Sample records for metals cadmium chromium

  1. Heavy metal pollution among autoworkers. II. Cadmium, chromium, copper, manganese, and nickel.

    PubMed Central

    Clausen, J; Rastogi, S C

    1977-01-01

    Garages and auto-repair workshops may be polluted with other heavy metals besides lead. Blood of autoworkers with high lead content was analysed for cadmium, chromium, copper manganese, nickel, ALAD activity and carboxyhaemoglobin level. Cadmium and copper levels in blood of autoworkers were comparable with those of the control subjects while chroimium and nickel levels were significantly higher (P less than 0-01 for both metals), and scattered raised values of manganese were found. There was no significant mutual correlation between levels of various heavy metals determined in whole blood. High copper levels were slightly related to decreasing ALAD activity (P less than 0-1). Nineteen per cent of autoworkers were found to have an abnormally blood level of carboxyhaemoglobin. The amount of particulate heavy metal in autoworkshop air was not related to biochemical abnormalities found in the autoworkers. Various sources of pollution of these heavy metals in autoworkshops are discussed. PMID:71915

  2. Lead, cadmium and chromium in raw and boiled portions of Norway lobster.

    PubMed

    Perugini, Monia; Visciano, Pierina; Manera, Maurizio; Abete, Maria Cesarina; Tarasco, Renata; Amorena, Michele

    2014-01-01

    Lead, cadmium and chromium levels were determined in different raw and boiled portions of Norway lobster caught in the central Adriatic Sea (Italy). In raw specimens, the lowest concentrations were always detected in the white meat. Lead and cadmium content in the edible portion never exceeded the maximum levels set by European legislation. The highest cadmium and chromium values (0.47 ± 0.04 and 0.62 ± 0.13 mg/kg wet weight, respectively) were detected in the brown meat, while the highest lead concentrations were found in the exoskeleton (0.21 ± 0.01 mg/kg wet weight). Also, the boiled samples showed the lowest metal levels in the white meat, even if a significant increase (p < 0.01) was found for lead and cadmium compared to the corresponding raw portions. Among metals, chromium showed the highest concentrations in both raw and boiled portions, but up to now, the European legislation did not envisage any limits in seafood.

  3. Lead, cadmium, chromium, cobalt, and copper in chicken feathers from Tuskegee, Alabama

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, A.T.; Love, M.J.; Booker, T.

    1994-12-31

    The feather has been widely used as a indicator tissue of metal exposure in birds. The feathers were collected from Tuskegee University poultry farm (TUPF) and Harrison Poultry farm (HPF) chicken and analyzed by Inductively Coupled Plasma Atomic Emission Spectroscopy for lead, cadmium, cobalt, chromium, and copper contaminations. The mean levels of lead, cadmium, cobalt, chromium, and copper in TUPF chicken were 3.67, 0.13, 12.23, 0.22, and 7.71 ppm, respectively, and in HPF chicken were 5.32, 0.096, 11.03, 0.15, and 8.06 ppm, respectively. The mean levels of these metals did not show any significant difference between TUPF and HPF chicken.

  4. Exposure to Nickel, Chromium, or Cadmium Causes Distinct Changes in the Gene Expression Patterns of a Rat Liver Derived Cell Line

    PubMed Central

    Permenter, Matthew G.; Lewis, John A.; Jackson, David A.

    2011-01-01

    Many heavy metals, including nickel (Ni), cadmium (Cd), and chromium (Cr) are toxic industrial chemicals with an exposure risk in both occupational and environmental settings that may cause harmful outcomes. While these substances are known to produce adverse health effects leading to disease or health problems, the detailed mechanisms remain unclear. To elucidate the processes involved in the toxicity of nickel, cadmium, and chromium at the molecular level and to perform a comparative analysis, H4-II-E-C3 rat liver-derived cell lines were treated with soluble salts of each metal using concentrations derived from viability assays, and gene expression patterns were determined with DNA microarrays. We identified both common and unique biological responses to exposure to the three metals. Nickel, cadmium, chromium all induced oxidative stress with both similar and unique genes and pathways responding to this stress. Although all three metals are known to be genotoxic, evidence for DNA damage in our study only exists in response to chromium. Nickel induced a hypoxic response as well as inducing genes involved in chromatin structure, perhaps by replacing iron in key proteins. Cadmium distinctly perturbed genes related to endoplasmic reticulum stress and invoked the unfolded protein response leading to apoptosis. With these studies, we have completed the first gene expression comparative analysis of nickel, cadmium, and chromium in H4-II-E-C3 cells. PMID:22110744

  5. The decline in kidney function with chromium exposure is exacerbated with co-exposure to lead and cadmium.

    PubMed

    Tsai, Tsung-Lin; Kuo, Chin-Chi; Pan, Wen-Harn; Chung, Yu-Teh; Chen, Chiu-Ying; Wu, Trong-Neng; Wang, Shu-Li

    2017-09-01

    Environmental factors contribute significantly to the pathogenesis of chronic kidney disease. However, these factors, and particularly the toxic effects of heavy metals, have not been completely evaluated. Chromium is a widespread industrial contaminant that has been linked to nephrotoxicity in animal and occupational population studies. Nevertheless, its role in population renal health and its potential interactions with other nephrotoxic metals, such as lead and cadmium, remain unknown. We assessed the association between exposure to chromium, lead, and cadmium with renal function using estimated glomerular filtration rate (eGFR) in an analysis of 360 Taiwanese adults aged 19-84 years from the National Nutrition and Health Survey in Taiwan (2005-2008). Doubling of urinary chromium or lead decreased the eGFR by -5.99 mL/min/1.73 m 2 (95% confidence interval -9.70, -2.27) and -6.61 (-9.71, -3.51), respectively, after adjusting for age, sex, body mass index, hypertension, diabetes, cigarette smoking, sodium intake, education, urinary volume, and other metals. For those in the highest tertile of cadmium exposure, the eGFR decreased by -12.68 mL/min/1.73 m 2 (95% confidence interval -20.44, -4.93) and -11.22 mL/min/1.73 m 2 (-17.01, -5.44), as urinary chromium or lead levels doubled, respectively. Thus, there is a significant and independent association between chromium exposure and decreased renal function. Furthermore, co-exposure to chromium with lead and cadmium is potentially associated with additional decline in the glomerular filtration rate in Taiwanese adults. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  6. Development of a Method for the Determination of Chromium and Cadmium in Tannery Wastewater Using Laser-Induced Breakdown Spectroscopy

    PubMed Central

    Bukhari, Mahwish; Awan, M. Ali; Qazi, Ishtiaq A.; Baig, M. Anwar

    2012-01-01

    This paper illustrates systematic development of a convenient analytical method for the determination of chromium and cadmium in tannery wastewater using laser-induced breakdown spectroscopy (LIBS). A new approach was developed by which liquid was converted into solid phase sample surface using absorption paper for subsequent LIBS analysis. The optimized values of LIBS parameters were 146.7 mJ for chromium and 89.5 mJ for cadmium (laser pulse energy), 4.5 μs (delay time), 70 mm (lens to sample surface distance), and 7 mm (light collection system to sample surface distance). Optimized values of LIBS parameters demonstrated strong spectrum lines for each metal keeping the background noise at minimum level. The new method of preparing metal standards on absorption papers exhibited calibration curves with good linearity with correlation coefficients, R2 in the range of 0.992 to 0.998. The developed method was tested on real tannery wastewater samples for determination of chromium and cadmium. PMID:22567570

  7. Cadmium, lead, and chromium in large game: a local-scale exposure assessment for hunters consuming meat and liver of wild boar.

    PubMed

    Danieli, P P; Serrani, F; Primi, R; Ponzetta, M P; Ronchi, B; Amici, A

    2012-11-01

    Heavy metals are ubiquitous in soil, water, and air. Their entrance into the food chain is an important environmental issue that entails risks to humans. Several reports indicate that game meat can be an important source of heavy metals, particularly because of the increasing consumption of game meat, mainly by hunters. We performed an exposure assessment of hunters and members of their households, both adults and children, who consumed wild boar (WB) meat and offal. We estimated the amount of cadmium, lead, and chromium in the tissues of WB hunted in six areas within Viterbo Province (Italy) and gathered data on WB meat and offal consumption by conducting specific diet surveys in the same areas. The exposure to cadmium, lead, and chromium was simulated with specifically developed Monte Carlo simulation models. Cadmium and lead levels in WB liver and meat harvested in Viterbo Province (Italy) were similar to or lower than the values reported in other studies. However, some samples contained these metals at levels greater then the EU limits set for domestic animals. The chromium content of meat or liver cannot be evaluated against any regulatory limit, but our results suggest that the amounts of this metal found in WB products may reflect a moderate environmental load. Our survey of the hunter population confirmed that their consumption of WB meat and liver was greater than that of the general Italian population. This level of consumption was comparable with other European studies. Consumption of WB products contributes significantly to cadmium and lead exposure of both adults and children. More specifically, consumption of the WB liver contributed significantly to total cadmium and lead exposure of members of the households of WB hunters. As a general rule, liver consumption should be kept to a minimum, especially for children living in these hunter households. The exposure to chromium estimated for this population of hunters may be considered to be safe. However

  8. Effect of cadmium, chromium, lead and metal mixtures on survival and growth of juveniles of the scallop Argopecten ventricosus (Sowerby II, 1842).

    PubMed

    Sobrino-Figueroa, Alma S; Cáceres-Martínez, Carlos; Botello, Alfonso V; Nunez-Nogueira, G

    2007-08-01

    The effects of Cd, Cr, Pb and their mixtures on the growth and sensitivity of the scallop Argopecten ventricosus were analyzed in this study. Cadmium showed to be more toxic metal to juveniles (96 hour median lethal concentration (LC(50)) = 0.396 mg Cd/L), followed by lead (LC(50) = 0.830 mg Pb/L) and chromium (LC(50) = 3.430 mg Cr/L). Cadmium toxicity was 8 times higher than chromium and 2 times than lead. The most toxic combination was Cd + Cr + Pb. (LC(50) = 0.302 mg/L). Based on toxic units analyses (T.U.), a synergistic effect was observed for Cr + Pb and Cd + Cr + Pb. (T.U. = 0.374; T.U. = 0.403), and antagonic effects for Cd + Cr and Cd + Pb (T.U. = 1.26; T.U. = 1.43) respectively. The level of effect (from high to low) on the growth of A. ventricosus juveniles was: Cd > Cd + Cr + Pb > Cr > Pb. The EC(50) (metal concentration where a reduction of 50% growing rate is observed) obtained were: Cd = 0.018 mg/L, Cd + Cr + Pb = 0.104 mg/L, Cr = 0.51 mg/L and Pb = 4.21 mg/L. These results suggest that A. ventricosus juveniles are more sensitive to these metals in comparison to other juveniles from other bivalve species (e.g., A. irradians, Mytillus edulis, Crassostrea virginica).

  9. Phytoaccumulation and phytotoxicity of cadmium and chromium in duckweed Wolffia globosa.

    PubMed

    Boonyapookana, Benjaporn; Upatham, E Suchart; Kruatrachue, Maleeya; Pokethitiyook, Prayad; Singhakaew, Sombat

    2002-01-01

    The phytoaccumulation and phytotoxicity of heavy metals, cadmium (Cd), and chromium (Cr) on a common duckweed, Wolffia globosa, were studied. W. globosa were cultured in 3% Hoagland's nutrient medium, which was supplemented with 1, 2, 4, and 8 mg/L of Cd and Cr and were separately harvested after 3, 6, 9, and 12 days. The accumulation of Cd and Cr in W. globosa showed significant increases when the exposure time and metal concentration were increased. The effects of Cd and Cr on the biomass productivity and total chlorophyll content in W. globosa indicated that there were significant decreases in the biomass productivity and total chlorophyll content when the exposure time and metal concentration were increased.

  10. Assessment of metals in down feathers of female common eiders and their eggs from the Aleutians: arsenic, cadmium, chromium, lead, manganese, mercury, and selenium

    PubMed Central

    Burger, Joanna; Gochfeld, Michael; Jeitner, Christian; Snigaroff, Daniel; Snigaroff, Ronald; Stamm, Timothy; Volz, Conrad

    2014-01-01

    Concentrations of arsenic, cadmium, chromium, lead, manganese, mercury and selenium were examined in the down feathers and eggs of female common eiders (Somateria mollissima) from Amchitka and Kiska Islands in the Aleutian Chain of Alaska to determine whether there were (1) differences between levels in feathers and eggs, (2) differences between the two islands, (3) positive correlations between metal levels in females and their eggs, and (4) whether there was more variation within or among clutches. Mean levels in eggs (dry weight) were as follows: arsenic (769 ppb, ng/g), cadmium (1.49 ppb), chromium (414 ppb), lead (306 ppb), manganese (1,470 ppb), mercury (431 ppb) and selenium (1,730 ppb). Levels of arsenic were higher in eggs, while chromium, lead, manganese, and mercury were higher in feathers; there were no differences for selenium. There were no significant interisland differences in female feather levels, except for manganese (eider feathers from Amchitka were four times higher than feathers from Kiska). Levels of manganese in eggs were also higher from Amchitka than Kiska, and eider eggs from Kiska had significantly higher levels of arsenic, but lower levels of selenium. There were no significant correlations between the levels of any metals in down feathers of females and in their eggs. The levels of mercury in eggs were below ecological benchmark levels, and were below human health risk levels. However, Aleuts can seasonally consume several meals of bird eggs a week, suggesting cause for concern for sensitive (pregnant) women. PMID:17934788

  11. Arsenic, Cadmium, Chromium, Lead, Mercury and Selenium Concentrations in Pine Snakes (Pituophis melanoleucus) from the New Jersey Pine Barrens.

    PubMed

    Burger, Joanna; Gochfeld, Michael; Jeitner, Christian; Zappalorti, Robert; Pittfield, Taryn; DeVito, Emile

    2017-05-01

    Top trophic level predators are at risk from bioaccumulation of heavy metals from their prey. Using nondestructively collected tissues as a method of assessing metal concentrations in snakes is useful for populations that are threatened or declining. This paper reports concentrations of arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), and selenium (Se) in tissues of Northern pine snakes (Pituophis melanoleucus) from the New Jersey Pine Barrens, a relatively pristine, undisturbed habitat. We also determined if skin is an appropriate indicator of internal concentrations and identified the factors (tissue, year of collection, length, sex) that might explain variations in metal concentrations. Because they can grow to 2-m long and live for 25 years, we suggest that these snakes might accumulate heavy metals. Multiple regression models were significant, explaining 16% (lead) to 61% (mercury) of variation by tissue type. For mercury and chromium, size also was significant. The highest concentrations were in liver and kidney for all metals, except chromium and lead. Mercury concentrations in tissues were within the range reported for other snakes and were below effects concentrations in reptiles. The concentrations in skin were correlated with all internal tissues for mercury and for all internal tissues except heart for cadmium. These data show that shed skin can be used as an indicator of metals in pine snakes and that, at present, concentrations of heavy metals in this population are within the range of those found in other snake species from uncontaminated sites.

  12. Differential effects of cadmium and chromium on growth, photosynthetic activity, and metal uptake of Linum usitatissimum in association with Glomus intraradices.

    PubMed

    Amna; Ali, Naeem; Masood, Sajid; Mukhtar, Tehmeena; Kamran, Muhammad Aqeel; Rafique, Mazhar; Munis, M Farooq Hussain; Chaudhary, Hassan Javed

    2015-06-01

    The current study was aimed at analyzing the differential effects of heavy metals (cadmium and chromium) and mycorrhizal fungus; Glomus intraradices on growth, chlorophyll content, proline production, and metal accumulation in flax plant (Linum usitatissimum L.). Heavy metal accumulation rate in flax varied from 90 to 95 % for Cd and 61-84 % for Cr at a concentration range of 250 to 500 ppm for both metals in 24 days of experiment. Growth and photosynthetic activity of flax reduced to an average of 21 and 45 %, respectively. However, inoculation of G. intraradices significantly increased the plant biomass even under metal stressed conditions. Additionally, mycorrhizal association also assists the Cd and Cr increased uptake by 23 and 33 %, respectively. Due to metal stress, chlorophyll contents were decreased by 27 and 45 %, while 84 and 71 % increased proline content was observed under Cd and Cr stress, respectively. The present results clearly signify the differential response and potential of flax plant towards heavy metal tolerance and accumulation that can further increase with mycorrhizal fungus.

  13. EDTA chelation effects on urinary losses of cadmium, calcium, chromium, cobalt, copper, lead, magnesium, and zinc.

    PubMed

    Waters, R S; Bryden, N A; Patterson, K Y; Veillon, C; Anderson, R A

    2001-12-01

    The efficacy of a chelating agent in binding a given metal in a biological system depends on the binding constants of the chelator for the particular metals in the system, the concentration of the metals, and the presence and concentrations of other ligands competing for the metals in question. In this study, we make a comparison of the in vitro binding constants for the chelator, ethylenediaminetetraacetic acid, with the quantitative urinary excretion of the metals measured before and after EDTA infusion in 16 patients. There were significant increases in lead, zinc, cadmium, and calcium, and these increases roughly corresponded to the expected relative increases predicted by the EDTA-metal-binding constants as measured in vitro. There were no significant increases in urinary cobalt, chromium, or copper as a result of EDTA infusion. The actual increase in cobalt could be entirely attributed to the cobalt content of the cyanocobalamin that was added to the infusion. Although copper did increase in the post-EDTA specimens, the increase was not statistically significant. In the case of magnesium, there was a net retention of approximately 85% following chelation. These data demonstrate that EDTA chelation therapy results in significantly increased urinary losses of lead, zinc, cadmium, and calcium following EDTA chelation therapy. There were no significant changes in cobalt, chromium, or copper and a retention of magnesium. These effects are likely to have significant effects on nutrient concentrations and interactions and partially explain the clinical improvements seen in patients undergoing EDTA chelation therapy.

  14. Sources, transport and alterations of metal compounds: an overview. I. Arsenic, beryllium, cadmium, chromium, and nickel.

    PubMed Central

    Fishbein, L

    1981-01-01

    An overview is presented of the current state of knowledge of the salient aspects of the sources, transport, and alterations of arsenic, beryllium, cadmium, chromium, and nickel. This information is considered vital for a better assessment of the scope of potential human hazard to these ubiquitous toxicants and their compounds. Stress is focused on both natural and industrial activities, particularly on the latter's projected trends. Increasing use patterns per se of most of these metals, as well as aspects of waste disposal and the anticipated increased combustion of fossil fuels for power generation and space heating (particularly in the United States), are major causes of potential health concern. Additionally, attention is drawn to the need for increased research to fill the gaps in our knowledge in these vital areas, all in the hope of permitting a more facile identification and quantification of the potential hazard to exposure to these agents. PMID:7023934

  15. Arsenic, cadmium, lead, and chromium in well water, rice, and human urine in Sri Lanka in relation to chronic kidney disease of unknown etiology.

    PubMed

    S Herath, H M Ayala; Kawakami, Tomonori; Nagasawa, Shiori; Serikawa, Yuka; Motoyama, Ayuri; Chaminda, G G Tushara; Weragoda, S K; Yatigammana, S K; Amarasooriya, A A G D

    2018-04-01

    Chronic kidney disease of unknown etiology (CKDu) is spreading gradually in Sri Lanka. In the current research, 1,435 well water samples from all 25 districts of Sri Lanka, 91 rice samples, and 84 human urine samples from both CKDu-endemic and non-endemic areas in Sri Lanka were analyzed for arsenic, cadmium, lead, and chromium to detect whether toxic elements could be a cause of CKDu. The liver-type fatty acid binding protein (L-FABP) concentration and arsenic, cadmium, lead, and chromium concentrations of the urine samples were analyzed to determine the relation of L-FABP with arsenic, cadmium, lead, and chromium. High concentrations of arsenic, cadmium, lead, and chromium were not detected in the well water samples from CKDu-endemic areas. Arsenic, cadmium, and lead contents in the rice samples from both CKDu-endemic and non-endemic areas were well below the Codex standard. There were no relationships between the L-FABP concentration and concentrations of arsenic, cadmium, lead, and chromium in urine. In addition, arsenic, cadmium, lead, and chromium concentrations in human urine samples from CKDu-endemic areas were not significantly different from those from non-endemic areas. These findings indicated that arsenic, cadmium, lead, and chromium could not cause CKDu.

  16. Environmental Metals and Cardiovascular Disease in Adults: A Systematic Review beyond Lead and Cadmium

    PubMed Central

    Nigra, Anne E; Ruiz-Hernandez, Adrian; Redon, Josep; Navas-Acien, Ana; Tellez-Plaza, Maria

    2018-01-01

    Published systematic reviews concluded that there is moderate to strong evidence to infer a potential role of lead and cadmium, widespread metal exposures, as cardiovascular risk factors. For other non-essential metals, the evidence has not been appraised systematically. Our objective was to systematically review epidemiologic studies on the association between cardiovascular disease in adults and the environmental metals antimony, barium, chromium, nickel, tungsten, uranium, and vanadium. We identified a total of 4 articles on antimony, 1 on barium, 5 on chromium, 1 on nickel, 4 on tungsten, 1 on uranium and 0 on vanadium. We concluded that the current evidence is not sufficient to inform on the cardiovascular role of these metals because the small number of studies. Few experimental studies have also evaluated the role of these metals in cardiovascular outcomes. Additional epidemiologic and experimental studies, including prospective cohort studies, are needed to understand the role of metals, including exposure to metal mixtures, in cardiovascular disease development. PMID:27783356

  17. Cadmium Alternatives

    DTIC Science & Technology

    2012-08-01

    Used non-hexavalent chromium passivates Trivalent chromium (TCP) Non-chromate post-treatment (NCP) NDCEE Salt Spray Testing Results Cadmium and...for Change Cadmium passivated with hexavalent chromium has been in use for many decades Cadmium is toxic, and is classified as a priority...Executive Orders 13514 & 13423 DoD initiatives – Young memo (April 2009) DFAR restricting use of hexavalent chromium Allows the use of hexavalent

  18. Iron, cadmium, and chromium in seagrass (Thalassia testudinum) from a coastal nature reserve in karstic Yucatán.

    PubMed

    Avelar, Mayra; Bonilla-Heredia, Blanca; Merino-Ibarra, Martín; Herrera-Silveira, Jorge A; Ramirez, Javier; Rosas, Humberto; Valdespino, Job; Carricart-Ganivet, Juan P; Martínez, Ana

    2013-09-01

    The management of protected areas in karstic regions is a challenge because flooded cave systems form there and provide underground hydrological conducts that may link different zones. As a consequence, affectations to the protected areas can possibly occur as a consequence of human activities in remote areas and may therefore pass undetected. Thus, the monitoring of possible contaminants in these regions is becoming imperative. In this work, we analyze the concentration of essential (iron) and non-essential metals (cadmium and chromium) in the seagrass Thalassia testudinum that grows in Yalahau Lagoon, located in a near-to-pristine protected area of the Yucatán Peninsula, close to the rapidly developing touristic belt of the Mexican Caribbean. Salinity and silicate patterns show that Yalahau is an evaporation lagoon, where groundwater discharge is important. High iron (> 400 μg/g), cadmium (>4 μg/g), and chromium (≈ 1 μg/g) concentrations were found in the area of highest groundwater input of the lagoon. High levels (5.1 μg/g) were also found near the town dump. In the rest of the sampling sites, metal concentrations remained near to background levels as estimated from other works. Temporal changes of concentrations in the seagrass tissues show also a local input and an input from the groundwater that could provoke an environmental problem in the Yalahau Lagoon in the near future.

  19. Determining the arsenic, cadmium, lead, copper and chromium contents by atomic absorption spectrometry in Pangasius fillets from Vietnam.

    PubMed

    Molognoni, Luciano; Vitali, Luciano; Ploêncio, Leandro As; Santos, Jacson N; Daguer, Heitor

    2016-07-01

    Pangasius is a fish produced on a large scale in Vietnam and exported to many countries. Since river contamination from human activities can affect the safety of this food, fish consumption can cause exposure to potentially toxic elements for humans. The aim of this study, therefore, was to assess arsenic, cadmium, lead, copper and chromium contents by atomic absorption spectrometry in Pangasius fillet produced in the provinces of Dong Thap and Can Tho (Vietnam) and exported to Brazil. The limits of detection were: arsenic 0.5443 µg kg(-1) , cadmium 0.0040 mg kg(-1) , chromium 0.0004 mg kg(-1) , copper 0.0037 mg kg(-1) and lead 0.0284 mg kg(-1) . Analysis of 20 samples showed results below the limit of detection for arsenic, chromium and lead, while copper average concentration was 0.0234 mg kg(-1) . Cadmium average concentration was 0.0547 mg kg(-1) , with no significant difference between the two regions studied. The samples of Pangasius had no detectable concentrations of arsenic, chromium, copper and lead, and do not represent a hazard to public health. However, cadmium analysis revealed non-compliant samples, demonstrating the importance of monitoring the quality of imported Pangasius fish. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  20. Metal induced changes in trivalent chromium resistant Alcaligenes faecalis VITSIM2.

    PubMed

    Matilda, Shiny C; Shanthi, Chittibabu

    2017-05-01

    The changes induced in bacterial strains under stress conditions provide an insight into metal resistance strategies. Trivalent chromium resistant bacterium were isolated and identified by 16S rRNA gene sequencing and designated as Alcaligenes faecalis VITSIM2. The growth pattern was monitored. The organism also showed resistance to copper, cadmium, and certain antibiotics. The differentially expressed proteins in SDS PAGE were identified by mass spectrometry as flagellin and 50S ribosomal L36 protein. The morphological changes were identified by scanning electron microscopy. The changes in the cell wall content were estimated by peptidoglycan analysis and transformation of phosphates was detected by 31 P NMR. Flow cytometry was employed to measure the membrane integrity, esterase activity and intracellular pH. In conclusion spectrum of proteomic, physiological, and morphological alterations was observed that aid the organism to overcome chromium stress. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Update on Alternatives for Cadmium Coatings on Military Electrical Connectors

    DTIC Science & Technology

    2010-03-01

    Update on Alternatives for Cadmium Coatings on Military Electrical Connectors The metal finishing industry hasbeen impacted by numerous reg- ulatory...government agen- cies to reduce the quantity of toxic and hazardous chemicals and materi- als acquired, used, or disposed. Cadmium and hexavalent...of cadmium and hexavalent chromium in ground vehicles and related systems. The National Defense Center for Energy and Environment (NDCEE), operated

  2. Chromium metal organic frameworks and synthesis of metal organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Hong-Cai; Liu, Tian-Fu; Lian, Xizhen

    The present invention relates to monocrystalline metal organic frameworks comprising chromium ions and carboxylate ligands and the use of the same, for example their use for storing a gas. The invention also relates to methods for preparing metal organic frameworks comprising chromium, titanium or iron ions and carboxylate ligands. The methods of the invention allow such metal organic frameworks to be prepared in monocrystalline or polycrystalline forms.

  3. Morphological and physiological responses of plants to cadmium toxicity: A review

    USDA-ARS?s Scientific Manuscript database

    Since the dawn of industrial revolution, anthropogenic activities have accelerated release of hazardous heavy metals, such as cadmium (Cd), copper (Cu), lead (Pb), chromium (Cr) and mercury (Hg) to the environment. Cadmium is toxic to animals and plants. Its bioaccumulation in food chain has surpass...

  4. Biosorption of cadmium and chromium in duckweed Wolffia globosa.

    PubMed

    Upatham, E Suchart; Boonyapookana, Benjaporn; Kruatrachue, Maleeya; Pokethitiyook, Prayad; Parkpoomkamol, Krisna

    2002-01-01

    The biosorption of cadmium (Cd) and chromium (Cr) by using dried Wolffia globosa biomass were investigated using batch technique. The effects of concentration and pH solution on the adsorption isotherm were measured by determining the adsorption isotherm at initial metal concentrations from 10 to 400 mg/L and pH 4 to 7 for Cd, and pH 1.5 to 6 for Cr. The adsorption equilibria were found to follow Langmuir models. The maximum adsorption capacity (Xm) at pH 7 in W. globosa-Cd system was estimated to be 80.7 mg/g, while the maximum removal achieved at pH 4, pH 5, and pH 6 were 35.1, 48.8, and 65.4 mg/g, respectively. The Xm at pH 1.5 in W. globosa--Cr system was estimated to be 73.5 mg/g, while the maximum removal achieved at pH 3, pH 5, and pH 6 were 47.4, 33.1, and 12.9 mg/g, respectively. The effects of contact times on Cd and Cr sorption indicated that they were absorbed rapidly and more efficiently at lower concentrations.

  5. Metals and Breast Cancer

    PubMed Central

    Byrne, Celia; Divekar, Shailaja D.; Storchan, Geoffrey B.; Parodi, Daniela A.; Martin, Mary Beth

    2014-01-01

    Metalloestrogens are metals that activate the estrogen receptor in the absence of estradiol. The metalloestrogens fall into two subclasses: metal/metalloid anions and bivalent cationic metals. The metal/metalloid anions include compounds such as arsenite, nitrite, selenite, and vanadate while the bivalent cations include metals such as cadmium, calcium, cobalt, copper, nickel, chromium, lead, mercury, and tin. The best studied metalloestrogen is cadmium. It is a heavy metal and a prevalent environmental contaminant with no known physiological function. This review addresses our current understanding of the mechanism by which cadmium and the bivalent cationic metals activate estrogen receptor-α. The review also summarizes the in vitro and in vivo evidence that cadmium functions as an estrogen and the potential role of cadmium in breast cancer. PMID:23338949

  6. Investigate of atmospheric arsenic, cadmium, chromium, lead, and mercury levels in moss species found around Zilkale, by EDXRF Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akçay, Nilay, E-mail: nilay.akcay@erdogan.edu.tr; Batan, Nevzat, E-mail: nbatan@ktu.edu.tr; Çinar, Yunus, E-mail: yunus.cinar@erdogan.edu.tr

    Zilkale is a castle located in Fırtına Valley and it is one of the most important historical structures in Çamlihemşin district of Rize Province in the Black Sea Region of Turkey. The castle surrounded by very high mountains that poke up into the clouds, and it rains here all year round. Tourism businesses or industrial plants are not so much there yet. In recent years, Zilkale region has begun the attract tourist, people on treaking holidays in the Kaçkar. But many domestic and foreign tourists come to this region by own car or tour buses. The aim of this studymore » is to investigate the atmospheric concentrations of arsenic, cadmium, chromium, lead, and mercury levels in five different moss species collected around Zilkale by using Energy Dispersive X-ray Fluorescence (EDXRF) Spectrometry. The average concentrations of heavy metals in moss samples ranged from 0.79-4.63 ppm for arsenic, 54.47-143.39 ppm for chromium, 39.97-81.03 ppm for lead. The values of cadmium and mercury were found below the detection limit. This study has shown that Hypnum cupressiforme, Abietinella abietina, Rhytidium rugosum, Plagiomnium undulate, and Thuidium tamariscinum samples collected around Zilkale were used to assess the potential contamination of atmospheric As, Cd, Cr, Pb, Hg contamination in the region and made important contributions toward the understanding of atmospheric As, Cd, Cr, Pb, Hg baseline data can be used for identification of changes in the levels of these heavy metals in the studied area.« less

  7. Investigate of atmospheric arsenic, cadmium, chromium, lead, and mercury levels in moss species found around Zilkale, by EDXRF Spectrometry

    NASA Astrophysics Data System (ADS)

    Akçay, Nilay; Batan, Nevzat; Ćinar, Yunus

    2016-04-01

    Zilkale is a castle located in Fırtına Valley and it is one of the most important historical structures in Çamlihemşin district of Rize Province in the Black Sea Region of Turkey. The castle surrounded by very high mountains that poke up into the clouds, and it rains here all year round. Tourism businesses or industrial plants are not so much there yet. In recent years, Zilkale region has begun the attract tourist, people on treaking holidays in the Kaçkar. But many domestic and foreign tourists come to this region by own car or tour buses. The aim of this study is to investigate the atmospheric concentrations of arsenic, cadmium, chromium, lead, and mercury levels in five different moss species collected around Zilkale by using Energy Dispersive X-ray Fluorescence (EDXRF) Spectrometry. The average concentrations of heavy metals in moss samples ranged from 0.79-4.63 ppm for arsenic, 54.47-143.39 ppm for chromium, 39.97-81.03 ppm for lead. The values of cadmium and mercury were found below the detection limit. This study has shown that Hypnum cupressiforme, Abietinella abietina, Rhytidium rugosum, Plagiomnium undulate, and Thuidium tamariscinum samples collected around Zilkale were used to assess the potential contamination of atmospheric As, Cd, Cr, Pb, Hg contamination in the region and made important contributions toward the understanding of atmospheric As, Cd, Cr, Pb, Hg baseline data can be used for identification of changes in the levels of these heavy metals in the studied area.

  8. Comparison of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in feathers in bald eagle (Haliaeetus leucocephalus), and comparison with common eider (Somateria mollissima), glaucous-winged gull (Larus glaucescens), pigeon guillemot (Cepphus columba), and tufted puffin (Fratercula cirrhata) from the Aleutian Chain of Alaska

    PubMed Central

    Burger, Joanna; Gochfeld, Michael

    2014-01-01

    There is an abundance of field data for levels of metals from a range of places, but relatively few from the North Pacific Ocean and Bering Sea. In this paper we examine the levels of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in feathers from common eiders (Somateria mollissima), glaucous-winged gulls (Larus glaucescens), pigeon guillemots (Cepphus columba), tufted puffins (Fratercula cirrhata) and bald eagles (Haliaeetus leucocephalus) from the Aleutian Chain of Alaska. Our primary objective was to test the hypothesis that there are no trophic levels relationships for arsenic, cadmium, chromium, lead, manganese, mercury and selenium among these five species of birds breeding in the marine environment of the Aleutians. There were significant interspecific differences in all metal levels. As predicted bald eagles had the highest levels of arsenic, chromium, lead, and manganese, but puffins had the highest levels of selenium, and pigeon guillemot had higher levels of mercury than eagles (although the differences were not significant). Common eiders, at the lowest trophic level had the lowest levels of some metals (chromium, mercury and selenium). However, eiders had higher levels than all other species (except eagles) for arsenic, cadmium, lead, and manganese. Levels of lead were higher in breast than in wing feathers of bald eagles. Except for lead, there were no significant differences in metal levels in feathers of bald eagles nesting on Adak and Amchitka Island; lead was higher on Adak than Amchitka. Eagle chicks tended to have lower levels of manganese than older eagles. PMID:18521716

  9. The Effect of Soil Properties on Metal Bioavailability: Field Scale Validation to Support Regulatory Acceptance

    DTIC Science & Technology

    2014-06-01

    unacceptable levels of the toxic metal(loid)s arsenic (As), cadmium (Cd), chromium (Cr), and lead (Pb). With the exception of Pb contaminated soils, human...remediation and closure. Lead (Pb), arsenic (As), chromium (Cr), and cadmium (Cd) are toxic (i.e., capable of producing an unwanted, deleterious effect...lagoon are contaminated with high concentrations of lead , chromium, and cadmium . 14 Deseret Chemical Depot: The Deseret Chemical Depot is

  10. Lead, mercury, cadmium, chromium, and arsenic levels in eggs, feathers, and tissues of Canada geese of the New Jersey Meadowlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsipoura, Nellie; Burger, Joanna, E-mail: burger@biology.rutgers.edu; Environmental and Occupational Health Sciences Institute, Consortium for Risk Evaluation with Stakeholder Participation, Rutgers University, Piscataway, NJ 08854

    2011-08-15

    The New Jersey Meadowlands are located within the heavily urbanized New York/New Jersey Harbor Estuary and have been subject to contamination due to effluent and runoff from industry, traffic, and homes along the Hackensack River and nearby waterways. These extensive wetlands, though heavily impacted by development and pollution, support a wide array of bird and other wildlife species. Persistent contaminants may pose threats to birds in these habitats, affecting reproduction, egg hatchability, nestling survival, and neurobehavioral development. Metals of concern in the Meadowlands include arsenic, cadmium, chromium, lead, and mercury. These metals were analyzed in eggs, feathers, muscle, and livermore » of Canada geese (Branta canadensis) breeding in four wetland sites. We sampled geese collected during control culling (n=26) and collected eggs from goose nests (n=34). Levels of arsenic were below the minimum quantification level (MQL) in most samples, and cadmium and mercury were low in all tissues sampled. Chromium levels were high in feather samples. Mercury levels in eggs of Canada geese, an almost exclusively herbivorous species, were lower (mean {+-}SE 4.29{+-}0.30 {mu}g/g wet weight) than in eggs of omnivorous mallards (Anas platyrhynchos), and insectivorous red-winged blackbirds (Agelaius phoeniceus) and marsh wrens (Cistothorus palustris) from the Meadowlands, consistent with trophic level differences. However, lead levels were higher in the goose eggs (161{+-}36.7 ng/g) than in the other species. Geese also had higher levels of lead in feathers (1910{+-}386 ng/g) than those seen in Meadowlands passerines. By contrast, muscle and liver lead levels were within the range reported in waterfowl elsewhere, possibly a reflection of metal sequestration in eggs and feathers. Elevated lead levels may be the result of sediment ingestion or ingestion of lead shot and sinkers. Finally, lead levels in goose liver (249{+-}44.7 ng/g) and eggs (161{+-}36.7 ng/g) may

  11. Integrated thin film cadmium sulfide solar cell module

    NASA Technical Reports Server (NTRS)

    Mickelsen, R. A.; Abbott, D. D.

    1971-01-01

    The design, development, fabrication and tests of flexible integrated thin-film cadmium sulfide solar cells and modules are discussed. The development of low cost and high production rate methods for interconnecting cells into large solar arrays is described. Chromium thin films were applied extensively in the deposited cell structures as a means to: (1) achieve high adherence between the cadmium sulfide films and the vacuum-metallized copper substrates, (2) obtain an ohmic contact to the cadmium sulfide films, and (3) improve the adherence of gold films as grids or contact areas.

  12. Heavy metals in soil at a waste electrical and electronic equipment processing area in China.

    PubMed

    Gu, Weihua; Bai, Jianfeng; Yao, Haiyan; Zhao, Jing; Zhuang, Xuning; Huang, Qing; Zhang, Chenglong; Wang, JingWei

    2017-11-01

    For the objective of evaluating the contamination degree of heavy metals and analysing its variation trend in soil at a waste electrical and electronic equipment processing area in Shanghai, China, evaluation methods, which include single factor index method, geo-accumulation index method, comprehensive pollution index method, and potential ecological risk index method, were adopted in this study. The results revealed that the soil at a waste electrical and electronic equipment processing area was polluted by arsenic, cadmium, copper, lead, zinc, and chromium. It also demonstrated that the concentrations of heavy metals were increased over time. Exceptionally, the average value of the metalloid (arsenic) was 73.31 mg kg -1 in 2014, while it was 58.31 mg kg -1 in the first half of 2015, and it was 2.93 times and 2.33 times higher than that of the Chinese Environmental Quality Standard for Soil in 2014 and the first half of 2015, respectively. The sequences of the contamination degree of heavy metals in 2014 and the first half of 2015 were cadmium > lead > copper > chromium > zinc and cadmium > lead > chromium > zinc > copper. From the analysis of the potential ecological risk index method, arsenic and cadmium had higher ecological risk than other heavy metals. The integrated ecological risk index of heavy metals (cadmium, copper, lead, zinc, and chromium) and metalloid (arsenic) was 394.10 in 2014, while it was 656.16 in the first half of 2015, thus documenting a strong ecological risk.

  13. The Effect of Soil Properties on Metal Bioavailability: Field Scale Validation to Support Regulatory Acceptance

    DTIC Science & Technology

    2013-06-01

    Bioavailability, metals, soil, bioaccessibility, ecological risk, arsenic, cadmium , chromium, lead 16. SECURITY CLASSIFICATION OF:U 17. LIMITATION...located in Sacramento, CA. Soils from a former wastewater treatment lagoon are contaminated with high concentrations of lead , chromium, and cadmium ...in soil. Soil and Sediment Contamination, 2003. 12(1): p. 1-21. 23. Pierzynski, G.M. and A.P. Schwab, Bioavailability of Zinc, Cadmium , and Lead

  14. Whole-genome transcriptional analysis of heavy metal stresses inCaulobacter crescentus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Ping; Brodie, Eoin L.; Suzuki, Yohey

    2005-09-21

    The bacterium Caulobacter crescentus and related stalkbacterial species are known for their distinctive ability to live in lownutrient environments, a characteristic of most heavy metal contaminatedsites. Caulobacter crescentus is a model organism for studying cell cycleregulation with well developed genetics. We have identified the pathwaysresponding to heavy metal toxicity in C. crescentus to provide insightsfor possible application of Caulobacter to environmental restoration. Weexposed C. crescentus cells to four heavy metals (chromium, cadmium,selenium and uranium) and analyzed genome wide transcriptional activitiespost exposure using a Affymetrix GeneChip microarray. C. crescentusshowed surprisingly high tolerance to uranium, a possible mechanism forwhich may be formationmore » of extracellular calcium-uranium-phosphateprecipitates. The principal response to these metals was protectionagainst oxidative stress (up-regulation of manganese-dependent superoxidedismutase, sodA). Glutathione S-transferase, thioredoxin, glutaredoxinsand DNA repair enzymes responded most strongly to cadmium and chromate.The cadmium and chromium stress response also focused on reducing theintracellular metal concentration, with multiple efflux pumps employed toremove cadmium while a sulfate transporter was down-regulated to reducenon-specific uptake of chromium. Membrane proteins were also up-regulatedin response to most of the metals tested. A two-component signaltransduction system involved in the uranium response was identified.Several differentially regulated transcripts from regions previously notknown to encode proteins were identified, demonstrating the advantage ofevaluating the transcriptome using whole genome microarrays.« less

  15. [Exposure to metal compounds in occupational galvanic processes].

    PubMed

    Surgiewicz, Jolanta; Domański, Wojciech

    2006-01-01

    Occupational galvanic processes are provided in more than 600 small and medium enterprises in Poland. Workers who deal with galvanic coating are exposed to heavy metal compounds: tin, silver, copper and zinc. Some of them are carcinogenic, for example, hexavalent chromium compounds, nickel and cadmium compounds. Research covered several tens of workstations involved in chrome, nickel, zinc, tin, silver, copper and cadmium plating. Compounds of metals present in the air were determined: Cr, Ni, Cd, Sn, Ag--by atomic absorption spectrometry with electrothermal atomization (ET-AAS) and Zn--by atomic absorption spectrometry with flame atomization (F-AAS). The biggest metal concentrations--of silver and copper--were found at workstations of copper, brass, cadmium, nickel and chrome plating, conducted at the same time. Significant concentrations of copper were found at workstations of maintenance bathing and neutralizing of sewage. The concentrations of metals did not exceed Polish MAC values. MAC values were not exceeded for carcinogenic chromium(VI), nickel or cadmium, either. In galvanic processes there was no hazard related to single metals or their compounds, even carcinogenic ones. Combined exposure indicators for metals at each workstation did not exceed 1, either. However, if there are even small quantities of carcinogenic agents, health results should always be taken into consideration.

  16. Heavy metals in Franklin`s gull tissues: Age and tissue differences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, J.; Gochfeld, M.

    1999-04-01

    The authors examined the concentrations of lead, cadmium, chromium, mercury, manganese, and selenium in feathers, liver, kidney, heart, brain, and breast muscle of Franklin`s gulls (Larus pipixcan) nesting in northwestern Minnesota, USA, in 1994. Between 16% (chromium) and 71% (selenium, manganese) of the variation in metal concentrations was explained by tissue and age, except for selenium and arsenic, which were only explained by tissue. Of 35 possible differences (seven metals in five tissues), 24 significant age-related differences were found in Franklin`s gulls, with young generally having lower concentrations of metals in all of their tissues than adults. A notable exceptionmore » was the liver; young had significantly higher concentrations of selenium, chromium, manganese, and arsenic than did adults. Three notable findings were the following: young had significantly higher concentrations of selenium, chromium, manganese, and arsenic in their liver than did adults; young had 30 times as much chromium in the liver than adults; and adults had greatly elevated concentrations of cadmium in feathers, kidney, and liver.« less

  17. Do cobalt and chromium levels predict osteolysis in metal-on-metal total hip arthroplasty?

    PubMed

    Renner, Lisa; Schmidt-Braekling, Tom; Faschingbauer, Martin; Boettner, Friedrich

    2016-12-01

    Serum metal ions are part of the regular follow-up routine of patients with metal-on-metal total hip arthroplasties (MoM-THA). Increased cobalt levels have been suggested to indicate implant failure and corrosion. (1) Is there a correlation between the size of the osteolysis measured on a CT scan and metal ion levels? (2) Can metal ion levels predict the presence of osteolysis in MoM-THA? (3) Are cobalt and chromium serum levels or the cobalt-chromium-ratio diagnostic for osteolysis? CT scans of patients (n = 75) with a unilateral MoM-THA (Birmingham Hip System, Smith & Nephew, TN, USA) implanted by a single surgeon were reviewed to determine the presence of osteolysis. Statistical analysis was performed to detect its association with metal ion levels at the time of the imaging exam. The incidence of osteolysis was the same in men and women (35.6 vs 35.7 %). The cobalt-chromium-ratio correlates with the size of the osteolysis on the CT scan and the femoral component size in the overall study population (p = 0.050, p = 0.001) and in men (p = 0.002, p = 0.001) but not in women (p = 0.312, p = 0.344). The AUC for the cobalt-chromium-ratio to detect osteolysis was 0.613 (p = 0.112) for the overall population, 0.710 for men (p = 0.021) and 0.453 (p = 0.684) for women. The data suggest that a cut off level of 1.71 for the cobalt-chromium-ratio has a sensitivity of 62.5 % and specificity of 72.4 % to identify male patients with osteolysis. The disproportional increase of cobalt over chromium, especially in male patients with large component sizes can not be explained by wear alone and suggests that other processes (corrosion) might contribute to metal ion levels and might be more pronounced in patients with larger component sizes.

  18. Unanticipated potential cancer risk near metal recycling facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raun, Loren, E-mail: raun@rice.edu; Pepple, Karl, E-mail: pepple.karl@epa.gov; Hoyt, Daniel, E-mail: hoyt.daniel@epa.gov

    2013-07-15

    Metal recycling is an important growing industry. Prior to this study, area sources consisting of metal recycling facilities fell in a category of limited regulatory scrutiny because of assumed low levels of annual emissions. Initiating with community complaints of nuisance from smoke, dust and odor, the Houston Department of Health and Human Services (HDHHS) began a monitoring program outside metal recycler facilities and found metal particulates in outdoor ambient air at levels which could pose a carcinogenic human health risk. In a study of five similar metal recycler facilities which used a torch cutting process, air downwind and outside themore » facility was sampled for eight hours between 6 and 10 times each over 18 months using a mobile laboratory. Ten background locations were also sampled. Iron, manganese, copper, chromium, nickel, lead, cobalt, cadmium and mercury were detected downwind of the metal recyclers at frequencies ranging from 100% of the time for iron to 2% of the time for mercury. Of these metals, chromium, nickel, lead, cobalt, cadmium and mercury were not detected in any sample in the background. Two pairs of samples were analyzed for total chromium and hexavalent chromium to establish a ratio of the fraction of hexavalent chromium in total chromium. This fraction was used to estimate hexavalent chromium at all locations. The carcinogenic risk posed to a residential receptor from metal particulate matter concentrations in the ambient air attributed to the metal recyclers was estimated from each of the five facilities in an effort to rank the importance of this source and inform the need for further investigation. The total risk from these area sources ranged from an increased cancer risk of 1 in 1,000,000 to 6 in 10,000 using the 95th upper confidence limit of the mean of the carcinogenic metal particulate matter concentration, assuming the point of the exposure is the sample location for a residential receptor after accounting for wind

  19. Nickel-chromium-silicon brazing filler metal

    DOEpatents

    Martini, Angelo J.; Gourley, Bruce R.

    1976-01-01

    A brazing filler metal containing, by weight percent, 23-35% chromium, 9-12% silicon, a maximum of 0.15% carbon, and the remainder nickel. The maximum amount of elements other than those noted above is 1.00%.

  20. Neuropsychiatric symptoms following metal-on-metal implant failure with cobalt and chromium toxicity.

    PubMed

    Green, Ben; Griffiths, Emily; Almond, Solomon

    2017-01-24

    There were at least 31,171 metal-on-metal (MoM) hip implants in the UK between 2003 and 2011. Some of these were subject to failure and widescale recalls and revisions followed. This is a presentation of ten cases (mean age 60 years) where we evaluated neuropsychiatric morbidity following metal-on-metal hip implant failure and revision. Implants were ASR total hip replacement (acetabular implant, taper sleeve adaptor and unipolar femoral implants) performed between 2005 and 2009. This case series describes, for the first time, neuropsychiatric complications after revision where there has been cobalt and chromium toxicity. Pre-revision surgery, nine patients had toxic levels of chromium and cobalt (mean level chromium 338 nmol/l, mean cobalt 669.4 nmol/l). Depression assessment showed 9 of 9 respondents fulfilled the BDI criteria for depression and 3 of these were being treated. 7 of 9 patients showing short term memory deficit with mean mini mental state examination score of 24.2. The normal population mean MMSE for this group would be expected to be 28 with <25 indicating possible dementia. We found neurocognitive and depressive deficits after cobalt and chromium metallosis following MoM implant failure. Larger studies of neurocognitive effects are indicated in this group. There may be implications for public health.

  1. BIOLOGICAL MONITORING OF TOXIC TRACE METALS. VOLUME 2. TOXIC TRACE METALS IN PLANTS AND ANIMALS OF THE WORLD. PART II

    EPA Science Inventory

    The needs and priorities in using biological accumulator organisms for monitoring toxic trace metals in plants and animals are analyzed. The toxic trace metals selected for study are antimony, arsenic, beryllium, boron, cadmium, chromium, cobalt, copper, lead, mercury, nickel, se...

  2. BIOLOGICAL MONITORING OF TOXIC TRACE METALS. VOLUME 2. TOXIC TRACE METALS IN PLANTS AND ANIMALS OF THE WORLD. PART I

    EPA Science Inventory

    The needs and priorities in using biological accumulator organisms for monitoring toxic trace metals in plants and animals are analyzed. The toxic trace metals selected for study are antimony, arsenic, beryllium, boron, cadmium, chromium, cobalt, copper, lead, mercury, nickel, se...

  3. Induction of micronuclei and binuclei in blood, gill and liver cells of fishes subchronically exposed to cadmium chloride and copper sulphate.

    PubMed

    Cavas, Tolga; Garanko, Natasha N; Arkhipchuk, Victor V

    2005-04-01

    Common carp (Cyprinus carpio), Prussian carp (Carassius gibelio) and Peppered cory (Corydoras paleatus) were evaluated as target species to perform genotoxicity tests for heavy metals. Fishes were exposed to different doses of cadmium (0.005-0.1 mg/L) and copper (0.01-0.25 mg/L) for 21 days. Hexavalent chromium at a single dose of 5 mg/L was used as a positive control. Frequencies of micronuclei and binuclei were evaluated comparatively in peripheral blood erythrocytes, gill epithelial cells and liver cells. As a result it was observed that, fish species and their tissues showed differential sensitivity to the heavy metal treatment. In general, frequencies of micronucleated and binucleated cells significantly increased following the exposure for 21 days to copper, cadmium and chromium. On the other hand, gill and liver cells showed higher frequencies of micronuclei and binuclei than erythrocytes. Our results indicated the formation of micronuclei and binuclei in fish cells caused by their exposure to cadmium, copper and chromium, thus verifying results obtained earlier on mammals, which indicated that these heavy metals have cytotoxic and genotoxic effects. The suitability of the micronucleus assay in native fish species for the screening of aquatic genotoxicants is highlighted and the importance of target tissue selection in the piscine micronucleus test is emphasized.

  4. Exposure to Nickel, Chromium, or Cadmium Causes Distinct Changes in the Gene Expression Patterns of a Rat Liver Derived Cell Line

    DTIC Science & Technology

    2011-11-16

    protein A (Rpa2), the minichromosome maintenance complex component genes which encode helicases, DNA ligase (Lig1), DNA polymerase e ( Pole and Pole2...and DNA polymerase d ( Pold1 and Pold2 ) are all up-regulated as a result of exposure to chromium (Figure 6), suggesting that there is an increase in...Exposure to Nickel, Chromium, or Cadmium Causes Distinct Changes in the Gene Expression Patterns of a Rat Liver Derived Cell Line Matthew G

  5. Aluminum, iron, lead, cadmium, copper, zinc, chromium, magnesium, strontium, and calcium content in bone of end-stage renal failure patients.

    PubMed

    D'Haese, P C; Couttenye, M M; Lamberts, L V; Elseviers, M M; Goodman, W G; Schrooten, I; Cabrera, W E; De Broe, M E

    1999-09-01

    Little is known about trace metal alterations in the bones of dialysis patients or whether particular types of renal osteodystrophy are associated with either increased or decreased skeletal concentrations of trace elements. Because these patients are at risk for alterations of trace elements as well as for morbidity from skeletal disorders, we measured trace elements in bone of patients with end-stage renal disease. We analyzed bone biopsies of 100 end-stage renal failure patients enrolled in a hemodialysis program. The trace metal contents of bone biopsies with histological features of either osteomalacia, adynamic bone disease, mixed lesion, normal histology, or hyperparathyroidism were compared with each other and with the trace metal contents of bone of subjects with normal renal function. Trace metals were measured by atomic absorption spectrometry. The concentrations of aluminum, chromium, and cadmium were increased in bone of end-stage renal failure patients. Comparing the trace metal/calcium ratio, significantly higher values were found for the bone chromium/calcium, aluminum/calcium, zinc/calcium, magnesium/calcium, and strontium/calcium ratios. Among types of renal osteodystrophy, increased bone aluminum, lead, and strontium concentrations and strontium/calcium and aluminum/calcium ratios were found in dialysis patients with osteomalacia vs the other types of renal osteodystrophy considered as one group. Moreover, the concentrations of several trace elements in bone were significantly correlated with each other. Bone aluminum was correlated with the time on dialysis, whereas bone iron, aluminum, magnesium, and strontium tended to be associated with patient age. Bone trace metal concentrations did not depend on vitamin D intake nor on the patients' gender. The concentration of several trace elements in bone of end-stage renal failure patients is disturbed, and some of the trace metals under study might share pathways of absorption, distribution, and

  6. Heavy Metal Contaminated Soil Treatment: Conceptual Development

    DTIC Science & Technology

    1987-02-01

    utilized, particularly for trivalent chromium . ’Breakthrough did eventually occur, due to the coating of the crushed limestone, with only partial...characterizations indicated that several Army installations had elevated total metal concentrations in their soils and Chromium , Cadmium and Lead were the most...2,2000 F) were effective in reducing chromium levels below 1 mg/L in both boiling water and weak acid (pH 5; H2 SO 4) extractions. These extractions were

  7. Anaerobic Biostimulation for the In Situ Precipitation and Long-Term Sequestration of Metal Sulfides

    DTIC Science & Technology

    2009-04-01

    remediation is critically needed. The five most frequently cited metals in the Williford report were arsenic, lead, cadmium, chromium and mercury . Of these...arsenic, lead, cadmium and mercury have been shown to precipitate as stable metal sulfides under highly reducing conditions. The recently...potential applications to bioprecipitation of toxic metals as sulphides . J. of Industrial Microbiology 17: 116-123. Williford, W.W., R.M. Bricka, S.L

  8. Treatment of metal-contaminated wastewater: a comparison of low-cost biosorbents.

    PubMed

    Akunwa, N K; Muhammad, M N; Akunna, J C

    2014-12-15

    This study aimed to identify some optimum adsorption conditions for the use of low-cost adsorbent, seaweed (Ascophyllum nodosum), sawdust and reed plant (Phragmites australis) root, in the treatment of metal contaminated wastewater for the removal of cadmium, chromium and lead. The effect of pH on the absorption capacity of each of these biosorbents was found to be significant and dependent on the metal being removed. Post-adsorption FTIR analysis showed significant binding activities at the nitro NO groups site in all biosorbents, especially for lead. Competitive metal binding was found to have possibly affected the adsorption capacity for chromium by A. nodosum more than it affected sawdust and P. australis root. Adsorption is believed to take place mainly by ion exchange particularly at low pH values. P. australis root exhibited the highest adsorption for chromium at pH 2, cadmium at pH 10 and lead at pH 7. A. nodosum seaweed species demonstrated the highest adsorption capacity of the three biosorbents used in the study, for cadmium at pH 7 and for lead at pH 2. Sawdust proved to be an efficient biosorbent for lead removal only at pH 7 and 10. No significant effect of temperature on adsorption capacity was observed, particularly for cadmium and lead removal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Arsenic, cadmium, chromium, lead, manganese, mercury, and selenium in feathers of Black-legged Kittiwake (Rissa tridactyla) and Black Oystercatcher (Haematopus bachmani) from Prince William Sound, Alaska

    PubMed Central

    Burger, Joanna; Gochfeld, Michael; Sullivan, Kelsey; Irons, David; McKnight, Aly

    2014-01-01

    Arsenic, cadmium, chromium, lead, manganese, mercury and selenium were analyzed in the feathers of Black-legged Kittiwakes (Rissa tridactyla) from Shoup Bay in Prince William Sound, Alaska to determine if there were age-related differences in metal levels, and in Black Oystercatchers (Haematopus bachmani)) from the same region to determine if there were differences in oiled and unoiled birds. Except for mercury, there were no age-related differences in metals levels in the feathers of kittiwakes. Kittiwakes over 13 years of age had the highest levels of mercury. There were no differences in levels of metals in the feathers of oystercatchers from oiled and unoiled regions of Prince William Sound. Except for mercury, the feathers of oystercatchers had significantly higher levels of all metals than those of kittiwakes. Levels of mercury in kittiwake feathers (mean of 2910 ng/g [ppb]) were within the range of many species of seabirds reported for other studies, and were generally below adverse effects levels. PMID:18440597

  10. Process for removing cadmium from scrap metal

    DOEpatents

    Kronberg, J.W.

    1994-01-01

    A process for the recovery of a metal, in particular, cadmium contained in scrap, in a stable form. The process comprises the steps of mixing the cadmium-containing scrap with an ammonium carbonate solution, preferably at least a stoichiometric amount of ammonium carbonate, and/or free ammonia, and an oxidizing agent to form a first mixture so that the cadmium will react with the ammonium carbonate to form a water-soluble ammine complex; evaporating the first mixture so that ammine complex dissociates from the first mixture leaving carbonate ions to react with the cadmium and form a second mixture that includes cadmium carbonate; optionally adding water to the second mixture to form a third mixture; adjusting the pH of the third mixture to the acid range whereby the cadmium carbonate will dissolve; and adding at least a stoichiometric amount of sulfide, preferably in the form of hydrogen sulfide or an aqueous ammonium sulfide solution, to the third mixture to precipitate cadmium sulfide. This mixture of sulfide is then preferably digested by heating to facilitate precipitation of large particles of cadmium sulfide. The scrap may be divided by shredding or breaking up to exposure additional surface area. Finally, the precipitated cadmium sulfide can be mixed with glass formers and vitrified for permanent disposal.

  11. Process for removing cadmium from scrap metal

    DOEpatents

    Kronberg, James W.

    1995-01-01

    A process for the recovery of a metal, in particular, cadmium contained in scrap, in a stable form. The process comprises the steps of mixing the cadmium-containing scrap with an ammonium carbonate solution, preferably at least a stoichiometric amount of ammonium carbonate, and/or free ammonia, and an oxidizing agent to form a first mixture so that the cadmium will react with the ammonium carbonate to form a water-soluble ammine complex; evaporating the first mixture so that ammine complex dissociates from the first mixture leaving carbonate ions to react with the cadmium and form a second mixture that includes cadmium carbonate; optionally adding water to the second mixture to form a third mixture; adjusting the pH of the third mixture to the acid range whereby the cadmium carbonate will dissolve; and adding at least a stoichiometric amount of sulfide, preferably in the form of hydrogen sulfide or an aqueous ammonium sulfide solution, to the third mixture to precipitate cadmium sulfide. This mixture of sulfide is then preferably digested by heating to facilitate precipitation of large particles of cadmium sulfide. The scrap may be divided by shredding or breaking up to expose additional surface area. Finally, the precipitated cadmium sulfide can be mixed with glass formers and vitrified for permanent disposal.

  12. Process for removing cadmium from scrap metal

    DOEpatents

    Kronberg, J.W.

    1995-04-11

    A process is described for the recovery of a metal, in particular, cadmium contained in scrap, in a stable form. The process comprises the steps of mixing the cadmium-containing scrap with an ammonium carbonate solution, preferably at least a stoichiometric amount of ammonium carbonate, and/or free ammonia, and an oxidizing agent to form a first mixture so that the cadmium will react with the ammonium carbonate to form a water-soluble ammine complex; evaporating the first mixture so that ammine complex dissociates from the first mixture leaving carbonate ions to react with the cadmium and form a second mixture that includes cadmium carbonate; optionally adding water to the second mixture to form a third mixture; adjusting the pH of the third mixture to the acid range whereby the cadmium carbonate will dissolve; and adding at least a stoichiometric amount of sulfide, preferably in the form of hydrogen sulfide or an aqueous ammonium sulfide solution, to the third mixture to precipitate cadmium sulfide. This mixture of sulfide is then preferably digested by heating to facilitate precipitation of large particles of cadmium sulfide. The scrap may be divided by shredding or breaking up to expose additional surface area. Finally, the precipitated cadmium sulfide can be mixed with glass formers and vitrified for permanent disposal. 2 figures.

  13. Experimental skin deposition of chromium on the hands following handling of samples of leather and metal.

    PubMed

    Bregnbak, David; Thyssen, Jacob P; Jellesen, Morten S; Zachariae, Claus; Johansen, Jeanne D

    2016-08-01

    Chromium is an important skin sensitizer. Exposure to it has been regulated in cement, and recently in leather. Studies on the deposition of chromium ions on the skin as a result of handling different chromium-containing materials are sparse, but could improve the risk assessment of contact sensitization and allergic contact dermatitis caused by chromium. To determine whether the handling of chromium-containing samples of leather and metal results in the deposition of chromium onto the skin. Five healthy volunteers participated. For 30 min, they handled samples of leather and metal known to contain and release chromium. Skin deposition of chromium was assessed with the acid wipe sampling technique. Acid wipe sampling of the participants' fingers showed chromium deposition on the skin in all participants who had been exposed to leather (range 0.01-0.20 µg/cm(2) ) and in 3 of 5 participants after they had manually handled metal discs (range 0.02-0.04 µg/cm(2) ). We found that samples of leather and metal had the ability to deposit chromium on the skin at significant levels, in spite of a short duration of exposure. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Chromium(VI) release from leather and metals can be detected with a diphenylcarbazide spot test.

    PubMed

    Bregnbak, David; Johansen, Jeanne D; Jellesen, Morten S; Zachariae, Claus; Thyssen, Jacob P

    2015-11-01

    Along with chromium, nickel and cobalt are the clinically most important metal allergens. However, unlike for nickel and cobalt, there is no validated colorimetric spot test that detects chromium. Such a test could help both clinicians and their patients with chromium dermatitis to identify culprit exposures. To evaluate the use of diphenylcarbazide (DPC) as a spot test reagent for the identification of chromium(VI) release. A colorimetric chromium(VI) spot test based on DPC was prepared and used on different items from small market surveys. The DPC spot test was able to identify chromium(VI) release at 0.5 ppm without interference from other pure metals, alloys, or leather. A market survey using the test showed no chromium(VI) release from work tools (0/100). However, chromium(VI) release from metal screws (7/60), one earring (1/50), leather shoes (4/100) and leather gloves (6/11) was observed. We found no false-positive test reactions. Confirmatory testing was performed with X-ray fluorescence (XRF) and spectrophotometrically on extraction fluids. The use of DPC as a colorimetric spot test reagent appears to be a good and valid test method for detecting the release of chromium(VI) ions from leather and metal articles. The spot test has the potential to become a valuable screening tool. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Migration studies of nickel and chromium from ceramic and glass tableware into food simulants.

    PubMed

    Szynal, Tomasz; Rebeniak, Małgorzata; Mania, Monika

    In addition to the release of lead and cadmium from ceramic and glass vessels, (acceptable limits being set by the EU 84/500/EC Directive), other harmful metals can migrate, such as nickel and chromium. Permissible migration limits for these latter metals however have not yet been set in the EU legislation. Both the toxic properties of nickel and chromium and the measures taken by the European Commission Working Group on Food Contact Materials for verifying permissible migration limits for lead, cadmium and other metals from ceramics have acted as drivers for studies on nickel and chromium release from ceramic and glass tableware. To investigate the migration of nickel and chromium into food simulants from ceramic and glassware, available on the Polish market, which are intended for coming into contact with food. Potential consumer exposure can thereby be estimated from the release of these elements into food. Tableware consisted of ceramics and glass vessels generally available on the domestic market, with inner surfaces being mainly coloured and with rim decorations. Migration of nickel and chromium studied from the ceramics was carried out in 4% acetic acid (24 ± 0.5 hrs at 22 ± 2°C), whilst that from glassware in 4% acetic acid (24 ± 0.5 hrs at 22 ± 2°C) and 0.5% citric acid (2 ± 0.1 hrs at 70 ± 2°C). The concentrations of metals which had migrated into the test solutions were measured by using flame atomic absorption spectrometry (FAAS). This analytical procedure had been previously validated by measuring nickel and chromium released into food simulants from ceramic and glass tableware where working ranges, detection limits, quantification limits, repeatability, accuracy, mean recovery and uncertainty were established. Migration of nickel and chromium was measured from 172 ceramic and 52 and glass vessels samples, with all results being below the limits of quantification (LOQ = 0.02 mg/L), excepting one instance where a 0.04 mg/L concentration of

  16. Occurrence and distribution of selected metals in streams near Huntsville, Alabama

    USGS Publications Warehouse

    German, E.R.; Knight, Alfred L.

    1973-01-01

    Arsenic, cadmium, chromium, cobalt, lead, mercury, and zinc are widely distributed around Huntsville, Ala. However, concentrations of these metals in streamflow in the vicinity of the Huntsville municipal water intake during June, August, and September 1971 did not exceed the limits recommended for a public drinking water supply. The occurrence of these metals in general is related to man's activities. Information gained during this study suggests that cadmium and the other metals are associated with and transported with suspended sediment, bed material, and airborne dust particles. Lead and zinc were the most abundant of the selected metals in streamflow, bed material, and rainwater samples. The highest concentration of cadmium was detected downstream from an industrial park in the Flint River basin; rainwater samples also contained a relatively high level of cadmium.

  17. Heavy metals concentration in vegetables irrigated with contaminated and fresh water and estimation of their daily intakes in suburb areas of Hamadan, Iran.

    PubMed

    Seid-Mohammadi, Abdolmotaleb; Roshanaei, Ghodratollah; Asgari, Ghorban

    2014-01-01

    This study was conducted to estimate the level of heavy metals accumulate in vegetables irrigated with contaminated water compared with those irrigated with fresh water in Hamadan, west of Iran in 2012. Sixty samples of different vegetables i.e., parsley, tarragon, sweat basil and leek irrigated with contaminated water and thirty six samples from three different adjacent areas irrigated with fresh water as control were analyzed to determine heavy metals. The concentration of heavy metals i.e., lead, cadmium and chromium were achieved using atomic adsorption spectrophotometer. The mean concentration of lead, chromium and cadmium regardless of the kind of vegetables irrigated with contaminated water was 6.24, 1.57 and 0.15 mg/kg, respectively. Moreover, metals uptake differences by the vegetables were recognized to vegetable differences in tolerance to heavy metals. Based on the above concentrations the dietary intakes of metals through vegetables consumption were 0.004, 0.0008 and 6E-05 mg/day in infants for lead, chromium and cadmium, respectively. The high concentration of these heavy metals in some vegetables might be attributed due to the use of untreated sanitary and industrial wastewater by farmers for the irrigation of vegetable lands. Therefore, treating of these wastewater and bioremediation of excess metals from polluted vegetation land could be considered.

  18. Heavy metal contamination of sediments in the upper connecting channels of the Great Lakes

    USGS Publications Warehouse

    Nichols, S. Jerrine; Manny, Bruce A.; Schloesser, Donald W.; Edsall, Thomas A.

    1991-01-01

    In 1985, sampling at 250 stations throughout the St. Marys, St. Clair, and Detroit rivers and Lake St. Clair — the connecting channels of the upper Great Lakes — revealed widespread metal contamination of the sediments. Concentrations of cadmium, chromium, copper, lead, mercury, nickel, and zinc each exceeded U.S. Environmental Protection Agency sediment pollution guidelines at one or more stations throughout the study area. Sediments were polluted more frequently by copper, nickel, zinc, and lead than by cadmium, chromium, or mercury. Sediments with the highest concentrations of metals were found (in descending order) in the Detroit River, the St. Marys River, the St. Clair River, and Lake St. Clair. Although metal contamination of sediments was most common and sediment concentrations of metals were generally highest near industrial areas, substantial contamination of sediments by metals was present in sediment deposition areas up to 60 km from any known source of pollution.

  19. Arsenic, cadmium, chromium, lead, mercury, and selenium levels in blood of four species of turtles from the Amazon in Brazil.

    PubMed

    Burger, Joanna; Jeitner, Christian; Schneider, Larissa; Vogt, Richard; Gochfeld, Michael

    2010-01-01

    Using blood as a method of assessing metal levels in turtles may be useful for populations that are threatened or endangered or are decreasing. In this study the levels of arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), and selenium (Se) in blood of four species of turtles from the tributaries of the Rio Negro in the Amazon of Brazil were examined. The turtles included the six-tubercled Amazon (river) turtle (Podocnemis sextuberculata), red-headed Amazon (river) turtle (Podocnemis erythrocephala), big-headed Amazon (river) turtle (Peltocephalus dumerilianus), and matamata turtle (Chelus fimbriatus). Blood samples were taken from the vein in the left hind leg of each turtle. There were significant interspecific differences in the sizes of the turtles from the Rio Negro, and in concentrations of Pb, Hg, and Se; the smallest species (red-headed turtles) had the highest levels of Pb in their blood, while Se levels were highest in big-headed turtles and lowest in red-headed turtles. Hg in blood was highest in matamata, intermediate in big-headed, and lowest in the other two turtles. Even though females were significantly larger than males, there were no significant differences in metal levels as a function of gender, and the only relationship of metals to size was for Cd. Variations in metal levels among species suggest that blood may be a useful bioindicator. Metal levels were not high enough to pose a health risk to the turtles or to consumers, such as humans.

  20. Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants.

    PubMed

    Das, Surajit; Dash, Hirak R; Chakraborty, Jaya

    2016-04-01

    Metal pollution is one of the most persistent and complex environmental issues, causing threat to the ecosystem and human health. On exposure to several toxic metals such as arsenic, cadmium, chromium, copper, lead, and mercury, several bacteria has evolved with many metal-resistant genes as a means of their adaptation. These genes can be further exploited for bioremediation of the metal-contaminated environments. Many operon-clustered metal-resistant genes such as cadB, chrA, copAB, pbrA, merA, and NiCoT have been reported in bacterial systems for cadmium, chromium, copper, lead, mercury, and nickel resistance and detoxification, respectively. The field of environmental bioremediation has been ameliorated by exploiting diverse bacterial detoxification genes. Genetic engineering integrated with bioremediation assists in manipulation of bacterial genome which can enhance toxic metal detoxification that is not usually performed by normal bacteria. These techniques include genetic engineering with single genes or operons, pathway construction, and alternations of the sequences of existing genes. However, numerous facets of bacterial novel metal-resistant genes are yet to be explored for application in microbial bioremediation practices. This review describes the role of bacteria and their adaptive mechanisms for toxic metal detoxification and restoration of contaminated sites.

  1. Trace metal uptake by garden herbs and vegetables.

    PubMed

    Shariatpanahi, M; Anderson, A C; Mather, F

    1986-12-01

    In many regions of Iran, crops are irrigated with municipal and industrial wastewater that contain a variety of metals. The purpose of this study was to simulate the level of metals that may be presented to plants over a growing season in a controlled laboratory setting. Cadmium, lead, arsenic, chromium, mercury, nickel, copper, zinc, and selenium were applied to plants at the high rate of 200 g metal/ha/wk. The following plants were examined for metal accumulation and effects on yield: garden cress (Lipidium sativum), leek (Allium porrum L.), basil (Ocimum basilicum L.), mint (Mentha arvensis L.), onion (Allium capa L.), radish (Raphanus sativus L.), and tarragon (Artemisia draculus L.). All plants showed significant uptake of all metals when compared to control (p=0.05), and growth was significantly reduced (p=0.05). Cadmium and chromium levels of 85±7.4 and 47.6±8.9 μg/g); selenium levels were highest in tarragon (16.5±5.8 μg/g). Zinc levels were similar (p=0.05) in all species tested, as were mercury and lead. The remaining metals (nickel and copper) showed significant differences in uptake, depending on plant species.

  2. A Study on Characteristics of Atmospheric Heavy Metals in Subway Station

    PubMed Central

    Kim, Chun-Huem; Yoo, Dong-Chul; Kwon, Young-Min; Han, Woong-Soo; Kim, Gi-Sun; Park, Mi-Jung; Kim, Young Soon

    2010-01-01

    In this study, we investigated the atmospheric heavy metal concentrations in the particulate matter inside the subway stations of Seoul. In particular, we examined the correlation between the heavy metals and studied the effect of the heavy metals on cell proliferation. In six selected subway stations in Seoul, particulate matter was captured at the platforms and 11 types of heavy metals were analyzed. The results showed that the mean concentration of iron was the highest out of the heavy metals in particulate matter, followed by copper, potassium, calcium, zinc, nickel, sodium, manganese, magnesium, chromium and cadmium in that order. The correlation analysis showed that the correlations between the heavy metals was highest in the following order: (Cu vs Zn) , (Ca vs Na) , (Ca vs Mn) , (Ni vs Cr) , (Na vs Mn) , (Cr vs Cd) , (Zn vs Cd) , (Cu vs Cd) , (Ni vs Cd) , (Cu vs Ni) , (K vs Zn) , (Cu vs K) , (Cu vs Cr) , (K vs Cd) , (Zn vs Cr) , (K vs Ni) , (Zn vs Ni) , (K vs Cr) , and (Fe vs Cu) . The correlation coefficient between zinc and copper was 0.937, indicating the highest correlation. Copper, zinc, nickel, chromium and cadmium, which are generated from artificial sources in general, showed correlations with many of the other metals and the correlation coefficients were also relatively high. The effect of the heavy metals on cell proliferation was also investigated in this study. Cultured cell was exposed to 10 mg/l or 100 mg/l of iron, copper, calcium, zinc, nickel, manganese, magnesium, chromium and cadmium for 24 hours. The cell proliferation in all the heavy metal-treated groups was not inhibited at 10 mg/l of the heavy metal concentration. The only exception to this was with the cadmium-treated group which showed a strong cell proliferation inhibition. This study provides the fundamental data for the understanding of simultaneous heavy metal exposure tendency at the time of particulate matter exposure in subway stations and the identification of heavy metal

  3. Isolation and characterization of Bacillus cereus IST105 from electroplating effluent for detoxification of hexavalent chromium.

    PubMed

    Naik, Umesh Chandra; Srivastava, Shaili; Thakur, Indu Shekhar

    2011-08-01

    Electroplating industries are the main sources of heavy metals, chromium, nickel, lead, zinc, cadmium and copper. The highest concentrations of chromium (VI) in the effluent cause a direct hazards to human and animals. Therefore, there is a need of an effective and affordable biotechnological solution for removal of chromium from electroplating effluent. Bacterial strains were isolated from electroplating effluent to find out higher tolerant isolate against chromate. The isolate was identified by 16S rDNA sequence analysis. Absorbed chromium level of bacterium was determined by inductively coupled plasma-atomic emission spectrometer (ICP-AES), atomic absorption spectrophotometer (AAS), scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive X-ray analysis (EDX). Removal of metals by bacterium from the electroplating effluent eventually led to the detoxification of effluent confirmed by MTT assay. Conformational changes of functional groups of bacterial cell surface were studied through Fourier transform infrared spectroscopy. The chromate tolerant isolate was identified as Bacillus cereus. Bacterium has potency to remove more than 75% of chromium as measured by ICP-AES and AAS. The study indicated the accumulation of chromium (VI) on bacterial cell surface which was confirmed by the SEM-EDX and TEM analysis. The biosorption of metals from the electroplating effluent eventually led to the detoxification of effluent. The increased survivability of Huh7 cells cultured with treated effluent also confirmed the detoxification as examined by MTT assay. Isolated strain B. cereus was able to remove and detoxify chromium (VI). It would be an efficient tool of the biotechnological approach in mitigating the heavy metal pollutants.

  4. Concentrations and Potential Health Risks of Metals in Lip Products

    PubMed Central

    Liu, Sa; Rojas-Cheatham, Ann

    2013-01-01

    Background: Metal content in lip products has been an issue of concern. Objectives: We measured lead and eight other metals in a convenience sample of 32 lip products used by young Asian women in Oakland, California, and assessed potential health risks related to estimated intakes of these metals. Methods: We analyzed lip products by inductively coupled plasma optical emission spectrometry and used previous estimates of lip product usage rates to determine daily oral intakes. We derived acceptable daily intakes (ADIs) based on information used to determine public health goals for exposure, and compared ADIs with estimated intakes to assess potential risks. Results: Most of the tested lip products contained high concentrations of titanium and aluminum. All examined products had detectable manganese. Lead was detected in 24 products (75%), with an average concentration of 0.36 ± 0.39 ppm, including one sample with 1.32 ppm. When used at the estimated average daily rate, estimated intakes were > 20% of ADIs derived for aluminum, cadmium, chromium, and manganese. In addition, average daily use of 10 products tested would result in chromium intake exceeding our estimated ADI for chromium. For high rates of product use (above the 95th percentile), the percentages of samples with estimated metal intakes exceeding ADIs were 3% for aluminum, 68% for chromium, and 22% for manganese. Estimated intakes of lead were < 20% of ADIs for average and high use. Conclusions: Cosmetics safety should be assessed not only by the presence of hazardous contents, but also by comparing estimated exposures with health-based standards. In addition to lead, metals such as aluminum, cadmium, chromium, and manganese require further investigation. PMID:23674482

  5. Removal of trace metal contaminants from potable water by electrocoagulation.

    PubMed

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K

    2016-06-21

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency.

  6. Removal of trace metal contaminants from potable water by electrocoagulation

    PubMed Central

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.

    2016-01-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency. PMID:27324564

  7. Removal of trace metal contaminants from potable water by electrocoagulation

    NASA Astrophysics Data System (ADS)

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.

    2016-06-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency.

  8. Model evaluation of plant metal content and biomass yield for the phytoextraction of heavy metals by switchgrass.

    PubMed

    Chen, Bo-Ching; Lai, Hung-Yu; Juang, Kai-Wei

    2012-06-01

    To better understand the ability of switchgrass (Panicum virgatum L.), a perennial grass often relegated to marginal agricultural areas with minimal inputs, to remove cadmium, chromium, and zinc by phytoextraction from contaminated sites, the relationship between plant metal content and biomass yield is expressed in different models to predict the amount of metals switchgrass can extract. These models are reliable in assessing the use of switchgrass for phytoremediation of heavy-metal-contaminated sites. In the present study, linear and exponential decay models are more suitable for presenting the relationship between plant cadmium and dry weight. The maximum extractions of cadmium using switchgrass, as predicted by the linear and exponential decay models, approached 40 and 34 μg pot(-1), respectively. The log normal model was superior in predicting the relationship between plant chromium and dry weight. The predicted maximum extraction of chromium by switchgrass was about 56 μg pot(-1). In addition, the exponential decay and log normal models were better than the linear model in predicting the relationship between plant zinc and dry weight. The maximum extractions of zinc by switchgrass, as predicted by the exponential decay and log normal models, were about 358 and 254 μg pot(-1), respectively. To meet the maximum removal of Cd, Cr, and Zn, one can adopt the optimal timing of harvest as plant Cd, Cr, and Zn approach 450 and 526 mg kg(-1), 266 mg kg(-1), and 3022 and 5000 mg kg(-1), respectively. Due to the well-known agronomic characteristics of cultivation and the high biomass production of switchgrass, it is practicable to use switchgrass for the phytoextraction of heavy metals in situ. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Potential Sex Differences Relative to Autism Spectrum Disorder and Metals.

    PubMed

    Dickerson, Aisha S; Rotem, Ran S; Christian, MacKinsey A; Nguyen, Vy T; Specht, Aaron J

    2017-12-01

    This study aims to summarize the current body of literature on the relationship between various toxic metals exposures (i.e., aluminum, antimony, arsenic, beryllium, cadmium, chromium, lead, manganese, and nickel) and autism spectrum disorder (ASD), with a focus on potential sex differences in these associations. Sex differences in ASD diagnosis and mutagenic effects of toxic exposures indicate that sex differences may play a major part in the causal relationship of any potential associations seen; however, we were only able to find three studies that reported on sex differences in observed associations with toxic metals exposure and ASD. We also found several studies investigating associations between ASD and metals exposures, including 11 on aluminum, 6 on antimony, 15 on arsenic, 5 on beryllium, 17 on cadmium, 11 on chromium, 25 on lead, 14 on manganese, and 13 on nickel with markers of exposure in hair, urine, blood, teeth, fingernails, and air pollution. Results for each metal were conflicting, but studies on cadmium and lead yielded the highest proportion of studies with positive results (72% and 36%, respectively). Based on our examination of existing literature, the current evidence warrants a considerable need for evaluations of sex differences in future studies assessing the association between metals exposures and ASD. Additionally, failure to account for potential sex differences could result in bias and misinterpretation of exposure-disease relationships.

  10. Determination of Zinc, Cadmium, Lead, Copper and Silver Using a Carbon Paste Electrode and a Screen Printed Electrode Modified with Chromium(III) Oxide.

    PubMed

    Koudelkova, Zuzana; Syrovy, Tomas; Ambrozova, Pavlina; Moravec, Zdenek; Kubac, Lubomir; Hynek, David; Richtera, Lukas; Adam, Vojtech

    2017-08-09

    In this study, the preparation and electrochemical application of a chromium(III) oxide modified carbon paste electrode (Cr-CPE) and a screen printed electrode (SPE), made from the same material and optimized for the simple, cheap and sensitive simultaneous determination of zinc, cadmium, lead, copper and the detection of silver ions, is described. The limits of detection and quantification were 25 and 80 µg·L -1 for Zn(II), 3 and 10 µg·L -1 for Cd(II), 3 and 10 µg·L -1 for Pb(II), 3 and 10 µg·L -1 for Cu(II), and 3 and 10 µg·L -1 for Ag(I), respectively. Furthermore, this promising modification was transferred to the screen-printed electrode. The limits of detection for the simultaneous determination of zinc, cadmium, copper and lead on the screen printed electrodes were found to be 350 µg·L -1 for Zn(II), 25 µg·L -1 for Cd(II), 3 µg·L -1 for Pb(II) and 3 µg·L -1 for Cu(II). Practical usability for the simultaneous detection of these heavy metal ions by the Cr-CPE was also demonstrated in the analyses of wastewaters.

  11. Determination of Zinc, Cadmium, Lead, Copper and Silver Using a Carbon Paste Electrode and a Screen Printed Electrode Modified with Chromium(III) Oxide

    PubMed Central

    Koudelkova, Zuzana; Syrovy, Tomas; Ambrozova, Pavlina; Moravec, Zdenek; Kubac, Lubomir; Hynek, David; Adam, Vojtech

    2017-01-01

    In this study, the preparation and electrochemical application of a chromium(III) oxide modified carbon paste electrode (Cr-CPE) and a screen printed electrode (SPE), made from the same material and optimized for the simple, cheap and sensitive simultaneous determination of zinc, cadmium, lead, copper and the detection of silver ions, is described. The limits of detection and quantification were 25 and 80 µg·L−1 for Zn(II), 3 and 10 µg·L−1 for Cd(II), 3 and 10 µg·L−1 for Pb(II), 3 and 10 µg·L−1 for Cu(II), and 3 and 10 µg·L−1 for Ag(I), respectively. Furthermore, this promising modification was transferred to the screen-printed electrode. The limits of detection for the simultaneous determination of zinc, cadmium, copper and lead on the screen printed electrodes were found to be 350 µg·L−1 for Zn(II), 25 µg·L−1 for Cd(II), 3 µg·L−1 for Pb(II) and 3 µg·L−1 for Cu(II). Practical usability for the simultaneous detection of these heavy metal ions by the Cr-CPE was also demonstrated in the analyses of wastewaters. PMID:28792450

  12. Selected toxic and essential heavy metals in impacted teeth and the surrounding mandibular bones of people exposed to heavy metals in the environment.

    PubMed

    Malara, Piotr; Fischer, Agnieszka; Malara, Beata

    2016-01-01

    The elemental composition of bones and teeth can allow exposure to heavy metals in the environment to be estimated. The aim of this study was to determine whether impacted mandibular teeth and the surrounding bones can be used as biomonitoring media to assess exposure to heavy metals. The research materials were 67 impacted lower third molars and samples of the cortical bone removed when the wisdom teeth were surgically extracted. The samples were from people living in two areas with different environmental concentrations of heavy metals. The cadmium, chromium, copper, iron, lead, manganese, and zinc concentrations in the samples were determined by atomic absorption spectrometry with flame atomization. The cadmium and lead concentrations in the impacted third molars and the bones surrounding the teeth were significantly higher for people living in the relatively polluted Ruda Slaska region than for people living in Bielsko-Biala region. Significantly higher chromium, copper, manganese, and zinc concentrations were found in the bones surrounding the impacted teeth from people living in Ruda Slaska than in the bones surrounding the impacted teeth from people living in Bielsko-Biala. The cadmium concentrations in impacted teeth and the surrounding bones were significantly positively correlated. The results indicated that impacted mandibular teeth and the surrounding mandibular bones may reflect the exposure of people to cadmium and lead in the environment. This conclusion, however, must be verified in future research projects designed to exclude the possibility of additional dietary, occupational, and other types of exposure to heavy metals.

  13. Investigation of cadmium pollution in the spruce saplings near the metal production factory.

    PubMed

    Hashemi, Seyed Armin; Farajpour, Ghasem

    2016-02-01

    Toxic metals such as lead and cadmium are among the pollutants that are created by the metal production factories and disseminated in the nature. In order to study the quantity of cadmium pollution in the environment of the metal production factories, 50 saplings of the spruce species at the peripheries of the metal production factories were examined and the samples of the leaves, roots, and stems of saplings planted around the factory and the soil of the environment of the factory were studied to investigate pollution with cadmium. They were compared to the soil and saplings of the spruce trees planted outside the factory as observer region. The results showed that the quantity of pollution in the leaves, stems, and roots of the trees planted inside the factory environment were estimated at 1.1, 1.5, and 2.5 mg/kg, respectively, and this indicated a significant difference with the observer region (p < 0.05). The quantity of cadmium in the soil of the peripheries of the metal production factory was estimated at 6.8 mg/kg in the depth of 0-10 cm beneath the level of the soil. The length of roots in the saplings planted around the factory of metal production stood at 11 and 14.5 cm in the observer region which had a significant difference with the observer region (p < 0.05). The quantity of soil resources and spruce species' pollution with cadmium in the region has been influenced by the production processes in the factory. © The Author(s) 2013.

  14. 40 CFR Appendix Xii to Part 266 - Nickel or Chromium-Bearing Materials that may be Processed in Exempt Nickel-Chromium Recovery...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sweepings Air filters Electroplating bath filters Wastewater filter media Wood pallets Disposable clothing... cartridge filters Paper hand towels B. Exempt Nickel or Chromium-Bearing Materials when Generated by Any... Nickel, chromium, and iron catalysts Nickel-cadmium and nickel-iron batteries Filter cake from wet...

  15. 40 CFR Appendix Xii to Part 266 - Nickel or Chromium-Bearing Materials that may be Processed in Exempt Nickel-Chromium Recovery...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sweepings Air filters Electroplating bath filters Wastewater filter media Wood pallets Disposable clothing... cartridge filters Paper hand towels B. Exempt Nickel or Chromium-Bearing Materials when Generated by Any... Nickel, chromium, and iron catalysts Nickel-cadmium and nickel-iron batteries Filter cake from wet...

  16. 40 CFR Appendix Xii to Part 266 - Nickel or Chromium-Bearing Materials that may be Processed in Exempt Nickel-Chromium Recovery...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sweepings Air filters Electroplating bath filters Wastewater filter media Wood pallets Disposable clothing... cartridge filters Paper hand towels B. Exempt Nickel or Chromium-Bearing Materials when Generated by Any... Nickel, chromium, and iron catalysts Nickel-cadmium and nickel-iron batteries Filter cake from wet...

  17. 40 CFR Appendix Xii to Part 266 - Nickel or Chromium-Bearing Materials that may be Processed in Exempt Nickel-Chromium Recovery...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sweepings Air filters Electroplating bath filters Wastewater filter media Wood pallets Disposable clothing... cartridge filters Paper hand towels B. Exempt Nickel or Chromium-Bearing Materials when Generated by Any... Nickel, chromium, and iron catalysts Nickel-cadmium and nickel-iron batteries Filter cake from wet...

  18. 40 CFR Appendix Xii to Part 266 - Nickel or Chromium-Bearing Materials that may be Processed in Exempt Nickel-Chromium Recovery...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sweepings Air filters Electroplating bath filters Wastewater filter media Wood pallets Disposable clothing... cartridge filters Paper hand towels B. Exempt Nickel or Chromium-Bearing Materials when Generated by Any... Nickel, chromium, and iron catalysts Nickel-cadmium and nickel-iron batteries Filter cake from wet...

  19. Contemplating the feasibility of vermiculate blended chitosan for heavy metal removal from simulated industrial wastewater

    NASA Astrophysics Data System (ADS)

    Prakash, N.; Soundarrajan, M.; Arungalai Vendan, S.; Sudha, P. N.; Renganathan, N. G.

    2017-12-01

    Wastewater contaminated by heavy metals pose great challenges as they are non biodegradable, toxic and carcinogenic to the soil and aquifers. Vermiculite blended with chitosan have been used to remove Cr(VI) and Cd(II) from the industrial wastewater. The results indicate that the vermiculite blended with chitosan adsorb Cr(VI) and Cd(II) from industrial waste water. Batch adsorption experiments were performed as a function of pH 5.0 and 5.5 respectively for chromium and cadmium. The adsorption rate was observed to be 72 and 71 % of chromium and cadmium respectively. The initial optimum contact time for Cr(VI) was 300 min with 59.2 % adsorption and 300 min for Cd(II) with 71.5 % adsorption. Whereas, at 4-6 there is saturation, increasing the solid to liquid ratio for chitosan biopolymers increases the number of active sites available for adsorption. The optimum pH required for maximum adsorption was found to be 5.0 and 5.5 for chromium and cadmium respectively. The experimental equilibrium adsorption data were fitted using Langmuir and Freundlich equations. It was observed that adsorption kinetics of both the metal ions on vermiculite blended chitosan is well be analyzed with pseudo-second-order model. The negative free energy change of adsorption indicates that the process was spontaneous and vermiculite blended chitosan was a favourable adsorbent for both the metals.

  20. E-cigarettes as a source of toxic and potentially carcinogenic metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Catherine Ann, E-mail: chess@prev.org

    Background and aims: The popularity of electronic cigarette devices is growing worldwide. The health impact of e-cigarette use, however, remains unclear. E-cigarettes are marketed as a safer alternative to cigarettes. The aim of this research was the characterization and quantification of toxic metal concentrations in five, nationally popular brands of cig-a-like e-cigarettes. Methods: We analyzed the cartomizer liquid in 10 cartomizer refills for each of five brands by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Results: All of the tested metals (cadmium, chromium, lead, manganese and nickel) were found in the e-liquids analyzed. Across all analyzed brands, mean (SD) concentrations rangedmore » from 4.89 (0.893) to 1970 (1540) μg/L for lead, 53.9 (6.95) to 2110 (5220) μg/L for chromium and 58.7 (22.4) to 22,600 (24,400) μg/L for nickel. Manganese concentrations ranged from 28.7 (9.79) to 6910.2 (12,200) μg/L. We found marked variability in nickel and chromium concentration within and between brands, which may come from heating elements. Conclusion: Additional research is needed to evaluate whether e-cigarettes represent a relevant exposure pathway for toxic metals in users. - Highlights: • Certain brands of cig-a-like e-cigarettes contain high levels of nickel and chromium. • Cig-a-likes contain low levels of cadmium, compared to tobacco cigarettes. • Nickel and chromium in the e-liquid of cig-a-likes may come from nichrome heating coils.« less

  1. Exposure to Nickel, Chromium, or Cadmium Causes Distinct Changes in the Gene Expression Patterns of a Rat Liver Derived Cell Line

    DTIC Science & Technology

    2011-11-16

    nickel, cadmium, and chromium are toxic industrial chemicals with an exposure. While these substances are known to produce adverse health effects leading...in both occupational and environmental settings that may cause harmful outcomes. While these substances are known to produce adverse health effects...that particular bin. A chi-squared test was used to test bin enrichment ( p ≤0.05). Probe sets that did not contain any biological process annotation were

  2. Cadmium

    Cancer.gov

    Learn about cadmium, which may raise your risk of lung cancer. Cadmium is a natural element: all soils and rocks contain some cadmium. Exposure occurs mostly where cadmium products (such as batteries, pigments, metal coatings, and plastics) are made or recycled. Tobacco smoke also contains cadmium.

  3. Heavy metals in hair of wild canids from the Brazilian Cerrado.

    PubMed

    Curi, Nelson Henrique de Almeida; Brait, Carlos Henrique Hoff; Antoniosi Filho, Nelson Roberto; Talamoni, Sônia Aparecida

    2012-06-01

    In this study, we aimed to assess whether free-ranging wild canids are exposed to heavy metals in one of the most developed and populated regions of Brazil. Hair of 26 wild canids (maned wolves Chrysocyon brachyurus, crab-eating foxes Cerdocyon thous, and hoary foxes Lycalopex vetulus) from the Cerrado biome in Southeast Brazil were analyzed by spectrophotometry to detect cadmium, chromium, and lead, and also the essential copper, iron, manganese, and zinc traces. All samples showed traces of copper, iron, manganese, and zinc. Non-essential lead was detected in 57% (2.35 ± 0.99 mg/kg), and chromium in 88% (2.98 ± 1.56 mg/kg) of samples. Cadmium traces (detection limit 0.8 mg/kg) were not found. Crab-eating foxes had more copper, iron, and manganese in hair than maned wolves. Correlations among element levels differed between maned wolves and crab-eating foxes. Concentrations of chromium and lead were outstandingly higher than in wild canids from other areas. Addressing the causes of such levels and the impacts of the heavy metal pollution in Neotropical ecosystems is urgent for animal health and conservation purposes. We argue that heavy metal pollution should be considered as dangerous threats to wildlife health in Brazil and recommend hair sampling as a biomonitoring tool for heavy metals in Neotropical terrestrial mammals.

  4. Metal biosorption-flotation. Application to cadmium removal.

    PubMed

    Matis, K A; Zouboulis, A I; Grigoriadou, A A; Lazaridis, N K; Ekateriniadou, L V

    1996-05-01

    Biosorption using suspended non-living biomass, and flotation (for consequent solid/liquid separation of the metal-loaded biomass) have been studied in the laboratory as a possible combined process, for the removal of toxic metals (i.e., cadmium) from dilute aqueous solutions. The various parameters of the process were investigated in depth, including re-use of biosorbent. A filter aid (contained in the biomass industrial waste used) was found not really to interfere. Zeta-potential measurements of the aforementioned system were also carried out. Promising results were obtained during continuous-flow experiments. A flotation residence time of 4 min was achieved. Metal removal and suspended biomass recovery were generally over 95%.

  5. FATE AND TRANSPORT OF EMISSIONS FOR SEVERAL TRACE METALS OVER THE UNITED STATES

    EPA Science Inventory

    A regional model for atmospheric photochemistry and particulate matter is used to predict the fate and transport of five trace metals: lead, manganese, total chromium, nickel, and cadmium over the continental United States during January and July 2001. Predicted concentrations of...

  6. Survey of metal tolerance in moderately halophilic eubacteria.

    PubMed Central

    Nieto, J J; Fernández-Castillo, R; Márquez, M C; Ventosa, A; Quesada, E; Ruiz-Berraquero, F

    1989-01-01

    The tolerance patterns, expressed as MICs, for 250 moderately halophilic eubacteria to 10 heavy metals were surveyed by using an agar dilution method. The moderate halophiles tested included 12 culture collection strains and fresh isolates representative of Deleya halophila (37 strains), Acinetobacter sp. (24 strains), Flavobacterium sp. (28 strains), and 149 moderately halophilic gram-positive cocci included in the genera Marinococcus, Sporosarcina, Micrococcus, and Staphylococcus. On the basis of the MICs, the collection strains showed, overall, similar responses to silver, cobalt, mercury, nickel, lead, and zinc. All were sensitive to silver, mercury, and zinc and tolerant of lead. The response to arsenate, cadmium, chromium, and copper was very heterogeneous. The metal susceptibility levels of the 238 freshly isolated strains were, in general, very heterogeneous among the four taxonomic groups as well as within the strains included in each group. The highest toxicities were found with mercury, silver, and zinc, while arsenate showed the lowest activity. All these strains were tolerant of nickel, lead, and chromium and sensitive to silver and mercury. Acinetobacter sp. strains were the most heavy-metal tolerant, with the majority of them showing tolerance of eight different metal ions. In contrast, Flavobacterium sp. strains were the most metal sensitive. The influence of salinity and yeast extract concentrations of the culture medium on the toxicity of the heavy metals tested for some representative strains was also studied. Lowering the salinity, in general, led to enhanced sensitivity to cadmium and, in some cases, to cobalt and copper. However, increasing the salinity resulted in only a slight decrease in the cadmium, copper, and nickel toxicities.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2802612

  7. Survey of metal tolerance in moderately halophilic eubacteria.

    PubMed

    Nieto, J J; Fernández-Castillo, R; Márquez, M C; Ventosa, A; Quesada, E; Ruiz-Berraquero, F

    1989-09-01

    The tolerance patterns, expressed as MICs, for 250 moderately halophilic eubacteria to 10 heavy metals were surveyed by using an agar dilution method. The moderate halophiles tested included 12 culture collection strains and fresh isolates representative of Deleya halophila (37 strains), Acinetobacter sp. (24 strains), Flavobacterium sp. (28 strains), and 149 moderately halophilic gram-positive cocci included in the genera Marinococcus, Sporosarcina, Micrococcus, and Staphylococcus. On the basis of the MICs, the collection strains showed, overall, similar responses to silver, cobalt, mercury, nickel, lead, and zinc. All were sensitive to silver, mercury, and zinc and tolerant of lead. The response to arsenate, cadmium, chromium, and copper was very heterogeneous. The metal susceptibility levels of the 238 freshly isolated strains were, in general, very heterogeneous among the four taxonomic groups as well as within the strains included in each group. The highest toxicities were found with mercury, silver, and zinc, while arsenate showed the lowest activity. All these strains were tolerant of nickel, lead, and chromium and sensitive to silver and mercury. Acinetobacter sp. strains were the most heavy-metal tolerant, with the majority of them showing tolerance of eight different metal ions. In contrast, Flavobacterium sp. strains were the most metal sensitive. The influence of salinity and yeast extract concentrations of the culture medium on the toxicity of the heavy metals tested for some representative strains was also studied. Lowering the salinity, in general, led to enhanced sensitivity to cadmium and, in some cases, to cobalt and copper. However, increasing the salinity resulted in only a slight decrease in the cadmium, copper, and nickel toxicities.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Studies on heavy metal contamination in Godavari river basin

    NASA Astrophysics Data System (ADS)

    Hussain, Jakir; Husain, Ikbal; Arif, Mohammed; Gupta, Nidhi

    2017-12-01

    Surface water samples from Godavari river basin was analyzed quantitatively for the concentration of eight heavy metals such as arsenic, cadmium, chromium, copper, iron, lead, nickel and zinc using atomic absorption spectrophotometer. The analyzed data revealed that iron and zinc metals were found to be the most abundant metals in the river Godavari and its tributaries. Iron (Fe) recorded the highest, while cadmium (Cd) had the least concentration. Arsenic, cadmium, chromium, iron and zinc metals are within the acceptable limit of BIS (Bureau of Indian Standards (BIS) 1050 (2012) Specification for drinking water, pp 1-5). The analysis of Godavari river and its tributary's water samples reveals that the water is contaminated at selected points which are not suitable for drinking. Nickel and Copper concentration is above acceptable limit and other metal concentration is within the acceptable limit. Comprehensive study of the results reveals that out of 18 water quality stations monitored, water samples collected at 7 water quality stations are found to be within the permissible limit for all purposes. While Rajegaon, Tekra, Nandgaon, P. G. Bridge, Bhatpalli, Kumhari, Pauni, Hivra, Ashti, Bamini, and Jagda stations were beyond the desirable limit due to presence of copper and nickel metals. The contents of copper metal ions were higher at some water quality stations on Wunna river (Nandgaon); Wardha river (Hivra) and Wainganga river (Kumhari, Pauni, Ashti) during Feb. 2012, while nickel concentration during Feb. 2012, June 2012, March 2013 and Aug. 2013 at some water quality stations on rivers Bagh, Indravati, Pranhita, Wunna, Penganga, Peddavagu, Wainganga and Wardha. It can be concluded that rapid population growth and industrialization have brought about resource degradation and a decline in environmental quality.

  9. Heavy metals in laughing gulls: Gender, age and tissue differences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gochfeld, M.; Belant, J.L.; Shukla, T.

    1996-12-01

    The authors examined concentrations of lead, cadmium, mercury, manganese, selenium, and chromium in feathers, liver, kidney, heart, and muscle of known-aged laughing gulls (Larus atricilla) that hatched in Barnegat Bay, New Jersey and were collected at John F. Kennedy International Airport, New York 1 to 7 years later. Concentrations differed significantly among tissues, and tissue entered all the regression models explaining the greatest variation in metal levels. Age of bird contributed significantly to the models for lead, cadmium, selenium, and chromium. Although there were significant gender differences in all body measurements except wing length, there were few differences in metalmore » levels. Males had significantly higher lead levels in feathers, and females had significantly higher selenium levels in heart and muscle tissue. For lead, 3-year olds had the highest levels in the heart, liver, and kidney, and levels were lower thereafter. Mercury levels in feathers and heart decreased significantly with age. Cadmium levels increased significantly with age for feathers, heart, liver, and muscle, although there was a slight decrease in the 7-year olds. Selenium levels decreased significantly with age for all tissues. Chromium levels increased with age for liver and heart.« less

  10. Metal concentrations in cosmetics commonly used in Nigeria.

    PubMed

    Orisakwe, Orish Ebere; Otaraku, Jonathan Oye

    2013-01-01

    Trace amounts of potentially toxic metals can be either intentionally added to cosmetics or present as impurities in the raw materials. In the present study, the levels of lead, cadmium, nickel, chromium, and mercury have been assessed in 28 body creams and lotions, 10 powders, 3 soaps, 5 eye make-ups, and 4 lipsticks widely available on Nigerian markets. The increases over suggested or mandated levels of lead in these creams and lotions ranged from 6.1 to 45.9 and from 1.2 to 9.2 mg kg⁻¹ when compared with Cosmetic Ingredients Review Expert Panel 2007 and German safe maximum permissible limit of lead in cosmetics, respectively. About 61% of the body cosmetics, the lotions, and the creams contained detectable levels of nickel ranging from 1.1 to 6.4-9.2 mg kg⁻¹. Chromium and mercury were undetected in 100% of the cosmetic product. Taken together, lead and cadmium were high in creams and lotions. Most of the imported creams and creamy white coloured cosmetics contained higher levels of metal contaminants than the other colours. Regulatory Agencies in developing nations should take appropriate action for cosmetics that contain lead and cadmium beyond the reference limits.

  11. Metal Concentrations in Cosmetics Commonly Used in Nigeria

    PubMed Central

    Orisakwe, Orish Ebere; Otaraku, Jonathan Oye

    2013-01-01

    Trace amounts of potentially toxic metals can be either intentionally added to cosmetics or present as impurities in the raw materials. In the present study, the levels of lead, cadmium, nickel, chromium, and mercury have been assessed in 28 body creams and lotions, 10 powders, 3 soaps, 5 eye make-ups, and 4 lipsticks widely available on Nigerian markets. The increases over suggested or mandated levels of lead in these creams and lotions ranged from 6.1 to 45.9 and from 1.2 to 9.2 mg kg−1 when compared with Cosmetic Ingredients Review Expert Panel 2007 and German safe maximum permissible limit of lead in cosmetics, respectively. About 61% of the body cosmetics, the lotions, and the creams contained detectable levels of nickel ranging from 1.1 to 6.4–9.2 mg kg−1. Chromium and mercury were undetected in 100% of the cosmetic product. Taken together, lead and cadmium were high in creams and lotions. Most of the imported creams and creamy white coloured cosmetics contained higher levels of metal contaminants than the other colours. Regulatory Agencies in developing nations should take appropriate action for cosmetics that contain lead and cadmium beyond the reference limits. PMID:24385889

  12. Release of cobalt and chromium ions into the serum following implantation of the metal-on-metal Maverick-type artificial lumbar disc (Medtronic Sofamor Danek).

    PubMed

    Zeh, Alexander; Planert, Michael; Siegert, Gabriele; Lattke, Peter; Held, Andreas; Hein, Werner

    2007-02-01

    Cross-sectional study of 10 patients to measure the serum levels of cobalt and chromium after TDA. To investigate the release of cobalt and chromium ions into the serum following implantation of the metal-on-metal Maverick-type artificial lumbar disc. In total hip endoprosthetics and consequently for TDA (total disc arthroplasty), metal-on-metal combinations are used with the aim of reducing wear debris. In metal-on-metal TDA the release of metal ions has until now been secondary to the main discussion. We investigated the serum cobalt and chromium concentration following implantation of 15 Maverick TDAs (monosegmental L5-S1, n = 5; bisegmental L4-L5 and L5-S1, n = 5; average age, 36.5 years). Five healthy subjects (no metal implants) acted as a control group. The measurements of the metals were carried out using the HITACHI Z-8200 AAS polarized Zeeman atomic absorption spectrometer after an average of 14.8 months. The concentrations of cobalt and chromium ions in the serum amounted on average to 4.75 microg/L (SD, 2.71) for cobalt and 1.10 microg/L (SD, 1.24) for chromium. Compared with control group, both the chromium and cobalt levels in the serum showed significant increases (Mann-Whitney U test, P = 0.0120). At follow-up,the Oswestry Disability Score was on average significantly decreased by 24.4 points (L5-S1) (t test, P < 0.05) and by 26.8 points (L4-S1) (t test, P < 0.05). The improved clinical situation is also represented by a significant decrease of the Visual Analog Pain Scale of 42.2 points after the follow-up (t test, P < 0.05). Significant systemic release of Cr/Co was proven in the serum compared with the control group. The concentrations of Cr/Co measured in the serum are similar in terms of their level to the values measured in THA metal-on-metal combinations or exceed these values given in the literature. Long-term implication of this metal exposure is unknown and should be studied further.

  13. [Analysis of heavy metals monitoring results in food in Shaoxing in 2014].

    PubMed

    Fan, Wei; Wang, Jing; Wu, Hongmiao; Lian, Lingjun; Du, Sai; Chen, Li

    2015-11-01

    To investigate heavy metals contamination level in food in Shaoxing, and to provide basis evidence for supervising heavy metals pollution in food and environmental pollution control in Shaoxing. Food samples in 2014 were detected for lead, cadmium, mercury, arsenic, nickel, copper and chromium by national standard methods, and the results were evaluated by GB 2762-2012 Pollutants limits in food. 1384 samples from 10 food categories were collected and tested for lead, cadmium, mercury and arsenic, the over standard rates were 2.0%, 3.0%, 1.5% and 0.22%, respectively, the median were 0.019, 0.0085, 0.0024 and 0.015 mg/kg, respectively; 273 samples were collected and tested for nickel, the detection rate was 48.4%, the median was 0.010 mg/kg; 255 samples were collected and tested for chromium, the detection rate was 14.9%, the median was 0.0050 mg/kg; 486 samples were collected and tested for copper, the detection rate was 94.0%, the median was 1.34 mg/kg. The heavy metals over standard rate of aquatic products, animal internal organs and grain were relatively high, 16.9%, 7.9% and 7.3% cadmium in swimming crabs exceeded standard seriously, the over standard rate was 38.9%. The overall pollution of heavy metals in food are not high in Shaoxing in 2014, but some food (aquatic products, animal internal organs and grain) pollution are relatively outstanding, and have the over standard problems of lead, cadmium, mercury and arsenic.

  14. Environmental epigenetics in metal exposure

    PubMed Central

    Martinez-Zamudio, Ricardo

    2011-01-01

    Although it is widely accepted that chronic exposure to arsenite, nickel, chromium and cadmium increases cancer incidence in individuals, the molecular mechanisms underlying their ability to transform cells remain largely unknown. Carcinogenic metals are typically weak mutagens, suggesting that genetic-based mechanisms may not be primarily responsible for metal-induced carcinogenesis. Growing evidence shows that environmental metal exposure involves changes in epigenetic marks, which may lead to a possible link between heritable changes in gene expression and disease susceptibility and development. Here, we review recent advances in the understanding of metal exposure affecting epigenetic marks and discuss establishment of heritable gene expression in metal-induced carcinogenesis. PMID:21610324

  15. Kelp as a bioindicator: does it matter which part of 5 m long plant is used for metal analysis?

    PubMed

    Burger, Joanna; Gochfeld, Michael; Jeitner, Christian; Gray, Matt; Shukla, Tara; Shukla, Sheila; Burke, Sean

    2007-05-01

    Kelp may be useful as a bioindicator because they are primary producers that are eaten by higher trophic level organisms, including people and livestock. Often when kelp or other algae species are used as bioindicators, the whole organism is homogenized. However, some kelp can be over 25 m long from their holdfast to the tip of the blade, making it important to understand how contaminant levels vary throughout the plant. We compared the levels of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in five different parts of the kelp Alaria nana to examine the variability of metal distribution. To be useful as a bioindicator, it is critical to know whether levels are constant throughout the kelp, or which part is the highest accumulator. Kelp were collected on Adak Island in the Aleutian Chain of Alaska from the Adak Harbor and Clam Cove, which opens onto the Bering Sea. In addition to determining if the levels differ in different parts of the kelp, we wanted to determine whether there were locational or size-related differences. Regression models indicated that between 14% and 43% of the variation in the levels of arsenic, cadmium, chromium, manganese, mercury, and selenium was explained by total length, part of the plant, and location (but not for lead). The main contributors to variability were length (for arsenic and selenium), location (mercury), and part of the plant (for arsenic, cadmium, chromium and manganese). The higher levels of selenium occurred at Clam Cove, while mercury was higher at the harbor. Where there was a significant difference among parts, the holdfast had the highest levels, although the differences were not great. These data indicate that consistency should be applied in selecting the part of kelp (and the length) to be used as a bioindicator. While any part of Alaria could be collected for some metals, for arsenic, cadmium, chromium, and manganese a conversion should be made among parts. In the Aleutians the holdfast can be

  16. Cup inclination angle of greater than 50 degrees increases whole blood concentrations of cobalt and chromium ions after metal-on-metal hip resurfacing.

    PubMed

    Hart, A J; Buddhdev, P; Winship, P; Faria, N; Powell, J J; Skinner, J A

    2008-01-01

    A cup inclination angle greater than 45 degrees is associated with increased wear rates of metal on polyethylene (MOP) hip replacements. The same maybe true for metal on metal (MOM) hips yet this has not been clearly shown. We measured the acetabular inclination angle from plain radiographs, and whole blood metal ion levels using Inductively Coupled Plasma Mass Spectrometry of 26 patients (mean Harris Hip Score 94 and mean time post op of 22 months) with Birmingham Hip Resurfacings. We identified a threshold level of 50 degrees cup inclination. Below this threshold, the mean whole blood cobalt and chromium were 1.6 ppb and 1.88 ppb respectively; above this threshold, the mean blood cobalt and chromium were 4.45 ppb and 4.3 ppb respectively. These differences were significant cobalt (p<0.01) and chromium (p=0.01). All patients above the threshold had metal levels greater than any of the patients below the threshold. For 14 patients, who returned one year later for a repeat blood metal level measurement, cobalt and chromium levels were very similar. The effect of an acetabular inclination angle of greater than 50 degrees on wear rates of MOM hips, as measured through blood metal ion levels, appears to be similar to that seen with MOP hips. Additionally, our new analytical methods may allow blood metal levels to be used as a realistic biomarker of in vivo wear rate of MOM hips. The implication is that metal levels can be minimised with optimal orientation of the acetabular component.

  17. Time-dependent release of cobalt and chromium ions into the serum following implantation of the metal-on-metal Maverick type artificial lumbar disc (Medtronic Sofamor Danek).

    PubMed

    Zeh, Alexander; Becker, Claudia; Planert, Michael; Lattke, Peter; Wohlrab, David

    2009-06-01

    In total hip endoprosthetics and consequently for TDA, metal-on-metal combinations are used with the aim of reducing wear debris. In metal-on-metal TDA the release of metal ions has until now been secondary to the main discussion. In order to investigate the ion release following the implantation of the metal-on-metal Maverick type artificial lumbar disc we measured the serum cobalt and chromium concentration following implantation of 15 Maverick TDAs (monosegmental L5/S1, n = 5; bisegmental L4/5 and L5/S1, n = 5; average age 36.5 years). Five healthy subjects (no metal implants) acted as a control group. The two measurements of the metals were carried out using the absorption spectrometry after an average of 14.8 and 36.7 months. In summary, the concentrations of cobalt and chromium ions in the serum at both follow-ups amounted on average to 3.3 microg/l (SD 2.6) for cobalt and 2.2 microg/l (SD 1.5) for chromium. These figures are similar to the figures shown in the literature following the implantation of metal-on-metal THA. After a comparison to the control group, both the chromium and cobalt levels in the serum showed visible increases regarding the first and the second follow-up. As there is still a significant release of cobalt and chromium into the serum after an average follow-up of 36.7 months a persistent release of these ions must be taken into consideration. Despite the evaluation of the systemic and local effects of the release of Cr/Co from orthopaedic implants has not yet been concluded, one should take into consideration an explanation given to patients scheduled for the implantation of a metal-on-metal TDA about these results and the benefits/risks of alternative combinations of gliding contact surfaces.

  18. ENVIRONMENTAL CONTROL OF TOXIC METAL AIR EMISSIONS FROM THE COMBUSTION OF COAL AND WASTES

    EPA Science Inventory

    The paper is concerned with the partitioning of toxic metals (e.g., arsenic, selenium, mercury, chromium, lead, and cadmium) during combustion, and with the mitigation of their effect on the environment using high-temperature sorbents. The paper is divided into three parts: (1) t...

  19. Influence of clay on the adsorption of heavy metals like copper and cadmium on chitosan.

    PubMed

    Prakash, Nagan; Latha, Srinivasan; Sudha, Persu N; Renganathan, N Gopalan

    2013-02-01

    The influence of clay on the adsorption of heavy metals like copper and cadmium on chitosan from simulated industrial wastewater is evaluated. Chitosan-clay blend with ratio of (1:1), (1:2), and (2:1) have been prepared, and these were used as membranes to remove copper and cadmium ions from synthetic industrial wastewater. The chemical parameters for quantities of adsorption of heavy metal contamination have been done, and the kinetics of adsorption has also been carried out. Clay provides enough absorbable sites to overcome mass transfer limitations. The number of absorbable sites for cadmium is more compared to copper, and thus the rate of recovery of cadmium is faster than copper, and the percentage removal of cadmium is more than copper at all times on clay over nylon 6. This difference indicates the influence of clay in the adsorption of heavy metals in comparison to synthetic polymer nylon 6. Rate constant for first-order kinetics of adsorption, k (1), for copper and cadmium is less than that of clay, which clearly indicates that clay, which is a natural polymer, is more kinetically favored compared to synthetic polymer. The difference in the intraparticle diffusion in both the natural and synthetic polymer is not much, and it suggests that the particle diffusion mechanism is the same in both cases. Copper and cadmium recovery is parallel at all times. The percentage of removal of copper increased with an increase in pH from 3 to 5. In the case of cadmium containing wastewater, the maximum removal of metal occurred at pH 5. The uptake amount of Cu(2+) ions on chitosan increased rapidly with increasing the contact time from 0 to 360 min and then reaches equilibrium after 360 min, and the equilibrium constant for copper and cadmium ions are more or less the same for the adsorption reaction. There are more adsorption sites for cadmium in the presence of clay and mass transfer limitation is avoided without resorting to rotation, which is the highlight of the

  20. Mercury and other metals in eggs and feathers of glaucous-winged gulls (Larus glaucescens) in the Aleutians

    PubMed Central

    Gochfeld, Michael; Jeitner, Christian; Burke, Sean; Volz, Conrad D.; Snigaroff, Ronald; Snigaroff, Daniel; Shukla, Tara; Shukla, Sheila

    2014-01-01

    Levels of mercury and other contaminants should be lower in birds nesting on isolated oceanic islands and at high latitudes without any local or regional sources of contamination, compared to more urban and industrialized temperate regions. We examined concentrations of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in the eggs, and the feathers of fledgling and adult glaucous-winged gulls (Larus glaucescens) nesting in breeding colonies on Adak, Amchitka, and Kiska Islands in the Aleutian Chain of Alaska in the Bering Sea/North Pacific. We tested the following null hypotheses: 1) There were no differences in metal levels among eggs and feathers of adult and fledgling glaucous-winged gulls, 2) There were no differences in metal levels among gulls nesting near the three underground nuclear test sites (Long Shot 1965, Milrow 1969, Cannikin 1971) on Amchitka, 3) There were no differences in metal levels among the three islands, and 4) There were no gender-related differences in metal levels. All four null hypotheses were rejected at the 0.05 level, although there were few differences among the three test sites on Amchitka. Eggs had the lowest levels of cadmium, lead, and mercury, and the feathers of adults had the lowest levels of selenium. Comparing only adults and fledglings, adults had higher levels of cadmium, chromium, lead and mercury, and fledglings had higher levels of arsenic, manganese and selenium. There were few consistent interisland differences, although levels were generally lower for eggs and feathers from gulls on Amchitka compared to the other islands. Arsenic was higher in both adult feathers and eggs from Amchitka compared to Adak, and chromium and lead were higher in adult feathers and eggs from Adak compared to Amchitka. Mercury and arsenic, and chromium and manganese levels were significantly correlated in the feathers of both adult and fledgling gulls. The feathers of males had significantly higher levels of chromium and

  1. Tolerance of Chemoorganotrophic Bioleaching Microorganisms to Heavy Metal and Alkaline Stresses

    PubMed Central

    Monballiu, Annick; Cardon, Nele; Tri Nguyen, Minh; Cornelly, Christel; Meesschaert, Boudewijn; Chiang, Yi Wai

    2015-01-01

    The bioleaching potential of the bacterium Bacillus mucilaginosus and the fungus Aspergillus niger towards industrial residues was investigated by assessing their response towards various heavy metals (including arsenic, cadmium, cobalt, chromium, nickel, lead, and zinc) and elevated pH. The plate diffusion method was performed for each metal to determine the toxicity effect. Liquid batch cultures were set up for more quantitative evaluation as well as for studying the influence of basicity. Growth curves were prepared using bacterial/fungal growth counting techniques such as plate counting, optical density measurement, and dry biomass determination. Cadmium, nickel, and arsenite had a negative influence on the growth of B. mucilaginosus, whereas A. niger was sensitive to cadmium and arsenate. However, it was shown that growth recovered when microorganisms cultured in the presence of these metals were inoculated onto metal-free medium. Based on the findings of the bacteriostatic/fungistatic effect of the metals and the adaptability of the microorganisms to fairly elevated pH values, it is concluded that both strains have potential applicability for further research concerning bioleaching of alkaline waste materials. PMID:26236176

  2. Exposure to toxic metals triggers unique responses from the rat gut microbiota.

    PubMed

    Richardson, Joshua B; Dancy, Blair C R; Horton, Cassandra L; Lee, Young S; Madejczyk, Michael S; Xu, Zhenjiang Zech; Ackermann, Gail; Humphrey, Gregory; Palacios, Gustavo; Knight, Rob; Lewis, John A

    2018-04-26

    Our understanding of the interaction between the gut microbiota and host health has recently improved dramatically. However, the effects of toxic metal exposure on the gut microbiota remain poorly characterized. As this microbiota creates a critical interface between the external environment and the host's cells, it may play an important role in host outcomes during exposure. We therefore used 16S ribosomal RNA (rRNA) gene sequencing to track changes in the gut microbiota composition of rats exposed to heavy metals. Rats were exposed daily for five days to arsenic, cadmium, cobalt, chromium, nickel, or a vehicle control. Significant changes to microbiota composition were observed in response to high doses of chromium and cobalt, and significant dose-dependent changes were observed in response to arsenic, cadmium and nickel. Many of these perturbations were not uniform across metals. However, bacteria with higher numbers of iron-importing gene orthologs were overly represented after exposure to arsenic and nickel, suggesting some possibility of a shared response. These findings support the utility of the microbiota as a pre-clinical tool for identifying exposures to specific heavy metals. It is also clear that characterizing changes to the functional capabilities of microbiota is critical to understanding responses to metal exposure.

  3. Formation mechanism of the secondary building unit in a chromium terephthalate metal-organic framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantu Cantu, David; McGrail, B. Peter; Glezakou, Vassiliki Alexandra

    2014-09-18

    Based on density functional theory calculations and simulation, a detailed mechanism is presented on the formation of the secondary building unit (SBU) of MIL-101, a chromium terephthalate metal-organic framework (MOF). SBU formation is key to MOF nucleation, the rate-limiting step in the formation process of many MOFs. A series of reactions that lead to the formation of the SBU of MIL-101 is proposed in this work. Initial rate-limiting reactions form the metal cluster with three chromium (III) atoms linked to a central bridging oxygen. Terephthalate linkers play a key role as chromium (III) atoms are joined to linker carboxylate groupsmore » prior to the placement of the central bridging oxygen. Multiple linker addition reactions, which follow in different paths due to structural isomers, are limited by the removal of water molecules in the first chromium coordination shell. The least energy path is identified were all linkers on one face of the metal center plane are added first. A simple kinetic model based on transition state theory shows the rate of secondary building unit formation similar to the rate metal-organic framework nucleation. The authors are thankful to Dr. R. Rousseau for a critical reading of the manuscript. This research would not have been possible without the support of the Office of Fossil Energy, U.S. Department of Energy. This research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and the PNNL Institutional Computing (PIC) program located at Pacific Northwest National Laboratory.« less

  4. PARTITIONING OF THE REFRACTORY METALS, NICKEL AND CHROMIUM, IN COMBUSTION SYSTEMS

    EPA Science Inventory

    The partitioning of nickel (Ni) and Chromium (Cr) in combustion systems was investigated theoretically and experimentally. In comparison to other volatile and semi-volatile metals, both Ni and Cr are usually considered to be refractory (non-volatile). Theoretical predictions ba...

  5. Sublethal Toxicity Endpoints of Heavy Metals to the Nematode Caenorhabditis elegans

    PubMed Central

    Wu, Yue; Wang, Qiang; Li, Huixin

    2016-01-01

    Caenorhabditis elegans, a free-living nematode, is commonly used as a model organism in ecotoxicological studies. The current literatures have provided useful insight into the relative sensitivity of several endpoints, but few direct comparisons of multiple endpoints under a common set of experimental conditions. The objective of this study was to determine appropriate sublethal endpoints to develop an ecotoxicity screening and monitoring system. C. elegans was applied to explore the sublethal toxicity of four heavy metals (copper, zinc, cadmium and chromium). Two physiological endpoints (growth and reproduction), three behavioral endpoints (head thrash frequency, body bend frequency and feeding) and two enzymatic endpoints (acetylcholine esterase [AChE] and superoxide dismutase [SOD]) were selected for the assessment of heavy metal toxicity. The squared correlation coefficients (R2) between the responses observed and fitted by Logit function were higher than 0.90 and the RMSE were lower than 0.10, indicating a good significance statistically. There was no significant difference among the half effect concentration (EC50) endpoints in physiological and behavioral effects of the four heavy metals, indicating similar sensitivity of physiological and behavioral effects. AChE enzyme was more sensitive to copper, zinc, and cadmium than to other physiological and behavioral effects, and SOD enzyme was most sensitive to chromium. The EC50 of copper, zinc, and cadmium, to the AChE enzyme in the nematodes were 0.68 mg/L, 2.76 mg/L, and 0.92 mg/L respectively and the EC50 of chromium to the SOD enzyme in the nematode was 1.58 mg/L. The results of this study showed that there was a good concentration-response relationship between all four heavy metals and the sublethal toxicity effects to C. elegans. Considering these sublethal endpoints in terms of simplicity, accuracy, repeatability and costs of the experiments, feeding is the relatively ideal sublethal toxicity endpoint of

  6. All-alkoxide synthesis of strontium-containing metal oxides

    DOEpatents

    Boyle, Timothy J.

    2001-01-01

    A method for making strontium-containing metal-oxide ceramic thin films from a precursor liquid by mixing a strontium neo-pentoxide dissolved in an amine solvent and at least one metal alkoxide dissolved in a solvent, said at least one metal alkoxide selected from the group consisting of alkoxides of calcium, barium, bismuth, cadmium, lead, titanium, tantalum, hafnium, tungsten, niobium, zirconium, yttrium, lanthanum, antimony, chromium and thallium, depositing a thin film of the precursor liquid on a substrate, and heating the thin film in the presence of oxygen at between 550 and 700.degree. C.

  7. Development of Sediment Quality Values for Puget Sound. Volume 1.

    DTIC Science & Technology

    1986-09-01

    62 cadmium CHROMIUM,63 chromium COPPER ,64 copper IRON ,65 iron LEAD ,66 lead MANGANES ,67 manganese NICKEL ,68 nickel SELENIUM,69 selenium SILVER ,70...BERYLLIU beryllium 67. CADMIUM cadmium 68. CHROMIUM chromium 69. COPPER copper 70. IRON iron 71. LEAD lead 72. MANGANES manganese 73. NICKEL nickel 74...they can also be strongly influenced by iron and manganese oxide and hydrous oxide surfaces (these phases can scavenge metals under oxidizing

  8. Cadmium--a metallohormone?

    PubMed

    Byrne, Celia; Divekar, Shailaja D; Storchan, Geoffrey B; Parodi, Daniela A; Martin, Mary Beth

    2009-08-01

    Cadmium is a heavy metal that is often referred to as the metal of the 20th century. It is widely used in industry principally in galvanizing and electroplating, in batteries, in electrical conductors, in the manufacture of alloys, pigments, and plastics, and in the stabilization of phosphate fertilizers. As a byproduct of smelters, cadmium is a prevalent environmental contaminant. In the general population, exposure to cadmium occurs primarily through dietary sources, cigarette smoking, and, to a lesser degree, drinking water. Although the metal has no known physiological function, there is evidence to suggest that the cadmium is a potent metallohormone. This review summarizes the increasing evidence that cadmium mimics the function of steroid hormones, addresses our current understanding of the mechanism by which cadmium functions as a hormone, and discusses its potential role in development of the hormone dependent cancers.

  9. Ventilation Technical Guide, 2nd Edition

    DTIC Science & Technology

    2013-04-12

    Typical metals found include lead, cadmium, zinc, and chromium . It is difficult to quantify all of the potential exposures associated with blasting...bases. Many of these booths are used to apply some of the most hazardous substances still found in the inventory, including chromium products and...is important to note that some metals used in welding have OSHA specific standards (lead, cadmium, chromium , beryllium, etc.), potentially

  10. Leaching of cadmium, chromium, copper, lead, and zinc from two slag dumps with different environmental exposure periods under dynamic acidic condition.

    PubMed

    Jin, Zhisheng; Liu, Taoze; Yang, Yuangen; Jackson, Daniel

    2014-06-01

    Over the past few decades, zinc smelting activities in Guizhou, China have produced numerous slag dumps, which are often dispersed on roadsides and hill slopes throughout the region. During periods of acid rain, these exposed slags release heavy metals into surface water bodies. A column leaching study was designed to test the potential release of the heavy metals cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) under simulated acid rain events. Two slags with varying environmental exposure periods were packed in columns and subjected to leaching solutions of pH 3.5, 5.5, or DI H2O at intervals of 1, 7, 14, 28, 56d. Pulse concentrations of Cd in leachate were found above 5μg/L, Cr, Pb, and Zn >10μg/L, whereas, Cu reached 10μg/L. After five leaching events, the leachability (percentage of cumulative heavy metal leached after five leaching events as in its respective total concentration in slags) of Cd was 0.05 percent and 0.035 percent from the old and young slag, respectively. Cr (0.035 percent and 0.05 percent) was greater than Cu (0.002 percent and 0.005 percent) and Zn (0.006 percent and 0.003 percent), while the lowest leachability was observed for Pb (0.0005 percent and 0.0002 percent) from the old and young slags, respectively. Reaction rates (release amount of heavy metals in certain period of leaching) of heavy metals in the leachates demonstrated the sequence of Zn>Cr>Cd, Cu>Pb. Leaching release of heavy metals was jointly affected by the pH of leaching solution and mineral composition of slags (including chemical forms of Cd, Cr, Cu, Pb, and Zn). Environmental exposure period of slags, resulting in the alteration of minerals, could affect the release process of heavy metals in leaching as well. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Epidemiological and experimental aspects of metal carcinogenesis: physicochemical properties, kinetics, and the active species.

    PubMed Central

    Magos, L

    1991-01-01

    The carcinogenic properties of selected metals and their compounds are reviewed to provide a useful reference for existing knowledge on relationships between physical and chemical forms, kinetics and carcinogenic potential and between epidemiology, bioassays, and short-term tests. Extensive consideration is given to arsenic, beryllium, cadmium, chromium, lead, and nickel. Other metals such as antimony, cobalt, copper, iron, manganese, selenium, and zinc are discussed briefly. PMID:1821370

  12. Cadmium - A metallohormone?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrne, Celia; Divekar, Shailaja D.; Storchan, Geoffrey B.

    2009-08-01

    Cadmium is a heavy metal that is often referred to as the metal of the 20th century. It is widely used in industry principally in galvanizing and electroplating, in batteries, in electrical conductors, in the manufacture of alloys, pigments, and plastics, and in the stabilization of phosphate fertilizers. As a byproduct of smelters, cadmium is a prevalent environmental contaminant. In the general population, exposure to cadmium occurs primarily through dietary sources, cigarette smoking, and, to a lesser degree, drinking water. Although the metal has no known physiological function, there is evidence to suggest that the cadmium is a potent metallohormone.more » This review summarizes the increasing evidence that cadmium mimics the function of steroid hormones, addresses our current understanding of the mechanism by which cadmium functions as a hormone, and discusses its potential role in development of the hormone dependent cancers.« less

  13. Pollution Problem in River Kabul: Accumulation Estimates of Heavy Metals in Native Fish Species

    PubMed Central

    Ahmad, Habib; Yousafzai, Ali Muhammad; Siraj, Muhammad; Ahmad, Rashid; Ahmad, Israr; Nadeem, Muhammad Shahid; Ahmad, Waqar; Akbar, Nazia; Muhammad, Khushi

    2015-01-01

    The contamination of aquatic systems with heavy metals is affecting the fish population and hence results in a decline of productivity rate. River Kabul is a transcountry river originating at Paghman province in Afghanistan and inters in Khyber Pakhtunkhwa province of Pakistan and it is the major source of irrigation and more than 54 fish species have been reported in the river. Present study aimed at the estimation of heavy metals load in the fish living in River Kabul. Heavy metals including chromium, nickel, copper, zinc, cadmium, and lead were determined through atomic absorption spectrophotometer after tissue digestion by adopting standard procedures. Concentrations of these metals were recorded in muscles and liver of five native fish species, namely, Wallago attu, Aorichthys seenghala, Cyprinus carpio, Labeo dyocheilus, and Ompok bimaculatus. The concentrations of chromium, nickel, copper, zinc, and lead were higher in both of the tissues, whereas the concentration of cadmium was comparatively low. However, the concentration of metals was exceeding the RDA (Recommended Dietary Allowance of USA) limits. Hence, continuous fish consumption may create health problems for the consumers. The results of the present study are alarming and suggest implementing environmental laws and initiation of a biomonitoring program of the river. PMID:26339622

  14. Pollution Problem in River Kabul: Accumulation Estimates of Heavy Metals in Native Fish Species.

    PubMed

    Ahmad, Habib; Yousafzai, Ali Muhammad; Siraj, Muhammad; Ahmad, Rashid; Ahmad, Israr; Nadeem, Muhammad Shahid; Ahmad, Waqar; Akbar, Nazia; Muhammad, Khushi

    2015-01-01

    The contamination of aquatic systems with heavy metals is affecting the fish population and hence results in a decline of productivity rate. River Kabul is a transcountry river originating at Paghman province in Afghanistan and inters in Khyber Pakhtunkhwa province of Pakistan and it is the major source of irrigation and more than 54 fish species have been reported in the river. Present study aimed at the estimation of heavy metals load in the fish living in River Kabul. Heavy metals including chromium, nickel, copper, zinc, cadmium, and lead were determined through atomic absorption spectrophotometer after tissue digestion by adopting standard procedures. Concentrations of these metals were recorded in muscles and liver of five native fish species, namely, Wallago attu, Aorichthys seenghala, Cyprinus carpio, Labeo dyocheilus, and Ompok bimaculatus. The concentrations of chromium, nickel, copper, zinc, and lead were higher in both of the tissues, whereas the concentration of cadmium was comparatively low. However, the concentration of metals was exceeding the RDA (Recommended Dietary Allowance of USA) limits. Hence, continuous fish consumption may create health problems for the consumers. The results of the present study are alarming and suggest implementing environmental laws and initiation of a biomonitoring program of the river.

  15. Common and metal-specific proteomic responses to cadmium and zinc in the metal tolerant ericoid mycorrhizal fungus Oidiodendron maius Zn.

    PubMed

    Chiapello, M; Martino, E; Perotto, S

    2015-05-01

    Although adaptive metal tolerance may arise in fungal populations in polluted soils, the mechanisms underlying metal-specific tolerance are poorly understood. Comparative proteomics is a powerful tool to identify variation in protein profiles caused by changing environmental conditions, and was used to investigate protein accumulation in a metal tolerant isolate of the ericoid mycorrhizal fungus Oidiodendron maius exposed to zinc and cadmium. Two-dimensional gel electrophoresis and shotgun proteomics followed by mass spectrometry lead to the identification of common and metal-specific proteins and pathways. Proteins selectively induced by cadmium exposure were molecular chaperons of the Hsp90 family, cytoskeletal proteins and components of the translation machinery. Zinc significantly up-regulated metabolic pathways related to energy production and carbohydrates metabolism, likely mirroring zinc adaptation of this fungal isolate. Common proteins induced by the two metal ions were the antioxidant enzyme Cu/Zn superoxide dismutase and ubiquitin. In mycelia exposed to zinc and cadmium, both proteomic techniques also identified agmatinase, an enzyme involved in polyamine biosynthesis. This novel finding suggests that, like plants, polyamines may have important functions in response to abiotic environmental stress in fungi. Genetic evidence also suggests that the biosynthesis of polyamines via an alternative metabolic pathway may be widespread in fungi.

  16. Aerobic transformation of cadmium through metal sulfide biosynthesis in photosynthetic microorganisms

    PubMed Central

    2013-01-01

    Background Cadmium is a non-essential metal that is toxic because of its interference with essential metals such as iron, calcium and zinc causing numerous detrimental metabolic and cellular effects. The amount of this metal in the environment has increased dramatically since the advent of the industrial age as a result of mining activities, the use of fertilizers and sewage sludge in farming, and discharges from manufacturing activities. The metal bioremediation utility of phototrophic microbes has been demonstrated through their ability to detoxify Hg(II) into HgS under aerobic conditions. Metal sulfides are generally very insoluble and therefore, biologically unavailable. Results When Cd(II) was exposed to cells it was bioconverted into CdS by the green alga Chlamydomonas reinhardtii, the red alga Cyanidioschyzon merolae, and the cyanobacterium, Synechoccocus leopoliensis. Supplementation of the two eukaryotic algae with extra sulfate, but not sulfite or cysteine, increased their cadmium tolerances as well as their abilities to produce CdS, indicating an involvement of sulfate assimilation in the detoxification process. However, the combined activities of extracted serine acetyl-transferase (SAT) and O-acetylserine(thiol)lyase (OASTL) used to monitor sulfate assimilation, was not significantly elevated during cell treatments that favored sulfide biosynthesis. It is possible that the prolonged incubation of the experiments occurring over two days could have compensated for the low rates of sulfate assimilation. This was also the case for S. leopoliensis where sulfite and cysteine as well as sulfate supplementation enhanced CdS synthesis. In general, conditions that increased cadmium sulfide production also resulted in elevated cysteine desulfhydrase activities, strongly suggesting that cysteine is the direct source of sulfur for CdS synthesis. Conclusions Cadmium(II) tolerance and CdS formation were significantly enhanced by sulfate supplementation, thus

  17. Effect of metal conditioner on bonding of porcelain to cobalt-chromium alloy

    PubMed Central

    Kajihara, Yutaro; Takenouchi, Yoshihisa; Tanaka, Takuo; Suzuki, Shiro; Minami, Hiroyuki

    2016-01-01

    PURPOSE The purpose of this study was to evaluate the efficacy of two different metal conditioners for non-precious metal alloys for the bonding of porcelain to a cobalt-chromium (Co-Cr) alloy. MATERIALS AND METHODS Disk-shaped specimens (2.5×10.0 mm) were cast with Co-Cr alloy and used as adherend materials. The bonding surfaces were polished with a 600-grid silicon carbide paper and airborne-particle abraded using 110 µm alumina particles. Bonding specimens were fabricated by applying and firing either of the metal conditioners on the airborne-particle abraded surface, followed by firing porcelain into 5 mm in diameter and 3 mm in height. Specimens without metal conditioner were also fabricated. Shear bond strength for each group (n=8) were measured and compared (α=.05). Sectional view of bonding interface was observed by SEM. EDS analysis was performed to determine the chemical elements of metal conditioners and to determine the failure modes after shear test. RESULTS There were significant differences among three groups, and two metal conditioner-applied groups showed significantly higher values compared to the non-metal conditioner group. The SEM observation of the sectional view at bonding interface revealed loose contact at porcelain-alloy surface for non-metal conditioner group, however, close contact at both alloy-metal conditioner and metal conditioner-porcelain interfaces for both metal conditioner-applied groups. All the specimens showed mixed failures. EDS analysis showed that one metal conditioner was Si-based material, and another was Ti-based material. Si-based metal conditioner showed higher bond strengths compared to the Ti-based metal conditioner, but exhibited more porous failure surface failure. CONCLUSION Based on the results of this study, it can be stated that the application of metal conditioner is recommended for the bonding of porcelain to cobalt-chromium alloys. PMID:26949481

  18. Evaluation of the public health risks associated with semivolatile metal and dioxin emissions from hazardous waste incinerators.

    PubMed Central

    Sedman, R M; Esparza, J R

    1991-01-01

    The public health impacts associated with stack emissions from hazardous waste incinerators have become a major concern in recent years. Most evaluations of incinerator stack emissions have focused on three classes of compounds: metals, semivolatile, and volatile compounds. These investigations have been complicated by the difficulty and expense of analyzing the emissions and the limited amount of toxicity information for many of the compounds that have been detected. The results of over 20 trial burns at hazardous waste incinerators were assembled in an attempt to determine which compounds may pose a significant threat to the public health. The risks associated with semivolatile emissions were found to be inconsequential, although further study of dioxins and dibenzofurans emissions appears to be warranted. The risk associated with the emission of cadmium and perhaps chromium (VI) may pose a significant risk to public health at certain facilities. Controls on waste feed or air pollution control devices should be employed to reduce the emission of these metals. Any monitoring of metal emissions from hazardous waste incinerators should focus on cadmium and chromium (VI). PMID:1954929

  19. Heavy metals contamination in lipsticks and their associated health risks to lipstick consumers.

    PubMed

    Zakaria, Airin; Ho, Yu Bin

    2015-10-01

    This study aimed to determine the heavy metals (lead, cadmium, and chromium) concentration in lipsticks of different price categories sold in the Malaysian market and evaluate the potential health risks due to daily ingestion of heavy metals in lipsticks. A total of 374 questionnaires were distributed to the female staff in a public university in Malaysia in order to obtain information such as brand and price of the lipsticks, body weight, and frequency and duration of wearing lipstick. This information was important for the calculation of hazard quotient (HQ) in health risk assessment. The samples were extracted using a microwave digester and analyzed using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The concentrations of lead, cadmium, and chromium in lipsticks ranged from 0.77 to 15.44 mg kg(-1), 0.06-0.33 mg kg(-1), and 0.48-2.50 mg kg(-1), respectively. There was a significant difference of lead content in the lipsticks of different price categories. There was no significant non-carcinogenic health risk due to the exposure of these heavy metals through lipstick consumption for the prolonged exposure of 35 years (HQ < 1). Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Contribution of metals to respiratory cancer.

    PubMed Central

    Peters, J M; Thomas, D; Falk, H; Oberdörster, G; Smith, T J

    1986-01-01

    This paper reviews studies on the adverse health effects of exposure to metals, using arsenic and cadmium as examples. The carcinogenic potential of arsenic has been studied in various settings. Inhalation is clearly related to the development of lung cancer in (copper) smelting and arsenical pesticide manufacturing, and also in heavily exposed wine merchants who had an additional source of exposure by ingestion. Animal studies have shown cadmium to be a lung carcinogen, while a study by Thun et al. provides the best evidence to date that cadmium inhaled as CdO particles may be a human lung carcinogen. On the basis of this latter study, EPA estimates the risk due to cadmium at 1.8 X 10(-3) cases/micrograms/m3, which results in more than 100,000 excess lung cancers (lifetime). For arsenic, the risk estimate of 4.29 cases/1,000 micrograms/m3, based on epidemiologic data also results in more than 100,000 lung cancers (lifetime). This paper reviews the bases for these estimates and presents recommendations for further research. Lung cancer risks also exist for other metals such as nickel, chromium, and beryllium. Further study is required before a definitive conclusion can be reached about the significance and magnitude of environmental exposures to metals as a cause of lung cancer. PMID:3830115

  1. Deletion of phytochelatin synthase modulates the metal accumulation pattern of cadmium exposed C. elegans

    DOE PAGES

    Essig, Yona J.; Webb, Samuel M.; Stürzenbaum, Stephen R.

    2016-02-19

    Here, environmental metal pollution is a growing health risk to flora and fauna. It is therefore important to fully elucidate metal detoxification pathways. Phytochelatin synthase (PCS), an enzyme involved in the biosynthesis of phytochelatins (PCs), plays an important role in cadmium detoxification. The PCS and PCs are however not restricted to plants, but are also present in some lower metazoans. The model nematode Caenorhabditis elegans, for example, contains a fully functional phytochelatin synthase and phytochelatin pathway. By means of a transgenic nematode strain expressing a pcs-1 promoter-tagged GFP ( pcs-1::GFP) and a pcs-1 specific qPCR assay, further evidence is presentedmore » that the expression of the C. elegans phytochelatin synthase gene (pcs-1) is transcriptionally non-responsive to a chronic (48 h) insult of high levels of zinc (500 μM) or acute (3 h) exposures to high levels of cadmium (300 μM). However, the accumulation of cadmium, but not zinc, is dependent on the pcs-1 status of the nematode. Synchrotron based X-ray fluorescence imaging uncovered that the cadmium body burden increased significantly in the pcs-1(tm1748) knockout allele. Taken together, this suggests that whilst the transcription of pcs-1 may not be mediated by an exposure zinc or cadmium, it is nevertheless an integral part of the cadmium detoxification pathway in C. elegans.« less

  2. Deletion of phytochelatin synthase modulates the metal accumulation pattern of cadmium exposed C. elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Essig, Yona J.; Webb, Samuel M.; Stürzenbaum, Stephen R.

    Here, environmental metal pollution is a growing health risk to flora and fauna. It is therefore important to fully elucidate metal detoxification pathways. Phytochelatin synthase (PCS), an enzyme involved in the biosynthesis of phytochelatins (PCs), plays an important role in cadmium detoxification. The PCS and PCs are however not restricted to plants, but are also present in some lower metazoans. The model nematode Caenorhabditis elegans, for example, contains a fully functional phytochelatin synthase and phytochelatin pathway. By means of a transgenic nematode strain expressing a pcs-1 promoter-tagged GFP ( pcs-1::GFP) and a pcs-1 specific qPCR assay, further evidence is presentedmore » that the expression of the C. elegans phytochelatin synthase gene (pcs-1) is transcriptionally non-responsive to a chronic (48 h) insult of high levels of zinc (500 μM) or acute (3 h) exposures to high levels of cadmium (300 μM). However, the accumulation of cadmium, but not zinc, is dependent on the pcs-1 status of the nematode. Synchrotron based X-ray fluorescence imaging uncovered that the cadmium body burden increased significantly in the pcs-1(tm1748) knockout allele. Taken together, this suggests that whilst the transcription of pcs-1 may not be mediated by an exposure zinc or cadmium, it is nevertheless an integral part of the cadmium detoxification pathway in C. elegans.« less

  3. Susceptibility of Halobacteria to Heavy Metals

    PubMed Central

    Nieto, J. J.; Ventosa, A.; Ruiz-Berraquero, F.

    1987-01-01

    Sixty-eight halobacteria, including both culture collection strains and fresh isolates from widely differing geographical areas, were tested for susceptibility to arsenate, cadmium, chromium, cobalt, copper, lead, mercury, nickel, silver, and zinc ions by an agar dilution technique. The culture collection strains showed different susceptibilities, clustering into five groups. Halobacterium mediterranei and Halobacterium volcanii were the most metal tolerant, whereas Haloarcula californiae and Haloarcula sinaiiensis had the highest susceptibilities of the culture collection strains. Different patterns of metal susceptibility were found for all the halobacteria tested, and there was a uniform susceptibility to mercury and silver. All strains tested were multiply metal tolerant. PMID:16347350

  4. [Evaluation of occupational exposure to cadmium based on analysis of air in the work area. II. Cadmium oxide levels in the air of work areas during cadmium production in a non-ferrous metal foundry].

    PubMed

    Rogaczewska, T; Matczak, W

    1985-01-01

    By stationary measurements the levels of cadmium oxide aerosols concentrations in air at particular workplaces related to cadmium production at non-ferrous metals mill have been determined. High concentrations of that compound have been found at such technological operations as unloading of cadmium-bearing raw materials, batching of cadmium sponge in the induction furnace and casting of fused cadmium into moulds. With the personal dosimetry technique, concentrations of that compound in the workers' breathing zone have been determined. Those were within 0.16-1.84 mg/m3, so--above the TLV values. However, those concentrations do not necessarily reflect the occupational exposure magnitude, as the workers had respirators.

  5. Air National Guard Installation Restoration Protram. Site Investigation Report: Georgia Air National Guard, Savannah, Georgia

    DTIC Science & Technology

    1992-01-01

    except TPH, which was detected at 0.06 mg/l in Monitor Well 01-MW-02. Some metals (arsenic, cadmium , chromium, lead, silver, and zinc ) were detected at...extraction. Trace quantities of some priority pollutant metals were detected in the surface water samples. Arsenic, cadmium , and zinc were detected at...storage tank. TPH was detected in all five groundwater samples. Arsenic, beryllium, cadmium , chromium, copper, lead, nickel, silver, and zinc were also

  6. Metals in albatross feathers from Midway Atoll: Influence of species, age, and nest location

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, J.; Gochfeld, M.

    2000-03-01

    In this paper the authors examine the concentrations of metals (heavy metals, mercury, lead, cadmium, chromium, manganese, tin; and metalloids, arsenic and selenium), in the down and contour (body) feathers of half-grown young albatrosses, and contour feathers of one of their parents. They collected feathers from Laysan Diomedea immutabilis and black-footed Diomedea nigripes albatrosses from Midway Atoll in the central Pacific Ocean. The authors test the null hypotheses that there is no difference in metal levels as a function of species, age, feather type, and location on the island. Using linear regression they found significant models accounting for the variationmore » in the concentrations of mercury, lead, cadmium, selenium, chromium, and manganese (but not arsenic or tin) as a function of feather type (all metals), collection location (all metals but lead), species (selenium only), and interactions between these factors. Most metals (except mercury, arsenic, and tin) were significantly higher in down than in the contour feathers of either chicks or adults. Comparing the two species, black-footed albatross chicks had higher levels of most elements (except arsenic) in their feathers and/or down. Black-footed adults had significantly higher levels of mercury and selenium. They also collected down and feathers from Laysan albatross chicks whose nests were close to buildings, including buildings with flaking lead paint and those that had been lead-abated.« less

  7. Human exposure risk to heavy metals through groundwater used for drinking in an intensively irrigated river delta

    NASA Astrophysics Data System (ADS)

    Vetrimurugan, E.; Brindha, K.; Elango, L.; Ndwandwe, Osman Muzi

    2017-10-01

    Drinking water containing heavy metals above the maximum permissible limits cause potential risk to human health. The aim of this study was to determine the groundwater suitability for drinking use based on heavy metal concentration and the associated human exposure risk in an intensively irrigated part of the Cauvery river basin, Tamil Nadu, India. Sixteen heavy metals analysed were in the order of dominance of chromium < zinc < copper < cadmium < cobalt < iron < aluminium < nickel < titanium < zirconium < boron < silver < manganese < lead < lithium < silicon in groundwater. Chromium and zinc were within permissible limits of the Bureau of Indian Standards for drinking water quality, and silver, lead and nickel were above limits in all the groundwater samples. In less than 50 % of the groundwater samples, aluminium, boron, cadmium, copper, iron and manganese exceeded their individual permissible limits. Heavy metal pollution index based on 11 heavy metals indicated that groundwater quality of this area is poor-to-unsuitable. Non-carcinogenic risk for humans due to ingestion of groundwater through drinking water pathway was very high for infants, children and adults. Silver, lead, nickel, cadmium and manganese largely contributed to the health hazard. Sources of heavy metals were identified to be geological and from human activities, i.e., application of fertilizers in agricultural fields, seawater intrusion due to intensive pumping for agriculture and wastewater from industries. Groundwater and surface water in this area pose large threat due to high levels of heavy metals, and it is necessary to avoid this water for drinking due to potential risk of health hazard. This study also demonstrated the application of HPI and human exposure hazard index to study the groundwater quality based on heavy metals' concentration.

  8. Potential of Live Spirulina platensis on Biosorption of Hexavalent Chromium and Its Conversion to Trivalent Chromium.

    PubMed

    Colla, Luciane Maria; Dal'Magro, Clinei; De Rossi, Andreia; Thomé, Antônio; Reinehr, Christian Oliveira; Bertolin, Telma Elita; Costa, Jorge Alberto Vieira

    2015-01-01

    Microalga biomass has been described worldwide according their capacity to realize biosorption of toxic metals. Chromium is one of the most toxic metals that could contaminate superficial and underground water. Considering the importance of Spirulina biomass in production of supplements for humans and for animal feed we assessed the biosorption of hexavalent chromium by living Spirulina platensis and its capacity to convert hexavalent chromium to trivalent chromium, less toxic, through its metabolism during growth. The active biomass was grown in Zarrouk medium diluted to 50% with distilled water, keeping the experiments under controlled conditions of aeration, temperature of 30°C and lighting of 1,800 lux. Hexavalent chromium was added using a potassium dichromate solution in fed-batch mode with the aim of evaluate the effect of several additions contaminant in the kinetic parameters of the culture. Cell growth was affected by the presence of chromium added at the beginning of cultures, and the best growth rates were obtained at lower metal concentrations in the medium. The biomass removed until 65.2% of hexavalent chromium added to the media, being 90.4% converted into trivalent chromium in the media and 9.6% retained in the biomass as trivalent chromium (0.931 mg.g(-1)).

  9. Heavy Metals' Effect on Susceptibility to Attention-Deficit/Hyperactivity Disorder: Implication of Lead, Cadmium, and Antimony.

    PubMed

    Lee, Min-Jing; Chou, Miao-Chun; Chou, Wen-Jiun; Huang, Chien-Wei; Kuo, Ho-Chang; Lee, Sheng-Yu; Wang, Liang-Jen

    2018-06-10

    Background: Heavy metals are known to be harmful for neurodevelopment and they may correlate to attention deficit/hyperactivity disorder (ADHD). In this study, we aim to explore the relationships between multiple heavy metals (manganese, lead, cadmium, mercury, antimony, and bismuth), neurocognitive function, and ADHD symptoms. Methods: We recruited 29 patients with ADHD inattentive type (ADHD-I), 47 patients with ADHD hyperactivity/impulsivity type (ADHD-H/I), and 46 healthy control children. Urine samples were obtained to measure the levels of the aforementioned heavy metals in each child. Participants’ cognitive function and clinical symptoms were assessed, respectively. Results: We found ADHD-H/I patients demonstrated the highest antimony levels ( p = 0.028), and ADHD-I patients demonstrated the highest cadmium levels ( p = 0.034). Antimony levels were positively correlated with the severity of ADHD symptoms that were rated by teachers, and cadmium levels were negatively correlated with the Full Scale Intelligence Quotient. Lead levels were negatively correlated with most indices of the Wechsler Intelligence Scale for Children⁻Fourth Edition (WISC-IV), but positively correlated with inattention and hyperactivity/impulsivity symptoms ( p < 0.05). Conclusion: Lead, cadmium and antimony were associated with susceptibility to ADHD and symptom severity in school-age children. Eliminating exposure to heavy metals may help to prevent neurodevelopmental disorders in children.

  10. Residues of chromium, nickel, cadmium and lead in Rook Corvus frugilegus eggshells from urban and rural areas of Poland.

    PubMed

    Orłowski, Grzegorz; Kasprzykowski, Zbigniew; Dobicki, Wojciech; Pokorny, Przemysław; Wuczyński, Andrzej; Polechoński, Ryszard; Mazgajski, Tomasz D

    2014-08-15

    We examined the concentrations of chromium (Cr), nickel (Ni), cadmium (Cd) and lead (Pb) in Rook Corvus frugilegus eggshells from 43 rookeries situated in rural and urban areas of western (=intensive agriculture) and eastern (=extensive agriculture) Poland. We found small ranges in the overall level of Cr (the difference between the extreme values was 1.8-fold; range of concentrations=5.21-9.40 Cr ppm), Ni (3.5-fold; 1.15-4.07 Ni ppm), and Cd (2.6-fold; 0.34-0.91 Cd ppm), whereas concentrations of Pb varied markedly, i.e. 6.7-fold between extreme values (1.71-11.53 Pb ppm). Eggshell levels of these four elements did not differ between rural rookeries from western and eastern Poland, but eggshells from rookeries in large/industrial cities had significantly higher concentrations of Cr, Ni and Pb than those from small towns and villages. Our study suggests that female Rooks exhibited an apparent variation in the intensity of trace metal bioaccumulation in their eggshells, that rapid site-dependent bioaccumulation of Cu, Cr, Ni and Pb occurs as a result of the pollution gradient (rural

  11. Cadmium and zinc activate adaptive mechanisms in Nicotiana tabacum similar to those observed in metal tolerant plants.

    PubMed

    Vera-Estrella, Rosario; Gómez-Méndez, María F; Amezcua-Romero, Julio C; Barkla, Bronwyn J; Rosas-Santiago, Paul; Pantoja, Omar

    2017-09-01

    Tobacco germinated and grew in the presence of high concentrations of cadmium and zinc without toxic symptoms. Evidence suggests that these ions are sequestered into the vacuole by heavy metal/H + exchanger mechanisms. Heavy metal hyperaccumulation and hypertolerance are traits shared by a small set of plants which show specialized physiological and molecular adaptations allowing them to accumulate and sequester toxic metal ions. Nicotiana tabacum was used to test its potential as a metal-accumulator in a glass house experiment. Seed germination was not affected in the presence of increasing concentrations of zinc and cadmium. Juvenile and adult plants could concentrate CdCl 2 and ZnSO 4 to levels exceeding those in the hydroponic growth medium and maintained or increased their leaf dry weight when treated with 0.5- or 1-mM CdCl 2 or 1-mM ZnSO 4 for 5 days. Accumulation of heavy metals did not affect the chlorophyll and carotenoid levels, while variable effects were observed in cell sap osmolarity. Heavy metal-dependent H + transport across the vacuole membrane was monitored using quinacrine fluorescence quenching. Cadmium- or zinc-dependent fluorescence recovery revealed that increasing concentrations of heavy metals stimulated the activities of the tonoplast Cd 2+ or Zn 2+ /H + exchangers. Immunodetection of the V-ATPase subunits showed that the increased proton transport by zinc was not due to changes in protein amount. MTP1 and MTP4 immunodetection and semiquantitative RT-PCR of NtMTP1, NtNRAMP1, and NtZIP1 helped to identify the genes that are likely involved in sequestration of cadmium and zinc in the leaf and root tissue. Finally, we demonstrated that cadmium and zinc treatments induced an accumulation of zinc in leaf tissues. This study shows that N. tabacum possesses a hyperaccumulation response, and thus could be used for phytoremediation purposes.

  12. Cadmium and Cadmium/Zinc Ratios and Tobacco-Related Morbidities

    PubMed Central

    Richter, Patricia; Faroon, Obaid; Pappas, R. Steven

    2017-01-01

    Metals are one of five major categories of carcinogenic or toxic constituents in tobacco and tobacco smoke. Cadmium is highly volatile and a higher percentage of the total tobacco cadmium content is efficiently transferred to mainstream tobacco smoke than many other toxic metals in tobacco. Inhaled cadmium bioaccumulates in the lungs and is distributed beyond the lungs to other tissues, with a total body biological half-life of one to two decades. Chronic cadmium exposure through tobacco use elevates blood and urine cadmium concentrations. Cadmium is a carcinogen, and an inducer of proinflammatory immune responses. Elevated exposure to cadmium is associated with reduced pulmonary function, obstructive lung disease, bronchogenic carcinoma, cardiovascular diseases including myocardial infarction, peripheral arterial disease, prostate cancer, cervical cancer, pancreatic cancer, and various oral pathologies. Cadmium and zinc have a toxicologically inverse relationship. Zinc is an essential element and is reportedly antagonistic to some manifestations of cadmium toxicity. This review summarizes associations between blood, urine, and tissue cadmium concentrations with emphasis on cadmium exposure due to tobacco use and several disease states. Available data about zinc and cadmium/zinc ratios and tobacco-related diseases is summarized from studies reporting smoking status. Collectively, data suggest that blood, urine, and tissue cadmium and cadmium/zinc ratios are often significantly different between smokers and nonsmokers and they are also different in smokers for several diseases and cancers. Additional biomonitoring data such as blood or serum and urine zinc and cadmium levels and cadmium/zinc ratios in smokers may provide further insight into the development and progression of diseases of the lung, cardiovascular system, and possibly other organs. PMID:28961214

  13. Cadmium and Cadmium/Zinc Ratios and Tobacco-Related Morbidities.

    PubMed

    Richter, Patricia; Faroon, Obaid; Pappas, R Steven

    2017-09-29

    Metals are one of five major categories of carcinogenic or toxic constituents in tobacco and tobacco smoke. Cadmium is highly volatile and a higher percentage of the total tobacco cadmium content is efficiently transferred to mainstream tobacco smoke than many other toxic metals in tobacco. Inhaled cadmium bioaccumulates in the lungs and is distributed beyond the lungs to other tissues, with a total body biological half-life of one to two decades. Chronic cadmium exposure through tobacco use elevates blood and urine cadmium concentrations. Cadmium is a carcinogen, and an inducer of proinflammatory immune responses. Elevated exposure to cadmium is associated with reduced pulmonary function, obstructive lung disease, bronchogenic carcinoma, cardiovascular diseases including myocardial infarction, peripheral arterial disease, prostate cancer, cervical cancer, pancreatic cancer, and various oral pathologies. Cadmium and zinc have a toxicologically inverse relationship. Zinc is an essential element and is reportedly antagonistic to some manifestations of cadmium toxicity. This review summarizes associations between blood, urine, and tissue cadmium concentrations with emphasis on cadmium exposure due to tobacco use and several disease states. Available data about zinc and cadmium/zinc ratios and tobacco-related diseases is summarized from studies reporting smoking status. Collectively, data suggest that blood, urine, and tissue cadmium and cadmium/zinc ratios are often significantly different between smokers and nonsmokers and they are also different in smokers for several diseases and cancers. Additional biomonitoring data such as blood or serum and urine zinc and cadmium levels and cadmium/zinc ratios in smokers may provide further insight into the development and progression of diseases of the lung, cardiovascular system, and possibly other organs.

  14. Installation Restoration Program. Phase 2. Confirmation/Quantification. Stage 1. Sites 24-WF15, 25-WF22 and 26-BST5. U.S. Air Force Plant No. 42, Palmdale, California.

    DTIC Science & Technology

    1988-06-15

    Primary Metals: CA Title 2:60 e Arsenic 0.005 mg/L~~ Barium 0.005 mg/LICadmium 0.005 mg/L Chromium 0.01 mg/L Lead 0.05 mg/L Mercury 0.001 mg/L Selenium...analyzed for twelve metals: arsenic (As), barium (Ba), cadmium (Ca), chromium (COr), lead (Pb), mer- cury (Hg), selenium (Se), silver (Ag), iron (Fe...Total Threshold Limit Substnce (mg/L) (mg/Kg) Arsenic 5.0 500 Barium (excludingf barium sulfate) 100 10,000 Cadmium 1.0 100 Chromium VI 5 500 Chromium

  15. Friction, wear, and transfer of carbon and graphite to copper, chromium, and aluminum metal surfaces in vacuum

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1973-01-01

    Sliding friction experiments were conducted with amorphous and fully graphitized carbons sliding on copper and on films of chromium and aluminum on copper. Auger emission spectroscopy analysis was used to monitor carbon transfer to the metal surfaces. Friction and wear were also measured. Metal surfaces were examined both in the clean state and with normal oxides present. Results indicate that different metals have an important effect on friction, wear, and transfer characteristics. With amorphous carbon, the least chemically active metal gave the highest wear and amount of carbon transfer. Both forms of carbon gave lower friction and wear and lower transfer rates when in contact with clean, as opposed to oxide-covered, chromium surfaces. With copper, the reverse was true; cleaning was detrimental.

  16. Spatial patterns of heavy metal accumulation in sediments and macrophytes of Bellandur wetland, Bangalore.

    PubMed

    Ramachandra, T V; Sudarshan, P B; Mahesh, M K; Vinay, S

    2018-01-15

    Heavy metals are one among the toxic chemicals and accumulation in sediments and plants has been posing serious health impacts. Wetlands aid as kidneys of the landscape and help in remediation through uptake of nutrients, heavy metals and other contaminants. The analyses of macrophytes and sediment samples help in evaluating pollution status in aquatic environment. In this study concentration of six heavy metals (Cadmium (Cd), Chromium (Cr), Copper (Cu), Nickel (Ni), Lead (Pb) and Zinc (Zn)) were assessed in sediment and dominant macrophyte samples collected from Bellandur Lake, largest Lake of Bangalore, India. Sediment samples reveal of heavy metals in the inlet regions and shore samples. The accumulation of metals in sediments were in the order of Zn > Cu > Cr > Pb > Ni > Cd. All metals exceeded the critical limits of metals in the sediment. Concentration of different metals in the macrophyte samples ranked as: Cr > Cu > Zn > Pb > Ni > Cd. Chromium and Copper were found to be more than critical range. Typha angustata had the higher accumulation of all metals except chromium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Experimental patch testing with chromium-coated materials.

    PubMed

    Bregnbak, David; Thyssen, Jacob P; Jellesen, Morten S; Zachariae, Claus; Johansen, Jeanne D

    2017-06-01

    Chromium coatings on metal alloys can be decorative, and prevent corrosion and metal ion release. We recently showed that handling of a chromium-containing disc resulted in chromium deposition on the skin. To examine patch test reactivity to chromium-coated discs. We included 15 patients: 10 chromium-allergic patients, and 5 patients without chromium allergy. All were patch tested with potassium dichromate, cobalt chloride, nickel sulfate, and nine different metallic discs. The chromium-allergic patients were also patch tested with serial dilutions of potassium dichromate. Positive/weaker reactions were observed to disc B (1 of 10), disc C (1 of 10), and disc D, disc E, and disc I (4 of 10 each). As no controls reacted to any of the discs, the weak reactions indicate allergic reactions. Positive patch test reactions to 1770 ppm chromium(VI) in the serial dilutions of potassium dichromate were observed in 7 of 10 patients. When the case group was narrowed down to include only the patients with a current positive patch test reaction to potassium dichromate, elicitation of dermatitis by both chromium(III) and chromium(VI) discs was observed in 4 of 7 of patients. Many of the patients reacted to both chromium(III) and chromium(VI) surfaces. Our results indicate that both chromium(VI) and chromium(III) pose a risk to chromium-allergic patients. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Leaching Properties of Naturally Occurring Heavy Metals from Soils

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Hoshino, M.; Yoshikawa, M.; Hara, J.; Sugita, H.

    2014-12-01

    The major threats to human health from heavy metals are associated with exposure to arsenic, lead, cadmium, chromium, mercury, as well as some other elements. The effects of such heavy metals on human health have been extensively studied and reviewed by international organizations such as WHO. Due to their toxicity, heavy metal contaminations have been regulated by national environmental standards in many countries, and/or laws such as the Soil Contamination Countermeasures Act in Japan. Leaching of naturally occurring heavy metals from the soils, especially those around abandoned metal mines into surrounding water systems, either groundwater or surface water systems, is one of the major pathways of exposure. Therefore, understanding the leaching properties of toxic heavy metals from naturally polluted soils is of fundamentally importance for effectively managing abandoned metal mines, excavated rocks discharged from infrastructure constructions such as tunneling, and/or selecting a pertinent countermeasure against pollution when it is necessary. In this study, soil samples taken from the surroundings of abandoned metal mines in different regions in Japan were collected and analyzed. The samples contained multiple heavy metals such as lead, arsenic and chromium. Standard leaching test and sequential leaching test considering different forms of contaminants, such as trivalent and pentavalent arsenics, and trivalent and hexavalent chromiums, together with standard test for evaluating total concentration, X-ray Fluorescence Analysis (XRF), X-ray diffraction analysis (XRD) and Cation Exchange Capacity (CEC) tests were performed. In addition, sequential leaching tests were performed to evaluate long-term leaching properties of lead from representative samples. This presentation introduces the details of the above experimental study, discusses the relationships among leaching properties and chemical and mineral compositions, indicates the difficulties associated with

  19. Cadmium, Chromium, and Copper Concentration plus Semen-Quality in Environmental Pollution Site, China

    PubMed Central

    LI, Yan; GAO, Qiaoyan; LI, Mingcai; LI, Mengyang; GAO, Xueming

    2014-01-01

    Abstract Background The environmental pollution is one of the factors contributing to the decrease of sperm quality for human beings. The aim of this study was to assess cadmium (Cd), chromium (Cr), and copper (Cu) concentration of man in environmental pollution site, and explore relationships between men exposure to Cd, Cr, and Cu and semen-quality parameters in environmental pollution site. Methods Ninety five men were recruited through pollution area and controls in 2011. We measured semen quality using Computer-aided Semen Quality Analysis, and Cd, Cr, and Cu levels in seminal plasma using Graphite Gurnace Atomic Absorption Spectroscopy. Spearman rank correlation analysis was used to evaluate the correlation between Cd, Cr and Cu concentration in seminal plasma and semen quality. Results The mean of seminal plasma Cd, Cr, and Cu values in pollution area was higher than the controls. Seminal plasma Cr values displayed a significant negative correlation with total motility and normomorph sperm rate. Seminal plasma Cu values also displayed a negative correlation with normomorph sperm rate. Conclusions Male reproductive health may be threatened by environmental pollution, and it may be influence local population diathesis. PMID:26060677

  20. Heavy metal tolerant halophilic bacteria from Vembanad Lake as possible source for bioremediation of lead and cadmium.

    PubMed

    Sowmya, M; Rejula, M P; Rejith, P G; Mohan, Mahesh; Karuppiah, Makesh; Hatha, A A Mohamed

    2014-07-01

    Microorganisms which can resist high concentration of toxic heavy metals are often considered as effective tools of bioremediation from such pollutants. In the present study, sediment samples from Vembanad Lake were screened for the presence of halophilic bacteria that are tolerant to heavy metals. A total of 35 bacterial strains belonging to different genera such as Alcaligenes, Vibrio, Kurthia, Staphylococcus and members of the family Enterobacteriaceae were isolated from 21 sediment samples during February to April, 2008. The salt tolerance and optimum salt concentrations of the isolates revealed that most of them were moderate halophiles followed by halotolerant and extremely halotolerant groups. The minimum inhibitory concentrations (MICs) against cadmium and lead for each isolate revealed that the isolates showed higher MIC against lead than cadmium. Based on the resistance limit concentration, most of them were more tolerant to lead than cadmium at all the three salt concentrations tested. Heavy metal removal efficiency of selected isolates showed a maximum reduction of 37 and 99% against cadmium and lead respectively. The study reveals the future prospects of halophilic microorganisms in the field of bioremediation.

  1. The effect of moisture on the release and enrichment of heavy metals during pyrolysis of municipal solid waste.

    PubMed

    Raclavská, Helena; Corsaro, Agnieszka; Hlavsová, Adéla; Juchelková, Dagmar; Zajonc, Ondřej

    2015-03-01

    The investigation of the effect of moisture on the release and enrichment of heavy metals during pyrolysis of municipal solid waste is essential. This is important owing to: (i) the increasing amount of metals in the solid product of pyrolysis beyond the normalised level; (ii) the effect of moisture on the overall cost of pyrolysis process; and (iii) the utilisation of pyrolysis products. Seven metals were selected for evaluation: arsenic, cadmium, chromium, mercury, nickel, lead, and vanadium. Pyrolysis experiments were conducted in a steel retort at 650 °C. The municipal solid waste samples with moisture contents of 0, 30, and 65 wt% were investigated. The relative enrichment index and release of heavy metals were evaluated individually for liquid and solid fractions. A consistent trend was observed for the majority of metals investigated. Reductions of relative enrichment index and release, i.e. an increase of volatility, were observed for arsenic, chromium, cadmium, nickel, and vanadium, with an increase of municipal solid waste moisture. Whereas divergent results were obtained for lead and mercury. The effect of moisture on the relative enrichment index and release was greater at 65 wt% moisture than at 30 wt% for lead, and more remarkable at 30 wt% than at 65 wt% for mercury. © The Author(s) 2015.

  2. Isolating metal-tolerant bacteria capable of removing copper, chromium, and arsenic from treated wood

    Treesearch

    Carol A. Clausen

    2000-01-01

    Bioremediation of chromated copper arsenate-treated waste wood with one or more metal-tolerant bacteria is a potential method of naturally releasing metals from treated wood fibre. Sampling eight environments with elevated levels of copper, chromium, and arsenic resulted in the isolation of 28 bacteria with the capability of releasing one or more of the components from...

  3. Adsorption and mobility of metals in build-up on road surfaces.

    PubMed

    Gunawardana, Chandima; Egodawatta, Prasanna; Goonetilleke, Ashantha

    2015-01-01

    The study investigated the adsorption and bioavailability characteristics of traffic generated metals common to urban land uses, in road deposited solids particles. To validate the outcomes derived from the analysis of field samples, adsorption and desorption experiments were undertaken. The analysis of field samples revealed that metals are selectively adsorbed to different charge sites on solids. Zinc, copper, lead and nickel are adsorbed preferentially to oxides of manganese, iron and aluminium. Lead is adsorbed to organic matter through chemisorption. Cadmium and chromium form weak bonding through cation exchange with most of the particle sizes. Adsorption and desorption experiments revealed that at high metal concentrations, chromium, copper and lead form relatively strong bonds with solids particles while zinc is adsorbed through cation exchange with high likelihood of being released back into solution. Outcomes from this study provide specific guidance for the removal of metals from stormwater based on solids removal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Horizontal and Vertical Distribution of Heavy Metals in Farm Produce and Livestock around Lead-Contaminated Goldmine in Dareta and Abare, Zamfara State, Northern Nigeria.

    PubMed

    Orisakwe, O E; Oladipo, O O; Ajaezi, G C; Udowelle, N A

    2017-01-01

    Background . Hitherto studies in response to the June 2010 lead poisoning, Zamfara State, Nigeria, have focused on clinical interventions without information on livestock and other metals. Objective . This study has investigated the distribution of heavy metals in farm produce and livestock around lead-contaminated goldmine in Dareta and Abare, Zamfara State, Nigeria. Methods . Vegetables, soil, water, blood, and different meat samples were harvested from goat, sheep, cattle, and chicken from Dareta, Abare, and Gusau communities. The samples were digested with 10 mL of a mix of nitric and perchloric acids; the mixture was then heated to dryness. Lead, cadmium, zinc, chromium, copper, magnesium, and nickel were analysed using flame Atomic Absorption Spectrophotometer. The daily intake, bioaccumulation factor, and target hazard quotient (THQ) were calculated. Results . Chicken bone-muscles from Dareta had the highest concentrations of lead, zinc, and nickel (28.2750, 16.1650, and 4.2700 mg/kg, resp.), while chicken brain had the highest levels of cadmium, magnesium (0.3800 and 67.5400 mg/kg), and chromium (6.1650 mg/kg, kidney tissue inclusive). Conclusion . In addition to lead, cadmium may also be of concern in the contaminated mining communities of Zamfara State, Nigeria, given the high levels of cadmium in meat and vegetables samples from these areas.

  5. Electrochemical Removal of Chromium from Wastewater

    DTIC Science & Technology

    1992-07-15

    chromium removal from a wastewater stream. In one process, electrodeposition of chromium on a reticulated vitreous carbon cathode was proposed [5]. On a...reduction to metallic chromium more difficult [31. Removal of hexavalent chromium by adsorption on activated carbon is not suf- ficiently effective to be

  6. EMISSIONS OF METALS, CHROMIUM AND NICKEL SPECIES, AND ORGANICS FROM MUNICIPAL WASTEWATER SLUDGE INCINERATORS

    EPA Science Inventory

    In order to provide data to support regulations on municipal wastewater sludge incineration, emissions of metals, hexavalent chromium, nickel subsulfide, polychlorinated dibenzo-dioxins and furans (PCDD/PCDFs), semivolatile and volatile organic compounds, carbon monoxide (CO)...

  7. Chromium oxide as a metal diffusion barrier layer: An x-ray absorption fine structure spectroscopy study

    NASA Astrophysics Data System (ADS)

    Ahamad Mohiddon, Md.; Lakshun Naidu, K.; Ghanashyam Krishna, M.; Dalba, G.; Ahmed, S. I.; Rocca, F.

    2014-01-01

    The interaction at the interface between chromium and amorphous Silicon (a-Si) films in the presence of a sandwich layer of chromium oxide is investigated using X-ray absorption fine structure (XAFS) spectroscopy. The oxidized interface was created, in situ, prior to the deposition of a 400 nm tick a-Si layer over a 50 nm tick Cr layer. The entire stack of substrate/metallic Cr/Cr2O3/a-Si was then annealed at temperatures from 300 up to 700 °C. Analysis of the near edge and extended regions of each XAFS spectrum shows that only a small fraction of Cr is able to diffuse through the oxide layer up to 500 °C, while the remaining fraction is buried under the oxide layer in the form of metallic Cr. At higher temperatures, diffusion through the oxide layer is enhanced and the diffused metallic Cr reacts with a-Si to form CrSi2. At 700 °C, the film contains Cr2O3 and CrSi2 without evidence of unreacted metallic Cr. The activation energy and diffusion coefficient of Cr are quantitatively determined in the two temperature regions, one where the oxide acts as diffusion barrier and another where it is transparent to Cr diffusion. It is thus demonstrated that chromium oxide can be used as a diffusion barrier to prevent metal diffusion into a-Si.

  8. Selective solvent-free chromium detection using cadmium-free quantum dots

    NASA Astrophysics Data System (ADS)

    Meylemans, Heather A.; Baca, Alfred J.; Cambrea, Lee R.; Ostrom, Gregory S.

    2017-07-01

    Currently, the method of choice to test for the presence of chromium in water is to submit samples to a lab for testing. We present a simple field-ready test that is selective for the presence of chromium at concentrations of 100 ppb or greater. The Environmental Protection Agency maximum contaminant level (MCL) for total chromium is 100 ppb. This test uses a simple on/off fluorescent screening employing the use of silver indium sulfide (AgInS2) quantum dots (QDs). These QDs were impregnated into cotton pads to simplify field testing without the need for solvents or other liquid chemicals to be present. The change in fluorescence is instant and can be readily observed by eye with the use of a UV flashlight.

  9. Earthworm Lumbricus rubellus MT-2: Metal Binding and Protein Folding of a True Cadmium-MT.

    PubMed

    Kowald, Gregory R; Stürzenbaum, Stephen R; Blindauer, Claudia A

    2016-01-05

    Earthworms express, as most animals, metallothioneins (MTs)-small, cysteine-rich proteins that bind d(10) metal ions (Zn(II), Cd(II), or Cu(I)) in clusters. Three MT homologues are known for Lumbricus rubellus, the common red earthworm, one of which, wMT-2, is strongly induced by exposure of worms to cadmium. This study concerns composition, metal binding affinity and metal-dependent protein folding of wMT-2 expressed recombinantly and purified in the presence of Cd(II) and Zn(II). Crucially, whilst a single Cd₇wMT-2 species was isolated from wMT-2-expressing E. coli cultures supplemented with Cd(II), expressions in the presence of Zn(II) yielded mixtures. The average affinities of wMT-2 determined for either Cd(II) or Zn(II) are both within normal ranges for MTs; hence, differential behaviour cannot be explained on the basis of overall affinity. Therefore, the protein folding properties of Cd- and Zn-wMT-2 were compared by ¹H NMR spectroscopy. This comparison revealed that the protein fold is better defined in the presence of cadmium than in the presence of zinc. These differences in folding and dynamics may be at the root of the differential behaviour of the cadmium- and zinc-bound protein in vitro, and may ultimately also help in distinguishing zinc and cadmium in the earthworm in vivo.

  10. Water Quality Conditions in the Missouri River Mainstem System: 2008 Report

    DTIC Science & Technology

    2009-09-01

    aluminum, arsenic, cadmium , chromium, copper, cyanide, lead, nickel, selenium, silver, and zinc . The acute and chronic water quality standards criteria for... adipose , etc.) tend to accumulate toxicants at different rates. Therefore, when used as an indicator, fish tissue analysis typically uses whole...for metals (i.e., cadmium , chromium, copper, lead, nickel, silver, and zinc ) are based on hardness. Criteria shown for those metals were calculated

  11. Thermal and hydrometallurgical recovery methods of heavy metals from municipal solid waste fly ash.

    PubMed

    Kuboňová, L; Langová, Š; Nowak, B; Winter, F

    2013-11-01

    Heavy metals in fly ash from municipal solid waste incinerators are present in high concentrations. Therefore fly ash must be treated as a hazardous material. On the other hand, it may be a potential source of heavy metals. Zinc, lead, cadmium, and copper can be relatively easily removed during the thermal treatment of fly ash, e.g. in the form of chlorides. In return, wet extraction methods could provide promising results for these elements including chromium and nickel. The aim of this study was to investigate and compare thermal and hydrometallurgical treatment of municipal solid waste fly ash. Thermal treatment of fly ash was performed in a rotary reactor at temperatures between 950 and 1050°C and in a muffle oven at temperatures from 500 to 1200°C. The removal more than 90% was reached by easy volatile heavy metals such as cadmium and lead and also by copper, however at higher temperature in the muffle oven. The alkaline (sodium hydroxide) and acid (sulphuric acid) leaching of the fly ash was carried out while the influence of temperature, time, concentration, and liquid/solid ratio were investigated. The combination of alkaline-acidic leaching enhanced the removal of, namely, zinc, chromium and nickel. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Treatment of chromium contaminated soil using bioremediation

    NASA Astrophysics Data System (ADS)

    Purwanti, Ipung Fitri; Putri, Tesya Paramita; Kurniawan, Setyo Budi

    2017-11-01

    Chromium contamination in soil occurs due to the disposal of chromium industrial wastewater or sludge that excess the quality standard. Chromium concentration in soil is ranged between 1 to 300 mg/kg while the maximum health standard is 2.5 mg/kg. Bioremediation is one of technology that could be used for remediating heavy metal contamination in soil. Bacteria have an ability to remove heavy metal from soil. One bacteria species that capable to remove chromium from soil is Bacillus subtilis. The aim of this research was to know the chromium removal percentage in contaminated soil by Bacillus subtilis. Artificial chromium contaminated soil was used by mixing 425gram sand and chromium trichloride solution. Concentration of chromium added into the spiked soil were 50, 75, and 100 mg/L. During 14 days, pH, soil temperature and soil moisture were tested. Initial and final number of bacterial colony and chromium concentration analysed. The result showed that the highest percentage of chromium removal was 11% at a chromium concentration of 75 mg/L

  13. Acute phytotoxicity of seven metals alone and in mixture: Are Italian soil threshold concentrations suitable for plant protection?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baderna, Diego, E-mail: diego.baderna@marionegri.it; Lomazzi, Eleonora; Pogliaghi, Alberto

    Metals can pollute soils in both urban and rural areas with severe impacts on the health of humans, plants and animals living there. Information on metal toxicity is therefore important for ecotoxicology. This study investigated the phytotoxicity of different metals frequently found as pollutants in soils: arsenic, cadmium, chromium, lead, mercury, nickel and zinc. Cucumber (Cucumis sativus), sorghum (Sorghum saccharatum) and cress (Lepidium sativum) seeds were used as models for other plants used in human nutrition such as cereals, rice, fruits and vegetables. The 72-h germination rate and root elongations were selected as short-term ecotoxicological endpoints in seeds exposed tomore » single metals and mixtures. Metals were spiked onto OECD standard soils in concentrations comparable to current Italian contamination threshold concentrations for residential and commercial soils. Arsenic, chromium, mercury and nickel were the most toxic metals in our experimental conditions, particularly to cress seeds (5.172, 152 and 255.4 mg/kg as 72 h IC50 for arsenic, mercury and nickel respectively). Italian limits were acceptable for plant protection only for exposure to each metal alone but not for the mixtures containing all the metals concentrations expected by their respective legislative threshold. The effects of the mixture were class-specific: trends were comparable in dicots but different in monocots. The response induced by the mixture at high concentrations differed from that theoretically obtainable by summing the effects of the individual metals. This might be due to partial antagonism of the metals in soil or to the formation of complexes between the metals, which reduce the bioavailability of the pollutants for plants. - Graphical abstract: Metals investigated: Arsenic, Cadmium, Chromium, Lead, Mercury, Nickel and Zinc. - Highlights: • The short-term phytotoxicity of seven metals was investigated with 3 higher plants. • Italian limits for arsenic and

  14. Concentrations of metallic elements in kidney, liver, and lung tissue of Indo-Pacific bottlenose dolphin Tursiops aduncus from coastal waters of Zanzibar, Tanzania.

    PubMed

    Mapunda, Edgar C; Othman, Othman C; Akwilapo, Leonard D; Bouwman, Hindrik; Mwevura, Haji

    2017-09-15

    Concentrations of metallic elements in kidney, liver and lung tissues of Indo-Pacific bottlenose dolphins Tursiops aduncus from coastal waters of Zanzibar were determined using inductively coupled plasma - optical emission spectroscopy. Cadmium, chromium, copper, and zinc were quantifiable in all tissues at concentration ranges of 0.10-150, 0.08-3.2, 1.1-88 and 14-210μg/g dry mass, respectively. Copper and zinc was significantly higher in liver, and females had significantly higher Cd in liver, and chromium in lung. Generally, T. aduncus dolphins from coastal waters around Zanzibar carry low concentrations of metals compared with dolphins from other areas. Cadmium increased significantly with age in kidney and lung. Copper decreased significantly with age in liver, probably due to foetal metallothionein. This study supplied baseline data against which future trends in marine mammals in the Indian Ocean, the world's third largest, can be assessed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. 40 CFR 437.44 - Effluent limitations attainable by the application of the best available technology economically...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2... Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2) The in-plant limitations that apply to metal... parameters Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium...

  16. 40 CFR 437.44 - Effluent limitations attainable by the application of the best available technology economically...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2... Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2) The in-plant limitations that apply to metal... parameters Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium...

  17. 40 CFR 437.44 - Effluent limitations attainable by the application of the best available technology economically...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2... Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2) The in-plant limitations that apply to metal... parameters Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium...

  18. 40 CFR 437.44 - Effluent limitations attainable by the application of the best available technology economically...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2... Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2) The in-plant limitations that apply to metal... parameters Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium...

  19. 40 CFR 437.44 - Effluent limitations attainable by the application of the best available technology economically...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2... Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2) The in-plant limitations that apply to metal... parameters Antimony Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Nickel Silver Tin Titanium Vanadium...

  20. Performances of metal concentrations from three permeable pavement infiltrates.

    PubMed

    Liu, Jiayu; Borst, Michael

    2018-06-01

    The U.S. Environmental Protection Agency constructed a 4000-m 2 parking lot in Edison, New Jersey in 2009. The parking lot is surfaced with three permeable pavements [permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA)]. Samples of each permeable pavement infiltrate, surface runoff from traditional asphalt, and rainwater were analyzed in duplicate for 22 metals (total and dissolved) for 6 years. In more than 99% of the samples, the concentration of barium, chromium, copper, manganese, nickel and zinc, and in 60%-90% of the samples, the concentration of arsenic, cadmium, lead, and antimony in infiltrates from all three permeable pavements met both the groundwater effluent limitations (GEL) and maximum contaminant levels (MCL). The concentration of aluminum (50%) and iron (93%) in PICP infiltrates samples exceed the GELs; however, the concentration in more than 90% samples PA and PC infiltrates met the GELs. No measurable difference in metal concentrations was found from the five sources for arsenic, cadmium, lead, antimony, and tin. Large concentrations of eleven metals, including manganese, copper, aluminum, iron, calcium, magnesium, sodium, potassium, silica, strontium and vanadium, were detected in surface runoff than the rainwater. Chromium, copper, manganese, nickel, aluminum, zinc, iron and magnesium concentrations in PICP infiltrates; calcium, barium, and strontium concentrations in PA infiltrates; sodium, potassium and vanadium concentrations in PC infiltrates were statistically larger than the other two permeable pavement infiltrates. Published by Elsevier Ltd.

  1. Association between Concentrations of Metals in Urine and Adult Asthma: A Case-Control Study in Wuhan, China

    PubMed Central

    Huang, Xiji; Xie, Jungang; Cui, Xiuqing; Zhou, Yun; Wu, Xiaojie; Lu, Wei; Shen, Yan; Yuan, Jing; Chen, Weihong

    2016-01-01

    Background Several metals have been reported to be associated with childhood asthma. However, the results on relationships between metals and risk of childhood asthma are inconclusive, and the research on adult asthma in the Chinese general population is rare. Objectives To investigate potential associations between levels of urinary metals and adult asthma. Methods A case-control study of 551 adult asthma cases and 551 gender- and age-matched controls was conducted in Wuhan, China. Demographic information was obtained, and lung function was assessed. The urinary concentrations of 22 metals were measured by inductively coupled plasma mass spectrometry. Results After adjusting for other metalsand other covariates, urinary cadmium, molybdenum, chromium, copper, uranium and selenium were positively associated with asthma, with odds ratios (95% CI) of 1.69 (1.00, 2.85), 3.76 (2.30, 6.16), 4.89 (3.04, 7.89), 6.06 (3.27, 11.21), 6.99 (4.37, 11.19) and 9.17 (4.16, 20.21), respectively. By contrast, urinary lead, barium, iron, zinc, nickel, manganese and rubidium were negatively associated with asthma, with odds ratios (95% CI) of 0.48 (0.29, 0.80), 0.44 (0.27, 0.71), 0.41 (0.26, 0.64), 0.40 (0.24, 0.66), 0.30 (0.22, 0.41), 0.23 (0.14, 0.39) and 0.07 (0.03, 0.15), respectively. When comparing urinary metals in different subgroups of cases with those in matched controls, the associations of above 13 metals with asthma prevalence were nearly the same. Conclusions Our results suggested that asthma prevalence in the Chinese adults was positively associated with urinary chromium, chromium, selenium, molybdenum, cadmium, and uranium, and negatively associated with urinary manganese, iron, nickel, zinc, rubidium, barium and lead. Additional research with larger populations in different regions is required to support our findings. PMID:27191859

  2. Specific adsorption of cadmium on surface-engineered biocompatible organoclay under metal-phenanthrene mixed-contamination.

    PubMed

    Biswas, Bhabananda; Sarkar, Binoy; Mandal, Asit; Naidu, Ravi

    2016-11-01

    Bioremediation of polycyclic aromatic hydrocarbons (PAHs) is extremely challenging when they coexist with heavy metals. This constrain has led to adsorption-based techniques that help immobilize the metals and reduce toxicity. However, the adsorbents can also non-selectively bind the organic compounds, which reduces their bioavailability. In this study we developed a surface-engineered organoclay (Arquad ® 2HT-75-bentonite-palmitic acid) which enhanced bacterial proliferation and adsorbed cadmium, but elevated phenanthrene bioavailability. Adsorption models of single and binary solutes revealed that the raw bentonite adsorbed cadmium and phenanthrene non-selectively at the same binding sites and sequestrated phenanthrene. In contrast, cadmium selectively bound to the deprotonated state of carboxyl groups in the organoclay and phenanthrene on the outer surface of the adsorbent led to a microbially congenial microenvironment with a higher phenanthrene bioavailability. This study provided valuable information which would be highly important for developing a novel clay-modulated bioremediation technology for cleaning up PAHs under mixed-contaminated situations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. General aspects of metal toxicity.

    PubMed

    Kozlowski, H; Kolkowska, P; Watly, J; Krzywoszynska, K; Potocki, S

    2014-01-01

    This review is focused on the general mechanisms of metal toxicity in humans. The possible and mainly confirmed mechanisms of their action are discussed. The metals are divided into four groups due to their toxic effects. First group comprises of metal ions acting as Fenton reaction catalyst mainly iron and copper. These types of metal ions participate in generation of the reactive oxygen species. Metals such as nickel, cadmium and chromium are considered as carcinogenic agents. Aluminum, lead and tin are involved in neurotoxicity. The representative of the last group is mercury, which may be considered as a generally toxic metal. Fenton reaction is a naturally occurring process producing most active oxygen species, hydroxyl radical: Fe(2+) + He2O2 ↔ Fe(3+) + OH(-) + OH(•) It is able to oxidize most of the biomolecules including DNA, proteins, lipids etc. The effect of toxicity depends on the damage of molecules i.e. production site of the hydroxyl radical. Chromium toxicity depends critically on its oxidation state. The most hazardous seems to be Cr(6+) (chromates) which are one of the strongest inorganic carcinogenic agents. Cr(6+) species act also as oxidative agents damaging among other nucleic acids. Redox inactive Al(3+), Cd(2+) or Hg(2+) may interfere with biology of other metal ions e.g. by occupying metal binding sites in biomolecules. All these aspects will be discussed in the review.

  4. Horizontal and Vertical Distribution of Heavy Metals in Farm Produce and Livestock around Lead-Contaminated Goldmine in Dareta and Abare, Zamfara State, Northern Nigeria

    PubMed Central

    Oladipo, O. O.; Ajaezi, G. C.; Udowelle, N. A.

    2017-01-01

    Background. Hitherto studies in response to the June 2010 lead poisoning, Zamfara State, Nigeria, have focused on clinical interventions without information on livestock and other metals. Objective. This study has investigated the distribution of heavy metals in farm produce and livestock around lead-contaminated goldmine in Dareta and Abare, Zamfara State, Nigeria. Methods. Vegetables, soil, water, blood, and different meat samples were harvested from goat, sheep, cattle, and chicken from Dareta, Abare, and Gusau communities. The samples were digested with 10 mL of a mix of nitric and perchloric acids; the mixture was then heated to dryness. Lead, cadmium, zinc, chromium, copper, magnesium, and nickel were analysed using flame Atomic Absorption Spectrophotometer. The daily intake, bioaccumulation factor, and target hazard quotient (THQ) were calculated. Results. Chicken bone-muscles from Dareta had the highest concentrations of lead, zinc, and nickel (28.2750, 16.1650, and 4.2700 mg/kg, resp.), while chicken brain had the highest levels of cadmium, magnesium (0.3800 and 67.5400 mg/kg), and chromium (6.1650 mg/kg, kidney tissue inclusive). Conclusion. In addition to lead, cadmium may also be of concern in the contaminated mining communities of Zamfara State, Nigeria, given the high levels of cadmium in meat and vegetables samples from these areas. PMID:28539940

  5. Human health risk assessment of heavy metals in cosmetics in Nigeria.

    PubMed

    Nduka, John K; Odiba; Orisakwe, Orish E; Ukaebgu, Linda D; Sokaibe, Chinwetuto; Udowelle, Nnaemeka A

    2015-01-01

    Forty two different cosmetics were purchased from supermarkets and cosmetic shops within Unitsha Main Market and Eke-Awka markets in Anambra, Nigeria. Of the cosmetics, 16% were locally manufactured in Nigeria while 83.33% were imported into Nigeria. The cosmetics were ashed before digestion and filtration. The filtrates were assayed for lead, cadmium, manganese, nickel, chromium, mercury, and arsenic with atomic absorption spectrophotometry at 205 Å. The health risk assessment methods developed by the United States Environmental Protection Agency were employed to explore the potential human health risk of heavy metals in cosmetics. About 61.91% of the cosmetic samples contained lead with concentration in the range of 0.10-42.12 mg/kg. Cadmium levels of the cosmetics ranged from 0.01 to 1.32 mg/kg, manganese from 0.02 to 67.65 mg/kg, nickel from 0.05 to 17.34 mg/kg, chromium from 0.11 to 9.81 mg/kg, mercury from 0.003 to 0.07 mg/kg, and arsenic from 0.002 to 0.005 mg/kg. Although the target hazard quotients and the hazard indices suggest a measure of safety, cosmetics may add to the body burden of potential toxic metals after chronic exposure.

  6. Application of Heavy Metal Rich Tannery Sludge on Sustainable Growth, Yield and Metal Accumulation by Clarysage (Salvia sclarea L.).

    PubMed

    Chand, Sukhmal; Yaseen, M; Rajkumari; Patra, D D

    2015-01-01

    A field experiment was conducted to evaluate the effective utilization of tannery sludge for cultivation of clarysage (Salvia sclarea) at CIMAP research farm, Lucknow, India during the year 2012-2013. Six doses (0, 20, 40, 60, 80, 100 tha(-1)) of processed tannery sludge were tested in randomised block design with four replications. Results revealed that maximum shoot, root, dry matter and oil yield were obtained with application of 80 tha(-1)of tannery sludge and these were 94, 113 and 61% higher respectively, over control. Accumulation of heavy metals (Cr, Ni, Fe, Pb) were relatively high in shoot portion of the plant than root. Among heavy metals, magnitude of chromium accumulation was higher than nickel, iron and lead in shoot as well as in root. Linalool, linalyl acetate and sclareol content in oil increased by 13,8 and 27% respectively over control, with tannery sludge application at 80 tha(-1). Heavy metals such as chromium, cadmium and lead content reduced in postharvest soil when compared to initial status. Results indicated that clarysage (Salvia sclarea) can be grown in soil amended with 80 tha(-1)sludge and this can be a suitable accumulator of heavy metals for phytoremediation of metal polluted soils.

  7. Alterations of valve closing behavior in juvenile Catarina scallops (Argopecten ventricosus Sowerby, 1842) exposed to toxic metals.

    PubMed

    Sobrino-Figueroa, A; Cáceres-Martínez, C

    2009-11-01

    We conducted an evaluation of alterations produced in the valve closing speed of juvenile Argopecten ventricosus (Catarina scallop) exposed to the metals cadmium, chromium and lead, because of the connection of this response to the state of health of the mollusk. Bioassays were conducted with 50 juveniles (length 3 +/- 0.5 cm) exposed to 0.02, 0.1, 0.2 mg Cd l(-1); 0.1, 0.5, 1.0 mg Cr l(-1); 0.04, 0.2, 0.4 mg Pb l(-1) and 0.8 and 1.6 mg Cd + Cr + Pb l(-1) for 480 h. The average valve closing speed at the end of the experiment was under 1 s in the control group, from 2 to 3.6 s in the bioassays with cadmium, from 1.4 to 3.4 s with chromium, from 3 to 12 s with lead, and from 12 to 15 s with the metal mixtures. It was found that there are significant differences between the values recorded in assays with metals and the control (P < 0.05). The retardation of valve closing in the organisms exposed to toxic substances is probably caused by damage to the sensory cilia located on the edge of the mantle.

  8. Occurrences, uses, and properties of chromium.

    PubMed

    Barnhart, J

    1997-08-01

    Chromium is the 21st most abundant element in the Earth's crust with a mean concentration in United States soils of about 40 mg/kg. Although it exists in several oxidation states, the zero, trivalent, and hexavalent states are the most important in commercial products and the environment. Nearly all naturally occurring chromium is in the trivalent state, usually in combination with iron or other metal oxides. Although only about 15% of the chromium mined is used in the manufacture of chemicals, most applications of chromium utilize the chemistry of chromium. For instance, the "stainless" nature of stainless steel is due to the chemical properties of the chromium oxides which form on the surface of the alloy. Similarly, the protective properties of chrome plating of metals, chromated copper arsenate (CCA) treatment of wood, and chrome tanning of leather are all dependent on chromium chemistry. The key to these uses is that under typical environmental and biological conditions of pH and oxidation-reduction potential, the most stable form of chromium is the trivalent oxide. This form has very low solubility and low reactivity resulting in low mobility in the environment and low toxicity in living organisms. In this paper the chemical properties of chromium are discussed for the major commercial products in the context of the Eh-pH diagram for chromium. Copyright 1997 Academic Press.

  9. Comparison of Gastric versus Gastrointestinal PBET Extractions for Estimating Oral Bioaccessibility of Metals in House Dust

    PubMed Central

    Boros, Kristina; Fortin, Danielle; Jayawardene, Innocent; Chénier, Marc; Levesque, Christine; Rasmussen, Pat E.

    2017-01-01

    Oral bioaccessibility estimates for six metals which are prevalent as contaminants in Canada (zinc, lead, cadmium, copper, nickel, and chromium) are investigated for house dust using the simple gastric phase versus the two-phase physiologically-based extraction technique (PBET). The purpose is to determine whether a complete gastrointestinal (GI) assay yields a more conservative (i.e., higher) estimate of metal bioaccessibility in house dust than the gastric phase alone (G-alone). The study samples include household vacuum dust collected from 33 homes in Montreal, Canada, plus four certified reference materials (NIST 2583, NIST 2584, NIST 2710 and NIST 2710a). Results indicate that percent bioaccessibilities obtained using G-alone are generally greater than or equivalent to those obtained using the complete GI simulation for the six studied metals in house dust. Median bioaccessibilities for G-alone/GI in household vacuum dust samples (n = 33) are 76.9%/19.5% for zinc, 50.4%/6.2% for lead, 70.0%/22.4% for cadmium, 33.9%/30.5% for copper and 28.5%/20.7% for nickel. Bioaccessible chromium is above the detection limit in only four out of 33 samples, for which G-alone results are not significantly different from GI results (p = 0.39). It is concluded that, for the six studied metals, a simple G-alone extraction provides a conservative and cost-effective approach for estimating oral bioaccessibility of metals in house dust. PMID:28106788

  10. Chromium and Genomic Stability

    PubMed Central

    Wise, Sandra S.; Wise, John Pierce

    2014-01-01

    Many metals serve as micronutrients which protect against genomic instability. Chromium is most abundant in its trivalent and hexavalent forms. Trivalent chromium has historically been considered an essential element, though recent data indicate that while it can have pharmacological effects and value, it is not essential. There are no data indicating that trivalent chromium promotes genomic stability and, instead may promote genomic instability. Hexavalent chromium is widely accepted as highly toxic and carcinogenic with no nutritional value. Recent data indicate that it causes genomic instability and also has no role in promoting genomic stability. PMID:22192535

  11. Effects of cadmium and mycorrhizal fungi on growth, fitness, and cadmium accumulation in flax (Linum usitatissimum; Linaceae).

    PubMed

    Hancock, Laura M S; Ernst, Charlotte L; Charneskie, Rebecca; Ruane, Lauren G

    2012-09-01

    Agricultural soils have become contaminated with a variety of heavy metals, including cadmium. The degree to which soil contaminants affect plants may depend on symbiotic relationships between plant roots and soil microorganisms. We examined (1) whether mycorrhizal fungi counteract the potentially negative effects of cadmium on the growth and fitness of flax (Linum usitatissimum) and (2) whether mycorrhizal fungi affect the accumulation of cadmium within plant parts. Two flax cultivars (Linott and Omega) were grown in three soil cadmium environments (0, 5, and 15 ppm). Within each cadmium environment, plants were grown in either the presence or absence of mycorrhizal fungi. Upon senescence, we measured growth and fitness and quantified the concentration of cadmium within plants. Soil cadmium significantly decreased plant fitness, but did not affect plant growth. Mycorrhizal fungi, which were able to colonize roots of plants growing in all cadmium levels, significantly increased plant growth and fitness. Although mycorrhizal fungi counteracted the negative effects of cadmium on fruit and seed production, they also enhanced the concentration of cadmium within roots, fruits, and seeds. The degree to which soil cadmium affects plant fitness and the accumulation of cadmium within plants depended on the ability of plants to form symbiotic relationships with mycorrhizal fungi. The use of mycorrhizal fungi in contaminated agricultural soils may offset the negative effects of metals on the quantity of seeds produced, but exacerbate the accumulation of these metals in our food supply.

  12. Tracing heavy metals in 'swine manure - maggot - chicken' production chain.

    PubMed

    Wang, Wanqiang; Zhang, Wenjuan; Wang, Xiaoping; Lei, Chaoliang; Tang, Rui; Zhang, Feng; Yang, Qizhi; Zhu, Fen

    2017-08-21

    With the development of large-scale livestock farming, manure pollution has drawn much attention. Conversion by insects is a rapid and cost-effective new method for manure management. Swine manure conversion with maggots (Musca domestica larvae) has developed, and the harvested maggots are often used as animal feed. However, the flow of heavy metals from manure to downstream processes cannot be ignored, and therefore, heavy metal content was measured in untreated raw manure, maggot-treated manure, harvested maggots and maggot-eating chickens (chest muscle and liver) to evaluate potential heavy metal risks. The levels of zinc, copper, chromium, selenium, cadmium and lead had significant differences between untreated raw manure and maggot-treated manure. The concentrations of all detected heavy metals, except for cadmium and selenium, in maggots met the limits established by the feed or feed additive standards of many countries. The bioaccumulation factor (BAF) of heavy metals decreased with the increase of the maggot instar, indicating that heavy metals were discharged from the bodies of maggots with the growth of maggots. Also, the contents of overall heavy metals in chickens fed harvested maggots met the standards for food. In conclusion, regarding heavy metals, it is eco-safe to use maggots in manure management.

  13. Cyto-histological and morpho-physiological responses of common duckweed (Lemna minor L.) to chromium.

    PubMed

    Reale, L; Ferranti, F; Mantilacci, S; Corboli, M; Aversa, S; Landucci, F; Baldisserotto, C; Ferroni, L; Pancaldi, S; Venanzoni, R

    2016-02-01

    Along with cadmium, lead, mercury and other heavy metals, chromium is an important environmental pollutant, mainly concentrated in areas of intense anthropogenic pressure. The effect of potassium dichromate on Lemna minor populations was tested using the growth inhibition test. Cyto-histological and physiological analyses were also conducted to aid in understanding the strategies used by plants during exposure to chromium. Treatment with potassium dichromate caused a reduction in growth rate and frond size in all treated plants and especially at the highest concentrations. At these concentrations the photosynthetic pathway was also altered as shown by the decrease of maximum quantum yield of photosystem II and the chlorophyll b content and by the chloroplast ultrastructural modifications. Starch storage was also investigated by microscopic observations. It was the highest at the high concentrations of the pollutant. The data suggested a correlation between starch storage and reduced growth; there was greater inhibition of plant growth than inhibition of photosynthesis, resulting in a surplus of carbohydrates that may be stored as starch. The investigation helps to understand the mechanism related to heavy metal tolerance of Lemna minor and supplies information about the behavior of this species widely used as a biomarker. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Mineral of the month: chromium

    USGS Publications Warehouse

    Papp, John F.

    2005-01-01

    Chromium is one of the most indispensable industrial metals and it plays an essential but hidden role in daily life. Chromium is used in many consumer and building products, and it contributes to a clean, efficient and healthy environment.

  15. Multi-metals column adsorption of lead(II), cadmium(II) and manganese(II) onto natural bentonite clay.

    PubMed

    Alexander, Jock Asanja; Surajudeen, Abdulsalam; Aliyu, El-Nafaty Usman; Omeiza, Aroke Umar; Zaini, Muhammad Abbas Ahmad

    2017-10-01

    The present work was aimed at evaluating the multi-metals column adsorption of lead(II), cadmium(II) and manganese(II) ions onto natural bentonite. The bentonite clay adsorbent was characterized for physical and chemical properties using X-ray diffraction, X-ray fluorescence, Brunauer-Emmett-Teller surface area and cation exchange capacity. The column performance was evaluated using adsorbent bed height of 5.0 cm, with varying influent concentrations (10 mg/L and 50 mg/L) and flow rates (1.4 mL/min and 2.4 mL/min). The result shows that the breakthrough time for all metal ions ranged from 50 to 480 minutes. The maximum adsorption capacity was obtained at initial concentration of 10 mg/L and flow rate of 1.4 mL/min, with 2.22 mg/g of lead(II), 1.71 mg/g of cadmium(II) and 0.37 mg/g of manganese(II). The order of metal ions removal by natural bentonite is lead(II) > cadmium(II) > manganese(II). The sorption performance and the dynamic behaviour of the column were predicted using Adams-Bohart, Thomas, and Yoon-Nelson models. The linear regression analysis demonstrated that the Thomas and Yoon-Nelson models fitted well with the column adsorption data for all metal ions. The natural bentonite was effective for the treatment of wastewater laden with multi-metals, and the process parameters obtained from this work can be used at the industrial scale.

  16. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kayaaltı, Zeliha, E-mail: kayaalti@ankara.edu.tr; Akyüzlü, Dilek Kaya; Söylemezoğlu, Tülin

    Divalent metal transporter 1 (DMT1), a member of the proton-coupled metal ion transporter family, mediates transport of ferrous iron from the lumen of the intestine into the enterocyte and export of iron from endocytic vesicles. It has an affinity not only for iron but also for other divalent cations including manganese, cobalt, nickel, cadmium, lead, copper, and zinc. DMT1 is encoded by the SLC11a2 gene that is located on chromosome 12q13 in humans and express four major mammalian isoforms (1A/+IRE, 1A/-IRE, 2/+IRE and 2/-IRE). Mutations or polymorphisms of DMT1 gene may have an impact on human health by disturbing metalmore » trafficking. To study the possible association of DMT1 gene with the blood levels of some divalent cations such as iron, lead and cadmium, a single nucleotide polymorphism (SNP) (IVS4+44C/A) in DMT1 gene was investigated in 486 unrelated and healthy individuals in a Turkish population by method of polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). The genotype frequencies were found as 49.8% homozygote typical (CC), 38.3% heterozygote (CA) and 11.9% homozygote atypical (AA). Metal levels were analyzed by dual atomic absorption spectrometer system and the average levels of iron, lead and cadmium in the blood samples were 446.01±81.87 ppm, 35.59±17.72 ppb and 1.25±0.87 ppb, respectively. Individuals with the CC genotype had higher blood iron, lead and cadmium levels than those with AA and CA genotypes. Highly statistically significant associations were detected between IVS4+44 C/A polymorphism in the DMT1 gene and iron and lead levels (p=0.001 and p=0.036, respectively), but no association was found with cadmium level (p=0.344). This study suggested that DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, lead and cadmium levels. - Highlights: • DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, cadmium and lead levels.

  17. Determination of arsenic, cadmium, cobalt, chromium, lead, molybdenum, nickel, and selenium in fertilizers by microwave digestion and inductively coupled plasma-optical emission spectrometry detection: collaborative study.

    PubMed

    Kane, Peter F; Hall, William L

    2006-01-01

    There is increasing regulatory interest in the non-nutritive metals content of fertilizer materials, but at present there is no consensus analytical method for acid digestion and instrument detection of those elements in fertilizer matrixes. This lack of method standardization has resulted in unacceptable variability of results between fertilizer laboratories performing metals analysis. A method has been developed using microwave digestion with nitric acid at 200 degrees C, followed by inductively coupled plasma-optical emission spectrometry instrument detection, for the elements arsenic, cadmium, cobalt, chromium, molybdenum, nickel, lead, and selenium. The method has been collaboratively studied, and statistical results are here reported. Fourteen collaborators were sent 62 sample materials in a blind duplicate design. Materials represented a broad cross section of fertilizer types, including phosphate ore, manufactured phosphate products, N-P-K blends, organic fertilizers, and micro-nutrient materials. As much as possible within the limit of the number of samples, materials were selected from different regions of the United States and the world. Limit of detection (LOD) was determined using synthetic fertilizers consisting of reagent grade chemicals with near zero levels of the non-nutritive elements, analyzed blindly. Samples with high iron content caused the most variability between laboratories. Most samples reasonably above LOD gave HorRat values within the range 0.5 to 2.0, indicating acceptable method performance according to AOAC guidelines for analyses in the mg/kg range. The method is recommended for AOAC Official First Action status.

  18. Fume generation and content of total chromium and hexavalent chromium in flux-cored arc welding.

    PubMed

    Yoon, Chung Sik; Paik, Nam Won; Kim, Jeong Han

    2003-11-01

    This study was performed to investigate the fume generation rates (FGRs) and the concentrations of total chromium and hexavalent chromium when stainless steel was welded using flux-cored arc welding (FCAW) with CO2 gas. FGRs and concentrations of total chromium and hexavalent chromium were quantified using a method recommended by the American Welding Society, inductively coupled plasma-atomic emission spectroscopy (NIOSH Method 7300) and ion chromatography (modified NIOSH Method 7604), respectively. The amount of total fume generated was significantly related to the level of input power. The ranges of FGR were 189-344, 389-698 and 682-1157 mg/min at low, optimal and high input power, respectively. It was found that the FGRs increased with input power by an exponent of 1.19, and increased with current by an exponent of 1.75. The ranges of total chromium fume generation rate (FGRCr) were 3.83-8.27, 12.75-37.25 and 38.79-76.46 mg/min at low, optimal and high input power, respectively. The ranges of hexavalent chromium fume generation rate (FGRCr6+) were 0.46-2.89, 0.76-6.28 and 1.70-11.21 mg/min at low, optimal and high input power, respectively. Thus, hexavalent chromium, which is known to be a carcinogen, generated 1.9 (1.0-2.7) times and 3.7 (2.4-5.0) times as the input power increased from low to optimal and low to high, respectively. As a function of input power, the concentration of total chromium in the fume increased from 1.57-2.65 to 5.45-8.13% while the concentration of hexavalent chromium ranged from 0.15 to 1.08%. The soluble fraction of hexavalent chromium produced by FCAW was approximately 80-90% of total hexavalent chromium. The concentration of total chromium and the solubility of hexavalent chromium were similar to those reported from other studies of shielded metal arc welding fumes, and the concentration of hexavalent chromium was similar to that obtained for metal inert gas-welding fumes.

  19. Strategies for chromium bioremediation of tannery effluent.

    PubMed

    Garg, Satyendra Kumar; Tripathi, Manikant; Srinath, Thiruneelakantan

    2012-01-01

    Bioremediation offers the possibility of using living organisms (bacteria, fungi, algae,or plants), but primarily microorganisms, to degrade or remove environmental contaminants, and transform them into nontoxic or less-toxic forms. The major advantages of bioremediation over conventional physicochemical and biological treatment methods include low cost, good efficiency, minimization of chemicals, reduced quantity of secondary sludge, regeneration of cell biomass, and the possibility of recover-ing pollutant metals. Leather industries, which extensively employ chromium compounds in the tanning process, discharge spent-chromium-laden effluent into nearby water bodies. Worldwide, chromium is known to be one of the most common inorganic contaminants of groundwater at pollutant hazardous sites. Hexavalent chromium poses a health risk to all forms of life. Bioremediation of chromium extant in tannery waste involves different strategies that include biosorption, bioaccumulation,bioreduction, and immobilization of biomaterial(s). Biosorption is a nondirected physiochemical interaction that occurs between metal species and the cellular components of biological species. It is metabolism-dependent when living biomass is employed, and metabolism-independent in dead cell biomass. Dead cell biomass is much more effective than living cell biomass at biosorping heavy metals, including chromium. Bioaccumulation is a metabolically active process in living organisms that works through adsorption, intracellular accumulation, and bioprecipitation mechanisms. In bioreduction processes, microorganisms alter the oxidation/reduction state of toxic metals through direct or indirect biological and chemical process(es).Bioreduction of Cr6+ to Cr3+ not only decreases the chromium toxicity to living organisms, but also helps precipitate chromium at a neutral pH for further physical removal,thus offering promise as a bioremediation strategy. However, biosorption, bioaccumulation, and

  20. [MONITORING OF THE CONTENT OF HEAVY METALS AND ELEMENTS IN THE SNOW COVER IN AGRICULTURAL SOILS AT THE TERRITORY OF THE MOSCOW REGION].

    PubMed

    Ermakov, A A; Karpova, E A; Malysheva, A G; Mikhaylova, R I; Ryzhova, I N

    2015-01-01

    The monitoring of snow cover pollution by heavy metals and elements (zinc, copper, lead, cadmium, arsenic, nickel, chromium, strontium, manganese, fluorine, lithium) was performed in 20 districts of the Moscow region in 2009, 2012 and 2013. The assessment of the levels of contamination by heavy metals and elements was given by means of comparison of them with the average values in the snow cover near Moscow in the end of the last century and in some areas of the world, that no exposed to technological environmental impact. 7 districts of Moscow region were characterized by a high content of lead and cadmium in the snow water. It requires the control of water, soil and agricultural products pollution.

  1. Differential GFP expression patterns induced by different heavy metals in Tg(hsp70:gfp) transgenic medaka (Oryzias latipes).

    PubMed

    Ng, Grace Hwee Boon; Xu, Hongyan; Pi, Na; Kelly, Barry C; Gong, Zhiyuan

    2015-06-01

    Heat shock protein 70 (Hsp70) is one of the most widely used biomarker for monitoring environment perturbations in biological systems. To facilitate the analysis of hsp70 expression as a biomarker, we generated a Tg(hsp70:gfp) transgenic medaka line in which green fluorescence protein (GFP) reporter gene was driven by the medaka hsp70 promoter. Here, we characterized Tg(hsp70:gfp) medaka for inducible GFP expression by seven environment-relevant heavy metals, including mercury, arsenic, lead, cadmium, copper, chromium, and zinc. We found that four of them (mercury, arsenic, lead, and cadmium) induced GFP expression in multiple and different organs. In general, the liver, kidney, gut, and skin are among the most frequent organs to show induced GFP expression. In contrast, no detectable GFP induction was observed to copper, chromium, or zinc, indicating that the transgenic line was not responsive to all heavy metals. RT-qPCR determination of hsp70 mRNA showed similar induction and non-induction by these metals, which also correlated with the levels of metal uptake in medaka exposed to these metals. Our observations suggested that these heavy metals have different mechanisms of toxicity and/or differential bioaccumulation in various organs; different patterns of GFP expression induced by different metals may be used to determine or exclude metals in water samples tested. Furthermore, we also tested several non-metal toxicants such as bisphenol A, 2,3,7,8-tetrachlorodibenzo-p-dioxin, 4-introphenol, and lindane; none of them induced significant GFP expression in Tg(hsp70:gfp) medaka, further suggesting that the inducibility of Tg(hsp70:gfp) for GFP expression is specific to a subset of heavy metals.

  2. Applications of peat-based sorbents for removal of metals from water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, A.D.; Stack, E.M.; Eltayeb, S.

    1995-12-31

    The results reported in this paper are derived from one part of an ongoing investigation of peat sorption properties, in particular, the capacities of acid-treated peats to adsorb chromium, nickel, zinc, copper, and cadmium from water. Acid treatment was done to remove as much previously adsorbed metal as possible before testing. Four peat types were selected for study, two highly decomposed types (a woody, Taxodium-dominated peat from the Okefenokee Swamp of Georgia and a sedge-dominated, charcoal-rich peat from the Tamiami Trail region of Florida) and two less decomposed ones (a Sphagnum moss-dominated peat from Maine and a Nymphaea-dominated peat frommore » the Okefenokee Swamp of Georgia). Single metal and mixed metal solutions were tested in slurry experiments with each peat type. Solutions were analyzed using a Perkin-Elmer model 305B Flame Atomic Absorption Spectrophotometer. In single metal tests, chromium and copper tended to be adsorbed to a greater extent than the other metals. Three of the peats were found to be capable of adsorbine more copper ions than zince ions, while a fourth type adsorbed approximately the same amounts of each. Degree of decomposition of the peats tended to affect sorption properties for certain metals. The results of batch studies revealed that chromium was always preferentially adsorbed regardless of the peat type tested. The results of these studies further confirm that remediation of metal-contaminated waters using peats will require selection of specific peats to match the contaminants.« less

  3. Estimation of bioavailability of metals from drilling mud barite.

    PubMed

    Neff, Jerry M

    2008-04-01

    Drilling mud and associated drill cuttings are the largest volume wastes associated with drilling of oil and gas wells and often are discharged to the ocean from offshore drilling platforms. Barite (BaSO4) often is added as a weighting agent to drilling muds to counteract pressure in the geologic formations being drilled, preventing a blowout. Some commercial drilling mud barites contain elevated (compared to marine sediments) concentrations of several metals. The metals, if bioavailable, may harm the local marine ecosystem. The bioavailable fraction of metals is the fraction that dissolves from the nearly insoluble, solid barite into seawater or sediment porewater. Barite-seawater and barite-porewater distribution coefficients (Kd) were calculated for determining the predicted environmental concentration (PEC; the bioavailable fraction) of metals from drilling mud barite in the water column and sediments, respectively. Values for Kdbarite-seawater and Kdbarite-porewater were calculated for barium, cadmium, chromium, copper, mercury, lead, and zinc in different grades of barite. Log Kdbarite-seawater values were higher (solubility was lower) for metals in the produced water plume than log Kdbarite-porewater values for metals in sediments. The most soluble metals were cadmium and zinc and the least soluble were mercury and copper. Log Kd values can be used with data on concentrations of metals in barite and of barite in the drilling mud-cuttings plume and in bottom sediments to calculate PECseawater and PECsediment.

  4. Oxidative stress, glutathione level and antioxidant response to heavy metals in multi-resistant pathogen, Candida tropicalis.

    PubMed

    Ilyas, Sidra; Rehman, Abdul

    2015-01-01

    In this study, we explored the multiple heavy metal-resistant yeast isolated from heavy metal-polluted environment. The isolated yeast showed maximum growth at 30 °C, pH 7.0, and the strain was identified as Candida tropicalis through 18S ribosomal RNA (rRNA) gene sequence analysis. Yeast cells grew well in medium containing different concentrations of heavy metal ions [CdCl₂, Pb(NO₃)₂, NaAsO₂, CuSO₄ and K₂Cr₂O₇]. Minimum inhibitory concentration (MIC) against different metal ions was ranged from 5 to 19 mM, and the metal resistance value against each metal observed by yeast cells was 5 mM (Cr), 10 mM (Cd), 15 mM (As), 14 mM (Cu) and 19 mM (Pb) and increased in the following order: Pb > Cu > As ≥ Cd > Cr. The total cellular glutathione, GSH/GSSG redox couple and metallothioneins like protein (MT) were assayed by growing cultures for 24 h and exposed to 100 mg/L of each heavy metal ion. Remarkable increase in γ-glutamylcysteinylglycine (GSH) level was determined in arsenic and cadmium treatment followed by chromium, lead and copper. Stressed cells had much more oxidized GSH than unstressed cells. GSH/GSSG ratio was significantly increased in cadmium and copper treatment in contrast to chromium, arsenic and lead. Statistical analysis revealed significantly higher cysteine level in all metal-treated samples as compared to control. Antioxidant glutathione transferase activity was not detected in metal-treated and untreated yeast samples. One-dimensional electrophoresis of proteins revealed marked differences in banding pattern of heavy metal-exposed yeast samples. A prominent 20 kDa band was observed in all treated samples suggesting that some differential proteins could be over-expressed during heavy metal treatment and might be involved in cell resistance mechanisms.

  5. Temporal trends (1989–2011) in levels of mercury and other heavy metals in feathers of fledgling great egrets nesting in Barnegat Bay, NJ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, Joanna, E-mail: burger@biology.rutgers.edu

    There is an abundance of data for levels of metals from a range of species, but relatively few long-term time series from the same location. In this paper I examine the levels of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in feathers from fledgling great egrets (Ardea alba) collected at nesting colonies in Barnegat Bay, New Jersey from 1989 to 2011. The primary objectives were to test the null hypotheses that (1) There were no temporal differences in metal levels in feathers of fledgling great egrets, and (2) Great egrets nesting in different areas of Barnegat Bay (New Jersey)more » did not differ in metal levels. There were significant yearly variations in levels of all heavy metals in feathers of fledgling great egret, but levels decreased significantly from 1989 to 2011 only for lead (1470 ppb to 54.3 ppb), cadmium (277 ppb to 30.5 ppb), and manganese (only since 1996; 2669 ppb to 329 ppb)). Although mercury levels decreased from 2003–2008 (6430 ppb to 1042 ppb), there was no pattern before 2003, and levels increased after 2008 to 2610 ppb in 2011. Lead, cadmium, chromium, manganese and mercury were higher in feathers from great egrets nesting in the northern part of the bay, and selenium was highest in feathers from mid-bay. The lack of a temporal decline in mercury levels in feathers of great egrets is cause for concern, since the high levels in feathers from some years (means as high as 6430 ppb) are in the range associated with adverse effects (5000 ppb for feathers). -- Highlights: ► Metals were monitored in feathers of great egrets from Barnegat Bay, New Jersey. ► Levels of cadmium and lead decreased significantly from 1989–2011. ► Mercury levels in feathers from great egrets did not decline from 1989–2011. ► Metal levels were generally higher in great egrets and black-crowned night heron feathers than in snowy egrets.« less

  6. Mineral resource of the month: Chromium

    USGS Publications Warehouse

    Schulte, Ruth

    2018-01-01

    Although chromium is a metal, it does not occur naturally in metallic form. Chromium can be found in many minerals, but the only economically significant chromium-bearing mineral is chromite. Chromite has been mined from four different deposit types: stratiform chromite, podiform chromite, placer chromite, and laterite deposits. Most of the world's resources, however, are located in stratiform chromite deposits, such as the Bushveld Complex in South Africa. The economic potential of chromite resources depends on the thickness and continuity of the deposit and on the grade of the ore. Many of the major stratiform chromite deposits also contain economic levels of platinum, paladium, rhodium, osmium, iridium, and ruthenium.

  7. Blood Metal Concentrations of Manganese, Lead, and Cadmium in Relation to Serum Ferritin Levels in Ohio Residents

    EPA Science Inventory

    The objectives of this study were to assess fcrritin-specific profiles of blood metal concentrations such as manganese, lead, and cadmium and to evaluate whether ferritin may affect the behavior of the blood metals in relation to menstruation, menopause, or sex in Ohio residents....

  8. Does heavy metal exposure affect the condition of Whitethroat (Sylvia communis) nestlings?

    PubMed

    Turzańska-Pietras, Katarzyna; Chachulska, Justyna; Polechońska, Ludmiła; Borowiec, Marta

    2018-03-01

    Anthropogenic pollution results in high concentrations of heavy metals in the environment. Due to their persistence and a high potential for bioaccumulation, metals are a real threat for birds breeding in industrial areas. The aim of the present study has been to explore the contents of heavy metals (arsenic As, cadmium Cd, chromium Cr, copper Cu, iron Fe, nickel Ni, lead Pb and zinc Zn) in the excreta of Whitethroat (Sylvia communis) nestlings living in polluted environment and to investigate the relationship between these contents and the nestlings' condition. Excrement samples contained all the studied elements. The contents of arsenic, cadmium, copper and zinc in the excreta of nestlings from nests located close to a slag dump were several times higher than in the soil near the dump, which suggested accumulation in food consumed by the birds. Condition parameters (body mass and haemoglobin concentration) were not related to heavy metal concentrations in the nestlings' excreta, except of Zn. It is possible that Whitethroats are able to detoxicate heavy metals to a certain extent. Detailed, multi-element analysis of the environment, food and bird tissues or excreta should be performed to explore relations between different chemicals and bird condition.

  9. Determination of heavy metals in the ambient atmosphere.

    PubMed

    Suvarapu, Lakshmi Narayana; Baek, Sung-Ok

    2017-01-01

    Heavy metal determination in ambient air is an important task for environmental researchers because of their toxicity to human beings. Some heavy metals (hexavalent chromium (Cr), arsenic (As), cadmium (Cd) and nickel (Ni)) have been listed as carcinogens. Furthermore, heavy metals in the atmosphere can accumulate in various plants and animals and enter humans through the food chain. This article reviews the determination of heavy metals in the atmosphere in different areas of the world since 2006. The results showed that most researchers concentrated on toxic metals, such as Cr, Cd, Ni, As and lead. A few studies used plant materials as bio-monitors for the atmospheric levels of heavy metals. Some researchers found higher concentrations of heavy metals surrounding industrial areas compared with residential and/or commercial areas. Most studies reported the major sources of the particulate matter and heavy metals in the atmosphere to be industrial emissions, vehicular emissions and secondary aerosols.

  10. Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil

    PubMed Central

    Oves, Mohammad; Khan, Mohammad Saghir; Zaidi, Almas

    2012-01-01

    The study was navigated to examine the metal biosorbing ability of bacterial strain OSM29 recovered from rhizosphere of cauliflower grown in soil irrigated consistently with industrial effluents. The metal tolerant bacterial strain OSM29 was identified as Bacillus thuringiensis following 16S rRNA gene sequence analysis. In the presence of the varying concentrations (25–150 mgl−1) of heavy metals, such as cadmium, chromium, copper, lead and nickel, the B. thuringiensis strain OSM29 showed an obvious metal removing potential. The effect of certain physico-chemical factors such as pH, initial metal concentration, and contact time on biosorption was also assessed. The optimum pH for nickel and chromium removal was 7, while for cadmium, copper and lead, it was 6. The optimal contact time was 30 min. for each metal at 32 ± 2 °C by strain OSM29. The biosorption capacity of the strain OSM29 for the metallic ions was highest for Ni (94%) which was followed by Cu (91.8%), while the lowest sorption by bacterial biomass was recorded for Cd (87%) at 25 mgl−1 initial metal ion concentration. The regression coefficients obtained for heavy metals from the Freundlich and Langmuir models were significant. The surface chemical functional groups of B. thuringiensis biomass identified by Fourier transform infrared (FTIR) were amino, carboxyl, hydroxyl, and carbonyl groups, which may be involved in the biosorption of heavy metals. The biosorption ability of B. thuringiensis OSM29 varied with metals and was pH and metal concentration dependent. The biosorption of each metal was fairly rapid which could be an advantage for large scale treatment of contaminated sites. PMID:24115905

  11. Cadmium, metal-binding proteins, and growth in bluegill (Lepomis macrochirus

    USGS Publications Warehouse

    Cope, W. Gregory; Wiener, James G.; Steingraeber, Mark T.; Atchison, Gary J.

    1994-01-01

    We exposed juvenile bluegill (Lepomis macrochirus) to ~1000 mg∙L−1 of continuously suspended river sediment in a 28-d test with six treatments (randomized block with one sediment-free control and five sediments ranging from 1.3 to 21.4 μg Cd∙g dry weight−1). Each treatment had three replicates, each with 25 fish. Growth was reduced by exposure to suspended sediment, probably due to physical effects of sediment on feeding and to toxicity in the treatment with the greatest concentrations of metals. Mean whole-body concentrations of cadmium (0.04–0.14 μg∙g wet weight−1) were correlated with cadmium concentration in filtered water (8–72 ng∙L−1), suspended sediment (0.61–16.8 μg∙L−1), and bulk sediment. The concentration of hepatic nonthionein cytosolic cadmium (cadmium not bound by metal-binding proteins, MBP) in fish exposed to the two most contaminated sediments exceeded that in controls. The mean concentration of hepatic MBP was correlated with cadmium concentration in filtered water, suspended sediment, bulk sediment, and whole fish. Whole-body cadmium concentration was the most sensitive indicator of cadmium exposure, with lowest observed effect concentrations of 1.9 μg Cd∙L−1 for suspended sediment and 13 ng Cd∙L−1 for filtered water. Sediment-associated cadmium was less available than waterborne cadmium for uptake by fish.

  12. Long-term Metal Performance of Three Permeable Pavements ...

    EPA Pesticide Factsheets

    EPA constructed a 4,000-m2 parking lot surfaced with three permeable pavements (permeable interlocking concrete pavers, pervious concrete, and porous asphalt) on the Edison Environmental Center in Edison, NJ in 2009. Samples from each permeable pavement infiltrate were collected for six years beginning in January 2010 and analyzed for twenty-two metals. Although the infiltrate metals concentrations varied by surface, metal concentrations in more than 99% of the permeable pavement infiltrate samples met both the groundwater effluent limitations and maximum contaminant levels in national primary drinking water regulations for barium, chromium, copper, manganese, nickel and zinc. Arsenic, cadmium, lead and antimony met those standards in 60% to 98% of the samples with no measurable difference found among pavements. Aluminum and iron in pervious concrete and porous asphalt infiltrates met standards at more than 90%, however permeable interlocking concrete paver infiltrates have 50% and 93% samples exceeds standards, respectively. Concentrations of arsenic, iron, potassium, lithium, magnesium, antimony, tin, manganese, and zinc in all permeable pavement infiltrates decreased with time, whereas, aluminum, barium, calcium, chromium and strontium in porous asphalt infiltrates increased. Most metal concentrations in permeable pavement infiltrates either exhibited no significant difference between snow/no-snow seasons or showed statistically larger concentrations

  13. Comparative effects of cadmium, zinc, arsenic and chromium on olfactory-mediated neurobehavior and gene expression in larval zebrafish (Danio rerio).

    PubMed

    Heffern, Kevin; Tierney, Keith; Gallagher, Evan P

    2018-05-28

    Studies have shown that olfactory-mediated behaviors that are critical to survival can be disrupted by exposure to certain metals. Polluted waterways often contain elevated levels of metals, yet only a subset have been characterized for their potential to cause olfactory toxicity. A larval zebrafish behavioral assay was developed to characterize concentration-response curves for zinc (Zn), hexavalent chromium (Cr), and arsenate (As) olfaction inhibition. Cadmium (Cd), an established olfactory toxicant, was used as a positive control. As expected, following a 24-hour exposure to Cd, we observed a reduced response to taurocholic acid (TCA), a substrate for ciliated olfactory sensory neurons (OSNs), thus validating the behavioral assay. Zn exposure similarly decreased the olfactory response toward TCA, (IC 50 : 36 μg/L and 76 μg/L, for Cd and Zn, respectively). The response towards a secondary odorant L-cysteine (Cys), a substrate for ciliated and microvillous OSNs, was significantly altered by both Cd and Zn exposure, although the response to Cys was not completely removed in Zn treated larvae, suggesting preferential toxicity towards ciliated OSNs. No significant changes in olfactory responses were observed following Cr and As exposures. Exposures to binary mixtures of Cd and Zn indicated that Zn had a protective effect against Cd toxicity at low Zn concentrations. QuantiGene (QDP) RNA analysis revealed Cd to be a potent inducer of metallothionein 2 (mt2) mRNA in zebrafish larvae, and Zn to be a weak mt2 inducer, suggesting a protective role of mt2 in Cd and Zn olfactory injury. By contrast, QDP analysis of eight other genes important in mitigating the effects of oxidative stress suggested an antioxidant response to Cd, but not Zn, As, and Cr suggesting that oxidative stress was not a primary mechanism of Zn-induced olfactory dysfunction. In summary, our study indicates that Zn inhibits zebrafish olfaction at environmental concentrations and may potentially

  14. Development of an inhalation system of high melting point metal fumes and its use for exposure of rats to chromium and nickel fumes.

    PubMed

    Serita, F; Homma, K; Fukuda, K; Sawatari, K; Suzuki, Y; Toya, T

    1990-01-01

    An experimental inhalation system was developed for fumes generated from powders of high melting point metals such as chromium, nickel, manganese and iron. The system consisted of a plasma flame metal sprayer as a fume generator, a granular bed type fume collector, a fluidized bed aerosol generator, an exposure and a control chamber of a horizontal-flow type and inhalant monitoring and controlling units. Performance of the chambers was ensured by a distribution test using flyash as a test aerosol. Using this system, rats were exposed to chromium fumes for one week or to nickel fumes for two months. The exposure concentrations of the chromium and nickel fumes were 1.85 +/- 0.55 mg/m3 and 0.51 +/- 0.15 mg/m3 (mean +/- SD), near the target levels of 2 mg/m3 and 0.5 mg/m3, respectively. The mass median aerodynamic diameter and the geometric standard deviation of the chromium fumes were 2.1 microns and 2.00, respectively. Those of the nickel fumes were 3.7 microns and 1.74, respectively. Species analysis of these fume particles revealed that 26.4% of the total chromium was hexavalent and the residue was trivalent and that 1-3% of the total nickel was nickel(III) and the residue was nickel(II). Inhaled-metal concentrations in the lungs showed steady increases with the exposure periods and were within the normal range of variation. On the basis of these results, it is concluded that this system is useful for long-term inhalation experiments using high melting point metal fumes.

  15. Fertility and content of cadmium in pheasant (Phasianus colchicus) following cadmium intake in drinking water.

    PubMed

    Toman, R; Massányi, P; Lukác, N; Ducsay, L; Golian, J

    2005-09-01

    In this study, the effects of cadmium applied per os on fertility, live weight of newly hatched chicks, and cadmium concentrations in some organs of young and adult pheasants were investigated. The metal was applied at the concentration of 1.5 mg Cd(2+)/L during 3 months. After the egg laying, the numbers of eggs laid, cracked, and unfertilized were determined and the live weights of newly hatched chicks were measured. The cadmium concentrations in liver, kidney, and muscle (m. pectoralis) of young and adult pheasants were analyzed. We found that cadmium exposure of the adults did not affect the number of eggs laid but resulted in more eggs being damaged. Hatchlings were significantly heavier in the cadmium-treated group (21.36 +/- 2.28 g) compared to the control group (20.91 +/- 1.97 g) 4 weeks after the cadmium intake. Higher cadmium concentrations were observed in the muscle and kidney tissue of newly hatched pheasants after 4 weeks compared to the cadmium-exposed groups after 8 and 12 weeks. The cadmium concentrations in kidneys and liver increased significantly in adult pheasants. The metal had accumulated especially in kidneys of the adult pheasants and reached levels up to 9.64 mg/kg wet weight 3 months after the daily cadmium intake in drinking water. The concentration in liver of the adults was 3.53 mg/kg wet weight.

  16. Reduction of metal exposure of Daubenton's bats (Myotis daubentonii) following remediation of pond sediment as evidenced by metal concentrations in hair.

    PubMed

    Flache, Lucie; Ekschmitt, Klemens; Kierdorf, Uwe; Czarnecki, Sezin; Düring, Rolf-Alexander; Encarnação, Jorge A

    2016-03-15

    Transfer of contaminants from freshwater sediments via aquatic insects to terrestrial predators is well documented in spiders and birds. Here, we analyzed the metal exposure of Myotis daubentonii using an urban pond as their preferred foraging area before and after a remediation measure (sediment dredging) at this pond. Six metal elements (Zn, Cu, Cr, Cd, Pb and Ni) were measured in the sediment of the pond, in EDTA extracts of the sediment and in hair samples of M. daubentonii foraging at the pond. Samples were taken before remediation in 2011 and after remediation in 2013. Metal concentrations were quantified by ICP-OES after miniaturized microwave assisted extraction. In 2011, the pond sediment exhibited a high contamination with nickel, a moderate contamination with copper and chromium and low contents of zinc, cadmium and lead. While sediment metal contents declined only weakly after remediation, a much more pronounced reduction in the concentrations of zinc, copper, chromium and lead concentrations was observed in bat hair. Our results suggest a marked decline in metal exposure of the bats foraging at the pond as a consequence of the remediation measure. It is concluded that Daubenton's bats are suitable bioindicators of metal contamination in aquatic environments, integrating metal exposure via prey insects over their entire foraging area. We further suggest that bat hair is a useful monitoring unit, allowing a non-destructive and non-invasive assessment of metal exposure in bats. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Recovery Of Chromium Metal (VI) Using Supported Liquid Membrane (SLM) Method, A study of Influence of NaCl and pH in Receiving Phase on Transport

    NASA Astrophysics Data System (ADS)

    Cholid Djunaidi, Muhammad; Lusiana, Retno A.; Rahayu, Maya D.

    2017-06-01

    Chromium metal(VI) is a valuable metal but in contrary has high toxicity, so the separation and recovery from waste are very important. One method that can be used for the separation and recovery of chromium (VI) is a Supported Liquid Membrane (SLM). SLM system contains of three main components: a supporting membrane, organic solvents and carrier compounds. The supported Membrane used in this research is Polytetrafluoroethylene (PTFE), organic solvent is kerosene, and the carrier compound used is aliquat 336. The supported liquid membrane is placed between two phases, namely, feed phase as the source of analyte (Cr(VI)) and the receiving phase as the result of separation. Feed phase is the electroplating waste which contains of chromium metal with pH variation about 4, 6 and 9. Whereas the receiving phase are the solution of HCl, NaOH, HCl-NaCl and NaOH-NaCl with pH variation about 1, 3, 5 and 7. The efficiency separation is determined by measurement of chromium in the feed and the receiving phase using AAS (Atomic Absorption Spectrophotometry). The experiment results show that transport of Chrom (VI) by Supported Liquid membrane (SLM) is influenced by pH solution in feed phase and receiving phase as well as NaCl in receiving phase. The highest chromium metal is transported from feed phase about 97,78%, whereas in receiving phase shows about 58,09%. The highest chromium metal transport happens on pH 6 in feed phase, pH 7 in receiving phase with the mixture of NaOH and NaCl using carrier compound aliquat 336.

  18. Human biomonitoring of chromium and nickel from an experimental exposure to manual metal arc welding fumes of low and high alloyed steel.

    PubMed

    Bertram, Jens; Brand, Peter; Schettgen, Thomas; Lenz, Klaus; Purrio, Ellwyn; Reisgen, Uwe; Kraus, Thomas

    2015-05-01

    The uptake and elimination of metals from welding fumes is currently not fully understood. In the Aachen Workplace Simulation Laboratory (AWSL) it is possible to investigate the impact of welding fumes on human subjects under controlled exposure conditions. In this study, the uptake and elimination of chromium or chromium (VI) respectively as well as nickel was studied in subjects after exposure to the emissions of a manual metal arc welding process using low or high alloyed steel. In this present study 12 healthy male non-smokers, who never worked as welders before, were exposed for 6h to welding fumes of a manual metal arc welding process. In a three-fold crossover study design, subjects were exposed in randomized order to either clean air, emissions from welding low alloyed steel, and emissions from welding high alloyed steel. Particle mass concentration of the exposure aerosol was 2.5mg m(-3). The content of chromium and nickel in the air was determined by analysing air filter samples on a high emission scenario. Urine analysis for chromium and nickel was performed before and after exposure using methods of human biomonitoring. There were significantly elevated chromium levels after exposure to welding fumes from high alloyed steel compared to urinary chromium levels before exposure to high alloyed welding fumes, as well as compared to the other exposure scenarios. The mean values increased from 0.27 µg l(-1) to 18.62 µg l(-1). The results were in good agreement with already existing correlations between external and internal exposure (German exposure equivalent for carcinogenic working materials EKA). The variability of urinary chromium levels was high. For urinary nickel no significant changes could be detected at all. Six-hour exposure to 2.5mg m(-3) high alloyed manual metal arc welding fumes lead to elevated urinary chromium levels far higher (7.11-34.16 µg l(-1)) than the German biological exposure reference value (BAR) of 0.6 µg l(-1) directly after

  19. Purification of metal finishing waste waters with zeolites and activated carbons.

    PubMed

    Leinonen, H; Lehto, J

    2001-02-01

    Sixteen zeolites and 5 activated carbons were tested for the removal of nickel, zinc, cadmium, copper, chromium, and cobalt from waste simulants mimicking effluents produced in metal plating plants. The best performances were obtained from 4 zeolites: A, X, L, and ferrierite types and from 2 carbon types made from lignite and peat. The distribution coefficients for these sorbents were in the range of 10,000-440,000 ml/g. Column experiments showed that the most effective zeolites for Zn, Ni, Cu, and Cd were A and X type zeolites. The activated carbons, Hydrodarco 3000 and Norit Row Supra, exhibited good sorption properties for metals in aqueous solutions containing complexing agents.

  20. Life-cycle changes and zinc shortage in cadmium-tolerant midges, Chironomus riparius (Diptera), reared in the absence of cadmium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Postma, J.F.; Mol, S.; Larsen, H.

    1995-01-01

    Adaptation to selected metals is known to modify life-cycle characteristics of some invertebrates and can modify the response to other metals. The reverse process, i.e., adaptation to nonpolluted conditions in a metal-tolerant strain, was studied here for a cadmium-tolerant population of the midge Chironomus riparius to detect whether this backward adaptation followed the same lines. It appeared that cadmium-tolerant populations, reared in the absence of cadmium, continued to suffer from high mortality rates and lowered larval growth rates and reproductive success. Also, some cadmium-tolerant populations accumulated more zinc than did nontolerant populations. Successive experiments in which both cadmium-tolerant and nontolerantmore » populations were exposed to zinc indicated that the reduced growth rate and reproduction were a direct consequence of zinc shortage in tolerant midges reared in the absence of cadmium. Mortality among cadmium-tolerant midges was, however, not lowered by zinc exposure and, judged by their high mortality rates, these midges were even more sensitive to zinc than were nontolerant chironomids. It was concluded that cadmium-tolerant chironomid populations recovering from prolonged exposure are affected by an increased need for zinc as well as by an increased mortality rate as a direct consequence of their earlier adaptation process.« less

  1. Experimental exposure of healthy subjects with emissions from a gas metal arc welding process--part II: biomonitoring of chromium and nickel.

    PubMed

    Gube, Monika; Brand, Peter; Schettgen, Thomas; Bertram, Jens; Gerards, Kerstin; Reisgen, Uwe; Kraus, Thomas

    2013-01-01

    The objective of this study was to investigate whether there is a relationship between the external exposure dose of chromium and nickel caused by a metal active gas welding process with a solid high-alloyed steel welding wire and inner exposure of subjects. In order to perform welding fume exposure under controlled and standardized conditions, the investigations were conducted in the "Aachen Workplace Simulation Laboratory". To perform biological monitoring of chromium and nickel, blood and urine samples of 12 healthy male non-smokers who never worked as welders were collected before and after a 6-h exposure to ambient air (0 mg/m(3)) and to welding fumes of a metal active gas welding process once with a concentration of the welding fume of 1 mg/m(3) and once with a concentration of 2.5 mg/m(3). Although the internal exposure to chromium and nickel in this study was comparatively low, the subjects showed significantly increased concentrations of these metals in urine after exposure to welding fume compared to the values at baseline. Moreover, the observed increase was significantly dose dependent for both of the substances. For the biological monitoring of chromium and nickel in urine of subjects exposed to welding fumes, a dependency on exposure dose was seen under standardized conditions after a single exposure over a period of 6 h. Thus, this study contributes to a better understanding of the relationship between ambient and biological exposures from welding fumes and provides a good basis for evaluating future biological threshold values for these metals in welding occupation.

  2. Thermal and hydrometallurgical recovery methods of heavy metals from municipal solid waste fly ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuboňová, L., E-mail: lenka.kubonova@vsb.cz; Langová, Š.; Nowak, B.

    2013-11-15

    Highlights: • MSW fly ash was thermally and hydrometallurgically treated to remove heavy metals. • More than 90% of easy volatile heavy metals (Cd and Pb) were removed thermally. • More than 90% of Cd, Cr, Cu an Zn were removed by alkaline – acid leaching. • The best results were obtained for the solution of 3 M NaOH and 2 M H{sub 2}SO{sub 4}. - Abstract: Heavy metals in fly ash from municipal solid waste incinerators are present in high concentrations. Therefore fly ash must be treated as a hazardous material. On the other hand, it may be amore » potential source of heavy metals. Zinc, lead, cadmium, and copper can be relatively easily removed during the thermal treatment of fly ash, e.g. in the form of chlorides. In return, wet extraction methods could provide promising results for these elements including chromium and nickel. The aim of this study was to investigate and compare thermal and hydrometallurgical treatment of municipal solid waste fly ash. Thermal treatment of fly ash was performed in a rotary reactor at temperatures between 950 and 1050 °C and in a muffle oven at temperatures from 500 to 1200 °C. The removal more than 90% was reached by easy volatile heavy metals such as cadmium and lead and also by copper, however at higher temperature in the muffle oven. The alkaline (sodium hydroxide) and acid (sulphuric acid) leaching of the fly ash was carried out while the influence of temperature, time, concentration, and liquid/solid ratio were investigated. The combination of alkaline-acidic leaching enhanced the removal of, namely, zinc, chromium and nickel.« less

  3. Transition metal coordination chemistry ofN,N-bis(2-{pyrid-2-ylethyl})hydroxylamine.

    PubMed

    Belock, Christopher W; Cetin, Anil; Barone, Natalie V; Ziegler, Christopher J

    2008-08-18

    Although directly relevant to metal mediated biological nitrification as well as the coordination chemistry of peroxide, the metal complexes of hydroxylamines and their functionalized variants remain largely unexplored. The chelating hydroxylamine ligand N,N-bis(2-{pyrid-2-ylethyl})hydroxylamine can be readily generated via a solvent free reaction in high purity; however, the ligand is prone to decomposition which can hamper metal reaction. N,N-bis(2-{pyrid-2-ylethyl})hydroxylamine forms stable complexes with chromium(III), manganese(II), nickel(II), and cadmium(II) ions, coordinating in a side-on mode in the case of chromium and via the nitrogen in the case of the latter three metal ions. The hydroxylamine ligand can also be reduced to form N,N-bis(2-{pyrid-2-ylethyl})amine upon exposure to a stoichiometric amount of the metal salts cobalt(II) nitrate, vanadium(III) chloride, and iron(II) chloride. In the reaction with cobalt nitrate, the reduced ligand then chelates to the metal to form [N,N-bis(2-{pyrid-2-ylethyl})amine]dinitrocobalt(II). Upon reaction with vanadium(III) chloride and iron(III) chloride, the reduced ligand is isolated as the protonated free base, resulting from a metal-mediated decomposition reaction.

  4. Effects of heavy metals on sea urchin embryo development. Part 2. Interactive toxic effects of heavy metals in synthetic mine effluents.

    PubMed

    Kobayashi, Naomasa; Okamura, Hideo

    2005-12-01

    Interactive toxic effects between heavy metals were investigated using a sea urchin (Anthocidaris crassispina) bioassay. An effluent from an abandoned mine showed significant inhibitory effects on embryo development as well as producing specific malformations. The effects on the embryos were reproduced by synthetic polluted seawater consisting of eight metals (manganese, lead, cadmium, nickel, zinc, chromium, iron, and copper) at the concentrations detected in the mine effluent. This indicated that the heavy metals were responsible for the effects observed. Five heavy metals were ranked in decreasing order of toxicity as follows: Cu>Zn>Pb>Fe>Mn. Among these, zinc and manganese could cause malformation of the embryos. From bioassay results using 27 combinations of heavy metals, 16 combinations including zinc could produce specific malformations, such as radialized, exo-gastrulal, and spaceship Apollo-like gastrulal embryos. Zinc was one of the elements responsible for causing malformations and its effects were intensified by the presence of the other metals, such as manganese, lead, iron, and copper.

  5. Investigation of simultaneous biosorption of copper(II) and chromium(VI) on dried Chlorella vulgaris from binary metal mixtures: Application of multicomponent adsorption isotherms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aksu, Z.; Acikel, U.; Kutsal, T.

    1999-02-01

    Although the biosorption of single metal ions to various kinds of microorganisms has been extensively studied and the adsorption isotherms have been developed for only the single metal ion situation, very little attention has been given to the bioremoval and expression of adsorption isotherms of multimetal ions systems. In this study the simultaneous biosorption of copper(II) and chromium(VI) to Chlorella vulgaris from a binary metal mixture was studied and compared with the single metal ion situation in a batch stirred system. The effects of pH and single- and dual-metal ion concentrations on the equilibrium uptakes were investigated. In previous studiesmore » the optimum biosorption pH had been determined as 4.0 for copper(II) and as 2.0 for chromium(VI). Multimetal ion biosorption studies were performed at these two pH values. It was observed that the equilibrium uptakes of copper(II) or chromium(VI) ions were changed due to the biosorption pH and the presence of other metal ions. Adsorption isotherms were developed for both single- and dual-metal ions systems at these two pH values, and expressed by the mono- and multicomponent Langmuir and Freundlich adsorption models. Model parameters were estimated by nonlinear regression. It was seen that the adsorption equilibrium data fitted very well to the competitive Freundlich model in the concentration ranges studied.« less

  6. Cadmium determination in Mexican-produced tobacco

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saldivar De R., L.; Soto, R.; Fortoul, T.I.

    Exposure to cadmium by inhalation or ingestion is dangerous for human health. This metal induces damage to the kidneys, the bones, the prostate, and the lungs. In the lungs, cadmium can produce cancer, emphysema, and fibrosis. It is well known that tobacco leaves are contaminated with cadmium, a metal that has been related to pulmonary damage. In this paper the authors report the concentration of cadmium in tobacco leaves and in cigarettes produced for domestic consumption. Fifty-five cigarettes of different brands, prices, and stocks were analyzed as well as 48 samples from four different types of tobacco. The average concentrationmore » of cadmium in cigarettes was 4.41 {plus minus} 0.67 {mu}g/g, and 2.65 {plus minus} 0.99 {mu}g/g for tobacco leaves; the content of cadmium, was 2.8 {plus minus} 0.4 {mu}g/cigarette. It was estimated that a person that smokes 20 Mexican cigarettes per day can increase his(her) cadmium burden by 1.4 to 2.8 {mu}g per day.« less

  7. Installation Restoration Program. Phase I. Records Search, Vance Air Force Base, Oklahoma.

    DTIC Science & Technology

    1984-07-01

    cadmium , and descaling solutions. The general trend in waste disposal over the years since VAFB first began operation has been from 3 largely unsegregated...generated at the jet engine shop and metal plating shops and consists of phosphoric acid, chromic acid, potassium permanganate, cadmium , and descaling...benzene, MIBK, carbon tetrachloride, MEK, methylene chloride, and acetone. The metal analytes should include cadmium , chromium, copper, iron, lead

  8. Immunochromatographic assay of cadmium levels in oysters.

    PubMed

    Nishi, Kosuke; Kim, In-Hae; Itai, Takaaki; Sugahara, Takuya; Takeyama, Haruko; Ohkawa, Hideo

    2012-08-15

    Oysters are one of foodstuffs containing a relatively high amount of cadmium. Here we report on establishment of an immunochromatographic assay (ICA) method of cadmium levels in oysters. Cadmium was extracted with 0.l mol L(-1) HCl from oysters and cleaned up from other metals by the use of an anion-exchange column. The behavior of five metals Mn, Fe, Cu, Zn, and Cd was monitored at each step of extraction and clean-up procedure for the ICA method in an inductively coupled plasma-mass spectrometry (ICP-MS) analysis. The results revealed that a simple extraction method with the HCl solution was efficient enough to extract almost all of cadmium from oysters. Clean-up with an anion-exchange column presented almost no loss of cadmium adsorbed on the column and an efficient removal of metals other than cadmium. When a spiked recovery test was performed in the ICA method, the recovery ranged from 98% to 112% with relative standard deviations between 5.9% and 9.2%. The measured values of cadmium in various oyster samples in the ICA method were favorably correlated with those in ICP-MS analysis (r(2)=0.97). Overall results indicate that the ICA method established in the present study is an adequate and reliable detection method for cadmium levels in oysters. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Metal interferences and their removal prior to the determination of As(T) and As(III) in acid mine waters by hydride generation atomic absorption spectrometry

    USGS Publications Warehouse

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Ball, James W.

    2003-01-01

    Hydride generation atomic absorption spectrometry (HGAAS) is a sensitive and selective method for the determination of total arsenic (arsenic(III) plus arsenic(V)) and arsenic(III); however, it is subject to metal interferences for acid mine waters. Sodium borohydride is used to produce arsine gas, but high metal concentrations can suppress arsine production. This report investigates interferences of sixteen metal species including aluminum, antimony(III), antimony(V), cadmium, chromium(III), chromium(IV), cobalt, copper(II), iron(III), iron(II), lead, manganese, nickel, selenium(IV), selenium(VI), and zinc ranging in concentration from 0 to 1,000 milligrams per liter and offers a method for removing interfering metal cations with cation exchange resin. The degree of interference for each metal without cation-exchange on the determination of total arsenic and arsenic(III) was evaluated by spiking synthetic samples containing arsenic(III) and arsenic(V) with the potential interfering metal. Total arsenic recoveries ranged from 92 to 102 percent for all metals tested except antimony(III) and antimony(V) which suppressed arsine formation when the antimony(III)/total arsenic molar ratio exceeded 4 or the antimony(V)/total arsenic molar ratio exceeded 2. Arsenic(III) recoveries for samples spiked with aluminum, chromium(III), cobalt, iron(II), lead, manganese, nickel, selenium(VI), and zinc ranged from 84 to 107 percent over the entire concentration range tested. Low arsenic(III) recoveries occurred when the molar ratios of metals to arsenic(III) were copper greater than 120, iron(III) greater than 70, chromium(VI) greater than 2, cadmium greater than 800, antimony(III) greater than 3, antimony(V) greater than 12, or selenium(IV) greater than 1. Low recoveries result when interfering metals compete for available sodium borohydride, causing incomplete arsine production, or when the interfering metal oxidizes arsenic(III). Separation of interfering metal cations using

  10. Patch test reactivity to a cobalt-chromium-molybdenum alloy and stainless steel in metal-allergic patients in correlation to the metal ion release.

    PubMed

    Summer, Burkhard; Fink, Ulrich; Zeller, Richard; Rueff, Franziska; Maier, Sonja; Roider, Gabriele; Thomas, Peter

    2007-07-01

    Nickel, chromium, and cobalt released from stainless steel and CoCrMo alloys have been postulated to trigger hypersensitivity reactions. The objective of this study was to assess the ion release from a CoCrMo alloy and stainless steel in vitro and the cutaneous reactivity to it by patch test. 52 metal-allergic patients and 48 non-allergic controls were patch tested to stainless steel and CoCrMo discs. In addition, using atomic absorption spectrometry, the release of nickel, cobalt, and chromium from both materials was assessed upon 2-day exposure to distilled water, artificial sweat (AS), and cell culture medium. There was low nickel ion release from stainless steel (0.3-0.46 microg/cm(2)/2 days) and CoCrMo discs (up to 0.33 microg/cm(2)/2 days) into the different elution media. Chromium release from the 2 materials was also very low (0.06-0.38 microg/cm(2)/2 days from stainless steel and 0.52-1.36 microg/cm(2)/2 days from CoCrMo alloy). In contrast, AS led to abundant cobalt release (maximally 18.94 microg/cm(2)/2 days) from the CoCrMo discs, with concomitant eczematous reaction upon patch testing: 0 of the 52 metal-allergic patients reacted to stainless steel discs and 5 of the 52 patients to CoCrMo discs (all 5 patients were cobalt allergic and 3 also nickel and chromium allergic). None of the controls reacted to the discs. Apart from nickel being a focus of allergological research, our results point to the possibly underestimated association of cobalt release and potential hyperreactivity to CoCrMo alloy.

  11. Tolerance to Cadmium of Agave lechuguilla (Agavaceae) Seeds and Seedlings from Sites Contaminated with Heavy Metals

    PubMed Central

    Méndez-Hurtado, Alejandra; Rangel-Méndez, René; Flores, Joel

    2013-01-01

    We investigated if seeds of Agave lechuguilla from contaminated sites with heavy metals were more tolerant to Cd ions than seeds from noncontaminated sites. Seeds from a highly contaminated site (Villa de la Paz) and from a noncontaminated site (Villa de Zaragoza) were evaluated. We tested the effect of Cd concentrations on several ecophysiological, morphological, genetical, and anatomical responses. Seed viability, seed germination, seedling biomass, and radicle length were higher for the non-polluted site than for the contaminated one. The leaves of seedlings from the contaminated place had more cadmium and showed peaks attributed to chemical functional groups such as amines, amides, carboxyl, and alkenes that tended to disappear due to increasing the concentration of cadmium than those from Villa de Zaragoza. Malformed cells in the parenchyma surrounding the vascular bundles were found in seedlings grown with Cd from both sites. The leaves from the contaminated place showed a higher metallothioneins expression in seedlings from the control group than that of seedlings at different Cd concentrations. Most of our results fitted into the hypothesis that plants from metal-contaminated places do not tolerate more pollution, because of the accumulative effect that cadmium might have on them. PMID:24453802

  12. Tolerance to cadmium of Agave lechuguilla (Agavaceae) seeds and seedlings from sites contaminated with heavy metals.

    PubMed

    Méndez-Hurtado, Alejandra; Rangel-Méndez, René; Yáñez-Espinosa, Laura; Flores, Joel

    2013-01-01

    We investigated if seeds of Agave lechuguilla from contaminated sites with heavy metals were more tolerant to Cd ions than seeds from noncontaminated sites. Seeds from a highly contaminated site (Villa de la Paz) and from a noncontaminated site (Villa de Zaragoza) were evaluated. We tested the effect of Cd concentrations on several ecophysiological, morphological, genetical, and anatomical responses. Seed viability, seed germination, seedling biomass, and radicle length were higher for the non-polluted site than for the contaminated one. The leaves of seedlings from the contaminated place had more cadmium and showed peaks attributed to chemical functional groups such as amines, amides, carboxyl, and alkenes that tended to disappear due to increasing the concentration of cadmium than those from Villa de Zaragoza. Malformed cells in the parenchyma surrounding the vascular bundles were found in seedlings grown with Cd from both sites. The leaves from the contaminated place showed a higher metallothioneins expression in seedlings from the control group than that of seedlings at different Cd concentrations. Most of our results fitted into the hypothesis that plants from metal-contaminated places do not tolerate more pollution, because of the accumulative effect that cadmium might have on them.

  13. Use of lichen biomass to monitor dissolved metals in natural waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, J.N.; Ramelow, G.J.

    1990-02-01

    The use of lichens for monitoring airborne metals is based on their immobility and a tendency to accumulate metals to a high degree by the trapping of atmospheric particles and by adsorptive ion exchange processes in which dissolved metals in rainwater are picked up by cellular membranes. The powerful metal-accumulating ability of lichens has been demonstrated in the laboratory. This strong metal accumulating ability of lichen biomass from aqueous solutions would seem to make lichen material an ideal biomonitor of dissolved metals in natural waters. To test this the present study was initiated to monitor dissolved zinc, copper, lead, nickel,more » cadmium, iron, manganese, chromium, and mercury in an industrially-impacted bayou in southwestern Louisiana. The results obtained with lichen biomonitors will be compared with other studies of the same metals in periphyton and sediments from this waterway.« less

  14. Response of Pleurotus ostreatus to cadmium exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favero, N.; Bressa, G.; Costa, P.

    1990-08-01

    The possibility of utilizing agroindustrial wastes in the production of edible, high-quality products (e.g., mushrooms) implies the risk of bringing toxic substances, such as heavy metals, into the human food chain. Thus, growth in the presence of cadmium and cadmium accumulation limits have been studied in the industrially cultivated fungus P. ostreatus. Fruit body production is substantially unaffected in the presence of 25, 139, and 285 mg Cd/kg of dried substrate. Cadmium concentration in fruit bodies is related to cadmium substrate level, the metal being present at higher levels in caps (22-56 mg/kg dry wt) than in stems (13-36 mg/kgmore » dry wt). Concentration factor (CF), very low in the controls (about 2), further decreases in treated specimens. The presence of a cadmium control mechanism in this fungi species is suggested. Fruit body cadmium levels could, however, represent a risk for P. ostreatus consumers, according to FAO/WHO limits related to weekly cadmium intake.« less

  15. Mercury, Lead, Cadmium, Arsenic, Chromium and Selenium in Feathers of Shorebirds during Migrating through Delaware Bay, New Jersey: Comparing the 1990s and 2011/2012

    PubMed Central

    Burger, Joanna; Tsipoura, Nellie; Niles, Lawrence J.; Gochfeld, Michael; Dey, Amanda; Mizrahi, David

    2015-01-01

    Understanding temporal changes in contaminant levels in coastal environments requires comparing levels of contaminants from the same species from different time periods, particularly if species are declining. Several species of shorebirds migrating through Delaware Bay have declined from the 1980s to the present. To evaluate some contaminants as cause for the declines, we examine levels of mercury, lead, cadmium, arsenic, chromium and selenium in feathers of red knot (Calidris canutus, N = 46 individuals), semipalmated sandpiper (Calidris pusilla, N = 70) and sanderling (Calidris alba, N = 32) migrating through Delaware Bay, New Jersey, USA, from 1991 to 1992 (N = 40), 1995 (N = 28), and 2011–2012 (N = 80) to determine if levels have changed. We found: (1) arsenic, chromium, and lead increased in red knot and decreased in semipalmated sandpiper; (2) cadmium decreased in semipalmated sandpipers; (3) mercury decreased in red knot and sanderlings; (4) selenium decreased in red knot and increased in semipalmated sandpipers. In 2011/2012 there were significant interspecific differences for arsenic, mercury and selenium. Except for selenium, the element levels were well below levels reported for feathers of other species. The levels in feathers in red knots, sanderling, and semipalmated sandpipers from Delaware Bay in 2011/2012 were well below levels in feathers that are associated with effect levels, except for selenium. Selenium levels ranged from 3.0 µg·g−1 dry weight to 5.8 µg·g−1 (semipalmated sandpiper), within the range known to cause adverse effects, suggesting the need for further examination of selenium levels in birds. The levels of all elements were well below those reported for other marine species, except for selenium, which was near levels suggesting possible toxic effects. PMID:29056651

  16. Investigation of the surface composition of electrodeposited black chromium by X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Survilienė, S.; Češūnienė, A.; Jasulaitienė, V.; Jurevičiūtė, I.

    2015-01-01

    The paper reviews black chromium electrodeposited from a trivalent chromium bath containing ZnO as a second main component. The chemical compositions of the top layers of the black chromium coatings were studied by the X-ray photoelectron spectroscopy method. The surface of black chromium was found to be almost entirely covered with organic substances. To gain information on the state of each element in the deposit bulk, the layer-by-layer etching of the black chromium surface with argon gas was used. Analysis of XPS spectra has shown that the top layers of black chromium without zinc are composed of various Cr(III) components, organic substances and metallic Cr, whereas metallic Cr is almost absent in black chromium containing some amount of Zn(II) compounds. The ratios of metal/oxide phases were found to be 10/27 and 2/28 for black chromium without and with zinc, respectively. It has been determined that owing to the presence of ZnO in the Cr(III) bath, the percentage of metallic chromium is substantially reduced in black chromium which is quite important for good solar selective characteristics of the coating. The results confirm some of earlier observations and provide new information on the composition of the near-surface layers.

  17. Metals in albatross feathers from midway atoll: influence of species, age, and nest location.

    PubMed

    Burger, J; Gochfeld, M

    2000-03-01

    Female birds sequester some heavy metals in their eggs, which are then transferred to the developing embryo. Semiprecocial birds such as albatrosses are fully covered with down at hatching, but are dependent on their parents for food for many weeks. At hatching, levels of metals in the chick's down represent exposure from the female via egg, while levels in fully formed feathers at fledgling, several months later, represent mainly exposure from food provided by their parents. In this paper we examine the concentrations of "metals" (heavy metals, mercury, lead, cadmium, chromium, manganese, tin; and metalloids, arsenic and selenium), in the down and contour (body) feathers of half-grown young albatrosses, and contour feathers of one of their parents. We collected feathers from Laysan Diomedea immutabilis and black-footed Diomedea nigripes albatrosses from Midway Atoll in the central Pacific Ocean. We test the null hypotheses that there is no difference in metal levels as a function of species, age, feather type, and location on the island. Using linear regression we found significant models accounting for the variation in the concentrations of mercury, lead, cadmium, selenium, chromium, and manganese (but not arsenic or tin) as a function of feather type (all metals), collection location (all metals but lead), species (selenium only), and interactions between these factors. Most metals (except mercury, arsenic, and tin) were significantly higher in down than in the contour feathers of either chicks or adults. Comparing the two species, black-footed albatross chicks had higher levels of most elements (except arsenic) in their feathers and/or down. Black-footed adults had significantly higher levels of mercury and selenium. We also collected down and feathers from Laysan albatross chicks whose nests were close to buildings, including buildings with flaking lead paint and those that had been lead-abated. Lead levels in the down and feathers of chicks close to nonabated

  18. Sources, spatial variation, and speciation of heavy metals in sediments of the Tamagawa River in Central Japan.

    PubMed

    Shikazono, N; Tatewaki, K; Mohiuddin, K M; Nakano, T; Zakir, H M

    2012-01-01

    Sediments of the Tamagawa River in central Japan were studied to explain the spatial variation, to identify the sources of heavy metals, and to evaluate the anthropogenic influence on these pollutants in the river. Sediment samples were collected from 20 sites along the river (five upstream, four midstream, and 11 downstream). Heavy metal concentrations, viz. chromium, nickel, copper, zinc, lead, cadmium, and molybdenum, in the samples were measured using inductively coupled plasma-mass spectroscopy. The chemical speciations of heavy metals in the sediments were identified by the widely used five-step Hall method. Lead isotopes were analyzed to identify what portion is contributed by anthropogenic sources. The total heavy metal concentrations were compared with global averages for continental crust (shale) and average values for Japanese river sediments. The mean heavy metal concentrations were higher in downstream sediments than in upstream and midstream samples, and the concentrations in the silt samples were higher than those in the sand samples. Speciation results demonstrate that, for chromium and nickel, the residual fractions were dominant. These findings imply that the influence of anthropogenic chromium and nickel contamination is negligible, while copper, zinc, and lead were mostly extracted in the non-residual fraction (metals in adsorbed/exchangeable/carbonate forms or bound to amorphous Fe oxyhydroxides, crystalline Fe oxides, or organic matter), indicating that these elements have high chemical mobility. The proportion of lead (Pb) isotopes in the downstream silt samples indicates that Pb accumulation is primarily derived from anthropogenic sources.

  19. Metals distribution in soils around the cement factory in southern Jordan.

    PubMed

    Al-Khashman, Omar A; Shawabkeh, Reyad A

    2006-04-01

    Thirty one soil samples were collected from south Jordan around the cement factory in Qadissiya area. The samples were obtained at two depths, 0-10 cm and 10-20 cm and were analyzed by atomic absorption spectrophotometery for Pb, Zn, Cd, Fe, Cu and Cr. Physicochemical factors believed to affect their mobility of metals in soil of the study area were examined such as; pH, TOM, CaCO3, CEC and conductivity. The relatively high concentrations of lead, zinc and cadmium in the soil samples of the investigated area were related to anthropogenic sources such as cement industry, agriculture activities and traffic emissions. It was found that the lead, zinc and cadmium have the highest level in area close to the cement factory, while the concentration of chromium was low. This study indicate that all of the metals are concentrated on the surface soil, and decreased in the lower part of the soil, this due to reflects their mobility and physical properties of soil and its alkaline pH values. The use of factor analysis showed that anthropogenic activities seem to be the responsible source of pollution for metals in urban soils.

  20. Repeated phytoextraction of four metal-contaminated soils using the cadmium/zinc hyperaccumulator Sedum plumbizincicola.

    PubMed

    Li, Zhu; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Zhang, Hao; Christie, Peter

    2014-06-01

    A cadmium/zinc hyperaccumulator extracted metals from four contaminated soils over three years in a glasshouse experiment. Changes in plant metal uptake and soil total (aqua regia-extractable) and available metals were investigated. Plant Cd concentrations in a high-Cd acid soil and plant Zn concentrations in two acid soils decreased during repeated phytoextraction and were predicted by soil available metal concentrations. However, on repeated phytoextraction, plant Cd concentrations remained constant in lightly Cd-polluted acid soils, as did plant Cd and Zn in alkaline soils, although soil available metal concentrations decreased markedly. After phytoextraction acid soils showed much higher total metal removal efficiencies, indicating possible suitability of phytoextraction for acid soils. However, DGT-testing, which takes soil metal re-supply into consideration, showed substantial removal of available metal and distinct decreases in metal supply capacity in alkaline soils after phytoextraction, suggesting that a strategy based on lowering the bioavailable contaminant might be feasible. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. [Toxicological and analytical lists: chromium and its compounds].

    PubMed

    Minoia, C; Apostoli, P; Battaglia, A; Catenacci, G; Cottica, D; Franco, G; Pozzoli, L; Vanola, C; Candura, F; Capodaglio, E

    1987-03-01

    The main aspects of occupational exposure to chromium and chromium compounds are surveyed. Special attention is paid to the toxic action of this metal at the different target organs. The nutritional aspect of CrIII is examined preliminarily, and data detailing the metal contents in water and food are provided. As far the different working processes that entail occupational exposure to chromium are concerned, hygienic and environmental problems are discussed while identifying the average environment exposure to the different chemical forms of chromium (CrIII, CrIV, soluble and not soluble), as a function of the worker's tasks, and the relevant human response (total human Cr). Different hygienic and environmental standards in force in various countries and applicable to chromium compounds are compared. Additional information is given on the main aspects of chromium metabolism (absorption, distribution, excretion), and on the prevailing toxic actions, with specific reference to cancerogenesis. As far as biologic monitoring of the exposed people is concerned, the significance of Cr-U as dose-exposure indicator is discussed, also in the light of a critical review of the reference values. The report describes a series of analytical methods for the identification of chromium in aqueous and biologic matrices. The problems connected with health monitoring and fitness for work are eventually covered.

  2. Cadmium and mercury nephrotoxicity

    NASA Astrophysics Data System (ADS)

    Nicholson, J. K.

    1983-08-01

    Despite increasing attempts to control environmental pollution, changes in the distribution and bioavailability of toxic metals like mercury and cadmium are still occurring. Apart from natural processes, other contributory factors include the gradual spread of industrialization, the use of sewage sludge as a fertilizer and the acidification of Northern Hemisphere ground-water. Animals (including man and domestic varieties) can accumulate harmful concentrations of toxic metals1-5. We therefore looked for damage to the kidneys in seabirds contaminated with mercury and cadmium and made comparisons with kidneys from three other groups of animals: seabirds from an uncontaminated colony, metal-dosed birds and metal-dosed mice. We report here that, comparing all these groups of animals, invididuals with comparatively high levels of metals had nephrotoxic lesions of a similar type and severity. Moreover, the metal concentrations at which damage began and at which biochemical changes could be detected were below those presently considered as relatively safe for humans by the World Health Organization.

  3. Cadmium exposure induces hematuria in Korean adults

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Seung Seok; Kim, Myounghee, E-mail: dkkim73@gmail.com; Lee, Su Mi

    2013-07-15

    Introduction: Toxic heavy metals have adverse effects on human health. However, the risk of hematuria caused by heavy metal exposure has not been evaluated. Methods: Data from 4701 Korean adults were obtained in the Korean National Health and Nutritional Examination Survey (2008–2010). Blood levels of the toxic heavy metals cadmium, lead, and mercury were measured. Hematuria was defined as a result of ≥+1 on a urine dipstick test. The odds ratios (ORs) for hematuria were measured according to the blood heavy metal levels after adjusting for multiple variables. Results: Individuals with blood cadmium levels in the 3rd and 4th quartilesmore » had a greater OR for hematuria than those in the 1st quartile group: 3rd quartile, 1.35 (1.019–1.777; P=0.037); 4th quartile, 1.52 (1.140–2.017; P=0.004). When blood cadmium was considered as a log-transformed continuous variable, the correlation between blood cadmium and hematuria was significant: OR, 1.97 (1.224–3.160; P{sub trend}=0.005). In contrast, no significant correlations between hematuria and blood lead or mercury were found in the multivariate analyses. Discussion: The present study shows that high cadmium exposure is associated with a risk of hematuria. -- Highlights: • A high level of blood cadmium is associated with a high risk of hematuria. • This correlation is independent of several confounding factors. • Blood levels of lead and mercury are not associated with risk of hematuria. • This is the first study on the correlation between cadmium exposure and hematuria risk.« less

  4. Oxidation behavior of Cr(III) during thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides.

    PubMed

    Mao, Linqiang; Gao, Bingying; Deng, Ning; Liu, Lu; Cui, Hao

    2016-02-01

    The oxidation behavior of Cr(III) during the thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides (NaCl, KCl, MgCl2, and CaCl2) was investigated. The amounts of Cr(III) oxidized at various temperatures and heating times were determined, and the Cr-containing species in the residues were characterized. During the transformation of chromium hydroxide to Cr2O3 at 300 °C approximately 5% of the Cr(III) was oxidized to form intermediate compounds containing Cr(VI) (i.e., CrO3), but these intermediates were reduced to Cr2O3 when the temperature was above 400 °C. Alkali and alkaline earth metals significantly promoted the oxidation of Cr(III) during the thermal drying process. Two pathways were involved in the influences the alkali and alkaline earth metals had on the formation of Cr(VI). In pathway I, the alkali and alkaline earth metals were found to act as electron transfer agents and to interfere with the dehydration process, causing more intermediate Cr(VI)-containing compounds (which were identified as being CrO3 and Cr5O12) to be formed. The reduction of intermediate compounds to Cr2O3 was also found to be hindered in pathway I. In pathway II, the alkali and alkaline earth metals were found to contribute to the oxidation of Cr(III) to form chromates. The results showed that the presence of alkali and alkaline earth metals significantly increases the degree to which Cr(III) is oxidized during the thermal drying of chromium-containing sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. What Do We Know of Childhood Exposures to Metals (Arsenic, Cadmium, Lead, and Mercury) in Emerging Market Countries?

    PubMed Central

    Horton, Lindsey M.; Mortensen, Mary E.; Iossifova, Yulia; Wald, Marlena M.; Burgess, Paula

    2013-01-01

    Arsenic, cadmium, lead, and mercury present potential health risks to children who are exposed through inhalation or ingestion. Emerging Market countries experience rapid industrial development that may coincide with the increased release of these metals into the environment. A literature review was conducted for English language articles from the 21st century on pediatric exposures to arsenic, cadmium, lead, and mercury in the International Monetary Fund's (IMF) top 10 Emerging Market countries: Brazil, China, India, Indonesia, Mexico, Poland, Russia, South Korea, Taiwan, and Turkey. Seventy-six peer-reviewed, published studies on pediatric exposure to metals met the inclusion criteria. The reported concentrations of metals in blood and urine from these studies were generally higher than US reference values, and many studies identified adverse health effects associated with metals exposure. Evidence of exposure to metals in the pediatric population of these Emerging Market countries demonstrates a need for interventions to reduce exposure and efforts to establish country-specific reference values through surveillance or biomonitoring. The findings from review of these 10 countries also suggest the need for country-specific public health policies and clinician education in Emerging Markets. PMID:23365584

  6. What do we know of childhood exposures to metals (arsenic, cadmium, lead, and mercury) in emerging market countries?

    PubMed

    Horton, Lindsey M; Mortensen, Mary E; Iossifova, Yulia; Wald, Marlena M; Burgess, Paula

    2013-01-01

    Arsenic, cadmium, lead, and mercury present potential health risks to children who are exposed through inhalation or ingestion. Emerging Market countries experience rapid industrial development that may coincide with the increased release of these metals into the environment. A literature review was conducted for English language articles from the 21st century on pediatric exposures to arsenic, cadmium, lead, and mercury in the International Monetary Fund's (IMF) top 10 Emerging Market countries: Brazil, China, India, Indonesia, Mexico, Poland, Russia, South Korea, Taiwan, and Turkey. Seventy-six peer-reviewed, published studies on pediatric exposure to metals met the inclusion criteria. The reported concentrations of metals in blood and urine from these studies were generally higher than US reference values, and many studies identified adverse health effects associated with metals exposure. Evidence of exposure to metals in the pediatric population of these Emerging Market countries demonstrates a need for interventions to reduce exposure and efforts to establish country-specific reference values through surveillance or biomonitoring. The findings from review of these 10 countries also suggest the need for country-specific public health policies and clinician education in Emerging Markets.

  7. Rhizosphere Microbial Community Composition Affects Cadmium and Zinc Uptake by the Metal-Hyperaccumulating Plant Arabidopsis halleri

    PubMed Central

    Muehe, E. Marie; Weigold, Pascal; Adaktylou, Irini J.; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2015-01-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a “native” and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, “Candidatus Chloracidobacterium”) of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759

  8. Toxic metal levels in children residing in a smelting craft village in Vietnam: a pilot biomonitoring study.

    PubMed

    Sanders, Alison P; Miller, Sloane K; Nguyen, Viet; Kotch, Jonathan B; Fry, Rebecca C

    2014-02-04

    In Vietnam, environmental pollution caused by small-scale domestic smelting of automobile batteries into lead ingot is a growing concern. The village of Nghia Lo is a smelting craft village located roughly 25 km southeast of Hanoi in the Red River Delta. Despite the concern of toxic metal exposure in the village, biomonitoring among susceptible populations, such as children, has not been previously conducted. The aim of this study was to determine the body burden of toxic metals in children residing in a smelting craft village. Twenty children from Nghia Lo, Vietnam, ages 18 months to four years were selected for capillary whole blood and toenail biomonitoring. Whole blood lead levels (BLLs) were measured using a portable lead analyzer, and toenail levels of arsenic, cadmium, chromium, lead, manganese, and mercury were analyzed with inductively coupled plasma-mass spectrometry. The findings show that all of the 20 children had detectable BLLs, and every child had levels that exceeded the Centers for Disease Control and Prevention guideline level of 5 μg/dL. Eighty percent of tested subjects had BLLs higher than 10 μg/dL. Five children (25%) had BLLs greater than 45 μg/dL, the level of recommended medical intervention. In addition to blood lead, all of the children had detectable levels of arsenic, cadmium, chromium, lead, manganese, and mercury in toenail samples. Notably, average toenail lead, manganese, and mercury levels were 157 μg/g, 7.41 μg/g, and 2.63 μg/g respectively, well above levels previously reported in children. Significant Spearman's rank correlations showed that there were relationships between blood and toenail lead levels (r = 0.65, p < 0.05), toenail levels of lead and cadmium (r = 0.66, p < 0.05), and toenail levels of manganese and chromium (r = 0.72, p < 0.001). Linear regression showed that reducing the distance to the nearest active smelter by half was associated with a 116% increase in BLL (p < 0

  9. Toxic metal levels in children residing in a smelting craft village in Vietnam: a pilot biomonitoring study

    PubMed Central

    2014-01-01

    Background In Vietnam, environmental pollution caused by small-scale domestic smelting of automobile batteries into lead ingot is a growing concern. The village of Nghia Lo is a smelting craft village located roughly 25 km southeast of Hanoi in the Red River Delta. Despite the concern of toxic metal exposure in the village, biomonitoring among susceptible populations, such as children, has not been previously conducted. The aim of this study was to determine the body burden of toxic metals in children residing in a smelting craft village. Methods Twenty children from Nghia Lo, Vietnam, ages 18 months to four years were selected for capillary whole blood and toenail biomonitoring. Whole blood lead levels (BLLs) were measured using a portable lead analyzer, and toenail levels of arsenic, cadmium, chromium, lead, manganese, and mercury were analyzed with inductively coupled plasma-mass spectrometry. Results The findings show that all of the 20 children had detectable BLLs, and every child had levels that exceeded the Centers for Disease Control and Prevention guideline level of 5 μg/dL. Eighty percent of tested subjects had BLLs higher than 10 μg/dL. Five children (25%) had BLLs greater than 45 μg/dL, the level of recommended medical intervention. In addition to blood lead, all of the children had detectable levels of arsenic, cadmium, chromium, lead, manganese, and mercury in toenail samples. Notably, average toenail lead, manganese, and mercury levels were 157 μg/g, 7.41 μg/g, and 2.63 μg/g respectively, well above levels previously reported in children. Significant Spearman’s rank correlations showed that there were relationships between blood and toenail lead levels (r = 0.65, p < 0.05), toenail levels of lead and cadmium (r = 0.66, p < 0.05), and toenail levels of manganese and chromium (r = 0.72, p < 0.001). Linear regression showed that reducing the distance to the nearest active smelter by half was associated with a 116

  10. Heavy metal contaminants in tissues of the garfish, Belone belone L., 1761, and the bluefish, Pomatomus saltatrix L., 1766, from Turkey waters.

    PubMed

    Türkmen, Aysun; Tepe, Yalçin; Türkmen, Mustafa; Mutlu, Ekrem

    2009-01-01

    Levels of contaminants in fish are of particular interest because of the potential risk to humans who consume them. Fish samples were collected through the coastal waters of Turkey and the contents of cadmium, cobalt, chrome, copper, iron, manganese, nickel, zinc and lead in the liver and muscle tissues were determined. Among the metals analyzed, copper, zinc and iron were the most abundant in the different tissues while cadmium and lead were the least abundant both in Belone belone and Pomatomus saltatrix. Metal concentrations in muscles of fish species were found 0.01-0.38 mg kg(-1) for cadmium, 0.01-0.53 mg kg(-1) for cobalt, 0.05-1.87 mg kg(-1) for chromium, 0.21-5.89 mg kg(-1) for copper, 9.99-43.3 mg kg(-1) for iron, 0.14-1.33 mg kg(-1) for manganese, 0.06-4.70 mg kg(-1) for nickel, 0.09-0.81 mg kg(-1) for lead, 3.85-15.9 mg kg(-1) for zinc, respectively. Regional changes in metal concentration were observed in the tissues of both species, but these variations may not influence consumption advisories.

  11. The effect of anticoagulants on the distribution of chromium VI in blood fractions.

    PubMed

    Afolaranmi, Grace A; Tettey, Justice N A; Murray, Helen M; Meek, R M Dominic; Grant, M Helen

    2010-01-01

    Metal-on-metal resurfacing arthroplasty is associated with elevated circulating levels of cobalt and chromium ions. To establish the long-term safety of metal-on-metal resurfacing arthroplasty, it has been recommended that during clinical follow-up of these patients, the levels of these metal ions in blood be monitored. In this article, we provide information on the distribution of chromium VI ions (the predominant form of chromium released by cobalt-chrome alloys in vivo and in vitro) in blood fractions. Chromium VI is predominantly partitioned into red blood cells compared with plasma (analysis of variance, P < .05). The extent of accumulation in red blood cells is influenced by the anticoagulant used to collect the blood, with EDTA giving a lower partitioning into red cells compared with sodium citrate and sodium heparin. 2010 Elsevier Inc. All rights reserved.

  12. Process for measuring low cadmium levels in blood and other biological specimens

    DOEpatents

    Peterson, David P.; Huff, Edmund A.; Bhattacharyya, Maryka H.

    1994-01-01

    A process for measuring low levels of cadmium in blood and other biological specimens is provided without interference from high levels of alkali metal contaminants by forming an aqueous solution and without contamination by environmental cadmium absent the proteins from the specimen, selectively removing cadmium from the aqueous solution on an anion exchange resin, thereby removing the alkali metal contaminants, resolubilizing cadmium from the resin to form a second solution and analyzing the second solution for cadmium, the process being carried out in a cadmium-free environment.

  13. Process for measuring low cadmium levels in blood and other biological specimens

    DOEpatents

    Peterson, David P.; Huff, Edmund A.; Bhattacharyya, Maryka H.

    1994-05-03

    A process for measuring low levels of cadmium in blood and other biological specimens is provided without interference from high levels of alkali metal contaminants by forming an aqueous solution and without contamination by environmental cadmium absent the proteins from the specimen, selectively removing cadmium from the aqueous solution on an anion exchange resin, thereby removing the alkali metal contaminants, resolubilizing cadmium from the resin to form a second solution and analyzing the second solution for cadmium, the process being carried out in a cadmium-free environment.

  14. Potential hazards of toxic metals found in toothpastes commonly used in Nigeria.

    PubMed

    Orisakwe, Orish Ebere; Okolo, Kenneth Obinna; Igweze, Zelinjo Nkeiruka; Ajaezi, Godwin Chukwuebuka; Udowelle, Nnaemeka Arinze

    2016-01-01

    Toothpastes have multi-functional configurations as oral care products. They can however constitute a pos- sible source, amongst others, of toxic metal exposure in public health. Indeed, the public health impact of personal hygiene and consumer products is largely unknown. To determine the level of toxic metals (lead, cadmium, cobalt, chromium, nickel) in toothpastes available in Nigeria, (home produced and imported), and assess the potential risk to the people. The samples of toothpastes commonly used in Nigeria were tested. Using a market basket protocol thirty five different brands of toothpaste were used. Samples were digest by addition of 10 mL mixture of conc. nitric and hydrochloric acids (HCl:HNO(3), 3:1), followed by heating to dryness. 20 mL deionized water was added, stirred and filtered. The filtrate was made up in standard volumetric flask and lead, cadmium, chromium, cobalt and nickel concentrations were determined using the atomic absorption spectrophotometry 205A. The daily intake of metals and target hazard quotient (THQ) were then calculated. Pepsodent and Flodent had the highest levels of lead at respectively 23.575 and 18.092 mg/kg while Colgate Herbal had the highest nickel of 18.535 mg/kg. The daily intake estimates of all imported toothpaste samples were below the stated upper limits (UL). All target hazard quotients were also found to be below one. Although the UL, THQ and daily intake rates were all normal, the high levels of lead in some of the tooth- pastes an important concern to public health suggesting that pre-marketing safety studies of toothpastes may be worthwhile for the regulatory authorities.

  15. Metals in tissues of migrant semipalmated sandpipers (Calidris pusilla) from Delaware Bay, New Jersey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, Joanna, E-mail: burger@biology.rutgers.edu; Environmental and Occupational Health Sciences Institute; Gochfeld, Michael

    2014-08-15

    There is an abundance of field data on levels of metals for feathers in a variety of birds, but relatively few data for tissues, especially for migrant species from one location. In this paper we examine the levels of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in muscle, liver, brain, fat and breast feathers from migrant semipalmated sandpipers (Calidris pusilla) collected from Delaware Bay, New Jersey. Our primary objectives were to (1) examine variation as a function of tissue, (2) determine the relationship of metal levels among tissues, and (3) determine the selenium:mercury molar ratio in different tissues sincemore » selenium is thought to protect against mercury toxicity. We were also interested in whether the large physiological changes that occur while shorebirds are on Delaware Bay (e.g. large weight gains in 2–3 weeks) affected metal levels, especially in the brain. There were significant differences among tissues for all metals. The brain had the lowest levels of arsenic and cadmium, and was tied for the lowest levels of all other metals except lead and selenium. Correlations among metals in tissues were varied, with mercury levels being positively correlated for muscle and brain, and for liver and breast feathers. Weights vary among individuals at the Delaware Bay stopover, as they arrive light, and gain weight prior to migration north. Bird weight and levels of arsenic, cadmium, and selenium in the brain were negatively correlated, while they were positively correlated for lead. There was no positive correlation for mercury in the brain as a function of body weight. The selenium:mercury molar ratio varied significantly among tissues, with brain (ratio of 141) and fat having the highest ratios, and liver and breast feathers having the lowest. In all cases, the ratio was above 21, suggesting the potential for amelioration of mercury toxicity. - Highlights: • Metal levels were examined for migrant semipalmated sandpipers.

  16. The influence of electrode type on electrocoagulation process for removal of chromium (VI) metal in plating industrial wastewater

    NASA Astrophysics Data System (ADS)

    Prasetyaningrum, Aji; Jos, Bakti; Dharmawan, Yudhy; Prabowo, Bilal T.; Fathurrazan, Muh.; Fyrouzabadi

    2018-05-01

    Chromium (VI) is one of the major metallic pollutants in plating industrial wastewater. Cr(VI) is one of toxic metal that cause serious threat to human health and the environment because its non-biodegradable. Among the technologies for removing these pollutants, electrocoagulation can be considered as an effective method. This method have some advantages such as less amount of produced sludge and high efficiency in removal of pollutants.This research intended to study the effects of type of electrode on the degree of Cr(VI) removal from wastewater of plating industry using electrocoagulation method. This laboratory research conducted with 3 types of electrode (aluminum, stainless and combination of both electrode). Synthetic chromium wastewater was prepared at the initial concentration of 100 mg L-1. The process was conducted at pH 3. The electricity current was setting at 3 Ampere. The variable of time of electrocoagulation at 1 and 2 hours. After performing the process on electrochemical cells, samples analyzed by the UV-Vis spectrophotometer regarding amount of Cr(VI) metals. The results showed that aluminium was the best performance electrode at variable of 2 hours with 26% of reduction of Cr(VI)metal content in plating industrial waste water.

  17. Characterization and recycling of cadmium from waste nickel-cadmium batteries.

    PubMed

    Huang, Kui; Li, Jia; Xu, Zhenming

    2010-11-01

    A severe threat was posed due to improper and inefficient recycling of waste batteries in China. The present work considered the fundamental aspects of the recycling of cadmium from waste nickel-cadmium batteries by means of vacuum metallurgy separation in scale-up. In the first stage of this work, the characterization of waste nickel-cadmium batteries was carried out. Five types of batteries from different brands and models were selected and their components were characterized in relation to their elemental chemical composition and main phase. In the second stage of this work, the parameters affecting the recycling of cadmium by means of vacuum metallurgy separation were investigated and a L(16) (4(4)) orthogonal design was applied to optimize the parameters. With the thermodynamics theory and numerical analysis, it can be seen that the orthogonal design is an effective tool for investigating the parameters affecting the recycling of cadmium. The optimum operating parameters for the recycling of cadmium obtained by orthogonal design and verification test were 1073 K (temperature), 2.5h (heating time), 2 wt.% (the addition of carbon powder), and 30 mm (the loaded height), respectively, with recycling efficiency approaching 99.98%. The XRD and ICP-AES analyzed results show that the condensed product was characterized as metallic cadmium, and cadmium purity was 99.99% under the optimum condition. Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  18. Improvement of cadmium phytoremediation by Centella asiatica L. after soil inoculation with cadmium-resistant Enterobacter sp. FM-1.

    PubMed

    Li, Yi; Liu, Kehui; Wang, Yang; Zhou, Zhenming; Chen, Chaoshu; Ye, Panhua; Yu, Fangming

    2018-07-01

    This study examined the potential of a cadmium-resistant Enterobacter sp. FM-1 to promote plant growth and assist in cadmium accumulation in both mine-type C. asiatica L. and non-mine type C. asiatica L. tissues in highly cadmium-polluted soils. The results indicated that Enterobacter sp. FM-1 significantly promoted growth and alleviated metal toxicity in both types of C. asiatica L. Meanwhile, inoculation with Enterobacter sp. FM-1 in contaminated soil can increased cadmium bioavailability in soil. Furthermore, it will increase plant uptake and the accumulation of cadmium in C. asiatica L. leaves, stems and roots compared to that in an uninoculated plant. However, mine-type C. asiatica L. had better cadmium tolerance than the non mine-type C. asiatica L. Because of its native metal-tolerant ability, which could easily grow and proliferate, and had a better performance under cadmium-contamination conditions. Additionally, inoculation with Enterobacter sp. FM-1 significantly enhanced the bioaccumulation factor (BAF) and the translocation factor (TF) values in both types of C. asiatica L. even under high cadmium concentration soil condition. Hence, based on higher BAF and TF values and strong cadmium accumulation in the leaves and stems, we concluded that inoculation with Enterobacter sp. FM-1 is potentially useful for the phytoremediation of cadmium-contaminated sites by Centella asiatica L. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. National Trends in Trace Metals Concentrations in Ambient Particulate Matter

    NASA Astrophysics Data System (ADS)

    McCarthy, M. C.; Hafner, H. R.; Charrier, J. G.

    2007-12-01

    Ambient measurements of trace metals identified as hazardous air pollutants (HAPs, air toxics) collected in the United States from 1990 to 2006 were analyzed for long-term trends. Trace metals analyzed include lead, manganese, arsenic, chromium, nickel, cadmium, and selenium. Visual and statistical analyses were used to identify and quantify temporal variations in air toxics at national and regional levels. Trend periods were required to be at least five years. Lead particles decreased in concentration at most monitoring sites, but trends in other metals were not consistent over time or spatially. In addition, routine ambient monitoring methods had method detection limits (MDLs) too high to adequately measure concentrations for trends analysis. Differences between measurement methods at urban and rural sites also confound trends analyses. Improvements in MDLs, and a better understanding of comparability between networks, are needed to better quantify trends in trace metal concentrations in the future.

  20. Heavy metal contamination in soil, food crops and associated health risks for residents of Ropar wetland, Punjab, India and its environs.

    PubMed

    Sharma, Sakshi; Nagpal, Avinash Kaur; Kaur, Inderpreet

    2018-07-30

    In the present study, an assessment of heavy metal content in soil and food crops (wheat, rice, maize grains and mustard seeds) and associated health risks was carried out for residents of Ropar wetland and its environs. All the soil samples had high cadmium and cobalt contents, whereas, all crop samples had high contents of cobalt and lead. Bioconcentration factor (BCF) analysis indicated that rice grains act as hyper-accumulators of chromium (BCF = 17.98) and copper (BCF = 10.91), whereas, maize grains act as hyper-accumulators of copper (BCF = 30.43). One-way ANOVA suggested that heavy metal content in food crops varied significantly at p ≤ 0.05 for different sites, indicating anthropogenic contribution of heavy metals in agricultural fields. Dietary intake of cobalt via all food crops posed higher non-cancer health risk to residents in comparison to other heavy metals. Chromium posed highest cancer risk through consumption of wheat grains, being staple diet in study area. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Cadmium, an effector in the synthesis of thionein.

    PubMed Central

    Bryan, S E; Hidalgo, H A; Koppa, V; Smith, H A

    1979-01-01

    Cadmium can elicit the synthesis of thionein in liver cells independent of tissue-organ interactions. The metal diffuses across the plasma membrane and is partitioned between subcellular components in a time dependent manner such that thionein synthesis responds to levels of nonspecifically and specifically bound cytoplasmic metal. Cadmium appears to function at the transcriptional level, and the metal may act to increase the pool of specific m-RNA's. PMID:488043

  2. Biomarkers of exposure to metal dust in exhaled breath condensate: methodology optimization.

    PubMed

    Félix, P M; Franco, C; Barreiros, M A; Batista, B; Bernardes, S; Garcia, S M; Almeida, A B; Almeida, S M; Wolterbeek, H Th; Pinheiro, T

    2013-01-01

    In occupational assessments where workers are exposed to metal dust, the liquid condensate of exhaled breath (EBC) may provide unique indication of pulmonary exposure. The main goal of this study was to demonstrate the quality of EBC to biological monitoring of human exposure. A pilot study was performed in a group of metal dust-exposed workers and a group of nonexposed individuals working in offices. Only metal dust-exposed workers were followed along the working week to determine the best time of collection. Metal analyses were performed with inductively coupled plasma mass spectrometry (ICP-MS). Analytical methodology was tested using an EBC sample pool for several occupationally exposed metals: potassium, chromium, manganese, copper, zinc, strontium, cadmium, antimony, and lead. Metal contents in EBC of exposed workers were higher than controls at the beginning of the shift and remained augmented throughout the working week. The results obtained support the establishment of EBC as an indicator of pulmonary exposure to metals.

  3. Electrodeposition of Dense Chromium Coatings from Molten Salt Electrolytes

    DTIC Science & Technology

    1991-04-01

    AD-A235 978 . JUN 03 391 ELECTRODEPOSITION OF DENSE CHROMIUM COATINGS FROM MOLTEN SALT ELECTROLYTES Final Technical Report J t ]Vgca or by ~ 4 OTC... molten salts , pulsed currents, electrodeposition. 2. The results, on the electrodeposition of dense chromium coatings from molten salt electrolytes... salts dissolved in molten salts using the cell Cl2/C/!Cr 2 + in LiCI-KCI//Cr metal The chromium ions are introduced by anodizing a piece of chromium and

  4. Metals, toxicity and oxidative stress.

    PubMed

    Valko, M; Morris, H; Cronin, M T D

    2005-01-01

    Metal-induced toxicity and carcinogenicity, with an emphasis on the generation and role of reactive oxygen and nitrogen species, is reviewed. Metal-mediated formation of free radicals causes various modifications to DNA bases, enhanced lipid peroxidation, and altered calcium and sulfhydryl homeostasis. Lipid peroxides, formed by the attack of radicals on polyunsaturated fatty acid residues of phospholipids, can further react with redox metals finally producing mutagenic and carcinogenic malondialdehyde, 4-hydroxynonenal and other exocyclic DNA adducts (etheno and/or propano adducts). Whilst iron (Fe), copper (Cu), chromium (Cr), vanadium (V) and cobalt (Co) undergo redox-cycling reactions, for a second group of metals, mercury (Hg), cadmium (Cd) and nickel (Ni), the primary route for their toxicity is depletion of glutathione and bonding to sulfhydryl groups of proteins. Arsenic (As) is thought to bind directly to critical thiols, however, other mechanisms, involving formation of hydrogen peroxide under physiological conditions, have been proposed. The unifying factor in determining toxicity and carcinogenicity for all these metals is the generation of reactive oxygen and nitrogen species. Common mechanisms involving the Fenton reaction, generation of the superoxide radical and the hydroxyl radical appear to be involved for iron, copper, chromium, vanadium and cobalt primarily associated with mitochondria, microsomes and peroxisomes. However, a recent discovery that the upper limit of "free pools" of copper is far less than a single atom per cell casts serious doubt on the in vivo role of copper in Fenton-like generation of free radicals. Nitric oxide (NO) seems to be involved in arsenite-induced DNA damage and pyrimidine excision inhibition. Various studies have confirmed that metals activate signalling pathways and the carcinogenic effect of metals has been related to activation of mainly redox-sensitive transcription factors, involving NF-kappaB, AP-1 and p53

  5. Hemocompatibility Improvement of Chromium-Bearing Bare-Metal Stent Platform After Magnetoelectropolishing

    NASA Astrophysics Data System (ADS)

    Rokicki, Ryszard; Haider, Waseem; Maffi, Shivani Kaushal

    2015-01-01

    Research was undertaken to determine the influence of the increased content of chromium in the outermost passive layer of magneto-electrochemically refined Co-Cr alloy L-605 surface on its hemocompatibility. The chemistry, roughness, surface energy, and wettability of conventionally electropolished (EP) and magnetoelectropolished (MEP) samples were studied with x-ray photoelectron spectroscopy (XPS), open circuit potential, atomic force microscopy, and contact angle meter. In vitro hemocompatibility of tested material surfaces was assessed using two important indicators of vascular responses to biomaterial, namely endothelialization and platelets adhesion. The endothelialization was assessed by seeding and incubating samples with human umbilical vein endothelial cells (HUVEC) for 3 days before counting and observing them under a fluorescent microscope. The platelet (rich plasma blood) adhesion and activation test on EP and MEP L-605 alloy surfaces was assessed using a laser scanning confocal microscope. The XPS analysis of MEP samples showed significant enrichment of the passive layer with Cr and O when compared with the EP one. The amount of other elements in the passive layer did not show a significant difference between EP and MEP treatments. The adhesion of HUVEC cells shows remarkable affinity to surfaces enriched in Cr (MEP) with almost 100% confluency. In addition, the number of platelets that adhered to standard EP surfaces was higher compared to the MEP surface. The present study shows that the chromium-enriched surface of cobalt-chromium alloy L-605 by the magnetoelectropolishing process tremendously improves surface hemocompatibility with regard to stent functionality by enhanced endothelialization and lower platelet adhesion and should be taken under consideration as an alternative surface of biodegradable polymer drug-eluting stents, polymer-free drug-eluting stents as well as bare-metal stents.

  6. A new material for removing heavy metals from water

    NASA Technical Reports Server (NTRS)

    Philipp, Warren H., Jr.; Street, Kenneth W., Jr.

    1994-01-01

    The NASA Lewis Research Center developed and is patenting a new high capacity ion exchange material (IEM) that removes toxic metals from contaminated water in laboratory tests. The IEM can be made into many forms, such as thin films, coatings, pellets, and fibers. As a result, it can be adapted to many applications to purify contaminated water wherever it is found, be it in waste water treatment systems, lakes, ponds, industrial plants, or in homes. Laboratory tests have been conducted on aqueous solutions containing only one of the following metal cations: lead, copper, mercury, cadmium, silver, chromium (III), nickel, zinc, and yttrium. Tests were also conducted with: (1) calcium present to determine its effects on the uptake of cadmium and copper, and (2) uranium and lanthanides which are stand-ins for other radioactive elements, (3) drinking water for the removal of copper and lead, and (3) others compositions. The results revealed that the IEM removes all these cations, even in the presence of the calcium. Of particular interest are the results of the tests with the drinking water: the lead concentration was reduced from 142 ppb down to 2.8 ppb (well below the accepted EPA standard).

  7. Microbial remediation of soils co-contaminated with 2,4-dichlorophenoxyacetic acid and cadmium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roane, T.M.; Pepper, I.L.

    1997-12-31

    One-third of organically-polluted sites are also contaminated with metals; however, the bioremediation potential of such sites is not clear. While metals are thought to inhibit the abilities of microbial communities to degrade organic pollutants, several microbial-metal resistance mechanisms are known to exist. This study utilizes cadmium-resistant soil microorganisms to enhance the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) in the presence of cadmium. Cadmium-resistant bacteria were isolated from both a 40-year-old metal-contaminated soil and an uncontaminated soil. During growth experiments, it was found that the uncontaminated soil had a greater number of resistant isolates at low concentrations of cadmium, while the cadmium-contaminatedmore » soil exhibited higher microbial resistance with increased cadmium concentrations. ERIC PCR fingerprints discriminated among the cadmium-resistant isolates identified by BIOLOG as Bacillus, Corynecbacterium, Pseudomonas, and Xanthomonas spp. These isolates were resistant to concentrations ranging from 5 to 275 ppm soluble cadmium. In conventional degradation studies, two resistant isolates, a Bacillus and an unidentified Gram positive rod, supported the degradation of 500 ppm 2,4-D by the cadmium-sensitive 2,4-D degrader Alcaligenes eutrophus JMP134 in the presence of 20 and 40 ppm soluble cadmium, respectively.« less

  8. Environmental exposure to arsenic and chromium in an industrial area.

    PubMed

    Vimercati, Luigi; Gatti, Maria F; Gagliardi, Tommaso; Cuccaro, Francesco; De Maria, Luigi; Caputi, Antonio; Quarato, Marco; Baldassarre, Antonio

    2017-04-01

    Arsenic and chromium are widespread environmental contaminants that affect global health due to their toxicity and carcinogenicity. To date, few studies have investigated exposure to arsenic and chromium in a population residing in a high-risk environmental area. The aim of this study is to evaluate the exposure to arsenic and chromium in the general population with no occupational exposure to these metals, resident in the industrial area of Taranto, Southern Italy, through biological monitoring techniques. We measured the levels of chromium, inorganic arsenic, and methylated metabolites, in the urine samples of 279 subjects residing in Taranto and neighboring areas. Qualified health staff administered a standardized structured questionnaire investigating lifestyle habits and controlling for confounding factors. The biological monitoring data showed high urinary concentrations of both the heavy metals investigated, particularly Cr. On this basis, it will be necessary to carry out an organized environmental monitoring program, taking into consideration all exposure routes so as to correlate the environmental concentrations of these metals with the biomonitoring results.

  9. Reducing chromium losses from a chromium plating bath. 1987 summer intern report. Project conducted at New Dimension Plating, Hutchinson, Minnesota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achman, D.

    1987-12-31

    The company employs about forty people and operates for one or two eight hour shifts with an average of 315 racks of chrome plating per eight hour day. They plate a variety of metals including copper, nickel, gold, brass and chromium. Chromium is the major metal plated and is usually the last step in plating cycle. Most parts are copper plated and then nickel plated in preparation for chrome plating. The main difference between New Dimension Plating and other plating shops is the variety of parts plated. As New Dimension Plating is a job shop, a wide range of partsmore » such as motorcycle accessories, stove parts, and custom items are metal finished. The plating lines are manual, meaning employees dip the racks into the tanks by hand. This fact along with the fact that parts vary greatly in size and shape accounts for the significant drag-out on the chromium plating line.« less

  10. Quantitative Evaluation of Heavy Metals and Trace Elements in the Urinary Bladder: Comparison Between Cancerous, Adjacent Non-cancerous and Normal Cadaveric Tissue.

    PubMed

    Abdel-Gawad, Mahmoud; Elsobky, Emad; Shalaby, Mahmoud M; Abd-Elhameed, Mohamed; Abdel-Rahim, Mona; Ali-El-Dein, Bedeir

    2016-12-01

    The role of heavy metals and trace elements (HMTE) in the development of some cancers has been previously reported. Bladder carcinoma is a frequent malignancy of the urinary tract. The most common risk factors for bladder cancer are exposure to industrial carcinogens, cigarette smoking, gender, and possibly diet. The aim of this study was to evaluate HTME concentrations in the cancerous and adjacent non-cancerous tissues and compare them with those of normal cadaveric bladder. This prospective study included 102 paired samples of full-thickness cancer and adjacent non-cancerous bladder tissues of radical cystectomy (RC) specimens that were histologically proven as invasive bladder cancer (MIBC). We used 17 matched controls of non-malignant bladder tissue samples from cadavers. All samples were processed and evaluated for the concentration of 22 HMTE by using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Outcome analysis was made by the Mann-Whitney U, chi-square, Kruskal-Wallis, and Wilcoxon signed ranks tests. When compared with cadaveric control or cancerous, the adjacent non-cancerous tissue had higher levels of six elements (arsenic, lead, selenium, strontium, zinc, and aluminum), and when compared with the control alone, it had a higher concentration of calcium, cadmium, chromium, potassium, magnesium, and nickel. The cancerous tissue had a higher concentration of cadmium, lead, chromium, calcium, potassium, phosphorous, magnesium, nickel, selenium, strontium, and zinc than cadaveric control. Boron level was higher in cadaveric control than cancerous and adjacent non-cancerous tissue. Cadmium level was higher in cancerous tissue with node-positive than node-negative cases. The high concentrations of cadmium, lead, chromium, nickel, and zinc, in the cancerous together with arsenic in the adjacent non-cancerous tissues of RC specimens suggest a pathogenic role of these elements in BC. However, further work-up is needed to support this

  11. Biosorption of trivalent chromium on the brown seaweed biomass.

    PubMed

    Yun, Y S; Park, D; Park, J M; Volesky, B

    2001-11-01

    Biosorption has attracted attention as a cost-effective means for the treatment of metal-bearing wastewater. However, the mechanism of metal binding is not clearly understood, and consequently, modeling of the biosorption performance is still raising debates. In this study, the biosorption of trivalent chromium was investigated with protonated brown alga Ecklonia biomass as a model system. Titration of the biomass revealed that it contains at least three types of functional groups. The Fourier transform infrared spectrometry showed that the carboxyl group was the chromium-binding site within the pH range (pH 1-5) used in this study, where chromium does not precipitate. The pK value and the number of carboxyl groups were estimated to be 4.6 +/- 0.1 and 2.2 +/- 0.1 mmol/g, respectively. The equilibrium sorption isotherms determined at different solution pH indicated that the uptake of chromium increased significantly with increasing pH. A model for the description of chromium biosorption was developed incorporating the hydrolysis reactions that chromium undergoes in the aquatic phase. The model was able to predict the equilibrium sorption experimental data at different pH values and chromium concentrations. In addition, the speciation of the binding site as a function of the solution pH was predicted using the model in order to visualize the distribution of chromium ionic species on the binding site.

  12. Metals in wine--impact on wine quality and health outcomes.

    PubMed

    Tariba, Blanka

    2011-12-01

    Metals in wine can originate from both natural and anthropogenic sources, and its concentration can be a significant parameter affecting consumption and conservation of wine. Since metallic ions have important role in oxide-reductive reactions resulting in wine browning, turbidity, cloudiness, and astringency, wine quality depends greatly on its metal composition. Moreover, metals in wine may affect human health. Consumption of wine may contribute to the daily dietary intake of essential metals (i.e., copper, iron, and zinc) but can also have potentially toxic effects if metal concentrations are not kept under allowable limits. Therefore, a strict analytical control of metal concentration is required during the whole process of wine production. This article presents a critical review of the existing literature regarding the measured metal concentration in wine, methods applied for their determination, and possible sources, as well as their impact on wine quality and human health. The main focus is set on aluminum, arsenic, cadmium, chromium, copper, iron, manganese, nickel, lead, and zinc, as these elements most often affect wine quality and human health.

  13. The high temperature impact response of tungsten and chromium

    NASA Astrophysics Data System (ADS)

    Zaretsky, E. B.; Kanel, G. I.

    2017-09-01

    The evolution of elastic-plastic shock waves has been studied in pure polycrystalline tungsten and chromium at room and elevated temperatures over propagation distances ranging from 0.05 to 3 mm (tungsten) and from 0.1 to 2 mm (chromium). The use of fused silica windows in all but one experiment with chromium and in several high temperature experiments with tungsten led to the need for performing shock and optic characterization of these windows over the 300-1200 K temperature interval. Experiments with tungsten and chromium samples showed that annealing of the metals transforms the initial ramping elastic wave into a jump-like wave, substantially increasing the Hugoniot elastic limits of the metals. With increased annealing time, the spall strength of the two metals slightly increases. Both at room and at high temperatures, the elastic precursor in the two metals decays in two distinct regimes. At propagation distances smaller than ˜1 mm (tungsten) or ˜0.5 mm (chromium), decay is fast, with the dislocation motion and multiplication being controlled by phonon viscous drag. At greater distances, the rate of decay becomes much lower, with control of the plastic deformation being passed to the thermally activated generation and motion of dislocation double-kinks. The stress at which this transition takes place virtually coincides with the Peierls stress τP of the active glide system. Analysis of the annealing effects in both presently and previously studied BCC metals (i.e., Ta, V, Nb, Mo, W, and Cr) and of the dependencies of their normalized Peierls stresses τP(θ) /τP(0 ) on the normalized temperature θ=T /Tm allows one to conclude that the non-planar, split into several glide planes, structure of the dislocation core in these metals is mainly responsible for their plastic deformation features.

  14. Concentration of heavy metals in drinking water of different localities in district east Karachi.

    PubMed

    Jaleel, M A; Noreen, R; Baseer, A

    2001-01-01

    Several heavy metals are present in drinking water that play important roles in the body provided their level remains within the specified range recommended by WHO. But now due to the industrialization and rapid urbanization, the problems of pollution have surfaced. This study was designed to ascertain the contents of some heavy metals and then their variations if any in drinking water in different localities of district East of Karachi, Pakistan. Drinking water samples were collected from different sources and localities of district East of Karachi. The concentration of the heavy metals i.e. Lead, Arsenic, Copper, Iron, Mercury, Chromium, Manganese, Nickel, Cadmium and Zinc were determined by Atomic Absorption Spectrophotometry. PH was estimated by pH meter. Total dissolved solids (TDS) were calculated by formula. These concentrations of heavy metals, pH and TDS were compared with the standards set by WHO. Concentrations of lead and nickel were found to be significantly elevated as compared to WHO recommended levels in all the three sources of water (Piped water, Hand pump water and Tanker water supply). Chromium was found to be raised in hand pump water. Arsenic and Mercury were not detected in any source of water. Copper, iron, manganese, cadmium and zinc were found to be within the safe limits in all the three sources of water. pH was found to be within the range of WHO recommended level in all the three sources of water. TDS was found to be elevated in hand pump water and tanker water. Concentrations of lead and nickel were found to be significantly elevated as compared to WHO recommended levels in all the three sources of water in district East of Karachi.

  15. Cadmium contamination of early human milk.

    PubMed

    Sikorski, R; Paszkowski, T; Radomański, T; Szkoda, J

    1989-01-01

    The concentration of cadmium was measured by flame atomic absorption spectrometry in colostrum samples obtained from 110 women on the 4th postpartum day. Detectable amounts of cadmium were found in 95% of the examined samples and the geometric mean of the determined values was 0.002 mg/kg. In 3 cases (2.7%, the examined neonates received via mother's milk an amount of cadmium exceeding the maximum daily intake level for this metal. Maternal age, parity and place of residence did not affect the determined cadmium levels of milk. Cadmium content in the early human milk of current smokers did not differ significantly from that of nonsmoking mothers.

  16. Drinking water contamination by chromium and lead in industrial lands of Karachi.

    PubMed

    Nadeem-ul-Haq; Arain, Mubashir Aslam; Haque, Zeba; Badar, Nasira; Mughal, Noman

    2009-05-01

    To identify and quantify chromium and lead as contaminant in water sources of Karachi. This water assessment survey was conducted from June 2007 to February 2008 in all the 18 towns of Karachi. In total 216 water samples were collected from ground (n=108) and surface water sources (n = 108). Water samples were collected in a liter polyethylene acid resistant bottle with extreme care to prevent contamination and concentrations of heavy metals (chromium and lead). Metallic ion contents were estimated by Atomic Absorption Spectrophotometer. Statistical analysis was done by applying T-test and chi-square for continuous and categorical variables respectively at 95% confidence level; Pearson correlation was also determined between chromium and lead concentrations. A total of 187 water samples had lead concentration higher than the maximum acceptable concentration (MAC) in drinking water, established by WHO (10 PPB) and lead contaminated sources were in significantly higher proportion than chromium contaminated water samples (n = 49) [chi2 = 128; P- < 0.001]. Mean chromium concentration in ground water was (micro = 49; SE = 3.8) was significantly higher than mean chromium concentration (micro = 33, SE = 3.5) in surface water (P = 0.003). There was a significant and positive correlation between chromium and lead concentrations in ground water (P = 0.04) however Pearson correlation was not significant for surface water (P = 0.6). Industrial towns (Korangi, Landhi and SITE) had significantly higher concentration of chromium (micro = 82.4; SE = 8.9) in their ground and tap water as compared to the mean chromium concentration (micro = 33; SE = 2.2) in the water samples of rest of the towns of Karachi (P < 0.001). Chromium and Lead levels are high in almost all ground water sources, however extremely high concentrations were found in industrial areas. Presence of any one of the heavy metal contamination necessitate the need for the estimation of other heavy metals as

  17. Nickel detoxification and plant growth promotion by multi metal resistant plant growth promoting Rhizobium species RL9.

    PubMed

    Wani, Parvaze Ahmad; Khan, Mohammad Saghir

    2013-07-01

    Pollution of the biosphere by heavy metals is a global threat that has accelerated dramatically since the beginning of industrial revolution. The aim of the study is to check the resistance of RL9 towards the metals and to observe the effect of Rhizobium species on growth, pigment content, protein and nickel uptake by lentil in the presence and absence of nickel. The multi metal tolerant and plant growth promoting Rhizobium strain RL9 was isolated from the nodules of lentil. The strain not only tolerated nickel but was also tolerant o cadmium, chromium, nickel, lead, zinc and copper. The strain tolerated nickel 500 μg/mL, cadmium 300 μg/mL, chromium 400 μg/mL, lead 1,400 μg/mL, zinc 1,000 μg/mL and copper 300 μg/mL, produced good amount of indole acetic acid and was also positive for siderophore, hydrogen cyanide and ammonia. The strain RL9 was further assessed with increasing concentrations of nickel when lentil was used as a test crop. The strain RL9 significantly increased growth, nodulation, chlorophyll, leghaemoglobin, nitrogen content, seed protein and seed yield compared to plants grown in the absence of bioinoculant but amended with nickel The strain RL9 decreased uptake of nickel in lentil compared to plants grown in the absence of bio-inoculant. Due to these intrinsic abilities strain RL9 could be utilized for growth promotion as well as for the remediation of nickel in nickel contaminated soil.

  18. Sorbent control of trace metals in sewage sludge combustion and incineration

    NASA Astrophysics Data System (ADS)

    Naruse, I.; Yao, H.; Mkilaha, I. S. N.

    2003-05-01

    Coal and wastes combustion have become an important issue not only in terms of energy generation but also environmental conservation. The need for alternative fuels and wastes management has made the two energy sources of importance. However, the utilization of the two is faced with problems of impurity trace metals in the fuel. These metals usually speciate during combustion or incineration leading to generation of fumes and subsequently particles. This paper reports on the study aimed at understanding the speciation of trace metals and their emission from combustion systems as particulates. Experiments carried out using a down-flow furnace and theoretical study carried out using lead, chromium and cadmium as basic metals had shown that their speciation and subsequent emission is controlled by both chemical composition and physical properties of the fuel. The physical and chemical and physical properties of the fuel and their respective compounds and the operating conditions of the incineration and combustion system control the enrichment of the particles with trace metals.

  19. Effect of heavy metals on inhibition of root elongation in 23 cultivars of flax (Linum usitatissimum L.).

    PubMed

    Soudek, Petr; Katrusáková, Adéla; Sedlácek, Lukás; Petrová, Sárka; Kocí, Vladimír; Marsík, Petr; Griga, Miroslav; Vanek, Tomás

    2010-08-01

    The effect of toxic metals on seed germination was studied in 23 cultivars of flax (Linum usitatissimum L.). Toxicity of cadmium, cobalt, copper, zinc, nickel, lead, chromium, and arsenic at five different concentrations (0.01-1 mM) was tested by standard ecotoxicity test. Root length was measured after 72 h of incubation. Elongation inhibition, EC50 value, slope, and NOEC values were calculated. Results were evaluated by principal component analysis, a multidimensional statistical method. The results showed that heavy-metal toxicity decreased in the following order: As3+>or=As5+>Cu2+>Cd2+>Co2+>Cr6+>Ni2+>Pb2+>Cr3+>Zn2+.

  20. Hexavalent Chromium IV-Free Primer Development

    NASA Technical Reports Server (NTRS)

    Alldredge, Michael J.; Buck, Amy L.

    2015-01-01

    Primer materials provide corrosion protection for metal parts as well as an increased adhesion between metallic substrates and thermal protection systems (TPSs). Current primers for use in cryogenic applications contain hexavalent chromium. This hexavalent chromium provides excellent corrosion protection even in a cryogenic environment, but it is a carcinogen that requires special equipment and waste control procedures to use. The hazardous nature of hexavalent chromium makes it an obsolescence risk in the future. This study included two phases of evaluation. Thirteen primers were initially identified as candidates and twelve of those primers were tested in phase 1. Four of the best performing candidates from phase 1 continued into phase 2 testing. Phase 1 testing consisted mostly of liquid constituent and physical property testing. Cryoflex and salt fog testing were included in phase 1 because of their importance to the overall success of a candidate material. Phase 2 consisted of physical, thermal, and mechanical properties for nominally processed and fabricated specimens.

  1. Remediation of lead and cadmium-contaminated soils.

    PubMed

    Salama, Ahmed K; Osman, Khaled A; Gouda, Neama Abdel-Razeek

    2016-01-01

    The research was designated to study the ability of plants to bio-accumulate, translocate and remove the heavy metals, lead and cadmium from contaminated soil. The herbal plant ryegrass, Lolium multiflorum was investigated as a bio-accumulator plant for these metals. The translocation of these heavy metals in the herbal plant was compared considering root to shoot transport and redistribution of metals in the root and shoot system. The trace metal contents from root and shoot parts were determined using atomic absorption spectrometer. The results showed that the percent of lead and cadmium transferred to ryegrass plant were averaged as 51.39, and 74.57%, respectively, while those remained in the soil were averaged as 48.61 and 25.43% following 60 days of treatment. The soil-plant transfer index in root and shoot system of ryegrass was found to be 0.32 and 0.20 for lead, and 0.50 and 0.25 for cadmium. These findings indicated that the herbal plant ryegrass, Lolium multiflorum is a good accumulator for cadmium than lead. The soil-plant transfer factor (the conc. of heavy metal in plant to the conc. in soil) indicated that the mechanism of soil remedy using the investigated plant is phytoextraction where the amounts of heavy metals transferred by plant roots into the above ground portions were higher than that remained in the soil. The method offers green technology solution for the contamination problem since it is effective technology with minimal impact on the environment and can be easily used for soil remedy.

  2. 40 CFR 442.2 - General definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pesticides, hazardous waste, organic chemicals including: alcohols, aldehydes, formaldehydes, phenols...: ketones, nitriles, organo-metallic compounds containing chromium, cadmium, mercury, copper, zinc; and...

  3. 40 CFR 442.2 - General definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pesticides, hazardous waste, organic chemicals including: alcohols, aldehydes, formaldehydes, phenols...: ketones, nitriles, organo-metallic compounds containing chromium, cadmium, mercury, copper, zinc; and...

  4. 40 CFR 442.2 - General definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pesticides, hazardous waste, organic chemicals including: alcohols, aldehydes, formaldehydes, phenols...: ketones, nitriles, organo-metallic compounds containing chromium, cadmium, mercury, copper, zinc; and...

  5. Mineral resource of the month: cadmium

    USGS Publications Warehouse

    Tolcin, Amy C.

    2012-01-01

    The element cadmium was discovered in 1817 by Friedrich Stromeyer, a professor of chemistry at the University of Göttingen in Germany. Stromeyer noticed that a yellowish glow would occur when heat was applied to certain samples of calamine, a zinc-carbonate. This was unusual as the reaction was expected to be colorless. After further testing, Stromeyer deduced that an unknown metallic impurity in the carbonate caused the color change. He called the new metal "cadmium" after "kadmeia," the Greek word for calamine.

  6. Monitoring heavy metal concentrations in the sediments of the Moskva and Oka River system- Results of the Volga-Rhine-Project

    NASA Astrophysics Data System (ADS)

    Andresen, Höpke

    2010-05-01

    In the course of the Volga-Rhine-Project sediment, water and pore water samples were collected on the Volga as well as the Moskva and Oka river systems. The sampling area discussed here is located south east of the city of Moscow. Sediment samples were taken along the Moskva River between Moscow and the city of Kolomna, which is approximately 100 km to the southeast of Moscow and in the Oka River close to the confluence with the Moskva River (Kolomna). The first sampling campaign in this region took place in 1993, followed by further sampling in 1997 and 2007. For evaluation of sediment quality classification systems are often used. The geo-accumulation index proposed by Mueller (1979) is a classification system which consists of seven classes given by the following expression: I = log2×Cn- geo 1.5×Bn Where Cn = measured concentration; Bn = background value (Turekian & Wedepol 1961) of element n and 1.5 = background matrix correction factor. The geo-accumulation index consists of seven grades (0-6) which indicate the enrichment of an element compared to the background value. These grades range from 'not polluted' to 'very strongly polluted'. Another possibility to express sediment contamination is to evaluate the effects on the ecosystem. The lowest effect level (LEL) gives the concentrations of the heavy metals in sediment below which no effect on the majority of the sediment dwelling organisms is expected. The probable effect level (PEL) represents the concentration of heavy metals above which the organisms frequently will show adverse effects. Both of these approaches were used to evaluate the results of the Volga-Rhine-Project. In the last two decades the concentrations of heavy metals in the sediments decreased by up to 60%. In 1993 sediments revealed high concentrations of several heavy metals such as chromium, cadmium, lead, zinc, arsenic, nickel and cobalt, whereas in 2007 only two sediment samples were classified as 'very strongly polluted' regarding

  7. Dimensionally Controlled Lithiation of Chromium Oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fister, Tim T.; Hu, Xianyi; Esbenshade, Jennifer

    Oxide conversion reactions are an alternative approach for high capacity lithium ion batteries but are known to suffer from structural irreversibility associated with the phase separation and reconstitution of reduced metal species and Li2O. In particular, the morphology of the reduced metal species is thought to play a critical role in the electrochemical properties of a conversion material. Here we use a model electrode with alternating layers of chromium and chromium oxide to better understand and control these phase changes in real-time and at molecular length scales. Despite lacking crystallinity at the atomic scale, this superstructure is observed (with X-raymore » reflectivity, XR) to lithiate and delithiate in a purely one-dimensional manner, preserving the layered structure. The XR data show that the metal layers act as nucleation sites for the reduction of chromium in the conversion reaction. Irreversibility during delithiation is due to the formation of a ternary phase, LiCrO2, which can be further delithiated at higher potentials. The results reveal that the combination of confining lithiation to nanoscale sheets of Li2O and the availability of reaction sites in the metal layers in the layered structure is a strategy for improving the reversibility and mass transport properties that can be used in a wide range of conversion materials.« less

  8. Bioaccessibility studies of ferro-chromium alloy particles for a simulated inhalation scenario: a comparative study with the pure metals and stainless steel.

    PubMed

    Midander, Klara; de Frutos, Alfredo; Hedberg, Yolanda; Darrie, Grant; Wallinder, Inger Odnevall

    2010-07-01

    research effort was therefore conducted to generate quantitative bioaccessibility data for particles of ferro-chromium alloys compared with particles of the pure metals and stainless steel exposed at in vitro conditions in synthetic biological media of relevance for particle inhalation and ingestion. All results are presented combining bioaccessibility data with aspects of particle characteristics, surface composition, and barrier properties of surface oxides. Iron and chromium were the main elements released from ferro-chromium alloys upon exposure in synthetic biological media. Both elements revealed time-dependent release processes. One week exposures resulted in very small released particle fractions being less than 0.3% of the particle mass at acidic conditions and less than 0.001% in near pH-neutral media. The extent of Fe released from ferro-chromium alloy particles was significantly lower compared with particles of pure Fe, whereas Cr was released to a very low and similar extent as from particles of pure Cr and stainless steel. Low release rates are a result of a surface oxide with passive properties predominantly composed of chromium(III)-rich oxides and silica and, to a lesser extent, of iron(II,III)oxides. Neither the relative bulk alloy composition nor the surface composition can be used to predict or assess the extent of metals released in different synthetic biological media. Ferro-chromium alloys cannot be assessed from the behavior of their pure metal constituents. (c) 2009 SETAC.

  9. Cadmium in forest ecosystems around lead smelters in Missouri.

    PubMed Central

    Gale, N L; Wixson, B G

    1979-01-01

    The development of Missouri's new lead belt within the past decase has provided an excellent opportunity to study the dissemination and effects of heavy metals in a deciduous forest ecosystem. Primary lead smelters within the new lead belt have been identified as potential sources of cadmium as well as lead, zinc, and copper. Sintering and blast furnace operations tend to produce significant quantities of small particulates highly enriched in cadmium and other heavy metals. At one smelter, samples of stack particulate emissions indicate that as ms accompanied by 0.44 lb zinc, 4.66 lb lead, and 0.01 lb copper/hr. These point-source emissions, as well as a number of other sources of fugitive (wind blown) and waterborne emissions contribute to a significant deposition of cadmium in the surrounding forest and stream beds. Mobilization of vagrant heavy metals may be significantly increased by contact of baghouse dusts or scrubber slurries with acidic effluents emanating from acid plants designed to produce H2SO4 as a smelter by-product. Two separate drainage forks within the Crooked Creek watershed permit some comparisons of the relative contributions of cadmium by air-borne versus water-borne contaminants. Cadmium and other heavy metals have been found to accumulate in the forest litter and partially decomposed litter along stream beds. Greater solubility, lower levels of complexation with organic ligands in the litter, and greater overall mobility of cadmium compared with lead, zinc, and copper result in appreciable contributions of dissolved cadmium to the watershed runoff. The present paper attempts to define the principle sources and current levels of heavy metal contamination and summarizes the efforts undertaken by the industry to curtail the problem. PMID:488037

  10. Stable isotopes of transition and post-transition metals as tracers in environmental studies

    USGS Publications Warehouse

    Bullen, Thomas D.; Baskaran, Mark

    2011-01-01

    The transition and post-transition metals, which include the elements in Groups 3–12 of the Periodic Table, have a broad range of geological and biological roles as well as industrial applications and thus are widespread in the environment. Interdisciplinary research over the past decade has resulted in a broad understanding of the isotope systematics of this important group of elements and revealed largely unexpected variability in isotope composition for natural materials. Significant kinetic and equilibrium isotope fractionation has been observed for redox sensitive metals such as iron, chromium, copper, molybdenum and mercury, and for metals that are not redox sensitive in nature such as cadmium and zinc. In the environmental sciences, the isotopes are increasingly being used to understand important issues such as tracing of metal contaminant sources and fates, unraveling metal redox cycles, deciphering metal nutrient pathways and cycles, and developing isotope biosignatures that can indicate the role of biological activity in ancient and modern planetary systems.

  11. Monoclonal antibody to trivalent chromium chelate complex and its application to measurement of the total chromium concentration.

    PubMed

    Sasaki, Kazuhiro; Oguma, Shinichi; Namiki, Yukie; Ohmura, Naoya

    2009-05-15

    Isothiocyanobenzyl group-appended ethylenediamine tetraacetic acid (EDTA) was used to covalently couple Cr(III) x EDTA to keyhole limpet hemocyanin for use as an immunogen. An obtained monoclonal antibody (RD3G4) bound to Cr(III) x EDTA with an equilibrium dissociation constant (K(d)) of 9.7 nM, which was 100-fold tighter than the K(d)s for the other tested EDTA-metal complex. In particular, there was an over 2000-fold affinity difference between Cr(III) x EDTA and Fe(III) x EDTA, although the ion radius of trivalent chromium (0.76 A) was quite close to that of ferric ion (0.79 A). Hexavalent chromium could be detected by the antibody after being reduced into trivalent form. An immunoassay format showed an IC50 of 87 nM for hexavalent chromium, with a detection limit of 30 nM (1.6 microg/L). Therefore, the addition of reducing agents to the mixture of tri- and hexavalent chromium allows determination of the total chromium concentration by the immunoassay. Hexavalent chromium could be isolated from trivalent chromium by an anion-exchange column, and thus, the concentration of hexavalent chromium in tri- and hexa- mixture can also be estimated by the immunoassay.

  12. Mineral commodity profiles: Cadmium

    USGS Publications Warehouse

    Butterman, W.C.; Plachy, Jozef

    2004-01-01

    Overview -- Cadmium is a soft, low-melting-point metal that has many uses. It is similar in abundance to antimony and bismuth and is the 63d element in order of crustal abundance. Cadmium is associated in nature with zinc (and, less closely, with lead and copper) and is extracted mainly as a byproduct of the mining and processing of zinc. In 2000, it was refined in 27 countries, of which the 8 largest accounted for two-thirds of world production. The United States was the third largest refiner after Japan and China. World production in 2000 was 19,700 metric tons (t) and U.S. production was 1,890 t. In the United States, one company in Illinois and another in Tennessee refined primary cadmium. A Pennsylvania company recovered cadmium from scrap, mainly spent nickel-cadmium (NiCd) batteries. The supply of cadmium in the world and in the United States appears to be adequate to meet future industrial needs; the United States has about 23 percent of the world reserve base.

  13. Performance of rose scented geranium (Pelargonium graveolens) in heavy metal polluted soil vis-à-vis phytoaccumulation of metals.

    PubMed

    Chand, Sukhmal; Singh, Geetu; Patra, D D

    2016-08-02

    An investigation was carried out to evaluate the effect of heavy metal toxicity on growth, herb, oil yield and quality and metal accumulation in rose scented geranium (Pelargonium graveolens) grown in heavy metal enriched soils. Four heavy metals (Cd, Ni, Cr, and Pb) each at two levels (10 and 20 mg kg-1 soil) were tested on geranium. Results indicated that Cr concentration in soil at 20 mg kg-1 reduced leaves, stem and root yield by 70, 83, and 45%, respectively, over control. Root growth was significantly affected in Cr stressed soil. Nickel, Cr, and Cd concentration and accumulation in plant increased with higher application of these metals. Chromium, nickel and cadmium uptake was observed to be higher in leaves than in stem and roots. Essential oil constituents were generally not significantly affected by heavy metals except Pb at 10 and 20 ppm, which significantly increased the content of citronellol and Ni at 20 ppm increased the content of geraniol. Looking in to the higher accumulation of toxic metals by geranium and the minimal impact of heavy metals on quality of essential oil, geranium can be commercially cultivated in heavy metal polluted soil for production of high value essential oil.

  14. Standardization of Alternatives to Cadmium Plating for Electrical and Fiber Optic Connectors (Briefing Charts)

    DTIC Science & Technology

    2012-08-01

    with trivalent conversion coat, was recently added to MIL-DTL-55181 (Note: The corrosion requirement for 55181 is 48 hours (non-dynamic), as...for Class W, OD-Cd with Hexavalent Chromium (Cr6+) top coat Olive-Drab Cadmium finish requirements (Note: Passivation process with a Cr6

  15. Water characterization and seasonal heavy metal distribution in the Odiel River (Huelva, Spain) by means of principal component analysis.

    PubMed

    Montes-Botella, C; Tenorio, M D

    2003-11-01

    The Iberian Pyrite Belt is the largest mass of sulfide and manganese ores in Western Europe. Its sulfide oxidation is the origin of a heavily acidic drainage that affects the Odiel River in southwestern Huelva (Spain). To assess physicochemical, contamination parameters, heavy metal distribution and its seasonal variation in the upper Odiel River and in El Lomero mines, three water samplings were undertaken and analyzed between July 1998 and November 1999. Water from the Odiel River in the polluted zone showed low pH values (2.76-3.51), high heavy metal content, and high values of conductivity (1410-3648 microS/cm) and dissolved solids (1484-5602 mg/L). Principal Component Analysis (PCA) showed that variables related with the products of the pyrite oxidation and the salts that are solubilized by the high acidity generated in the oxidation of sulfides, grouped in the first component, accounted for 40.88% of total variance, and were the main influential factor in physicochemical water sample properties. The second influential factor was minority metals (nickel, cobalt, cadmium). Heavy metals showed three different seasonal patterns, closely related with saline efflorescences formed next to the river bed: majority metals (iron, copper, manganese, zinc); minority metals (lead, nickel, cobalt, cadmium); and chromium, which had a distinctive behavior.

  16. Urinary Cadmium and Estimated Dietary Cadmium in the Women’s Health Initiative

    PubMed Central

    Quraishi, Sabah M.; Adams, Scott V.; Shafer, Martin; Meliker, Jaymie R.; Li, Wenjun; Luo, Juhua; Neuhouser, Marian L.; Newcomb, Polly A.

    2016-01-01

    Cadmium, a heavy metal dispersed in the environment as a result of industrial and agricultural applications, has been implicated in several human diseases including renal disease, cancers, and compromised bone health. In the general population, the predominant sources of cadmium exposure are tobacco and diet. Urinary cadmium (uCd) reflects long-term exposure and has been frequently used to assess cadmium exposure in epidemiological studies; estimated dietary intake of cadmium (dCd) has also been used in several studies. The validity of dCd in comparison to uCd is unclear. This study aimed to compare dCd, estimated from food frequency questionnaires (FFQs), to uCd measured in spot urine samples from 1,002 participants of the Women’s Health Initiative. Using linear regression, we found that dCd was not statistically significantly associated with uCd (β=0.006, p-value=0.14). When stratified by smoking status, dCd was not significantly associated with uCd both in never smokers (β=0.006, p-value=0.09) and in ever smokers (β=0.003, p-value=0.0.67). Our results suggest that because of the lack of association between estimated dietary cadmium and measured urinary cadmium exposure, dietary estimation of cadmium exposure should be used with caution in epidemiologic studies. PMID:26015077

  17. Effects of Trace Metals on the Production of Aflatoxins by Aspergillus parasiticus

    PubMed Central

    Marsh, Paul B.; Simpson, Marion E.; Trucksess, Mary W.

    1975-01-01

    Certain metals added as salts to a defined basal culture medium influenced the level of aflatoxin production by Aspergillus parasiticus in the low microgramsper-milliliter range of the added metal. In many cases no change or a relatively small change in mat weight and final pH of the medium accompanied this effect. With zinc at added levels of 0 to 10 μg/ml in the medium, aflatoxin increased 30-to 1,000-fold with increasing of zinc, whereas mat weight increased less than threefold. At 25 μg of added zinc per ml, aflatoxin decreased, but mat weight did not. At an added level of 25 μg or less of the metal per ml, salts of iron, manganese, copper, cadmium, trivalent chromium, silver, and mercury partly or completely inhibited aflatoxin production, without influencing mat weight. PMID:238471

  18. Hexavalent chromium induces chromosome instability in human urothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wise, Sandra S.; Holmes, Amie L.; Department of Radiation Oncology, Dana Farber Cancer Institute, 450 Brookline Ave., Boston, MA 02215

    Numerous metals are well-known human bladder carcinogens. Despite the significant occupational and public health concern of metals and bladder cancer, the carcinogenic mechanisms remain largely unknown. Chromium, in particular, is a metal of concern as incidences of bladder cancer have been found elevated in chromate workers, and there is an increasing concern for patients with metal hip implants. However, the impact of hexavalent chromium (Cr(VI)) on bladder cells has not been studied. We compared chromate toxicity in two bladder cell lines; primary human urothelial cells and hTERT-immortalized human urothelial cells. Cr(VI) induced a concentration- and time-dependent increase in chromosome damagemore » in both cell lines, with the hTERT-immortalized cells exhibiting more chromosome damage than the primary cells. Chronic exposure to Cr(VI) also induced a concentration-dependent increase in aneuploid metaphases in both cell lines which was not observed after a 24 h exposure. Aneuploidy induction was higher in the hTERT-immortalized cells. When we correct for uptake, Cr(VI) induces a similar amount of chromosome damage and aneuploidy suggesting that the differences in Cr(VI) sensitivity between the two cells lines were due to differences in uptake. The increase in chromosome instability after chronic chromate treatment suggests this may be a mechanism for chromate-induced bladder cancer, specifically, and may be a mechanism for metal-induced bladder cancer, in general. - Highlights: • Hexavalent chromium is genotoxic to human urothelial cells. • Hexavalent chromium induces aneuploidy in human urothelial cells. • hTERT-immortalized human urothelial cells model the effects seen in primary urothelial cells. • Hexavalent chromium has a strong likelihood of being carcinogenic for bladder tissue.« less

  19. Body burdens of heavy metals in Lake Michigan wetland turtles.

    PubMed

    Smith, Dayna L; Cooper, Matthew J; Kosiara, Jessica M; Lamberti, Gary A

    2016-02-01

    Tissue heavy metal concentrations in painted (Chrysemys picta) and snapping (Chelydra serpentina) turtles from Lake Michigan coastal wetlands were analyzed to determine (1) whether turtles accumulated heavy metals, (2) if tissue metal concentrations were related to environmental metal concentrations, and (3) the potential for non-lethal sampling techniques to be used for monitoring heavy metal body burdens in freshwater turtles. Muscle, liver, shell, and claw samples were collected from painted and snapping turtles and analyzed for cadmium, chromium, copper, iron, lead, magnesium, manganese, and zinc. Turtle tissues had measurable quantities of all eight metals analyzed. Statistically significant correlations between tissue metal concentrations and sediment metal concentrations were found for a subset of metals. Metals were generally found in higher concentrations in the larger snapping turtles than in painted turtles. In addition, non-lethal samples of shell and claw were found to be possible alternatives to lethal liver and muscle samples for some metals. Human consumption of snapping turtles presents potential health risks if turtles are harvested from contaminated areas. Overall, our results suggest that turtles could be a valuable component of contaminant monitoring programs for wetland ecosystems.

  20. New alloys to conserve critical elements. [replacing chromium in steels

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1978-01-01

    Previous studies and surveys on availability of domestic reserves have shown that chromium is a most critical element within the U.S. metal industry. More precisely, the bulk of chromium is consumed in the production of stainless steels, specifically Type 304 stainless steel (304SS) which contains 18% Cr. The present paper deals with means of reducing chromium in commercial stainless steels by substituting more abundant or less expensive elements with the intent of maintaining the properties of 304SS. The discussion focuses on some of the oxidation and corrosion properties of new substitute stainless steels with only 12% Cr, which represents a potential saving of 33% of the chromium consumed in the production of 304SS. The alloying elements substituted for Cr in 304SS are selected according to their potential for protective oxide formation during high-temperature oxidation; these are Al, Si, Ti, Y, and misch metal which is 99.7% rare-earth metals containing 50 to 55% cerium. Other alloying elements to impart corrosion resistance are Mn, Mo, and V.

  1. Heavy metals in PM2.5 and in blood, and children's respiratory symptoms and asthma from an e-waste recycling area.

    PubMed

    Zeng, Xiang; Xu, Xijin; Zheng, Xiangbin; Reponen, Tiina; Chen, Aimin; Huo, Xia

    2016-03-01

    This study was to investigate the levels of heavy metals in PM2.5 and in blood, the prevalence of respiratory symptoms and asthma, and the related factors to them. Lead and cadmium in both PM2.5 and blood were significant higher in Guiyu (exposed area) than Haojiang (reference area) (p < 0.05), however, no significant difference was found for chromium and manganese in PM2.5 and in blood. The prevalence of cough, phlegm, dyspnea, and wheeze of children was higher in Guiyu compared to Haojiang (p < 0.05). No significant difference was found for the prevalence of asthma in children between Guiyu and Haojiang. Living in Guiyu was positively associated with blood lead (B = 0.196, p < 0.001), blood cadmium (B = 0.148, p < 0.05) and cough (OR, 2.37; 95% CI, 1.30-4.32; p < 0.01). Blood lead>5 μg/dL was significantly associated with asthma (OR, 9.50; 95% CI, 1.16-77.49). Higher blood chromium and blood manganese were associated with more cough and wheeze, respectively. Our data suggest that living in e-waste exposed area may lead to increased levels of heavy metals, and accelerated prevalence of respiratory symptoms and asthma. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Pollution status of Pakistan: a retrospective review on heavy metal contamination of water, soil, and vegetables.

    PubMed

    Waseem, Amir; Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid; Murtaza, Ghulam

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health.

  3. Characterization and Quantification of Hexavalent Chromium and Other Toxic Metals in the Air of Communities Surrounding Metal Processing Facilities

    NASA Astrophysics Data System (ADS)

    Pikelnaya, O.; Polidori, A.; Low, J.

    2017-12-01

    Hexavalent chromium [Cr(VI)] and other toxic metals are often emitted during metal forging, cutting, grinding and plating operations. In the South Coast Air Basin (SCAB) many of such operations are conducted by relatively small facilities intertwined within residential communities in the cities of Paramount, Compton, Long Beach and Anaheim. In response to the city of Paramount community members' complaints of "metallic" odors, the South Coast Air Quality Management District (SCAQMD) initiated a local air sampling study for toxic metals, which found elevated Cr(VI) and nickel levels in the community downwind of selected metal processing facilities. SCAQMD worked with these facilities to reduce the emissions from their metal grinding operations, which resulted in substantial reduced nickel levels, but did not reduce Cr(VI) levels. In order to fully understand the source(s) of these emissions, SCAQMD has been deploying portable samplers for Cr(VI) monitoring throughout the city of Paramount since October 2016. During this presentation we will discuss the results of more than a year of Cr(VI) analyses of samplers collected throughout the City of Paramount, as well as data from a continuous metal monitor deployed at one of the sites. We will also discuss options and challenges for expanding of Cr(VI) monitoring to other communities in the SCAB that are adjacent to metal forging and grinding operations; and explore emerging new technologies to address such monitoring challenges.

  4. Development of a brazing process for the production of water- cooled bipolar plates made of chromium-coated metal foils for PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Mueller, M.; Hoehlich, D.; Scharf, I.; Lampke, T.; Hollaender, U.; Maier, H. J.

    2016-03-01

    Beside lithium batteries, PEM fuel cells are the most promising strategy as a power source to achieve the targets for introducing and increasing the usage of electric vehicles. Due to limited space and weight problems, water cooled, metallic bipolar plates in a fuel cell metal stack are preferred in motor vehicles. These plates are stamped metal sheets with a complex structure, interconnected media-tight. To meet the multiple tasks and requirements in use, complex and expensive combinations of materials are currently in use (carbon fiber composites, graphite, gold-plated nickel, stainless and acid resistant steel). The production of such plates is expensive as it is connected with considerable effort or the usage of precious metals. As an alternative, metalloid nitrides (CrN, VN, W2N, etc.) show a high chemical resistance, hardness and a good conductivity. So this material category meets the basic requirements of a top layer. However, the standard methods for their production (PVD, CVD) are expensive and have a slow deposition rate and a lower layer thicknesses. Because of these limitations, a full functionality over the life cycle of a bipolar plate is not guaranteed. The contribution shows the development and quantification of an alternative production process for bipolar plates. The expectation is to get significant advantages from the combination of chromium electrodeposition and thermochemical treatment to form chromium nitrides. Both processes are well researched and suitable for series production. The thermochemical treatment of the chromium layer also enables a process-integrated brazing.

  5. Cadmium is a potent inhibitor of PPM phosphatases and targets the M1 binding site

    PubMed Central

    Pan, Chang; Liu, Hong-Da; Gong, Zheng; Yu, Xiao; Hou, Xu-Ben; Xie, Di-Dong; Zhu, Xi-Bin; Li, Hao-Wen; Tang, Jun-Yi; Xu, Yun-Fei; Yu, Jia-Qi; Zhang, Lian-Ying; Fang, Hao; Xiao, Kun-Hong; Chen, Yu-Guo; Wang, Jiang-Yun; Pang, Qi; Chen, Wei; Sun, Jin-Peng

    2013-01-01

    The heavy metal cadmium is a non-degradable pollutant. By screening the effects of a panel of metal ions on the phosphatase activity, we unexpectedly identified cadmium as a potent inhibitor of PPM1A and PPM1G. In contrast, low micromolar concentrations of cadmium did not inhibit PP1 or tyrosine phosphatases. Kinetic studies revealed that cadmium inhibits PPM phosphatases through the M1 metal ion binding site. In particular, the negative charged D441 in PPM1G specific recognized cadmium. Our results suggest that cadmium is likely a potent inhibitor of most PPM family members except for PHLPPs. Furthermore, we demonstrated that cadmium inhibits PPM1A-regulated MAPK signaling and PPM1G-regulated AKT signaling potently in vivo. Cadmium reversed PPM1A-induced cell cycle arrest and cadmium insensitive PPM1A mutant rescued cadmium induced cell death. Taken together, these findings provide a better understanding of the effects of the toxicity of cadmium in the contexts of human physiology and pathology. PMID:23903585

  6. Urinary cadmium and estimated dietary cadmium in the Women's Health Initiative.

    PubMed

    Quraishi, Sabah M; Adams, Scott V; Shafer, Martin; Meliker, Jaymie R; Li, Wenjun; Luo, Juhua; Neuhouser, Marian L; Newcomb, Polly A

    2016-01-01

    Cadmium, a heavy metal dispersed in the environment as a result of industrial and agricultural applications, has been implicated in several human diseases including renal disease, cancers, and compromised bone health. In the general population, the predominant sources of cadmium exposure are tobacco and diet. Urinary cadmium (uCd) reflects long-term exposure and has been frequently used to assess cadmium exposure in epidemiological studies; estimated dietary intake of cadmium (dCd) has also been used in several studies. The validity of dCd in comparison with uCd is unclear. This study aimed to compare dCd, estimated from food frequency questionnaires, to uCd measured in spot urine samples from 1,002 participants of the Women's Health Initiative. Using linear regression, we found that dCd was not statistically significantly associated with uCd (β=0.006, P-value=0.14). When stratified by smoking status, dCd was not significantly associated with uCd both in never smokers (β=0.006, P-value=0.09) and in ever smokers (β=0.003, P-value=0.67). Our results suggest that because of the lack of association between estimated dCd and measured uCd, dietary estimation of cadmium exposure should be used with caution in epidemiologic studies.

  7. The effect of chromium picolinate on serum cholesterol and apolipoprotein fractions in human subjects.

    PubMed Central

    Press, R. I.; Geller, J.; Evans, G. W.

    1990-01-01

    Chromium has been implicated as a cofactor in the maintenance of normal lipid and carbohydrate metabolism. A deficiency of chromium results from diets low in biologically available chromium. Picolinic acid, a metabolite of tryptophan, forms stable complexes with transitional metal ions, which results in an improved bioavailability of the metal ion chromium. To determine whether or not chromium picolinate is effective in humans, 28 volunteer subjects were given either chromium tripicolinate (3.8 micromol [200 micrograms] chromium) or a placebo daily for 42 days in a double-blind crossover study. A 14-day period off capsules was used between treatments. Levels of total cholesterol, low-density lipoprotein (LDL) cholesterol, and apolipoprotein B, the principal protein of the LDL fraction, decreased significantly while the subjects were ingesting chromium picolinate. The concentration of apolipoprotein A-I, the principal protein of the high-density lipoprotein (HDL) fraction, increased substantially during treatment with chromium picolinate. The HDL-cholesterol level was elevated slightly but not significantly during ingestion of chromium picolinate. Only apolipoprotein B, of the variables measured, was altered significantly during supplementation with the placebo. These observations show that chromium picolinate is efficacious in lowering blood lipids in humans. PMID:2408233

  8. Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice

    PubMed Central

    Mostofa, Mohammad Golam; Rahman, Anisur; Ansary, Md. Mesbah Uddin; Watanabe, Ayaka; Fujita, Masayuki; Phan Tran, Lam-Son

    2015-01-01

    We investigated the physiological and biochemical mechanisms by which H2S mitigates the cadmium stress in rice. Results revealed that cadmium exposure resulted in growth inhibition and biomass reduction, which is correlated with the increased uptake of cadmium and depletion of the photosynthetic pigments, leaf water contents, essential minerals, water-soluble proteins, and enzymatic and non-enzymatic antioxidants. Excessive cadmium also potentiated its toxicity by inducing oxidative stress, as evidenced by increased levels of superoxide, hydrogen peroxide, methylglyoxal and malondialdehyde. However, elevating endogenous H2S level improved physiological and biochemical attributes, which was clearly observed in the growth and phenotypes of H2S-treated rice plants under cadmium stress. H2S reduced cadmium-induced oxidative stress, particularly by enhancing redox status and the activities of reactive oxygen species and methylglyoxal detoxifying enzymes. Notably, H2S maintained cadmium and mineral homeostases in roots and leaves of cadmium-stressed plants. By contrast, adding H2S-scavenger hypotaurine abolished the beneficial effect of H2S, further strengthening the clear role of H2S in alleviating cadmium toxicity in rice. Collectively, our findings provide an insight into H2S-induced protective mechanisms of rice exposed to cadmium stress, thus proposing H2S as a potential candidate for managing toxicity of cadmium, and perhaps other heavy metals, in rice and other crops. PMID:26361343

  9. Effects of cobalt-chromium everolimus eluting stents or bare metal stent on fatal and non-fatal cardiovascular events: patient level meta-analysis

    PubMed Central

    Sabaté, Manel; Kaiser, Christoph; Brugaletta, Salvatore; de la Torre Hernandez, Jose Maria; Galatius, Soeren; Cequier, Angel; Eberli, Franz; de Belder, Adam; Serruys, Patrick W; Ferrante, Giuseppe

    2014-01-01

    Objectives To examine the safety and effectiveness of cobalt-chromium everolimus eluting stents compared with bare metal stents. Design Individual patient data meta-analysis of randomised controlled trials. Cox proportional regression models stratified by trial, containing random effects, were used to assess the impact of stent type on outcomes. Hazard ratios with 95% confidence interval for outcomes were reported. Data sources and study selection Medline, Embase, the Cochrane Central Register of Controlled Trials. Randomised controlled trials that compared cobalt-chromium everolimus eluting stents with bare metal stents were selected. The principal investigators whose trials met the inclusion criteria provided data for individual patients. Primary outcomes The primary outcome was cardiac mortality. Secondary endpoints were myocardial infarction, definite stent thrombosis, definite or probable stent thrombosis, target vessel revascularisation, and all cause death. Results The search yielded five randomised controlled trials, comprising 4896 participants. Compared with patients receiving bare metal stents, participants receiving cobalt-chromium everolimus eluting stents had a significant reduction of cardiac mortality (hazard ratio 0.67, 95% confidence interval 0.49 to 0.91; P=0.01), myocardial infarction (0.71, 0.55 to 0.92; P=0.01), definite stent thrombosis (0.41, 0.22 to 0.76; P=0.005), definite or probable stent thrombosis (0.48, 0.31 to 0.73; P<0.001), and target vessel revascularisation (0.29, 0.20 to 0.41; P<0.001) at a median follow-up of 720 days. There was no significant difference in all cause death between groups (0.83, 0.65 to 1.06; P=0.14). Findings remained unchanged at multivariable regression after adjustment for the acuity of clinical syndrome (for instance, acute coronary syndrome v stable coronary artery disease), diabetes mellitus, female sex, use of glycoprotein IIb/IIIa inhibitors, and up to one year v longer duration treatment with dual

  10. Effects of cobalt-chromium everolimus eluting stents or bare metal stent on fatal and non-fatal cardiovascular events: patient level meta-analysis.

    PubMed

    Valgimigli, Marco; Sabaté, Manel; Kaiser, Christoph; Brugaletta, Salvatore; de la Torre Hernandez, Jose Maria; Galatius, Soeren; Cequier, Angel; Eberli, Franz; de Belder, Adam; Serruys, Patrick W; Ferrante, Giuseppe

    2014-11-04

    To examine the safety and effectiveness of cobalt-chromium everolimus eluting stents compared with bare metal stents. Individual patient data meta-analysis of randomised controlled trials. Cox proportional regression models stratified by trial, containing random effects, were used to assess the impact of stent type on outcomes. Hazard ratios with 95% confidence interval for outcomes were reported. Medline, Embase, the Cochrane Central Register of Controlled Trials. Randomised controlled trials that compared cobalt-chromium everolimus eluting stents with bare metal stents were selected. The principal investigators whose trials met the inclusion criteria provided data for individual patients. The primary outcome was cardiac mortality. Secondary endpoints were myocardial infarction, definite stent thrombosis, definite or probable stent thrombosis, target vessel revascularisation, and all cause death. The search yielded five randomised controlled trials, comprising 4896 participants. Compared with patients receiving bare metal stents, participants receiving cobalt-chromium everolimus eluting stents had a significant reduction of cardiac mortality (hazard ratio 0.67, 95% confidence interval 0.49 to 0.91; P=0.01), myocardial infarction (0.71, 0.55 to 0.92; P=0.01), definite stent thrombosis (0.41, 0.22 to 0.76; P=0.005), definite or probable stent thrombosis (0.48, 0.31 to 0.73; P<0.001), and target vessel revascularisation (0.29, 0.20 to 0.41; P<0.001) at a median follow-up of 720 days. There was no significant difference in all cause death between groups (0.83, 0.65 to 1.06; P=0.14). Findings remained unchanged at multivariable regression after adjustment for the acuity of clinical syndrome (for instance, acute coronary syndrome v stable coronary artery disease), diabetes mellitus, female sex, use of glycoprotein IIb/IIIa inhibitors, and up to one year v longer duration treatment with dual antiplatelets. This meta-analysis offers evidence that compared with bare metal

  11. Hexavalent chromium removal by using synthesis of polyaniline and polyvinyl alcohol.

    PubMed

    Riahi Samani, Majid; Ebrahimbabaie, Parisa; Vafaei Molamahmood, Hamed

    2016-11-01

    Over the past few years, heavy metals have been proved to be one of the most important contaminants in industrial wastewater. Chromium is one of these heavy metals, which is being utilized in several industries such as textile, finishing and leather industries. Since hexavalent chromium is highly toxic to human health, removal of it from the wastewater is essential for human safety. One of the techniques for removing chromium (VI) is the use of different adsorbents such as polyaniline. In this study, composites of polyaniline (PANi) were synthesized with various amounts of polyvinyl alcohol (PVA). The results showed that PANi/PVA removed around 76% of chromium at a pH of 6.5; the PVA has altered the morphology of the composites and increased the removal efficiency. Additionally, synthesis of 20 mg/L of PVA by PANi composite showed the best removal efficiency, and the optimal stirring time was calculated as 30 minutes. Moreover, the chromium removal efficiency was increased by decreasing the pH, initial chromium concentration and increasing stirring time.

  12. Bioavailability of biologically sequestered cadmium and the implications of metal detoxification

    USGS Publications Warehouse

    Wallace, W.G.; Lopez, G.R.

    1997-01-01

    The deposit-feeding oligochaete Limnodrilus hoffmeisteri possesses metallothionein-like proteins and metal-rich granules for storing and detoxifying cadmium (Cd). In this study we investigated the bioavailability of Cd sequestered within this oligochaete by conducting feeding experiments with 109Cd-labeled oligochaetes and the omnivorous grass shrimp Palaemonetes pugio. We also make predictions on Cd trophic transfer based on oligochaete subcellular Cd distributions and absorption efficiencies of Cd by shrimp Cytosol [including metallothionein-like proteins and other proteins) and a debris fraction (including metal-rich granules and tissue fragments) isolated from homogenized 109Cd-labeled oligochaetes were embedded in gelatin and fed to shrimp. The 109Cd absorption efficiencies of shrimp fed these subcellular fractions were 84.8 and 48.6%, respectively, and were significantly different (p < 0.001), indicating that 109Cd bound in these fractions was not equally available to a predator. Mass balance equations demonstrate that shrimp fed whole worms absorb 61.5% of the ingested 109Cd, an absorption efficiency similar to that obtained experimentally (57.1%). Furthermore, the majority of the absorbed 109Cd comes from the fraction containing metallothionein-like proteins (i.e. cytosol). 109Cd absorbed from the debris fraction probably comes from the digestion of tissue fragments, rather than metal-rich granules. The ecological significance of these findings is that prey detoxification mechanisms may mediate the bioreduction or bioaccumulation of toxic metals along fond chains by altering metal bioavailability. Another important finding is that trophic transfer of metal can be predicted based on the subcellular metal distribution of prey.

  13. Heavy Metals Toxicity and the Environment

    PubMed Central

    Tchounwou, Paul B; Yedjou, Clement G; Patlolla, Anita K; Sutton, Dwayne J

    2013-01-01

    Heavy metals are naturally occurring elements that have a high atomic weight and a density at least 5 times greater than that of water. Their multiple industrial, domestic, agricultural, medical and technological applications have led to their wide distribution in the environment; raising concerns over their potential effects on human health and the environment. Their toxicity depends on several factors including the dose, route of exposure, and chemical species, as well as the age, gender, genetics, and nutritional status of exposed individuals. Because of their high degree of toxicity, arsenic, cadmium, chromium, lead, and mercury rank among the priority metals that are of public health significance. These metallic elements are considered systemic toxicants that are known to induce multiple organ damage, even at lower levels of exposure. They are also classified as human carcinogens (known or probable) according to the U.S. Environmental Protection Agency, and the International Agency for Research on Cancer. This review provides an analysis of their environmental occurrence, production and use, potential for human exposure, and molecular mechanisms of toxicity, genotoxicity, and carcinogenicity. PMID:22945569

  14. Toxic Heavy Metals: Materials Cycle Optimization

    NASA Astrophysics Data System (ADS)

    Ayres, Robert U.

    1992-02-01

    Long-term ecological sustainability is incompatible with an open materials cycle. The toxic heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, silver, uranium/plutonium, zinc) exemplify the problem. These metals are being mobilized and dispersed into the environment by industrial activity at a rate far higher than by natural processes. Apart from losses to the environment resulting from mine wastes and primary processing, many of these metals are utilized in products that are inherently dissipative. Examples of such uses include fuels, lubricants, solvents, fire retardants, stabilizers, flocculants, pigments, biocides, and preservatives. To close the materials cycle, it will be necessary to accomplish two things. The first is to ban or otherwise discourage (e.g., by means of high severance taxes on virgin materials) dissipative uses of the above type. The second is to increase the efficiency of recycling of those materials that are not replaceable in principle. Here, also, economic instruments (such as returnable deposits) can be effective in some cases. A systems view of the problem is essential to assess the cost and effectiveness of alternative strategies.

  15. Comparison of leaching characteristics of heavy metals from bottom and fly ashes in Korea and Japan.

    PubMed

    Shim, Young-Sook; Rhee, Seung-Whee; Lee, Woo-Keun

    2005-01-01

    The objective of this research was to compare the leaching characteristics of heavy metals such as cadmium, chromium, copper, nickel, lead, etc., in Korean and Japanese municipal solid waste incineration (MSWI) ash. The rate of leaching of heavy metal was measured by KSLT and JTL-13, and the amount of heavy metals leached was compared with the metal content in each waste component. Finally, bio-availability testing was performed to assess the risks associated with heavy metals leached from bottom ash and fly ash. From the results, the value of neutralization ability in Japanese fly ash was four times higher than that in Korean fly ash. The reason was the difference in the content of Ca(OH)(2) in fly ash. The amount of lead leached exceeded the regulatory level in both Japanese and Korean fly ash. The rate of leaching was relatively low in ash with a pH in the range of 6-10. The bio-availability test in fly ash demonstrated that the amount of heavy metals leached was Pb>Cd>Cr, but the order was changed to Pb>Cr>Cd in the bottom ash. The leaching concentration of lead exceeded the Japanese risk level in all fly ashes from the two countries, but the leaching concentration of cadmium exceeded the regulatory level in Korean fly ash only.

  16. Associations of lead and cadmium with sex hormones in adult males

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kresovich, Jacob K., E-mail: jkreso2@uic.edu; Argos, Maria; Turyk, Mary E.

    Heavy metal exposures are ubiquitous in the environment and their relation to sex hormones is not well understood. This paper investigates the associations between selected heavy metals (lead and cadmium) and sex hormones (testosterone, free testosterone, estradiol, free estradiol) as well as other major molecules in the steroid biosynthesis pathway (androstanedione glucuronide and sex-hormone binding globulin (SHBG)). Blood lead and cadmium were selected as biomarkers of exposure, and tested for associations in males using National Health and Nutritional Examination Survey (NHANES) data from 1999–2004. After adjustment for age, race, body mass index, smoking status, diabetes and alcohol intake, blood leadmore » was positively associated with testosterone and SHBG while blood cadmium was positively associated with SHBG. After controlling for additional heavy metal exposure, the associations between lead and testosterone as well as cadmium and SHBG remained significant. Furthermore, the association between blood lead and testosterone was modified by smoking status (P for interaction=0.011), diabetes (P for interaction=0.021) and blood cadmium (P for interaction=0.029). The association between blood cadmium and SHBG levels was modified by blood lead (P for interaction=0.004). This study is the most comprehensive investigation to date regarding the association between heavy metals and sex hormones in males. - Highlights: • We used a nationally representative dataset (NHANES) and employed sample weighting. • We examined associations between lead and cadmium with sex-hormone levels. • Blood lead level was positively associated with serum testosterone and SHBG levels. • Blood cadmium level was positively associated with SHBG levels, modified by lead. • Diabetes, smoking and cadmium modified lead and testosterone association.« less

  17. Reversible surface binding of cadmium and lead by lactic acid and bifidobacteria.

    PubMed

    Teemu, Halttunen; Seppo, Salminen; Jussi, Meriluoto; Raija, Tahvonen; Kalle, Lertola

    2008-07-15

    Extensive cadmium and lead contamination of water has been reported to occur locally as a result of human activities. Lactic acid bacteria have been reported to remove cadmium and lead from water. The aim of this work was to clarify the mechanisms of cadmium and lead removal from water. In addition, the effect of other metals, reversibility of binding and recyclability of the biomass was assessed. Based on our earlier data, the two most promising lactic acid bacteria, Lactobacillus fermentum ME3 and Bifidobacterium longum 46, were selected for these experiments. The results showed that the presence of other cationic metals and blocking of carboxyl and phosphoryl groups reduced cadmium and lead removal. These results suggest involvement of electrostatic interactions in cadmium and lead removal, and support our earlier findings. Transmission electron micrographs showed large deposits of lead on the bacterial surface suggesting formation of metallic lead precipitates. Both cadmium and lead removal were reversible processes established by full recovery of removed metal after desorption with dilute solutions of EDTA and HNO(3). Resorption capacity of both biomasses tested was reduced after regeneration with 10 mM EDTA and 15 mM HNO(3). Taken together, the results suggest involvement of several reversible mechanisms such as ion exchange and precipitation in cadmium and lead binding by lactic acid bacteria. The results show that specific lactic acid bacteria have the potential for removal of cadmium and lead from water although reduction in resorption capacity after regeneration of the biomass may form a problem. Since the studies so far have mainly focused on removal of single metals from pure water, metal removal in conditions of natural waters should be assessed in further experiments.

  18. Efficient Separation and Extraction of Vanadium and Chromium in High Chromium Vanadium Slag by Selective Two-Stage Roasting-Leaching

    NASA Astrophysics Data System (ADS)

    Wen, Jing; Jiang, Tao; Xu, Yingzhe; Liu, Jiayi; Xue, Xiangxin

    2018-06-01

    Vanadium and chromium are important rare metals, leading to a focus on high chromium vanadium slag (HCVS) as a potential raw material to extract vanadium and chromium in China. In this work, a novel method based on selective two-stage roasting-leaching was proposed to separate and extract vanadium and chromium efficiently in HCVS. XRD, FT-IR, and SEM were utilized to analyze the phase evolutions and microstructure during the whole process. Calcification roasting, which can calcify vanadium selectively using thermodynamics, was carried out in the first roasting stage to transfer vanadium into acid-soluble vanadate and leave chromium in the leaching residue as (Fe0.6Cr0.4)2O3 after H2SO4 leaching. When HCVS and CaO were mixed in the molar ratio CaO/V2O3 (n(CaO)/n(V2O3)) of 0.5 to 1.25, around 90 pct vanadium and less than 1 pct chromium were extracted in the first leaching liquid, thus achieving the separation of vanadium and chromium. In the second roasting stage, sodium salt, which combines with chromium easily, was added to the first leaching residue to extract chromium and 95.16 pct chromium was extracted under the optimal conditions. The total vanadium and chromium leaching rates were above 95 pct, achieving the efficient separation and extraction of vanadium and chromium. The established method provides a new technique to separate vanadium and chromium during roasting rather than in the liquid form, which is useful for the comprehensive application of HCVS.

  19. Efficient Separation and Extraction of Vanadium and Chromium in High Chromium Vanadium Slag by Selective Two-Stage Roasting-Leaching

    NASA Astrophysics Data System (ADS)

    Wen, Jing; Jiang, Tao; Xu, Yingzhe; Liu, Jiayi; Xue, Xiangxin

    2018-04-01

    Vanadium and chromium are important rare metals, leading to a focus on high chromium vanadium slag (HCVS) as a potential raw material to extract vanadium and chromium in China. In this work, a novel method based on selective two-stage roasting-leaching was proposed to separate and extract vanadium and chromium efficiently in HCVS. XRD, FT-IR, and SEM were utilized to analyze the phase evolutions and microstructure during the whole process. Calcification roasting, which can calcify vanadium selectively using thermodynamics, was carried out in the first roasting stage to transfer vanadium into acid-soluble vanadate and leave chromium in the leaching residue as (Fe0.6Cr0.4)2O3 after H2SO4 leaching. When HCVS and CaO were mixed in the molar ratio CaO/V2O3 (n(CaO)/n(V2O3)) of 0.5 to 1.25, around 90 pct vanadium and less than 1 pct chromium were extracted in the first leaching liquid, thus achieving the separation of vanadium and chromium. In the second roasting stage, sodium salt, which combines with chromium easily, was added to the first leaching residue to extract chromium and 95.16 pct chromium was extracted under the optimal conditions. The total vanadium and chromium leaching rates were above 95 pct, achieving the efficient separation and extraction of vanadium and chromium. The established method provides a new technique to separate vanadium and chromium during roasting rather than in the liquid form, which is useful for the comprehensive application of HCVS.

  20. Flow of Cadmium from Rechargeable Batteries in the United States, 1996-2007

    USGS Publications Warehouse

    Wilburn, David R.

    2007-01-01

    Cadmium metal has been found to be toxic to humans and the environment under certain conditions; therefore, a thorough understanding of the use and disposal of the metal is warranted. Most of the cadmium used in the United States comes from imported products. In 2007, more than 83 percent of the cadmium used in the United States was contained in batteries, mostly in rechargeable nickel-cadmium batteries used in popular consumer products such as cordless phones and power tools. The flow of cadmium contained in rechageable nickel-cadmium batteries used in the United States was tracked for the years 1996 to 2007. The amount of cadmium metal contained in imported products in 2007 was estimated to be about 1,900 metric tons, or about 160 percent higher than the reported cadmium production in the United States from all primary and secondary sources. Although more than 40,000 metric tons of cadmium was estimated to be contained in nickel-cadmium rechargeable batteries that became obsolete during the 12-year study period, not all of this material was sent to municipal solid waste landfills. About 27 percent of the material available for recovery in the United States was recycled domestically in 2007; the balance was discarded in municipal solid waste landfills, exported for recycling, retained in temporary storage, or thrown away.

  1. Toxic metals contained in cosmetics: a status report.

    PubMed

    Bocca, Beatrice; Pino, Anna; Alimonti, Alessandro; Forte, Giovanni

    2014-04-01

    The persistence of metals in the environment and their natural occurrence in rocks, soil and water cause them to be present in the manufacture of pigments and other raw materials used in the cosmetic industry. Thus, people can be exposed to metals as trace contaminants in cosmetic products they daily use. Cosmetics may have multiple forms, uses and exposure scenarios, and metals contained in them can cause skin local problems but also systemic effects after their absorption via the skin or ingestion. Even this, cosmetics companies are not obliged to report on this kind of impurities and so consumers have no way of knowing about their own risk. This paper reviewed both the concentration of metals in different types of cosmetics manufactured and sold worldwide and the data on metals' dermal penetration and systemic toxicology. The eight metals of concern for this review were antimony (Sb), arsenic (As), cadmium (Cd), chromium (Cr), cobalt (Co), mercury (Hg), nickel (Ni) and lead (Pb). This was because they are banned as intentional ingredients in cosmetics, have draft limits as potential impurities in cosmetics and are known as toxic. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Atmospheric heavy metals and Arsenic in China: Situation, sources and control policies

    NASA Astrophysics Data System (ADS)

    Duan, Jingchun; Tan, Jihua

    2013-08-01

    In recent years, heavy metal pollution accidents were reported frequently in China. The atmospheric heavy metal pollution is drawing all aspects of attention. This paper summarizes the recent research results from our studies and previous studies in recent years in China. The level, temporal variation, seasonal variation and size distribution of the heavy metals of atmospheric Lead(Pb), Vanadium(V), Manganese(Mn), Nickel(Ni), Chromium(Cr), Cadmium(Cd), Copper(Cu), Zinc(Zn) and Arsenic(As) were characterized in China. The emission characteristics and sources of atmospheric heavy metals and As in China were reviewed. Coal burning, iron and steel industry and vehicle emission are important sources in China. Control policies and effects in China were reviewed including emission standards, ambient air quality standards, phase out of leaded gasoline and so on, and further works for atmospheric heavy metals control were suggested. The comprehensive heavy metals pollution control measures and suggestions were put forward based on the summarization of the development and experience of the atmospheric heavy metal pollution control abroad.

  3. Investigation of Electrodeposited Alloys and Pure Metals as Substitutes for Zinc and Cadmium for Protective Finishes for Steel Parts of Aircraft

    DTIC Science & Technology

    1949-09-01

    ON LOAN FROM 7k a. **+dU fefeÄtüiÄ: .<*-#=« Investigation of Electrodeposited Alloys and Pure Metals as Substitutes for Zinc and Cadmium for...graphs Eight alloys, selected as being superior to pure zinc or cadmium for protecting steel, were evaluated on the basis of static and dynamic... zinc -silver alloy of 25% silver. A tabulated summary of the testing program on all cast and electrodeposited alloys tested is included. * and

  4. 40 CFR 437.16 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS THE CENTRALIZED WASTE TREATMENT POINT SOURCE CATEGORY Metals Treatment... standards: Standards for antimony, arsenic, cadmium, chromium, cobalt, copper, lead, mercury, nickel, silver...

  5. Progesterone, selected heavy metals and micronutrients in pregnant Nigerian women with a history of recurrent spontaneous abortion.

    PubMed

    Ajayi, O O; Charles-Davies, M A; Arinola, O G

    2012-06-01

    Environmental and endocrine factors have been implicated in the aetiology of recurrent abortion, with poorly understood roles. Luteal phase insufficiency marked with insufficient progesterone secretion has been reported. To define the involvement of progesterone, trace metals, and Vitamin E in pregnant women with history of recurrent spontaneous abortion. Convenience sampling method was used to recruit 69 pregnant women aged 21-41 years with gestational age of 0-20 weeks in this case-control study. Thirty five (cases) and thirty four (controls) had previous and no history of recurrent spontaneous abortion respectively. Demographic characteristics and 10 mls of blood samples were obtained from each subject. Serum obtained was used for the determination of progesterone, zinc, copper, selenium, iron, magnesium, manganese, chromium, lead, cadmium, and serum vitamin E by standard methods. Results showed statistically significant decreases (p<0.05) in the serum zinc, copper, and vitamin E and a significant elevation (p<0.05) in the serum selenium, lead, and cadmium in cases compared with controls. Insignificant decrease (p=0.07) was observed in the serum progesterone when cases were compared with controls. Results suggest that elevated serum heavy metals (cadmium and lead) and reduction of essential micronutrients (zinc, copper and vitamin E) may contribute to recurrent spontaneous abortion.

  6. Numerical taxonomy of heavy metal tolerant bacteria isolated from the estuarine environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, D.A.; Austin, B.; Mills, A.L.

    1977-01-01

    Metal tolerant bacteria, totalling 301 strains, were isolated from water and sediment samples collected from Chesapeake Bay. Growth in the presence of 100 ppm cadmium, chromium, cobalt, lead, mercury and molybdenum was tested. In addition, the strains were examined for 118 biochemical, cultural, morphological, nutritional and physiological, characters and the data were analyzed by computer, using the simple matching and Jaccard coefficients. From sorted similarity matrices, 293 strains, 97% of the total, were removed in 12 clusters defined at the 80 to 85% similarity level. The clusters included Bacillus and Pseudomonas spp. and genera and species of Enterobacteriaceae. Three clusters,more » containing gram negative rods, were not identified. Several of the clusters were composed of strains exhibiting tolerance to a wide range of heavy metals, whereas three of the clusters contained bacteria that were capable of growth in the presence of only a few of the metals examined in this study. Antibiotic resistance of the metal resistant strains has also been examined.« less

  7. Installation Restoration Program. Phase I: Records Search Goodfellow Air Force Base, Texas.

    DTIC Science & Technology

    1985-03-01

    CHDRO - ARSENIC SARIUM, CADMIUM MIUM. COPPER. IRON, DIS- DIS- DIS- DIS- DIS- DIS- SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED TIME (UOIL (UCIL (UGIL (UG/L... cadmium , chromium, copper, iron, lead, manganese, mercury, nickel, silver, and zinc. The recommended parameters include those compounds known or...8217. ... . . -. * -:,-..’... .... ’.... ...’. .’..".-... ... -......- . ..............-............... . ..... .. APPENDIX A (Continued, Page 2 of 7) Cadmium A metal used in batteries and other industrial

  8. Chromium-doped Raney nickel catalyst for hydrogen electrodes in alkaline fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenjo, T.

    Raney nickel is a relatively inexpensive and highly active nonnoble metal catalyst for hydrogen electrodes in alkaline fuel cells. Mund et al. (1977) have found that its catalytic activity is increased by doping involving transition metals, such a titanum, iron, and molybdenum. The present investigation is concerned with the preparation of hydrogen electrodes catalyzed with chromium-doped Raney nickel and the measurement of their polarization characteristics. On the basis of the obtained results, it is concluded that chromium is a good dopant for Raney nickel which is employed for hydrogen electrodes. Chromium improves and stabilizes the polarization characteristics of Raney nickelmore » electrodes. It is found that chromium-doped Raney nickel is more active than the titanium-doped catalyst. 6 references.« less

  9. Effect of Particle Morphology on Cold Spray Deposition of Chromium Carbide-Nickel Chromium Cermet Powders

    NASA Astrophysics Data System (ADS)

    Fernandez, Ruben; Jodoin, Bertrand

    2017-08-01

    Nickel chromium-chromium carbide coatings provide good corrosion and wear resistance at high temperatures, making them ideal for applications where a harsh environment and high temperatures are expected. Thermal spray processes are preferred as deposition technique of cermets, but the high process temperatures can lead to decarburization and reduction of the coatings properties. Cold spray uses lower temperatures preventing decarburization. Since the metallic phase remains solid, the feedstock powder morphology becomes crucial on the deposition behavior. Six commercially available powders were studied, varying in morphology and metal/ceramic ratios. The powders were categorized into 4 groups depending on their morphology. Spherical powders lead to substrate erosion due to their limited overall ductility. Porous agglomerated and sintered powders lead to severely cracked coatings. For dense agglomerated and sintered powders, the outcome depended on the initial metal/ceramic ratio: powders with 25 wt.% NiCr led to substrate erosion while 35 wt.% NiCr powders led to dense coatings. Finally, blended ceramic-metal mixtures also lead to dense coatings. All coatings obtained had lower ceramic content than the initial feedstock powders. Interrupted spray tests, combined with FEA, helped drawing conclusions on the deposition behavior to explain the obtained results.

  10. New biosorbent in removing some metals from industrial wastewater in El Mex Bay, Egypt

    NASA Astrophysics Data System (ADS)

    Abdallah, Maha Ahmed Mohamed; Mahmoud, Mohamed E.; Osman, Maher M.; Ahmed, Somaia B.

    2017-07-01

    Biosorption is an extensive technology applied for the removal of heavy metal ions and other pollutants from aqueous solutions. In the present study, the biosorption of cadmium, lead, chromium and mercury ions from polluted surface seawater in El-Max Bay was determined using hybrid active carbon sorbents. These sorbents were treated chemically by acid, base and redox reaction followed by surface loading of baker's yeast biomass for increasing their biosorption capacity and the highest metal uptake values. The surface function and morphology of the hybrid immobilized sorbents were studied by Fourier Transform Infrared analysis and scanning electron microscope imaging. Metal removal values proved that the vital role of baker's yeast as a significant high removable due to functional groups at baker's yeast cell wall surface that have the ability to forming various coordination complexes with metal ions. A noticeable increase in the removal of all studied metals was observed and reached to 100 %.

  11. Electrodeposition of Tantalum and Tantalum-Chromium Alloys

    DTIC Science & Technology

    1980-05-01

    Electrochem Soc, 112, 840 (1965). 7Ibid, 113,60 (1966). 8Ibid, 113.66 (1966). J. Wurm, "European Conference on the Development of Molten Salts Applica...Chem. 35, 161-3 (1887). 16. J. Wurm, "European Conference on the Development of Molten Salts Applica- tions," Extended Abstracts and Proceedings, pp...Metals Tantalum Tantalum-Chromium Alloys Chromium Coating Fused Salt Electrolyte Electrodeposition FLINAK 20. ABSTRACT (Continue on reverse

  12. Effects of chronic metal exposure and sediment organic matter on digestive absorption efficiency of cadmium by the deposit-feeding polychaete Capitella species I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selck, H.; Forbes, V.E.; Decho, A.W.

    1999-06-01

    Organic matter such as humic acid and bacterial slime exopolymer are common in estuarine and coastal sediments, where they are ingested by animals that process particulate detritus. Both humic acid (HA; refractory) and exopolymer (EPS; easily digestible) bind metals and therefore might represent a source of particulate-bound metals to deposit-feeding organisms. This study examined how cadmium preexposure, gut passage time (GPT), and quality and quantity of the organic coating on sediment particles interact to determine cadmium absorption efficiency (Cd-AE) in Capitella sp. I. Pulse-chase experiments using [sup 109]Cd and [sup 51]Cr were used to determine Cd-AE in individual worms. Wormsmore » were given a pulse of carbon-cleaned, HA-coated or EPS-coated sediment particles. The third treatment was divided into three EPS concentrations (high, medium, and low). A 5-d preexposure to cadmium did not affect the egestion rates during either the preexposure period or the chase phase. Worms given a pulse of carbon-cleaned particles exhibited higher egestion rates during the chase phase than worms given a pulse of organic-coated particles, and no differences were seen in egestion rate between worms exposed to HA- and high-EPS-coated particles. Egestion rates decreased with increasing EPS concentration. The presence of refractory organic material decreased the absorption efficiency of cadmium from sediment relative to Cd-AE from carbon-cleaned sediment but not relative to Cd-AE from sediment coated with a high concentration of EPS. The Cd-AE increased linearly with increasing exopolymer coating on sediment particles. Overall, Cd-AE increased with increasing gut passage time in worms that were not preexposed, although Cd-AE from HA-coated particles was independent of gut passage time. Preexposure to cadmium reversed the relationship between gut passage time and cadmium absorption efficiency. Thus, the implications are that sedimentary organic matter and worm physiology might

  13. Leaching of Heavy Metals from Water Bottle Components into the Drinking Water of Rodents

    PubMed Central

    Nunamaker, Elizabeth A; Otto, Kevin J; Artwohl, James E; Fortman, Jeffrey D

    2013-01-01

    Providing high-quality, uncontaminated drinking water is an essential component of rodent husbandry. Acidification of drinking water is a common technique to control microbial growth but is not a benign treatment. In addition to its potential biologic effects, acidified water might interact with the water-delivery system, leading to the leaching of heavy metals into the drinking water. The goal of the current study was to evaluate the effects of water acidification and autoclaving on water-bottle assemblies. The individual components of the system (stainless-steel sipper tubes, rubber stoppers, neoprene stoppers, and polysulfone water bottles) were acid-digested and analyzed for cadmium, chromium, copper, iron, lead, magnesium, manganese, selenium, and zinc to quantify the metal composition of each material. In addition the amounts of these metals that leached into tap and acidified water with and without autoclaving were quantified after 1 wk of contact time. On a weight basis, sipper tubes contained the largest quantities of all metals except magnesium and zinc, which were greatest in the neoprene stoppers. Except for cadmium and selenium, all metals had leached into the water after 1 wk, especially under the acidified condition. The quantities of copper, lead, and zinc that leached into the drinking water were the most noteworthy, because the resulting concentrations had the potential to confound animal experiments. On the basis of these findings, we suggest that water-quality monitoring programs include heavy metal analysis at the level of water delivery to animals. PMID:23562029

  14. Leaching of heavy metals from water bottle components into the drinking water of rodents.

    PubMed

    Nunamaker, Elizabeth A; Otto, Kevin J; Artwohl, James E; Fortman, Jeffrey D

    2013-01-01

    Providing high-quality, uncontaminated drinking water is an essential component of rodent husbandry. Acidification of drinking water is a common technique to control microbial growth but is not a benign treatment. In addition to its potential biologic effects, acidified water might interact with the water-delivery system, leading to the leaching of heavy metals into the drinking water. The goal of the current study was to evaluate the effects of water acidification and autoclaving on water-bottle assemblies. The individual components of the system (stainless-steel sipper tubes, rubber stoppers, neoprene stoppers, and polysulfone water bottles) were acid-digested and analyzed for cadmium, chromium, copper, iron, lead, magnesium, manganese, selenium, and zinc to quantify the metal composition of each material. In addition the amounts of these metals that leached into tap and acidified water with and without autoclaving were quantified after 1 wk of contact time. On a weight basis, sipper tubes contained the largest quantities of all metals except magnesium and zinc, which were greatest in the neoprene stoppers. Except for cadmium and selenium, all metals had leached into the water after 1 wk, especially under the acidified condition. The quantities of copper, lead, and zinc that leached into the drinking water were the most noteworthy, because the resulting concentrations had the potential to confound animal experiments. On the basis of these findings, we suggest that water-quality monitoring programs include heavy metal analysis at the level of water delivery to animals.

  15. The toxic Doppelganger: on the ionic and molecular mimicry of cadmium.

    PubMed

    Chmielowska-Bąk, Jagna; Izbiańska, Karolina; Deckert, Joanna

    2013-01-01

    Cadmium is a toxic heavy metal which can cause numerous alterations in cell functioning. Exposure to cadmium leads to generation of reactive oxygen species, disorders in membrane structure and functioning, inhibition of respiration, disturbances in ion homeostasis, perturbations in cell division, and initiation of apoptosis and necrosis. This heavy metal is considered a carcinogen by the Agency for Toxic Substances and Disease Registry. At least some of the described toxic effects could result from the ability of cadmium to mimic other divalent ions and alert signal transduction networks. This review describes the role of cadmium mimicry in its uptake, reactive oxygen species generation, alterations in calmodulin, Wnt/β-catenin and estrogen signaling pathways, and modulation of neurotransmission. The last section is dedicated to the single known case of a favorable function performed by cadmium mimicry: marine diatoms, which live in zinc deficient conditions, utilize cadmium as a cofactor in carbonic anhydrase - so far the only described cadmium enzyme.

  16. Long-term sorption of metals is similar among plastic types: implications for plastic debris in aquatic environments.

    PubMed

    Rochman, Chelsea M; Hentschel, Brian T; Teh, Swee J

    2014-01-01

    Concerns regarding plastic debris and its ability to accumulate large concentrations of priority pollutants in the aquatic environment led us to quantify relationships between different types of mass-produced plastic and metals in seawater. At three locations in San Diego Bay, we measured the accumulation of nine targeted metals (aluminum, chromium, manganese, iron, cobalt, nickel, zinc, cadmium and lead) sampling at 1, 3, 6, 9 and 12 months, to five plastic types: polyethylene terephthalate (PET), high-density polyethylene (HDPE), polyvinyl chloride (PVC), low-density polyethylene (LDPE), and polypropylene (PP). Accumulation patterns were not consistent over space and time, and in general all types of plastic tended to accumulate similar concentrations of metals. When we did observe significant differences among concentrations of metals at a single sampling period or location in San Diego Bay, we found that HDPE typically accumulated lesser concentrations of metals than the other four polymers. Furthermore, over the 12-month study period, concentrations of all metals increased over time, and chromium, manganese, cobalt, nickel, zinc and lead did not reach saturation on at least one plastic type during the entire 12-month exposure. This suggests that plastic debris may accumulate greater concentrations of metals the longer it remains at sea. Overall, our work shows that a complex mixture of metals, including those listed as priority pollutants by the US EPA (Cd, Ni, Zn and Pb), can be found on plastic debris composed of various plastic types.

  17. Long-Term Sorption of Metals Is Similar among Plastic Types: Implications for Plastic Debris in Aquatic Environments

    PubMed Central

    Rochman, Chelsea M.; Hentschel, Brian T.; Teh, Swee J.

    2014-01-01

    Concerns regarding plastic debris and its ability to accumulate large concentrations of priority pollutants in the aquatic environment led us to quantify relationships between different types of mass-produced plastic and metals in seawater. At three locations in San Diego Bay, we measured the accumulation of nine targeted metals (aluminum, chromium, manganese, iron, cobalt, nickel, zinc, cadmium and lead) sampling at 1, 3, 6, 9 and 12 months, to five plastic types: polyethylene terephthalate (PET), high-density polyethylene (HDPE), polyvinyl chloride (PVC), low-density polyethylene (LDPE), and polypropylene (PP). Accumulation patterns were not consistent over space and time, and in general all types of plastic tended to accumulate similar concentrations of metals. When we did observe significant differences among concentrations of metals at a single sampling period or location in San Diego Bay, we found that HDPE typically accumulated lesser concentrations of metals than the other four polymers. Furthermore, over the 12-month study period, concentrations of all metals increased over time, and chromium, manganese, cobalt, nickel, zinc and lead did not reach saturation on at least one plastic type during the entire 12-month exposure. This suggests that plastic debris may accumulate greater concentrations of metals the longer it remains at sea. Overall, our work shows that a complex mixture of metals, including those listed as priority pollutants by the US EPA (Cd, Ni, Zn and Pb), can be found on plastic debris composed of various plastic types. PMID:24454866

  18. Effect of chromium and phosphorus on the physical properties of iron and titanium-based amorphous metallic alloy films

    NASA Technical Reports Server (NTRS)

    Distefano, S.; Rameshan, R.; Fitzgerald, D. J.

    1991-01-01

    Amorphous iron and titanium-based alloys containing various amounts of chromium, phosphorus, and boron exhibit high corrosion resistance. Some physical properties of Fe and Ti-based metallic alloy films deposited on a glass substrate by a dc-magnetron sputtering technique are reported. The films were characterized using differential scanning calorimetry, stress analysis, SEM, XRD, SIMS, electron microprobe, and potentiodynamic polarization techniques.

  19. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias

    PubMed Central

    Volland, Stefanie; Lütz, Cornelius; Michalke, Bernhard; Lütz-Meindl, Ursula

    2012-01-01

    Various contaminants like metals and heavy metals are constantly released into the environment by anthropogenic activities. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. Chromium can cause harm to cell metabolism and development, when it is taken up by plants instead of necessary micronutrients such as for example iron. The uptake of Cr VI into plant cells has been reported to be an active process via carriers of essential anions, while the cation Cr III seems to be taken up inactively. Micrasterias denticulata, an unicellular green alga of the family Desmidiaceae is a well-studied cell biological model organism. Cr III and VI had inhibiting effects on its cell development, while cell division rates were only impaired by Cr VI. Transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization, condensed cytoplasm and dark precipitations in the cell wall after 3 weeks of Cr VI treatment. Electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) were applied to measure intracellular chromium distribution. Chromium was only detected after 3 weeks of 10 μM Cr VI treatment in electron dense precipitations found in bag-like structures along the inner side of the cell walls together with iron and elevated levels of oxygen, pointing toward an accumulation respectively extrusion of chromium in form of an iron–oxygen compound. Atomic emission spectroscopy (EMS) revealed that Micrasterias cells are able to accumulate considerable amounts of chromium and iron. During chromium treatment the Cr:Fe ratio shifted in favor of chromium, which implied that chromium may be taken up instead of iron. Significant and rapid increase of ROS production within the first 5 min of treatment confirms an active Cr VI uptake. SOD and CAT activity after Cr VI treatment did not show a response, while the glutathione pool determined by immuno-TEM decreased

  20. 40 CFR 437.15 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS THE CENTRALIZED WASTE TREATMENT POINT SOURCE CATEGORY Metals Treatment..., cadmium, chromium, cobalt, copper, lead, mercury, nickel, silver, tin, titanium, vanadium, and zinc are...

  1. Chromium ion release from stainless steel pediatric scoliosis instrumentation.

    PubMed

    Cundy, Thomas P; Delaney, Christopher L; Rackham, Matthew D; Antoniou, Georgia; Oakley, Andrew P; Freeman, Brian J C; Sutherland, Leanne M; Cundy, Peter J

    2010-04-20

    Case-control study. To determine whether serum metal ion levels and erythrocyte chromium levels in adolescents with stainless steel spinal instrumentation are elevated when compared with 2 control groups. Instrumented spinal arthrodesis is a common procedure to correct scoliosis. The long-term consequences of retained implants are unclear. Possible toxic effects related to raised metal ion levels have been reported in the literature. Thirty patients who underwent posterior spinal arthrodesis with stainless steel instrumentation for scoliosis (group 1) were included. Minimum postoperative duration was 3 years. Serum chromium, molybdenum, iron, and ferritin levels were measured. Participants with elevated above normal serum chromium levels (n = 11) also underwent erythrocyte chromium analysis. Comparisons were made with 2 control groups; 10 individuals with scoliosis with no spinal surgery (group 2) and 10 volunteers without scoliosis (group 3). All control group participants underwent serum and erythrocyte analysis. Elevated above normal serum chromium levels were demonstrated in 11 of 30 (37%) group 1 participants. Elevated serum chromium levels were demonstrated in 0 of 10 participants (0%) in group 2 and 1 of 10 (10%) in group 3. There was a statistically significant elevation in serum chromium levels between group 1 and group 2 participants (P = 0.001). There was no significant association between groups 1, 2, and 3 for serum molybdenum, iron, and ferritin levels. Erythrocyte chromium measurements were considered within the normal range for all participants tested (n = 31). Raised serum chromium levels were detected in 37% of patients following instrumented spinal arthrodesis for correction of scoliosis. This new finding has relatively unknown health implications but potential mutagenic, teratogenic and carcinogenic sequelae. This is especially concerning with most scoliosis patients being adolescent females with their reproductive years ahead.

  2. Ductile metal alloys, method for making ductile metal alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cockeram, Brian V.

    A ductile alloy is provided comprising molybdenum, chromium and aluminum, wherein the alloy has a ductile to brittle transition temperature of about 300 C after radiation exposure. The invention also provides a method for producing a ductile alloy, the method comprising purifying a base metal defining a lattice; and combining the base metal with chromium and aluminum, whereas the weight percent of chromium is sufficient to provide solute sites within the lattice for point defect annihilation.

  3. Predictors of serum chromium levels after stainless steel posterior spinal instrumentation for adolescent idiopathic scoliosis.

    PubMed

    Rackham, Matthew D; Cundy, Thomas P; Antoniou, Georgia; Freeman, Brian J C; Sutherland, Leanne M; Cundy, Peter J

    2010-04-20

    Prospective cohort study. To determine the predictors of serum chromium levels after stainless steel posterior spinal instrumentation for adolescent idiopathic scoliosis. Abnormally elevated serum chromium levels have been detected in patients with adolescent idiopathic scoliosis after stainless steel instrumentation. To date, the relationship among serum chromium levels, time of implantation, and implant characteristics (including surface area, rod length, numbers of hooks, screws, and cross connectors) has not been studied. Thirty patients with adolescent idiopathic scoliosis undergoing posterior instrumented spinal arthrodesis using stainless steel implants between 1998 and 2002 were prospectively studied. Serum chromium levels were measured between October 2006 and June 2007. Postoperative radiographs were used to measure rod lengths, number of hooks, screws, cross-connectors, and cables. The surface area of each component and the total surface area for each patient were calculated. Possible associations between serum chromium levels, time of implantation, and implant characteristics were investigated. Implant exposure, whether expressed in the form of total metal implant surface area, rod length, or number of metal interfaces, was found to be positively associated with serum chromium levels. Specifically, chromium levels increased by a multiplicative factor of 1.0060 for every additional square centimeter of total metal implant surface area (P = 0.02). In addition, the chromium level was found to decrease by a multiplicative factor of 0.7766 for every additional year since surgery (P = 0.02). After adjusting for the number of years since surgery, metal implant exposure is positively associated with elevated serum chromium levels in adolescent idiopathic scoliosis patients with stainless steel posterior spinal implants. This is the first study to identify statistically significant positive associations between specific spinal implant characteristics (other than

  4. Chromium-Makes stainless steel stainless

    USGS Publications Warehouse

    Kropschot, S.J.; Doebrich, Jeff

    2010-01-01

    Chromium, a steely-gray, lustrous, hard metal that takes a high polish and has a high melting point, is a silvery white, hard, and bright metal plating on steel and other material. Commonly known as chrome, it is one of the most important and indispensable industrial metals because of its hardness and resistance to corrosion. But it is used for more than the production of stainless steel and nonferrous alloys; it is also used to create pigments and chemicals used to process leather.

  5. Improved ethanol production in the presence of cadmium ions by a Saccharomyces cerevisiae transformed with a novel cadmium-resistance gene DvCRP1.

    PubMed

    Hu, Jiajun; Xu, Qingyun; Wu, Mengnan; Meng, Xiangzong; Song, Rentao; Gao, Mintian

    2016-11-01

    The DvCRP1 gene obtained from Dunaliella viridis is a cadmium-resistance gene that induces cadmium accumulation in microbial and plant cells. In the present study, Saccharomyces cerevisiae was used as a model system to investigate the effect of DvCRP1 on both cadmium detoxification and ethanol production. Inhibitory effects of cadmium (50-300 µmol/L) on growth (29-92%), glucose consumption (23-89%), and ethanol production (17-92%) were observed at 24 h by S. cerevisiae. DvCRP1 alleviated the inhibitory effect of cadmium, with increase in the ethanol production. The established mathematical model showed that the initial inoculation concentration, cadmium concentration, and transformation of DvCRP1 were the most important factors for cell growth, glucose consumption, and ethanol production. Cadmium detoxification of yeast was also enhanced by increasing the initial concentration of yeast cells. Transforming with DvCRP1 further enhanced detoxification, especially at high cadmium concentrations. Transforming with DvCRP1 further enhanced detoxification, especially at high cadmium concentrations (200 µmol/L). The present results evidenced the potential of the insertion of the DvCRP1 gene into yeast for use in bio-refineries during fermentation of heavy metals-contaminated substrates. In addition, this is a promising method for phytoremediation of agricultural soils highly contaminated by heavy metals.

  6. Heavy Metal Presence in Two Different Types of Ice Cream: Artisanal Ice Cream (Italian Gelato) and Industrial Ice Cream.

    PubMed

    Conficoni, D; Alberghini, L; Bissacco, E; Ferioli, M; Giaccone, V

    2017-03-01

    Ice cream, a popular product worldwide, is usually a milk-based product with other types of ingredients (fruit, eggs, cocoa, dried fruit, additives, and others). Different materials are used to obtain the desired taste, texture, consistency, and appearance of the final product. This study surveyed ice cream products available in Italy for heavy metals (lead, cadmium, chromium, tin, and arsenic). The differences between artisanal and industrial ice cream were also investigated because of the importance in the Italian diet and the diffusion of this ready-to-eat food. Ice cream sampling was performed between October 2010 and February 2011 in the northeast of Italy. A total of 100 samples were randomly collected from different sources: 50 industrial samples produced by 19 different brands were collected in coffee bars and supermarkets; 50 artisanal ice cream samples were gathered at nine different artisanal ice cream shops. Ten wooden sticks of industrial ice cream were analyzed in parallel to the ice cream. All samples were negative for arsenic and mercury. None of the artisanal ice cream samples were positive for lead and tin; 18% of the industrial ice cream samples were positive. All positive lead samples were higher than the legal limit stated for milk (0.02 mg/kg). All industrial ice cream samples were negative for cadmium, but cadmium was present in 10% of the artisanal ice cream samples. Chromium was found in 26% of the artisanal and in 58% of the industrial ice cream samples. The heavy metals found in the wooden sticks were different from the corresponding ice cream, pointing out the lack of cross-contamination between the products. Considering the results and the amount of ice cream consumed during the year, contamination through ice cream is a low risk for the Italian population, even though there is need for further analysis.

  7. Associations of lead and cadmium with sex hormones in adult males.

    PubMed

    Kresovich, Jacob K; Argos, Maria; Turyk, Mary E

    2015-10-01

    Heavy metal exposures are ubiquitous in the environment and their relation to sex hormones is not well understood. This paper investigates the associations between selected heavy metals (lead and cadmium) and sex hormones (testosterone, free testosterone, estradiol, free estradiol) as well as other major molecules in the steroid biosynthesis pathway (androstanedione glucuronide and sex-hormone binding globulin (SHBG)). Blood lead and cadmium were selected as biomarkers of exposure, and tested for associations in males using National Health and Nutritional Examination Survey (NHANES) data from 1999-2004. After adjustment for age, race, body mass index, smoking status, diabetes and alcohol intake, blood lead was positively associated with testosterone and SHBG while blood cadmium was positively associated with SHBG. After controlling for additional heavy metal exposure, the associations between lead and testosterone as well as cadmium and SHBG remained significant. Furthermore, the association between blood lead and testosterone was modified by smoking status (P for interaction=0.011), diabetes (P for interaction=0.021) and blood cadmium (P for interaction=0.029). The association between blood cadmium and SHBG levels was modified by blood lead (P for interaction=0.004). This study is the most comprehensive investigation to date regarding the association between heavy metals and sex hormones in males. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Pollution Status of Pakistan: A Retrospective Review on Heavy Metal Contamination of Water, Soil, and Vegetables

    PubMed Central

    Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health. PMID:25276818

  9. Feasibility/treatability studies for removal of heavy metals from training range soils at the Grafenwoehr Training Area, Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, R.W.

    1995-05-01

    A feasibility/treatability study was performed to investigate the leaching potential of heavy metals (particularly lead) from soils at the Grafenw6hr Training Area (GTA) in Germany. The study included an evaluation of the effectiveness of chelant extraction to remediate the heavy-metal-contarninated soils. Batch shaker tests indicated that ethylenediaminetetraacetic acid (EDTA) (0.01M) was more effective than citric acid (0.01M) at removing cadmium, copper, lead, and zinc. EDTA and citric acid were equally effective in mobilizing chromium and barium from the soil. The batch shaker technique with chelant extraction offers promise as a remediation technique for heavy-metal-contaninated soil at the GTA. Columnar floodingmore » tests conducted as part of the study revealed that deionized water was the least effective leaching solution for mobilization of the heavy metals; the maximum solubilization obtained was 3.72% for cadmium. EDTA (0.05M) achieved the greatest removal of lead (average removal of 17.6%). The difficulty of extraction using deionized water indicates that all of the heavy metals are very tightly bound to the soil; therefore, they are very stable in the GTA soils and do not pose a serious threat to the groundwater system. Columnar flooding probably does not represent a viable remediation technique for in-situ cleanup of heavy-metal-contaminated soils at the GTA.« less

  10. Kinetics of the Reduction of Cadmium Sulfate by Thiourea Dioxide in an Aqueous Ammonia Solution upon the Metallization of Carbon Fiber

    NASA Astrophysics Data System (ADS)

    Polenov, Yu. V.; Egorova, E. V.; Shestakov, G. A.

    2018-01-01

    The kinetics of the decomposition of thiourea dioxide and the reduction of cadmium cations by thiourea dioxide in an aqueous ammonia solution are studied. The kinetic parameters of these reactions are calculated using experimental data, allowing us to adjust conditions for the synthesis of cadmium coatings on carbon fiber of grade UKN-M-12K. The presence of the metal crystalline phase on the fiber is confirmed by means of X-ray diffraction, and its amount is measured via atomic absorption spectroscopy.

  11. Heavy metal content in tea soils and their distribution in different parts of tea plants, Camellia sinensis (L). O. Kuntze.

    PubMed

    Seenivasan, Subbiah; Anderson, Todd Alan; Muraleedharan, Narayanannair

    2016-07-01

    Soils contaminated with heavy metals may pose a threat to environment and human health if metals enter the food chain over and above threshold levels. In general, there is a lack of information on the presence of heavy metals in tea [Camellia sinensis (L). O. Kuntze] plants and the soils in which they are grown. Therefore, an attempt was made to establish a database on the important heavy metals: cadmium (Cd), chromium (Cr), nickel (Ni), and lead (Pb). For an initial survey on heavy metals, soil samples were collected randomly from tea-growing areas of Tamil Nadu, Kerala, and Karnataka, India. Parallel studies were conducted in the greenhouse on uptake of Pb, Cd, and Ni from soils supplemented with these metals at different concentrations. Finally, metal distribution in the tea plants under field conditions was also documented to assess the accumulation potential and critical limit of uptake by plants.

  12. Toxic metal levels in cocoa powder and chocolate by ICP-MS method after microwave-assisted digestion.

    PubMed

    Lo Dico, Gianluigi Maria; Galvano, Fabio; Dugo, Giacomo; D'ascenzi, Carlo; Macaluso, Andrea; Vella, Antonio; Giangrosso, Giuseppe; Cammilleri, Gaetano; Ferrantelli, Vincenzo

    2018-04-15

    The Commission Regulation (EC) Regulation N. 488/2014, established the concentration limits for cadmium in specific products based on cocoa and chocolate products as from January 2019. Based on this information there is a need to determine ultratrace levels of elements that might be presents in cocoa and chocolate products. In this work, the concentrations of Arsenic, Antimony, Cadmium, Chromium, Lead, Selenium and Vanadium were evaluated in cocoa powder and chocolate by the validation of an ICP-MS method. Good selectivity/specificity, recovery, repeatability and within-laboratory reproducibility, LOD, LOQ, range of linearity, standard measurement uncertainty parameters for method validation were achieved, in accordance with Commission Regulation. The cocoa powder revealed the maximum metal concentrations of 0.303 ± 0.035 mg/kg for cadmium, 1.228 ± 0.146 mg/kg for lead and 0.094 ± 0.013 mg/kg for arsenic. A significant difference was found between cocoa powder and chocolate samples (p < .05). Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. 75 FR 51246 - Petition Requesting Regulations Restricting Cadmium in Children's Products

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-19

    ... Restricting Cadmium in Children's Products AGENCY: Consumer Product Safety Commission. ACTION: Notice. SUMMARY... standards restricting cadmium in children's products, especially toy metal jewelry. The Commission invites... cadmium by weight which could be ingested by children be declared a banned hazardous substance. If the...

  14. DETECTION OF HEAVY METALS BY IMMUNOASSAY: OPTIMIZATION AND VALIDATION OF A RAPID, PORTABLE ASSAY FOR IONIC CADMIUM (R824029)

    EPA Science Inventory

    An immunoassay is described that measured Cd(II) in aqueous samples at
    concentrations from approximately 7 to 500 ppb. The assay utilized a monoclonal
    antibody that bound tightly to a cadmium-ethylenediaminetetraacetic acid (EDTA)
    complex but not to metal-free EDTA...

  15. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms.

    PubMed

    Bansod, BabanKumar; Kumar, Tejinder; Thakur, Ritula; Rana, Shakshi; Singh, Inderbir

    2017-08-15

    Heavy metal ions are non-biodegradable and contaminate most of the natural resources occurring in the environment including water. Some of the heavy metals including Lead (Pb), Mercury (Hg), Arsenic (As), Chromium (Cr) and Cadmium (Cd) are considered to be highly toxic and hazardous to human health even at trace levels. This leads to the requirement of fast, accurate and reliable techniques for the detection of heavy metal ions. This review presents various electrochemical detection techniques for heavy metal ions those are user friendly, low cost, provides on-site and real time monitoring as compared to other spectroscopic and optical techniques. The categorization of different electrochemical techniques is done on the basis of different types of detection signals generated due to presence of heavy metal ions in the solution matrix like current, potential, conductivity, electrochemical impedance, and electrochemiluminescence. Also, the recent trends in electrochemical detection of heavy metal ions with various types of sensing platforms including metals, metal films, metal oxides, nanomaterials, carbon nano tubes, polymers, microspheres and biomaterials have been evoked. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Cadmium (II) removal mechanisms in microbial electrolysis cells.

    PubMed

    Colantonio, Natalie; Kim, Younggy

    2016-07-05

    Cadmium is a toxic heavy metal, causing serious environmental and human health problems. Conventional methods for removing cadmium from wastewater are expensive and inefficient for low concentrations. Microbial electrolysis cells (MECs) can simultaneously treat wastewater, produce hydrogen gas, and remove heavy metals with low energy requirements. Lab-scale MECs were operated to remove cadmium under various electric conditions: applied voltages of 0.4, 0.6, 0.8, and 1.0 V; and a fixed cathode potential of -1.0 V vs. Ag/AgCl. Regardless of the electric condition, rapid removal of cadmium was demonstrated (50-67% in 24 h); however, cadmium concentration in solution increased after the electric current dropped with depleted organic substrate under applied voltage conditions. For the fixed cathode potential, the electric current was maintained even after substrate depletion and thus cadmium concentration did not increase. These results can be explained by three different removal mechanisms: cathodic reduction; Cd(OH)2 precipitation; and CdCO3 precipitation. When the current decreased with depleted substrates, local pH at the cathode was no longer high due to slowed hydrogen evolution reaction (2H(+)+2e(-)→H2); thus, the precipitated Cd(OH)2 and CdCO3 started dissolving. To prevent their dissolution, sufficient organic substrates should be provided when MECs are used for cadmium removal. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Distribution, Fraction, and Ecological Assessment of Heavy Metals in Sediment-Plant System in Mangrove Forest, South China Sea.

    PubMed

    Li, Ruili; Chai, Minwei; Qiu, Guo Yu

    2016-01-01

    Overlying water, sediment, rhizosphere sediment and mangrove seedlings in the Futian mangrove forest were analyzed for heavy metals. The results showed that mangrove plant acidified sediment and increased organic matter contents. Except for chromium (Cr), nickel (Ni) and copper (Cu) in Aegiceras corniculatum sediment, heavy metals in all sediments were higher than in overlying water, rhizosphere sediment and mangrove root. Heavy metals in Avicennia marina sediments were higher than other sediments. The lower heavy metal biological concentration factors (BCFs) and translocation factors (TFs) indicated that mangrove plant adopted exclusion strategy. The geo-accumulation index, potential ecological risk index and risk assessment code (RAC) demonstrated that heavy metals have posed a considerable ecological risk, especially for cadmium (Cd). Heavy metals (Cr, Ni, Cu and Cd) mainly existed in the reducible fractions. These findings provide actual heavy metal accumulations in sediment-plant ecosystems in mangrove forest, being important in designing the long-term management and conservation policies for managers of mangrove forest.

  18. Distribution, Fraction, and Ecological Assessment of Heavy Metals in Sediment-Plant System in Mangrove Forest, South China Sea

    PubMed Central

    Li, Ruili; Chai, Minwei; Qiu, Guo Yu

    2016-01-01

    Overlying water, sediment, rhizosphere sediment and mangrove seedlings in the Futian mangrove forest were analyzed for heavy metals. The results showed that mangrove plant acidified sediment and increased organic matter contents. Except for chromium (Cr), nickel (Ni) and copper (Cu) in Aegiceras corniculatum sediment, heavy metals in all sediments were higher than in overlying water, rhizosphere sediment and mangrove root. Heavy metals in Avicennia marina sediments were higher than other sediments. The lower heavy metal biological concentration factors (BCFs) and translocation factors (TFs) indicated that mangrove plant adopted exclusion strategy. The geo-accumulation index, potential ecological risk index and risk assessment code (RAC) demonstrated that heavy metals have posed a considerable ecological risk, especially for cadmium (Cd). Heavy metals (Cr, Ni, Cu and Cd) mainly existed in the reducible fractions. These findings provide actual heavy metal accumulations in sediment-plant ecosystems in mangrove forest, being important in designing the long-term management and conservation policies for managers of mangrove forest. PMID:26800267

  19. Cadmium induces cadmium-tolerant gene expression in the filamentous fungus Trichoderma harzianum.

    PubMed

    Cacciola, Santa O; Puglisi, Ivana; Faedda, Roberto; Sanzaro, Vincenzo; Pane, Antonella; Lo Piero, Angela R; Evoli, Maria; Petrone, Goffredo

    2015-11-01

    The filamentous fungus Trichoderma harzianum, strain IMI 393899, was able to grow in the presence of the heavy metals cadmium and mercury. The main objective of this research was to study the molecular mechanisms underlying the tolerance of the fungus T. harzianum to cadmium. The suppression subtractive hybridization (SSH) method was used for the characterization of the genes of T. harzianum implicated in cadmium tolerance compared with those expressed in the response to the stress induced by mercury. Finally, the effects of cadmium exposure were also validated by measuring the expression levels of the putative genes coding for a glucose transporter, a plasma membrane ATPase, a Cd(2+)/Zn(2+) transporter protein and a two-component system sensor histidine kinase YcbA, by real-time-PCR. By using the aforementioned SSH strategy, it was possible to identify 108 differentially expressed genes of the strain IMI 393899 of T. harzianum grown in a mineral substrate with the addition of cadmium. The expressed sequence tags identified by SSH technique were encoding different genes that may be involved in different biological processes, including those associated to primary and secondary metabolism, intracellular transport, transcription factors, cell defence, signal transduction, DNA metabolism, cell growth and protein synthesis. Finally, the results show that in the mechanism of tolerance to cadmium a possible signal transduction pathway could activate a Cd(2+)/Zn(2+) transporter protein and/or a plasma membrane ATPase that could be involved in the compartmentalization of cadmium inside the cell.

  20. [Estimation of maximum acceptable concentration of lead and cadmium in plants and their medicinal preparations].

    PubMed

    Zitkevicius, Virgilijus; Savickiene, Nijole; Abdrachmanovas, Olegas; Ryselis, Stanislovas; Masteiková, Rūta; Chalupova, Zuzana; Dagilyte, Audrone; Baranauskas, Algirdas

    2003-01-01

    Heavy metals (lead, cadmium) are possible dashes which quantity is defined by the limiting acceptable contents. Different drugs preparations: infusions, decoctions, tinctures, extracts, etc. are produced using medicinal plants. The objective of this research was to study the impurities of heavy metals (lead, cadmium) in medicinal plants and some drug preparations. We investigated liquid extracts of fruits Crataegus monogyna Jacq. and herbs of Echinacea purpurea Moench., tinctures--of herbs Leonurus cardiaca L. The raw materials were imported from Poland. Investigations were carried out in cooperation with the Laboratory of Antropogenic Factors of the Institute for Biomedical Research. Amounts of lead and cadmium were established after "dry" mineralisation using "Perkin-Elmer Zeeman/3030" model electrothermic atomic absorption spectrophotometer (ETG AAS/Zeeman). It was established that lead is absorbed most efficiently after estimation of absorption capacity of cellular fibers. About 10.73% of lead crosses tinctures and extracts, better cadmium--49.63%. Herbs of Leonurus cardiaca L. are the best in holding back lead and cadmium. About 14.5% of lead and cadmium crosses the tincture of herbs Leonurus cardiaca L. We estimated the factors of heavy metals (lead, cadmium) in the liquid extracts of Crataegus monogyna Jacq. and Echinacea purpurea Moench., tincture of Leonurus cardiaca L. after investigations of heavy metals (lead, cadmium) in drugs and preparations of it. The amounts of heavy metals (lead, cadmium) don't exceed the allowable norms in fruits of Crataegus monogyna Jacq., herbs of Leonurus cardiaca L. and Echinacea purpurea Moench. after estimation of lead and cadmium extraction factors, the maximum of acceptable daily intake and the quantity of drugs consumption in day.

  1. 40 CFR 471.01 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., product testing, surface coating, sawing, grinding, tumbling, burnishing, and wet air pollution control...) This part does not apply to the forming of the metals cadmium, chromium, gallium, germanium, indium...

  2. 40 CFR 471.01 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., product testing, surface coating, sawing, grinding, tumbling, burnishing, and wet air pollution control...) This part does not apply to the forming of the metals cadmium, chromium, gallium, germanium, indium...

  3. Alert to users of calcium supplements as antihypertensive agents due to trace metal contaminants.

    PubMed

    Boulos, F M; von Smolinski, A

    1988-07-01

    Although there are controversies in the role of calcium as an antihypertensive agent, the use of "health food" supplements, such as dolomite and bone meal, is on the rise especially among the older population. One brand of commercial dolomite tablets were investigated for metallic contents such as aluminum (Al), arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), manganese (Mn), sclemium (Se), and zinc (Zn). Ten randomly selected tablets were weighted, dried, pulverized and low-temperature plasma ashed. An ash aliquot of each tablet was dissolved in 35% Ultrex nitric acid, and after dilution analyzed using a Perkin-Elmer Model 5000 atomic absorption spectrophotometer equipped with an HGA-500 graphite furnace, As-1 autosampler, and PRS-10 printer sequencer. The results (presented as mean wt/g of powder +/- 95% confidence limits) are: Al 900 +/- 300 micrograms/g; As 1.3 +/- 0.3 micrograms/g; Cd 0.16 +/- 0.04 micrograms/g; Cr 5.9 +/- 1.4 micrograms/g; Cu 3.0 +/- 0.6 micrograms/g; Pb 1.9 +/- 0.5 micrograms/g; Mn 66 +/- 7.0 micrograms/g; Se 1.6 +/- 0.4 micrograms/g; and Zn 147 +/- 88 micrograms/g. These trace metals could pose health hazards to the public such as lead poisoning, dementia, and hypertension due to cadmium. Also, zinc can potentiate cadmium-hypertensive effects. The need exists to initiate some regulations to limit maximal content of trace metals in "health food" supplements to protect high-risk groups and that sector of the population who use megadoses of such products.

  4. False-positive result when a diphenylcarbazide spot test is used on trivalent chromium-passivated zinc surfaces.

    PubMed

    Reveko, Valeriia; Lampert, Felix; Din, Rameez U; Thyssen, Jacob P; Møller, Per

    2018-05-01

    A colorimetric 1,5-diphenylcarbazide (DPC)-based spot test can be used to identify hexavalent chromium on various metallic and leather surfaces. DPC testing on trivalent chromium-passivated zinc surfaces has unexpectedly given positive results in some cases, apparently indicating the presence of hexavalent chromium; however, the presence of hexavalent chromium has never been confirmed with more sensitive and accurate test methods. To examine the presence of hexavalent chromium on trivalent chromium-passivated zinc surfaces with a DPC-based spot test. A colorimetric DPC spot test was used for the initial detection of hexavalent chromium on new and 1-year-aged trivalent chromium-passivated zinc surfaces. Then, X-ray photoelectron spectroscopy (XPS) was performed for all samples. The DPC spot test indicated the presence of hexavalent chromium in aged, but not new, trivalent chromium passivation on zinc; however, subsequent analysis by XPS could not confirm the presence of chromium in a hexavalent state. Unintended oxidation of DPC induced by atmospheric corrosion is suggested as a possible reason for the false-positive reaction of the DPC test on a trivalent chromium-passivated zinc surface. Further validation of the use of the DPC test for chromium-containing metallic surfaces is required. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. The Heavy Metals in Agrosystems and Impact on Health and Quality of Life.

    PubMed

    Tutic, Adnan; Novakovic, Srecko; Lutovac, Mitar; Biocanin, Rade; Ketin, Sonja; Omerovic, Nusret

    2015-06-15

    The metal is a chemical element that conducts electricity well and heat, and the nonferrous metals builds cations and ionic bonds. Heavy metals include metals whose density is higher than 5 g/cm(3). The whole range of the metal is in the form of essential trace elements, essential for a number of functions in the human body, and its deficiency results in a lack of occurrence of a serious symptom. The best examples are anemia lack of iron, lack of chromium in diabetes, growth problems in lack of nickel. Other elements such as lead, cadmium, mercury, arsenic and molybdenum have been shown to exhibit large quantities of toxic effects. The paper examines the problem of heavy metals originating from agriculture on agroecosystems. This group of pollutants is considered the most important cause of degradation of soil quality, surface and groundwater and direct causal adverse effects on human and animal health. In order to complete the environmental monitoring of pollutants, these main categories, origins, and possible negative impacts of the basic principles of preventing their toxic effects were examined.

  6. The Heavy Metals in Agrosystems and Impact on Health and Quality of Life

    PubMed Central

    Tutic, Adnan; Novakovic, Srecko; Lutovac, Mitar; Biocanin, Rade; Ketin, Sonja; Omerovic, Nusret

    2015-01-01

    The metal is a chemical element that conducts electricity well and heat, and the nonferrous metals builds cations and ionic bonds. Heavy metals include metals whose density is higher than 5 g/cm3. The whole range of the metal is in the form of essential trace elements, essential for a number of functions in the human body, and its deficiency results in a lack of occurrence of a serious symptom. The best examples are anemia lack of iron, lack of chromium in diabetes, growth problems in lack of nickel. Other elements such as lead, cadmium, mercury, arsenic and molybdenum have been shown to exhibit large quantities of toxic effects. The paper examines the problem of heavy metals originating from agriculture on agroecosystems. This group of pollutants is considered the most important cause of degradation of soil quality, surface and groundwater and direct causal adverse effects on human and animal health. In order to complete the environmental monitoring of pollutants, these main categories, origins, and possible negative impacts of the basic principles of preventing their toxic effects were examined. PMID:27275249

  7. Bioadsorption and bioaccumulation of chromium trivalent in Cr(III)-tolerant microalgae: a mechanisms for chromium resistance.

    PubMed

    Pereira, M; Bartolomé, M C; Sánchez-Fortún, S

    2013-10-01

    Anthropogenic activity constantly releases heavy metals into the environment. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. While hexavalent chromium uptake in plant cells has been reported that an active process by carrying essential anions, the cation Cr(III) appears to be taken up inactively. Dictyosphaerium chlorelloides (Dc1M), an unicellular green alga is a well-studied cell biological model organism. The present study was carried out to investigate the toxic effect of chromium exposures on wild-type Cr(III)-sensitive (Dc1M(wt)) and Cr(III)-tolerant (Dc1M(Cr(III)R30)) strains of these green algae, and to determine the potential mechanism of chromium resistance. Using cell growth as endpoint to determine Cr(III)-sensitivity, the IC₅₀(₇₂) values obtained show significant differences of sensitivity between wild type and Cr(III)-tolerant cells. Scanning electron microscopy (SEM) showed significant morphological differences between both strains, such as decrease in cell size or reducing the coefficient of form; and transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization and cell wall thickening in the Cr(III)-tolerant strain with respect to the wild-type strain. Energy dispersive X-ray analysis (SEM/XEDS) revealed that Cr(III)-tolerant D. chlorelloides cells are able to accumulate considerable amounts of chromium distributed in cell wall (bioadsorption) as well as in cytoplasm, vacuoles, and chloroplast (bio-accumulation). Morphological changes of Cr(III)-tolerant D. chlorelloides cells and the presence of these electron-dense bodies in their cell structures can be understood as a Cr(III) detoxification mechanism. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Spectroscopic and Thermal Behavior of Chromium Soaps

    NASA Astrophysics Data System (ADS)

    Mehrotra, K. N.; Jain, Mamta

    1996-02-01

    The physicochemical characteristics of chromium soaps (myristate and stearate) were investigated in the solid state (thermal, X-ray, and IR measurements) and in solutions (spectrophotometric measurements). The thermal measurements showed that the decomposition of chromium soaps is a two-step process. The soap decomposed into chromium oxycarboxylate, ketone, and carbon dioxide in the first step and the intermediate oxycarboxylate underwent further decomposition to chromium trioxide in the second step. The results showed that the second step is kinetically of zero order and the values of energy of activation for the first and second steps lie in the ranges 6-7 and 17-18 kcal mol-1, respectively. The X-ray diffraction results showed that these soaps possess double-layer structure with molecular axes slightly inclined to the basal plane. The infrared results revealed that the fatty acids exist with dimeric structure through hydrogen bonding between two molecules of fatty acids whereas the metal-to-oxygen bonds in chromium soaps are not purely ionic but possess considerable covalent character. The results of spectrophotometric measurements also confirmed the somewhat covalent nature of chromium soaps in solutions in dichloromethane.

  9. Role of functional groups on Aspergillus niger biomass in the detoxification of hexavalent chromium.

    PubMed

    Narvekar, Sneha; Vaidya, Varsha K

    2009-10-01

    Chromium (VI) contamination is not uncommon, especially near industries involved in leather tanning, chrome painting, metal cleaning and processing, wood preservation and alloy preparation. The mutagenic and carcinogenic properties of Chromium (VI) necessitate effective remedial processes. Difficulties associated with chemical and physical techniques to remediate a Chromium (VI) contaminated site to EPA recommended level (50 ppm), in addition to higher costs involved, assert the need for bioremedial measures. Biosorption can be one such solution to clean up heavy metal contamination. The objective of this study was to examine the main aspects of a possible strategy for the removal of Chromium (VI), employing Aspergillus niger biomass. The roles played by amines, carboxylic acids, phosphates, in Chromium (VI) biosorption were studied. Amino and the carboxy groups on the fungal cell wall play an important role in sorption. However, the role of carboxy group was far less than amino group. Surface adsorption of Chromium (VI) was also seen by scanning electron microscopy (SEM) thus indicating involvement of ion-exchange and surface adsorption mechanism in removal of Chromium (VI) ions.

  10. Cadmium Recycling in the United States in 2000

    USGS Publications Warehouse

    Plachy, Jozef

    2003-01-01

    Recycling of cadmium is a young and growing industry that has been influenced by environmental concerns and regulatory constraints. Domestic recycling of cadmium began in 1989 as a byproduct of processing of spent nickel-cadmium batteries. In 1995, International Metals Reclamation Co. Inc. expanded its operations by building a dedicated cadmium recycling plant. In 2000, an estimated 13 percent of cadmium consumption in the United States was sourced from recycled cadmium, which is derived mainly from old scrap or, to lesser degree, new scrap. The easiest forms of old scrap to recycle are small spent nickel-cadmium batteries followed by flue dust generated during recycling of galvanized steel and small amounts of alloys that contain cadmium. Most of new scrap is generated during manufacturing processes, such as nickel-cadmium battery production. All other uses of cadmium are in low concentrations and, therefore, difficult to recycle. Consequently, much of this cadmium is dissipated and lost. The amount of cadmium in scrap that was unrecovered in 2000 was estimated to be 2,030 t, and an estimated 285 t was recovered. Recycling efficiency was estimated to be about 15 percent.

  11. Cadmium recycling in the United States in 2000

    USGS Publications Warehouse

    Plachy, Jozef

    2003-01-01

    Recycling of cadmium is a young and growing industry that has been influenced by environmental concerns and regulatory constraints. Domestic recycling of cadmium began in 1989 as a byproduct of processing of spent nickel-cadmium batteries. In 1995, International Metals Reclamation Co. Inc. expanded its operations by building a dedicated cadmium recycling plant. In 2000, an estimated 13 percent of cadmium consumption in the United States was sourced from recycled cadmium, which is derived mainly from old scrap or, to lesser degree, new scrap. The easiest forms of old scrap to recycle are small spent nickel-cadmium batteries followed by flue dust generated during recycling of galvanized steel and small amounts of alloys that contain cadmium. Most of new scrap is generated during manufacturing processes, such as nickel-cadmium battery production. All other uses of cadmium are in low concentrations and, therefore, difficult to recycle. Consequently, much of this cadmium is dissipated and lost. The amount of cadmium in scrap that was unrecovered in 2000 was estimated to be 2,030 metric tons, and an estimated 285 tons was recovered. Recycling efficiency was estimated to be about 15 percent.

  12. Cadmium concentrations in tobacco and tobacco smoke

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scherer, G.; Barkemeyer, H.

    The amount of cadmium in tobacco depends on the variety and origin of the plant as well as on the analytical method used to determine cadmium. In the literature, cadmium concentrations in tobacco of between 0.5 and 5 ppm are reported. Modern German cigarette tobacco contains about 0.5-1.5 micrograms cadmium/cigarette. Of importance for the smoker is the amount of the metal in the mainstream smoke. The cadmium level in the mainstream smoke of modern cigarettes is reduced by means of filters and other construction features. The average Cd value of German filter cigarettes is less than 0.1 microgram/cigarette in mainstreammore » smoke. An average daily intake of about 1 microgram cadmium by smoking 20 cigarettes can be calculated on the basis of an experimentally proved pulmonary retention rate of 50%. Pulmonary resorption rates relevant to uptake rates of cadmium by smoking are discussed. It can be assumed that cadmium uptake by smoking modern cigarettes has been reduced because of modifications in tobacco processing and cigarette construction in the last few decades.« less

  13. Heavy metals (lead, cadmium, methylmercury, arsenic) in commonly imported rice grains (Oryza sativa) sold in Saudi Arabia and their potential health risk.

    PubMed

    Al-Saleh, Iman; Abduljabbar, Mai

    2017-10-01

    The levels of heavy metals (lead, cadmium, methylmercury and arsenic) were determined in 37 brands of imported rice commonly consumed in Saudi Arabia after soaking and rinsing with water, and their potential health risks to residents were estimated by three indices: hazard quotient (HQ), hazard index (HI) and cancer risk (CR). The mean levels of lead, cadmium, methylmercury and total arsenic in soaked (rinsed) rice grains were 0.034 (0.057), 0.015 (0.027), 0.004 (0.007) and 0.202 (0.183) μg/g dry weight, respectively. Soaking or rinsing rice grains with water decreased lead and cadmium levels in all brands to safe levels. All brands had total arsenic above the acceptable regulatory limits, irrespective of soaking or rinsing, and eight soaked and 12 rinsed brands contained methylmercury. The levels of all heavy metals except cadmium were above the acceptable regulatory limits when the rice was neither rinsed nor soaked. Weekly intakes of lead, cadmium, methylmercury and total arsenic from soaked (rinsed) grains were 0.638 (1.068), 0.279 (0.503), 0.271 (0.309) and 3.769 (3.407) μg/kg body weight (bw). The weekly intakes of lead and methylmercury from the consumption of one rinsed and two soaked rice brands respectively, exceeded the Provisional Tolerance Weekly Intake set by the Food and Agriculture Organization and the World Health Organization. The weekly intake of total arsenic for all brands was above the lowest benchmark dose lower confidence limit (BMDL 01 ) level of 0.3μg/kg bw/d for an increased cancer risk set by European Food Safety Authority. Either soaking or rinsing grains before consumption can minimize the non-carcinogenic health risks to residents from cadmium and lead (HQ<1). Our local consumers, though, may experience health consequences from rice contaminated mainly with arsenic (HQ>1 all brands) and to a lesser extent with methylmercury (HQ>1 in 4 brands), even when soaked or rinsed with water before consumption. The combined non

  14. [Nose disease caused by occupational exposure to chromium in the electroplating industry: cytomorphological aspects].

    PubMed

    Bolla, I; Gariboldi, L M; Gabrielli, M; Baldo, D; Romanelli, A; Tuberti, E; Magnani, F

    1990-01-01

    Twenty-six workers were studied (9 chrome-platers exposed to chromium dioxide and 17 workers exposed to metallic chromium dust) in order to investigate the macroscopic and cytological changes of the nasal mucosa due to exposure to water-soluble hexavalent chromium or to metallic chromium dust in the electroplating industry and the role of different valencies in the onset of nasal disease. Experimental and epidemiological data have shown that hexavalent chromium, which has strong oxidative power, induces more noticeable toxic effects on tissues and mucous membranes than other compounds. The correlation between the degree of local toxic effects and the chemical state of chromium was demonstrated in both the macro- and the microscopic investigations and in particular in the cytological examinations: cases of atypia were found only in workers exposed to hexavalent chromium. Evidence of atypia raises the question of whether hexavalent chromium may act as a carcinogenic agent on the rhinosinusal mucosa. For this reason, the introduction of cytological nasal examination in health surveillance programmes for this category of workers acquires considerable importance. Sample collection from the nasal mucosa by brushing is the method of choice since it is simple, non-invasive and gives good diagnostic results.

  15. The biological responses and metal phytoaccumulation of duckweed Spirodela polyrhiza to manganese and chromium.

    PubMed

    Liu, Ying; Sanguanphun, Tanatcha; Yuan, Wenqiao; Cheng, Jay J; Meetam, Metha

    2017-08-01

    The phytoaccumulation ability of duckweed Spirodela polyrhiza on manganese (Mn) and chromium (Cr) was assessed by exposing the plant to various concentrations of single or dual metals (5-70 mg L -1 Mn, 2-12 mg L -1 Cr(VI)) under laboratory conditions. The results showed that S. polyrhiza can tolerate Mn at high concentrations of up to 70 mg L -1 , and its growth rate was barely affected by Mn. The effects of Cr on S. polyrhiza growth were dose-dependent, and the growth was completely inhibited in the presence of 12 mg L -1 Cr. Analysis of metal content in the plant biomass revealed a high accumulation of Mn (up to 15.75 mg per g of duckweed dry weight). The Cr bioaccumulation (from below detection limit to 2.85 mg Cr (11.84 mg Cr 2 O 7 2- ) per g of duckweed dry weight) increased with cultivation time and metal concentration in the medium. Further study with the concurrence of Mn and Cr showed increased toxicity to plant growth and photosynthesis. The metal accumulations in the dual metal treatments were also significantly decreased as compared to the single metal treatments. Nevertheless, the phytoaccumulation of these two metals in S. polyrhiza in the dual metal treatments were still comparable to or higher than in previous reports. Thus, it was concluded that duckweed S. polyrhiza has the potential to be used as a phytoremediator in aquatic environments for Mn and Cr removal.

  16. Biosorption of cadmium by biomass of marine algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holan, Z.R.; Volesky, B.; Prasetyo, I.

    Biomass of nonliving, dried brown marine algae Sargassum natans, Fucus vesiculosus, and Ascophyllum nodosum demonstrated high equilibrium uptake of cadmium from aqueous solutions. The metal uptake by these materials was quantitatively evaluated using sorption isotherms. Biomass of A. nodosum accumulated the highest amount of cadmium exceeding 100 mg Cd[sup 2+]/g (at the residual concentration of 100 mg Cd/L and pH 3.5), outperforming a commercial ion exchange resin DUOLITE GT-73. A new biosorbent material based on A. nodosum biomass was obtained by reinforcing the algal biomass by formaldehyde cross-linking. The prepared sorbent possessed good mechanical properties, chemical stability of the cellmore » wall polysaccharides and low swelling volume. Desorption of deposited cadmium with 0.1-0.5 M HCl resulted in no changes of the biosorbent metal uptake capacity through five subsequent adsorption/desorption cycles. There was no damage to the biosorbent which retained its macroscopic appearance and performance in repeated metal uptake/elution cycles.« less

  17. Bioaccumulation of heavy metals in oysters from the southern coast of Korea: assessment of potential risk to human health.

    PubMed

    Mok, Jong Soo; Yoo, Hyun Duk; Kim, Poong Ho; Yoon, Ho Dong; Park, Young Cheol; Lee, Tae Seek; Kwon, Ji Young; Son, Kwang Tae; Lee, Hee Jung; Ha, Kwang Soo; Shim, Kil Bo; Kim, Ji Hoe

    2015-06-01

    From 2009 to 2013, 80 oyster and 16 seawater samples were collected from the southern coast of Korea, including designated shellfish growing areas for export. The concentrations and bioaccumulation of heavy metals were determined, and a potential risk assessment was conducted to evaluate their hazards towards human consumption. The cadmium (Cd) concentration in oysters was the highest of three hazardous metals, including Cd, lead (Pb), and mercury (Hg), however, below the standards set by various countries. The metal bioaccumulation ratio in oysters was relatively high for zinc and Cd but low for Hg, Pb, arsenic, and chromium. The estimated dietary intakes of all heavy metals for oysters accounted for 0.02%-17.75% of provisional tolerable daily intake. The hazard index for all samples was far <1.0, which indicates that the oysters do not pose an appreciable hazard to humans for the metal pollutants of study.

  18. Trace/heavy metal pollution monitoring in estuary and coastal area of Bay of Bengal, Bangladesh and implicated impacts.

    PubMed

    Kibria, Golam; Hossain, Md Maruf; Mallick, Debbrota; Lau, T C; Wu, Rudolf

    2016-04-15

    Using artificial mussels (AMs), this study reports and compares time-integrated level of eleven trace metals (Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, U, Zn) in Karnafuli River estuary and coastal area of the Bay of Bengal, Bangladesh. Through this study, "hot spots" of metal pollution were identified. The results may demonstrate that the Karnafuli Estuary, and adjacent coastal area of Chittagong, Bangladesh are highly polluted by high risk metals (cadmium, chromium, copper, mercury, nickel, lead, uranium). Agricultural, domestic and industrial wastes directly discharged into the waterways have been identified as the main causes of metal pollution in Chittagong, Bangladesh. The high level of metal pollution identified may impact on local water quality, and seafood catch, livelihoods of people and public health resulting from seafood consumption. There is a need for regular monitoring to ascertain that local water quality with respect to metal levels are within acceptable levels to safeguards both environmental health and public health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Launcher Roadmap for the CrVI Substitution of Surface Treatments. Screening of Trivalent-Chromium Conversion Solutions and First Promising Results for Repair Applications on Aluminium Alloys

    NASA Astrophysics Data System (ADS)

    Debout, Vincent; Pettier, Sophie

    2014-06-01

    Airbus Defence and Space, Space System is involved in a global roadmap for launchers in order to substitute hexavalent chromium (CrVI) and Cadmium in the current surface treatments on metallic structures.Within this framework, a screening of trivalent chromium (CrIII) conversion solutions for touch-up applications has been carried out since this step is crucial to perform local application or to repair minor damages on launcher structures but it leads to higher risks of exposure for the workers.Three commercial CrIII conversion solutions have been evaluated on high performance aluminum alloys such as AA2024 T3 and AA7175 T7351 that are often used as structural materials.This preliminary investigation highlights the effect of surface preparation, rinsing and conversion process on the final corrosion performance of conversion coatings (CCs). The results are also discussed in terms of visual aspect and adhesion with new Cr-free primers.Two operating sets of parameters are identified with promising results that represent the first steps towards the development of a new Cr-free touch-up process.

  20. The Characteristic and Activation of Mixed Andisol Soil/Bayat Clays/Rice Husk Ash as Adsorbent of Heavy Metal Chromium (Cr)

    NASA Astrophysics Data System (ADS)

    Pranoto; Sajidan; Suprapto, A.

    2017-02-01

    Chromium (Cr) concentration in water can be reduced by adsorption. This study aimed to determine the effect of Andisol soil composition/Bayat clay/husk ash, activation temperature and contact time of the adsorption capacity of Cr in the model solution; the optimum adsorption conditions and the effectiveness of ceramic filters and purifiers to reduce contaminant of Cr in the water. The mixture of Andisol soil, Bayat clay, and husk ash is used as adsorbent of metal ion of Cr(III) using batch method. The identification and characterisation of adsorbent was done with NaF test, infrared spectroscopy (FTIR), X-ray diffraction (XRD). Cr metal concentrations were analyzed by atomic absorption spectroscopy. Sorption isotherms determined by Freundlich equation and Langmuir. The optimum conditions of sorption were achieved at 150°C activation temperature, contact time of 30 minutes and a composition Andisol soil / Bayat clay / husk ash by comparison 80/10/10. The results show a ceramic filter effectively reduces total dissolved solids (TDS) and Chromium in the water with the percentage decrease respectively by 75.91% and 9.44%.

  1. Prospective study on serum metal levels in patients with metal-on-metal lumbar disc arthroplasty.

    PubMed

    Gornet, Matthew F; Burkus, J K; Harper, M L; Chan, F W; Skipor, A K; Jacobs, J J

    2013-04-01

    Metal-on-metal total disc replacement is a recent alternative treatment for degenerative disc disease. Wear and corrosion of these implants can lead to local and systemic transport of metal debris. This prospective longitudinal study examined the serum chromium and cobalt levels in 24 patients with cobalt-chromium alloy metal-on-metal lumbar disc replacements. Serum was assayed for chromium (Cr) and cobalt (Co) using high-resolution inductively-coupled plasma-mass spectrometry. Detection limits were 0.015 ng/mL for Cr and 0.04 ng/mL for Co. Median serum Co levels at pre-op, 3, 6, 12, 24, and 36-months post-op were 0.10, 1.03, 0.96, 0.98, 0.67, and 0.52 ng/mL, respectively. Median serum Cr levels were 0.06, 0.49, 0.65, 0.43, 0.52, and 0.50 ng/mL, respectively. In general, these results indicated that serum Co and Cr levels are elevated at all postoperative time points and are of the same order of magnitude as those observed in well-functioning metal-on-metal surface replacements of the hip and in metal-on-metal total hip replacements at similar postoperative time points.

  2. Environmental geochemistry of abandoned flotation tailing reservior from the Tonglvshan Fe-Cu sulfide mine in Daye, Central China.

    PubMed

    Guo, Y; Bao, Z Y; Deng, Y M; Ma, Z Z; Yan, S

    2011-07-01

    This study investigated metals of tailings from Tonglvshan mine in Daye and assessed the effect of metal contamination in water and sediment near the tailing reservoir. The concentration of copper, lead, zinc, cadmium, chromium and nickel was measured in deposit samples taken from a profile in an abandoned flotation tailing reservoir, as well as in water and sediment samples near the reservoir. The results of this study indicate that copper concentration ranges from 780 to 4390 mg/kg, 2-10 times higher than the limit values in soil, while the contents of other metals are below the limit values. Metal levels in water and sediments are high and varied widely in different sampling sites. The mean concentrations of copper, lead, zinc, cadmium, chromium and nickel in waters are 27.76, 2.28, 8.20, 0.12, 5.30 and 3.04 mg/L, while those in sediments are 557.65, 96.95, 285.20, 0.92, 94.30 and 4.75 mg/kg, respectively. All of the results indicate that the environment near the tailing reservoir is polluted to some extent by some kinds of metals, especially by copper, lead, zinc and cadmium, which may be caused not only by some discharge sources of metals, but also by life garbage and sewage.

  3. Exposure to metals mixtures: Genomic alterations of infectious ...

    EPA Pesticide Factsheets

    Exposure to toxic metals can have harmful health effects, particularly in children. Although studies have investigated the individual effects toxic metals have on gene expression and health outcomes, there are no studies assessing the effect of metal mixtures on gene expression profiles. Here, we assessed the mixture effect of six toxic metals (arsenic, beryllium, cadmium, chromium, mercury, and lead) on gene expression profiles in children in Detroit, Michigan. As part of the Mechanistic Indicators of Childhood Asthma (MICA) cross sectional study, we assessed metal exposure in 131 children in Detroit using fingernail metals levels. A metals mixture score was calculated and compared to gene expression profiles across the population adjusting for age and race. There were 145 unique genes that were significantly differentially expressed when comparing children exposed to low and high levels of the metals mixture. Of the genes differentially expressed, 107 (74%) had increased expression while 38 (26%) had decreased expression. The main biological function associated with multiple metals was infectious disease. Within that group, genes were associated with infection of respiratory tract (P < 10-6) severe acute respiratory syndrome (P < 10-5), and sepsis (P < 10-3). Taken together, these data demonstrate that exposure to metals mixtures may activate gene networks related to infectious disease response. This abstract does not necessarily reflect the views or policie

  4. Metal levels in feathers of cormorants, flamingos and gulls from the coast of Namibia in southern Africa.

    PubMed

    Burger, J; Gochfeld, M

    2001-06-01

    Arsenic, cadmium, chromium, lead, manganese, mercury, selemium, and tin concentrations were measured in the feathers of Cape cormorant (Phalacrocorax capensis), Hartlaub's gull (Larus hartlaubii), kelp gull (Larus dominicanus), and lesser flamingo (Phoeniconaias minor) from the coast of Namibia in southern Africa. Metal concentrations in feathers represent the concentrations in the blood supply at the time of feather formation. Cape Cormorants are piscivores; kelp gulls are primarily piscivores; Hartlaub's gull is an omnivore; and lesser flamingos eat primarily blue-green algae and invertebrates filtered from the water and sediment of hypersaline lagoons. We predicted that metal concentrations would reflect these trophic level differences. There were significant species differences in the concentrations of all metals, with flamingos having the lowest levels, and cormorants having the highest levels of 4 metals but not mercury. The gulls had the highest levels of mercury, perhaps reflecting their more scavenging behavior.

  5. Concentrations of the Genotoxic Metals, Chromium and Nickel, in Whales, Tar Balls, Oil Slicks, and Released Oil from the Gulf of Mexico in the Immediate Aftermath of the Deepwater Horizon Oil Crisis: Is Genotoxic Metal Exposure Part of the Deepwater Horizon Legacy?

    PubMed Central

    2015-01-01

    Concern regarding the Deepwater Horizon oil crisis has largely focused on oil and dispersants while the threat of genotoxic metals in the oil has gone largely overlooked. Genotoxic metals, such as chromium and nickel, damage DNA and bioaccumulate in organisms, resulting in persistent exposures. We found chromium and nickel concentrations ranged from 0.24 to 8.46 ppm in crude oil from the riser, oil from slicks on surface waters and tar balls from Gulf of Mexico beaches. We found nickel concentrations ranged from 1.7 to 94.6 ppm wet weight with a mean of 15.9 ± 3.5 ppm and chromium concentrations ranged from 2.0 to 73.6 ppm wet weight with a mean of 12.8 ± 2.6 ppm in tissue collected from Gulf of Mexico whales in the wake of the crisis. Mean tissue concentrations were significantly higher than those found in whales collected around the world prior to the spill. Given the capacity of these metals to damage DNA, their presence in the oil, and their elevated concentrations in whales, we suggest that metal exposure is an important understudied concern for the Deepwater Horizon oil disaster. PMID:24552566

  6. Concentrations of the genotoxic metals, chromium and nickel, in whales, tar balls, oil slicks, and released oil from the gulf of Mexico in the immediate aftermath of the deepwater horizon oil crisis: is genotoxic metal exposure part of the deepwater horizon legacy?

    PubMed

    Wise, John Pierce; Wise, James T F; Wise, Catherine F; Wise, Sandra S; Gianios, Christy; Xie, Hong; Thompson, W Douglas; Perkins, Christopher; Falank, Carolyne; Wise, John Pierce

    2014-01-01

    Concern regarding the Deepwater Horizon oil crisis has largely focused on oil and dispersants while the threat of genotoxic metals in the oil has gone largely overlooked. Genotoxic metals, such as chromium and nickel, damage DNA and bioaccumulate in organisms, resulting in persistent exposures. We found chromium and nickel concentrations ranged from 0.24 to 8.46 ppm in crude oil from the riser, oil from slicks on surface waters and tar balls from Gulf of Mexico beaches. We found nickel concentrations ranged from 1.7 to 94.6 ppm wet weight with a mean of 15.9 ± 3.5 ppm and chromium concentrations ranged from 2.0 to 73.6 ppm wet weight with a mean of 12.8 ± 2.6 ppm in tissue collected from Gulf of Mexico whales in the wake of the crisis. Mean tissue concentrations were significantly higher than those found in whales collected around the world prior to the spill. Given the capacity of these metals to damage DNA, their presence in the oil, and their elevated concentrations in whales, we suggest that metal exposure is an important understudied concern for the Deepwater Horizon oil disaster.

  7. Heavy metals in sediment and their accumulation in commonly consumed fish species in Bangladesh.

    PubMed

    Islam, Md Saiful; Ahmed, Md Kawser; Habibullah-Al-Mamun, Md

    2017-01-02

    Six heavy metals (chromium [Cr], nickel [Ni], copper [Cu], arsenic [As], cadmium [Cd], and lead [Pb]) were measured in sediments and soft tissues of eleven commonly consumed fish species collected from an urban river in the northern part of Bangladesh. The abundance of heavy metals in sediments varied in the decreasing order of Cr > Ni > Cu > Pb > As > Cd. The ranges of mean metal concentrations in fish species, in mg/kg wet weight (ww), were as follows: Cr, 0.11-0.46; Ni, 0.77-2.6; Cu, 0.57-2.1; As, 0.43-1.7; Cd, 0.020-0.23; and Pb, 0.15-1.1. Target hazard quotients (THQs) and target carcinogenic risk (TR) showed the intake of As and Pb through fish consumption were higher than the recommended values, indicating the consumption of these fish species is associated with noncarcinogenic and carcinogenic health risks.

  8. Distribution of Heavy Metal Pollution in Surface Soil Samples in China: A Graphical Review.

    PubMed

    Duan, Qiannan; Lee, Jianchao; Liu, Yansong; Chen, Han; Hu, Huanyu

    2016-09-01

    Soil pollution in China is one of most wide and severe in the world. Although environmental researchers are well aware of the acuteness of soil pollution in China, a precise and comprehensive mapping system of soil pollution has never been released. By compiling, integrating and processing nearly a decade of soil pollution data, we have created cornerstone maps that illustrate the distribution and concentration of cadmium, lead, zinc, arsenic, copper and chromium in surficial soil across the nation. These summarized maps and the integrated data provide precise geographic coordinates and heavy metal concentrations; they are also the first ones to provide such thorough and comprehensive details about heavy metal soil pollution in China. In this study, we focus on some of the most polluted areas to illustrate the severity of this pressing environmental problem and demonstrate that most developed and populous areas have been subjected to heavy metal pollution.

  9. Elemental speciation for chromium in chromium picolinate products

    NASA Astrophysics Data System (ADS)

    Ding, Hong; Olson, Lisa K.; Caruso, Joseph A.

    1996-12-01

    Chromium picolinate products have been examined for different forms of chromium, using chromatographic separation and inductively coupled plasma mass spectrometric detection. The brands we evaluated contained no detectable amount of elemental chromium(VI), the toxic form. Since chromium picolinate might have other chromium forms as impurities, different products may contain different forms of chromium species. Compared with ion-exchange, reversed-phase chromatography showed excellent chromium recovery based on the amount stated on the product label.

  10. Cadmium--influence on biochemical processes of the human organism.

    PubMed

    Boguszewska, Anna; Pasternak, Kazimierz

    2004-01-01

    Heavy metals are too well-known environmental pollutants of particularly dangerous effect to human health. Because of their wide usage in many industrial branches they are present everywhere in the air, water and soils. Food contamination by heavy elements is hard to avoid and it is a result of environmental contamination by dusts, industrial gases, sewage, waste and coal burning processes. One of the most harmful heavy metals, widely spread in nature is cadmium. Toxic cadmium action involves free oxygen generation and inactivation of protein containing cysteine residues with -SH groups. It influences many metabolic processes causing great damage in many organs. Cadmium can also interact with some essential elements leading to their homeostasis disorders.

  11. [Metallurgical differentiation of cobalt-chromium alloys for implants].

    PubMed

    Holzwarth, U; Thomas, P; Kachler, W; Göske, J; Schuh, A

    2005-10-01

    Cobalt Chromium alloys are used in cemented total hip or knee arthroplasty as well as in metal-on-metal bearings in total hip arthroplasty. An increasing number of publications report about (allergic) reactions to wear particles of Cobalt Chromium alloys. Reactions to nickel are more frequent in comparison to Cobalt or Chromium particles. It is well known that different kinds of Cobalt Chromium alloys contain different amounts of alloying elements; nevertheless. The aim of the current work was to compare the different Cobalt Chromium alloys according to ASTM F or ISO standards in respect to the different alloying elements. Co28Cr6Mo casting alloys according to ASTM F 75 or ISO 5832-4 as well as forging alloy types according to ASTM F 799 and ISO 5832 such as Co20Cr15W10Ni, Co35Ni20Cr, Fe40Co20Cr10Ni, Co20Cr20Ni, and Co28Cr6Mo were analyzed in respect to their element content of Co, Cr, Ni, Mo, Fe, W, and Mn. In 1935 the Cobalt based alloy "Vitallium" Co30Cr5Mo basically used in the aircraft industry was introduced into medicine. The chemical composition of this alloy based on Cobalt showed 30 wt.% Chromium and 5 wt.% Molybdenum. The differentiation using alloy names showed no Nickel information in single alloy names. The information given about different alloys can lead to an unprecise evaluation of histopathological findings in respect to alloys or alloying constituents. Therefore, implant manufacturers should give the exact information about the alloys used and adhere to European law, Euronorm 93/42/EWG.

  12. Effect of cadmium in sediments on colonization by benthic marine organisms: Role of interstitial cadmium and acid volatile sulfide in bioavailability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, D.; Berry, W.; Benyi, S.

    1995-12-31

    The role of interstitial cadmium and acid volatile sulfide (AVS) in controlling the bioavailability of sediment-associated metal was examined using the chronic saltwater benthic colonization test. Sediments were spiked with cadmium to achieve simultaneously extracted metal (SEM)/AVS molar ratios of 0. 0 (control), 0.1, 0.8 and 3.0 in this 118-day test. Oxidation of AVS in the surficial 2.4 cm within two to four weeks resulted in sulfide profiles similar to those occurring naturally in local sediments. In the nominal 0.1 SEM/AVS treatment, measured SEM was always less than AVS. Interstitial cadmium concentrations (< 3--10 {micro}g/L) were below those likely tomore » cause biological effects. No significant biological effects were detected. In the nominal 0.8 SEM/AVS treatment, measured SEM commonly exceeded AVS in the surficial 2.4 cm of sediment. Interstitial cadmium concentrations (24--157 {micro}g/L) were likely of toxicological significance to sensitive species. Shifts were observed in presence/absence of species, and there were fewer macrobenthic polychaetes (Mediomastus ambiseta, Strebloapio benedicti and Podarke obscura) and unidentified meiofaunal nematodes. In the nominal 3.0 SEM/AVS treatment, concentrations of SEM were always greater than AVS throughout the sediment column. Interstitial cadmium ranged from 28,000 to 174,000 {micro}g/L. In addition to the effects above, these sediments were colonized by fewer macrobenthic species, polychaete species and harpacticoids; had lower densities of diatoms; lacked bivalve molluscs and exhibited other impacts. The observed biological responses were consistent with measured SEM/AVS ratios in surficial sediments and interstitial water cadmium concentrations, further supporting their utility in predicting metals bioavailability.« less

  13. [The biochemical carcinogenesis of selected heavy metals in bladder cancer].

    PubMed

    Rorbach-Dolata, Anna; Marchewka, Zofia; Piwowar, Agnieszka

    2015-01-01

    Bladder cancer takes the second place in the classification of morbidity of urinary system cancers. Many chemical factors take part in cancerogenesis. It is suggested that exposure to heavy metals such as arsenic, chromium, nickel and cadmium as well as its metabolites may trigger the bladder cancer through inducing excessive reactive oxygen species production and oxidative stress formation which are responsible for DNA damage. In patients with bladder cancer is observed the disorder of processes regulated by p-53, including apoptosis. There are many patients with bladder cancer with confirmed absence of retinoblastoma protein, which is responsible of holding on the process of coming up the cells with mutation into synthesis, where the replication process undergoes. It is mentioned that excessive expression of proto-oncogenes may also cause the bladder cancer. The article concerns biochemical effects of exposure to chosen heavy metals and their potential role in bladder cancer progression.

  14. Determination of Chromium(III), Chromium(VI), and Chromium(III) acetylacetonate in water by ion-exchange disk extraction/metal furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Kamakura, Nao; Inui, Tetsuo; Kitano, Masaru; Nakamura, Toshihiro

    A new method for the separate determination of Chromium(III) (Cr(III)), Chromium(VI) (Cr(VI)), and Cr(III) acetylacetonate (Cr(acac)3) in water was developed using a cation-exchange extraction disk (CED) and an anion-exchange extraction disk (AED) combined with metal furnace atomic absorption spectrometry (MFAAS). A 100-mL water sample was adjusted to pH 5.6 and passed through the CED placed on the AED. Cr(acac)3 and Cr(III) were adsorbed on the CED, and Cr(VI) was adsorbed on the AED. The adsorbed Cr(acac)3 was eluted with 50 mL of carbon tetrachloride, followed by the elution of Cr(III) with 50 mL of 3 mol L- 1 nitric acid. Cr(VI) was eluted with 50 mL of 3 mol L- 1 nitric acid. The chemical species of Cr eluted from the CED with carbon tetrachloride was identified as Cr(acac)3 using infrared spectroscopy. The eluate of Cr(acac)3 was diluted to 100 mL with carbon tetrachloride, and those of Cr(III) and Cr(VI) were diluted to 100 mL with deionized water. All of the solutions were subsequently analyzed by MFAAS. The calibration curve for the Cr(acac)3 aqueous solutions exhibited good linearity in the range of 0.1 to 1 ng. The detection limit of Cr, which corresponded to three times the standard deviation (n = 10) of the blank values, was 20 pg. The recovery test for Cr(III), Cr(VI), and Cr(acac)3 exhibited desirable results (96.0%-107%) when 5 μg of each species (50 μg L- 1) was added to 100 mL water samples (i.e., tap water, rainwater, and bottled drinking water). In a humic acid solution, Cr(acac)3 was quantitatively recovered (103%), but Cr(III) and Cr(VI) exhibited poor recoveries (i.e., 84.8% and 78.4%, respectively).

  15. Bioaugmentation with cadmium-resistant plant growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus.

    PubMed

    Prapagdee, Benjaphorn; Chanprasert, Maesinee; Mongkolsuk, Skorn

    2013-07-01

    Micrococcus sp. MU1 and Klebsiella sp. BAM1, the cadmium-resistant plant growth-promoting rhizobacteria (PGPR), produce high levels of indole-3-acetic acid (IAA) during the late stationary phase of their growth. The ability of PGPR to promote root elongation, plant growth and cadmium uptake in sunflowers (Helianthus annuus) was evaluated. Both species of bacteria were able to remove cadmium ions from an aqueous solution and enhanced cadmium mobilization in contaminated soil. Micrococcus sp. and Klebsiella sp. use aminocyclopropane carboxylic acid as a nitrogen source to support their growth, and the minimum inhibitory concentrations of cadmium for Micrococcus sp. and Klebsiella sp. were 1000 and 800mM, respectively. These bacteria promoted root elongation in H. annuus seedlings in both the absence and presence of cadmium compared to uninoculated seedlings. Inoculation with these bacteria was found to increase the root lengths of H. annuus that had been planted in cadmium-contaminated soil. An increase in dry weight was observed for H. annuus inoculated with Micrococcus sp. Moreover, Micrococcus sp. enhanced the accumulation of cadmium in the root and leaf of H. annuus compared to untreated plants. The highest cadmium accumulation in the whole plant was observed when the plants were treated with EDTA following the treatment with Micrococcus sp. In addition, the highest translocation of cadmium from root to the above-ground tissues of H. annuus was found after treatment with Klebsiella sp. in the fourth week after planting. Our results show that plant growth and cadmium accumulation in H. annuus was significantly enhanced by cadmium-resistant PGPRs, and these bacterial inoculants are excellent promoters of phytoextraction for the rehabilitation of heavy metal-polluted environments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Stabilization of chromium-bearing electroplating sludge with MSWI fly ash-based Friedel matrices.

    PubMed

    Qian, Guangren; Yang, Xiaoyan; Dong, Shixiang; Zhou, Jizhi; Sun, Ying; Xu, Yunfeng; Liu, Qiang

    2009-06-15

    This work investigated the feasibility and effectiveness of MSWI fly ash-based Friedel matrices on stabilizing/solidifying industrial chromium-bearing electroplating sludge using MSWI fly ash as the main raw material with a small addition of active aluminum. The compressive strength, leaching behavior and chemical speciation of heavy metals and hydration phases of matrices were characterized by TCLP, XRD, FTIR and other experimental methods. The results revealed that MSWI fly ash-based Friedel matrices could effectively stabilize chromium-bearing electroplating sludge, the formed ettringite and Friedel phases played a significant role in the fixation of heavy metals in electroplating sludge. The co-disposal of chromium-bearing electroplating sludge and MSWI fly ash-based Friedel matrices with a small addition of active aluminum is promising to be an effective way of stabilizing chromium-bearing electroplating sludge.

  17. An Analysis of Army Hazardous Waste Disposal Cost Data

    DTIC Science & Technology

    1991-04-01

    be contaminated with gl EP Toxic (but not limited to) chromium 2133 Sludge, may be contaminated with (but not lb EP Toxic limited to) trivalent ...limited to) trivalent chrome, cadmium, heavy metals and metals continued - ’kg = kilograms 18 Table 6 (Cont’d) CLIN Supplies/Services CLIN (kg) % of...2.0 0600 Compressed gas cylinders, misc. 81,566 1.8 2133 Sludge, may be contaminated with (but not 78,000 1.7 limited to) trivalent chrome, cadmium

  18. Richness, coverage and concentration of heavy metals in vascular epiphytes along an urbanization gradient.

    PubMed

    Becker, Diego Fedrizzi Petry; Linden, Rafael; Schmitt, Jairo Lizandro

    2017-04-15

    Richness, coverage and concentration of heavy metals in vascular epiphytes were analyzed in isolated trees along an urbanization gradient in Southern Brazil. A total of 20 phorophytes were sampled in the main street of each site. Concentrations of chromium, cadmium, lead, manganese, nickel and zinc were measured in the leaves of Tillandsia recurvata L. using Graphite Furnace Atomic Absorption Spectrophotometry. A decreasing gradient of epiphyte richness and coverage was observed as urbanization increased. Vehicle fleet and demographic density were the parameters most correlated with the reduction of epiphytic diversity. In T. recurvata, significantly higher values of cadmium, lead and zinc were recorded in the most urbanized areas, and were strongly related to the vehicle fleet and to the demographic density in these sites. The results demonstrated that these parameters could be applied to the diagnosis of environmental quality in urban areas, allowing standardized analyses in other regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Mercury and Other Metals in Feathers of Common Eider (Somateria mollissima) and Tufted Puffin (Fratercula cirrhata) from the Aleutian Chain of Alaska

    PubMed Central

    Gochfeld, Michael

    2014-01-01

    We analyzed arsenic, cadmium, chromium, lead, manganese, mercury, and selenium in the feathers of common eiders (Somateria mollissima) and tufted puffins (Fratercula cirrhata) from Amchitka and Kiska islands (Aleutians). Between species, puffins had 10 times higher chromium (arithmetic mean = 1820 ppb), 7.5 times higher selenium (mean = 6600 ppb), and 3 times higher mercury (mean = 2540 ppb) than eiders. Eiders had significantly higher levels of manganese than puffins. Puffins are higher on the food chain than eiders, which is reflected in their generally higher levels of metals in their feathers. Interisland differences were generally small, and there were few significant differences as a function of the three nuclear test locations on Amchitka. The only sex-related difference was that female puffins had higher mercury than males (arithmetic mean of 3060 ppb vs. 2270 ppb). Mean levels of metals in the feathers of puffins and eiders from the Aleutians were low compared with comparable studies elsewhere, and the relatively low levels of metals do not indicate the potential for adverse behavioral or reproductive effects in the birds themselves, nor pose concern for other consumers, including subsistence hunters. PMID:18712499

  20. Cadmium, copper, and lead in soils and garden produce near a metal smelter at Flin Flon, Manitoba

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pip, E.

    1991-05-01

    Towns in the vicinity of base metal smelters are subject to contamination from atmospheric fallout containing heavy metals. Many smelters have been in operation for decades, and have resulted in substantial accumulation of metals in the surrounding soils. Metal contamination of edible vegetation near mines and smelters has been the source of health concerns in a number of countries. One smelter that has operated for more than half a century is located at Flin Flon, Manitoba. Many Flin Flon residents utilize home vegetable gardens year after year. However little is known regarding heavy metal contamination of locally grown garden produce.more » Since food can contribute as much as 90% of total body uptake of metals it is important to identify any sources which may account for the disproportionate share. The objective of the present study was to examine concentrations of cadmium, copper and lead in soils and garden produce in the vicinity of the Flin Flon smelter.« less

  1. Anthropogenic Chromium Emissions in China from 1990 to 2009

    PubMed Central

    Cheng, Hongguang; Zhou, Tan; Li, Qian; Lu, Lu; Lin, Chunye

    2014-01-01

    An inventory of chromium emission into the atmosphere and water from anthropogenic activities in China was compiled for 1990 through to 2009. We estimate that the total emission of chromium to the atmosphere is about 1.92×105t. Coal and oil combustion were the two leading sources of chromium emission to the atmosphere in China, while the contribution of them showed opposite annual growth trend. In total, nearly 1.34×104t of chromium was discharged to water, mainly from six industrial categories in 20 years. Among them, the metal fabrication industry and the leather tanning sector were the dominant sources of chromium emissions, accounting for approximately 68.0% and 20.0% of the total emissions and representing increases of15.6% and 10.3% annually, respectively. The spatial trends of Cr emissions show significant variation based on emissions from 2005 to 2009. The emission to the atmosphere was heaviest in Hebei, Shandong, Guangdong, Zhejiang and Shanxi, whose annual emissions reached more than 1000t for the high level of coal and oil consumption. In terms of emission to water, the largest contributors were Guangdong, Jiangsu, Shandong and Zhejiang, where most of the leather production and metal manufacturing occur and these four regions accounted for nearly 47.4% of the total emission to water. PMID:24505309

  2. Effect of cadmium on the bioelement composition of Nostoc UAM208: Interaction with calcium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez-Pinas, F.; Mateo, P.; Bonilla, I.

    1997-04-01

    Heavy metals may cause effects on the cyanobacterial cell including possible damage to the membranes and leakage from cells resulting in the loss or reduction of essential bioelements. There are many reports in the literature concerning morphological, biochemical and physiological changes caused by cadmium in cyanobacteria, but data on the influence of cadmium on the ion balance of the cell dealing with the interactive effect of cadmium and calcium are limited. Calcium has been found to exert a protective role against heavy metal toxicity in a variety of organisms, We previously reported that calcium is able to counteract the toxicmore » effect of cadmium towards growth, photosynthesis, nitrogenase activity and pigment content of the cyanobacterium Nostoc UAM208. In the present study, we analyzed the content of essential ions, as affected by cadmium treatment, to search for possible mechanisms of heavy metal damage and toxicity in Nostoc. We also studied whether calcium enrichment (1.1 mM final concentration) has any influence on the heavy metal effect on those ionic contents. 13 refs., 2 figs.« less

  3. Lifetime occupational exposure to metals and welding fumes, and risk of glioma: a 7-country population-based case-control study.

    PubMed

    Parent, Marie-Elise; Turner, Michelle C; Lavoué, Jérôme; Richard, Hugues; Figuerola, Jordi; Kincl, Laurel; Richardson, Lesley; Benke, Geza; Blettner, Maria; Fleming, Sarah; Hours, Martine; Krewski, Daniel; McLean, David; Sadetzki, Siegal; Schlaefer, Klaus; Schlehofer, Brigitte; Schüz, Joachim; Siemiatycki, Jack; van Tongeren, Martie; Cardis, Elisabeth

    2017-08-25

    Brain tumor etiology is poorly understood. Based on their ability to pass through the blood-brain barrier, it has been hypothesized that exposure to metals may increase the risk of brain cancer. Results from the few epidemiological studies on this issue are limited and inconsistent. We investigated the relationship between glioma risk and occupational exposure to five metals - lead, cadmium, nickel, chromium and iron- as well as to welding fumes, using data from the seven-country INTEROCC study. A total of 1800 incident glioma cases and 5160 controls aged 30-69 years were included in the analysis. Lifetime occupational exposure to the agents was assessed using the INTEROCC JEM, a modified version of the Finnish job exposure matrix FINJEM. In general, cases had a slightly higher prevalence of exposure to the various metals and welding fumes than did controls, with the prevalence among ever exposed ranging between 1.7 and 2.2% for cadmium to 10.2 and 13.6% for iron among controls and cases, respectively. However, in multivariable logistic regression analyses, there was no association between ever exposure to any of the agents and risk of glioma with odds ratios (95% confidence intervals) ranging from 0.8 (0.7-1.0) for lead to 1.1 (0.7-1.6) for cadmium. Results were consistent across models considering cumulative exposure or duration, as well as in all sensitivity analyses conducted. Findings from this large-scale international study provide no evidence for an association between occupational exposure to any of the metals under scrutiny or welding fumes, and risk of glioma.

  4. Epigenetic Effects of Cadmium in Cancer: Focus on Melanoma

    PubMed Central

    Venza, Mario; Visalli, Maria; Biondo, Carmelo; Oteri, Rosaria; Agliano, Federica; Morabito, Silvia; Caruso, Gerardo; Caffo, Maria; Teti, Diana; Venza, Isabella

    2014-01-01

    Cadmium is a highly toxic heavy metal, which has a destroying impact on organs. Exposure to cadmium causes severe health problems to human beings due to its ubiquitous environmental presence and features of the pathologies associated with pro-longed exposure. Cadmium is a well-established carcinogen, although the underlying mechanisms have not been fully under-stood yet. Recently, there has been considerable interest in the impact of this environmental pollutant on the epigenome. Be-cause of the role of epigenetic alterations in regulating gene expression, there is a potential for the integration of cadmium-induced epigenetic alterations as critical elements in the cancer risk assessment process. Here, after a brief review of the ma-jor diseases related to cadmium exposure, we focus our interest on the carcinogenic potential of this heavy metal. Among the several proposed pathogenetic mechanisms, particular attention is given to epigenetic alterations, including changes in DNA methylation, histone modifications and non-coding RNA expression. We review evidence for a link between cadmium-induced epigenetic changes and cell transformation, with special emphasis on melanoma. DNA methylation, with reduced expression of key genes that regulate cell proliferation and apoptosis, has emerged as a possible cadmium-induced epigenetic mechanism in melanoma. A wider comprehension of mechanisms related to this common environmental contaminant would allow a better cancer risk evaluation. PMID:25646071

  5. Effects of fixed orthodontic treatment using conventional (two-piece) versus metal injection moulding brackets on hair nickel and chromium levels: a double-blind randomized clinical trial.

    PubMed

    Khaneh Masjedi, Mashallah; Haghighat Jahromi, Nima; Niknam, Ozra; Hormozi, Elham; Rakhshan, Vahid

    2017-02-01

    Although nickel and chromium are known as allergen and cytotoxic orthodontic metals, very few and controversial studies have assessed the effect of orthodontic treatment on their systemic levels especially those reflected by their best biomarker of exposure, hair. Additionally, metal injection moulding (MIM) brackets are not studied, and there is no study on systemic ion changes following their usage. In this double-blind randomized clinical trial, scalp hair samples of 24 female and 22 male fixed orthodontic patients [as two groups of conventional (two-piece) versus MIM brackets, n = 23×2] were collected before treatment and 6 months later. Randomization was carried out using a computer-generated random number table. The patients, laboratory expert, and author responsible for analyses were blinded of the bracket allocations. Hair nickel and chromium levels were measured using atomic absorption spectrophotometry. The effects of treatment, bracket types, gender, and age on hair ions were analysed statistically (α = 0.05, β ≤ 0.02). In both groups combined (n = 46), nickel increased from 0.1600±0.0890 µg/g dry hair mass (pre-treatment) to 0.3199±0.1706 (6th month). Chromium increased from 0.1657±0.0884 to 0.3066±0.1362 µg/g. Both of these increases were significant (paired t-test, P = 0.0000). Bracket types, age, and gender had no significant influence on ion levels (P > 0.05). ANCOVA indicated different patterns of chromium increases in different genders (P = 0.033) and ages (P = 0.056). Sample size determination should have accounted for the grouping as well. Hair nickel and chromium levels might increase about 185-200% after 6 months. They might not be affected by bracket types. Gender and age might not influence the baseline or 6th-month levels of both metals. Gender might however interact with orthodontic treatment, only in the case of chromium. The research is registered offline (thesis) and online (IR.AJUMS.REC.1394.516). The protocol was pre

  6. Water hyacinths for removal of cadmium and nickel from polluted waters

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.

    1975-01-01

    Removal of cadmium and nickel from static water systems utilizing water hyacinths (Eichhornia crassipes (Mart.) Solms) was investigated. This aquatic plant demonstrated the ability to rapidly remove heavy metals from aqueous systems by root absorption and concentration. Water hyacinths demonstrated the ability to absorb and concentrate up to 0.67 mg of cadmium and 0.50 mg of nickel per gram of dry plant material when exposed for a 24-hour period to waters polluted with from 0.578 to 2.00 ppm of these toxic metals. It is found that one hectare of water hyacinths has the potential of removing 300 g of cadmium or nickel from 240,000 liters of water polluted with these metals during a 24-hour period.

  7. The present status of biological effects of toxic metals in the environment: lead, cadmium, and manganese.

    PubMed

    Shukla, G S; Singhal, R L

    1984-08-01

    The number of reports concerning the chemical toxicology of metals which are released in the environment by natural as well as anthropogenic sources, have been increasing constantly. Lead, cadmium, and manganese have found a variety of uses in industry, craft, and agriculture owing to their physical and chemical properties. The environmental burden of heavy metals has been rising substantially by smelter emission in air and waste sewage in water. Further, organic compounds of lead and manganese used as antiknock substances in gasoline are emitted into the atmosphere by automobile exhaustion. Such environmental contamination of air, water, soil, and food is a serious threat to all living kinds. Although these metals are known to produce their toxic effects on a variety of body systems, much emphasis has been placed on their effects on the nervous system owing to apparent association of relatively low or "subclinical" levels of metallic exposure with behavioral and psychological disorders. Clinical and animal data on environmental exposure show that while lead and manganese are most toxic to the nervous system, cadmium exerts profound adverse effects on kidney and the male reproductive system. It appears that the consequences of exposure to lead in adults are less severe than the types of exposure associated with hyperactivity in neonates. Except for a few reports, hyperactivity has indeed been observed in animals exposed to either of these three metals. Experimental work has also shown that these metals produce behavioral changes by altering the metabolism of brain neurotransmitters, especially catecholamines. Recently, it is hypothesized that these metals exert their toxic effect by damaging biological defences which exist in the body to serve as protective mechanisms against exogenous toxins. A voluminous publication list with diverse opinions on the biological effects of metals is available and there is an urgent need to compile assessment of the existing

  8. Chromium(VI) Toxicity in Legume Plants: Modulation Effects of Rhizobial Symbiosis

    PubMed Central

    Lushchak, Volodymyr I.

    2018-01-01

    Most legume species have the ability to establish a symbiotic relationship with soil nitrogen-fixing rhizobacteria that promote plant growth and productivity. There is an increasing evidence of reactive oxygen species (ROS) important role in formation of legume-rhizobium symbiosis and nodule functioning. Environmental pollutants such as chromium compounds can cause damage to rhizobia, legumes, and their symbiosis. In plants, toxic effects of chromium(VI) compounds are associated with the increased production of ROS and oxidative stress development as well as with inhibition of pigment synthesis and modification of virtually all cellular components. These metabolic changes result in inhibition of seed germination and seedling development as well as reduction of plant biomass and crop yield. However, if plants establish symbiosis with rhizobia, heavy metals are accumulated preferentially in nodules decreasing the toxicity of metals to the host plant. This review summarizes data on toxic effects of chromium on legume plants and legume-rhizobium symbiosis. In addition, we discussed the role of oxidative stress in both chromium toxicity and formation of rhizobial symbiosis and use of nodule bacteria for minimizing toxic effects of chromium on plants. PMID:29662899

  9. AES and SIMS analysis of non-metallic inclusions in a low-carbon chromium-steel.

    PubMed

    Gammer, Katharina; Rosner, M; Poeckl, G; Hutter, H

    2003-05-01

    In the final step of secondary metallurgical steel processing, calcium is added. Besides Mg, Ca is the most powerful deoxidiser and desulfurisation agent. It reacts with dissolved oxygen and sulfur and reduces oxides and sulfides thereby forming non-metallic inclusions. Within this paper we present the analysis of such inclusions in a low-carbon chromium-steel. Depending on the time of quenching of the steel sample, different structures were revealed by REM, Auger and SIMS: If the steel was quenched immediately after Ca-addition, non-metallic inclusions that appeared to have "cavities" could be detected with SEM. SIMS investigations of these particles showed ring-shaped structures and revealed that the ring is made up of Al, Ca, Mg, O and S. No secondary ions however could be retrieved from the core inside the ring, thus leaving the nature of the "cavities" unclear. If the steel sample was quenched 3 min after Ca addition, inclusions did not have a ring-shaped structure but a compact one.

  10. An induction furnace for the determination of cadmium in solutions and zinc-base metals by atomic-absorption spectroscopy.

    PubMed

    Headridge, J B; Smith, D R

    1971-03-01

    An induction furnace coupled to a Unicam SP90 atomic-absorption spectrophotometer is described for the determination of traces of volatile elements in solutions and volatile matrices. The apparatus has been used to obtain calibration graphs for 1-20 and 50-750 ng of cadmium in microl-volumes of solution, the 228.8 and 326.2 nm resonance lines respectively being used, and to determine cadmium in 5-mg samples of zinc-base metals within the concentration range 5-400 microg g by using the less sensitive 326-2-nm line. A furnace temperature of 1,350 degrees was used. Data on accuracy and precision are presented. The apparatus could readily be used to determine trace elements in volatile materials at concentrations of 10-1000 ng/g .

  11. Development of Chromium-Free Welding Consumables for Stainless Steels

    DTIC Science & Technology

    2009-02-01

    FINAL REPORT Development of Chromium -Free Welding Consumables for Stainless Steels SERDP Project WP-1415 FEBRUARY 2009 J.C. Lippold...NUMBER 4. TITLE AND SUBTITLE Development of Chromium -Free Welding Consumables for Stainless Steels 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Energy dispersive spectroscopy FGR Fume generation rate GMAW Gas metal arc welding GTAW Gas tungsten arc welding HAZ Heat affected zone LTE Long

  12. Parental Occupational Exposure to Heavy Metals and Welding Fumes and Risk of Testicular Germ Cell Tumors in Offspring: A Registry-Based Case-Control Study.

    PubMed

    Togawa, Kayo; Le Cornet, Charlotte; Feychting, Maria; Tynes, Tore; Pukkala, Eero; Hansen, Johnni; Olsson, Ann; Oksbjerg Dalton, Susanne; Nordby, Karl-Christian; Uuksulainen, Sanni; Wiebert, Pernilla; Woldbæk, Torill; Skakkebæk, Niels E; Fervers, Béatrice; Schüz, Joachim

    2016-10-01

    Data are scarce on the association between prenatal/preconception environmental exposure and testicular germ cell tumor (TGCT) in offspring. We examined parental occupational exposures to heavy metals and welding fumes in relation to TGCT in offspring in a registry-based case-control study (NORD-TEST Study). We identified TGCT cases diagnosed at ages 14-49 years in Finland (1988-2012), Norway (1978-2010), and Sweden (1979-2011) through nationwide cancer registries. These cases were individually matched by country and year of birth to controls selected from population registries. Information on parental occupations was retrieved from censuses. From this, we estimated prenatal/preconception exposures of chromium, iron, nickel, lead, and welding fumes (all three countries), and cadmium (Finland only) for each parent using job-exposure matrices specifying prevalence (P) and mean exposure level (L). Exposure indices were calculated as a product of P and L (P × L), and exposure categories were based on P × L or different combinations of P and L. The study comprised 8,112 cases and 26,264 controls. We observed no statistically significant TGCT risk associated with presence of heavy metals/welding fumes (P × L > 0) and no dose-response relationship (P trend ≥ 0.32). A statistically significant elevated TGCT risk was found in paternal exposure category where both P and L of chromium were high (vs. no chromium; OR = 1.37, 95% confidence interval; 1.05-1.79). Our study provides little evidence of associations between parental exposures to heavy metals/welding fumes and TGCT in offspring with the potential exception of high paternal chromium exposure. Further research on paternal chromium exposure is warranted. Cancer Epidemiol Biomarkers Prev; 25(10); 1426-34. ©2016 AACR. ©2016 American Association for Cancer Research.

  13. Acute toxicity and synergism of cadmium and zinc in white shrimp, Penaeus setiferus, Juveniles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanegas, C.; Espina, S.; Botello, A.V.

    1997-01-01

    Toxic effects of individual heavy metals on decapod crustaceans have been reported frequently, but little information exists concerning interactions. Among the non-essential heavy metals, cadmium is one of the most hazardous elements in the aquatic environment; on the other hand, zinc is an essential element, but toxic when present in greater than trace amounts. Biological effects of cadmium in aquatic organisms are complex due to the interactions with both environmental variables and other toxic agents. In decapod crustaceans, the toxicity of cadmium and zinc is modified by salinity, temperature, hypoxia, calcium ion concentrations and life-cycle stage. Heavy metal pollution hasmore » increased in the coastal waters of the Gulf of Mexico, particularly in shrimp habitat. This study examined the toxicity of cadmium and zinc to white shrimp juveniles and looked at the interaction of the metals. 16 refs., 2 tabs.« less

  14. Air-borne heavy metal contamination to dietary vegetables: a case study from India.

    PubMed

    Pandey, J; Pandey, Richa; Shubhashish, K

    2009-12-01

    Contamination of edible parts of three dietary vegetables, Spinach (Spinacia oleracea L.), Radish (Raphanus sativus L.), and Tomato (Lycopersicon esculentum Mill.) by air-borne cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), and lead (Pb) was determined using pot culture experiments at three sites in the city of Varanasi, India. The data revealed that although Cr and Cu in vegetables remained below their safe limits, about 68% of the total samples contained Cd, Ni, and Pb above their respective safe limits of 1.5, 1.5, and 2.5 μg g(-1). Site wise synchrony and air accumulation factor (AAF) indicated that atmospheric deposition was the main contributor of metal contamination to vegetables. The study suggests that if the present trends of atmospheric deposition are continued, air-borne heavy metals will contaminate the agricultural produce with long-term health implications.

  15. Microstructure and corrosion resistance of sputter-deposited titanium-chromium alloy coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landolt, D.; Robyr, C.; Mettraux, P.

    1998-10-01

    Titanium, chromium, and titanium-chromium alloy coatings were sputter-deposited to study their corrosion behaviors in relation to microstructure and composition. Silicon substrates were used to study the effect of alloying on intrinsic corrosion resistance of the coating materials, and brass substrates were used to study the effect of alloying on the penetrating porosity of the coatings. Corrosion behavior was characterized using linear sweep voltammetry. The crystal structure of the coatings was examined by x-ray diffraction (XRD) and the microstructure by scanning electron microscopy (SEM). Electrochemical impedance spectroscopy (EIS) was used to estimate the real surface area of the coatings. Results showedmore » alloying of titanium with chromium greatly influenced microstructure of the coatings. Alloying led to deposits of higher apparent density and, in some cases, to an x-ray amorphous structure. Alloy coatings showed significantly lower corrosion currents than the constituting metals. The effect was attributed to a smoother surface topography. When corrected of differences in real surface area, the intrinsic corrosion rate of the alloy coatings did not differ significantly from that of the constituting metals. Alloy coatings deposited on brass exhibited a lower porosity than titanium or chromium metal coatings produced under identical conditions.« less

  16. The use of vegetables in the biomonitoring of cadmium and lead pollution in the environment.

    PubMed

    Szczygłowska, Marzena; Bodnar, Małgorzata; Namieśnik, Jacek; Konieczka, Piotr

    2014-01-01

    Lead and cadmium emitted from various anthropogenic sources have the ability to accumulate in tissues of living organisms. The phenomenon of accumulation of metals in the body is harmful and undesirable. The ability of plants to accumulate heavy metals from the individual elements of the environment has been used in biomonitoring of pollution. Leaves and roots of vegetables have particular predisposition for accumulating toxic metals such as lead and cadmium and therefore can be used for biomonitoring of the environment, mainly as a tool for assessing the extent of soil contamination. The article discusses information in the literature on entry paths of lead and cadmium into the body, toxic effects of lead and cadmium on the human organism, and the use of vegetables as a tool in the biomonitoring of heavy metals in different elements of the environment.

  17. Novel Cadmium Resistance Determinant in Listeria monocytogenes.

    PubMed

    Parsons, Cameron; Lee, Sangmi; Jayeola, Victor; Kathariou, Sophia

    2017-03-01

    Listeria monocytogenes is a foodborne pathogen that can cause severe disease (listeriosis) in susceptible individuals. It is ubiquitous in the environment and often exhibits resistance to heavy metals. One of the determinants that enables Listeria to tolerate exposure to cadmium is the cadAC efflux system, with CadA being a P-type ATPase. Three different cadA genes (designated cadA1 to cadA3 ) were previously characterized in L. monocytogenes A novel putative cadmium resistance gene ( cadA4 ) was recently identified through whole-genome sequencing, but experimental confirmation for its involvement in cadmium resistance is lacking. In this study, we characterized cadA4 in L. monocytogenes strain F8027, a cadmium-resistant strain of serotype 4b. By screening a mariner-based transposon library of this strain, we identified a mutant with reduced tolerance to cadmium and that harbored a single transposon insertion in cadA4 The tolerance to cadmium was restored by genetic complementation with the cadmium resistance cassette ( cadA4C ), and enhanced cadmium tolerance was conferred to two unrelated cadmium-sensitive strains via heterologous complementation with cadA4C Cadmium exposure induced cadA4 expression, even at noninhibitory levels. Virulence assessments in the Galleria mellonella model suggested that a functional cadA4 suppressed virulence, potentially promoting commensal colonization of the insect larvae. Biofilm assays suggested that cadA4 inactivation reduced biofilm formation. These data not only confirm cadA4 as a novel cadmium resistance determinant in L. monocytogenes but also provide evidence for roles in virulence and biofilm formation. IMPORTANCE Listeria monocytogenes is an intracellular foodborne pathogen causing the disease listeriosis, which is responsible for numerous hospitalizations and deaths every year. Among the adaptations that enable the survival of Listeria in the environment are the abilities to persist in biofilms, grow in the cold, and

  18. [Detection of metal ions in hair after metal-metal hip arthroplasty].

    PubMed

    Hernandez-Vaquero, D; Rodríguez de la Flor, M; Fernandez-Carreira, J M; Sariego-Muñiz, C

    2014-01-01

    There is an increase in the levels of metals in the serum and urine after the implantation of some models of metal-metal hip prosthesis. It has recently been demonstrated that there is an association between these levels and the levels found in hair. The aim of this study is to determine the presence of metals in hair, and to find out whether these change over time or with the removal of the implant. The levels of chromium, cobalt and molybdenum were determined in the hair of 45 patients at 3, 4, 5, and 6 years after a hip surface replacement. The mean age was 57.5 years, and two were female. Further surgery was required to remove the replacement and implant a new model with metal-polyethylene friction in 11 patients, 5 of them due to metallosis and a periarticular cyst. The mean levels of metals in hair were chromium 163.27 ppm, cobalt 61.98 ppm, and molybdenum 31.36 ppm, much higher than the levels found in the general population. A decrease in the levels of chromium (43.8%), molybdenum (51.1%), and cobalt (91.1%) was observed at one year in the patients who had further surgery to remove the prosthesis. High concentrations of metals in the hair are observed in hip replacements with metal-metal friction, which decrease when that implant is removed. The determination of metal ions in hair could be a good marker of the metal poisoning that occurs in these arthroplasty models. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.

  19. Development of peptoid-based ligands for the removal of cadmium from biological media

    DOE PAGES

    Knight, Abigail S.; Zhou, Effie Y.; Francis, Matthew B.

    2015-05-14

    Cadmium poisoning poses a serious health concern due to cadmium's increasing industrial use, yet there is currently no recommended treatment. The selective coordination of cadmium in a biological environment—i.e. in the presence of serum ions, small molecules, and proteins—is a difficult task. To address this challenge, a combinatorial library of peptoid-based ligands has been evaluated to identify structures that selectively bind to cadmium in human serum with minimal chelation of essential metal ions. Eighteen unique ligands were identified in this screening procedure, and the binding affinity of each was measured using metal titrations monitored by UV-vis spectroscopy. To evaluate themore » significance of each chelating moiety, sequence rearrangements and substitutions were examined. Analysis of a metal–ligand complex by NMR spectroscopy highlighted the importance of particular residues. Depletion experiments were performed in serum mimetics and human serum with exogenously added cadmium. These depletion experiments were used to compare and demonstrate the ability of these peptoids to remove cadmium from blood-like mixtures. In one of these depletion experiments, the peptoid sequence was able to deplete the cadmium to a level comparable to the reported acute toxicity limit. Evaluation of the metal selectivity in buffered solution and in human serum was performed to verify minimal off-target binding. These studies highlight a screening platform for the identification of metal–ligands that are capable of binding in a complex environment. They additionally demonstrate the potential utility of biologically-compatible ligands for the treatment of heavy metal poisoning.« less

  20. Development of peptoid-based ligands for the removal of cadmium from biological media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, Abigail S.; Zhou, Effie Y.; Francis, Matthew B.

    Cadmium poisoning poses a serious health concern due to cadmium's increasing industrial use, yet there is currently no recommended treatment. The selective coordination of cadmium in a biological environment—i.e. in the presence of serum ions, small molecules, and proteins—is a difficult task. To address this challenge, a combinatorial library of peptoid-based ligands has been evaluated to identify structures that selectively bind to cadmium in human serum with minimal chelation of essential metal ions. Eighteen unique ligands were identified in this screening procedure, and the binding affinity of each was measured using metal titrations monitored by UV-vis spectroscopy. To evaluate themore » significance of each chelating moiety, sequence rearrangements and substitutions were examined. Analysis of a metal–ligand complex by NMR spectroscopy highlighted the importance of particular residues. Depletion experiments were performed in serum mimetics and human serum with exogenously added cadmium. These depletion experiments were used to compare and demonstrate the ability of these peptoids to remove cadmium from blood-like mixtures. In one of these depletion experiments, the peptoid sequence was able to deplete the cadmium to a level comparable to the reported acute toxicity limit. Evaluation of the metal selectivity in buffered solution and in human serum was performed to verify minimal off-target binding. These studies highlight a screening platform for the identification of metal–ligands that are capable of binding in a complex environment. They additionally demonstrate the potential utility of biologically-compatible ligands for the treatment of heavy metal poisoning.« less

  1. [Soil cadmium pollution: environmental and hygienic aspects].

    PubMed

    Mudryĭ, I V

    2003-01-01

    The paper deals with modes of detection of soil cadmium, with the effects of its pollution and with toxicity on man, microorganisms and soil biocenoses. It shows why cadmium migrates and translocates into plants. The problem of development of hygienic specifications of the metal is analyzed in relation to the protective properties of soil and the data obtained from the monitoring of a region.

  2. Fractionation and potential toxic risk of metals from superficial sediment in Itaipu Lake--boundary between Brazil and Paraguay.

    PubMed

    Kalwa, Miguel; Quináia, Sueli Pércio; Pletsch, Adelmo L; Techy, Laura; Felsner, Maria Lurdes

    2013-01-01

    The objective of this study was to evaluate fractions of metals (labile and pseudo-total) extracted from sediment samples collected in Itaipu Lake (boundary between Brazil and Paraguay) and to assess the dynamics and mobility of these fractions by identifying the same bioavailability and ecological risk to metals in the aquatic environment. The concentrations of metal ions were determined by flame atomic absorption spectrometry. There was a correlation between the metal ions, both in the labile and the pseudo-total, with regard to particle size. To assess metals concentrations in sediment, numerical sediment-quality guidelines were applied. The concentrations of aluminum, cadmium, iron, manganese, lead, and zinc in all sediment samples are lower than the proposed probable effects level (PEL), thus possibly indicating that there are no harmful effects from these metals. In contrast, concentrations of copper, chromium, and nickel exceeded the PEL in some samples, thus indicating that these stations are at potential risk. The level of contamination in sediments of Itaipu Lake for all metals was evaluated using contamination factor, degree of contamination, and sum-of-metals toxic unit.

  3. A survey of the concentrations of eleven metals in vaccines, allergenic extracts, toxoids, blood, blood derivatives and other biological products.

    PubMed

    May, J C; Rains, T C; Maienthal, F J; Biddle, G N; Progar, J J

    1986-10-01

    Approximately 85 samples of injectable biological products regulated by the Center for Drugs and Biologics of the United States Food and Drug Administration were surveyed for the presence of 11 elements, namely aluminum, arsenic, barium, cadmium, chromium, lead, mercury, selenium, thallium and zinc, by flame and flameless methods of atomic absorption spectrometry and flame emission spectrometry. The range of products tested included whole blood, red cells, plasma, normal serum albumin, antihemophilic factor, and other products derived from blood; allergenic extracts including honey bee venom and house dust allergenic extracts; vaccines such as measles virus vaccine and typhoid vaccine; and tetanus toxoid. The metal concentrations found in the majority of these products were low or undetectable. The metal levels varied from manufacturer to manufacturer, product and lot-to-lot of the same manufacturer's products. House dust allergenic extracts had the highest concentrations of arsenic (2.4 ppm), cadmium (0.28 ppm), chromium (0.6 ppm) and lead (1.5 ppm) found in the study. A high zinc concentration (24 ppm) in an immune serum globulin was attributed to the zinc-containing rubber stopper in contact with the product. A range of 0.36-3.30 ppm aluminum was found for seven 25% normal serum albumin samples from seven manufacturers. Values of 8.2, 17 and 18 ppm aluminum were found in one manufacturer's 25% normal serum albumin. These aluminum values appeared to be the result of an anomaly in this manufacturer's production that has not been repeated to date.

  4. Acute phytotoxicity of seven metals alone and in mixture: Are Italian soil threshold concentrations suitable for plant protection?

    PubMed

    Baderna, Diego; Lomazzi, Eleonora; Pogliaghi, Alberto; Ciaccia, Gianluca; Lodi, Marco; Benfenati, Emilio

    2015-07-01

    Metals can pollute soils in both urban and rural areas with severe impacts on the health of humans, plants and animals living there. Information on metal toxicity is therefore important for ecotoxicology. This study investigated the phytotoxicity of different metals frequently found as pollutants in soils: arsenic, cadmium, chromium, lead, mercury, nickel and zinc. Cucumber (Cucumis sativus), sorghum (Sorghum saccharatum) and cress (Lepidium sativum) seeds were used as models for other plants used in human nutrition such as cereals, rice, fruits and vegetables. The 72-h germination rate and root elongations were selected as short-term ecotoxicological endpoints in seeds exposed to single metals and mixtures. Metals were spiked onto OECD standard soils in concentrations comparable to current Italian contamination threshold concentrations for residential and commercial soils. Arsenic, chromium, mercury and nickel were the most toxic metals in our experimental conditions, particularly to cress seeds (5.172, 152 and 255.4 mg/kg as 72 h IC50 for arsenic, mercury and nickel respectively). Italian limits were acceptable for plant protection only for exposure to each metal alone but not for the mixtures containing all the metals concentrations expected by their respective legislative threshold. The effects of the mixture were class-specific: trends were comparable in dicots but different in monocots. The response induced by the mixture at high concentrations differed from that theoretically obtainable by summing the effects of the individual metals. This might be due to partial antagonism of the metals in soil or to the formation of complexes between the metals, which reduce the bioavailability of the pollutants for plants. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Cadmium-accumulating plants.

    PubMed

    Küpper, Hendrik; Leitenmaier, Barbara

    2013-01-01

    Plants are categorized in three groups concerning their uptake of heavy metals: indicator, excluder, and hyperaccumulator plants, which we explain in this chapter, the former two groups briefly and the hyperaccumulators in detail. The ecological role of hyperaccumulation, for example, the prevention of herbivore attacks and a possible substitution of Zn by Cd in an essential enzyme, is discussed. As the mechanisms of cadmium hyperaccumulation are a very interesting and challenging topic and many aspects are studied worldwide, we provide a broad overview over compartmentation strategies, expression and function of metal transporting proteins and the role of ligands for uptake, transport, and storage of cadmium. Hyperaccumulators are not without reason a topic of great interest, they can be used biotechnologically for two main purposes which we discuss here for Cd: phytoremediation, dealing with the cleaning of anthropogenically contaminated soils as well as phytomining, i.e., the use of plants for commercial metal extraction. Finally, the outlook deals with topics for future research in the fields of biochemistry/biophysics, molecular biology, and biotechnology. We discuss which knowledge is still missing to fully understand Cd hyperaccumulation by plants and to use that phenomenon even more successfully for both environmental and economical purposes.

  6. The use of a physiologically-based extraction test to assess relationships between bioaccessible metals in urban soil and neurodevelopmental conditions in children.

    PubMed

    Hong, Jie; Wang, Yinding; McDermott, Suzanne; Cai, Bo; Aelion, C Marjorie; Lead, Jamie

    2016-05-01

    Intellectual disability (ID) and cerebral palsy (CP) are serious neurodevelopment conditions and low birth weight (LBW) is correlated with both ID and CP. The actual causes and mechanisms for each of these child outcomes are not well understood. In this study, the relationship between bioaccessible metal concentrations in urban soil and these child conditions were investigated. A physiologically based extraction test (PBET) mimicking gastric and intestinal processes was applied to measure the bio-accessibility of four metals (cadmium (Cd), chromium (Cr), nickel (Ni), and lead (Pb)) in urban soil, and a Bayesian Kriging method was used to estimate metal concentrations in geocoded maternal residential sites. The results showed that bioaccessible metal concentrations of Cd, Ni, and Pb in the intestinal phase were statistically significantly associated with the child outcomes. Lead and nickel were associated with ID, lead and cadmium was associated with LBW, and cadmium was associated with CP. The total concentrations and stomach concentrations were not correlated to significant effects in any of the analyses. For lead, an estimated threshold value was found that was statistically significant in predicting low birth weight. The change point test was statistically significant (p value = 0.045) at an intestine threshold level of 9.2 mg/kg (95% confidence interval 8.9-9.4, p value = 0.0016), which corresponds to 130.6 mg/kg of total Pb concentration in the soil. This is a narrow confidence interval for an important relationship. Published by Elsevier Ltd.

  7. Enhanced Tools and Techniques to Support Debris Management in Disaster Response Missions (Flood and Coastal Storm Damage Reduction Research and Development Program)

    DTIC Science & Technology

    2009-05-01

    debris removal without restoration is deployed.  Conduct a controlled field study of restoration activity, for example, along the Wabash ...hazardous metals including chromium, cadmium , lead and mercury (MDEQ 2008; Thibodeau 2002). 3. Batteries in electronics and computers may contain lead...mercury, nickel and cadmium . Appliances Appliances are a problem mainly due to their large size, creating issues with loading, hauling, and

  8. 40 CFR 471.73 - New source performance standards (NSPS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GUIDELINES AND STANDARDS NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Uranium Forming... achieve the following new source performance standards (NSPS). The mass of pollutants in the uranium... mg/off-kg (pounds per million off-pounds) of uranium extruded Cadmium 0.007 0.003 Chromium 0.013 0...

  9. 40 CFR 471.73 - New source performance standards (NSPS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GUIDELINES AND STANDARDS NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Uranium Forming... achieve the following new source performance standards (NSPS). The mass of pollutants in the uranium... mg/off-kg (pounds per million off-pounds) of uranium extruded Cadmium 0.007 0.003 Chromium 0.013 0...

  10. Heavy metals in MSW incineration fly ashes

    NASA Astrophysics Data System (ADS)

    Ferreira, C.; Ribeiro, A.; Ottosen, L.

    2003-05-01

    Incineration is a common solution for dealing with the increasing amount of municipal solid waste (MSW). During the process, the heavy metals initially present in the waste go through several transformations, ending up in combustion products, such as fly ash. This article deals with some issues related to the combustion of MSW and the formation of fly ash, especially in what concerns heavy metals. Treatment of the flue gas in air pollution control equipment plays an important role and the basic processes to accomplish this are explained. Fly ash from a semi-dry flue gas treatment system is characterized regarding its physical-chemical properties: pH, solubility, chemical composition, and leaching, amongst others. Results indicate a high alkalinity and the presence of large amounts of calcium, chlorides, sulfates, carbonates, sodium and potassium. Metal concentrations in fly ash are: 6,2g/kg for zinc, 2,4g/kg for lead, 1,7g/kg for iron, and 7,9g/kg for magnesium. Copper, manganese, chromium and cadmium are also present with 546, 338, 104 and 91mg/kg of fly ash, respectively. These results are extremely important in subsequent studies on the treatment of fly ash.

  11. Cadmium and calcium uptake in the mollusc donax rugosus and effect of a calcium channel blocker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidoumou, Z.; Gnassia-Barelli, M.; Romeo, M.

    Donax rugosus, a common bivalve mollusc in the coastal waters of Mauritania, has been studied for trace metal concentrations as a function of sampling site (from South of Mauritania to the North of this country) and of season. In this paper, the uptake of cadmium was experimentally studied in the different organs of D. rugosus. Since metals such as cadmium, copper and mercury may alter calcium homeostasis, calcium uptake was also studied in the animals treated with cadmium. Since calcium is taken up through specific channels, it appears that metals inhibit Ca uptake by interacting with these channels in themore » plasma membrane. Cadmium and calcium have very similar atomic radii, thus cadmium may be taken up through the calcium channels, particularly through voltage-dependent channels. The uptake of cadmium and calcium by D. Rugosus was therefore also studied in the presence of the calcium channel blocker verapamil. 13 refs., 3 figs., 1 tab.« less

  12. Assessment of biological chromium among stainless steel and mild steel welders in relation to welding processes.

    PubMed

    Edmé, J L; Shirali, P; Mereau, M; Sobaszek, A; Boulenguez, C; Diebold, F; Haguenoer, J M

    1997-01-01

    Air and biological monitoring were used for assessing external and internal chromium exposure among 116 stainless steel welders (SS welders) using manual metal arc (MMA), metal inert gas (MIG) and tungsten inert gas (TIG) welding processes (MMA: n = 57; MIG: n = 37; TIG: n = 22) and 30 mild steel welders (MS welders) using MMA and MIG welding processes (MMA: n = 14; MIG: n = 16). The levels of atmospheric total chromium were evaluated after personal air monitoring. The mean values for the different groups of SS welders were 201 micrograms/m3 (MMA) and 185 micrograms/m3 (MIG), 52 micrograms/m3 (TIG) and for MS welders 8.1 micrograms/m3 (MMA) and 7.3 micrograms/m3 (MIG). The curve of cumulative frequency distribution from biological monitoring among SS welders showed chromium geometric mean concentrations in whole blood of 3.6 micrograms/l (95th percentile = 19.9), in plasma of 3.3 micrograms/l (95th percentile = 21.0) and in urine samples of 6.2 micrograms/l (95th percentile = 58.0). Among MS welders, mean values in whole blood and plasma were rather more scattered (1.8 micrograms/l, 95th percentile = 9.3 and 1.3 micrograms/l, 95th percentile = 8.4, respectively) and in urine the value was 2.4 micrograms/l (95th percentile = 13.3). The analysis of variance of chromium concentrations in plasma previously showed a metal effect (F = 29.7, P < 0.001), a process effect (F = 22.2, P < 0.0001) but no metal-process interaction (F = 1.3, P = 0.25). Concerning urinary chromium concentration, the analysis of variance also showed a metal effect (F = 30, P < 0.0001), a process effect (F = 72, P < 0.0001) as well as a metal-process interaction (F = 13.2, P = 0.0004). Throughout the study we noted any significant differences between smokers and non-smokers among welders. Taking in account the relationships between chromium concentrations in whole, plasma or urine and the different welding process. MMA-SS is definitely different from other processes because the biological values

  13. A Comparison of Blood Metal Ions in Total Hip Arthroplasty Using Metal and Ceramic Heads.

    PubMed

    White, Peter B; Meftah, Morteza; Ranawat, Amar S; Ranawat, Chitranjan S

    2016-10-01

    In recent time, metal ion debris and adverse local tissue reaction have reemerged as an area of clinical concern with the use of large femoral heads after total hip arthroplasty (THA). Between June 2014 and January 2015, 60 patients with a noncemented THA using a titanium (titanium, molybdenum, zirconium, and iron alloy) femoral stem and a V40 trunnion were identified with a minimum 5-year follow-up. All THAs had a 32- or 36-mm metal (n = 30) or ceramic (n = 30) femoral head coupled with highly cross-linked polyethylene. Cobalt, chromium, and nickel ions were measured. Patients with metal heads had detectable cobalt and chromium levels. Cobalt levels were detectable in 17 (56.7%) patients with a mean of 2.0 μg/L (range: <1.0-10.8 μg/L). Chromium levels were detectable in 5 (16.7%) patients with a mean of 0.3 μg/L (range: <1.0-2.2 μg/L). All patients with a ceramic head had nondetectable cobalt and chromium levels. Cobalt and chromium levels were significantly higher with metal heads compared to ceramic heads (P < .01). Cobalt levels were significantly higher with 36-mm metal heads compared with 32-mm heads (P < .01). Seven patients with metal femoral heads had mild hip symptoms, 4 of whom had positive findings of early adverse local tissue reaction on magnetic resonance imaging. All ceramic THA was asymptomatic. The incidence and magnitude of cobalt and chromium levels is higher in metal heads compared to ceramic heads with this implant system (P < .01). Thirty-six millimeter metal femoral heads result in larger levels of cobalt compared with 32-mm metal heads. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Basic Mechanics of DNA Methylation and the Unique Landscape of the DNA Methylome in Metal-Induced Carcinogenesis

    PubMed Central

    Brocato, Jason; Costa, Max

    2013-01-01

    DNA methylation plays an intricate role in the regulation of gene expression and events that compromise the integrity of the methylome may potentially contribute to disease development. DNA methylation is a reversible and regulatory modification that elicits a cascade of events leading to chromatin condensation and gene silencing. In general, normal cells are characterized by gene-specific hypomethylation and global hypermethylation, while cancer cells portray a reverse profile to this norm. The unique methylome displayed in cancer cells is induced after exposure to carcinogenic metals such as nickel, arsenic, cadmium, and chromium (VI). These metals alter the DNA methylation profile by provoking both hyper- and hypomethylation events. The metal-stimulated deviations to the methylome are possible mechanisms for metal-induced carcinogenesis and may provide potential biomarkers for cancer detection. Development of therapies based on the cancer methylome requires further research including human studies that supply results with larger impact and higher human relevance. PMID:23844698

  15. Basic mechanics of DNA methylation and the unique landscape of the DNA methylome in metal-induced carcinogenesis.

    PubMed

    Brocato, Jason; Costa, Max

    2013-07-01

    DNA methylation plays an intricate role in the regulation of gene expression and events that compromise the integrity of the methylome may potentially contribute to disease development. DNA methylation is a reversible and regulatory modification that elicits a cascade of events leading to chromatin condensation and gene silencing. In general, normal cells are characterized by gene-specific hypomethylation and global hypermethylation, while cancer cells portray a reverse profile to this norm. The unique methylome displayed in cancer cells is induced after exposure to carcinogenic metals such as nickel, arsenic, cadmium, and chromium (VI). These metals alter the DNA methylation profile by provoking both hyper- and hypo-methylation events. The metal-stimulated deviations to the methylome are possible mechanisms for metal-induced carcinogenesis and may provide potential biomarkers for cancer detection. Development of therapies based on the cancer methylome requires further research including human studies that supply results with larger impact and higher human relevance.

  16. Chronic effects of low-level mercury and cadmium to goldfish (Carassius Auratus)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westerman, A.G.

    1984-01-01

    During this five and one half year investigation, experiments were performed to determine the effects of nanogram levels of cadmium and mercury on reproductive performance, growth, and tissue residues of goldfish. In addition, embryo-larval bioassays were conducted on these metals to compare the effects of a short-term exposure to a sensitive life-cycle stage (i.e., eggs and larvae) with a sustained exposure to a relatively insensitive life-cycle period (i.e., adult). Reproduction was blocked by the long-term exposure to 0.25 ..mu..g/l mercury and 0.27 ..mu..g/l cadmium. Over the 1972 days, the control fish spawned on eleven occasions, but the experimentals failed tomore » spawn. The metal-induced reproductive impairment continued in the experimentals even after six months in clean water. Growth of the populations exposed to mercury and cadmium was significantly less than that of the control population (P < 0.001). The mercury, cadmium and control populations grew by 229%, 232% and 353%, respectively. Mercury and cadmium continuously accumulated in fish tissues over the entire 1789 days of whole body exposure. Despite exposure to mercury as inorganic metal, organomercury also accumula« less

  17. Localization and toxic effects of cadmium, copper, and uranium in azolla.

    PubMed

    Sela, M; Tel-Or, E; Fritz, E; Huttermann, A

    1988-09-01

    The storage and distribution of copper, cadmium, and uranium and their effects on ionic contents in roots and shoots of Azolla filiculoides has been studied by x-ray microanalysis. The relative content of copper was eightfold higher in the root than in the shoot, suggesting low mobility of this metal in Azolla plant. Cadmium relative content in the shoot was similar to its content in the root, hence its mobility was relatively high. The absence of significant uranium quantities in the shoot and its relative high content in the root suggest the immobility of this metal from Azolla root. Cadmium formed precipitates with phosphate and calcium in xylem cells of the shoot bundle and caused a two- to threefold increase in the content of phosphate in the root. Uranium in roots and cadmium in shoots were associated with calcium. All three treatments caused losses of potassium, chloride, and magnesium from Azolla roots. Accumulation of heavy metals in Azolla and their mobility from the root to the shoot can be correlated with damage caused by the loss of essential nutrients.

  18. Serum levels of nickel and chromium after instrumented posterior spinal arthrodesis.

    PubMed

    Kim, Young-Jo; Kassab, Farid; Berven, Sigurd H; Zurakowski, David; Hresko, M Timothy; Emans, John B; Kasser, James R

    2005-04-15

    Cross-sectional study of 37 patients to measure serum levels of nickel and chromium after posterior spinal arthrodesis using stainless steel implants. To investigate the relationship between factors such as age, gender, pain, time from surgery, length of arthrodesis, and level of arthrodesis to serum metal ion levels after instrumented spinal arthrodesis. Measurable levels of metal ions in the serum can be detected after the use of stainless steel implants. There is some evidence to suggest that long-term exposure can potentially be toxic. Posterior spinal arthrodesis with stainless steel implants is a common procedure to treat spinal deformity in the adolescent population; however, the extent of metal ion exposure after posterior spinal arthrodesis is unknown. Patients that underwent posterior instrumented spinal arthrodesis with more than 6 months follow-up were recruited for this study. Patients with altered neurologic function were excluded. Serum levels of nickel and chromium were measured using inductively coupled plasma mass spectrometry. Pain was assessed using the Oswestry questionnaire. Spine radiographs were used to look for evidence of pseudarthrosis. Forty-five patients were approached, and 37 agreed to the questionnaire and blood test. Ten patients were men and 27 were women. Mean age at surgery was 14 years with mean follow-up of 6 years. Statistical correlations between serum metal ion levels and age at surgery, time from surgery, gender, number of segments fused, spinal instrument interfaces, pain, and instrumentation type were assessed. Abnormally high levels of nickel and chromium above normal levels (0.3 ng/mL for nickel, 0.15 ng/mL for chromium) could be detected in serum after posterior spinal arthrodesis using stainless steel implants. There was a significant inverse correlation between serum nickel (r = -0.61, P < 0.001) and chromium (r = -0.64, P < 0.001) levels and time from surgery. When patients were grouped based on lengths of time from

  19. Mobilisation of heavy metals into the urine by CaEDTA: relation to erythrocyte and plasma concentrations and exposure indicators.

    PubMed

    Araki, S; Aono, H; Murata, K

    1986-09-01

    To investigate the effects of calcium disodium ethylenediamine tetra-acetate (CaEDTA) on the urinary excretion, erythrocyte, and plasma concentrations and exposure indicators of seven heavy metals, CaEDTA was administered by intravenous infusion to 20 workers exposed to lead, zinc, and copper. The workers' blood lead concentrations ranged from 22 to 59 micrograms/dl (mean 38 micrograms/dl (1.8 mumol/l]. The 24 hour urinary excretion of metals after CaEDTA administration (mobilisation yield) was on average 13 times the background excretion for lead, 11 times for zinc, 3.8 times for manganese, 3.4 times for cadmium, 1.3 times for copper, and 1.1 times for chromium; no significant increase was found for mercury. The mobilisation yield of lead (MPb) was significantly correlated with whole blood and erythrocyte concentrations and the urinary excretion of lead but not with its plasma concentration; similarly, the mobilisation yield of cadmium was significantly correlated with its erythrocyte concentration. In addition, MPb was significantly correlated with intra-erythrocytic enzyme delta-aminolaevulinic acid dehydratase activity and urinary coproporphyrin excretion. The relation between the mobilisation yield of heavy metals and their body burden (and toxic signs) is discussed in the light of these findings.

  20. Mobilisation of heavy metals into the urine by CaEDTA: relation to erythrocyte and plasma concentrations and exposure indicators.

    PubMed Central

    Araki, S; Aono, H; Murata, K

    1986-01-01

    To investigate the effects of calcium disodium ethylenediamine tetra-acetate (CaEDTA) on the urinary excretion, erythrocyte, and plasma concentrations and exposure indicators of seven heavy metals, CaEDTA was administered by intravenous infusion to 20 workers exposed to lead, zinc, and copper. The workers' blood lead concentrations ranged from 22 to 59 micrograms/dl (mean 38 micrograms/dl (1.8 mumol/l]. The 24 hour urinary excretion of metals after CaEDTA administration (mobilisation yield) was on average 13 times the background excretion for lead, 11 times for zinc, 3.8 times for manganese, 3.4 times for cadmium, 1.3 times for copper, and 1.1 times for chromium; no significant increase was found for mercury. The mobilisation yield of lead (MPb) was significantly correlated with whole blood and erythrocyte concentrations and the urinary excretion of lead but not with its plasma concentration; similarly, the mobilisation yield of cadmium was significantly correlated with its erythrocyte concentration. In addition, MPb was significantly correlated with intra-erythrocytic enzyme delta-aminolaevulinic acid dehydratase activity and urinary coproporphyrin excretion. The relation between the mobilisation yield of heavy metals and their body burden (and toxic signs) is discussed in the light of these findings. PMID:3092853

  1. Evaluation of aquatic toxicities of chromium and chromium-containing effluents in reference to chromium electroplating industries.

    PubMed

    Baral, A; Engelken, R; Stephens, W; Farris, J; Hannigan, R

    2006-05-01

    This study evaluated aquatic toxicities of chromium and chromium-containing laboratory samples representative of effluents from chromium electroplating industries, and compared the aquatic environmental risks of hexavalent and trivalent chromium electroplating operations. Trivalent chromium electroplating has emerged as an acceptable alternative to hazardous hexavalent chromium electroplating. This process substitution has reduced the human health impact in the workplace and minimized the production of hazardous sludge regulated under the Resource Conservation and Recovery Act (RCRA). The thrust behind this research was to investigate whether trivalent chromium electroplating operations have lower adverse impacts on standardized toxicity test organisms. Ceriodaphnia dubia and Pimephales promelas were used to investigate toxicities of trivalent chromium (Cr (III)), hexavalent chromium (Cr (VI)), and industrial effluents. In agreement with previous studies, Cr (III) was found to be less toxic than Cr (VI). Despite having several organic and inorganic constituents in the effluents obtained from trivalent chromium plating baths, they exhibited less adverse effects to C. dubia than effluents obtained from hexavalent chromium electroplating baths. Thus, transition from hexavalent to trivalent chromium electroplating processes may be justified. However, because of the presence of organic constituents such as formate, oxalate, and triethylene glycol in effluents, trivalent chromium electroplating operations may face additional regulatory requirements for removal of total organic carbon.

  2. Chromium recovery from exhausted baths generated in plating processes and its reuse in the tanning industry.

    PubMed

    Torras, Josep; Buj, Irene; Rovira, Miquel; de Pablo, Joan

    2012-03-30

    Chromium plating used for functional purposes provides an extremely hard, wear and corrosion resistant layer by means of electrolytic deposition. Typical layer thicknesses range between 2.5 and 500 μm. Chromium electroplating baths contain high concentrations of Cr(VI) with chromium trioxide (CrO(3)) as the chromium source. When because of technical or economic reasons a bath gets exhausted, a waste containing mainly chromium as dichromate as well as other heavy metals is generated. Chromium may then be purified for use in other industrial processes with different requirements. In this work, a sustainable system for using galvanic wastes as reagents in the leather tanning industry, thus reducing quantity of wastes to be treated, is presented. Metal cations present in the chromium exhausted bath were precipitated with NaOH. Then, the solution containing mainly soluble Cr(VI) was separated. By means of sodium sulphite in acidic conditions, Cr(VI) was reduced to Cr(III) as chromium (III) sulphate. From chromium (III) sulphate a basic Cr(III) sulphate may be obtained, which is one of most used compounds in the tanning industry. Cr(III) concentration in the final solution allows its reuse without concentration, but with a slight dilution. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. A Review of Heavy Metal Concentration and Potential Health Implications of Beverages Consumed in Nigeria

    PubMed Central

    Izah, Sylvester Chibueze; Inyang, Iniobong Reuben; Angaye, Tariwari C. N.; Okowa, Ifeoma Peace

    2016-01-01

    Beverages are consumed in Nigeria irrespective of age, sex, and socioeconomic status. Beverages may be alcoholic (wine, spirits, and beers) or non-alcoholic (soft drink, energy drinks, candies, chocolates, milks). Notwithstanding, most beverages are packed in cans, bottles, and plastics. This paper reviews the concentration of heavy metals from some commercially-packaged beverages consumed in Nigeria. The study found that heavy metal concentrations, including iron, mercury, tin, antimony, cadmium, zinc, copper, chromium, lead, and manganese, seldom exceed the maximum contaminant level recommended by the Standard Organization of Nigeria (SON) and the World Health Organization (WHO) as applicable to drinking water resources. The occurrence of heavy metals in the beverages could have resulted from the feedstocks and water used in their production. Consumption of beverages high in heavy metal could be toxic and cause adverse effect to human health, depending on the rate of exposure and accumulation dosage. This study concludes by suggesting that heavy metal concentration in the feedstocks and water should be monitored by producers, and its concentration in beverages should also be monitored by appropriate regulatory agencies. PMID:29051433

  4. Worse health-related quality of life and hip function in female patients with elevated chromium levels

    PubMed Central

    Hussey, Daniel K; Madanat, Rami; Donahue, Gabrielle S; Rolfson, Ola; Muratoglu, Orhun K; Malchau, Henrik

    2016-01-01

    Background and purpose Blood metal ion levels can be an indicator for detecting implant failure in metal-on-metal (MoM) hip arthroplasties. Little is known about the effect of bilateral MoM implants on metal ion levels and patient-reported outcomes. We compared unilateral patients and bilateral patients with either an ASR hip resurfacing (HR) or an ASR XL total hip replacement (THR) and investigated whether cobalt or chromium was associated with a broad spectrum of patient outcomes. Patients and methods From a registry of 1,328 patients enrolled in a multicenter prospective follow-up of the ASR Hip System, which was recalled in 2010, we analyzed data from 659 patients (311 HR, 348 THR) who met our inclusion criteria. Cobalt and chromium blood metal ion levels were measured and a 21-item patient-reported outcome measures (PROMs) questionnaire was used mean 6 years after index surgery. Results Using a minimal threshold of ≥7 ppb, elevated chromium ion levels were found to be associated with worse health-related quality of life (HRQoL) (p < 0.05) and hip function (p < 0.05) in women. These associations were not observed in men. Patients with a unilateral ASR HR had lower levels of cobalt ions than bilateral ASR HR patients (p < 0.001) but similar levels of chromium ions (p = 0.09). Unilateral ASR XL THR patients had lower chromium and cobalt ion levels (p < 0.005) than bilateral ASR XL THR patients. Interpretation Chromium ion levels of ≥7 ppb were associated with reduced functional outcomes in female MoM patients. PMID:27459602

  5. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air

    NASA Astrophysics Data System (ADS)

    Kaltenbrunner, Martin; Adam, Getachew; Głowacki, Eric Daniel; Drack, Michael; Schwödiauer, Reinhard; Leonat, Lucia; Apaydin, Dogukan Hazar; Groiss, Heiko; Scharber, Markus Clark; White, Matthew Schuette; Sariciftci, Niyazi Serdar; Bauer, Siegfried

    2015-10-01

    Photovoltaic technology requires light-absorbing materials that are highly efficient, lightweight, low cost and stable during operation. Organolead halide perovskites constitute a highly promising class of materials, but suffer limited stability under ambient conditions without heavy and costly encapsulation. Here, we report ultrathin (3 μm), highly flexible perovskite solar cells with stabilized 12% efficiency and a power-per-weight as high as 23 W g-1. To facilitate air-stable operation, we introduce a chromium oxide-chromium interlayer that effectively protects the metal top contacts from reactions with the perovskite. The use of a transparent polymer electrode treated with dimethylsulphoxide as the bottom layer allows the deposition--from solution at low temperature--of pinhole-free perovskite films at high yield on arbitrary substrates, including thin plastic foils. These ultra-lightweight solar cells are successfully used to power aviation models. Potential future applications include unmanned aerial vehicles--from airplanes to quadcopters and weather balloons--for environmental and industrial monitoring, rescue and emergency response, and tactical security applications.

  6. Heavy metals in bullfrog (Rana catesbeiana) tadpoles: Effects of depuration before analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, J.; Snodgrass, J.

    1998-11-01

    Although tadpoles may well be excellent organisms to use as bioindicators of heavy metal contamination, the relationship of deposition in the body compared to the tail, and the effect of sediments or other debris in the digestive tract on heavy metal concentrations is unknown. The authors examined the effect of experimental depuration of bullfrog (Rana catesbeiana) tadpoles on heavy metal and selenium concentrations in intact tadpoles, as well as their bodies and tails. They defined depuration in this experiment as allowing defecation as an elimination process for intestinal contents. The authors maintained wild-caught tadpoles in clean water for 0, 24,more » 48, and 72 h to determine the effects of clearing on heavy metal concentrations. They also examined the concentrations of heavy metals in the whole body and digestive tract separately. The authors test the null hypotheses that no differences occur in metals as a function of time in uncontaminated water, and that no differences occur in metal concentrations in the body compared to the tail and to the digestive tract. They rejected these hypotheses based on regression models. Variance in concentrations of chromium (77%) and lead (70%) were explained by part and clearing time; for manganese (80%), mercury (64%), selenium (28%), and cadmium (25%) the variation was explained only by body part; for arsenic (53%), the variation was explained by part, clearing time, and weight of the various parts. For those metals in which clearing time explained part of the variation, metal concentrations in both the body and tail decreased after 24 and 48 h, but increased slightly thereafter. Clearing, however, did not greatly decrease metal concentrations in either the body or tail. These data suggest that for some metals (mercury, manganese, cadmium, selenium), clearing has no effect, and for others the effect is slight. For fresh tadpoles, however, the digestive tract contained significantly higher concentrations of all metals

  7. Specific growth rate of sulfate reducing bacteria in the presence of manganese and cadmium.

    PubMed

    Medírcio, Sílvia N; Leão, Versiane A; Teixeira, Mônica C

    2007-05-08

    The development of technologies based on the use of sulfate-reducing bacteria (SRB) to treat sulfate contaminated wastewaters has produced a cost-effective route to precipitate metals. In this work the effects of cadmium and manganese in the SRB growth rates were assessed. It was observed that duplication time is 50h in the presence of cadmium and 6h in the presence of manganese, thus showing that the SRB growth rate was more affected by the presence of cadmium. A low sulfate reduction (maximum 25%) occurred which was sufficient for metal precipitation. The results are discussed considering their implications for metal precipitation in acid mining drainage.

  8. Chronic exposure to iron oxide, chromium oxide, and nickel oxide fumes of metal dressers in a steelworks

    PubMed Central

    Jones, J. Graham; Warner, C. G.

    1972-01-01

    Graham Jones, J., and Warner, C. G. (1972).Brit. J. industr. Med.,29, 169-177. Chronic exposure to iron oxide, chromium oxide, and nickel oxide fumes of metal dressers in a steelworks. Occupational and medical histories, smoking habits, respiratory symptoms, chest radiographs, and ventilatory capacities were studied in 14 steelworkers employed as deseamers of steel ingots for periods of up to 16 years. The men were exposed for approximately five hours of each working shift to fume concentrations ranging from 1·3 to 294·1 mg/m3 made up mainly of iron oxide with varying proportions of chromium oxide and nickel oxide. Four of the men, with 14 to 16 years' exposure, showed radiological evidence of pneumoconiosis classified as ILO categories 2 or 3. Of these, two had pulmonary function within the normal range and two had measurable loss of function, moderate in one case and mild in the other. Many observers would diagnose these cases as siderosis but the authors consider that this term should be reserved for cases exposed to pure iron compounds. The correct diagnosis is mixed-dust pneumoconiosis and the loss of pulmonary function is caused by the effects of the mixture of metallic oxides. It is probable that inhalation of pure iron oxide does not cause fibrotic pulmonary changes, whereas the inhalation of iron oxide plus certain other substances obviously does. Images PMID:5021996

  9. Cadmium-coordinated supramolecule suppresses tumor growth of T-cell leukemia in mice

    PubMed Central

    Zhou, Xiaoping; Koizumi, Yukio; Zhang, Muxin; Natsui, Miyuki; Koyota, Souichi; Yamada, Manabu; Kondo, Yoshihiko; Hamada, Fumio; Sugiyama, Toshihiro

    2015-01-01

    Cadmium is a toxic pollutant with occupational and environmental significance, due to its diverse toxic effects. Supramolecules that conjugate and decontaminate toxic metals have potential for use in treatment of cadmium intoxication. In addition, metal-coordinating ability has been postulated to contribute to the cytotoxic effects of anti-tumor agents such as cisplatin or bleomycin. Thiacalixarenes, cyclic oligomers of p-alkylphenol bridged by sulfur atoms, are supramolecules known to have potent coordinating ability to metal ions. In this study, we show that cadmium-coordinated thiacalix[4]arene tetrasulfate (TC4ATS-Cd) exhibits an anti-proliferative effect against T-cell leukemia cells. Cadmium exhibited cytotoxicity with IC50 values ranging from 36 to 129 μM against epithelia-derived cancer cell lines, while TC4ATS-Cd elicited no significant cytotoxicity (IC50 > 947 μM). However, a number of T-cell leukemia cell lines exhibited marked sensitivity to TC4ATS-Cd. In Jurkat cells, toxicity of TC4ATS-Cd occurred with an IC50 of 6.9 μM, which is comparable to that of 6.5 μM observed for cadmium alone. TC4ATS-Cd induced apoptotic cell death through activation of caspase-3 in Jurkat cells. In a xenograft model, TC4ATS-Cd (13 mg/kg) treatment significantly suppressed the tumor growth of Jurkat cells in mice. In addition, TC4ATS-Cd-treated mice exhibited significantly less cadmium accumulation in liver and kidney compared to equimolar cadmium-treated mice. These results suggest that cadmium-coordinated supramolecules may have therapeutic potential for treatment of T-cell leukemia. PMID:25735932

  10. Bio-prospectus of cadmium bioadsorption by lactic acid bacteria to mitigate health and environmental impacts.

    PubMed

    Kumar, Narendra; Kumari, Vandna; Ram, Chand; Thakur, Kiran; Tomar, Sudhir Kumar

    2018-02-01

    Foodstuffs and water are the key sources of cadmium biomagnifiaction. The available strategies to mitigate this problem are unproductive and expensive for practical large-scale use. Biological decontamination of metals through environmental microbes has been known since long time, whereas lactic acid bacteria (LAB) have not been extensively studied for this purpose. The LAB are known for maintaining homeostasis and suppression of pathogens in humans and animals. They also play a vital role in bioremediation of certain heavy metals. Recently in-vivo research findings strongly complement the in-vitro results in relation to decreased total body cadmium burden in animal model. This review summarizes the currently available information on impact of toxic metal (Cd) on human and animal health as well as cadmium sequestration through microbes placed broadly, whereas preeminent attention grabbed on LAB-cadmium interaction to explore their possible role in bioremediation of cadmium from foods and environment to safeguard human as well as environment health.

  11. Identification of Chromium Resistant Bacteria from Dry Fly Ash Sample of Mejia MTPS Thermal Power Plant, West Bengal, India.

    PubMed

    Roychowdhury, Roopali; Mukherjee, Pritam; Roy, Madhumita

    2016-02-01

    Eight chromium resistant bacteria were isolated from a dry fly ash sample of DVC-MTPS thermal power plant located in Bankura, West Bengal, India. These isolates displayed different degrees of chromate reduction under aerobic conditions. According to 16S rDNA gene analysis, five of them were Staphylococcus, two were Bacillus and one was Micrococcus. The minimum inhibitory concentration towards chromium and the ability to reduce hexavalent chromium to trivalent chromium was highest in Staphylococcus haemolyticus strain HMR17. All the strains were resistant to multiple heavy metals (As, Cu, Cd, Co, Zn, Mn, Pb and Fe) and reduced toxic hexavalent chromium to relatively non toxic trivalent chromium even in the presence of these multiple heavy metals. All of them showed resistance to different antibiotics. In a soil microcosm study, S. haemolyticus strain HMR17 completely reduced 4 mM hexavalent chromium within 7 days of incubation.

  12. [Influence of liquid ceramic additive on binding of heavy metal during the vitrification of fly ash from municipal solid waste incinerator].

    PubMed

    Li, Run-dong; Nie, Yong-feng; Li, Ai-min; Wang, Lei; Chi, Yong; Cen, Ke-fa

    2004-09-01

    Vitrification process can effectively control the leachability of heavy metals in fly ash generated from municipal solid waste incinerator (MWSI). The use of liquid ceramic (LC) additive as a heavy metal chemical stabilization agent was evaluated for MSWI fly ash. The residuals of chromium, lead and zinc in slag increase by different degree with liquid ceramic additive at 1400 degrees C, while those of cadmium and copper decreases. The migrating characteristic of nickel is hardly affected by the additive less than 10%. The volatilization of Cr and Zn occurs after 61 minute with 10% addition of LC, and the binding efficiency of Cr decreases with increasing of melting temperature. The results indicate that the binding efficiency of heavy metals was affected greatly by LC additive and showed significant differences according to type of heavy metal during melting process. The short melting time (no longer than 33 min) is useful to obtain high binding efficiency of heavy metals.

  13. Metal stable isotopes in weathering and hydrology: Chapter 10

    USGS Publications Warehouse

    Bullen, Thomas D.; Holland, Heinrich; Turekian, K.

    2014-01-01

    This chapter highlights some of the major developments in the understanding of the causes of metal stable isotope compositional variability in and isotope fractionation between natural materials and provides numerous examples of how that understanding is providing new insights into weathering and hydrology. At this stage, our knowledge of causes of stable isotope compositional variability among natural materials is greatest for the metals lithium, magnesium, calcium, and iron, the isotopes of which have already provided important information on weathering and hydrological processes. Stable isotope compositional variability for other metals such as strontium, copper, zinc, chromium, barium, molybdenum, mercury, cadmium, and nickel has been demonstrated but is only beginning to be applied to questions related to weathering and hydrology, and several research groups are currently exploring the potential. And then there are other metals such as titanium, vanadium, rhenium, and tungsten that have yet to be explored for variability of stable isotope composition in natural materials, but which may hold untold surprises in their utility. This impressive list of metals having either demonstrated or potential stable isotope signals that could be used to address important unsolved questions related to weathering and hydrology, constitutes a powerful toolbox that will be increasingly utilized in the coming decades.

  14. A recent history of metal accumulation in the sediments of Rijeka harbor, Adriatic Sea, Croatia.

    PubMed

    Cukrov, Neven; Frančišković-Bilinski, Stanislav; Hlača, Bojan; Barišić, Delko

    2011-01-01

    We studied metal pollution in the sediments of Rijeka harbor, including anthropogenic influence during recent decades and at the present time. Sediment profiles were collected at ten sampling points. The concentrations of 63 elements in bulk sediment were obtained using ICP-MS, and the concentrations of selected elements were evaluated by statistical factor analyses. We also calculated metal-enrichment factors and geoaccumulation indices and constructed spatial-distribution maps. Mercury (Hg) was the heaviest pollutant, with concentrations exceeding 4 mg/kg. Silver (Ag) was the second most important pollutant, with constantly increasing values. The average concentrations of the most toxic elements were comparable to those found in sediments of other ports throughout the world, and their toxicity ranged from threshold values [chromium (Cr), arsenic (As)] and midrange-effect values [cadmium (Cd), lead (Pb), copper (Cu), zinc (Zn), nickel (Ni)] to extreme-effect values (Hg). Metal pollution has decreased during recent decades, except for Ag and barium (Ba). Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. A comparative study of sorption of chromium (III) onto chitin and chitosan

    NASA Astrophysics Data System (ADS)

    Singh, Pooja; Nagendran, R.

    2016-06-01

    Heavy metals have always been the most hazardous components in the wastewater of industries like electroplating, automobiles, mining facilities and fertilizer manufacturers. Treatment of heavy metal laden wastewater requires expensive operational and maintenance systems. Food processing industries create a huge amount of shell waste which is sold to poultry farms in powdered form but the quantity thus used is still not comparable to the left over waste. The shell contains chitin which acts as an adsorbent for the heavy metals and can be used to treat heavy metal wastewater. The paper presents a study on the use of chitin and its processed product, chitosan, to remove chromium. Shake flask experiment was conducted to compare the adsorptive capacity of chitin and chitosan for chromium removal from simulated solution and isotherm studies were carried out. The studies showed that the chitosan was a better adsorbent than chitin. Both chitin and chitosan gave best adsorption results at pH 3. Chitin exhibited maximum chromium removal of 49.98 % in 20 min, whereas chitosan showed 50 % removal efficiency at a contact time of 20 min showing higher adsorptive capacity for chromium than chitin. The Langmiur and Freundlich isotherm studies showed very good adsorption capacity and monolayer interaction according to the regression coefficient 0.973 for chitosan and 0.915 for chitin. The regression coefficient for Freundlich isotherm was 0.894 and 0.831 for chitosan and chitin, respectively.

  16. Method for fabricating cermets of alumina-chromium systems

    DOEpatents

    Morgan, Chester S.

    1983-01-01

    Cermet insulators resistant to thermal and mechanical shock are prepared from alumina-chromium systems by providing an Al.sub.2 O.sub.3 material of about 0.5 to 7.0 micron size with a solid-hydrocarbon overcoating by slurring an effective amount of said solid hydrocarbon in a solvent mixture containing said Al.sub.2 O.sub.3 and thereafter evaporating said solvent, contacting said coated Al.sub.2 O.sub.3 with a solution of chromium precursor compound, heating the resulting mixture in a reducing environment to a temperature above the decomposition temperature of said chromium precursor compound but less than the melting temperature of the Al.sub.2 O.sub.3 or chromium for sufficient duration to yield a particulate compound having chromium essentially dispersed throughout the Al.sub.2 O.sub.3, and then densifying said particulate to provide said cermet characterized by a theoretical density in excess of 96% and having 0.1 to 10.0 vol.% elemental chromium metal present therein as a dispersed phase at the boundaries of the Al.sub.2 O.sub.3 material. Cermet components prepared thereby are useful in high temperature equipment, advanced heat engines, and nuclear-related equipment applications where electrical or thermal insulators are required.

  17. Increased cadmium excretion in metal-adapted populations of the midge Chironomus riparius (Diptera)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Postma, J.F.; Nugteren, P. van; Buckert-De Jong, M.B.

    1996-03-01

    Cadmium kinetics were studied in cadmium-adapted and nonadapted field populations of the midge Chironomus riparius. Accumulation and elimination experiments were carried out using first-generation laboratory-reared animals. Differences between populations were, therefore, assumed to have a genetic basis. Larvae were dissected to analyze the guts and the remainder of the larvae separately. First-order one-compartment models were not always successful in describing accumulation processes, probably due to acclimation. No interpopulation differences were observed in larval development based on dry weights, whereas some differences existed based on pupation rate. In most cases more than 80% of the total amount of cadmium was foundmore » in the guts of all populations. Larvae from cadmium-adapted populations showed a decreased net accumulation rate as well as higher equilibrium values (15--20%) compared to nonadapted populations. In addition, cadmium excretion efficiency was increased for cadmium-adapted larvae, which was due to an increased elimination rate from the guts. It was concluded that exposure to high cadmium concentrations in the field resulted in populations of C. riparius with an increased storage capability and an increased excretion efficiency, especially regarding the guts.« less

  18. Effects of chromium on the immune system.

    PubMed

    Shrivastava, Richa; Upreti, R K; Seth, P K; Chaturvedi, U C

    2002-09-06

    Chromium is a naturally occurring heavy metal found commonly in the environment in trivalent, Cr(III), and hexavalent, Cr(VI), forms. Cr(VI) compounds have been declared as a potent occupational carcinogen among workers in chrome plating, stainless steel, and pigment industries. The reduction of Cr(VI) to Cr(III) results in the formation of reactive intermediates that together with oxidative stress oxidative tissue damage and a cascade of cellular events including modulation of apoptosis regulatory gene p53, contribute to the cytotoxicity, genotoxicity and carcinogenicity of Cr(VI)-containing compounds. On the other hand, chromium is an essential nutrient required to promote the action of insulin in body tissues so that the body can use sugars, proteins and fats. Chromium is of significant importance in altering the immune response by immunostimulatory or immunosuppressive processes as shown by its effects on T and B lymphocytes, macrophages, cytokine production and the immune response that may induce hypersensitivity reactions. This review gives an overview of the effects of chromium on the immune system of the body. Copyright 2002 Federation of European Microbiological Societies

  19. Simultaneous Removal of Lindane, Lead and Cadmium from Soils by Rhamnolipids Combined with Citric Acid.

    PubMed

    Wan, Jinzhong; Meng, Die; Long, Tao; Ying, Rongrong; Ye, Mao; Zhang, Shengtian; Li, Qun; Zhou, Yan; Lin, Yusuo

    2015-01-01

    This study investigated the performance of rhamnolipids-citric acid mixed agents in simultaneous desorption of lindane and heavy metals from soils. The capacity of the mixed agents to solubilize lindane, lead and cadmium in aqueous solution was also explored. The results showed that the presence of citric acid greatly enhanced the solubilization of lindane and cadmium by rhamnolipids. A combined effect of the mixed agents on lindane and heavy metals removal from soils was observed. The maximum desorption ratios for lindane, cadmium and lead were 85.4%, 76.4% and 28.1%, respectively, for the mixed agents containing 1% rhamnolipidsand 0.1 mol/L citric acid. The results also suggest that the removal efficiencies of lead and cadmium were strongly related to their speciations in soils, and metals in the exchangeable and carbonate forms were easier to be removed. Our study suggests that the combining use of rhamnolipids and citric acid is a promising alternative to simultaneously remove organochlorine pesticides and heavy metals from soils.

  20. Simultaneous Removal of Lindane, Lead and Cadmium from Soils by Rhamnolipids Combined with Citric Acid

    PubMed Central

    Long, Tao; Ying, Rongrong; Ye, Mao; Zhang, Shengtian; Li, Qun; Zhou, Yan; Lin, Yusuo

    2015-01-01

    This study investigated the performance of rhamnolipids-citric acid mixed agents in simultaneous desorption of lindane and heavy metals from soils. The capacity of the mixed agents to solubilize lindane, lead and cadmium in aqueous solution was also explored. The results showed that the presence of citric acid greatly enhanced the solubilization of lindane and cadmium by rhamnolipids. A combined effect of the mixed agents on lindane and heavy metals removal from soils was observed. The maximum desorption ratios for lindane, cadmium and lead were 85.4%, 76.4% and 28.1%, respectively, for the mixed agents containing 1% rhamnolipidsand 0.1 mol/L citric acid. The results also suggest that the removal efficiencies of lead and cadmium were strongly related to their speciations in soils, and metals in the exchangeable and carbonate forms were easier to be removed. Our study suggests that the combining use of rhamnolipids and citric acid is a promising alternative to simultaneously remove organochlorine pesticides and heavy metals from soils. PMID:26087302

  1. Lead and cadmium content in human milk from the Northern Adriatic area of Croatia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frkovic, A.; Kras, M.; Alebic-Juretic, A.

    Though occupational exposure to toxic metals (lead, cadmium) is well documented, harmful effects of environmental exposure to lower levels of these two metals is still under investigation. Most toxic metals are emitted by human activities and the atmosphere is the main transport route for these elements. According to some authors, 332 358 t of lead and 7570 t of cadmium were emitted in the atmosphere from anthropogenic sources in 1983. The principle source of lead is traffic, e.g. leaded petrol, still widely used in Croatia, as well as coal combustion, iron and steal production. Volcanic activity, zinc production and wastemore » incineration are the main sources of cadmium. Recent study indicates that traffic could also be the main source of cadmium found along busy streets. Chronic lead exposure at low levels is associated with adverse health effects especially in fetus and young children. This study examines lead and cadmium levels in breast milk from nursing women living in the Northern Adriatic area of Croatia. 15 refs., 2 tabs.« less

  2. Global Fitness Profiling Identifies Arsenic and Cadmium Tolerance Mechanisms in Fission Yeast.

    PubMed

    Guo, Lan; Ganguly, Abantika; Sun, Lingling; Suo, Fang; Du, Li-Lin; Russell, Paul

    2016-10-13

    Heavy metals and metalloids such as cadmium [Cd(II)] and arsenic [As(III)] are widespread environmental toxicants responsible for multiple adverse health effects in humans. However, the molecular mechanisms underlying metal-induced cytotoxicity and carcinogenesis, as well as the detoxification and tolerance pathways, are incompletely understood. Here, we use global fitness profiling by barcode sequencing to quantitatively survey the Schizosaccharomyces pombe haploid deletome for genes that confer tolerance of cadmium or arsenic. We identified 106 genes required for cadmium resistance and 110 genes required for arsenic resistance, with a highly significant overlap of 36 genes. A subset of these 36 genes account for almost all proteins required for incorporating sulfur into the cysteine-rich glutathione and phytochelatin peptides that chelate cadmium and arsenic. A requirement for Mms19 is explained by its role in directing iron-sulfur cluster assembly into sulfite reductase as opposed to promoting DNA repair, as DNA damage response genes were not enriched among those required for cadmium or arsenic tolerance. Ubiquinone, siroheme, and pyridoxal 5'-phosphate biosynthesis were also identified as critical for Cd/As tolerance. Arsenic-specific pathways included prefoldin-mediated assembly of unfolded proteins and protein targeting to the peroxisome, whereas cadmium-specific pathways included plasma membrane and vacuolar transporters, as well as Spt-Ada-Gcn5-acetyltransferase (SAGA) transcriptional coactivator that controls expression of key genes required for cadmium tolerance. Notable differences are apparent with corresponding screens in the budding yeast Saccharomyces cerevisiae, underscoring the utility of analyzing toxic metal defense mechanisms in both organisms. Copyright © 2016 Guo et al.

  3. Lead and cadmium contamination of soil and vegetables in the Upper Silesia region of Poland.

    PubMed

    Gzyl, J

    1990-07-01

    Studies of the lead and cadmium content of soils and vegetables from 126 allotments in 12 towns in a polluted region of Poland are described. Metal concentrations in parsley, celery, carrots and red beet were determined using AAS. In most cases, metal concentrations in soils and vegetables exceeded accepted standards and concentrations found in rural regions. A total of 756 vegetable samples were studied and only 170 met the standard for lead and 17 for cadmium. The lowest lead content was found in parsley roots and the highest in celery leaves. Cadmium content between species did not differ greatly and the highest concentrations were recorded for celery. The metal intake by the consumer was also calculated using questionnaire data concerning vegetable consumption. In relation to the reference area, the metal intake in the polluted area was 2-5 times higher for lead and 2-16 times higher for cadmium. The main species responsible for the high metal concentrations were carrots and red beet. Replacing carrots and red beet with the same species grown in an unpolluted region would reduce the consumer's metal intake from vegetables considerably.

  4. Studies on cadmium-induced inhibition of hepatic microsomal drug biotransformation in the rat.

    PubMed Central

    Schnell, R C; Means, J R; Roberts, S A; Pence, D H

    1979-01-01

    Cadmium is a potent inhibitor of hepatic microsomal drug biotransformation in the rat. Male rats receiving a single intraperitoneal dose of cadmium exhibit significant decreases in hepatic microsomal metabolism of a variety of substrates. The threshold cadmium dose is 0.84 mg Cd/kg, and the effect lasts at least 28 days. Mechanistically, the inhibitory effect results from decreased cytochrome P-450 content since cadmium does not alter NADPH cytochrome c reductase activity. This effect is also observed following acute oral administration of cadmium in doses greater than 80 mg Cd/kg but is not observed following chronic administration of the metal via drinking water in concentrations of 5-200 ppm for periods ranging from 2 to 50 weeks. A tolerance to the inhibitory cadmium effect is observed if male rats are pretreated with subthreshold doses of the metal prior to the challenge cadmium dose. The degree of tolerance can be overcome by increasing the challenge dose of cadmium. Characterization of the tolerance phenomenon in terms of onset, duration, and intensity reveals a good correlation with the kinetics of metallothionein production, suggesting that the underlying basis for the tolerance phenomenon is likely the induction of metallothionein. A sex-related difference in the inhibitory effect of cadmium was observed. Cadmium did not inhibit the metabolism of hexobarbital or ethylmorphine in female rats but did inhibit that of aniline or zoxazolamine. Cadmium did not lower cytochrome P-450 content in female rats. PMID:488042

  5. Effects of chronic cobalt and chromium exposure after metal‐on‐metal hip resurfacing: An epigenome‐wide association pilot study

    PubMed Central

    Steinberg, Julia; Shah, Karan M.; Gartland, Alison; Zeggini, Eleftheria

    2017-01-01

    ABSTRACT Metal‐on‐metal (MOM) hip resurfacing has recently been a popular prosthesis choice for the treatment of symptomatic arthritis, but results in the release of cobalt and chromium ions into the circulation that can be associated with adverse clinical effects. The mechanism underlying these effects remains unclear. While chromosomal aneuploidy and translocations are associated with this exposure, the presence of subtle structural epigenetic modifications in patients with MOM joint replacements remains unexplored. Consequently, we analyzed whole blood DNA methylation in 34 OA patients with MOM hip resurfacing (MOM HR) compared to 34 OA patients with non‐MOM total hip replacements (non‐MOM THR), using the genome‐wide Illumina HumanMethylation 450k BeadChip. No probes showed differential methylation significant at 5% false‐discovery rate (FDR). We also tested association of probe methylation levels with blood chromium and cobalt levels directly; there were no significant associations at 5% FDR. Finally, we used the “epigenetic clock” to compare estimated to actual age at sample for all individuals. We found no significant difference between MOM HR and non‐MOM THR, and no correlation of age acceleration with blood metal levels. Our results suggest the absence of large methylation differences systemically following metal exposure, however, larger sample sizes will be required to identify potential small effects. Any DNA methylation changes that may occur in the local periprosthetic tissues remain to be elucidated. © 2017 The Authors. Orthopaedic Research Society. Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 35:2323–2328, 2017. PMID:28098396

  6. Sodium sulfur container with chromium/chromium oxide coating

    DOEpatents

    Ludwig, Frank A.; Higley, Lin R.

    1981-01-01

    A coating of chromium/chromium oxide is disclosed for coating the surfaces of electrically conducting components of a sodium sulfur battery. This chromium/chromium oxide coating is placed on the surfaces of the electrically conducting components of the battery which are in contact with molten polysulfide and sulfur reactants during battery operation.

  7. Transition Metal Nanomaterials by Bacterial Precipitation: Synthesis and Characterization of Cadmium Sulfide Quantum Dots

    NASA Astrophysics Data System (ADS)

    Marusak, Katherine Elizabeth

    We present a new method to fabricate semiconducting, transition metal nanoparticles (NPs) with tunable bandgap energies using engineered Escherichia coli. These bacteria overexpress the Treponema denticola cysteine desulfhydrase gene to facilitate precipitation of cadmium sulfide (CdS) NPs. Multiple characterization techniques reveal that the bacterially precipitated NPs are agglomerates of mostly quantum dots, with diameters that can range from 3 to 15 nm, embedded in a carbon-rich matrix. Notably, the measured photoelectrochemical current generated by these NPs is comparable to values reported in the literature and higher than that of synthesized chemical bath deposited CdS NPs. We showed that we can manipulate the bandgap energy of the NPs by controlling their size through varying the precursor concentrations. Our calculated bandgap energies ranged between 2.67 eV (i.e., quantum confined CdS) to 2.36 eV ( i.e., bulk CdS). By adding the CdCl2 precursor at a specific stage of the bacterial growth cycle, we were able to induce extracellular CdS NP precipitation. Additionally, we adapted extracellular precipitation strategies to form CdS NPs on surfaces as bacterial/PC membrane composites and characterized them by spectroscopic and imaging methods, including energy dispersive spectroscopy, and scanning and transmission electron microscopy. This method allowed us to control the localization of NP precipitation throughout the layered bacterial/membrane composite, by varying the timing of the cadmium precursor addition. Additionally, we demonstrated the photodegradation of methyl orange using the CdS functionalized porous membranes, thus confirming the photocatalytic properties of our composites for eventual translation to device development. We finally also explored the precipitation of other metallic NPs using our bacterial system, using enzyme extracted from our bacterial system, and using commercially available, his-tagged enzyme. We hope to extend this research to

  8. Accumulation of cadmium in tissue and its effect on live performance

    NASA Astrophysics Data System (ADS)

    Akyolcu, M. C.; Ozcelik, D.; Dursun, S.; Toplan, S.; Kahraman, R.

    2003-05-01

    Heavy metal pollution has gained more importance for environment as a result of increased industrialization rate all over the world. In present study investigation of effects of cadmium on live-weight due to accumulation in different tissues that taken in food were aimed. For such a purpose after their birth for four weeks chickens were fed by Cd added fodder (25 mg Cd/kg as cadmium sulfate). At the end offour weeks feeding period the chickens were scaled and sacrificed. For tissue cadmium level measurements, liver, kidney, muscle and bone dissections were performed on both experimental and same age contrai group animals. The measurements were performed in atomic absorption spectrophotometer. At the end of evaluation of data it was observed that live mean weight of experimental group was significantly lower than that of control group animals (p < 0.001). On the other hand tissue cadmium concentrations of experimental group were found to be significantly higher than that of control group values. So accumulation of cadmium in tissue as a heavy metal may lead decreased rate of growth.

  9. Chloride leaching and solvent extraction of cadmium, cobalt and nickel from spent nickel-cadmium, batteries using Cyanex 923 and 272

    NASA Astrophysics Data System (ADS)

    Reddy, B. Ramachandra; Priya, D. Neela

    Studies are conducted on the leaching and solvent extraction separation of metals from chloride leach liquor of spent nickel-cadmium batteries with Cyanex 923 and 272 diluted in kerosene as the extractants. Dissolution of the metals increases with increase in acid concentration and time but decreases with the solids-to-liquid ratio. Complete dissolution of Cd, Co and Ni can be achieved with 1.5 M HCl at 85 °C for 8 h and a solids-to-liquid ratio of 4. Treatment of leach liquor for the separation of metals with Cyanex 923 shows that increase of extractant and chloride ion concentration increases the percentage extraction of cadmium. The plot of log[distribution coefficient] versus log[extractant]/[Cl -] is linear with a slope of 2, which indicates that the extraction follows a solvation mechanism with the extracted species as CdCl 2·2S (S, Cyanex 923). Moreover, Cyanex 923 enables a clear separation of Cd from Co and Ni. Extraction of cobalt with Cyanex 272 involves a cation-exchange mechanism with the formation of a 1:2 metal-to-ligand complex in the organic phase. Based on the distribution data, extractant concentration and equilibrium pH of the aqueous phase, a possible separation process is proposed for the recovery of cadmium, cobalt and nickel with >99% efficiency.

  10. Welding of high chromium steels

    NASA Technical Reports Server (NTRS)

    Miller, W B

    1928-01-01

    A brief description is given of different groups of high chromium steels (rustless iron and stainless steels) according to their composition and more generally accepted names. The welding procedure for a given group will be much the same regardless of the slight variations in chemical composition which may exist within a certain group. Information is given for the tensile properties (yield point and ultimate strength) of metal sheets and welds before and after annealing on coupons one and one-half inches wide. Since welds in rustless iron containing 16 to 18 percent chromium and 7 to 12 percent nickel show the best combination of strength and ductility in the 'as welded' or annealed condition, it is considered the best alloy to use for welded construction.

  11. Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: A comprehensive review.

    PubMed

    Jobby, Renitta; Jha, Pamela; Yadav, Anoop Kumar; Desai, Nitin

    2018-05-09

    Chromium (VI) is one of the most common environmental contaminant due to its tremendous industrial applications. It is non-biodegradable as it is a heavy metal, and hence, of major concern. Therefore, it is pertinent that the remediation method should be such that brings chromium within permissible limits before the effluent is discharged. Several different strategies are adopted by microorganisms for Cr (VI) removal mostly involving biosorption and biotransformation or both. These mechanisms are based on the surface nature of the biosorbent and the availability of reductants. This review article focuses on chromium pollution problem, its chemistry, sources, effects, remediation strategies by biological agents and detailed chromium detoxification mechanism in microbial cell. A summary of applied in situ and ex situ chromium bioremediation technologies is also listed. This can be helpful for developing technologies to be more efficient for Cr (VI) removal thereby bridging the gap between laboratory findings and industrial application for chromium remediation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. The immobilization of heavy metals in soil by bioaugmentation of a UV-mutant Bacillus subtilis 38 assisted by NovoGro biostimulation and changes of soil microbial community.

    PubMed

    Wang, Ting; Sun, Hongwen; Mao, Hongjun; Zhang, Yanfeng; Wang, Cuiping; Zhang, Zhiyuan; Wang, Baolin; Sun, Lei

    2014-08-15

    Bacillus subtilis 38 (B38) is a mutant species of Bacillus subtilis acquired by UV irradiation with high cadmium tolerance. This study revealed that B38 was a good biosorbent for the adsorption of multiple heavy metals (cadmium, chromium, mercury, and lead). Simultaneous application of B38 and NovoGro (SNB) exhibited a synergetic effect on the immobilization of heavy metals in soil. The heavy metal concentrations in the edible part of the tested plants (lettuce, radish, and soybean) under SNB treatment decreased by 55.4-97.9% compared to the control. Three single extraction methods, diethylenetriaminepentaacetic acid (DTPA), Mehlich 3 (M3), and the first step of the Community Bureau of Reference method (BCR1), showed good predictive capacities for metal bioavailability to leafy, rhizome, and leguminous plant, respectively. The polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) profiles revealed that NovoGro could enhance the proliferation of both exotic B38 and native microbes. Finally, the technology was checked in the field, the reduction in heavy metal concentrations in the edible part of radish was in the range between 30.8% and 96.0% after bioremediation by SNB treatment. This study provides a practical strategy for the remediation of farmland contaminated by multiple heavy metals. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A circadian clock regulates sensitivity to cadmium in Paramecium tetraurelia.

    PubMed

    Hinrichsen, Robert D; Tran, Joseph R

    2010-08-01

    The heavy metal cadmium is a dangerous environmental toxicant that can be lethal to humans and other organisms. This paper demonstrates that cadmium is lethal to the ciliated protozoan Paramecium tetraurelia and that a circadian clock modulates the sensitivity of the cells to cadmium. Various concentrations of cadmium were shown to increase the number of behavioral responses, decrease the swimming speed of cells, and generate large vacuole formation in cells prior to death. Cells were grown in either 12-h light/12-h dark or constant dark conditions exhibited a toxic response to 500 microM CdCl(2); the sensitivity of the response was found to vary with a 24-h periodicity. Cells were most sensitive to cadmium at circadian time 0 (CT0), while they were least sensitive in the early evening (CT12). This rhythm persisted even when the cells were grown in constant dark. The oscillation in cadmium sensitivity was shown to be temperature-compensated; cells grown at 18 degrees C and 28 degrees C had a similar 24-h oscillation. Finally, phase shifting experiments demonstrated a phase-dependent response to light. These data establish the criteria required for a circadian clock and demonstrate that P. tetraurelia possesses a circadian-influenced regulatory component of the cadmium toxic response. The Paramecium system is shown to be an excellent model system for the study of the effects of biological rhythms on heavy metal toxicity.

  14. Anodic Stripping Voltammetry with Pencil Graphite Electrode for Determination of Chromium (III)

    NASA Astrophysics Data System (ADS)

    Wyantuti, S.; Hafidza, R. A.; Ishmayana, S.; Hartati, Y. W.

    2017-02-01

    Chromium is required as micronutrient that has roles in insulin metabolism and blood glucose level regulation. Chromium (III) deficiency can cause hyperglycemia and glycosuria. However, a high amount of chromium in body can cause allergic reaction, organ damage, and even death because of its toxicity. Chromium is commonly used in steel industries. Simultaneously with the development of industry, the waste disposal that can endanger environment also increased. Therefore, a sensitive and specific analysis method for chromium detection is required. Stripping voltammetry is one of the voltammetric methods that is commonly used for heavy metal analysis due to the very low limit of detection (sub ppb). The present study was conducted to develop an analysis method for chromium (III) determination using pencil graphite electrode. Quantitative determination was performed for chromium (III) which measured at -0.8 to +1.0 V with deposition time for 60 s and 50 mV/s scan rate. Stripping voltammetric analysis of chromium (III) using pencil graphite electrode gave linear range at 12.5 to 75 ppm with limit of detection of 0.31 ppm.

  15. Recovery of Iron from Chromium Vanadium-Bearing Titanomagnetite Concentrate by Direct Reduction

    NASA Astrophysics Data System (ADS)

    Wang, Mingyu; Zhou, Shengfan; Wang, Xuewen; Chen, Bianfang; Yang, Haoxiang; Wang, Saikui; Luo, Pengfei

    2016-10-01

    The recovery of iron from chromium vanadium-bearing titanomagnetite concentrate was investigated by direct reduction, followed by magnetic separation. The results indicated that the metallization rate of iron can reach 98.9% at a temperature of 1200°C for a reduction duration of 60 min with the addition of 16% graphite powder and 0.5% sodium oxalate. Although the addition of borax, sodium carbonate and sodium oxalate to the chromium vanadium-bearing titanomagnetite concentrate can all improve the metallization rate of iron, the effect of sodium oxalate was the best. Sodium oxalate not only increases the metallization rate of iron but also promotes the growth of metallic iron. After magnetic separating, the recovery of iron was 92.8% and the iron content of magnetic concentrate was 88.4%.

  16. Predictivity and fate of metal ion release from metal-on-metal total hip prostheses.

    PubMed

    Nicolli, Annamaria; Bisinella, Gianluca; Padovani, Giovanni; Vitella, Antonio; Chiara, Federica; Trevisan, Andrea

    2014-09-01

    Blood metal ion levels in 72 patients with large head metal-on-metal hip arthroplasty were studied to determine the correlation between the values measured in whole blood and urine. Urinary cobalt and chromium levels of 30μg and 21μg, respectively, adjusted to creatinine were found to correspond to the 7μg/l cut-off value that has been accepted in whole blood. Cobalt and chromium levels in whole blood and urine both significantly correlated with increased acetabular component inclination angle over 50 degrees and pain scores. There was no correlation with socket anteversion angle or femoral head diameter. The data support the use of urinary measurement of metal ions adjusted to creatinine to monitor patients with large head metal-on-metal total hip arthroplasty. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. 40 CFR 437.21 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CENTRALIZED WASTE TREATMENT POINT SOURCE CATEGORY Oils Treatment and Recovery § 437.21 Effluent limitations....6 Metal Parameters Arsenic 2.95 1.33 Cadmium 0.0172 0.0102 Chromium 0.746 0.323 Cobalt 56.4 18.8...

  18. Cytotoxicity and oxidative mechanisms of different forms of chromium.

    PubMed

    Bagchi, Debasis; Stohs, Sidney J; Downs, Bernard W; Bagchi, Manashi; Preuss, Harry G

    2002-10-30

    Chromium exists mostly in two valence states in nature: hexavalent chromium [chromium(VI)] and trivalent chromium [chromium(III)]. Chromium(VI) is commonly used in industrial chrome plating, welding, painting, metal finishes, steel manufacturing, alloy, cast iron and wood treatment, and is a proven toxin, mutagen and carcinogen. The mechanistic cytotoxicity of chromium(VI) is not completely understood, however, a large number of studies demonstrated that chromium(VI) induces oxidative stress, DNA damage, apoptotic cell death and altered gene expression. Conversely, chromium(III) is essential for proper insulin function and is required for normal protein, fat and carbohydrate metabolism, and is acknowledged as a dietary supplement. In this paper, comparative concentration- and time-dependent effects of chromium(VI) and chromium(III) were demonstrated on increased production of reactive oxygen species (ROS) and lipid peroxidation, enhanced excretion of urinary lipid metabolites, DNA fragmentation and apoptotic cell death in both in vitro and in vivo models. Chromium(VI) demonstrated significantly higher toxicity as compared with chromium(III). To evaluate the role of p53 gene, the dose-dependent effects of chromium(VI) were assessed in female C57BL/6Ntac and p53-deficient C57BL/6TSG p53 mice on enhanced production of ROS, lipid peroxidation and DNA fragmentation in hepatic and brain tissues. Chromium(VI) induced more pronounced oxidative damage in multiple target organs in p53 deficient mice. Comparative studies of chromium(III) picolinate and niacin-bound chromium(III), two popular dietary supplements, reveal that chromium(III) picolinate produces significantly more oxidative stress and DNA damage. Studies have implicated the toxicity of chromium picolinate in renal impairment, skin blisters and pustules, anemia, hemolysis, tissue edema, liver dysfunction; neuronal cell injury, impaired cognitive, perceptual and motor activity; enhanced production of hydroxyl

  19. Microbial exudate promoted dissolution and transformation of chromium containing minerals

    NASA Astrophysics Data System (ADS)

    Saad, E. M.; Sun, J.; Tang, Y.

    2015-12-01

    Because of its utility in many industrial processes, chromium has become the second most common metal contaminant in the United States. The two most common oxidation states of chromium in nature are Cr(III), which is highly immobile, and Cr(VI), which is highly mobile and toxic. In both natural and engineered environments, the most common remediation of Cr(VI) is through reduction, which results in chromium sequestration in the low solubility mixed Cr(III)-Fe(III) (oxy)hydroxide phases. Consequently, the stability of these minerals must be examined to assess the fate of chromium in the subsurface. We examined the dissolution of mixed Cr(III)-Fe(III) (oxy)hydroxides in the presence of common microbial exudates, including the siderophore desferrioxamine B (DFOB; a common organic ligand secreted by most microbes with high affinity for ferric iron and other trivalent metal ions) and oxalate (a common organic acid produced by microbes). The solids exhibited incongruent dissolution with preferential leaching of Fe from the solid phase. Over time, this leads to a more Cr rich mineral, which is known to be more soluble than the corresponding mixed mineral phase. We are currently investigating the structure of the reacted mineral phases and soluble Cr(III) species, as well as the potential oxidation and remobilization of the soluble Cr species. Results from this study will provide insights regarding the long term transport and fate of chromium in the natural environment in the presence of microbial activities.

  20. Cadmium accumulation and growth responses of a poplar (Populus deltoidsxPopulus nigra) in cadmium contaminated purple soil and alluvial soil.

    PubMed

    Wu, Fuzhong; Yang, Wanqin; Zhang, Jian; Zhou, Liqiang

    2010-05-15

    To characterize the phytoextraction efficiency of a hybrid poplar (Populus deltoidsxPopulus nigra) in cadmium contaminated purple soil and alluvial soil, a pot experiment in field was carried out in Sichuan basin, western China. After one growing period, the poplar accumulated the highest of 541.98+/-19.22 and 576.75+/-40.55 microg cadmium per plant with 110.77+/-12.68 and 202.54+/-19.12 g dry mass in these contaminated purple soil and alluvial soil, respectively. Higher phytoextraction efficiency with higher cadmium concentration in tissues was observed in poplar growing in purple soil than that in alluvial soil at relative lower soil cadmium concentration. The poplar growing in alluvial soil had relative higher tolerance ability with lower reduction rates of morphological and growth characters than that in purple soil, suggesting that the poplar growing in alluvial soil might display the higher phytoextraction ability when cadmium contamination level increased. Even so, the poplars exhibited obvious cadmium transport from root to shoot in both soils regardless of cadmium contamination levels. It implies that this examined poplar can extract more cadmium than some hyperaccumulators. The results indicated that metal phytoextraction using the poplar can be applied to clean up soils moderately contaminated by cadmium in these purple soil and alluvial soil. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  1. Health and Risk Assessment by ICP-OES of Heavy Metals and Trace Minerals in Commercial Mushrooms Marketed in China.

    PubMed

    Huang, Mengyi; Zeng, Huansong; Xu, Baojun

    2017-01-01

    The objectives of this study were to investigate mineral profiles of 35 species of edible mushrooms collected in China; we compared nutritional values and tolerable values with the official recommended daily intakes (RDIs), maximum intake limits, and provisional tolerable weekly intakes. A total of 19 minerals were detected in edible mushrooms by inductively coupled plasma optical emission spectrometry. The results showed that the mushroom samples had a low percentage of RDI for the minerals calcium, iron, magnesium, manganese, zinc, potassium, and sodium and a relatively higher percentage of RDI for copper and molybdenum. The samples also had a very high percentage of RDI for chromium and selenium. The level of heavy metals in a majority of the mushrooms was above the limited level, and only concentrations of copper and zinc were safe in all mushrooms. In conclusion, the mushrooms collected in China are a good source of minerals such as molybdenum and selenium but are badly contaminated with aluminum, arsenic, cadmium, chromium, and lead.

  2. Optical stability of 3d transition metal ions doped-cadmium borate glasses towards γ-rays interaction

    NASA Astrophysics Data System (ADS)

    Marzouk, M.; ElBatal, H.; Eisa, W.

    2016-07-01

    This work reports the preparation of glasses of binary cadmium borate with the basic composition (mol% 45 CdO 55 B2O3) and samples of the same composition containing 0.2 wt% dopants of 3d transition metal (TM) oxides (TiO2 → CuO). The glasses have been investigated by combined optical and Fourier Transform infrared spectroscopic measurements before and after being subjected to gamma irradiation with a dose of 8 Mrad (8 × 104 Gy). Optical absorption of the undoped glass before irradiation reveals strong charge transfer UV absorption which is related to the presence of unavoidable contaminated trace iron impurities (mainly Fe3+) within the raw materials used for the preparation of the base cadmium borate glass. The optical spectra of the 3d TM ions exhibit characteristic bands which are related the stable oxidation state of the 3d TM ions within the host glass. Gamma irradiation produces some limited variations in the optical spectra due to the stability of the host glass containing high percent 45 mol% of heavy metal oxide (CdO) which causes some shielding effects towards irradiation. From the absorption edge data, the values of the optical band gap Eopt and Urbach energy (ΔE) have been calculated. The values of the optical energy gap are found to be dependent on the glass composition. Infrared absorption spectral measurements reveal characteristic absorption bands due to both triangular and tetrahedral borate groups with the BO3 units vibrations more intense than BO4 units due to the known limit value for the change of BO3 to BO4 groups. The introduction of 3d TM ions with the doping level (0.2 wt%) causes no changes in the number or position of the IR bands because of the presence of TM ions in modifying sites in the glass network. It is observed that gamma irradiation causes some limited changes in the FT-IR spectral bands due to the stability of the host heavy cadmium borate glass.

  3. Tanacetum vulgare as a bioindicator of trace-metal contamination: a study of a naturally colonized open-pit lignite mine.

    PubMed

    Jasion, Mateusz; Samecka-Cymerman, Aleksandra; Kolon, Krzysztof; Kempers, Alexander J

    2013-10-01

    We investigated the possibility of use of Tanacetum vulgare (tansy) as an ecological indicator of metal concentration in a naturally colonized open-pit lignite mine in Bełchatów (Poland). Tanacetum vulgare is the only species growing abundantly and spontaneously in the lignite mine waste dumps. Metal concentrations in roots, stems, leaves, flowers, and soil were measured in dump sites differing in type and time of reclamation and therefore differing in pollution levels. Tanacetum vulgare appeared to be an accumulator of chromium and iron in roots, whereas highest concentrations of manganese and zinc were found in leaves. A high bioaccumulation factor for cadmium (Cd) was observed in dumps and control sites, indicating that even small amounts of Cd in the environment may result in significant uptake by the plant. The lowest concentrations of metals were found in plants from sites situated on dumps reclaimed with argillaceous limestone.

  4. Skin deposition of nickel, cobalt, and chromium in production of gas turbines and space propulsion components.

    PubMed

    Julander, Anneli; Skare, Lizbet; Mulder, Marie; Grandér, Margaretha; Vahter, Marie; Lidén, Carola

    2010-04-01

    Skin exposure to nickel, cobalt, and chromium may cause sensitization and allergic contact dermatitis and it is known that many alloys and platings may release significant amounts of the metals upon contact with skin. Occupational exposure to these sensitizing metals has been studied in different settings with regards to airborne dust and different biological end points, but little is known about deposition on skin from airborne dust and direct contact with materials containing the metals. In this study, skin deposition was studied in 24 workers in an industry for development and manufacturing of gas turbines and space propulsion components. The workers were employed in three departments, representing different exposure scenarios: tools sharpening of hard metal items, production of space propulsion structures, and thermal application of different metal-containing powders. A novel acid wipe sampling technique was used to sample metals from specific skin surfaces on the hands and the forehead of the workers. Total amounts of nickel, cobalt, and chromium were measured by inductively coupled plasma mass spectrometry. The result showed that nickel, cobalt, and chromium could be detected on all skin surfaces sampled. The highest level of nickel was 15 microg cm(-2) h(-1), the highest for cobalt was 4.5 microg cm(-2) h(-1), and for chromium 0.6 microg cm(-2) h(-1). The three departments had different exposures regarding the metals. The highest levels of nickel on the skin of the workers were found in the thermal applications department, cobalt in the tools sharpening department, and chromium in the space propulsion components department. In conclusion, the workers' exposure to the metals was more likely to come from direct skin contact with items, rather than from airborne dust, based on the fact that the levels of metals were much higher on the fingers than on the back side of the hands and the forehead. The skin exposure levels of nickel and cobalt detected are judged

  5. Toxicity of cadmium and lead on tropical midge larvae, Chironomus kiiensis Tokunaga and Chironomus javanus Kieffer (Diptera: Chironomidae)

    PubMed Central

    Ebau, Warrin; Rawi, Che Salmah Md; Din, Zubir; Al-Shami, Salman Abdo

    2012-01-01

    Objective To investigate the acute toxicity of cadmium and lead on larvae of two tropical Chironomid species, Chironomus kiiensis (C. kiiensis) Tokunaga and Chironomus javanus (C. javanus) Kieffer. Methods Different larval instars (first-fourth) were exposed using a static non-replacement testing procedures to various concentrations of cadmium and lead. Results In general, younger larvae (first and second instars) of both species were more sensitive to both metals than older larvae (third and forth instars). The toxic effects of the metals on C. kiiensis and C. javanus were influenced by the age of the larvae (first to fourth instars), types of metals (cadmium or lead) and duration of larval exposure (24, 48, 72 and 96 h) to the metals. Conclusions Cadmium was more toxic to the chironomids than lead and C. javanus was significantly more sensitive to both metals than C. kiiensis (P<0.05). PMID:23569984

  6. Children with health impairments by heavy metals in an e-waste recycling area.

    PubMed

    Zeng, Xiang; Xu, Xijin; Boezen, H Marike; Huo, Xia

    2016-04-01

    E-waste recycling has become a global environmental health issue. Pernicious chemicals escape into the environment due to informal and nonstandard e-waste recycling activities involving manual dismantling, open burning to recover heavy metals and open dumping of residual fractions. Heavy metals derived from electronic waste (e-waste), such as, lead (Pb), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), mercury (Hg), arsenic (As), copper (Cu), zinc (Zn), aluminum (Al) and cobalt (Co), differ in their chemical composition, reaction properties, distribution, metabolism, excretion and biological transmission. Our previous studies showed that heavy metal exposure have adverse effects on children's health including lower birth weight, lower anogenital distance, lower Apgar scores, lower current weight, lower lung function, lower hepatitis B surface antibody levels, higher prevalence of attention-deficit/hyperactivity disorder, and higher DNA and chromosome damage. Heavy metals influence a number of diverse systems and organs, resulting in both acute and chronic effects on children's health, ranging from minor upper respiratory irritation to chronic respiratory, cardiovascular, nervous, urinary and reproductive disease, as well as aggravation of pre-existing symptoms and disease. These effects of heavy metals on children's health are briefly discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. EFFECT OF CADMIUM(II) ON FREE RADICALS IN DOPA-MELANIN TESTED BY EPR SPECTROSCOPY.

    PubMed

    Zdybel, Magdalena; Pilawa, Barbara; Chodurek, Ewa

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy may be applied to examine interactions of melanin with metal ions and drugs. In this work EPR method was used to examination of changes in free radical system of DOPA-melanin--the model eumelanin after complexing with diamagnetic cadmium(II) ions. Cadmium(II) may affect free radicals in melanin and drugs binding by this polymer, so the knowledge of modification of properties and free radical concentration in melanin is important to pharmacy. The effect of cadmium(II) in different concentrations on free radicals in DOPA-melanin was determined. EPR spectra of DOPA-melanin, and DOPA-melanin complexes with cadmium(II) were measured by an X-band (9.3 GHz) EPR spectrometer produced by Radiopan (Poznań, Poland) and the Rapid Scan Unit from Jagmar (Krak6w, Poland). The DOPA (3,4-dihydroxyphenylalanine) to metal ions molar ratios in the reaction mixtures were 2:1, 1:1, and 1: 2. High concentrations of o-semiquinone (g ~2.0040) free radicals (~10(21)-10(22) spin/g) characterize DOPA-melanin and its complexes with cadmium(II). Formation of melanin complexes with cadmium(II) increase free radical concentration in DOPA-melanin. The highest free radical concentration was obtained for DOPA-melanin-cadmium(II) (1:1) complexes. Broad EPR lines with linewidths: 0.37-0.73 mT, were measured. Linewidths increase after binding of cadmium(II) to melanin. Changes of integral intensities and linewidths with increasing microwave power indicate the homogeneous broadening of EPR lines, independently on the metal ion concentration. Slow spin-lattice relaxation processes existed in all the tested samples, their EPR lines saturated at low microwave powers. Cadmium(II) causes fastening of spin-lattice relaxation processes in DOPA-melanin. The EPR results bring to light the effect of cadmium(II) on free radicals in melanin, and probably as the consequence on drug binding to eumelanin.

  8. Effect of Chromium(VI) Toxicity on Enzymes of Nitrogen Metabolism in Clusterbean (Cyamopsis tetragonoloba L.)

    PubMed Central

    Sangwan, Punesh; Joshi, U. N.

    2014-01-01

    Heavy metals are the intrinsic component of the environment with both essential and nonessential types. Their excessive levels pose a threat to plant growth and yield. Also, some heavy metals are toxic to plants even at very low concentrations. The present investigation (a pot experiment) was conducted to determine the affects of varying chromium(VI) levels (0.0, 0.5, 1.0, 2.0, and 4.0 mg chromium(VI) kg−1 soil in the form of potassium dichromate) on the key enzymes of nitrogen metabolism in clusterbean. Chromium treatment adversely affect nitrogenase, nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate dehydrogenase in various plant organs at different growth stages as specific enzyme activity of these enzymes decreased with an increase in chromium(VI) levels from 0 to 2.0 mg chromium(VI) kg−1 soil and 4.0 mg chromium(VI) kg−1 soil was found to be lethal to clusterbean plants. In general, the enzyme activity increased with advancement of growth to reach maximum at flowering stage and thereafter decreased at grain filling stage. PMID:24744916

  9. Association of cadmium and arsenic exposure with salivary telomere length in adolescents in Terai, Nepal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fillman, Toki, E-mail: tokif@humeco.m.u-tokyo.ac.jp; Shimizu-Furusawa, Hana, E-mail: hana-shimizu@umin.ac.jp; Ng, Chris Fook Sheng, E-mail: chrisng-tky@umin.ac.jp

    Background: Cadmium and arsenic are ubiquitous metals commonly found in the environment which can harm human health. A growing body of research shows telomere length as a potential biomarker of future disease risk. Few studies have examined the effects of metals on telomere length and none have focused on adolescents. Objectives: In this study, the impact of cadmium and arsenic on salivary telomere length was studied in adolescents in Terai, Nepal. Methods: Adolescents aged 12–16 years old (n=351)were recruited where questionnaire interviews and both saliva and urine collection took place. Telomere length was determined by quantitative polymerase chain reaction usingmore » DNA extracted from saliva. Urinary cadmium and arsenic concentration were measured by inductively coupled plasma mass spectrometry. Multivariable linear regression was used to examine associations between urinary metals and salivary telomere length. Results: The geometric means and standard deviations of cadmium and arsenic were 0.33±0.33 μg/g creatinine and 196.0±301.1 μg/g creatinine, respectively. Urinary cadmium concentration was negatively associated with salivary telomere length after adjustment for confounders (β=−0.24, 95% CI −0.42,−0.07). Arsenic showed positive associations with telomere length but did not reach statistical significance. Conclusions: This is the first study to demonstrate that cadmium may shorten adolescent telomeres, even at exposure levels that may be considered low. These results agree with prior experimental and adult epidemiological studies, and also help identify the mechanism of DNA damage by cadmium. This study expanded current evidence on the harmful effects of cadmium exposure on telomere length even to adolescents. - Highlights: • This is the first study examining metal exposure on telomere length in adolescents. • Urinary cadmium levels were similar to non-industrially polluted levels in Asia. • Urinary arsenic levels were as high as

  10. Core-shell chromium silicide-silicon nanopillars: a contact material for future nanosystems.

    PubMed

    Chang, Mu-Tung; Chen, Chih-Yen; Chou, Li-Jen; Chen, Lih-Juann

    2009-11-24

    Chromium silicide nanostructures are fabricated inside silicon nanopillars grown by the vapor-liquid-solid mechanism. The remarkable field-emission behavior of these nanostructures results from extensive improvement of carrier transport due to the reduced energy barrier between the metal and semiconductor layers. The results warrant consideration of chromium silicide as a potentially important contact material in future nanosystems.

  11. Stabilizing cadmium into aluminate and ferrite structures: Effectiveness and leaching behavior.

    PubMed

    Su, Minhua; Shih, Kaimin; Kong, Lingjun

    2017-02-01

    The inappropriate disposal of sludge, particularly for those enriched in heavy metals, is highly hazardous to the environment. Thermally converting sludge into useful products is a highly promising technique as heavy metals are immobilized and organic substances are mineralized. This work investigated the feasibility of stabilizing simulated cadmium-laden sludge by sintering with Al-and Fe-rich precursors. To simulate the process, cadmium oxide was alternatively mixed and sintered with γ-Al 2 O 3 and α-Fe 2 O 3 . Cadmium was crystallographically incorporated into aluminate (CdAl 4 O 7 ) monoclinic structure and ferrite (CdFe 2 O 4 ) spinel, dependent on the type of precursor used. The CdFe 2 O 4 formation was initialed at about 150-300 °C lower than that of CdAl 4 O 7 . With Rietveld refinement analysis of the collated XRD data, the weight percentages of crystalline phases in the fired samples were quantified. To evaluate the cadmium incorporation efficiency, a transformation ratio (TR) index was devised. The TR values revealed that, to effectively incorporate cadmium, 950 °C was favored by γ-Al 2 O 3 and 850 °C was for α-Fe 2 O 3 within a 3-h sintering treatment. Constant pH leaching test (CPLT) was used to assess the metal stabilization effects, revealing a remarkable reduction of cadmium by transformation into CdAl 4 O 7 and CdFe 2 O 4 . Both CdAl 4 O 7 and CdFe 2 O 4 were incongruently dissolved in an acid solution. The overall finding indicated a potentially feasible technology in cadmium-laden sludge stabilization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Do ion levels in metal-on-metal hip resurfacing differ from those in metal-on-metal THA at long-term followup?

    PubMed

    Savarino, Lucia; Cadossi, Matteo; Chiarello, Eugenio; Baldini, Nicola; Giannini, Sandro

    2013-09-01

    Metal-on-metal hip resurfacing arthroplasty (MOM HR) has become an established alternative to traditional metal-on-metal total hip arthroplasty (MOM THA) for younger, more active patients. Nevertheless, concerns remain regarding wear and corrosion of the bearing surfaces and the resulting systemic metal ion distribution. We therefore asked whether (1) serum ion concentrations in patients with MOM HR at the time of long-term followup were higher than concentrations in a control population with no hip implants; (2) the ion concentrations in patients with MOM HR were different from those in patients with MOM THA; and (3) sex would influence ion levels with regard to implant type. The MOM HR and MOM THA groups consisted of 25 patients (evaluated at a minimum of 96 months) and 16 patients (evaluated at a minimum of 106 months), respectively. Forty-eight healthy donors were recruited for reference values. Cobalt, chromium, nickel, and molybdenum were measured by furnace graphite atomic absorption spectrophotometry. Ion concentrations of cobalt, chromium, and molybdenum in MOM HR were higher than in controls. Chromium and cobalt release were higher in MOM HR than in MOM THA. The sex-based analysis showed the difference was because women had higher concentrations in the MOM HR group than in the MOM THA group, whereas there was no difference between the men in the two groups. In MOM HR, high metal ion release persists for the long term. Consequently, it is important to implement strict biomonitoring for patients who have received these implants. The sustained high levels of chromium in females within the MOM HR group are concerning and merits strong consideration when choosing implants in this patient group.

  13. Development of Protective Coatings for Chromium-Base Alloys

    NASA Technical Reports Server (NTRS)

    English, J. J.; MacMillan, C. A.; Williams, D. N.; Bartlett, E. S.

    1966-01-01

    Chromium alloy sheet was clad with 5 to 10-mil-thick oxidation-resistant nickel-base alloy foils. Specimens also contained 1/2 to 1-mil-thick intermediate layers of platinum, tungsten, and/or W-25Re. Cladding was done by the isostatic hot gas-pressure bonding,.process. The clad chromium-alloy specimens were cyclic oxidation tested at 2100 F and 2300 F for up to 200 hours to determine the effectiveness of these metal claddings in protecting the chromium alloy Cr-5W from oxidation and contamination. Cladding systems consisting of 5-mil-thick Ni-20Cr-20W modified with 3 to 5 weight percent aluminum and containing a 1 /2-mil tungsten diffusion barrier demonstrated potential for long-time service at temperatures as high as 2300 F.

  14. Environmental exposures to lead and cadmium measured in human placenta.

    PubMed

    Falcón, María; Viñas, Pilar; Osuna, Eduardo; Luna, Aurelio

    2002-01-01

    Pregnant women exposed to even low levels of environmental lead and cadmium may experience adverse perinatal effects. To evaluate the usefulness of the placenta for monitoring environmental lead and cadmium exposure, concentrations of both metals were measured in placentas (n = 86) with atomic absorption spectrometry. Environmental exposure was assessed in accordance with the degree of industrial activity and transport pollution near the places of residence. The authors found significantly higher lead and cadmium levels in placentas of women living in urban-industrial areas than in placentas of women living in rural areas. Lead concentrations in placenta reflect environmental exposures; smoking during gestation explained a large portion of placental cadmium. This finding suggests that when a pregnant woman is a heavy smoker, tobacco exposure masks environmental cadmium exposure, especially in areas with low levels of cadmium pollution.

  15. Cadmium toxicity among wildlife in the Colorado Rocky Mountains

    USGS Publications Warehouse

    Larison, J.R.; Likens, G.E.; Fitzpatrick, J.W.; Crock, J.G.

    2000-01-01

    Cadmium is known to be both extremely toxic and ubiquitous in natural environments. It occurs in almost all soils, surface waters and plants, and it is readily mobilized by human activities such as mining. As a result, cadmium has been named as a potential health threat to wildlife species; however, because it exists most commonly in the environment as a trace constituent, reported incidences of cadmium toxicity are rare. Here we have measured trace metals in the food web and tissues of white-tailed ptarmigan (Lagopus leucurus) in Colorado. Our results suggest that cadmium toxicity may be more common among natural populations of vertebrates than has been appreciated to date and that cadmium toxicity may often go undetected or unrecognized. In addition, our research shows that ingestion of even trace quantities of cadmium can influence not only the physiology and health of individual organisms, but also the demographics and the distribution of species.

  16. Enzymatic biomarkers as indicators of dietary cadmium in gypsy moth caterpillars.

    PubMed

    Vlahović, Milena; Mataruga, Vesna Perić; Mrdaković, Marija; Matić, Dragana; Lazarević, Jelica; Nenadović, Vera; Ilijin, Larisa

    2013-05-01

    Heavy metals damage the structure, chemistry, and function of cells, including enzyme systems inside them. Variation in the profile of biochemical biomarkers in prevalent species should be used for assessing environmental contamination. The present study pays attention to the phosphatases present in the midgut of gypsy moth fourth instar caterpillars, which had been exposed to short- and long-term cadmium intake at 10 and 30 μg Cd/g dry food. Chronic cadmium ingestion significantly inhibited the activity of all examined phosphatases, while only the activity of lysosomal phosphatase was acutely decreased. Total acid phosphatase activity recovered from both long-term cadmium treatments within 3 days. The low index of phenotypic plasticity was connected to high variability of plasticity. Dependence of phosphatase isoforms on genotype and duration of cadmium treatment was determined. We concluded that, with further investigations, profiling of total acid phosphatase activity, as well as the lysosomal fraction can be used as a biomarker for acute sublethal metal toxicity.

  17. Elimination of cadmium trace contaminations from drinking water.

    PubMed

    Zhao, Xuan; Höll, Wolfgang H; Yun, Guichun

    2002-02-01

    Raw waters polluted with trace heavy metals present serious problems to the part of the Chinese water supply. One of the important contaminants is cadmium. Removal of trace amounts of heavy metals can be achieved by means of selective sorption processes. One of the possibilities is the application of weak base anion exchangers. LEWIS-base/acid interactions lead to an exclusive sorption of heavy metal cations and an equivalent amount of anions of strong acids. The respective elimination of cadmium from pure solutions and spiked natural water and the regeneration of the exhausted exchanger has been investigated. The results demonstrate a very efficient elimination. The standards for drinking water are met for a very large relative volume of treated water. In addition, even a considerable share of dissolved organic matter is adsorbed. Regeneration requires a first step with sulfuric acid to remove the metals and a second one with sodium hydroxide to neutralize the exchanger and to displace the DOC adsorbed. The heavy metals can be concentrated in a small volume which facilitates the discharge of the waste.

  18. Top-down solid-phase fabrication of nanoporous cadmium oxide architectures.

    PubMed

    Yu, Haidong; Wang, Deshen; Han, Ming-Yong

    2007-02-28

    In this article, we have demonstrated one-step solid-phase transformation from high-quality cadmium carbonate microcrystals into highly nanoporous cadmium oxide. The high crystal quality of cadmium carbonate is critical for the successful fabrication of porous nanoarchitectures with predetermined morphology and well-controlled internal structure. This novel strategy has a good potential to prepare nanoporous materials at a large scale by using perfect monolithic carbonate crystals, and it is also useful to synthesize different nanoporous materials on metal-oxide-coated substrates. Meanwhile, this simple thermal transformation of cadmium carbonate into porous structures has further been extended to convert calcium carbonate into such porous structures.

  19. Mobility and storage sinks for chromium and other metals in soils impacted by leather tannery wastes.

    PubMed

    Chen, Hualin; Arocena, Joselito M; Li, Jianbing; Thring, Ronald W; Zhou, Jiangmin

    2012-12-01

    Leather tanneries around the world, including China, introduce chromium (Cr) and other metals into the environment. In China, the population pressure compels the utilization of every piece of available land for food production. In this study, we investigated the content, leachability and possible storage sinks for Cr and other metals in soils around facilities of leather industry in southern China. It was found that Cr in soils impacted by tannery can be as high as 2484 mg Cr kg⁻¹ soil, and the mean contents of other metals such as Zn (214 mg Zn kg⁻¹ soil), Cd (5.4 mg Cd kg⁻¹ soil), As (17 mg As kg⁻¹ soil) exceeded the soil quality standards and guidelines in China and Canada. Simulated leaching studies (i.e., Synthetic Precipitation Leaching Procedure) indicated that these soils could release Cr and other metals in concentrations above the environmental quality guidelines and standards for water in China and Canada. As a result, the mobility of metals from these soils can potentially contaminate both groundwater and surface water. We also found differential leachability of metals with soil properties such as total metal and total carbon contents. Principal component analysis of the total contents of 32 elements showed that the possible major sinks for Cr are organic matter and oxides of Fe/Mn/Al, while sulfates and phosphates are potential storage of Cd, Zn, Cu and Pb. The information obtained from this study can be valuable for the restoration of ecosystem functions (i.e., food production) in the study area.

  20. The influence of algal densities on the toxicity of chromium for Ceriodaphnia dubia Richard (Cladocera, Crustacea).

    PubMed

    Rodgher, S; Espíndola, E L G

    2008-05-01

    Food availability may affect metal toxicity for aquatic organisms. In the present study, the influence of high, medium and low densities of the algae Pseudokirchneriella subcapitata (10(6), 10(5) and 10(4) cells.mL(-1), respectively) on the chronic toxicity of chromium to the cladoceran Ceriodaphnia dubia was investigated. C. dubia was exposed to a range of chromium concentration from 2.71 to 34.04 microg.L(-1) and fed with algae at various densities. In another experiment, the green alga was exposed to chromium concentrations (94 to 774 microg.L(-1)) and supplied as food in different densities to zooplankton. The survival and reproduction of the cladoceran were measured in these toxicity tests. The IC50 for Cr to P. subcapitata and metal accumulated by algal cells were determined. The results of a bifactorial analysis (metal versus algal densities) showed that metal toxicity to zooplankton was dependent on algal densities. Significant toxic effects on the reproduction and survival of C. dubia were observed at 8.73, 18.22 and 34.04 microg.L(-1) Cr when the test organisms were fed with 10(6) cells.mL(-1) of P. subcapitata. Although the chlorophyta retain low chromium content, a decrease in the reproduction and survival of C. dubia occurred when they were fed with high algal density contaminated with 774 microg.L(-1) Cr. It was concluded that high algal density have an appreciable influence on chromium toxicity to daphnids.

  1. Retention strength of cobalt-chromium vs nickel-chromium titanium vs CP titanium in a cast framework association of removable partial overdenture.

    PubMed

    Souza, Jose Everaldo de Aquino; Silva, Nelson Renato Franca Alves da; Coelho, Paulo Guilherme; Zavanelli, Adriana Cristina; Ferracioli, Renata Cristina Silveira Rodrigues; Zavanelli, Ricardo Alexandre

    2011-05-01

    There is little information considering the framework association between cast clasps and attachments. The aim of this study was to evaluate the retention strength of frameworks match circumferential clasps and extra resilient attachment cast in three different alloys (cobalt-chromium, nickel-chromium titanium and commercially pure titanium), using two undercut (0.25 and 0.75 mm) and considering different period of time (0, 1/2, 1, 2, 3, 4 and 5 years). Using two metallic matrices, representing a partially edentulous mandibular right hemiarch with the first molar crown, canine root and without premolars, 60 frameworks were fabricated. Three groups (n = 20) of each metal were cast and each group was divided into two subgroups (n = 10), corresponding the molar undercut of 0.25 mm and 0.75 mm. The nylon male was positioned at the matrix and attached to the acrylic resin of the prosthetic base. The samples were subjected to an insertion and removal test under artificial saliva environment. The data were analyzed and compared with ANOVAs and Tukey's test at 95% of probability. The groups cast in cobaltchromium and nickel-chromium-titanium had the highest mean retention strength (5.58 N and 6.36 N respectively) without significant difference between them, but statistically different from the group cast in commercially pure titanium, which had the lowest mean retention strength in all the periods (3.46 N). The association frameworks using nickel-chromium- titanium and cobalt-chromium could be used with 0.25 mm and 0.75 mm of undercut, but the titanium samples seems to decrease the retention strength, mainly in the 0.75 mm undercut. The circumferential clasps cast in commercially pure titanium used in 0.75 mm undercuts have a potential risk of fractures, especially after the 2nd year of use. This in vitro study showed that the framework association between cast clasp and an extra resilient attachment are suitable to the three metals evaluated, but strongly suggest extra

  2. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air.

    PubMed

    Kaltenbrunner, Martin; Adam, Getachew; Głowacki, Eric Daniel; Drack, Michael; Schwödiauer, Reinhard; Leonat, Lucia; Apaydin, Dogukan Hazar; Groiss, Heiko; Scharber, Markus Clark; White, Matthew Schuette; Sariciftci, Niyazi Serdar; Bauer, Siegfried

    2015-10-01

    Photovoltaic technology requires light-absorbing materials that are highly efficient, lightweight, low cost and stable during operation. Organolead halide perovskites constitute a highly promising class of materials, but suffer limited stability under ambient conditions without heavy and costly encapsulation. Here, we report ultrathin (3 μm), highly flexible perovskite solar cells with stabilized 12% efficiency and a power-per-weight as high as 23 W g(-1). To facilitate air-stable operation, we introduce a chromium oxide-chromium interlayer that effectively protects the metal top contacts from reactions with the perovskite. The use of a transparent polymer electrode treated with dimethylsulphoxide as the bottom layer allows the deposition-from solution at low temperature-of pinhole-free perovskite films at high yield on arbitrary substrates, including thin plastic foils. These ultra-lightweight solar cells are successfully used to power aviation models. Potential future applications include unmanned aerial vehicles-from airplanes to quadcopters and weather balloons-for environmental and industrial monitoring, rescue and emergency response, and tactical security applications.

  3. Concentrations of zinc and chromium in aquatic macrophytes from the sudbury and muskoka regions of Ontario, Canada.

    PubMed

    Reimer, P; Duthie, H C

    1993-01-01

    Root and shoot samples of Eriocaulon septangulare, Nuphar variegatum, Nymphaea odorata and Pontederia cordata were collected from 15 lakes in central Ontario during the summer of 1988 to investigate possible relationships between zinc and chromium levels in aquatic macrophytes and water and sediment variables. Although concentrations of zinc and chromium differed greatly among the four species, both metals were consistently higher in Eriocaulon. Generally, root and rhizome tissue contained higher zinc and chromium than shoot tissues of the same species and site. Zinc concentrations (dry weight) ranged from 6.3 microg g(-1) in Nuphar shoots to 87.7 microg g(-1) in whole Eriocaulon. Chromium ranged from 0.23 microg g(-1) in Pontederia shoots to 23.9 microg g(-1) in whole Eriocaulon. No significant trends were detected throughout the growing season in macrophyte or sediment concentrations of either metal. Results of multiple linear regression analyses of several water quality and environmental variables on Eriocaulon indicated that sediment zinc was the best predictor of plant zinc, and sediment chromium and calcium were the best predictors of plant chromium.

  4. Liver metal concentrations in Greater Sage-grouse (Centrocercus urophasianus).

    PubMed

    Dailey, Rebecca N; Raisbeck, Merl F; Siemion, Roger S; Cornish, Todd E

    2008-04-01

    Greater Sage-grouse (Centrocercus urophasianus) are a species of concern due to shrinking populations associated with habitat fragmentation and loss. Baseline health parameters for this species are limited or lacking, especially with regard to tissue metal concentrations. To obtain a range of tissue metal concentrations, livers were collected from 71 Greater Sage-grouse from Wyoming and Montana. Mean +/- SE metal concentrations (mg/kg wet weight) in liver were determined for vanadium (V) (0.12 +/- 0.01), chromium (Cr) (0.50 +/- 0.02), manganese (Mn) (2.68 +/- 0.11), iron (Fe) (1,019 +/- 103), nickel (Ni) (0.40 +/- 0.04), cobalt (Co) (0.08 +/- 0.02), copper (Cu) (6.43 +/- 0.40), mercury (Hg) (0.30 +/- 0.09), selenium (Se) (1.45 +/- 0.64), zinc (Zn) (59.2 +/- 4.70), molybdenum (Mo) (0.93 +/- 0.07), cadmium (Cd) (1.44 +/- 0.14), barium (Ba) (0.20 +/- 0.03), and lead (Pb) (0.17 +/- 0.03). In addition to providing baseline data, metal concentrations were compared between sex, age (juvenile/adult), and West Nile virus (WNv) groups (positive/negative). Adult birds had higher concentrations of Ni and Cd compared to juveniles. In addition, Zn and Cu concentrations were significantly elevated in WNv-positive birds.

  5. Assessment of Welders Exposure to Carcinogen Metals from Manual Metal Arc Welding in Gas Transmission Pipelines, Iran

    PubMed Central

    Golbabaei, F; Seyedsomea, M; Ghahri, A; Shirkhanloo, H; Khadem, M; Hassani, H; Sadeghi, N; Dinari, B

    2012-01-01

    Background: Welding can produce dangerous fumes containing various metals especially carcinogenic ones. Occupational exposure to welding fumes is associated with lung cancer. Therefore, welders in Gas Transmission Pipelines are known as a high-risk group. This study was designed to determinate the amounts of metals Cr, Ni, and Cd in breathing zone and urine of welders and to assess the possibility of introducing urinary metals as a biomarker due to occupational exposure. Methods: In this cross sectional study, 94 individuals from Gas Transmission Pipelines welders, Iran, Borujen in 2011 were selected and classified into 3 groups including Welders, Back Welders and Assistances. The sampling procedures were performed according to NIOSH 7300 for total chromium, nickel, and cadmium and NIOSH 7600 for Cr+6. For all participants urine samples were collected during the entire work shift and metals in urine were determined according to NIOSH 8310. Results: Back Welders and Assistances groups had maximum and minimum exposure to total fume and its elements, respectively. In addition, results showed that there are significant differences (P<0.05) between Welders and Back Welders with Assistances group in exposure with total fume and elements except Ni. Urinary concentrations of three metals including Cr, Cd and Ni among all welders were about 4.5, 12 and 14-fold greater than those detected in controls, respectively. Weak correlations were found between airborne and urinary metals concentrations (R2: Cr=0.45, Cd=0.298, Ni=0.362). Conclusion: Urinary metals concentrations could not be considerate as a biomarker for welders’ exposure assessment. PMID:23113226

  6. Assessment of welders exposure to carcinogen metals from manual metal arc welding in gas transmission pipelines, iran.

    PubMed

    Golbabaei, F; Seyedsomea, M; Ghahri, A; Shirkhanloo, H; Khadem, M; Hassani, H; Sadeghi, N; Dinari, B

    2012-01-01

    Welding can produce dangerous fumes containing various metals especially carcinogenic ones. Occupational exposure to welding fumes is associated with lung cancer. Therefore, welders in Gas Transmission Pipelines are known as a high-risk group. This study was designed to determinate the amounts of metals Cr, Ni, and Cd in breathing zone and urine of welders and to assess the possibility of introducing urinary metals as a biomarker due to occupational exposure. In this cross sectional study, 94 individuals from Gas Transmission Pipelines welders, Iran, Borujen in 2011 were selected and classified into 3 groups including Welders, Back Welders and Assistances. The sampling procedures were performed according to NIOSH 7300 for total chromium, nickel, and cadmium and NIOSH 7600 for Cr+6. For all participants urine samples were collected during the entire work shift and metals in urine were determined according to NIOSH 8310. Back Welders and Assistances groups had maximum and minimum exposure to total fume and its elements, respectively. In addition, results showed that there are significant differences (P<0.05) between Welders and Back Welders with Assistances group in exposure with total fume and elements except Ni. Urinary concentrations of three metals including Cr, Cd and Ni among all welders were about 4.5, 12 and 14-fold greater than those detected in controls, respectively. Weak correlations were found between airborne and urinary metals concentrations (R2: Cr=0.45, Cd=0.298, Ni=0.362). Urinary metals concentrations could not be considerate as a biomarker for welders' exposure assessment.

  7. Chronic effect of cadmium in sediments on colonization by benthic marine organisms: An evaluation of the role of interstitial cadmium and acid-volatile sulfide in biological availability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, D.J.; Berry, W.J.; Benyi, S.J.

    1996-12-01

    The role of interstitial cadmium and acid-volatile sulfide (AVS) in controlling the bioavailability of sediment-associated metal was examined using the chronic saltwater benthic colonization test. Sediments were spiked to achieve nominal cadmium/AVS molar ratios of 0.0 (control), 0.1, 0.8, and 3.0 in this 118-d test. Oxidation of AVS in the surficial 2.4 cm within 2 to 4 weeks resulted in sulfide profiles similar to those occurring naturally in local sediments. In the nominal 0.1 cadmium/AVS treatment measured simultaneously extracted metal (SEM{sub Cd}) was always less than AVS. Interstitial cadmium concentrations were less than those likely to cause biological effects. Nomore » significant biological effects were detected. In the nominal 0.8 cadmium/AVS treatment, measured SEM{sub Cd} commonly exceeded AVS in the surficial 2.4 cm of sediment. Interstitial cadmium concentrations were of likely toxicological significance to highly sensitive species. Shifts in the presence or absence over all taxa, and fewer macrobenthic polychaetes (Mediomastus ambiseta, Streblospio benedicti, and Podarke obscurea) and unidentified meiofaunal nematodes, were observed. In the nominal 3.0 cadmium/AVS treatment, concentrations of SEM{sub Cd} were always greater than AVS throughout the sediment column. Interstitial cadmium ranged from 28,000 to 174,000 {micro}g/L. In addition to the effects above, the sediments were colonized by fewer macrobenthic species, polychaete species, and harpacticoids; had lower densities of diatoms; lacked bivalve molluscs; and exhibited other impacts. Over all treatments, the observed biological responses were consistent with SEM{sub Cd}/AVS ratios in surficial sediments and interstitial water cadmium concentrations.« less

  8. Elimination of cadmium from Cd-contaminated Tilapia zilli in media containing EDTA and freshwater: Changes in protein levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kargin, F.

    1996-10-01

    Cadmium is not an essential metal for aquatic organisms. It enters the aquatic environment through anthropogenic sources such as industry and agriculture. Kay et al. indicated that in the USA and Belgium 40-50% of Salmo gairdneri contained 1-20 {mu}g Cd/L. Various agents are known to reduce metal accumulation in tissues of aquantic animals. This study investigates cadmium elimination from the tissues of cadmium contaminated Tilapia zilli and changes in protein levels in the tissues after exposures to cadmium, EDTA and freshwater. 18 refs., 2 tabs.

  9. Effect of coal ash on growth and metal uptake by some selected ectomycorrhizal fungi in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, P.; Reddy, U.G.; Lapeyrie, F.

    2005-07-01

    Six isolates of ectomycorrhizal fungi namely, Laccaria fraterna (EM-1083), Pisolithus tinctorius (EM-1081), Pisolithus tinctorius (EM-1290), Pisolithus tinctorius (EM-1293), Scleroderma verucosurn (EM-1283), and Scleroderma cepa (EM-1233), were grown on three variants of coal ash, namely electrostatically precipitated (ESP) ash, pond ash, and bottom ash moistened with Modified Melin-Norkans (MMN) medium in vitro. The colony diameter reflected the growth of the isolates on the coal ash. Metal accumulation in the mycelia was assayed by atomic absorption spectrophotometry. Six metals, namely aluminum, cadmium, chromium, iron, lead, and nickel were selected on the basis of their abundance in coal ash and toxicity potential formore » the present work. Growth of vegetative mycelium on fly ash variants and metal accumulation data indicated that Pisolithus tinctorius (EM-1290) was the most tolerant among the isolates tested for most of the metals. Since this isolate is known to be mycorrhizal with Eucalyptus, it could be used for the reclamation of coal ash over burdened sites.« less

  10. Toxicity of cadmium and lead in Gallus gallus domesticus assessment of body weight and metal content in tissues after metal dietary supplements.

    PubMed

    Abduljaleel, Salwa A; Shuhaimi-Othman, M

    2013-11-15

    The influence of dietary cadmium on the accumulation and effects of dietary lead, examined in chicken. This experiment was conducted to investigate the toxic effects of dietary Cd and Pb on chick's body weight and organ, content of the tissues of these two metals was also detected. One day age chicks of Gallus gallus domesticus fed diet supplemented with 25, 50, 100 ppm of Cd, second group exposure to 300, 500, 1000 ppm of Pb in feed daily during 4 weeks. The control groups were fed without supplementation of metals. The concentrations of Cd and Pb resulted in increased of Cd and Pb content in liver, gizzard and muscle. While Cd 100 ppm and Pb 1000 ppm were increased metals content in feather. Body weight of chicks was not influenced by Cd treatment. In contrary Pb treatment was significantly (p < 0.05) decreased body weight of chicks after dietary treatment. On the other hand, Liver weigh in chicks was significantly (p < 0.05) decreased after Cd and Pb treatments.

  11. Effect of chromium on vertebrae, femur and calvaria of adult male rats.

    PubMed

    Sankaramanivel, S; Jeyapriya, R; Hemalatha, D; Djody, S; Arunakaran, J; Srinivasan, N

    2006-06-01

    Alloys of chromium have a long history of success in the surgical treatment of many orthopaedic defects. Nonetheless, prostheses loosening are commonly found around arthoplasties due to corrosion of metals. On this basis, it is hypothesized that chromium accumulation interferes with remodeling of bone. The present study aims to analyse the toxic effects of chromium on bone phosphatases in various regions of the bone in rats. Rats were treated with chromium intraperitoneally (0.5 mg/kg) in the form of potassium dichromate for 5 days. The accumulation of chromium is approximately 5.2-fold in the vertebrae, 8.9-fold in the femur and 8.7-fold in the calvaria, when compared to control. Chromium administration significantly reduced the activity of enzymes, eg, alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP). The study revealed a significant increase in the concentration of calcium, altered bone formation rate and bone morphology in the femur, vertebrae and calvaria. The interesting findings of the current study suggest altered bone turnover.

  12. Heavy metals and mineral elements not included on the nutritional labels in table olives.

    PubMed

    López-López, Antonio; López, Rafael; Madrid, Fernando; Garrido-Fernández, Antonio

    2008-10-22

    The average contents, in mg/kg edible portion (e.p.), of elements not considered for nutritional labeling in Spanish table olives were as follows: aluminum, 71.1; boron, 4.41; barium, 2.77; cadmium, 0.04; cobalt, 0.12; chromium, 0.19; lithium, 6.56; nickel, 0.15; lead, 0.15; sulfur, 321; tin, 18.4; strontium, 9.71; and zirconium, 0.04. Sulfur was the most abundant element in table olives, followed by aluminum and tin (related to green olives). There were significant differences between elaboration styles, except for aluminum, tin, and sulfur. Ripe olives had significantly higher concentrations (mg/kg e.p.) of boron (5.32), barium (3.91), cadmium (0.065), cobalt (0.190), chromium (0.256), lithium (10.01), nickel (0.220), and strontium (10.21), but the levels of tin (25.55) and zirconium (0.039) were higher in green olives. The content of contaminants (cadmium, nickel, and tin) was always below the maximum limits legally established. The discriminant analysis led to an overall 86% correct classification of cases (80% after cross-validation).

  13. The effect of ambient cadmium air pollution on the hair mineral content of children.

    PubMed

    Stewart-Pinkham, S M

    1989-01-01

    Hair analyses of 80 children with learning and behavioral problems were assessed by age, sex, season, place of residence, exposure to passive smoke and excess contact with known cadmium air pollutant sources. All children had been exposed for at least 2 years to air pollution from a refuse-derived fuel incineration plant. All of the patients had increased hair cadmium compared with a control group, but there was a strong seasonal influence on hair cadmium. Exposure to cadmium was ubiquitous. A neurobehavioral toxic effect was found in children who showed evidence of inhibition of pyrimidine-5'-nucleotidase by low hair phosphorus levels and low zinc levels in whom there was enhanced lead absorption. Hair analyses appear to be a useful biological monitor for detecting toxic effects from ambient air cadmium levels in subsets of the population at risk for heavy metal toxicity. Air filter measurements appear worthless for detecting environmental contamination with cadmium in air with low levels of lead. Trees, on the other hand, which are more adversely affected by cadmium than other heavy metals, show evidence of inhibition of pyrimidine-5'-nucleosidase by excess seeding.

  14. Smokers Beware: Study Shows Increased Cadmium Levels in the Brain May Cause Severe Neurological Disorders

    ERIC Educational Resources Information Center

    King, Angela G.

    2005-01-01

    Tobacco is one crop that accumulates cadmium, making smokers susceptible to higher levels of the metal in their bodies. The findings suggest that even a low-level exposure to a heavy metal like cadmium is likely to cause a change in the functions of neurons in the brain and the behavioral response to drugs of abuse.

  15. Studies on the biosorption of hexavalent chromium from aqueous solutions by using boiled mucilaginous seeds of Ocimum americanum.

    PubMed

    Lakshmanraj, Levankumar; Gurusamy, Ayyanar; Gobinath, M B; Chandramohan, R

    2009-09-30

    Investigations were carried out to study the chromium removal efficiency of boiled mucilaginous seeds of Ocimum americanum. Batch experiments were conducted to study the biosorption kinetics of chromium removal for the concentrations 10mg/L, 20mg/L and 40 mg/L of chromium(VI) solutions. The biosorbent dosage was 8 g dry seeds/L. The toxic hexavalent chromium was reduced to less toxic chromium(III) in the presence of seeds and the reduced chromium was adsorbed on the mucilage of seeds. Both the chromium(VI) and chromium(III) were present in the aqueous phase. The optimum chromium reduction and adsorption was observed at the pH value 1.5. The biosorption data fitted well with Langmuir isotherm. The biosorption capacity calculated from the Langmuir isotherm was q=32 mg chromium(III)/g of dry seeds. The continuous column study was also carried out at the flow rate of 27 mL/h for the initial concentration 25mg/L of chromium(VI) feed solution using a packed bed column filled with boiled mucilaginous seeds. The maximum reduction of chromium(VI) to chromium(III) in the packed bed was 80%. The percentage removal of reduced chromium from the aqueous solution was 56.25%. This value was maintained constant until 0.52 L of chromium(VI) solution was pumped through the packed bed column. Thus the naturally immobilized polysaccharides on the seeds mimic the microbial polysaccharides in terms of their ability to adsorb heavy metals with an added advantage of making the immobilization step unnecessary which is a major cost factor of the metal removal process when microbial exopolysaccharides used. The uniform size and spherical shape of swollen seeds give an additional advantage to use them in a packed bed column for continuous removal of chromium(VI) from aqueous solutions.

  16. The dynamic changes of the plasma membrane proteins and the protective roles of nitric oxide in rice subjected to heavy metal cadmium stress

    USDA-ARS?s Scientific Manuscript database

    The heavy metal cadmium is a common environmental contaminant in soils and has adverse effects on crop growth and development. The signaling processes in plants that initiate cellular responses to environmental stress have been shown to be located in the plasma membrane (PM). A better understanding ...

  17. Localization and Toxic Effects of Cadmium, Copper, and Uranium in Azolla1

    PubMed Central

    Sela, Mordechai; Tel-Or, Elisha; Fritz, Eberhardt; Huttermann, Aloys

    1988-01-01

    The storage and distribution of copper, cadmium, and uranium and their effects on ionic contents in roots and shoots of Azolla filiculoides has been studied by x-ray microanalysis. The relative content of copper was eightfold higher in the root than in the shoot, suggesting low mobility of this metal in Azolla plant. Cadmium relative content in the shoot was similar to its content in the root, hence its mobility was relatively high. The absence of significant uranium quantities in the shoot and its relative high content in the root suggest the immobility of this metal from Azolla root. Cadmium formed precipitates with phosphate and calcium in xylem cells of the shoot bundle and caused a two- to threefold increase in the content of phosphate in the root. Uranium in roots and cadmium in shoots were associated with calcium. All three treatments caused losses of potassium, chloride, and magnesium from Azolla roots. Accumulation of heavy metals in Azolla and their mobility from the root to the shoot can be correlated with damage caused by the loss of essential nutrients. Images Fig. 1 Fig. 2 Fig. 5 Fig. 7 PMID:16666274

  18. Evaluation of Cajanus cajan (pigeon pea) for phytoremediation of landfill leachate containing chromium and lead.

    PubMed

    Jerez Ch, José A; Romero, Rosaura M

    2016-11-01

    Landfill leachates containing heavy metals are important contaminants and a matter of great concern due to the effect that they might have on ecosystems. We evaluated the use of Cajanus cajan to remove chromium and lead from landfill leachates. Eight-week-old plants were submitted to varied tests to select the experimental conditions. Water assays with a solution (pH 6) containing leachate (25% v/v) were selected; the metals were added as potassium dichromate and lead (II) nitrate salts. Soil matrices that contained leachate (30% v/v) up to field capacity were used. For both water and soil assays, the metal concentrations were 10 mg kg(-1). C. cajan proved able to remove 49% of chromium and 36% of lead, both from dilute leachate. The plants also removed 34.7% of chromium from irrigated soil, but were unable to decrease the lead content. Removal of nitrogen from landfill leachate was also tested, resulting in elimination of 85% of ammonia and 70% of combined nitrite/nitrate species. The results indicate that C. cajan might be an effective candidate for the rhizofiltration of leachates containing chromium and lead, and nitrogen in large concentrations.

  19. Biosorption and biotransformation of chromium by Serratia sp. isolated from tannery effluent.

    PubMed

    Srivastava, Shaili; Thakur, Indu Shekhar

    2012-01-01

    A bacterium isolated from soil and sediment ofa leather tanning mill's effluent was identified as Serratia sp. by the analysis of 16S rDNA. Scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX) and transmission electron microscopy (TEM) were used to assess morphological changes and confirm chromium biosorption in Serratia sp. both in a shake-flask culture containing chromium and in a tannery wastewater. The SEMEDX and the elemental analysis of the chromate-containing samples confirmed the binding of chromium with the bacterial biomass. The TEM exhibited chromium accumulation throughout the bacterial cell, with some granular deposits in the cell periphery and in the cytoplasm. X-ray diffraction analysis (XRD) was used to quantify the chromium and to determine the chemical nature of the metal-microbe interaction. The XRD data showed the crystalline character of the precipitates, which consisted of mainly calcium chromium oxide, chromium fluoride phosphate and related organo-Cr(III) complex crystals. The XRD data also revealed a strong involvement of cellular carboxyl and phosphate groups in chromium binding by the bacterial biomass. The results of the study indicated that a combined mechanism of ion-exchange, complexation, croprecipitation and immobilization was involved in the biosorption of chromium by bacterial cells in contaminated environments.

  20. Urine chromium as an estimator of air exposure to stainless steel welding fumes.

    PubMed

    Sjögren, B; Hedström, L; Ulfvarson, U

    1983-01-01

    Welding stainless steel with covered electrodes, also called manual metal arc welding, generates hexavalent airborne chromium. Chromium concentrations in air and post-shift urine samples, collected the same arbitrarily chosen working day, showed a linear relationship. Since post-shift urine samples reflect chromium concentrations of both current and previous stainless steel welding fume exposure, individual urine measurements are suggested as approximate although not exact estimators of current exposure. This study evaluates the practical importance of such measurements by means of confidence limits and tests of validity.