Science.gov

Sample records for metallurgy

  1. Plutonium Metallurgy

    SciTech Connect

    Freibert, Franz J.

    2012-08-09

    Due to its nuclear properties, Pu will remain a material of global interest well into the future. Processing, Structure, Properties and Performance remains a good framework for discussion of Pu materials science Self-irradiation and aging effects continue to be central in discussions of Pu metallurgy Pu in its elemental form is extremely unstable, but alloying helps to stabilize Pu; but, questions remain as to how and why this stabilization occurs. Which is true Pu-Ga binary phase diagram: US or Russian? Metallurgical issues such as solute coring, phase instability, crystallographic texture, etc. result in challenges to casting, processing, and properties modeling and experiments. For Ga alloyed FCC stabilized Pu, temperature and pressure remain as variables impacting phase stability.

  2. Metallurgy Beyond Iron

    NASA Astrophysics Data System (ADS)

    Gallino, Isabella; Busch, Ralf

    2009-08-01

    Metallurgy is one of the oldest sciences. Its history can be traced back to 6000 BCE with the discovery of Gold, and each new discovery - Copper, Silver, Lead, Tin, Iron and Mercury - marked the beginning of a new era of civilization. Currently there are 86 known metals, but until the end of the 17th century, only 12 of these were known. Steel (Fe-C alloy) was discovered in the 11th century BCE; however, it took until 1709 CE before we mastered the smelting of pig-iron by using coke instead of charcoal and started the industrial revolution. The metallurgy of nowadays is mainly about discovering better materials with superior properties to fulfil the increasing demand of the global market. Promising are the Glassy Metals or Bulk Metallic Glasses (BMGs) - discovered at first in the late 50s at the California Institute of Technology - which are several times stronger than the best industrial steels and 10-times springier. The unusual structure that lacks crystalline grains makes BMGs so promising. They have a liquid-like structure that means they melt at lower temperatures, can be moulded nearly as easily as plastics, and can be shaped into features just 10 nm across. The best BMG formers are based on Zr, Pd, Pt, Ca, Au and, recently discovered, also Fe. They have typically three to five components with large atomic size mismatch and a composition close to a deep eutectic. Packing in such liquids is very dense, with a low content of free volume, resulting in viscosities that are several orders of magnitude higher than in pure metal melts.

  3. Metallography of powder metallurgy materials

    SciTech Connect

    Lawley, Alan; Murphy, Thomas F

    2003-12-15

    The primary distinction between the microstructure of an ingot metallurgy/wrought material and one fabricated by the powder metallurgy route of pressing followed by sintering is the presence of porosity in the latter. In its various morphologies, porosity affects the mechanical, physical, chemical, electrical and thermal properties of the material. Thus, it is important to be able to characterize quantitatively the microstructure of powder metallurgy parts and components. Metallographic procedures necessary for the reliable characterization of microstructures in powder metallurgy materials are reviewed, with emphasis on the intrinsic challenges presented by the presence of porosity. To illustrate the utility of these techniques, five case studies are presented involving powder metallurgy materials. These case studies demonstrate problem solving via metallography in diverse situations: failure of a tungsten carbide-coated precipitation hardening stainless steel, failure of a steel pump gear, quantification of the degree of sinter (DOS), simulation of performance of a porous filter using automated image analysis, and analysis of failure in a sinter brazed part assembly.

  4. The extractive metallurgy of gold

    NASA Astrophysics Data System (ADS)

    Kongolo, K.; Mwema, M. D.

    1998-12-01

    Mössbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Mössbauer spectroscopy could be applied.

  5. Aluminum powder metallurgy processing

    NASA Astrophysics Data System (ADS)

    Flumerfelt, Joel Fredrick

    In recent years, the aluminum powder industry has expanded into non-aerospace applications. However, the alumina and aluminum hydroxide in the surface oxide film on aluminum powder require high cost powder processing routes. A driving force for this research is to broaden the knowledge base about aluminum powder metallurgy to provide ideas for fabricating low cost aluminum powder components. The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization commercial inert gas atomization and gas atomization reaction synthesis (GARS). The commercial atomization methods are bench marks of current aluminum powder technology. The GARS process is a laboratory scale inert gas atomization facility. A benefit of using pure aluminum powders is an unambiguous interpretation of the results without considering the effects of alloy elements. A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a

  6. Recent trends in extractive metallurgy

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Metallurgists and solution geochemists are joining forces to develop processes for extraction of metals from low-grade ores. The processes, which come under the name hydrometallurgy, include several new applications of solvent extraction techniques. Aqueous solutions are employed, leaching metals from ores, mine waste dumps, and even from deposits still in the ground. It was notable, for example, that Chemical and Engineering News (Feb. 8, 1982) recently featured the subject of hydrometallurgy in a special report. They noted that ‘recovering metals by use of aqueous solutions at relatively low temperatures increasingly is competing with dry, high-temperature pyrometallurgical methods.’ The relatively new techniques have caused a revolution, of sorts, in engineering programs of university metallurgy departments. The challenge of developing selective metal dissolution processes is drawing upon the best national talent in the fields of solution geochemistry and metallurgy.

  7. Silicon solar cells: Physical metallurgy principles

    NASA Astrophysics Data System (ADS)

    Mauk, Michael G.

    2003-05-01

    This article reviews the physical metallurgy aspects of silicon solar cells. The production of silicon solar cells relies on principles of thermochemical extractive metallurgy, phase equilibria, solidification, and kinetics. The issues related to these processes and their impact on solar cell performance and cost are discussed.

  8. The Rules of Ferrous Metallurgy

    PubMed Central

    2010-01-01

    The ways in which the sciences have been delineated and categorized throughout history provide insights into the formation, stabilization, and establishment of scientific systems of knowledge. The Dresdener school’s approach for explaining and categorizing the genesis of the engineering disciplines is still valid, but needs to be complemented by further-reaching methodological and theoretical reflections. Pierre Bourdieu’s theory of social practice is applied to the question of how individual agents succeed in influencing decisively a discipline’s changing object orientation, institutionalisation and self-reproduction. Through the accumulation of social, cultural and economic capital, they succeed in realising their own organisational ideas and scientific programs. Key concepts for the analysis include the struggle for power and resources, monopolies of interpretation, and the degree of autonomy. A case study from the Aachener Technische Hochschule shows that the consolidation of ferrous metallurgy can be conceived as a symbolical struggle between Fritz Wüst, professor for ferrous metallurgy, and the German Iron and Steel Institute, leading to a construction of a system of differences in which scientists accepted being scientists rather than entrepreneurs, and entrepreneurs accepted becoming entrepreneurs and renounced science.

  9. Advanced powder metallurgy aluminum alloys and composites

    NASA Technical Reports Server (NTRS)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  10. Powder-Metallurgy Process And Product

    NASA Technical Reports Server (NTRS)

    Paris, Henry G.

    1988-01-01

    Rapid-solidification processing yields alloys with improved properties. Study undertaken to extend favorable property combinations of I/M 2XXX alloys through recently developed technique of rapid-solidification processing using powder metallurgy(P/M). Rapid-solidification processing involves impingement of molten metal stream onto rapidly-spinning chill block or through gas medium using gas atomization technique.

  11. Powder metallurgy bearings for advanced rocket engines

    NASA Technical Reports Server (NTRS)

    Fleck, J. N.; Killman, B. J.; Munson, H.E.

    1985-01-01

    Traditional ingot metallurgy was pushed to the limit for many demanding applications including antifriction bearings. New systems require corrosion resistance, better fatigue resistance, and higher toughness. With conventional processing, increasing the alloying level to achieve corrosion resistance results in a decrease in other properties such as toughness. Advanced powder metallurgy affords a viable solution to this problem. During powder manufacture, the individual particle solidifies very rapidly; as a consequence, the primary carbides are very small and uniformly distributed. When properly consolidated, this uniform structure is preserved while generating a fully dense product. Element tests including rolling contact fatigue, hot hardness, wear, fracture toughness, and corrosion resistance are underway on eleven candidate P/M bearing alloys and results are compared with those for wrought 440C steel, the current SSME bearing material. Several materials which offer the promise of a significant improvement in performance were identified.

  12. The EDM surface: Topography, chemistry, and metallurgy

    SciTech Connect

    Fuller, J.E.

    1991-01-01

    The surface created by the electric discharge machining (EDM) process is of special interest because it has been shown to have a negative effect on the fatigue properties of many alloys. An understanding of the surface metallurgy and chemistry is important in predicting those alloys which are most susceptible to failure. Remedial actions, including thickness minimization, alteration, or removal of the surface layer are addressed.

  13. Physical Metallurgy of High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Yeh, Jien-Wei

    2015-08-01

    Two definitions of high-entropy alloys (HEAs), based on composition and entropy, are reviewed. Four core effects, i.e., high entropy, sluggish diffusion, severe lattice distortion, and cocktail effects, are mentioned to show the uniqueness of HEAs. The current state of physical metallurgy is discussed. As the compositions of HEAs are entirely different from that of conventional alloys, physical metallurgy principles might need to be modified for HEAs. The thermodynamics, kinetics, structure, and properties of HEAs are briefly discussed relating with the four core effects of HEAs. Among these, a severe lattice distortion effect is particularly emphasized because it exerts direct and indirect influences on many aspects of microstructure and properties. Because a constituent phase in HEAs can be regarded as a whole-solute matrix, every lattice site in the matrix has atomic-scale lattice distortion. In such a distorted lattice, point defects, line defects, and planar defects are different from those in conventional matrices in terms of atomic configuration, defect energy, and dynamic behavior. As a result, mechanical and physical properties are significantly influenced by such a distortion. Suitable mechanisms and theories correlating composition, microstructure, and properties for HEAs are required to be built in the future. Only these understandings make it possible to complete the physical metallurgy of the alloy world.

  14. Low-Cobalt Powder-Metallurgy Superalloy

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1986-01-01

    Highly-stressed jet-engine parts made with less cobalt. Udimet 700* (or equivalent) is common nickel-based superalloy used in hot sections of jet engines for many years. This alloy, while normally used in wrought condition, also gas-atomized into prealloyed powder-metallurgy (PM) product. Product can be consolidated by hot isostatically pressing (HIPPM condition) and formed into parts such as turbine disk. Such jet-engine disks "see" both high stresses and temperatures to 1,400 degrees F (760 degrees C).

  15. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-19

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  16. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goval, Amit; Williams, Robert K.; Kroeger, Donald M.

    2005-06-07

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  17. Biaxially textured articles formed by power metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-26

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  18. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-07-29

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  19. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2004-09-14

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  20. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-05

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of ternary mixtures consisting of: Ni powder, Cu powder, and Al powder, Ni powder, Cr powder, and Al powder; Ni powder, W powder and Al powder; Ni powder, V powder, and Al powder; Ni powder, Mo powder, and Al powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  1. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2005-05-10

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  2. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-26

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  3. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2004-09-28

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  4. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2005-01-25

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  5. Metallurgy and Heat Treating. Welding Module 7. Instructor's Guide.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This guide is intended to assist vocational educators in teaching a three-unit module in metallurgy and heat treating. The module is part of a welding curriculum that has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The basic principles of metallurgy and heat treatment and techniques for…

  6. Densification of powder metallurgy billets by a roll consolidation technique

    NASA Technical Reports Server (NTRS)

    Sellman, W. H.; Weinberger, W. R.

    1973-01-01

    Container design is used to convert partially densified powder metallurgy compacts into fully densified slabs in one processing step. Technique improves product yield, lowers costs and yields great flexibility in process scale-up. Technique is applicable to all types of fabricable metallic materials that are produced from powder metallurgy process.

  7. Evaluation of powder metallurgy superalloy disk materials

    NASA Technical Reports Server (NTRS)

    Evans, D. J.

    1975-01-01

    A program was conducted to develop nickel-base superalloy disk material using prealloyed powder metallurgy techniques. The program included fabrication of test specimens and subscale turbine disks from four different prealloyed powders (NASA-TRW-VIA, AF2-1DA, Mar-M-432 and MERL 80). Based on evaluation of these specimens and disks, two alloys (AF2-1DA and Mar-M-432) were selected for scale-up evaluation. Using fabricating experience gained in the subscale turbine disk effort, test specimens and full scale turbine disks were formed from the selected alloys. These specimens and disks were then subjected to a rigorous test program to evaluate their physical properties and determine their suitability for use in advanced performance turbine engines. A major objective of the program was to develop processes which would yield alloy properties that would be repeatable in producing jet engine disks from the same powder metallurgy alloys. The feasibility of manufacturing full scale gas turbine engine disks by thermomechanical processing of pre-alloyed metal powders was demonstrated. AF2-1DA was shown to possess tensile and creep-rupture properties in excess of those of Astroloy, one of the highest temperature capability disk alloys now in production. It was determined that metallographic evaluation after post-HIP elevated temperature exposure should be used to verify the effectiveness of consolidation of hot isostatically pressed billets.

  8. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-10-21

    A strengthened, biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed, compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: Ni, Ag, Ag--Cu, Ag--Pd, Ni--Cu, Ni--V, Ni--Mo, Ni--Al, Ni--Cr--Al, Ni--W--Al, Ni--V--Al, Ni--Mo--Al, Ni--Cu--Al; and at least one fine metal oxide powder; the article having a grain size which is fine and homogeneous; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  9. Ancient metallurgy and nuclear waste containment

    SciTech Connect

    Goodway, M.

    1993-12-31

    Archaeological artifacts of glass, ceramic, and metal provide examples of long term durability and as such have been surveyed by the nuclear agencies of several countries as a possible guide to choices of materials for the containment of nuclear waste. In the case of metals evaluation is difficult because of the loss of many artifacts to recycling and corrosion processes, as well as by uncertainty as to the environmental history under which the remainder survived. More recently the study of ancient metallurgy has expanded to included other materials associated with metals processing. It is suggested that an impermeable ceramic composite used in ancient metals processing installations should be reproduced and tested for its resistance to radiation damage. This material was synthesized more than two millennia ago and has a proven record of durability. These installations have had no maintenance but are intact, some still holding water.

  10. Electrodeposition in extractive metallurgy: An emerging technology?

    NASA Astrophysics Data System (ADS)

    O'Keefe, Thomas J.

    1992-04-01

    The electrowinning and electrorefining of metals from aqueous solutions continues to be one of the essential unit processes employed in nonferrous extractive metallurgy. Current processes effectively address both ohmic and mass transport of the primary metal ion in their design. Some deficiencies exist, however, in the basic understanding of the other two critical elements essential in cathodic deposition: activation kinetics and electrocrystallization. The understanding of the latter two must be elevated to the level of understanding of ohmic and mass transport if truly new and innovative advances are to occur. Because of the increasingly demanding standards for electrometallurgy processes and products, technical progress must be made if a competitive edge is to be maintained in the future.

  11. Looking North into Lab Metallurgy Testing Area and Enrichment Motor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking North into Lab Metallurgy Testing Area and Enrichment Motor within Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  12. 1. Photocopy from J. L. Bray, The Principles of Metallurgy, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photocopy from J. L. Bray, The Principles of Metallurgy, Ginn & Company, New York, 1929 - International Smelting & Refining Company, Tooele Smelter, Sinter Plant, State Route 178, Tooele, Tooele County, UT

  13. Ti Multicomponent Alloy Bulks by Powder Metallurgy

    NASA Astrophysics Data System (ADS)

    Zhang, Kuibao; Wen, Guanjun; Dai, Hongchuan; Teng, Yuancheng; Li, Yuxiang

    2014-10-01

    In this study, CrCuFeMnMo0.5Ti multicomponent alloy bulks were prepared by powder metallurgy of mechanical alloying and sintering. A simple body-centered cubic (bcc) solid solution was prepared after 40 h ball milling of the raw CrCuFeMnMo0.5Ti metallic powder. Particles of the alloyed powder are in microsized structures, which are actually a soft agglomeration of lamellar grains with thicknesses less than 1 μm. Meanwhile, the lamellar granules are consisted of nanosized grains under rigid cold welding. The 80-h ball-milled powder was consolidated by cold pressing and subsequent sintering at 800°C. The observed main phase in the consolidated sample after milling for 80 h is still a bcc solid solution. The solidified sample of 80-h ball-milled powder exhibits a Vickers hardness of 468 HV, which is much higher than 171 HV of the counterpart prepared from the raw metallic powder.

  14. Powder metallurgy process for manufacturing core projectile

    NASA Astrophysics Data System (ADS)

    Akbar, Taufik; Setyowati, Vuri Ayu; Widyastuti

    2013-09-01

    Bullets are part of the defense equipment which the development is very rapid. There are a variety of forms but the bullet Lead is a metal that has always been used for applications projectiles. Lead core constituent materials are combined with antimony. In this research will be conducted by making the material for the core projectile with Tin Lead. The addition of Tin will increase the stiffness of Lead which is soft in nature. The Lead Tin composition variation was given in 10% weight of Sn. The manufacturing process using powder metallurgy using temperature and holding time variations of sintering at 100, 150, and 200°C for 1,2, and 3 hours. XRD samples will be tested to determine the form and phase morphology was observed using SEM-EDX. These results revealed that Pb-10%wtSn Composite which is sintered in temperature 200°C for 3 hours has the greatest density, 10.695 g/cm3 as well as the smallest porosity, 2.2%. In agreement with theoretical analysis that increasing higher temperature and longer holding time give decrease in porosity level due to activation energy which further promotes grain growth. Moreover, there is no intermetallic phase formation as well as no oxide found on composites.

  15. Electrothermal Defect Detection in Powder Metallurgy Compacts

    NASA Astrophysics Data System (ADS)

    Benzerrouk, Souheil; Ludwig, Reinhold; Apelian, Diran

    2006-03-01

    Faced with increasing market pressures, metal part manufacturers have turned to new processes and fabrication technologies. One of these processes is powder metallurgy (P/M), which is employed for low-cost, high-volume precision part manufacturing. Despite many advantages, the P/M process has created a number of challenges, including the need for high-speed quality assessment and control, ideally for each compact. Consequently, sophisticated quality assurance is needed to rapidly detect flaws early in the manufacturing cycle and at minimal cost. In this paper we will discuss our progress made in designing and refining an active infrared (IR) detection system for P/M compacts. After discussing the theoretical background in terms of underlying equations and boundary conditions, analytical and numerical solutions are presented that are capable of predicting temperature responses for various defect sizes and orientations of a dynamic IR testing system. Preliminary measurements with controlled and industrial samples have shown that this active IR methodology can successfully be employed to test both green-state and sintered P/M compacts. The developed system can overcome many limitations observed with a standard IR testing methodology such as emissivity, background calibration, and contact resistance.

  16. A major advance in powder metallurgy

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; Stiglich, Jacob J., Jr.; Kaplan, Richard B.; Tuffias, Robert H.

    1991-01-01

    Ultramet has developed a process which promises to significantly increase the mechanical properties of powder metallurgy (PM) parts. Current PM technology uses mixed powders of various constituents prior to compaction. The homogeneity and flaw distribution in PM parts depends on the uniformity of mixing and the maintenance of uniformity during compaction. Conventional PM fabrication processes typically result in non-uniform distribution of the matrix, flaw generation due to particle-particle contact when one of the constituents is a brittle material, and grain growth caused by high temperature, long duration compaction processes. Additionally, a significant amount of matrix material is usually necessary to fill voids and create 100 percent dense parts. In Ultramet's process, each individual particle is coated with the matrix material, and compaction is performed by solid state processing. In this program, Ultramet coated 12-micron tungsten particles with approximately 5 wt percent nickel/iron. After compaction, flexure strengths were measured 50 percent higher than those achieved in conventional liquid phase sintered parts (10 wt percent Ni/Fe). Further results and other material combinations are discussed.

  17. Pressurized metallurgy for high performance special steels and alloys

    NASA Astrophysics Data System (ADS)

    Jiang, Z. H.; Zhu, H. C.; Li, H. B.; L1, Y.; Liu, F. B.

    2016-07-01

    The pressure is one of the basic parameters which greatly influences the metallurgical reaction process and solidification of steels and alloys. In this paper the history and present situation of research and application of pressurized metallurgy, especially pressurized metallurgy for special steels and alloys have been briefly reviewed. In the following part the physical chemistry of pressurized metallurgy is summarized. It is shown that pressurizing may change the conditions of chemical reaction in thermodynamics and kinetics due to the pressure effect on gas volume, solubility of gas and volatile element in metal melt, activity or activity coefficient of components, and change the physical and chemical properties of metal melt, heat transfer coefficient between mould and ingot, thus greatly influencing phase transformation during the solidification process and the solidification structure, such as increasing the solidification nucleation rate, reducing the critical nucleation radius, accelerating the solidification speed and significant macro/micro-structure refinement, and eliminating shrinkage, porosity and segregation and other casting defects. In the third part the research works of pressured metallurgy performed by the Northeastern University including establishment of pressurized induction melting (PIM) and pressurized electroslag remelting (PESR) equipments and development of high nitrogen steels under pressure are described in detail. Finally, it is considered in the paper that application of pressurized metallurgy in manufacture of high performance special steels and alloys is a relatively new research area, and its application prospects will be very broad and bright.

  18. Metallurgy and properties of plasma spray formed materials

    NASA Technical Reports Server (NTRS)

    Mckechnie, T. N.; Liaw, Y. K.; Zimmerman, F. R.; Poorman, R. M.

    1992-01-01

    Understanding the fundamental metallurgy of vacuum plasma spray formed materials is the key to enhancing and developing full material properties. Investigations have shown that the microstructure of plasma sprayed materials must evolve from a powder splat morphology to a recrystallized grain structure to assure high strength and ductility. A fully, or near fully, dense material that exhibits a powder splat morphology will perform as a brittle material compared to a recrystallized grain structure for the same amount of porosity. Metallurgy and material properties of nickel, iron, and copper base alloys will be presented and correlated to microstructure.

  19. Why materials science and engineering is good for metallurgy

    NASA Astrophysics Data System (ADS)

    Flemings, Merton C.

    2001-04-01

    Metallurgy/materials education will continue to evolve to encompass, in an intellectually unified way, the full range of structural and functional materials. Computation, information, and other advanced sciences and technologies will assume increasing roles in materials education, as will distance and continuing education. The advantages of the changes will be many … to the graduates, to emerging industries, and to the traditional metallurgical industries seeking productive, creative young engineers as employees. The need for continuing change in our metallurgy/materials departments is now no less if we are to attract the best young people into our field in the numbers needed and to best serve the needs of industry.

  20. Why materials science and engineering is good for metallurgy

    NASA Astrophysics Data System (ADS)

    Flemings, Merton C.

    2001-04-01

    Metallurgy/materials education will continue to evolve to encompass, in an intellectually unified way, the full range of structural and functional materials. Computation, information, and other advanced sciences and technologies will assume increasing roles in materials education, as will distance and continuing education. The advantages of the changes will be many ... to the graduates, to emerging industries, and to the traditional metallurgical industries seeking productive, creative young engineers as employees. The need for continuing change in our metallurgy/materials departments is now no less if we are to attract the best young people into our field in the numbers and to best serve the needs of industry.

  1. Chemical and Metallurgy Research (CMR) Sample Tracking System Design Document

    SciTech Connect

    Bargelski, C. J.; Berrett, D. E.

    1998-09-01

    The purpose of this document is to describe the system architecture of the Chemical and Metallurgy Research (CMR) Sample Tracking System at Los Alamos National Laboratory. During the course of the document observations are made concerning the objectives, constraints and limitations, technical approaches, and the technical deliverables.

  2. 39. GENERAL VIEW LOOKING NORTH, SHOWING BUILDING NO. 318, METALLURGY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. GENERAL VIEW LOOKING NORTH, SHOWING BUILDING NO. 318, METALLURGY LAB, ON RIGHT, BUILDING NO. 319, GENERAL PURPOSE ADMINISTRATION BUILDING, ON LEFT AND BUILDING NO. 355, ADMINISTRATION BUILDING, RESEARCH & DEVELOPMENT, IN BACKGROUND LEFT. - Picatinny Arsenal, State Route 15 near I-80, Dover, Morris County, NJ

  3. Iron Metallurgy: Technical Terminology Bulletin. Terminotech, Vol. 2, No. 7.

    ERIC Educational Resources Information Center

    General Electric Co. of Canada, Ltd., Montreal, Quebec.

    This issue of a bulletin of technological terminology is devoted to iron metallurgy. Various aspects of iron production are described in both French and English. An English-French dictionary of terms comprises the bulk of the document. Explanatory illustrations are appended. (JB)

  4. NSF: A "Populist" Pattern in Metallurgy, Materials Research?

    ERIC Educational Resources Information Center

    Shapley, Deborah

    1975-01-01

    Describes the testimony of a University of Virginia professor of applied science, who charged that the National Science Foundation grants disproportionately small funds to the best university departments in the field of metallurgy and materials, while preferentially funding middle-ranked departments. (MLH)

  5. One step HIP canning of powder metallurgy composites

    NASA Technical Reports Server (NTRS)

    Juhas, John J. (Inventor)

    1990-01-01

    A single step is relied on in the canning process for hot isostatic pressing (HIP) powder metallurgy composites. The binders are totally removed while the HIP can of compatible refractory metal is sealed at high vacuum and temperature. This eliminates outgassing during hot isostatic pressing.

  6. Powder metallurgy of vanadium and its alloys (review)

    SciTech Connect

    Radomysel'skii, I.D.; Solntsev, V.P.; Evtushenko, O.V.

    1987-10-01

    This article reviews the current powder metallurgy technology of vanadium and its alloys. Data are given on sintering, compacting, electrowinning and other current production techniques, as well as on the corrosion behavior and mechanical and physical properties of alloys produced by these different methods. The use of vanadium alloys as reactor and jet engine materials is also briefly discussed.

  7. Milling and Drilling Evaluation of Stainless Steel Powder Metallurgy Alloys

    SciTech Connect

    Lazarus, L.J.

    2001-12-10

    Near-net-shape components can be made with powder metallurgy (PM) processes. Only secondary operations such as milling and drilling are required to complete these components. In the past and currently production components are made from powder metallurgy (PM) stainless steel alloys. process engineers are unfamiliar with the difference in machining properties of wrought versus PM alloys and have had to make parts to develop the machining parameters. Design engineers are not generally aware that some PM alloy variations can be furnished with machining additives that greatly increase tool life. Specimens from a MANTEC PM alloy property study were made available. This study was undertaken to determine the machining properties of a number of stainless steel wrought and PM alloys under the same conditions so that comparisons of their machining properties could be made and relative tool life determined.

  8. Powder Metallurgy Fabrication of Molybdenum Accelerator Target Disks

    SciTech Connect

    Lowden, Richard Andrew; Kiggans Jr., James O.; Nunn, Stephen D.; Parten, Randy J.

    2015-12-01

    Powder metallurgy approaches for the fabrication of accelerator target disks are being examined to support the development of Mo-99 production by NorthStar Medical Technologies, LLC. An advantage of powder metallurgy is that very little material is wasted and at present, dense, quality parts are routinely produced from molybdenum powder. The proposed targets, however, are thin wafers, 29 mm in diameter with a thickness of 0.5 mm, with very stringent dimensional tolerances. Although tooling can be machined to very high tolerance levels, the operations of powder feed, pressing and sintering involve complicated mechanisms, each of which affects green density and shrinkage, and therefore the dimensions and shape of the final product. Combinations of powder morphology, lubricants and pressing technique have been explored to produce target disks with minimal variations in thickness and little or no distortion. In addition, sintering conditions that produce densities for optimum target dissolvability are being determined.

  9. Near-Net Shape Powder Metallurgy Rhenium Thruster

    NASA Technical Reports Server (NTRS)

    Leonhardt, Todd; Hamister, Mark; Carlen, Jan C.; Biaglow, James; Reed, Brian

    2001-01-01

    This paper describes the development of a method to produce a near-net shape (NNS) powder metallurgy (PM) rhenium combustion chamber of the size 445 N (100 lbf) used in a high performance liquid apogee engine. These engines are used in low earth Orbit and geostationary orbit for satellite positioning systems. The developments in near-net shape powder metallurgy rhenium combustion chambers reported in this paper will reduce manufacturing cost of the rhenium chambers by 25 percent, and reduce the manufacturing time by 30 to 40 percent. The quantity of rhenium metal powder used to produce a rhenium chamber is reduced by approximately 70 percent and the subsequent reduction in machining schedule and costs is nearly 50 percent.

  10. Modulus Dependence on Large Scale Porosity of Powder Metallurgy Steel

    NASA Astrophysics Data System (ADS)

    Allison, P. G.; Horstemeyer, M. F.; Brown, H. R.

    2012-07-01

    This article compares the existing theoretical expressions for the porosity dependence on elastic constants to experimental data for a commercially available material, FC-0205 powder metallurgy (PM) steel. The modulus of compression, tension, effective torsion, and ultrasound-based data at varying porosity levels are plotted graphically against the theoretical expressions. An equation by McAdam ( J. Iron Steel Inst. Lond., 1950, 168, p 346) was able to most accurately predict the experimental data with the adjustment of only one material constant.

  11. Microstructure and Aging of Powder-Metallurgy Al Alloys

    NASA Technical Reports Server (NTRS)

    Blackburn, L. B.

    1987-01-01

    Report describes experimental study of thermal responses and aging behaviors of three new aluminum alloys. Alloys produced from rapidly solidified powders and contain 3.20 to 5.15 percent copper, 0.24 to 1.73 percent magnesium, 0.08 to 0.92 percent iron, and smaller amounts of manganese, nickel, titanium, silicon, and zinc. Peak hardness achieved at lower aging temperatures than with standard ingot-metallurgy alloys. Alloys of interest for automobile, aircraft, and aerospace applications.

  12. Powder-metallurgy superalloy strengthened by a secondary gamma phase.

    NASA Technical Reports Server (NTRS)

    Kotval, P. S.

    1971-01-01

    Description of experiments in which prealloyed powders of superalloy compositions were consolidated by extrusion after the strengthening by precipitation of a body-centered tetragonal gamma secondary Ni3 Ta phase. Thin foil electron microscopy showed that the mechanical properties of the resultant powder-metallurgy product were correlated with its microstructure. The product exhibited high strength at 1200 F without loss of ductility, after thermomechanical treatment and aging.

  13. Chloride metallurgy: PGM recovery and titanium dioxide production

    NASA Astrophysics Data System (ADS)

    Puvvada, G. V. K.; Sridhar, R.; Lakshmanan, V. I.

    2003-08-01

    This paper examines in detail the thermodynamics and application of chloride metallurgy for the extraction of precious metals, such as gold and silver, and platinum-group metals. The advantages with regard to the solubilities of metal ion species and their reduction potentials in chloride media are discussed with examples. The use of chloride media for the extraction of platinum-group metals from spent autocatalysts and for the production of high-purity pigment-grade TiO2 and titanium metal from ilmenite feed stocks is discussed in the case studies provided.

  14. Welding Metallurgy and Processing Issues for Joining of Power Sources

    SciTech Connect

    Lienert, Thomas J.; Reardon, Patrick T.

    2012-08-14

    Weldability issues with the pertinent alloys have been reviewed and preliminary results of our work on Haynes 25 have been presented. Further results on the mechanical properties and metallography on the EB welds are imminent. Hot-ductility experiments will commence within a few weeks. Aging studies on the effects of heat treatment using the Gleeble are also planned. MST-6 has extensive background in the welding metallurgy of the pertinent alloys. We also have considerable experience with the various welding processes to be used.

  15. 78 FR 8202 - Meeting of the Joint ACRS Subcommittees on Thermal Hydraulic Phenomena and Materials, Metallurgy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... ACRS meetings were published in the Federal Register on October 18, 2012, (77 FR 64146- 64147... Hydraulic Phenomena and Materials, Metallurgy and Reactor Fuels; Notice of Meeting The Joint ACRS Subcommittees on Thermal Hydraulic Phenomena and Materials, Metallurgy and Reactor Fuels will hold a meeting...

  16. Ceramic Inclusions in Powder Metallurgy Disk Alloys: Characterization and Modeling

    NASA Technical Reports Server (NTRS)

    Bonacuse, Peter J.

    2001-01-01

    Powder metallurgy alloys are increasingly used in gas turbine engines, especially in turbine disk applications. Although powder metallurgy materials have many advantages over conventionally cast and wrought alloys (higher strength, higher temperature capability, etc.), they suffer from the rare occurrence of ceramic defects (inclusions) that are inherent to the powder atomization process. These inclusions can have a potentially large detrimental effect on the durability of individual components. An inclusion in a high stress location can act as a site for premature crack initiation and thereby considerably reduce the fatigue life. Because these inclusions are exceedingly rare, they typically do not reveal themselves in the process of characterizing the material for a particular application (the cumulative volume of the test bars in a fatigue life characterization is typically on the order of a single actual component). Ceramic inclusions have, however, been found to be the root cause of a number of catastrophic engine failures. To investigate the effect of these inclusions in detail, we have undertaken a study where known populations of ceramic particles, whose composition and morphology are designed to mimic the "natural" inclusions, are added to the precursor powder. Surface-connected inclusions have been found to have a particularly large detrimental effect on fatigue life; therefore, the quantity of ceramic "seeds" added is calculated to ensure that a minimum number will intersect the surface of the fatigue test bars. Because the ceramic inclusions are irregularly shaped and have a tendency to break up in the process of extrusion and forging, a method of calculating the probability of occurrence and expected intercepted surface area was needed. We have developed a Monte Carlo simulation to determine the distributions of these parameters and have verified the simulated results with observations of ceramic inclusions found in macroscopic slices from extrusions

  17. The metallurgy and processing science of metal additive manufacturing

    SciTech Connect

    Sames, William J.; List, III, Frederick Alyious; Pannala, Sreekanth; Dehoff, Ryan R.; Babu, Sudarsanam Suresh

    2016-01-01

    Here, additive Manufacturing (AM), widely known as 3D printing, is a method of manufacturing that forms parts from powder, wire, or sheets in a process that proceeds layer-by-layer.Many techniques (using many different names) have been developed to accomplish this via melting or solid - state joining. In this review, these techniques for producing metal parts are explored, with a focus on the science of metal AM: processing defects, heat transfer, solidification, solid- state precipitation, mechanical properties, and post-processing metallurgy. The various metal AM techniques are compared, with analysis of the strengths and limitations of each. Few alloys have been developed for commercial production, but recent development efforts are presented as a path for the ongoing development of new materials for AM processes.

  18. N18, powder metallurgy superalloy for disks: Development and applications

    SciTech Connect

    Guedou, J.Y.; Lautridou, J.C.; Honnorat, Y. . Materials and Processes Dept.)

    1993-08-01

    The preliminary industrial development of a powder metallurgy (PM) superalloy, designated N18, for disk applications has been completed. This alloy exhibits good overall mechanical properties after appropriate processing of the material. These properties have been measured on both isothermally forged and extruded billets, as well as on specimens cut from actual parts. The temperature capability of the alloy is about 700 C for long-term applications and approximately 750 C for short-term use because of microstructural instability. Further improvements in creep and crack propagation properties, without significant reduction in tensile strength, are possible through appropriate thermomechanical processing, which results in a large controlled grain size. Spin pit tests on subscale disks have confirmed that the N18 alloy has a higher resistance than PM Astrology and is therefore an excellent alloy for modern turbine disk applications.

  19. Powder metallurgy titanium 6A1-4V plate

    SciTech Connect

    Geisendorfer, R.F.

    1980-01-01

    A powder metallurgical approach has been combined with controlled mill processing to produce a highly uniform plate material suitable for structural applications. Prealloyed ELI Titanium 6A1-4V powder produced by the rotating electrode process was consolidated into billet by hot isostatic pressing. The resulting billet of uniform composition and random texture was then hot cross-rolled to 3 cm thick plate. Following rolling, the plate was given a beta annealing heat treatment to maximize damage tolerance. The plate was characterized with respect to metallurgical structure, composition, texture, and room temperature mechanical properties. The results of the study show that a powder metallurgy titanium mill product possessing uniform macro- and microstructure is technically feasible and exhibits tensile and fatigue properties equivalent to those of conventionally produced ingot-source wrought plate.

  20. The metallurgy and processing science of metal additive manufacturing

    DOE PAGESBeta

    Sames, William J.; List, III, Frederick Alyious; Pannala, Sreekanth; Dehoff, Ryan R.; Babu, Sudarsanam Suresh

    2016-03-07

    Here, additive Manufacturing (AM), widely known as 3D printing, is a method of manufacturing that forms parts from powder, wire, or sheets in a process that proceeds layer-by-layer.Many techniques (using many different names) have been developed to accomplish this via melting or solid - state joining. In this review, these techniques for producing metal parts are explored, with a focus on the science of metal AM: processing defects, heat transfer, solidification, solid- state precipitation, mechanical properties, and post-processing metallurgy. The various metal AM techniques are compared, with analysis of the strengths and limitations of each. Few alloys have been developedmore » for commercial production, but recent development efforts are presented as a path for the ongoing development of new materials for AM processes.« less

  1. Phase Stability of a Powder Metallurgy Disk Superalloy

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Gayda, John; Kantzos, P.; Telesman, Jack; Gang, Anita

    2006-01-01

    Advanced powder metallurgy superalloy disks in aerospace turbine engines now entering service can be exposed to temperatures approaching 700 C, higher than those previously encountered. They also have higher levels of refractory elements, which can increase mechanical properties at these temperatures but can also encourage phase instabilities during service. Microstructural changes including precipitation of topological close pack phase precipitation and coarsening of existing gamma' precipitates can be slow at these temperatures, yet potentially significant for anticipated disk service times exceeding 1,000 h. The ability to quantify and predict such potential phase instabilities and degradation of capabilities is needed to insure structural integrity and air worthiness of propulsion systems over the full life cycle. A prototypical advanced disk superalloy was subjected to high temperature exposures, and then evaluated. Microstructural changes and corresponding changes in mechanical properties were quantified. The results will be compared to predictions of microstructure modeling software.

  2. N18, Powder metallurgy superalloy for disks: Development and applications

    NASA Astrophysics Data System (ADS)

    Guedou, J. Y.; Lautridou, J. C.; Honnorat, Y.

    1993-08-01

    The preliminary industrial development of a powder metallurgy (PM) superalloy, designated N18, for disk applications has been completed. This alloy exhibits good overall mechanical properties after appro-priate processing of the material. These properties have been measured on both isothermally forged and extruded billets, as well as on specimens cut from actual parts. The temperature capability of the alloy is about 700 °C for long-term applications and approximately 750 °C for short-term use because of micro-structural instability. Further improvements in creep and crack propagation properties, without signifi-cant reduction in tensile strength, are possible through appropriate thermomechanical processing, which results in a large controlled grain size. Spin pit tests on subscale disks have confirmed that the N18 alloy has a higher resistance than PM Astroloy and is therefore an excellent alloy for modern turbine disk ap-plications.

  3. Powder metallurgy: Solid and liquid phase sintering of copper

    NASA Technical Reports Server (NTRS)

    Sheldon, Rex; Weiser, Martin W.

    1993-01-01

    Basic powder metallurgy (P/M) principles and techniques are presented in this laboratory experiment. A copper based system is used since it is relatively easy to work with and is commercially important. In addition to standard solid state sintering, small quantities of low melting metals such as tin, zinc, lead, and aluminum can be added to demonstrate liquid phase sintering and alloy formation. The Taguchi Method of experimental design was used to study the effect of particle size, pressing force, sintering temperature, and sintering time. These parameters can be easily changed to incorporate liquid phase sintering effects and some guidelines for such substitutions are presented. The experiment is typically carried out over a period of three weeks.

  4. Advanced powder metallurgy aluminum alloys via rapid solidification technology

    NASA Technical Reports Server (NTRS)

    Ray, R.

    1984-01-01

    Aluminum alloys containing 10 to 11.5 wt. pct. of iron and 1.5 to 3 wt. pct. of chromium using the technique of rapid solidification powder metallurgy were studied. Alloys were prepared as thin ribbons (.002 inch thick) rapidly solidified at uniform rate of 10(6) C/second by the melt spinning process. The melt spun ribbons were pulverized into powders (-60 to 400 mesh) by a rotating hammer mill. The powders were consolidated by hot extrusion at a high reduction ratio of 50:1. The powder extrusion temperature was varied to determine the range of desirable processing conditions necessary to yield useful properties. Powders and consolidated alloys were characterized by SEM and optical metallography. The consolidated alloys were evaluated for (1) thermal stability, (2) tensile properties in the range, room temperature to 450 F, and (3) notch toughness in the range, room temperature to 450 F.

  5. Application of superalloy powder metallurgy for aircraft engines

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Miner, R. V., Jr.

    1980-01-01

    In the last decade, Government/Industry programs have advanced powder metallurgy-near-net-shape technology to permit the use of hot isostatic pressed (HIP) turbine disks in the commercial aircraft fleet. These disks offer a 30% savings of input weight and an 8% savings in cost compared in cast-and-wrought disks. Similar savings were demonstrated for other rotating engine components. A compressor rotor fabricated from hot-die-forged-HIP superalloy billets revealed input weight savings of 54% and cost savings of 35% compared to cast-and-wrought parts. Engine components can be produced from compositions such as Rene 95 and Astroloy by conventional casting and forging, by forging of HIP powder billets, or by direct consolidation of powder by HIP. However, each process produces differences in microstructure or introduces different defects in the parts. As a result, their mechanical properties are not necessarily identical. Acceptance methods should be developed which recognize and account for the differences.

  6. Physical and mechanical metallurgy of high purity Nb accelerator cavities.

    SciTech Connect

    Wright, N. T.; Bieler, T. R.; Pourgoghart , F.; Compton, C.; Hartwig, K. T.; Baars, D.; Zamiri, A.; Chandrasekaran, S.; Darbandi, P.; Jiang, H.; Skoug, E.; Balachandran, S.; Ice, G. E.; Liu, W.; Michigan State Univ.; Texas A & M Univ.; ORNL

    2010-01-01

    In the past decade, high Q values have been achieved in high purity Nb superconducting radio frequency (SRF) cavities. Fundamental understanding of the physical metallurgy of Nb that enables these achievements is beginning to reveal what challenges remain to establish reproducible and cost-effective production of high performance SRF cavities. Recent studies of dislocation substructure development and effects of recrystallization arising from welding and heat treatments and their correlations with cavity performance are considered. With better fundamental understanding of the effects of dislocation substructure evolution and recrystallization on electron and phonon conduction, as well as the interior and surface states, it will be possible to design optimal processing paths for cost-effective performance using approaches such as hydroforming, which minimizes or eliminates welds in a cavity.

  7. Ceramic Inclusions In Powder Metallurgy Disk Alloys: Characterization and Modeling

    NASA Technical Reports Server (NTRS)

    Bonacuse, Pete; Kantzos, Pete; Telesman, Jack

    2002-01-01

    Powder metallurgy alloys are increasingly used in gas turbine engines, especially as the material chosen for turbine disks. Although powder metallurgy materials have many advantages over conventionally cast and wrought alloys (higher strength, higher temperature capability, etc.), they suffer from the rare occurrence of ceramic defects (inclusions) that arise from the powder atomization process. These inclusions can have potentially large detrimental effect on the durability of individual components. An inclusion in a high stress location can act as a site for premature crack initiation and thereby considerably reduce the fatigue life. Because these inclusions are exceedingly rare, they usually don't reveal themselves in the process of characterizing the material for a particular application (the cumulative volume of the test bars in a fatigue life characterization is typically on the order of a single actual component). Ceramic inclusions have, however, been found to be the root cause of a number of catastrophic engine failures. To investigate the effect of these inclusions in detail, we have undertaken a study where a known population of ceramic particles, whose composition and morphology are designed to mimic the 'natural' inclusions, are added to the precursor powder. Surface connected inclusions have been found to have a particularly large detrimental effect on fatigue life, therefore the volume of ceramic 'seeds' added is calculated to ensure that a minimum number will occur on the surface of the fatigue test bars. Because the ceramic inclusions are irregularly shaped and have a tendency to break up in the process of extrusion and forging, a method of calculating the probability of occurrence and expected intercepted surface and embedded cross-sectional areas were needed. We have developed a Monte Carlo simulation to determine the distributions of these parameters and have verified the simulated results with observations of ceramic inclusions found in macro

  8. Powder metallurgy technology of NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, J. M.; Maziarz, W.; Czeppe, T.; Lityńska, L.; Nowacki, W. K.; Gadaj, S. P.; Luckner, J.; Pieczyska, E. A.

    2008-05-01

    Powder metallurgy technology was elaborated for consolidation of shape memory NiTi powders. The shape memory alloy was compacted from the prealloyed powder delivered by Memry SA. The powder shows Ms = 10°C and As = -34°C as results from DSC measurements. The samples were hot pressed in the as delivered spherical particle's state. The hot compaction was performed in a specially constructed vacuum press, at temperature of 680°C and pressure of 400 MPa. The alloy powder was encapsulated in copper capsules prior to hot pressing to avoid oxidation or carbides formation. The alloy after hot vacuum compaction at 680°C (i.e. within the B2 NiTi stability range) has shown similar transformation range as the powder. The porosity of samples compacted in the as delivered state was only 1%. The samples tested in compression up to ɛ = 0.06 have shown partial superelastic effect due to martensitic reversible transform- ation which started at the stress above 300 MPa and returned back to ɛ = 0.015 after unloading. They have shown also a high ultimate compression strength of 1600 MPa. Measurements of the samples temperature changes during the process allowed to detect the temperature increase above 12°C for the strain rate 10-2 s-1 accompanied the exothermic martensite transformation during loading and the temperature decrease related to the reverse endothermic transformation during unloading.

  9. [Possible health effects associated with Pre-Columbian metallurgy].

    PubMed

    Idrovo, Alvaro Javier

    2005-09-01

    In the Old World, several researchers have indicated that adverse health effects were associated with exposure to arsenic, and that this influenced a change in the use of copper-arsenic alloys to others less toxic. This hypothesis was evaluated for three Pre-Columbian metallurgy traditions: Central Andes, Intermediate Area, and West Mexico. The metal artifacts from the Central Andes showed arsenic concentrations similar to those in the Old World (0.5%-1.0%). In the Intermediate Area the values were smallest; however, in West Mexico the arsenic content was very high (7%-25%). In Central Andes arsenical bronze was used initially, but copper-tin alloys when introduced were preferred and distributed throughout the Inca Empire. Osteological and artistic evidences of foot amputations among Moche individuals from Central Andes support the presence of "black foot disease" (a condition associated with arsenic poisoning) among Pre-Columbian populations. In conclusion, the adverse effects of arsenic have been observed in the New World, and that these effects promoted a change toward the use of less toxic alloys. PMID:16276677

  10. Device for preparing combinatorial libraries in powder metallurgy.

    PubMed

    Yang, Shoufeng; Evans, Julian R G

    2004-01-01

    This paper describes a powder-metering, -mixing, and -dispensing mechanism that can be used as a method for producing large numbers of samples for metallurgical evaluation or electrical or mechanical testing from multicomponent metal and cermet powder systems. It is designed to make use of the same commercial powders that are used in powder metallurgy and, therefore, to produce samples that are faithful to the microstructure of finished products. The particle assemblies produced by the device could be consolidated by die pressing, isostatic pressing, laser sintering, or direct melting. The powder metering valve provides both on/off and flow rate control of dry powders in open capillaries using acoustic vibration. The valve is simple and involves no relative movement, avoiding seizure with fine powders. An orchestra of such valves can be arranged on a building platform to prepare multicomponent combinatorial libraries. As with many combinatorial devices, identification and evaluation of sources of mixing error as a function of sample size is mandatory. Such an analysis is presented. PMID:15244416

  11. TRADITIONAL METALLURGY, NANOTECHNOLOGIES AND STRUCTURAL MATERIALS: A SORBY AWARD LECTURE

    SciTech Connect

    Louthan, M

    2007-07-17

    Traditional metallurgical processes are among the many ''old fashion'' practices that use nanoparticles to control the behavior of materials. Many of these practices were developed long before microscopy could resolve nanoscale features, yet the practitioners learned to manipulate and control microstructural elements that they could neither see nor identify. Furthermore, these early practitioners used that control to modify microstructures and develop desired material properties. Centuries old colored glass, ancient high strength steels and medieval organ pipes derived many of their desirable features through control of nanoparticles in their microstructures. Henry Sorby was among the first to recognize that the properties of rocks, minerals, metals and organic materials were controlled by microstructure. However, Mr. Sorby was accused of the folly of trying to study mountains with a microscope. Although he could not resolve nanoscale microstructural features, Mr. Sorby's observations revolutionized the study of materials. The importance of nanoscale microstructural elements should be emphasized, however, because the present foundation for structural materials was built by manipulating those features. That foundation currently supports several multibillion dollar industries but is not generally considered when the nanomaterials revolution is discussed. This lecture demonstrates that using nanotechnologies to control the behavior of metallic materials is almost as old as the practice of metallurgy and that many of the emergent nanomaterials technologists are walking along pathways previously paved by traditional metallurgists.

  12. Welding metallurgy of nickel alloys in gas turbine components

    SciTech Connect

    Lingenfelter, A. C., LLNL

    1997-05-21

    Materials for gas turbine engines are required to meet a wide range of temperature and stress application requirements. These alloys exhibit a combination of creep resistance, creep rupture strength, yield and tensile strength over a wide temperature range, resistance to environmental attack (including oxidation, nitridation, sulphidation and carburization), fatigue and thermal fatigue resistance, metallurgical stability and useful thermal expansion characteristics. These properties are exhibited by a series of solid-solution-strengthened and precipitation-hardened nickel, iron and cobalt alloys. The properties needed to meet the turbine engine requirements have been achieved by specific alloy additions, by heat treatment and by thermal mechanical processing. A thorough understanding of the metallurgy and metallurgical processing of these materials is imperative in order to successfully fusion weld them. This same basic understanding is required for repair of a component with the added dimension of the potential effects of thermal cycling and environmental exposure the component will have endured in service. This article will explore the potential problems in joining and repair welding these materials.

  13. Indexation Rules for Metallurgy in PASCAL. Original Title: Regles d'Indexation de la Metallurgie'--Technical Note Issued by Informascience--January 1980. Translated by Marie Wallin.

    ERIC Educational Resources Information Center

    Royal Inst. of Tech., Stockholm (Sweden). Library.

    The indexing rules presented are designed for use with a new French-German database on metallurgy being developed under an agreement by CNRS (Centre National de la Recherche Scientifique, Paris) and BAM (Bundesanstalt fur Materialprufung, Berlin). The new database, which will feature multilingual titles and index terms (French-German-English-) and…

  14. POWDER METALLURGY TiAl ALLOYS: MICROSTRUCTURES AND PROPERTIES

    SciTech Connect

    Hsiung, L

    2006-12-11

    The microstructures and properties of powder metallurgy TiAl alloys fabricated by hot extrusion of gas-atomized powder at different elevated temperatures were investigated. Microstructure of the alloy fabricated at 1150 C consisted of a mixture of fine ({gamma} + {alpha}{sub 2}) equiaxed grains and coarse ordered B2 grains. Particles of ordered hexagonal {omega} phase were also observed in some B2 grains. The alloy containing B2 grains displayed a low-temperature superplastic behavior: a tensile elongation of 310% was measured when the alloy was tested at 800 C under a strain rate of 2 x 10{sup -5} s{sup -1}. Microstructure of the alloy fabricated at 1250 C consisted of a mixture of fine ({gamma} + {alpha}{sub 2}) equiaxed grains, coarse {alpha}{sub 2} grains, and lamellar ({gamma} + {alpha}{sub 2}) colonies. An observation of stacking faults associated with fine {gamma} lamellae in {alpha}{sub 2} grains reveals that the stacking fault of {alpha}{sub 2} phase plays an important role in the formation of lamellar ({gamma} + {alpha}{sub 2}) colonies. Unlike the alloy fabricated at 1150{sup o}, the alloy fabricated at 1250{sup o} displayed no low-temperature superplasticity, but a tensile elongation of 260% at 1000 C was measured. Microstructure of the alloy fabricated at 1400 C consisted of fully lamellar ({gamma} + {alpha}{sub 2}) colonies with the colony size ranging between 50 {micro}m and 100 {micro}m, in which the width of {gamma} lamella is in a range between 100 nm and 350 nm, and the width of {alpha}{sub 2} lamella is in a range between 10 nm and 50 nm. Creep behavior of the ultrafine lamellar alloy and the effects of alloying addition on the creep resistance of the fully lamellar alloy are also investigated.

  15. [Atmospheric emission of PCDD/Fs from secondary aluminum metallurgy industry in the southwest area, China].

    PubMed

    Lu, Yi; Zhang, Xiao-Ling; Guo, Zhi-Shun; Jian, Chuan; Zhu, Ming-Ji; Deng, Li; Sun, Jing; Zhang, Qin

    2014-01-01

    Five secondary aluminum metallurgy enterprises in the southwest area of China were measured for emissions of PCDD/Fs. The results indicated that the emission levels of PCDD/Fs (as TEQ) were 0.015-0.16 ng x m(-3), and the average was 0.093 ng x m(-3) from secondary aluminum metallurgy enterprises. Emission factors of PCDD/Fs (as TEQ) from the five secondary aluminum metallurgy enterprises varied between 0.041 and 4.68 microg x t(-1) aluminum, and the average was 2.01 microg x t(-1) aluminum; among them, PCDD/Fs emission factors from the crucible smelting furnace was the highest. Congener distribution of PCDD/F in stack gas from the five secondary aluminum metallurgies was very different from each other. Moreover, the R(PCDF/PCDD) was the lowest in the enterprise which was installed only with bag filters; the R(PCDF/PCDD) were 3.8-12.6 (the average, 7.7) in the others which were installed with water scrubbers. The results above indicated that the mechanism of PCDD/Fs formation was related to the types of exhaust gas treatment device. The results of this study can provide technical support for the formulation of PCDD/Fs emission standards and the best available techniques in the secondary aluminum metallurgy industry. PMID:24720181

  16. Investigation of the Environmental Durability of a Powder Metallurgy Material

    NASA Technical Reports Server (NTRS)

    Ward, LaNita D.

    2004-01-01

    PM304 is a NASA-developed composite powder metallurgy material that is being developed for high temperature applications such as bushings in high temperature industrial furnace conveyor systems. My goal this summer was to analyze and evaluate the effects that heat exposure had on the PM304 material at 500 C and 650 C. The material is composed of Ni-Cr, Ag, Cr2O3, and eutectic BaF2-CaF2. PM304 is designed to eliminate the need for oil based lubricants in high temperature applications, while reducing friction and wear. However, further investigation was needed to thoroughly examine the properties of PM304. The effects of heat exposure on PM304 bushings were investigated. This investigation was necessary due to the high temperatures that the material would be exposed to in a typical application. Each bushing was cut into eight sections. The specimens were heated to 500 C or 650 C for time intervals from 1 hr to 5,000 hrs. Control specimens were kept at room temperature. Weight and thickness measurements were taken before and after the bushing sections were exposed to heat. Then the heat treated specimens were mounted and polished side by side with the control specimens. This enabled optical examination of the material's microstructure using a metallograph. The specimens were also examined with a scanning electron microscope (SEM). The microstructures were compared to observe the effects of the heat exposure. Chemical analysis was done to investigate the interactions between Ni-Cr and BaF2-CaF2 and between Cr2O3 and BaF2-CaF2 at high temperature. To observe this, the two compounds that were being analyzed were mixed in a crucible in varied weight percentages and heated to 1100 C in a furnace for approximately two hours. Then the product was allowed to cool and was then analyzed by X-ray diffraction. Interpretation of the results is in progress.

  17. Elevated temperature crack growth in advanced powder metallurgy aluminum alloys

    NASA Technical Reports Server (NTRS)

    Porr, William C., Jr.; Gangloff, Richard P.

    1990-01-01

    Rapidly solidified Al-Fe-V-Si powder metallurgy alloy FVS0812 is among the most promising of the elevated temperature aluminum alloys developed in recent years. The ultra fine grain size and high volume fraction of thermally stable dispersoids enable the alloy to maintain tensile properties at elevated temperatures. In contrast, this alloy displays complex and potentially deleterious damage tolerant and time dependent fracture behavior that varies with temperature. J-Integral fracture mechanics were used to determine fracture toughness (K sub IC) and crack growth resistance (tearing modulus, T) of extruded FVS0812 as a function of temperature. The alloy exhibits high fracture properties at room temperature when tested in the LT orientation, due to extensive delamination of prior ribbon particle boundaries perpendicular to the crack front. Delamination results in a loss of through thickness constraint along the crack front, raising the critical stress intensity necessary for precrack initiation. The fracture toughness and tensile ductility of this alloy decrease with increasing temperature, with minima observed at 200 C. This behavior results from minima in the intrinsic toughness of the material, due to dynamic strain aging, and in the extent of prior particle boundary delaminations. At 200 C FVS0812 fails at K levels that are insufficient to cause through thickness delamination. As temperature increases beyond the minimum, strain aging is reduced and delamination returns. For the TL orientation, K (sub IC) decreased and T increased slightly with increasing temperature from 25 to 316 C. Fracture in the TL orientation is governed by prior particle boundary toughness; increased strain localization at these boundaries may result in lower toughness with increasing temperature. Preliminary results demonstrate a complex effect of loading rate on K (sub IC) and T at 175 C, and indicate that the combined effects of time dependent deformation, environment, and strain aging

  18. Testing of electroformed deposited iridium/powder metallurgy rhenium rockets

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.; Dickerson, Robert

    1996-01-01

    High-temperature, oxidation-resistant chamber materials offer the thermal margin for high performance and extended lifetimes for radiation-cooled rockets. Rhenium (Re) coated with iridium (Ir) allow hours of operation at 2200 C on Earth-storable propellants. One process for manufacturing Ir/Re rocket chambers is the fabrication of Re substrates by powder metallurgy (PM) and the application of Ir coatings by using electroformed deposition (ED). ED Ir coatings, however, have been found to be porous and poorly adherent. The integrity of ED Ir coatings could be improved by densification after the electroforming process. This report summarizes the testing of two 22-N, ED Ir/PM Re rocket chambers that were subjected to post-deposition treatments in an effort to densify the Ir coating. One chamber was vacuum annealed, while the other chamber was subjected to hot isostatic pressure (HIP). The chambers were tested on gaseous oxygen/gaseous hydrogen propellants, at mixture ratios that simulated the oxidizing environments of Earth-storable propellants. ne annealed ED Ir/PM Re chamber was tested for a total of 24 firings and 4.58 hr at a mixture ratio of 4.2. After only 9 firings, the annealed ED Ir coating began to blister and spall upstream of the throat. The blistering and spalling were similar to what had been experienced with unannealed, as-deposited ED Ir coatings. The HIP ED Ir/PM Re chamber was tested for a total of 91 firings and 11.45 hr at mixture ratios of 3.2 and 4.2. The HIP ED Ir coating remained adherent to the Re substrate throughout testing; there were no visible signs of coating degradation. Metallography revealed, however, thinning of the HIP Ir coating and occasional pores in the Re layer upstream of the throat. Pinholes in the Ir coating may have provided a path for oxidation of the Re substrate at these locations. The HIP ED Ir coating proved to be more effective than vacuum annealed and as-deposited ED Ir. Further densification is still required to

  19. Advances in powder metallurgy - 1991. Vol. 5 - P/M materials; Proceedings of the Powder Metallurgy Conference and Exhibition, Chicago, IL, June 9-12, 1991

    SciTech Connect

    Pease, L.F. III; Sansoucy, R.J.

    1991-01-01

    The present volume powder metallurgy materials discusses the state of the PM industry, a metallurgical evaluation of new steel powders, design criteria for the manufacturing of low-alloy steel powders, and homogenization processing of a PM maraging steel. Attention is given to the corrosion resistance of full density sintered 316 SS, the performance characteristics of a new sinter-hardening low-alloy steel, wear performance of compositions made by low alloy iron/high alloy powder mixtures, and the strengthening of an AISI 1020 steel by aluminum-microalloying during liquid dynamic compaction. Topics addressed include the influence of alloying on the properties of water-atomized copper powders, fundamentals of high pressure gas atomization process control, advanced sensors and process control of gas atomization, and bimetallic tubulars via spray forming. Also discussed are factors affecting the delamination of PM molybdenum during stamping, applications of powder metallurgy molybdenum in the 1990s, and powder processing of high-temperature oxides.

  20. Mechanical properties of modified low cobalt powder metallurgy Udimet 700 type alloys

    NASA Technical Reports Server (NTRS)

    Harf, Fredric H.

    1989-01-01

    Eight superalloys derived from Udimet 700 were prepared by powder metallurgy, hot isostatically pressed, heat treated and their tensile and creep rupture properties determined. Several of these alloys displayed properties superior to those of Udimet 700 similarly prepared, in one case exceeding the creep rupture life tenfold. Filter clogging by extracted gamma prime, its measurement and significance are discussed in an appendix.

  1. A Guide for Planning Facilities for Occupational Preparation Programs in Metallurgy Technology. Interim Report. Research 28.

    ERIC Educational Resources Information Center

    German, Carl, Jr.

    The major purpose of this guide is to elicit the information necessary for writing educational specifications for facilities to house technical education programs in metallurgy. It is organized in these parts: (1) Part I discusses the major purpose, underlying assumptions, recent instructional trends, and guiding principles utilized in the…

  2. Solvent Extraction of Copper: An Extractive Metallurgy Exercise for Undergraduate Teaching Laboratories

    ERIC Educational Resources Information Center

    Smellie, Iain A.; Forgan, Ross S.; Brodie, Claire; Gavine, Jack S.; Harris, Leanne; Houston, Daniel; Hoyland, Andrew D.; McCaughan, Rory P.; Miller, Andrew J.; Wilson, Liam; Woodhall, Fiona M.

    2016-01-01

    A multidisciplinary experiment for advanced undergraduate students has been developed in the context of extractive metallurgy. The experiment serves as a model of an important modern industrial process that combines aspects of organic/inorganic synthesis and analysis. Students are tasked to prepare a salicylaldoxime ligand and samples of the…

  3. Powder metallurgy approaches to high temperature components for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Probst, H. B.

    1974-01-01

    Research is reported for the tensile strength, ductility, and heat performance characterisitics of powder metallurgy (p/m) superalloys. Oxide dispersion strengthened alloys were also evaluated for their strength during thermal processing. The mechanical attributes evident in both p/m supperalloys and dispersion strengthened alloys are discussed in terms of research into their possible combination.

  4. Power metallurgy approaches to high temperature components for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Probst, H. B.

    1974-01-01

    Work conducted by NASA and NASA contractors on prealloyed superalloy powders and materials strengthened by oxide dispersion is reviewed. Fabrication, tensile strength, superplasticity, grain growth control, stress rupture life, and grain-size and dispersion-level effects are covered. Distinct strength advantages of powder metallurgy superalloys over conventional wrought alloys are noted.

  5. The Application of Thermal Plasma to Extraction Metallurgy and Related Fields

    NASA Technical Reports Server (NTRS)

    Akashi, K.

    1980-01-01

    Various applications of thermal plasma to extraction metallurgy and related fields are surveyed, chiefly on the basis of documents published during the past two or three years. Applications to melting and smelting, to thermal decomposition, to reduction, to manufacturing of inorganic compounds, and to other fields are considered.

  6. The role of chemical metallurgy in the emerging field of materials science and engineering

    NASA Astrophysics Data System (ADS)

    Chang, Y. Austin

    1994-12-01

    Materials science and engineering has been emerging as a unique academic discipline during the last decade and a half. The role of chemical metallurgy in this emerging field is not well defined, yet it has played an important historical role in the intellectual development of the discipline of metallurgical engineering in terms of teaching, research, and technological appli-cations. In this lecture, I have attempted to define the role of chemical metallurgy in this emerg-ing field and, moreover, to propose using the broader term “chemical processing of material” instead of chemical metallurgy. The role is to educate materials scientists and engineers at the baccalaureate degree level as well as the graduate degree level. I believe that if materials sci-entists and engineers have a good grasp of the principles of chemical processing of materials, they will be in an excellent position to tackle many of the challenging and important problems facing us in the materials field. I have also given in this lecture three diverse examples of materials problems that have been studied using the basic principles of chemical processing of materials. These examples are used to demonstrate that the tools of chemical metallurgy can be used effectively to study many contemporary materials science and engineering problems.

  7. Iron's Role in Aluminum: A Powder Metallurgy and Sustainability Approach

    NASA Astrophysics Data System (ADS)

    Saller, Brandon Dale

    cryomilling. With respect to the powder, a differential scanning calorimetry and activation energy analysis elucidated the formation and phase transformation temperatures of the relevant intermetallic phases, and the microstructural factors that influenced them. With an understanding of the fundamental science behind the intermetallic formation in the Al-Fe system, the composition of helium atomized Al-2at.% Fe was chosen combined with high-pressure torsion processing to yield a bulk alloy that demonstrated an ultimate tensile strength of 488 MPa. This strength was achieved via a combination of two mechanisms: grain refinement (Hall-Petch) and dislocation-Al6Fe interactions (Orowan strengthening), with notable thermal stability present up until 450°C. Finally, the potential for Al-Fe as a sustainable alloy was studied and a link established between current environmental literature and metallurgy literature on the potential for incorporation of Fe into Al to create a structural alloy.

  8. High field performance of superconducting magnets using powder metallurgy processed Cu-Nb-Sn and Nb-Al

    SciTech Connect

    Zaleski, A.J.; Foner, S.

    1984-06-01

    Small superconducting magnets were fabricated with powder metallurgy processed Nb-Al wire and with powder metallurgy processed multistrand Cu-Nb--Sn wire with 19 tin cores. Tests in a background field of up to 15 T showed that short sample characteristics were achieved for three coils. Upper limits of resistivity were established for both powder metallurgy processed wires. The reacted wires in the magnets gave upper limits of resistivity at 10 T of less than 1.4 x 10/sup -14/ ..cap omega.. cm for the Nb/sub 3/Sn wire, and less than 9 x 10/sup -13/ ..cap omega.. cm for the Nb-Al wire.

  9. Metals in Past Societies: A Global Perspective on Indigenous African Metallurgy Shadreck Chirikure

    SciTech Connect

    Devanathan, Ram

    2015-10-01

    This slim book (166 pages) shines a spotlight on pre-industrial African metallurgy, its global connections, and anthropological implications. It integrates seemingly disparate disciplines, such as history, geology, ethnography, archeology, and metallurgy, to illustrate the diversity and innovation in metallurgy across Africa and the role of metals in the rise of socio-economic inequalities and political power. The book has 7 chapters and the focus on metals as enablers of human needs and wants is evident in each chapter. The first chapter presents the context of the work and data sources. The second chapter focuses on the origin and development of mining and metallurgy in pre-industrial Africa. Chapter 3 is dedicated to the interaction of nature and culture in the process of mining. Chapter 4 deals with the transformation of the ore into metal by smelting and the sociocultural aspects of this process. Chapter 5 explores the social and cultural roles acquired by metals as a result of fabrication into objects. Chapter 6 examines the social role of metals, trade in metals, cultural contact, proto-globalization, and technology transfer. Finally, Chapter 7 draws lessons for global anthropology from the African experience. The sources of information are adequately cited and the long list of references at the end of each chapter will be a boon to researchers in this field. The author highlights the cultural aspects and social context of the adoption of metallurgy in Africa while drawing parallels between practices in pre-industrial Africa and those in other parts of the world. The book is peppered with delightful vignettes that offer insights into the process of transforming nature into culturally significant objects. For instance, African miners, like their counterparts in Nepal and Latin America, called upon deities, spirits and ancestors to mediate between nature and humans. Women had distinct roles in this process, but there were variations in these roles and in the

  10. Investigation of machinability of iron based metal matrix composite (MMC) powder metallurgy parts

    NASA Astrophysics Data System (ADS)

    Szalay, Tibor; Czampa, Miklós; Markos, Sándor; Farkas, Balázs

    2012-09-01

    One of the advantages of powder metallurgy technology is that we may produce the final geometry of the required part saving considerable time and cost. However there are several applications that require parts need additional machining for example when the product contains threads, cross bore or slots. In these cases cutting of the hard and porous material may causes difficulties in manufacturing. The aim of the introduced research is the experimental investigation of the machinability of the iron based MMC powder metallurgy parts, determining the favourable composition of the powder and advantageous process parameters regarding the properties of the machinability. The research try to answer to the challenge of the poorly defined expression: machinability, and after defining the features and methods of the evaluation we develop advises for the proper technology parameters.

  11. Preparation of Three-Dimensional Graphene Foams Using Powder Metallurgy Templates.

    PubMed

    Sha, Junwei; Gao, Caitian; Lee, Seoung-Ki; Li, Yilun; Zhao, Naiqin; Tour, James M

    2016-01-26

    A simple and scalable method which combines traditional powder metallurgy and chemical vapor deposition is developed for the synthesis of mesoporous free-standing 3D graphene foams. The powder metallurgy templates for 3D graphene foams (PMT-GFs) consist of particle-like carbon shells which are connected by multilayered graphene that shows high specific surface area (1080 m(2) g(-1)), good crystallization, good electrical conductivity (13.8 S cm(-1)), and a mechanically robust structure. The PMT-GFs did not break under direct flushing with DI water, and they were able to recover after being compressed. These properties indicate promising applications of PMT-GFs for fields requiring 3D carbon frameworks such as in energy-based electrodes and mechanical dampening. PMID:26678869

  12. [Use of powder metallurgy for development of implants of Co-Cr-Mo alloy powder].

    PubMed

    Dabrowski, J R

    2001-04-01

    This paper discusses the application of powder metallurgy for the development of porous implantation materials. Powders obtained from Co-Cr-Mo alloy with different carbon content by water spraying and grinding, have been investigated. Cold pressing and rotary re-pressing methods were used for compressing the powder. It was found that the sintered materials obtained from water spraying have the most advantageous properties. PMID:11388037

  13. Hydrogen halide cleaning of powder metallurgy nickel-20 chromium-3 thoria.

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.

    1972-01-01

    The Cr2O3 content of powder metallurgy nickel-20 chromium-3 thoria was reduced with atmospheres consisting of hydrogen plus hydrogen chloride (HCl) or hydrogen bromide (HBr). The nonthoria oxygen content or 'oxygen excess' was reduced from an initial amount of greater than 50,000 ppm to less than 100 ppm. Low temperatures were effective, but lowest oxygen levels were achieved with the highest cleaning temperature of 1200 C.

  14. LACBED characterization of dislocations in Cu-Al-Ni shape memory alloys processed by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Rodriguez, P. P.; Ibarra, A.; San Jean, J.; Morniro, J. P.; No, M. L.

    2003-10-01

    Powder metallurgy Cu-AI-Ni shape memory alloys show excellent thermomechanical properties, being the fracture behavior close to the one observed in single crystals. However, the microstructural mechanisms responsible of such behavior are still under study. In this paper we present the characterization of the dislocations present in these alloys by Large Angle Convergent Beam Electron Diffraction (LACBED) in two different stages of the elaboration process: after HIP compaction and after hot rolling.

  15. Environmental concerns in extractive metallurgy. (Latest citations from METADEX). Published Search

    SciTech Connect

    Not Available

    1994-09-01

    The bibliography contains citations concerning pollution control in the extractive metallurgical industry. Articles discuss disposal of waste solids resulting from ore processing, treatment of waste water, recovery of particulate fines, material recovery from waste water, and remediation of waste streams from extractive metallurgy. Citations address processing of copper, gold, zinc, uranium, iron, lead, and other metal materials and metal-bearing ores. (Contains a minimum of 152 citations and includes a subject term index and title list.)

  16. Properties of WZ21 (%wt) alloy processed by a powder metallurgy route.

    PubMed

    Cabeza, Sandra; Garcés, Gerardo; Pérez, Pablo; Adeva, Paloma

    2015-06-01

    Microstructure, mechanical properties and corrosion behaviour of WZ21 (%wt) alloy prepared by a powder metallurgy route from rapidly solidified powders have been studied. Results were compared to those of the same alloy prepared through a conventional route of casting and extrusion. The microstructure of the extruded ingot consisted of α-Mg grains and Mg3Zn3Y2 (W-phase) and LPSO-phase particles located at grain boundaries. Moreover, stacking faults were also observed within α-Mg grains. The alloy processed by the powder metallurgy route exhibited a more homogeneous and finer microstructure, with a grain size of 2 μm. In this case W-phase and Mg24Y5 phase were identified, but not the LPSO-phase. The microstructural refinement induced by the use of rapidly solidified powders strengthened the alloy at room temperature and promoted superplasticity at higher strain rates. Corrosion behaviour in PBS medium evidenced certain physical barrier effect of the almost continuous arrangements of second phases aligned along the extrusion direction in conventionally processed WZ21 alloy, with a stable tendency around 7 mm/year. On the other hand, powder metallurgy processing promoted significant pitting corrosion, inducing accelerated corrosion rate during prolonged immersion times. PMID:25792409

  17. Physical metallurgy: Scientific school of the Academician V.M. Schastlivtsev

    NASA Astrophysics Data System (ADS)

    Tabatchikova, T. I.

    2016-04-01

    This paper is to honor Academician Vadim Mikhailovich Schastlivtsev, a prominent scientist in the field of metal physics and materials science. The article comprises an analysis of the topical issues of the physical metallurgy of the early 21st century and of the contribution of V.M. Schastlivtsev and of his school to the science of phase and structural transformations in steels. In 2015, Vadim Mikhailovich celebrates his 80th birthday, and this paper is timed to this honorable date. The list of his main publications is given in it.

  18. Fabrication and characterization of americium, neptunium and curium bearing MOX fuels obtained by powder metallurgy process

    NASA Astrophysics Data System (ADS)

    Lebreton, Florent; Prieur, Damien; Jankowiak, Aurélien; Tribet, Magaly; Leorier, Caroline; Delahaye, Thibaud; Donnet, Louis; Dehaudt, Philippe

    2012-01-01

    MOX fuel pellets containing up to 1.4 wt% of Minor Actinides (MA), i.e. Am, Np and Cm, were fabricated to demonstrate the technical feasibility of powder metallurgy process involving, pelletizing and sintering in controlled atmosphere. The compounds were then characterized using XRD, SEM and EDX/EPMA. Dense pellets were obtained which closed porosity mean size is equal to 7 μm. The results indicate the formation of (U, Pu)O 2 solid solution. However, microstructure contains some isolated UO 2 grains. The distribution of Am and Cm appears to be homogeneous whereas Np was found to be clustered at some locations.

  19. Dose and Dose Risk Caused by Natural Phenomena - Proposed Powder Metallurgy Core Manufacturing Facility

    SciTech Connect

    Holmes, W.G.

    2001-08-16

    The offsite radiological effects from high velocity straight winds, tornadoes, and earthquakes have been estimated for a proposed facility for manufacturing enriched uranium fuel cores by powder metallurgy. Projected doses range up to 30 mrem/event to the maximum offsite individual for high winds and up to 85 mrem/event for very severe earthquakes. Even under conservative assumptions on meteorological conditions, the maximum offsite dose would be about 20 per cent of the DOE limit for accidents involving enriched uranium storage facilities. The total dose risk is low and is dominated by the risk from earthquakes. This report discusses this test.

  20. Accelerated Near-Threshold Fatigue Crack Growth Behavior of an Aluminum Powder Metallurgy Alloy

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Newman, John A.

    2002-01-01

    Fatigue crack growth (FCG) research conducted in the near threshold regime has identified a room temperature creep crack growth damage mechanism for a fine grain powder metallurgy (PM) aluminum alloy (8009). At very low DK, an abrupt acceleration in room temperature FCG rate occurs at high stress ratio (R = Kmin/Kmax). The near threshold accelerated FCG rates are exacerbated by increased levels of Kmax (Kmax less than 0.4 KIC). Detailed fractographic analysis correlates accelerated FCG with the formation of crack-tip process zone micro-void damage. Experimental results show that the near threshold and Kmax influenced accelerated crack growth is time and temperature dependent.

  1. Materials for Advanced Turbine Engines. Volume 1; Power Metallurgy Rene 95 Rotating Turbine Engine Parts

    NASA Technical Reports Server (NTRS)

    Pfouts, W. R.; Shamblen, C. E.; Mosier, J. S.; Peebles, R. E.; Gorsler, R. W.

    1979-01-01

    An attempt was made to improve methods for producing powder metallurgy aircraft gas turbine engine parts from the nickel base superalloy known as Rene 95. The parts produced were the high pressure turbine aft shaft for the CF6-50 engine and the stages 5 through 9 compressor disk forgings for the CFM56/F101 engines. A 50% cost reduction was achieved as compared to conventional cast and wrought processing practices. An integrated effort involving several powder producers and a major forging source were included.

  2. Environmental legacy of copper metallurgy and Mongol silver smelting recorded in Yunnan Lake sediments.

    PubMed

    Hillman, Aubrey L; Abbott, Mark B; Yu, JunQing; Bain, Daniel J; Chiou-Peng, TzeHuey

    2015-03-17

    Geochemical measurements on well-dated sediment cores from Lake Er (Erhai) are used to determine the timing of changes in metal concentrations over 4500 years in Yunnan, a borderland region in southwestern China noted for rich mineral deposits but with inadequately documented metallurgical history. Our findings add new insight into the impacts and environmental legacy of human exploitation of metal resources in Yunnan history. We observe an increase in copper at 1500 BC resulting from atmospheric emissions associated with metallurgy. These data clarify the chronological issues related to links between the onset of Yunnan metallurgy and the advent of bronze technology in adjacent Southeast Asia, subjects that have been debated for nearly half a century. We also observe an increase from 1100 to 1300 AD in a number of heavy metals including lead, silver, zinc, and cadmium from atmospheric emissions associated with silver smelting. Culminating during the rule of the Mongols, known as the Yuan Dynasty (1271-1368 AD), these metal concentrations approach levels three to four times higher than those from industrialized mining activity occurring within the catchment today. Notably, the concentrations of lead approach levels at which harmful effects may be observed in aquatic organisms. The persistence of this lead pollution over time created an environmental legacy that likely contributes to known issues in modern day sediment quality. We demonstrate that historic metallurgical production in Yunnan can cause substantial impacts on the sediment quality of lake systems, similar to other paleolimnological findings around the globe. PMID:25685905

  3. The synthesis and characterization of Mg-Zn-Ca alloy by powder metallurgy process

    NASA Astrophysics Data System (ADS)

    Annur, Dhyah; Franciska P., L.; Erryani, Aprilia; Amal, M. Ikhlasul; Sitorus, Lyandra S.; Kartika, Ika

    2016-04-01

    Known for its biodegradation and biocompatible properties, magnesium alloys have gained many interests to be researched as implant material. In this study, Mg-3Zn-1Ca, Mg-29Zn-1Ca, and Mg-53Zn-4.3Ca (in wt%) were synthesized by means of powder metallurgy method. The compression strength and corrosion resistance of magnesium alloy were thoroughly examined. The microstructures of the alloy were characterized using optical microscopy, Scanning Electron Microscope, and also X-ray diffraction analysis. The corrosion resistance were evaluated using electrochemical analysis. The result indicated that Mg- Zn- Ca alloy could be synthesized using powder metallurgy method. This study showed that Mg-29Zn-1Ca would make the highest mechanical strength up to 159.81 MPa. Strengthening mechanism can be explained by precipitation hardening and grain refinement mechanism. Phase analysis had shown the formation of α Mg, MgO, and intermetallic phases: Mg2Zn11 and also Ca2Mg6Zn3. However, when the composition of Zn reach 53% weight, the mechanical strength will be decreasing. In addition, all of Mg-Zn-Ca alloy studied here had better corrosion resistance (Ecorr around -1.4 VSCE) than previous study of Mg. This study indicated that Mg- 29Zn- 1Ca alloy can be further analyzed to be a biodegradable implant material.

  4. Fatigue-crack propagation in aluminum-lithium alloys processed by power and ingot metallurgy

    SciTech Connect

    Venkateswara Rao, K.T.; Ritchie, R.O. ); Kim, N.J. ); Pizzo, P.P. )

    1990-04-01

    Fatigue-crack propagation behavior in powder-metallurgy (P/M) aluminum-lithium alloys, namely, mechanically-alloyed (MA) Al-4.0Mg-1.5Li-1.1C-0.80{sub 2} (Inco 905-XL) and rapid-solidification-processed (RSP) Al-2.6Li-1.0Cu-0.5Mg-0.5Zr (Allied 644-B) extrusions, has been studied, and results compared with data on an equivalent ingot-metallurgy (I/M) Al-Li alloy, 2090-T81 plate. Fatigue-crack growth resistance of the RSP Al-Li alloy is found to be comparable to the I/M Al-Li alloy; in contrast, crack velocities in MA 905-XL extrusions are nearly three orders of magnitude faster. Growth-rate response in both P/M Al-Li alloys, however, is high anisotropic. Results are interpreted in terms of the microstructural influence of strengthening mechanism, slip mode, grain morphology and texture on the development of crack-tip shielding from crack-path deflection and crack closure. 14 refs., 7 figs., 2 tabs.

  5. Microstructural and mechanical characteristics of porous iron prepared by powder metallurgy.

    PubMed

    Capek, Jaroslav; Vojtěch, Dalibor

    2014-10-01

    The demand for porous biodegradable load-bearing implants has been increasing recently. Based on investigations of biodegradable stents, porous iron may be a suitable material for such applications. In this study, we prepared porous iron samples with porosities of 34-51 vol.% by powder metallurgy using ammonium bicarbonate as a space-holder material. We studied sample microstructure (SEM-EDX and XRD), flexural and compressive behaviors (universal loading machine) and hardness HV5 (hardness tester) of the prepared samples. Sample porosity increased with the amount of spacer in the initial mixtures. Only the pore surfaces had insignificant oxidation and no other contamination was observed. Increasing porosity decreased the mechanical properties of the samples; although, the properties were still comparable with human bone and higher than those of porous non-metallic biomaterials and porous magnesium prepared in a similar way. Based on these results, powder metallurgy appears to be a suitable method for the preparation of porous iron for orthopedic applications. PMID:25175241

  6. Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique.

    PubMed

    Ryan, Garrett E; Pandit, Abhay S; Apatsidis, Dimitrios P

    2008-09-01

    One of the main issues in orthopaedic implant design is the fabrication of scaffolds that closely mimic the biomechanical properties of the surrounding bone. This research reports on a multi-stage rapid prototyping technique that was successfully developed to produce porous titanium scaffolds with fully interconnected pore networks and reproducible porosity and pore size. The scaffolds' porous characteristics were governed by a sacrificial wax template, fabricated using a commercial 3D-printer. Powder metallurgy processes were employed to generate the titanium scaffolds by filling around the wax template with titanium slurry. In the attempt to optimise the powder metallurgy technique, variations in slurry concentration, compaction pressure and sintering temperature were investigated. By altering the wax design template, pore sizes ranging from 200 to 400 microm were achieved. Scaffolds with porosities of 66.8 +/- 3.6% revealed compression strengths of 104.4+/-22.5 MPa in the axial direction and 23.5 +/- 9.6 MPa in the transverse direction demonstrating their anisotropic nature. Scaffold topography was characterised using scanning electron microscopy and microcomputed tomography. Three-dimensional reconstruction enabled the main architectural parameters such as pore size, interconnecting porosity, level of anisotropy and level of structural disorder to be determined. The titanium scaffolds were compared to their intended designs, as governed by their sacrificial wax templates. Although discrepancies in architectural parameters existed between the intended and the actual scaffolds, overall the results indicate that the porous titanium scaffolds have the properties to be potentially employed in orthopaedic applications. PMID:18556060

  7. Comparison of the creep properties of cast and powder metallurgy-extruded binary NiAl

    SciTech Connect

    Raj, S.V.; Garg, A.; Bieler, T.R.

    1997-12-31

    The current emphasis in developing NiAl-based alloys for use in gas-turbine aircraft engines requires a fundamental understanding of the creep mechanisms dominant in these materials. Here, a comparison of published creep data on binary NiAl showed that there is a discrepancy in the reported magnitudes of the stress exponents, n, which usually vary between about 4.5 and 6.5. In general, a close examination of the data suggested that n {approx} 4.5 for cast materials and 6.5 for powder-metallurgy extruded NiAl. Constant load compression creep tests were conducted on a cast and extruded binary NiAl between 800 and 1,200 K over a wide range of initial applied stresses varying between 4.0 and 200 MPa. The microstructures were characterized by transmission electron microscopy. The observed variations in the creep behavior of the extruded cast and powder-metallurgy NiAl appeared to be due to a grain size effect. Despite similarities in the values of n, no significant substructure was observed in most of the grains in the cast and extruded specimens at 1,100 and 1,200 K in contrast to the PM-extruded alloy, which revealed a wide range of substructural features in the power-law creep region. However, extensive subgrain formation and dislocations were widely observed at lower temperatures and higher stresses in the cast and extruded material.

  8. Influence of Sintering under Nitrogen Atmosphere on Microstructures of Powder Metallurgy Duplex Stainless Steels

    NASA Astrophysics Data System (ADS)

    García, C.; Martin, F.; Blanco, Y.; de Tiedra, M. P.; Aparicio, M. L.

    2009-02-01

    Duplex stainless steels (SS) obtained through powder metallurgy (PM) from austenitic AISI 316L and ferritic AISI 430L powders were mixed in different amounts to obtain a biphasic structure with an austenite/ferrite ratio of 50/50, 65/35, and 85/15. Prepared powders were compacted at 750 MPa and sintered in N2-H2 (95 pct-5 pct) at 1250 °C for 1 hour. Some samples sintered in vacuum were taken as references. Optical metallography, X-ray diffraction, and scanning electron microscopy/energy dispersive analysis of X-rays were used for microstructural characterization. Powder metallurgy base materials, AISI 430L and 316L, showed a single lamellar constituent after sintering in nitrogen. A mixed constituent was identified in PM duplex SS sintered in nitrogen and in vacuum. However, coarse and fine lamellar constituents were only present in PM duplex SS sintered in nitrogen. The effects of annealing solution heat treatment (1150 °C) on microstructures were evaluated. Homogeneous structures were obtained for the PM base materials, while for PM duplex SS, annealing dissolved lamellar constituents but mixed constituent were still present.

  9. Mechanisms of fatigue crack retardation following single tensile overloads in powder metallurgy aluminum alloys

    NASA Technical Reports Server (NTRS)

    Bray, G. H.; Reynolds, A. P.; Starke, E. A., Jr.

    1992-01-01

    In ingot metallurgy (IM) alloys, the number of delay cycles following a single tensile overload typically increases from a minimum at an intermediate baseline stress intensity range, Delta-K(B), with decreasing Delta-K(B) approaching threshold and increasing Delta-K(B) approaching unstable fracture to produce a characteristic 'U' shaped curve. Two models have been proposed to explain this behavior. One model is based on the interaction between roughness and plasticity-induced closure, while the other model only utilizes plasticity-induced closure. This article examines these models, using experimental results from constant amplitude and single overload fatigue tests performed on two powder metallurgy (PM) aluminum alloys, AL-905XL and AA 8009. The results indicate that the 'U'-shaped curve is primarily due to plasticity-induced closure, and that the plasticity-induced retardation effect is through-thickness in nature, occurring in both the surface and interior regions. However, the retardation effect is greater at the surface, because the increase in plastic strain at the crack tip and overload plastic zone size are larger in the plane-stress surface regions than in the plane-strain interior regions. These results are not entirely consistent with either of the proposed models.

  10. Development of an extra-high strength powder metallurgy nickel-base superalloy

    NASA Technical Reports Server (NTRS)

    Kent, W. B.

    1977-01-01

    A program was conducted to optimize the composition of NASA IIb-11, an alloy originally developed as a wrought material, for thermal stability and to determine the feasibility for producing the alloy using powder metallurgy techniques. Seven compositions were melted and atomized, hot isostatically pressed, cross rolled to disks and heat treated. Tensile and stress rupture properties from room temperature to 870 C (1600 F) were determined in addition to thermal stability characteristics. Processing variables included hot isostatic pressing parameters and handling, cross rolling procedures and heat treatment cycles. NASA IIb-11E displayed the best combination of overall properties for service as a 760 C (1400 F) disk material. Its composition is 0.06 C, 8.5 Cr, 9.0 Co, 2.0 Mo, 7.1 W, 6.6 Ta, 4.5 Al, 0.75 Ti, 0.5 V, 0.7 Hf, 0.01 B, 0.05 Zr and balance Ni. While the alloy exhibits the highest 760 C (1400 F) rupture strength reported for any powder metallurgy disk alloy to date, additional studies to further evaluate the effects of heat treatment may be required. The alloy is not susceptible to topologically close-packed phase formation during thermal exposure at 870 C (1600 F) for 1,500 hours, but its mechanical property levels are lowered due to grain boundary carbide formation.

  11. Advances in powder metallurgy - 1991. Vol. 6 - Aerospace, refractory and advanced materials; Proceedings of the Powder Metallurgy Conference and Exhibition, Chicago, IL, June 9-12, 1991

    SciTech Connect

    Pease, L.F. III; Sansoucy, R.J.

    1991-01-01

    Various papers on aerospace, refractory, and advanced materials are presented. Individual topics addressed include: nonequilibrium processing of powder alloys for aerospace applications, chemical conditioning of rapidly solidified aluminum alloy particulate, fabrication of rapidly solidified high temperature aluminum alloys, fatigue and fracture of an advanced PM-aluminum alloy, thermal and mechanical properties of extruded 7075-Al P/M alloys, reactive sintering and reactive hot isostatic pressing of iron aluminides, P/M processing and applications of Fe3Al-based intermetallics, properties of plasma atomized NiAl powders, processing of continuous fiber reinforced NiAl matrix composite. Also discussed are: powder forging process on an alumimum alloy, P/M magnesium particle composites, P/M short-fiber-reinforced magnesium, mechanical properties of a TiAl6V4 alloy processed by powder metallurgy, porous core/Be Ti-6-4 development for aerospace structures, consolidation and plasticity of Bi-Sr-Ca-Cu-O superconductors, development of a new W-Ni-Mn heavy alloy.

  12. Self-Paced Tutorial Courses for Mineral Science - Metallurgy Departments. Final Progress Report (July 1975-August 1980).

    ERIC Educational Resources Information Center

    Twidwell, L. G.

    Four courses in extractive metallurgy (Pyrometallurgy, Hydrometallurgy, Electrometallurgy; and Physical Chemistry of Iron and Steel) were prepared in a modular, self-paced format. Development of the course materials included: (1) preparation of course outlines by unit coordinators and advisory committees; (2) approval of course outlines (included…

  13. Corrosion Resistance of Powder Metallurgy Processed TiC/316L Composites with Mo Additions

    NASA Astrophysics Data System (ADS)

    Lin, Shaojiang; Xiong, Weihao

    2015-06-01

    To find out the effects of Mo addition on corrosion resistance of TiC/316L stainless steel composites, TiC/316L composites with addition of different contents of Mo were prepared by powder metallurgy. The corrosion resistance of these composites was evaluated by the immersion tests and polarization curves experiments. Results indicated that Mo addition decreased the corrosion rates of TiC/316L composites in H2SO4 solution in the case of Mo content below 2% whereas it displayed an opposite effect when Mo content was above that value. It was found that with an increase in the Mo content, the pitting corrosion resistance increased monotonically for TiC/316L composites in NaCl solution.

  14. Mechanical cycling effects at Fe-Mn-Si-Cr-Ni SMAs obtained by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Pricop, B.; Söyler, U.; Comčneci, R. I.; Özkal, B.; Bujoreanu, L. G.

    Specimens from Fe-Mn-Si-Cr-Ni SMA, obtained by powder metallurgy and compacted through hot rolling, were subjected to tensile loading-unloading cycles. The pseudoelastic parameters were determined based on recorded stress-strain curves, and their variation tendency with increasing the number of mechanical cycles was discussed. The gauges of tensile specimens were cut after mechanical cycling and were subjected to structural and dilatometric analysis. The structure was analyzed by XRD and SEM, aiming to reveal mechanical cycling effects. The thermomechanical response on heating, of mechanically cycled specimens, was recorded by dilatometry and revealed a tendency to enhance thermal expansion as an effect of increasing the number of cycles. The microstructural changes, induced by mechanical cycling, consisted in the stress induced formation of α' martensite.

  15. Causal Factors of Weld Porosity in Gas Tungsten Arc Welding of Powder Metallurgy Produced Titanium Alloys

    SciTech Connect

    Muth, Thomas R; Yamamoto, Yukinori; Frederick, David Alan; Contescu, Cristian I; Chen, Wei; Lim, Yong Chae; Peter, William H; Feng, Zhili

    2013-01-01

    ORNL undertook an investigation using gas tungsten arc (GTA) welding on consolidated powder metallurgy (PM) titanium (Ti) plate, to identify the causal factors behind observed porosity in fusion welding. Tramp element compounds of sodium and magnesium, residual from the metallothermic reduction of titanium chloride used to produce the titanium, were remnant in the starting powder and were identified as gas forming species. PM-titanium made from revert scrap where sodium and magnesium were absent, showed fusion weld porosity, although to a lesser degree. We show that porosity was attributable to hydrogen from adsorbed water on the surface of the powders prior to consolidation. The removal / minimization of both adsorbed water on the surface of titanium powder and the residues from the reduction process prior to consolidation of titanium powders, are critical to achieve equivalent fusion welding success similar to that seen in wrought titanium produced via the Kroll process.

  16. Crack Formation in Powder Metallurgy Carbon Nanotube (CNT)/Al Composites During Post Heat-Treatment

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Imai, Hisashi; Li, Shufeng; Jia, Lei; Umeda, Junko; Kondoh, Katsuyoshi

    2015-12-01

    After the post heat-treatment (PHT) process of powder metallurgy carbon nanotubes (CNT)/Al composites, micro-cracks were observed in the composites, leading to greatly degraded mechanical properties. To understand and suppress the crack formation, an in situ observation of CNT/Al composites was performed at elevated temperatures. PHT was also applied to various bulk pure Al and CNT/Al composites fabricated under different processes. It was observed that the composites consolidated by hot-extrusion might form micro-cracks, but those consolidated by spark plasma sintering (SPS) showed no crack after PHT. A high-temperature SPS process before hot-extrusion was effective to prevent crack formation. The release of residual stress in severe plastic deformed (SPD) materials was responsible for the cracking phenomena during the PHT process. Furthermore, a good particle bonding was essential and effective to suppress cracks for SPD materials in the PHT process.

  17. The alloy with a memory, 55-Nitinol: Its physical metallurgy, properties, and applications

    NASA Technical Reports Server (NTRS)

    Jackson, C. M.; Wagner, H. J.; Wasilewski, R. J.

    1972-01-01

    A series of nickel titanium alloys (55-Nitinol), which are unique in that they possess a shape memory, are described. Components made of these materials that are altered in their shapes by deformation under proper conditions return to predetermined shapes when they are heated to the proper temperature range. The shape memory, together with the force exerted and the ability of the material to do mechanical work as it returns to its predetermined shape, suggest a wide variety of industrial applications for the alloy. Also included are discussions of the physical metallurgy and the mechanical, physical, and chemical properties of 55-Nitinol; procedures for melting and processing the material into useful shapes; and a summary of applications.

  18. Studies on ancient silver metallurgy using SR XRF and micro-PIXE

    NASA Astrophysics Data System (ADS)

    Vasilescu, Angela; Constantinescu, Bogdan; Stan, Daniela; Radtke, Martin; Reinholz, Uwe; Buzanich, Guenter; Ceccato, Daniele

    2015-12-01

    This work presents a complex evaluation of a series of Geto-Thracian silver adornments found on Romanian territory, part of the 4th century BC Agighiol (Northern Dobruja) hoard and of an ingot from the 1st century BC Geto-Dacian Surcea (Transylvania) hoard, using Synchrotron Radiation X-Ray Fluorescence and micro- Proton Induced X-ray Emission analysis and mapping in order to investigate aspects related to the elemental composition of the metal and the metallurgy implied in their manufacture. One of the samples can be linked to Laurion as the source of metal, and several items contain silver probably originated in Macedonia. The set of silver items was found to be heteregenous as composition and microstructure, and corrosion-related elements could be also identified in the X-Ray maps.

  19. Abnormal magnetic behaviour of powder metallurgy austenitic stainless steels sintered in nitrogen

    NASA Astrophysics Data System (ADS)

    García, C.; Martin, F.; Blanco, Y.

    2009-10-01

    The magnetic response of AISI 304L and AISI 316L obtained through powder metallurgy and sintered in nitrogen were studied. AISI 304L sintered in nitrogen showed a ferromagnetic behaviour in as-sintered state while AISI 316L was paramagnetic. After solution annealing both were paramagnetic. Magnetic behaviour was analysed by using a vibrating sample magnetometer, a magnetic ferritscope and magnetic etching. A microstructural characterization was performed by means of optical metallography, X-ray diffraction, scanning electron microscopy (SEM) and energy dispersive analysis of X-rays (EDS). Some samples when needed were submitted to aged heat treatments at 675 and 875 °C for 90 min, 4, 6, 8 or 48 h. The main microstructural feature found was the presence of a lamellar constituent formed by nitride precipitates and an interlamellar matrix of austenite and/or ferrite. The abnormal magnetic response was explained based on this.

  20. Microstructure and mechanical properties of P/M (powder metallurgy) Fe sub 3 Al alloys

    SciTech Connect

    Knibloe, J.R.; Wright, R.N. ); Sikka, V.K. )

    1990-01-01

    Alloys based on Fe{sub 3}Al have an equilibrium DO{sub 3} structure at low temperatures and transform to a B2 structure above about 550{degree}C. The influence of different rates of quenching from the B2 region to room temperature on the microstructure and mechanical properties of powder metallurgy (P/M) alloys with two different Cr contents has been examined. By optimizing the processing to maximize the amount of B2 order, room temperature ductility approaching 20% has been achieved although the fracture mode is primarily brittle cleavage. The refined microstructure resulting from P/M processing contributes to enhanced yield strength compared to ingot processed materials with similar ductility. Increasing the Cr content from 2 to 5% has little effect on mechanical properties. 8 refs., 12 figs., 2 tabs.

  1. Accelerated Threshold Fatigue Crack Growth Effect-Powder Metallurgy Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Piascik, R. S.; Newman, J. A.

    2002-01-01

    Fatigue crack growth (FCG) research conducted in the near threshold regime has identified a room temperature creep crack growth damage mechanism for a fine grain powder metallurgy (PM) aluminum alloy (8009). At very low (Delta) K, an abrupt acceleration in room temperature FCG rate occurs at high stress ratio (R = K(sub min)/K(sub max)). The near threshold accelerated FCG rates are exacerbated by increased levels of K(sub max) (K(sub max) = 0.4 K(sub IC)). Detailed fractographic analysis correlates accelerated FCG with the formation of crack-tip process zone micro-void damage. Experimental results show that the near threshold and K(sub max) influenced accelerated crack growth is time and temperature dependent.

  2. Effects of fine porosity on the fatigue behavior of a powder metallurgy superalloy

    NASA Technical Reports Server (NTRS)

    Miner, R. V., Jr.; Dreshfield, R. L.

    1980-01-01

    Hot isostatically pressed powder metallurgy Astroloy was obtained which contained 1.4 percent fine porosity at the grain boundaries produced by argon entering the powder container during pressing. This material was tested at 650 C in fatigue, creep fatigue, tension, and stress-rupture and the results compared with previous data on sound Astroloy. The pores averaged about 2 micrometers diameter and 20 micrometers spacing. They did influence fatigue crack initiation and produced a more intergranular mode of propagation. However, fatigue life was not drastically reduced. A large 25 micrometers pore in one specimen resulting from a hollow particle did not reduce life by 60 percent. Fatigue behavior of the porous material showed typical correlation with tensile behavior. The plastic strain range life relation was reduced proportionately with the reduction in tensile ductility, but the elastic strain range-life relation was little changed reflecting the small reduction in sigma sub u/E for the porous material.

  3. Effect of glow discharge sintering in the properties of a composite material fabricated by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Cardenas, A.; Pineda, Y.; Sarmiento Santos, A.; Vera, E.

    2016-02-01

    Composite samples of 316 stainless steel and SiC were produced by powder metallurgy. Starting materials were mixed in different proportions and compacted to 700MPa. Sintering stage was performed by abnormal glow discharge plasma with direct current in an inert atmosphere of argon. The process was conducted at a temperature of 1200°C±5°C with a heating rate of 100°C/min. This work shows, the effectiveness of plasma sintering process to generate the first contacts between particles and to reduce vacancies. This fact is confirmed by comparing green and sintered density of the material. The results of porosity show a decrease after plasma sintering. Wear tests showed the wear mechanisms, noting that at higher SiC contents, the wear resistance decreases due to poor matrix-reinforcement interaction and by the porosity presence which causes matrix-reinforcement sliding.

  4. Effects of fine porosity on the fatigue behavior of a powder metallurgy superalloy

    NASA Technical Reports Server (NTRS)

    Miner, R. V.; Dreshfield, R. L.

    1980-01-01

    Hot-isostatically-pressed powder-metallurgy Astroloy was obtained which contained 1.4 percent porosity at the grain boundaries produced by argon entering the powder container during pressing. This material was tested at 650 C in fatigue, creep-fatigue, tension, and stress-rupture and the results compared with data on sound Astroloy. They influenced fatigue crack initiation and produced a more intergranular mode of propagation but fatigue life was not drastically reduced. Fatigue behavior of the porous material showed typical correlation with tensile behavior. The plastic strain range-life relation was reduced proportionately with the reduction in tensile ductility, but the elastic strain range-life relation was changed little.

  5. Physical and mechanical metallurgy of high purity Nb for accelerator cavities

    SciTech Connect

    Bieler, T. R.; Wright, N. T.; Pourboghrat, F.; Compton, C.; Hartwig, K. T.; Baars, D.; Zamiri, A.; Chandrasekaran, S.; Darbandi, P.; Jiang, H.; Skoug, E.; Balachandran, S.; Ice, Gene E; Liu, W.

    2010-01-01

    In the past decade, high Q values have been achieved in high purity Nb superconducting radio frequency (SRF) cavities. Fundamental understanding of the physical metallurgy of Nb that enables these achievements is beginning to reveal what challenges remain to establish reproducible and cost-effective production of high performance SRF cavities. Recent studies of dislocation substructure development and effects of recrystallization arising from welding and heat treatments and their correlations with cavity performance are considered. With better fundamental understanding of the effects of dislocation substructure evolution and recrystallization on electron and phonon conduction, as well as the interior and surface states, it will be possible to design optimal processing paths for cost-effective performance using approaches such as hydroforming, which minimizes or eliminates welds in a cavity.

  6. Emission of PCDD/Fs and dioxin-like PCBs from metallurgy industries in S. Korea.

    PubMed

    Yu, Byeong-Woon; Jin, Guang-Zhu; Moon, Young-Hoon; Kim, Min-Kwan; Kyoung, Jong-Dai; Chang, Yoon-Seok

    2006-01-01

    The metallurgy industry and municipal waste incinerators are considered the main sources of polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs) in many countries. This study investigated the emission factors and total emissions of PCDD/Fs and dioxin-like polychlorinated biphenyls (PCBs) emitted from metallurgy industries (including ferrous and nonferrous foundries) in Korea. The toxic equivalency (TEQ) emission factor of PCDD/Fs was the highest for secondary copper production, at 24451 ng I-TEQ/ton. The total estimated emissions of PCDD/Fs from these sources were 35.259 g I-TEQ/yr, comprising 0.088 g I-TEQ/yr from ferrous foundries, 31.713 g I-TEQ/yr from copper production, 1.716 g I-TEQ/yr from lead production, 0.111 g I-TEQ/yr from zinc production, and 1.631 g I-TEQ/yr from aluminum production. The total estimated annual amounts of dioxin-like PCBs emitted from these sources were 13.260 g WHO-TEQ/yr, comprising 0.014 g WHO-TEQ/yr from ferrous foundries, 12.675 g WHO-TEQ/yr from copper production, 0.170 g WHO-TEQ/yr from lead production, 0.017 g WHO-TEQ/yr from zinc production, and 0.384 g WHO-TEQ/yr from aluminum production. The highest emission factor was found for secondary copper smelting, at 9770 ng WHO-TEQ/ton. PMID:15939459

  7. Assessment of Low Cycle Fatigue Behavior of Powder Metallurgy Alloy U720

    NASA Technical Reports Server (NTRS)

    Gabb, Tomothy P.; Bonacuse, Peter J.; Ghosn, Louis J.; Sweeney, Joseph W.; Chatterjee, Amit; Green, Kenneth A.

    2000-01-01

    The fatigue lives of modem powder metallurgy disk alloys are influenced by variabilities in alloy microstructure and mechanical properties. These properties can vary as functions of variables the different steps of materials/component processing: powder atomization, consolidation, extrusion, forging, heat treating, and machining. It is important to understand the relationship between the statistical variations in life and these variables, as well as the change in life distribution due to changes in fatigue loading conditions. The objective of this study was to investigate these relationships in a nickel-base disk superalloy, U720, produced using powder metallurgy processing. Multiple strain-controlled fatigue tests were performed at 538 C (1000 F) at limited sets of test conditions. Analyses were performed to: (1) assess variations of microstructure, mechanical properties, and LCF failure initiation sites as functions of disk processing and loading conditions; and (2) compare mean and minimum fatigue life predictions using different approaches for modeling the data from assorted test conditions. Significant variations in life were observed as functions of the disk processing variables evaluated. However, the lives of all specimens could still be combined and modeled together. The failure initiation sites for tests performed at a strain ratio R(sub epsilon) = epsilon(sub min)/epsilon(sub max) of 0 were different from those in tests at a strain ratio of -1. An approach could still be applied to account for the differences in mean and maximum stresses and strains. This allowed the data in tests of various conditions to be combined for more robust statistical estimates of mean and minimum lives.

  8. Bio-mimetic scaling of mechanical behavior of thin films, coatings, and surfaces by Laser Interference Metallurgy

    SciTech Connect

    Daniel, Claus; Balk, Thomas John; Wobben, Thomas; M�cklich, Frank

    2005-01-01

    Biological solutions to enhance strength and stability often use hierarchical composite structures. The effect is not based on large chemical variations, but instead is realized by structural composites with long-range order. Laser Interference Metallurgy is a newly developed technique that utilizes this biological approach to optimize the mechanical properties of surfaces and thin films. The possibility of scaling mechanical properties is quantitatively analyzed and compared with the biological approach.

  9. The substitution of nickel for cobalt in hot isostatically pressed powder metallurgy UDIMET 700 alloys

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1985-01-01

    Nickel was substituted in various proportions for cobalt in a series of five hot-isostatically-pressed powder metallurgy alloys based on the UDIMET 700 composition. These alloys were given 5-step heat treatments appropriate for use in turbine engine disks. The resultant microstructures displayed three distinct sizes of gamma-prime particles in a gamma matrix. The higher cobalt-content alloys contained larger amounts of the finest gamma-prime particles, and had the lowest gamma-gamma-prime lattice mismatch. While all alloys had approximately the same tensile properties at 25 and 650 gamma C, the rupture lives at 650 and 760 C peaked in the alloys with cobalt contents between 12.7 and 4.3 pct. Minimum creep rates increased as cobalt contents were lowered, suggesting their correlation with the gamma-prime particle size distribution and the gamma-gamma-prime mismatch. It was also found that, on overaging at temperatures higher than suitable for turbine disk use, the high cobalt-content alloys were prone to sigma phase formation.

  10. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation

    DOE PAGESBeta

    Harp, Jason Michael; Lessing, Paul Alan; Hoggan, Rita Elaine

    2015-06-21

    In collaboration with industry, Idaho National Laboratory is investigating uranium silicide for use in future light water reactor fuels as a more accident resistant alternative to uranium oxide base fuels. Specifically this project was focused on producing uranium silicide (U3Si2) pellets by conventional powder metallurgy with a density greater than 94% of the theoretical density. This work has produced a process to consistently produce pellets with the desired density through careful optimization of the process. Milling of the U3Si2 has been optimized and high phase purity U3Si2 has been successfully produced. Results are presented from sintering studies and microstructural examinationsmore » that illustrate the need for a finely ground reproducible particle size distribution in the source powder. The optimized process was used to produce pellets for the Accident Tolerant Fuel-1 irradiation experiment. The average density of these pellets was 11.54 ±0.06 g/cm3. Additional characterization of the pellets by scaning electron microscopy and X-ray diffraction has also been performed. As a result, pellets produced in this work have been encapsulated for irradiation, and irradiation in the Advanced Test Reactor is expected soon.« less

  11. The substitution of nickel for cobalt in hot isostatically pressed powder metallurgy UDIMET 700 alloys

    NASA Astrophysics Data System (ADS)

    Harf, Fredric H.

    1985-06-01

    Nickel was substituted in various proportions for cobalt in a series of five hot-isostatically-pressed powder metallurgy alloys based on the UDIMET 700 composition. These alloys were given 5-step heat treatments appropriate for use in turbine engine disks. The resultant microstructures displayed three distinct sizes of γ' particles in a γ matrix. The higher cobalt-content alloys contained larger amounts of the finest γ' particles, and had the lowest γ-γ' lattice mismatch. While all alloys had approximately the same tensile properties at 25 and 650°C, the rupture lives at 650 and 760°C peaked in the alloys with cobalt contents between 12.7 and 4.3 pct. Minimum creep rates increased as cobalt contents were lowered, suggesting their correlation with the γ' particle size distribution and the γ-γ' mismatch. It was also found that, on overaging at temperatures higher than suitable for turbine disk use, the high cobalt-content alloys were prone to sigma phase formation.

  12. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation

    NASA Astrophysics Data System (ADS)

    Harp, Jason M.; Lessing, Paul A.; Hoggan, Rita E.

    2015-11-01

    In collaboration with industry, Idaho National Laboratory is investigating uranium silicide for use in future light water reactor fuels as a more accident resistant alternative to uranium oxide base fuels. Specifically this project was focused on producing uranium silicide (U3Si2) pellets by conventional powder metallurgy with a density greater than 94% of the theoretical density. This work has produced a process to consistently produce pellets with the desired density through careful optimization of the process. Milling of the U3Si2 has been optimized and high phase purity U3Si2 has been successfully produced. Results are presented from sintering studies and microstructural examinations that illustrate the need for a finely ground reproducible particle size distribution in the source powder. The optimized process was used to produce pellets for the Accident Tolerant Fuel-1 irradiation experiment. The average density of these pellets was 11.54 ± 0.06 g/cm3. Additional characterization of the pellets by scanning electron microscopy and X-ray diffraction has also been performed. Pellets produced in this work have been encapsulated for irradiation, and irradiation in the Advanced Test Reactor is expected soon.

  13. Application of powder metallurgy techniques to produce improved bearing elements for liquid rocket engines

    NASA Technical Reports Server (NTRS)

    Moracz, D. J.; Shipley, R. J.; Moxson, V. S.; Killman, R. J.; Munson, H. E.

    1992-01-01

    The objective was to apply powder metallurgy techniques for the production of improved bearing elements, specifically balls and races, for advanced cryogenic turbopump bearings. The materials and fabrication techniques evaluated were judged on the basis of their ability to improve fatigue life, wear resistance, and corrosion resistance of Space Shuttle Main Engine (SSME) propellant bearings over the currently used 440C. An extensive list of candidate bearing alloys in five different categories was considered: tool/die steels, through hardened stainless steels, cobalt-base alloys, and gear steels. Testing of alloys for final consideration included hardness, rolling contact fatigue, cross cylinder wear, elevated temperature wear, room and cryogenic fracture toughness, stress corrosion cracking, and five-ball (rolling-sliding element) testing. Results of the program indicated two alloys that showed promise for improved bearing elements. These alloys were MRC-2001 and X-405. 57mm bearings were fabricated from the MRC-2001 alloy for further actual hardware rig testing by NASA-MSFC.

  14. Development and Processing of Novel Aluminum Powder Metallurgy Materials for Heat Sink Applications

    NASA Astrophysics Data System (ADS)

    Smith, L. J. B.; Corbin, S. F.; Hexemer, R. L.; Donaldson, I. W.; Bishop, Donald Paul

    2014-02-01

    The objective of this research was to design aluminum powder metallurgy (PM) alloys and processing strategies that yielded sintered products with thermal properties that rivaled those of the cast and wrought aluminum alloys traditionally employed in heat sink manufacturing. Research has emphasized PM alloys within the Al-Mg-Sn system. In one sub-theme of research, the general processing response of each PM alloy was investigated through a combination of sintering trials, sintered density measurements, and microstructural assessments. In the second, the thermal properties of sintered products were studied in detail. Thermal conductivity was first determined using a calculated approach through discrete measurements of specific heat capacity, thermal diffusivity, and density and subsequently verified using a transient plane source technique on larger specimens. Experimental PM alloys achieved >99 pct theoretical density and exhibited thermal conductivity that ranged from 179 to 225 W/m K. Thermal performance was largely dominated by the amount of magnesium present within the aluminum grains and, in turn, bulk alloy chemistry. Data confirmed that the novel PM alloys were highly competitive with even the most advanced heat sink materials such as wrought 6063 and 6061.

  15. Interfacial metallurgy study of brazed joints between tungsten and fusion related materials for divertor design

    NASA Astrophysics Data System (ADS)

    Zhang, Yuxuan; Galloway, Alexander; Wood, James; Robbie, Mikael Brian Olsson; Easton, David; Zhu, Wenzhong

    2014-11-01

    In the developing DEMO divertor, the design of joints between tungsten to other fusion related materials is a significant challenge as a result of the dissimilar physical metallurgy of the materials to be joined. This paper focuses on the design and fabrication of dissimilar brazed joints between tungsten and fusion relevant materials such as EUROFER 97, oxygen-free high thermal conductivity (OFHC) Cu and SS316L using a gold based brazing foil. The main objectives are to develop acceptable brazing procedures for dissimilar joining of tungsten to other fusion compliant materials and to advance the metallurgical understanding within the interfacial region of the brazed joint. Four different butt-type brazed joints were created and characterised, each of which were joined with the aid of a thin brazing foil (Au80Cu19Fe1, in wt.%). Microstructural characterisation and elemental mapping in the transition region of the joint was undertaken and, thereafter, the results were analysed as was the interfacial diffusion characteristics of each material combination produced. Nano-indentation tests are performed at the joint regions and correlated with element composition information in order to understand the effects of diffused elements on mechanical properties. The experimental procedures of specimen fabrication and material characterisation methods are presented. The results of elemental transitions after brazing are reported. Elastic modulus and nano-hardness of each brazed joints are reported.

  16. Tribological Properties of the Fe-Al-Cr Alloyed Layer by Double Glow Plasma Surface Metallurgy

    NASA Astrophysics Data System (ADS)

    Luo, Xixi; Yao, Zhengjun; Zhang, Pingze; Zhou, Keyin; Wang, Zhangzhong

    2016-07-01

    A Fe-Al-Cr alloyed layer was deposited onto the surface of Q235 low-carbon steel via double glow plasma surface metallurgy (DGPSM) to improve the steel's wear resistance. After the DGPSM treatment, the Fe-Al-Cr alloyed layer grown on the Q235 low-carbon steel was homogeneous and compact and had a thickness of 25 µm. The layer was found to be metallurgically adhered to the substrate. The frictional coefficient and specific wear rate of the sample with a Fe-Al-Cr alloyed layer (treated sample) were both lower than those of the bare substrate (untreated sample) at the measured temperatures (25, 250 and 450 °C). The results indicated that the substrate and the alloyed layer suffered oxidative wear and abrasive wear, respectively, and that the treated samples exhibited much better tribological properties than did the substrate. The formation of Fe2AlCr, Fe3Al(Cr), FeAl(Cr), Fe(Cr) sosoloid and Cr23C6 phases in the alloyed layer dramatically enhanced the wear resistance of the treated sample. In addition, the alloyed layer's oxidation film exhibited a self-healing capacity with lubrication action that also contributed to the improvement of the wear resistance at high temperature. In particular, at 450 °C, the specific wear rate of treated sample was 2.524 × 10-4 mm3/N m, which was only 45.2% of the untreated sample.

  17. Effect of porosity on the thermal conductivity of copper processed by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Vincent, C.; Silvain, J. F.; Heintz, J. M.; Chandra, N.

    2012-03-01

    Powder metallurgy is a preferred method of processing copper-carbon composites due to the non-wetting nature of these materials. Porosities are inherently introduced in these material systems, and adversely affect the thermal conductivity of the composite material, among other factors including interfaces and reinforcement distribution. In this work, we focus on the matrix material of pure copper and systematically analyzed the effect of volume fraction of porosities on the thermal conductivity. Spherical and dendritic copper powder materials were processed and it was found that the surface chemistry and morphology of particles affected the thermal conductivity apart from the porosity values. In order to study the effect of porosities alone, dentritic powder was used in the study. The thermal conductivity vs. porosity behavior showed three distinct domains. In all the domains the thermal conductivity decreases as volume fraction of porosities increases; however, in domain II, the decrease was much steeper than the other two. We are able to explain the variation based on the presence of interconnected and open pores in domain III to closed pores in domain I, and the transition occurring in domain II. None of the existing models capture the overall behavior. However, if we specifically account for the variation of number of grain boundaries with sintering, then the modified EMT model can match the experimental data.

  18. Study of Metallic Carbide (MC) in a Ni-Co-Cr-Based Powder Metallurgy Superalloy

    NASA Astrophysics Data System (ADS)

    Ma, Wen-Bin; Liu, Guo-Quan; Hu, Ben-Fu; Hu, Peng-Hui; Zhang, Yi-Wen

    2014-01-01

    The evolution of carbides in a Ni-Cr-Co-based powder metallurgy (PM) superalloy in the as-atomized, as-atomized + annealed, hot isostatic pressed (HIPed) and HIPed + annealed conditions were systematically analyzed to understand the formation of blocky metallic carbide (MC) along the previous particle boundary (PPB). The results show that the carbides both on the powder surfaces and in the bulk of the powder particles are mainly fan-shaped MC whose decomposition temperatures are in the range of 1473 K to 1493 K (1200 °C to 1220 °C). PPB carbides in the HIPed alloy are mainly block-shaped MC, and the fan-shaped MC densely distributed in the area that have not been consumed by the recrystallized grains. The formation mechanism of PPB carbides can be described as follows: When the powders are HIPed at 1453 K (1180 °C), the fan-shaped carbides are decomposed at the migrating boundaries of recrystallized grains, and the preferential precipitation of block-shaped MC at PPB is promoted by the carbide-forming elements released by the fan-shaped carbides. When the HIPed alloy is annealed at 1453 K (1180 °C), the area fraction of PPB carbides increases with an increase in annealing time but that of the fan-shaped carbides exhibits opposite behavior. This proves the above formation mechanism of PPB carbides.

  19. A Novel Ni-Containing Powder Metallurgy Steel with Ultrahigh Impact, Fatigue, and Tensile Properties

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Wei; Shu, Guo-Jiun; Chang, Shih-Ying; Lin, Bing-Hao

    2014-08-01

    The impact toughness of powder metallurgy (PM) steel is typically inferior, and it is further impaired when the microstructure is strengthened. To formulate a versatile PM steel with superior impact, fatigue, and tensile properties, the influences of various microstructures, including ferrite, pearlite, bainite, and Ni-rich areas, were identified. The correlations between impact toughness with other mechanical properties were also studied. The results demonstrated that ferrite provides more resistance to impact loading than Ni-rich martensite, followed by bainite and pearlite. However, Ni-rich martensite presents the highest transverse rupture strength (TRS), fatigue strength, tensile strength, and hardness, followed by bainite, pearlite, and ferrite. With 74 pct Ni-rich martensite and 14 pct bainite, Fe-3Cr-0.5Mo-4Ni-0.5C steel achieves the optimal combination of impact energy (39 J), TRS (2170 MPa), bending fatigue strength at 2 × 106 cycles (770 MPa), tensile strength (1323 MPa), and apparent hardness (38 HRC). The impact energy of Fe-3Cr-0.5Mo-4Ni-0.5C steel is twice as high as those of the ordinary high-strength PM steels. These findings demonstrate that a high-strength PM steel with high-toughness can be produced by optimized alloy design and microstructure.

  20. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation

    SciTech Connect

    Harp, Jason Michael; Lessing, Paul Alan; Hoggan, Rita Elaine

    2015-06-21

    In collaboration with industry, Idaho National Laboratory is investigating uranium silicide for use in future light water reactor fuels as a more accident resistant alternative to uranium oxide base fuels. Specifically this project was focused on producing uranium silicide (U3Si2) pellets by conventional powder metallurgy with a density greater than 94% of the theoretical density. This work has produced a process to consistently produce pellets with the desired density through careful optimization of the process. Milling of the U3Si2 has been optimized and high phase purity U3Si2 has been successfully produced. Results are presented from sintering studies and microstructural examinations that illustrate the need for a finely ground reproducible particle size distribution in the source powder. The optimized process was used to produce pellets for the Accident Tolerant Fuel-1 irradiation experiment. The average density of these pellets was 11.54 ±0.06 g/cm3. Additional characterization of the pellets by scaning electron microscopy and X-ray diffraction has also been performed. As a result, pellets produced in this work have been encapsulated for irradiation, and irradiation in the Advanced Test Reactor is expected soon.

  1. Active Thermography for the Detection of Defects in Powder Metallurgy Compacts

    NASA Astrophysics Data System (ADS)

    Benzerrouk, Souheil; Ludwig, Reinhold; Apelian, Diran

    2007-03-01

    Active thermography is an established NDE technique that has become the method of choice in many industrial applications which require non-contact access to the parts under test. Unfortunately, when conducting on-line infrared (IR) inspection of powder metallic compacts, complications can arise due the generally low emissivity of metals and the thermally noisy environment typically encountered in manufacturing plants. In this paper we present results of an investigation that explores the suitability of active IR imaging of powder metallurgy compacts for the detection of surface and sub-surface defects in the pre-sinter state and in an on-line manufacturing setting to ensure complete quality assurance. Additional off-line tests can be carried out for statistical quality analyses. In this research, the IR imaging of sub-surface defects is based on a transient instrumentation approach that relies on an electric control system which synchronizes and monitors the thermal response due to an electrically generated heat source. Preliminary testing reveals that this newly developed pulsed thermography system can be employed for the detection of subsurface defects in green-state parts. Practical measurements agree well with theoretical predictions. The inspection approach being developed can be used for the testing of green-state compacts as they exit the compaction press at speeds of up to 1,000 parts per hour.

  2. Tuned wettability of material surfaces for tribological applications in miniaturized systems by laser interference metallurgy

    NASA Astrophysics Data System (ADS)

    Gachot, C.; Hans, M.; Catrin, R.; Schmid, U.; Mücklich, F.

    2009-05-01

    Innovative surfaces are successful, if we succeed to put in the correct place the correct property with technological efficiency. Until now, material surfaces can be systematically structured in different ways in order to fulfil chemical or mechanical requirements such as corrosion protection or wear resistance for example. Moreover, the properties of materials are strongly related to their microstructure as well as to their spatial distribution. For that reason, the design of materials with tailored microstructures is a key for the functionalization of surfaces. This is possible by an artificial fabrication technique called Laser Interference Metallurgy. In this context, textured or functionalized surfaces are beneficial in overcoming stiction and adhesion in MEMS devices. With regard to tribological applications, a systematic study of the effect of geometrically differing laser interference patterns on the wetting behaviour of metallic gold thin films with a thickness of about 300 nm and 125 μm thick polyimide foils should be presented. It could be shown that in case of gold films, a laser interference patterning reinforces the hydrophilic sample behavior whereas the polyimide foils reveal a significant increase in hydrophobicity after the laser patterning process. Both wetting regimes are advantageous under dry or lubricated friction conditions. The corresponding geometrical limits of the abovementioned method concerning the structure depth, periodicity and pattern form has been determined. All the samples have been characterized by scanning electron and focused ion beam microscopy and white light interferometry. Additionally, IR spectroscopy has been applied to the polyimide samples in order to separate topographic and chemical influences.

  3. Effects of Under Bump Metallurgy (UBM) Materials on the Corrosion of Electroless Nickel Films

    NASA Astrophysics Data System (ADS)

    Yu, Jin; Kim, Kyoungdoc

    2015-07-01

    The "black pad" phenomenon, which refers to the blackening of electroless-plated nickel-phosphorus [Ni(P)] films during the immersion Au process, is reproduced using pure chemicals and its fundamental mechanisms are investigated. In the present analysis, under bump metallurgy (UBM) materials have profound effects on the black pad susceptibility, and the presence of abnormally large nodules (ALNs) is essential to the black pad occurrence. The Ni(P) films over Cu, Ag, and Au substrates all exhibit ALNs and are susceptible to black pads, while those over Ni and Co substrates do not have ALNs and therefore are not susceptible to black pad. In the former cases, submicron scale nodular variations of the surface curvature lead to variations in the P concentration in the Ni(P) films, which induces sufficiently large potential differences to drive galvanic corrosion when exposed to the electrolyte, which is a gold cyanide solution in this study. The UBM effect is ascribed to differences in the Ni(P) film growth mode, where the transition from a layer-by-layer growth mode to an island growth mode is easier over Cu, Ag, and Au UBMs.

  4. Copper-Carbon and Aluminum-Carbon Composites Fabricated by Powder Metallurgy Processes

    NASA Astrophysics Data System (ADS)

    Silvain, Jean-François; Veillère, Amélie; Lu, Yongfeng

    2014-07-01

    The increase in both power and packing densities in power electronic devices has led to an increase in the market demand for effective heat-dissipating materials, with high thermal conductivity and thermal- expansion coefficient compatible with chip materials still ensuring the reliability of the power modules. In this context, metal matrix composites: carbon fibers and diamond-reinforced copper and aluminum matrix composites among them are considered very promising as a next generation of thermal-management materials in power electronic packages. These composites exhibit enhanced thermal properties compared to pure copper combined with lower density. This article presents the fabrication techniques of copper/carbon fibers and copper/diamond and aluminum/carbon fibers composite films by powder metallurgy and hot pressing. The thermal analyses clearly indicate that interfacial treatments are required in these composites to achieve high thermomechanical properties. Interfaces (through novel chemical and processing methods), when selected carefully and processed properly will form the right chemical/mechanical link between metal and carbon, enhancing all the desired thermal properties while minimizing the deleterious effect.

  5. Analysis of Load Transfer Mechanism in Cu Reinforced with Carbon Nanotubes Fabricated by Powder Metallurgy Route

    NASA Astrophysics Data System (ADS)

    Akbarpour, Mohammad Reza

    2016-05-01

    In this research, ductile and high-strength Cu-carbon nanotube (Cu-CNT) composites with different volume fractions of CNTs were fabricated using powder metallurgy route including mechanical milling and hot pressing and microstructure and tensile properties of the resulting materials were studied. Microstructural characterization through scanning electron microscope and quantifying the CNT agglomeration revealed that uniform dispersion of CNTs in Cu matrix decreases with increasing CNT volume fraction. In case of the higher volume fraction of CNTs (i.e., 8 vol.%), ~ 40% of CNTs were observed as agglomerates in the microstructure. Compared to unreinforced Cu, the yield and ultimate tensile strengths increased considerably (about 33% and 12%, respectively) with incorporation of CNTs up to 4 vol.%, but remained constant afterward. Meanwhile, the elongation decreased from 15.6% for Cu to 6.9% for Cu with 8 vol.% CNT. The relationship between the change in yield strength of the composite and the microstructure was investigated using analytical models. The results showed good consistency between calculated and measured data when the negative effect of CNT agglomerates in the models were taken into account.

  6. Niobium-titanium superconductors produced by powder metallurgy having artificial flux pinning centers

    DOEpatents

    Jablonski, Paul D.; Larbalestier, David C.

    1993-01-01

    Superconductors formed by powder metallurgy have a matrix of niobium-titanium alloy with discrete pinning centers distributed therein which are formed of a compatible metal. The artificial pinning centers in the Nb-Ti matrix are reduced in size by processing steps to sizes on the order of the coherence length, typically in the range of 1 to 10 nm. To produce the superconductor, powders of body centered cubic Nb-Ti alloy and the second phase flux pinning material, such as Nb, are mixed in the desired percentages. The mixture is then isostatically pressed, sintered at a selected temperature and selected time to produce a cohesive structure having desired characteristics without undue chemical reaction, the sintered billet is reduced in size by deformation, such as by swaging, the swaged sample receives heat treatment and recrystallization and additional swaging, if necessary, and is then sheathed in a normal conducting sheath, and the sheathed material is drawn into a wire. The resulting superconducting wire has second phase flux pinning centers distributed therein which provide enhanced J.sub.ct due to the flux pinning effects.

  7. Factors Influencing Dwell Fatigue Cracking in Notches of Powder Metallurgy Superalloys

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Telesman, J.; Ghosn, L.; Garg, A.; Gayda, J.

    2011-01-01

    The influences of heat treatment and cyclic dwells on the notch fatigue resistance of powder metallurgy disk superalloys were investigated for low solvus high refractory (LSHR) and ME3 disk alloys. Disks were processed to produce material conditions with varied microstructures and associated mechanical properties. Notched specimens were first subjected to baseline dwell fatigue cycles having a dwell at maximum load, as well as tensile, stress relaxation, creep rupture, and dwell fatigue crack growth tests at 704 C. Several material heat treatments displayed a bimodal distribution of fatigue life with the lives varying by two orders-of-magnitude, while others had more consistent fatigue lives. This response was compared to other mechanical properties, in search of correlations. The wide scatter in baseline dwell fatigue life was observed only for material conditions resistant to stress relaxation. For selected materials and conditions, additional tests were then performed with the dwells shifted in part or in total to minimum tensile load. The tests performed with dwells at minimum load exhibited lower fatigue lives than max dwell tests, and also exhibited early crack initiation and a substantial increase in the number of initiation sites. These results could be explained in part by modeling evolution of peak stresses in the notch with continued dwell fatigue cycling. Fatigue-environment interactions were determined to limit life for the fatigue cycles with dwells.

  8. Dwell Notch Low Cycle Fatigue Behavior of a Powder Metallurgy Nickel Disk Alloy

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Gabb, T. P.; Yamada, Y.; Ghosn, L. J.; Jayaraman, N.

    2012-01-01

    A study was conducted to determine the processes which govern dwell notch low cycle fatigue (NLCF) behavior of a powder metallurgy (P/M) ME3 disk superalloy. The emphasis was placed on the environmentally driven mechanisms which may embrittle the highly stressed notch surface regions and reduce NLCF life. In conjunction with the environmentally driven notch surface degradation processes, the visco-plastic driven mechanisms which can significantly change the notch root stresses were also considered. Dwell notch low cycle fatigue testing was performed in air and vacuum on a ME3 P/M disk alloy specimens heat treated using either a fast or a slow cooling rate from the solutioning treatment. It was shown that dwells at the minimum stress typically produced a greater life debit than the dwells applied at the maximum stress, especially for the slow cooled heat treatment. Two different environmentally driven failure mechanisms were identified as the root cause of early crack initiation in the min dwell tests. Both of these failure mechanisms produced mostly a transgranular crack initiation failure mode and yet still resulted in low NLCF fatigue lives. The lack of stress relaxation during the min dwell tests produced higher notch root stresses which caused early crack initiation and premature failure when combined with the environmentally driven surface degradation mechanisms. The importance of environmental degradation mechanisms was further highlighted by vacuum dwell NLCF tests which resulted in considerably longer NLCF lives, especially for the min dwell tests.

  9. State-of-the-art of recycling e-wastes by vacuum metallurgy separation.

    PubMed

    Zhan, Lu; Xu, Zhenming

    2014-12-16

    In recent era, more and more electric and electronic equipment wastes (e-wastes) are generated that contain both toxic and valuable materials in them. Most studies focus on the extraction of valuable metals like Au, Ag from e-wastes. However, the recycling of metals such as Pb, Cd, Zn, and organics has not attracted enough attentions. Vacuum metallurgy separation (VMS) processes can reduce pollution significantly using vacuum technique. It can effectively recycle heavy metals and organics from e-wastes in an environmentally friendly way, which is beneficial for both preventing the heavy metal contaminations and the sustainable development of resources. VMS can be classified into several methods, such as vacuum evaporation, vacuum carbon reduction and vacuum pyrolysis. This paper respectively reviews the state-of-art of these methods applied to recycling heavy metals and organics from several kinds of e-wastes. The method principle, equipment used, separating process, optimized operating parameters and recycling mechanism of each case are illustrated in details. The perspectives on the further development of e-wastes recycling by VMS are also presented. PMID:25407107

  10. Laser Interference Metallurgy - using interference as a tool for micro/nano structuring

    SciTech Connect

    M�cklich, Frank; Lasagni, Andres Fabian; Daniel, Claus

    2006-01-01

    Interfering laser beams of a high-power pulsed laser provide the opportunity of applying a direct lateral interaction with the surface microstructure of metals in micro/nanoscale based on photo-thermal nature mechanisms. This "Laser interference metallurgy" allows the creation of periodic patterns of features with a well defined long-range order on metallic surfaces at the scale of typical microstructures (from the sub micrometer level up to micrometers). This technique is an approach to initiate metallurgical processes such as melting, recrystallization, recovery, and defect and phase formation in the lateral scale of the microstructure itself and with an additional long range order given by the interference periodicity. In this work, the laser interference theory is described and used to calculate multi-beam interference patterns. A method to calculate the numbers of laser beams as well as the geometrical arrangement of the beams to obtain a desired periodical pattern prior to experiments is presented. The formation of long-range-ordered intermetallic compounds as well as macroscopic and microscopic variations of mechanical properties on structured metallic thin films are presented as examples.

  11. Emissions from pre-Hispanic metallurgy in the South American atmosphere.

    PubMed

    De Vleeschouwer, François; Vanneste, Heleen; Mauquoy, Dmitri; Piotrowska, Natalia; Torrejón, Fernando; Roland, Thomas; Stein, Ariel; Le Roux, Gaël

    2014-01-01

    Metallurgical activities have been undertaken in northern South America (NSA) for millennia. However, it is still unknown how far atmospheric emissions from these activities have been transported. Since the timing of metallurgical activities is currently estimated from scarce archaeological discoveries, the availability of reliable and continuous records to refine the timing of past metal deposition in South America is essential, as it provides an alternative to discontinuous archives, as well as evidence for global trace metal transport. We show in a peat record from Tierra del Fuego that anthropogenic metals likely have been emitted into the atmosphere and transported from NSA to southern South America (SSA) over the last 4200 yrs. These findings are supported by modern time back-trajectories from NSA to SSA. We further show that apparent anthropogenic Cu and Sb emissions predate any archaeological evidence for metallurgical activities. Lead and Sn were also emitted into the atmosphere as by-products of Inca and Spanish metallurgy, whereas local coal-gold rushes and the industrial revolution contributed to local contamination. We suggest that the onset of pre-Hispanic metallurgical activities is earlier than previously reported from archaeological records and that atmospheric emissions of metals were transported from NSA to SSA. PMID:25353346

  12. Innovative technologies for powder metallurgy-based disk superalloys: Progress and proposal

    NASA Astrophysics Data System (ADS)

    Chong-Lin, Jia; Chang-Chun, Ge; Qing-Zhi, Yan

    2016-02-01

    Powder metallurgy (PM) superalloys are an important class of high temperature structural materials, key to the rotating components of aero engines. In the purview of the present challenges associated with PM superalloys, two novel approaches namely, powder preparation and the innovative spray-forming technique (for making turbine disk) are proposed and studied. Subsequently, advanced technologies like electrode-induction-melting gas atomization (EIGA), and spark-plasma discharge spheroidization (SPDS) are introduced, for ceramic-free superalloy powders. Presently, new processing routes are sought after for preparing finer and cleaner raw powders for disk superalloys. The progress of research in spray-formed PM superalloys is first summarized in detail. The spray-formed superalloy disks specifically exhibit excellent mechanical properties. This paper reviews the recent progress in innovative technologies for PM superalloys, with an emphasis on new ideas and approaches, central to the innovation driving techniques like powder processing and spray forming. Project supported by the National Natural Science Foundation of China (Grant Nos. 50974016 and 50071014).

  13. Ultra-High Strength and Ductile Lamellar-Structured Powder Metallurgy Binary Ti-Ta Alloys

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Xu, Shenghang; Wang, Xin; Li, Kaiyang; Liu, Bin; Wu, Hong; Tang, Huiping

    2016-03-01

    Ultra-high strength and ductile powder metallurgy (PM) binary Ti-20at.%Ta alloy has been fabricated via sintering from elemental Ti and Ta powders and subsequent hot swaging and annealing. The microstructural evolution and mechanical properties in each stage were evaluated. Results show that inhomogeneous microstructures with Ti-rich and Ta-rich areas formed in the as-sintered Ti-Ta alloys due to limited diffusion of Ta. In addition, Kirkendall porosity was observed as a result of the insufficient diffusion of Ta. Annealing at 1000°C for up to 24 h failed to eliminate the pores. Hot swaging eliminated the residual sintering porosity and created a lamellar microstructure, consisting of aligned Ta-enriched and Ti-enriched phases. The hot-swaged and annealed PM Ti-20Ta alloy achieved an ultimate tensile strength of 1600 MPa and tensile elongation of more than 25%, due to its unique lamellar microstructure including the high toughness of Ta-enriched phases, the formation of α phase in the β matrix and the refined lamellae.

  14. Application of powder metallurgy technique to produce improved bearing elements for cryogenic aerospace engine turbopumps

    NASA Technical Reports Server (NTRS)

    Moxson, V. S.; Moracz, D. J.; Bhat, B. N.; Dolan, F. J.; Thom, R.

    1987-01-01

    Traditionally, vacuum melted 440C stainless steel is used for high performance bearings for aerospace cryogenic systems where corrosion due to condensation is a major concern. For the Space Shuttle Main Engine (SSME), however, 440C performance in the high-pressure turbopumps has been marginal. A basic assumption of this study was that powder metallurgy, rather than cast/wrought, processing would provide the finest, most homogeneous bearing alloy structure. Preliminary testing of P/M alloys (hardness, corrosion resistance, wear resistance, fatigue resistance, and fracture toughness) was used to 'de-select' alloys which did perform as well as baseline 440C. Five out of eleven candidate materials (14-4/6V, X-405, MRC-2001, T-440V, and D-5) based on preliminary screening were selected for the actual rolling-sliding five-ball testing. The results of this test were compared with high-performance vacuum-melted M50 bearing steel. The results of the testing indicated outstanding performance of two P/M alloys, X-405 and MRC-2001, which eventually will be further evaluated by full-scale bearing testing.

  15. Development of Cu-E-Glass Fiber Composites by Powder Metallurgy Route

    NASA Astrophysics Data System (ADS)

    Bhuyan, Pallabi; Singh, Harspreet; Kumar, Lailesh; Sharma, Nidhi; Panda, Deepankar; Verma, Deepanshu; NasmulAlam, Syed

    2016-02-01

    Cu-E glass fiber composites were developed with different vol. % of E-glass fiber (10, 20, 30 and 40 vol. %) by powder metallurgy route. Both as-received Cu and nanostructured Cu developed by milling as-received Cu powder for 20 h were used to develop various Cu-E-glass fiber composites. The effect of using as-received Cu powder and nanostructured Cu powder on the properties of the various Cu-E-glass fiber composites was analysed. The samples were sintered at 900oC for 1 h in inert atmosphere. The results show good bonding between the matrix and the reinforcement and there is homogeneous distribution of the reinforcement in the matrix.. The hardness of the Cu-E-glass fiber composites was found to increase from 0.8GPa to 2.7GPa with increase in vol. % of the glass fiber in case of unmilled and from 1.2GPa to 2.9GPa for the milled Cu-E-glass fiber composites. The as-milled Cu-E- glass fiber composites shows better densification and sinterability compared to the unmilled CuE-glass fiber composites

  16. An investigation of wear behaviors of different Monel alloys produced by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Esgin, U.; Özyürek, D.; Kaya, H.

    2016-04-01

    In the present study, wear behaviors of Monel 400, Monel 404, Monel R-405 and Monel K-500 alloys produced by Powder Metallurgy (P/M) method were investigated. These compounds prepared from elemental powders were cold-pressed (600 MPa) and then, sintered at 1150°C for 2 hours and cooled down to the room temperature in furnace environment. Monel alloys produced by the P/M method were characterized through scanning electron microscope (SEM+EDS), X-ray diffraction (XRD), hardness and density measurements. In wear tests, standard pin-on-disk type device was used. Specimens produced within four different Monel Alloys were tested under 1ms-1 sliding speed, under three different loads (20N, 30N and 40N) and five different sliding distances (400-2000 m). The results show that Monel Alloys have γ matrix and that Al0,9Ni4,22 intermetallic phase was formed in the structure. Also, the highest hardness value was measured with the Monel K-500 alloy. In wear tests, the maximum weight loss according to the sliding distance, was observed in Monel 400 and Monel 404 alloys while the minimum weight loss was achieved by the Monel K-500 alloy.

  17. Active Thermography for the Detection of Defects in Powder Metallurgy Compacts

    SciTech Connect

    Benzerrouk, Souheil; Ludwig, Reinhold; Apelian, Diran

    2007-03-21

    Active thermography is an established NDE technique that has become the method of choice in many industrial applications which require non-contact access to the parts under test. Unfortunately, when conducting on-line infrared (IR) inspection of powder metallic compacts, complications can arise due the generally low emissivity of metals and the thermally noisy environment typically encountered in manufacturing plants. In this paper we present results of an investigation that explores the suitability of active IR imaging of powder metallurgy compacts for the detection of surface and sub-surface defects in the pre-sinter state and in an on-line manufacturing setting to ensure complete quality assurance. Additional off-line tests can be carried out for statistical quality analyses. In this research, the IR imaging of sub-surface defects is based on a transient instrumentation approach that relies on an electric control system which synchronizes and monitors the thermal response due to an electrically generated heat source. Preliminary testing reveals that this newly developed pulsed thermography system can be employed for the detection of subsurface defects in green-state parts. Practical measurements agree well with theoretical predictions. The inspection approach being developed can be used for the testing of green-state compacts as they exit the compaction press at speeds of up to 1,000 parts per hour.

  18. Tribological properties of PM212 - A high temperature, self-lubricating, powder metallurgy composite

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Sliney, Harold E.

    1990-01-01

    This paper describes a research program to develop and evaluate a new high temperature, self-lubricating powder metallurgy composite, PM212. PM212 has the same composition as the plasma-sprayed coating, PS212, which contains 70 wt percent metal-bonded chromium carbide, 15 wt percent silver and 15 wt percent barium fluoride/calcium fluoride eutectic. The carbide acts as a wear resistant matrix and the silver and fluorides act as low and high temperature lubricants, respectively. The material is prepared by sequential cold press, cold isostatic pressing and sintering techniques. In this study, hemispherically tipped wear pins of PM212 were prepared and slid against superalloy disks at temperatures from 25 to 850 C in air in a pin-on-disk tribometer. Friction coefficients range from 0.29 to 0.38 and the wear of both the composite pins and superalloy disks was moderate to low in the 10(exp -5) to 10(exp -6) cubic mm/N-m range. Preliminary tests indicate that the material has a compressive strength of at least 130 MPa over the entire temperature range of 25 to 900 C. This material has promise for use as seal inserts, bushings, small inside diameter parts and other applications where plasma-sprayed coatings are impractical or too costly.

  19. Characterization of the carbides and the martensite phase in powder-metallurgy high-speed steel

    SciTech Connect

    Godec, Matjaz; Batic, Barbara Setina; Mandrino, Djordje; Nagode, Ales; Leskovsek, Vojteh; Skapin, Sreco D.; Jenko, Monika

    2010-04-15

    A microstructural characterization of the powder-metallurgy high-speed-steel S390 Microclean was performed based on an elemental distribution of the carbide phase as well as crystallographic analyses. The results showed that there were two types of carbides present: vanadium-rich carbides, which were not chemically homogeneous and exhibited a tungsten-enriched or tungsten-depleted central area; and chemically homogeneous tungsten-rich M{sub 6}C-type carbides. Despite the possibility of chemical inhomogenities, the crystallographic orientation of each of the carbides was shown to be uniform. Using electron backscatter diffraction the vanadium-rich carbides were determined to be either cubic VC or hexagonal V{sub 6}C{sub 5}, while the tungsten-rich carbides were M{sub 6}C. The electron backscatter diffraction results were also verified using X-ray diffraction. Several electron backscatter diffraction pattern maps were acquired in order to define the fraction of each carbide phase as well as the amount of martensite phase. The fraction of martensite was estimated using band-contrast images, while the fraction of carbides was calculated using the crystallographic data.

  20. Tribological properties of PM212: A high-temperature, self-lubricating, powder metallurgy composite

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Sliney, Harold E.

    1989-01-01

    This paper describes a research program to develop and evaluate a new high temperature, self-lubricating powder metallurgy composite, PM212. PM212 has the same composition as the plasma-sprayed coating, PS212, which contains 70 wt percent metal-bonded chromium carbide, 15 wt percent silver and 15 wt percent barium fluoride/calcium fluoride eutectic. The carbide acts as a wear resistant matrix and the silver and fluorides act as low and high temperature lubricants, respectively. The material is prepared by sequential cold press, cold isostatic pressing and sintering techniques. In this study, hemispherically tipped wear pins of PM212 were prepared and slid against superalloy disks at temperatures from 25 to 850 C in air in a pin-on-disk tribometer. Friction coefficients range from 0.29 to 0.38 and the wear of both the composite pins and superalloy disks was moderate to low in the 10(exp -5) to 10(exp -6) cubic mm/N-m range. Preliminary tests indicate that the material has a compressive strength of at least 130 MPa over the entire temperature range of 25 to 900 C. This material has promise for use as seal inserts, bushings, small inside diameter parts and other applications where plasma-sprayed coatings are impractical or too costly.

  1. Spray forming and mechanical properties of a new type powder metallurgy superalloy

    NASA Astrophysics Data System (ADS)

    Jia, Chong-Lin; Ge, Chang-Chun; Xia, Min; Gu, Tian-Fu

    2015-11-01

    The deposited billet of a new type powder metallurgy (PM) superalloy FGH4095M for use in turbine disk manufacturing has been fabricated using spray forming technology. The metallurgical quality of the deposited billet was analyzed in terms of density, texture, and grain size. Comparative research was done on the microstructure and mechanical properties between the flat disk preform prepared with hot isostatic pressing (HIP) and the same alloy forgings prepared with HIP followed by isothermal forging (IF). The results show that the density of the spray-formed and nitrogen-atomized deposit billet is above 99% of the theoretical density, indicating a compact structure. The grains are uniform and fine. The billet has weak texture with a random distribution in the spray deposition direction and perpendicular to the direction of deposition. A part of atomizing nitrogen exists in the preform in the form of carbonitride. Nitrogen-induced microporosity causes the density reduction of the preform. Compared with the process of HIP+IF, the superalloy FGH4095M after HIP has better mechanical properties at both room temperature and high temperature. The sizes of the γ‧ phase are finer in microstructure of the preform after HIP in comparison with the forgings after HIP+IF. This work shows that SF+HIP is a viable processing route for FGH4095M as a turbine-disk material. Project supported by the National Natural Science Foundation of China (Grant Nos. 50974016 and 50071014).

  2. Analysis of Load Transfer Mechanism in Cu Reinforced with Carbon Nanotubes Fabricated by Powder Metallurgy Route

    NASA Astrophysics Data System (ADS)

    Akbarpour, Mohammad Reza

    2016-04-01

    Abstract: In this research, ductile and high-strength Cu-carbon nanotube (Cu-CNT) composites with different volume fractions of CNTs were fabricated using powder metallurgy route including mechanical milling and hot pressing and microstructure and tensile properties of the resulting materials were studied. Microstructural characterization through scanning electron microscope and quantifying the CNT agglomeration revealed that uniform dispersion of CNTs in Cu matrix decreases with increasing CNT volume fraction. In case of the higher volume fraction of CNTs (i.e., 8 vol.%), ~ 40% of CNTs were observed as agglomerates in the microstructure. Compared to unreinforced Cu, the yield and ultimate tensile strengths increased considerably (about 33% and 12%, respectively) with incorporation of CNTs up to 4 vol.%, but remained constant afterward. Meanwhile, the elongation decreased from 15.6% for Cu to 6.9% for Cu with 8 vol.% CNT. The relationship between the change in yield strength of the composite and the microstructure was investigated using analytical models. The results showed good consistency between calculated and measured data when the negative effect of CNT agglomerates in the models were taken into account.

  3. Characterisation of titanium-titanium boride composites processed by powder metallurgy techniques

    SciTech Connect

    Selva Kumar, M.; Chandrasekar, P.; Chandramohan, P.; Mohanraj, M.

    2012-11-15

    In this work, a detailed characterisation of titanium-titanium boride composites processed by three powder metallurgy techniques, namely, hot isostatic pressing, spark plasma sintering and vacuum sintering, was conducted. Two composites with different volume percents of titanium boride reinforcement were used for the investigation. One was titanium with 20% titanium boride, and the other was titanium with 40% titanium boride (by volume). Characterisation was performed using X-ray diffraction, electron probe micro analysis - energy dispersive spectroscopy and wavelength dispersive spectroscopy, image analysis and scanning electron microscopy. The characterisation results confirm the completion of the titanium boride reaction. The results reveal the presence of titanium boride reinforcement in different morphologies such as needle-shaped whiskers, short agglomerated whiskers and fine plates. The paper also discusses how mechanical properties such as microhardness, elastic modulus and Poisson's ratio are influenced by the processing techniques as well as the volume fraction of the titanium boride reinforcement. - Highlights: Black-Right-Pointing-Pointer Ti-TiB composites were processed by HIP, SPS and vacuum sintering. Black-Right-Pointing-Pointer The completion of Ti-TiB{sub 2} reaction was confirmed by XRD, SEM and EPMA studies. Black-Right-Pointing-Pointer Hardness and elastic properties of Ti-TiB composites were discussed. Black-Right-Pointing-Pointer Processing techniques were compared with respect to their microstructure.

  4. Emissions from Pre-Hispanic Metallurgy in the South American Atmosphere

    PubMed Central

    De Vleeschouwer, François; Vanneste, Heleen; Mauquoy, Dmitri; Piotrowska, Natalia; Torrejón, Fernando; Roland, Thomas; Stein, Ariel; Le Roux, Gaël

    2014-01-01

    Metallurgical activities have been undertaken in northern South America (NSA) for millennia. However, it is still unknown how far atmospheric emissions from these activities have been transported. Since the timing of metallurgical activities is currently estimated from scarce archaeological discoveries, the availability of reliable and continuous records to refine the timing of past metal deposition in South America is essential, as it provides an alternative to discontinuous archives, as well as evidence for global trace metal transport. We show in a peat record from Tierra del Fuego that anthropogenic metals likely have been emitted into the atmosphere and transported from NSA to southern South America (SSA) over the last 4200 yrs. These findings are supported by modern time back-trajectories from NSA to SSA. We further show that apparent anthropogenic Cu and Sb emissions predate any archaeological evidence for metallurgical activities. Lead and Sn were also emitted into the atmosphere as by-products of Inca and Spanish metallurgy, whereas local coal-gold rushes and the industrial revolution contributed to local contamination. We suggest that the onset of pre-Hispanic metallurgical activities is earlier than previously reported from archaeological records and that atmospheric emissions of metals were transported from NSA to SSA. PMID:25353346

  5. Selective wet chemical etching of metallic thin films designed by laser interference metallurgy (LIMET)

    NASA Astrophysics Data System (ADS)

    Catrin, Rodolphe; Gachot, Carsten; Marchand, Günter; Schmid, Ulrich; Mücklich, Frank

    2009-05-01

    The physical and chemical behaviour of materials is strongly correlated with their microstructure. Therefore, much effort is invested in the advanced microstructural design of metallic thin films. Laser Interference Metallurgy (LIMET) is used to locally tune the grain architecture of metallic thin films from the nanoto the microscale. This means a defined size and orientation of the grains with lateral periodicity, by interfering on the sample surface two or more laser beams of a high power nanosecond pulsed Nd:YAG laser. This technique enables the local nucleation and crystallization of amorphous or nanocrystalline metallic thin films, thus combining nano- and microcrystalline regions ordered in periodic line- or lattice-like arrangements in a composite architecture. After having locally modified the microstructure of e-beam evaporated Pt and Au thin films by laser irradiation a wet chemical etching procedure was induced in hot aqua regia. Doing so, a selective etching is achieved without using conventional lithography. Due to the laser-induced recrystallization in periodic structures, these microcrystalline zones of specific oriented grains show a higher resistance against the wet chemical etchant than the as-deposited, nanocrystalline areas, which are completely removed down to the substrate. Therefore, this procedure may have the potential to be an alternative, low cost approach to conventional lithographic techniques and provides a novel method for a straight-forward patterning of metallic thin films.

  6. Bridging the gap between metallurgy and fatigue reliability of hydraulic turbine runners

    NASA Astrophysics Data System (ADS)

    Thibault, D.; Gagnon, M.; Godin, S.

    2014-03-01

    The failure of hydraulic turbine runners is a very rare event. Hence, in order to assess the reliability of these components, one cannot rely on statistical models based on the number of failures in a given population. However, as there is a limited number of degradation mechanisms involved, it is possible to use physically-based reliability models. Such models are more complicated but have the advantage of being able to account for physical parameters in the prediction of the evolution of runner degradation. They can therefore propose solutions to help improve reliability. With the use of such models, the effect of materials properties on runner reliability can easily be illustrated. This paper will present a brief review of the Kitagawa-Takahashi diagram that links the damage tolerance approach, based on fracture mechanics, to the stress or strain-life approaches. This diagram is at the centre of the reliability model used in this study. Using simplified response spectra obtained from on-site runner stress measurements, the paper will show how fatigue reliability is impacted by materials fatigue properties, namely fatigue crack propagation behaviour and fatigue limit obtained on S-N curves. It will also present a review of the most important microstructural features of 13%Cr- 4%Ni stainless steels used for runner manufacturing and will review how they influence fatigue properties in an effort to bridge the gap between metallurgy and turbine runners reliability.

  7. Tribological behavior of liquid metallurgy-processed AA 6061-B4C composites

    NASA Astrophysics Data System (ADS)

    Monikandan, V. V.; Joseph, M. A.; Rajendrakumar, P. K.; Sreejith, M.

    2015-01-01

    Aluminum metal matrix composites (AMMCs) possess improved properties compared to their monolithic counterparts and serve as a reliable alternative to replace them for applications that are considered as their niche. In the present investigation, 6061 Al alloy-10 wt% B4C composite is fabricated through liquid metallurgy stir casting technique and analyzed for its tribological characteristics. The uniform distribution of B4C reinforcement particles in the composite is achieved by the above route and is characterized using microstructure analysis and x-ray diffraction spectrum. The dry wear tests have been conducted under ambient conditions using a pin-on-disc tribometer. The worn surface and debris of the composite are also characterized using a scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDS). It is found that the combination of adhesion, delamination and abrasion constitute the predominant wear mechanism and this is influenced by the B4C particles, applied load, sliding distance and speed. The wear and friction coefficient increase with increase in applied load for all the load conditions studied. While the sliding speed fosters the engendering of a mechanically mixed layer (MML) to reduce the wear and friction coefficient, in contrast, the increase in sliding distance scuttles the MML formation owing to abrasion induced by the hard B4C particles.

  8. Liquid Phase Sintering of Boron-Containing Powder Metallurgy Steel with Chromium and Carbon

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Wei; Fan, Yu-Chi; Huang, Her-Yueh; Cai, Wen-Zhang

    2015-11-01

    Liquid phase sintering is an effective method to improve the densification of powder metallurgy materials. Boron is an excellent alloying element for liquid phase sintering of Fe-based materials. However, the roles of chromium and carbon, and particularly that of the former, on liquid phase sintering are still undetermined. This study demonstrated the effects of chromium and carbon on the microstructure, elemental distribution, boride structure, liquid formation, and densification of Fe-B-Cr and Fe-B-Cr-C steels during liquid phase sintering. The results showed that steels with 0.5 wt pct C densify faster than those without 0.5 wt pct C. Moreover, although only one liquid phase forms in Fe-B-Cr steel, adding 0.5 wt pct C reduces the formation temperature of the liquid phase by about 50 K (°C) and facilitates the formation of an additional liquid, resulting in better densification at 1473 K (1200 °C). In both Fe-B-Cr and Fe-B-Cr-C steels, increasing the chromium content from 1.5 to 3 wt pct raises the temperature of liquid formation by about 10 K (°C). Thermodynamic simulations and experimental results demonstrated that carbon atoms dissolved in austenite facilitate the eutectic reaction and reduce the formation temperature of the liquid phase. In contrast, both chromium and molybdenum atoms dissolved in austenite delay the eutectic reaction. Furthermore, the 3Cr-0.5Mo additive in the Fe-0.4B steel does not change the typical boride structure of M2B. With the addition of 0.5 wt pct C, the crystal structure is completely transformed from M2B boride to M3(B,C) boro-carbide.

  9. Divergence in Male and Female Manipulative Behaviors with the Intensification of Metallurgy in Central Europe

    PubMed Central

    Macintosh, Alison A.; Pinhasi, Ron; Stock, Jay T.

    2014-01-01

    Humeral morphology has been shown to reflect, in part, habitual manipulative behaviors in humans. Among Central European agricultural populations, long-term social change, increasing task specialization, and technological innovation all had the potential to impact patterns of habitual activity and upper limb asymmetry. However, systematic temporal change in the skeletal morphology of agricultural populations in this region has not been well-characterized. This study investigates diachronic patterns in humeral biomechanical properties and lengths among 174 adult Central European agriculturalists through the first ∼5400 years of farming in the region. Greater asymmetry in biomechanical properties was expected to accompany the introduction of metallurgy, particularly in males, while upper limb loading patterns were expected to be more similar between the Bronze and Iron Ages. Results revealed a divergence in the lateralization of upper limb biomechanical properties by sex between the Early/Middle Neolithic and Early/Middle Bronze Age. Neolithic females had significantly more variable properties than males in both humeri, while Bronze Age female properties became homogeneous and very symmetrical relative to the right-biased lateralization of contemporaneous males. The Bronze Age to Iron Age transition was associated with morphological change among females, with a significant increase in right-biased asymmetry and a concomitant reduction in sexual dimorphism. Relative to biomechanical properties, humeral length variation and asymmetry were low though some significant sexual dimorphism and temporal change was found. It was among females that the lateralization of humeral biomechanical properties, and variation within them, changed most profoundly through time. This suggests that the introduction of the ard and plow, metallurgical innovation, task specialization, and socioeconomic change through ∼5400 years of agriculture impacted upper limb loading in Central

  10. Effects of porosity on corrosion resistance of Mg alloy foam produced by powder metallurgy technology

    SciTech Connect

    Aghion, E. Perez, Y.

    2014-10-15

    Magnesium alloy foams have the potential to serve as structural material for regular light-weight applications as well as for biodegradable scaffold implants. However, their main disadvantage relates to the high reactivity of magnesium and consequently their natural tendency to corrode in regular service conditions and in physiological environments. The present study aims at evaluating the effect of porosity on the corrosion resistance of MRI 201S magnesium alloy foams in 0.9% NaCl solution and in phosphate buffer saline solution as a simulated physiological electrolyte. The magnesium foams were produced by powder metallurgy technology using space-holding particles to control the porosity content. Machined chips were used as raw material for the production of Mg alloy powder by milling process. The microstructure of the foams was examined using optical and scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analysis. The corrosion behavior was evaluated by immersion test and potentiodynamic polarization analysis. The results obtained clearly demonstrate that the porosity has a significant effect on the corrosion resistance of the tested foams. Foams with 14–19% porosity have a corrosion rate of 4–10 mcd and 7–15 mcd in NaCl and phosphate buffer saline solution, respectively, compared to only 0.10 mcd for the same alloy in as cast conditions. This increased corrosion degradation of the Mg foams by more than one order of magnitude compared to the cast alloy may limit their potential application in regular and physiological environments. - Highlights: • Porosity has a detrimental effect on corrosion resistance of MRI 201S Mg foams. • 14–19% porosity increases the corrosion rate by more than one order of magnitude. • Accelerated corrosion limits the use of foams in regular/physiological environments.

  11. Mg-Zn based composites reinforced with bioactive glass (45S5) fabricated via powder metallurgy

    NASA Astrophysics Data System (ADS)

    Ab llah, N.; Jamaludin, S. B.; Daud, Z. C.; Zaludin, M. A. F.

    2016-07-01

    Metallic implants are shifting from bio-inert to bioactive and biodegradable materials. These changes are made in order to improve the stress shielding effect and bio-compatibility and also avoid the second surgery procedure. Second surgery procedure is required if the patient experienced infection and implant loosening. An implant is predicted to be well for 15 to 20 years inside patient body. Currently, magnesium alloys are found to be the new biomaterials because of their properties close to the human bones and also able to degrade in the human body. In this work, magnesium-zinc based composites reinforced with different content (5, 15, 20 wt. %) of bioactive glass (45S5) were fabricated through powder metallurgy technique. The composites were sintered at 450˚C. Density and porosity of the composites were determined using the gas pycnometer. Microstructure of the composites was observed using an optical microscope. In-vitro bioactivity behavior was evaluated in the simulated body fluid (SBF) for 7 days. Fourier Transform Infrared (FTIR) was used to characterize the apatite forming on the samples surface. The microstructure of the composite showed that the pore segregated near the grain boundaries and bioglass clustering was observed with increasing content of bioglass. The true density of the composites increased with the increasing content of bioglass and the highest value of porosity was indicated by the Mg-Zn reinforced with 20 wt.% of bioglass. The addition of bio-glass to the Mg-Zn has also induced the formation of apatite layer after soaking in SBF solution.

  12. Interfacial reactions and wetting in Al-Mg sintered by powder metallurgy process

    NASA Astrophysics Data System (ADS)

    Faisal, Heny; Darminto, Triwikantoro, Zainuri, M.

    2016-04-01

    Was conducted to analyze the effect of temperature variation on the bonding interface sintered composite Al-Mg and analyze the effect of variations of the density and hardness sinter. Research carried out by the base material powders of Al, Mg powder and solvent n-butanol. The method used in this study is a powder metallurgy, with a composition of 60% volume fraction of Al - 40% Mg. Al-Mg mixing with n-butanol for 1 hour at 500 rpm. Then the emphasis (cold comression) with a size of 1.4 cm in diameter dies and height of 2.8 cm, is pressed with a force of 20 MPa and held for 15 minutes. After the sample into pellets, then sintered at various temperatures 300 °C, 350 °C, 400 °C and 450 °C. Characterization is done by using the testing green density, sintered density, X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), vickers microhardness, and press test. XRD data analysis done by using X'Pert High Score Plus (HSP) to determine whether there is a new phase is formed. Test results show that the sintered density increasing sintering temperature, the resulting density is also increasing (shrinkage). However, at a temperature of 450 °C decreased (swelling). With the increased sinter density, interfacial bonding getting Kuta and more compact so that its hardness is also increased. From the test results of SEM / EDX, there Mg into Al in the border area. At temperatures of 300 °C, 350 °C, 400 °C, the phase formed is Al, Mg and MgO. While phase is formed at a temperature of 450 °C is aluminum magnesium (Al3Mg2), Aluminum Magnesium Zinc (AlMg2Zn).

  13. In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy.

    PubMed

    Zheng, Y F; Gu, X N; Xi, Y L; Chai, D L

    2010-05-01

    Mg/Ca (1 wt.%, 5 wt.%, 10 wt.% Ca) composites were prepared from pure magnesium and calcium powders using the powder metallurgy method, aiming to enlarge the addition of Ca content without the formation of Mg(2)Ca. The microstructures, mechanical properties and cytotoxicities of Mg/Ca composite samples were investigated. The corrosion of Mg/Ca composites in Dulbecco's modified Eagle's medium (DMEM) for various immersion intervals was studied by electrochemical impedance spectroscopy measurements and environmental scanning electron microscope, with the concentrations of released Mg and Ca ions in DMEM for various immersion time intervals being measured. It was shown that the main constitutional phases were Mg and Ca, which were uniformly distributed in the Mg matrix. The ultimate tensile strength (UTS) and elongation of experimental composites decreased with increasing Ca content, and the UTS of Mg/1Ca composite was comparable with that of as-extruded Mg-1Ca alloy. The corrosion potential increased with increasing Ca content, whereas the current density and the impedance decreased. It was found that the protective surface film formed quickly at the initial immersion stage. With increasing immersion time, the surface film became compact, and the corrosion rate of Mg/Ca composites slowed down. The surface film consisted mainly of CaCO(3), MgCO(3)x3H(2)O, HA and Mg(OH)(2) after 72 h immersion in DMEM. Mg/1Ca and Mg/5Ca composite extracts had no significant toxicity (p>0.05) to L-929 cells, whereas Mg/10Ca composite extract induced approximately 40% reduced cell viability. PMID:19815098

  14. Divergence in male and female manipulative behaviors with the intensification of metallurgy in Central Europe.

    PubMed

    Macintosh, Alison A; Pinhasi, Ron; Stock, Jay T

    2014-01-01

    Humeral morphology has been shown to reflect, in part, habitual manipulative behaviors in humans. Among Central European agricultural populations, long-term social change, increasing task specialization, and technological innovation all had the potential to impact patterns of habitual activity and upper limb asymmetry. However, systematic temporal change in the skeletal morphology of agricultural populations in this region has not been well-characterized. This study investigates diachronic patterns in humeral biomechanical properties and lengths among 174 adult Central European agriculturalists through the first ∼ 5400 years of farming in the region. Greater asymmetry in biomechanical properties was expected to accompany the introduction of metallurgy, particularly in males, while upper limb loading patterns were expected to be more similar between the Bronze and Iron Ages. Results revealed a divergence in the lateralization of upper limb biomechanical properties by sex between the Early/Middle Neolithic and Early/Middle Bronze Age. Neolithic females had significantly more variable properties than males in both humeri, while Bronze Age female properties became homogeneous and very symmetrical relative to the right-biased lateralization of contemporaneous males. The Bronze Age to Iron Age transition was associated with morphological change among females, with a significant increase in right-biased asymmetry and a concomitant reduction in sexual dimorphism. Relative to biomechanical properties, humeral length variation and asymmetry were low though some significant sexual dimorphism and temporal change was found. It was among females that the lateralization of humeral biomechanical properties, and variation within them, changed most profoundly through time. This suggests that the introduction of the ard and plow, metallurgical innovation, task specialization, and socioeconomic change through ∼ 5400 years of agriculture impacted upper limb loading in Central

  15. Study of alumina-trichite reinforcement of a nickel-based matric by means of powder metallurgy

    NASA Technical Reports Server (NTRS)

    Walder, A.; Hivert, A.

    1982-01-01

    Research was conducted on reinforcing nickel based matrices with alumina trichites by using powder metallurgy. Alumina trichites previously coated with nickel are magnetically aligned. The felt obtained is then sintered under a light pressure at a temperature just below the melting point of nickel. The halogenated atmosphere technique makes it possible to incorporate a large number of additive elements such as chromium, titanium, zirconium, tantalum, niobium, aluminum, etc. It does not appear that going from laboratory scale to a semi-industrial scale in production would create any major problems.

  16. Effects of carbon and hafnium concentrations in wrought powder-metallurgy superalloys based on NASA 2B-11 alloy

    NASA Technical Reports Server (NTRS)

    Miner, R. V., Jr.

    1976-01-01

    A candidate alloy for advanced-temperature turbine engine disks, and four modifications of that alloy with various C and Hf concentrations were produced as cross-rolled disks from prealloyed powder that was hot isostatically compacted. The mechanical properties, microstructures, and phase relations of the alloys are discussed in terms of their C and Hf concentrations. A low-C and high-Hf modification of IIB-11 had the best balance of mechanical properties for service below about 750 C. Because of their finer grain sizes, none of the powder-metallurgy alloys produced had the high-temperature rupture strength of conventionally cast and wrought IIB-11.

  17. Early atmospheric metal pollution provides evidence for Chalcolithic/Bronze Age mining and metallurgy in Southwestern Europe.

    PubMed

    Martínez Cortizas, Antonio; López-Merino, Lourdes; Bindler, Richard; Mighall, Tim; Kylander, Malin E

    2016-03-01

    Although archaeological research suggests that mining/metallurgy already started in the Chalcolithic (3rd millennium BC), the earliest atmospheric metal pollution in SW Europe has thus far been dated to ~3500-3200 cal.yr. BP in paleo-environmental archives. A low intensity, non-extensive mining/metallurgy and the lack of appropriately located archives may be responsible for this mismatch. We have analysed the older section (>2100 cal.yr. BP) of a peat record from La Molina (Asturias, Spain), a mire located in the proximity (35-100 km) of mines which were exploited in the Chalcolithic/Bronze Age, with the aim of assessing evidence of this early mining/metallurgy. Analyses included the determination of C as a proxy for organic matter content, lithogenic elements (Si, Al, Ti) as markers of mineral matter, and trace metals (Cr, Cu, Zn, Pb) and stable Pb isotopes as tracers of atmospheric metal pollution. From ~8000 to ~4980 cal.yr. BP the Pb composition is similar to that of the underlying sediments (Pb 15 ± 4 μg g(-1); (206)Pb/(207)Pb 1.204 ± 0.002). A sustained period of low (206)Pb/(207)Pb ratios occurred from ~4980 to ~2470 cal.yr. BP, which can be divided into four phases: Chalcolithic (~4980-3700 cal.yr. BP), (206)Pb/(207)Pb ratios decline to 1.175 and Pb/Al ratios increase; Early Bronze Age (~3700-3500 cal.yr. BP), (206)Pb/(207)Pb increase to 1.192 and metal/Al ratios remain stable; Late Bronze Age (~3500-2800 cal.yr. BP), (206)Pb/(207)Pb decline to their lowest values (1.167) while Pb/Al and Zn/Al increase; and Early Iron Age (~2800-2470 cal.yr. BP), (206)Pb/(207)Pb increase to 1.186, most metal/Al ratios decrease but Zn/Al shows a peak. At the beginning of the Late Iron Age, (206)Pb/(207)Pb ratios and metal enrichments show a rapid return to pre-anthropogenic values. These results provide evidence of regional/local atmospheric metal pollution triggered by the earliest phases of mining/metallurgy in the area, and reconcile paleo-environmental and

  18. Fabrication of Powder Metallurgy Pure Ti Material by Using Thermal Decomposition of TiH2

    NASA Astrophysics Data System (ADS)

    Mimoto, Takanori; Nakanishi, Nozomi; Umeda, Junko; Kondoh, Katsuyoshi

    Titanium (Ti) and titanium alloys have been interested as an engineering material because they are widely used across various industrial applications, for example, motorcycle, automotive and aerospace industries, due to their light weight, high specific strength and superior corrosion resistance. Ti materials are particularly significant for the aircraft using carbon/carbon (C/C) composites, for example, carbon fiber reinforced plastics (CFRP), because Ti materials are free from the problem of contact corrosion between C/C composites. However, the applications of Ti materials are limited because of their high cost. From a viewpoint of cost reduction, cost effective process to fabricate Ti materials is strongly required. In the present study, the direct consolidation of titanium hydride (TiH2) raw powders in solid-state was employed to fabricate pure Ti bulk materials by using thermal decomposition of TiH2. In general, the production cost of Ti components is expensive due to using commercially pure (CP) Ti powders after dehydrogenation. On the other hand, the novel process using TiH2 powders as starting materials is a promising low cost approach for powder metallurgy (P/M) Ti products. Furthermore, this new process is also attractive from a viewpoint of energy saving because the dehydrogenation is integrated into the sintering process. In this study, TiH2 raw powders were directly consolidated by conventional press technique at 600 MPa to prepare TiH2 powder compacted billets. To thermally decompose TiH2 and obtain sintered pure Ti billets, the TiH2 powder billets were heated in the integrated sintering process including dehydrogenation. The hot-extruded pure Ti material, which was heat treated at 1273 K for 180 min in argon gas atmosphere, showed tensile strength of 701.8 MPa and elongation of 27.1%. These tensile properties satisfied the requirements for JIS Ti Grade 4. The relationship between microstructures, mechanical properties response and heat treatment

  19. Metallurgy, thermal stability, and failure mode of the commercial Bi-Te-based thermoelectric modules.

    SciTech Connect

    Yang, Nancy Y. C.; Morales, Alfredo Martin

    2009-02-01

    Bi-Te-based thermoelectric (TE) alloys are excellent candidates for power generation modules. We are interested in reliable TE modules for long-term use at or below 200 C. It is known that the metallurgical characteristics of TE materials and of interconnect components affect the performance of TE modules. Thus, we have conducted an extensive scientific investigation of several commercial TE modules to determine whether they meet our technical requirements. Our main focus is on the metallurgy and thermal stability of (Bi,Sb){sup 2}(Te,Se){sup 3} TE compounds and of other materials used in TE modules in the temperature range between 25 C and 200 C. Our study confirms the material suite used in the construction of TE modules. The module consists of three major components: AlN cover plates; electrical interconnects; and the TE legs, P-doped (Bi{sub 8}Sb{sub 32})(Te{sub 60}) and N-doped (Bi{sub 37}Sb{sub 3})(Te{sub 56}Se{sub 4}). The interconnect assembly contains Sn (Sb {approx} 1wt%) solder, sandwiched between Cu conductor with Ni diffusion barriers on the outside. Potential failure modes of the TE modules in this temperature range were discovered and analyzed. The results show that the metallurgical characteristics of the alloys used in the P and N legs are stable up to 200 C. However, whole TE modules are thermally unstable at temperatures above 160 C, lower than the nominal melting point of the solder suggested by the manufacture. Two failure modes were observed when they were heated above 160 C: solder melting and flowing out of the interconnect assembly; and solder reacting with the TE leg, causing dimensional swelling of the TE legs. The reaction of the solder with the TE leg occurs as the lack of a nickel diffusion barrier on the side of the TE leg where the displaced solder and/or the preexisting solder beads is directly contact the TE material. This study concludes that the present TE modules are not suitable for long-term use at temperatures above 160 C due

  20. Distribution of Inclusion-Initiated Fatigue Cracking in Powder Metallurgy Udimet 720 Characterized

    NASA Technical Reports Server (NTRS)

    Bonacuse, Peter J.; Kantzos, Pete T.; Barrie, Robert; Telesman, Jack; Ghosn, Louis J.; Gabb, Timothy P.

    2004-01-01

    In the absence of extrinsic surface damage, the fatigue life of metals is often dictated by the distribution of intrinsic defects. In powder metallurgy (PM) alloys, relatively large defects occur rarely enough that a typical characterization with a limited number of small volume fatigue test specimens will not adequately sample inclusion-initiated damage. Counterintuitively, inclusion-initiated failure has a greater impact on the distribution in PM alloy fatigue lives because they tend to have fewer defects than their cast and wrought counterparts. Although the relative paucity of defects in PM alloys leads to higher mean fatigue lives, the distribution in observed lives tends to be broader. In order to study this important failure initiation mechanism without expending an inordinate number of specimens, a study was undertaken at the NASA Glenn Research Center where known populations of artificial inclusions (seeds) were introduced to production powder. Fatigue specimens were machined from forgings produced from the seeded powder. Considerable effort has been expended in characterizing the crack growth rate from inclusion-initiated cracks in seeded PM alloys. A rotating and translating positioning system, with associated software, was devised to map the surface inclusions in low-cycle fatigue (LCF) test bars and to monitor the crack growth from these inclusions. The preceding graph illustrates the measured extension in fatigue cracks from inclusions on a seeded LCF test bar subjected to cyclic loading at a strain range of 0.8 percent and a strain ratio (max/min) of zero. Notice that the observed inclusions fall into three categories: some do not propagate at all (arrest), some propagate with a decreasing crack growth rate, and a few propagate at increasing rates that can be modeled by fracture mechanics. The following graph shows the measured inclusion-initiated crack growth rates from 10 interrupted LCF tests plotted against stress intensities calculated for semi

  1. Electrochemical study of Aluminum-Fly Ash composites obtained by powder metallurgy

    SciTech Connect

    Marin, E.; Lekka, M.; Andreatta, F.; Fedrizzi, L.; Itskos, G.; Koukouzas, N.

    2012-07-15

    In this paper, two different ASTM C 618 Class C fly ashes (FA) were used for the production of aluminum metal matrix composites (MMCs) using powder metallurgy (PM) technology. Calcareous FAs were sampled from the electrostatic precipitators of two different lignite-fired power stations: from Megalopolis, Southern Greece (MFA) and from Kardia, Northen Greece (KFA), under maximum electricity load. FAs were milled in order to reduce the mean particle diameter and Aluminum-FA composites containing 10% and 20% of FA were then prepared and compacted. The green products were sintered for 2 h at 600 Degree-Sign C. Sintered Al-FA MMCs showed increased hardness and wear resistance suggesting their possible use in industrial applications for example in covers, casings, brake rotors or engine blocks. As most possible industrial applications of MMCs not only require wear resistance, but also corrosion resistance in different mild aggressive medias, this paper aims to study the electrochemical behavior of FA MMCs in order to evaluate their corrosion resistance. The morphology and chemical composition of the phases in the Aluminum-FA composite samples were investigated using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDXS). Moreover, topographic and Volta potential maps were acquired by Scanning Kelvin Probe Force Microscopy (SKP-FM). Volta potential maps provide information about the electrochemical behavior of the different phases in absence of electrolyte. The electrochemical behavior was investigated by Open Circuit Potential measurements and potentiodynamic polarization, while the corrosion mechanisms were studied by SEM observations after different times of immersion in a mild corrosive medium. In all cases it could be stated that the addition of the FA particles into the Al matrix might cause an increase of the hardness and mechanical properties of the pure aluminum but deteriorates the corrosion resistance. The degradation phenomena

  2. Laser photothermal non-destructive metrology of cracks in un-sintered powder metallurgy manufactured automotive transmission sprockets

    NASA Astrophysics Data System (ADS)

    Tolev, J.; Mandelis, A.

    2010-03-01

    A non-contact and non-intrusive method of revealing crack presence in un-sintered (green) automotive transmission parts (sprockets), manufactured by means of a powder metallurgy technology based on analysis of photo-thermal radiometric (PTR) signals and their statistical analysis was developed. The inspection methodology relies on the interaction of a modulated laser generated thermal wave with the potential crack and the resulting change in amplitude and phase of the detected signal [1-5]. The crack existence at points in high stress regions of a group of green (unsintered) sprockets was evaluated through frequency scans. The results were validated by independent destructive cross-sectioning of the sprockets following sintering and polishing. Examination of the sectioned sprockets under a microscope at the locations where signal changes was used for correlation with the PTR signals. Statistical analysis confirmed the capabilities of the method to detect the presence of hairline cracks (~5 - 10 μm size) with excellent sensitivity (91%) and good accuracy (78%) and specificity (61%). This measurement technique and the associated statistical analysis can be used as a simple and reliable on-line inspection methodology of industrial powder metallurgy manufactured steel products for non-destructive quality and feedback control of the parts forming process.

  3. Physical and welding metallurgy of Gd-enriched austenitic alloys for spent nuclear fuel applications. Part II, nickel base alloys.

    SciTech Connect

    Mizia, Ronald E.; Michael, Joseph Richard; Williams, David Brian; Dupont, John Neuman; Robino, Charles Victor

    2004-06-01

    The physical and welding a metallurgy of gadolinium- (Gd-) enriched Ni-based alloys has been examined using a combination of differential thermal analysis, hot ductility testing. Varestraint testing, and various microstructural characterization techniques. Three different matrix compositions were chosen that were similar to commercial Ni-Cr-Mo base alloys (UNS N06455, N06022, and N06059). A ternary Ni-Cr-Gd alloy was also examined. The Gd level of each alloy was {approx}2 wt-%. All the alloys initiated solidification by formation of primary austenite and terminated solidification by a Liquid {gamma} + Ni{sub 5}Gd eutectic-type reaction at {approx}1270 C. The solidification temperature ranges of the alloys varied from {approx}100 to 130 C (depending on alloy composition). This is a substantial reduction compared to the solidification temperature range to Gd-enriched stainless steels (360 to 400 C) that terminate solidification by a peritectic reaction at {approx}1060 C. The higher-temperature eutectic reaction that occurs in the Ni-based alloys is accompanied by significant improvements in hot ductility and solidification cracking resistance. The results of this research demonstrate that Gd-enriched Ni-based alloys are excellent candidate materials for nuclear criticality control in spent nuclear fuel storage applications that require production and fabrication of large amounts of material through conventional ingot metallurgy and fusion welding techniques.

  4. Comprehensive waste characterization and organic pollution co-occurrence in a Hg and As mining and metallurgy brownfield.

    PubMed

    Gallego, J R; Esquinas, N; Rodríguez-Valdés, E; Menéndez-Aguado, J M; Sierra, C

    2015-12-30

    The abandonment of Hg-As mining and metallurgy sites, together with long-term weathering, can dramatically degrade the environment. In this work it is exemplified the complex legacy of contamination that afflicts Hg-As brownfields through the detailed study of a paradigmatic site. Firstly, an in-depth study of the former industrial process was performed to identify sources of different types of waste. Subsequently, the composition and reactivity of As- and Hg-rich wastes (calcines, As-rich soot, stupp, and flue dust) was analyzed by means of multielemental analysis, mineralogical characterization (X-ray diffraction, electronic, and optical microscopy, microbrobe), chemical speciation, and sequential extractions. As-rich soot in the form of arsenolite, a relatively mobile by-product of the pyrometallurgical process, and stupp, a residue originated in the former condensing system, were determined to be the main risk at the site. In addition, the screening of organic pollution was also aimed, as shown by the outcome of benzo(a) pyrene and other PAHs, and by the identification of unexpected Hg organo-compounds (phenylmercury propionate). The approach followed unravels evidence from waste from the mining and metallurgy industry that may be present in other similar sites, and identifies unexpected contaminants overlooked by conventional analyses. PMID:26253236

  5. High damping Al-Fe-Mo-Si/Zn-Al composites produced by rapidly solidified powder metallurgy process

    SciTech Connect

    Li, P.Y.; Dai, S.L.; Chai, S.C.; Li, Y.R.

    2000-05-10

    The metallic materials commonly used in aircraft and aerospace fields, such as aluminum and titanium alloys, steels, etc., show extremely low damping capacity (usually of the order of or less than 10{sup {minus}3}). Thus, some problems related to vibration may emerge and influence the reliability, safety and life of airplanes, satellites, etc. It has been reported that almost two thirds of errors for rockets and satellites are related to vibration and noise. One effective way to solve these vibration-related problems is to adopt high damping metallic materials. Conventional high damping alloys exhibit damping capacity above 10{sup {minus}2}, however, their densities are usually great than 5 x 10{sup 3} kg m{sup {minus}3}, or their strengths are less than 200 MPa (for alloys based on dislocation damping), making them impossible to be applied to aircraft and aerospace areas. Recently, some low-density high-damping metal/metal composites based on aluminum and high damping alloys have been developed in Beijing Institute of Aeronautical Materials (BIAM) by the rapidly solidified power metallurgy process. This paper aims to report the properties of the composites based on a high temperature Al-Fe-Mo-Si alloy and a high damping Zn-Al alloy, and compare them with that of 2618-T61 alloy produced by the ingot metallurgy process.

  6. Development of a Power Metallurgy Superalloy for Use at 1800-2000 F (980-1090 C)

    NASA Technical Reports Server (NTRS)

    Kortovich, C. S.

    1973-01-01

    A program was conducted to develop a powder metallurgy nickel-base superalloy for 1800-2000 F (980-1090 C) temperature applications. The feasibility of a unique concept for alloying carbon into a superalloy powder matrix and achieving both grain growth and a discrete particle grain boundary carbide precipitation was demonstrated. The process consisted of blending metastable carbides with a carbon free base alloy and consolidating this blend by hot extrusion. This was followed by heat treatment to grow a desired ASTM No. 2-3 grain size and to solution the metastable carbides to allow precipitation of discrete particle grain boundary carbides during subsequent aging heat treatments. The best alloy developed during this program was hydrogen-atomized, thermal-mechanically processed, modified MAR-M246 base alloy plus VC (0.28 w/o C). Although below those for cast MAR-M246, the mechanical properties exhibited by this alloy represent the best combination offered by conventional powder metallurgy processing to date.

  7. Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report

    SciTech Connect

    McDeavitt, Sean M

    2011-04-29

    Overview Fast reactors were evaluated to enable the transmutation of transuranic isotopes generated by nuclear energy systems. The motivation for this was that TRU isotopes have high radiotoxicity and relatively long half-lives, making them unattractive for disposal in a long-term geologic repository. Fast reactors provide an efficient means to utilize the energy content of the TRUs while destroying them. An enabling technology that requires research and development is the fabrication metallic fuel containing TRU isotopes using powder metallurgy methods. This project focused upon developing a powder metallurgical fabrication method to produce U-Zr-transuranic (TRU) alloys at relatively low processing temperatures (500ºC to 600ºC) using either hot extrusion or alpha-phase sintering for charecterization. Researchers quantified the fundamental aspects of both processing methods using surrogate metals to simulate the TRU elements. The process produced novel solutions to some of the issues relating to metallic fuels, such as fuel-cladding chemical interactions, fuel swelling, volatility losses during casting, and casting mold material losses. Workscope There were two primary tasks associated with this project: 1. Hot working fabrication using mechanical alloying and extrusion • Design, fabricate, and assemble extrusion equipment • Extrusion database on DU metal • Extrusion database on U-10Zr alloys • Extrusion database on U-20xx-10Zr alloys • Evaluation and testing of tube sheath metals 2. Low-temperature sintering of U alloys • Design, fabricate, and assemble equipment • Sintering database on DU metal • Sintering database on U-10Zr alloys • Liquid assisted phase sintering on U-20xx-10Zr alloys Appendices Outline Appendix A contains a Fuel Cycle Research & Development (FCR&D) poster and contact presentation where TAMU made primary contributions. Appendix B contains MSNE theses and final defense presentations by David Garnetti and Grant Helmreich

  8. The Beginning of Metallurgy in the Southern Levant: A Late 6th Millennium CalBC Copper Awl from Tel Tsaf, Israel

    PubMed Central

    Garfinkel, Yosef; Klimscha, Florian; Shalev, Sariel; Rosenberg, Danny

    2014-01-01

    The beginning of metallurgy in the ancient Near East attracts much attention. The southern Levant, with the rich assemblage of copper artifacts from the Nahal Mishmar cave and the unique gold rings of the Nahal Qanah cave, is regarded as a main center of early metallurgy during the second half of the 5th millennium CalBC. However, a recently discovered copper awl from a Middle Chalcolithic burial at Tel Tsaf, Jordan Valley, Israel, suggests that cast metal technology was introduced to the region as early as the late 6th millennium CalBC. This paper examines the chemical composition of this item and reviews its context. The results indicate that it was exported from a distant source, probably in the Caucasus, and that the location where it was found is indicative of the social status of the buried individual. This rare finding indicates that metallurgy was first defused to the southern Levant through exchange networks and only centuries later involved local production. This copper awl, the earliest metal artifact found in the southern Levant, indicates that the elaborate Late Chalcolithic metallurgy developed from a more ancient tradition. PMID:24671185

  9. The beginning of metallurgy in the southern Levant: a late 6th millennium CalBC copper awl from Tel Tsaf, Israel.

    PubMed

    Garfinkel, Yosef; Klimscha, Florian; Shalev, Sariel; Rosenberg, Danny

    2014-01-01

    The beginning of metallurgy in the ancient Near East attracts much attention. The southern Levant, with the rich assemblage of copper artifacts from the Nahal Mishmar cave and the unique gold rings of the Nahal Qanah cave, is regarded as a main center of early metallurgy during the second half of the 5th millennium CalBC. However, a recently discovered copper awl from a Middle Chalcolithic burial at Tel Tsaf, Jordan Valley, Israel, suggests that cast metal technology was introduced to the region as early as the late 6th millennium CalBC. This paper examines the chemical composition of this item and reviews its context. The results indicate that it was exported from a distant source, probably in the Caucasus, and that the location where it was found is indicative of the social status of the buried individual. This rare finding indicates that metallurgy was first diffused [corrected] to the southern Levant through exchange networks and only centuries later involved local productionThis copper awl, the earliest metal artifact found in the southern Levant, indicates that the elaborate Late Chalcolithic metallurgy developed from a more ancient tradition. PMID:24671185

  10. Assessment of heavy metals exposure, noise and thermal safety in the ambiance of a vacuum metallurgy separation system for recycling heavy metals from crushed e-wastes.

    PubMed

    Zhan, Lu; Xu, Zhenming

    2014-12-01

    Vacuum metallurgy separation (VMS) is a technically feasible method to recover Pb, Cd and other heavy metals from crushed e-wastes. To further determine the environmental impacts and safety of this method, heavy metals exposure, noise and thermal safety in the ambiance of a vacuum metallurgy separation system are evaluated in this article. The mass concentrations of total suspended particulate (TSP) and PM10 are 0.1503 and 0.0973 mg m(-3) near the facilities. The concentrations of Pb, Cd and Sn in TSP samples are 0.0104, 0.1283 and 0.0961 μg m(-3), respectively. Health risk assessments show that the hazard index of Pb is 3.25 × 10(-1) and that of Cd is 1.09 × 10(-1). Carcinogenic risk of Cd through inhalation is 1.08 × 10(-5). The values of the hazard index and risk indicate that Pb and Cd will not cause non-cancerous effects or carcinogenic risk on workers. The noise sources are mainly the mechanical vacuum pump and the water cooling pump. Both of them have the noise levels below 80 dB (A). The thermal safety assessment shows that the temperatures of the vacuum metallurgy separation system surface are all below 303 K after adopting the circulated water cooling and heat insulation measures. This study provides the environmental information of the vacuum metallurgy separation system, which is of assistance to promote the industrialisation of vacuum metallurgy separation for recovering heavy metals from e-wastes. PMID:25391553

  11. Superalloy 718: Metallurgy and applications; Proceedings of the International Symposium, Pittsburgh, PA, June 12-14, 1989

    SciTech Connect

    Loria, E.A.

    1989-01-01

    Recent advances in the metallurgy and applications of superalloy 718 (S718) are examined in reviews and reports. Topics addressed include melting technology for S718, solidification control in VAR and ESR S718 ingots, application of a modified phase diagram to the production of cast S718 components, microstructural characterization of cast S718, the hot deformation behavior of as-cast S718 ingots, and the effects of starting condition on the aging response of as-forged S718. Consideration is given to the long-term stability of a wrought S718 disk, P/M S718 tubing produced by cold radial forging, laser cladding of Astroloy on S718, the mechanical properties and microstructure of fine-grain centrifugally cast S718, the phase stability and aging response of TiC-reinforced S718, and the analysis and elimination of time-dependent notch sensitivity in S718.

  12. Using Microwave-Assisted Powder Metallurgy Route and Nano-size Reinforcements to Develop High-Strength Solder Composites

    NASA Astrophysics Data System (ADS)

    Nai, S. M. L.; Kuma, J. V. M.; Alam, M. E.; Zhong, X. L.; Babaghorbani, P.; Gupta, M.

    2010-04-01

    In the present study, Sn-0.7Cu and Sn-3.5Ag lead-free solders used in the electronics packaging industry were reinforced with different volume percentages of nano-size alumina and tin oxide particulates, respectively, to synthesize two new sets of nanocomposites. These composites were developed using microwave-assisted powder metallurgy route followed by extrusion. The effects of addition of particulates on the physical, microstructural, and mechanical properties of the nanocomposites were investigated. Mechanical properties (microhardness, 0.2% YS, and UTS) for both composite systems increase with the presence of particulates. The best tensile strength was realized for composite solders reinforced with 1.5 vol.% alumina and 0.7 vol.% tin oxide particulates, which far exceeds the strength of eutectic Sn-Pb solder. The morphology of pores was observed to be one of the most dominating factors affecting the strength of materials.

  13. Phase Transformation Behavior of Porous TiNi Alloys Produced by Powder Metallurgy Using Magnesium as a Space Holder

    NASA Astrophysics Data System (ADS)

    Aydoğmuş, Tarik; Bor, Elif Tarhan; Bor, Şakir

    2011-09-01

    Porous TiNi alloys with porosities in the range of 51 to 73 pct were prepared successfully applying a new powder metallurgy fabrication route in which magnesium was used as a space holder, resulting in either single austenite phase or a mixture of austenite and martensite phases dictated by the composition of the starting powders, but entirely free from secondary brittle intermetallics, oxides, nitrides, and carbonitrides. Since transformation temperatures are very sensitive to composition, deformation, and oxidation, for the first time, transformation temperatures of porous TiNi alloys were investigated using chemically homogeneous specimens in as-sintered and aged conditions eliminating secondary phase, contamination, and deformation effects. It was found that the porosity content of the foams has no influence on the phase transformation temperatures both in as-sintered and aged conditions, while deformation, oxidation, and aging treatment are severely influential.

  14. The physical metallurgy of mechanically-alloyed, dispersion-strengthened Al-Li-Mg and Al-Li-Cu alloys

    NASA Technical Reports Server (NTRS)

    Gilman, P. S.

    1984-01-01

    Powder processing of Al-Li-Mg and Al-Li-Cu alloys by mechanical alloying (MA) is described, with a discussion of physical and mechanical properties of early experimental alloys of these compositions. The experimental samples were mechanically alloyed in a Szegvari attritor, extruded at 343 and 427 C, and some were solution-treated at 520 and 566 C and naturally, as well as artificially, aged at 170, 190, and 210 C for times of up to 1000 hours. All alloys exhibited maximum hardness after being aged at 170 C; lower hardness corresponds to the solution treatment at 566 C than to that at 520 C. A comparison with ingot metallurgy alloys of the same composition shows the MA material to be stronger and more ductile. It is also noted that properly aged MA alloys can develop a better combination of yield strength and notched toughness at lower alloying levels.

  15. Causal Factors of Weld Porosity in Gas Tungsten Arc Welding of Powder-Metallurgy-Produced Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Muth, T. R.; Yamamoto, Y.; Frederick, D. A.; Contescu, C. I.; Chen, W.; Lim, Y. C.; Peter, W. H.; Feng, Z.

    2013-05-01

    An investigation was undertaken using gas tungsten arc (GTA) welding on consolidated powder metallurgy (PM) titanium (Ti) plate to identify the causal factors behind observed porosity in fusion welding. Tramp element compounds of sodium and magnesium, residual from the metallothermic reduction of titanium chloride used to produce the titanium, were remnant in the starting powder and were identified as gas-forming species. PM-titanium made from revert scrap, where sodium and magnesium were absent, showed fusion weld porosity, although to a lesser degree. We show that porosity was attributable to hydrogen from adsorbed water on the surface of the powders prior to consolidation. The removal and minimization of both adsorbed water on the surface of titanium powder and the residues from the reduction process prior to consolidation of titanium powders are critical for achieving equivalent fusion welding success similar to that seen in wrought titanium produced via the Kroll process.

  16. Mechanical strength and thermophysical properties of PM212: A high temperature self-lubricating powder metallurgy composite

    NASA Technical Reports Server (NTRS)

    Edwards, Phillip M.; Sliney, Harold E.; Dellacorte, Christopher; Whittenberger, J. Daniel; Martineau, Robert R.

    1990-01-01

    A powder metallurgy composite, PM212, composed of metal bonded chromium carbide and solid lubricants is shown to be self-lubricating to a maximum application temperature of 900 C. The high temperature compressive strength, tensile strength, thermal expansion and thermal conductivity data needed to design PM212 sliding contact bearings and seals are reported for sintered and isostatically pressed (HIPed) versions of PM212. Other properties presented are room temperature density, hardness, and elastic modulus. In general, both versions appear to have adequate strength to be considered as sliding contact bearing materials, but the HIPed version, which is fully dense, is much stronger than the sintered version which contains about 20 percent pore volume. The sintered material is less costly to make, but the HIPed version is better where high compressive strength is important.

  17. Effects of copper content on the shell characteristics of hollow steel spheres manufactured using an advanced powder metallurgy technique

    NASA Astrophysics Data System (ADS)

    Sazegaran, Hamid; Kiani-Rashid, Ali-Reza; Khaki, Jalil Vahdati

    2016-04-01

    Metallic hollow spheres are used as base materials in the manufacture of hollow sphere structures and metallic foams. In this study, steel hollow spheres were successfully manufactured using an advanced powder metallurgy technique. The spheres' shells were characterized by optical microscopy in conjunction with microstructural image analysis software, scanning electron microscopy (SEM), energy- dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). The microscopic evaluations revealed that the shells consist of sintered iron powder, sintered copper powder, sodium silicate, and porosity regions. In addition, the effects of copper content on various parameters such as shell defects, microcracks, thickness, and porosities were investigated. The results indicated that increasing the copper content results in decreases in the surface fraction of shell porosities and the number of microcracks and an increase in shell thickness.

  18. Quelccaya Ice Core Evidence of Widespread Atmospheric Pollution from Colonial Metallurgy after the Spanish Conquest of South America (1532 AD)

    NASA Astrophysics Data System (ADS)

    Gabrielli, P.; Uglietti, C.; Cooke, C. A.; Thompson, L. G.

    2014-12-01

    A few ice core records recovered from remote arctic regions suggest a widespread impact of toxic trace elements (Pb, Cu, Sb, As and Bi) to the North Hemisphere atmosphere prior to the onset of the Industrial Revolution (1780s-1830s). In the Southern Hemisphere, evidence for preindustrial trace element emissions are, to date, limited to sediment cores recovered from lakes located within the immediate airshed of major metallurgical centers of South America. Thus it remains unresolved whether they could have had a larger scale impact. Here, we present an annually resolved ice core record of anthropogenic trace element deposition from the remote drilling site of the Quelccaya Ice Cap (Peru) that spans 793-1989 AD. During the pre-Inca period (i.e., prior to ~1450 AD) the deposition of trace elements was dominated by the fallout of aeolian dust from the deglaciated margins of the ice cap and of ash from occasional volcanic eruptions. In contrast, the ice core record indicates a clear anthropogenic signal emerging after the onset of large scale colonial mining and metallurgy (1532-1820 AD), ~300 years prior to the Industrial Revolution during the last part of the Little Ice Age. This shift was coincidental with a major technological transition for silver extraction (1572 AD), from lead-based smelting to mercury amalgamation, that initiated a major increase in ore mining and milling that likely resulted in an increase of metallic dust emissions. While atmospheric trace element deposition resulting from colonial metallurgy was certainly much larger than during the pre-Colonial period, trace element fallout during the Colonial era was still several factors lower than during the 20th century, when the construction of the trans-Andean railway and highways promoted a widespread societal and industrial development of South America.

  19. Effects of MgO Nano Particles on Microstructural and Mechanical Properties of Aluminum Matrix Composite prepared via Powder Metallurgy Route

    NASA Astrophysics Data System (ADS)

    Baghchesara, Mohammad Amin; Abdizadeh, Hossein; Baharvandi, Hamid Reza

    The objective of the present investigation was to evaluate the microstructural and mechanical properties of Al/nano MgO composite prepared via powder metallurgy method. Pure atomized aluminum powder with an average particle size of 1μm and MgO particulate with an average particle size between 60 to 80 nm were used. Composites containing 1.5, 2.5 and 5 percent of volume fraction of MgO were prepared by powder metallurgy method. The specimens were pressed by Cold Isostatic Press machine (CIP), subsequently were sintered at 575, 600 and 625°C. After sintering and preparing the samples, mechanical properties were measured. The results of microstructure, compression and hardness tests indicated that addition of MgO particulates to aluminum matrix composites improves the mechanical properties.

  20. Powder metallurgy inspired low-temperature fabrication of high-performance stereocomplexed polylactide products with good optical transparency

    PubMed Central

    Bai, Dongyu; Liu, Huili; Bai, Hongwei; Zhang, Qin; Fu, Qiang

    2016-01-01

    Stereocomplexation between enantiomeric poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA) provides an avenue to greatly enhance performance of eco-friendly polylactide (PLA). Unfortunately, although the manufacturing of semicrystalline polymers generally involves melt processing, it is still hugely challenging to create high-performance stereocomplexed polylactide (sc-PLA) products from melt-processed high-molecular-weight PLLA/PDLA blends due to the weak crystallization memory effect of stereocomplex (sc) crystallites after complete melting as well as the substantial degradation of PLA chains at elevated melt-processing temperatures of ca. 240–260 °C. Inspired by the concept of powder metallurgy, here we report a new facile route to address these obstacles by sintering of sc-PLA powder at temperatures as low as 180–210 °C, which is distinctly different from traditional sintering of polymer powders performed at temperatures far exceeding their melting temperatures. The enantiomeric PLA chain segments from adjacent powder particles can interdiffuse across particle interfaces and co-crystallize into new sc crystallites capable of tightly welding the interfaces during the low-temperature sintering process, and thus highly transparent sc-PLA products with outstanding heat resistance, mechanical strength, and hydrolytic stability have been successfully fabricated for the first time. PMID:26837848

  1. The Los Alamos National Laboratory Chemistry and Metallurgy Research Facility upgrades project - A model for waste minimization

    SciTech Connect

    Burns, M.L.; Durrer, R.E.; Kennicott, M.A.

    1996-07-01

    The Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) Facility, constructed in 1952, is currently undergoing a major, multi-year construction project. Many of the operations required under this project (i.e., design, demolition, decontamination, construction, and waste management) mimic the processes required of a large scale decontamination and decommissioning (D&D) job and are identical to the requirements of any of several upgrades projects anticipated for LANL and other Department of Energy (DOE) sites. For these reasons the CMR Upgrades Project is seen as an ideal model facility - to test the application, and measure the success of - waste minimization techniques which could be brought to bear on any of the similar projects. The purpose of this paper will be to discuss the past, present, and anticipated waste minimization applications at the facility and will focus on the development and execution of the project`s {open_quotes}Waste Minimization/Pollution Prevention Strategic Plan.{close_quotes}

  2. Modeling the Constitutive Relationship of Powder Metallurgy Ti-47Al-2Nb-2Cr Alloy During Hot Deformation

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Hu, Lianxi; Ren, Junshuai

    2015-03-01

    In the present work, the isothermal compression tests of PM alloy Ti-47Al-2Nb-2Cr were carried out in the temperature range of 950-1200 °C. A Gleeble 1500D thermosimulation machine was used, and samples were tested at strain rates ranging from 10-3 to 10-1 s-1. Based on the obtained flow stress curves, the hot deformation behavior was presented. The constitutive relationship of powder metallurgy (PM) Ti-47Al-2Nb-2Cr alloy was developed using an Arrhenius-type constitutive model that involves strain compensation in addition to an artificial neural network model. The accuracy and reliability of the developed models were quantified in terms of statistical parameters such as correlation coefficient and absolute value of relative error. It was found that deformation temperature and strain rate have obvious effects on the flow characteristics, and the flow stress increases with the increasing strain rate and the decreasing temperature. Moreover, the proposed models possess excellent prediction capability of flow stresses for the present alloy during hot deformation. Compared with the traditional Arrhenius-type model, the backpropagation neural network model is more accurate when presenting the isothermal compressing deformation behavior at elevated temperatures for PM Ti-47Al-2Nb-2Cr alloy.

  3. An Investigation of High-Temperature Precipitation in Powder-Metallurgy, Gamma/Gamma-Prime Nickel-Base Superalloys

    NASA Astrophysics Data System (ADS)

    Semiatin, S. L.; Kim, S.-L.; Zhang, F.; Tiley, J. S.

    2015-04-01

    The high-temperature-precipitation behavior of a typical powder-metallurgy, gamma-gamma-prime, nickel-base superalloy (LSHR) was determined and used to develop and validate a quantitative fast-acting model. To this end, a series of experiments comprising supersolvus solution treatment followed by continuous cooling at rates typical of those experienced during the manufacture of full-scale components was conducted for LSHR. The nucleation and growth of secondary-gamma-prime precipitates were deduced via metallography on samples water quenched at various temperatures during the cooling cycle. Further insight on nucleation and the extent of retained supersaturation during cooling was obtained from in situ synchrotron (X-ray diffraction) experiments involving cooling of LSHR samples at identical rates with or without a hold time at an intermediate temperature. The observations were interpreted using a fast-acting (spreadsheet) model which incorporated the important aspects of classical, homogeneous-nucleation theory and growth by bulk diffusion. In this regard, particular attention was paid to the determination of model input parameters such as the composition, free energy of formation, and surface energy of precipitates, and an effective diffusivity; the values so determined contrasted with those from existing thermodynamic and diffusion databases. It was demonstrated that fast-acting-model calculations based on a nickel-chromium pseudo-binary system gave good agreement with measurements of the evolution of precipitate volume fraction, number density, and size during continuous cooling.

  4. Rapid Synthesis of a Near-β Titanium Alloy by Blended Elemental Powder Metallurgy (BEPM) with Induction Sintering

    NASA Astrophysics Data System (ADS)

    Jia, Mingtu; Gabbitas, Brian

    2015-10-01

    A near-β Ti-13V-11Cr-3Al alloy was produced by blended elemental powder metallurgy combining warm compaction and induction sintering. Two Ti-13V-11Cr-3Al powder compacts with different oxygen content were manufactured by mixing PREP and HDH Ti powders with Cr and AlV master alloy powders, respectively. The effect of isothermal holding time, at a sintering temperature of 1573 K (1300 °C), on pore characteristics and compositional homogeneity was investigated in this study. Pore coarsening by Ostwald ripening occurred with an increase in the isothermal holding time and Kirkendall voids were produced by a reaction between Ti and Cr. After an isothermal holding time of 10 minutes, the two sintered powder compacts had a homogeneous composition. Ti/AlV and Ti/Cr diffusion couples were used to predict the distribution of alloying elements, and the binary Ti-V, Ti-Al, and Ti-Cr interdiffusion coefficients were consistent with the distribution of alloying elements after isothermal holding. The mechanical properties of sintered powder compacts, prepared using PREP Ti powder as the raw powder, were optimized by sintered density and pore size.

  5. Powder metallurgy inspired low-temperature fabrication of high-performance stereocomplexed polylactide products with good optical transparency

    NASA Astrophysics Data System (ADS)

    Bai, Dongyu; Liu, Huili; Bai, Hongwei; Zhang, Qin; Fu, Qiang

    2016-02-01

    Stereocomplexation between enantiomeric poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA) provides an avenue to greatly enhance performance of eco-friendly polylactide (PLA). Unfortunately, although the manufacturing of semicrystalline polymers generally involves melt processing, it is still hugely challenging to create high-performance stereocomplexed polylactide (sc-PLA) products from melt-processed high-molecular-weight PLLA/PDLA blends due to the weak crystallization memory effect of stereocomplex (sc) crystallites after complete melting as well as the substantial degradation of PLA chains at elevated melt-processing temperatures of ca. 240-260 °C. Inspired by the concept of powder metallurgy, here we report a new facile route to address these obstacles by sintering of sc-PLA powder at temperatures as low as 180-210 °C, which is distinctly different from traditional sintering of polymer powders performed at temperatures far exceeding their melting temperatures. The enantiomeric PLA chain segments from adjacent powder particles can interdiffuse across particle interfaces and co-crystallize into new sc crystallites capable of tightly welding the interfaces during the low-temperature sintering process, and thus highly transparent sc-PLA products with outstanding heat resistance, mechanical strength, and hydrolytic stability have been successfully fabricated for the first time.

  6. The wear properties of in-situ 7075 Al-Ti composites produced by powder metallurgy route

    NASA Astrophysics Data System (ADS)

    Ay, H.; Özyurek, D.; Yıldırım, M.; Bostan, B.

    2016-04-01

    In this study, the wear properties of in-situ 7075 Al-Ti composites produced by powder metallurgy route were investigated. Different amount of Ti (2, 4, 6 %) added to gas atomized 7075 Al alloy powders and they were mixed in turbula with 47rpm for 45 minutes. Then the mixed powders were pre-shaped by press under 600 MPa pressure. The samples were cooled in the furnace after sintered at 580 °C for 4 hours in the atmosphere controlled furnace. Standard metallographic process such as grinding, polishing and etching were applied to sintered samples. The hardness values were measured. Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD) examines were carried out. The wear tests were performed in a pin-on disc type wear apparatus with 1 ms-1 sliding speed at six different sliding distance (500-3000 m) under 30 N loads. As a result of studies, hardness values were increased with increasing Ti content, in addition the weight losses were decreased with increasing Ti amount.

  7. Powder metallurgy inspired low-temperature fabrication of high-performance stereocomplexed polylactide products with good optical transparency.

    PubMed

    Bai, Dongyu; Liu, Huili; Bai, Hongwei; Zhang, Qin; Fu, Qiang

    2016-01-01

    Stereocomplexation between enantiomeric poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA) provides an avenue to greatly enhance performance of eco-friendly polylactide (PLA). Unfortunately, although the manufacturing of semicrystalline polymers generally involves melt processing, it is still hugely challenging to create high-performance stereocomplexed polylactide (sc-PLA) products from melt-processed high-molecular-weight PLLA/PDLA blends due to the weak crystallization memory effect of stereocomplex (sc) crystallites after complete melting as well as the substantial degradation of PLA chains at elevated melt-processing temperatures of ca. 240-260 °C. Inspired by the concept of powder metallurgy, here we report a new facile route to address these obstacles by sintering of sc-PLA powder at temperatures as low as 180-210 °C, which is distinctly different from traditional sintering of polymer powders performed at temperatures far exceeding their melting temperatures. The enantiomeric PLA chain segments from adjacent powder particles can interdiffuse across particle interfaces and co-crystallize into new sc crystallites capable of tightly welding the interfaces during the low-temperature sintering process, and thus highly transparent sc-PLA products with outstanding heat resistance, mechanical strength, and hydrolytic stability have been successfully fabricated for the first time. PMID:26837848

  8. Processing condition for the development of cube texture in Ni and Ni alloy tapes fabricated by powder metallurgy process

    NASA Astrophysics Data System (ADS)

    Ji, Bong Ki; Lee, Dong-Wook; Kim, Min-Woo; Jun, Byung-Hyuk; Park, Pyeong Yeal; Jung, Kyu-Dong; Kim, Chan-Joong

    2004-10-01

    Bi-axially textured Ni, Ni-W (1, 3 and 5 at.%) and Ni-Cu alloy tapes for YBCO coated conductors were fabricated by powder metallurgy process including powder compaction, cold isostatic pressing, cold rolling and recrystallization heat treatment. The rod-like Ni and Ni alloy compacts were sintered at 1100 °C for 6 h in 96% Ar-4% H 2 atmosphere. The sintered Ni and Ni-W rods were successfully cold-rolled into thin tapes of 80-100 μm thickness with 5% reduction at each path, but the Ni-Cu alloy rods with Cu content less than 20 at.% were made into tapes. The Ni and Ni alloy tapes were heat-treated at 800-1200 °C for the development of cube texture. The good (2 0 0) texture was obtained for both Ni and Ni-W alloy tapes, while it was obtained only for the Ni-Cu tapes with low Cu contents. The W and Cu addition to Ni improved the mechanical properties by solid solution hardening. Critical current density ( Jc) of YBCO film deposited on the CeO 2/YSZ/CeO 2(CYC)/Ni template was 0.25 MA/cm 2 at 77 K and self-field.

  9. Microstructure and Strengthening Mechanisms in an Ultrafine Grained Al-Mg-Sc Alloy Produced by Powder Metallurgy

    SciTech Connect

    Tammy J. Harrell; Troy D. Topping; Haiming Wen; Tao Hu; JULIE M. SCHOENUNG; ENRIQUE J. LAVERNIA

    2014-12-01

    Additions of Sc to an Al-Mg matrix were investigated, paying particular attention to the influence of Al3Sc precipitates and other dispersoids, as well as grain size, on mechanical behavior. Prior studies have shown that Sc significantly increases the strength of coarse-grained Al-Mg alloys. Prompted by these findings, we hypothesized that it would be of fundamental and technological interest to study the behavior of Sc additions to an ultrafine-grained (UFG) microstructure (e.g., 100’s nm). Accordingly, we investigated the microstructural evolution and mechanical behavior of a cryomilled ultrafine grained Al-5Mg-0.4Sc (wt pct) and compared the results to those of an equivalent fine-grained material (FG) produced by powder metallurgy. Experimental materials were consolidated by hot isostatic pressing (HIP’ing) followed by extrusion or dual mode dynamic forging. Under identical processing conditions, UFG materials generate large Al3Sc precipitates with an average diameter of 154 nm and spaced approximately 1 to 3 µm apart, while precipitates in the FG materials have a diameter of 24 nm and are spaced 50 to 200 nm apart. The strengthening mechanisms are calculated for all materials and it is determined that the greatest strengthening contributions for the UFG and FG materials are Mg-O/N dispersion strengthening and precipitate strengthening, respectively.

  10. Characterization of Plastic Flow Pertinent to the Evolution of Bulk Residual Stress in Powder-Metallurgy, Nickel-Base Superalloys

    NASA Astrophysics Data System (ADS)

    Semiatin, S. L.; Fagin, P. N.; Goetz, R. L.; Furrer, D. U.; Dutton, R. E.

    2015-09-01

    The plastic-flow behavior which controls the formation of bulk residual stresses during final heat treatment of powder-metallurgy (PM), nickel-base superalloys was quantified using conventional (isothermal) stress-relaxation (SR) tests and a novel approach which simulates concurrent temperature and strain transients during cooling following solution treatment. The concurrent cooling/straining test involves characterization of the thermal compliance of the test sample. In turn, this information is used to program the ram-displacement- vs-time profile to impose a constant plastic strain rate during cooling. To demonstrate the efficacy of the new approach, SR tests (in both tension and compression) and concurrent cooling/tension-straining experiments were performed on two PM superalloys, LSHR and IN-100. The isothermal SR experiments were conducted at a series of temperatures between 1144 K and 1436 K (871 °C and 1163 °C) on samples that had been supersolvus solution treated and cooled slowly or rapidly to produce starting microstructures comprising coarse gamma grains and coarse or fine secondary gamma-prime precipitates, respectively. The concurrent cooling/straining tests comprised supersolvus solution treatment and various combinations of subsequent cooling rate and plastic strain rate. Comparison of flow-stress data from the SR and concurrent cooling/straining tests showed some similarities and some differences which were explained in the context of the size of the gamma-prime precipitates and the evolution of dislocation substructure. The magnitude of the effect of concurrent deformation during cooling on gamma-prime precipitation was also quantified experimentally and theoretically.

  11. Stratigraphy and Geologic Structure at the Chemical and Metallurgy (CMR) Building, Technical Area 3, Los Alamos National Laboratory

    SciTech Connect

    Alexis Lavine; Donathan Krier; Florie Caporuscio; Jamie Gardner

    1998-10-01

    Nine shallow (c70 ft), closely spaced core holes were continuously cored in the upper units of the 1.22 Ma Tshirege Member of the Bandelier Tuff at Technical Area (TA)-3 of the Los Alamos National Laboratory. The goal of the investigation was to identify faults that may have potential for earthquake-induced surface rupture at the site of the Chemistry and Metallurgy Research (CMR) building, a sensitive Laboratory facility that houses nuclear materials research functions. The holes were located from 25 ft to 115 ft from the building perimeter. Careful mapping of Lithologic sequences in cores, supplemented with focused sampling for geochemical analyses, yielded high confidence in the accuracy of delineating buried contacts within the Tshirege Member. Geologic analysis and investigation of the trends of surfaces interpolated from contacts in the core holes using commercially available software helped infer minor faulting in the strata beneath the building. Results show that gently north-northeast-dipping beds underlie the CMR building. The tilted beds are faulted by two small, closely spaced, parallel reverse faults with a combined vertical separation of approximately 8 ft. The faults are inferred from lithologically and geochemically repeated sections of core at about 55-ft depth in hole SHB-CMR-6. The data from nearby core holes SHB-CMR-2 and SHB-CMR-3 permit the extension of the faults, albeit with decreasing separation, toward the southwest beneath the CMR building. The fault trend is consistent with mapped lineaments from aerial photography and with nearby mapped structure, but direct evidence of the faults' orientations is lacking. No other faults were detected beneath the CMR building by this drilling and analysis method, which can detect faults with greater than about 2 ft separation.

  12. Leaching of APC residues from secondary Pb metallurgy using single extraction tests: the mineralogical and the geochemical approach.

    PubMed

    Ettler, Vojtech; Mihaljevic, Martin; Sebek, Ondrej; Strnad, Ladislav

    2005-05-20

    Two air-pollution-control (APC) residues--one from flue gas cooling with alkaline water and one from deionized water cooling--from secondary lead metallurgy were submitted to two different standardized short-term leaching protocols: US EPA toxicity characteristic leaching procedure (TCLP) and static leaching according to Czech/European norm EN 12457-2. The experimental procedure was coupled with detailed mineralogical investigation of the solid material (SEM, XRPD) and speciation-solubility calculations using the PHREEQC-2 geochemical code. Both types of residues were considered as hazardous materials exhibiting substantial leaching of Pb (up to 7130 mg/l) and other inorganic contaminants. However, the APC residue produced by flue gas cooling with alkaline water (sample B) exhibits more favourable leaching and environmental characteristics than that produced by simple deionised water cooling (sample A). At pH < 5, primary caracolite (Na3Pb2(SO4)3Cl) and potassium lead chloride (KCl.2PbCl2) are completely or partially dissolved and transformed to residual anglesite (PbSO4), cotunnite (PbCl2) and laurionite (Pb(OH)Cl). At pH 5-6, anglesite is still the principal residual product, whereas at pH > 6, phosgenite (PbCl2.PbCO3) became the dominant secondary phase. The results are consistent with the mineralogical and geochemical studies focused on acidic forest soils highly polluted by smelter emissions, where anglesite, as a unique Pb-bearing phase, has been detected. From the technological point of view, the mixing of APC residue with alkaline water, followed by an increase in the suspension pH and equilibration with atmospheric CO2, may be used to ensure the precipitation of less soluble Pb carbonates, which are more easily recycled in the Pb recovery process in the metallurgical plant. PMID:15885416

  13. Initial Assessment of the Effects of Nonmetallic Inclusions on Fatigue Life of Powder-Metallurgy-Processed Udimet(TM) 720

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Telesman, J.; Kantzos, P. T.; Bonacuse, P. J.; Barrie, R. L.

    2002-01-01

    The fatigue lives of modern powder metallurgy (PM) disk alloys are influenced by variabilities in alloy microstructure and mechanical properties. These properties can vary due to the different steps of materials/component processing and machining. One of these variables, the presence of nonmetallic inclusions, has been shown to significantly degrade low-cycle fatigue (LCF) life. Nonmetallic inclusions are inherent defects in powder alloys that are a by-product of powder-processing techniques. Contamination of the powder can occur in the melt, during powder atomization, or during any of the various handling processes through consolidation. In modern nickel disk powder processing facilities, the levels of inclusion contamination have been reduced to less than 1 part per million by weight. Despite the efforts of manufacturers to ensure the cleanliness of their powder production processes, the presence of inclusions remains a source of great concern for the designer. the objective of this study was to investigate the effects on fatigue life of these inclusions. Since natural inclusions occur so infrequently, elevated levels of inclusions were carefully introduced in a nickel-based disk superalloy, Udimet 720 (registered trademark of Special Metals Corporation), produced using PM processing. Multiple strain-controlled fatigue tests were then performed on this material at 650 C. Analyses were performed to compare the LCF lives and failure initiation sites as functions of inclusion content and fatigue conditions. A large majority of the failures in specimens with introduced inclusions occurred at cracks initiating from inclusions at the specimen surface. The inclusions could reduce fatigue life by up to 100 times. These effects were found to be dependent on strain range and strain ratio. Tests at lower strain ranges and higher strain ratios produced larger effects of inclusions on life.

  14. Oxidation and the Effects of High Temperature Exposures on Notched Fatigue Life of an Advanced Powder Metallurgy Disk Superalloy

    NASA Technical Reports Server (NTRS)

    Sudbrack, Chantal K.; Draper, Susan L.; Gorman, Timothy T.; Telesman, Jack; Gab, Timothy P.; Hull, David R.

    2012-01-01

    Oxidation and the effects of high temperature exposures on notched fatigue life were considered for a powder metallurgy processed supersolvus heat-treated ME3 disk superalloy. The isothermal static oxidation response at 704 C, 760 C, and 815 C was consistent with other chromia forming nickel-based superalloys: a TiO2-Cr2O3 external oxide formed with a branched Al2O3 internal subscale that extended into a recrystallized - dissolution layer. These surface changes can potentially impact disk durability, making layer growth rates important. Growth of the external scales and dissolution layers followed a cubic rate law, while Al2O3 subscales followed a parabolic rate law. Cr- rich M23C6 carbides at the grain boundaries dissolved to help sustain Cr2O3 growth to depths about 12 times thicker than the scale. The effect of prior exposures was examined through notched low cycle fatigue tests performed to failure in air at 704 C. Prior exposures led to pronounced debits of up to 99 % in fatigue life, where fatigue life decreased inversely with exposure time. Exposures that produced roughly equivalent 1 m thick external scales at the various isotherms showed statistically equivalent fatigue lives, establishing that surface damage drives fatigue debit, not exposure temperature. Fractographic evaluation indicated the failure mode for the pre-exposed specimens involved surface crack initiations that shifted with exposure from predominately single intergranular initiations with transgranular propagation to multi-initiations from the cracked external oxide with intergranular propagation. Weakened grain boundaries at the surface resulting from the M23C6 carbide dissolution are partially responsible for the intergranular cracking. Removing the scale and subscale while leaving a layer where M23C6 carbides were dissolved did not lead to a significant fatigue life improvement, however, also removing the M23C6 carbide dissolution layer led to nearly full recovery of life, with a

  15. The effect of space holder content and decomposition methods in fabrication of aluminum foams by powder metallurgy method using carbamide space holder

    NASA Astrophysics Data System (ADS)

    Amirah, A. H.; Nurulakmal, M. S.; Anasyida, A. S.

    2016-07-01

    The effect of space holder amount and decomposition methods on the morphology, density and porosity and compressive properties of aluminum foams were investigated. Aluminum foam was fabricated by powder metallurgy method using spherical carbamide as space holder using three different decomposition method of carbamide includes; dissolution process, normal sintering process and two step sintering process. Aluminum foam with 60 wt.% carbamide has the lowest density and exhibited the highest porosity for all the decomposition. The results indicated that Al foams produced by dissolution method have the highest compressive properties with acceptable density and porosity value.

  16. Precipitation in cold-rolled Al–Sc–Zr and Al–Mn–Sc–Zr alloys prepared by powder metallurgy

    SciTech Connect

    Vlach, M.; Stulikova, I.; Smola, B.; Kekule, T.; Kudrnova, H.; Danis, S.; Gemma, R.; Ocenasek, V.; Malek, J.; Tanprayoon, D.; Neubert, V.

    2013-12-15

    The effects of cold-rolling on thermal, mechanical and electrical properties, microstructure and recrystallization behaviour of the AlScZr and AlMnScZr alloys prepared by powder metallurgy were studied. The powder was produced by atomising in argon with 1% oxygen and then consolidated by hot extrusion at 350 °C. The electrical resistometry and microhardness together with differential scanning calorimetry measurements were compared with microstructure development observed by transmission and scanning electron microscopy, X-ray diffraction and electron backscatter diffraction. Fine (sub)grain structure developed and fine coherent Al{sub 3}Sc and/or Al{sub 3}(Sc,Zr) particles precipitated during extrusion at 350 °C in the alloys studied. Additional precipitation of the Al{sub 3}Sc and/or Al{sub 3}(Sc,Zr) particles and/or their coarsening was slightly facilitated by the previous cold rolling. The presence of Sc,Zr-containing particles has a significant antirecrystallization effect that prevents recrystallization at temperatures minimally up to 420 °C. The precipitation of the Al{sub 6}Mn- and/or Al{sub 6}(Mn,Fe) particles of a size ∼ 1.0 μm at subgrain boundaries has also an essential antirecrystallization effect and totally suppresses recrystallization during 32 h long annealing at 550 °C. The texture development of the alloys seems to be affected by high solid solution strengthening by Mn. The precipitation of the Mn-containing alloy is highly enhanced by a cold rolling. The apparent activation energy of the Al{sub 3}Sc particles formation and/or coarsening and that of the Al{sub 6}Mn and/or Al{sub 6}(Mn,Fe) particle precipitation in the powder and in the compacted alloys were determined. The cold deformation has no effect on the apparent activation energy values of the Al{sub 3}Sc-phase and the Al{sub 6}Mn-phase precipitation. - Highlights: • The Mn, Sc and Zr additions to Al totally suppresses recrystallization at 550 °C. • The Sc,Zr-containing particle

  17. Final Assessment of Preindustrial Solid-State Route for High-Performance Mg-System Alloys Production: Concluding the EU Green Metallurgy Project

    NASA Astrophysics Data System (ADS)

    D'Errico, Fabrizio; Plaza, Gerardo Garces; Giger, Franz; Kim, Shae K.

    2013-10-01

    The Green Metallurgy Project, a LIFE+ project co-financed by the European Union Commission, has now been completed. The purpose of the Green Metallurgy Project was to establish and assess a preindustrial process capable of using nanostructured-based high-performance Mg-Zn(Y) magnesium alloys and fully recycled eco-magnesium alloys. In this work, the Consortium presents the final outcome and verification of the completed prototype construction. To compare upstream cradle-to-grave footprints when ternary nanostructured Mg-Y-Zn alloys or recycled eco-magnesium chips are produced during the process cycle using the same equipment, a life cycle analysis was completed following the ISO 14040 methodology. During tests to fine tune the prototype machinery and compare the quality of semifinished bars produced using the scaled up system, the Buhler team produced interesting and significant results. Their tests showed the ternary Mg-Y-Zn magnesium alloys to have a highest specific strength over 6000 series wrought aluminum alloys usually employed in automotive components.

  18. The effect of sintering temperature on the mechanical properties of a Cu/CNT nanocomposite prepared via a powder metallurgy method

    NASA Astrophysics Data System (ADS)

    Trinh Pham, Van; Thang Bui, Hung; Tran, Bao Trung; Nguyen, Van Tu; Quang Le, Dinh; Tinh Than, Xuan; Chuc Nguyen, Van; Phuong Doan, Dinh; Phan, Ngoc Minh

    2011-03-01

    Metal matrix nanocomposites have become popular in industrial applications. Carbon nanotubes (CNTs), since theirs appearance, with their unique properties such as exceptionally small diameters and high Young's modulus, tensile strength and high chemical stability, are considered to be an attractive reinforcement material for lightweight and high-strength metallic matrix composites. The powder metallurgy method allows nanocomposite materials, notably metal–ceramic composites, to be produced by sintering a mixture of powders. In this study, we have utilized the powder metallurgy method to fabricate a Cu/CNT nanocomposite. Sintering is the important process in this method; it is the process whereby powder compacts are heated so that adjacent particles fuse together. The aim of this paper is to investigate the effect of sintering temperature on the mechanical properties of the Cu/CNT nanocomposite. The sintering temperature was in the range of 850–950 °C for 2 h. A correlation between the microstructure and mechanical properties, including the microstructure, density, hardness and compressive strength, is established. In this process, the density, and the physical and mechanical properties of the nanocomposites, can be changed, depending on the rate of sintering as well as the sintering temperature.

  19. Fatigue Performance of Powder Metallurgy (PM) Ti-6Al-4V Alloy: A Critical Analysis of Current Fatigue Data and Metallurgical Approaches for Improving Fatigue Strength

    NASA Astrophysics Data System (ADS)

    Cao, Fei; Ravi Chandran, K. S.

    2016-03-01

    A comprehensive assessment of fatigue performance of powder metallurgy (PM) Ti-6Al-4V alloy, manufactured using various powder-based processing approaches to-date, is performed in this work. The focus is on PM processes that use either blended element (BE) or pre-alloyed (PA) powder as feedstock. Porosity and the microstructure condition have been found to be the two most dominant material variables that control the fatigue strength. The evaluation reveals that the fatigue performance of PM Ti-6Al-4V, in the as-sintered state, is far lower than that in the wrought condition. This is largely caused by residual porosity, even if it is present in small amounts, or, by the coarse lamellar colony microstructure. The fatigue strength is significantly improved by the closure of pores, and it approaches the levels of wrought Ti-6Al-4V alloys, after hot-isostatic-pressing (HIPing). Further thermo-mechanical and heat treatments lead to additional increases in fatigue strength-in one case, a high fatigue strength level, exceeding that of the mill-annealed condition, was achieved. The work identifies the powder, process and microstructure improvements that are necessary for achieving high fatigue strength in powder metallurgical Ti-6Al-4V alloys in order for them to effectively compete with wrought forms. The present findings, gathered from the traditional titanium powder metallurgy, are also directly applicable to additively manufactured titanium, because of the similarities in pores, defects, and microstructures between the two manufacturing processes.

  20. Aluminum powder metallurgy processing

    SciTech Connect

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  1. Metallurgy of rechargeable hydrides

    SciTech Connect

    Rudman, P.S.; Sandrock, G.D.

    1982-01-01

    Thermodynamic principles of metal-hydrogen (M-H) systems are reviewed, and the theory and practice of M-H alloys are detailed. Pseudobinary systems, phase transformations, and metastability are briefly discussed. The LaNi5-H system is used to examine plateau slope and hysteresis in M-H alloy formation, and the rules of simple averaging and reversed stability are assessed with respect to their usefulness in predicting the behavior of such systems. The crystal structure of metal hydrides is addressed, including AB, AB2, and AB5 structure. Finally, the use of ternary substitutional alloying in controlling the thermodynamic properties of M-H systems is discussed, illustrating the substitution of copper for nickel in LaN5 and the dependence of the equilibrium pressure on the unit cell volume of various CaCu5 type compounds.

  2. Metallurgy: A compilation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A compilation on the technical uses of various metallurgical processes is presented. Descriptions are given of the mechanical properties of various alloys, ranging from TAZ-813 at 2200 F to investment cast alloy 718 at -320 F. Methods are also described for analyzing some of the constituents of various alloys from optical properties of carbide precipitates in Rene 41 to X-ray spectrographic analysis of the manganese content of high chromium steels.

  3. Applications of Phase Diagrams in Metallurgy and Ceramics: Proceedings of a Workshop Held at the National Bureau of Standards, Gaithersburg, Maryland, January 10-12, 1977. Volumes 1 [and] 2.

    ERIC Educational Resources Information Center

    Carter, G. C., Ed.

    This document is a special National Bureau of Standards publication on a Workshop on Applications of Phase Diagrams in Metallurgy and Ceramics. The purposes of the Workshop were: (1) to assess the current national and international status of phase diagram determinations and evaluations for alloys, ceramics and semiconductors; (2) to determine the…

  4. Enhancement on wettability and intermetallic compound formation with an addition of Al on Sn-0.7Cu lead-free solder fabricated via powder metallurgy method

    NASA Astrophysics Data System (ADS)

    Adli, Nisrin; Razak, Nurul Razliana Abdul; Saud, Norainiza

    2016-07-01

    Due to the toxicity of lead (Pb), the exploration of another possibility for lead-free solder is necessary. Nowadays, SnCu alloys are being established as one of the lead-free solder alternatives. In this study, Sn-0.7Cu lead-free solder with an addition of 1wt% and 5wt% Al were investigated by using powder metallurgy method. The effect of Al addition on the wettability and intermetallic compound thickness (IMC) of Sn-0.7Cu-Al lead-free solder were appraised. Results showed that Al having a high potential to enhance Sn-0.7Cu lead-free solder due to its good wetting and reduction of IMC thickness. The contact angle and IMC of the Sn-0.7Cu-Al lead-free solder were decreased by 14.32% and 40% as the Al content increased from 1 wt% to 5 wt%.

  5. Influence of Thermal Aging on the Microstructure and Mechanical Behavior of Dual-Phase, Precipitation-Hardened, Powder Metallurgy Stainless Steels

    NASA Astrophysics Data System (ADS)

    Stewart, J. L.; Williams, J. J.; Chawla, N.

    2012-01-01

    The effects of thermal aging on the microstructure and mechanical behavior of dual-phase, precipitation-hardened, powder metallurgy (PM) stainless steels of varying ferrite-martensite content were examined. Quantitative analyses of the inherent porosity and phase fractions were conducted on the steels, and no significant differences were noted with respect to aging temperature. Tensile strength, yield strength, and elongation to fracture all increased with increasing aging temperature reaching maxima at 811 K (538 °C) in most cases. Increased strength and decreased ductility were observed in steels of higher martensite content. Nanoindentation of the individual microconstituents was employed to obtain a fundamental understanding of the strengthening contributions. Both the ferrite and martensite nanohardness values increased with aging temperature and exhibited similar maxima to the bulk tensile properties.

  6. Relevance of Urinary 3-Hydroxybenzo(a)pyrene and 1-Hydroxypyrene to Assess Exposure to Carcinogenic Polycyclic Aromatic Hydrocarbon Mixtures in Metallurgy Workers

    PubMed Central

    Barbeau, Damien; Persoons, Renaud; Marques, Marie; Hervé, Claire; Laffitte-Rigaud, Gilbert; Maitre, Anne

    2014-01-01

    Objectives: In metallurgy, workers are exposed to mixtures of polycyclic aromatic hydrocarbons (PAHs) in which some compounds are carcinogenic. Biomonitoring of PAH exposure has been performed by measuring urinary 1-hydroxypyrene (1-OHP), a metabolite of pyrene which is not carcinogenic. This study investigated the use of 3-hydroxybenzo(a)pyrene (3-OHBaP), a metabolite of benzo(a)pyrene (BaP) which is the main carcinogenic component in PAHs, to improve carcinogen exposure assessment. Methods: We included 129 metallurgy workers routinely exposed to PAHs during working hours. Urinary samples were collected at three sampling times at the beginning and at the end of the working week for 1-OHP and 3-OHBaP analyses. Results: Workers in anode production showed greater exposure to both biomarkers than those in cathode or silicon production, with respectively, 71, 40, and 30% of 3-OHBaP concentrations exceeding the value of 0.4 nmol mol−1 creatinine. No difference was observed between the 3-OHBaP levels found at the end of the penultimate workday shift and those at the beginning of the last workday shift. Within these plants, the 1-OHP/3-OHBaP ratios varied greatly according to the workers’ activity and emission sources. Using linear regression between these two metabolites, the 1-OHP level corresponding to the guidance value for 3-OHBaP ranged from 0.7 to 2.4 µmol mol−1 creatinine, depending on the industrial sector. Conclusions: This study emphasizes the interest of monitoring urinary 3-OHBaP at the end of the last workday shift when working week exposure is relatively steady, and the irrelevance of a single guideline value for 1-OHP when assessing occupational health risk. PMID:24504174

  7. Effects of long-time elevated temperature exposures on hot-isostatically-pressed power-metallurgy Udimet 700 alloys with reduced cobalt contents

    NASA Technical Reports Server (NTRS)

    Hart, F. H.

    1984-01-01

    Because almost the entire U.S. consumption of cobalt depends on imports, this metal has been designated "strategic'. The role and effectiveness of cobalt is being evaluated in commercial nickel-base superalloys. Udiment 700 type alloys in which the cobalt content was reduced from the normal 17% down to 12.7%, 8.5%, 4.3%, and 0% were prepared by standard powder metallurgy techniques and hot isostatically pressed into billets. Mechanical testing and microstructural investigations were performed. The mechanical properties of alloys with reduced cobalt contents which were heat-treated identically were equal or better than those of the standard alloy, except that creep rates tended to increase as cobalt was reduced. The effects of long time exposures at 760 C on mechanical properties and at 760 C and 845 C on microstructures were determined. Decreased tensile properties and shorter rupture lives with increased creep rates were observed in alloy modifications. The exposures caused gamma prime particle coarsening and formation of sigma phase in the alloys with higher cobalt contents. Exposure at 845 C also reduced the amount of MC carbides.

  8. Influence of pre-heating on the surface modification of powder-metallurgy processed cold-work tool steel during laser surface melting

    NASA Astrophysics Data System (ADS)

    Šturm, Roman; Štefanikova, Maria; Steiner Petrovič, Darja

    2015-01-01

    In this study we determine the optimal parameters for surface modification using the laser surface melting of powder-metallurgy processed, vanadium-rich, cold-work tool steel. A combination of steel pre-heating, laser surface melting and a subsequent heat treatment creates a hardened and morphologically modified surface of the selected high-alloy tool steel. The pre-heating of the steel prior to the laser surface melting ensures a crack- and pore-free modified surface. Using a pre-heating temperature of 350 °C, the extremely fine microstructure, which typically evolves during the laser-melting, became slightly coarser and the volume fraction of retained austenite was reduced. In the laser-melted layer the highest values of microhardness were achieved in the specimens where a subsequent heat treatment at 550 °C was applied. The performed thermodynamic calculations were able to provide a very valuable assessment of the liquidus temperature and, especially, a prediction of the chemical composition as well as the precipitation and dissolution sequence for the carbides.

  9. Effect of inclusion size on the high cycle fatigue strength and failure mode of a high V alloyed powder metallurgy tool steel

    NASA Astrophysics Data System (ADS)

    Yao, Jun; Qu, Xuan-hui; He, Xin-bo; Zhang, Lin

    2012-07-01

    The fatigue strength of a high V alloyed powder metallurgy tool steel with two different inclusion size levels, tempered at different temperatures, was investigated by a series of high cycle fatigue tests. It was shown that brittle inclusions with large sizes above 30 μm prompted the occurrence of subsurface crack initiation and the reduction in fatigue strength. The fracture toughness and the stress amplitude both exerted a significant influence on the fish-eye size. A larger fish-eye area would form in the sample with a higher fracture toughness subjected to a lower stress amplitude. The stress intensity factor of the inclusion was found to lie above a typical value of the threshold stress intensity factor of 4 MPa·m1/2. The fracture toughness of the sample with a hardness above HRC 56 could be estimated by the mean value of the stress intensity factor of the fish-eye. According to fractographic evaluation, the critical inclusion size can be calculated by linear fracture mechanics.

  10. Formation of solid-solution Cu-to-Cu joints using Ga solder and Pt under bump metallurgy for three-dimensional integrated circuits

    NASA Astrophysics Data System (ADS)

    Lin, Shih-kang; Chang, Hao-miao; Cho, Cheng-liang; Liu, Yu-chen; Kuo, Yi-kai

    2015-07-01

    Three-dimensional (3D) integrated circuits (ICs) are the most important packaging technology for next-generation semiconductors. Cu-to-Cu throughsilicon via interconnections with micro-bumps are key components in the fabrication of 3D ICs. However, significant reliability concerns have been raised due to the formation of brittle intermetallic compounds in the entire 3D IC joints. This study proposes a Ga-based Cu-to-Cu bonding technology with Pt under bump metallurgy (UBM). A systematic analysis of reactive wetting between Ga solders and polycrystalline, single-crystalline, and Ptcoated Cu substrates was conducted. Pt UBM as a wetting layer was identified to be a key component for Ga-based Cu-to-Cu bonding. Pt-coated Cu substrates were bonded using Ga solders with various Ga-to-Pt ratios ( n) at 300℃. When n ≥ 4, the Cu/Pt/Ga/Pt/Cu interface evolves to Cu/facecentered cubic (fcc)/γ1-Cu9Ga4/fcc/Cu, Cu/fcc/γ1-Cu9Ga4 + Ga7Pt3/fcc/Cu, and finally Cu/fcc + Ga7Pt3/Cu structures. The desired ductile solid solution joint formed with discrete Ga7Pt3 precipitates. When n ≤ 1, a Cu/Ga7Pt3/Cu joint formed without Cu actively participating in the reactions. The reaction mechanism and microstructure evolution were elaborated with the aid of CALPHAD thermodynamic modeling. [Figure not available: see fulltext.

  11. A new titanium based alloy Ti-27Nb-13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial.

    PubMed

    Mendes, Marcio W D; Ágreda, Carola G; Bressiani, Ana H A; Bressiani, José C

    2016-06-01

    Titanium alloys are widely used in biomedical applications due to their excellent properties such as high strength, good corrosion resistance and biocompatibility. Titanium alloys with alloying elements such as Nb and Zr are biocompatible and have Young's modulus close to that of human bone. To increase the bioactivity of titanium alloy surfaces is used chemical treatment with NaOH followed by immersion in simulated body fluid (SBF). The purpose of this study was to produce the alloy Ti-27Nb-13Zr with low Young's modulus by powder metallurgy using powders produced by the HDH process. The formation of biomimetic coatings on samples immersed in SBF for 3, 7, 11 and 15 days was evaluated. Characterization of the coating was performed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and scanning electron microscope. The microstructure and composition of the alloy were determined using SEM and XRD, while the mechanical properties were evaluated by determining the elastic modulus and the Vickers microhardness. The sintered alloys were composed of α and β phases, equiaxed grains and with density around 97.8% of its theoretical density. The Vickers microhardness and elasticity modulus of the alloy were determined and their values indicate that this alloy can be used as a biomaterial. Analysis of the coating revealed the presence of calcium phosphate layers on samples immersed for >3 days in the SBF solution. PMID:27040264

  12. Effect of Ca content percentage and sintering temperature on corrosion rate in Mg-Ca composite fabricated using powder metallurgy technique

    NASA Astrophysics Data System (ADS)

    Syaza Nabilla, M. S.; Zuraidawani, C. D.; Nazree, D. M.

    2016-07-01

    Magnesium (Mg) is a good element with high potential to be used in various field of work. It has the benefit of lightweight and low density its application is limited for Mg is relatively low in term of strength. Hence, calcium (Ca) is chosen to be mixed with Mg as additional element for it is lightweight and non-toxic. In this research, Mg is prepared with different weight percentage (0, 0.5, 1, 1.5 and 2 wt. %) of Cavia powder metallurgy (PM) method. The samples were sintered at 500 and 550°Cin argon atmosphere and electrochemically using SBF solution as the electrolyte medium. The effect of Ca content on corrosion rateis investigated by focusing on the microstructure and properties of sintered sample. Increase of Ca content causes reduction in grain structure due to increase Mg2Ca phase at grain boundaries. Subsequently, reduce corrosion resistance. Hence, the amount of Ca content and sintering temperature of Mg-Ca composite is controlled to acquire optimum corrosion rate.

  13. Development of cube textured Ni 5at.%W alloy substrates for YBCO coated conductor application using a powder metallurgy process

    NASA Astrophysics Data System (ADS)

    Kim, S.-S.; Tak, J.-S.; Bae, S.-Y.; Chung, J.-K.; Ahn, I.-S.; Kim, C.-J.; Kim, K.-W.; Cho, K.-K.

    2007-10-01

    In this paper, Ni-5at.%W alloy substrate for YBCO coated conductor was fabricated by a dry powder metallurgy process including powder compaction, cold isostatic pressing (CIP), cold rolling and annealing for recrystallization. Ni and W powders were ball-milled at this process for various times of 10, 30, 50 and 100 h in argon atmosphere. The rod-like Ni-W alloy compacts were sintered at 1150 °C for 1 h in 96%Ar-4%H2 atmosphere. The sintered rods were cold rolling into thin tape of 70-90 μm thickness with 5% reduction at each path. The Ni-W alloy tapes were annealed at 800-1200 °C in an atmosphere of 96%Ar-4%H2 mixing gas for the development of cube texture. The tape with the best properties of low surface roughness, small grain size and strong cube texture was obtained at the condition annealed at 1200 °C using ball-milled powder for 30 min. The W addition to Ni improved the mechanical properties by solid solution hardening and inhibited grain growth for annealing heat treatment. The tapes were characterized by X-ray pole-figure, optical microscopy (OM), scanning electron microscopy (SEM) and scanning probe microscopy (SPM).

  14. On Intensive Late Holocene Iron Mining and Production in the Northern Congo Basin and the Environmental Consequences Associated with Metallurgy in Central Africa

    PubMed Central

    Lupo, Karen D.; Schmitt, Dave N.; Kiahtipes, Christopher A.; Ndanga, Jean-Paul; Young, D. Craig; Simiti, Bernard

    2015-01-01

    An ongoing question in paleoenvironmental reconstructions of the central African rainforest concerns the role that prehistoric metallurgy played in shaping forest vegetation. Here we report evidence of intensive iron-ore mining and smelting in forested regions of the northern Congo Basin dating to the late Holocene. Volumetric estimates on extracted iron-ore and associated slag mounds from prehistoric sites in the southern Central African Republic suggest large-scale iron production on par with other archaeological and historically-known iron fabrication areas. These data document the first evidence of intensive iron mining and production spanning approximately 90 years prior to colonial occupation (circa AD 1889) and during an interval of time that is poorly represented in the archaeological record. Additional site areas pre-dating these remains by 3-4 centuries reflect an earlier period of iron production on a smaller scale. Microbotanical evidence from a sediment core collected from an adjacent riparian trap shows a reduction in shade-demanding trees in concert with an increase in light-demanding species spanning the time interval associated with iron intensification. This shift occurs during the same time interval when many portions of the Central African witnessed forest transgressions associated with a return to moister and more humid conditions beginning 500-100 years ago. Although data presented here do not demonstrate that iron smelting activities caused widespread vegetation change in Central Africa, we argue that intense mining and smelting can have localized and potentially regional impacts on vegetation communities. These data further demonstrate the high value of pairing archeological and paleoenvironmental analyses to reconstruct regional-scale forest histories. PMID:26161540

  15. The Influence of Sc and Zr Additions on the Microstructure and Mechanical Behavior of Ultrafine Grained Al-Mg Alloys Processed by Powder Metallurgy

    NASA Astrophysics Data System (ADS)

    Harrell, Tammy Jeanne

    Additions of Sc and Zr to an Al-Mg matrix were investigated, paying particular attention to the influence of Al3Sc precipitates and other dispersoids, as well as grain size, on mechanical behavior. Prior studies have shown that Sc and Zr significantly increase the strength of coarse-grained Al-Mg alloys. Prompted by these findings, we hypothesized that it would be of fundamental and technological interest to study the behavior of Sc additions to an ultra-fine-grained (UFG) microstructure (e.g., 100's nm). Accordingly, we investigate the microstructural evolution and mechanical behavior of four powder metallurgy UFG Al-Mg-Sc-(Zr) compositions and compared the results to those of equivalent fine-grained (FG) compositions - Al-5Mg-0.1Sc, Al-3Mg-0.5Sc, Al-5Mg-0.4Sc and Al-5Mg-0.2Sc-0.2Zr (wt.%). Experimental materials were consolidated by hot isostatic pressing (HIP'ing) followed by extrusion or dual mode dynamic (DMD) forging. Under identical processing conditions, UFG ternary Al-5Mg-0.4Sc materials generate large Al3Sc precipitates with an average diameter of 154 nm and spaced approximately 1 - 3 μm apart, while precipitates in the FG materials have an average diameter of 24 nm and are spaced 50 - 200 nm apart. The strengthening mechanisms are quantitatively evaluated for all materials and it is determined that the greatest strengthening contributions for the UFG and FG materials are dispersion strengthening due to the presence of Mg-rich oxides/nitrides and precipitate strengthening, respectively. Preliminary results suggest that replacing 0.2 wt% Sc with Zr results in higher strength, lower ductility and a change in precipitate distribution.

  16. A Novel Powder Metallurgy Processing Approach to Prepare Fine-Grained Cu-Al-Ni Shape-Memory Alloy Strips from Elemental Powders

    NASA Astrophysics Data System (ADS)

    Vajpai, S. K.; Dube, R. K.; Chatterjee, P.; Sangal, S.

    2012-07-01

    The current work describes the experimental results related to the successful preparation of fine-grained, Cu-Al-Ni, high-temperature shape-memory alloy (SMA) strips from elemental Cu, Al, and Ni powders via a novel powder metallurgy (P/M) processing approach. This route consists of short time period ball milling of elemental powder mixture, preform preparation from milled powder, sintering of preforms, hot-densification rolling of unsheathed sintered powder preforms under protective atmosphere, and postconsolidation homogenization treatment of the hot-rolled strips. It has been shown that it is possible to prepare chemically homogeneous Cu-Al-Ni SMA strips consisting of equiaxed grains of average size approximately 6 μm via the current processing approach. It also has been shown that fine-grained microstructure in the finished Cu-Al-Ni SMA strips resulted from the pinning effect of nanosized alumina particles present on the grain boundaries. The finished SMA strips were almost fully martensitic in nature, consisting of a mixture of β1^' } - and γ1^' } -type martensites. The Cu-Al-Ni SMA strips had 677 MPa average fracture strength, coupled with 13 pct average fracture strain. The fractured surfaces of the specimens exhibited primarily dimpled ductile type of fracture, together with some transgranular mode of fracture. The Cu-Al-Ni strips exhibited an almost 100 pct one-way shape recovery after bending followed by unconstrained heating at 1, 2, and 4 pct applied deformation prestrain. The two-way shape-memory strain was found approximately 0.35 pct after 15 training cycles at 4 pct applied training prestrain.

  17. Study of the mechanical stability and bioactivity of Bioglass(®) based glass-ceramic scaffolds produced via powder metallurgy-inspired technology.

    PubMed

    Boccardi, Elena; Melli, Virginia; Catignoli, Gabriele; Altomare, Lina; Jahromi, Maryam Tavafoghi; Cerruti, Marta; Lefebvre, Louis-Philippe; De Nardo, Luigi

    2016-02-01

    Large bone defects are challenging to heal, and often require an osteoconductive and stable support to help the repair of damaged tissue. Bioglass-based scaffolds are particularly promising for this purpose due to their ability to stimulate bone regeneration. However, processing technologies adopted so far do not allow for the synthesis of scaffolds with suitable mechanical properties. Also, conventional sintering processes result in glass de-vitrification, which generates concerns about bioactivity. In this work, we studied the bioactivity and the mechanical properties of Bioglass(®) based scaffolds, produced via a powder technology inspired process. The scaffolds showed compressive strengths in the range of 5-40 MPa, i.e. in the upper range of values reported so far for these materials, had tunable porosity, in the range between 55 and 77%, and pore sizes that are optimal for bone tissue regeneration (100-500 μm). We immersed the scaffolds in simulated body fluid (SBF) for 28 d and analyzed the evolution of the scaffold mechanical properties and microstructure. Even if, after sintering, partial de-vitrification occurred, immersion in SBF caused ion release and the formation of a Ca-P coating within 2 d, which reached a thickness of 10-15 μm after 28 d. This coating contained both hydroxyapatite and an amorphous background, indicating microstructural amorphization of the base material. Scaffolds retained a good compressive strength and structural integrity also after 28 d of immersion (6 MPa compressive strength). The decrease in mechanical properties was mainly related to the increase in porosity, caused by its dissolution, rather than to the amorphization process and the formation of a Ca-P coating. These results suggest that Bioglass(®) based scaffolds produced via powder metallurgy-inspired technique are excellent candidates for bone regeneration applications. PMID:26836444

  18. A non-destructive synchrotron X-ray study of the metallurgy and manufacturing processes of Eastern and Western astrolabes in the Adler Planetarium collection

    NASA Astrophysics Data System (ADS)

    Newbury, Brian Dale

    The astrolabe collection of the Adler Planetarium and History of Astronomy Museum, Chicago, IL, was examined using non-destructive synchrotron based high-energy X-ray techniques including diffraction, fluorescence, and radiography to determine the metallurgy, microstructure, and metal forming processes used in astrolabe construction. All high-energy X-ray measurements were performed at the Advanced Photon Source (APS) synchrotron of Argonne National Laboratory, Argonne, IL. Astrolabes from the collection were selected to represent all major astrolabe production centers possible and time periods. It was found that all European astrolabes were manufactured of traditional cementation brass by hand worked metal forming processes consistent with technology in the literature. Of the Islamic astrolabes examined, all seven from Lahore in current-day Pakistan exhibited advanced brass alloys not typical of alloys discussed in the literature. It was found that these alloys were selected for their specific hot working properties, allowing the Lahore metalworkers to more efficiently make brass sheet from which to make astrolabe components. In addition, the alloy required a fundamental change in the brass foundry process, indicating advanced Zn metal production techniques. It was found that analysis by high energy X-rays from the APS was essential to produce data on the chemistry and microstructure from the interior of the astrolabe components in a non-destructive manner. Many astrolabe components had undergone surface dezincification due to heavy annealing during manufacturing, causing the Zn composition measured by the surface sensitive fluorescence technique to be lower than the true bulk alloy Zn composition. This would have been impossible to quantify non-destructively without the high-energy diffraction capability of the APS. The results of this study have proven the effectiveness of the synchrotron as a viable non-destructive analysis technique for examining cultural

  19. History of ``NANO''-Scale VERY EARLY Solid-State (and Liquid-State) Physics/Chemistry/Metallurgy/ Ceramics; Interstitial-Alloys Carbides/Nitrides/Borides/...Powders and Cermets, Rock Shocks, ...

    NASA Astrophysics Data System (ADS)

    Maiden, Colin; Siegel, Edward

    History of ``NANO'': Siegel-Matsubara-Vest-Gregson[Mtls. Sci. and Eng. 8, 6, 323(`71); Physica Status Solidi (a)11,45(`72)] VERY EARLY carbides/nitrides/borides powders/cermets solid-state physics/chemistry/metallurgy/ ceramics FIRST-EVER EXPERIMENTAL NANO-physics/chemistry[1968 ->Physica Status Solidi (a)11,45(`72); and EARLY NANO-``physics''/NANO-``chemistry'' THEORY(after: Kubo(`62)-Matsubara(`60s-`70s)-Fulde (`65) [ref.: Sugano[Microcluster-Physics, Springer('82 `98)

  20. Effect of a supersolvus heat treatment on the microstructure and mechanical properties of a powder metallurgy processed nickel-base superalloy

    NASA Astrophysics Data System (ADS)

    Stolz, Darryl Slade

    Powder Metallurgy (P/M) processed nickel-base superalloys are used as turbine disk materials in jet engines. The P/M processing results in a homogenous microstructure. Large amounts of strengthening elements can be incorporated into the chemistry of these P/M alloys. In addition, the ability to produce near net-shaped parts with powder consolidation may offer the potential for large cost savings. However, the fatigue properties of P/M superalloys in the as-consolidated form have suffered because of the defect sensitivity of the as-consolidated microstructure. Expensive, thermomechanical steps are necessary to break down defects, so that the P/M parts can be considered defect-tolerant. As a result, the true potential cost savings for using P/M superalloys in turbines have never been realized. This program was undertaken to examine the potential for utilizing an alternate heat treatment with P/M Alloy 720LI to generate a potentially defect-tolerant microstructure. This heat treatment had a soak above the gamma' solvus temperature followed by a controlled cool through the solvus. This produced gamma grains with a regular array of large dendritic-shaped secondary gamma' within the grains. Mechanical testing was carried out to fully evaluate the effect of this alternate heat treatment on the mechanical properties of Alloy 720LI. The standard heat treatment had longer lifetimes at the lower stress range conditions during high cycle fatigue; however, the alternate heat treatment was superior at the highest stress range. Fracture analysis suggests that this is due to the grain size difference. During tensile testing, the standard heat treatment had higher yield and ultimate strengths but lower ductility than the alternate heat treatment. This is thought to be due to the larger amounts of tertiary gamma ' present in the microstructure produced by the standard heat treatment. Finally, the standard heat treatment had longer creep lifetimes at the lowest test temperature. The

  1. Metafusion: A breakthrough in metallurgy

    NASA Technical Reports Server (NTRS)

    Joseph, Adrian A.

    1994-01-01

    The Metafuse Process is a patented development in the field of thin film coatings utilizing cold fusion which results in a true inter-dispersion of dissimilar materials along a gradual transition gradient through a boundary of several hundred atomic layers. The process is performed at ambient temperatures and pressures requiring relatively little energy and creating little or no heat. The process permits a remarkable range of material combinations and joining of materials which are normally incompatible. Initial applications include titanium carbide into and onto the copper resistance welding electrodes and tungsten carbide onto the cutting edges of tool steel blades. The process is achieved through application of an RF signal of low power and is based on the theory of vacancy fusion.

  2. Metallurgy: Starting and stopping dislocations

    NASA Astrophysics Data System (ADS)

    Minor, Andrew M.

    2015-09-01

    A comparison of dislocation dynamics in two hexagonal close-packed metals has revealed that dislocation movement can vary substantially in materials with the same crystal structure, associated with how the dislocations relax when stationary.

  3. Development and characterization of Powder Metallurgy (PM) 2XXX series Al alloy products and Metal Matrix Composite (MMC) 2XXX Al/SiC materials for high temperature aircraft structural applications

    NASA Technical Reports Server (NTRS)

    Chellman, D. J.; Gurganus, T. B.; Walker, J. A.

    1992-01-01

    The results of a series of material studies performed by the Lockheed Aeronautical Systems Company over the time period from 1980 to 1991 are discussed. The technical objective of these evaluations was to develop and characterize advanced aluminum alloy materials with temperature capabilities extending to 350 F. An overview is given of the first five alloy development efforts under this contract. Prior work conducted during the first five modifications of the alloy development program are listed. Recent developments based on the addition of high Zr levels to an optimum Al-Cu-Mg alloy composition by powder metallurgy processing are discussed. Both reinforced and SiC or B4C ceramic reinforced alloys were explored to achieve specific target goals for high temperature aluminum alloy applications.

  4. Contributions a la caracterisation et a l'amelioration de l'usinabilite de pieces d'acier elaborees par metallurgie des poudres

    NASA Astrophysics Data System (ADS)

    Boilard, Patrick

    Even though powder metallurgy (P/M) is a near net shape process, a large number of parts still require one or more machining operations during the course of their elaboration and/or their finishing. The main objectives of the work presented in this thesis are centered on the elaboration of blends with enhanced machinability, as well as helping with the definition and in the characterization of the machinability of P/M parts. Enhancing machinability can be done in various ways, through the use of machinability additives and by decreasing the amount of porosity of the parts. These different ways of enhancing machinability have been investigated thoroughly, by systematically planning and preparing series of samples in order to obtain valid and repeatable results leading to meaningful conclusions relevant to the P/M domain. Results obtained during the course of the work are divided into three main chapters: (1) the effect of machining parameters on machinability, (2) the effect of additives on machinability, and (3) the development and the characterization of high density parts obtained by liquid phase sintering. Regarding the effect of machining parameters on machinability, studies were performed on parameters such as rotating speed, feed, tool position and diameter of the tool. Optimal cutting parameters are found for drilling operations performed on a standard FC-0208 blend, for different machinability criteria. Moreover, study of material removal rates shows the sensitivity of the machinability criteria for different machining parameters and indicates that thrust force is more regular than tool wear and slope of the drillability curve in the characterization of machinability. The chapter discussing the effect of various additives on machinability reveals many interesting results. First, work carried out on MoS2 additions reveals the dissociation of this additive and the creation of metallic sulphides (namely CuxS sulphides) when copper is present. Results also show

  5. Relationship between crystallographic structure of the Ti{sub 2}O{sub 3}/MnS complex inclusion and microstructure in the heat-affected zone (HAZ) in steel processed by oxide metallurgy route and impact toughness

    SciTech Connect

    Xiong, Zhihui; Liu, Shilong; Wang, Xuemin; Shang, Chengjia; Misra, R.D.K.

    2015-08-15

    A new method based on electron back scattered diffraction (EBSD) is proposed to determine the structure of titanium oxide/MnS complex inclusion which induced the formation of intragranular acicular ferrite (IAF) in heat-affected zone (HAZ) in steel processed by oxide metallurgy route. It was found that the complex inclusion was Ti{sub 2}O{sub 3}/MnS, the orientation relationship between Ti{sub 2}O{sub 3} and MnS was also examined, and the crystallographic orientation relationship among IAF, Ti{sub 2}O{sub 3}/MnS complex inclusion, austenite, bainite formed at lower temperature is researched systematically. It was observed that MnS precipitated on Ti{sub 2}O{sub 3} at specific habit plane and direction and MnS had a specific orientation relationship ((0001) Ti{sub 2}O{sub 3}//(111) MnS), <10–10> Ti{sub 2}O{sub 3}//<110> MnS) with respect to Ti{sub 2}O{sub 3}. Intragranular acicular ferrite (IAF) nucleated on MnS part of the Ti{sub 2}O{sub 3}/MnS complex inclusion had no specific orientation relationship with MnS. IAF and the surrounding bainite had different Bain groups, so that there was an increase in high angle boundaries, which was beneficial for the toughness of HAZ. - Highlights: • The inclusion of TiO{sub x}/MnS that induced IAF formation is identified to be Ti{sub 2}O{sub 3}/MnS. • The inclusion is identified based on electron back scattered diffraction (EBSD). • MnS and Ti{sub 2}O{sub 3} had specific orientation relationship of Ti{sub 2}O{sub 3}/MnS complex inclusion. • The IAFs formed on the same inclusion tend to be in one Bain group. • IAF and the surrounding bainite tend to be in different Bain groups.

  6. The Use of Moessbauer Spectroscopy in Metallurgy

    SciTech Connect

    Forder, S.D.

    2005-04-26

    This review will present examples of the varied way in which Moessbauer spectroscopy has been used, with complementary analytical techniques, to gain information about metals and alloys, with cases chosen to illustrate how this information can be valuable to industry.The Moessbauer investigations reviewed have been divided into three categories:1) Monitoring the effect of deliberate modification of the metal by processing, either at the pre-treatment stage, e.g. metal ion etching of steel surfaces prior to coating or during the modification of structure and properties, such as the formation of Al-Fe surface alloys formed by ion implantation of Fe in Al.2) Monitoring changes in the metal not caused deliberately, i.e. the side-effects of processing. Examples reviewed include Moessbauer studies of reactor steels, and phase transformation during intensive plastic deformation. Also the Moessbauer Effect has helped to determine the cause of staining occurring on electrogalvanized steel.3) Obtaining information to enable fundamental understanding of metals and alloys. These examples include Moessbauer spectroscopy used to study the formation of intermetallic phases in industrial alloys, the influence of metal ions on iron oxide rusts and the study of quasi-crystalline alloys.The information gained has helped the improvement of properties, the monitoring of changes in structures, as well as the development of fundamental understanding of metals and alloys.

  7. Towards a metallurgy of neutron star crusts.

    PubMed

    Kobyakov, D; Pethick, C J

    2014-03-21

    In the standard picture of the crust of a neutron star, matter there is simple: a body-centered-cubic lattice of nuclei immersed in an essentially uniform electron gas. We show that, at densities above that for neutron drip (∼ 4 × 1 0(11)  g cm(-3) or roughly one-thousandth of nuclear matter density), the interstitial neutrons give rise to an attractive interaction between nuclei that renders the lattice unstable. We argue that the likely equilibrium structure is similar to that in displacive ferroelectric materials such as BaTiO3. As a consequence, the properties of matter in the inner crust are expected to be much richer than previously appreciated, and we mention possible consequences for observable neutron star properties. PMID:24702357

  8. The metallurgy of high temperature alloys

    NASA Technical Reports Server (NTRS)

    Tien, J. K.; Purushothaman, S.

    1976-01-01

    Nickel-base, cobalt-base, and high nickel and chromium iron-base alloys are dissected, and their microstructural and chemical components are assessed with respect to the various functions expected of high temperature structural materials. These functions include the maintenance of mechanical integrity over the strain-rate spectrum from creep resistance through fatigue crack growth resistance, and such alloy stability expectations as microstructural coarsening resistance, phase instability resistance and oxidation and corrosion resistance. Special attention will be given to the perennial conflict and trade-off between strength, ductility and corrosion and oxidation resistance. The newest developments in the constitution of high temperature alloys will also be discussed, including aspects relating to materials conservation.

  9. Acoustical-Levitation Chamber for Metallurgy

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Trinh, E.; Wang, T. G.; Elleman, D. D.; Jacobi, N.

    1983-01-01

    Sample moved to different positions for heating and quenching. Acoustical levitation chamber selectively excited in fundamental and second-harmonic longitudinal modes to hold sample at one of three stable postions: A, B, or C. Levitated object quickly moved from one of these positions to another by changing modes. Object rapidly quenched at A or C after heating in furnace region at B.

  10. Interactive data-processing system for metallurgy

    NASA Technical Reports Server (NTRS)

    Rathz, T. J.

    1978-01-01

    Equipment indicates that system can rapidly and accurately process metallurgical and materials-processing data for wide range of applications. Advantages include increase in contract between areas on image, ability to analyze images via operator-written programs, and space available for storing images.

  11. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.

    2001-01-01

    A biaxially textured alloy article comprises Ni powder and at least one powder selected from the group consisting of Cr, W, V, Mo, Cu, Al, Ce, YSZ, Y, Rare Earths, (RE), MgO, CeO.sub.2, and Y.sub.2 O.sub.3 ; compacted and heat treated, then rapidly recrystallized to produce a biaxial texture on the article. In some embodiments the alloy article further comprises electromagnetic or electro-optical devices and possesses superconducting properties.

  12. Laboratory Powder Metallurgy Makes Tough Aluminum Sheet

    NASA Technical Reports Server (NTRS)

    Royster, D. M.; Thomas, J. R.; Singleton, O. R.

    1993-01-01

    Aluminum alloy sheet exhibits high tensile and Kahn tear strengths. Rapid solidification of aluminum alloys in powder form and subsequent consolidation and fabrication processes used to tailor parts made of these alloys to satisfy such specific aerospace design requirements as high strength and toughness.

  13. An application of powder metallurgy to dentistry.

    PubMed

    Oda, Y; Ueno, S; Kudoh, Y

    1995-11-01

    Generally, the dental casting method is used to fabricate dental prostheses made with metal. The method of fabricating dental prostheses from sintered titanium alloy has certain advantages: the elimination of casting defects, a sintering temperature that is lower than the melting point, and a shorter processing time. By examining (1) the properties of green, sintered compacts of titanium powder, (2) the effects of adding aluminum powder on the properties of green, sintered compacts of Ti-Al compound, and (3) the effects of adding copper powder on the properties of green, sintered compacts of Ti-Al-Cu compound, the authors developed a sintered titanium alloy on a trial basis. Because the properties satisfied the requirements of dental restorations, a powder metallurgical method of making dental restorations from this sintered titanium alloy was devised. Applications of such sintered titanium alloys for the metal coping of metal-ceramic crowns and denture base plates were discussed. PMID:8689755

  14. Metallurgy and Ceramics/Superplasticity in Metals and Ceramics

    SciTech Connect

    Nieh, T G

    2002-02-06

    In the past three years, we have carried out a number of studies on the deformation and superplasticity of fine-structured materials. The goal was to develop an understanding on the deformation microstructure relationship in these advanced materials and to improve further their properties through microstructural control. In this report, we describe only some of the key results and observations from these studies.

  15. Programmatic mission capabilities - chemistry and metallurgy research replacement (CMRR) project

    SciTech Connect

    Gunderson, L Nguyen; Kornreich, Drew E; Wong, Amy S

    2011-01-04

    CMRR will have analysis capabilities that support all the nuclear-material programs and national security needs. CMRR will replace the aging CMR Building and provide a key component responsive infrastructure necessary to sustain all nuclear programs and the nuclear-weapons complex. Material characterization capabilities - evaluate the microstructures and properties of nuclear materials and provide experimental data to validate process and performance models. Analytical chemistry capabilities - provide expertise in chemical and radiochemical analysis of materials where actinide elements make up a significant portion of the sample.

  16. Physical and mechanical metallurgy of NiAl

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Bowman, Randy R.; Nathal, Michael V.

    1994-01-01

    Considerable research has been performed on NiAl over the last decade, with an exponential increase in effort occurring over the last few years. This is due to interest in this material for electronic, catalytic, coating and especially high-temperature structural applications. This report uses this wealth of new information to develop a complete description of the properties and processing of NiAl and NiAl-based materials. Emphasis is placed on the controlling fracture and deformation mechanisms of single and polycrystalline NiAl and its alloys over the entire range of temperatures for which data are available. Creep, fatigue, and environmental resistance of this material are discussed. In addition, issues surrounding alloy design, development of NiAl-based composites, and materials processing are addressed.

  17. Metallurgy. Origin of dramatic oxygen solute strengthening effect in titanium.

    PubMed

    Yu, Qian; Qi, Liang; Tsuru, Tomohito; Traylor, Rachel; Rugg, David; Morris, J W; Asta, Mark; Chrzan, D C; Minor, Andrew M

    2015-02-01

    Structural alloys are often strengthened through the addition of solute atoms. However, given that solute atoms interact weakly with the elastic fields of screw dislocations, it has long been accepted that solution hardening is only marginally effective in materials with mobile screw dislocations. By using transmission electron microscopy and nanomechanical characterization, we report that the intense hardening effect of dilute oxygen solutes in pure α-Ti is due to the interaction between oxygen and the core of screw dislocations that mainly glide on prismatic planes. First-principles calculations reveal that distortion of the interstitial sites at the screw dislocation core creates a very strong but short-range repulsion for oxygen that is consistent with experimental observations. These results establish a highly effective mechanism for strengthening by interstitial solutes. PMID:25657243

  18. Aluminum Surface Texturing by Means of Laser Interference Metallurgy

    SciTech Connect

    Chen, Jian; Sabau, Adrian S; Jones, Jonaaron F.; Hackett, Alexandra C.; Daniel, Claus; Warren, Charles David

    2015-01-01

    The increasing use of lightweight materials, such as aluminum alloys, in auto body structures requires more effective surface cleaning and texturing techniques to improve the quality of the structural components. The present work introduces a novel surface treatment method using laser interferometry produced by two beams of a pulsed Nd:YAG laser operating at 10Hz of frequency to clean aluminum surfaces, and meanwhile creating periodic and rough surface structures. The influences of beam size, laser fluence, wavelength, and pulse number per spot are investigated. High resolution optical profiler images reveal the change of the peak-to-valley height on the laser-treated surface.

  19. Materials: A compilation. [considering metallurgy, polymers, insulation, and coatings

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Technical information is provided for the properties and fabrication of metals and alloys, as well as for polymeric materials, such as lubricants, coatings, and insulation. Available patent information is included in the compilation.

  20. Solvent extraction: the coordination chemistry behind extractive metallurgy.

    PubMed

    Wilson, A Matthew; Bailey, Phillip J; Tasker, Peter A; Turkington, Jennifer R; Grant, Richard A; Love, Jason B

    2014-01-01

    The modes of action of the commercial solvent extractants used in extractive hydrometallurgy are classified according to whether the recovery process involves the transport of metal cations, M(n+), metalate anions, MXx(n-), or metal salts, MXx into a water-immiscible solvent. Well-established principles of coordination chemistry provide an explanation for the remarkable strengths and selectivities shown by most of these extractants. Reagents which achieve high selectivity when transporting metal cations or metal salts into a water-immiscible solvent usually operate in the inner coordination sphere of the metal and provide donor atom types or dispositions which favour the formation of particularly stable neutral complexes that have high solubility in the hydrocarbons commonly used in recovery processes. In the extraction of metalates, the structures of the neutral assemblies formed in the water-immiscible phase are usually not well defined and the cationic reagents can be assumed to operate in the outer coordination spheres. The formation of secondary bonds in the outer sphere using, for example, electrostatic or H-bonding interactions are favoured by the low polarity of the water-immiscible solvents. PMID:24088789

  1. Magnetic Field Applications in Semiconductor Crystal Growth and Metallurgy

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Ramachandran, Narayanan; Grugel, Richard; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The Traveling Magnetic Field (TMF) technique, recently proposed to control meridional flow in electrically conducting melts, is reviewed. In particular, the natural convection damping capability of this technique has been numerically demonstrated with the implication of significantly improving crystal quality. Advantages of the traveling magnetic field, in comparison to the more mature rotating magnetic field method, are discussed. Finally, results of experiments with mixing metallic alloys in long ampoules using TMF is presented

  2. Physical and mathematical modelling of ladle metallurgy operations. [steelmaking

    NASA Technical Reports Server (NTRS)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    Experimental measurements are reported, on the velocity fields and turbulence parameters on a water model of an argon stirred ladle. These velocity measurements are complemented by direct heat transfer measurements, obtained by studying the rate at which ice rods immersed into the system melt, at various locations. The theoretical work undertaken involved the use of the turbulence Navier-Stokes equations in conjunction with the kappa-epsilon model to predict the local velocity fields and the maps of the turbulence parameters. Theoretical predictions were in reasonably good agreement with the experimentally measured velocity fields; the agreement between the predicted and the measured turbulence parameters was less perfect, but still satisfactory. The implications of these findings to the modelling of ladle metallurgical operations are discussed.

  3. Metallurgy and deformation of electron beam welded similar titanium alloys

    NASA Astrophysics Data System (ADS)

    Pasang, T.; Sabol, J. C.; Misiolek, W. Z.; Mitchell, R.; Short, A. B.; Littlefair, G.

    2012-04-01

    Butt welded joins were produced between commercially pure titanium and various titanium alloys using an electron beam welding technique. The materials used represent commercially pure grade, α-β alloy and β alloy. They were CP Ti, Ti-6Al-4V (Ti64) and Ti-5Al-5V-5Mo-3Cr (Ti5553), respectively. Grains were largest in the FZs of the different weldments, decreasing in size towards the heat affected zones (HAZs) and base metals. Hardness measurements taken across the traverse cross-sections of the weldments were constant from base metal-to-weld-to-base metal for CP Ti/CP Ti and Ti64/Ti64 welds, while the FZ of Ti5553/Ti5553 had a lower hardness compared with the base metal. During tensile testing the CP Ti/CP Ti weldments fractured at the base metal, whereas both the Ti64/Ti64 and Ti5553/Ti5553 broke at the weld zones. Fracture surface analysis suggested microvoid coalescence as the failure mechanism. The compositional analysis showed a relatively uniform distribution of solute elements from base metal-to-weld-to-base metal. CP Ti has always been known for its excellent weldability, Ti64 has good weldability and, preliminary results indicated that Ti5553 alloy is also weldable.

  4. Nuclear Technology Series. Course 15: Metallurgy and Metals Properties.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  5. Powder metallurgy processing and deformation characteristics of bulk multimodal nickel

    SciTech Connect

    Farbaniec, L.; Dirras, G.; Krawczynska, A.; Mompiou, F.; Couque, H.; Naimi, F.; Bernard, F.; Tingaud, D.

    2014-08-15

    Spark plasma sintering was used to process bulk nickel samples from a blend of three powder types. The resulting multimodal microstructure was made of coarse (average size ∼ 135 μm) spherical microcrystalline entities (the core) surrounded by a fine-grained matrix (average grain size ∼ 1.5 μm) or a thick rim (the shell) distinguishable from the matrix. Tensile tests revealed yield strength of ∼ 470 MPa that was accompanied by limited ductility (∼ 2.8% plastic strain). Microstructure observation after testing showed debonding at interfaces between the matrix and the coarse entities, but in many instances, shallow dimples within the rim were observed indicating local ductile events in the shell. Dislocation emission and annihilation at grain boundaries and twinning at crack tip were the main deformation mechanisms taking place within the fine-grained matrix as revealed by in-situ transmission electron microscopy. Estimation of the stress from loop's curvature and dislocation pile-up indicates that dislocation emission from grain boundaries and grain boundary overcoming largely contributes to the flow stress. - Highlights: • Bulk multi-modal Ni was processed by SPS from a powder blend. • Ultrafine-grained matrix or rim observed around spherical microcrystalline entities • Yield strength (470 MPa) and ductility (2.8% plastic strain) were measured. • Debonding was found at the matrix/microcrystalline entity interfaces. • In-situ TEM showed twinning, dislocation emission and annihilation at grain boundaries.

  6. An Ancient Inca Tax and Metallurgy in Peru

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 2007

    2007-01-01

    The discovery of ancient Inca tax rulers and other metallurgical objects in Peru show that the ancient civilizations of the country smelted metals. The analysis shows that the smelters in Peru switched from the production of copper to silver after a tax was imposed on them by the Inca rulers.

  7. Method for forming biaxially textured articles by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2002-01-01

    A method of preparing a biaxially textured alloy article comprises the steps of preparing a mixture comprising Ni powder and at least one powder selected from the group consisting of Cr, W, V, Mo, Cu, Al, Ce, YSZ, Y, Rare Earths, (RE), MgO, CeO.sub.2, and Y.sub.2 O.sub.3 ; compacting the mixture, followed by heat treating and rapidly recrystallizing to produce a biaxial texture on the article. In some embodiments the alloy article further comprises electromagnetic or electro-optical devices and possesses superconducting properties.

  8. Net-Shape HIP Powder Metallurgy Components for Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bampton, Cliff; Goodin, Wes; VanDaam, Tom; Creeger, Gordon; James, Steve

    2005-01-01

    True net shape consolidation of powder metal (PM) by hot isostatic pressing (HIP) provides opportunities for many cost, performance and life benefits over conventional fabrication processes for large rocket engine structures. Various forms of selectively net-shape PM have been around for thirty years or so. However, it is only recently that major applications have been pursued for rocket engine hardware fabricated in the United States. The method employs sacrificial metallic tooling (HIP capsule and shaped inserts), which is removed from the part after HIP consolidation of the powder, by selective acid dissolution. Full exploitation of net-shape PM requires innovative approaches in both component design and materials and processing details. The benefits include: uniform and homogeneous microstructure with no porosity, irrespective of component shape and size; elimination of welds and the associated quality and life limitations; removal of traditional producibility constraints on design freedom, such as forgeability and machinability, and scale-up to very large, monolithic parts, limited only by the size of existing HIP furnaces. Net-shape PM HIP also enables fabrication of complex configurations providing additional, unique functionalities. The progress made in these areas will be described. Then critical aspects of the technology that still require significant further development and maturation will be discussed from the perspective of an engine systems builder and end-user of the technology.

  9. Powder metallurgy processing of high strength turbine disk alloys

    NASA Technical Reports Server (NTRS)

    Evans, D. J.

    1976-01-01

    Using vacuum-atomized AF2-1DA and Mar-M432 powders, full-scale gas turbine engine disks were fabricated by hot isostatically pressing (HIP) billets which were then isothermally forged using the Pratt & Whitney Aircraft GATORIZING forging process. While a sound forging was produced in the AF2-1DA, a container leak had occurred in the Mar-M432 billet during HIP. This resulted in billet cracking during forging. In-process control procedures were developed to identify such leaks. The AF2-1DA forging was heat treated and metallographic and mechanical property evaluation was performed. Mechanical properties exceeded those of Astroloy, one of the highest temperature capability turbine disk alloys presently used.

  10. Dual-Alloy Disks are Formed by Powder Metallurgy

    NASA Technical Reports Server (NTRS)

    Harf, F. H.; Miner, R. V.; Kortovich, C. S.; Marder, J. M.

    1982-01-01

    High-performance disks have widely varying properties from hub to rim. Dual property disk is fabricated using two nickel-base alloys, AF-115 for rim and Rene 95 for hub. Dual-alloy fabrication may find applications in automobiles, earth-moving equipment, and energy conversion systems as well as aircraft powerplants. There is potential for such applications as shafts, gears, and blades.

  11. Aluminum base alloy powder metallurgy process and product

    NASA Technical Reports Server (NTRS)

    Paris, Henry G. (Inventor)

    1986-01-01

    A metallurgical method including cooling molten aluminum particles and consolidating resulting solidified particles into a multiparticle body, wherein the improvement comprises the provision of greater than 0.15% of a metal which diffuses in the aluminum solid state at a rate less than that of Mn. Aluminum containing greater than 0.15% of a metal which diffuses in the aluminum solid state at a rate less than that of Mn.

  12. A Nonvolume Preserving Plasticity Theory with Applications to Powder Metallurgy

    NASA Technical Reports Server (NTRS)

    Cassenti, B. N.

    1983-01-01

    A plasticity theory has been developed to predict the mechanical response of powder metals during hot isostatic pressing. The theory parameters were obtained through an experimental program consisting of hydrostatic pressure tests, uniaxial compression and uniaxial tension tests. A nonlinear finite element code was modified to include the theory and the results of themodified code compared favorably to the results from a verification experiment.

  13. Making Self-Lubricating Parts By Powder Metallurgy

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Dellacorte, Christopher

    1990-01-01

    Compositions and parameters of powder-metallurgical fabrication processes determined for new class of low-friction, low-wear, self-lubricating materials. Used in oxidizing or reducing atmospheres in bearings and seals, at temperatures from below 25 degrees C to as high as 900 degrees C. Thick parts made with minimal waste.

  14. Porous mandrels provide uniform deformation in hydrostatic powder metallurgy

    NASA Technical Reports Server (NTRS)

    Gripshover, P. J.; Hanes, H. D.

    1967-01-01

    Porous copper mandrels prevent uneven deformation of beryllium machining blanks. The beryllium powder is arranged around these mandrels and hot isostatically pressed to form the blanks. The mandrels are then removed by leaching.

  15. Application of superalloy powder metallurgy for aircraft engines

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Miner, R. V., Jr.

    1980-01-01

    The results of the Materials for Advanced Turbine Engines (MATE) program initiated by NASA are presented. Mechanical properties comparisons are made for superalloy parts produced by as-HIP powder consolidation and by forging of HIP consolidated billets. The effect of various defects on the mechanical properties of powder parts are shown.

  16. Powder metallurgy Rene 95 rotating turbine engine parts, volume 2

    NASA Technical Reports Server (NTRS)

    Wilbers, L. G.; Redden, T. K.

    1981-01-01

    A Rene 95 alloy as-HIP high pressure turbine aft shaft in the CF6-50 engine and a HIP plus forged Rene 95 compressor disk in the CFM56 engine were tested. The CF6-50 engine test was conducted for 1000 C cycles and the CFM56 test for 2000 C cycles. Post test evaluation and analysis of the CF6-50 shaft and the CFM56 compressor disk included visual, fluorescent penetrant, and dimensional inspections. No defects or otherwise discrepant conditions were found. These parts were judged to have performed satisfactorily.

  17. [Measurement of chemical agents in metallurgy field: electric steel plant].

    PubMed

    Cottica, D; Grignani, E; Ghitti, R; Festa, D; Apostoli, P

    2012-01-01

    The steel industry maintains its important position in the context of the Italian production involving thousands of workers. The iron and steel processes are divided into primary steel industry, production of intermediate minerals, and secondary steel, scrap from the production of semi-finished industrial and consumer sector (metal inserted into components and metal used for dissipative uses, primarily coatings) and industrial waste. The paper presents the results of environmental monitoring carried out in some electric steel plant for the measurement of airborne chemicals that characterize the occupational exposure of workers employed in particular area like electric oven, to treatment outside the furnace, continuous casting area. For the sampling of the pollutants were used both personal and in fixed positions samplers. The pollutants measured are those typical of steel processes inhalable dust, metals, respirable dust, crystalline silica, but also Polycyclic Aromatic Hydrocarbons (PAH), polychlorinated dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). PMID:23213795

  18. Progammatic mission transformation - chemistry and metallurgy research replacement (CMRR) project

    SciTech Connect

    Gunderson, L Nguyen; Kornreich, Drew E; Wong, Amy S

    2011-01-24

    Nuclear posture and policy objectives are: (1) Preventing nuclear proliferation and nuclear terrorism; (2) Reducing the role of nuclear weapons in US national security strategy; (3) Maintaining strategic deterrence and stability at reduced nuclear force levels; (4) Strengthening regional deterrence and reassuring US allies and partners; and (5) Sustaining a safe, secure, and effective nuclear arsenal.

  19. Mössbauer insight to metallurgy, materials science and engineering

    NASA Astrophysics Data System (ADS)

    Campbell, S. J.; Kaczmarek, W. A.; Hofmann, M.

    2000-07-01

    A brief overview of the contributions which Mössbauer effect spectroscopy has made to areas of materials science is presented. A survey of the literature reveals the decreasing trends of established areas, with emergence in the past decade or so of new areas such as nanostructured materials and materials produced by mechanochemical treatment and the continuing importance of rare-earth magnetic materials. Examples of applications of 57Fe and 119Sn Mössbauer spectroscopy, both transmission and backscattering, are discussed. The complementary nature of Mössbauer spectroscopy and neutron diffraction in delineation of the magnetic behaviour and structures of materials is demonstrated by the La1- x Y x Mn2Si2 series of rare-earth intermetallic compounds.

  20. Ancient Blacksmiths, The Iron Age, Damascus Steels, and Modern Metallurgy

    SciTech Connect

    Sherby, O.D.; Wadsworth, J.

    2000-09-11

    The history of iron and Damascus steels is described through the eyes of ancient blacksmiths. For example, evidence is presented that questions why the Iron Age could not have begun at about the same time as the early Bronze Age (i.e. approximately 7000 B.C.). It is also clear that ancient blacksmiths had enough information from their forging work, together with their observation of color changes during heating and their estimate of hardness by scratch tests, to have determined some key parts of the present-day iron-carbon phase diagram. The blacksmiths' greatest artistic accomplishments were the Damascus and Japanese steel swords. The Damascus sword was famous not only for its exceptional cutting edge and toughness, but also for its beautiful surface markings. Damascus steels are ultrahigh carbon steels (UHCSs) that contain from 1.0 to 2.1%. carbon. The modern metallurgical understanding of UHCSs has revealed that remarkable properties can be obtained in these hypereutectoid steels. The results achieved in UHCSs are attributed to the ability to place the carbon, in excess of the eutectoid composition, to do useful work that enhances the high temperature processing of carbon steels and that improves the low and intermediate temperature mechanical properties.

  1. Effect of reduced cobalt contents on hot isostatically pressed powder metallurgy U-700 alloys

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1982-01-01

    The effect of reducing the cobalt content of prealloyed powders of UDIMET 700 (U-700) alloys to 12.7, 8.6, 4.3, and 0% was examined. The powders were hot isostatically pressed into billets, which were given heat treatments appropriate for turbine disks, namely partial solutioning at temperatures below the gamma prime solvus and four step aging treatments. Chemical analyses, metallographic examinations, and X-ray diffraction measurements were performed on the materials. Minor effects on gamma prime content and on room temperature and 650 C tensile properties were observed. Creep rupture lives at 650 C reached a maximum at the 8.4% concentration, while at 760 C a maximum in life was reached at the 4.3% cobalt level. Minimum creep rates increased with decreasing cobalt content at both test temperatures. Extended exposures at 760 and 815 C resulted in decreased tensile strengths and rupture lives for all alloys. Evidence of sigma phase formation was also found.

  2. Development of Rare-Earth Free Mn-Al Permanent Magnet Employing Powder Metallurgy Route

    NASA Astrophysics Data System (ADS)

    Singh, N.; Shyam, R.; Upadhyay, N. K.; Dhar, A.

    2015-02-01

    Most widely used high-performance permanent magnets are currently based on intermetallics of rare-earths in combination with Fe and Co. Rare-earth elements required for these magnets are getting expensive by the day. Consequently, there is a thrust worldwide to develop economical rare-earth free permanent magnets. It is acknowledged that the phase in Mn-Al alloys possesses magnetic properties without the presence of ferromagnetic elements such as Fe, Co, and Ni. In the present study, we report the synthesis of magnetic phase of Mn54Al46 alloy synthesized using mechanical alloying followed by solutionizing and annealing to obtain the desired magnetic phase. It is well known that Al dissolves partially in Mn matrix hence supersaturated solid solution of Mn54Al46 alloy powder was obtained by mechanical alloying using a planetary high-energy ball mill. For this purpose elemental Mn and Al powders were ball-milled in Argon atmosphere at 400 rpm using stainless steel bowl with ball to powder ratio of 15:1. These mechanically alloyed Mn54Al46 powders were then consolidated using spark plasma sintering at 550°C for 20 min. followed by solution treatment at 1050°C for 5 hrs and then water quenched to retain high temperature phase. Subsequently, the Mn54Al46 samples were annealed in the temperature range 450°C-650°C to obtain the magnetic phase. These samples were characterized by XRD and SEM and the magnetic properties were measured using a vibrating sample magnetometer (VSM). It was observed that the magnetization and coercivity of MnAl magnets exhibited strong dependence on annealing temperature and annealing time.

  3. Tungsten and tungsten-alloy powder metallurgy. (Latest citations from the NTIS data base). Published Search

    SciTech Connect

    Not Available

    1992-10-01

    The bibliography contains citations concerning the processing and fabrication of tungsten, tungsten alloys, and tungsten composites. Compacting, pressing, sintering, extruding, and rolling are among the methods described. Infiltration of porous tungsten shapes is included, as well as mechanical properties, thermal properties, and microstructure of end products. Applications include rocket nozzles, nuclear reactor materials, and porous ionizers. (Contains a minimum of 116 citations and includes a subject term index and title list.)

  4. Tungsten and tungsten alloy powder metallurgy. (Latest citations from the Compendex database). Published Search

    SciTech Connect

    Not Available

    1993-06-01

    The bibliography contains citations concerning tungsten powder preparation and processing. Studies include sintering, densification, shrinkage, phase analysis, and heat treatment. The physical and mechanical properties of tungsten powder metal products are included. The effects of additives and particle size on the sintering and sintered articles are also described. (Contains 250 citations and includes a subject term index and title list.)

  5. The physical and mechanical metallurgy of advanced O+BCC titanium alloys

    NASA Astrophysics Data System (ADS)

    Cowen, Christopher John

    This thesis comprises a systematic study of the microstructural evolution, phase transformation behavior, elevated-temperature creep behavior, room-temperature and elevated-temperature tensile behavior, and room-temperature fatigue behavior of advanced titanium-aluminum-niobium (Ti-Al-Nb) alloys with and without boron additions. The specific alloys studied were: Ti-5A1-45Nb (at%), Ti-15Al-33Nb (at%), Ti-15Al-33Nb-0.5B (at%), Ti-15Al-33Nb-5B (at%), Ti-21Al-29Nb (at%), Ti-22Al-26Nb (at%), and Ti-22Al-26Nb-5B (at%). The only alloy composition that had been previously studied before this thesis work began was Ti-22Al-26Nb (at%). Publication in peer-reviewed material science journals of the work performed in this thesis has made data available in the scientific literature that was previously non-existent. The knowledge gap for Ti-Al-Nb phase equilibria over the compositional range of Ti-23Al-27Nb (at%) to Ti-12Al-38Nb (at%) that existed before this work began was successfully filled. The addition of 5 at% boron to the Ti-15Al-33Nb alloy produced 5-9 volume percent boride phase needles within the microstructure. The chemical composition of the boride phase measured by electron microprobe was determined to be approximately B 2TiNb. The lattice parameters of the boride phase were simulated through density functional theory calculations by collaborators at the Air Force Research Laboratory based on the measured composition. Using the simulated lattice parameters, electron backscatter diffraction kikuchi patterns and selected area electron diffraction patterns obtained from the boride phase were successfully indexed according to the space group and site occupancies of the B27 orthorhombic crystal structure. This suggests that half the Ti (c) Wyckoff positions are occupied by Ti atoms and the other half are occupied by Nb atoms in the boride phase lattice. Creep deformation behavior is the main focus of this thesis and in particular understanding the dominant creep deformation mechanisms as a function of stress, temperature, and strain rate. Microstructure-creep relationships for Ti-Al-Nb-xB alloys were developed with the understanding gained. A rule-of-mixtures empirical model based on constituent phase volume fractions and strain rates was developed to predict the minimum creep rates of two-phase O+BCC microstructures. The most innovative results of this thesis were produced through the development of an in-situ creep testing methodology. The creep deformation evolution was chronicled in-situ during high temperature creep experiments, while creep displacement versus time data was simultaneously obtained. The in-situ experiments revealed that prior-BCC grain boundaries were the locus of damage accumulation during creep deformation. A methodology that allows in-situ observation of surface creep deformation as a function of creep displacement has yet to be presented in the literature.

  6. Technological Aspects of High Speed Direct Laser Deposition Based on Heterophase Powder Metallurgy

    NASA Astrophysics Data System (ADS)

    Turichin, G. A.; Klimova, O. G.; Zemlyakov, E. V.; Babkin, K. D.; Kolodyazhnyy, D. Yu.; Shamray, F. A.; Travyanov, A. Ya.; Petrovskiy, P. V.

    The article deals with physical peculiarities and technology of high speed processes of direct laser deposition. On the base of theoretic research and computer modeling the powder transfer has been optimized, increasing process stability and productivity. Principles of nozzles design also have been developed in accordance with technological needs. An influence of process mode on product properties and material structure was defined for heat resisted Ni-based superalloys. Developed technology provided the mechanic properties of products on the level of rolled material and allows avoid heat treatment and HIP in production process. Possible ways for increasing process performance and economic efficiency also have been discussed.

  7. Application of powder metallurgy techniques for the development of non-toxic ammunition. Final CRADA report

    SciTech Connect

    Lowden, R.; Kelly, R.

    1997-05-30

    The purpose of the Cooperative Research and Development Agreement (CRADA) between Martin Marietta Energy Systems, Inc., and Delta Frangible Ammunition (DFA), was to identify and evaluate composite materials for the development of small arms ammunition. Currently available small arms ammunition utilizes lead as the major component of the projectile. The introduction of lead into the environment by these projectiles when they are expended is a rapidly increasing environmental problem. At certain levels, lead is a toxic metal to the environment and a continual health and safety concern for firearm users as well as those who must conduct lead recovery operations from the environment. DFA is a leading supplier of high-density mixtures, which will be used to replace lead-based ammunition in specific applications. Current non-lead ammunition has several limitations that prevent it from replacing lead-based ammunition in many applications (such as applications that require ballistics, weapon recoil, and weapon function identical to that of lead-based ammunition). The purpose of the CRADA was to perform the research and development to identify cost-effective materials to be used in small arms ammunition that eventually will be used in commercially viable, environmentally conscious, non-lead, frangible and/or non-frangible, ammunition.

  8. Metallurgy of Miura-ori: lattice theory for inhomogeneous deformations of origami tessellations

    NASA Astrophysics Data System (ADS)

    Evans, Arthur; Silverberg, Jesse; McLeod, Lauren; Cohen, Itai; Santangelo, Christian

    2014-03-01

    In nature, as well as in art, one often encounters thin materials that have been deformed by their environment or their creator into complex folded states; examples include the folds of the endoplasmic reticulum, the villi in the intestinal tract, and tessellated patterns in the ancient Japanese art of origami. One (engineering) advantage of creating a folded structure is that the geometric constraints associated with creasing imbues the construction with exotic mechanical properties, such as generating a material with a negative Poisson's ratio. Materials exhibiting novel behavior of this type, arising from the special properties of the unit cell, are generally classified as metamaterials. In this talk I consider a mechanical metamaterial known as Miura-ori, an origami tessellation pattern that displays soft modes and crystallographic defects not accounted for by a purely geometric theory of an infinitely thin material. I will discuss a method for deriving how inhomogeneous deformations arise from bending within Miura-ori, and show that this leads to a natural coherence length over which the inhomogeneity decays. Additionally, I will show how the modular nature of origami unit cells lends additional richness to the mechanical properties associated with deformation.

  9. Shape memory characteristics of powder metallurgy processed Ti50Ni50 alloy

    NASA Astrophysics Data System (ADS)

    Kim, Yeon-wook; Jeon, Kyung-su

    Ti50Ni50 shape memory alloy powders were prepared by inert gas atomization and the powders were consolidated by spark plasma sintering (SPS) to fabricated dense bulk samples. Martensitic transformation temperatures and microstructures of the asatomized powders and the consolidated disks were investigated. DSC and XRD analysis showed that the B2-B19' martensitic transformation occurred in the powders and the disks. The martensitic transformation start temperature (Ms) of the powders was 22.9∘ C. However, the Ms of the SPS disk was 65.9∘ C. It is considered that this increase in transformation temperature is ascribed to the microstructural change during SPS processing.

  10. Process metallurgy simulation for metal drawing process optimization by using two-scale finite element method

    SciTech Connect

    Nakamachi, Eiji; Yoshida, Takashi; Yamaguchi, Toshihiko; Morita, Yusuke; Kuramae, Hiroyuki; Morimoto, Hideo

    2014-10-06

    We developed two-scale FE analysis procedure based on the crystallographic homogenization method by considering the hierarchical structure of poly-crystal aluminium alloy metal. It can be characterized as the combination of two-scale structure, such as the microscopic polycrystal structure and the macroscopic elastic plastic continuum. Micro polycrystal structure can be modeled as a three dimensional representative volume element (RVE). RVE is featured as by 3×3×3 eight-nodes solid finite elements, which has 216 crystal orientations. This FE analysis code can predict the deformation, strain and stress evolutions in the wire drawing processes in the macro- scales, and further the crystal texture and hardening evolutions in the micro-scale. In this study, we analyzed the texture evolution in the wire drawing processes by our two-scale FE analysis code under conditions of various drawing angles of dice. We evaluates the texture evolution in the surface and center regions of the wire cross section, and to clarify the effects of processing conditions on the texture evolution.

  11. Fatigue behavior of highly porous titanium produced by powder metallurgy with temporary space holders.

    PubMed

    Özbilen, Sedat; Liebert, Daniela; Beck, Tilmann; Bram, Martin

    2016-03-01

    Porous titanium cylinders were produced with a constant amount of temporary space holder (70 vol.%). Different interstitial contents were achieved by varying the starting powders (HDH vs. gas atomized) and manufacturing method (cold compaction without organic binders vs. warm compaction of MIM feedstocks). Interstitial contents (O, C, and N) as a function of manufacturing were measured by chemical analysis. Samples contained 0.34-0.58 wt.% oxygen, which was found to have the greatest effect on mechanical properties. Quasi-static mechanical tests under compression at low strain rate were used for reference and to define parameters for cyclic compression tests. Not unexpectedly, increased oxygen content increased the yield strength of the porous titanium. Cyclic compression fatigue tests were conducted using sinusoidal loading in a servo-hydraulic testing machine. Increased oxygen content was concomitant with embrittlement of the titanium matrix, resulting in significant reduction of compression cycles before failure. For samples with 0.34 wt.% oxygen, R, σ(min) and σ(max) were varied systematically to estimate the fatigue limit (~4 million cycles). Microstructural changes induced by cyclic loading were then characterized by optical microscopy, SEM and EBSD. PMID:26706551

  12. Periodical Micro-Structuring of Hydride Containing Metastable Aluminumoxide using Laser Interference Metallurgy

    SciTech Connect

    Veith, Michael; Andres, Katrin; Petersen, Christian; Daniel, Claus; Holzapfel, Christian; M�cklich, Frank

    2005-01-01

    Layers of the metastable ceramic HAlO are sensitive to heat: These layers transform to biphasic Al/Al2O3 due to elimination of di-hydrogen. Using interfering Nd:YAG laser beams, periodic patterns can be produced. By these methods two dimensional structuring is obtained with the characteristics of distinctly different phases and different chemical compositions at periodic places on the layer.

  13. Metallurgy, Visual Inspection, Hardness and Liquid Penetrant Testing, Aviation Quality Control 2: 9227.01.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The course consists of the basic and simpler methods of inspecting and nondestructive testing of parts and materials to insure the quality and reliability of the finished product. The outline consists of six blocks totaling 135 hours: (1) defects in the metal ingot, (2) defects resulting from processing metals, (3) defects in metals in service,…

  14. Mechanical Properties of Mg2Si/Mg Composites via Powder Metallurgy Process

    NASA Astrophysics Data System (ADS)

    Muramatsu, Hiroshi; Kondoh, Katsuyoshi; Yuasa, Eiji; Aizawa, Tatsuhiko

    The mechanical properties of the Mg2Si/Mg composites solid-state synthesized from the mixed Mg-Si powders have been investigated. The macro-hardness (HRE) and the tensile strength of the composites increase with increasing the Si content and decreasing the Si size. The particle size of the synthesized Mg2Si depends on the initial Si size; the mechanical properties of the Mg2Si/Mg composite are remarkably improved by using fine Si particles or by decreasing the grain size of Mg matrix grains when the powder mixture was prepared via bulk mechanical alloying process.

  15. The solidification and welding metallurgy of galling-resistant stainless steels

    SciTech Connect

    Robino, C.V.; Michael, J.R.; Maguire, M.C.

    1998-11-01

    The autogenous welding behavior of two commercial galling-resistant austenitic stainless steels, Nitronic 60 and Gall-Tough, was evaluated and compared. The solidification behavior and fusion zone hot-cracking tendency of the alloys was evaluated by using differential thermal analysis, Varestraint testing and laser spot-welding trials. Gleeble thermal cycle simulations were used to assess the hot ductility of the alloys during both on-heating and on-cooling portions of weld thermal cycles. Solidification microstructures were characterized by light optical and electron microscopy, and the solidification modes and phases were identified. Gas tungsten arc (GTA) welds in both alloys solidified by the ferritic-austenitic mode, and their behavior was best described using chromium and nickel equivalents developed specifically for the Nitronic series of alloys. Both alloys were found to be somewhat more susceptible to solidification hot cracking than conventional austenitic stainless steels, although the cracking resistance of Nitronic 60 was somewhat superior to Gall-Tough. Laser spot-welding trials resulted in both fusion and heat-affected zone cracking in the Nitronic 60, while Gall-Tough was resistant to cracking in these high-solidification-rate welds. Comparison of the laser weld microstructures indicated that Nitronic 60 shifts to fully austenitic solidification, while Gall-Tough shifts to an austenitic-ferritic solidification mode in high-energy-density processing. The hot ductility measurements indicated that Gall-Tough is generally superior to Nitronic 60 in both on-heating and on-cooling tests, apparently as a result of differences in grain size and the mechanism of ferrite formation at high temperatures.

  16. Physical and Mechanical Metallurgy of Zirconium Alloys for Nuclear Applications: A Multi-Scale Computational Study

    NASA Astrophysics Data System (ADS)

    Glazoff, Michael Vasily

    In the post-Fukushima world, thermal and structural stability of materials under extreme conditions is an important issue for the safety of nuclear reactors. Because the nuclear industry will continue using zirconium (Zr) cladding for the foreseeable future, it becomes critical to gain a fundamental understanding of several interconnected problems. First, what are the thermodynamic and kinetic factors affecting oxidation and hydrogen pick-up by these materials at normal, off-normal conditions, and in long-term storage? Secondly, what protective coatings could be used in order to gain valuable time at off-normal conditions (temperature exceeds ~1200°C (2200°F)? Thirdly, the kinetics of the coating's oxidation must be understood. Lastly, one needs automated inspection algorithms allowing identifying cladding's defects. This work attempts to explore the problem from a computational perspective, utilizing first principles atomistic simulations, computational thermodynamics, plasticity theory, and morphological algorithms of image processing for defect identification. It consists of the four parts dealing with these four problem areas preceded by the introduction. In the 1st part, computational thermodynamics and ab initio calculations were used to shed light upon the different stages of zircaloy oxidation and hydrogen pickup, and microstructure optimization to increase thermal stability. The 2 nd part describes the kinetic theory of oxidation of the several materials considered to be perspective coatings for Zr alloys: SiC and ZrSiO4. The 3rd part deals with understanding the respective roles of the two different plasticity mechanisms in Zr nuclear alloys: twinning (at low T) and crystallographic slip (higher T's). For that goal, an advanced plasticity model was proposed. In the 4th part projectional algorithms for defect identification in zircaloy coatings are described. Conclusions and recommendations are presented in the 5th part. This integrative approach's value is in developing multi-faceted understanding of complex processes taking place in nuclear fuel rods. It helped identify several problems pertaining to the safe operations with nuclear fuel: limits of temperature that should be strictly obeyed in storage to retard zircaloy hydriding; understanding the benefits and limitations of coatings; developing in-depth understanding of Zr plasticity; developing original algorithms for defect identification in SiC-braided zircaloy. The obtained results will be useful for the nuclear industry.

  17. Empire Without A Voice Phoenician Iron Metallurgy and Imperial Strategy at Carthage

    NASA Astrophysics Data System (ADS)

    Kaufman, Brett Sanford

    The role of iron in the emergence of Iron Age states in North Africa and the Near East has been poorly understood due to a paucity of contemporary, diachronic ferrous archaeometallurgical data. Excavations at Phoenician and Punic Carthage in the 2000s recovered one of the largest and most diverse corpora of Iron Age iron production material culture from North Africa and the Near East, spanning the entire history of Carthage from its Tyrian colonial foundations to its destruction by Rome (historical dates 814--146 BC). Analysis of the materials employing metallography, portable X-ray fluorescence spectroscopy (pXRF), and variable pressure scanning electron microscopy coupled with energy x-ray dispersive spectroscopy (VPSEM-EDS) indicates that Carthaginian smiths were smelting and smithing wrought iron and steel as an exchange good or tribute commodity to Tyre and the Assyrian empire, as well as producing, refining, and consuming tin and arsenical bronzes, leaded bronzes, lead, and cobalt. Archaeological evidence demonstrates a state industry of iron production, including the commissioning, decommissioning, and outsourcing of metallurgical precincts. There is an overwhelming difference exhibited between output capacity at industrial and household production sites. Epigraphic evidence in Punic illustrates the inherent economic and familial affiliations between the Carthaginian state and metalworkers. Ironsmiths, bronze casters, and goldsmiths were privileged engineers of one of the state's most strategic industries, and were stratified in a hierarchy of technical specialties and ranks. In order to conserve fuel and succeed in properly vitrifying ore or bloom impurities into slag, they recycled industrial byproducts in the form of murex shells from purple dye production as a metallurgical flux and lined the furnaces with quartz-rich heat insulation. Carthage was one colony in the Phoenician commodity procurement network, whose task it was to convert iron blooms into final products. By the time this colony became independent of Tyre ca. 650--550 BC, the smiths of Carthage already had around a century of expertise in the production of iron and steel implements which gave the state a competitive advantage in the strategic arena of ferrous technologies and the formation of empire.

  18. Mining, metallurgy and the historical origin of mercury pollution in lakes and watercourses in Central Sweden.

    PubMed

    Bindler, Richard; Yu, Ruilian; Hansson, Sophia; Classen, Neele; Karlsson, Jon

    2012-08-01

    In Central Sweden an estimated 80% of the lakes contain fish exceeding health guidelines for mercury. This area overlaps extensively with the Bergslagen ore region, where intensive mining of iron ores and massive sulfide ores occurred over the past millennium. Although only a few mines still operate today, thousands of mineral occurrences and mining sites are documented in the region. Here, we present data on long-term mercury pollution in 16 sediment records from 15 lakes, which indicate that direct release of mercury to lakes and watercourses was already significant prior to industrialization (

  19. [Study of a cancer aggregate in a metallurgy plant: practical implications for public health].

    PubMed

    Provencher, S; Labrèche, F P

    1994-01-01

    We present the strategy used to determine whether there was an excess of laryngeal cancer at a primary metal factory in Montreal. The study period extended from 1968 to 1987. Standardized mortality ratios (SMR) and standardized incidence ratios (SIR) were computed for different cancer sites. The number of person-years at risk was estimated (N = 10,860 person-years). This method permitted a summary evaluation of the situation. Statistically significant excesses were not observed for laryngeal cancer or any other site of cancer: SMRs and SIRs were elevated for certain cancers, particularly cancers of the larynx and cancers of the central nervous system (CNS). No association was observed with potential carcinogens in the workplace. However, all three CNS cancer cases were crane operators. Following this investigation, we recommended an industrial hygiene evaluation of the workplace. PMID:7804938

  20. The combination of precipitation and dispersion hardening in powder metallurgy produced Cu-Ti-Si alloy

    SciTech Connect

    Bozic, D.; Dimcic, O.; Dimcic, B. Cvijovic, I.; Rajkovic, V.

    2008-08-15

    Microstructure and microhardness properties of precipitation hardened Cu-Ti and precipitation/dispersion hardened Cu-Ti-Si alloys have been analyzed. Cu-1.2Ti and Cu-1.2Ti-3TiSi{sub 2} (wt.%) atomized powders were characterized before and after consolidation by HIP (Hot Isostatic Pressing). Rapidly solidified powders and HIP-ed compacts were subsequently subjected to thermal treatment in hydrogen at temperatures between 300 and 600 deg. C. Compared to Cu-Ti powder particles and compacts, obtained by the same procedure, the strengthening effect in Cu-1.2Ti-3TiSi{sub 2} powder particles and compacts was much greater. The binary and ternary powders both reveal properties superior to those of Cu-1.2Ti and Cu-1.2Ti-3TiSi{sub 2} compacts. Microhardness analysis as a function of the aging temperature of Cu-1.2Ti-3TiSi{sub 2} alloy shows an interaction between precipitation and dispersion hardening which offers possibilities for an application at elevated temperatures.

  1. The properties of aluminum alloys containing nickel, produced using powder metallurgy method

    NASA Astrophysics Data System (ADS)

    Naeem, Haider T.; Mohammad, Kahtan S.; Jamaludin Shamsul, B.; Ahmad, Khairel R.; Hussein, Wan M. H.

    2015-05-01

    In this paper, the effects of nickel on the microstructure and mechanical properties of experimental an Al-Zn-Mg-Cu PM alloys under the impacts of the retrogression and re-aging treatment was investigated. Green compacts pressed at 370 MPa were then sintered at temperature 650°C in argon atmosphere for two hours. The sintered samples subjected to the homogenizing condition at 470°C for 1.5 hours then aging at 120°C for 24 hours and retrogressed at 180°C for 30 minutes, and then re-aged at 120°C for 24 hours. Characterization's results indicate that the microstructures of an Al-Zn-Mg-Cu-Ni PM alloys presented an intermetallics compound in the aluminum's matrix, identified as the AlNi and Al3Ni2 phases besides the MgZn and Mg2Zn11 phases which produced of the precipitation hardening during heat treatment. These compounds with precipitates provided strengthening of dispersion that led to improved Vickers's hardness and dinsifications properties of the alloys.

  2. Electrostatic Detection of Density Variations in Green-State Powder Metallurgy Compacts

    NASA Astrophysics Data System (ADS)

    Leuenberger, Georg; Ludwig, Reinhold

    2003-03-01

    Producing P/M compacts is generally a low-cost, high-volume manufacturing effort with very special quality assurance requirements. When considering the three basic P/M steps of mixing, compacting, and sintering, it is the compaction process producing the green-state parts that offer the highest pay-off for quality control through nondestructive evaluation (NDE) techniques. A detection of compacting-related problems in the green-state samples permits early process intervention, and thus prevents the creation of potentially significant numbers of faulty parts. Work at WPI currently has concentrated on extending the previously developed method for crack detections to measure density variations within the parts. In this paper a physical model and a mathematical formulation are reported that are capable of relating green-state density to electric conductivity for various lubricant concentrations. Electrostatic measurements of cylindrical compacts have so far confirmed the theoretical model assumptions. Specifically, the green-state conductivity increases as the sample density increases up to approximately 6.9 - 7.0 g/ccm. Any further density increase results in a decrease in conductivity. Preliminary measurements with a range of cylindrical samples support the theoretical model.

  3. Utilization of space shuttle external tank materials by melting and powder metallurgy

    NASA Astrophysics Data System (ADS)

    Chern, Terry S.

    The Crucible Melt Extraction Process was demonstrated to convert scraps of aluminum alloy 2219, used in the Space Shuttle External Tank, into fibers. The cast fibers were then consolidated by cold welding. The X-ray diffraction test of the cast fibers was done to examine the crystallinity and oxide content of the fibers. The compressive stress-strain behavior of the consolidated materials was also examined. Two conceptual schemes which would adapt the as-developed Crucible Melt Extraction Process to the microgravity condition in space were finally proposed.

  4. Stress-strain behavior and shape memory effect in powder metallurgy TiNi alloys

    SciTech Connect

    Kato, H.; Koyari, T.; Miura, S. . Dept. of Engineering Science); Tokizane, M. . Dept. of Mechanical Engineering)

    1994-04-01

    The shape memory properties of the TiNi alloy produced by a powder metallurgical method have been evaluated from tensile stress-strain curves. The contamination of the powders during atomization can be suppressed by applying the Plasma Rotating Electrode Process (P-REP), so that the compact made by Hot Isostatic Pressing (HIP) is expected to exhibit the shape memory effect identical to the typical alloy grown from melt. The fracture behavior of the P/M alloy is also studied, and the improvement of fracture strength of the P/M alloy is attempted.

  5. Nature and evolution of the meteorite parent bodies: Evidence from petrology and metallurgy

    NASA Technical Reports Server (NTRS)

    Wood, J. A.

    1978-01-01

    The physical as well as chemical properties of the meteorite parent bodies are reviewed and it is concluded that many differentiated meteorites were likely formed in asteroidal-sized parents. A new model is developed for the formation of pallasites at the interface between an iron core and olivine mantle in differentiated bodies only about 10 km in diameter, which are later incorporated into a second generation of larger (100 km) parent bodies.

  6. Soda-fuel metallurgy: Metal ions for carbon neutral CO2 and H2O reduction

    NASA Astrophysics Data System (ADS)

    Neelameggham, Neale R.

    2009-04-01

    The role of minerals in biomass formation is understood only to a limited extent. When the term “photosynthesis—CO2 and H2O reduction of sugars, using solar energy”—is used, one normally thinks of chlorophyll as a compound containing magnesium. Alkali and alkaline earth metals present in leaf cells in the form of ions are equally essential in this solar energy bioconversion coupled with nitrogen fixation. Application of some of these principles can lead to artificial carbon-neutral processes on an industrial scale close to the concentrated CO2 emission sources.

  7. Producing Fe-W-Co-Cr-C Alloy Cutting Tool Material Through Powder Metallurgy Route

    NASA Astrophysics Data System (ADS)

    Datta Banik, Bibhas; Dutta, Debasish; Ray, Siddhartha

    2016-06-01

    High speed steel tools can withstand high impact forces as they are tough in nature. But they cannot retain their hardness at elevated temperature i.e. their hot hardness is low. Therefore permissible cutting speed is low and tools wear out easily. Use of lubricants is essential for HSS cutting tools. On the other hand cemented carbide tools can withstand greater compressive force, but due to lower toughness the tool can break easily. Moreover the cost of the tool is comparatively high. To achieve a better machining economy, Fe-W-Co-Cr-C alloys are being used nowadays. Their toughness is as good as HSS tools and hardness is very near to carbide tools. Even, at moderate cutting speeds they can be safely used in old machines having vibration. Moreover it is much cheaper than carbide tools. This paper highlights the Manufacturing Technology of the alloy and studies the comparative tribological properties of the alloy and tungsten mono carbide.

  8. Effect of the Machining Processes on Low Cycle Fatigue Behavior of a Powder Metallurgy Disk

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Kantzos, P.; Gabb, T. P.; Ghosn, L. J.

    2010-01-01

    A study has been performed to investigate the effect of various machining processes on fatigue life of configured low cycle fatigue specimens machined out of a NASA developed LSHR P/M nickel based disk alloy. Two types of configured specimen geometries were employed in the study. To evaluate a broach machining processes a double notch geometry was used with both notches machined using broach tooling. EDM machined notched specimens of the same configuration were tested for comparison purposes. Honing finishing process was evaluated by using a center hole specimen geometry. Comparison testing was again done using EDM machined specimens of the same geometry. The effect of these machining processes on the resulting surface roughness, residual stress distribution and microstructural damage were characterized and used in attempt to explain the low cycle fatigue results.

  9. Development of powder metallurgy 2XXX series Al alloys for high temperature aircraft structural applications

    NASA Technical Reports Server (NTRS)

    Chellman, D. J.

    1984-01-01

    The objective of the present investigation was to improve the strength and fracture toughness combination of P/M 2124 Al alloys in accordance with NASA program goals for damage tolerance and fatigue resistance. Two (2) P/M compositions based on Al-3.70 Cu-1.85 Mg-0.20 Mn with 0.12 and 0.60 wt. pct. Zr were selected for investigation. The rapid solidification rates produced by atomization were observed to prohibit the precipitation of coarse, primary Al3Zr in both alloys. A major portion of the Zr precipitated as finely distributed, coherent Al3Zr phases during vacuum preheating and solution heat treatment. The proper balance between Cu and Mg contents eliminated undissolved, soluble constituents such as Al2CuMg and Al2Cu during atomization. The resultant extruded microstructures produced a unique combination of strength and fracture toughness. An increase in the volume fraction of coherent Al3Zr, unlike incoherent Al20Cu2Mn3 dispersoids, strengthened the P/M Al base alloy either directly by dislocation-precipitate interactions, indirectly by a retardation of recrystallization, or a combination of both mechanisms. Furthermore, coherent Al3Zr does not appear to degrade toughness to the extent that incoherent Al20Cu2Mn3 does. Consequently, the addition of 0.60 wt. pct. Zr to the base alloy, incorporated with a 774K (935 F) solution heat treatment temperature, produces an alloy which exceeds all tensile property and fracture toughness goals for damage tolerant and fatigue resistant applications in the naturally aged condition.

  10. Mercury emission and dispersion models from soils contaminated by cinnabar mining and metallurgy.

    PubMed

    Llanos, Willians; Kocman, David; Higueras, Pablo; Horvat, Milena

    2011-12-01

    The laboratory flux measurement system (LFMS) and dispersion models were used to investigate the kinetics of mercury emission flux (MEF) from contaminated soils. Representative soil samples with respect to total Hg concentration (26-9770 μg g(-1)) surrounding a decommissioned mercury-mining area (Las Cuevas Mine), and a former mercury smelter (Cerco Metalúrgico de Almadenejos), in the Almadén mercury mining district (South Central Spain), were collected. Altogether, 14 samples were analyzed to determine the variation in mercury emission flux (MEF) versus distance from the sources, regulating two major environmental parameters comprising soil temperature and solar radiation. In addition, the fraction of the water-soluble mercury in these samples was determined in order to assess how MEF from soil is related to the mercury in the aqueous soil phase. Measured MEFs ranged from less than 140 to over 10,000 ng m(-2) h(-1), with the highest emissions from contaminated soils adjacent to point sources. A significant decrease of MEF was then observed with increasing distance from these sites. Strong positive effects of both temperature and solar radiation on MEF was observed. Moreover, MEF was found to occur more easily in soils with higher proportions of soluble mercury compared to soils where cinnabar prevails. Based on the calculated Hg emission rates and with the support of geographical information system (GIS) tools and ISC AERMOD software, dispersion models for atmospheric mercury were implemented. In this way, the gaseous mercury plume generated by the soil-originated emissions at different seasons was modeled. Modeling efforts revealed that much higher emissions and larger mercury plumes are generated in dry and warm periods (summer), while the plume is smaller and associated with lower concentrations of atmospheric mercury during colder periods with higher wind activity (fall). Based on the calculated emissions and the model implementation, yearly emissions from the "Cerco Metalúrgico de Almadenejos" decommissioned metallurgical precinct were estimated at 16.4 kg Hg y(-1), with significant differences between seasons. PMID:22037967

  11. Forensic applications of metallurgy - Failure analysis of metal screw and bolt products

    NASA Astrophysics Data System (ADS)

    Tiner, Nathan A.

    1993-03-01

    It is often necessary for engineering consultants in liability lawsuits to consider whether a component has a manufacturing and/or design defect, as judged by industry standards, as well as whether the component was strong enough to resist service loads. Attention is presently given to the principles that must be appealed to in order to clarify these two issues in the cases of metal screw and bolt failures, which are subject to fatigue and brittle fractures and ductile dimple rupture.

  12. Identification of a physical metallurgy surrogate for the plutonium—1 wt. % gallium alloy

    NASA Astrophysics Data System (ADS)

    Gibbs, Frank E.; Olson, David L.; Hutchinson, William

    2000-07-01

    Future plutonium research is expected to be limited due to the downsizing of the nuclear weapons complex and an industry focus on environmental remediation and decommissioning of former manufacturing and research facilities. However, the need to further the understanding of the behavior of plutonium has not diminished. Disposition of high level residues, long-term storage of wastes, and certification of the nuclear stockpile through the Stockpile Stewardship Program are examples of the complex issues that must be addressed. Limited experimental facilities and the increasing cost of conducting plutonium research provide a strong argument for the development of surrogate materials. The purpose of this work was to identify a plutonium surrogate based on fundamental principles such as electronic structure, and then to experimentally demonstrate its viability.

  13. Evaluation of powder metallurgy plates made by Sylvania Electric Products, Inc.

    SciTech Connect

    Not Available

    1994-09-01

    These plates, numbered 13129, 13130, 13133, 13137, and 13146 were fabricated by Sylvania Electric Products, Inc., and were received at the Savannah plant in February, 1956. All of the plates were of the wide, ribless design. A summary of the data obtained by Sylvania on these and on {open_quotes}companion{close_quotes} plates is given in Table I, and a summary of the data obtained upon examining the plates at the Savannah River Laboratory is contained in Table II.

  14. Metals for bone implants. Part 1. Powder metallurgy and implant rendering.

    PubMed

    Andani, Mohsen Taheri; Shayesteh Moghaddam, Narges; Haberland, Christoph; Dean, David; Miller, Michael J; Elahinia, Mohammad

    2014-10-01

    New metal alloys and metal fabrication strategies are likely to benefit future skeletal implant strategies. These metals and fabrication strategies were looked at from the point of view of standard-of-care implants for the mandible. These implants are used as part of the treatment for segmental resection due to oropharyngeal cancer, injury or correction of deformity due to pathology or congenital defect. The focus of this two-part review is the issues associated with the failure of existing mandibular implants that are due to mismatched material properties. Potential directions for future research are also studied. To mitigate these issues, the use of low-stiffness metallic alloys has been highlighted. To this end, the development, processing and biocompatibility of superelastic NiTi as well as resorbable magnesium-based alloys are discussed. Additionally, engineered porosity is reviewed as it can be an effective way of matching the stiffness of an implant with the surrounding tissue. These porosities and the overall geometry of the implant can be optimized for strain transduction and with a tailored stiffness profile. Rendering patient-specific, site-specific, morphology-specific and function-specific implants can now be achieved using these and other metals with bone-like material properties by additive manufacturing. The biocompatibility of implants prepared from superelastic and resorbable alloys is also reviewed. PMID:24956564

  15. Fabrication of multi-walled carbon nanotubes-aluminum matrix composite by powder metallurgy technique

    NASA Astrophysics Data System (ADS)

    Bunakov, N. A.; Kozlov, D. V.; Golovanov, V. N.; Klimov, E. S.; Grebchuk, E. E.; Efimov, M. S.; Kostishko, B. B.

    We report on fabrication of an aluminum matrix composite containing multi-walled carbon nanotubes (MWCNTs) produced by MOCVD method and functionalized via acid treatment by a H2SO4/HNO3 mixture. Specimens were prepared by spark plasma sintering (SPS) of the aluminum powder with different amounts of functionalized MWCNTs (FMWCNTs) in the range of 0.1-1 wt.%. We studied the effect of FMWCNTs amount on microstructure and mechanical properties of composites. It is shown that functionalization allows homogeneous dispersing of the MWCNTs in Al powder. The maximal increase in micro-hardness and tensile strength is registered at 0.1 wt.%.

  16. Effect of thermally induced porosity on an as-HIP powder metallurgy superalloy

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Miner, R. V., Jr.

    1979-01-01

    The impact of thermally induced porosity on the mechanical properties of an as-hot-isostatically-pressed and heat treated pressing made from low carbon Astroloy was determined. Porosity in the disk-shape pressing studied ranged from 2.6 percent at the bore to 1.4 percent at the rim. Tensile, yield strength, ductility, and rupture life of the rim of the porous pressing was only slightly inferior to the rim of sound pressings. The strength, ductility, and rupture life of the bore of the porous pressing was severely degraded compared to sound pressings. At strain ranges typical of commercial jet engine designs, the rim of the porous pressing had slightly inferior fatigue life to sound pressings.

  17. Preparation of Cu and Fly Ash Composite by Powder Metallurgy Technique

    SciTech Connect

    Chew, P. Y.; Lim, P. S.; Ng, M. C.; Zahi, S.; You, A. H.

    2011-03-30

    Cu and Fly Ash (FA) mixtures with different weight percentages were prepared. Pellets of the mixture powder were produced with the dimension of 17.7 mm in diameter and 10-15 mm in height. These different composites were compacted at a constant pressure of 280 MPa. One of the selected weight percentages was then compacted to form into pellet and sintered at different temperatures which were at 900, 950 and 1000 deg. C respectively for 2 hours. Density of green pellet was measured before sintered in furnace. After sintering, all the pellets with different temperatures were re-weighed and sintered density were calculated. The densification of the green and sintered pellets was required to be measured as one of the parameter in selection of the best material properties. Porosity of the pellet shall not be ignored in order to analyze the close-packed particles stacking in the pellet. SEM micrograph had been captured to observe the presence of pores and agglomeration of particles in the sample produced.

  18. Stress corrosion evaluation of powder metallurgy aluminum alloy 7091 with the breaking load test method

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.

    1987-01-01

    The stress corrosion behavior of the P/M aluminum alloy 7091 is evaluated in two overaged heat treatment conditions, T7E69 and T7E70, using an accelerated test technique known as the breaking load test method. The breaking load data obtained in this study indicate that P/M 7091 alloy is highly resistant to stress corrosion in both longitudinal and transverse orientations at stress levels up to 90 percent of the material yield strength. The reduction in mean breaking stress as a result of corrosive attack is smallest for the more overaged T7E70 condition. Details of the test procedure are included.

  19. Utilization of Space Shuttle External Tank materials by melting and powder metallurgy

    NASA Technical Reports Server (NTRS)

    Chern, T. S.

    1985-01-01

    The Crucible Melt Extraction Process was demonstrated to convert scraps of aluminum alloy 2219, used in the Space Shuttle External Tank, into fibers. The cast fibers were then consolidated by cold welding. The X-ray diffraction test of the cast fibers was done to examine the crystallinity and oxide content of the fibers. The compressive stress-strain behavior of the consolidated materials was also examined. Two conceptual schemes which would adapt the as-developed Crucible Melt Extraction Process to the microgravity condition in space were finally proposed.

  20. Development of superalloys by powder metallurgy for use at 1000 - 1400 F

    NASA Technical Reports Server (NTRS)

    Calhoun, C. D.

    1971-01-01

    Consolidated powders of four nickel-base superalloys were studied for potential application as compressor and turbine discs in jet engines. All of the alloys were based on the Rene' 95 chemistry. Three of these had variations in carbon and A12O3 contents, and the fourth alloy was chemically modified to a higher volume fraction. The A12O3 was added by preoxidation of the powders prior to extrusion. Various levels of four experimental factors (1) alloy composition, (2) grain size, (3) thermomechanical processing, and (4) room temperature deformation plus final age were evaluated by tensile and stress rupture testing at 1200 F. Various levels of the four factors were assumed in order to construct the statistically-designed experiment, but the actual levels investigated were established in preliminary studies that preceded the statistical process development study.

  1. Effects of thermally induced porosity on an as-HIP powder metallurgy superalloy

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Miner, R. V., Jr.

    1980-01-01

    The effect of thermally induced porosity on the mechanical properties of an as-hot-isostatically pressed and heat-treated pressing made from low carbon Astroloy is examined. Tensile, stress-rupture, creep, and low cycle fatigue tests were performed and the results were compared with industrial acceptance criteria. It is shown that the porous pressing has a porosity gradient from the rim to the bore with the bore having 1-1/2% greater porosity. Mechanical properties of the test ring below acceptance level are tensile reduction in area at room temperature and 538 C and time for 0.1% creep at 704 C. It is also found that the strength, ductility, and rupture life of the rim are slightly inferior to those of the rim of the sound pressings, while those of the bore are generally below the acceptable level. At strain ranges typical of commercial aircraft engines, the low cycle fatigue life of the rim of the porous pressings is slightly lower than that of the sound pressings.

  2. Development of powder metallurgy Al alloys for high temperature aircraft structural applications, phase 2

    NASA Technical Reports Server (NTRS)

    Chellman, D. J.

    1982-01-01

    In this continuing study, the development of mechanically alloyed heat resistant aluminum alloys for aircraft were studied to develop higher strength targets and higher service temperatures. The use of higher alloy additions to MA Al-Fe-Co alloys, employment of prealloyed starting materials, and higher extrusion temperatures were investigated. While the MA Al-Fe-Co alloys exhibited good retention of strength and ductility properties at elevated temperatures and excellent stability of properties after 1000 hour exposure at elevated temperatures, a sensitivity of this system to low extrusion strain rates adversely affected the level of strength achieved. MA alloys in the Al-Li family showed excellent notched toughness and property stability after long time exposures at elevated temperatures. A loss of Li during processing and the higher extrusion temperature 482 K (900 F) resulted in low mechanical strengths. Subsequent hot and cold working of the MA Al-Li had only a mild influence on properties.

  3. Advanced powder metallurgy aluminum alloys via rapid solidification technology, phase 2

    NASA Technical Reports Server (NTRS)

    Ray, Ranjan; Jha, Sunil C.

    1987-01-01

    Marko's rapid solidification technology was applied to processing high strength aluminum alloys. Four classes of alloys, namely, Al-Li based (class 1), 2124 type (class 2), high temperature Al-Fe-Mo (class 3), and PM X7091 type (class 4) alloy, were produced as melt-spun ribbons. The ribbons were pulverized, cold compacted, hot-degassed, and consolidated through single or double stage extrusion. The mechanical properties of all four classes of alloys were measured at room and elevated temperatures and their microstructures were investigated optically and through electron microscopy. The microstructure of class 1 Al-Li-Mg alloy was predominantly unrecrystallized due to Zr addition. Yield strengths to the order of 50 Ksi were obtained, but tensile elongation in most cases remained below 2 percent. The class 2 alloys were modified composition of 2124 aluminum alloy, through addition of 0.6 weight percent Zr and 1 weight percent Ni. Nickel addition gave rise to a fine dispersion of intermetallic particles resisting coarsening during elevated temperature exposure. The class 2 alloy showed good combination of tensile strength and ductility and retained high strength after 1000 hour exposure at 177 C. The class 3 Al-Fe-Mo alloy showed high strength and good ductility both at room and high temperatures. The yield and tensile strength of class 4 alloy exceeded those of the commercial 7075 aluminum alloy.

  4. Effect of steel metallurgy on it magneto-mechanical behavior in weak magnetic fields

    SciTech Connect

    Robertson, I.M. )

    1994-03-01

    The magneto-mechanical behavior of five steels, mild steel, HSLA 80, HY100 and a quenched alloy steel, has been investigated. Magnetic fields of the order of the Earth's field and compressive stresses up to 200 MPa were applied to the steels. The increase in magnetization due to stress cycling in a constant applied field and to field cycling at constant stress was measured. The results show that the differential permeability of the steel largely determines the magnetization increase and that steels with similar microstructures have similar microstructures have similar magneto-mechanical response. The strength or hardness of the steel is a less reliable indicator of magneto-mechanical response.

  5. Aging of powder metallurgy N14K7M5T2 maraging steel

    SciTech Connect

    Antsiferov, V.N.; Grevnov, L.M.; Maslenikov, N.N.

    1985-04-01

    The authors study the aging process of sintered N14K7M5T2 marging steel at temperatures of 460-590 C with an isothermal hold of 40 min to 10 h. Electron microscopy was used. The purpose of the investigations was establishment of the type of precipitated phases and their size, form, and kinetics of growth in relation to the aging cycles. An analysis of the electrondiffraction patterns of specimens aged under different conditions made it possible to identify Ni/sub 3/ Ti as the hardening phase.

  6. Effect of Cu addition on the martensitic transformation of powder metallurgy processed Ti–Ni alloys

    SciTech Connect

    Kim, Yeon-wook; Choi, Eunsoo

    2014-10-15

    Highlights: • M{sub s} of Ti{sub 50}Ni{sub 50} powders is 22 °C, while M{sub s} of SPS-sintered porous bulk increases up to 50 °C. • M{sub s} of Ti{sub 50}Ni{sub 40}Cu{sub 20} porous bulk is only 2 °C higher than that of the powders. • Recovered stain of porous TiNi and TiNiCu alloy is more than 1.5%. - Abstract: Ti{sub 50}Ni{sub 50} and Ti{sub 50}Ni{sub 30}Cu{sub 20} powders were prepared by gas atomization and their transformation behaviors were examined by means of differential scanning calorimetry and X-ray diffraction. One-step B2–B19’ transformation occurred in Ti{sub 50}Ni{sub 50} powders, while Ti{sub 50}Ni{sub 30}Cu{sub 20} powders showed B2–B19 transformation behavior. Porous bulks with 24% porosity were fabricated by spark plasma sintering. The martensitic transformation start temperature (50 °C) of Ti{sub 50}Ni{sub 50} porous bulk is much higher than that (22 °C) of the as-solidified powders. However, the martensitic transformation start temperature (35 °C) of Ti{sub 50}Ni{sub 30}Cu{sub 20} porous bulk is almost the same as that (33 °C) of the powders. When the specimens were compressed to the strain of 8% and then unloaded, the residual strains of Ti{sub 50}Ni{sub 50} and Ti{sub 50}Ni{sub 30}Cu{sub 20} alloy bulks were 3.95 and 3.7%, respectively. However, these residual strains were recovered up to 1.7% after heating by the shape memory phenomenon.

  7. Production of refractory compound Materials for electronic engineering Applications by the powder metallurgy Method

    SciTech Connect

    Kosolapova, T.Y.; Dvorina, L.A.; Sasov, A.M.

    1986-02-01

    This paper presents the most important properties of bulk specimens of refractory metal disilicides having both high and low values of resistivity. The electrical properties and electrotransport data for Period IV metal silicides exhibit transitions from metallic (TiSi/sub 2/) to semiconductor (CrSi/sub 2/, MnSi /SUB 2-n/ , and FeSi/sub 2/) and once again to metallic (CoSi/sub 2/ and NiSi/sub 2/) conductivity. Chromium, manganese, and iron silicides have very good resistance to oxidation in air up to comparatively high temperatures, and in this series CrSi/sub 2/--one of the most air-oxidation resistant disilicide-is discussed at length in this paper.

  8. Wavelength resolved neutron transmission analysis to identify single crystal particles in historical metallurgy

    NASA Astrophysics Data System (ADS)

    Barzagli, E.; Grazzi, F.; Salvemini, F.; Scherillo, A.; Sato, H.; Shinohara, T.; Kamiyama, T.; Kiyanagi, Y.; Tremsin, A.; Zoppi, Marco

    2014-07-01

    The phase composition and the microstructure of four ferrous Japanese arrows of the Edo period (17th-19th century) has been determined through two complementary neutron techniques: Position-sensitive wavelength-resolved neutron transmission analysis (PS-WRNTA) and time-of-flight neutron diffraction (ToF-ND). Standard ToF-ND technique has been applied by using the INES diffractometer at the ISIS pulsed neutron source in the UK, while the innovative PS-WRNTA one has been performed at the J-PARC neutron source on the BL-10 NOBORU beam line using the high spatial high time resolution neutron imaging detector. With ToF-ND we were able to reach information about the quantitative distribution of the metal and non-metal phases, the texture level, the strain level and the domain size of each of the samples, which are important parameters to gain knowledge about the technological level of the Japanese weapon. Starting from this base of data, the more complex PS-WRNTA has been applied to the same samples. This experimental technique exploits the presence of the so-called Bragg edges, in the time-of-flight spectrum of neutrons transmitted through crystalline materials, to map the microstructural properties of samples. The two techniques are non-invasive and can be easily applied to archaeometry for an accurate microstructure mapping of metal and ceramic artifacts.

  9. Microstructural and mechanical property characterization of ingot metallurgy ODS iron aluminide

    SciTech Connect

    Sikka, V.K.; Howell, C.R.; Hall, F.; Valykeo, J.

    1997-12-01

    This paper deals with a novel, lower cost method of producing a oxide dispersion strengthened (ODS) iron-aluminide alloy. A large 250-kg batch of ODS iron-aluminide alloy designated as FAS was produced by Hoskins Manufacturing Company (Hoskins) [Hamburg, Michigan] using the new process. Plate and bar stock of the ODS alloy were the two major products received. Each of the products was characterized for its microstructure, including grain size and uniformity of oxide dispersion. Tensile tests were completed from room temperature to 1100 C. Only 100-h creep tests were completed at 800 and 1000 C. The results of these tests are compared with the commercial ODS alloy designated as MA-956. An assessment of these data is used to develop future plans for additional work and identifying applications.

  10. Physical and mechanical metallurgy of zirconium alloys for nuclear applications: a multi-scale computational study

    SciTech Connect

    Michael V. Glazoff

    2014-10-01

    In the post-Fukushima world, the stability of materials under extreme conditions is an important issue for the safety of nuclear reactors. Because the nuclear industry is going to continue using advanced zirconium cladding materials in the foreseeable future, it become critical to gain fundamental understanding of the several interconnected problems. First, what are the thermodynamic and kinetic factors affecting the oxidation and hydrogen pick-up by these materials at normal, off-normal conditions, and in long-term storage? Secondly, what protective coatings (if any) could be used in order to gain extremely valuable time at off-normal conditions, e.g., when temperature exceeds the critical value of 2200°F? Thirdly, the kinetics of oxidation of such protective coating or braiding needs to be quantified. Lastly, even if some degree of success is achieved along this path, it is absolutely critical to have automated inspection algorithms allowing identifying defects of cladding as soon as possible. This work strives to explore these interconnected factors from the most advanced computational perspective, utilizing such modern techniques as first-principles atomistic simulations, computational thermodynamics of materials, diffusion modeling, and the morphological algorithms of image processing for defect identification. Consequently, it consists of the four parts dealing with these four problem areas preceded by the introduction and formulation of the studied problems. In the 1st part an effort was made to employ computational thermodynamics and ab initio calculations to shed light upon the different stages of oxidation of ziraloys (2 and 4), the role of microstructure optimization in increasing their thermal stability, and the process of hydrogen pick-up, both in normal working conditions and in long-term storage. The 2nd part deals with the need to understand the influence and respective roles of the two different plasticity mechanisms in Zr nuclear alloys: twinning (at low T) and crystallographic slip (higher T’s). For that goal, a description of the advanced plasticity model is outlined featuring the non-associated flow rule in hcp materials including Zr. The 3rd part describes the kinetic theory of oxidation of the several materials considered to be perspective coating materials for Zr alloys: SiC and ZrSiO4. In the 4th part novel and advanced projectional algorithms for defect identification in zircaloy coatings are described. In so doing, the author capitalized on some 12 years of his applied industrial research in this area. Our conclusions and recommendations are presented in the 5th part of this work, along with the list of used literature and the scripts for atomistic, thermodynamic, kinetic, and morphological computations.

  11. Ferrous alloy metallurgy - liquid lithium corrosion and welding. Progress report, January 1-December 31, 1980

    SciTech Connect

    Olson, D. L.; Matlock, D. K.

    1980-01-01

    Fatigue crack growth has been used to evaluate the interaction between liquid lithium and an imposed stress. Fatigue crack growth data on type 304L stainless steel at 700C and 2 1/4Cr-1Mo steel between 500 and 700C show that for all imposed test conditions (i.e. frequency, temperature, and nitrogen content in the lithium) the interaction of lithium with the strain at the crack tip results in enhanced crack growth rates. The enhanced growth rates result from the effects of either enhanced grain boundary penetration or a change in crack propagation mechanism due to liquid metal embrittlement. Auger spectroscopy of grain boundary penetrated specimen shows that a lithium-oxygen compound forms at the grain boundary. Moessbauer evaluations of the ferrite layer of corroded type 304 stainless steel are being used to develop a model for weight loss in liquid lithium. The welding research in progress is directed to characterize the influence of variations of the austenitic weld metal composition on the microstructural and mechanical properties of dissimilar metal weldments. Weldments of 2 1/4Cr-1Mo steel to 316 stainless steel have been investigated for fusion microstructure, thermal expansion impact strength and characterization of specific long time in-service failures. Modification of weld metal microstructures by microalloy additions is being investigated as a concept to improve weld metal properties. The behavior of a strip electrode in a gas metal arc is being investigated to determine the feasibility of gas metal arc weld strip overlay cladding.

  12. A marvel of medieval Indian metallurgy: Thanjavur's forge-welded iron cannon

    NASA Astrophysics Data System (ADS)

    Balasubramaniam, R.; Saxena, A.; Anantharaman, Tanjore R.; Reguer, S.; Dillmann, P.

    2004-01-01

    In this article, metallurgical aspects of a 17th century forge-welded iron cannon at Thanjavur are addressed, including an analysis of manufacturing methodology based on careful observation of its constructional details. Microstructural examination of iron from the cannon reveals that the iron was extracted from ore by the direct process. Thus, the cannon was fabricated by forge welding and not by casting. Electrochemical polarization studies indicate that the corrosion rate of the cannon iron can be compared to that of 0.05% carbon mild steel under complete immersion conditions. However, the atmospheric corrosion resistance of the cannon is far superior to that of modern steel and can be attributed to the formation of an adherent protective passive film. It is concluded that this cannon constitutes a marvel of medieval Indian metallurgical skill.

  13. 78 FR 79019 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ..., Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels... materials and metallurgy. The Subcommittee will hear presentations by and hold discussions with the...

  14. Rapid-solidification processing and powder metallurgy of al alloys. Final technical report, 15 April 1982-15 April 1985

    SciTech Connect

    Fraser, H.L.

    1986-10-29

    Regarding work on the development of microstructure during rapid solidification, three areas were addressed. The first of these involved a determination of the mechanism of formation of the so-called zones A and B in hypereutectic Al-transition metal alloys. The second area of work involving the development of microstructure concerns submerged phase transformations. In a study of Al-Be hypereutectic alloys, it was determined that solidification proceeded by a set of phase transformations that may be described by a monotectic reaction. The third area of study concerning microstructural development involves quasi-crystalline Al alloys. In fact, work done in this program has concentrated on the potentially beneficial aspects of quasi-crystalline phases in the microstructure of Al alloys. Work on the consolidation of particulate was concentrated on the use of conventional techniques (.e. extrusion) and novel processes (i.e. dynamic compaction). An estimate of the mechanical properties of rapidly solidified Al alloys was obtained. As explained above, the effect of extrusion is to cause decomposition of the rapidly solidified microstructure. A comparison was made, using the alloy Al-8Fe-2Mo, between the tensile properties of the decomposed microstructure (.e. extruded) and subscale test specimens produced by laser surface melting, consisting entirely of zone A.

  15. Tungsten and tungsten alloy powder metallurgy. (Latest citations from the EI Cmpendex*plus database). Published Search

    SciTech Connect

    1997-03-01

    The bibliography contains citations concerning tungsten powder preparation and processing. Studies include sintering, densification, shrinkage, phase analysis, and heat treatment. The physical and mechanical properties of tungsten powder metal products are included. The effects of additives and particle size on the sintering and sintered articles are also described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  16. Tungsten and tungsten alloy powder metallurgy. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    Not Available

    1994-12-01

    The bibliography contains citations concerning tungsten powder preparation and processing. Studies include sintering, densification, shrinkage, phase analysis, and heat treatment. The physical and mechanical properties of tungsten powder metal products are included. The effects of additives and particle size on the sintering and sintered articles are also described. (Contains 250 citations and includes a subject term index and title list.)

  17. Tungsten and tungsten alloy powder metallurgy. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    1995-11-01

    The bibliography contains citations concerning tungsten powder preparation and processing. Studies include sintering, densification, shrinkage, phase analysis, and heat treatment. The physical and mechanical properties of tungsten powder metal products are included. The effects of additives and particle size on the sintering and sintered articles are also described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  18. Tungsten and tungsten alloy powder metallurgy. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    Not Available

    1994-04-01

    The bibliography contains citations concerning tungsten powder preparation and processing. Studies include sintering, densification, shrinkage, phase analysis, and heat treatment. The physical and mechanical properties of tungsten powder metal products are included. The effects of additives and particle size on the sintering and sintered articles are also described. (Contains 250 citations and includes a subject term index and title list.)

  19. Tungsten and tungsten alloy powder metallurgy. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    1998-03-01

    The bibliography contains citations concerning tungsten powder preparation and processing. Studies include sintering, densification, shrinkage, phase analysis, and heat treatment. The physical and mechanical properties of tungsten powder metal products are included. The effects of additives and particle size on the sintering and sintered articles are also described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  20. Microstructures, Mechanical Properties, and Shape Memory Characteristics of Powder Metallurgy Ti51Ni49 Modified with Boron

    NASA Astrophysics Data System (ADS)

    Yen, Fu-Cheng; Hwang, Kuen-Shyang

    2012-02-01

    Ti51Ni49 compacts consolidated with persistent liquid-phase sintering usually contain Ti2Ni networks at the grain boundaries, which cause adverse effects on mechanical properties. With 0.5 and 1.0 at pct B additions, fine TiB forms during heating and sintering and acts as a nucleation site for Ti2Ni to precipitate within the grain during cooling. The resultant uniform distribution of TiB and Ti2Ni impedes grain growth and prevents the formation of continuous Ti2Ni precipitates at grain boundaries. As a result, a significant increase in tensile elongation, and not a decrease, as in most as-cast titanium alloys, is obtained because of these changes. The tensile strength also increases, without deterioration of the shape memory characteristics. The tensile strength and elongation are close to those of wrought TiNi alloys.

  1. Tailoring the microstructure and the mechanical properties of ultrafine grained high strength ferritic steels by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Mouawad, B.; Boulnat, X.; Fabrègue, D.; Perez, M.; de Carlan, Y.

    2015-10-01

    Three model powder materials (i) atomized, (ii) atomized + milled, and, (iii) atomized + milled + alloyed with yttria (Y2O3) and titanium were consolidated within Spark Plasma Sintering device at 850, 950 and 1050°C. Depending on the materials, nanostructured, or even bimodal grain size distribution can be observed. These structures lead to a wide range of mechanical behavior: the tensile strength at room temperature can be tailored from 500 to 1200 MPa with total elongation from 8 to 35%. The bimodal grain size distribution is believed to provide both good yield stress and ductility. Finally, a yield stress model based on the effect of solute atoms, dislocations, grains boundaries and precipitates is presented and it permits to predict accurately the experimental values for all specimens and conditions.

  2. 76 FR 64344 - Amended Record of Decision for the Nuclear Facility Portion of the Chemistry and Metallurgy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    ... Mexico (DOE/EIS-0350, CMRR EIS) and the subsequent 2004 ROD (69 FR 6967). Since the issuance of the 2004... participate in a scoping process to help shape NNSA's supplemental analysis (75 FR 60745, October 1, 2010... CMRR-NF SEIS in the Federal Register on April 29, 2011 (76 FR 24021 and 76 FR 24018,...

  3. Comparison of ultrasonic-assisted and regular leaching of germanium from by-product of zinc metallurgy.

    PubMed

    Zhang, Libo; Guo, Wenqian; Peng, Jinhui; Li, Jing; Lin, Guo; Yu, Xia

    2016-07-01

    A major source of germanium recovery and also the source of this research is the by-product of lead and zinc metallurgical process. The primary purpose of the research is to investigate the effects of ultrasonic assisted and regular methods on the leaching yield of germanium from roasted slag containing germanium. In the study, the HCl-CaCl2 mixed solution is adopted as the reacting system and the Ca(ClO)2 used as the oxidant. Through six single factor (leaching time, temperature, amount of Ca(ClO)2, acid concentration, concentration of CaCl2 solution, ultrasonic power) experiments and the comparison of the two methods, it is found the optimum collective of germanium for ultrasonic-assisted method is obtained at temperature 80 °C for a leaching duration of 40 min. The optimum concentration for hydrochloric acid, CaCl2 and oxidizing agent are identified to be 3.5 mol/L, 150 g/L and 58.33 g/L, respectively. In addition, 700 W is the best ultrasonic power and an over-high power is adverse in the leaching process. Under the optimum condition, the recovery of germanium could reach up to 92.7%. While, the optimum leaching condition for regular leaching method is same to ultrasonic-assisted method, except regular method consume 100 min and the leaching rate of Ge 88.35% is lower about 4.35%. All in all, the experiment manifests that the leaching time can be reduced by as much as 60% and the leaching rate of Ge can be increased by 3-5% with the application of ultrasonic tool, which is mainly thanks to the mechanical action of ultrasonic. PMID:26964934

  4. Process metallurgy analyses for high bendability and springback property sheet design by using multi-scale finite element method

    NASA Astrophysics Data System (ADS)

    Kuramae, Hiroyuki; Honda, Takeshi; Morimoto, Hideo; Morita, Yusuke; Nakamachi, Eiji

    2014-10-01

    In this study, we develop bendability and springback prediction analysis code for an optimum crystal texture design scheme to generate ideal aluminum alloy sheet through the sheet rolling and heat treatment processes. To predict the relationships between the sheet metal formability and the crystal texture, we applied our multi-scale finite element (FE) procedure based on the crystallographic homogenization method for the bending process analyses. Our code employed two-scale method, such as the microscopic polycrystal structure and the macroscopic elastic plastic continuum by introducing the effect of crystal orientation distribution. It means that our code can predict the plastic deformation of sheet metal in the macro-scale, and the crystal texture evolutions in the micro-scale. Furthermore, we designed the polycrystal texture by asymmetric rolling (ASR) and annealing heat treatment processes to generate high bendability and low springback polycrystal material. Annealing heat treatment was modeled as the growth of Cube {001}<100> orientation based on the Johnson-Mehl-Avrami's equation. The design parameters, ASR ratio and annealing heat treatment time, were optimized by using a discrete multi-objective optimization algorithm to maximize the bendability and to minimize the springback angle. As the optimized result, the ASR ratio 1.16 and the annealing heat treatment time 13.5min were obtained.

  5. Widespread waterborne pollution in central Swedish lakes and the Baltic Sea from pre-industrial mining and metallurgy.

    PubMed

    Bindler, Richard; Renberg, Ingemar; Rydberg, Johan; Andrén, Thomas

    2009-07-01

    Metal pollution is viewed as a modern problem that began in the 19th century and accelerated through the 20th century; however, in many parts of the globe this view is wrong. Here, we studied past waterborne metal pollution in lake sediments from the Bergslagen region in central Sweden, one of many historically important mining regions in Europe. With a focus on lead (including isotopes), we trace mining impacts from a local scale, through a 120-km-long river system draining into Mälaren--Sweden's third largest lake, and finally also the Baltic Sea. Comparison of sediment and peat records shows that pollution from Swedish mining was largely waterborne and that atmospheric deposition was dominated by long-range transport from other regions. Swedish ore lead is detectable from the 10th century, but the greatest impact occurred during the 16th-18th centuries with improvements occurring over recent centuries, i.e., historical pollution > modern industrial pollution. PMID:19268409

  6. Consolidation processing parameters and alternative processing methods for powder metallurgy Al-Cu-Mg-X-X alloys

    NASA Technical Reports Server (NTRS)

    Sankaran, K. K.

    1987-01-01

    The effects of varying the vacuum degassing parameters on the microstructure and properties of Al-4Cu-1Mg-X-X (X-X = 1.5Li-0.2Zr or 1.5Fe-0.75Ce) alloys processed from either prealloyed (PA) or mechanically alloyed (M) powder, and consolidated by either using sealed aluminum containers or containerless vacuum hot pressing were studied. The consolidated billets were hot extruded to evaluate microstructure and properties. The MA Li-containing alloy did not include Zr, and the MA Fe- and Ce-containing alloy was made from both elemental and partially prealloyed powder. The alloys were vacuum degassed both above and below the solution heat treatment temperature. While vacuum degassing lowered the hydrogen content of these alloys, the range over which the vacuum degassing parameters were varied was not large enough to cause significant changes in degassing efficiency, and the observed variations in the mechanical properties of the heat treated alloys were attributed to varying contributions to strengthening by the sub-structure and the dispersoids. Mechanical alloying increased the strength over that of alloys of similar composition made from PA powder. The inferior properties in the transverse orientation, especially in the Li-containing alloys, suggested deficiencies in degassing. Among all of the alloys processed for this study, the Fe- and Ce-containing alloys made from MA powder possessed better combinations of strength and toughness.

  7. Effect of Reinforcement on Sliding Wear Behaviors of Hypereutectic Al-Si Composites Prepared by Powder Metallurgy

    NASA Astrophysics Data System (ADS)

    Park, Seul-Ki; Choi, Jin-Myung; Kim, Yong-Jin; Park, Ik-Min; Park, Yong-Ho

    In this study, the effect of the reinforcement on the wear behavior of hypereutectic Al-Si composites was investigated by performing a ball-on-disk test. The specimens were manufactured by hot press after gas atomizing. Al-20Si-5TiC composite exhibited superior wear resistance than other composites used in this study.

  8. A new approach to the weldability of nickel-base As-cast and power metallurgy superalloys

    SciTech Connect

    Haafkens, M.H.; Matthey, J.H.G.

    1982-11-01

    The repair of nickel-base superalloys such as those used in the first and second stages of the rotating sections of a gas turbine is examined. Welding is affected by stress and temperature levels of the blade, wall thickness, and material composition. Steps to achieve crack-free welds include preheating above 600C (1112F) for GTA and plasma arc welding and above 900C (1652F) for EB welding. It is concluded that crack formation can be prevented by controlling the cooling rate during welding; that hardness measurements provide useful results for crack-free welding using GTA, plasma, friction, and electron beams; and that small differences in chemical composition and homogeneity can have a decisive effect on weld behavior.

  9. Application of powder metallurgy to an advanced-temperature nickel-base alloy, NASA-TRW 6-A

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Ashbrook, R. L.; Waters, W. J.

    1971-01-01

    Bar stock of the NASA-TRW 6-A alloy was made by prealloyed powder techniques and its properties evaluated over a range of temperatures. Room temperature ultimate tensile strength was 1894 MN/sq m (274 500 psi). The as-extruded powder product showed substantial improvements in strength over the cast alloy up to 649 C (1200 F) and superplasticity at 1093 C (2000 F). Both conventional and autoclave heat treatments were applied to the extruded powder product. The conventional heat treatment was effective in increasing rupture life at 649 and 704 C (1200 and 1300 F); the autoclave heat treatment, at 760 and 816 C (1400 and 1500 F).

  10. Shape memory characteristics and mechanical properties of powder metallurgy processed Ti50Ni40Cu10 alloy.

    PubMed

    Kim, Yeon-Wook

    2014-10-01

    Ti-Ni-Cu alloy powders were prepared by gas atomization and porous bulk specimens were fabricated by spark plasma sintering (SPS). The microstructure of as-solidified powders exhibited a cellular structure and they contained a high density of nano-sized porosities which were located in the intercellular regions. XRD analysis showed that one-step martensitic transformation of B2-B19 occurred in all alloy powders and SPS specimens. When the martensitic transformation start temperature (M(s)) and austenite transformation finish temperature (A(f)) were determined in order to analyze the dependence of powder size on transformation temperatures, the M(s) increased slightly from -17.5 degrees C to - 14.6 degrees C as increasing the powder size ranging from between 25 and 50 μm to ranging between 100 and 150 μm. However, the M(s) and A(f) of the as-atomized powders is much smaller than those of SPS specimens and the M(s) of porous specimen was about 10.9 degrees C. Loading-unloading compressive tests were carried out to investigate the mechanical properties of porous Ti-Ni-Cu specimen. The specimen was compressed to the strain of 6% at a temperature higher than A,. After unloading, the residual strain was 2.1%. After the compressed specimen was heated to 60 degrees C and held for 30 minutes and then cooled to room temperature, the changes in the length of the specimens were measured. Then it was found that the recovered strain ascribed to shape memory effect was 1.5%. PMID:25942923

  11. Effects of C and Hf concentration on phase relations and microstructure of a wrought powder-metallurgy superalloy

    NASA Technical Reports Server (NTRS)

    Miner, R. V., Jr.

    1977-01-01

    NASA IIB-11, a candidate alloy for advanced temperature turbine engine disks, and four modifications with varying C and Hf concentrations were produced from prealloyed powders. Several notable effects of C and Hf concentration in the alloys were observed. Both the amount of the gamma-prime phase and its solvus temperature increased with decreasing C, but only the gamma-prime solvus was affected by Hf, increasing with increasing Hf. Hf also promoted a cellular gamma-prime precipitation. Hf was, however, about equally distributed between gamma-prime and gamma. Hf and C both affected the carbides formed. Increasing both promoted formation of an MC relative to that of an M6C.

  12. [Methodological approaches to the development of environmentally benign technology for the use of solid waste in iron metallurgy].

    PubMed

    Pugin, K G; Vaĭsman, Ia I

    2013-01-01

    On the basis of the life cycle of materials, containing wastes of iron and steel industry, new methodological approaches to the assessment of technologies of the secondary use of wastes are developed A complex criteria for selection of the technology for the use of resource potential of solid waste of iron and steel industry are developed with taking into account environmental, technological and economic indices. The technology of the use of wastes of ferrovanadium industry as bulk solid materials at the solid waste landfill is shown. PMID:24340603

  13. INCOLOY 908, a low coefficient of expansion alloy for high-Strength cryogenic applications: Part I. Physical metallurgy

    NASA Astrophysics Data System (ADS)

    Morra, M. M.; Ballinger, R. G.; Hwang, I. S.

    1992-12-01

    INCOLOY 908 is a low coefficient of thermal expansion (COE) iron-nickel base superalloy that was developed jointly by The Massachusetts Institute of Technology and the International Nickel Company for cryogenic service. The alloy is stable against phase transformation during prolonged thermal treatments and has a COE compatible with that of Nb3Sn. These properties make the material ideal for use as a structural component in superconducting magnets using Nb3Sn. The evolution of microstructure has been studied as a function of time at temperature over the temperature range of 650 °C to 900 °C for times between 50 and 200 hours. A detailed analysis of precipitated phases has been conducted using X-ray diffraction (XRD), transmission electron microscopy (TEM), and analytical scanning and scanning transmission electron mi- croscopy (STEM) techniques. The primary strengthening phase has been found to be γ ', Ni3(Al, Ti). INCOLOY 908 is stable against overaging, which is defined as the transformation of γ' to η, Ni3Ti, for times to 100 hours at temperatures up to 750 °C. Upon overaging, the strengthening phase transforms to η. A new phase, H x , has been identified and characterized.

  14. Surface films and metallurgy related to lubrication and wear. Ph.D. Thesis - Tokyo Inst. of Technology

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1981-01-01

    The nature of the tribological surface is identified and characterized with respect to adhesion, friction, wear, and lubricating properties. Surface analysis is used to identify the role of environmental constituents on tribological behavior. The effect of solid to solid interactions for metals in contact with metals, ceramics, semiconductors, carbons, and polymers is discussed. The data presented indicate that the tribological surface is markedly different than an ideal solid surface. The environment is shown to affect strongly the behavior of two solids in contact. Results also show that small amounts of alloying elements in base metals can alter markedly adhesion, friction, and wear by segregating to the solid surface.

  15. Tungsten and tungsten alloy powder metallurgy: Powder production and applications excluding lamps. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    1995-02-01

    The bibliography contains citations of selected patents concerning the preparation of metallic and ceramic powders of tungsten and tungsten alloys, including applications of these materials. The hydrogen reduction of tungsten compounds together with alloying element compounds produce forms with characteristics of high density, hardness, wear resistance, high melting points, and abrasiveness. Topics include production of cathodes, heaters, filament wires, electrical contacts, acoustic absorbers, high-density sheets and coatings, hard penetrators, and tungsten carbide and metallized ceramics. Tungsten halogen lamps are examined in a separate bibliography. (Contains a minimum of 115 citations and includes a subject term index and title list.)

  16. Tungsten and tungsten alloy powder metallurgy: Powder production and applications excluding lamps. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    1997-01-01

    The bibliography contains citations of selected patents concerning the preparation of metallic and ceramic powders of tungsten and tungsten alloys, including applications of these materials. The hydrogen reduction of tungsten compounds together with alloying element compounds produce forms with characteristics of high density, hardness, wear resistance, high melting points, and abrasiveness. Topics include production of cathodes, heaters, filament wires, electrical contacts, acoustic absorbers, high-density sheets and coatings, hard penetrators, and tungsten carbide and metallized ceramics. Tungsten halogen lamps are examined in a separate bibliography.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  17. Tungsten and tungsten alloy powder metallurgy: Powder production and applications excluding lamps. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    1995-12-01

    The bibliography contains citations of selected patents concerning the preparation of metallic and ceramic powders of tungsten and tungsten alloys, including applications of these materials. The hydrogen reduction of tungsten compounds together with alloying element compounds produce forms with characteristics of high density, hardness, wear resistance, high melting points, and abrasiveness. Topics include production of cathodes, heaters, filament wires, electrical contacts, acoustic absorbers, high-density sheets and coatings, hard penetrators, and tungsten carbide and metallized ceramics. Tungsten halogen lamps are examined in a separate bibliography.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  18. Feasibility study on the use of soil washing to remediate the As-Hg contamination at an ancient mining and metallurgy area.

    PubMed

    Sierra, C; Menéndez-Aguado, J M; Afif, E; Carrero, M; Gallego, J R

    2011-11-30

    Soils in abandoned mining sites generally present high concentrations of trace elements, such as As and Hg. Here we assessed the feasibility of washing procedures to physically separate these toxic elements from soils affected by a considerable amount of mining and metallurgical waste ("La Soterraña", Asturias, NW Spain). After exhaustive soil sampling and subsequent particle-size separation via wet sieving, chemical and mineralogical analysis revealed that the finer fractions held very high concentrations of As (up to 32,500 ppm) and Hg (up to 1600 ppm). These elements were both associated mainly with Fe/Mn oxides and hydroxides. Textural and geochemical data were correlated with the geological substrate by means of a multivariate statistical analysis. In addition, the Hg liberation size (below 200 μm) was determined to be main factor conditioning the selection of suitable soil washing strategies. These studies were finally complemented with a specific-gravity study performed with a C800 Mozley separator together with a grindability test, both novel approaches in soil washing feasibility studies. The results highlighted the difficulties in treating "La Soterraña" soils. These difficulties are attributed to the presence of contaminants embedded in the soil and spoil heap aggregates, caused by the meteorization of gangue and ore minerals. As a result of these two characteristics, high concentrations of the contaminants accumulate in all grain-size fractions. Therefore, the soil washing approach proposed here includes the grinding of particles above 125 μm. PMID:21943924

  19. Research Advances: Calorie Restriction and Increased Longevity Linked to Metabolic Changes; Isotope Ratios Reveal Trickery in the Produce Aisle; An Ancient Inca Tax and Metallurgy in Peru

    ERIC Educational Resources Information Center

    King, Angela G.

    2007-01-01

    The different lifelong patterns related to different levels of energy metabolism and the activities of the microbes in various animals are described. The analysis shows that many important beneficial changes occur due to the activities of symbiotic bacteria living in the intestinal tract.

  20. Effect of the CaO-Al2O3-Based Top Slag on the Cleanliness of Stainless Steel During Secondary Metallurgy

    NASA Astrophysics Data System (ADS)

    Yan, Pengcheng; Huang, Shuigen; Pandelaers, Lieven; Van Dyck, Joris; Guo, Muxing; Blanpain, Bart

    2013-10-01

    The ladle treatment of a 18 pct Cr-9 pct Ni stainless steel, with desulfurization as its main purpose, was simulated on a laboratory scale. The influence of the top slag chemistry on the steel cleanliness was evaluated. A higher steel cleanliness was obtained with an optimized lime-alumina-based slag than with a lime-fluorspar-based slag. The inclusions were found to be mainly in the form of oxysulfide; the alumina content in the inclusions first increased and subsequently showed a slow drop, while the sulfide content decreased during the treatment. The equilibrium between steel and inclusions was found to be more easily reached than that between slag and steel. A slag-steel kinetic model was used to predict the steel chemistry evolution during the treatment. Furthermore, a slag-steel-inclusions interaction kinetic model was developed to calculate the change of alumina content in the inclusions during the ladle treatment. The sulfide content of inclusions was also calculated and compared with the measured values.

  1. The impact of work environment on chemical and phase composition changes of magnesia-spinel refractories used as refractory lining in secondary metallurgy device

    NASA Astrophysics Data System (ADS)

    Szczerba, J.; Madej, D.; Czapka, Z.

    2013-12-01

    The study of magnesia-chrome refractories corrosion by liquid steel and the liquid calcium-silicate based slag was carried out in the environment in RH degasser. The microstructures of the as-delivered and tested samples were researched by SEM-EDS methods. Our experiment produced the following results: 1. the initial spinel phase, Mg(Cr,Al,Fe)2O4 solid-solution of magnesia-chrome brick was transformed into Fe and Mn-rich spinel phase (Mg,Mn)(Cr,Fe)2O4 solid-solution, 2. the new phase formed in the corroded brick were (Mn,Mg)O and (Ca,Mg,Mn)SiO4 solid solutions.

  2. Coke industry and steel metallurgy as the source of soil contamination by technogenic magnetic particles, heavy metals and polycyclic aromatic hydrocarbons.

    PubMed

    Rachwał, Marzena; Magiera, Tadeusz; Wawer, Małgorzata

    2015-11-01

    Application of integrated magnetic, geochemical and mineralogical methods for qualitative and quantitative assessment of forest topsoils exposed to the industrial emissions was the objective of this manuscript. Volume magnetic susceptibility (κ) in three areas of southern Poland close to the coke and metallurgical plants was measured directly in the field. Representative topsoil samples were collected for further chemical and mineralogical analyses. Topsoil magnetic susceptibility in the studied areas depended mainly on the content of technogenic magnetic particles (TMPs) and decreased downwind at increasing distance from the emitters. In the vicinity of coking plants a high amount of polycyclic aromatic hydrocarbons (PAHs) was observed, especially the most carcinogenic ones with four- and five-member rings. No significant concentration of TMPs (estimated on the base of κ values) and heavy metals (HM) was observed in area where the coke plant was the only pollution source. In areas with both coke and metallurgical industry, higher amounts of TMPs, PAHs and HM were detected. Morphological and mineralogical analyses of TMPs separated from contaminated soil samples revealed their high heterogeneity in respect of morphology, grain size, mineral and chemical constitution. Pollution load index and toxicity equivalent concentration of PAHs used for soil quality assessment indicated its high level of pollution. PMID:25576132

  3. Study on effects of powder and flake chemistry and morphology on the properties of Al-Cu-Mg-X-X-X powder metallurgy advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Meschter, P. J.; Lederich, R. J.; Oneal, J. E.; Pao, P. S.

    1985-01-01

    The effects of alloy chemistry and particulate morphology on consolidation behavior and consolidated product properties in rapid solidification processed, powder-metallurgical Al-3Li-1.5Cu-1Mg-0.5Co-0.2Zr and Al-4.4Cu-1.5Mg-Fe-Ni-0.2Zr extrusions and forgings were studied. Microstructures and mechanical properties of both alloys are largely unaffected by particulate production method (vacuum atomization, ultrasonic atomization, or twin-roller quenching) and by particulate solidification rates between 1000 and 100,000 K/s. Consolidation processing by canning, cold compaction, degassing, and hot extrusion is sufficient to yield mechanical properties in the non-Li-containing alloy extrusions which are similar to those of 7075-Al, but ductilities and fracture toughnesses are inferior owing to poor interparticle bonding caused by lack of a vacuum-hot-pressing step during consolidation. Mechanical properties of extrusions are superior to those of forgings owing to the stronger textures produced by the more severe hot working during extrusion. The effects on mechanical properties of dispersoid size and volume fraction, substructural refinement, solid solution strengthening by Mg, and precipitate size and distribution are elucidated for both alloy types.

  4. Study on effects of powder and flake chemistry and morphology on the properties of Al-Cu-Mg-X-X-X powder metallurgy advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Meschter, P. J.; Lederich, R. J.; Oneal, J. E.

    1986-01-01

    A study was conducted: (1) to develop rapid solidification processed (RSP) dispersoid-containing Al-3Cu-2Li-1Mg-0.2Zr alloys as substitutes for titanium alloys and commercial 2XXX aluminum alloys for service to at least 150 C; and (2) to develop RSP Al-4Li-Cu-Mg-Zr alloys as substitutes for high-strength commercial 7XXX alloys in ambient-temperature applications. RSP Al-3Cu-2Li-1Mg-0.2Zr alloys have density-normalized yield stresses at 150 C up to 52% larger than that of 2124-T851 and up to 30% larger than that of Ti-6Al-4V. Strength at 150 C in these alloys is provided by thermally stable delta' (Al3Li), T1 (Al2LiCu), and S' (Al2CuMg) precipitates. Density-normalized yield stresses of RSP Al-3Cu-2Li-1Mg-0.2Zr alloys are up to 100% larger than that of 2124-T851 and equivalent to that of Al-8Fe-4Ce at 260 C. Strength in the RSP alloys at 260 C is provided by incoherent dispersoids and subboundary constituent particles such as T1 and S. The RSP alloys are attractive substitutes in less than or = 100-h exposures for 2xxx and Al-4Fe-Ce alloys up to 260 C and for titanium alloys up to 150 C. RSP Al-4Li-Cu-Mg-Zr alloys have ambient-temperature yield and ultimate tensile stresses similar to that of 7050-T7651, and are 14% less dense. RSP Al-4Li-0.5Cu-1.5Mg-0.2Zr has a 20% higher specific yield stress, 40% higher specific elastic modulus, and superior corrosion resistance compared to the properties of 7050-T7651. Strength in the Al-4Li-Cu-Mg-Zr alloy class is primarily provided by the substructure and delta' precipitates and is independent of Cu:Mg ratio. Improvements in fracture toughness and transverse-orientation properties in both alloy classes depend on improved melt practices to eliminate oxide inclusions which are incorporated into the consolidated forms.

  5. (60)Co in cast steel matrix: A European interlaboratory comparison for the characterisation of new activity standards for calibration of gamma-ray spectrometers in metallurgy.

    PubMed

    Tzika, Faidra; Burda, Oleksiy; Hult, Mikael; Arnold, Dirk; Marroyo, Belén Caro; Dryák, Pavel; Fazio, Aldo; Ferreux, Laurent; García-Toraño, Eduardo; Javornik, Andrej; Klemola, Seppo; Luca, Aurelian; Moser, Hannah; Nečemer, Marijan; Peyrés, Virginia; Reis, Mario; Silva, Lidia; Šolc, Jaroslav; Svec, Anton; Tyminski, Zbigniew; Vodenik, Branko; Wätjen, Uwe

    2016-08-01

    Two series of activity standards of (60)Co in cast steel matrix, developed for the calibration of gamma-ray spectrometry systems in the metallurgical sector, were characterised using a European interlaboratory comparison among twelve National Metrology Institutes and one international organisation. The first standard, consisting of 14 disc shaped samples, was cast from steel contaminated during production ("originally"), and the second, consisting of 15 similar discs, from artificially-contaminated ("spiked") steel. The reference activity concentrations of (60)Co in the cast steel standards were (1.077±0.019) Bqg(-1) on 1 January 2013 12h00 UT and (1.483±0.022) Bqg(-1) on 1 June 2013 12h00 UT, respectively. PMID:27236833

  6. Skylab experiments. Volume 3: Materials science. [Skylab experiments on metallurgy, crystal growth, semiconductors, and combustion physics in weightless environment for high school level education

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The materials science and technology investigation conducted on the Skylab vehicle are discussed. The thirteen experiments that support these investigations have been planned to evaluate the effect of a weightless environment on melting and resolidification of a variety of metals and semiconductor crystals, and on combustion of solid flammable materials. A glossary of terms which define the space activities and a bibliography of related data are presented.

  7. Processing, physical metallurgy and creep of NiAl + Ta and NiAl + Nb alloys. Ph.D. Thesis. Final Contractor Report

    NASA Technical Reports Server (NTRS)

    Pathare, Viren M.

    1988-01-01

    Powder processed NiAl + Ta alloys containing 1, 2, and 4.5 at percent tantalum and NiAl + Nb alloys containing 1 and 2 at percent niobium were developed for improved creep properties. In addition, a cast alloy with 5 at percent tantalum was also studied. Hot extrusion parameters for processing alloys with 1 and 2 at percent of tantalum or niobium were designed. The NiAl + 4.5 at percent Ta alloy could be vacuum hot pressed successfully, even though it could not be extruded. All the phases in the multiphase alloys were identified and the phase transformations studied. The Ni2AlTa in NiAl + 4.5 at percent Ta alloy transforms into a liquid phase above 1700 K. Solutionizing and annealing below this temperature gives rise to a uniform distribution of fine second phase precipitates. Compressive creep properties were evaluated at 1300 K using constant load and constant velocity tests. In the higher strain rate region single phase NiAl + 1 at percent Ta and NiAl + 1 at percent Nb alloys exhibit a stress exponent of 5 characteristic of climb controlled dislocation creep. In slower strain rate regime diffusional creep becomes important. The two phase alloys containing 2 to 5 at percent Ta and 2 at percent Nb show considerable improvement over binary NiAl and single phase alloys. Loose dislocation networks and tangles stabilized by the precipitates were found in the as crept microstructure. The cast alloy which has larger grains and a distribution of fine precipitates shows the maximum improvement over binary NiAl.

  8. The Nature of Tensile Ductility as Controlled by Extreme-Sized Pores in Powder Metallurgy Ti-6Al-4V Alloy

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Ravi Chandran, K. S.; Cao, F.; Koopman, M.; Fang, Z. Zak

    2016-05-01

    Tensile properties of Ti-6Al-4V titanium alloy, sintered by a new process (sintering, phase transformation, and dehydrogenation of titanium hydride compacts, termed HSPT process), were investigated to determine how the sintering pores influence the tensile strength and ductility. It was found that the ductility in the sintered alloy is severely affected by the size of the largest pore, referred here as extreme-sized pore, even when the average volume fraction of porosity is nearly constant between a large number of samples. It is shown that the rapid decrease in ductility, with an increase in the extreme pore size, is caused by strain localization around the extreme-sized pore and early crack initiation. This crack initiation leads to fracture of the plane containing the pore thereby limiting the extent of uniform plastic strain that can be attained before fracture. Interestingly, the strength properties are, however, found to be independent of the size of the extreme-sized pore. The results are explained on the basis of stress concentration and strain localization around the extreme-sized pores. The work also reveals that if the extreme-sized pores are eliminated, PM Ti-6Al-4V alloy with high strength (~1100 MPa) and good ductility (~12 pct), which is easily comparable to a wrought Ti-6Al-4V alloy, can be achieved even at oxygen levels up to 0.4 wt pct.

  9. Tungsten and tungsten alloy powder metallurgy: Powder production and applications excluding lamps. (Latest citations from the US Patent database). Published Search

    SciTech Connect

    Not Available

    1993-05-01

    The bibliography contains citations of selected patents concerning the preparation of metallic and ceramic powders of tungsten and tungsten alloys, including applications of these materials. The hydrogen reduction of tungsten compounds together with alloying element compounds produce forms with characteristics of high density, hardness, wear resistance, high melting points, and abrasiveness. Topics include production of cathodes, heaters, filament wires, electrical contacts, acoustic absorbers, high-density sheets and coatings, hard penetrators, and tungsten carbide and metallized ceramics. Tungsten halogen lamps are examined in a separate bibliography. (Contains a minimum of 97 citations and includes a subject term index and title list.)

  10. Tungsten and tungsten alloy powder metallurgy. January 1970-February 1990 ( A Bibliography from the NTIS data base). Report for January 1970-February 1990

    SciTech Connect

    Not Available

    1990-02-01

    This bibliography contains citations concerning the processing and fabrication of tungsten, tungsten alloys, and tungsten composites. Compacting, pressing, sintering, extruding, and rolling are among the methods described. Infiltration of porous tungsten shapes is included, as well as mechanical properties, thermal properties, and microstructure of these products. Applications include rocket nozzles, nuclear reactor materials, and porous ionizers. (This updated bibliography contains 287 citations, 53 of which are new entries to the previous edition.)

  11. Tungsten and tungsten alloy powder metallurgy. 1970-march, 1981 (citations from the Engineering Index data base). Report for 1970-March 1981

    SciTech Connect

    Not Available

    1981-04-01

    Worldwide journal articles are cited on tungsten powder preparation and processing. Studies include sintering, densification, shrinkage, phase analysis, and heat treatment. The physical and mechanical properties of tungsten powder metal products are included. The effects of additives and particle size on the sintering and sintered articles are also described. (This updated bibliography contains 302 citations, 54 of which are new entries to the previous edition.)

  12. Tungsten and tungsten alloy powder metallurgy. March 1986-May 1990 (A Bibliography from the COMPENDEX data base). Report for March 1986-May 1990

    SciTech Connect

    Not Available

    1990-06-01

    This bibliography contains citations concerning tungsten powder preparation and processing. Studies include sintering, densification, shrinkage, phase analysis, and heat treatment. The physical and mechanical properties of tungsten powder metal products are included. The effects of additives and particle size on the sintering and sintered articles are also described. (This updated bibliography contains 349 citations, 194 of which are new entries to the previous edition.)

  13. Development of powder metallurgy 2XXX series Al alloy plate and sheet materials for high temperature aircraft structural applications, FY 1983/1984

    NASA Technical Reports Server (NTRS)

    Chellman, D. J.

    1985-01-01

    The objective of this investigation is to fabricate and evaluate PM 2124 Al alloy plate and sheet materials according to NASA program goals for damage tolerance and fatigue resistance. Previous research has indicated the outstanding strength-toughness relationship available with PM 2124 Al-Zr modified alloy compositions in extruded product forms. The range of processing conditions was explored in the fabrication of plate and sheet gage materials, as well as the resultant mechanical and metallurgical properties. The PM composition based on Al-3.70 Cu-1.85 Mg-0.20 Mn with 0.60 wt. pct. Zr was selected. Flat rolled material consisting of 0.250 in. thick plate was fabricated using selected thermal mechanical treatments (TMT). The schedule of TMT operations was designed to yield the extreme conditions of grain structure normally encountered in the fabrication of flat rolled products, specifically recrystallized and unrecrystallized. The PM Al alloy plate and sheet materials exhibited improved strength properties at thin gages compared to IM Al alloys, as a consequence of their enhanced ability to inhibit recrystallization and grain growth. In addition, the PM 2124 Al alloys offer much better combinations of strength and toughnessover equivalent IM Al. The alloy microstructures were examined by optical metallographic texture techniques in order to establish the metallurgical basis for these significant property improvements.

  14. [To-day exposure to occupational carcinogens and their effects. The experience of the rubber industry, iron metallurgy, asphalt work and aviculture].

    PubMed

    Barbieri, Pietro Gino

    2009-01-01

    While the progressive improvement of hygiene situations in the workplaces has taken to a reduction of chemical carcinogens exposure, in recent years in Italy the number of compensated occupational cancer resulting from carcinogens exposures of distant decades, has been increasing. Nevertheless, several experiences suggest that the proportion of occupational cancers unrecognised and not notified, as required by law, still remains important. This contribution concerns some experiences, performed between 2004-2008 by the Local Occupational Health Service (SPSAL) located in a highly industrialised province, on the working sector of rubber, iron and steel industry, the asphalt working and the poultry stock-breeders. This work concerns the following issues: - the evaluation of carcinogens exposure; - technical preventive measures and personal protection; - the level of workers' information and formation and the registration of exposed workers; - the characterization of work-related cancer. The results of the 5 years of activity allow us to underline that, in the most of 49 plants involved in the study, the carcinogens exposure evaluation and the prevention and protection measures were lacking. Information of workers was largely deficient and the registration of exposed workers was absent. A major attention to detect and to evaluate the work-related cancer has allowed us to recognize 50 new cases in the iron-steel industries and 21 new cases in a rubber industry. Although this experience concerns only few occupational fields, it provides the basis to call for a greater commitment of SPSAL addressed to companies and general practitioners to both, the promotion and surveillance of the correct procedures of carcinogens exposure evaluation and his prevention, and the active detection of occupational cancer, still missing. PMID:20124649

  15. Matrix grain characterisation by electron backscattering diffraction of powder metallurgy aluminum matrix composites reinforced with MoSi{sub 2} intermetallic particles

    SciTech Connect

    Corrochano, J. Hidalgo, P.; Lieblich, M.; Ibanez, J.

    2010-11-15

    Research highlights: Six extruded PM AA6061/MoSi{sub 2}/15p were processed with and without ball milling {yields} EBSD was used to characterise matrix grain size and grain orientation. {yields} Ball milling decreases matrix grain size to submicrometric level. {yields} Ball milling produces a more equiaxed microstructure and larger misorientation. {yields} Increasing milling time produces matrix texture randomization.

  16. Modern trends in increasing the quality of the steels intended for cutting and metal-working tools: I. Improvement of granule metallurgy processes

    NASA Astrophysics Data System (ADS)

    Belyanchikov, L. N.

    2008-12-01

    The following new technological processes for producing fine gas-atomized powders of tool and high-speed steels with a low content of nonmetallic inclusions are considered: the process designed by Böhler Uddeholm Powder Technology (Austria) and processes involving a heated gas. In the former process, a metal is poured from a ladle with electroslag heating, and the atomizing unit consists of three injectors. A new process of producing tools from fine powders by three-dimensional printing, i.e., so-called 3D-printing, is described.

  17. Electrochemical Corrosion Testing of Neutron Absorber Materials

    SciTech Connect

    Tedd Lister; Ron Mizia; Arnold Erickson; Tammy Trowbridge

    2007-05-01

    This report summarizes the results of crevice-corrosion tests for six alloys in solutions representative of ionic compositions inside the Yucca Mountain waste package should a breech occur. The alloys in these tests are Neutronit A978a (ingot metallurgy, hot rolled), Neutrosorb Plus 304B4 Grade Ab (powder metallurgy, hot rolled), Neutrosorb Plus 304B5 Grade Ab (powder metallurgy, hot rolled), Neutrosorb Plus 304B6 Grade Ab (powder metallurgy, hot rolled), Ni-Cr-Mo-Gd alloy2 (ingot metallurgy, hot rolled), and Alloy 22 (ingot metallurgy, hot rolled).

  18. 76 FR 57082 - Advisory Committee on Reactor Safeguards; Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-15

    ..., Metallurgy & Reactor Fuels Revision to September 21, 2011, ACRS Meeting; Federal Register Notice The Federal Register Notice for the ACRS Subcommittee Meeting on Materials, Metallurgy and Reactor Fuels is...

  19. 40 CFR Table 2 to Subpart Fffff of... - Initial Compliance With Emission and Opacity Limits

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... metallurgy operation at a new or existing BOPF shop The average concentration of particulate matter from a control device applied to emissions from a ladle metallurgy operation, measured according to...

  20. 78 FR 70598 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor...

  1. 78 FR 29159 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ... published in the Federal Register on October 18, 2012, (77 FR 64146-64147). Detailed meeting agendas and..., Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor...

  2. 78 FR 79019 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ... participation in ACRS meetings were published in the Federal Register on November 8, 2013 (78 FR 67205-67206..., Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor...

  3. 40 CFR Table 2 to Subpart Fffff of... - Initial Compliance With Emission and Opacity Limits

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... metallurgy operation at a new or existing BOPF shop The average concentration of particulate matter from a control device applied to emissions from a ladle metallurgy operation, measured according to...

  4. 76 FR 55718 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-08

    ... (75 FR 65038-65039). Detailed meeting agendas and meeting transcripts are available on the NRC Web..., Metallurgy & Reactor Fuels The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels will hold a...

  5. 40 CFR Table 2 to Subpart Fffff of... - Initial Compliance With Emission and Opacity Limits

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... metallurgy operation at a new or existing BOPF shop The average concentration of particulate matter from a control device applied to emissions from a ladle metallurgy operation, measured according to...

  6. 76 FR 72451 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ... October 17, 2011, (76 FR 64127- 64128). Detailed meeting agendas and meeting transcripts are available on..., Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor...

  7. 78 FR 56756 - Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... were published in the Federal Register on October 18, 2012, (77 FR 64146-64147). Detailed meeting..., Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor...

  8. 76 FR 34778 - Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ..., (75 FR 65038- 65039). Detailed meeting agendas and meeting transcripts are available on the NRC Web..., Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor...

  9. 77 FR 74698 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ... October 18, 2012, (77 FR 64146-64147). Detailed meeting agendas and meeting transcripts are available on..., Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor...

  10. 78 FR 34677 - Advisory Committee On Reactor Safeguards (ACRS); Meeting of the Acrs Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... Register on October 18, 2012, (77 FR 64146-64147). Detailed meeting agendas and meeting transcripts are..., Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor...

  11. 40 CFR Table 2 to Subpart Fffff of... - Initial Compliance With Emission and Opacity Limits

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... metallurgy operation at a new or existing BOPF shop The average concentration of particulate matter from a control device applied to emissions from a ladle metallurgy operation, measured according to...

  12. 78 FR 31987 - Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ... Register on October 18, 2012, (77 FR 64146- 64147). Detailed meeting agendas and meeting transcripts are..., Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor...

  13. 40 CFR Table 2 to Subpart Fffff of... - Initial Compliance With Emission and Opacity Limits

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... metallurgy operation at a new or existing BOPF shop The average concentration of particulate matter from a control device applied to emissions from a ladle metallurgy operation, measured according to...

  14. 75 FR 58449 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... Register on October 14, 2009, (74 FR 58268-58269). Detailed meeting agendas and meeting transcripts are..., Metallurgy & Reactor Fuels The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels will hold a...

  15. 78 FR 3474 - Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-16

    ... October 18, 2012, (77 FR 64146-64147). Detailed meeting agendas and meeting transcripts are available on..., Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor...

  16. 76 FR 16016 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of The ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... October 21, 2010, (75 FR 65038-65039). Detailed meeting agendas and meeting transcripts are available on..., Metallurgy And Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy and...

  17. 75 FR 67711 - Extension of Scoping Period for the Supplemental Environmental Impact Statement for the Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... Portion of the Chemistry and Metallurgy Research Building Replacement Project at Los Alamos National... Chemistry and Metallurgy Research Building Replacement Project at Los Alamos National Laboratory, Los Alamos... construction and operation of the nuclear facility portion of the Chemistry and Metallurgy Research...

  18. 40 CFR 63.7852 - What definitions apply to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... process furnace, and ladle metallurgy occur. Basic oxygen process furnace shop ancillary operations means the processes where hot metal transfer, hot metal desulfurization, slag skimming, and ladle metallurgy... establishment engaged in the production of steel from iron ore. Ladle metallurgy means a secondary...

  19. 40 CFR 471.103 - New source performance standards (NSPS).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Maximum for monthly average mg/off-kg (pounds per million off-pounds) of powder metallurgy parts steam... mg/off-kg (pounds per million off-pounds) of powder metallurgy parts tumbled, burnished, or cleaned... mg/off-kg (pounds per million off-pounds) of powder metallurgy parts sawed or ground with...

  20. 40 CFR 63.7852 - What definitions apply to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... process furnace, and ladle metallurgy occur. Basic oxygen process furnace shop ancillary operations means the processes where hot metal transfer, hot metal desulfurization, slag skimming, and ladle metallurgy... establishment engaged in the production of steel from iron ore. Ladle metallurgy means a secondary...

  1. 40 CFR 63.7852 - What definitions apply to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... process furnace, and ladle metallurgy occur. Basic oxygen process furnace shop ancillary operations means the processes where hot metal transfer, hot metal desulfurization, slag skimming, and ladle metallurgy... establishment engaged in the production of steel from iron ore. Ladle metallurgy means a secondary...

  2. 40 CFR 63.7852 - What definitions apply to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... process furnace, and ladle metallurgy occur. Basic oxygen process furnace shop ancillary operations means the processes where hot metal transfer, hot metal desulfurization, slag skimming, and ladle metallurgy... establishment engaged in the production of steel from iron ore. Ladle metallurgy means a secondary...

  3. 40 CFR 471.103 - New source performance standards (NSPS).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Maximum for monthly average mg/off-kg (pounds per million off-pounds) of powder metallurgy parts steam... mg/off-kg (pounds per million off-pounds) of powder metallurgy parts tumbled, burnished, or cleaned... mg/off-kg (pounds per million off-pounds) of powder metallurgy parts sawed or ground with...

  4. 40 CFR 471.103 - New source performance standards (NSPS).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Maximum for monthly average mg/off-kg (pounds per million off-pounds) of powder metallurgy parts steam... mg/off-kg (pounds per million off-pounds) of powder metallurgy parts tumbled, burnished, or cleaned... mg/off-kg (pounds per million off-pounds) of powder metallurgy parts sawed or ground with...

  5. Use of Cation Exchange Resins for Production of U{sub 3}O{sub 8} Suitable for the Al-U{sub 3}O{sub 8} Powder Metallurgy Process

    SciTech Connect

    Mosley, W.C.

    2001-09-17

    This report describes the production of U{sub 3}O{sub 8} powders from three types of cation exchange resins: Dowex 50W, a strong acid, sulfonate resin; AG MP-50, a macroporous form of sulfonate resin; and Bio-Rex 70, a weak acid, carboxylic resin.

  6. Pseudo meteorite shirokovsky metallurgical analyse and stone reconstitution trial by powder metallurgical process (French Title: Pseudo meteorite de shirokovsky. analyses metallurgiques et reconstitution metallo-pierreuse par la technique de la metallurgie des poudres)

    NASA Astrophysics Data System (ADS)

    Dransart, E.; Guérin, P.

    2005-12-01

    The article 'The Pallasite Shirokovsky , does it really comes from space ?' published in l'Astronomie, July 2004, shows a lot of doubts and questions concerning the origin of this strange stone. Our conviction that this stone corresponds to a manufactured material was confirmed by metallurgical analyses. The expertise has been lead by Emmanuel Dransart (EMTT Company). Theses results have motivated us to make more investigations in purpose to understand the elaboration mode of SHIROKOVSKY Pallasite. So, we carried out some experiments to fabricate a similar stone.

  7. Steel, corrosion resistant, bars, and wire, and forgings 17Cr 0.52Mo (0.95 - 1.20c) powder metallurgy product, host isostatically pressed. (SAE standard)

    SciTech Connect

    1996-08-01

    These products have been used typically for parts requiring minimum hardness of 58 HRC and resistance to wear, corrosion, and oxidation, but usage is not limited to such applications. UNS Number: S4400.

  8. Scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and aerosol time-of-flight mass spectrometry (ATOFMS) single particle analysis of metallurgy plant emissions.

    PubMed

    Arndt, J; Deboudt, K; Anderson, A; Blondel, A; Eliet, S; Flament, P; Fourmentin, M; Healy, R M; Savary, V; Setyan, A; Wenger, J C

    2016-03-01

    The chemical composition of single particles deposited on industrial filters located in three different chimneys of an iron-manganese (Fe-Mn) alloy manufacturing plant have been compared using aerosol time-of-flight mass spectrometry (ATOFMS) and scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX). Very similar types of particles were observed using both analytical techniques. Calcium-containing particles dominated in the firing area of the sintering unit, Mn and/or Al-bearing particles were observed at the cooling area of the sintering unit, while Mn-containing particles were dominant at the smelting unit. SEM-EDX analysis of particles collected downstream of the industrial filters showed that the composition of the particles emitted from the chimneys is very similar to those collected on the filters. ATOFMS analysis of ore samples was also performed to identify particulate emissions that could be generated by wind erosion and manual activities. Specific particle types have been identified for each emission source (chimneys and ore piles) and can be used as tracers for source apportionment of ambient PM measured in the vicinity of the industrial site. PMID:26708757

  9. Tungsten and tungsten-alloy powder metallurgy: Powder production and applications-excluding lamps. November 1971-July 1989 (Citations from the US Patent data base). Report for November 1971-July 1989

    SciTech Connect

    Not Available

    1989-10-01

    This bibliography contains citations of selected patents concerning the preparation of metallic and ceramic powders of tungsten and tungsten alloys including various applications of these materials. The hydrogen reduction of tungsten compounds together with alloying-element compounds produce forms with characteristics of high density, hardness, wear resistance, high melting points, and abrasiveness. Topics include production of various cathodes, heaters, filament wires, electrical contacts, acoustic absorbers, high-density sheets and coatings, hard penetrators, and tungsten carbide and metallized ceramics. Tungsten halogen lamps are examined in a separate bibliography. (Contains 60 citations fully indexed and including a title list.)

  10. Métallurgie fondamentale et métallurgie numérique : l'héritage de Jacques Friedel dans la théorie de la plasticité des métaux et alliages

    NASA Astrophysics Data System (ADS)

    Bréchet, Yves

    2016-03-01

    Jacques Friedel's contribution to the theory of plasticity is described, as well as the more recent developments it inspired. It involves the microscopic properties of dislocations as well as macroscopic effects. The evolution of fundamental metallurgy toward numerical metallurgy is discussed, and Friedel's point of view on numerical methods is analyzed.

  11. 76 FR 61346 - Sunshine Act Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... facilities, including the Chemistry and Metallurgy Research Building, Area G in Technical Area-54, and the... safety-in-design for the Chemistry and Metallurgy Research Replacement project, the new Transuranic Waste... Department of Energy's (DOE) public reading room at the DOE Federal Building, 1000 Independence Avenue,...

  12. 76 FR 76442 - Advisory Committee On Reactor Safeguards Meeting of The ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee On Reactor Safeguards Meeting of The ACRS Subcommittee on Materials, Metallurgy... Notice for the ACRS Subcommittee Meeting on Materials, Metallurgy & Reactor Fuels scheduled to be held...

  13. Hot tensile tests of Inconel 718

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The physical metallurgy of near-solidus integranular cracking in Inconel 718 welds was investigated. The data, although inconclusive, suggest at least two mechanisms which might explain intergranular cracking (microfissuring) in the heat-affected zone of several high temperature alloys. One theory is based on the separation of intergranular liquid while the other involves mechanical failure of solid ligaments surrounded by intergranular liquid. Both mechanisms concentrate strain in the grain boundaries resulting in low strain (1%) intergranular brittleness. The mechanisms reported might also pertain to the physical metallurgy of casting, powder metallurgy sintering and hot isostatic pressing.

  14. Electromigration kinetics and critical current of Pb-free interconnects

    SciTech Connect

    Lu, Minhua; Rosenberg, Robert

    2014-04-07

    Electromigration kinetics of Pb-free solder bump interconnects have been studied using a single bump parameter sweep technique. By removing bump to bump variations in structure, texture, and composition, the single bump sweep technique has provided both activation energy and power exponents that reflect atomic migration and interface reactions with fewer samples, shorter stress time, and better statistics than standard failure testing procedures. Contact metallurgies based on Cu and Ni have been studied. Critical current, which corresponds to the Blech limit, was found to exist in the Ni metallurgy, but not in the Cu metallurgy. A temperature dependence of critical current was also observed.

  15. Interdisciplinary research concerning the nature and properties of ceramic materials

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The nature and properties of ceramic materials as they relate to solid state physics and metallurgy are studied. Special attention was given to the applications of ceramics to NASA programs and national needs.

  16. Proceedings of the ASTM 8th international symposium zirconium in the nuclear industry

    SciTech Connect

    Van Swam, L.F.P.; Eucken, C.M.

    1989-01-01

    This book contains the proceedings of the ASTM 8th international symposium on zirconium in the nuclear industry. Topics covered include: Behavior of pressure tubes, Corrosion, Nodular corrosion, Basic metallurgy, and Creep and growth.

  17. IRIS Toxicological Review of Hydrogen Cyanide and Cyanide Salts (2010 Final)

    EPA Science Inventory

    Cyanide compounds are used in a number of industrial processes including mining, electroplating, metallurgy, chemical manufacturing, and photography because these compounds can form stable complexes with a range of metals. Hydrogen cyanide is also a component of tobacco smoke, v...

  18. Space fullerenes

    NASA Astrophysics Data System (ADS)

    Sikiric, M. Dutour; Delgado-Friedrichs, O.; Deza, M.

    2010-09-01

    Frank-Kasper structures occur in the metallurgy of alloys, the crystallography of clathrates, in soap froths and in the solution to the weak Kelvin conjecture. By using a new combinatorial enumeration algorithm, 71 new structures have been found.

  19. 6. Photocopy of a drawing of the lead blast furnace ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photocopy of a drawing of the lead blast furnace from J.L. Bray, The Principles of Metallurgy, Ginn & Co. New York, 1929. - International Smelting & Refining Company, Tooele Smelter, Blast Furnace Building, State Route 178, Tooele, Tooele County, UT

  20. 15. Photocopied August 1972, from J.L. Bray, The Principles of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Photocopied August 1972, from J.L. Bray, The Principles of Metallurgy, Ginn & Co., New York, 1929. A COTTRELL TREATER. TOOELE SMELTER SINTER PLANT. - International Smelting & Refining Company, Tooele Smelter, State Route 178, Tooele, Tooele County, UT

  1. An Experiment in Programmed Learning in Physical Chemistry for Metallurgists.

    ERIC Educational Resources Information Center

    Hinchliffe, Philip R.

    1982-01-01

    Substantially self-paced programed learning at Sheffield City Polytechnic Metallurgy Department was found to be better than conventional lectures, provided that new topic areas covered were relatively small, as demonstrated by using inexpensive, simple instructional materials. (Author/JN)

  2. 5. Photocopy of drawing of Mac Dougall furnace in roaster ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photocopy of drawing of Mac Dougall furnace in roaster building from John L. Bray, The Principles of Metallurgy Ginn & Co., New York, 1929. - International Smelting & Refining Company, Tooele Smelter, Roaster Building, State Route 178, Tooele, Tooele County, UT

  3. 5. Photocopy of a section of the bag house from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photocopy of a section of the bag house from J.L. Bray, The Principles of Metallurgy, Ginn & Co. . New York, 1929. - International Smelting & Refining Company, Tooele Smelter, Blast Furnace Building, State Route 178, Tooele, Tooele County, UT

  4. CHE At Georgia Tech: A Period of Transition.

    ERIC Educational Resources Information Center

    Poehlein, Gary W.

    1980-01-01

    Presents information on the Georgia Institute of Technology. This information includes: (1) a brief history of the institute; (2) names of the faculty members of the chemistry and metallurgy divisions; (3) undergraduate program; and (4) graduate program. (HM)

  5. Precolumbian Chemistry.

    ERIC Educational Resources Information Center

    Robinson, Janet Bond

    1995-01-01

    Describes the content and development of a curriculum that provides an approach to descriptive chemistry and the history of technology through consideration of the pottery, metallurgy, pigments, dyes, agriculture, and medicine of pre-Columbian people. (DDR)

  6. Electron Beam Welding of Duplex Steels with using Heat Treatment

    NASA Astrophysics Data System (ADS)

    Schwarz, Ladislav; Vrtochová, Tatiana; Ulrich, Koloman

    2010-01-01

    This contribution presents characteristics, metallurgy and weldability of duplex steels with using concentrated energy source. The first part of the article describes metallurgy of duplex steels and the influence of nitrogen on their solidification. The second part focuses on weldability of duplex steels with using electron beam aimed on acceptable structure and corrosion resistance performed by multiple runs of defocused beam over the penetration weld.

  7. 40 CFR 471.102 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (BAT). Except as provided in 40 CFR 125.30 through 125.32, any existing point source subject to this... metallurgy parts steam treated Copper 1.51 0.792 Cyanide 0.230 0.095 Lead 0.333 0.159 (e) Tumbling... Maximum for monthly average mg/off-kg (pounds per million off-pounds) or powder metallurgy parts...

  8. 40 CFR 471.102 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (BAT). Except as provided in 40 CFR 125.30 through 125.32, any existing point source subject to this... metallurgy parts steam treated Copper 1.51 0.792 Cyanide 0.230 0.095 Lead 0.333 0.159 (e) Tumbling... Maximum for monthly average mg/off-kg (pounds per million off-pounds) or powder metallurgy parts...

  9. Manufacturing/Production Steering Committee Meeting

    SciTech Connect

    Castro, Richard G.

    2012-08-09

    This presentation discusses the following: (1) Nuclear Material Science - 22/1: Uranium Metallography and Metallurgy, 22/7: Plutonium Metallurgy, 22/8: Plutonium Corrosion; (2) Nuclear Materials Chemistry - 22/2: Actinide Chemistry, 22/7: Analytical Chemistry; (3) Tritium Science & Technology - 22/4: Tritium Science and Technology; and (4) Nuclear Materials Management - 22/5: Nuclear Materials Management, 22/9: Packaging, Storage and Transportation.

  10. 40 CFR 471.101 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... available (BPT). Except as provided in 40 CFR 125.30 through 125.32, any existing point source subject to... (pounds per million off-pounds) of power metallurgy parts steam treated Copper 1.51 0.792 Cyanide 0.230 0...-pounds) of powder metallurgy parts tumbled, burnished, or cleaned Copper 8.36 4.40 Cyanide 1.28...

  11. 40 CFR 471.101 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... available (BPT). Except as provided in 40 CFR 125.30 through 125.32, any existing point source subject to... (pounds per million off-pounds) of power metallurgy parts steam treated Copper 1.51 0.792 Cyanide 0.230 0...-pounds) of powder metallurgy parts tumbled, burnished, or cleaned Copper 8.36 4.40 Cyanide 1.28...

  12. 40 CFR 471.101 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... available (BPT). Except as provided in 40 CFR 125.30 through 125.32, any existing point source subject to... (pounds per million off-pounds) of power metallurgy parts steam treated Copper 1.51 0.792 Cyanide 0.230 0...-pounds) of powder metallurgy parts tumbled, burnished, or cleaned Copper 8.36 4.40 Cyanide 1.28...

  13. 40 CFR 471.102 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (BAT). Except as provided in 40 CFR 125.30 through 125.32, any existing point source subject to this... metallurgy parts steam treated Copper 1.51 0.792 Cyanide 0.230 0.095 Lead 0.333 0.159 (e) Tumbling... Maximum for monthly average mg/off-kg (pounds per million off-pounds) or powder metallurgy parts...

  14. The huastec region: a second locus for the production of bronze alloys in ancient mesoamerica.

    PubMed

    Hosler, D; Stresser-Pean, G

    1992-08-28

    Chemical analyses of 51 metal artifacts, one ingot, and two pieces of intermediate processed material from two Late Post Classic archeological sites in the Huastec area of Eastern Mesoamerica point to a second production locus for copper-arsenic-tin alloys, copper-arsenic-tin artifacts, and probably copper-tin and copper-arsenic bronze artifacts. Earlier evidence had indicated that these bronze alloys were produced exclusively in West Mexico. West Mexico was the region where metallurgy first developed in Mesoamerica, although major elements of that technology had been introduced from the metallurgies of Central and South America. The bronze working component of Huastec metallurgy was transmitted from the metalworking regions of West Mexico, most likely through market systems that distributed Aztec goods. PMID:17742754

  15. Effect of sintering atmosphere on properties of porous stainless steel for biomedical applications.

    PubMed

    Dudek, Agata; Włodarczyk, Renata

    2013-01-01

    This study discusses manufacturing of metallic biomaterials by means of powder metallurgy with consideration for their unquestionable advantages, i.e. opportunities of obtaining materials with controllable porosity. The paper focuses on properties of 316 L stainless steel obtained using the method of powder metallurgy with respect to compacting pressure and sintering atmosphere. All the specimens were compacted at 700, 400 and 225 MPa, and sintered at 1250 °C. In order to analyze the sintering atmosphere, three different media were used: dissociated ammonia, hydrogen and vacuum. The study covered sintering density, porosity, microstructure analysis and corrosion resistance. The proposed method of powder metallurgy allowed for obtaining materials with predictable size and distribution of pores, depending on the parameters of sinter preparation (compaction force, sinter atmosphere). High corrosion resistance of the materials (sintering in the atmosphere of hydrogen and in vacuum) and high porosity in the sinters studied offer opportunities for using them for medical purposes. PMID:25428092

  16. Physical properties of a nickel-base alloy prepared by isostatic pressing and sintering of the powdered metal.

    PubMed

    Fuys, R A; Craig, R G; Asger, K

    1976-04-01

    The physical and mechanical properties of samples of a nickel-base alloy fabricated by powder metallurgy were determined. The particle sizes of the powders used to make the samples varied from -80/ +200 mesh to -325 mesh. The compaction pressure varied from 138 to 414 MN/m2 and the sintering temperature varied from 1150 to 1250 degrees C. The shrinkage during processing, the porosity, tensile strength, yield strength, elongation, and elastic modulus were used to characterize the samples. The strength of the samples generally increased with decreasing particle size of the powder and increasing compaction pressure and sintering temperatures. The porosity and strength, therefore, could be varied over a wide range by controlling the various parameters. The properties of the samples prepared by powder metallurgy were compared with those of the cast alloy and compact bone. Conditions can be selected that will yield equivalent or better properties by powder metallurgy than by casting. PMID:1066448

  17. Tensile deformation of 2618 and Al-Fe-Si-V aluminum alloys at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Leng, Y.; Porr, W. C., Jr.; Gangloff, R. P.

    1990-01-01

    The present study experimentally characterizes the effects of elevated temperature on the uniaxial tensile behavior of ingot metallurgy 2618 Al alloy and the rapidly solidified FVS 0812 P/M alloy by means of two constitutive formulations: the Ramberg/Osgood equation and the Bodner-Partom (1975) incremental formulation for uniaxial tensile loading. The elastoplastic strain-hardening behavior of the ingot metallurgy alloy is equally well represented by either formulation. Both alloys deform similarly under decreasing load after only 1-5 percent uniform tensile strain, a response which is not described by either constitutive relation.

  18. Powder and particulate production of metallic alloys

    NASA Technical Reports Server (NTRS)

    Grant, N. J.

    1982-01-01

    Developments of particulate metallurgy of alloyed materials where the final products is a fully dense body are discussed. Particulates are defined as powders, flakes, foils, silvers, ribbons and strip. Because rapid solidification is an important factor in particulate metallurgy, all of the particulates must have at least one dimension which is very fine, sometimes as fine as 10 to 50 microns, but move typically up to several hundred microns, provided that the dimension permits a minimum solidification rate of at least 100 K/s.

  19. Transmission electron microscopy characterization of microstructural features of Al-Li-Cu alloys

    NASA Technical Reports Server (NTRS)

    Avalos-Borja, M.; Pizzo, P. P.; Larson, L. A.

    1983-01-01

    A transmission electron microscopy (TEM) examination of aluminum-lithium-copper alloys was conducted. The principal purpose is to characterize the nature, size, and distribution of stringer particles which result from the powder metallurgy (P/M) processing of these alloys. Microstructural features associated with the stringer particles are reported that help explain the stress corrosion susceptibility of the powder metallurgy-processed Al-Li-Cu alloys. In addition, matrix precipitation events are documented for a variety of heat treatments and process variations. Hot rolling is observed to significant alter the nature of matrix precipitation, and the observations are correlated with concomitant mechanical property variations.

  20. Constant amplitude and post-overload fatigue crack growth behavior in PM aluminum alloy AA 8009

    NASA Technical Reports Server (NTRS)

    Reynolds, A. P.

    1991-01-01

    A recently developed, rapidly solidified, powder metallurgy, dispersion strengthened aluminum alloy, AA 8009, was fatigue tested at room temperature in lab air. Constant amplitude/constant delta kappa and single spike overload conditions were examined. High fatigue crack growth rates and low crack closure levels compared to typical ingot metallurgy aluminum alloys were observed. It was proposed that minimal crack roughness, crack path deflection, and limited slip reversibility, resulting from ultra-fine microstructure, were responsible for the relatively poor da/dN-delta kappa performance of AA 8009 as compared to that of typical IM aluminum alloys.

  1. Constant amplitude and post-overload fatigue crack growth behavior in PM aluminum alloy AA 8009

    NASA Technical Reports Server (NTRS)

    Reynolds, A. P.

    1992-01-01

    A recently developed, rapidly solidified, powder metallurgy, dispersion strengthened aluminum alloy, AA 8009, was fatigue tested at room temperature in lab air. Constant amplitude/constant delta kappa and single spike overload conditions were examined. High fatigue crack growth rates and low crack closure levels compared to typical ingot metallurgy aluminum alloys were observed. It was proposed that minimal crack roughness, crack path delection, and limited slip reversibility, resulting from ultra-fine microstructure, were responsible for the relatively poor da/dN-delta kappa performance of AA 8009 as compared to that of typical IM aluminum alloys.

  2. Effect of cooling water impurities on deposit control polymer performance

    SciTech Connect

    Amjad, Z.; Zuhl, R.W.; Zibrida, J.F.

    2000-05-01

    The performance of polymeric inhibitors in treating recirculating cooling water systems is influenced by many factors, including pH, temperature, makeup water quality, and heat exchanger metallurgy. Impurities such as metal ions and suspended matter impact the performance of polymeric inhibitors used in phosphate-based treatment cooling water programs.

  3. Chromium - A National Mineral Commodity Perspective

    USGS Publications Warehouse

    Papp, John F.

    2007-01-01

    Summary This report contains the 23 Power Point slides from a presentation made by the author at the meeting of the Washington, DC Section of the Society for Mining, Metallurgy, and Exploration, Inc. held in Washington, DC, on January 9, 2007.

  4. Mirror fusion test facility magnet system. Final design report

    SciTech Connect

    Henning, C.D.; Hodges, A.J.; VanSant, J.H.; Dalder, E.N.; Hinkle, R.E.; Horvath, J.A.; Scanlan, R.M.; Shimer, D.W.; Baldi, R.W.; Tatro, R.E.

    1980-09-03

    Information is given on each of the following topics: (1) magnet description, (2) superconducting manufacture, (3) mechanical behavior of conductor winding, (4) coil winding, (5) thermal analysis, (6) cryogenic system, (7) power supply system, (8) structural analysis, (9) structural finite element analysis refinement, (10) structural case fault analysis, and (11) structural metallurgy. (MOW)

  5. Materials Sciences Division 1990 annual report

    SciTech Connect

    Not Available

    1990-12-31

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  6. Materials Sciences Division 1990 annual report

    SciTech Connect

    Not Available

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  7. Extruded Self-Lubricating Solid For High-Temperature Use

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.; Waters, W. J.; Soltis, R. F.; Bemis, K.

    1996-01-01

    "EX-212" denotes high-density extruded form of composite solid material self-lubricating over wide range of temperatures. Properties equal or exceed those of powder-metallurgy version of this material. Developed for use in advanced engines at high temperatures at which ordinary lubricants destroyed.

  8. 76 FR 14910 - Small Diameter Graphite Electrodes From the People's Republic of China: Initiation of Anti...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... Republic of China, 74 FR 8775 (February 26, 2009) (``SDGE Order''). DATES: Effective Date: March 18, 2011... metallurgy, and specialty furnace applications in industries including foundries, smelters, and steel... for the steel and foundry industries;'' (b) the unfinished SDGE components in question contain...

  9. Archaeological Chemistry.

    ERIC Educational Resources Information Center

    Zurer, Pamela S.

    1983-01-01

    Research projects and methodology in archeochemistry are discussed. Topics include radiocarbon dating, thermoluminescence, amino acid dating, obsidian hydration dating, bone studies, metals/metallurgy, pottery, stone/glass, and future directions. Includes reports on funding, insights into nuclear waste/environmental problems provided by…

  10. Changing Skills in Metalworking Industries: A Review of Research.

    ERIC Educational Resources Information Center

    Merchiers, Jacques

    1991-01-01

    Transformations in the French metalworking industries have given rise to numerous studies on employment and job content in metallurgy over the past decade. One study related technical transformations to changes in the skills content of certain categories of workers. Although automation results in the elimination of certain know-how belonging to an…

  11. CADMIUM-RARE EARTH BORATE GLASS AS REACTOR CONTROL MATERIAL

    DOEpatents

    Ploetz, G.L.; Ray, W.E.

    1958-11-01

    A reactor control rod fabricated from a cadmiumrare earth-borate glass is presented. The rare earth component of this glass is selected from among those rare earths having large neutron capture cross sections, such as samarium, gadolinium or europium. Partlcles of this glass are then dispersed in a metal matrix by standard powder metallurgy techniques.

  12. Materials data handbook: Aluminum alloy 2219

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for aluminum 2219 alloy is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and joining techniques is developed.

  13. Materials data handbook. Titanium 6Al-4V

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for Titanium 6Al-4V alloy is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and bonding is developed.

  14. Effect of the structural and phase state and application conditions on the strength of detonation-deposited VK alloy coatings

    SciTech Connect

    Ivashchenko, R.K.; Fedorenko, V.K.; Kadryov, V.K.; Khairutdinov, A.M.; Mil'man, Y.V.

    1985-05-01

    In this work an attempt was made, by lowering the temperature in the detonation zone, decreasing the particle flight velocity, and employing starting powders in which the WC particle size 20-40 mum predominated, to obtain detonation-deposited VK20 alloy coatings approaching closely in structure and phase composition hard-metal composites produced by the powder metallurgy method.

  15. Plutonium: An introduction

    SciTech Connect

    Condit, R.H.

    1993-10-01

    This report is a summary of the history and properties of plutonium. It presents information on the atoms, comparing chemical and nuclear properties. It looks at the history of the atom, including its discovery and production methods. It summarizes the metallurgy and chemistry of the element. It also describes means of detecting and measuring the presence and quantity of the element.

  16. Fluid bed technology in materials processing

    SciTech Connect

    Gupta, C.K.; Sathiyamoorthy, D.

    1999-01-01

    The author explores the various aspects of fluidization engineering and examines its applications in a multitude of materials processing techniques. Topics include process metallurgy, fluidization in nuclear engineering, and the pros and cons of various fluidization equipment. Gupta emphasizes fluidization engineering in high temperature processing, and high temperature fluidized bed furnaces.

  17. Dispersion strengthened copper

    DOEpatents

    Sheinberg, H.; Meek, T.T.; Blake, R.D.

    1990-01-09

    A composition of matter is described which is comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide. A method for making this composition of matter is also described. This invention relates to the art of powder metallurgy and, more particularly, it relates to dispersion strengthened metals.

  18. 76 FR 24018 - Notice of Availability of the Draft Supplemental Environmental Impact Statement for the Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ... the CMRR Project in February 2004 (68 FR 6420) announcing its decision to construct and operate a two... and selected in the 2004 ROD (69 FR 6967) and the 2008 Complex Transformation SPEIS ROD (73 FR 77656... Impact Statement for the Nuclear Facility Portion of the Chemistry and Metallurgy Research...

  19. 76 FR 28222 - Extension of the Public Review and Comment Period and Announcement of an Additional Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-16

    ... EIS) (DOE/EIS-0350), and NNSA issued a Record of Decision for the CMRR Project in February 2004 (68 FR... DSEIS; DOE/ EIS-0350-S1) (76 FR 24018). That notice stated that the public review and comment period... Nuclear Facility Portion of the Chemistry and Metallurgy Research Building Replacement Project at...

  20. Sampling for Chemical Analysis.

    ERIC Educational Resources Information Center

    Kratochvil, Byron; And Others

    1984-01-01

    This review, designed to make analysts aware of uncertainties introduced into analytical measurements during sampling, is organized under these headings: general considerations; theory; standards; and applications related to mineralogy, soils, sediments, metallurgy, atmosphere, water, biology, agriculture and food, medical and clinical areas, oil…

  1. A Dictionary of Mining, Mineral and Related Terms.

    ERIC Educational Resources Information Center

    Thrush, Paul W., Comp.

    This dictionary contains about 55,000 terms with approximately 150,000 definitions. These terms are of both a technical and local nature and apply to metal mining, coal mining, quarrying, geology, metallurgy, ceramics and clays, glassmaking, minerals and mineralogy, and general terminology. Petroleum, natural gas, and legal mining terminology,…

  2. Process for HIP canning of composites

    NASA Technical Reports Server (NTRS)

    Juhas, John J. (Inventor)

    1990-01-01

    A single step is relied on in the canning process for hot isostatic pressing (HIP) metallurgy composites. The composites are made from arc sprayed and plasma sprayed monotape. The HIP can is of compatible refractory metal and is sealed at high vacuum and temperature. This eliminates outgassing during hot isostatic pressing.

  3. FSW of Tapered Thickness Welds using an Adjustable Pin Tool

    NASA Technical Reports Server (NTRS)

    Adams, Glynn; Venable, Richard; Lawless, Kirby; Smelser, Jerry (Technical Monitor)

    2002-01-01

    This viewgraph presentation describes the advantages of tapered thickness welds in FSW (friction stir welding), the structure of FSW welds, the adjustable pin tool used in FSW. Other topics described include compliance and temperature measurement in a FSW system, loads and torque upon the pin tool and its ability to penetrate different metals, and the results and metallurgy of FSW welds.

  4. Materials data handbook on titanium 6Al-4V

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1973-01-01

    Handbook has been prepared which describes latest property information on titanium 6Al-4V. Scope of information presented includes physical- and mechanical-property data at cryogenic, ambient, and elevated temperatures, supplemented with useful information in such areas as material procurement,metallurgy of alloy, corrosion, environmental effects, fabrication, and joining technology.

  5. Ultralight reactive metal foams produced as structural shapes in space: System design

    NASA Technical Reports Server (NTRS)

    Cocks, F. H.; Morrill, J. P.; Feldman, M. R.

    1984-01-01

    This autonomous experiment for foaming metals in space involved: (1) payload support structure; (2) furnace and foaming apparatus; (3) electronic controls; (4) battery power; and (5) metallurgy. Emphasis was laid on a modular design which was easily modifiable and which offered maximum durability, safety, and failure tolerance.

  6. Conference on Instrumental Activation Analysis: IAA 89

    NASA Astrophysics Data System (ADS)

    Vobecky, M.; Obrusnik, I.

    1989-05-01

    The proceedings contain 40 abstracts of papers all of which have been incorporated in INIS. The papers were centred on the applications of radioanalytical methods, especially on neutron activation analysis, x ray fluorescence analysis, PIXE analysis and tracer techniques in biology, medicine and metallurgy, measuring instruments including microcomputers, and data processing methods.

  7. Production of U{sub 3}O{sub 8} Using Macroporous Sulfonate Cation Exchange Resins in the Bead Form

    SciTech Connect

    Mosley, W.C.

    2001-08-16

    The use of cation exchange resin to product U{sub 3}O{sub 8} suitable for powder metallurgy fabrication of reactor fuel tubes with Al-U{sub 3}O{sub 8} cores is being investigated. This report presents the results of those studies.

  8. CMRR Public Meeting, October 6, 2010

    SciTech Connect

    Holmes, Richard A

    2010-12-16

    The Chemistry Metallurgy Research Replacement (CMRR) Project seeks to relocate and consolidate mission-critical CMR capabilities at LANL to ensure continuous support of NNSA stockpile stewardship and management strategic objectives; these capabilities are necessary to support the current and directed stockpile work and campaign activities at LANL beyond 2010.

  9. Industrial Ceramics: Secondary Schools.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Bureau of Curriculum Development.

    The expanding use of ceramic products in today's world can be seen in the areas of communications, construction, aerospace, textiles, metallurgy, atomic energy, and electronics. The demands of science have brought ceramics from an art to an industry using mass production and automated processes which requires the services of great numbers as the…

  10. Auto Body Repair 103, 203, 303.

    ERIC Educational Resources Information Center

    Manitoba Dept. of Education, Winnipeg.

    As part of the high school vocational industrial program in Manitoba, this course has been designed to provide students with the foundation for a career in auto-body repair. The program introduces and provides opportunities for student skill development in the theories and techniques of tool and equipment operation, metallurgy and welding, damage…

  11. Videodisc Evaluation Report. "The Teddy Bears Disc."

    ERIC Educational Resources Information Center

    Laurillard, D. M.

    This study evaluated the design and effectiveness of an interactive videodisc package which was developed at the Open University for a second level course in metallurgy and materials technology. Based on an existing 25-minute television program from the course, the disk put the problem in the form of a court case assessing the responsibility for…

  12. 40 CFR 471.104 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...). Except as provided in 40 CFR 403.7 and 403.13, any existing source subject to this subpart which introduces pollutants into a publicly owned treatment works must comply with 40 CFR part 403 and by August 23... (pounds per million off-pounds) of powder metallurgy part steam treated Copper 1.51 0.792 Cyanide 0.230...

  13. The Effectiveness of Programed Instruction Versus the Lecture-Discussion Method of Teaching Basic Metallurgical Concepts.

    ERIC Educational Resources Information Center

    Bockman, David Carl

    The purpose of this study was to compare the conventional lecture-discussion method and an illustrated programed textbook method when teaching a unit of instruction on the basic concepts of metallurgy. The control group used a portion of a conventional textbook accompanied by lecture, chalkboard illustration, and class discussion. The experimental…

  14. Method for the preparation of ferrous low carbon porous material

    DOEpatents

    Miller, Curtis Jack

    2014-05-27

    A method for preparing a porous metal article using a powder metallurgy forming process is provided which eliminates the conventional steps associated with removing residual carbon. The method uses a feedstock that includes a ferrous metal powder and a polycarbonate binder. The polycarbonate binder can be removed by thermal decomposition after the metal article is formed without leaving a carbon residue.

  15. The Teddy Bears' Disc.

    ERIC Educational Resources Information Center

    Laurillard, Diana

    1985-01-01

    Reports an evaluation of the Teddy Bear disc, an interactive videodisc developed at the Open University for a second-level course in metallurgy and materials technology. Findings from observation of students utilizing the videodisc are reviewed; successful design features and design problems are considered; and development costs are outlined. (MBR)

  16. 40 CFR 471.104 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...). Except as provided in 40 CFR 403.7 and 403.13, any existing source subject to this subpart which introduces pollutants into a publicly owned treatment works must comply with 40 CFR part 403 and by August 23... (pounds per million off-pounds) of powder metallurgy part steam treated Copper 1.51 0.792 Cyanide 0.230...

  17. Evaluation of the Retrieval of Metallurgical Document References using the Universal Decimal Classification in a Computer-Based System.

    ERIC Educational Resources Information Center

    Freeman, Robert R.

    A set of twenty five questions was processed against a computer-stored file of 9159 document references in the field of ferrous metallurgy, representing the 1965 coverage of the Iron and Steel Institute (London) information service. A basis for evaluation of system performance characteristics and analysis of system failures was provided by using…

  18. 40 CFR 471.105 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... provided in 40 CFR 403.7, any new source subject to this subject which introduces pollutants into a publicly owned treatment works must comply with 40 CFR part 403 and achieve the following pretreatment... mg/off-kg (pounds per million off-pounds) of powder metallurgy parts steam treated Copper 0.151...

  19. Search, Swim and See: Deleuze's Apprenticeship in Signs and Pedagogy of Images

    ERIC Educational Resources Information Center

    Bogue, Ronald

    2004-01-01

    Deleuze was a remarkable polymath, capable of bringing penetrating insights to a wide variety of disciplines. The number of topics addressed during his career was considerable, ranging from mathematics, biology, psychology, political science, and anthropology to logic, ethics, painting, literature, metallurgy, and the decorative arts. One might…

  20. Career Exploration in the Physical Sciences.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    The purpose of the teacher's guide is to acquaint ninth grade students with the areas of physical science and the possible occupations within those areas. By exploring some of the basic concepts of chemistry, physics, metallurgy, and geology, students gain insight into the knowledge and skill required by those in occupations related to these…

  1. 40 CFR 471.104 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...). Except as provided in 40 CFR 403.7 and 403.13, any existing source subject to this subpart which introduces pollutants into a publicly owned treatment works must comply with 40 CFR part 403 and by August 23... (pounds per million off-pounds) of powder metallurgy part steam treated Copper 1.51 0.792 Cyanide 0.230...

  2. 8. Photocopied August 1972 From John L. Bray, The Principles ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photocopied August 1972 From John L. Bray, The Principles of Metallurgy, Ginn & Co., New York, 1929. Part of the Engineering Series edited by Andey A. Potter. TOOELE SMELTER REVERBERATORY BLDG. - International Smelting & Refining Company, Tooele Smelter, Reverberatory, Converter & Casting Building, State Route 178, Tooele, Tooele County, UT

  3. Graduate Training Program in Ocean Engineering. Final Report.

    ERIC Educational Resources Information Center

    Frey, Henry R.

    Activities during the first three years of New York University's Ocean Engineering Program are described including the development of new courses and summaries of graduate research projects. This interdepartmental program at the master's level includes aeronautics, chemical engineering, metallurgy, and physical oceanography. Eleven courses were…

  4. Machinist (AFSC 42750).

    ERIC Educational Resources Information Center

    Air Univ., Gunter AFS, Ala. Extension Course Inst.

    This four-volume student text is designed for use by Air Force personnel enrolled in a self-study extension course for machinists. Covered in the individual volumes are machine shop fundamentals, metallurgy and advanced machine work, advanced machine work, and tool design and shop management. Each volume in the set contains a series of lessons,…

  5. The Chemical Adventures of Sherlock Holmes: Mrs. Hudson's Golden Brooch

    ERIC Educational Resources Information Center

    Shaw, Ken

    2009-01-01

    This story is a chemical mystery with an emphasis on qualitative analysis, metallurgy, and gravimetric analysis. It is, as well, yet another article in the continuing series, created by Thomas Waddell and Thomas R. Rybolt, that presents a scientific problem in mystery format in the context of the popular and beloved characters of Sherlock Holmes…

  6. The Thermit Reaction: A Dazzling Thermochemical Demonstration.

    ERIC Educational Resources Information Center

    Kauffman, George B.

    1997-01-01

    Describes an outdoor scientific demonstration of metal reduction, a reaction known as the thermit process. Heat from an ignition mixture is required to initiate the reaction, which then becomes self-sustaining. The demonstration provides a dazzling introduction to such fundamental general chemistry topics as oxidation-reduction, metallurgy,…

  7. Introduction to Welding.

    ERIC Educational Resources Information Center

    Fortney, Clarence; Gregory, Mike

    This curriculum guide provides six units of instruction on basic welding. Addressed in the individual units of instruction are the following topics: employment opportunities for welders, welding safety and first aid, welding tools and equipment, basic metals and metallurgy, basic math and measuring, and procedures for applying for a welding job.…

  8. 40 CFR 471.105 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... provided in 40 CFR 403.7, any new source subject to this subject which introduces pollutants into a publicly owned treatment works must comply with 40 CFR part 403 and achieve the following pretreatment... mg/off-kg (pounds per million off-pounds) of powder metallurgy parts steam treated Copper 0.151...

  9. The Invention Factory: Thomas Edison's Laboratories. Teaching with Historic Places.

    ERIC Educational Resources Information Center

    Bolger, Benjamin

    This lesson explores the group of buildings in West Orange, New Jersey, built in 1887, that formed the core of Thomas Edison's research and development complex. They consisted of chemistry, physics, and metallurgy laboratories; machine shop; pattern shop; research library; and rooms for experiments. The lesson explains that the prototypes (ideas…

  10. Apprentice Machine Theory Outline.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational-Technical Schools.

    This volume contains outlines for 16 courses in machine theory that are designed for machine tool apprentices. Addressed in the individual course outlines are the following topics: basic concepts; lathes; milling machines; drills, saws, and shapers; heat treatment and metallurgy; grinders; quality control; hydraulics and pneumatics;…

  11. Completing the Circuit: A Century of Electrical Education at MSM/UMR.

    ERIC Educational Resources Information Center

    Ridley, Jack B.

    This book records highlights of the development of electrical engineering education at the University of Missouri-Rolla (UMR), first known as the University of Missouri School of Mines and Metallurgy (MSM). Chapter I focuses on the formative years (1871-1924), discussing the first course of study in electricity, expansion of the electrical…

  12. Going Online the MI Way.

    ERIC Educational Resources Information Center

    Feldt, Jill

    This booklet describes online searching using Materials Information, a metallurgy and metals science information service of the Institute of Metals in London and ASM International in Cleveland, Ohio, which is available through the major online vendors. Described in detail are online searching, online databases, costs, online hosts or vendors,…

  13. 40 CFR 471.105 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... provided in 40 CFR 403.7, any new source subject to this subject which introduces pollutants into a publicly owned treatment works must comply with 40 CFR part 403 and achieve the following pretreatment... mg/off-kg (pounds per million off-pounds) of powder metallurgy parts steam treated Copper 0.151...

  14. Notes from Underground: Technical Writing and the Hermetic Tradition in Agricola's "De Re Metallica."

    ERIC Educational Resources Information Center

    Longo, Bernadette

    The roots of technical writing are deeply planted in the field of mining engineering, with its emphasis on economics, value, and social stability. In the mid-16th century, Georgius Agricola published "De Re Metallica," a compilation of knowledge about mining and metallurgy. Agricola sought to explain the reasoning behind some of the recipes for…

  15. Energetics of point defects in {gamma}-TiAl

    SciTech Connect

    Raju, S.; Mohandas, E.; Raghunathan, V.S.

    1996-02-15

    {gamma}TiAl has been receiving a great deal of attention in recent times owing to its industrial importance. This structural intermetallic is a candidate material for high temperature aerospace applications. Therefore, a study of point defect properties is useful in elucidating its physical metallurgy. In this brief communication, the authors discuss the vacancy and antisite defect properties of {gamma}-TiAl.

  16. ORGANIC EMISSIONS FROM FERROUS METALLURGICAL INDUSTRIES: COMPILATION OF EMISSION FACTORS AND CONTROL TECHNOLOGIES

    EPA Science Inventory

    The report gives results of a review and analysis of the information and data available in the public domain on organic emissions from the ferrous metallurgy industry, specifically the iron and steel, iron foundry, and ferroalloy industries. Emission sources and information gaps ...

  17. ENVIRONMENTAL ASSESSMENT: SOURCE TEST AND EVALUATION REPORT - WELLMAN-GALUSHA (FT. SNELLING) LOW-BTU GASIFICATION

    EPA Science Inventory

    The report gives results of a source test and evaluation of a Wellman-Galusha gasifier at the U.S. Bureau of Mines' Twin Cities Metallurgy Research Center at Ft. Snelling. The gasifier is operated as part of the Bureau's investigation of the use of low-Btu gas as a fuel for iron ...

  18. ALTERNATIVES FOR SODIUM CYANIDE FOR FLOTATION CONTROL

    EPA Science Inventory

    Cyanide has long been looked upon as the classical poison and has been listed by EPA as a priority pollutant. The mineral dressing industry has long used cyanide in its concentration and extractive metallurgy operations. Cyanide plays a role of varying importance in the metallurg...

  19. Chemistry in the Time of the Pharaohs

    ERIC Educational Resources Information Center

    Loyson, Peter

    2011-01-01

    The Egyptians were known in the ancient world as experts in many applied chemistry fields such as metallurgy, wine and beer making, glass making, paper manufacture, paint pigments, dyes, cosmetics, perfumes, and pharmaceuticals. They made significant developments in the extraction of metals from their ores, especially copper and gold. The…

  20. Challenges facing the North American iron ore industry

    USGS Publications Warehouse

    Jorgenson, J.D.

    2006-01-01

    Summary: This report is derived from a presentation the author presented in late September at the Iron Ore 2005 Conference sponsored by The Australasian Institute of Mining and Metallurgy and held in Fremantle, Western Australia. Some slight revisions have been made for the new audience.