysregulation and multidrug resistance (MDR) in gastric cancer cells. Material/Methods We recruited 20 patients with advanced gastric cancer. Chemosensitivity was assessed after completion of the chemotherapy. SGC-7901 and SGC-7901/DDP cells were transfected for miR-30a overexpression or knockdown. Then, MTT assay was performed to assess the IC50 of DPP and 5-FU in SGC-7901 and SGC-7901/DDP cells. Flow cytometry analysis was used to detect DPP- and 5-FU-induced cell apoptosis. Western blot analysis and immunofluorescence staining were used to assess EMT of the cells. Results MiR-30a was significantly downregulated in the chemoresistant tissues. In both SGC-7901 and SGC-7901/DDP cells, miR-30a overexpression decreased the expression of P-gp, a MDR-related protein. MTT assay and flow cytometry analysis showed that miR-30a inhibition increased chemoresistance, while miR-30a overexpression decreased chemoresistance in gastric cancer cells. Both Western blot analysis and immunofluorescence staining confirmed that miR-30a inhibition decreased E-cadherin but increased N-cadherin in SGC-7901 cells, while miR-30a overexpression increased E-cadherin but decreased N-cadherin in SGC-7901 cells. Conclusions MiR-30a can decrease multidrug resistance (MDR) of gastric cancer cells. It is also an important miRNA modulating EMT of the cancer cells.

  17. MDM4 overexpression contributes to synoviocyte proliferation in patients with rheumatoid arthritis

    SciTech Connect

    Xu, Nanwei; Wang, Yuji; Li, Dawei; Chen, Guoqiang; Sun, Rongbin; Zhu, Ruixia; Sun, Sai; Liu, Hongwei; Yang, Guang; Dong, Tianhua

    2010-10-22

    Research highlights: {yields} Elevated MDM4 mRNA and protein levels in FLS from patients with RA and OA. {yields} Strong MDM4 staining in synovial cells of inflammatory synovium. {yields} MDM4 knockdown increased p53 and p21 levels, and inhibited the proliferation of RA FLS. {yields} MDM4 overexpression increased p53 while decreased p21 levels, and promoted the growth of RA FLS. -- Abstract: Rheumatoid arthritis (RA) is a chronic autoimmune disease with features of inflammatory cell infiltration, synovial cell invasive proliferation, and ultimately, irreversible joint destruction. It has been reported that the p53 pathway is involved in RA pathogenesis. MDM4/MDMX is a major negative regulator of p53. To determine whether MDM4 contributes to RA pathogenesis, MDM4 mRNA and protein expression were assessed in fibroblast-like synoviocytes (FLS) by real-time PCR, western blotting, and in synovial tissues by immunohistochemistry. Furthermore, MDM4 was knocked down and overexpressed by lentivirus-mediated expression, and the proliferative capacity of FLS was determined by MTS assay. We found that cultured FLS from RA and osteoarthritis (OA) patients exhibited higher levels of MDM4 mRNA and protein expression than those from trauma controls. MDM4 protein was highly expressed in the synovial lining and sublining cells from both types of arthritis. Finally, MDM4 knockdown inhibited the proliferation of RA FLS by enhancing functional p53 levels while MDM4 overexpression promoted the growth of RA FLS by inhibiting p53 effects. Taken together, our results suggest that the abundant expression of MDM4 in FLS may contribute to the hyperplasia phenotype of RA synovial tissues.

  18. The Novel Gene CRNDE Encodes a Nuclear Peptide (CRNDEP) Which Is Overexpressed in Highly Proliferating Tissues

    PubMed Central

    Szafron, Lukasz Michal; Balcerak, Anna; Grzybowska, Ewa Anna; Pienkowska-Grela, Barbara; Felisiak-Golabek, Anna; Podgorska, Agnieszka; Kulesza, Magdalena; Nowak, Natalia; Pomorski, Pawel; Wysocki, Juliusz; Rubel, Tymon; Dansonka-Mieszkowska, Agnieszka; Konopka, Bozena; Lukasik, Martyna; Kupryjanczyk, Jolanta

    2015-01-01

    CRNDE, recently described as the lncRNA-coding gene, is overexpressed at RNA level in human malignancies. Its role in gametogenesis, cellular differentiation and pluripotency has been suggested as well. Herein, we aimed to verify our hypothesis that the CRNDE gene may encode a protein product, CRNDEP. By using bioinformatics methods, we identified the 84-amino acid ORF encoded by one of two CRNDE transcripts, previously described by our research team. This ORF was cloned into two expression vectors, subsequently utilized in localization studies in HeLa cells. We also developed a polyclonal antibody against CRNDEP. Its specificity was confirmed in immunohistochemical, cellular localization, Western blot and immunoprecipitation experiments, as well as by showing a statistically significant decrease of endogenous CRNDEP expression in the cells with transient shRNA-mediated knockdown of CRNDE. Endogenous CRNDEP localizes predominantly to the nucleus and its expression seems to be elevated in highly proliferating tissues, like the parabasal layer of the squamous epithelium, intestinal crypts or spermatocytes. After its artificial overexpression in HeLa cells, in a fusion with either the EGFP or DsRed Monomer fluorescent tag, CRNDEP seems to stimulate the formation of stress granules and localize to them. Although the exact role of CRNDEP is unknown, our preliminary results suggest that it may be involved in the regulation of the cell proliferation. Possibly, CRNDEP also participates in oxygen metabolism, considering our in silico results, and the correlation between its enforced overexpression and the formation of stress granules. This is the first report showing the existence of a peptide encoded by the CRNDE gene. PMID:25978564

  19. β-Cell-Specific Mafk Overexpression Impairs Pancreatic Endocrine Cell Development

    PubMed Central

    Abdellatif, Ahmed M.; Oishi, Hisashi; Itagaki, Takahiro; Jung, Yunshin; Shawki, Hossam H.; Okita, Yukari; Hasegawa, Yoshikazu; Suzuki, Hiroyuki; El-Morsy, Salah E.; El-Sayed, Mesbah A.; Shoaib, Mahmoud B.; Sugiyama, Fumihiro; Takahashi, Satoru

    2016-01-01

    The MAF family transcription factors are homologs of v-Maf, the oncogenic component of the avian retrovirus AS42. They are subdivided into 2 groups, small and large MAF proteins, according to their structure, function, and molecular size. MAFK is a member of the small MAF family and acts as a dominant negative form of large MAFs. In previous research we generated transgenic mice that overexpress MAFK in order to suppress the function of large MAF proteins in pancreatic β-cells. These mice developed hyperglycemia in adulthood due to impairment of glucose-stimulated insulin secretion. The aim of the current study is to examine the effects of β-cell-specific Mafk overexpression in endocrine cell development. The developing islets of Mafk-transgenic embryos appeared to be disorganized with an inversion of total numbers of insulin+ and glucagon+ cells due to reduced β-cell proliferation. Gene expression analysis by quantitative RT-PCR revealed decreased levels of β-cell-related genes whose expressions are known to be controlled by large MAF proteins. Additionally, these changes were accompanied with a significant increase in key β-cell transcription factors likely due to compensatory mechanisms that might have been activated in response to the β-cell loss. Finally, microarray comparison of gene expression profiles between wild-type and transgenic pancreata revealed alteration of some uncharacterized genes including Pcbd1, Fam132a, Cryba2, and Npy, which might play important roles during pancreatic endocrine development. Taken together, these results suggest that Mafk overexpression impairs endocrine development through a regulation of numerous β-cell-related genes. The microarray analysis provided a unique data set of differentially expressed genes that might contribute to a better understanding of the molecular basis that governs the development and function of endocrine pancreas. PMID:26901059

  20. Overexpression of RUNX3 inhibits malignant behaviour of Eca109 cells in vitro and vivo.

    PubMed

    Chen, Hua-Xia; Wang, Shuai; Wang, Zhou; Zhang, Zhi-Ping; Shi, Shan-Shan

    2014-01-01

    Runt-related transcription factor 3 (RUNX3) is a tumor suppressor gene whose reduced expression may play an important role in the development and progression of esophageal squamous cell cancer (ESCC). The aim of this study was to investigate the clinical relevance of RUNX3 in ESCC patients and effects of overexpression on biological behaviour of Eca109 cells in vitro and in vivo. Immunohistochemistry was performed to detect the clinical relevance of RUNX3 and lymph node metastasis in 80 ESCC tissues and 40 non-cancerous tissues using the SP method. RT-PCR and Western blotting were applied to assess the RUNX3 level and verify the Eca109 cell line with stable overexpression. Localization of RUNX3 proteins was performed by cell immunofluorescence. CCK-8 and Scrape motility assays were used to determine proliferation and migration and the TUNEL assay to analyze cell apoptosis. Invasive potential was assessed in cell transwell invasion experiments. In nude mice, tumorigenesis in vivo was determined. Results showed decreased expression of RUNX3 in esophageal tissue to be significantly related to lymph node metastasis (LNM) (P<0.01). In addition, construction of a recombinant lentiviral vector and transfection into the human ESCC cell line Eca109 demonstrated that overexpression could inhibit cell proliferation, migration and invasion, and induce apoptosis. The in vivo experiments in mice showed tumorigenicity and invasiveness to be significantly reduced. Taken together, our studies indicate that underexpression of RUNX3 in human ESCC tissue is significantly correlated with progression. Restoration of RUNX3 expression significantly inhibits ESCC cells proliferation, migration, invasion and tumorigenesis.

  1. Over-expression of ST3Gal-I promotes mammary tumorigenesis.

    PubMed

    Picco, Gianfranco; Julien, Sylvain; Brockhausen, Inka; Beatson, Richard; Antonopoulos, Aristotelis; Haslam, Stuart; Mandel, Ulla; Dell, Anne; Pinder, Sarah; Taylor-Papadimitriou, Joyce; Burchell, Joy

    2010-10-01

    Changes in glycosylation are common in malignancy, and as almost all surface proteins are glycosylated, this can dramatically affect the behavior of tumor cells. In breast carcinomas, the O-linked glycans are frequently truncated, often as a result of premature sialylation. The sialyltransferase ST3Gal-I adds sialic acid to the galactose residue of core 1 (Galbeta1,3GalNAc) O-glycans and this enzyme is over-expressed in breast cancer resulting in the expression of sialylated core 1 glycans. In order to study the role of ST3Gal-I in mammary tumor development, we developed transgenic mice that over-express the sialyltransferase under the control of the human membrane-bound mucin 1 promoter. These mice were then crossed with PyMT mice that spontaneously develop mammary tumors. As expected, ST3Gal-I transgenic mice showed increased activity and expression of the enzyme in the pregnant and lactating mammary glands, the stomach, lungs and intestine. Although no obvious defects were observed in the fully developed mammary gland, when these mice were crossed with PyMT mice, a highly significant decrease in tumor latency was observed compared to the PyMT mice on an identical background. These results indicate that ST3Gal-I is acting as a tumor promoter in this model of breast cancer. This, we believe, is the first demonstration that over-expression of a glycosyltransferase involved in mucin-type O-linked glycosylation can promote tumorigenesis.

  2. Overexpressed TRPV3 ion channels in skin keratinocytes modulate pain sensitivity via prostaglandin E2

    PubMed Central

    Huang, Susan M.; Lee, Hyosang; Chung, Man-Kyo; Park, Una; Yu, Yin Yin; Bradshaw, Heather B.; Coulombe, Pierre A.; Walker, J. Michael; Caterina, Michael J.

    2009-01-01

    The ability to sense changes in the environment is essential for survival because it permits responses such as withdrawal from noxious stimuli and regulation of body temperature. Keratinocytes, which occupy much of the skin epidermis, are situated at the interface between the external environment and the body's internal milieu, and have long been appreciated for their barrier function against external insults. The recent discovery of temperature-sensitive TRPV ion channels in keratinocytes has raised the possibility that these cells also actively participate in acute temperature and pain sensation. To address this notion, we generated and characterized transgenic mice that overexpress TRPV3 in epidermal keratinocytes under the control of the keratin 14 promoter. Compared to wild-type controls, keratinocytes overexpressing TRPV3 exhibited larger currents as well as augmented prostaglandin E2 (PGE2) release in response to two TRPV3 agonists, 2-aminoethoxydiphenyl borate (2APB) and heat. Thermal selection behavior and heat-evoked withdrawal behavior of naïve mice overexpressing TRPV3 were not consistently altered. Upon selective pharmacological inhibition of TRPV1 with JNJ-7203212, however, the keratinocyte-specific TRPV3 transgenic mice showed increased escape responses to noxious heat relative to their wild-type littermates. Co-administration of the cyclooxygenase inhibitor, ibuprofen, with the TRPV1 antagonist decreased inflammatory thermal hyperalgesia in transgenic but not wild-type animals. Our results reveal a previously undescribed mechanism for keratinocyte participation in thermal pain transduction through keratinocyte TRPV3 ion channels and the intercellular messenger PGE2. PMID:19091963

  3. FHL1 reduces dystrophy in transgenic mice overexpressing FSHD muscular dystrophy region gene 1 (FRG1).

    PubMed

    Feeney, Sandra J; McGrath, Meagan J; Sriratana, Absorn; Gehrig, Stefan M; Lynch, Gordon S; D'Arcy, Colleen E; Price, John T; McLean, Catriona A; Tupler, Rossella; Mitchell, Christina A

    2015-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disease with no effective treatment. The genetic cause of FSHD is complex and the primary pathogenic insult underlying the muscle disease is unknown. Several disease candidate genes have been proposed including DUX4 and FRG1. Expression analysis studies of FSHD report the deregulation of genes which mediate myoblast differentiation and fusion. Transgenic mice overexpressing FRG1 recapitulate the FSHD muscular dystrophy phenotype. Our current study selectively examines how increased expression of FRG1 may contribute to myoblast differentiation defects. We generated stable C2C12 cell lines overexpressing FRG1, which exhibited a myoblast fusion defect upon differentiation. To determine if myoblast fusion defects contribute to the FRG1 mouse dystrophic phenotype, this strain was crossed with skeletal muscle specific FHL1-transgenic mice. We previously reported that FHL1 promotes myoblast fusion in vitro and FHL1-transgenic mice develop skeletal muscle hypertrophy. In the current study, FRG1 mice overexpressing FHL1 showed an improvement in the dystrophic phenotype, including a reduced spinal kyphosis, increased muscle mass and myofiber size, and decreased muscle fibrosis. FHL1 expression in FRG1 mice, did not alter satellite cell number or activation, but enhanced myoblast fusion. Primary myoblasts isolated from FRG1 mice showed a myoblast fusion defect that was rescued by FHL1 expression. Therefore, increased FRG1 expression may contribute to a muscular dystrophy phenotype resembling FSHD by impairing myoblast fusion, a defect that can be rescued by enhanced myoblast fusion via expression of FHL1.

  4. FHL1 Reduces Dystrophy in Transgenic Mice Overexpressing FSHD Muscular Dystrophy Region Gene 1 (FRG1)

    PubMed Central

    Feeney, Sandra J.; McGrath, Meagan J.; Sriratana, Absorn; Gehrig, Stefan M.; Lynch, Gordon S.; D’Arcy, Colleen E.; Price, John T.; McLean, Catriona A.; Tupler, Rossella; Mitchell, Christina A.

    2015-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disease with no effective treatment. The genetic cause of FSHD is complex and the primary pathogenic insult underlying the muscle disease is unknown. Several disease candidate genes have been proposed including DUX4 and FRG1. Expression analysis studies of FSHD report the deregulation of genes which mediate myoblast differentiation and fusion. Transgenic mice overexpressing FRG1 recapitulate the FSHD muscular dystrophy phenotype. Our current study selectively examines how increased expression of FRG1 may contribute to myoblast differentiation defects. We generated stable C2C12 cell lines overexpressing FRG1, which exhibited a myoblast fusion defect upon differentiation. To determine if myoblast fusion defects contribute to the FRG1 mouse dystrophic phenotype, this strain was crossed with skeletal muscle specific FHL1-transgenic mice. We previously reported that FHL1 promotes myoblast fusion in vitro and FHL1-transgenic mice develop skeletal muscle hypertrophy. In the current study, FRG1 mice overexpressing FHL1 showed an improvement in the dystrophic phenotype, including a reduced spinal kyphosis, increased muscle mass and myofiber size, and decreased muscle fibrosis. FHL1 expression in FRG1 mice, did not alter satellite cell number or activation, but enhanced myoblast fusion. Primary myoblasts isolated from FRG1 mice showed a myoblast fusion defect that was rescued by FHL1 expression. Therefore, increased FRG1 expression may contribute to a muscular dystrophy phenotype resembling FSHD by impairing myoblast fusion, a defect that can be rescued by enhanced myoblast fusion via expression of FHL1. PMID:25695429

  5. NEPHROBLASTOMA OVEREXPRESSED (NOV) INDUCES GREMLIN IN ST-2 STROMAL CELL LINES BY POST-TRANSCRIPTIONAL MECHANISMS

    PubMed Central

    Smerdel-Ramoya, Anna; Zanotti, Stefano; Canalis, Ernesto

    2010-01-01

    Nephroblastoma overexpressed (Nov) inhibits osteoblastogenesis in part because it binds bone morphogenetic protein (BMP)-2. In the present study, we investigated whether Nov regulated the expression of the BMP antagonist gremlin. Overexpression of Nov increased gremlin mRNA levels in ST-2 cells, and its downregulation by RNA interference decreased gremlin mRNA. Nov did not affect Grem1 transcription, but prolonged the half-life of gremlin mRNA in ST-2 cells, demonstrating that Nov acts by post-transcriptional mechanisms. This was confirmed by demonstrating that downregulation of Nov destabilizes gremlin transcripts. To assess whether the 3′-untranslated region (UTR) of gremlin mRNA mediated the effect of Nov, the decay of a chimeric cfos gremlin 3′-UTR construct was compared to that of cfos in ST-2 cells. The presence of the gremlin 3′-UTR prolonged the half-life of cfos and was responsible for the effect of Nov. To examine the binding of the gremlin 3′-UTR to ribonucleoproteins, radiolabeled gremlin RNA fragments were incubated with cytosolic extracts from Nov overexpressing and control cells. RNA electrophoretic mobility analysis revealed that Nov enhanced the binding of cytosolic proteins to the fragments spanning the 3′-UTR of gremlin between bases 1358–1557 and 1158–1357 from the transcriptional start. Mutations of AU-rich elements in these two RNA fragments prevented the formation of RNA-protein complexes induced by Nov. Nov did not alter the binding of cytosolic extracts to sequences present in the 5′-UTR or coding region of gremlin. In conclusion, Nov stabilizes gremlin transcripts, and this effect is possibly mediated by AU-rich elements present in the 3′-UTR of gremlin. PMID:21268093

  6. Over-expression of TRESK K(+) channels reduces the excitability of trigeminal ganglion nociceptors.

    PubMed

    Guo, Zhaohua; Cao, Yu-Qing

    2014-01-01

    TWIK-related spinal cord K(+) (TRESK) channel is abundantly expressed in trigeminal ganglion (TG) and dorsal root ganglion neurons and is one of the major background K(+) channels in primary afferent neurons. Mutations in TRESK channels are associated with familial and sporadic migraine. In rats, both chronic nerve injury and inflammation alter the expression level of TRESK mRNA. Functional studies indicate that reduction of endogenous TRESK channel activity results in hyper-excitation of primary afferent neurons, suggesting that TRESK is a potential target for the development of new analgesics. However, whether and how enhancing TRESK channel activity would decrease the excitability of primary afferent neurons has not been directly tested. Here, we over-expressed TRESK subunits in cultured mouse TG neurons by lipofectamine-mediated transfection and investigated how this altered the membrane properties and the excitability of the small-diameter TG population. To account for the heterogeneity of neurons, we further divided small TG neurons into two groups, based on their ability to bind to fluorescently-labeled isolectin B (IB4). The transfected TG neurons showed a 2-fold increase in the level of TRESK proteins. This was accompanied by a significant increase in the fraction of lamotrigine-sensitive persistent K(+) currents as well as the size of total background K(+) currents. Consequently, both IB4-positive and IB4-negative TG neurons over-expressing TRESK subunits exhibited a lower input resistance and a 2-fold increase in the current threshold for action potential initiation. IB4-negative TG neurons over-expressing TRESK subunits also showed a significant reduction of the spike frequency in response to supra-threshold stimuli. Importantly, an increase in TRESK channel activity effectively inhibited capsaicin-evoked spikes in TG neurons. Taken together, our results suggest that potent and specific TRESK channel openers likely would reduce the excitability of

  7. Transgene produces massive overexpression of human beta -glucuronidase in mice, lysosomal storage of enzyme, and strain-dependent tumors.

    PubMed

    Vogler, Carole; Galvin, Nancy; Levy, Beth; Grubb, Jeffery; Jiang, Jinxing; Zhou, Xiao Yan; Sly, William S

    2003-03-04

    beta-Glucuronidase (GUSB) is a lysosomal enzyme important in the normal step-wise degradation of glycosaminoglycans. Deficiency of GUSB causes the lysosomal storage disease mucopolysaccharidosis VII (MPS VII, Sly disease). Affected patients have widespread progressive accumulation of beta-glucuronide-containing glycosaminoglycans in lysosomes. Enzyme replacement, bone marrow transplantation, and gene therapy can correct lysosomal storage in the MPS VII mouse model. Gene therapy in MPS VII patients and animals may result in massive overexpression of GUSB in individual tissues, and the toxicity of such overexpression is incompletely investigated. To gain insight into the effect of massive overexpression of GUSB, we established 19 transgenic mouse lines, two of which expressed very high levels of human GUSB in many tissues. The founder overexpressing mice had from >100- to several thousand-fold increases in tissue and serum GUSB. The enzyme expression in most tissues decreased in subsequent generations in one line, and expression in liver and marrow fell in subsequent generations of the other. Both lines had morphologically similar widespread lysosomal storage of GUSB and secondary elevations of other lysosomal enzymes, a finding characteristic of lysosomal storage disease. One line developed tumors, and one did not. These transgenic models show that massive overexpression of a lysosomal enzyme can be associated with dramatic morphological alterations, which, at least in one of the two lines, had little clinical consequence. For the other transgenic line, the high frequency of tumor development in F(2) FVB progeny suggests that the vector used to generate the transgenic lines has an integration site-dependent potential to be oncogenic, at least in this strain background.

  8. CYP2J2 Overexpression Ameliorates Hyperlipidemia via Increased Fatty Acid Oxidation Mediated by the AMPK Pathway

    PubMed Central

    Zhang, Shasha; Chen, Guangzhi; Li, Ning; Dai, Meiyan; Chen, Chen; Wang, Peihua; Tang, Huiru; Hoopes, Samantha L.; Zeldin, Darryl C.; Wang, Dao Wen; Xu, Xizhen

    2015-01-01

    Objective The study aims to investigate the effect of Cytochrome P450 2J2 (CYP2J2) overexpression on hyperlipidemia in mice and further to explore their effect on fatty acid oxidation in vivo and in vitro. Methods The effects and mechanisms of endothelial-specific CYP2J2 transgene (Tie2-CYP2J2-Tr) on lipid and fatty acids metabolism were investigated in high fat diet (HFD)-treated mice. HepG2, LO2 cells and HUVECs were exposed to 0.4 mM free fatty acid (FFA) for 24h and used as a model to investigate the roles of CYP2J2 overexpression and epoxyeicosatrienoic acids (EETs) on fatty acid β oxidation in vitro. Results Tie2-CYP2J2-Tr mice had significantly lower plasma and liver triglycerides, lower liver cholesterol and fatty acids, and the reduction in HFD-induced lipid accumulation. CYP2J2 overexpression resulted in activation of the hepatic and endothelial AMPKα, increased ACC phosphorylation, increased expression of CPT-1 and PPARα, which were all reduced by HFD treatment. In FFA-treated HepG2, LO2 and HUVECs, both CYP2J2 overexpression and EETs significantly decreased lipid accumulation and increased fatty acid oxidation via activating the AMPK and PPARα pathway. Conclusions Endothelial specific CYP2J2 overexpression alleviates HFD–induced hyperlipidemia in vivo. CYP2J2 ameliorates FFA-induced dyslipidemia via increased fatty acid oxidation mediated by the AMPK and PPARα pathway. PMID:26053032

  9. Profound bradycardia with decreased PEEP.

    PubMed

    Wilcox, Susan R; Kansagra, Ankit; Richards, Jeremy B

    2013-11-01

    An athletic 21-year-old male was admitted to the surgical ICU after sustaining 2 stab wounds to his torso. He had an episode of left lung collapse early in his course, managed with suctioning and increased PEEP, to 15 cm H2O. He was bradycardic (heart rates 50-60 beats/min) throughout his ICU stay, but when the PEEP was lowered to 5 cm H2O in preparation for extubation, he developed sinus pauses and his heart rate dropped to 20 beats/min. After a thorough evaluation, the drop in his heart rate was determined to be due to increased vagal tone from increased cardiac output with the decreased PEEP. After premedication with glycopyrrolate, he was successfully extubated the following day, while his heart rate remained at his baseline of 50 beats/min. We review the physiologic mechanisms of bradycardia due to the removal of mechanical ventilation.

  10. Hyperhomocysteinemia decreases bone blood flow.

    PubMed

    Tyagi, Neetu; Vacek, Thomas P; Fleming, John T; Vacek, Jonathan C; Tyagi, Suresh C

    2011-01-25

    Elevated plasma levels of homocysteine (Hcy), known as hyperhomocysteinemia (HHcy), are associated with osteoporosis. A decrease in bone blood flow is a potential cause of compromised bone mechanical properties. Therefore, we hypothesized that HHcy decreases bone blood flow and biomechanical properties. To test this hypothesis, male Sprague-Dawley rats were treated with Hcy (0.67 g/L) in drinking water for 8 weeks. Age-matched rats served as controls. At the end of the treatment period, the rats were anesthetized. Blood samples were collected from experimental or control rats. Biochemical turnover markers (body weight, Hcy, vitamin B(12), and folate) were measured. Systolic blood pressure was measured from the right carotid artery. Tibia blood flow was measured by laser Doppler flow probe. The results indicated that Hcy levels were significantly higher in the Hcy-treated group than in control rats, whereas vitamin B(12) levels were lower in the Hcy-treated group compared with control rats. There was no significant difference in folate concentration and blood pressure in Hcy-treated versus control rats. The tibial blood flow index of the control group was significantly higher (0.78 ± 0.09 flow unit) compared with the Hcy-treated group (0.51 ± 0.09). The tibial mass was 1.1 ± 0.1 g in the control group and 0.9 ± 0.1 in the Hcy-treated group. The tibia bone density was unchanged in Hcy-treated rats. These results suggest that Hcy causes a reduction in bone blood flow, which contributes to compromised bone biomechanical properties.

  11. Overexpression of Robo2 causes defects in the recruitment of metanephric mesenchymal cells and ureteric bud branching morphogenesis

    SciTech Connect

    Ji, Jiayao; Li, Qinggang; Xie, Yuansheng; Zhang, Xueguang; Cui, Shaoyuan; Shi, Suozhu; Chen, Xiangmei

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Overexpression of Robo2 caused reduced UB branching and glomerular number. Black-Right-Pointing-Pointer Fewer MM cells surrounding the UB after overexpression of Robo2 in vitro. Black-Right-Pointing-Pointer No abnormal Epithelial Morphology of UB or apoptosis of mm cells in the kidney. Black-Right-Pointing-Pointer Overexpression of Robo2 affected MM cells migration and caused UB deficit. Black-Right-Pointing-Pointer The reduced glomerular number can also be caused by fewer MM cells. -- Abstract: Roundabout 2 (Robo2) is a member of the membrane protein receptor family. The chemorepulsive effect of Slit2-Robo2 signaling plays vital roles in nervous system development and neuron migration. Slit2-Robo2 signaling is also important for maintaining the normal morphogenesis of the kidney and urinary collecting system, especially for the branching of the ureteric bud (UB) at the proper site. Slit2 or Robo2 mouse mutants exhibit multilobular kidneys, multiple ureters, and dilatation of the ureter, renal pelvis, and collecting duct system, which lead to vesicoureteral reflux. To understand the effect of Robo2 on kidney development, we used microinjection and electroporation to overexpress GFP-Robo2 in an in vitro embryonic kidney model. Our results show reduced UB branching and decreased glomerular number after in vitro Robo2 overexpression in the embryonic kidneys. We found fewer metanephric mesenchymal (MM) cells surrounding the UB but no abnormal morphology in the branching epithelial UB. Meanwhile, no significant change in MM proliferation or apoptosis was observed. These findings indicate that Robo2 is involved in the development of embryonic kidneys and that the normal expression of Robo2 can help maintain proper UB branching and glomerular morphogenesis. Overexpression of Robo2 leads to reduced UB branching caused by fewer surrounding MM cells, but MM cell apoptosis is not involved in this effect. Our study demonstrates that

  12. Transgenic switchgrass (Panicum virgatum L.) biomass is increased by overexpression of switchgrass sucrose synthase (PvSUS1).

    PubMed

    Poovaiah, Charleson R; Mazarei, Mitra; Decker, Stephen R; Turner, Geoffrey B; Sykes, Robert W; Davis, Mark F; Stewart, C Neal

    2015-04-01

    Sucrose synthase (SUS) converts sucrose and uridine di-phosphate (UDP) into UDP-glucose and fructose. UDP-glucose is used by the cellulose synthase to produce cellulose for cell wall biosynthesis. For lignocellulosic feedstocks such as switchgrass, the manipulation of cell walls to decrease lignin content is needed to reduce recalcitrance of conversion of biomass into biofuels. Of perhaps equal importance for bioenergy feedstocks is increasing biomass. Four SUS genes were identified in switchgrass. Each gene contained 14 or 15 introns. PvSUS1 was expressed ubiquitously in the tissues tested. PvSUS2 and PvSUS6 were highly expressed in internodes and roots, respectively. PvSUS4 was expressed in low levels in the tissues tested. Transgenic switchgrass plants overexpressing PvSUS1 had increases in plant height by up to 37%, biomass by up to 13.6%, and tiller number by up to 79% compared to control plants. The lignin content was increased in all lines, while the sugar release efficiency was decreased in PvSUS1-overexpressing transgenic switchgrass plants. For switchgrass and other bioenergy feedstocks, the overexpression of SUS1 genes might be a feasible strategy to increase both plant biomass and cellulose content, and to stack with other genes to increase biofuel production per land area cultivated.

  13. Overexpression of protein kinase C in HT29 colon cancer cells causes growth inhibition and tumor suppression.

    PubMed Central

    Choi, P M; Tchou-Wong, K M; Weinstein, I B

    1990-01-01

    By using a retrovirus-derived vector system, we generated derivatives of the human colon cancer cell line HT29 that stably overexpress a full-length cDNA encoding the beta 1 isoform of rat protein kinase C (PKC). Two of these cell lines, PKC6 and PKC7, displayed an 11- to 15-fold increase in PKC activity when compared with the C1 control cell line that carries the vector lacking the PKC cDNA insert. Both of the overexpresser cell lines exhibited striking alterations in morphology when exposed to the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Following exposure to TPA, PKC6 and PKC7 cells displayed increased doubling time, decreased saturation density, and loss of anchorage-independent growth in soft agar; but these effects were not seen with the C1 cells. Also, in contrast to the control cells, the PKC-overproducing cells failed to display evidence of differentiation, as measured by alkaline phosphatase activity, when exposed to sodium butyrate. In addition, the PKC-overexpresser cells displayed decreased tumorigenicity in nude mice, even in the absence of treatment with TPA. These results provide the first direct evidence that PKC can inhibit tumor cell growth. Thus, in some tumors, PKC might act as a growth-suppressor gene. Images PMID:2388620

  14. Overexpression of esterase D in kidney from trisomy 13 fetuses.

    PubMed Central

    Loughna, S; Bennett, P; Gau, G; Nicolaides, K; Blunt, S; Moore, G

    1993-01-01

    Human trisomy 13 (Patau syndrome) occurs in approximately 1 in 5,000 live births. It is compatible with life, but prolonged survival is rare. Anomalies often involve the urogenital, cardiac, craniofacial, and central nervous systems. It is possible that these abnormalities may be due to the overexpression of developmentally important genes on chromosome 13. The expression of esterase D (localized to chromosome 13q14.11) has been investigated in both muscle and kidney from trisomy 13 fetuses and has been compared with normal age- and sex-matched fetal tissues, by using northern analysis. More than a twofold increase in expression of esterase D was found in the kidney of two trisomy 13 fetuses, with normal levels in a third. Overexpression was not seen in the muscle tissues from these fetuses. Images Figure 1 Figure 2 Figure 3 PMID:8213811

  15. Enhanced learning after genetic overexpression of a brain growth protein.

    PubMed

    Routtenberg, A; Cantallops, I; Zaffuto, S; Serrano, P; Namgung, U

    2000-06-20

    Ramón y Cajal proposed 100 years ago that memory formation requires the growth of nerve cell processes. One-half century later, Hebb suggested that growth of presynaptic axons and postsynaptic dendrites consequent to coactivity in these synaptic elements was essential for such information storage. In the past 25 years, candidate growth genes have been implicated in learning processes, but it has not been demonstrated that they in fact enhance them. Here, we show that genetic overexpression of the growth-associated protein GAP-43, the axonal protein kinase C substrate, dramatically enhanced learning and long-term potentiation in transgenic mice. If the overexpressed GAP-43 was mutated by a Ser --> Ala substitution to preclude its phosphorylation by protein kinase C, then no learning enhancement was found. These findings provide evidence that a growth-related gene regulates learning and memory and suggest an unheralded target, the GAP-43 phosphorylation site, for enhancing cognitive ability.

  16. The Angiogenic Secretome in VEGF overexpressing Breast Cancer Xenografts

    PubMed Central

    Dore-Savard, Louis; Lee, Esak; Kakkad, Samata; Popel, Aleksander S.; Bhujwalla, Zaver M.

    2016-01-01

    The plasticity of cancer cells and the fluidity of the tumor microenvironment continue to present major challenges in the comprehensive understanding of cancer that is essential to design effective treatments. The tumor interstitial fluid (TIF) encompasses the secretome and holds the key to several of the phenotypic characteristics of cancer. Difficulties in sampling this fluid have resulted in limited characterization of its components. Here we have sampled TIF from triple negative and estrogen receptor (ER)-positive human breast tumor xenografts with or without VEGF overexpression. Angiogenesis-related factors were characterized in the TIF and plasma, to understand the relationship between the TIF and plasma secretomes. Clear differences were observed between the TIF and plasma angiogenic secretomes in triple negative MDA-MB-231 breast cancer xenografts compared to ER-positive MCF-7 xenografts with or without VEGF overexpression that provide new insights into TIF components and the role of VEGF in modifying the angiogenic secretome. PMID:27995973

  17. Overexpression of α (1,6) fucosyltransferase associated with aggressive prostate cancer.

    PubMed

    Wang, Xiangchun; Chen, Jing; Li, Qing Kay; Peskoe, Sarah B; Zhang, Bai; Choi, Caitlin; Platz, Elizabeth A; Zhang, Hui

    2014-10-01

    Aberrant protein glycosylation is known to be associated with the development of cancers. The aberrant glycans are produced by the combined actions of changed glycosylation enzymes, substrates and transporters in glycosylation synthesis pathways in cancer cells. To identify glycosylation enzymes associated with aggressive prostate cancer (PCa), we analyzed the difference in the expression of glycosyltransferase genes between aggressive and non-aggressive PCa. Three candidate genes encoding glycosyltransferases that were elevated in aggressive PCa were subsequently selected. The expression of the three candidates was then further evaluated in androgen-dependent (LNCaP) and androgen-independent (PC3) PCa cell lines. We found that the protein expression of one of the glycosyltransferases, α (1,6) fucosyltransferase (FUT8), was only detected in PC3 cells, but not in LNCaP cells. We further showed that FUT8 protein expression was elevated in metastatic PCa tissues compared to normal prostate tissues. In addition, using tissue microarrays, we found that FUT8 overexpression was statistically associated with PCa with a high Gleason score. Using PC3 and LNCaP cells as models, we found that FUT8 overexpression in LNCaP cells increased PCa cell migration, while loss of FUT8 in PC3 cells decreased cell motility. Our results suggest that FUT8 may be associated with aggressive PCa and thus is potentially useful for its prognosis.

  18. IL-6 Overexpression in ERG-Positive Prostate Cancer Is Mediated by Prostaglandin Receptor EP2.

    PubMed

    Merz, Constanze; von Mässenhausen, Anne; Queisser, Angela; Vogel, Wenzel; Andrén, Ove; Kirfel, Jutta; Duensing, Stefan; Perner, Sven; Nowak, Michael

    2016-04-01

    Prostate cancer is the most diagnosed cancer in men and multiple risk factors and genetic alterations have been described. The TMPRSS2-ERG fusion event and the overexpression of the transcription factor ERG are present in approximately 50% of all prostate cancer patients, however, the clinical outcome is still controversial. Prostate tumors produce various soluble factors, including the pleiotropic cytokine IL-6, regulating cellular processes such as proliferation and metastatic segregation. Here, we used prostatectomy samples in a tissue microarray format and analyzed the co-expression and the clinicopathologic data of ERG and IL-6 using immunohistochemical double staining and correlated the read-out with clinicopathologic data. Expression of ERG and IL-6 correlated strongly in prostate tissue samples. Forced expression of ERG in prostate tumor cell lines resulted in significantly increased secretion of IL-6, whereas the down-regulation of ERG decreased IL-6 secretion. By dissecting the underlying mechanism in prostate tumor cell lines we show the ERG-mediated up-regulation of the prostanoid receptors EP2 and EP3. The prostanoid receptor EP2 was overexpressed in human prostate cancer tissue. Furthermore, the proliferation rate and IL-6 secretion in DU145 cells was reduced after treatment with EP2-receptor antagonist. Collectively, our study shows that the expression of ERG in prostate cancer is linked to the expression of IL-6 mediated by the prostanoid receptor EP2.

  19. Catalase overexpression reduces the germination time and increases the pathogenicity of the fungus Metarhizium anisopliae.

    PubMed

    Morales Hernandez, Claudia Erika; Padilla Guerrero, Israel Enrique; Gonzalez Hernandez, Gloria Angelica; Salazar Solis, Eduardo; Torres Guzman, Juan Carlos

    2010-07-01

    Catalases and peroxidases are the most important enzymes that degrade hydrogen peroxide into water and oxygen. These enzymes and superoxide dismutase are the first lines of cell defense against reactive oxygen species. Metarhizium anisopliae displays an increase in catalase-peroxidase activity during germination and growth. To determine the importance of catalase during the invasion process of M. anisopliae, we isolated the cat1 gene. cat1 cDNA expression in Escherichia coli and the subsequent purification of the protein confirmed that the cat1 gene codes for a monofunctional catalase. Expression analysis of this gene by RT-PCR from RNA isolated from fungus grown in liquid cultures showed a decrease in the expression level of the cat1 gene during germination and an increase during mycelium growth. The expression of this gene in the fungus during the infection process of the larvae of Plutella xylostella also showed a significant increase during invasive growth. Transgenic strains overexpressing the cat1 gene had twice the catalase activity of the wild-type strain. This increase in catalase activity was accompanied by a higher level of resistance to exogenous hydrogen peroxide and a reduction in the germination time. This improvement was also observed during the infection of P. xylostella larvae. M. anisopliae transgenic strains overexpressing the cat1 gene grew and spread faster in the soft tissue of the insect, reducing the time to death of the insect by 25% and the dose required to kill 50% of the population 14-fold.

  20. Overexpressed active Notch1 induces cell growth arrest of HeLa cervical carcinoma cells.

    PubMed

    Wang, L; Qin, H; Chen, B; Xin, X; Li, J; Han, H

    2007-01-01

    Human cervical carcinoma is one of the most common malignant tumors, but the mechanisms that orchestrate the multiple oncogenic insults required for initiation and progression are not clear. Notch signaling plays a critical role in maintaining the balance between cell proliferation, differentiation, and apoptosis, but perturbed Notch signaling may contribute to tumorigenesis. We now show that Notch1 is detected in all cervical cancer, including advanced diseases. We also constitutively overexpressed active Notch1 in human cervical carcinoma to explore the effects of Notch1 signaling on human cervical carcinoma cell growth and to investigate the underlying molecular mechanisms. The signaling may participate in the development of human cervical carcinoma cells, but overexpressed active Notch1 inhibits their growth through induction of cell cycle arrest. Increased Notch1 signaling induced a downmodulation of human papillomavirus transcription through suppression of activator protein (AP)-1 activity by upregulation of c-Jun and the decreased expression of c-Fos. Thus, Notch1 signaling plays a key role and exerts dual effects, functioning in context-specific manner.

  1. OsLBD3-7 Overexpression Induced Adaxially Rolled Leaves in Rice

    PubMed Central

    Zhang, Chunyu; Shao, Qinghao; Liu, Jun; Liu, Bin; Li, Hongyu

    2016-01-01

    Appropriate leaf rolling enhances erect-leaf habits and photosynthetic efficiency, which consequently improves grain yield. Here, we reported the novel lateral organ boundaries domain (LBD) gene OsLBD3-7, which is involved in the regulation of leaf rolling. OsLBD3-7 works as a transcription activator and its protein is located on the plasma membrane and in the nucleus. Overexpression of OsLBD3-7 leads to narrow and adaxially rolled leaves. Microscopy of flag leaf cross-sections indicated that overexpression of OsLBD3-7 led to a decrease in both bulliform cell size and number. Transcriptional analysis showed that key genes that had been reported to be negative regulators of bulliform cell development were up-regulated in transgenic plants. These results indicated that OsLBD3-7 might acts as an upstream regulatory gene of bulliform cell development to regulate leaf rolling, which will give more insights on the leaf rolling regulation mechanism. PMID:27258066

  2. Overexpression of mineralocorticoid and transdominant glucocorticoid receptor blocks the impairing effects of glucocorticoids on memory.

    PubMed

    Ferguson, Deveroux; Sapolsky, Robert

    2008-01-01

    It is well established that mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) influence hippocampal-dependent spatial memory. MRs are saturated in the presence of low corticosterone (CORT) levels; consequently receptor protein levels play a rate-limiting role in regulating the positive effects of MR-mediated gene transcription. In this study, viral vector-mediated transgene expression was used to simultaneously manipulate both MR and GR signaling. This approach allowed us to investigate the effects of spatially restricted overexpression of MR and a negative transdominant GR (TD) in the dentate gyrus (DG) subfield of the hippocampus, on short term and long term spatial memory in animals overexpressing one copy of MR or TD, two copies of MR ("MR/MR"), or one copy of each ("MR/TD"). Expression of transgenes did not influence the acquisition (learning) phase of the Morris water maze task. However, we found an overall enhancing effect of MR/MR expression on short term memory performance. In addition, rats expressing TD and MR/TD blocked the high CORT-induced impairments on long term spatial memory retrieval. These findings illustrate the potential beneficial effects of increasing MR signaling or decreasing GR signaling to enhance specific aspects of cognitive function.

  3. Metabolic profiling reveals altered sugar and secondary metabolism in response to UGPase overexpression in Populus

    SciTech Connect

    Payyavula, Raja S.; Tschaplinski, Timothy J.; Jawdy, Sara; Sykes, Robert; Tuskan, Gerald A.; Kalluri, Udaya C.

    2014-10-07

    Background: UDP-glucose pyrophopharylase (UGPase) is a sugar metabolizing enzyme (E.C. 2.7.7.9) that catalyzes a reversible reaction of UDP-glucose and pyrophosphate from glucose-1-phosphate and uridine triphosphate glucose. UDP-glucose is a key intermediate sugar that is channeled to multiple metabolic pathways. The functional role of UGPase in woody plants such as Populus is poorly understood. Results: We characterized the functional role of UGPase in Populus deltoides by overexpressing a native gene. Overexpression of the native gene resulted in increased leaf area and leaf-to-shoot biomass ratio but decreased shoot and root growth. Metabolomic analyses showed that manipulation of UGPase results in perturbations in primary as well as secondary metabolism resulting in reduced sugar and starch levels and increased phenolics such as caffeoyl- and feruloyl conjugates. While cellulose and lignin levels in the cell walls were not significantly altered, the syringyl-to-guaiacyl ratio was significantly reduced. Conclusions: These results demonstrate that UGPase plays a key role in the tightly coupled primary and secondary metabolic pathways and perturbation in its function results in pronounced effects on growth and metabolism outside of cell wall biosynthesis of Populus.

  4. Metabolic profiling reveals altered sugar and secondary metabolism in response to UGPase overexpression in Populus

    DOE PAGES

    Payyavula, Raja S.; Tschaplinski, Timothy J.; Jawdy, Sara; ...

    2014-10-07

    Background: UDP-glucose pyrophopharylase (UGPase) is a sugar metabolizing enzyme (E.C. 2.7.7.9) that catalyzes a reversible reaction of UDP-glucose and pyrophosphate from glucose-1-phosphate and uridine triphosphate glucose. UDP-glucose is a key intermediate sugar that is channeled to multiple metabolic pathways. The functional role of UGPase in woody plants such as Populus is poorly understood. Results: We characterized the functional role of UGPase in Populus deltoides by overexpressing a native gene. Overexpression of the native gene resulted in increased leaf area and leaf-to-shoot biomass ratio but decreased shoot and root growth. Metabolomic analyses showed that manipulation of UGPase results in perturbations inmore » primary as well as secondary metabolism resulting in reduced sugar and starch levels and increased phenolics such as caffeoyl- and feruloyl conjugates. While cellulose and lignin levels in the cell walls were not significantly altered, the syringyl-to-guaiacyl ratio was significantly reduced. Conclusions: These results demonstrate that UGPase plays a key role in the tightly coupled primary and secondary metabolic pathways and perturbation in its function results in pronounced effects on growth and metabolism outside of cell wall biosynthesis of Populus.« less

  5. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene confers drought tolerance in maize (Zea mays L.).

    PubMed

    Lu, Yao; Li, Yajun; Zhang, Jiachang; Xiao, Yitao; Yue, Yuesen; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2013-01-01

    Abscisic acid (ABA) is a key component of the signaling system that integrates plant adaptive responses to abiotic stress. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene (LOS5) in maize markedly enhanced the expression of ZmAO and aldehyde oxidase (AO) activity, leading to ABA accumulation and increased drought tolerance. Transgenic maize (Zea mays L.) exhibited the expected reductions in stomatal aperture, which led to decreased water loss and maintenance of higher relative water content (RWC) and leaf water potential. Also, transgenic maize subjected to drought treatment exhibited lower leaf wilting, electrolyte leakage, malondialdehyde (MDA) and H(2)O(2) content, and higher activities of antioxidative enzymes and proline content compared to wild-type (WT) maize. Moreover, overexpression of LOS5 enhanced the expression of stress-regulated genes such as Rad 17, NCED1, CAT1, and ZmP5CS1 under drought stress conditions, and increased root system development and biomass yield after re-watering. The increased drought tolerance in transgenic plants was associated with ABA accumulation via activated AO and expression of stress-related gene via ABA induction, which sequentially induced a set of favorable stress-related physiological and biochemical responses.

  6. Overexpression of the yeast transcriptional activator ADR1 induces mutation of the mitochondrial genome.

    PubMed

    Cherry, J R; Denis, C L

    1989-05-01

    It was previously observed that increased dosages of the ADR1 gene, which encodes a yeast transcriptional activator required for alcohol dehydrogenase II (ADH II) expression, cause a decreased rate of growth in medium containing ethanol as the carbon source. Here we show that observed reduction in growth rate is mediated by the ADR1 protein which, when overexpressed, increases the frequency of cytoplasmic petites. Unlike previously characterized mutations known to potentiate petite formation, the ADR1 effect is dominant, with the petite frequency rising concomitantly with increasing ADR1 dosage. The ability of ADR1 to increase the frequency of mitochondrial mutation is correlated with its ability to activate ADH II transcription but is independent of the level of ADH II being expressed. Based on restoration tests using characterized mit- strains, ADR1 appears to cause non-specific deletions within the mitochondrial genome to produce rho- petites. Pedigree analysis of ADR1-overproducing strains indicates that only daughter cells become petite. This pattern is analogous to that observed for petite induction by growth at elevated temperature and by treatment with the acridine dye euflavine. One strain resistant to ADR1-induced petite formation displayed cross-resistance to petite mutation by growth at elevated temperature and euflavine treatment, yet was susceptible to petite induction by ethidium bromide. These results suggest that ADR1 overexpression disrupts the fidelity of mitochondrial DNA replication or repair.

  7. Seeding and transgenic overexpression of alpha-synuclein triggers dendritic spine pathology in the neocortex.

    PubMed

    Blumenstock, Sonja; Rodrigues, Eva F; Peters, Finn; Blazquez-Llorca, Lidia; Schmidt, Felix; Giese, Armin; Herms, Jochen

    2017-03-28

    Although misfolded and aggregated α-synuclein (α-syn) is recognized in the disease progression of synucleinopathies, its role in the impairment of cortical circuitries and synaptic plasticity remains incompletely understood. We investigated how α-synuclein accumulation affects synaptic plasticity in the mouse somatosensory cortex using two distinct approaches. Long-term in vivo imaging of apical dendrites was performed in mice overexpressing wild-type human α-synuclein. Additionally, intracranial injection of preformed α-synuclein fibrils was performed to induce cortical α-syn pathology. We find that α-synuclein overexpressing mice show decreased spine density and abnormalities in spine dynamics in an age-dependent manner. We also provide evidence for the detrimental effects of seeded α-synuclein aggregates on dendritic architecture. We observed spine loss as well as dystrophic deformation of dendritic shafts in layer V pyramidal neurons. Our results provide a link to the pathophysiology underlying dementia associated with synucleinopathies and may enable the evaluation of potential drug candidates on dendritic spine pathology in vivo.

  8. FNDC5 overexpression and irisin ameliorate glucose/lipid metabolic derangements and enhance lipolysis in obesity.

    PubMed

    Xiong, Xiao-Qing; Chen, Dan; Sun, Hai-Jian; Ding, Lei; Wang, Jue-Jin; Chen, Qi; Li, Yue-Hua; Zhou, Ye-Bo; Han, Ying; Zhang, Feng; Gao, Xing-Ya; Kang, Yu-Ming; Zhu, Guo-Qing

    2015-09-01

    Irisin is a cleaved and secreted fragment of fibronectin type III domain containing 5 (FNDC5), and contributes to the beneficial effects of exercise on metabolism. Here we report the therapeutical effects of FNDC5/irisin on metabolic derangements and insulin resistance in obesity, and show the lipolysis effect of irisin and its signal molecular mechanism. In obese mice, lentivirus mediated-FNDC5 overexpression enhanced energy expenditure, lipolysis and insulin sensitivity, and reduced hyperlipidemia, hyperglycemia, hyperinsulinism, blood pressure and norepinephrine levels; it increased hormone-sensitive lipase (HSL) expression and phosphorylation, and reduced perilipin level and adipocyte diameter in adipose tissues. Subcutaneous perfusion of irisin reduced hyperlipidemia and hyperglycemia, and improved insulin resistance. Either FNDC5 overexpression or irisin perfusion only induced a tendency toward a slight decrease in body weight in obese mice. In 3T3-L1 adipocytes, irisin enhanced basal lipolysis rather than isoproterenol-induced lipolysis, which were prevented by inhibition of adenylate cyclase or PKA; irisin increased the HSL and perilipin phosphorylation; it increased PKA activity, and cAMP and HSL mRNA levels, but reduced perilipin expression. These results indicate that FNDC5/irisin ameliorates glucose/lipid metabolic derangements and insulin resistance in obese mice, and enhances lipolysis via cAMP-PKA-HSL/perilipin pathway. FNDC5 or irisin can be taken as an effective therapeutic strategy for metabolic disorders.

  9. Bacterial glyphosate resistance conferred by overexpression of an E. coli membrane efflux transporter.

    PubMed

    Staub, Jeffrey M; Brand, Leslie; Tran, Minhtien; Kong, Yifei; Rogers, Stephen G

    2012-04-01

    Glyphosate herbicide-resistant crop plants, introduced commercially in 1994, now represent approximately 85% of the land area devoted to transgenic crops. Herbicide resistance in commercial glyphosate-resistant crops is due to expression of a variant form of a bacterial 5-enolpyruvylshikimate-3-phosphate synthase with a significantly decreased binding affinity for glyphosate at the target site of the enzyme. As a result of widespread and recurrent glyphosate use, often as the only herbicide used for weed management, increasing numbers of weedy species have evolved resistance to glyphosate. Weed resistance is most often due to changes in herbicide translocation patterns, presumed to be through the activity of an as yet unidentified membrane transporter in plants. To provide insight into glyphosate resistance mechanisms and identify a potential glyphosate transporter, we screened Escherichia coli genomic DNA for alternate sources of glyphosate resistance genes. Our search identified a single non-target gene that, when overexpressed in E. coli and Pseudomonas, confers high-level glyphosate resistance. The gene, yhhS, encodes a predicted membrane transporter of the major facilitator superfamily involved in drug efflux. We report here that an alternative mode of glyphosate resistance in E. coli is due to reduced accumulation of glyphosate in cells that overexpress this membrane transporter and discuss the implications for potential alternative resistance mechanisms in other organisms such as plants.

  10. Changes in brain cholinergic markers and spatial learning in old galanin-overexpressing mice.

    PubMed

    Pirondi, S; D'Intino, G; Gusciglio, M; Massella, A; Giardino, L; Kuteeva, E; Ogren, S-O; Hökfelt, T; Calzà, L

    2007-03-23

    The cholinergic forebrain system is involved in learning and memory, and its age-dependent decline correlates with a decrease in cognitive performance. Since the neuropeptide galanin participates in cholinergic neuron regulation, we have studied 19- to 23-month-old male mice overexpressing galanin under the platelet-derived growth factor B promoter (GalOE) and wild-type (WT) littermates by monitoring behavioral, neurochemical and morphological/histochemical parameters. In the Morris water maze test, old transgenic animals showed a significant impairment in escape latency in the hidden platform test compared to age-matched WT animals. The morphological/histochemical studies revealed that cholinergic neurons in the basal forebrain display a slight, age- but not genotype-related, alteration in choline acetyltransferase- (ChAT) immunoreactivity. The neurochemical studies showed an age-related decline in ChAT activity in the cerebral cortex of all mice, whereas in the hippocampal formation this effect was seen in GalOE but not WT animals. Expression of BDNF mRNA in the hippocampal formation, as evaluated by RT-PCR, was reduced in old animals; no age- or genotype-induced variations in NGF mRNA expression were observed. These data suggest that galanin overexpression further accentuates the age-related decline of the cholinergic system activity in male mice, resulting in impairment of water maze performance in old animals.

  11. Human Neural Stem Cells Overexpressing Choline Acetyltransferase Restore Unconditioned Fear in Rats with Amygdala Injury

    PubMed Central

    Shin, Kyungha; Cha, Yeseul; Kim, Kwang Sei; Choi, Ehn-Kyoung; Choi, Youngjin; Guo, Haiyu; Ban, Young-Hwan; Kim, Jong-Choon; Park, Dongsun; Kim, Yun-Bae

    2016-01-01

    Amygdala is involved in the fear memory that recognizes certain environmental cues predicting threatening events. Manipulation of neurotransmission within the amygdala affects the expression of conditioned and unconditioned emotional memories such as fear freezing behaviour. We previously demonstrated that F3.ChAT human neural stem cells (NSCs) overexpressing choline acetyltransferase (ChAT) improve cognitive function of Alzheimer's disease model rats with hippocampal or cholinergic nerve injuries by increasing acetylcholine (ACh) level. In the present study, we examined the effect of F3.ChAT cells on the deficit of unconditioned fear freezing. Rats given N-methyl-d-aspartate (NMDA) in their amygdala 2 weeks prior to cat odor exposure displayed very short resting (freezing) time compared to normal animals. NMDA induced neuronal degeneration in the amygdala, leading to a decreased ACh concentration in cerebrospinal fluid. However, intracerebroventricular transplantation of F3.ChAT cells attenuated amygdala lesions 4 weeks after transplantation. The transplanted cells were found in the NMDA-injury sites and produced ChAT protein. In addition, F3.ChAT-receiving rats recuperated freezing time staying remote from the cat odor source, according to the recovery of brain ACh concentration. The results indicate that human NSCs overexpressing ChAT may facilitate retrieval of unconditioned fear memory by increasing ACh level. PMID:27087745

  12. Overexpression of a type-A response regulator alters rice morphology and cytokinin metabolism.

    PubMed

    Hirose, Naoya; Makita, Nobue; Kojima, Mikiko; Kamada-Nobusada, Tomoe; Sakakibara, Hitoshi

    2007-03-01

    Genome-wide analyses of rice (Oryza sativa L.) cytokinin (CK)-responsive genes using the Affymetrix GeneChip(R) rice genome array were conducted to define the spectrum of genes subject to regulation by CK in monocotyledonous plants. Application of trans-zeatin modulated the expression of a wide variety of genes including those involved in hormone signaling and metabolism, transcriptional regulation, macronutrient transport and protein synthesis. To understand further the function of CK in rice plants, we examined the effects of in planta manipulation of a putative CK signaling factor on morphology, CK metabolism and expression of CK-responsive genes. Overexpression of the CK-inducible type-A response regulator OsRR6 abolished shoot regeneration, suggesting that OsRR6 acts as a negative regulator of CK signaling. Transgenic lines overexpressing OsRR6 (OsRR6-ox) had dwarf phenotypes with poorly developed root systems and panicles. Increased content of trans-zeatin-type CKs in OsRR6-ox lines indicates that homeostatic control of CK levels is regulated by OsRR6 signaling. Expression of genes encoding CK oxidase/dehydrogenase decreased in OsRR6-ox plants, possibly accounting for elevated CK levels in transgenic lines. Expression of a number of stress response genes was also altered in OsRR6-ox plants.

  13. Overexpression of Wild-Type Murine Tau Results in Progressive Tauopathy and Neurodegeneration

    PubMed Central

    Adams, Stephanie J.; Crook, Richard J.P.; DeTure, Michael; Randle, Suzanne J.; Innes, Amy E.; Yu, Xin Z.; Lin, Wen-Lang; Dugger, Brittany N.; McBride, Melinda; Hutton, Mike; Dickson, Dennis W.; McGowan, Eileen

    2009-01-01

    Here, we describe the generation and characterization of a novel tau transgenic mouse model (mTau) that overexpresses wild-type murine tau protein by twofold compared with endogenous levels. Transgenic tau expression was driven by a BAC transgene containing the entire wild-type mouse tau locus, including the endogenous promoter and the regulatory elements associated with the tau gene. The mTau model therefore differs from other tau models in that regulation of the genomic mouse transgene mimics that of the endogenous gene, including normal exon splicing regulation. Biochemical data from the mTau mice demonstrated that modest elevation of mouse tau leads to tau hyperphosphorylation at multiple pathologically relevant epitopes and accumulation of sarkosyl-insoluble tau. The mTau mice show a progressive increase in hyperphosphorylated tau pathology with age up to 15 to 18 months, which is accompanied by gliosis and vacuolization. In contrast, older mice show a decrease in tau pathology levels, which may represent hippocampal neuronal loss occurring in this wild-type model. Collectively, these results describe a novel model of tauopathy that develops pathological changes reminiscent of early stage Alzheimer’s disease and other related neurodegenerative diseases, achieved without overexpression of a mutant human tau transgene. This model will provide an important tool for understanding the early events leading to the development of tau pathology and a model for analysis of potential therapeutic targets for sporadic tauopathies. PMID:19717642

  14. Cardiac I-1c overexpression with reengineered AAV improves cardiac function in swine ischemic heart failure.

    PubMed

    Ishikawa, Kiyotake; Fish, Kenneth M; Tilemann, Lisa; Rapti, Kleopatra; Aguero, Jaume; Santos-Gallego, Carlos G; Lee, Ahyoung; Karakikes, Ioannis; Xie, Chaoqin; Akar, Fadi G; Shimada, Yuichi J; Gwathmey, Judith K; Asokan, Aravind; McPhee, Scott; Samulski, Jade; Samulski, Richard Jude; Sigg, Daniel C; Weber, Thomas; Kranias, Evangelia G; Hajjar, Roger J

    2014-12-01

    Cardiac gene therapy has emerged as a promising option to treat advanced heart failure (HF). Advances in molecular biology and gene targeting approaches are offering further novel options for genetic manipulation of the cardiovascular system. The aim of this study was to improve cardiac function in chronic HF by overexpressing constitutively active inhibitor-1 (I-1c) using a novel cardiotropic vector generated by capsid reengineering of adeno-associated virus (BNP116). One month after a large anterior myocardial infarction, 20 Yorkshire pigs randomly received intracoronary injection of either high-dose BNP116.I-1c (1.0 × 10(13) vector genomes (vg), n = 7), low-dose BNP116.I-1c (3.0 × 10(12) vg, n = 7), or saline (n = 6). Compared to baseline, mean left ventricular ejection fraction increased by 5.7% in the high-dose group, and by 5.2% in the low-dose group, whereas it decreased by 7% in the saline group. Additionally, preload-recruitable stroke work obtained from pressure-volume analysis demonstrated significantly higher cardiac performance in the high-dose group. Likewise, other hemodynamic parameters, including stroke volume and contractility index indicated improved cardiac function after the I-1c gene transfer. Furthermore, BNP116 showed a favorable gene expression pattern for targeting the heart. In summary, I-1c overexpression using BNP116 improves cardiac function in a clinically relevant model of ischemic HF.

  15. Overexpression of DMP1 accelerates mineralization and alters cortical bone biomechanical properties in vivo

    SciTech Connect

    Bhatia A.; Miller L.; Albazza, M.; Espinoza Orias, A.A.; Inoue, N.; Acerbo, A.; George, A.; Sumner, D.R.

    2011-09-29

    Dentin matrix protein-1 (DMP1) is a key regulator of biomineralization. Here, we examine changes in structural, geometric, and material properties of cortical bone in a transgenic mouse model overexpressing DMP1. Micro-computed tomography and three-point bending were performed on 90 femora of wild type and transgenic mice at 1, 2, 4, and 6 months. Fourier transform infrared imaging was performed at 2 months. We found that the transgenic femurs were longer (p < 0.01), more robust in cross-section (p < 0.05), stronger (p < 0.05), but had less post-yield strain and displacement (p < 0.01), and higher tissue mineral density (p < 0.01) than the wild type femurs at 1 and 2 months. At 2 months, the transgenic femurs also had a higher mineral-to-matrix ratio (p < 0.05) and lower carbonate substitution (p < 0.05) compared to wild type femurs. These findings indicate that increased mineralization caused by overexpressing DMP1 led to increased structural cortical bone properties associated with decreased ductility during the early post-natal period.

  16. Overexpression of a Triticum aestivum Calreticulin gene (TaCRT1) Improves Salinity Tolerance in Tobacco

    PubMed Central

    Song, Min; Wang, Yun; Xu, Wenqi; Wu, Lintao; Wang, Hancheng; Ma, Zhengqiang

    2015-01-01

    Calreticulin (CRT) is a highly conserved and abundant multifunctional protein that is encoded by a small gene family and is often associated with abiotic/biotic stress responses in plants. However, the roles played by this protein in salt stress responses in wheat (Triticum aestivum) remain obscure. In this study, three TaCRT genes were identified in wheat and named TaCRT1, TaCRT2 and TaCRT3-1 based on their sequence characteristics and their high homology to other known CRT genes. Quantitative real-time PCR expression data revealed that these three genes exhibit different expression patterns in different tissues and are strongly induced under salt stress in wheat. The calcium-binding properties of the purified recombinant TaCRT1 protein were determined using a PIPES/Arsenazo III analysis. TaCRT1 gene overexpression in Nicotiana tabacum decreased salt stress damage in transgenic tobacco plants. Physiological measurements indicated that transgenic tobacco plants showed higher activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) than non-transgenic tobacco under normal growth conditions. Interestingly, overexpression of the entire TaCRT1 gene or of partial TaCRT1 segments resulted in significantly higher tolerance to salt stress in transgenic plants compared with their WT counterparts, thus revealing the essential role of the C-domain of TaCRT1 in countering salt stress in plants. PMID:26469859

  17. The formation of brown adipose tissue induced by transgenic over-expression of PPARγ2.

    PubMed

    Zhou, Ying; Yang, Jinzeng; Huang, Jinliang; Li, Ting; Xu, Dequan; Zuo, Bo; Hou, Liming; Wu, Wangjun; Zhang, Lin; Xia, Xiaoliang; Ma, Zhiyuan; Ren, Zhuqing; Xiong, Yuanzhu

    2014-04-18

    Brown adipose tissue (BAT) is specialized to dissipate energy as heat, therefore reducing fat deposition and counteracting obesity. Brown adipocytes arise from myoblastic progenitors during embryonic development by the action of transcription regulator PRDM16 binding to PPARγ, which promotes BAT-like phenotype in white adipose tissue. To investigate the capability of converting white adipose tissue to BAT or browning by PPARγ in vivo, we generated transgenic mice with over-expressed PPARγ2. The transgenic mice showed strong brown fat features in subcutaneous fat in morphology and histology. To provide molecular evidences on browning characteristics of the adipose tissue, we employed quantitative real-time PCR to determine BAT-specific gene expressions. The transgenic mice had remarkably elevated mRNA level of UCP1, Elovl3, PGC1α and Cebpα in subcutaneous fat. Compared with wild-type mice, UCP1 protein levels were increased significantly in transgenic mice. ATP concentration was slightly decreased in the subcutaneous fat of transgenic mice. Western blotting analysis also confirmed that phosphorylated AMPK and ACC proteins were significantly (P<0.01) increased in the transgenic mice. Therefore, this study demonstrated that over-expression of PPARγ2 in skeletal muscle can promote conversion of subcutaneous fat to brown fat formation, which can have beneficial effects on increasing energy metabolisms and combating obesity.

  18. Improvement of exopolysaccharide production in Lactobacillus casei LC2W by overexpression of NADH oxidase gene.

    PubMed

    Li, Nan; Wang, Yuanlong; Zhu, Ping; Liu, Zhenmin; Guo, Benheng; Ren, Jing

    2015-02-01

    Lactobacillus casei LC2W is an exopolysaccharide (EPS)-producing strain with probiotic effects. To investigate the regulation mechanism of EPS biosynthesis and to improve EPS production through cofactor engineering, a H₂O-forming NADH oxidase gene was cloned from Streptococcus mutans and overexpressed in L. casei LC2W under the control of constitutive promoter P₂₃. The recombinant strain LC-nox exhibited 0.854 U/mL of NADH oxidase activity, which was elevated by almost 20-fold in comparison with that of wild-type strain. As a result, overexpression of NADH oxidase resulted in a reduction in growth rate. In addition, lactate production was decreased by 22% in recombinant strain. It was proposed that more carbon source was saved and used for the biosynthesis of EPS, the production of which was reached at 219.4 mg/L, increased by 46% compared to that of wild-type strain. This work provided a novel and convenient genetic approach to manipulate metabolic flux and to increase EPS production. To the best of our knowledge, this is the first report which correlates cofactor engineering with EPS production.

  19. Transgenic tobacco plants overexpressing the Nicta; CycD3; 4 gene demonstrate accelerated growth rates.

    PubMed

    Guo, Jia; Wang, Myeong Hyeon

    2008-07-31

    D-type cyclins control the onset of cell division and the response to extracellular signals during the G1 phase. In this study, we transformed a D-type cyclin gene, Nicta;CycD3;4, from Nicotiana tabacum using an Agrobacterium-mediated method. A predicted 1.1 kb cyclin gene was present in all of the transgenic plants, but not in wild-type. Northern analyses showed that the expression level of the Nicta;CycD3;4 gene in all of the transgenic plants was strong when compared to the wild-type plants, suggesting that Nicta;CycD3;4 gene driven by the CaMV 35S promoter was being overexpressed. Our results revealed that transgenic plants overexpressing Nicta;CycD3;4 had an accelerated growth rate when compared to wild-type plants, and that the transgenic plants exhibited a smaller cell size and a decreased cell population in young leaves when compared to wild-type plants.

  20. Murine matrix metalloproteinase-20 overexpression stimulates cell invasion into the enamel layer via enhanced Wnt signaling

    PubMed Central

    Shin, Masashi; Suzuki, Maiko; Guan, Xiaomu; Smith, Charles E.; Bartlett, John D.

    2016-01-01

    Matrix metalloproteinase-20 (MMP20) is expressed by ameloblasts in developing teeth and MMP20 mutations cause enamel malformation. We established a stably transfected Tet-Off Mmp20-inducible ameloblast-lineage cell line and found that MMP20 expression promoted cell invasion. Previously, we engineered transgenic mice (Tg) that drive Mmp20 expression and showed that Mmp20+/+Tg mice had soft enamel. Here we asked if Mmp20 overexpression disrupts ameloblast function. Incisors from Mmp20+/+ mice expressing the Mmp20 Tg had a striking cell infiltrate which nearly replaced the entire enamel layer. A thin layer of enamel-like material remained over the dentin and at the outer tooth surface, but between these regions were invading fibroblasts and epithelial cells that surrounded ectopic bone-like calcifications. Mmp20+/+Tg mice had decreased enamel organ cadherin levels compared to the Mmp20 ablated and WT mice and, instead of predominantly locating adjacent to the ameloblast cell membrane, β-catenin was predominantly present within the nuclei of invading cells. Our data suggest that increased cadherin cleavage by transgenic MMP20 in the WT background releases excess β-catenin, which translocates to ameloblast nuclei to promote cell migration/invasion. Therefore, we conclude that MMP20 plays a role in normal ameloblast migration through tightly controlled Wnt signaling and that MMP20 overexpression disrupts this process. PMID:27403713

  1. Cardiac overexpression of Mammalian enabled (Mena) exacerbates heart failure in mice.

    PubMed

    Belmonte, Stephen L; Ram, Rashmi; Mickelsen, Deanne M; Gertler, Frank B; Blaxall, Burns C

    2013-09-15

    Mammalian enabled (Mena) is a key regulator of cytoskeletal actin dynamics, which has been implicated in heart failure (HF). We have previously demonstrated that cardiac Mena deletion produced cardiac dysfunction with conduction abnormalities and hypertrophy. Moreover, elevated Mena expression correlates with HF in human and animal models, yet the precise role of Mena in cardiac pathophysiology is unclear. In these studies, we evaluated mice with cardiac myocyte-specific Mena overexpression (TTA/TgTetMena) comparable to that observed in cardiac pathology. We found that the hearts of TTA/TgTetMena mice were functionally and morphologically comparable to wild-type littermates, except for mildly increased heart mass in the transgenic mice. Interestingly, TTA/TgTetMena mice were particularly susceptible to cardiac injury, as these animals experienced pronounced decreases in ejection fraction and fractional shortening as well as heart dilatation and hypertrophy after transverse aortic constriction (TAC). By "turning off" Mena overexpression in TTA/TgTetMena mice either immediately prior to or immediately after TAC surgery, we discovered that normalizing Mena levels eliminated cardiac hypertrophy in TTA/TgTetMena animals but did not preclude post-TAC cardiac functional deterioration. These findings indicate that hearts with increased levels of Mena fare worse when subjected to cardiac injury and suggest that Mena contributes to HF pathophysiology.

  2. BDNF Overexpression in the Forebrain Rescues Huntington’s Disease Phenotypes in YAC128 Mice

    PubMed Central

    Xie, Yuxiang; Hayden, Michael R.; Xu, Baoji

    2010-01-01

    Huntington’s disease (HD) is caused by an expansion of the polyglutamine tract at the amino-terminus of huntingtin. This mutation reduces levels of brain-derived neurotrophic factor (BDNF) in the striatum, likely by inhibiting cortical Bdnf gene expression and anterograde transport of BDNF from the cerebral cortex to the striatum. Substantial evidence suggests that this reduction of striatal BDNF plays a crucial role in HD pathogenesis. Here we report that overexpression of BDNF in the forebrain rescues many disease phenotypes in YAC128 mice that express a full-length human huntingtin mutant with a 128-glutamine tract. The Bdnf transgene, under the control of the promoter for α subunit of Ca2+/calmodulin-dependent protein kinase II, greatly increased BDNF levels in the cerebral cortex and striatum. BDNF overexpression in YAC128 mice prevented loss and atrophy of striatal neurons and motor dysfunction, normalized expression of the striatal dopamine receptor D2 and enkephalin, and improved procedural learning. Furthermore, quantitative analyses of Golgi-impregnated neurons revealed a decreased spine density and abnormal spine morphology in striatal neurons of YAC128 mice, which was also reversed by increasing BDNF levels in the striatum. These results demonstrate that reduced striatal BDNF plays a crucial role in the HD pathogenesis and suggest that attempts to restore striatal BDNF level may have therapeutic effects to the disease. PMID:21048129

  3. Hydrogen-producing Escherichia coli strains overexpressing lactose permease: FT-IR analysis of the lactose-induced stress.

    PubMed

    Grube, Mara; Dimanta, Ilze; Gavare, Marita; Strazdina, Inese; Liepins, Janis; Juhna, Talis; Kalnenieks, Uldis

    2014-01-01

    The lactose permease gene (lacY) was overexpressed in the septuple knockout mutant of Escherichia coli, previously engineered for hydrogen production from glucose. It was expected that raising the lactose transporter activity would elevate the intracellular lactose concentration, inactivate the lactose repressor, induce the lactose operon, and as a result stimulate overall lactose consumption and conversion. However, overexpression of the lactose transporter caused a considerable growth delay in the recombinant strain on lactose, resembling to some extent the "lactose killing" phenomenon. Therefore, the recombinant strain was subjected to selection on lactose-containing media. Selection on plates with 3% lactose yielded a strain with a decreased content of the recombinant plasmid but with an improved ability to grow and produce hydrogen on lactose. Macromolecular analysis of its biomass by means of Fourier transform-infrared spectroscopy demonstrated that increase of the cellular polysaccharide content might contribute to the adaptation of E. coli to lactose stress.

  4. Overexpression of an ABA biosynthesis gene using a stress-inducible promoter enhances drought resistance in petunia.

    PubMed

    Estrada-Melo, Alejandro C; Chao; Reid, Michael S; Jiang, Cai-Zhong

    2015-01-01

    The response of plants to drought stress includes reduced transpiration as stomates close in response to increased abscisic acid (ABA) concentrations. Constitutive overexpression of 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in ABA biosynthesis, increases drought resistance, but causes negative pleiotropic effects on plant growth and development. We overexpressed the tomato NCED (LeNCED1) in petunia plants under the control of a stress-inducible promoter, rd29A. Under water stress, the transgenic plants had increased transcripts of NCED mRNA, elevated leaf ABA concentrations, increased concentrations of proline, and a significant increase in drought resistance. The transgenic plants also displayed the expected decreases in stomatal conductance, transpiration, and photosynthesis. After 14 days without water, the control plants were dead, but the transgenic plants, though wilted, recovered fully when re-watered. Well-watered transgenic plants grew like non-transformed control plants and there was no effect of the transgene on seed dormancy.

  5. Overexpression of an ABA biosynthesis gene using a stress-inducible promoter enhances drought resistance in petunia

    PubMed Central

    Estrada-Melo, Alejandro C; Chao; Reid, Michael S; Jiang, Cai-Zhong

    2015-01-01

    The response of plants to drought stress includes reduced transpiration as stomates close in response to increased abscisic acid (ABA) concentrations. Constitutive overexpression of 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in ABA biosynthesis, increases drought resistance, but causes negative pleiotropic effects on plant growth and development. We overexpressed the tomato NCED (LeNCED1) in petunia plants under the control of a stress-inducible promoter, rd29A. Under water stress, the transgenic plants had increased transcripts of NCED mRNA, elevated leaf ABA concentrations, increased concentrations of proline, and a significant increase in drought resistance. The transgenic plants also displayed the expected decreases in stomatal conductance, transpiration, and photosynthesis. After 14 days without water, the control plants were dead, but the transgenic plants, though wilted, recovered fully when re-watered. Well-watered transgenic plants grew like non-transformed control plants and there was no effect of the transgene on seed dormancy. PMID:26504568

  6. IDH1 Is Downregulated during Early Skin Tumorigenesis Which Can Be Inhibited by Overexpression of MnSOD

    PubMed Central

    Robbins, Delira; Wittwer, Jennifer A.; Codarin, Sarah; Circu, Magdalena L.; Aw, Tak Yee; Huang, Ting-Ting; VanRemmen, Holly; Richardson, Arlan; Wang, David B.; Witt, Stephan N.; Klein, Ronald L.; Zhao, Yunfeng

    2012-01-01

    SUMMARY Isocitrate dehydrogenase 1 (IDH1), a cytosolic enzyme which converts isocitrate to alpha-ketoglutarate, has been shown to be dysregulated during tumorigenesis. However, at what stage of cancer development IDH1 is dysregulated and how IDH1 may affect cell transformation and tumor promotion during early stages of cancer development, are unclear. We utilized a skin cell transformation model, and, mouse skin epidermal tissues to study the role of IDH1 in early skin tumorigenesis. Our studies demonstrate that both the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA) and UVC irradiation decreased expression and activity levels of IDH1, not IDH2, in the tumor promotable JB6 P+ cell model. Skin epidermal tissues treated with DMBA/TPA also showed decreases in IDH1 expression and activity. In non-promotable JB6 P− cells, IDH1 was upregulated upon TPA treatment, whereas IDH2 was maintained at similar levels with TPA treatment. Interestingly, IDH1 knockdown enhanced, whereas IDH1 overexpression suppressed TPA-induced cell transformation. Finally, manganese superoxide dismutase (MnSOD) overexpression suppressed tumor promoter-induced decreases in IDH1 expression and mitochondrial respiration, while intracellular alpha-ketoglutarate levels were unchanged. These results suggest that decreased IDH1 expression in early stage skin tumorigenesis is highly correlated with tumor promotion. In addition, oxidative stress may contribute to IDH1 inactivation, because MnSOD, a mitochondrial antioxidant enzyme, blocked decreases in IDH1 expression and activity. PMID:22533343

  7. Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato.

    PubMed

    Albacete, Alfonso; Cantero-Navarro, Elena; Großkinsky, Dominik K; Arias, Cintia L; Balibrea, María Encarnación; Bru, Roque; Fragner, Lena; Ghanem, Michel E; González, María de la Cruz; Hernández, Jose A; Martínez-Andújar, Cristina; van der Graaff, Eric; Weckwerth, Wolfram; Zellnig, Günther; Pérez-Alfocea, Francisco; Roitsch, Thomas

    2015-02-01

    Drought stress conditions modify source-sink relations, thereby influencing plant growth, adaptive responses, and consequently crop yield. Invertases are key metabolic enzymes regulating sink activity through the hydrolytic cleavage of sucrose into hexose monomers, thus playing a crucial role in plant growth and development. However, the physiological role of invertases during adaptation to abiotic stress conditions is not yet fully understood. Here it is shown that plant adaptation to drought stress can be markedly improved in tomato (Solanum lycopersicum L.) by overexpression of the cell wall invertase (cwInv) gene CIN1 from Chenopodium rubrum. CIN1 overexpression limited stomatal conductance under normal watering regimes, leading to reduced water consumption during the drought period, while photosynthetic activity was maintained. This caused a strong increase in water use efficiency (up to 50%), markedly improving water stress adaptation through an efficient physiological strategy of dehydration avoidance. Drought stress strongly reduced cwInv activity and induced its proteinaceous inhibitor in the leaves of the wild-type plants. However, the CIN1-overexpressing plants registered 3- to 6-fold higher cwInv activity in all analysed conditions. Surprisingly, the enhanced invertase activity did not result in increased hexose concentrations due to the activation of the metabolic carbohydrate fluxes, as reflected by the maintenance of the activity of key enzymes of primary metabolism and increased levels of sugar-phosphate intermediates under water deprivation. The induced sink metabolism in the leaves explained the maintenance of photosynthetic activity, delayed senescence, and increased source activity under drought stress. Moreover, CIN1 plants also presented a better control of production of reactive oxygen species and sustained membrane protection. Those metabolic changes conferred by CIN1 overexpression were accompanied by increases in the concentrations of the

  8. Overexpression of X-linked genes in T cells from women with lupus.

    PubMed

    Hewagama, Anura; Gorelik, Gabriela; Patel, Dipak; Liyanarachchi, Punsisi; McCune, W Joseph; Somers, Emily; Gonzalez-Rivera, Tania; Strickland, Faith; Richardson, Bruce

    2013-03-01

    Women develop lupus more frequently than men and the reason remains incompletely understood. Evidence that men with Klinefelter's Syndrome (XXY) develop lupus at approximately the same rate as women suggests that a second X chromosome contributes. However, since the second X is normally inactivated, how it predisposes to lupus is unclear. DNA methylation contributes to the silencing of one X chromosome in women, and CD4+ T cell DNA demethylation contributes to the development of lupus-like autoimmunity. This suggests that demethylation of genes on the inactive X may predispose women to lupus, and this hypothesis is supported by a report that CD40LG, an immune gene encoded on the X chromosome, demethylates and is overexpressed in T cells from women but not men with lupus. Overexpression of other immune genes on the inactive X may also predispose women to this disease. We therefore compared mRNA and miRNA expression profiles in experimentally demethylated T cells from women and men as well as in T cells from women and men with lupus. T cells from healthy men and women were treated with the DNA methyltransferase inhibitor 5-azacytidine, then X-linked mRNAs were surveyed with oligonucleotide arrays, and X-linked miRNA's surveyed with PCR arrays. CD40LG, CXCR3, OGT, miR-98, let-7f-2*, miR 188-3p, miR-421 and miR-503 were among the genes overexpressed in women relative to men. MiRNA target prediction analyses identified CBL, which downregulates T cell receptor signaling and is decreased in lupus T cells, as a gene targeted by miR-188-3p and miR-98. Transfection with miR-98 and miR-188-3p suppressed CBL expression. The same mRNA and miRNA transcripts were also demethylated and overexpressed in CD4+ T cells from women relative to men with active lupus. Together these results further support a role for X chromosome demethylation in the female predisposition to lupus.

  9. Overexpression of X-Linked Genes in T Cells From Women With Lupus

    PubMed Central

    Hewagama, Anura; Gorelik, Gabriela; Patel, Dipak; Liyanarachchi, Punsisi; McCune, W. Joseph; Somers, Emily; Gonzalez-Rivera, Tania; Strickland, Faith; Richardson, Bruce

    2013-01-01

    Women develop lupus more frequently than men and the reason remains incompletely understood. Evidence that men with Klinefelter’s Syndrome (XXY) develop lupus at approximately the same rate as women suggests that a second X chromosome contributes. However, since the second X is normally inactivated, how it predisposes to lupus is unclear. DNA methylation contributes to the silencing of one X chromosome in women, and CD4+ T cell DNA demethylation contributes to the development of lupus-like autoimmunity. This suggests that demethylation of genes on the inactive X may predispose women to lupus, and this hypothesis is supported by a report that CD40LG, an immune gene encoded on the X chromosome, demethylates and is overexpressed in T cells from women but not men with lupus. Overexpression of other immune genes on the inactive X may also predispose women to this disease. We therefore compared mRNA and miRNA expression profiles in experimentally demethylated T cells from women and men as well as in T cells from women and men with lupus. T cells from healthy men and women were treated with the DNA methyltransferase inhibitor 5-azacytidine, then X-linked mRNAs were surveyed with oligonucleotide arrays, and X-linked miRNA’s surveyed with PCR arrays. CD40LG, CXCR3, OGT, miR-98, let-7f-2*, miR 188-3p, miR-421 and miR-503 were among the genes overexpressed in women relative to men. MiRNA target prediction analyses identified CBL, which downregulates T cell receptor signaling and is decreased in lupus T cells, as a gene targeted by miR-188-3p and miR-98. Transfection with miR-98 and miR-188-3p suppressed CBL expression. The same mRNA and miRNA transcripts were also demethylated and overexpressed in CD4+ T cells from women relative to men with active lupus. Together these results further support a role for X chromosome demethylation in the female predisposition to lupus. PMID:23434382

  10. Overexpression of follistatin in trout stimulates increased muscling.

    PubMed

    Medeiros, Erika F; Phelps, Michael P; Fuentes, Fernando D; Bradley, Terence M

    2009-07-01

    Deletion or inhibition of myostatin in mammals has been demonstrated to markedly increase muscle mass by hyperplasia, hypertrophy, or a combination of both. Despite a remarkably high degree of conservation with the mammalian protein, the function of myostatin remains unknown in fish, many species of which continue muscle growth throughout the lifecycle by hyperplasia. Transgenic rainbow trout (Oncorhynchus mykiss) overexpressing follistatin, one of the more efficacious antagonists of myostatin, were produced to investigate the effect of this protein on muscle development and growth. P(1) transgenics overexpressing follistatin in muscle tissue exhibited increased epaxial and hypaxial muscling similar to that observed in double-muscled cattle and myostatin null mice. The hypaxial muscling generated a phenotype reminiscent of well-developed rectus abdominus and intercostal muscles in humans and was dubbed "six pack." Body conformation of the transgenic animals was markedly altered, as measured by condition factor, and total muscle surface area increased. The increased muscling was due almost exclusively to hyperplasia as evidenced by a higher number of fibers per unit area and increases in the percentage of smaller fibers and the number of total fibers. In several individuals, asymmetrical muscling was observed, but no changes in mobility or behavior of follistatin fish were observed. The findings indicate that overexpression of follistatin in trout, a species with indeterminate growth rate, enhances muscle growth. It remains to be determined whether the double muscling in trout is due to inhibition of myostatin, other growth factors, or both.

  11. Overexpression of Lamin B Receptor Results in Impaired Skin Differentiation.

    PubMed

    Sola Carvajal, Agustín; McKenna, Tomás; Wallén Arzt, Emelie; Eriksson, Maria

    2015-01-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare segmental progeroid disorder commonly caused by a point mutation in the LMNA gene that results in the increased activation of an intra-exonic splice site and the production of a truncated lamin A protein, named progerin. In our previous work, induced murine epidermal expression of this specific HGPS LMNA mutation showed impaired keratinocyte differentiation and upregulated lamin B receptor (LBR) expression in suprabasal keratinocytes. Here, we have developed a novel transgenic animal model with induced overexpression of LBR in the interfollicular epidermis. LBR overexpression resulted in epidermal hypoplasia, along with the downregulation and mislocalization of keratin 10, suggesting impaired keratinocyte differentiation. Increased LBR expression in basal and suprabasal cells did not coincide with increased proliferation. Similar to our previous report of HGPS mice, analyses of γH2AX, a marker of DNA double-strand breaks, revealed an increased number of keratinocytes with multiple foci in LBR-overexpressing mice compared with wild-type mice. In addition, suprabasal LBR-positive cells showed densely condensed and peripherally localized chromatin. Our results show a moderate skin differentiation phenotype, which indicates that upregulation of LBR is not the sole contributor to the HGPS phenotype.

  12. Overexpression of Lamin B Receptor Results in Impaired Skin Differentiation

    PubMed Central

    Sola Carvajal, Agustín; McKenna, Tomás; Wallén Arzt, Emelie; Eriksson, Maria

    2015-01-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare segmental progeroid disorder commonly caused by a point mutation in the LMNA gene that results in the increased activation of an intra-exonic splice site and the production of a truncated lamin A protein, named progerin. In our previous work, induced murine epidermal expression of this specific HGPS LMNA mutation showed impaired keratinocyte differentiation and upregulated lamin B receptor (LBR) expression in suprabasal keratinocytes. Here, we have developed a novel transgenic animal model with induced overexpression of LBR in the interfollicular epidermis. LBR overexpression resulted in epidermal hypoplasia, along with the downregulation and mislocalization of keratin 10, suggesting impaired keratinocyte differentiation. Increased LBR expression in basal and suprabasal cells did not coincide with increased proliferation. Similar to our previous report of HGPS mice, analyses of γH2AX, a marker of DNA double-strand breaks, revealed an increased number of keratinocytes with multiple foci in LBR-overexpressing mice compared with wild-type mice. In addition, suprabasal LBR-positive cells showed densely condensed and peripherally localized chromatin. Our results show a moderate skin differentiation phenotype, which indicates that upregulation of LBR is not the sole contributor to the HGPS phenotype. PMID:26053873

  13. Role of overexpressed CFA/I fimbriae in bacterial swimming

    NASA Astrophysics Data System (ADS)

    Cao, Ling; Suo, Zhiyong; Lim, Timothy; Jun, SangMu; Deliorman, Muhammedin; Riccardi, Carol; Kellerman, Laura; Avci, Recep; Yang, Xinghong

    2012-06-01

    Enterotoxigenic Escherichia coli CFA/I is a protective antigen and has been overexpressed in bacterial vectors, such as Salmonella Typhimurium H683, to generate vaccines. Effects that overexpressed CFA/I may engender on the bacterial host remain largely unexplored. To investigate, we constructed a high CFA/I expression strain, H683-pC2, and compared it to a low CFA/I expression strain, H683-pC, and to a non-CFA/I expression strain, H683-pY. The results showed that H683-pC2 was less able to migrate into semisolid agar (0.35%) than either H683-pC or H683-pY. Bacteria that migrated showed motility halo sizes of H683-pC2 < H683-pC < H683-pY. In the liquid culture media, H683-pC2 cells precipitated to the bottom of the tube, while those of H683-pY did not. In situ imaging revealed that H683-pC2 bacilli tended to auto-agglutinate within the semisolid agar, while H683-pY bacilli did not. When the cfaBE fimbrial fiber encoding genes were deleted from pC2, the new plasmid, pC2(-), significantly recovered bacterial swimming capability. Our study highlights the negative impact of overexpressed CFA/I fimbriae on bacterial swimming motility.

  14. Overexpression of Nrdp1/FLRF sensitizes cells to oxidative stress.

    PubMed

    Zhou, An; Pan, Danmin; Yang, Xiaoming; Zhou, Jianhua

    2011-07-15

    Nrdp1 is a RING finger containing ubiquitin E3 ligase that interacts with and modulates activity of multiple proteins, including ErbB3 and Parkin, a causative protein for early onset recessive juvenile parkinsonism (AR-JP). To investigate the functions of Nrdp1, we have generated stable Tet-On inducible HEK293 cells that overexpress Flag-tagged full length Nrdp1, N-terminal Nrdp1 and C-terminal Nrdp1. We demonstrate that overexpression of full-length Nrdp1, not Nrdp1 N-terminus or Nrdp1 C-terminus in cultured HEK293 cells, inhibits cell growth. In addition, we have treated cells with hydroxynonenal (HNE), 6-hydroxydopamine (6-OHDA), and hydrogen peroxide (H(2)O(2)) at different concentrations. We have found that Nrdp1 overexpression sensitizes HEK293 cells to oxidative stressors in a dosage-dependent manner. Our data provide insights into understanding the potential role of Nrdp1 in cell growth, apoptosis and oxidative stress, and in the pathogenesis of Parkinson's disease.

  15. Neuroligin-1 Overexpression in Newborn Granule Cells In Vivo

    PubMed Central

    Schnell, Eric; Bensen, AeSoon L.; Washburn, Eric K.; Westbrook, Gary L.

    2012-01-01

    Adult-born dentate granule cells integrate into the hippocampal network, extend neurites and form synapses in otherwise mature tissue. Excitatory and inhibitory inputs innervate these new granule cells in a stereotyped, temporally segregated manner, which presents a unique opportunity to study synapse development in the adult brain. To examine the role of neuroligins as synapse-inducing molecules in vivo, we infected dividing neural precursors in adult mice with a retroviral construct that increased neuroligin-1 levels during granule cell differentiation. By 21 days post-mitosis, exogenous neuroligin-1 was expressed at the tips of dendritic spines and increased the number of dendritic spines. Neuroligin-1-overexpressing cells showed a selective increase in functional excitatory synapses and connection multiplicity by single afferent fibers, as well as an increase in the synaptic AMPA/NMDA receptor ratio. In contrast to its synapse-inducing ability in vitro, neuroligin-1 overexpression did not induce precocious synapse formation in adult-born neurons. However, the dendrites of neuroligin-1-overexpressing cells did have more thin protrusions during an early period of dendritic outgrowth, suggesting enhanced filopodium formation or stabilization. Our results indicate that neuroligin-1 expression selectively increases the degree, but not the onset, of excitatory synapse formation in adult-born neurons. PMID:23110172

  16. Facioscapulohumeral muscular dystrophy in mice overexpressing FRG1.

    PubMed

    Gabellini, Davide; D'Antona, Giuseppe; Moggio, Maurizio; Prelle, Alessandro; Zecca, Chiara; Adami, Raffaella; Angeletti, Barbara; Ciscato, Patrizia; Pellegrino, Maria Antonietta; Bottinelli, Roberto; Green, Michael R; Tupler, Rossella

    2006-02-23

    Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant neuromuscular disorder that is not due to a classical mutation within a protein-coding gene. Instead, almost all FSHD patients carry deletions of an integral number of tandem 3.3-kilobase repeat units, termed D4Z4, located on chromosome 4q35 (ref. 3). D4Z4 contains a transcriptional silencer whose deletion leads to inappropriate overexpression in FSHD skeletal muscle of 4q35 genes located upstream of D4Z4 (ref. 4). To identify the gene responsible for FSHD pathogenesis, we generated transgenic mice selectively overexpressing in skeletal muscle the 4q35 genes FRG1, FRG2 or ANT1. We find that FRG1 transgenic mice develop a muscular dystrophy with features characteristic of the human disease; by contrast, FRG2 and ANT1 transgenic mice seem normal. FRG1 is a nuclear protein and several lines of evidence suggest it is involved in pre-messenger RNA splicing. We find that in muscle of FRG1 transgenic mice and FSHD patients, specific pre-mRNAs undergo aberrant alternative splicing. Collectively, our results suggest that FSHD results from inappropriate overexpression of FRG1 in skeletal muscle, which leads to abnormal alternative splicing of specific pre-mRNAs.

  17. Conditional overexpression of transgenes in megakaryocytes and platelets in vivo

    PubMed Central

    Nguyen, Hao G.; Yu, Guangyao; Makitalo, Maria; Yang, Dan; Xie, Hou-Xiang; Jones, Matthew R.; Ravid, Katya

    2005-01-01

    Megakaryocyte (MK)–specific transgene expression has proved valuable in studying thrombotic and hemostatic processes. Constitutive expression of genes, however, could result in altered phenotypes due to compensatory mechanisms or lethality. To circumvent these limitations, we used the tetracycline/doxycycline (Tet)–off system to conditionally over-express genes in megakaryocytes and platelets in vivo. We generated 3 transactivator transgenic lines expressing the Tet transactivator element (tTA), under the control of the MK-specific platelet factor 4 promoter (PF4-tTA-VP16). Responder lines were simultaneously generated, each with a bidirectional minimal cytomegalovirus (CMV)–tTA responsive promoter driving prokaryotic β-galactosidase gene, as a cellular reporter, and a gene of interest (in this case, the mitotic regulator Aurora-B). A transactivator founder line that strongly expressed PF4-driven tTA–viral protein 16 (VP16) was crossbred to a responder line. The homozygous double-transgenic mouse line exhibited doxycycline-dependent transgene overexpression in MKs and platelets. Using this line, platelets were conveniently indicated at sites of induced stress by β-galactosidase staining. In addition, we confirmed our earlier report on effects of constitutive expression of Aurora-B, indicating a tight regulation at protein level and a modest effect on MK ploidy. Hence, we generated a new line, PF4-tTA-VP16, that is available for conditionally overexpressing genes of interest in the MK/platelet lineage in vivo. PMID:15890684

  18. Overexpression of calreticulin sensitizes SERCA2a to oxidative stress.

    PubMed

    Ihara, Yoshito; Kageyama, Kan; Kondo, Takahito

    2005-04-22

    Calreticulin (CRT), a Ca(2+)-binding molecular chaperone in the endoplasmic reticulum, plays a vital role in cardiac physiology and pathology. Oxidative stress is a main cause of myocardiac disorder in the ischemic heart, but the function of CRT under oxidative stress is not fully understood. In this study, the effect of overexpression of CRT on sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) 2a under oxidative stress was examined using myocardiac H9c2 cells transfected with the CRT gene. The in vitro activity of SERCA2a and uptake of (45)Ca(2+) into isolated microsomes were suppressed by H(2)O(2) in CRT-overexpressing cells compared with controls. Moreover, SERCA2a protein was degraded via a proteasome-dependent pathway following the formation of a complex with CRT under the stress with H(2)O(2). Thus, we conclude that overexpression of CRT enhances the inactivation and degradation of SERCA2a in the cells under oxidative stress, suggesting some pathophysiological functions of CRT in Ca(2+) homeostasis of myocardiac disease.

  19. Resolving the role of plant glutamate dehydrogenase: II. Physiological characterization of plants overexpressing the two enzyme subunits individually or simultaneously.

    PubMed

    Tercé-Laforgue, Thérèse; Bedu, Magali; Dargel-Grafin, Céline; Dubois, Frédéric; Gibon, Yves; Restivo, Francesco M; Hirel, Bertrand

    2013-10-01

    Glutamate dehydrogenase (GDH; EC 1.4.1.2) is able to carry out the deamination of glutamate in higher plants. In order to obtain a better understanding of the physiological function of GDH in leaves, transgenic tobacco (Nicotiana tabacum L.) plants were constructed that overexpress two genes from Nicotiana plumbaginifolia (GDHA and GDHB under the control of the Cauliflower mosiac virus 35S promoter), which encode the α- and β-subunits of GDH individually or simultaneously. In the transgenic plants, the GDH protein accumulated in the mitochondria of mesophyll cells and in the mitochondria of the phloem companion cells (CCs), where the native enzyme is normally expressed. Such a shift in the cellular location of the GDH enzyme induced major changes in carbon and nitrogen metabolite accumulation and a reduction in growth. These changes were mainly characterized by a decrease in the amount of sucrose, starch and glutamine in the leaves, which was accompanied by an increase in the amount of nitrate and Chl. In addition, there was an increase in the content of asparagine and a decrease in proline. Such changes may explain the lower plant biomass determined in the GDH-overexpressing lines. Overexpressing the two genes GDHA and GDHB individually or simultaneously induced a differential accumulation of glutamate and glutamine and a modification of the glutamate to glutamine ratio. The impact of the metabolic changes occurring in the different types of GDH-overexpressing plants is discussed in relation to the possible physiological function of each subunit when present in the form of homohexamers or heterohexamers.

  20. Selective overexpression of Toll-like receptor-4 in skeletal muscle impairs metabolic adaptation to high-fat feeding

    PubMed Central

    McMillan, Ryan P.; Wu, Yaru; Voelker, Kevin; Fundaro, Gabrielle; Kavanaugh, John; Stevens, Joseph R.; Shabrokh, Elika; Ali, Mostafa; Harvey, Mordecai; Anderson, Angela S.; Boutagy, Nabil E.; Mynatt, Randall L.; Frisard, Madlyn I.

    2015-01-01

    Toll-like receptor-4 (TLR-4) is elevated in skeletal muscle of obese humans, and data from our laboratory have shown that activation of TLR-4 in skeletal muscle via LPS results in decreased fatty acid oxidation (FAO). The purpose of this study was to determine whether overexpression of TLR-4 in skeletal muscle alters mitochondrial function and whole body metabolism in the context of a chow and high-fat diet. C57BL/6J mice (males, 6–8 mo of age) with skeletal muscle-specific overexpression of the TLR-4 (mTLR-4) gene were created and used for this study. Isolated mitochondria and whole muscle homogenates from rodent skeletal muscle (gastrocnemius and quadriceps) were investigated. TLR-4 overexpression resulted in a significant reduction in FAO in muscle homogenates; however, mitochondrial respiration and reactive oxygen species (ROS) production did not appear to be affected on a standard chow diet. To determine the role of TLR-4 overexpression in skeletal muscle in response to high-fat feeding, mTLR-4 mice and WT control mice were fed low- and high-fat diets for 16 wk. The high-fat diet significantly decreased FAO in mTLR-4 mice, which was observed in concert with elevated body weight and fat, greater glucose intolerance, and increase in production of ROS and cellular oxidative damage compared with WT littermates. These findings suggest that TLR-4 plays an important role in the metabolic response in skeletal muscle to high-fat feeding. PMID:26084695

  1. Selective overexpression of Toll-like receptor-4 in skeletal muscle impairs metabolic adaptation to high-fat feeding.

    PubMed

    McMillan, Ryan P; Wu, Yaru; Voelker, Kevin; Fundaro, Gabrielle; Kavanaugh, John; Stevens, Joseph R; Shabrokh, Elika; Ali, Mostafa; Harvey, Mordecai; Anderson, Angela S; Boutagy, Nabil E; Mynatt, Randall L; Frisard, Madlyn I; Hulver, Matthew W

    2015-08-01

    Toll-like receptor-4 (TLR-4) is elevated in skeletal muscle of obese humans, and data from our laboratory have shown that activation of TLR-4 in skeletal muscle via LPS results in decreased fatty acid oxidation (FAO). The purpose of this study was to determine whether overexpression of TLR-4 in skeletal muscle alters mitochondrial function and whole body metabolism in the context of a chow and high-fat diet. C57BL/6J mice (males, 6-8 mo of age) with skeletal muscle-specific overexpression of the TLR-4 (mTLR-4) gene were created and used for this study. Isolated mitochondria and whole muscle homogenates from rodent skeletal muscle (gastrocnemius and quadriceps) were investigated. TLR-4 overexpression resulted in a significant reduction in FAO in muscle homogenates; however, mitochondrial respiration and reactive oxygen species (ROS) production did not appear to be affected on a standard chow diet. To determine the role of TLR-4 overexpression in skeletal muscle in response to high-fat feeding, mTLR-4 mice and WT control mice were fed low- and high-fat diets for 16 wk. The high-fat diet significantly decreased FAO in mTLR-4 mice, which was observed in concert with elevated body weight and fat, greater glucose intolerance, and increase in production of ROS and cellular oxidative damage compared with WT littermates. These findings suggest that TLR-4 plays an important role in the metabolic response in skeletal muscle to high-fat feeding.

  2. Soluble extracellular Klotho decreases sensitivity to cigarette smoke induced cell death in human lung epithelial cells.

    PubMed

    Blake, David J; Reese, Caitlyn M; Garcia, Mario; Dahlmann, Elizabeth A; Dean, Alexander

    2015-10-01

    Chronic obstructive pulmonary disease (COPD) is currently the third leading cause of death in the US and is associated with an abnormal inflammatory response to cigarette smoke (CS). Exposure to CS induces oxidative stress and can result in cellular senescence in the lung. Cellular senescence can then lead to decreased proliferation of epithelial cells, the destruction of alveolar structure and pulmonary emphysema. The anti-aging gene, klotho, encodes a membrane bound protein that has been shown to be a key regulator of oxidative stress and cellular senescence. In this study the role of Klotho (KL) with regard to oxidative stress and cellular senescence was investigated in human pulmonary epithelial cells exposed to cigarette smoke. Individual clones that stably overexpress Klotho were generated through retroviral transfection and geneticin selection. Klotho overexpression was confirmed through RT-qPCR, Western blotting and ELISA. Compared to control cells, constitutive Klotho overexpression resulted in decreased sensitivity to cigarette smoke induced cell death in vitro via a reduction of reactive oxygen species and a decrease in the expression of p21. Our results suggest that increasing Klotho level in pulmonary epithelial cells may be a promising strategy to reduce cellular senescence and mitigate the risk for the development of COPD.

  3. Overexpression of the pepper transcription factor CaPF1 in transgenic Virginia pine (Pinus Virginiana Mill.) confers multiple stress tolerance and enhances organ growth.

    PubMed

    Tang, Wei; Charles, Thomas M; Newton, Ronald J

    2005-11-01

    Transcription factors play an important role in regulating gene expression in response to stress and pathogen tolerance. We describe here that overexpression of an ERF/AP2 pepper transcription factor (CaPF1) in transgenic Virginia pine (Pinus virginiana Mill.) confers tolerance to heavy metals Cadmium, Copper, and Zinc, to heat, and to pathogens Bacillus thuringiensis and Staphylococcus epidermidis, as by the survival rate of transgenic plants and the number of decreasing pathogen cells in transgenic tissues. Measurement of antioxidant enzymes ascorbate peroxidase (APOX), glutathione reductase (GR), and superoxide dismutase (SOD) activities demonstrated that the level of the enzyme activities was higher in transgenic Virginia pine plants overexpressing the CaPF1 gene, which may protect cells from the oxidative damage caused by stresses, compared to the controls. Constitutive overexpression of CaPF1 gene enhanced organ growth by increasing organ size and cell numbers in transgenic Virginia pine plants over those in control plants.

  4. Behavioral, neurochemical and morphological changes induced by the overexpression of munc18-1a in brain of mice: relevance to schizophrenia

    PubMed Central

    Urigüen, L; Gil-Pisa, I; Munarriz-Cuezva, E; Berrocoso, E; Pascau, J; Soto-Montenegro, M L; Gutiérrez-Adán, A; Pintado, B; Madrigal, J L M; Castro, E; Sánchez-Blázquez, P; Ortega, J E; Guerrero, M J; Ferrer-Alcon, M; García-Sevilla, J A; Micó, J A; Desco, M; Leza, J C; Pazos, Á; Garzón, J; Meana, J J

    2013-01-01

    Overexpression of the mammalian homolog of the unc-18 gene (munc18-1) has been described in the brain of subjects with schizophrenia. Munc18-1 protein is involved in membrane fusion processes, exocytosis and neurotransmitter release. A transgenic mouse strain that overexpresses the protein isoform munc18-1a in the brain was characterized. This animal displays several schizophrenia-related behaviors, supersensitivity to hallucinogenic drugs and deficits in prepulse inhibition that reverse after antipsychotic treatment. Relevant brain areas (that is, cortex and striatum) exhibit reduced expression of dopamine D1 receptors and dopamine transporters together with enhanced amphetamine-induced in vivo dopamine release. Magnetic resonance imaging demonstrates decreased gray matter volume in the transgenic animal. In conclusion, the mouse overexpressing brain munc18-1a represents a new valid animal model that resembles functional and structural abnormalities in patients with schizophrenia. The animal could provide valuable insights into phenotypic aspects of this psychiatric disorder. PMID:23340504

  5. Neuroprotective potential of pleiotrophin overexpression in the striatonigral pathway compared with overexpression in both the striatonigral and nigrostriatal pathways.

    PubMed

    Gombash, S E; Manfredsson, F P; Mandel, R J; Collier, T J; Fischer, D L; Kemp, C J; Kuhn, N M; Wohlgenant, S L; Fleming, S M; Sortwell, C E

    2014-07-01

    Intrastriatal injection of recombinant adeno-associated viral vector serotype 2/1 (rAAV2/1) to overexpress the neurotrophic factor pleiotrophin (PTN) provides neuroprotection for tyrosine hydroxylase immunoreactive (THir) neurons in the substantia nigra pars compacta (SNpc), increases THir neurite density in the striatum (ST) and reverses functional deficits in forepaw use following 6-hydroxydopamine (6-OHDA) toxic insult. Glial cell line-derived neurotrophic factor (GDNF) gene transfer studies suggest that optimal neuroprotection is dependent on the site of nigrostriatal overexpression. The present study was conducted to determine whether enhanced neuroprotection could be accomplished via simultaneous rAAV2/1 PTN injections into the ST and SN compared with ST injections alone. Rats were unilaterally injected in the ST alone or injected in both the ST and SN with rAAV2/1 expressing either PTN or control vector. Four weeks later, all rats received intrastriatal injections of 6-OHDA. Rats were euthanized 6 or 16 weeks relative to 6-OHDA injection. A novel selective total enumeration method to estimate nigral THir neuron survival was validated to maintain the accuracy of stereological assessment. Long-term nigrostriatal neuroprotection and functional benefits were only observed in rats in which rAAV2/1 PTN was injected into the ST alone. Results suggest that superior preservation of the nigrostriatal system is provided by PTN overexpression delivered to the ST and restricted to the ST and SN pars reticulata and is not improved with overexpression of PTN within SNpc neurons.

  6. Adeno-Associated Virus-Mediated Overexpression of LARGE Rescues α-Dystroglycan Function in Dystrophic Mice with Mutations in the Fukutin-Related Protein

    PubMed Central

    Vannoy, Charles H.; Xu, Lei; Keramaris, Elizabeth; Lu, Pei; Xiao, Xiao

    2014-01-01

    Abstract Multiple genes (e.g., POMT1, POMT2, POMGnT1, ISPD, GTDC2, B3GALNT2, FKTN, FKRP, and LARGE) are known to be involved in the glycosylation pathway of α-dystroglycan (α-DG). Mutations of these genes result in muscular dystrophies with wide phenotypic variability. Abnormal glycosylation of α-DG with decreased extracellular ligand binding activity is a common biochemical feature of these genetic diseases. While it is known that LARGE overexpression can compensate for defects in a few aforementioned genes, it is unclear whether it can also rescue defects in FKRP function. We examined adeno-associated virus (AAV)-mediated LARGE or FKRP overexpression in two dystrophic mouse models with loss-of-function mutations: (1) Largemyd (LARGE gene) and (2) FKRPP448L (FKRP gene). The results agree with previous findings that overexpression of LARGE can ameliorate the dystrophic phenotypes of Largemyd mice. In addition, LARGE overexpression in the FKRPP448L mice effectively generated functional glycosylation (hyperglycosylation) of α-DG and improved dystrophic pathologies in treated muscles. Conversely, FKRP transgene overexpression failed to rescue the defect in glycosylation and improve the phenotypes of the Largemyd mice. Our findings suggest that AAV-mediated LARGE gene therapy may still be a viable therapeutic strategy for dystroglycanopathies with FKRP deficiency. PMID:24635668

  7. Overexpression of AtEDT1 promotes root elongation and affects medicinal secondary metabolite biosynthesis in roots of transgenic Salvia miltiorrhiza.

    PubMed

    Liu, Yu; Sun, Geng; Zhong, Zhaohui; Ji, Linyi; Zhang, Yong; Zhou, Jianping; Zheng, Xuelian; Deng, Kejun

    2016-12-03

    Medicinal secondary metabolites (salvianolic acids and tanshinones) are valuable natural bioactive compounds in Salvia miltiorrhiza and have widespread applications. Improvement of medicinal secondary metabolite accumulation through biotechnology is necessary and urgent to satisfy their increasing demand. Herein, it was demonstrated that the overexpression of the transcription factor Arabidopsis thaliana-enhanced drought tolerance 1 (AtEDT1) could affect medicinal secondary metabolite accumulation. In this study, we observed that the transgenic lines significantly conferred drought tolerance phenotype. Meanwhile, we found that the overexpression of AtEDT1 promoted root elongation in S. miltiorrhiza. Interestingly, we also found that the overexpression of AtEDT1 determined the accumulation of salvianolic acids, such as rosmarinic acid, lithospermic acid, salvianolic acid B, and total salvianolic acids due to the induction of the expression levels of salvianolic acid biosynthetic genes. Conversely, S. miltiorrhiza plants overexpressing the AtEDT1 transgene showed a decrease in tanshinone synthesis. Our results demonstrated that the overexpression of AtEDT1 significantly increased the accumulation of salvianolic acids in S. miltiorrhiza. Further studies are required to better elucidate the functional role of AtEDT1 in the regulation of phytochemical compound synthesis.

  8. Adeno-associated virus-mediated overexpression of LARGE rescues α-dystroglycan function in dystrophic mice with mutations in the fukutin-related protein.

    PubMed

    Vannoy, Charles H; Xu, Lei; Keramaris, Elizabeth; Lu, Pei; Xiao, Xiao; Lu, Qi Long

    2014-06-01

    Multiple genes (e.g., POMT1, POMT2, POMGnT1, ISPD, GTDC2, B3GALNT2, FKTN, FKRP, and LARGE) are known to be involved in the glycosylation pathway of α-dystroglycan (α-DG). Mutations of these genes result in muscular dystrophies with wide phenotypic variability. Abnormal glycosylation of α-DG with decreased extracellular ligand binding activity is a common biochemical feature of these genetic diseases. While it is known that LARGE overexpression can compensate for defects in a few aforementioned genes, it is unclear whether it can also rescue defects in FKRP function. We examined adeno-associated virus (AAV)-mediated LARGE or FKRP overexpression in two dystrophic mouse models with loss-of-function mutations: (1) Large(myd) (LARGE gene) and (2) FKRP(P448L) (FKRP gene). The results agree with previous findings that overexpression of LARGE can ameliorate the dystrophic phenotypes of Large(myd) mice. In addition, LARGE overexpression in the FKRP(P448L) mice effectively generated functional glycosylation (hyperglycosylation) of α-DG and improved dystrophic pathologies in treated muscles. Conversely, FKRP transgene overexpression failed to rescue the defect in glycosylation and improve the phenotypes of the Large(myd) mice. Our findings suggest that AAV-mediated LARGE gene therapy may still be a viable therapeutic strategy for dystroglycanopathies with FKRP deficiency.

  9. Properties of astrocytes cultured from GFAP over-expressing and GFAP mutant mice

    SciTech Connect

    Cho, Woosung; Messing, Albee

    2009-04-15

    Alexander disease is a fatal leukoencephalopathy caused by dominantly-acting coding mutations in GFAP. Previous work has also implicated elevations in absolute levels of GFAP as central to the pathogenesis of the disease. However, identification of the critical astrocyte functions that are compromised by mis-expression of GFAP has not yet been possible. To provide new tools for investigating the nature of astrocyte dysfunction in Alexander disease, we have established primary astrocyte cultures from two mouse models of Alexander disease, a transgenic that over-expresses wild type human GFAP, and a knock-in at the endogenous mouse locus that mimics a common Alexander disease mutation. We find that mutant GFAP, as well as excess wild type GFAP, promotes formation of cytoplasmic inclusions, disrupts the cytoskeleton, decreases cell proliferation, increases cell death, reduces proteasomal function, and compromises astrocyte resistance to stress.

  10. The Regenerating Gene Iα Is Overexpressed in Atrophic Gastritis Rats with Hypergastrinemia

    PubMed Central

    Chen, Shujie; Zhong, Jing; Zhou, Qunyan; Lu, Xiaofeng; Wang, Liangjing; Si, Jianmin

    2011-01-01

    The role of gastrin on the development of atrophic gastritis (AG) and its relationship with the expression of RegIα  in vivo remain unclear. We established experimental AG in rats by combination administration with sodium salicylate, alcohol, and deoxycholate sodium. The mean score of inflammation in gastric antrum in AG rats was significantly elevated (P < 0.05), while the number of glands dramatically decreased (P < 0.05). In addition, the cell proliferation in gastric glands was increased in experimental AG rats, as determined by immunohistochemistry staining of PCNA and GS II. The level of serum gastrin in AG rats was significantly elevated relative to that of normal rats (P < 0.01). Moreover, the expression of RegIα protein and its receptor mRNA was increased in gastric tissues in AG rats (P < 0.05). Taken together, we demonstrated that the overexpression of Reglα is related with hypergastrinemia in AG rats. PMID:21949663

  11. Overexpression of a Chitinase Gene from Trichoderma asperellum Increases Disease Resistance in Transgenic Soybean.

    PubMed

    Zhang, Fuli; Ruan, Xianle; Wang, Xian; Liu, Zhihua; Hu, Lizong; Li, Chengwei

    2016-12-01

    In the present study, a chi gene from Trichoderma asperellum, designated Tachi, was cloned and functionally characterized in soybean. Firstly, the effects of sodium thiosulfate on soybean Agrobacterium-mediated genetic transformation with embryonic tip regeneration system were investigated. The transformation frequency was improved by adding sodium thiosulfate in co-culture medium for three soybean genotypes. Transgenic soybean plants with constitutive expression of Tachi showed increased resistance to Sclerotinia sclerotiorum compared to WT plants. Meanwhile, overexpression of Tachi in soybean exhibited increased reactive oxygen species (ROS) level as well as peroxidase (POD) and catalase (SOD) activities, decreased malondialdehyde (MDA) content, along with diminished electrolytic leakage rate after S. sclerotiorum inoculation. These results suggest that Tachi can improve disease resistance in plants by enhancing ROS accumulation and activities of ROS scavenging enzymes and then diminishing cell death. Therefore, Tachi represents a candidate gene with potential application for increasing disease resistance in plants.

  12. Relationship of Sialyl-Lewisx/a Underexpression and E-Cadherin Overexpression in the Lymphovascular Embolus of Inflammatory Breast Carcinoma

    PubMed Central

    Alpaugh, Mary L.; Tomlinson, James S.; Ye, Yin; Barsky, Sanford H.

    2002-01-01

    Inflammatory breast carcinoma (IBC) is characterized by florid tumor emboli within lymphovascular spaces called lymphovascular invasion. These emboli have a unique microscopic appearance of compact clumps of tumor cells retracted away from the surrounding endothelial cell layer. Using a human SCID model of IBC (MARY-X), we, in previous studies, demonstrated that the tumor cell embolus (IBC spheroid) forms on the basis of an intact and overexpressed E-cadherin/α,β-catenin axis that mediates tumor cell-tumor cell adhesion. In the present study we examine the mechanism behind the apparent lack of binding of the tumor embolus to the surrounding endothelium. We find that this lack of tumor cell binding is because of markedly decreased sialyl-Lewisx/a (sLex/a) carbohydrate ligand-binding epitopes on its overexpressed MUC1 and other surface molecules that bind endothelial E-selectin. Decreased sLex/a is because of decreased α3/4-fucosyltransferase activity in MARY-X. The decreased sLex/a fail to confer electrostatic repulsions between tumor cells, which further contributes to the compactness of the MARY-X spheroid by allowing the E-cadherin homodimeric interactions to go unopposed. MARY-X spheroids were retrovirally transfected with FucT-III cDNA, significantly raising their levels of fucosyltransferase activity and surface sLex/a. In parallel experiments, enzymatic transfers with a milk α1,3-fucosyltransferase and an α2,3-sialyltransferase (ST3GalIV) were performed on the MARY-X spheroids and increased surface sLex/a. The addition of sLex/a by either manipulation caused disadherence of the MARY-X spheroids and the disruption of the E-cadherin homodimers mediating cell adhesion. Our findings support the cooperative relationship of sLex/a underexpression and E-cadherin overexpression in the genesis of the lymphovascular embolus of IBC. PMID:12163386

  13. Expression of Wnt3 activates Wnt/β-catenin pathway and promotes EMT-like phenotype in trastuzumab-resistant HER2-overexpressing breast cancer cells.

    PubMed

    Wu, Yanyuan; Ginther, Charles; Kim, Juri; Mosher, Nicole; Chung, Seyung; Slamon, Dennis; Vadgama, Jaydutt V

    2012-12-01

    To understand the mechanisms leading to trastuzumab resistance in HER2-overexpressing breast tumors, we created trastuzumab-insensitive cell lines (SKBR3/100-8 and BT474/100-2). The cell lines maintain HER2 receptor overexpression and show increase in EGF receptor (EGFR). Upon trastuzumab treatment, SKBR3/100-8 and BT474/100-2 cell lines displayed increased growth rate and invasiveness. The trastuzumab resistance in SKBR3/100-8 and BT474/100-2 was accompanied with activation of the Wnt/β-catenin signaling pathway. Further investigation found that Wnt3 overexpression played a key role toward the development of trastuzumab resistance. The expression of Wnt3 in trastuzumab-resistant cells increased nuclear expression of β-catenin and transactivated expression of EGFR. The increased Wnt3 in the trastuzumab-resistant cells also promoted a partial EMT-like transition (epithelial-to-mesenchymal transition); increased N-cadherin, Twist, Slug; and decreased E-cadherin. Knockdown of Wnt3 by siRNA restored cytoplasmic expression of β-catenin and decreased EGFR expression in trastuzumab-resistant cells. Furthermore, the EMT markers were decreased, E-cadherin was increased, and the cell invasiveness was inhibited in response to the Wnt3 downregulation. Conversely, SKBR3 cells which had been stably transfected with full-length Wnt3 exhibited EMT-like transition. The Wnt3 transfectants, SKBR3/Wnt3-7 and SKBR3/Wnt3-9, showed a significant decrease in E-cadherin and increase in N-cadherin, Twist, and Slug. The cells were less sensitive to trastuzumab than parental SKBR3 and vector-transfected cells. In summary, our data suggest that Wnt3 overexpression activates Wnt/β-catenin signaling pathway that leads to transactivation of EGFR and promotes EMT-like transition. This could be an important mechanism leading to trastuzumab resistance in HER2-overexpressing breast cancer cells.

  14. Association between Promoter Hypomethylation and Overexpression of Autotaxin with Outcome Parameters in Biliary Atresia

    PubMed Central

    Udomsinprasert, Wanvisa; Kitkumthorn, Nakarin; Mutirangura, Apiwat; Chongsrisawat, Voranush; Poovorawan, Yong; Honsawek, Sittisak

    2017-01-01

    Objective Biliary atresia (BA) is a progressive fibroinflammatory liver disease. Autotaxin (ATX) has a profibrotic effect resulting from lysophosphatidic acid activity. The purpose of this study was to examine ATX expression and ATX promoter methylation in peripheral blood leukocytes and liver tissues from BA patients and controls and investigate their associations with outcome parameters in BA patients. Methods A total of 130 subjects (65 BA patients and 65 age-matched controls) were enrolled. DNA was extracted from circulating leukocytes and liver tissues of BA patients and from and age-matched controls. ATX promoter methylation status was determined by bisulfite pyrosequencing. ATX expression was analyzed using quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Results Decreased methylation of specific CpGs were observed at the ATX promoter in BA patients. Subsequent analysis revealed that BA patients with advanced stage had lower methylation levels of ATX promoter than those with early stage. ATX promoter methylation levels were found to be associated with hepatic dysfunction in BA. In addition, ATX expression was significantly elevated and correlated with a decrease in ATX promoter methylation in BA patients compared to the controls. Furthermore, promoter hypomethylation and overexpression of ATX were inversely associated with jaundice status, hepatic dysfunction, and liver stiffness in BA patients. Conclusion Accordingly, it has been hypothesized that ATX promoter methylation and ATX expression in peripheral blood may serve as possible biomarkers reflecting the progression of liver fibrosis in postoperative BA. These findings suggest that the promoter hypomethylation and overexpression of ATX might play a contributory role in the pathogenesis of liver fibrosis in BA. PMID:28052132

  15. Overexpression of TRPV3 Correlates with Tumor Progression in Non-Small Cell Lung Cancer.

    PubMed

    Li, Xiaolei; Zhang, Qianhui; Fan, Kai; Li, Baiyan; Li, Huifeng; Qi, Hanping; Guo, Jing; Cao, Yonggang; Sun, Hongli

    2016-03-24

    (1) BACKGROUND: Transient receptor potential vanilloid 3 (TRPV3) is a member of the TRP channels family of Ca(2+)-permeant channels. The proteins of some TRP channels are highly expressed in cancer cells. This study aimed to assess the clinical significance and biological functions of TRPV3 in non-small cell lung cancer (NSCLC); (2) METHODS: Immunohistochemistry was used to detect the expression of TRPV3 in NSCLC tissues and adjacent noncancerous lung tissues. Western blot was used to detect the protein expressions of TRPV3, CaMKII, p-CaMKII, CyclinA, CyclinD, CyclinE1, CDK2, CDK4, and P27. Small interfering RNA was used to deplete TRPV3 expression. A laser scanning confocal microscope was used to measure intracellular calcium concentration ([Ca(2+)]i). Flow cytometry was used to analyze cell cycle; (3) RESULTS: TRPV3 was overexpressed in 65 of 96 (67.7%) human lung cancer cases and correlated with differentiation (p = 0.001) and TNM stage (p = 0.004). Importantly, TRPV3 expression was associated with short overall survival. In addition, blocking or knockdown of TRPV3 could inhibit lung cancer cell proliferation. Moreover, TRPV3 inhibition could decrease [Ca(2+)]i of lung cancer cells and arrest cell cycle at the G1/S boundary. Further results revealed that TRPV3 inhibition decreased expressions of p-CaMKII, CyclinA, CyclinD1, CyclinE, and increased P27 level; (4) CONCLUSIONS: Our findings demonstrate that TRPV3 was overexpressed in NSCLC and correlated with lung cancer progression. TRPV3 activation could promote proliferation of lung cancer cells. TRPV3 might serve as a potential companion drug target in NSCLC.

  16. Neuronal Over-expression of ACE2 Protects Brain from Ischemia-induced Damage

    PubMed Central

    Chen, Ji; Zhao, Yuhui; Chen, Shuzhen; Wang, Jinju; Xiao, Xiang; Ma, Xiaotang; Penchikala, Madhuri; Xia, Huijing; Lazartigues, Eric; Zhao, Bin; Chen, Yanfang

    2014-01-01

    Angiotensin (Ang) II exaggerates cerebral injury in ischemic damage. Angiotensin-converting enzyme type 2 (ACE2) converts Ang II into Ang (1–7) and thus, may protect against the effects of Ang II. We hypothesized that neuronal ACE2 over-expression decreases ischemic stroke in mice with Ang II overproduction. Human renin and angiotensinogen double transgenic (RA) mice and RA mice with neuronal over-expression of ACE2 (SARA) were used for the study. The mean arterial pressure (MAP) was calculated from telemetry-recorded blood pressure (BP). SARA mice were infused peripherally with Norepinephrine to “clamp” the BP, or intracerebroventricularly-infused with a Mas receptor antagonist (A-779). Middle cerebral artery occlusion (MCAO) surgery was performed to induce permanent focal ischemic stroke. Cerebral blood flow (CBF) and neurological function were determined. Two days after surgery, brain samples were collected for various analyses. Results showed: 1) When compared to chronically hypertensive RA mice, SARA mice had lower basal MAP, less MCAO-induced infarct volume, and increased CBF, neurological function and cerebral microvascular density in the peri-infarct area; 2) These changes in SARA mice were not altered after MAP “clamping”, but partially reversed by brain infusion of A-779; 3) Ang (1–7)/Ang II ratio, angiogenic factors, endothelial nitric oxide synthase (eNOS) expression and nitric oxide production were increased, whereas, NADPH oxidase subunits and reactive oxygen species were decreased in the brain of SARA mice. ACE2 protects brain from ischemic injury via the regulation of NADPH oxidase/eNOS pathways by changing Ang (1–7)/Ang II ratio, independently of MAP changes. PMID:24440367

  17. Overexpression of TRPV3 Correlates with Tumor Progression in Non-Small Cell Lung Cancer

    PubMed Central

    Li, Xiaolei; Zhang, Qianhui; Fan, Kai; Li, Baiyan; Li, Huifeng; Qi, Hanping; Guo, Jing; Cao, Yonggang; Sun, Hongli

    2016-01-01

    (1) Background: Transient receptor potential vanilloid 3 (TRPV3) is a member of the TRP channels family of Ca2+-permeant channels. The proteins of some TRP channels are highly expressed in cancer cells. This study aimed to assess the clinical significance and biological functions of TRPV3 in non-small cell lung cancer (NSCLC); (2) Methods: Immunohistochemistry was used to detect the expression of TRPV3 in NSCLC tissues and adjacent noncancerous lung tissues. Western blot was used to detect the protein expressions of TRPV3, CaMKII, p-CaMKII, CyclinA, CyclinD, CyclinE1, CDK2, CDK4, and P27. Small interfering RNA was used to deplete TRPV3 expression. A laser scanning confocal microscope was used to measure intracellular calcium concentration ([Ca2+]i). Flow cytometry was used to analyze cell cycle; (3) Results: TRPV3 was overexpressed in 65 of 96 (67.7%) human lung cancer cases and correlated with differentiation (p = 0.001) and TNM stage (p = 0.004). Importantly, TRPV3 expression was associated with short overall survival. In addition, blocking or knockdown of TRPV3 could inhibit lung cancer cell proliferation. Moreover, TRPV3 inhibition could decrease [Ca2+]i of lung cancer cells and arrest cell cycle at the G1/S boundary. Further results revealed that TRPV3 inhibition decreased expressions of p-CaMKII, CyclinA, CyclinD1, CyclinE, and increased P27 level; (4) Conclusions: Our findings demonstrate that TRPV3 was overexpressed in NSCLC and correlated with lung cancer progression. TRPV3 activation could promote proliferation of lung cancer cells. TRPV3 might serve as a potential companion drug target in NSCLC. PMID:27023518

  18. Formaldehyde induces apoptosis through decreased Prx 2 via p38 MAPK in lung epithelial cells.

    PubMed

    Lim, Seul Ki; Kim, Jong Chun; Moon, Chang Jong; Kim, Gye Yeop; Han, Ho Jae; Park, Soo Hyun

    2010-05-27

    Formaldehyde (FA) is an important substance that induces sick house syndrome and diseases, such as asthma and allergies. Oxidative stress is involved in the development of respiratory disease, and diverse antioxidants may protect respiratory tract cells from apoptosis. Peroxiredoxin is a pivotal endogenous antioxidant. In the present study, FA induced death in A549 cells, a lung epithelial cell line, in a dose-dependent manner. FA also increased lipid peroxide formation (LPO) in A549 cells, suggesting a role for oxidative stress. Additionally, FA decreased peroxiredoxin 2 (Prx 2) protein levels after a 24 or 48h exposure to FA. We also examined whether the FA-induced decrease in Prx 2 was associated with apoptosis. Prx 2 overexpression protected against FA-induced cell apoptosis but not necrosis. Prx 2 overexpression blocked FA-induced increase in Bax, a pro-apoptotic molecule, and a decrease in Bcl-2, an anti-apoptotic molecule. Prx 2 overexpression also protected against FA-induced activation of some special apoptosis-associated proteins [caspase-3, caspase-9, and polypeptide poly (ADP-ribose) polymerase (PARP)]. Furthermore, we examined the signaling molecules involved in the FA-induced decrease in Prx 2 expression. The FA-induced decrease in Prx 2 and increase in cell apoptosis was restored by treatment with SB203580 [a p38 mitogen activated protein kinase (MAPK) inhibitor], but not by SP600125 [a c-jun-N-terminal kinase (JNK) inhibitor]. Also, FA-induced events were blocked by treatment with p38 siRNA, but not by scrambled siRNA. Indeed, FA increased p38 MAPK activation, suggesting a role for p38 MAPK in FA action. In conclusion, FA mediated apoptosis in lung epithelial cells by decreasing Prx 2 via p38 MAPK.

  19. Inhibition of phosphatidylcholine-specific phospholipase C downregulates HER2 overexpression on plasma membrane of breast cancer cells

    PubMed Central

    2010-01-01

    Introduction Overexpression on plasma membrane of human epidermal growth factor receptor 2 (HER2) is reported in 25% to 30% of breast cancers. Heterodimer formation with cognate members of the epidermal growth factor receptor (EGFR) family, such as HER3 and EGFR, activates abnormal cell-signalling cascades responsible for tumorigenesis and further transcriptional HER2 gene upregulation. Targeting the molecular mechanisms controlling HER2 overexpression and recycling may effectively deactivate this feedback-amplification loop. We recently showed that inactivation of phosphatidylcholine-specific phospholipase C (PC-PLC) may exert a pivotal role in selectively modulating the expression on the membrane of specific receptors or proteins relevant to cell function. In the present study, we investigated the capability of PC-PLC inhibition to target the molecular mechanisms controlling HER2 overexpression on the membrane of breast cancer cells by altering the rates of its endocytosis and lysosomal degradation. Methods Localization on the membrane and interaction of PC-PLC with HER2, EGFR, and HER3 were investigated on HER2-overexpressing and HER2-low breast cancer cell lines, by using confocal laser scanning microscopy, flow cytometry, cell-surface biotinylation, isolation of lipid rafts, and immunoprecipitation experiments. The effects of the PC-PLC inhibitor tricyclodecan-9-yl-potassium xanthate (D609) on HER2 expression on the membrane and on the levels of overall HER2, HER2-HER3, and HER2-EGFR contents were monitored in the HER2-overexpressing SKBr3 cells, after either transient or continuous receptor engagement with anti-HER2 monoclonal antibodies, including trastuzumab. Changes of HER2 expression and cell proliferation were examined in SKBr3, BT-474, and MDA-MB-453 cells continuously exposed to D609 alone or combined with trastuzumab. Results PC-PLC selectively accumulates on the plasma membrane of HER2-overexpressing cells, where it colocalizes and associates with

  20. [Overexpression of NHE1 suppresses ABCA1 protein expression via increasing calpain activity in RAW264.7 cells].

    PubMed

    Mo, Xiangang; Wang, Lan; Guo, Jing; Hong, Wei; Long, Shiqi; Zhang, Li; Xiang, Ning; Yang, Juan

    2017-01-01

    Objective To investigate the effect of over-expressed Na(+)/H(+) exchanger 1 (NHE1) on the protein expression of adenosine three phosphate binding cassette transporter A1 (ABCA1) in RAW264.7 cells. Methods RAW264.7 cells were infected with the adenoviral vector encoding NHE1-EGFP (AdNHE1). The infected RAW264.7 cells were subjected to Western blot analysis for NHE1-EGFP fusion protein. The subcellular localization of NHE1-EGFP fusion protein was observed by confocal laser scanning microscopy. NHE1 activity was measured by the method of pH recovery in response to an acute acid pulse. Furthermore, Western blotting was performed to determine ABCA1 protein levels and calpain activity in NHE1-overexpressing RAW264.7 cells. The effect of calpain inhibitor N-acetyl-L-leucyl-L-leucyl-L-norleucinal (ALLN) on ABCA1 protein levels in the presence of TO-901317 was examined by Western blotting. Results NHE1-EGFP fusion protein was highly expressed and localized in cytoplasm and cell membrane of RAW264.7 cells infected with AdNHE1. NHE1-EGFP fusion protein reduced ABCA1 protein expression and increased calpain activity. The calpain inhibitor ALLN blocked the decrease of ABCA1 protein expression. Conclusion Overexpressed NHE1 suppresses the expression of ABCA1 protein via increasing the calpain activity in RAW264.7 cells.

  1. Expression profiling of TCR-engineered T cells demonstrates overexpression of multiple inhibitory receptors in persisting lymphocytes

    PubMed Central

    Abate-Daga, Daniel; Hanada, Ken-ichi; Davis, Jeremy L.; Yang, James C.; Rosenberg, Steven A.

    2013-01-01

    Despite significant progress in the development of adoptive cell-transfer therapies (ACTs) using gene-engineered T cells, little is known about the fate of cells following infusion. To address that, we performed a comparative analysis of gene expression between T-cell receptor–engineered lymphocytes persisting in the circulation 1 month after administration and the product that was infused. We observed that 156 genes related to immune function were differentially expressed, including underexpression of stimulators of lymphocyte function and overexpression of inhibitory genes in postinfusion cells. Of genes overexpressed postinfusion, the product of programmed cell death 1 (PDCD1), coinhibitory receptor PD-1, was expressed at a higher percentage in postinfusion lymphocytes than in the infusion product. This was associated with a higher sensitivity to inhibition of cytokine production by interaction with its ligand PD-L1. Coinhibitory receptor CD160 was also overexpressed in persisting cells, and its expression was associated with decreased reactivity, which surprisingly was found to be ligand-independent. These results contribute to a deeper understanding of the properties of transgenic lymphocytes used to treat human malignancies and may provide a rationale for the development of combination therapies as a method to improve ACT. This trial was registered at www.clinicaltrials.gov as #NCT00509288, #NCT00923195, and #NCT01273181. PMID:23861247

  2. CARD15 gene overexpression reduces effect of etanercept, infliximab, and adalimumab on cytokine secretion from PMA activated U937 cells.

    PubMed

    Teimourian, Shahram; Masoudzadeh, Nooshin

    2015-09-05

    Crohn's disease (CD), a subcategory of inflammatory bowel disease, is an immune-related disorder characterized by inflammation of the gastrointestinal mucosa, which can take place in any region along the alimentary tract. The most important gene involved in the etiology of CD is NOD2/CARD15 located on chromosome 16. It has been shown that CARD15 is overexpressed in monocytes of CD patients. The common treatment for the disease is anti-TNF-alpha drugs, the most hopeful of which are probably infliximab and etanercept. Infliximab rapidly reduces signs and symptoms of active Crohn's disease. In contrast, etanercept shows no such effect. In the present study, we evaluated the effects of the CARD15 gene overexpression in monocytic cell line U937 in the production of anti-inflammatory cytokine, IL-10, and proinflammatory cytokine, Il-1 beta, produced after incubation with infliximab, adalimumab, and etanercept separately. Our results show that infliximab and adalimumab significantly decreased IL-10 and IL-1beta secretion levels. However, etanercept inhibition of secretion was less compared with infliximab or adalimumab. In all three cases, suppression of cytokine production is reduced by CARD15 overexpression.

  3. NDRG2 overexpression suppresses hepatoma cells survival during metabolic stress through disturbing the activation of fatty acid oxidation.

    PubMed

    Pan, Tao; Zhang, Mei; Zhang, Fang; Yan, Guang; Ru, Yi; Wang, Qinhao; Zhang, Yao; Wei, Xuehui; Xu, Xinyuan; Shen, Lan; Zhang, Jian; Wu, Kaichun; Yao, Libo; Li, Xia

    2017-02-05

    Because of the high nutrient consumption and inadequate vascularization, solid tumor constantly undergoes metabolic stress during tumor development. Oncogenes and tumor suppressor genes participated in cancer cells' metabolic reprogramming. N-Myc downstream regulated gene 2 (NDRG2) is a recently identified tumor suppressor gene, but its function in cancer metabolism, particularly during metabolic stress, remains unclear. In this study, we found that NDRG2 overexpression significantly reduced hepatoma cell proliferation and enhanced cell apoptosis under glucose limitation. Moreover, NDRG2 overexpression aggravated energy imbalance and oxidative stress by decreasing the intracellular ATP and NADPH generation and increasing ROS levels. Strikingly, NDRG2 inhibited the activation of fatty acid oxidation (FAO), which preserves ATP and NADPH purveyance in the absence of glucose. Finally, mechanistic investigation showed that NDRG2 overexpression suppressed the glucose-deprivation induced AMPK/ACC pathway activation in hepatoma cells, whereas the expression of a constitutively active form of AMPK abrogated glucose-deprivation induced AMPK activation and cell apoptosis. Thus, as a negative regulator of AMPK, NDRG2 disturbs the induction of FAO genes by glucose limitation, leading to dysregulation of ATP and NADPH, and thus reduces the tolerance of hepatoma cells to glucose limitation.

  4. YB-1 overexpression promotes a TGF-β1-induced epithelial–mesenchymal transition via Akt activation

    SciTech Connect

    Ha, Bin; Lee, Eun Byul; Cui, Jun; Kim, Yosup; Jang, Ho Hee

    2015-03-06

    The Y-box binding protein-1 (YB-1) is a transcription/translation regulatory protein, and the expression thereof is associated with cancer aggressiveness. In the present study, we explored the regulatory effects of YB-1 during the transforming growth factor-β1 (TGF-β1)-induced epithelial-to-mesenchymal transition (EMT) in lung adenocarcinoma cells. Downregulation of YB-1 increased E-cadherin promoter activity, and upregulation of YB-1 decreased promoter activity, suggesting that the YB-1 level may be correlated with the EMT. TGF-β1 induced YB-1 expression, and TGF-β1 translocated cytosolic YB-1 into the nucleus. YB-1 overexpression promoted TGF-β1-induced downregulation of epithelial markers, upregulation of mesenchymal markers, and cell migration. Moreover, YB-1 overexpression enhanced the expression of E-cadherin transcriptional repressors via TGF-β1-induced Akt activation. Our findings afford new insights into the role played by YB-1 in the TGF-β1 signaling pathway. - Highlights: • YB-1 regulates E-cadherin expression in A549 cells. • TGF-β1 induces upregulating and nuclear localization of YB-1. • YB-1 overexpression accelerates TGF-β1-induced EMT and cell migration. • YB-1 regulates Snail and Slug expression via Akt activation.

  5. Overexpression of TMAC2, a novel negative regulator of abscisic acid and salinity responses, has pleiotropic effects in Arabidopsis thaliana.

    PubMed

    Huang, Ming-Der; Wu, Wen-Luan

    2007-03-01

    Phytohormone abscisic acid (ABA) regulates many aspects of plant development and growth. To explore the molecular mechanism of ABA, we identified the novel ABA-regulated genes in Arabidopsis thaliana by searching for genes possessing two or more ABREs (ABA-responsive elements). One of these genes, two or more ABREs-containing gene 2 (TMAC2) is highly induced by ABA and NaC1. Database searches revealed that TMAC2 encodes a protein with no domains of known function. Expression of TMAC2-GFP fusion protein in Arabidopsis mesophyll protoplasts indicated that TMAC2 is targeted to the nucleus. Although the gene has a basal level of expression in various Arabidopsis organs/tissues except for adult leaves, a high expression level was detected in roots. Constitutive overexpression of TMAC2 in plants resulted in the insensitivity to ABA and NaCl, suggesting that TMAC2 plays a negative role in ABA and salt stress responses. Furthermore, TMAC2-overexpressing plants exhibited the short roots, late flowering and starch-excess phenotypes. RT-PCR analysis showed that decreased expression of two floral- and one starch degradation-related genes, SOC1/AGL20 and SEP3/AGL9, and SEX1, respectively, may lead to altered phenotypes of TMAC2-overexpressing plants. Taken together, our data reveal that TMAC2 acts in the nucleus and is an important negative regulator of ABA and salt stress responses, and could play a critical role in controlling root elongation, floral initiation and starch degradation.

  6. Persistent Overexpression of Phosphoglycerate Mutase, a Glycolytic Enzyme, Modifies Energy Metabolism and Reduces Stress Resistance of Heart in Mice

    PubMed Central

    Shioi, Tetsuo; Kato, Takao; Inuzuka, Yasutaka; Kawashima, Tsuneaki; Tamaki, Yodo; Kawamoto, Akira; Tanada, Yohei; Iwanaga, Yoshitaka; Narazaki, Michiko; Matsuda, Tetsuya; Adachi, Souichi; Soga, Tomoyoshi; Takemura, Genzou; Kondoh, Hiroshi; Kita, Toru; Kimura, Takeshi

    2013-01-01

    Background Heart failure is associated with changes in cardiac energy metabolism. Glucose metabolism in particular is thought to be important in the pathogenesis of heart failure. We examined the effects of persistent overexpression of phosphoglycerate mutase 2 (Pgam2), a glycolytic enzyme, on cardiac energy metabolism and function. Methods and Results Transgenic mice constitutively overexpressing Pgam2 in a heart-specific manner were generated, and cardiac energy metabolism and function were analyzed. Cardiac function at rest was normal. The uptake of analogs of glucose or fatty acids and the phosphocreatine/βATP ratio at rest were normal. A comprehensive metabolomic analysis revealed an increase in the levels of a few metabolites immediately upstream and downstream of Pgam2 in the glycolytic pathway, whereas the levels of metabolites in the initial few steps of glycolysis and lactate remained unchanged. The levels of metabolites in the tricarboxylic acid (TCA) cycle were altered. The capacity for respiration by isolated mitochondria in vitro was decreased, and that for the generation of reactive oxygen species (ROS) in vitro was increased. Impaired cardiac function was observed in response to dobutamine. Mice developed systolic dysfunction upon pressure overload. Conclusions Constitutive overexpression of Pgam2 modified energy metabolism and reduced stress resistance of heart in mice. PMID:23951293

  7. Targeting GPR110 in HER2-Overexpressing Breast Cancers

    DTIC Science & Technology

    2015-10-01

    trastuzumab (T) (L+T)), which is effective in a larger group of patients. Drugs targeting G protein-coupled receptors (GPCRs) have low toxicity because of... effects of GPR110 overexpression or knockdown on cell growth in the context of drug resistance will also be determined to understand the possible role...HER2   drug   resistance            CONCLUSIONS    REFERENCES   Figure  8.   Effects  of  GPR110

  8. Metabolic hormone FGF21 is induced in ground squirrels during hibernation but its overexpression is not sufficient to cause torpor.

    PubMed

    Nelson, Bethany T; Ding, Xunshan; Boney-Montoya, Jamie; Gerard, Robert D; Kliewer, Steven A; Andrews, Matthew T

    2013-01-01

    Hibernation is a natural adaptation that allows certain mammals to survive physiological extremes that are lethal to humans. Near freezing body temperatures, heart rates of 3-10 beats per minute, absence of food consumption, and depressed metabolism are characteristic of hibernation torpor bouts that are periodically interrupted by brief interbout arousals (IBAs). The molecular basis of torpor induction is unknown, however starved mice overexpressing the metabolic hormone fibroblast growth factor 21 (FGF21) promote fat utilization, reduce body temperature, and readily enter torpor-all hallmarks of mammalian hibernation. In this study we cloned FGF21 from the naturally hibernating thirteen-lined ground squirrel (Ictidomys tridecemlineatus) and found that levels of FGF21 mRNA in liver and FGF21 protein in serum are elevated during hibernation torpor bouts and significantly elevated during IBAs compared to summer active animals. The effects of artificially elevating circulating FGF21 concentrations 50 to 100-fold via adenoviral-mediated overexpression were examined at three different times of the year. This is the first time that a transgenic approach has been used in a natural hibernator to examine mechanistic aspects of hibernation. Surgically implanted transmitters measured various metrics of the hibernation phenotype over a 7-day period including changes in motor activity, heart rate and core body temperature. In April fed-state animals, FGF21 overexpression decreased blood insulin and free fatty acid concentrations, effects similar to those seen in obese mice. However, elevated FGF21 concentrations did not cause torpor in these fed-state animals nor did they cause torpor or affect metabolic parameters in fasted-state animals in March/April, August or October. We conclude that FGF21 is strongly regulated during torpor and IBA but that its overexpression is not sufficient to cause torpor in naturally hibernating ground squirrels.

  9. Neuronal overexpression of Glo1 or amygdalar microinjection of methylglyoxal is sufficient to regulate anxiety-like behavior in mice.

    PubMed

    McMurray, K M J; Du, X; Brownlee, M; Palmer, A A

    2016-03-15

    GLO1 (Glyoxalase1) is a ubiquitous cellular enzyme that detoxifies methylglyoxal (MG), which is a byproduct of glycolysis. Previously, we showed that ubiquitous overexpression of Glo1 reduced concentrations of MG and increased anxiety-like behavior, whereas systemic injection of MG reduced anxiety-like behavior. We further showed that MG is a competitive partial agonist at GABA-A receptors. Based on those data we hypothesized that modulation of GABAergic signaling by MG underlies Glo1 and MG's effects on anxiety-like behavior. As previous studies used ubiquitous overexpression, we sought to determine whether neuronal Glo1 overexpression was sufficient to increase anxiety-like behavior. We generated ROSA26 knock-in mice with a floxed-stop codon upstream from human Glo1 (FLOXGlo1KI) and bred them with mice expressing CRE recombinase under the direction of the Synapsin 1 promoter (Syn-CRE) to limit overexpression of Glo1 specifically to neurons. Furthermore, since previous administration of MG had been systemic, we sought to determine if direct microinjection of MG into the basolateral amygdala (BLA) was sufficient to reduce anxiety-like behavior. Thus, we performed bilateral microinjections of saline, MG (12μM or 24μM), or the positive control midazolam (4mM) directly into the BLA. FLOXGlo1KIxSyn-CRE mice showed significantly increased anxiety-like behavior compared to their FLOXGLO1xWT littermates. In addition, bilateral microinjection of MG and midazolam significantly decreased anxiety-like behavior compared to saline treated mice. These studies suggest that anatomically specific manipulations of Glo1 and MG are sufficient to induce changes in anxiety-like behavior.

  10. Constitutive overexpression of soybean plasma membrane intrinsic protein GmPIP1;6 confers salt tolerance

    PubMed Central

    2014-01-01

    Background Under saline conditions, plant growth is depressed via osmotic stress and salt can accumulate in leaves leading to further depression of growth due to reduced photosynthesis and gas exchange. Aquaporins are proposed to have a major role in growth of plants via their impact on root water uptake and leaf gas exchange. In this study, soybean plasma membrane intrinsic protein 1;6 (GmPIP1;6) was constitutively overexpressed to evaluate the function of GmPIP1;6 in growth regulation and salt tolerance in soybean. Results GmPIP1;6 is highly expressed in roots as well as reproductive tissues and the protein targeted to the plasma membrane in onion epidermis. Treatment with 100 mM NaCl resulted in reduced expression initially, then after 3 days the expression was increased in root and leaves. The effects of constitutive overexpression of GmPIP1;6 in soybean was examined under normal and salt stress conditions. Overexpression in 2 independent lines resulted in enhanced leaf gas exchange, but not growth under normal conditions compared to wild type (WT). With 100 mM NaCl, net assimilation was much higher in the GmPIP1;6-Oe and growth was enhanced relative to WT. GmPIP1;6-Oe plants did not have higher root hydraulic conductance (Lo) under normal conditions, but were able to maintain Lo under saline conditions compared to WT which decreased Lo. GmPIP1;6-Oe lines grown in the field had increased yield resulting mainly from increased seed size. Conclusions The general impact of overexpression of GmPIP1;6 suggests that it may be a multifunctional aquaporin involved in root water transport, photosynthesis and seed loading. GmPIP1;6 is a valuable gene for genetic engineering to improve soybean yield and salt tolerance. PMID:24998596

  11. Light intensity-dependent modulation of chlorophyll b biosynthesis and photosynthesis by overexpression of chlorophyllide a oxygenase in tobacco.

    PubMed

    Biswal, Ajaya K; Pattanayak, Gopal K; Pandey, Shiv S; Leelavathi, Sadhu; Reddy, Vanga S; Govindjee; Tripathy, Baishnab C

    2012-05-01

    Chlorophyll b is synthesized by the oxidation of a methyl group on the B ring of a tetrapyrrole molecule to a formyl group by chlorophyllide a oxygenase (CAO). The full-length CAO from Arabidopsis (Arabidopsis thaliana) was overexpressed in tobacco (Nicotiana tabacum) that grows well at light intensities much higher than those tolerated by Arabidopsis. This resulted in an increased synthesis of glutamate semialdehyde, 5-aminolevulinic acid, magnesium-porphyrins, and chlorophylls. Overexpression of CAO resulted in increased chlorophyll b synthesis and a decreased chlorophyll a/b ratio in low light-grown as well as high light-grown tobacco plants; this effect, however, was more pronounced in high light. The increased potential of the protochlorophyllide oxidoreductase activity and chlorophyll biosynthesis compensated for the usual loss of chlorophylls in high light. Increased chlorophyll b synthesis in CAO-overexpressed plants was accompanied not only by an increased abundance of light-harvesting chlorophyll proteins but also of other proteins of the electron transport chain, which led to an increase in the capture of light as well as enhanced (40%-80%) electron transport rates of photosystems I and II at both limiting and saturating light intensities. Although the quantum yield of carbon dioxide fixation remained unchanged, the light-saturated photosynthetic carbon assimilation, starch content, and dry matter accumulation increased in CAO-overexpressed plants grown in both low- and high-light regimes. These results demonstrate that controlled up-regulation of chlorophyll b biosynthesis comodulates the expression of several thylakoid membrane proteins that increase both the antenna size and the electron transport rates and enhance carbon dioxide assimilation, starch content, and dry matter accumulation.

  12. Over-expression of Plk4 induces centrosome amplification, loss of primary cilia and associated tissue hyperplasia in the mouse

    PubMed Central

    Coelho, Paula A.; Bury, Leah; Shahbazi, Marta N.; Liakath-Ali, Kifayathullah; Tate, Peri H.; Wormald, Sam; Hindley, Christopher J.; Huch, Meritxell; Archer, Joy; Skarnes, William C.; Zernicka-Goetz, Magdalena; Glover, David M.

    2015-01-01

    To address the long-known relationship between supernumerary centrosomes and cancer, we have generated a transgenic mouse that permits inducible expression of the master regulator of centriole duplication, Polo-like-kinase-4 (Plk4). Over-expression of Plk4 from this transgene advances the onset of tumour formation that occurs in the absence of the tumour suppressor p53. Plk4 over-expression also leads to hyperproliferation of cells in the pancreas and skin that is enhanced in a p53 null background. Pancreatic islets become enlarged following Plk4 over-expression as a result of equal expansion of α- and β-cells, which exhibit centrosome amplification. Mice overexpressing Plk4 develop grey hair due to a loss of differentiated melanocytes and bald patches of skin associated with a thickening of the epidermis. This reflects an increase in proliferating cells expressing keratin 5 in the basal epidermal layer and the expansion of these cells into suprabasal layers. Such cells also express keratin 6, a marker for hyperplasia. This is paralleled by a decreased expression of later differentiation markers, involucrin, filaggrin and loricrin. Proliferating cells showed an increase in centrosome number and a loss of primary cilia, events that were mirrored in primary cultures of keratinocytes established from these animals. We discuss how repeated duplication of centrioles appears to prevent the formation of basal bodies leading to loss of primary cilia, disruption of signalling and thereby aberrant differentiation of cells within the epidermis. The absence of p53 permits cells with increased centrosomes to continue dividing, thus setting up a neoplastic state of error prone mitoses, a prerequisite for cancer development. PMID:26701933

  13. Functional response to SDF1 alpha through over-expression of CXCR4 on adult subventricular zone progenitor cells.

    PubMed

    Liu, Xian Shuang; Chopp, Michael; Santra, Manoranjan; Hozeska-Solgot, Ann; Zhang, Rui Lan; Wang, Lei; Teng, Hua; Lu, Mei; Zhang, Zheng Gang

    2008-08-21

    The chemokine receptor CXCR4 and its ligand, stromal cell derived factor-1 alpha (SDF1 alpha) regulate neuroblast migration towards the ischemic boundary after stroke. Using loss- and gain-function, we investigated the biological effect of CXCR4/SDF1 alpha on neural progenitor cells. Neural progenitor cells, from the subventricular zone (SVZ) of the adult rat, were transfected with rat CXCR4-pLEGFP-C1 and pSIREN-RetroQ-CXCR4-siRNA retroviral vectors. Migration assay analysis showed that inhibition of CXCR4 by siRNA significantly reduced cell migration compared to the empty vector, indicating that CXCR4 mediated neural progenitor cell motility. When neural progenitor cells were cultured in growth medium containing bFGF (20 ng/ml), over-expression of CXCR4 significantly reduced the cell proliferation as measured by the number of bromodeoxyuridine+ (BrdU+) cells (26.4%) compared with the number in the control group (54.0%). Addition of a high concentration of SDF1 alpha (500 ng/ml) into the progenitor cells with over-expression of CXCR4 reversed the cell proliferation back to the control levels (57.6%). Immunostaining analysis showed that neither over-expression nor inhibition of CXCR4 altered the population of neurons and astrocytes, when neural progenitor cells were cultured in differentiation medium. These in vitro results suggest that CXCR4/SDF1 alpha primarily regulates adult neural progenitor cell motility but not differentiation, while over-expression of CXCR4 in the absence of SDF1 alpha decreases neural progenitor cell proliferation.

  14. Overexpression of MN1 Confers Resistance to Chemotherapy, Accelerates Leukemia Onset, and Suppresses p53 and Bim Induction

    PubMed Central

    Pardee, Timothy S.

    2012-01-01

    Background The transcriptional co-activator MN1 confers a worse prognosis for patients with acute myeloid leukemia (AML) when highly expressed; however, the mechanisms involved are unknown. We sought to model the effects of high MN1 expression in AML models to explore the underlying mechanisms. Methodology/Principal Findings We used cell lines and a genetically defined mouse model of AML to examine the effects of MN1 overexpression on prognosis and response to cytarabine and doxorubicin in vitro and in vivo. Murine AML that was engineered to overexpress MN1 became more aggressive in vivo, leading to shortened survival in both treated and control groups. In vitro murine AML cells that overexpressed MN1 became resistant to treatment with cytarabine and highly resistant to doxorubicin. This resistant phenotype was also seen in vivo, where treatment with the combination of cytarabine and doxorubicin selected for cells expressing MN1. When therapy-induced DNA damage levels were assessed by γH2AX foci, no reduction was seen in MN1 expressing cells arguing against a drug efflux mechanism. Despite no reduction in DNA damage, MN1-expressing cells showed less apoptosis as assessed by annexin V and propidium iodide staining. Following treatment, p53 and BIM induction were markedly reduced in cells expressing MN1. Pharmacologic inhibition of the p53 E3 ligase MDM2 resulted in increased p53 levels and improved response to doxorubicin in vitro. Conclusions/Significance MN1 overexpression accelerates an already aggressive leukemia, confers resistance to chemotherapy, and suppresses p53 and BIM induction, resulting in decreased apoptosis. This provides a mechanistic explanation of the poor prognosis observed with high MN1 expression and suggests that therapies directed at increasing p53 function may be useful for these patients. PMID:22905229

  15. Overexpressing Ferredoxins in Chlamydomonas reinhardtii Increase Starch and Oil Yields and Enhance Electric Power Production in a Photo Microbial Fuel Cell.

    PubMed

    Huang, Li-Fen; Lin, Ji-Yu; Pan, Kui-You; Huang, Chun-Kai; Chu, Ying-Kai

    2015-08-14

    Ferredoxins (FDX) are final electron carrier proteins in the plant photosynthetic pathway, and function as major electron donors in diverse redox-driven metabolic pathways. We previously showed that overexpression of a major constitutively expressed ferredoxin gene PETF in Chlamydomonas decreased the reactive oxygen species (ROS) level and enhanced tolerance to heat stress. In addition to PETF, an endogenous anaerobic induced FDX5 was overexpressed in transgenic Chlamydomonas lines here to address the possible functions of FDX5. All the independent FDX transgenic lines showed decreased cellular ROS levels and enhanced tolerance to heat and salt stresses. The transgenic Chlamydomonas lines accumulated more starch than the wild-type line and this effect increased almost three-fold in conditions of nitrogen depletion. Furthermore, the lipid content was higher in the transgenic lines than in the wild-type line, both with and without nitrogen depletion. Two FDX-overexpressing Chlamydomonas lines were assessed in a photo microbial fuel cell (PMFC); power density production by the transgenic lines was higher than that of the wild-type cells. These findings suggest that overexpression of either PETF or FDX5 can confer tolerance against heat and salt stresses, increase starch and oil production, and raise electric power density in a PMFC.

  16. Overexpressing Ferredoxins in Chlamydomonas reinhardtii Increase Starch and Oil Yields and Enhance Electric Power Production in a Photo Microbial Fuel Cell

    PubMed Central

    Huang, Li-Fen; Lin, Ji-Yu; Pan, Kui-You; Huang, Chun-Kai; Chu, Ying-Kai

    2015-01-01

    Ferredoxins (FDX) are final electron carrier proteins in the plant photosynthetic pathway, and function as major electron donors in diverse redox-driven metabolic pathways. We previously showed that overexpression of a major constitutively expressed ferredoxin gene PETF in Chlamydomonas decreased the reactive oxygen species (ROS) level and enhanced tolerance to heat stress. In addition to PETF, an endogenous anaerobic induced FDX5 was overexpressed in transgenic Chlamydomonas lines here to address the possible functions of FDX5. All the independent FDX transgenic lines showed decreased cellular ROS levels and enhanced tolerance to heat and salt stresses. The transgenic Chlamydomonas lines accumulated more starch than the wild-type line and this effect increased almost three-fold in conditions of nitrogen depletion. Furthermore, the lipid content was higher in the transgenic lines than in the wild-type line, both with and without nitrogen depletion. Two FDX-overexpressing Chlamydomonas lines were assessed in a photo microbial fuel cell (PMFC); power density production by the transgenic lines was higher than that of the wild-type cells. These findings suggest that overexpression of either PETF or FDX5 can confer tolerance against heat and salt stresses, increase starch and oil production, and raise electric power density in a PMFC. PMID:26287179

  17. Overexpression of the ped/pea-15 gene causes diabetes by impairing glucose-stimulated insulin secretion in addition to insulin action.

    PubMed

    Vigliotta, Giovanni; Miele, Claudia; Santopietro, Stefania; Portella, Giuseppe; Perfetti, Anna; Maitan, Maria Alessandra; Cassese, Angela; Oriente, Francesco; Trencia, Alessandra; Fiory, Francesca; Romano, Chiara; Tiveron, Cecilia; Tatangelo, Laura; Troncone, Giancarlo; Formisano, Pietro; Beguinot, Francesco

    2004-06-01

    Overexpression of the ped/pea-15 gene is a common feature of type 2 diabetes. In the present work, we show that transgenic mice ubiquitously overexpressing ped/pea-15 exhibited mildly elevated random-fed blood glucose levels and decreased glucose tolerance. Treatment with a 60% fat diet led ped/pea-15 transgenic mice to develop diabetes. Consistent with insulin resistance in these mice, insulin administration reduced glucose levels by only 35% after 45 min, compared to 70% in control mice. In vivo, insulin-stimulated glucose uptake was decreased by almost 50% in fat and muscle tissues of the ped/pea-15 transgenic mice, accompanied by protein kinase Calpha activation and block of insulin induction of protein kinase Czeta. These changes persisted in isolated adipocytes from the transgenic mice and were rescued by the protein kinase C inhibitor bisindolylmaleimide. In addition to insulin resistance, ped/pea-15 transgenic mice showed a 70% reduction in insulin response to glucose loading. Stable overexpression of ped/pea-15 in the glucose-responsive MIN6 beta-cell line also caused protein kinase Calpha activation and a marked decline in glucose-stimulated insulin secretion. Antisense block of endogenous ped/pea-15 increased glucose sensitivity by 2.5-fold in these cells. Thus, in vivo, overexpression of ped/pea-15 may lead to diabetes by impairing insulin secretion in addition to insulin action.

  18. POD-1/Tcf21 overexpression reduces endogenous SF-1 and StAR expression in rat adrenal cells

    PubMed Central

    França, M. M.; Abreu, N. P.; Vrechi, T. A. M.; Lotfi, C. F.

    2015-01-01

    During gonad and adrenal development, the POD-1/capsulin/TCF21transcription factor negatively regulates SF-1/NR5A1expression, with higher SF-1 levels being associated with increased adrenal cell proliferation and tumorigenesis. In adrenocortical tumor cells, POD-1 binds to the SF-1 E-box promoter region, decreasing SF-1 expression. However, the modulation of SF-1 expression by POD-1 has not previously been described in normal adrenal cells. Here, we analyzed the basal expression of Pod-1 and Sf-1 in primary cultures of glomerulosa (G) and fasciculata/reticularis (F/R) cells isolated from male Sprague-Dawley rats, and investigated whether POD-1 overexpression modulates the expression of endogenous Sf-1 and its target genes in these cells. POD-1 overexpression, following the transfection of pCMVMycPod-1, significantly decreased the endogenous levels of Sf-1 mRNA and protein in F/R cells, but not in G cells, and also decreased the expression of the SF-1 target StAR in F/R cells. In G cells overexpressing POD-1, no modulation of the expression of SF-1 targets, StAR and CYP11B2, was observed. Our data showing that G and F/R cells respond differently to ectopic POD-1 expression emphasize the functional differences between the outer and inner zones of the adrenal cortex, and support the hypothesis that SF-1 is regulated by POD-1/Tcf21 in normal adrenocortical cells lacking the alterations in cellular physiology found in tumor cells. PMID:26421867

  19. Overexpression of Pto activates defense responses and confers broad resistance.

    PubMed Central

    Tang, X; Xie, M; Kim, Y J; Zhou, J; Klessig, D F; Martin, G B

    1999-01-01

    The tomato disease resistance (R) gene Pto specifies race-specific resistance to the bacterial pathogen Pseudomonas syringae pv tomato carrying the avrPto gene. Pto encodes a serine/threonine protein kinase that is postulated to be activated by a physical interaction with the AvrPto protein. Here, we report that overexpression of Pto in tomato activates defense responses in the absence of the Pto-AvrPto interaction. Leaves of three transgenic tomato lines carrying the cauliflower mosaic virus 35S::Pto transgene exhibited microscopic cell death, salicylic acid accumulation, and increased expression of pathogenesis-related genes. Cell death in these plants was limited to palisade mesophyll cells and required light for induction. Mesophyll cells of 35S::Pto plants showed the accumulation of autofluorescent compounds, callose deposition, and lignification. When inoculated with P. s. tomato without avrPto, all three 35S::Pto lines displayed significant resistance and supported less bacterial growth than did nontransgenic lines. Similarly, the 35S::Pto lines also were more resistant to Xanthomonas campestris pv vesicatoria and Cladosporium fulvum. These results demonstrate that defense responses and general resistance can be activated by the overexpression of an R gene. PMID:9878629

  20. Role of Cks1 Overexpression in Oral Squamous Cell Carcinomas

    PubMed Central

    Kitajima, Shojiro; Kudo, Yasusei; Ogawa, Ikuko; Bashir, Tarig; Kitagawa, Masae; Miyauchi, Mutsumi; Pagano, Michele; Takata, Takashi

    2004-01-01

    Down-regulation of p27 is frequently observed in various cancers due to an enhancement of its degradation. Skp2 is required for the ubiquitination and consequent degradation of p27 protein. Another protein called Cks1 is also required for p27 ubiquitination in the SCFSkp2 ubiquitinating machinery. In the present study, we examined Cks1 expression and its correlation with p27 in oral squamous cell carcinoma (OSCC) derived from tongue and gingiva. By immunohistochemical analysis, high expression of Cks1 was present in 62% of OSCCs in comparison with 0% of normal mucosae. In addition, 65% of samples with low p27 expression displayed high Cks1 levels. Finally, Cks1 expression was well correlated with Skp2 expression and poor prognosis. To study the role of Cks1 overexpression in p27 down-regulation, we transfected Cks1 with or without Skp2 into OSCC cells. Cks1 transfection could not induce a p27 down-regulation by itself, but both Cks1 and Skp2 transfection strongly induced. Moreover, we inhibited Cks1 expression by small interference RNA (siRNA) in OSCC. Cks1 siRNA transfection induced p27 accumulation and inhibited the growth of OSCC cells. These findings suggest that Cks1 overexpression may play an important role for OSCC development through Skp2-mediated p27 degradation, and that Cks1 siRNA can be a novel modality of gene therapy. PMID:15579456

  1. Overexpression of calpastatin inhibits L8 myoblast fusion

    SciTech Connect

    Barnoy, Sivia; E-mail: sivia@post.tau.ac.il; Maki, Masatoshi; Kosower, Nechama S.

    2005-07-08

    The formation of skeletal muscle fibers involves cessation of myoblast division, myoblast alignment, and fusion to multinucleated myofibers. Calpain is one of the factors shown to be involved in myoblast fusion. Using L8 rat myoblasts, we found that calpain levels did not change significantly during myoblast differentiation, whereas calpastatin diminished prior to myoblast fusion and reappeared after fusion. The transient diminution in calpastatin allows the Ca{sup 2+}-promoted activation of calpain and calpain-induced membrane proteolysis, which is required for myoblast fusion. Here we show that calpastatin overexpression in L8 myoblasts does not inhibit cell proliferation and alignment, but prevents myoblast fusion and fusion-associated protein degradation. In addition, calpastatin appears to modulate myogenic gene expression, as indicated by the lack of myogenin (a transcription factor expressed in differentiating myoblasts) in myoblasts overexpressing calpastatin. These results suggest that, in addition to the role in membrane disorganization in the fusing myoblasts, the calpain-calpastatin system may also modulate the levels of factors required for myoblast differentiation.

  2. Overexpression of neurofilament H disrupts normal cell structure and function

    NASA Technical Reports Server (NTRS)

    Szebenyi, Gyorgyi; Smith, George M.; Li, Ping; Brady, Scott T.

    2002-01-01

    Studying exogenously expressed tagged proteins in live cells has become a standard technique for evaluating protein distribution and function. Typically, expression levels of experimentally introduced proteins are not regulated, and high levels are often preferred to facilitate detection. However, overexpression of many proteins leads to mislocalization and pathologies. Therefore, for normative studies, moderate levels of expression may be more suitable. To understand better the dynamics of intermediate filament formation, transport, and stability in a healthy, living cell, we inserted neurofilament heavy chain (NFH)-green fluorescent protein (GFP) fusion constructs in adenoviral vectors with tetracycline (tet)-regulated promoters. This system allows for turning on or off the synthesis of NFH-GFP at a selected time, for a defined period, in a dose-dependent manner. We used this inducible system for live cell imaging of changes in filament structure and cell shape, motility, and transport associated with increasing NFH-GFP expression. Cells with low to intermediate levels of NFH-GFP were structurally and functionally similar to neighboring, nonexpressing cells. In contrast, overexpression led to pathological alterations in both filament organization and cell function. Copyright 2002 Wiley-Liss, Inc.

  3. Prothymosin α overexpression contributes to the development of pulmonary emphysema.

    PubMed

    Su, Bing-Hua; Tseng, Yau-Lin; Shieh, Gia-Shing; Chen, Yi-Cheng; Shiang, Ya-Chieh; Wu, Pensee; Li, Kuo-Jung; Yen, Te-Hsin; Shiau, Ai-Li; Wu, Chao-Liang

    2013-01-01

    Emphysema is one of the disease conditions that comprise chronic obstructive pulmonary disease. Prothymosin α transgenic mice exhibit an emphysema phenotype, but the pathophysiological role of prothymosin α in emphysema remains unclear. Here we show that prothymosin α contributes to the pathogenesis of emphysema by increasing acetylation of histones and nuclear factor-kappaB, particularly upon cigarette smoke exposure. We find a positive correlation between prothymosin α levels and the severity of emphysema in prothymosin α transgenic mice and emphysema patients. Prothymosin α overexpression increases susceptibility to cigarette smoke-induced emphysema, and cigarette smoke exposure further enhances prothymosin α expression. We show that prothymosin α inhibits the association of histone deacetylases with histones and nuclear factor-kappaB, and that prothymosin α overexpression increases expression of nuclear factor-kappaB-dependent matrix metalloproteinase 2 and matrix metalloproteinase 9, which are found in the lungs of patients with chronic obstructive pulmonary disease. These results demonstrate the clinical relevance of prothymosin α in regulating acetylation events during the pathogenesis of emphysema.

  4. Nitrate metabolism in tobacco leaves overexpressing Arabidopsis nitrite reductase.

    PubMed

    Davenport, Susie; Le Lay, Pascaline; Sanchez-Tamburrrino, Juan Pablo

    2015-12-01

    Primary nitrogen assimilation in plants includes the reduction of nitrite to ammonium in the chloroplasts by the enzyme nitrite reductase (NiR EC:1.7.7.1) or in the plastids of non-photosynthetic organs. Here we report on a study overexpressing the Arabidopsis thaliana NiR (AtNiR) gene in tobacco plants under the control of a constitutive promoter (CERV - Carnation Etched Ring Virus). The aim was to overexpress AtNiR in an attempt to alter the level of residual nitrite in the leaf which can act as precursor to the formation of nitrosamines. The impact of increasing the activity of AtNiR produced an increase in leaf protein and a stay-green phenotype in the primary transformed AtNiR population. Investigation of the T1 homozygous population demonstrated elevated nitrate reductase (NR) activity, reductions in leaf nitrite and nitrate and the amino acids proline, glutamine and glutamate. Chlorophyl content of the transgenic lines was increased, as evidenced by the stay-green phenotype. This reveals the importance of NiR in primary nitrogen assimilation and how modification of this key enzyme affects both the nitrogen and carbon metabolism of tobacco plants.

  5. Tubular Overexpression of Angiopoietin-1 Attenuates Renal Fibrosis

    PubMed Central

    Lee, Heedoo; Kim, Yeawon; Liu, Tuoen; Guo, Qiusha; Geminiani, Julio J.; Austin, Paul F.; Chen, Ying Maggie

    2016-01-01

    Emerging evidence has highlighted the pivotal role of microvasculature injury in the development and progression of renal fibrosis. Angiopoietin-1 (Ang-1) is a secreted vascular growth factor that binds to the endothelial-specific Tie2 receptor. Ang-1/Tie2 signaling is critical for regulating blood vessel development and modulating vascular response after injury, but is dispensable in mature, quiescent vessels. Although dysregulation of vascular endothelial growth factor (VEGF) signaling has been well studied in renal pathologies, much less is known about the role of the Ang-1/Tie2 pathway in renal interstitial fibrosis. Previous studies have shown contradicting effects of overexpressing Ang-1 systemically on renal tubulointerstitial fibrosis when different engineered forms of Ang-1 are used. Here, we investigated the impact of site-directed expression of native Ang-1 on the renal fibrogenic process and peritubular capillary network by exploiting a conditional transgenic mouse system [Pax8-rtTA/(TetO)7 Ang-1] that allows increased tubular Ang-1 production in adult mice. Using a murine unilateral ureteral obstruction (UUO) fibrosis model, we demonstrate that targeted Ang-1 overexpression attenuates myofibroblast activation and interstitial collagen I accumulation, inhibits the upregulation of transforming growth factor β1 and subsequent phosphorylation of Smad 2/3, dampens renal inflammation, and stimulates the growth of peritubular capillaries in the obstructed kidney. Our results suggest that Ang-1 is a potential therapeutic agent for targeting microvasculature injury in renal fibrosis without compromising the physiologically normal vasculature in humans. PMID:27454431

  6. HMGA1 overexpression in adipose tissue impairs adipogenesis and prevents diet-induced obesity and insulin resistance.

    PubMed

    Arce-Cerezo, Altamira; García, Miquel; Rodríguez-Nuevo, Aida; Crosa-Bonell, Mireia; Enguix, Natalia; Peró, Albert; Muñoz, Sergio; Roca, Carles; Ramos, David; Franckhauser, Sylvie; Elias, Ivet; Ferre, Tura; Pujol, Anna; Ruberte, Jesús; Villena, Josep A; Bosch, Fàtima; Riu, Efrén

    2015-09-28

    High-Mobility-Group-A1 (HMGA1) proteins are non-histone proteins that regulate chromatin structure and gene expression during embryogenesis, tumourigenesis and immune responses. In vitro studies suggest that HMGA1 proteins may be required to regulate adipogenesis. To examine the role of HMGA1 in vivo, we generated transgenic mice overexpressing HMGA1 in adipose tissues. HMGA1 transgenic mice showed a marked reduction in white and brown adipose tissue mass that was associated with downregulation of genes involved in adipogenesis and concomitant upregulation of preadipocyte markers. Reduced adipogenesis and decreased fat mass were not associated with altered glucose homeostasis since HMGA1 transgenic mice fed a regular-chow diet exhibited normal glucose tolerance and insulin sensitivity. However, when fed a high-fat diet, overexpression of HMGA1 resulted in decreased body-weight gain, reduced fat mass, but improved insulin sensitivity and glucose tolerance. Although HMGA1 transgenic mice exhibited impaired glucose uptake in adipose tissue due to impaired adipogenesis, the increased glucose uptake observed in skeletal muscle may account for the improved glucose homeostasis. Our results indicate that HMGA1 plays an important function in the regulation of white and brown adipogenesis in vivo and suggests that impaired adipocyte differentiation and decreased fat mass is not always associated with impaired whole-body glucose homeostasis.

  7. Overexpression of PHRF1 attenuates the proliferation and tumorigenicity of non-small cell lung cancer cells

    PubMed Central

    Wang, Yadong; Wang, Haiyu; Pan, Teng; Li, Li; Li, Jiangmin; Yang, Haiyan

    2016-01-01

    The aim of this study was to investigate the potential role of PHRF1 in lung tumorigenesis. Western blot analysis was used to detect the expression of proteins. Quantitative reverse transcriptase polymerase chain reaction, immunohistochemistry, soft agar assay and tumor formation assay in nude mice were applied. Cell cycle distribution was analyzed by flow cytometry. The lower level of PHRF1 mRNA was observed in human lung cancer tissues than that in paracancerous tissues. The decreased expression of PHRF1 protein was observed in H1299 and H1650 cell lines than that in 16HBE and BEAS-2B cell lines. The decreased expression of PHRF1 protein was observed in malignant 16HBE cells compared to control cells. The reduced expression of PHRF1 protein was observed in mice lung tissues treated with BaP than that in control group. Overexpression of PHRF1 inhibited H1299 cell proliferation, colony formation in vitro and growth of tumor xenograft in vivo, and arrested cell cycle in G1 phase. The decreased expression of TGIF and c-Myc proteins and the increased expression of p21 protein were observed in H1299-PHRF1 cells compared with H1299-pvoid cells. In conclusion, our findings suggest that overexpression of PHRF1 attenuated the proliferation and tumorigenicity of non-small cell lung cancer cell line of H1299. PMID:27608840

  8. Metabolomics Revealed an Association of Metabolite Changes and Defective Growth in Methylobacterium extorquens AM1 Overexpressing ecm during Growth on Methanol.

    PubMed

    Cui, Jinyu; Good, Nathan M; Hu, Bo; Yang, Jing; Wang, Qianwen; Sadilek, Martin; Yang, Song

    2016-01-01

    Methylobacterium extorquens AM1 is a facultative methylotroph capable of growth on both single-carbon and multi-carbon compounds. The ethylmalonyl-CoA (EMC) pathway is one of the central assimilatory pathways in M. extorquens during growth on C1 and C2 substrates. Previous studies had shown that ethylmalonyl-CoA mutase functioned as a control point during the transition from growth on succinate to growth on ethylamine. In this study we overexpressed ecm, phaA, mcmAB and found that upregulating ecm by expressing it from the strong constitutive mxaF promoter caused a 27% decrease in growth rate on methanol compared to the strain with an empty vector. Targeted metabolomics demonstrated that most of the central intermediates in the ecm over-expressing strain did not change significantly compared to the control strain; However, poly-β-hydroxybutyrate (PHB) was 4.5-fold lower and 3-hydroxybutyryl-CoA was 1.6-fold higher. Moreover, glyoxylate, a toxic and highly regulated essential intermediate, was determined to be 2.6-fold higher when ecm was overexpressed. These results demonstrated that overexpressing ecm can manipulate carbon flux through the EMC pathway and divert it from the carbon and energy storage product PHB, leading to an accumulation of glyoxylate. Furthermore, untargeted metabolomics discovered two unusual metabolites, alanine (Ala)-meso-diaminopimelic acid (mDAP) and Ala-mDAP-Ala, each over 45-fold higher in the ecm over-expressing strain. These two peptides were also found to be highly produced in a dose-dependent manner when glyoxylate was added to the control strain. Overall, this work has explained a direct association of ecm overexpression with glyoxylate accumulation up to a toxic level, which inhibits cell growth on methanol. This research provides useful insight for manipulating the EMC pathway for efficiently producing high-value chemicals in M. extorquens.

  9. Metabolomics Revealed an Association of Metabolite Changes and Defective Growth in Methylobacterium extorquens AM1 Overexpressing ecm during Growth on Methanol

    PubMed Central

    Hu, Bo; Yang, Jing; Wang, Qianwen; Sadilek, Martin; Yang, Song

    2016-01-01

    Methylobacterium extorquens AM1 is a facultative methylotroph capable of growth on both single-carbon and multi-carbon compounds. The ethylmalonyl-CoA (EMC) pathway is one of the central assimilatory pathways in M. extorquens during growth on C1 and C2 substrates. Previous studies had shown that ethylmalonyl-CoA mutase functioned as a control point during the transition from growth on succinate to growth on ethylamine. In this study we overexpressed ecm, phaA, mcmAB and found that upregulating ecm by expressing it from the strong constitutive mxaF promoter caused a 27% decrease in growth rate on methanol compared to the strain with an empty vector. Targeted metabolomics demonstrated that most of the central intermediates in the ecm over-expressing strain did not change significantly compared to the control strain; However, poly-β-hydroxybutyrate (PHB) was 4.5-fold lower and 3-hydroxybutyryl-CoA was 1.6-fold higher. Moreover, glyoxylate, a toxic and highly regulated essential intermediate, was determined to be 2.6-fold higher when ecm was overexpressed. These results demonstrated that overexpressing ecm can manipulate carbon flux through the EMC pathway and divert it from the carbon and energy storage product PHB, leading to an accumulation of glyoxylate. Furthermore, untargeted metabolomics discovered two unusual metabolites, alanine (Ala)–meso-diaminopimelic acid (mDAP) and Ala–mDAP–Ala, each over 45-fold higher in the ecm over-expressing strain. These two peptides were also found to be highly produced in a dose-dependent manner when glyoxylate was added to the control strain. Overall, this work has explained a direct association of ecm overexpression with glyoxylate accumulation up to a toxic level, which inhibits cell growth on methanol. This research provides useful insight for manipulating the EMC pathway for efficiently producing high-value chemicals in M. extorquens. PMID:27116459

  10. Metabolomics revealed an association of metabolite changes and defective growth in Methylobacterium extorquens AM1 overexpressing ecm during growth on methanol

    DOE PAGES

    Cui, Jinyu; Good, Nathan M.; Hu, Bo; ...

    2016-04-26

    Methylobacterium extorquens AM1 is a facultative methylotroph capable of growth on both single-carbon and multi-carbon compounds. The ethylmalonyl-CoA (EMC) pathway is one of the central assimilatory pathways in M. extorquens during growth on C1 and C2 substrates. Previous studies had shown that ethylmalonyl-CoA mutase functioned as a control point during the transition from growth on succinate to growth on ethylamine. In this study we overexpressed ecm, phaA, mcmAB and found that upregulating ecm by expressing it from the strong constitutive mxaF promoter caused a 27% decrease in growth rate on methanol compared to the strain with an empty vector. Targetedmore » metabolomics demonstrated that most of the central intermediates in the ecm over-expressing strain did not change significantly compared to the control strain; However, poly-β-hydroxybutyrate (PHB) was 4.5-fold lower and 3-hydroxybutyryl-CoA was 1.6-fold higher. Moreover, glyoxylate, a toxic and highly regulated essential intermediate, was determined to be 2.6-fold higher when ecm was overexpressed. These results demonstrated that overexpressing ecm can manipulate carbon flux through the EMC pathway and divert it from the carbon and energy storage product PHB, leading to an accumulation of glyoxylate. Furthermore, untargeted metabolomics discovered two unusual metabolites, alanine (Ala)-meso-diaminopimelic acid (mDAP) and Ala-mDAP-Ala, each over 45-fold higher in the ecm overexpressing strain. These two peptides were also found to be highly produced in a dose-dependent manner when glyoxylate was added to the control strain. Overall, this work has explained a direct association of ecm overexpression with glyoxylate accumulation up to a toxic level, which inhibits cell growth on methanol. Lastly, this research provides useful insight for manipulating the EMC pathway for efficiently producing high-value chemicals in M. extorquens.« less

  11. miR-155 Over-expression Promotes Genomic Instability by Reducing High-fidelity Polymerase Delta Expression and Activating Error-prone DSB Repair

    PubMed Central

    Czochor, Jennifer R.; Sulkowski, Parker; Glazer, Peter M.

    2016-01-01

    miR-155 is an oncogenic microRNA (miR) that is often over-expressed in cancer and is associated with poor prognosis. miR-155 can target several DNA repair factors including RAD51, MLH1, and MSH6, and its over-expression results in an increased mutation frequency in vitro, although the mechanism has yet to be fully understood. Here, we demonstrate that over-expression of miR-155 drives an increased mutation frequency both in vitro and in vivo, promoting genomic instability by affecting multiple DNA repair pathways. miR-155 over-expression causes a decrease in homologous recombination, but yields a concurrent increase in the error-prone non-homologous end-joining (NHEJ) pathway. Despite repressing established targets MLH1 and MSH6, the identified mutation pattern upon miR-155 over-expression does not resemble that of a mismatch repair-deficient background. Further investigation revealed that all four subunits of polymerase delta, a high-fidelity DNA replication and repair polymerase, are down-regulated at the mRNA level in the context of miR-155 over-expression. FOXO3a, a transcription factor and known target of miR-155, has one or more putative binding site(s) in the promoter of all four polymerase delta subunits. Finally, suppression of FOXO3a by miR-155 or by siRNA knockdown is sufficient to repress the expression of the catalytic subunit of polymerase delta, POLD1, at the protein level, indicating that FOXO3a contributes to the regulation of polymerase delta levels. PMID:26850462

  12. Chloroplast parameters differ in wild type and transgenic poplars overexpressing gsh1 in the cytosol.

    PubMed

    Ivanova, L A; Ronzhina, D A; Ivanov, L A; Stroukova, L V; Peuke, A D; Rennenberg, H

    2009-07-01

    Poplar mutants overexpressing the bacterial genes gsh1 or gsh2 encoding the enzymes of glutathione biosynthesis are among the best-characterised transgenic plants. However, this characterisation originates exclusively from laboratory studies, and the performance of these mutants under field conditions is largely unknown. Here, we report a field experiment in which the wild-type poplar hybrid Populus tremula x P. alba and a transgenic line overexpressing the bacterial gene gsh1 encoding gamma-glutamylcysteine synthetase in the cytosol were grown for 3 years at a relatively clean (control) field site and a field site contaminated with heavy metals. Aboveground biomass accumulation was slightly smaller in transgenic compared to wild-type plants; soil contamination significantly decreased biomass accumulation in both wild-type and transgenic plants by more than 40%. Chloroplasts parameters, i.e., maximal diameter, projection area and perimeter, surface area and volume, surface/volume ratio and a two-dimensional form coefficient, were found to depend on plant type, leaf tissue and soil contamination. The greatest differences between wild and transgenic poplars were observed at the control site. Under these conditions, chloroplast sizes in palisade tissue of transgenic poplar significantly exceeded those of the wild type. In contrast to the wild type, palisade chloroplast volume exceeded that of spongy chloroplasts in transgenic poplars at both field sites. Chlorophyll content per chloroplast was the same in wild and transgenic poplars. Apparently, the increase in chloroplast volume was not connected to changes in the photosynthetic centres. Chloroplasts of transgenic poplar at the control site were more elongated in palisade cells and close to spherical in spongy mesophyll chloroplasts. At the contaminated site, palisade and spongy cell chloroplasts of leaves from transgenic trees and the wild type were the same shape. Transgenic poplars also had a smaller chloroplast

  13. Over-expression of AtEXLA2 alters etiolated arabidopsis hypocotyl growth

    PubMed Central

    Boron, Agnieszka Karolina; Van Loock, Bram; Suslov, Dmitry; Markakis, Marios Nektarios; Verbelen, Jean-Pierre; Vissenberg, Kris

    2015-01-01

    hypocotyl cells. Biomechanical analysis by creep tests showed that AtEXLA2 over-expression may decrease the wall strength in arabidopsis hypocotyls. Conclusions It is concluded that AtEXLA2 may function as a positive regulator of cell elongation in the dark-grown hypocotyl of arabidopsis by possible interference with cellulose metabolism, deposition or its organization. PMID:25492062

  14. Over-Expression of TRESK K+ Channels Reduces the Excitability of Trigeminal Ganglion Nociceptors

    PubMed Central

    Guo, Zhaohua; Cao, Yu-Qing

    2014-01-01

    TWIK-related spinal cord K+ (TRESK) channel is abundantly expressed in trigeminal ganglion (TG) and dorsal root ganglion neurons and is one of the major background K+ channels in primary afferent neurons. Mutations in TRESK channels are associated with familial and sporadic migraine. In rats, both chronic nerve injury and inflammation alter the expression level of TRESK mRNA. Functional studies indicate that reduction of endogenous TRESK channel activity results in hyper-excitation of primary afferent neurons, suggesting that TRESK is a potential target for the development of new analgesics. However, whether and how enhancing TRESK channel activity would decrease the excitability of primary afferent neurons has not been directly tested. Here, we over-expressed TRESK subunits in cultured mouse TG neurons by lipofectamine-mediated transfection and investigated how this altered the membrane properties and the excitability of the small-diameter TG population. To account for the heterogeneity of neurons, we further divided small TG neurons into two groups, based on their ability to bind to fluorescently-labeled isolectin B (IB4). The transfected TG neurons showed a 2-fold increase in the level of TRESK proteins. This was accompanied by a significant increase in the fraction of lamotrigine-sensitive persistent K+ currents as well as the size of total background K+ currents. Consequently, both IB4-positive and IB4-negative TG neurons over-expressing TRESK subunits exhibited a lower input resistance and a 2-fold increase in the current threshold for action potential initiation. IB4-negative TG neurons over-expressing TRESK subunits also showed a significant reduction of the spike frequency in response to supra-threshold stimuli. Importantly, an increase in TRESK channel activity effectively inhibited capsaicin-evoked spikes in TG neurons. Taken together, our results suggest that potent and specific TRESK channel openers likely would reduce the excitability of primary

  15. Quantitative analysis of Penicillium chrysogenum Wis54-1255 transformants overexpressing the penicillin biosynthetic genes.

    PubMed

    Theilgaard, H; van Den Berg, M; Mulder, C; Bovenberg, R; Nielsen, J

    2001-02-20

    The low penicillin-producing, single gene copy strain Wis54-1255 was used to study the effect of overexpressing the penicillin biosynthetic genes in Penicillium chrysogenum. Transformants of Wis54-1255 were obtained with the amdS expression-cassette using the four combinations: pcbAB, pcbC, pcbC-penDE, and pcbAB-pcbC-penDE of the three penicillin biosynthetic genes. Transformants showing an increased penicillin production were investigated during steady-state continuous cultivations with glucose as the growth-limiting substrate. The transformants were characterized with respect to specific penicillin productivity, the activity of the two pathway enzymes delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACVS) and isopenicillin N synthetase (IPNS) and the intracellular concentration of the metabolites: delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (ACV), bis-delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (bisACV), isopenicillin N (IPN), glutathione (GSH), and glutathione disulphide (GSSG). Transformants with the whole gene cluster amplified showed the largest increase in specific penicillin productivity (r(p))-124% and 176%, respectively, whereas transformation with the pcbC-penDE gene fragment resulted in a decrease in r(p) of 9% relative to Wis54-1255. A marked increase in r(p) is clearly correlated with a balanced amplification of both the ACVS and IPNS activity or a large amplification of either enzyme activity. The increased capacity of a single enzyme occurs surprisingly only in the transformants where all the three biosynthetic genes are overexpressed but is not found within the group of pcbAB or pcbC transformants. The indication of the pcbAB and pcbC genes being closely regulated in fungi might explain why high-yielding strains of P. chrysogenum have been found to contain amplifications of a large region including the whole penicillin gene cluster and not single gene amplifications. Measurements of the total ACV concentration showed a large

  16. Brain-selective overexpression of angiotensin-converting enzyme 2 attenuates sympathetic nerve activity and enhances baroreflex function in chronic heart failure.

    PubMed

    Xiao, Liang; Gao, Lie; Lazartigues, Eric; Zucker, Irving H

    2011-12-01

    Angiotensin-converting enzyme 2 (ACE2) has been suggested to be involved in the central regulation of autonomic function. During chronic heart failure (CHF), elevated central angiotensin II signaling contributes to the sustained increase of sympathetic outflow. This is accompanied by a downregulation of ACE2 in the brain. We hypothesized that central overexpression of ACE2 decreases sympathetic outflow and enhances baroreflex function in CHF. Transgenic mice overexpressing human ACE2 selectively in the brain (SYN-hACE2 [SA]) and wild-type littermates (WT) were used. CHF was induced by permanent coronary artery ligation. Four weeks after coronary artery ligation, both WT and SA mice exhibited a significant decrease in left ventricular ejection fraction (<40%). A slight decrease in mean arterial pressure was found only in SA mice. Compared with WT mice with CHF, brain-selective ACE2 overexpression attenuated left ventricular end-diastolic pressure; decreased urinary norepinephrine excretion; baseline renal sympathetic nerve activity (WT CHF: 71.6±7.6% max versus SA CHF: 49.3±6.1% max); and enhanced baroreflex sensitivity (maximum slope: WT sham: 1.61±0.16%/mm Hg versus SA CHF: 1.51±0.17%/mm Hg). Chronic subcutaneous blockade of mas receptor increased renal sympathetic nerve activity in SA mice with CHF (A779: 67.3±5.8% versus vehicle: 46.4±3.6% of max). An upregulation in angiotensin II type 1 receptor expression was detected in medullary nuclei in WT CHF mice, which was significantly attenuated in SA mice with CHF. These data suggest that central ACE2 overexpression exerts a potential protective effect in CHF through attenuating sympathetic outflow. The mechanism for this effect involves angiotensin (1-7) mas signaling, as well as a decrease in angiotensin II type 1 receptor signaling in the medulla.

  17. Overexpression of DJ-1 reduces oxidative stress and attenuates hypoxia/reoxygenation injury in NRK-52E cells exposed to high glucose

    PubMed Central

    Shen, Zi-Ying; Sun, Qian; Xia, Zhong-Yuan; Meng, Qing-Tao; Lei, Shao-Qing; Zhao, Bo; Tang, Ling-Hua; Xue, Rui; Chen, Rong

    2016-01-01

    Patients with diabetes are more vulnerable to renal ischemia/reperfusion (I/R) injury, which is implicated in hyperglycemia-induced oxidative stress. We previously reported that the hyperglycemia-induced inhibition of DJ-1, a novel oncogene that exhibits potent antioxidant activity, is implicated in the severity of myocardial I/R injury. In the present study, we aimed to explore the role of DJ-1 in hypoxia/reoxygenation (H/R) injury in renal cells exposed to high glucose (HG). For this purpose, NRK-52E cells were exposed to HG (30 mM) for 48 h and then exposed to hypoxia for 4 h and reoxygenation for 2 h, which significantly decreased cell viability and superoxide dismutase (SOD) activity, and increased the malondialdehyde (MDA) content, accompanied by a decrease in DJ-1 protein expression. The overexpression of DJ-1 by transfection with a DJ-1 overexpression plasmid exerted protective effects against HG-induced H/R injury, as evidenced by increased CCK-8 levels and SOD activity, the decreased release of lactate dehydrogenase (LDH) and the decreased MDA content, and increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1) expression. Similar effects were observed following treatment with the antioxidant, N-acetylcysteine. These results suggest that the overexpression of DJ-1 reduces oxidative stress and attenuates H/R injury in NRK-52E cells exposed to HG. PMID:27430285

  18. Overexpression of ERβ is sufficient to inhibit hypoxia-inducible factor-1 transactivation

    SciTech Connect

    Park, Choa; Lee, YoungJoo

    2014-07-18

    Highlights: • We examined the effect of ERβ specific ligand on HIF-1 inhibition. • DPN down-regulates the ARNT protein levels in PC3 cells. • DPN did not show additional effect in ERβ transfected MCF-7 cells. • Our study shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression. - Abstract: Estrogen receptor (ER) β is predicted to play an important role in the prevention of breast cancer development and progression. We have previously shown that ERβ suppresses hypoxia inducible factor (HIF)-1-mediated transcription through aryl hydrocarbon receptor nuclear translocator (ARNT) degradation via ubiquitination processes. In this study, we attempted to examine the effect of ERβ specific ligand on HIF-1 inhibition in ERβ positive PC3 cells and ERβ transfected MCF-7 cells. ERβ specific agonist diarylpropionitrile (DPN) stimulated estrogen response element (ERE)-luciferase activity in a similar fashion to estradiol in PC3 cells. We observed that DPN down-regulates the ARNT protein levels leading to an attenuation of hypoxia-induced hypoxia response element (HRE)-driven luciferase reporter gene activation in PC3 cells. Treatment of DPN reduced vascular endothelial growth factor (VEGF) expression and co-treatment with ERβ specific antagonist PHTPP abrogated the effect in PC3 cells. We then examined the effect of DPN in ERβ transfected MCF-7 cells. HIF-1 transcriptional activity repression by ERβ was not further reduced by DPN, as examined by HRE-driven luciferase assays. Expression of ERβ significantly decreased VEGF secretion and ARNT expression under hypoxic conditions. However, DPN did not additionally affect this suppression in MCF-7 cells transfected with ERβ. This result shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression.

  19. High ambient temperature reverses hypothalamic MC4 receptor overexpression in an animal model of anorexia nervosa.

    PubMed

    Gutiérrez, E; Churruca, I; Zárate, J; Carrera, O; Portillo, M P; Cerrato, M; Vázquez, R; Echevarría, E

    2009-04-01

    The potential involvement of the melanocortin system in the beneficial effects of heat application in rats submitted to activity-based anorexia (ABA), an analogous model of anorexia nervosa (AN), was studied. Once ABA rats had lost 20% of body weight, half of the animals were exposed to a high ambient temperature (HAT) of 32 degrees C, whereas the rest were maintained at 21 degrees C. Control sedentary rats yoked to ABA animals received the same treatment. ABA rats (21 degrees C) showed increased Melanocortin 4 (MC4) receptor and Agouti gene Related Peptide (AgRP) expression, and decreased pro-opiomelanocortin (POMC) mRNA levels (Real Time PCR), with respect to controls. Heat application increased weight gain and food intake, and reduced running rate in ABA rats, when compared with ABA rats at 21 degrees C. However, no changes in body weight and food intake were observed in sedentary rats exposed to heat. Moreover, heat application reduced MC4 receptor, AgRP and POMC expression in ABA rats, but no changes were observed in control rats. These results indicate that hypothalamic MC4 receptor overexpression could occur on the basis of the characteristic hyperactivity, weight loss, and self-starvation of ABA rats, and suggest the involvement of hypothalamic melanocortin neural circuits in behavioural changes shown by AN patients. Changes in AgRP and POMC expression could represent an adaptative response to equilibrate energy balance. Moreover, the fact that HAT reversed hypothalamic MC4 receptor overexpression in ABA rats indicates the involvement of brain melanocortin system in the reported beneficial effects of heat application in AN. A combination of MC4 receptor antagonists and heat application could improve the clinical management of AN.

  20. Overexpression of TIMP-1 in embryonic stem cells attenuates adverse cardiac remodeling following myocardial infarction.

    PubMed

    Glass, Carley; Singla, Dinender K

    2012-01-01

    Transplanted embryonic stem (ES) cells, following myocardial infarction (MI), contribute to limited cardiac repair and regeneration with improved function. Therefore, novel strategies are still needed to understand the effects of genetically modified transplanted stem cells on cardiac remodeling. The present study evaluates whether transplanted mouse ES cells overexpressing TIMP-1, an antiapoptotic and antifibrotic protein, can enhance cardiac myocyte differentiation, inhibit native cardiac myocyte apoptosis, reduce fibrosis, and improve cardiac function in the infarcted myocardium. MI was produced in C57BL/6 mice by coronary artery ligation. TIMP-1-ES cells, ES cells, or culture medium (control) were transplanted into the peri-infarct region of the heart. Immunofluorescence, TUNEL staining, caspase-3 activity, ELISAs, histology, and echocardiography were used to identify newly differentiated cardiac myocytes and assess apoptosis, fibrosis, and heart function. Two weeks post-MI, significantly (p < 0.05) enhanced engraftment and cardiac myocyte differentiation was observed in TIMP-1-ES cell-transplanted hearts compared with hearts transplanted with ES cells and control. Hearts transplanted with TIMP-1-ES cells demonstrated a reduction in apoptosis as well as an increase (p< 0.05) in p-Akt activity compared with ES cells or culture media controls. Infarct size and interstitial and vascular fibrosis were significantly (p< 0.05) decreased in the TIMP-1-ES cell group compared to controls. Furthermore, MMP-9, a key profibrotic protein, was significantly (p < 0.01) reduced following TIMP-1-ES cell transplantation. Echocardiography data showed fractional shortening and ejection fraction were significantly (p< 0.05) improved in the TIMP-1-ES cell group compared with respective controls. Our data suggest that transplanted ES cells overexpressing TIMP-1 attenuate adverse myocardial remodeling and improve cardiac function compared with ES cells that may have therapeutic

  1. Over-expression of microRNA-1 causes arrhythmia by disturbing intracellular trafficking system

    PubMed Central

    Su, Xiaomin; Liang, Haihai; Wang, He; Chen, Guizhi; Jiang, Hua; Wu, Qiuxia; Liu, Tianyi; Liu, Qiushuang; Yu, Tong; Gu, Yunyan; Yang, Baofeng; Shan, Hongli

    2017-01-01

    Dysregulation of intracellular trafficking system plays a fundamental role in the progression of cardiovascular disease. Up-regulation of miR-1 contributes to arrhythmia, we sought to elucidate whether intracellular trafficking contributes to miR-1-driven arrhythmia. By performing microarray analyses of the transcriptome in the cardiomyocytes-specific over-expression of microRNA-1 (miR-1 Tg) mice and the WT mice, we found that these differentially expressed genes in miR-1 Tg mice were significantly enrichment with the trafficking-related biological processes, such as regulation of calcium ion transport. Also, the qRT-PCR and western blot results validated that Stx6, Braf, Ube3a, Mapk8ip3, Ap1s1, Ccz1 and Gja1, which are the trafficking-related genes, were significantly down-regulated in the miR-1 Tg mice. Moreover, we found that Stx6 was decreased in the heart of mice after myocardial infarction and in the hypoxic cardiomyocytes, and further confirmed that Stx6 is a target of miR-1. Meanwhile, knockdown of Stx6 in cardiomyocytes resulted in the impairments of PLM and L-type calcium channel, which leads to the increased resting ([Ca2+]i). On the contrary, overexpression of Stx6 attenuated the impairments of miR-1 or hypoxia on PLM and L-type calcium channel. Thus, our studies reveals that trafficking-related gene Stx6 may regulate intracellular calcium and is involved in the occurrence of cardiac arrhythmia, which provides new insights in that miR-1 participates in arrhythmia by regulating the trafficking-related genes and pathway.

  2. Phosphoketolase overexpression increases biomass and lipid yield from methane in an obligate methanotrophic biocatalyst.

    PubMed

    Henard, Calvin A; Smith, Holly K; Guarnieri, Michael T

    2017-04-01

    Microbial conversion of methane to high-value bio-based chemicals and materials offers a path to mitigate GHG emissions and valorize this abundant-yet -underutilized carbon source. In addition to fermentation optimization strategies, rational methanotrophic bacterial strain engineering offers a means to reach industrially relevant titers, carbon yields, and productivities of target products. The phosphoketolase pathway functions in heterofermentative bacteria where carbon flux through two sugar catabolic pathways to mixed acids (lactic acid and acetic acid) increases cellular ATP production. Importantly, this pathway also serves as an alternative route to produce acetyl-CoA that bypasses the CO2 lost through pyruvate decarboxylation in the Embden-Meyerhof-Parnas pathway. Thus, the phosphoketolase pathway can be leveraged for carbon efficient biocatalysis to acetyl-CoA-derived intermediates and products. Here, we show that the industrially promising methane biocatalyst, Methylomicrobium buryatense, encodes two phosphoketolase isoforms that are expressed in methanol- and methane-grown cells. Overexpression of the PktB isoform led to a 2-fold increase in intracellular acetyl-CoA concentration, and a 2.6-fold yield enhancement from methane to microbial biomass and lipids compared to wild-type, increasing the potential for methanotroph lipid-based fuel production. Off-gas analysis and metabolite profiling indicated that global metabolic rearrangements, including significant increases in post-translational protein acetylation and gene expression of the tetrahydromethanopterin-linked pathway, along with decreases in several excreted products, coincided with the superior biomass and lipid yield observed in the engineered strain. Further, these data suggest that phosphoketolase may play a key regulatory role in methanotrophic bacterial metabolism. Given that acetyl-CoA is a key intermediate in several biosynthetic pathways, phosphoketolase overexpression offers a viable

  3. Hepatocyte growth factor overexpression in the nervous system enhances learning and memory performance in mice.

    PubMed

    Kato, Takashi; Funakoshi, Hiroshi; Kadoyama, Keiichi; Noma, Satsuki; Kanai, Masaaki; Ohya-Shimada, Wakana; Mizuno, Shinya; Doe, Nobutaka; Taniguchi, Taizo; Nakamura, Toshikazu

    2012-09-01

    Hepatocyte growth factor (HGF) and its receptor, c-Met, play pivotal roles in the nervous system during development and in disease states. However, the physiological roles of HGF in the adult brain are not well understood. In the present study, to assess its role in learning and memory function, we used transgenic mice that overexpress HGF in a neuron-specific manner (HGF-Tg) to deliver HGF into the brain without injury. HGF-Tg mice displayed increased alternation rates in the Y-maze test compared with age-matched wild-type (WT) controls. In the Morris water maze (MWM) test, HGF-Tg mice took less time to find the platform on the first day, whereas the latency to escape to the hidden platform was decreased over training days compared with WT mice. A transfer test revealed that the incidence of arrival at the exact location of the platform was higher for HGF-Tg mice compared with WT mice. These results demonstrate that overexpression of HGF leads to an enhancement of both short- and long-term memory. Western blot analyses revealed that the levels of N-methyl-D-aspartate (NMDA) receptor subunits NR2A and NR2B, but not NR1, were increased in the hippocampus of HGF-Tg mice compared with WT controls, suggesting that an upregulation of NR2A and NR2B could represent one mechanism by which HGF enhances learning and memory performance. These results demonstrate that modulation of learning and memory performance is an important physiological function of HGF that contributes to normal CNS plasticity, and we propose HGF as a novel regulator of higher brain functions.

  4. Hydrogen peroxide production regulates the mitochondrial function in insulin resistant muscle cells: effect of catalase overexpression.

    PubMed

    Barbosa, Marina R; Sampaio, Igor H; Teodoro, Bruno G; Sousa, Thais A; Zoppi, Claudio C; Queiroz, André L; Passos, Madla A; Alberici, Luciane C; Teixeira, Felipe R; Manfiolli, Adriana O; Batista, Thiago M; Cappelli, Ana Paula Gameiro; Reis, Rosana I; Frasson, Danúbia; Kettelhut, Isis C; Parreiras-e-Silva, Lucas T; Costa-Neto, Claudio M; Carneiro, Everardo M; Curi, Rui; Silveira, Leonardo R

    2013-10-01

    The mitochondrial redox state plays a central role in the link between mitochondrial overloading and insulin resistance. However, the mechanism by which the ROS induce insulin resistance in skeletal muscle cells is not completely understood. We examined the association between mitochondrial function and H2O2 production in insulin resistant cells. Our hypothesis is that the low mitochondrial oxygen consumption leads to elevated ROS production by a mechanism associated with reduced PGC1α transcription and low content of phosphorylated CREB. The cells were transfected with either the encoded sequence for catalase overexpression or the specific siRNA for catalase inhibition. After transfection, myotubes were incubated with palmitic acid (500μM) and the insulin response, as well as mitochondrial function and fatty acid metabolism, was determined. The low mitochondrial oxygen consumption led to elevated ROS production by a mechanism associated with β-oxidation of fatty acids. Rotenone was observed to reduce the ratio of ROS production. The elevated H2O2 production markedly decreased the PGC1α transcription, an effect that was accompanied by a reduced phosphorylation of Akt and CREB. The catalase transfection prevented the reduction in the phosphorylated level of Akt and upregulated the levels of phosphorylated CREB. The mitochondrial function was elevated and H2O2 production reduced, thus increasing the insulin sensitivity. The catalase overexpression improved mitochondrial respiration protecting the cells from fatty acid-induced, insulin resistance. This effect indicates that control of hydrogen peroxide production regulates the mitochondrial respiration preventing the insulin resistance in skeletal muscle cells by a mechanism associated with CREB phosphorylation and β-oxidation of fatty acids.

  5. Glucocorticoid-induced leucine zipper overexpression inhibits lipopolysaccharide-induced retinal inflammation in rats.

    PubMed

    Gu, Ruiping; Lei, Boya; Shu, Qinmeng; Li, Gang; Xu, Gezhi

    2017-02-24

    Glucocorticoid-induced leucine zipper (GILZ) mediates several effects of glucocorticoids and has important anti-inflammatory properties. Here, we explored the role of GILZ in inhibiting retinal inflammation. Endotoxin-induced uveitis (EIU) was established in rats by intravitreal injection of lipopolysaccharide (LPS). GILZ levels decreased in the EIU retina at 4 h after LPS injection and slowly recovered within 24 h. Retinal GILZ was downregulated by recombinant lentivirus-delivered short-hairpin RNA targeting GILZ (shRNA-GILZ-rLV) and upregulated by recombinant lentivirus-mediated GILZ overexpression (Oe-GILZ-rLV). GILZ silencing attenuated the anti-inflammatory effects of intravitreal injection of triamcinolone acetonide (TA) in the EIU retina, as demonstrated by increased retinal interleukin (IL)-1β, monocyte chemoattractant protein (MCP)-1and intercellular cell adhesion molecule-1 expression at 18 h after TA injection. A Bio-Plex cytokine assay and western blotting demonstrated that GILZ overexpression inhibited the effects of LPS, downregulating retinal IL-1β, MCP-1, MIP-1α, and IL-17 and inhibiting LPS-induced activation of the retinal toll-like receptor 4-myeloid differentiation factor 88 signaling pathway. At 48 and 72 h after LPS injection, the clinical score of inflammation was significantly lower in Oe-GILZ-rLV-transfected eyes than in blank-rLV-transfected eyes. Histological examination showed a 67.85% reduction of infiltrating inflammatory cells in the anterior chamber and a 58.97% reduction in vitreous cavity of Oe-GILZ-rLV transfected eyes at 48 h after LPS injection. Taken together, our results suggest that GILZ is a novel therapeutic target for the treatment of retinal inflammatory diseases.

  6. The histone acetyltransferase MOF overexpression blunts cardiac hypertrophy by targeting ROS in mice.

    PubMed

    Qiao, Weiwei; Zhang, Weili; Gai, Yusheng; Zhao, Lan; Fan, Juexin

    2014-06-13

    Imbalance between histone acetylation/deacetylation critically participates in the expression of hypertrophic fetal genes and development of cardiac hypertrophy. While histone deacetylases play dual roles in hypertrophy, current evidence reveals that histone acetyltransferase such as p300 and PCAF act as pro-hypertrophic factors. However, it remains elusive whether some histone acetyltransferases can prevent the development of hypertrophy. Males absent on the first (MOF) is a histone acetyltransferase belonging to the MYST (MOZ, Ybf2/Sas3, Sas2 and TIP60) family. Here in this study, we reported that MOF expression was down-regulated in failing human hearts and hypertrophic murine hearts at protein and mRNA levels. To evaluate the roles of MOF in cardiac hypertrophy, we generated cardiac-specific MOF transgenic mice. MOF transgenic mice did not show any differences from their wide-type littermates at baseline. However, cardiac-specific MOF overexpression protected mice from transverse aortic constriction (TAC)-induced cardiac hypertrophy, with reduced radios of heart weight (HW)/body weight (BW), lung weight/BW and HW/tibia length, decreased left ventricular wall thickness and increased fractional shortening. We also observed lower expression of hypertrophic fetal genes in TAC-challenged MOF transgenic mice compared with that of wide-type mice. Mechanically, MOF overexpression increased the expression of Catalase and MnSOD, which blocked TAC-induced ROS and ROS downstream c-Raf-MEK-ERK pathway that promotes hypertrophy. Taken together, our findings identify a novel anti-hypertrophic role of MOF, and MOF is the first reported anti-hypertrophic histone acetyltransferase.

  7. Muscle cell atrophy induced by HSP gene silencing was counteracted by HSP overexpression

    NASA Astrophysics Data System (ADS)

    Choi, Inho; Lee, Joo-Hee; Nikawa, Takeshi; Gwag, Taesik; Park, Kyoungsook; Park, Junsoo

    Heat shock proteins (HSP), as molecular chaperones, are known to assist protein quality control under various stresses. Although overexpression of HSP70 was found to contribute to muscle size retention under an unloading condition, it remains largely unclarified whether muscle atrophy is induced by active suppression of HSP expression. In this study, we pre-treated Hsp70 siRNA to rat L6 cells for the HSP gene silencing, and determined myotube diameter, HSP72 expression and anabolic and catabolic signaling activities in the absence or presence of triterpene celastrol (CEL), the HSP70 inducer. Relative to a negative control (NC), muscle cell diameter was reduced 0.89-fold in the siRNA-treated group, increased 1.2-fold in the CEL-treated group and retained at the size of NC in the siRNA+CEL group. HSP72 expression was decreased 0.35-fold by siRNA whereas the level was increased 6- to 8-fold in the CEL and siRNA+CEL groups. Expression of FoxO3 and atrogin-1 was increased 1.8- to 4.8-fold by siRNA, which was abolished by CEL treatment. Finally, phosphorylation of Akt1, S6K and ERK1/2 was not affected by siRNA, but was elevated 2- to 6-fold in the CEL and siRNA+CEL groups. Taken together, HSP downregulation by Hsp gene silencing led to muscle cell atrophy principally via increases in catabolic activities and that such anti-atrophic effect was counteracted by HSP overexpression.

  8. Overexpression of phosphodiesterase-4 subtypes involved in surgery-induced neuroinflammation and cognitive dysfunction in mice.

    PubMed

    Wang, Wei; Zhang, Xiao-Ying; Feng, Ze-Guo; Wang, Dong-Xin; Zhang, Hao; Sui, Bo; Zhang, Yong-Yi; Zhao, Wei-Xing; Fu, Qiang; Xu, Zhi-Peng; Mi, Wei-Dong

    2017-02-21

    Postoperative cognitive dysfunction (POCD) is characterized by cognitive impairments in patients after surgery. Hippocampal neuroinflammation induced by surgery is highly associated with POCD. Phosphodiesterase-4 (PDE4) is an enzyme that specifically hydrolyses cyclic adenosine monophosphate (cAMP), which plays an important role during neuroinflammation and the process of learning and memory. However, the role of PDE4 in the development of POCD remains unclear. Male 14-month-old C57BL/6 mice received carotid artery exposure to mimic POCD. First, we evaluated cognitive performance by a Morris water maze (MWM) and fear conditioning system (FCS) test after surgery. The expression of PDE4 subtypes, pro-inflammatory cytokines, p-CREB and PSD95 as well as cAMP levels were investigated. Then, we used rolipram, a PDE4 inhibitor, to block the effects of PDE4. The cognitive performance of the mice and the expression of PDE4 subtypes, pro-inflammatory cytokines, p-CREB and PSD95 as well as cAMP levels were examined again. Mice displayed learning and memory impairment, overexpression of PDE4B and PDE4D, elevation of pro-inflammatory cytokines, and reduction in the expression of p-CREB, PSD95 and cAMP levels after surgery. The expression of PDE4B and PDE4D in the hippocampus decreased following blocking of PDE4 by rolipram. Meanwhile, rolipram attenuated the cognitive impairment and the elevation of pro-inflammatory cytokines induced by surgery. Moreover, rolipram reversed the reduction of p-CREB and PSD95. These results indicate that PDE4 subtype overexpression may be involved in the development of surgery-induced cognitive dysfunction in mice.

  9. Tubular overexpression of Gremlin in transgenic mice aggravates renal damage in diabetic nephropathy.

    PubMed

    Marchant, Vanessa; Droguett, Alejandra; Valderrama, Graciela; Burgos, M Eugenia; Carpio, Daniel; Kerr, Bredford; Ruiz-Ortega, Marta; Egido, Jesús; Mezzano, Sergio

    2015-09-15

    Diabetic nephropathy (DN) is currently a leading cause of end-stage renal failure worldwide. Gremlin was identified as a gene differentially expressed in mesangial cells exposed to high glucose and in experimental diabetic kidneys. We have described that Gremlin is highly expressed in biopsies from patients with diabetic nephropathy, predominantly in areas of tubulointerstitial fibrosis. In streptozotocin (STZ)-induced experimental diabetes, Gremlin deletion using Grem1 heterozygous knockout mice or by gene silencing, ameliorates renal damage. To study the in vivo role of Gremlin in renal damage, we developed a diabetic model induced by STZ in transgenic (TG) mice expressing human Gremlin in proximal tubular epithelial cells. The albuminuria/creatinuria ratio, determined at week 20 after treatment, was significantly increased in diabetic mice but with no significant differences between transgenic (TG/STZ) and wild-type mice (WT/STZ). To assess the level of renal damage, kidney tissue was analyzed by light microscopy (periodic acid-Schiff and Masson staining), electron microscopy, and quantitative PCR. TG/STZ mice had significantly greater thickening of the glomerular basement membrane, increased mesangial matrix, and podocytopenia vs. WT/STZ. At the tubulointerstitial level, TG/STZ showed increased cell infiltration and mild interstitial fibrosis. In addition, we observed a decreased expression of podocin and overexpression of monocyte chemoattractant protein-1 and fibrotic-related markers, including transforming growth factor-β1, Col1a1, and α-smooth muscle actin. Together, these results show that TG mice overexpressing Gremlin in renal tubules develop greater glomerular and tubulointerstitial injury in response to diabetic-mediated damage and support the involvement of Gremlin in diabetic nephropathy.

  10. Overexpression of homologous phytochrome genes in tomato: exploring the limits in photoperception.

    PubMed

    Husaineid, Said S H; Kok, Rosan A; Schreuder, Marielle E L; Hanumappa, Mamatha; Cordonnier-Pratt, Marie-Michèle; Pratt, Lee H; van der Plas, Linus H W; van der Krol, Alexander R

    2007-01-01

    Transgenic tomato [Lycopersicon esculentum (=Solanum lycopersicum)] lines overexpressing tomato PHYA, PHYB1, or PHYB2, under control of the constitutive double-35S promoter from cauliflower mosaic virus (CaMV) have been generated to test the level of saturation in individual phytochrome-signalling pathways in tomato. Western blot analysis confirmed the elevated phytochrome protein levels in dark-grown seedlings of the respective PHY overexpressing (PHYOE) lines. Exposure to 4 h of red light resulted in a decrease in phytochrome A protein level in the PHYAOE lines, indicating that the chromophore availability is not limiting for assembly into holoprotein and that the excess of phytochrome A protein is also targeted for light-regulated destruction. The elongation and anthocyanin accumulation responses of plants grown under white light, red light, far-red light, and end-of-day far-red light were used for characterization of selected PHYOE lines. In addition, the anthocyanin accumulation response to different fluence rates of red light of 4-d-old dark-grown seedlings was studied. The elevated levels of phyA in the PHYAOE lines had little effect on seedling and adult plant phenotype. Both PHYAOE in the phyA mutant background and PHYB2OE in the double-mutant background rescued the mutant phenotype, proving that expression of the transgene results in biologically active phytochrome. The PHYB1OE lines showed mild effects on the inhibition of stem elongation and anthocyanin accumulation and little or no effect on the red light high irradiance response. By contrast, the PHYB2OE lines showed a strong inhibition of elongation, enhancement of anthocyanin accumulation, and a strong amplification of the red light high irradiance response.

  11. Overexpression of apolipoprotein AII in transgenic mice converts high density lipoproteins to proinflammatory particles.

    PubMed Central

    Castellani, L W; Navab, M; Van Lenten, B J; Hedrick, C C; Hama, S Y; Goto, A M; Fogelman, A M; Lusis, A J

    1997-01-01

    Previous studies showed that transgenic mice overexpressing either apolipoprotein AI (apoAI) or apolipoprotein AII (apoAII), the major proteins of HDL, exhibited elevated levels of HDL cholesterol, but, whereas the apoAI-transgenic mice were protected against atherosclerosis, the apoAII-transgenic mice had increased lesion development. We now examine the basis for this striking functional heterogeneity. HDL from apoAI transgenics exhibited an enhanced ability to promote cholesterol efflux from macrophages, but HDL from apoAII transgenics and nontransgenics were not discernibly different in efflux studies. In contrast with HDL from nontransgenics and apoAI transgenics, HDL from the apoAII transgenics were unable to protect against LDL oxidation in a coculture model of the artery wall. Furthermore, HDL taken from apoAII-transgenic mice, but not HDL taken from either the apoAI transgenics or nontransgenic littermate controls, by itself stimulated lipid hydroperoxide formation in artery wall cells and induced monocyte transmigration, indicating that the apoAII-transgenic HDL were in fact proinflammatory. This loss in the ability of the apoAII-transgenic HDL to function as an antioxidant/antiinflammatory agent was associated with a decreased content of paraoxonase, an enzyme that protects against LDL oxidation. Reconstitution of the apoAII transgenic HDL with purified paraoxonase restored both paraoxonase activity and the ability to protect against LDL oxidation. We conclude that overexpression of apoAII converts HDL from an anti- to a proinflammatory particle and that paraoxonase plays a role in this transformation. PMID:9218525

  12. Overexpression of stress-related genes enhances cell viability and velum formation in Sherry wine yeasts.

    PubMed

    Fierro-Risco, Jesús; Rincón, Ana María; Benítez, Tahía; Codón, Antonio C

    2013-08-01

    Flor formation and flor endurance have been related to ability by Saccharomyces cerevisiae flor yeasts to resist hostile conditions such as oxidative stress and the presence of acetaldehyde and ethanol. Ethanol and acetaldehyde toxicity give rise to formation of reactive oxygen species (ROS) and loss of cell viability. Superoxide dismutases Sod1p and Sod2p and other proteins such as Hsp12p are involved in oxidative stress tolerance. In this study, genes SOD1, SOD2, and HSP12 were overexpressed in flor yeast strains FJF206, FJF414 and B16. In the SOD1 and SOD2 transformant strains superoxide dismutases encoded by genes SOD1 and SOD2 increased their specific activity considerably as a direct result of overexpression of genes SOD1 and SOD2, indirectly, catalase, glutathione reductase, and glutathione peroxidase activities increased too. The HSP12 transformant strains showed higher levels of glutathione peroxidase and reductase activities. These transformant strains showed an increase in intracellular glutathione content, a reduction in peroxidized lipid concentration, and higher resistance to oxidative stress conditions. As a result, flor formation by these strains took place more rapidly than by their parental strains, velum being thicker and with higher percentages of viable cells. In addition, a slight decrease in ethanol and glycerol concentrations, and an increase in acetaldehyde were detected in wines matured under velum formed by transformant strains, as compared to their parental strains. In the industry, velum formed by transformant strains with increased viability may result in acceleration of both metabolism and wine aging, thus reducing time needed for wine maturation.

  13. Disruption of Inhibitory Function in the Ts65Dn Mouse Hippocampus Through Overexpression of GIRK2

    DTIC Science & Technology

    2007-10-24

    Inhibitory Function in the Ts65Dn Mouse Hippocampus Through Overexpression of GIRK2" {O\\LldC0( Date Date Dissertation and Abstract Approved: Name of...thesis manuscript entitled: "Disruption of inhibitory function in the Ts65Dn mouse hippocampus through overexpression of GIRK2" is appropriately...Disruption of inhibitory function in the Ts65Dn mouse hippocampus through overexpression of GIRK2 by Tyler K. Best Doctoral Dissertation

  14. Over-expression of secreted proteins from mammalian cell lines

    PubMed Central

    Dalton, Annamarie C; Barton, William A

    2014-01-01

    Secreted mammalian proteins require the development of robust protein over-expression systems for crystallographic and biophysical studies of protein function. Due to complex disulfide bonds and distinct glycosylation patterns preventing folding and expression in prokaryotic expression hosts, many secreted proteins necessitate production in more complex eukaryotic expression systems. Here, we elaborate on the methods used to obtain high yields of purified secreted proteins from transiently or stably transfected mammalian cell lines. Among the issues discussed are the selection of appropriate expression vectors, choice of signal sequences for protein secretion, availability of fusion tags for enhancing protein stability and purification, choice of cell line, and the large-scale growth of cells in a variety of formats. PMID:24510886

  15. RNAi and overexpression of genes in ovarian somatic cells.

    PubMed

    Saito, Kuniaki

    2014-01-01

    Emerging evidence indicates that PIWI proteins, in collaboration with PIWI-interacting RNAs (piRNAs), play a critical role in retrotransposon silencing in Drosophila gonadal somatic and germ-line cells. The recent establishment of female germ-line stem cells/ovarian somatic sheet and its derivative cell line, ovarian somatic cells (OSCs), allows researchers to study the molecular functions of several protein factors involved in the primary piRNA pathway in Drosophila. Although transgene expression is difficult to achieve in gonad-derived cell lines, transfection of both expression vectors and knockdown reagents is highly effective in OSCs. Here, I focus on techniques that knockdown or overexpress genes of interest in OSCs.

  16. Mammary gland tumor formation in transgenic mice overexpressing stromelysin-1

    SciTech Connect

    Sympson, Carolyn J; Bissell, Mina J; Werb, Zena

    1995-06-01

    An intact basement membrane (BM) is essential for the proper function, differentiation and morphology of many epithelial cells. The disruption or loss of this BM occurs during normal development as well as in the disease state. To examine the importance of BM during mammary gland development in vivo, we generated transgenic mice that inappropriately express autoactivating isoforms of the matrix metalloproteinase stromelysin-1. The mammary glands from these mice are both functionally and morphologically altered throughout development. We have now documented a dramatic incidence of breast tumors in several independent lines of these mice. These data suggest that overexpression of stromelysin-1 and disruption of the BM may be a key step in the multi-step process of breast cancer.

  17. Effects of the overexpression of IFITM5 and IFITM5 c.-14C>T mutation on human osteosarcoma cells.

    PubMed

    Liu, Bao-Yan; Lu, Yan-Qin; Han, Feng; Wang, Yong; Mo, Xin-Kai; Han, Jin-Xiang

    2017-01-01

    The present study aimed to investigate the effects of overexpression of interferon-induced transmembrane protein 5 (IFITM5) and IFITM5 c.-14C>T mutation on osteogenic differentiation, and the proliferation, migration and invasion of SaOS2 cells. SaOS2 cells were transfected with plasmids containing wild type IFITM5 (W) or IFITM5 containing the c.-14C>T mutation (MU). The mRNA and protein expression levels of IFITM5 in SaOS2 cells were respectively detected by reverse transcription quantitative polymerase chain reaction and western blotting. The proliferative, migratory and invasive ability of SaOS2 cells was also examined. In addition, the expression levels of osteogenic differentiation markers alkaline phosphatase (ALP), osteocalcin (OCN) and runt-related transcription factor 2 (Runx2) were detected. Mineralized nodules were detected by Alizarin Red S staining and were quantified by measuring absorbance. The mRNA and protein expression levels of IFITM5 were high in cells transfected with IFITM5 and IFITM5 c.-14C>T mutation, and were higher in cells transfected with IFITM5 c.-14C>T mutation. There was no difference in proliferation between the control group (C) and the W and MU groups. However, overexpression of IFITM5 and IFITM5 c.-14C>T mutation increased apoptotic rate, decreased invasive capacity, increased the expression of ALP, OCN and Runx2, and increased the number of mineralized nodules following osteogenic induction. In addition, compared with C and W groups, cells transfected with IFITM5 c.-14C>T mutation exhibited decreased migratory ability. In conclusion, overexpression of IFITM5 and IFITM5 c.-14C>T mutation promotes tumor cell apoptosis, inhibits tumor invasion and promotes osteogenic differentiation. These findings may provide a theoretical basis for the development of a novel treatment method that targets IFITM5, and provides a platform for the potential treatment of human osteosarcoma.

  18. Overexpression of lycopene ε-cyclase gene from lycium chinense confers tolerance to chilling stress in Arabidopsis thaliana.

    PubMed

    Song, Xinyu; Diao, Jinjin; Ji, Jing; Wang, Gang; Li, Zhaodi; Wu, Jiang; Josine, Tchouopou Lontchi; Wang, Yurong

    2016-01-15

    Lutein plays an important role in protecting the photosynthetic apparatus from photodamage and eliminating ROS to render normal physiological function of cells. As a rate-limiting step for lutein synthesis in plants, lycopene ε-cyclase catalyzes lycopene to δ-carotene. We cloned a lycopene ε-cyclase gene (Lcε-LYC) from Lycium chinense (L. chinense), a deciduous woody perennial halophyte growing in various environmental conditions. The Lcε-LYC gene has an ORF of 1569bp encoding a protein of 522 aa. The deduced amino acid sequence of Lcε-LYC gene has higher homology with LycEs in other plants, such as Nicotiana tabacum and Solanum tuberosum. When L. chinense was exposed to chilling stress, relative expression of Lcε-LYC increased. To study the protective role of Lcε-LYC against chilling stress, we overexpressed the Lcε-LYC gene in Arabidopsis thaliana. Lcε-LYC overexpression led to an increase of lutein accumulation in transgenic A. thaliana, and the content of lutein decreased when transgenics were under cold conditions. In addition, the transgenic plants under chilling stress displayed higher activities of superoxide dismutase (SOD) and peroxidase (POD) and less H2O2 and malondialdehyde (MDA) than the control. Moreover, the photosynthesis rate, photosystem II activity (Fv/fm), and Non-photochemical quenching (NPQ) also increased in the transgenetic plants. On the whole, overexpression of Lcε-LYC ameliorates photoinhibition and photooxidation, and decreases the sensitivity of photosynthesis to chilling stress in transgenic plants.

  19. Overexpression of GRK6 rescues L-DOPA-induced signaling abnormalities in the dopamine-depleted striatum of hemiparkinsonian rats.

    PubMed

    Ahmed, M Rafiuddin; Bychkov, Evgeny; Kook, Seunghyi; Zurkovsky, Lilia; Dalby, Kevin N; Gurevich, Eugenia V

    2015-04-01

    l-DOPA therapy in Parkinson's disease often results in side effects such as l-DOPA-induced dyskinesia (LID). Our previous studies demonstrated that defective desensitization of dopamine receptors caused by decreased expression of G protein-coupled receptor kinases (GRKs) plays a role. Overexpression of GRK6, the isoform regulating dopamine receptors, in parkinsonian rats and monkeys alleviated LID and reduced LID-associated changes in gene expression. Here we show that 2-fold lentivirus-mediated overexpression of GRK6 in the dopamine-depleted striatum in rats unilaterally lesioned with 6-hydroxydopamine ameliorated supersensitive ERK response to l-DOPA challenge caused by loss of dopamine. A somewhat stronger effect of GRK6 was observed in drug-naïve than in chronically l-DOPA-treated animals. GRK6 reduced the responsiveness of p38 MAP kinase to l-DOPA challenge rendered supersensitive by dopamine depletion. The JNK MAP kinase was unaffected by loss of dopamine, chronic or acute l-DOPA, or GRK6. Overexpressed GRK6 suppressed enhanced activity of Akt in the lesioned striatum by reducing elevated phosphorylation at its major activating residue Thr(308). Finally, GRK6 reduced accumulation of ΔFosB in the lesioned striatum, the effect that paralleled a decrease in locomotor sensitization to l-DOPA in GRK6-expressing rats. The results suggest that elevated GRK6 facilitate desensitization of DA receptors, thereby normalizing of the activity of multiple signaling pathways implicated in LID. Thus, improving the regulation of dopamine receptor function via the desensitization mechanism could be an effective way of managing LID.

  20. Overexpressing Superoxide Dismutase 2 Induces a Supernormal Cardiac Function by Enhancing Redox-dependent Mitochondrial Function and Metabolic Dilation*

    PubMed Central

    Kang, Patrick T.; Chen, Chwen-Lih; Ohanyan, Vahagn; Luther, Daniel J.; Meszaros, J. Gary; Chilian, William M.; Chen, Yeong-Renn

    2015-01-01

    During heightened cardiac work, O2 consumption by the heart benefits energy production via mitochondria. However, some electrons leak from the respiratory chain and yield superoxide, which is rapidly metabolized into H2O2 by SOD2. To understand the systemic effects of the metabolic dilator, H2O2, we studied mice with cardiac-specific SOD2 overexpression (SOD2-tg), which increases the H2O2 produced by cardiac mitochondria. Contrast echocardiography was employed to evaluate cardiac function, indicating that SOD2-tg had a significantly greater ejection fraction and a lower mean arterial pressure (MAP) that was partially normalized by intravenous injection of catalase. Norepinephrine-mediated myocardial blood flow (MBF) was significantly enhanced in SOD2-tg mice. Coupling of MBF to the double product (Heart Rate × MAP) was increased in SOD2-tg mice, indicating that the metabolic dilator, “spilled” over, inducing systemic vasodilation. The hypothesis that SOD2 overexpression effectively enhances mitochondrial function was further evaluated. Mitochondria of SOD2-tg mice had a decreased state 3 oxygen consumption rate, but maintained the same ATP production flux under the basal and L-NAME treatment conditions, indicating a higher bioenergetic efficiency. SOD2-tg mitochondria produced less superoxide, and had lower redox activity in converting cyclic hydroxylamine to stable nitroxide, and a lower GSSG concentration. EPR analysis of the isolated mitochondria showed a significant decrease in semiquinones at the SOD2-tg Qi site. These results support a more reductive physiological setting in the SOD2-tg murine heart. Cardiac mitochondria exhibited no significant differences in the respiratory control index between WT and SOD2-tg. We conclude that SOD2 overexpression in myocytes enhances mitochondrial function and metabolic vasodilation, leading to a phenotype of supernormal cardiac function. PMID:26374996

  1. A new anti-tumor strategy based on in vivo tumstatin overexpression after plasmid electrotransfer in muscle

    SciTech Connect

    Thevenard, Jessica; Mir, Lluis M.; Dupont-Deshorgue, Aurélie; Monboisse, Jean-Claude; Brassart-Pasco, Sylvie

    2013-03-22

    Highlights: ► A new therapeutic strategy based on tumstatin in vivo overexpression is proposed. ► pVAX1©–tumstatin electrotransfer in muscle mediates protein expression in muscle. ► A substantial expression of tumstatin is detected in the serum of electrotransfected mice. ► Tumstatin overexpression decreases tumor growth and increases mouse survival. -- Abstract: The NC1 domains from the different α(IV) collagen chains were found to exert anti-tumorigenic and/or anti-angiogenic activities. A limitation to the therapeutic use of these matrikines is the large amount of purified recombinant proteins, in the milligram range in mice that should be administered daily throughout the experimental procedures. In the current study, we developed a new therapeutic approach based on tumstatin (NC1α3(IV)) overexpression in vivo in a mouse melanoma model. Gene electrotransfer of naked plasmid DNA (pDNA) is particularly attractive because of its simplicity, its lack of immune responsiveness and its safety. The pDNA electrotransfer in muscle mediates a substantial gene expression that lasts several months. A pVAX1© vector containing the tumstatin cDNA was injected into the legs of C57BL/6 mice and submitted to electrotranfer. Sera were collected at different times and tumstatin was quantified by ELISA. Tumstatin secretion reached a plateau at day 21 with an expression level of 12 μg/mL. For testing the effects of tumstatin expression on tumor growth in vivo, B16F1 melanoma cells were subcutaneously injected in mice 7 days after empty pVAX1© (Mock) or pVAX1©–tumstatin electrotransfer. Tumstatin expression triggered a large decrease in tumor growth and an increase in mouse survival. This new therapeutic approach seems promising to inhibit tumor progression in vivo.

  2. Protective effect of eNOS overexpression against ischemia/reperfusion injury in small-for-size liver transplantation

    PubMed Central

    Zhang, Bo; Liu, Qiu-Hua; Zhou, Cui-Jie; Hu, Ming-Zheng; Qian, Hai-Xin

    2016-01-01

    Ischemia/reperfusion (I/R) injury can occur during small-for-size liver transplantation, resulting in delayed graft function and decreased long-term graft survival. The aim of the present study was to evaluate the effects of genetic overexpression of endothelial nitric oxide synthase (eNOS) in protecting hepatocytes against I/R injury in a rat model of small-for-size liver transplantation. L02 liver cells were transfected with the eNOS gene using an adenovirus (Ad-eNOS). eNOS expression was detected using quantitative polymerase chain reaction and western blot analysis. To evaluate the effect of eNOS overexpression, L02 cells were placed in a hypoxic environment for 12 h and immediately transferred to an oxygen-enriched atmosphere. For in vivo testing, rats pretreated with Ad-eNOS or control underwent small-for-size liver transplantation. At 6 h after reperfusion, the bile quantity, serum transaminase and nitric oxide (NO) levels, and histological outcomes were evaluated. Cell apoptosis was assessed by flow cytometry or TUNEL assay. In vitro, Ad-eNOS prevented apoptosis in L02 cells with an increase in the level of NO in culture supernatant. In vivo, Ad-eNOS pre-treatment significantly increased bile production, improved abnormal transaminase levels, diminished apoptosis among liver cells, and decreased hepatocellular damage at 6 h after I/R injury. The eNOS-mediated renal protective effects might be associated with the downregulation of tumor necrosis factor-α and a reduction in macrophage activation in the early stage of reperfusion in small-for-size liver allografts. eNOS-derived NO production significantly attenuates hepatic I/R injury. Thus, eNOS overexpression constitutes a promising therapeutic approach to prevent liver I/R injury following small-for-size liver transplantation. PMID:27882135

  3. Overexpressing superoxide dismutase 2 induces a supernormal cardiac function by enhancing redox-dependent mitochondrial function and metabolic dilation.

    PubMed

    Kang, Patrick T; Chen, Chwen-Lih; Ohanyan, Vahagn; Luther, Daniel J; Meszaros, J Gary; Chilian, William M; Chen, Yeong-Renn

    2015-11-01

    During heightened cardiac work, O2 consumption by the heart benefits energy production via mitochondria. However, some electrons leak from the respiratory chain and yield superoxide, which is rapidly metabolized into H2O2 by SOD2. To understand the systemic effects of the metabolic dilator, H2O2, we studied mice with cardiac-specific SOD2 overexpression (SOD2-tg), which increases the H2O2 produced by cardiac mitochondria. Contrast echocardiography was employed to evaluate cardiac function, indicating that SOD2-tg had a significantly greater ejection fraction and a lower mean arterial pressure (MAP) that was partially normalized by intravenous injection of catalase. Norepinephrine-mediated myocardial blood flow (MBF) was significantly enhanced in SOD2-tg mice. Coupling of MBF to the double product (Heart Rate×MAP) was increased in SOD2-tg mice, indicating that the metabolic dilator, "spilled" over, inducing systemic vasodilation. The hypothesis that SOD2 overexpression effectively enhances mitochondrial function was further evaluated. Mitochondria of SOD2-tg mice had a decreased state 3 oxygen consumption rate, but maintained the same ATP production flux under the basal and L-NAME treatment conditions, indicating a higher bioenergetic efficiency. SOD2-tg mitochondria produced less superoxide, and had lower redox activity in converting cyclic hydroxylamine to stable nitroxide, and a lower GSSG concentration. EPR analysis of the isolated mitochondria showed a significant decrease in semiquinones at the SOD2-tg Qi site. These results support a more reductive physiological setting in the SOD2-tg murine heart. Cardiac mitochondria exhibited no significant differences in the respiratory control index between WT and SOD2-tg. We conclude that SOD2 overexpression in myocytes enhances mitochondrial function and metabolic vasodilation, leading to a phenotype of supernormal cardiac function.

  4. Escitalopram alters gene expression and HPA axis reactivity in rats following chronic overexpression of corticotropin-releasing factor from the central amygdala.

    PubMed

    Flandreau, Elizabeth I; Bourke, Chase H; Ressler, Kerry J; Vale, Wylie W; Nemeroff, Charles B; Owens, Michael J

    2013-08-01

    We have previously demonstrated that viral-mediated overexpression of corticotropin-releasing factor (CRF) within the central nucleus of the amygdala (CeA) reproduces many of the behavioral and endocrine consequences of chronic stress. The present experiment sought to determine whether administration of the selective serotonin reuptake inhibitor (SSRI) escitalopram reverses the adverse effects of CeA CRF overexpression. In a 2×2 design, adult male rats received bilateral infusions of a control lentivirus or a lentivirus in which a portion of the CRF promoter is used to drive increased expression of CRF peptide. Four weeks later, rats were then implanted with an Alzet minipump to deliver vehicle or 10mg/kg/day escitalopram for a 4-week period of time. The defensive withdrawal (DW) test of anxiety and the sucrose-preference test (SPT) of anhedonia were performed both before and after pump implantation. Additional post-implant behavioral tests included the elevated plus maze (EPM) and social interaction (SI) test. Following completion of behavioral testing, the dexamethasone/CRF test was performed to assess HPA axis reactivity. Brains were collected and expression of HPA axis-relevant transcripts were measured using in situ hybridization. Amygdalar CRF overexpression increased anxiety-like behavior in the DW test at week eight, which was only partially prevented by escitalopram. In both CRF-overexpressing and control groups, escitalopram decreased hippocampal CRF expression while increasing hypothalamic and hippocampal expression of the glucocorticoid receptor (GR). These gene expression changes were associated with a significant decrease in HPA axis reactivity in rats treated with escitalopram. Interestingly, escitalopram increased the rate of weight gain only in rats overexpressing CRF. Overall these data support our hypothesis that amygdalar CRF is critical in anxiety-like behavior; because the antidepressant was unable to reverse behavioral manifestations of Ce

  5. Escitalopram alters gene expression and HPA axis reactivity in rats following chronic overexpression of corticotropin-releasing factor from the central amygdala

    PubMed Central

    Flandreau, Elizabeth I.; Bourke, Chase H.; Ressler, Kerry J.; Vale, Wylie W.; Nemeroff, Charles B.; Owens, Michael J.

    2013-01-01

    Summary We have previously demonstrated that viral-mediated overexpression of corticotropin-releasing factor (CRF) within the central nucleus of the amygdala (CeA) reproduces many of the behavioral and endocrine consequences of chronic stress. The present experiment sought to determine whether administration of the selective serotonin reuptake inhibitor (SSRI) escitalopram reverses the adverse effects of CeA CRF overexpression. In a 2 × 2 design, adult male rats received bilateral infusions of a control lentivirus or a lentivirus in which a portion of the CRF promoter is used to drive increased expression of CRF peptide. Four weeks later, rats were then implanted with an Alzet minipump to deliver vehicle or 10 mg/kg/day escitalopram for a 4-week period of time. The defensive withdrawal (DW) test of anxiety and the sucrose-preference test (SPT) of anhedonia were performed both before and after pump implantation. Additional post-implant behavioral tests included the elevated plus maze (EPM) and social interaction (SI) test. Following completion of behavioral testing, the dexamethasone/CRF test was performed to assess HPA axis reactivity. Brains were collected and expression of HPA axis-relevant transcripts were measured using in situ hybridization. Amygdalar CRF overexpression increased anxiety-like behavior in the DW test at week eight, which was only partially prevented by escitalopram. In both CRF-overexpressing and control groups, escitalopram decreased hippocampal CRF expression while increasing hypothalamic and hippocampal expression of the glucocorticoid receptor (GR). These gene expression changes were associated with a significant decrease in HPA axis reactivity in rats treated with escitalopram. Interestingly, escitalopram increased the rate of weight gain only in rats overexpressing CRF. Overall these data support our hypothesis that amygdalar CRF is critical in anxiety-like behavior; because the antidepressant was unable to reverse behavioral

  6. Increased abscisic acid levels in transgenic maize overexpressing AtLOS5 mediated root ion fluxes and leaf water status under salt stress.

    PubMed

    Zhang, Juan; Yu, Haiyue; Zhang, Yushi; Wang, Yubing; Li, Maoying; Zhang, Jiachang; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2016-03-01

    Abscisic acid (ABA) is a vital cellular signal in plants, and effective ABA signalling is pivotal for stress tolerance. AtLOS5 encoding molybdenum cofactor sulphurase is a key regulator of ABA biosynthesis. Here, transgenic AtLOS5 plants were generated to explore the role of AtLOS5 in salt tolerance in maize. AtLOS5 overexpression significantly up-regulated the expression of ZmVp14-2, ZmAO, and ZmMOCO, and increased aldehyde oxidase activities, which enhanced ABA accumulation in transgenic plants under salt stress. Concurrently, AtLOS5 overexpression induced the expression of ZmNHX1, ZmCBL4, and ZmCIPK16, and enhanced the root net Na(+) efflux and H(+) influx, but decreased net K(+) efflux, which maintained a high cytosolic K(+)/Na(+) ratio in transgenic plants under salt stress. However, amiloride or sodium orthovanadate could significantly elevate K(+) effluxes and decrease Na(+) efflux and H(+) influx in salt-treated transgenic roots, but the K(+) effluxes were inhibited by TEA, suggesting that ion fluxes regulated by AtLOS5 overexpression were possibly due to activation of Na(+)/H(+) antiport and K(+) channels across the plasma membrane. Moreover, AtLOS5 overexpression could up-regulate the transcripts of ZmPIP1:1, ZmPIP1:5, and ZmPIP2:4, and enhance root hydraulic conductivity. Thus transgenic plants had higher leaf water potential and turgor, which was correlated with greater biomass accumulation under salt stress. Thus AtLOS5 overexpression induced the expression of ABA biosynthetic genes to promote ABA accumulation, which activated ion transporter and PIP aquaporin gene expression to regulate root ion fluxes and water uptake, thus maintaining high cytosolic K(+) and Na(+) homeostasis and better water status in maize exposed to salt stress.

  7. Overexpression of the PP2A regulatory subunit Tap46 leads to enhanced plant growth through stimulation of the TOR signalling pathway.

    PubMed

    Ahn, Chang Sook; Ahn, Hee-Kyung; Pai, Hyun-Sook

    2015-02-01

    Tap46, a regulatory subunit of protein phosphatase 2A (PP2A), plays an essential role in plant growth and development through a functional link with the Target of Rapamycin (TOR) signalling pathway. Here, we have characterized the molecular mechanisms behind a gain-of-function phenotype of Tap46 and its relationship with TOR to gain further insights into Tap46 function in plants. Constitutive overexpression of Tap46 in Arabidopsis resulted in overall growth stimulation with enlarged organs, such as leaves and siliques. Kinematic analysis of leaf growth revealed that increased cell size was mainly responsible for the leaf enlargement. Tap46 overexpression also enhanced seed size and viability under accelerated ageing conditions. Enhanced plant growth was also observed in dexamethasone (DEX)-inducible Tap46 overexpression Arabidopsis lines, accompanied by increased cellular activities of nitrate-assimilating enzymes. DEX-induced Tap46 overexpression and Tap46 RNAi resulted in increased and decreased phosphorylation of S6 kinase (S6K), respectively, which is a sensitive indicator of endogenous TOR activity, and Tap46 interacted with S6K in planta based on bimolecular fluorescence complementation and co-immunoprecipitation. Furthermore, inactivation of TOR by estradiol-inducible RNAi or rapamycin treatment decreased Tap46 protein levels, but increased PP2A catalytic subunit levels. Real-time quantitative PCR analysis revealed that Tap46 overexpression induced transcriptional modulation of genes involved in nitrogen metabolism, ribosome biogenesis, and lignin biosynthesis. These findings suggest that Tap46 modulates plant growth as a positive effector of the TOR signalling pathway and Tap46/PP2Ac protein abundance is regulated by TOR activity.

  8. Increased abscisic acid levels in transgenic maize overexpressing AtLOS5 mediated root ion fluxes and leaf water status under salt stress

    PubMed Central

    Zhang, Juan; Yu, Haiyue; Zhang, Yushi; Wang, Yubing; Li, Maoying; Zhang, Jiachang; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2016-01-01

    Abscisic acid (ABA) is a vital cellular signal in plants, and effective ABA signalling is pivotal for stress tolerance. AtLOS5 encoding molybdenum cofactor sulphurase is a key regulator of ABA biosynthesis. Here, transgenic AtLOS5 plants were generated to explore the role of AtLOS5 in salt tolerance in maize. AtLOS5 overexpression significantly up-regulated the expression of ZmVp14-2, ZmAO, and ZmMOCO, and increased aldehyde oxidase activities, which enhanced ABA accumulation in transgenic plants under salt stress. Concurrently, AtLOS5 overexpression induced the expression of ZmNHX1, ZmCBL4, and ZmCIPK16, and enhanced the root net Na+ efflux and H+ influx, but decreased net K+ efflux, which maintained a high cytosolic K+/Na+ ratio in transgenic plants under salt stress. However, amiloride or sodium orthovanadate could significantly elevate K+ effluxes and decrease Na+ efflux and H+ influx in salt-treated transgenic roots, but the K+ effluxes were inhibited by TEA, suggesting that ion fluxes regulated by AtLOS5 overexpression were possibly due to activation of Na+/H+ antiport and K+ channels across the plasma membrane. Moreover, AtLOS5 overexpression could up-regulate the transcripts of ZmPIP1:1, ZmPIP1:5, and ZmPIP2:4, and enhance root hydraulic conductivity. Thus transgenic plants had higher leaf water potential and turgor, which was correlated with greater biomass accumulation under salt stress. Thus AtLOS5 overexpression induced the expression of ABA biosynthetic genes to promote ABA accumulation, which activated ion transporter and PIP aquaporin gene expression to regulate root ion fluxes and water uptake, thus maintaining high cytosolic K+ and Na+ homeostasis and better water status in maize exposed to salt stress. PMID:26743432

  9. Transgenic cloned sheep overexpressing ovine toll-like receptor 4.

    PubMed

    Deng, Shoulong; Li, Guiguan; Zhang, Jinlong; Zhang, Xiaosheng; Cui, Maosheng; Guo, Yong; Liu, Guoshi; Li, Guangpeng; Feng, Jianzhong; Lian, Zhengxing

    2013-07-01

    An ovine fetal fibroblast cell line highly expressing TLR4 was established by inserting TLR4 into a reconstructive p3S-LoxP plasmid. Transgenic sheep overexpressing TLR4 were produced by transferring TLR4-transfected fetal fibroblasts into metaphase (M)II-stage enucleated oocytes (using SCNT). Because reconstructed embryos derived from MII-stage enucleated oocytes matured in vivo using a delayed-activated method had a higher pregnancy rate (18.52%) than that from MII-stage enucleated oocytes matured in vitro, the former procedure was used. Nine TLR4-transgenic live births were confirmed using polymerase chain reaction and Southern blot analysis. Increased expression of TLR4 at mRNA and protein levels in ear tissues of transgenic lambs were verified using reverse transcription polymerase chain reaction and immunohistochemistry, respectively. More toll-like receptor 4 protein was expressed by peripheral blood monocytes and/or macrophages collected from 3-month-old TLR4-transgenic than nontransgenic lambs at 0, 1, and 4 hours after lipopolysaccharide stimulation. Furthermore, interferon-γ and tumor necrosis factor α secreted by monocytes and/or macrophages of TLR4-transgenic lambs were significantly higher at 1 hour. Therefore, lipopolysaccharide-induced inflammatory responses from monocytes and/or macrophages occurred sooner in TLR4-transgenic lambs, consistent with an enhanced host immune response. In conclusion, transgenic sheep overexpressing TLR4 are a primary model to investigate the role of transgenic animals in disease resistance and have potential for breeding sheep with disease resistance.

  10. MCM10 overexpression implicates adverse prognosis in urothelial carcinoma

    PubMed Central

    Li, Wei-Ming; Huang, Chun-Nung; Ke, Hung-Lung; Li, Ching-Chia; Wei, Yu-Ching; Yeh, Hsin-Chih; Chang, Lin-Li; Huang, Chun-Hsiung; Liang, Peir-In; Yeh, Bi-Wen; Chan, Ti-Chun; Li, Chien-Feng; Wu, Wen-Jeng

    2016-01-01

    Urothelial carcinoma (UC) occurs in the upper urinary tract (UTUC) and the urinary bladder (UBUC). The molecular pathogenesis of UC has not been fully elucidated. Through data mining of a published transcriptome of UBUC (GSE31684), we identified Minichromosome Maintenance Complex Component 2 (MCM2) and MCM10 as the two most significantly upregulated genes in UC progression among the MCM gene family, the key factors for the initiation of DNA replication. To validate the clinical significance of MCM2 and MCM10, immunohistochemistry, evaluated by H-score, was used in a pilot study of 50 UTUC and 50 UBUC samples. Only a high expression level of MCM10 predicted worse disease-specific survival (DSS) and inferior metastasis-free survival (MeFS) for both UTUC and UBUC. Correspondingly, evaluation of MCM10 mRNA expression in 36 UTUCs and 30 UBUCs showed significantly upregulated levels in high stage UC, suggesting its role in tumor progression. Evaluation of 340 UTUC and 296 UBUC tissue samples, respectively, demonstrated that high MCM10 immunoexpression was significantly associated with advanced primary tumors, nodal status, and the presence of vascular invasion in both groups of UCs. In multivariate Cox regression analyses, adjusted for standard clinicopathological features, MCM10 overexpression was independently associated with DSS (UTUC hazard ratio [HR]=2.401, P = 0.013; UBUC HR=4.323, P=0.001) and with MeFS (UTUC HR=3.294, P<0.001; UBUC HR=1.972, P=0.015). In vitro, knockdown of MCM10 gene significantly suppressed cell proliferation in both J82 and TCCSUP cells. In conclusion, MCM10 overexpression was associated with unfavorable clinicopathological characteristics and independent negative prognostic effects, justifying its potential theranostic value in UC. PMID:27780919

  11. CD3-epsilon overexpressed in prothymocytes acts as an oncogene.

    PubMed Central

    Wang, B.; She, J.; Salio, M.; Allen, D.; Lacy, E.; Lonberg, N.; Terhorst, C.

    1997-01-01

    BACKGROUND: Upon engagement of the T cell receptor for antigen, its associated CD3 proteins recruit signal transduction molecules, which in turn regulate T lymphocyte proliferation, apoptosis, and thymocyte development. Because some signal transducing molecules recruited by CD3-epsilon, i.e., p56lck and p59fyn, are oncogenic and since we previously found that overexpression of CD3-epsilon transgenes causes a block in T lymphocyte and NK cell development, we tested the hypothesis that aberrant CD3-epsilon signaling leads both to abnormal T lymphocyte death and lymphomagenesis. MATERIALS AND METHODS: Ten independently derived transgenic mouse lines were generated with four different genomic CD3-epsilon constructs. Mice either homozygous or hemizygous for each transgene were analyzed for an arrest in T lymphocyte development and for the occurrence of T cell lymphomas. RESULTS: Aggressive clonal T cell lymphomas developed at very high frequencies in seven mouse lines with intermediate levels of copies of CD3-epsilon derived transgenes. However, these lymphomas were not found when high copy numbers of CD3-epsilon transgenes caused a complete block in early thymic development or when a transgene was used in which the exons coding for the CD3-epsilon protein were deleted. Analyses of a series of double mutant mice, tgCD3-epsilon x RAG-2null, indicated that lymphomagenesis was initiated in lineage-committed prothymocytes, i.e., before rearrangement of the T cell receptor genes. In addition, the transgene coding for the CD3-epsilon cytoplasmic domain and its transmembrane region induced a T cell differentiation signal in premalignant tgCD3-epsilon x RAG-2null mice. CONCLUSION: The nonenzymatic CD3-epsilon protein acted as a potent oncogene when overexpressed early in T lymphocyte development. Lymphomagenesis was dependent on signal transduction events initiated by the cytoplasmic domain of CD3-epsilon. Images FIG. 2 FIG. 4 FIG. 5 PMID:9132282

  12. Sarcolipin overexpression improves muscle energetics and reduces fatigue.

    PubMed

    Sopariwala, Danesh H; Pant, Meghna; Shaikh, Sana A; Goonasekera, Sanjeewa A; Molkentin, Jeffery D; Weisleder, Noah; Ma, Jianjie; Pan, Zui; Periasamy, Muthu

    2015-04-15

    Sarcolipin (SLN) is a regulator of sarcoendoplasmic reticulum calcium ATPase in skeletal muscle. Recent studies using SLN-null mice have identified SLN as a key player in muscle thermogenesis and metabolism. In this study, we exploited a SLN overexpression (Sln(OE)) mouse model to determine whether increased SLN level affected muscle contractile properties, exercise capacity/fatigue, and metabolic rate in whole animals and isolated muscle. We found that Sln(OE) mice are more resistant to fatigue and can run significantly longer distances than wild-type (WT). Studies with isolated extensor digitorum longus (EDL) muscles showed that Sln(OE) EDL produced higher twitch force than WT. The force-frequency curves were not different between WT and Sln(OE) EDLs, but at lower frequencies the pyruvate-induced potentiation of force was significantly higher in Sln(OE) EDL. SLN overexpression did not alter the twitch and force-frequency curve in isolated soleus muscle. However, during a 10-min fatigue protocol, both EDL and soleus from Sln(OE) mice fatigued significantly less than WT muscles. Interestingly, Sln(OE) muscles showed higher carnitine palmitoyl transferase-1 protein expression, which could enhance fatty acid metabolism. In addition, lactate dehydrogenase expression was higher in Sln(OE) EDL, suggesting increased glycolytic capacity. We also found an increase in store-operated calcium entry (SOCE) in isolated flexor digitorum brevis fibers of Sln(OE) compared with WT mice. These data allow us to conclude that increased SLN expression improves skeletal muscle performance during prolonged muscle activity by increasing SOCE and muscle energetics.

  13. Cardiomyocyte-specific perilipin 5 overexpression leads to myocardial steatosis and modest cardiac dysfunction1[S

    PubMed Central

    Wang, Hong; Sreenivasan, Urmila; Gong, Da-Wei; O'Connell, Kelly A.; Dabkowski, Erinne R.; Hecker, Peter A.; Ionica, Nicoleta; Konig, Manige; Mahurkar, Anup; Sun, Yezhou; Stanley, William C.; Sztalryd, Carole

    2013-01-01

    Presence of ectopic lipid droplets (LDs) in cardiac muscle is associated to lipotoxicity and tissue dysfunction. However, presence of LDs in heart is also observed in physiological conditions, such as when cellular energy needs and energy production from mitochondria fatty acid β-oxidation are high (fasting). This suggests that development of tissue lipotoxicity and dysfunction is not simply due to the presence of LDs in cardiac muscle but due at least in part to alterations in LD function. To examine the function of cardiac LDs, we obtained transgenic mice with heart-specific perilipin 5 (Plin5) overexpression (MHC-Plin5), a member of the perilipin protein family. Hearts from MHC-Plin5 mice expressed at least 4-fold higher levels of plin5 and exhibited a 3.5-fold increase in triglyceride content versus nontransgenic littermates. Chronic cardiac excess of LDs was found to result in mild heart dysfunction with decreased expression of peroxisome proliferator-activated receptor (PPAR)α target genes, decreased mitochondria function, and left ventricular concentric hypertrophia. Lack of more severe heart function complications may have been prevented by a strong increased expression of oxidative-induced genes via NF-E2-related factor 2 antioxidative pathway. Perilipin 5 regulates the formation and stabilization of cardiac LDs, and it promotes cardiac steatosis without major heart function impairment. PMID:23345411

  14. Overexpression of Jazf1 reduces body weight gain and regulates lipid metabolism in high fat diet

    SciTech Connect

    Jang, Woo Young; Bae, Ki Beom; Kim, Sung Hyun; Yu, Dong Hun; Kim, Hei Jung; Ji, Young Rae; Park, Seo Jin; Park, Si Jun; Kang, Min-Cheol; Jeong, Ja In; Park, Sang-Joon; Lee, Sang Gyu; Lee, Inkyu; Kim, Myoung Ok; Yoon, Duhak; Ryoo, Zae Young

    2014-02-14

    Highlights: • The expression of Jazf1 in the liver suppressed lipid accumulation. • Jazf1 significantly increases transcription of fatty acid synthase. • Jazf1 plays a critical role in the regulation of energy and lipid homeostasis. • Jazf1 associates the development of metabolic disorder. • Jazf1 may provide a new therapeutic target in the management of metabolic disorder. - Abstract: Jazf1 is a 27 kDa nuclear protein containing three putative zinc finger motifs that is associated with diabetes mellitus and prostate cancer; however, little is known about the role that this gene plays in regulation of metabolism. Recent evidence indicates that Jazf1 transcription factors bind to the nuclear orphan receptor TR4. This receptor regulates PEPCK, the key enzyme involved in gluconeogenesis. To elucidate Jazf1’s role in metabolism, we fed a 60% fat diet for up to 15 weeks. In Jazf1 overexpression mice, weight gain was found to be significantly decreased. The expression of Jazf1 in the liver also suppressed lipid accumulation and decreased droplet size. These results suggest that Jazf1 plays a critical role in the regulation of lipid homeostasis. Finally, Jazf1 may provide a new therapeutic target in the management of obesity and diabetes.

  15. Overexpression of SKP2 Inhibits the Radiation-Induced Bystander Effects of Esophageal Carcinoma

    PubMed Central

    Wang, Xiao-Chun; Zhang, Tie-Jun; Guo, Zi-Jian; Xiao, Chang-Yan; Ding, Xiao-Wen; Fang, Fang; Sheng, Wen-Tao; Shu, Xu; Li, Jue

    2017-01-01

    Background: To investigate the effects of S-phase kinase protein 2 (SKP2) expression on the radiation induced bystander effect (RIBE) in esophageal cancer (EC) cells. Materials and Methods: Western blot was used to detect the levels of SKP2, Rad51, and Ku70 in EC cells. Positive transfection, RNAi, micronucleus (MN), and γ-H2AX focus formation assay were used to investigate the effects of SKP2 on RIBE induced by irradiated cells. Results: We found a significant negative correlation between SKP2 expression and MN frequency (p < 0.05) induced by RIBE. The results were further confirmed by positive transfection, RNAi, and rescue experiments.γ-H2AX focus formation assay results indicated that overexpression of SKP2 in the irradiated cells inhibited the DNA damage of RIBE cells. However, when SKP2 expression decreased in irradiated cells, the DNA damage of RIBE cells increased. Increased or decreased expression levels of SKP2 had effects on Rad51 expression under the conditions of RIBE. Conclusions: These results showed, for the first time, that SKP2 expression can inhibit RIBE of EC cells. The mechanism may function, at least partly, through the regulation of Rad51 in the ability to repair DNA damage. PMID:28178195

  16. Beneficial role of overexpression of TFPI-2 on tumour progression in human small cell lung cancer☆

    PubMed Central

    Lavergne, Marion; Jourdan, Marie-Lise; Blechet, Claire; Guyetant, Serge; Pape, Alain Le; Heuze-Vourc’h, Nathalie; Courty, Yves; Lerondel, Stephanie; Sobilo, Julien; Iochmann, Sophie; Reverdiau, Pascale

    2013-01-01

    Tissue factor pathway inhibitor-2 (TFPI-2) is a potent inhibitor of plasmin, a protease which is involved in tumour progression by activating (MMPs). This therefore makes TFPI-2 a potential inhibitor of invasiveness and the development of metastases. In this study, low levels of TFPI-2 expression were found in 65% of patients with small cell lung cancer (SCLC), the most aggressive type of lung cancer. To study the impact of TFPI-2 in tumour progression, TFPI-2 was overexpressed in NCI-H209 SCLC cells which were orthotopically implanted in nude mice. Investigations showed that TFPI-2 inhibited lung tumour growth. Such inhibition could be explained in vitro by a decrease in tumour cell viability, blockade of G1/S phase cell cycle transition and an increase in apoptosis shown in NCI-H209 cells expressing TFPI-2. We also demonstrated that TFPI-2 upregulation in NCI-H209 cells decreased MMP expression, particularly by downregulating MMP-1 and MMP-3. Moreover, TFPI-2 inhibited phosphorylation of the MAPK signalling pathway proteins involved in the induction of MMP transcripts, among which MMP-1 was predominant in SCLC tissues and was inversely expressed with TFPI-2 in 35% of cases. These results suggest that downregulation of TFPI-2 expression could favour the development of SCLC. PMID:23905012

  17. HDAC8 overexpression in mesenchymal stromal cells from JAK2+ myeloproliferative neoplasms: a new therapeutic target?

    PubMed

    Ramos, Teresa L; Sánchez-Abarca, Luis Ignacio; Redondo, Alba; Hernández-Hernández, Ángel; Almeida, Antonio M; Puig, Noemí; Rodríguez, Concepción; Ortega, Rebeca; Preciado, Silvia; Rico, Ana; Muntión, Sandra; González Porras, José Ramón; Del Cañizo, Consuelo; Sánchez-Guijo, Fermín

    2017-03-07

    Histone deacetylases (HDACs) are involved in epigenetic modulation and their aberrant expression has been demonstrated in myeloproliferative neoplasms (MPN). HDAC8 inhibition has been shown to inhibit JAK2/STAT5 signaling in hematopoietic cells from MPN. Nevertheless, the role of HDAC8 expression in bone marrow-mesenchymal stromal cells (BM-MSC) has not been assessed. In the current work we describe that HDAC8 is significantly over-expressed in MSC from in JAK-2 positive MPN compared to those from healthy-donors (HD-MSC). Using a selective HDAC8 inhibitor (PCI34051), we verified that the subsequent decrease in the protein and mRNA expression of HDAC8 is linked with an increased apoptosis of malignant MSC whereas it has no effects on normal MSC. In addition, HDAC8 inhibition in MPN-MSC also decreased their capacity to maintain neoplastic hematopoiesis, by increasing the apoptosis, cell-cycle arrest and colony formation of JAK2+-hematopoietic cells. Mechanistic studies using different MPN cell lines revealed that PCI34051 induced their apoptosis, which is enhanced when were co-cultured with JAK2V617F-MSC, decreased their colony formation and the phosphorylation of STAT3 and STAT5. In summary, we show for the first time that the inhibition of HDAC8 in MSC from JAK2+ MPN patients selectively decreases their hematopoietic-supporting ability, suggesting that HDAC8 may be a potential therapeutic target in this setting by acting not only on hematopoietic cells but also on the malignant microenvironment.

  18. Can Diuretics Decrease Your Potassium Level?

    MedlinePlus

    ... High blood pressure (hypertension) Can diuretics decrease your potassium level? Answers from Sheldon G. Sheps, M.D. Yes, some diuretics — also called water pills — decrease potassium in the blood. Diuretics are commonly used to ...

  19. Selective osteoblast overexpression of IGF-I in mice prevents low protein-induced deterioration of bone strength and material level properties.

    PubMed

    Brennan-Speranza, Tara C; Rizzoli, René; Kream, Barbara E; Rosen, Clifford; Ammann, Patrick

    2011-11-01

    Protein deficiency is frequently observed in elderly osteoporotic patients. Undernutrition leads to decreased levels of IGF-I, an important factor in regulating bone homeostasis throughout life. IGF-I is produced in the liver and locally in the skeleton. We hypothesized that increasing IGF-I expression in the osteoblasts, the bone forming cells, would protect the skeleton from the negative effects of a low-protein diet. To test our hypothesis, we employed a mouse model in which IGF-I was overexpressed exclusively in osteoblasts and fed either a 15% (normal) or a 2.5% (low) protein isocaloric diet to the transgenic (TG) mice and their wild-type (WT) littermates for 8 weeks. Blood was collected for biochemical determinations and weight was monitored weekly. Bones were excised for microstructural analysis (μCT), as well as biomechanical and material level properties. Histomorphometric analysis was performed for bone formation parameters. A low protein diet decreased body weight, circulating IGF-I and osteocalcin levels regardless of genotype. Overexpression of IGF-I in the osteoblasts was, however, able to protect the negative effects of low protein diet on microstructure including tibia cortical thickness and volumetric density, and on bone strength. Overexpression of IGF-I in osteoblasts in these mice protected the vertebrae from the substantial negative effects of low protein on the material level properties as measured my nanoindentation. TG mice also had larger overall geometric properties than WT mice regardless of diet. This study provides evidence that while a low protein diet leads to decreased circulating IGF-I, altered microstructure and decreased bone strength, these negative effects can be prevented with IGF-I overexpression exclusively in bone cells.

  20. Sin3b Interacts with Myc and Decreases Myc Levels*

    PubMed Central

    Garcia-Sanz, Pablo; Quintanilla, Andrea; Lafita, M. Carmen; Moreno-Bueno, Gema; García-Gutierrez, Lucia; Tabor, Vedrana; Varela, Ignacio; Shiio, Yuzuru; Larsson, Lars-Gunnar; Portillo, Francisco; Leon, Javier

    2014-01-01

    Myc expression is deregulated in many human cancers. A yeast two-hybrid screen has revealed that the transcriptional repressor Sin3b interacts with Myc protein. Endogenous Myc and Sin3b co-localize and interact in the nuclei of human and rat cells, as assessed by co-immunoprecipitation, immunofluorescence, and proximity ligation assay. The interaction is Max-independent. A conserved Myc region (amino acids 186–203) is required for the interaction with Sin3 proteins. Histone deacetylase 1 is recruited to Myc-Sin3b complexes, and its deacetylase activity is required for the effects of Sin3b on Myc. Myc and Sin3a/b co-occupied many sites on the chromatin of human leukemia cells, although the presence of Sin3 was not associated with gene down-regulation. In leukemia cells and fibroblasts, Sin3b silencing led to Myc up-regulation, whereas Sin3b overexpression induced Myc deacetylation and degradation. An analysis of Sin3b expression in breast tumors revealed an association between low Sin3b expression and disease progression. The data suggest that Sin3b decreases Myc protein levels upon Myc deacetylation. As Sin3b is also required for transcriptional repression by Mxd-Max complexes, our results suggest that, at least in some cell types, Sin3b limits Myc activity through two complementary activities: Mxd-dependent gene repression and reduction of Myc levels. PMID:24951594

  1. Construction of SET overexpression vector and its effects on the proliferation and apoptosis of 293T cells.

    PubMed

    Wang, Yuan; He, Peng-Cheng; Liu, Yan-Feng; Qi, Jun; Zhang, Mei

    2016-05-01

    The expression of SET nuclear proto‑oncogene (SET) is commonly associated with cell proliferation and tumorigenesis. In the present study, a eukaryotic SET expression plasmid (pEGFP‑N1‑SET) was constructed and transiently transfected into 293T human embryonic kidney cells. Transfection led to expression of the SET oncoprotein at high levels, as indicated by polymerase chain reaction and western blot analysis. In addition, the relative mRNA and protein expression of protein phosphatase 2A in pEGFP‑N1‑SET‑transfected 293T cells was downregulated compared with that in empty vector‑transfected cells. Furthermore, overexpression of SET increased the percentage of 293T cells in S and G2/M phases compared with the control transfectants. An increase in B‑cell lymphoma 2 (Bcl‑2) and a decrease in Bcl‑2‑associated X (Bax) protein expression was observed in the pEGFP‑N1‑SET‑transfected cells compared with that in the controls, and their susceptibility to As4S4‑induced apoptosis was decreased. The protein SET is involved in a number of cellular processes, including DNA replication, chromatin remodeling, gene transcription, differentiation, migration and cell cycle regulation. SET is overexpressed in several neoplasms, particularly in acute myeloid leukemia. The findings of the present study suggested that the SET gene may contribute to tumorigenesis and may be a potential novel effective therapeutic target for leukemia and other cancer types.

  2. Chronic morphine administration induces over-expression of aldolase C with reduction of CREB phosphorylation in the mouse hippocampus.

    PubMed

    Yang, Hai-Yu; Pu, Xiao-Ping

    2009-05-01

    In recent studies, alterations in the activity and expression of metabolic enzymes, such as those involved in glycolysis, have been detected in morphine-dependent patients and animals. Increasing evidence demonstrates that the hippocampus is an important brain region associated with morphine dependence, but the molecular events occurring in the hippocampus following chronic exposure to morphine are poorly understood. Aldolase C is the brain-specific isoform of fructose-1, 6-bisphosphate aldolase which is a glycolytic enzyme catalyzing reactions in the glycolytic, gluconeogenic, and fructose metabolic pathways. Using Western blot and immunofluorescence assays, we found the expression of aldolase C was markedly increased in the mouse hippocampus following chronic morphine treatment. Naloxone pretreatment before morphine administration suppressed withdrawal jumping, weight loss, and overexpression of aldolase C. CREB is a transcription factor regulated through phosphorylation on Ser133, which is known to play a key role in the mechanism of morphine dependence. When detecting the expression of phosphorylated CREB (p-CREB) in the mouse hippocampus using Western blot and immunohistochemistry, we found CREB phosphorylation was clearly decreased following chronic morphine treatment. Interestingly, laser-confocal microscopy showed that overexpression of aldolase C in mouse hippocampal neurons was concomitant with the decreased immunoreactivity of p-CREB. The results suggest potential links between the morphine-induced alteration of aldolase C and the regulation of CREB phosphorylation, a possible mechanism of morphine dependence.

  3. Overexpression of SlUPA-like induces cell enlargement, aberrant development and low stress tolerance through phytohormonal pathway in tomato

    PubMed Central

    Cui, Baolu; Hu, Zongli; Hu, Jingtao; Zhang, Yanjie; Yin, Wencheng; Zhu, Zhiguo; Feng, Ye; Chen, Guoping

    2016-01-01

    upa20 induces cell enlargement and hypertrophy development. In our research, overexpression of SlUPA-like, orthologous to upa20, severely affected the growth of vegetative and reproductive tissues. Wilted leaves curled upwardly and sterile flowers were found in transgenic lines. Through anatomical analysis, palisade and spongy tissues showed fluffy and hypertrophic development in transgenic plants. Gene expression analysis showed that GA responsive, biosynthetic and signal transduction genes (e.g. GAST1, SlGA20OXs, SlGA3OXs, SlGID1s, and SlPREs) were significantly upregulated, indicating that GA response is stimulated by overproduction of SlUPA-like. Furthermore, SlUPA-like was strongly induced by exogenous JA and wounding. Decreased expression of PI-I and induced expression of SlJAZs (including SlJAZ2, SlJAZ10 and SlJAZ11) were observed in transgenic plants, suggesting that JA response is repressed. In addition, SlUPA-like overexpressed plant exhibited more opened stoma and higher water loss than the control when treated with dehydration stress, which was related to decreased ABA biosynthesis, signal transduction and response. Particularly, abnormal developments of transgenic plants promote the plant susceptibility to Xanthomonas campestris pv. campestris. Therefore, it is deduced from these results that SlUPA-like plays vital role in regulation of plant development and stress tolerance through GA, JA and ABA pathways. PMID:27025226

  4. Overexpression of SlRBZ Results in Chlorosis and Dwarfism through Impairing Chlorophyll, Carotenoid, and Gibberellin Biosynthesis in Tomato

    PubMed Central

    Fan, Mingqin; Gao, Shenghua; Ren, Junling; Yang, Qihong; Li, Hanxia; Yang, Changxian; Ye, Zhibiao

    2016-01-01

    ZFPs play important roles in many biological processes, including plant development, stress response, and phytohormone response. RanBP2-type zinc finger transcription factors have been characterized in animals and humans. However, their functions remain largely unknown in plants. In this study, we identified a RanBP2-type zinc finger protein gene (SlRBZ) in tomato. SlRBZ was constitutively expressed in roots, stems, leaves, flowers, and fruits. The SlRBZ-GFP fused protein was localized in the nucleus. Overexpression of SlRBZ resulted in chlorosis and dwarf phenotypes in tomato. Determination of physiological index showed that chlorophyll, carotenoid, and GAs contents were evidently decreased in transgenic plants. Furthermore, the qRT-PCR and RNA-Seq analyses demonstrated that the transcription of the genes involved in these biosynthesis pathways obviously decreased in SlRBZ-OE plants. In addition, ultrastructural observation by transmission electron microscopy indicated that plastids could not develop into mature chloroplasts with normal chloroplast membrane and thylakoid membrane system in SlRBZ-OE plants. The results suggest that overexpression of SlRBZ may impair the biosynthesis of chlorophyll, carotenoid, and gibberellin through blocking chloroplast development, resulting in chlorosis and dwarfism in tomato. PMID:27446137

  5. Overexpression of SlUPA-like induces cell enlargement, aberrant development and low stress tolerance through phytohormonal pathway in tomato.

    PubMed

    Cui, Baolu; Hu, Zongli; Hu, Jingtao; Zhang, Yanjie; Yin, Wencheng; Zhu, Zhiguo; Feng, Ye; Chen, Guoping

    2016-03-30

    upa20 induces cell enlargement and hypertrophy development. In our research, overexpression of SlUPA-like, orthologous to upa20, severely affected the growth of vegetative and reproductive tissues. Wilted leaves curled upwardly and sterile flowers were found in transgenic lines. Through anatomical analysis, palisade and spongy tissues showed fluffy and hypertrophic development in transgenic plants. Gene expression analysis showed that GA responsive, biosynthetic and signal transduction genes (e.g. GAST1, SlGA20OXs, SlGA3OXs, SlGID1s, and SlPREs) were significantly upregulated, indicating that GA response is stimulated by overproduction of SlUPA-like. Furthermore, SlUPA-like was strongly induced by exogenous JA and wounding. Decreased expression of PI-I and induced expression of SlJAZs (including SlJAZ2, SlJAZ10 and SlJAZ11) were observed in transgenic plants, suggesting that JA response is repressed. In addition, SlUPA-like overexpressed plant exhibited more opened stoma and higher water loss than the control when treated with dehydration stress, which was related to decreased ABA biosynthesis, signal transduction and response. Particularly, abnormal developments of transgenic plants promote the plant susceptibility to Xanthomonas campestris pv. campestris. Therefore, it is deduced from these results that SlUPA-like plays vital role in regulation of plant development and stress tolerance through GA, JA and ABA pathways.

  6. Claudin-4 Overexpression in Epithelial Ovarian Cancer Is Associated with Hypomethylation and Is a Potential Target for Modulation of Tight Junction Barrier Function Using a C-Terminal Fragment of Clostridium perfringens Enterotoxin1

    PubMed Central

    Litkouhi, Babak; Kwong, Joseph; Lo, Chun-Min; Smedley, James G; McClane, Bruce A; Aponte, Margarita; Gao, Zhijian; Sarno, Jennifer L; Hinners, Jennifer; Welch, William R; Berkowitz, Ross S; Mok, Samuel C; Garner, Elizabeth I O

    2007-01-01

    Background Claudin-4, a tight junction (TJ) protein and receptor for the C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE), is overexpressed in epithelial ovarian cancer (EOC). Previous research suggests DNA methylation is a mechanism for claudin-4 overexpression in cancer and that C-CPE acts as an absorption-enhancing agent in claudin-4-expressing cells. We sought to correlate claudin-4 overexpression in EOC with clinical outcomes and TJ barrier function, investigate DNA methylation as a mechanism for overexpression, and evaluate the effect of C-CPE on the TJ. Methods Claudin-4 expression in EOC was quantified and correlated with clinical outcomes. Claudin-4 methylation status was determined, and claudin-4-negative cell lines were treated with a demethylating agent. Electric cell-substrate impedance sensing was used to calculate junctional (paracellular) resistance (Rb) in EOC cells after claudin-4 silencing and after C-CPE treatment. Results Claudin-4 overexpression in EOC does not correlate with survival or other clinical endpoints and is associated with hypomethylation. Claudin-4 overexpression correlates with Rb and C-CPE treatment of EOC cells significantly decreased Rb in a dose- and claudin-4-dependent noncytotoxic manner. Conclusions C-CPE treatment of EOC cells leads to altered TJ function. Further research is needed to determine the potential clinical applications of C-CPE in EOC drug delivery strategies. PMID:17460774

  7. BAD induces apoptosis in cells over-expressing Bcl-2 or Bcl-xL without loss of mitochondrial membrane potential.

    PubMed

    Schimmer, A D; Hedley, D W; Pham, N A; Chow, S; Minden, M D

    2001-07-01

    Inhibitors of Bcl-2 may be useful therapeutic agents for the treatment of a wide variety of malignancies including leukemia. A potential prototype of such a compound is the endogenous Bcl-2 and Bcl-xL binding protein BAD. Previous reports indicate that BAD can overcome the anti-apoptotic effect of Bcl-xL but not Bcl-2. If BAD cannot induce apoptosis in cells over-expressing Bcl-2, it would limit the application of molecules like BAD as novel anti-tumor agents. We report that transient transfection of BAD induced cell death in cells with and without over-expression of Bcl-2 or Bcl-xL. Forty-eight hours after transfection, BAD increased cell death in COS, COS Bcl-2, and COS Bcl-xL cells as demonstrated by decreased GFP expression, and an increase in the number of number of floating cells. In addition, BAD induced cell death in leukemic cell lines over-expressing Bcl-2 and Bcl-xL as determined by changes in luciferase activity. BAD-induced apoptosis was not accompanied by loss of mitochondrial membrane potential. Therefore, we conclude that transient transfection of BAD directly induces apoptosis in cells over-expressing Bcl-2 or Bcl-xL and validates the pursuit of molecules like BAD as novel therapeutic agents.

  8. CPT1{alpha} over-expression increases long-chain fatty acid oxidation and reduces cell viability with incremental palmitic acid concentration in 293T cells

    SciTech Connect

    Jambor de Sousa, Ulrike L.; Koss, Michael D.; Fillies, Marion; Gahl, Anja; Scheeder, Martin R.L.; Cardoso, M. Cristina; Leonhardt, Heinrich; Geary, Nori; Langhans, Wolfgang; Leonhardt, Monika . E-mail: monika.leonhardt@inw.agrl.ethz.ch

    2005-12-16

    To test the cellular response to an increased fatty acid oxidation, we generated a vector for an inducible expression of the rate-limiting enzyme carnitine palmitoyl-transferase 1{alpha} (CPT1{alpha}). Human embryonic 293T kidney cells were transiently transfected and expression of the CPT1{alpha} transgene in the tet-on vector was activated with doxycycline. Fatty acid oxidation was measured by determining the conversion of supplemented, synthetic cis-10-heptadecenoic acid (C17:1n-7) to C15:ln-7. CPT1{alpha} over-expression increased mitochondrial long-chain fatty acid oxidation about 6-fold. Addition of palmitic acid (PA) decreased viability of CPT1{alpha} over-expressing cells in a concentration-dependent manner. Both, PA and CPT1{alpha} over-expression increased cell death. Interestingly, PA reduced total cell number only in cells over-expressing CPT1{alpha}, suggesting an effect on cell proliferation that requires PA translocation across the mitochondrial inner membrane. This inducible expression system should be well suited to study the roles of CPT1 and fatty acid oxidation in lipotoxicity and metabolism in vivo.

  9. Enhanced Efficacy of the CDNF/MANF Family by Combined Intranigral Overexpression in the 6-OHDA Rat Model of Parkinson's Disease

    PubMed Central

    Cordero-Llana, Óscar; Houghton, Benjamin C; Rinaldi, Federica; Taylor, Hannah; Yáñez-Muñoz, Rafael J; Uney, James B; Wong, Liang-Fong; Caldwell, Maeve A

    2015-01-01

    Cerebral Dopamine Neurotrophic Factor (CDNF) and Mesencephalic Astrocyte-derived Neurotrophic factor (MANF) are members of a recently discovered family of neurotrophic factors (NTFs). Here, we used intranigral or intrastriatal lentiviral vector-mediated expression to evaluate their efficacy at protecting dopaminergic function in the 6-OHDA model of Parkinson's disease (PD). In contrast to the well-studied Glial-Derived Neurotrophic Factor (GDNF), no beneficial effects were demonstrated by striatal overexpression of either protein. Interestingly, nigral overexpression of CDNF decreased amphetamine-induced rotations and increased tyroxine hydroxylase (TH) striatal fiber density but had no effect on numbers of TH+ cells in the SN. Nigral MANF overexpression had no effect on amphetamine-induced rotations or TH striatal fiber density but resulted in a significant preservation of TH+ cells. Combined nigral overexpression of both factors led to a robust reduction in amphetamine-induced rotations, greater increase in striatal TH-fiber density and significant protection of TH+ cells in the SN. We conclude that nigral CDNF and MANF delivery is more efficacious than striatal delivery. This is also the first study to demonstrate that combined NTF can have synergistic effects that result in enhanced neuroprotection, suggesting that multiple NTF delivery may be more efficacious for the treatment of PD than the single NTF approaches attempted so far. PMID:25369767

  10. Overexpression of L-type lectin-like protein kinase 1 confers pathogen resistance and regulates salinity response in Arabidopsis thaliana.

    PubMed

    Huang, Ping; Ju, Hyun-Woo; Min, Ji-Hee; Zhang, Xia; Kim, Su-Hyun; Yang, Kwang-Yeol; Kim, Cheol Soo

    2013-04-01

    Plant receptor-like protein kinases are thought to be involved in various cellular processes mediated by signal transduction pathways. There are about 45 lectin receptor kinases in Arabidopsis, but only a few have been studied. Here, we investigated the effect of the disruption and overexpression of a plasma membrane-localized L-type lectin-like protein kinase 1, AtLPK1 (At4g02410), on plant responses to abiotic and biotic stress. Expression of AtLPK1 was strongly induced by abscisic acid, methyl jasmonate, salicylic acid and stress treatments. Overexpression of AtLPK1 in Arabidopsis resulted in enhanced seed germination and cotyledon greening under high salinity condition, while antisense transgenic lines were more sensitive to salt stress. Activity of three abiotic stress responsive genes, RD29A, RD29B and COR15A, was elevated in AtLPK1-overexpressing plants than that in wild type (WT) plants with salt treatment, whereas the transcript level of these genes in antisense plants decreased compared with WT. Furthermore, AtLPK1-overexpressing plants displayed increased resistance to infection by Botrytis cinerea and exhibited stronger expression of a group of defense-related genes than did WT. The data implicates AtLPK1 plays essential roles at both abiotic and biotic stress response in Arabidopsis thaliana.

  11. Transgenic soybean plants overexpressing O-acetylserine sulfhydrylase accumulate enhanced levels of cysteine and Bowman-Birk protease inhibitor in seeds.

    PubMed

    Kim, Won-Seok; Chronis, Demosthenis; Juergens, Matthew; Schroeder, Amy C; Hyun, Seung Won; Jez, Joseph M; Krishnan, Hari B

    2012-01-01

    Soybeans provide an excellent source of protein in animal feed. Soybean protein quality can be enhanced by increasing the concentration of sulfur-containing amino acids. Previous attempts to increase the concentration of sulfur-containing amino acids through the expression of heterologous proteins have met with limited success. Here, we report a successful strategy to increase the cysteine content of soybean seed through the overexpression of a key sulfur assimilatory enzyme. We have generated several transgenic soybean plants that overexpress a cytosolic isoform of O-acetylserine sulfhydrylase (OASS). These transgenic soybean plants exhibit a four- to tenfold increase in OASS activity when compared with non-transformed wild-type. The OASS activity in the transgenic soybeans was significantly higher at all the stages of seed development. Unlike the non-transformed soybean plants, there was no marked decrease in the OASS activity even at later stages of seed development. Overexpression of cytosolic OASS resulted in a 58-74% increase in protein-bound cysteine levels compared with non-transformed wild-type soybean seeds. A 22-32% increase in the free cysteine levels was also observed in transgenic soybeans overexpressing OASS. Furthermore, these transgenic soybean plants showed a marked increase in the accumulation of Bowman-Birk protease inhibitor, a cysteine-rich protein. The overall increase in soybean total cysteine content (both free and protein-bound) satisfies the recommended levels required for the optimal growth of monogastric animals.

  12. Overexpression and Suppression of Artemisia annua 4-Hydroxy-3-Methylbut-2-enyl Diphosphate Reductase 1 Gene (AaHDR1) Differentially Regulate Artemisinin and Terpenoid Biosynthesis

    PubMed Central

    Ma, Dongming; Li, Gui; Zhu, Yue; Xie, De-Yu

    2017-01-01

    4-Hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR) catalyzes the last step of the 2-C-methyl-D-erythritol 4- phosphate (MEP) pathway to synthesize isopentenyl pyrophosphate (IPP) and dimethylallyl diphosphate (DMAPP). To date, little is known regarding effects of an increase or a decrease of a HDR expression on terpenoid and other metabolite profiles in plants. In our study, an Artemisia annua HDR cDNA (namely AaHDR1) was cloned from leaves. Expression profiling showed that it was highly expressed in leaves, roots, stems, and flowers with different levels. Green florescence protein fusion and confocal microscope analyses showed that AaHDR1 was localized in chloroplasts. The overexpression of AaHDR1 increased contents of artemisinin, arteannuin B and other sesquiterpenes, and multiple monoterpenes. By contrast, the suppression of AaHDR1 by anti-sense led to opposite results. In addition, an untargeted metabolic profiling showed that the overexpression and suppression altered non-polar metabolite profiles. In conclusion, the overexpression and suppression of AaHDR1 protein level in plastids differentially affect artemisinin and other terpenoid biosynthesis, and alter non-polar metabolite profiles of A. annua. Particularly, its overexpression leading to the increase of artemisinin production is informative to future metabolic engineering of this antimalarial medicine. PMID:28197158

  13. Cardiac-Specific Overexpression of HIF-1α Prevents Deterioration of Glycolytic Pathway and Cardiac Remodeling in Streptozotocin-Induced Diabetic Mice

    PubMed Central

    Xue, Wanli; Cai, Lu; Tan, Yi; Thistlethwaite, Patricia; Kang, Y. James; Li, Xiaokun; Feng, Wenke

    2010-01-01

    Defective glycolysis and angiogenesis in the heart of diabetic patients and in experimental diabetic animal models have been reported. The aim of this study was to determine whether overexpression of hypoxia-inducible factor (HIF)-1α protects from myocardial injury in diabetic mice by increasing myocardial glycolysis and angiogenesis. Cardiac-specific HIF-1α–overexpressing transgenic and age-matched wild-type control mice were treated with streptozotocin to induce diabetes. Changes in glucose transporters, glycolytic enzymes, angiogenic factors and cardiac morphology were examined in the hearts by real-time RT-PCR, Western blotting, enzymatic assay, and histological assays. HIF-1α overexpression elevated hexokinase II (HK-II) protein level and total HK activity in nondiabetic heart and prevented the decreases in HK-II mRNA, protein, and total HK activity in diabetic heart. In addition, the reduction of glucose transporter I, but not glucose transporter 4, was restored in HIF transgenic mouse heart along with a recovery of myocardium ATP production. HIF-1α overexpression also normalized diabetes-reduced vascular endothelial growth factor concentration along with a sustained myocardial capillary density and an inhibition of cardiomyocyte hypertrophy and cardiac fibrosis. Therefore, elevation of HIF-1α provides a cardiac protection from diabetic-induced impairment in glucose metabolism and angiogenesis via up-regulation of HIF-1 target genes. PMID:20566749

  14. Decreased DACH1 expression in glomerulopathy is associated with disease progression and severity

    PubMed Central

    Liu, Qing-Quan; Zhou, Ya-Qun; Liu, Hui-Quan; Qiu, Wen-Hui; Liu, Hui; Hu, Ting-Yang; Xu, Qing; Lv, Yong-Man; Wu, Kong-Ming

    2016-01-01

    Cell fate determination factor dachshund1 (DACH1) is a chromosome-associated protein that regulates cellular differentiation throughout development. Recent genome-wide association studies have show that missense mutation in DACH1 leads to hereditary renal hypodysplasia. Renal DACH1 expression can be used to estimate glomerular filtration rate (eGFR). We firstly characterized the function of DACH1 in normal and diseased renal tissue using immunohistochemistry to assess DACH1 in human renal biopsy specimens from 40 immunoglobulin A nephropathy (IgAN) patients, 20 idiopathic membranous nephropathy (IMN) patients, and 15 minimal change disease (MCD) patients. We found that DACH1 expression was decreased in the nephropathy group relative to healthy controls. DACH1 staining in the glomerulus correlated positively with eGFR (r = 0.41, p < 0.001) but negatively with serum creatinine (r = −0.37, p < 0.01). In vitro, DACH1 overexpression in human podocytes or HK2 cells decreased expression of cyclin D1, but increased expression of p21 and p53, which suggested that DACH1 overexpression in human podocytes or HK2 cells increased the G1/S phase or G2/M cell arrest. Together, These findings indicate that DACH1 expression is decreased in glomerulopathy imply a potential role for DACH1 in the this development of human chornic glomerulopathy. These data suggest that DACH1 is a potential a marker of disease progression and severity for glomerular diseases. PMID:27888806

  15. Hypoxic preconditioning decreases nuclear factor κB activity via Disrupted in Schizophrenia-1.

    PubMed

    Liu, Jia-Ren; Liu, Qian; Khoury, Joseph; Li, Yue-Jin; Han, Xiao-Hui; Li, Jing; Ibla, Juan C

    2016-01-01

    Nuclear factor κB is a key mediator of inflammation during conditions of hypoxia. Here, we used models of hypoxic pre-conditioning as mechanism to decrease nuclear factor κB activity induced by hypoxia. Our initial studies suggested that Disrupted in Schizophrenia-1 may be induced by hypoxic pre-conditioning and possibly involved in the regulation of nuclear factor κB. In this study we used Disrupted in Schizophrenia-1 exogenous over-expression and knock-down to determine its effect on ataxia telangiectasia mutated--nuclear factor κB activation cascade. Our results demonstrated that hypoxic pre-conditioning significantly increased the expression of Disrupted in Schizophrenia-1 at mRNA and protein levels both in vitro and in vivo. Over-expression of Disrupted in Schizophrenia-1 significantly attenuated the hypoxia-mediated ataxia telangiectasia mutated phosphorylation and prevented its cytoplasm translocation where it functions to activate nuclear factor κB. We further determined that Disrupted in Schizophrenia-1 activated the protein phosphatase 2A, preventing the phosphorylation of ataxia telangiectasia mutated serine-1981, the main regulatory site of ataxia telangiectasia mutated activity. Cellular levels of Disrupted in Schizophrenia-1 protein significantly decreased nuclear factor κB activation profiles and pro-inflammatory gene expression. Taken together, these results demonstrate that hypoxic pre-conditioning decreases the activation of nuclear factor κB through the transcriptional induction of Disrupted in Schizophrenia-1.

  16. Overexpression or knockdown of rat tryptophan hyroxylase-2 has opposing effects on anxiety behavior in an estrogen-dependent manner

    PubMed Central

    Hiroi, Ryoko; McDevitt, Ross A.; Morcos, Paul A.; Clark, Michael S.; Neumaier, John F.

    2010-01-01

    Previous studies showed that chronic estrogen treatment increases tryptophan hydroxylase-2 (TpH2) mRNA in the caudal dorsal raphe nucleus (DRN), and this increase was associated with decreased anxiety. The present study explored the interaction of estrogen and targeted, bidirectional manipulation of TpH2 expression in the caudal DRN by knockdown or viral overexpression, to decrease or increase tryptophan hydroxylase expression respectively, on anxiety behavior. Rats were ovariectomized and replaced with empty or estradiol capsules (OVX, OVX/E, respectively). Animals received microinfusions of either antisense TpH2 or control morpholino oligonucleotides into caudal DRN and were later tested in the open field test. A separate group of animals were microinfused with TpH2-GFP or GFP-only herpes simplex viral vectors into caudal DRN and tested in the open field. The bidirectional impact of manipulations on TpH2 expression was confirmed using a combination of quantitative protein and mRNA measurements; TpH2 expression changes were limited to discrete subregions of DRN that were targeted by the manipulations. Estradiol decreased anxiety in all behavioral measures. In the OVX/E group, TpH2 knockdown significantly decreased time spent in the center of the open field, but not in the OVX group, suggesting that TpH2 knockdown reduced the anxiolytic effects of estrogen. Conversely, TpH2 overexpression in the OVX group mimicked the effects of estrogen, as measured by increased time spent in the center of the open field. These results suggest that estrogen and TpH2 in the caudal DRN have a critical interaction in regulating anxiety-like behavior. PMID:21182901

  17. Decreased Level of Klotho Contributes to Drug Resistance in Lung Cancer Cells: Involving in Klotho-Mediated Cell Autophagy.

    PubMed

    Chen, TianJun; Ren, Hui; Thakur, Asmitanand; Yang, Tian; Li, Yang; Zhang, Shuo; Wang, Ting; Chen, MingWei

    2016-12-01

    Klotho is originally discovered as an anti-aging gene and recently identified as a tumor suppressor in various human cancers. Drug resistance is a major obstacle to affect the treatment of chemotherapy. In the present study, we explore the role of klotho on drug resistance in human lung cancers and investigate the mechanism of klotho on drug resistance in lung cancer cells. First, we detected a panel of six human lung cancer cell lines, including H460, SK-MES-1, cisplatin (DDP)-resistant A549/DDP, its parental subline A549, docetaxel (DTX)-resistant SPC-A-1/DTX, and SPC-A-1 by western blotting analysis. The results showed that klotho level was significantly decreased in chemotherapeutic drug-resistant lung cancer cells. Next, klotho was overexpressed in drug-resistant cancer cell lines and the results showed that overexpression of klotho significantly inhibited cell proliferation of A549/DDP and SPC-A-1/DTX. Conversely, knockdown of the expression of klotho significantly promoted cell growth of lung cancer cells. Furthermore, overexpression of klotho had synergistic effects with cisplatin to inhibit the proliferation of drug-resistant lung cancer cells in a dose- and time-dependent manner. The molecular mechanism was explored by western blotting analysis and the results revealed that the levels of beclin 1 and LC3-II were obviously increased, suggesting cell autophagy enhanced in drug-resistant cancer cells. Importantly, overexpression of klotho would inhibit cell autophagy in A549/DDP cells. All the results demonstrated that the levels of klotho were significantly decreased, which was accompanied by the increased cell autophagy in drug-resistant lung cancer cells. Overexpression of klotho would inhibit cell autophagy in drug-resistant lung cancers, which may probably contribute to reverse drug resistance in lung cancer cells.

  18. Overexpression of Hypo-Phosphorylated IκBβ at Ser313 Protects the Heart against Sepsis

    PubMed Central

    Liu, Ying-Ying; Wang, Li; Luo, Peng-Fei; Xia, Zhao-Fan

    2016-01-01

    IκBβis an inhibitor of nuclear factor kappa B(NF-κB) and participates in the cardiac response to sepsis. However, the role of the hypo-phosphorylated form of IκBβ at Ser313, which can be detected during sepsis, is unknown. Here, we examined the effects of IκBβ with a mutation at Ser313→Ala313 on cardiac damage induced by sepsis. Transgenic (Tg) mice were generated to overexpress IκBβ, in which Ser-313 is replaced with alanine ubiquitously, in order to mimic the hypo-phosphorylated form of IκBβ. Survival analysis showed that Tg mice exhibited decreased inflammatory cytokine levels and decreased rates of mortality in comparison to wild type (WT) mice, after sepsis in a cecal-ligation and puncture model (CLP). Compared to WT septic mice, sepsis in Tg mice resulted in improved cardiac functions, lower levels of troponin I and decreased rates of cardiomyocyte apoptosis, compared to WT mice. The increased formation of autophagicvacuoles detected with electron microscopy demonstrated the enhancement of cardiac autophagy. This phenomenon was further confirmed by the differential expression of genes related to autophagy, such as LC3, Atg5, Beclin-1, and p62. The increased expression of Cathepsin L(Ctsl), a specific marker for mitochondrial stress response, may be associated with the beneficial effects of the hypo-phosphorylated form of IκBβ. Our observations suggest that the hypo-phosphorylated form of IκBβ at Ser313 is beneficial to the heart in sepsis through inhibition of apoptosisand enhancement of autophagy in mutated IκBβ transgenic mice. PMID:27508931

  19. Over-expression of Multi-heme C-type Cytochromes

    SciTech Connect

    Shi, Liang; Lin, Chiann Tso; Markillie, Lye Meng; Squier, Thomas C.; Hooker, Brian S.

    2005-02-01

    ABSTRACT-Because they contain covalently attached hemes, c-type cytochromes, especially those with multi-heme, are difficult to over-express. The gram negative bacterium Shewanella oneidensis MR-1 has been successfully used for over-expression of multi-heme c-type cytochromes...

  20. Red blood cell decreases of microgravity

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.

    1985-01-01

    Postflight decreases in red blood cell mass (RBCM) have regularly been recorded after exposure to microgravity. These 5-25 percent decreases do not relate to the mission duration, workload, caloric intake or to the type of spacecraft used. The decrease is accompanied by normal red cell survivals, increased ferritin levels, normal radioactive iron studies, and increases in mean red blood cell volume. Comparable decreases in red blood cell mass are not found after bed rest, a commonly used simulation of the microgravity state. Inhibited bone marrow erythropoiesis has not been proven to date, although reticulocyte numbers in the peripheral circulation are decreased about 50 percent. To date, the cause of the microgravity induced decreases in RBCM is unknown. Increased splenic trapping of circulating red blood cells seem the most logical way to explain the results obtained.

  1. Daidzin decreases ethanol consumption in rats.

    PubMed

    Heyman, G M; Keung, W M; Vallee, B L

    1996-09-01

    In a previous study, daidzin, a constituent of an ancient Chinese herbal treatment for alcoholism, decreased home-cage ethanol consumption in laboratory Syrian golden hamsters. The present study tested the generality of daidzin's antidipsotropic effects. Rats served as subjects in a two-lever choice procedure. At one lever, responses earned 10% ethanol, flavored with saccharin. At the other lever, responses earned an isocaloric starch solution. Daidzin decreased both ethanol and starch consumption, but the decreases in ethanol intake were larger. Changes in consumption were dose dependent, and differences in ethanol and food consumption increased slightly (but significantly) as dose increased. Daidzin produced a similar pattern of decreases in lever pressing. In baseline, there was an approximately equal distribution of responses between the two levers; at the highest daidzin dose, the relative number of responses at the ethanol lever decreased to 30%. These results replicate and extend earlier findings, and they encourage further research on daidzin's capacity to decrease ethanol consumption.

  2. Rsf-1 is overexpressed in non-small cell lung cancers and regulates cyclinD1 expression and ERK activity

    SciTech Connect

    Li, Qingchang; Dong, Qianze; Wang, Enhua

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Rsf-1 expression is elevated in non-small cell lung cancers. Black-Right-Pointing-Pointer Rsf-1 depletion inhibits proliferation and increased apoptosis in lung cancer cells. Black-Right-Pointing-Pointer Rsf-1 depletion decreases the level of cyclinD1 and phosphor-ERK expression. -- Abstract: Rsf-1 (HBXAP) was recently reported to be overexpressed in various cancers and associated with the malignant behavior of cancer cells. However, the expression of Rsf-1 in primary lung cancer and its biological roles in non-small cell lung cancer (NSCLC) have not been reported. The molecular mechanism of Rsf-1 in cancer aggressiveness remains ambiguous. In the present study, we analyzed the expression pattern of Rsf-1 in NSCLC tissues and found that Rsf-1 was overexpressed at both the mRNA and protein levels. There was a significant association between Rsf-1 overexpression and TNM stage (p = 0.0220) and poor differentiation (p = 0.0013). Furthermore, knockdown of Rsf-1 expression in H1299 and H460 cells with high endogenous Rsf-1 expression resulted in a decrease of colony formation ability and inhibition of cell cycle progression. Rsf-1 knockdown also induced apoptosis in these cell lines. Further analysis showed that Rsf-1 knockdown decreased cyclin D1 expression and phospho-ERK levels. In conclusion, Rsf-1 is overexpressed in NSCLC and contributes to malignant cell growth by cyclin D1 and ERK modulation, which makes Rsf-1 a candidate therapeutic target in lung cancer.

  3. Over-Expression of Meteorin Drives Gliogenesis Following Striatal Injury

    PubMed Central

    Wright, Jordan L.; Ermine, Charlotte M.; Jørgensen, Jesper R.; Parish, Clare L.; Thompson, Lachlan H.

    2016-01-01

    A number of studies have shown that damage to brain structures adjacent to neurogenic regions can result in migration of new neurons from neurogenic zones into the damaged tissue. The number of differentiated neurons that survive is low, however, and this has led to the idea that the introduction of extrinsic signaling factors, particularly neurotrophic proteins, may augment the neurogenic response to a level that would be therapeutically relevant. Here we report on the impact of the relatively newly described neurotrophic factor, Meteorin, when over-expressed in the striatum following excitotoxic injury. Birth-dating studies using bromo-deoxy-uridine (BrdU) showed that Meteorin did not enhance injury-induced striatal neurogenesis but significantly increased the proportion of new cells with astroglial and oligodendroglial features. As a basis for comparison we found under the same conditions, glial derived neurotrophic factor significantly enhanced neurogenesis but did not effect gliogenesis. The results highlight the specificity of action of different neurotrophic factors in modulating the proliferative response to injury. Meteorin may be an interesting candidate in pathological settings involving damage to white matter, for example after stroke or neonatal brain injury. PMID:27458346

  4. [Overexpression of Aspergillus candidus lactase and analysis of enzymatic properties].

    PubMed

    Zhang, Wei; Fan, Yun-liu; Yao, Bin

    2005-04-01

    The lactase gene lacb' from Aspergillus candidus was fused behind alpha-factor signal sequence in the Pichia pastoris expression vector pPIC9, then integrated into the genome of P. pastoris by recombination events. The P. pastoris recombinants for lactase overexpression were screened by enzyme activity analysis and SDS-PAGE. The lactase expressed in P. pastoris was glycosylated protein with an apparent molecular weight of 130 kD, while the deglycosylated lactase treated with Endo H had an apparent molecular weight of about 110 kD. The expression level of secreted lactase protein in recombinant P. pastoris was 6 mg/mL with enzymatic activity of 3600 U/mL in the 5 L fermenter, which was the highest among that of all kinds of recombinant strains reported now. The optimal pH and optimal temperature of the lactase are 5.2 and 60 degrees C. The Vmax, Km, and specific activity of the lactase are 3.3 micromol/min, 1.7 mmol/L and 706.5 +/- 2.6 U/mg, respectively. Compare to the lactase from Aspergillus oryzae ATCC 20423, the expressed lactase from A. candidus have better enzymatic properties including the high thermostability, high specific activity and wide pH range for enzyme reaction.

  5. Overexpression and topology of bacterial oligosaccharyltransferase PglB

    SciTech Connect

    Li, Lei; Woodward, Robert; Ding, Yan; Liu, Xian-wei; Yi, Wen; Bhatt, Veer S.; Chen, Min; Zhang, Lian-wen; Wang, Peng George

    2010-04-16

    Campylobacter jejuni contains a post-translational N-glycosylation system in which a STT3 homologue, PglB, functions as the oligosaccharyltransferase. Herein, we established a method for obtaining relatively large quantities of homogenous PglB proteins. PglB was overexpressed in Escherichia coli C43(DE3) at a level of 1 mg/L cell cultures. The activity of purified PglB was verified using a chemically synthesized sugar donor: N-acetylgalactosamine-diphospho-undecaprenyl (GalNAc-PP-Und) and a synthesized peptide acceptor. The result confirms that PglB is solely responsible for the oligosaccharyltransferase activity and complements the finding that PglB exhibits relaxed sugar substrate specificity. In addition, we performed the topology mapping of PglB using the PhoA/LacZ fusion method. The topological model shows that PglB possesses 11 transmembrane segments and two relatively large periplasmic regions other than the C-terminal domain, which is consistent with the proposal of the common N{sub cyt}-C{sub peri} topology with 11 transmembrane segments for the STT3 family proteins.

  6. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    NASA Technical Reports Server (NTRS)

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  7. MMSET is overexpressed in cancers: Link with tumor aggressiveness

    SciTech Connect

    Kassambara, Alboukadel; Klein, Bernard Moreaux, Jerome

    2009-02-20

    MMSET is expressed ubiquitously in early development and its deletion is associated with the malformation syndrome called Wolf-Hirschhorn syndrome. It is involved in the t(4; 14) (p16; q32) chromosomal translocation, which is the second most common translocation in multiple myeloma (MM) and is associated with the worst prognosis. MMSET expression has been shown to promote cellular adhesion, clonogenic growth and tumorigenicity in multiple myeloma. MMSET expression has been recently shown to increase with ascending tumor proliferation activity in glioblastoma multiforme. These data demonstrate that MMSET could be implicated in tumor emergence and/or progression. Therefore, we compared the expression of MMSET in 40 human tumor types - brain, epithelial, lymphoid - to that of their normal tissue counterparts using publicly available gene expression data, including the Oncomine Cancer Microarray database. We found significant overexpression of MMSET in 15 cancers compared to their normal counterparts. Furthermore MMSET is associated with tumor aggressiveness or prognosis in many types of these aforementioned cancers. Taken together, these data suggest that MMSET potentially acts as a pathogenic agent in many cancers. The identification of the targets of MMSET and their role in cell growth and survival will be key to understand how MMSET is associated with tumor development.

  8. Pre-B-cell leukemia homeobox interacting protein 1 is overexpressed in astrocytoma and promotes tumor cell growth and migration

    PubMed Central

    van Vuurden, Dannis G.; Aronica, Eleonora; Hulleman, Esther; Wedekind, Laurine E.; Biesmans, Dennis; Malekzadeh, Arjan; Bugiani, Marianna; Geerts, Dirk; Noske, David P.; Vandertop, W. Peter; Kaspers, Gertjan J.L.; Cloos, Jacqueline; Würdinger, Thomas; van der Stoop, Petra P.M.

    2014-01-01

    Background Glial brain tumors cause considerable mortality and morbidity in children and adults. Innovative targets for therapy are needed to improve survival and reduce long-term sequelae. The aim of this study was to find a candidate tumor-promoting protein, abundantly expressed in tumor cells but not in normal brain tissues, as a potential target for therapy. Methods In silico proteomics and genomics, immunohistochemistry, and immunofluorescence microscopy validation were performed. RNA interference was used to ascertain the functional role of the overexpressed candidate target protein. Results In silico proteomics and genomics revealed pre-B-cell leukemia homeobox (PBX) interacting protein 1 (PBXIP1) overexpression in adult and childhood high-grade glioma and ependymoma compared with normal brain. PBXIP1 is a PBX-family interacting microtubule-binding protein with a putative role in migration and proliferation of cancer cells. Immunohistochemical studies in glial tumors validated PBXIP1 expression in astrocytoma and ependymoma but not in oligodendroglioma. RNAi-mediated PBXIP1-knockdown in glioblastoma cell lines strongly reduced proliferation and migration and induced morphological changes, indicating that PBXIP1 knockdown decreases glioma cell viability and motility through rearrangements of the actin cytoskeleton. Furthermore, expression of PBXIP1 was observed in radial glia and astrocytic progenitor cells in human fetal tissues, suggesting that PBXIP1 is an astroglial progenitor cell marker during human embryonic development. Conclusion PBXIP1 is a novel protein overexpressed in astrocytoma and ependymoma, involved in tumor cell proliferation and migration, that warrants further exploration as a novel therapeutic target in these tumors. PMID:24470547

  9. Transgenic soybean overexpressing GmSAMT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines.

    PubMed

    Lin, Jingyu; Mazarei, Mitra; Zhao, Nan; Hatcher, Catherine N; Wuddineh, Wegi A; Rudis, Mary; Tschaplinski, Timothy J; Pantalone, Vincent R; Arelli, Prakash R; Hewezi, Tarek; Chen, Feng; Stewart, Charles Neal

    2016-11-01

    Soybean (Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyses the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heterodera glycines Ichinohe. In this study, we produced transgenic soybean overexpressing GmSAMT1 and characterized their response to various SCN races. Transgenic plants conferred a significant reduction in the development of SCN HG type 1.2.5.7 (race 2), HG type 0 (race 3) and HG type 2.5.7 (race 5). Among transgenic lines, GmSAMT1 expression in roots was positively associated with SCN resistance. In some transgenic lines, there was a significant decrease in salicylic acid titer relative to control plants. No significant seed yield differences were observed between transgenics and control soybean plants grown in one greenhouse with 22 °C day/night temperature, whereas transgenic soybean had higher yield than controls grown a warmer greenhouse (27 °C day/23 °C night) temperature. In a 1-year field experiment in Knoxville, TN, there was no significant difference in seed yield between the transgenic and nontransgenic soybean under conditions with negligible SCN infection. We hypothesize that GmSAMT1 expression affects salicylic acid biosynthesis, which, in turn, attenuates SCN development, without negative consequences to soybean yield or other morphological traits. Thus, we conclude that GmSAMT1 overexpression confers broad resistance to multiple SCN races, which would be potentially applicable to commercial production.

  10. Co-ordinate regulation of the cytoskeleton in 3T3 cells overexpressing thymosin-beta4.

    PubMed

    Golla, R; Philp, N; Safer, D; Chintapalli, J; Hoffman, R; Collins, L; Nachmias, V T

    1997-01-01

    In several cell types, short-term increases in the concentration of the G-actin-sequestering peptide thymosin-beta4 (Tbeta4) cause the disassembly of F-actin bundles. To determine the extent of cell adaptability to these reductions in F-actin, we overexpressed Tbeta4 in NIH 3T3 cells. In cell lines with Tbeta4 levels twice those of vector controls, G-actin increased approximately twofold as expected. However, F-actin did not decrease as in short-term experiments but rather also increased approximately twofold so that the G-F ratio remained constant. Surprisingly, the cytoskeletal proteins myosin IIA, alpha-actinin, and tropomyosin also increased nearly twofold. These increases were specific; DNA, total protein, lactic dehydrogenase, profilin, and actin depolymerizing factor levels were unchanged in the overexpressing cells. The Tbeta4 lines spread more fully and adhered to the dish more strongly than vector controls; this altered phenotype correlated with a twofold increase in talin and alpha5-integrin and a nearly threefold increase in vinculin. Focal adhesions, detected by indirect immunofluorescence with antivinculin, were increased in size over the controls. Northern blotting showed that mRNAs for both beta-actin and vinculin were increased twofold in the overexpressing lines. We conclude that 1) NIH 3T3 cells adapt to increased levels of G-actin sequestered by increased Tbeta4 by increasing their total actin so that the F-actin/G-actin ratio remains constant; 2) these cells coordinately increase several cytoskeletal and adhesion plaque proteins; and 3) at least for actin and vinculin, this regulation is at the transcriptional level. We therefore propose that the proteins of this multimember interacting complex making up the actin-based cytoskeleton, are coordinately regulated by factors that control the expression of several proteins. The mechanism may bear similarities to the control of synthesis of another multimember interacting complex, the myofibril of

  11. Steroidogenic acute regulatory protein (StAR) overexpression attenuates HFD-induced hepatic steatosis and insulin resistance.

    PubMed

    Qiu, Yanyan; Sui, Xianxian; Zhan, Yongkun; Xu, Chen; Li, Xiaobo; Ning, Yanxia; Zhi, Xiuling; Yin, Lianhua

    2017-04-01

    Non-alcoholic fatty liver disease (NAFLD) covers a wide spectrum of liver pathology. Intracellular lipid accumulation is the first step in the development and progression of NAFLD. Steroidogenic acute regulatory protein (StAR) plays an important role in the synthesis of bile acid and intracellular lipid homeostasis and cholesterol metabolism. We hypothesize that StAR is involved in non-alcoholic fatty liver disease (NAFLD) pathogenesis. The hypothesis was identified using free fatty acid (FFA)-overloaded NAFLD in vitro model and high-fat diet (HFD)-induced NAFLD mouse model transfected by recombinant adenovirus encoding StAR (StAR). StAR expression was also examined in pathology samples of patients with fatty liver by immunohistochemical staining. We found that the expression level of StAR was reduced in the livers obtained from fatty liver patients and NAFLD mice. Additionally, StAR overexpression decreased the levels of hepatic lipids and maintained the hepatic glucose homeostasis due to the activation of farnesoid x receptor (FXR). StAR overexpression attenuated the impairment of insulin signaling in fatty liver. This protective role of StAR was owing to a reduction of intracellular diacylglycerol levels and the phosphorylation of PKCε. Furthermore, FXR inactivation reversed the observed beneficial effects of StAR. The present study revealed that StAR overexpression can reduce hepatic lipid accumulation, regulate glucose metabolism and attenuate insulin resistance through a mechanism involving the activation of FXR. Our study suggests that StAR may be a potential therapeutic target for NAFLD.

  12. Transgenic soybean overexpressing GmSAMT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines

    DOE PAGES

    Lin, Jingyu; Mazarei, Mitra; Zhao, Nan; ...

    2016-05-23

    Soybean (Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyses the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heterodera glycines Ichinohe. In this study, we produced transgenic soybean overexpressing GmSAMT1 and characterized their response to various SCN races. Transgenic plants conferred a significant reduction in the development of SCN HG type 1.2.5.7 (race 2), HG type 0 (race 3) and HG type 2.5.7 (race 5). Among transgenic lines, GmSAMT1 expression in roots was positively associated with SCN resistance.more » In some transgenic lines, there was a significant decrease in salicylic acid titer relative to control plants. No significant seed yield differences were observed between transgenics and control soybean plants grown in one greenhouse with 22 °C day/night temperature, whereas transgenic soybean had higher yield than controls grown a warmer greenhouse (27 °C day/23 °C night) temperature. In a 1-year field experiment in Knoxville, TN, there was no significant difference in seed yield between the transgenic and nontransgenic soybean under conditions with negligible SCN infection. We hypothesize that GmSAMT1 expression affects salicylic acid biosynthesis, which, in turn, attenuates SCN development, without negative consequences to soybean yield or other morphological traits. Furthermore, we conclude that GmSAMT1 overexpression confers broad resistance to multiple SCN races, which would be potentially applicable to commercial production.« less

  13. Overexpressed transient receptor potential vanilloid 3 ion channels in skin keratinocytes modulate pain sensitivity via prostaglandin E2.

    PubMed

    Huang, Susan M; Lee, Hyosang; Chung, Man-Kyo; Park, Una; Yu, Yin Yin; Bradshaw, Heather B; Coulombe, Pierre A; Walker, J Michael; Caterina, Michael J

    2008-12-17

    The ability to sense changes in the environment is essential for survival because it permits responses such as withdrawal from noxious stimuli and regulation of body temperature. Keratinocytes, which occupy much of the skin epidermis, are situated at the interface between the external environment and the body's internal milieu, and have long been appreciated for their barrier function against external insults. The recent discovery of temperature-sensitive transient receptor potential vanilloid (TRPV) ion channels in keratinocytes has raised the possibility that these cells also actively participate in acute temperature and pain sensation. To address this notion, we generated and characterized transgenic mice that overexpress TRPV3 in epidermal keratinocytes under the control of the keratin 14 promoter. Compared with wild-type controls, keratinocytes overexpressing TRPV3 exhibited larger currents as well as augmented prostaglandin E(2) (PGE(2)) release in response to two TRPV3 agonists, 2-aminoethoxydiphenyl borate (2APB) and heat. Thermal selection behavior and heat-evoked withdrawal behavior of naive mice overexpressing TRPV3 were not consistently altered. Upon selective pharmacological inhibition of TRPV1 with JNJ-17203212 [corrected], however, the keratinocyte-specific TRPV3 transgenic mice showed increased escape responses to noxious heat relative to their wild-type littermates. Coadministration of the cyclooxygenase inhibitor, ibuprofen, with the TRPV1 antagonist decreased inflammatory thermal hyperalgesia in transgenic but not wild-type animals. Our results reveal a previously undescribed mechanism for keratinocyte participation in thermal pain transduction through keratinocyte TRPV3 ion channels and the intercellular messenger PGE(2).

  14. Multidrug-resistant hela cells overexpressing MRP1 exhibit sensitivity to cell killing by hyperthermia: Interactions with etoposide

    SciTech Connect

    Souslova, Tatiana; Averill-Bates, Diana A. . E-mail: averill.diana@uqam.ca

    2004-12-01

    Purpose: Multidrug resistance (MDR) remains one of the primary obstacles in cancer chemotherapy and often involves overexpression of drug efflux transporters such as P-glycoprotein and multidrug resistance protein 1 (MRP1). Regional hyperthermia is undergoing clinical investigation in combination with chemotherapy or radiotherapy. This study evaluates whether hyperthermia can reverse MDR mediated by MRP1 in human cervical adenocarcinoma (HeLa) cells. Methods and materials: Cytotoxicity of hyperthermia and/or etoposide was evaluated using sulforhodamine-B in HeLa cells overexpressing MRP1 and their drug-sensitive counterparts. Glutathione, glutathione peroxidase (GPx), and glutathione S-transferase (GST) were quantified by spectrophotometry. GST isoenzymes were quantified by immunodetection. Caspase activation was evaluated by fluorometry and chromatin condensation by fluorescence microscopy using Hoechst 33258. Necrosis was determined using propidium iodide. Results: The major finding is that HeLa and HeLaMRP cells are both sensitive to cytotoxicity of hyperthermia (41-45 deg C). Hyperthermia induced activation of caspase 3 and chromatin condensation. Although total levels of cell killing were similar, there was a switch from apoptotic to necrotic cell death in MDR cells. This could be explained by decreased glutathione and GPx in MDR cells. MDR cells also contained very low levels of GST and were resistant to etoposide-induced apoptosis. Hyperthermia caused a modest increase in etoposide-induced apoptosis in HeLa and HeLaMRP cells, which required appropriate heat-drug scheduling. Conclusions: Hyperthermia could be useful in eliminating MDR cells that overexpress MRP1.

  15. Transient Hepatic Overexpression of Insulin-Like Growth Factor 2 Induces Free Cholesterol and Lipid Droplet Formation

    PubMed Central

    Kessler, Sonja M.; Laggai, Stephan; Van Wonterghem, Elien; Gemperlein, Katja; Müller, Rolf; Haybaeck, Johannes; Vandenbroucke, Roosmarijn E.; Ogris, Manfred; Libert, Claude; Kiemer, Alexandra K.

    2016-01-01

    Although insulin-like growth factor 2 (IGF2) has been reported to be overexpressed in steatosis and steatohepatitis, a causal role of IGF2 in steatosis development remains elusive. Aim of our study was to decipher the role of IGF2 in steatosis development. Hydrodynamic gene delivery of an Igf2 plasmid used for transient Igf2 overexpression employing codon-optimized plasmid DNA resulted in a strong induction of hepatic Igf2 expression. The exogenously delivered Igf2 had no influence on endogenous Igf2 expression. The downstream kinase AKT was activated in Igf2 animals. Decreased ALT levels mirrored the cytoprotective effect of IGF2. Serum cholesterol was increased and sulfo-phospho-vanillin colorimetric assay confirmed lipid accumulation in Igf2-livers while no signs of inflammation were observed. Interestingly, hepatic cholesterol and phospholipids, determined by thin layer chromatography, and free cholesterol by filipin staining, were specifically increased. Lipid droplet (LD) size was not changed, but their number was significantly elevated. Furthermore, free cholesterol, which can be stored in LDs and has been reported to be critical for steatosis progression, was elevated in Igf2 overexpressing mice. Accordingly, Hmgcr/HmgCoAR was upregulated. To have a closer look at de novo lipid synthesis we investigated expression of the lipogenic transcription factor SREBF1 and its target genes. SREBF1 was induced and also SREBF1 target genes were slightly upregulated. Interestingly, the expression of Cpt1a, which is responsible for mitochondrial fatty acid oxidation, was induced. Hepatic IGF2 expression induces a fatty liver, characterized by increased cholesterol and phospholipids leading to accumulation of LDs. We therefore suggest a causal role for IGF2 in hepatic lipid accumulation. PMID:27199763

  16. Inhibition of G{sub 1}-phase arrest induced by ionizing radiation in hematopoietic cells by overexpression of genes involved in the G{sub 1}/S-phase transition

    SciTech Connect

    Epperly, M.; Berry, L.; Halloran, A.; Greenberger, J.S. |

    1995-09-01

    D-type cyclins and cyclin-dependent kinase (cdk-4) are likely involved in regulating passage of cells through the G{sub 1} phase of the cell cycle. A decrease in the proportion of cells in G{sub 1}, a relatively radiation-sensitive phase of the cell cycle, should result in increased resistance to ionizing radiation; however, the effect of such overexpression on X-ray-induced G{sub 1}-phase arrest is not known. Radiation survival curves were obtained at a dose rate of either 8 cGy/min or 1 Gy/min for subclones of the IL-3-dependent hematopoietic progenitor cell line 32D cl 3 expressing transgenes for either cyclin-D1, D2 or D3 or cdk-4. We compared the results to those with overexpression of the transgene for Bcl-2, whose expression enhances radiation survival and delays apoptosis. Cells overexpressing transgenes for each D-type cyclin or Bcl-2 had an increased number of cells in S phase compared to parent line 32D cl 3; however, overexpression of cdk-4 had no effect on cell cycle distribution. Cell death resulting from withdrawal of IL-3 was not affected by overexpression of D2, cdk-4 or Bcl-2. Flow cytometry 24 h after 5 Gy irradiation demonstrated that overexpression of each G{sub 1}-phase regulatory transgene decreased the proportion of cells at the G{sub 1}/S-phase border. Western analysis revealed induction of cyclin-D protein levels by irradiation, but no change in the D{sub O}, but a significant increase in the {rvec n} for cyclin-D or cdk-4 transgene-overexpressing clones at 1 Gy/min (P<0.017). At a lower dose rate of 8 cGy/min, the {rvec n} for cyclin or cdk-4-overexpressing clones was also increased (P<0.7). Thus overexpression of cyclin-D or cdk-4 in hematopoietic cells induces detectable effects on hematopoietic cell radiation biology including a broadening of the shoulder on the radiation survival curve and a decrease in radiation-induced G{sub 1}/S-phase arrest. 31 refs., 4 figs., 4 tabs.

  17. Overexpression of KiSS-1 reduces colorectal cancer cell invasion by downregulating MMP-9 via blocking PI3K/Akt/NF-κB signal pathway.

    PubMed

    Chen, Shaoqin; Chen, Wei; Zhang, Xiang; Lin, Suyong; Chen, Zhihua

    2016-04-01

    Metastasis of colorectal cancer (CRC) depends critically on MMP-9. KiSS-1 is a human malignant melanoma metastasis-suppressor gene. Thus, the interaction between MMP-9 and KiSS-1 has drawn considerable attention in recent years. In the present study, it was hypothesized that KiSS-1 gene could repress the metastatic potential of colorectal cancer cells by inhibiting the expression of MMP-9. Stable transfection of KiSS-1 specific siRNA and KiSS-1 expression vector in human CRC cell line HCT-116 was achieved by lentivirus infection. Moreover, the cell proliferation, invasiveness, and apoptosis were evaluated by CCK-8 method, transwell experiment, and fluorescence activated cell sorter, respectively. We also investigated the expression of MMP-9, PI3K, Akt, pAKt, and NF-кB subunit p65 using western blotting. KiSS-1 overexpression significantly decreased the cell proliferation and invasiveness of HCT-119 cells, while apoptosis was enhanced. The result of western blotting showed that synthesis of MMP-9, PI3K, p65, and phosphorylation of Akt were significantly blocked by overexpression of KiSS-1. Concatenated treatment of KiSS-1 overexpression vector with PI3K and Akt agonists attenuated the effect of KiSS-1 on the biological activity of CRC cells and also released the expression of MMP-9, PI3K, p65, and phosphorylation of Akt from the influence of overexpression of KiSS-1. Overexpression of KiSS-1 suppressed the invasiveness of CRC cells, and the gene exerted its function by reducing the expression of MMP-9 via blocking of tge PI3K/Akt/NF-κB pathway.

  18. Overexpression of actin-depolymerizing factor blocks oxidized low-density lipoprotein-induced mouse brain microvascular endothelial cell barrier dysfunction.

    PubMed

    Wang, Jun; Sun, Lu; Si, Yan-Fang; Li, Bao-Min

    2012-12-01

    The aim of present work was to elucidate the role of actin-depolymerizing factor (ADF), an important regulator of actin cytoskeleton, in the oxidized low-density lipoprotein (ox-LDL)-induced blood-brain barrier (BBB) disruption. The primary mouse brain microvascular endothelial cells (MBMECs) were exposed to ox-LDL. Treatment with LDL served as control. It was found that ADF mRNA level and protein expression were decreased when exposed to ox-LDL in MBMECs. Then, we investigated the influence of ADF overexpression on ox-LDL-treated MBMECs. Structurally, overexpression of ADF inhibited ox-LDL-induced F-actin formation. Functionally, overexpression of ADF attenuated ox-LDL-induced disruption of endothelial barrier marked by restoration of transendothelial electrical resistance, permeability of Evans Blue and expression of tight junction-associated proteins including ZO-1 and occludin, and blocked ox-LDL-induced oxidative stress marked by inhibition of reactive oxygen species (ROS) formation and activity of NADPH oxidase and Nox2 expression. However, overexpression of ADF in control cells had no significant effect on endothelial permeability and ROS formation. In conclusion, overexpression of ADF blocks ox-LDL-induced disruption of endothelial barrier. In addition, siRNA-mediated downregulation of ADF expression aggravated ox-LDL-induced disruption of endothelial barrier and ROS formation. These findings identify ADF as a key signaling molecule in the regulation of BBB integrity and suggest that ADF might be used as a target to modulate diseases accompanied by ox-LDL-induced BBB compromise.

  19. Overexpression of Galgt2 in skeletal muscle prevents injury resulting from eccentric contractions in both mdx and wild-type mice.

    PubMed

    Martin, Paul T; Xu, Rui; Rodino-Klapac, Louise R; Oglesbay, Elaine; Camboni, Marybeth; Montgomery, Chrystal L; Shontz, Kim; Chicoine, Louis G; Clark, K Reed; Sahenk, Zarife; Mendell, Jerry R; Janssen, Paul M L

    2009-03-01

    The cytotoxic T cell (CT) GalNAc transferase, or Galgt2, is a UDP-GalNAc:beta1,4-N-acetylgalactosaminyltransferase that is localized to the neuromuscular synapse in adult skeletal muscle, where it creates the synaptic CT carbohydrate antigen {GalNAcbeta1,4[NeuAc(orGc)alpha2, 3]Galbeta1,4GlcNAcbeta-}. Overexpression of Galgt2 in the skeletal muscles of transgenic mice inhibits the development of muscular dystrophy in mdx mice, a model for Duchenne muscular dystrophy. Here, we provide physiological evidence as to how Galgt2 may inhibit the development of muscle pathology in mdx animals. Both Galgt2 transgenic wild-type and mdx skeletal muscles showed a marked improvement in normalized isometric force during repetitive eccentric contractions relative to nontransgenic littermates, even using a paradigm where nontransgenic muscles had force reductions of 95% or more. Muscles from Galgt2 transgenic mice, however, showed a significant decrement in normalized specific force and in hindlimb and forelimb grip strength at some ages. Overexpression of Galgt2 in muscles of young adult mdx mice, where Galgt2 has no effect on muscle size, also caused a significant decrease in force drop during eccentric contractions and increased normalized specific force. A comparison of Galgt2 and microdystrophin overexpression using a therapeutically relevant intravascular gene delivery protocol showed Galgt2 was as effective as microdystrophin at preventing loss of force during eccentric contractions. These experiments provide a mechanism to explain why Galgt2 overexpression inhibits muscular dystrophy in mdx muscles. That overexpression also prevents loss of force in nondystrophic muscles suggests that Galgt2 is a therapeutic target with broad potential applications.

  20. Overexpression of SDF-1 activates the NF-κB pathway to induce epithelial to mesenchymal transition and cancer stem cell-like phenotypes of breast cancer cells.

    PubMed

    Kong, Lingxin; Guo, Sufen; Liu, Chunfeng; Zhao, Yiling; Feng, Chong; Liu, Yunshuang; Wang, Tao; Li, Caijuan

    2016-03-01

    The formation of EMT and EMT-induced CSC-like phenotype is crucial for the metastasis of tumor cells. The stromal cell-derived factor-1 (SDF-1) is upregulated in various human carcinomas, which is closely associated with proliferation, migration, invasion and prognosis of malignancies. However, limited attention has been directed towards the effect of SDF-1 on epithelial to mesenchymal transition (EMT) or cancer stem cell (CSC)-like phenotype formation in breast cancer cells and the related mechanism. In the present study, we screened MCF-7 cells with low SDF-1 expression level for the purpose of evaluating whether SDF-1 is involved in EMT and CSC-like phenotype formation in MCF-7 cells. The pEGFP-N1-SDF-1 plasmid was transfected into MCF-7 cells, and the stably overexpressed SDF-1 in MCF-7 cells was confirmed by real-time PCR and western blot analysis. Colony formation assay, MTT, wound healing assay and Transwell invasion assay demonstrated that overexpression of SDF-1 significantly boosted the proliferation, migration and invasion of MCF-7 cells compared with parental (P<0.05). Flow cytometry analysis revealed a notable increase of CD44+/CD24- subpopulation in SDF-1 overexpressing MCF-7 cells (P<0.001), accompanied by the apparently elevated ALDH activity and the upregulation of the stem cell markers OCT-4, Nanog, and SOX2 compared with parental (P<0.01). Besides, western blot analysis and immunofluorescence assay observed the significant decreased expression of E-cadherin and enhanced expression of slug, fibronectin and vimentin in SDF-1 overexpressed MCF-7 cells in comparison with parental (P<0.01). Further study found that overexpression of SDF-1 induced the activation of NF-κB pathway in MCF-7 cells. Conversely, suppressing or silencing p65 expression by antagonist or RNA interference could remarkably increase the expression of E-cadherin in SDF-1 overexpressed MCF-7 cells (P<0.001). Overall, the above results indicated that overexpression of SDF-1 enhanced

  1. Overexpression of SKI oncoprotein leads to p53 degradation through regulation of MDM2 protein sumoylation.

    PubMed

    Ding, Boxiao; Sun, Yin; Huang, Jiaoti

    2012-04-27

    Protooncogene Ski was identified based on its ability to transform avian fibroblasts in vitro. In support of its oncogenic activity, SKI was found to be overexpressed in a variety of human cancers, although the exact molecular mechanism(s) responsible for its oncogenic activity is not fully understood. We found that SKI can negatively regulate p53 by decreasing its level through up-regulation of MDM2 activity, which is mediated by the ability of SKI to enhance sumoylation of MDM2. This stimulation of MDM2 sumoylation is accomplished through a direct interaction of SKI with SUMO-conjugating enzyme E2, Ubc9, resulting in enhanced thioester bond formation and mono-sumoylation of Ubc9. A mutant SKI defective in transformation fails to increase p53 ubiquitination and is unable to increase MDM2 levels and to increase mono-sumoylation of Ubc9, suggesting that the ability of SKI to enhance Ubc9 activity is essential for its transforming function. These results established a detailed molecular mechanism that underlies the ability of SKI to cause cellular transformation while unraveling a novel connection between sumoylation and tumorigenesis, providing potential new therapeutic targets for cancer.

  2. An association between overexpression of DNA methyltransferase 3B4 and clear cell renal cell carcinoma.

    PubMed

    Liu, You; Sun, Liantao; Fong, Peter; Yang, Jie; Zhang, Zhuxia; Yin, Shuihui; Jiang, Shuyuan; Liu, Xiaolei; Ju, Hongge; Huang, Lihua; Bai, Jing; Gong, Kerui; Yan, Shaochun; Zhang, Chunyang; Shao, Guo

    2017-02-01

    It is well known that abnormal DNA methylations occur frequently in kidney cancer. However, it remains unclear exactly which types of DNA methyltransferases (DNMT) contribute to the pathologies of kidney cancers. In order to determine the functions of DNA methyltransferase in kidney tumorigenesis on the molecular level, we examined the mRNA expression levels of DNMT1, DNMT3A, DNMT3B, and DNMT3B variants in renal cell carcinoma tissue. Both mRNA and protein levels of DNMT3B4, a splice variant of DNMT3B, were increased in renal cell carcinoma tissue compared with adjacent control tissues. Additionally, Alu elements and long interspersed nuclear elements (LINE-1) were hypomethylated in renal cell carcinoma tissue. Meanwhile, methylation of the promoter for RASSF1A, a tumor suppressor gene, was moderately increased in renal cell carcinoma tissue, while RASSF1A expression was decreased. Thus, our data suggest that the overexpression of DNMT3B4 may play an important role in human kidney tumorigenesis through chromosomal instability and methylation of RASSF1A.

  3. Overexpression of Thioredoxin in Transgenic Mice Attenuates Focal Ischemic Brain Damage

    NASA Astrophysics Data System (ADS)

    Takagi, Yasushi; Mitsui, Akira; Nishiyama, Akira; Nozaki, Kazuhiko; Sono, Hiroshi; Gon, Yasuhiro; Hashimoto, Nobuo; Yodoi, Junji

    1999-03-01

    Thioredoxin (TRX) plays important biological roles both in intra- and extracellular compartments, including in regulation of various intracellular molecules via thiol redox control. We produced TRX overexpressing mice and confirmed that there were no anatomical and physiological differences between wild-type (WT) mice and TRX transgenic (Tg) mice. In the present study we subjected mice to focal brain ischemia to shed light on the role of TRX in brain ischemic injury. At 24 hr after middle cerebral artery occlusion, infarct areas and volume were significantly smaller in Tg mice than in WT mice. Moreover neurological deficit was ameliorated in Tg mice compared with WT mice. Protein carbonyl content, a marker of cellular protein oxidation, in Tg mice showed less increase than did that of WT mice after the ischemic insult. Furthermore, c-fos expression in Tg mice was stronger than in WT mice 1 hr after ischemia. Our results suggest that transgene expression of TRX decreased ischemic neuronal injury and that TRX and the redox state modified by TRX play a crucial role in brain damage during stroke.

  4. Doxorubicin delivery enhanced by electroporation to gastrointestinal adenocarcinoma cells with P-gp overexpression.

    PubMed

    Kulbacka, Julita; Daczewska, Małgorzata; Dubińska-Magiera, Magda; Choromańska, Anna; Rembiałkowska, Nina; Surowiak, Paweł; Kulbacki, Marek; Kotulska, Małgorzata; Saczko, Jolanta

    2014-12-01

    Electroporation (EP) can effectively support the penetration of macromolecules from the extracellular space into cells. Electropores induced by the influence of electromagnetic field generate additional paths of transport for macromolecules. The aim of this study was evaluation of the electroporation effect on doxorubicin transport efficiency to human colon (LoVo and LoVo/DX) and gastric (EPG85-257/P and EPG85-257/RDB) adenocarcinoma cells with overexpression of P-glycoprotein and murine macrophage cell line (P388/D1). In our EP experiments cells were placed into a cuvette with aluminum electrodes and pulsed with five square electric pulses of 1300 V/cm and duration of 50 μs each. Cells were also treated with low doxorubicin concentration ([DOX]=1.7 μM). The ultrastructure (TEM) and changes of P-glycoprotein expression of tumor cells subjected to electric field were monitored. The mitochondrial cell function and trypan blue staining were evaluated after 24h. Our results indicate the most pronounced effect of EP with DOX and disturbed ultrastructure in resistant gastric and colon cells with decrease of P-gp expression. Electroporation may be an attractive delivery method of cytostatic drugs in chemotherapy, enabling reduction of drug dose, exposure time and side effects.

  5. Overexpression of flotillin-1 is involved in proliferation and recurrence of bladder transitional cell carcinoma.

    PubMed

    Guan, Yawei; Song, Haiyan; Zhang, Guohui; Ai, Xing

    2014-08-01

    Flotillin-1 (FLOT1) is known to have a role in tumorigenesis; however, the effect of FLOT1 on proliferation and recurrence of human transitional cell carcinoma (TCC) is unclear. Samples from 156 TCC patients and 142 patients undergoing open bladder surgery for indications other than TCC were used in the present study. FLOT1 protein expression was determined by immunohistochemistry and western blot analysis, and mRNA expression was detected by RT-PCR and real-time PCR. A FLOT1-expressing pcDEF3 vector was stably transfected into 4 TCC cell lines and FLOT1 expression was decreased by RNAi. Proliferative analysis of TCC cells was detected by the WST-1 assay and a xenograft model using BALB/C nude mice. The association between FLOT1 expression and TCC recurrence was also analyzed by adhesion, migration and invasion assays. FLOT1 expression in TCC was significantly overexpressed compared to normal urothelial tissue, and the level of FLOT1 expression was significantly correlated with tumor size, pathologic grade, clinical stage and recurrence. In addition, FLOT1 significantly increased the proliferative ability of TCC cells in vitro and in vivo. TCC cells with a high level of FLOT1 expression exhibited a higher level of adhesion, migration and invasion. FLOT1 expression was shown to be upregulated in human TCC. These findings suggest that FLOT1 plays an important role in the proliferation and recurrence of TCC and that silencing FLOT1 expression might be a novel therapeutic strategy.

  6. Overexpression of caveolin-1 attenuates brain edema by inhibiting tight junction degradation

    PubMed Central

    Choi, Kang-Ho; Lee, Eun-Bin; Lee, Jung-Kil; Kim, Joon-Tae; Kim, Ja-Hae; Lee, Min-Cheol; Lee, Hong-Joon; Cho, Ki-Hyun

    2016-01-01

    Cerebral edema from the disruption of the blood-brain barrier (BBB) after cerebral ischemia is a major cause of morbidity and mortality as well as a common event in patients with stroke. Caveolins (Cavs) are thought to regulate BBB functions. Here, we report for the first time that Cav-1 overexpression (OE) decreased brain edema from BBB disruption following ischemic insult. Edema volumes and Cav-1 expression levels were measured following photothrombosis and middle cerebral artery occlusion (MCAO). Endothelial cells that were transduced with a Cav-1 lentiviral expression vector were transplanted into rats. BBB permeability was quantified with Evans blue extravasation. Edema volume was determined from measures of the extravasation area, brain water content, and average fluorescence intensity after Cy5.5 injections. Tight junction (TJ) protein expression was measured with immunoblotting. Cav-1 expression levels and vasogenic brain edema correlated strongly after ischemic insult. Cav-1 expression and BBB disruption peaked 3 d after the MCAO. In addition, intravenous administration of endothelial cells expressing Cav-1 effectively increased the Cav-1 levels 3 d after the MCAO ischemic insult. Importantly, Cav-1 OE ameliorated the vasogenic edema by inhibiting the degradation of TJ protein expression in the acute phase of ischemic stroke. These results suggested that Cav-1 OE protected the integrity of the BBB mainly by preventing the degradation of TJ proteins in rats. These findings need to be confirmed in a clinical setting in human subjects. PMID:27708218

  7. Artesunate tolerance in transgenic Plasmodium falciparum parasites overexpressing a tryptophan-rich protein.

    PubMed

    Deplaine, Guillaume; Lavazec, Catherine; Bischoff, Emmanuel; Natalang, Onguma; Perrot, Sylvie; Guillotte-Blisnick, Micheline; Coppée, Jean-Yves; Pradines, Bruno; Mercereau-Puijalon, Odile; David, Peter H

    2011-06-01

    Due to their rapid, potent action on young and mature intraerythrocytic stages, artemisinin derivatives are central to drug combination therapies for Plasmodium falciparum malaria. However, the evidence for emerging parasite resistance/tolerance to artemisinins in southeast Asia is of great concern. A better understanding of artemisinin-related drug activity and resistance mechanisms is urgently needed. A recent transcriptome study of parasites exposed to artesunate led us to identify a series of genes with modified levels of expression in the presence of the drug. The gene presenting the largest mRNA level increase, Pf10_0026 (PArt), encoding a hypothetical protein of unknown function, was chosen for further study. Immunodetection with PArt-specific sera showed that artesunate induced a dose-dependent increase of the protein level. Bioinformatic analysis showed that PArt belongs to a Plasmodium-specific gene family characterized by the presence of a tryptophan-rich domain with a novel hidden Markov model (HMM) profile. Gene disruption could not be achieved, suggesting an essential function. Transgenic parasites overexpressing PArt protein were generated and exhibited tolerance to a spike exposure to high doses of artesunate, with increased survival and reduced growth retardation compared to that of wild-type-treated controls. These data indicate the involvement of PArt in parasite defense mechanisms against artesunate. This is the first report of genetically manipulated parasites displaying a stable and reproducible decreased susceptibility to artesunate, providing new possibilities to investigate the parasite response to artemisinins.

  8. Cul4A overexpression associated with Gli1 expression in malignant pleural mesothelioma

    SciTech Connect

    Yang, Yi -Lin; Ni, Jian; Hsu, Ping -Chih; Mao, Jian -Hua; Hsieh, David; Xu, Angela; Chan, Geraldine; Au, Alfred; Xu, Zhidong; Jablons, David M.; You, Liang

    2015-07-27

    Malignant pleural mesothelioma (mesothelioma) is a highly aggressive cancer without an effective treatment. Cul4A, a scaffold protein that recruits substrates for degradation, is amplified in several human cancers, including mesothelioma. We have recently shown that Cul4A plays an oncogenic role in vitro and in a mouse model. In this study, we analysed clinical mesothelioma tumours and found moderate to strong expression of Cul4A in 70.9% (51/72) of these tumours, as shown by immunohistochemistry. In 72.2% mesothelioma tumours with increased Cul4A copy number identified by fluorescence in situ hybridization analysis, Cul4A protein expression was moderate to strong. Similarly, Cul4A was overexpressed and Cul4A copy number was increased in human mesothelioma cell lines. Because Gli1 is highly expressed in human mesothelioma cells, we compared Cul4A and Gli1 expression in mesothelioma tumours and found their expression associated (P < 0.05, chi-square). In mesothelioma cell lines, inhibiting Cul4A by siRNA decreased Gli1 expression, suggesting that Gli1 expression is, at least in part, regulated by Cul4A in mesothelioma cells. Our results suggest a linkage between Cul4A and Gli1 expression in human mesothelioma.

  9. Lysosomal acid lipase over-expression disrupts lamellar body genesis and alveolar structure in the lung.

    PubMed

    Li, Yuan; Qin, Yulin; Li, Huimin; Wu, Renliang; Yan, Cong; Du, Hong

    2007-12-01

    The functional role of neutral lipids in the lung is poorly understood. Lysosomal acid lipase (LAL) is a critical enzyme in hydrolysis of cholesteryl esters and triglycerides to generate free fatty acids and cholesterol in lysosomes. Human LAL was over-expressed in a doxycycline-controlled system in mouse respiratory epithelial cells to accelerate intracellular neutral lipid degradation and perturb the surfactant homeostasis in the lung. In this animal system, neutral lipid concentrations of pulmonary surfactant were reduced in bronchoalveolar lavage fluid (BALF) in association with decrease of surfactant protein C (SP-C) gene expression. The size and the number of lamellar bodies in alveolar type II epithelial cells (AT II cells) were significantly reduced accordingly. The number of macrophages required for surfactant recycling in BALF was also significantly reduced. As a result of these combinatory effects, emphysema of the alveolar structure was observed. Taken together, neutral lipid homeostasis is essential for maintenance of lamellar body genesis and the alveolar structure in the lung.

  10. Nobiletin enhances the efficacy of chemotherapeutic agents in ABCB1 overexpression cancer cells

    PubMed Central

    Ma, Wenzhe; Feng, Senling; Yao, Xiaojun; Yuan, Zhongwen; Liu, Liang; Xie, Ying

    2015-01-01

    Multidrug resistance (MDR) is the major obstacle to the successful chemotherapy treatment of many cancers. Here we found that nobiletin, a citrus methoxyflavone, significantly sensitized ABCB1 overexpressing cells A2780/T and A549/T to chemotherapeutic agents such as paclitaxel (a 433-fold reversal of MDR to PTX at 9 μM), doxorubicin (DOX), docetaxel and dounorubicin. Nobiletin profoundly inhibited ABCB1 transporter activity since it significantly increased the intracellular accumulation of DOX and Flutax-2 in A2780/T cells and decreased the efflux of ABCB1 substrates in Caco2 cells without altering the mRNA and protein expression of ABCB1. Moreover, nobiletin stimulated ATPase activity and inhibited verapamil-stimulated ATPase activity in a concentration-dependen