Science.gov

Sample records for metals palladium platinum

  1. Noble Metal Catalysts for Mercury Oxidation in Utility Flue Gas: Gold, Palladium and Platinum Formulations

    SciTech Connect

    Presto, A.A.; Granite, E.J

    2008-07-01

    The use of noble metals as catalysts for mercury oxidation in flue gas remains an area of active study. To date, field studies have focused on gold and palladium catalysts installed at pilot scale. In this article, we introduce bench-scale experimental results for gold, palladium and platinum catalysts tested in realistic simulated flue gas. Our initial results reveal some intriguing characteristics of catalytic mercury oxidation and provide insight for future research into this potentially important process.

  2. Toxicity of platinum, palladium and rhodium to Daphnia magna in single and binary metal exposure experiments.

    PubMed

    Zimmermann, Sonja; Wolff, Carolina; Sures, Bernd

    2017-02-17

    Mainly due to automobile traffic, but also due to other sources, the platinum group elements (PGE) platinum (Pt), palladium (Pd) and rhodium (Rh) are introduced into aquatic biotopes where they accumulate in sediments of lakes and rivers. However, the toxicity of these noble metals to aquatic organisms is not well understood and especially toxicity studies under standardized condition are lacking. Thus, the toxicity of Pt, Pd and Rh to Daphnia magna was tested in single metal exposure experiments according to OECD guideline 202. Immobility and lethality was recorded after 24 h and 48 h of exposure and EC50 and LC50, respectively, were determined. As the nominal exposure concentration of Pd differed significantly from the quantified concentration, the control of the real exposure concentration by chemical analysis is mandatory, especially for Pd. The toxicity decreased in the order Pd > Pt ≫ Rh with e.g. LC50(48 h) values of 14 μg/L for Pd, 157 μg/L for Pt and 56,800 μg/L for Rh. The exposure period had a clear effect on the toxicity of Pt, Pd and Rh. For Pt and Rh the endpoint immobility was more sensitive than the endpoint lethality whereas Pd toxicity was similar for both endpoints. The Hill slopes, which are a measure for the steepness of the concentration-response curves, showed no significant discrepancies between the different metals. The binary metal exposure to Pt and Pd revealed a more-than-additive, i.e. a synergistic toxicity using the toxic unit approach. The present study is a start to understand the toxicity of interacting PGE. The modes of action behind the synergistic effect are unclear.

  3. Fluorometric imaging methods for palladium and platinum and the use of palladium for imaging biomolecules.

    PubMed

    Tracey, Matthew P; Pham, Dianne; Koide, Kazunori

    2015-07-21

    Neither palladium nor platinum is an endogenous biological metal. Imaging palladium in biological samples, however, is becoming increasingly important because bioorthogonal organometallic chemistry involves palladium catalysis. In addition to being an imaging target, palladium has been used to fluorometrically image biomolecules. In these cases, palladium species are used as imaging-enabling reagents. This review article discusses these fluorometric methods. Platinum-based drugs are widely used as anticancer drugs, yet their mechanism of action remains largely unknown. We discuss fluorometric methods for imaging or quantifying platinum in cells or biofluids. These methods include the use of chemosensors to directly detect platinum, fluorescently tagging platinum-based drugs, and utilizing post-labeling to elucidate distribution and mode of action.

  4. Mineral resource of the month: platinum-group metals

    USGS Publications Warehouse

    Hilliard, Henry

    2003-01-01

    The precious metals commonly referred to as platinum-group metals (PGM) include iridium, osmium, palladium, platinum, rhodium and ruthenium. PGM are among the rarest of elements, and their market values — particularly for palladium, platinum and rhodium — are the highest of all precious metals.

  5. Monodisperse colloidal metal particle from nonaqueous solutions: catalytic behavior in hydrogenation of but-1-ene of platinum, palladium, and rhodium particles supported on pumice

    SciTech Connect

    Boutonnet, M.; Kizling, J.; Mintsa-Eya, V.; Choplin, A.; Touroude, R.; Maire, G.; Stenius, P.

    1987-01-01

    Metal catalysts have been prepared by depositing monodisperse particles of platinum (2-3 nm), rhodium (2-3 nm), or palladium (5 nm) prepared in reversed micellar solutions on pumice. The particles are well dispersed on the support whereas particles deposited from aqueous or alcoholic solution give large aggregates. The catalytic properties of these different catalysts in the deuteration, isomerization, and hydrogen-deuterium exchange of but-1-ene have been compared. The activities calculated per metal surface atom are similar. However, platinum prepared from microemulsions show unusually high selectivity in the isomerization reaction, and for such particles dehydrogenated species are active in the exchange reaction. The specificity of rhodium and palladium catalysts is independent of the mode of preparation. The reaction mechanisms are discussed.

  6. Platinum-ruthenium-palladium fuel cell electrocatalyst

    DOEpatents

    Gorer, Alexander

    2006-02-07

    A catalyst suitable for use in a fuel cell, especially as an anode catalyst, that contains platinum at a concentration that is between about 20 and about 60 atomic percent, ruthenium at a concentration that is between about 20 and about 60 atomic percent, palladium at a concentration that is between about 5 and about 45 atomic percent, and having an atomic ratio of platinum to ruthenium that is between about 0.7 and about 1.2. Alternatively, the catalyst may contain platinum at a concentration that is between about 25 and about 50 atomic percent, ruthenium at a concentration that is between about 25 and about 55 atomic percent, palladium at a concentration that is between about 5 and about 45 atomic percent, and having a difference between the concentrations of ruthenium and platinum that is no greater than about 20 atomic percent.

  7. Platinum-ruthenium-palladium alloys for use as a fuel cell catalyst

    DOEpatents

    Gorer, Alexander

    2002-01-01

    A noble metal alloy composition for a fuel cell catalyst, a ternary alloy composition containing platinum, ruthenium and palladium. The alloy shows increased activity as compared to well-known catalysts.

  8. Determination of palladium and platinum by atomic absorption

    USGS Publications Warehouse

    Schnepfe, M.M.; Grimaldi, F.S.

    1969-01-01

    Palladium and platinum are determined by atomic absorption after fire-assay concentration into a gold bead. The limit of determination is ~0??06 ppm in a 20-g sample. Serious depressive interelement interferences are removed by buffering the solutions with a mixture of cadmium and copper sulphates with cadmium and copper concentrations each at 0??5%. Substantial amounts of Ag, Al, Au, Bi, Ca, Co, Cr, Fe, Hg, K, La, Mg, Mn, Mo, Na, Ni, Pb, Te, Ti, V, Y, Zn, and the platinum metals do not interfere in the atomic-absorption determination. ?? 1969.

  9. Accumulation of the precious metals platinum, palladium and rhodium from automobile catalytic converters in Paratenuisentis ambiguus as compared with its fish host, Anguilla anguilla.

    PubMed

    Zimmermann, S; von Bohlen, A; Messerschmidt, J; Sures, B

    2005-03-01

    The platinum group metals (PGM) Pt, Pd and Rh are emitted into the environment mainly by catalytic exhaust gas converters of cars. As PGM accumulate in sediments of aquatic ecosystems, the study was focused on the uptake of the noble metals by European eels, Anguilla anguilla infected with the acanthocephalan Paratenuisentis ambiguus. Eels were exposed to ground catalytic converter material for six weeks. After exposure Pt and Pd were detected in the liver and kidney of the eels and in the parasites. Palladium was also found in fish muscle and intestine. No Rh uptake by the eel tissues and the parasites occurred. Paratenuisentis ambiguus contained the highest levels of both metals with 40 times higher Pt concentrations and four times higher Pd concentrations than the liver of its host. Due to its accumulation capacity for PGM, P. ambiguus can be applied as a sensitive accumulation indicator in field studies to assess the degree of environmental PGM contamination in aquatic ecosystems.

  10. Initiation of electroless nickel plating on copper, palladium-activated copper, gold, and platinum

    SciTech Connect

    Flis, J.; Duquette, D.J.

    1984-02-01

    The catalytic activity of copper, palladium-activated copper, gold, and platinum for electro-oxidation of hypophosphite and electroless nickel plating was investigated in an ammoniacal solution of pH 8.8 at 50/sup 0/C by potential measurements and linear sweep voltammetry from -0.3 to -0.92V vs. SCE. Early stages of nickel plating on copper-palladium substrates were studied by scanning electron microscopy in conjunction with EDAX. It was found that palladium-activated copper and gold were catalytically active in the entire range of potentials examined; copper was active below -0.6 platinum was not active at all. Small amounts of electrolytically deposited nickel considerably increased the electro-oxidation rate of hypophosphite on copper, gold, and palladium. TEM examinations showed that activation of copper in a PdCl/sub 2//HCl solution resulted in the deposition of palladium in the form of separate patches. Electroless nickel deposition on copper substrates with separate palladium spots took place on copper and palladium independently of each other. The deposition on palladium was faster than that on copper. It was concluded that the activation of copper substrates around palladium spots occurred solely through a spontaneous potential shift, induced by electro-oxidation of hypophosphite on the palladium spots. It was suggested that small amounts of one metal synergistically enhanced the catalytic activity of the other metals.

  11. Platinum- and platinum alloy-coated palladium and palladium alloy particles and uses thereof

    DOEpatents

    Adzic, Radoslav; Zhang, Junliang; Mo, Yibo; Vukmirovic, Miomir Branko

    2010-04-06

    The present invention relates to particle and nanoparticle composites useful as oxygen-reduction electrocatalysts. The particle composites are composed of a palladium or palladium-alloy particle or nanoparticle substrate coated with an atomic submonolayer, monolayer, bilayer, or trilayer of zerovalent platinum atoms. The invention also relates to a catalyst and a fuel cell containing the particle or nanoparticle composites of the invention. The invention additionally includes methods for oxygen reduction and production of electrical energy by using the particle and nanoparticle composites of the invention.

  12. Unusual structures and reactivity of mixed metal cluster complexes containing the palladium/platinum tri-t-butylphosphine grouping.

    PubMed

    Adams, Richard D; Captain, Burjor

    2009-03-17

    Polynuclear metal carbonyl complexes have a range of applications in chemical research: for example, they can serve as surface models to probe features of heterogeneous catalysis and can perform novel transformations of organic molecules in solutions. Mixed metal complexes can demonstrate bimetallic cooperativity and synergism and can also serve as precursors to multimetallic heterogeneous catalysts that have superior activities and selectivities. This Account describes the results of our recent comprehensive study of the chemistry of mixed metal cluster complexes containing the sterically encumbered M(PBu(t)(3)), M = Pd or Pt, group. This grouping readily adds to the metal-metal bonds of metal carbonyl cluster complexes and modifies their reactivity. We have prepared new, highly electronically unsaturated mixed metal complexes that exhibit unusually high reactivity toward hydrogen. The platinum atom of the Pt(PBu(t)(3)) grouping can bond to as many as five metal atoms, and it can interconvert, sometimes rapidly, between the different bonding modes. The large steric effects of the PBu(t)(3) ligand allowed us to prepare highly unsaturated, stable, mixed-metal complexes, and these complexes react with hydrogen, sometimes reversibly, under very mild conditions to yield polyhydride complexes. Strong evidence suggests that the Pt(PBu(t)(3)) group can also activate metal-hydrogen bonds in other complexes. In the future, we expect that researchers will prepare a greater variety of mixed metal complexes containing the Pd/Pt(PBu(t)(3)) group or other similar bulky groups, and that some of these complexes will exhibit even more unusual chemistry than what we have observed so far.

  13. Luminescent Cyclometalated Platinum and Palladium Complexes with Novel Photophysical Properties

    NASA Astrophysics Data System (ADS)

    Turner, Eric

    Organic light emitting diodes (OLEDs) is a rapidly emerging technology based on organic thin film semiconductors. Recently, there has been substantial investment in their use in displays. In less than a decade, OLEDs have grown from a promising academic curiosity into a multi-billion dollar global industry. At the heart of an OLED are emissive molecules that generate light in response to electrical stimulation. Ideal emitters are efficient, compatible with existing materials, long lived, and produce light predominantly at useful wavelengths. Developing an understanding of the photophysical processes that dictate the luminescent properties of emissive materials is vital to their continued development. Chapter 1 and Chapter 2 provide an introduction to the topics presented and the laboratory methods used to explore them. Chapter 3 discusses a series of tridentate platinum complexes. A synthetic method utilizing microwave irradiation was explored, as well as a study of the effects ligand structure had on the excited state properties. Results and techniques developed in this endeavor were used as a foundation for the work undertaken in later chapters. Chapter 4 introduces a series of tetradentate platinum complexes that share a phenoxy-pyridyl (popy) motif. The new molecular design improved efficiency through increased rigidity and modification of the excited state properties. This class of platinum complexes were markedly more efficient than those presented in Chapter 3, and devices employing a green emitting complex of the series achieved nearly 100% electron-to-photon conversion efficiency in an OLED device. Chapter 5 adapts the ligand structure developed in Chapter 4 to palladium. The resulting complexes exceed reported efficiencies of palladium complexes by an order of magnitude. This chapter also provides the first report of a palladium complex as an emitter in an OLED device. Chapter 6 discusses the continuation of development efforts to include carbazolyl

  14. Surfactant gel adsorption of platinum(II), (IV) and palladium(II) as chloro-complexes and kinetic separation of palladium from platinum using EDTA.

    PubMed

    Murakami, Yoshiko; Hiraiwa, Kaoru; Sasaki, Yoshiaki; Fujiwara, Isamu; Tagashira, Shoji

    2007-09-01

    A micellar solution of cetylpyridinium chloride (CPC) can separate into two phases due to a temperature change or to the addition of salts. Platinum(II), (IV) and palladium(II) reacted with chloride ions to form stable anionic complexes of PtCl4(2-), PtCl6(2-) and PdCl4(2-), respectively, and were adsorbed onto the CPC gel phase. The CPC phase plays the role of an ion-exchange adsorbent for the anionic complexes. By such a procedure, the precious metals of platinum and palladium could be separated from base metals such as copper, zinc and iron. The kinetic separation was performed by a ligand exchange reaction of the palladium(II) chloro-complex with EDTA at 60 degrees C. The anionic palladium(II)-EDTA complex could not bind the opposite charged CP+ and was desorbed from the CPC phase. In the aqueous phase, the recovery of palladium(II) by the double-desorption was 101.1 +/- 1.2%. The platinum(II) and (IV) chloro-complexes were stable for at least 30 min and remained in the CPC phase.

  15. Green Synthesis, Characterization and Uses of Palladium/Platinum Nanoparticles

    NASA Astrophysics Data System (ADS)

    Siddiqi, Khwaja Salahuddin; Husen, Azamal

    2016-11-01

    Biogenic synthesis of palladium (Pd) and platinum (Pt) nanoparticles from plants and microbes has captured the attention of many researchers because it is economical, sustainable and eco-friendly. Plant and their parts are known to have various kinds of primary and secondary metabolites which reduce the metal salts to metal nanoparticles. Shape, size and stability of Pd and Pt nanoparticles are influenced by pH, temperature, incubation time and concentrations of plant extract and that of the metal salt. Pd and Pt nanoparticles are broadly used as catalyst, as drug, drug carrier and in cancer treatment. They have shown size- and shape-dependent specific and selective therapeutic properties. In this review, we have discussed the biogenic fabrication of Pd/Pt nanoparticles, their potential application as catalyst, medicine, biosensor, medical diagnostic and pharmaceuticals.

  16. Green Synthesis, Characterization and Uses of Palladium/Platinum Nanoparticles.

    PubMed

    Siddiqi, Khwaja Salahuddin; Husen, Azamal

    2016-12-01

    Biogenic synthesis of palladium (Pd) and platinum (Pt) nanoparticles from plants and microbes has captured the attention of many researchers because it is economical, sustainable and eco-friendly. Plant and their parts are known to have various kinds of primary and secondary metabolites which reduce the metal salts to metal nanoparticles. Shape, size and stability of Pd and Pt nanoparticles are influenced by pH, temperature, incubation time and concentrations of plant extract and that of the metal salt. Pd and Pt nanoparticles are broadly used as catalyst, as drug, drug carrier and in cancer treatment. They have shown size- and shape-dependent specific and selective therapeutic properties. In this review, we have discussed the biogenic fabrication of Pd/Pt nanoparticles, their potential application as catalyst, medicine, biosensor, medical diagnostic and pharmaceuticals.

  17. Electronic Transitions of Palladium Monoboride and Platinum Monoboride

    NASA Astrophysics Data System (ADS)

    Ng, Y. W.; Pang, H. F.; Wong, Y. S.; Qian, Yue; Cheung, A. S.-C.

    2012-06-01

    Electronic transition spectrum of palladium monoboride (PdB) and platinum (PtB) monoboride have been studied using the technique of laser-ablation/reaction free jet expansion and laser induced fluorescence spectroscopy. The metal monoborides were produced by reacting laser ablated metal atoms and diborane ((B_2H_6) seeded in argon. Five and six vibrational bands were observed respectively for the PdB and PtB molecules. Preliminary analysis of the rotationally resolved structure showed that both molecules have X2 Σ+ ground state. Least-squares fit of the measured line positions yielded molecular constants for the electronic states involved. Molecular and electronic structures of PdB and PtB are discussed using a molecular orbital energy level diagram. Financial support from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. HKU 701008P) is gratefully acknowledged.

  18. Superlattices of platinum and palladium nanoparticles

    SciTech Connect

    MARTIN,JAMES E.; WILCOXON,JESS P.; ODINEK,JUDY G.; PROVENCIO,PAULA P.

    2000-04-06

    The authors have used a nonionic inverse micelle synthesis technique to form nanoclusters of platinum and palladium. These nanoclusters can be rendered hydrophobic or hydrophilic by the appropriate choice of capping ligand. Unlike Au nanoclusters, Pt nanoclusters show great stability with thiol ligands in aqueous media. Alkane thiols, with alkane chains ranging from C{sub 6} to C{sub 18} were used as hydrophobic ligands, and with some of these they were able to form 2-D and/or 3-D superlattices of Pt nanoclusters as small as 2.7 nm in diameter. Image processing techniques were developed to reliably extract from transmission electron micrographs (TEMs) the particle size distribution, and information about the superlattice domains and their boundaries. The latter permits one to compute the intradomain vector pair correlation function of the particle centers, from which they can accurately determine the lattice spacing and the coherent domain size. From these data the gap between the particles in the coherent domains can be determined as a function of the thiol chain length. It is found that as the thiol chain length increases, the gaps between particles within superlattice domains increases, but more slowly than one might expect, possibly indicating thiol chain interdigitation.

  19. Fate of platinum metals in the environment.

    PubMed

    Pawlak, Justyna; Łodyga-Chruścińska, Elżbieta; Chrustowicz, Jakub

    2014-07-01

    For many years now automotive exhaust catalysts have been used to reduce the significant amounts of harmful chemical substances generated by car engines, such as carbon monoxide, nitrogen oxides, and aromatic hydrocarbons. Although they considerably decrease environmental contamination with the above-mentioned compounds, it is known that catalysts contribute to the environmental load of platinum metals (essential components of catalysts), which are released with exhaust fumes. Contamination with platinum metals stems mainly from automotive exhaust converters, but other major sources also exist. Since platinum group elements (PGEs): platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru) and iridium (Ir) seem to spread in the environment and accumulate in living organisms, they may pose a threat to animals and humans. This paper discusses the modes and forms of PGE emission as well as their impact on the environment and living organisms.

  20. Cyto- and genotoxic effects of coordination complexes of platinum, palladium and rhodium in vitro.

    PubMed

    Bünger, J; Stork, J; Stalder, K

    1996-01-01

    The growing industrial use of platinum group elements as catalysts, especially in automobile exhaust detoxification (trimetal catalytic converters), is causing increasing occupational and environmental pollution. The cytotoxic and mutagenic properties of industrially used coordination complexes of platinum, palladium and rhodium were investigated using the neutral red cytotoxicity assay on two established cell lines and the Salmonella typhimurium/microsome test system (Ames test). Cytotoxic effects of the platinum complexes, measured as ED50, occurred at test concentrations of 0.2 mM. The analogous palladium salts tested were 3 times less toxic with ED50 being 0.6 mM, while the rhodium salts proved to be 30 times less toxic (ED50 = 6 mM). Levels of toxicity of the different complexes of a particular metal did not differ significantly from each other, which indicates that the metal itself is responsible for the toxic effects. In the Ames test, the spontaneous mutation rates increased by factors of 3 to 20 when the four tester strains were exposed to the platinum complexes. The analogous rhodium compounds proved to be considerably less mutagenic, and palladium demonstrated no mutagenic potential. As all of the four tester strains contain different mutations, the mutagenic potential of platinum and rhodium complexes appears to be based on a variety of mechanisms that damage DNA. From these in vitro experiments, it can be concluded that water-soluble complex salts of rhodium are less toxic and have a smaller mutagenic potential than the analogous platinum complexes. For palladium there is no evidence of any mutagenic property. From this point of view, the development of a catalytic converter containing predominantly palladium may be a possible means of minimizing potential health risks from this exhaust detoxification technique.

  1. Quasi-homogeneous hydrogenation with platinum and palladium nanoparticles stabilized by dendritic core-multishell architectures.

    PubMed

    Schwarze, Michael; Keilitz, Juliane; Nowag, Sabrina; Parapat, Riny Y; Haag, Rainer; Schomäcker, Reinhard

    2011-05-17

    Platinum and palladium nanoparticles, supported and stabilized by polymeric core-shell architectures, proved to be active catalysts for hydrogenation reactions. Here, two different reactions were used as probes to investigate the influence of the polymeric support: the hydrogenation of α-methyl styrene (AMS) to cumene and the partial hydrogenation of 1,5-cyclooctadiene (COD). We found that the stability of the nanoparticles and the rate of reaction are higher in the presence of a hydrophobic octadecyl shell within a three-shell polymer system. The kinetic study of AMS hydrogenation showed much higher activities for palladium nanoparticles than for platinum nanoparticles, and the obtained results (e.g., 35 kJ/mol for the activation energy) are of the same order of magnitude as reported earlier for palladium supported on alumina. A methanol/n-heptane biphasic mixture was tested for catalyst recycling and allowed for highly efficient catalyst separation with very low metal leaching.

  2. Operation of platinum-palladium catalysts with leaded gasoline.

    PubMed Central

    Teague, D M; Clougherty, L B; Speca, A N

    1975-01-01

    The effect of various fuel additives on the ability of platinum-palladium catalytic converters to remove the carbon monoxide and hydrocarbon components of automotive exhaust has been examined. Engine dynamometer studies suggest that these catalysts may be successfully used in conjunction with fuels of relatively high tetraethyllead concentrations, provided the ethylene dibromide portion of the scavenger is excluded. PMID:50929

  3. Identification of platinum and palladium particles emitted from vehicles and dispersed into the surface environment.

    PubMed

    Prichard, Hazel M; Fisher, Peter C

    2012-03-20

    Platinum, palladium, and rhodium are emitted from vehicle catalytic converters. Until now, the form of precious metal particles in road dust and urban waste has not been identified. This study has located, imaged, and analyzed these particles in road dust and gully waste. Two fragments of catalytic converter have been observed in road dust. They are 40-80 μm in size and covered in many minute particles (<0.3 μm) of either platinum with minor rhodium or palladium. One fragment identified in gully sediment is smaller, 25 μm in diameter, hosting only one attached particle of palladium with minor rhodium. As fragments are washed off roads they begin to disintegrate and the precious metals become detached. Also precious metal-bearing particles have been located in incinerated sewage ash including a 20 μm diameter cluster of <3 μm sized platinum particles that may be the remains of a catalytic converter fragment that has survived incineration. The form of these precious metal-bearing particles described here reveals that as they are dispersed from roads they are likely to be present predominantly as two particle sizes. Either they are attached to larger fragments of catalytic converter or they are released as individual detached tiny <0.3 μm to nanoparticle sizes.

  4. Metal chelates as anti-cancer agents. II cytotoxic action of palladium and platinum complexes of 6-mercaptopurine and thioguanine.

    PubMed

    Das, M; Livingstone, S E

    1978-08-01

    The metal complexes Pd(MP)2.2H2O, Pt(MP)2H2O (MPH=6-mercaptopurine), Pt(AMP2.3H2O and Pd3(AMP)4Cl2(AMPH).4H2O (AMPH=thioguanine) have been isolated. They were screened for anti-tumour activity in the L-1210 lymphoid leukaemia test system in mice. All 4 show marked anti-tumour activity, the complex Pt(AMP)2.3H2O giving a T/C of 185 at the optimum dosage. However, the anti-tumour activity of the metal complexes is somewhat less than that shown by the parent purines under the same conditions.

  5. Determination of palladium, platinum and rhodium in geologic materials by fire assay and emission spectrography

    USGS Publications Warehouse

    Hapfty, J.; Riley, L.B.

    1968-01-01

    A method is described for the determination of palladium down to 4ppb (parts per billion, 109), platinum down to 10 ppb and rhodium down to 5 ppb in 15 g of sample. Fire-assay techniques are used to preconcentrate the platinum metals into a gold bead, then the bead is dissolved in aqua regia and diluted to volume with 1M hydrochloric acid. The solution is analysed by optical emission spectrography of the residue from 200 ??l of it evaporated on a pair of flat-top graphite electrodes. This method requires much less sample handling than most published methods for these elements. Data are presented for G-1, W-1, and six new standard rocks of the U.S. Geological Survey. The values for palladium in W-1 are in reasonable agreement with previously published data. ?? 1968.

  6. Mineral resource of the month: platinum group metals

    USGS Publications Warehouse

    Loferski, Patricia J.

    2010-01-01

    The article focuses on platinum group metals (PGMs) and their properties. According to the author, PGMs, which include iridium, osmium, palladium, platinum, rhodium, and ruthenium, are among the rarest mineral commodities in the Earth's crust. PGMs are primarily used as catalytic converters that clean harmful exhaust from vehicle engines. They are also used in the chemical industry as catalysts in the production of nitric acid and in the petroleum refining industry.

  7. Interactions of platinum metals and their complexes in biological systems.

    PubMed Central

    LeRoy, A F

    1975-01-01

    Platinum-metal oxidation catalysts are to be introduced in exhaust systems of many 1975 model-year automobiles in the U.S. to meet Clean Air Act standards. Small quantities of finely divided catalyst have been found issuing from prototype systems; platinum and palladium compounds may be found also. Although platinum exhibits a remarkable resistance to oxidation and chemical attack, it reacts chemically under some conditions producing coordination complex compounds. Palladium reacts more readily than platinum. Some platinum-metal complexes interact with biological systems as bacteriostatic, bacteriocidal, viricidal, and immunosuppressive agents. Workers chronically exposed to platinum complexes often develop asthma-like respiratory distress and skin reactions called platinosis. Platinum complexes used alone and in combination therapy with other drugs have recently emerged as effective agents in cancer chemotherapy. Understanding toxic and favorable interactions of metal species with living organisms requires basic information on quantities and chemical characteristics of complexes at trace concentrations in biological materials. Some basic chemical kinetic and thermodynamic data are presented to characterize the chemical behavior of the complex cis-[Pt(NH3)2Cl2] used therapeutically. A brief discussion of platinum at manogram levels in biological tissue is discussed. PMID:50943

  8. Interactions of platinum metals and their complexes in biological systems.

    PubMed

    LeRoy, A F

    1975-04-01

    Platinum-metal oxidation catalysts are to be introduced in exhaust systems of many 1975 model-year automobiles in the U.S. to meet Clean Air Act standards. Small quantities of finely divided catalyst have been found issuing from prototype systems; platinum and palladium compounds may be found also. Although platinum exhibits a remarkable resistance to oxidation and chemical attack, it reacts chemically under some conditions producing coordination complex compounds. Palladium reacts more readily than platinum. Some platinum-metal complexes interact with biological systems as bacteriostatic, bacteriocidal, viricidal, and immunosuppressive agents. Workers chronically exposed to platinum complexes often develop asthma-like respiratory distress and skin reactions called platinosis. Platinum complexes used alone and in combination therapy with other drugs have recently emerged as effective agents in cancer chemotherapy. Understanding toxic and favorable interactions of metal species with living organisms requires basic information on quantities and chemical characteristics of complexes at trace concentrations in biological materials. Some basic chemical kinetic and thermodynamic data are presented to characterize the chemical behavior of the complex cis-[Pt(NH3)2Cl2] used therapeutically. A brief discussion of platinum at manogram levels in biological tissue is discussed.

  9. Bulk synthesis of nanoporous palladium and platinum powders

    DOEpatents

    Robinson, David B [Fremont, CA; Fares, Stephen J [Pleasanton, CA; Tran, Kim L [Livermore, CA; Langham, Mary E [Pleasanton, CA

    2012-04-17

    Disclosed is a method for providing nanoporous palladium and platinum powders. These materials were synthesized on milligram to gram scales by chemical reduction of tetrahalo-complexes with ascorbate in a concentrated aqueous surfactant at temperatures between -20.degree. C. and 30.degree. C. The prepared particles have diameters of approximately 50 nm, wherein each particle is perforated by pores having diameters of approximately 3 nm, as determined by electron tomography. These materials are of potential value for hydrogen and electrical charge storage applications.

  10. Bulk synthesis of nanoporous palladium and platinum powders

    DOEpatents

    Robinson, David B; Fares, Stephen J; Tran, Kim L; Langham, Mary E

    2014-04-15

    Disclosed is a method for providing nanoporous palladium and platinum powders. These materials were synthesized on milligram to gram scales by chemical reduction of tetrahalo-complexes with ascorbate in a concentrated aqueous surfactant at temperatures between -20.degree. C. and 30.degree. C. The prepared particles have diameters of approximately 50 nm, wherein each particle is perforated by pores having diameters of approximately 3 nm, as determined by electron tomography. These materials are of potential value for hydrogen and electrical charge storage applications.

  11. Hydrogen absorption induced metal deposition on palladium and palladium-alloy particles

    DOEpatents

    Wang, Jia X [East Setauket, NY; Adzic, Radoslav R [East Setauket, NY

    2009-03-24

    The present invention relates to methods for producing metal-coated palladium or palladium-alloy particles. The method includes contacting hydrogen-absorbed palladium or palladium-alloy particles with one or more metal salts to produce a sub-monoatomic or monoatomic metal- or metal-alloy coating on the surface of the hydrogen-absorbed palladium or palladium-alloy particles. The invention also relates to methods for producing catalysts and methods for producing electrical energy using the metal-coated palladium or palladium-alloy particles of the present invention.

  12. Recent strikes in South Africa’s platinum-group metal mines: effects upon world platinum-group metal supplies

    USGS Publications Warehouse

    Yager, Thomas R.; Soto-Viruet, Yadira; Barry, James J.

    2012-01-01

    The recent labor disputes over wages and working conditions that have affected South Africa’s three leading platinum-group metal (PGM) producers have affected an industry already plagued by market pressures and labor unrest and raised the specter of constraints in the world’s supply of these metals. Although low demand for these metals in 2011 and 2012 helped to offset production losses of recent years, and particularly those losses caused by the strikes in 2012, a prolonged resumption of strikes could cause severe shortages of iridium, platinum, rhodium, ruthenium, and, to a lesser extent, palladium.

  13. Biaxially textured metal substrate with palladium layer

    DOEpatents

    Robbins, William B [Maplewood, MN

    2002-12-31

    Described is an article comprising a biaxially textured metal substrate and a layer of palladium deposited on at least one major surface of the metal substrate; wherein the palladium layer has desired in-plane and out-of-plane crystallographic orientations, which allow subsequent layers that are applied on the article to also have the desired orientations.

  14. Palladium-platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction.

    PubMed

    Wang, Xue; Choi, Sang-Il; Roling, Luke T; Luo, Ming; Ma, Cheng; Zhang, Lei; Chi, Miaofang; Liu, Jingyue; Xie, Zhaoxiong; Herron, Jeffrey A; Mavrikakis, Manos; Xia, Younan

    2015-07-02

    Conformal deposition of platinum as ultrathin shells on facet-controlled palladium nanocrystals offers a great opportunity to enhance the catalytic performance while reducing its loading. Here we report such a system based on palladium icosahedra. Owing to lateral confinement imposed by twin boundaries and thus vertical relaxation only, the platinum overlayers evolve into a corrugated structure under compressive strain. For the core-shell nanocrystals with an average of 2.7 platinum overlayers, their specific and platinum mass activities towards oxygen reduction are enhanced by eight- and sevenfold, respectively, relative to a commercial catalyst. Density functional theory calculations indicate that the enhancement can be attributed to the weakened binding of hydroxyl to the compressed platinum surface supported on palladium. After 10,000 testing cycles, the mass activity of the core-shell nanocrystals is still four times higher than the commercial catalyst. These results demonstrate an effective approach to the development of electrocatalysts with greatly enhanced activity and durability.

  15. Preparation and study of binary compounds of actinides and lanthanides. X. Separation of the TPE and platinum (palladium) by extraction chromatography

    SciTech Connect

    Lebedeva, L.S.; Nezgovorov, N.Yu.; Radchenko, V.M.; Vasil'ev, V.Ya.

    1988-03-01

    The possibility of separation of TPE from compounds bearing platinum or palladium by extraction chromatography using D2EHPA has been explored. It has been found that TPE loss is practically nil. The coefficient of TPE isolation from platinum metals is above 10/sup 3/. It has been shown that macroamounts of platinum can be removed preliminarily by its precipitation as the sparingly soluble salt (NH/sub 4/)/sub 2/PtCl/sub 6/ without a significant loss of TPE. The technique can also be applied for regeneration of platinum group elements from compounds with TPE. The purity of regenerated platinum (palladium) is enough for repeated use as components of compounds with TPE.

  16. Palladium and platinum-palladium bi-layer based counter electrode for dye-sensitized solar cells with modified photoanode

    NASA Astrophysics Data System (ADS)

    Mokurala, Krishnaiah; Kamble, Anvita; Nemala, Siva Sankar; Bhargava, Parag; Mallick, Sudhanshu

    2015-06-01

    Dye sensitized solar cells (DSSCs) were fabricated with palladium (Pd) and platinum-palladium (Pt-Pd) bi-layer as counter electrodes, respectively. Effects of photoanode thickness and morphology on device performance were studied. DSSCs fabricated with Pd and Pd-Pt as counter electrode (CE) showed photo conversion efficiency of 4.30% and 6.20%, respectively as compared to Platinum (Pt) based CE which showed 6.65% efficiency. Lower device performance was explained with help of cyclic voltammetry and electrochemical impedance spectroscopy (EIS) measurements of the cells.

  17. Determination of platinum and palladium in geological materials by neutron-activation analysis after fire-assay preconcentration

    USGS Publications Warehouse

    Rowe, J.J.; Simon, F.O.

    1971-01-01

    Fire-asay preconcentration followed by neutron-activation analysis permits the determination of as little as 0.5 ppM of platinum and 0.5 ppM of palladium on a 20-g sample. Platinum and palladium are separated with carriers and beta-counted. Results for the platinum and palladium content of seven U.S.G.S. standard rocks are presented. ?? 1971.

  18. Endohedral nickel, palladium, and platinum atoms in 10-vertex germanium clusters: competition between bicapped square antiprismatic and pentagonal prismatic structures.

    PubMed

    King, R B; Silaghi-Dumitrescu, I; Uţa, M M

    2009-01-22

    Density functional theory predicts significant differences in the preferred structures of endohedral M@Ge10z (M = Ni, Pd, Pt; z = 0, 2-, 4-) clusters upon a change of the central metal atom in otherwise isoelectronic systems. For the neutral clusters M@Ge10 the global minima are singlet bicapped square antiprisms. However, triplet regular pentagonal prismatic structures become increasingly energetically competitive in the series Ni --> Pd -> Pt. The pentagonal prismatic dianions M@Ge10(2-) (M = Ni, Pd, Pt) appear to have closed shell structures and are the global minima for palladium and platinum. However, the global minimum for Ni@Ge102- is the capped square antiprism suggested by the Wade-Mingos rules. A number of singlet low-energy unsymmetrical structures are found for the tetraanions M@Ge10(4-). However, for the palladium and platinum tetraanions triplet pentagonal prismatic structures are energetically competitive with the unsymmetrical structures.

  19. Mechanistic insights on platinum- and palladium-pincer catalyzed coupling and cyclopropanation reactions between olefins.

    PubMed

    Rajeev, Ramanan; Sunoj, Raghavan B

    2012-07-21

    The mechanism of M(II)-PNP-pincer catalyzed reaction between (i) ethene, (ii) trans-butene with 2-methylbut-2-ene, 2,3-dimethylbut-2-ene and tert-butylbutene is examined by using density functional theory methods (where M = Pt or Pd). All key intermediates and transition states involved in the reaction are precisely located on the respective potential energy surfaces using the popular DFT functionals such as mPW1K, M06-2X, and B3LYP in conjunction with the 6-31+G** basis set. The reaction between these olefins can lead to a linear coupling product or a substituted cyclopropane. The energetic comparison between coupling as well as cyclopropanation pathways involving four pairs of olefins for both platinum (1-4) and palladium (5-8) catalyzed reactions is performed. The key events in the lower energy pathway in the mechanistic course involves (i) a C-C bond formation between the metal bound olefin (ethene or trans-butene) and a free olefin, and (ii) two successive [1,2] hydrogen migrations in the ensuing carbocationic intermediates (1c-4c, and 1d-4d), toward the formation of the coupling product. The computed barriers for these steps in the reaction of metal bound ethene to free tert-butylbutene (or other butenes) are found to be much lower than the corresponding steps when trans-butene is bound to the metal pincer. The Gibbs free energy differences between the transition states leading to the coupling product (TS(d-e)) and that responsible for cyclopropanated product (TS(d-g)) are found to be diminishingly closer in the case of the platinum pincer as compared to that in the palladium system. The computed energetics indicate that the coupled product prefers to remain as a metal olefin complex, consistent with the earlier experimental reports.

  20. Experimental investigations of the hydrothermal geochemistry of platinum and palladium: V. Equilibria between platinum metal, Pt(II), and Pt(IV) chloride complexes at 25 to 300°C

    NASA Astrophysics Data System (ADS)

    Gammons, Christopher H.

    1996-05-01

    The solubility of metallic Pt in HCl solutions was determined at 200 to 300°C at oxidation states buffered near the aqueous Pt(II)/Pt(IV) boundary. Equilibrium constants were obtained for the following disproportionation reactions: log K, 200° 250° 300°C 2PtCl 42- = PtCl 42- + Pt(s) + 2Cl - 1.47 1.70 1.54 (a) 2PtCl 3- = PtCl 5- + Pt(s) + Cl - 1.77 1.74 1.37 (b) with experimental uncertainties of approximately ±0.20 log units. These results are found to be in good agreement with previously published estimates for reaction at 60 to 152.5°C. The data indicate that the relative stability of the Pt(II) and Pt(IV) chloride complexes does not change appreciably with temperature. This is in contrast to previous work in the Au(0)/Au(I)/Au(III) system which demonstrates that the Au(I) chloride complexes are unstable with respect to Au (III) at low temperature, but become the dominant aqueous species at 300°C. Pt(IV) chloride complexes are unlikely to be important in high temperature hydrothermal fluids, as unrealistically high aqueous platinum concentrations are required to stabilize these species relative to Pt(II). In contrast, thermodynamic calculations suggest that Pt(IV) chloride or hydroxychloride complexes may be the dominant form of dissolved platinum in low temperature brines that are strongly oxidized (e.g., seawater). In oxygenated, Cl-rich solutions, the solubility of Pt is extremely high at pH < 6, such that the mobility of this metal will most likely be limited by surface adsorption reactions and/ or its abundance and rate of dissolution in the enclosing rock or soil. At neutral to alkaline pH, calculated solubilities are much lower, and saturation with Pt oxide phases may occur, as has recently been described in nature.

  1. Structures of polynuclear complexes of palladium(II) and platinum(II) formed by slow hydrolysis in acidic aqueous solution.

    PubMed

    Torapava, Natallia; Elding, Lars I; Mändar, Hugo; Roosalu, Kaspar; Persson, Ingmar

    2013-06-07

    The aqua ions of palladium(II) and platinum(II) undergo extremely slow hydrolysis in strongly acidic aqueous solution, resulting in polynuclear complexes. The size and structures of these species have been determined by EXAFS and small angle X-ray scattering, SAXS. For palladium(II), the EXAFS data show that the Pd-O and Pd···Pd distances are identical to those of crystalline palladium(II) oxide, but the intensities of the Pd···Pd distances in the Fourier transform at 3.04 and 3.42 Å are significantly lower compared to those of crystalline PdO. Furthermore, no Pd···Pd distances beyond 4 Å are observed. These observations strongly indicate that the polynuclear palladium(II) complexes are oxido- and hydroxido-bridged species with the same core structure as solid palladium(II) oxide. Based on the number of Pd···Pd distances, as derived from the EXAFS data, their size can be estimated to be approximately two unit cells, or ca. 1.0 nm(3). For platinum(II), EXAFS data of the polynuclear species formed in the slow hydrolysis process show Pt-O and Pt···Pt distances identical to those of amorphous platinum(II) oxide, precipitating from the solution studied. The Pt···Pt distances are somewhat different from those reported for crystalline platinum(II) oxide. The polynuclear platinum(II) complexes have a similar structure to the palladium ones, but they are somewhat larger, with an estimated diameter of 1.5-3.0 nm. It has not been possible to precipitate any of these species by ultracentrifugation. They are detectable by SAXS, indicating diameters between 0.7 and 2 nm, in excellent agreement with the EXAFS observations. The number of oxido- relative to hydroxido bridges will increase with increasing size of the complex. The charge of the complexes will remain about the same, +4, at growth, with approximate formulas [Pd10O4(OH)8(H2O)12](4+) and [Pt14O8(OH)8(H2O)12](4+) for complexes with a size of 2 and 3 unit cells of the corresponding solid metal oxide

  2. Synthesis and antitubercular activity of palladium and platinum complexes with fluoroquinolones.

    PubMed

    Vieira, Lígia Maria M; de Almeida, Mauro V; Lourenço, Maria Cristina S; Bezerra, Flávio Augusto F M; Fontes, Ana Paula S

    2009-10-01

    The fluoroquinolones are an important family of synthetic antimicrobial agents being clinically used over the past thirty years. In addition, some fluoroquinolones have been used in the development of anticancer drugs, and others have demonstrated anti-HIV activity. Furthermore, there has been some additional work investigating the effect of metal ions on biological activity. Aiming to obtain novel palladium(II) and platinum(II) complexes that exhibit biological activity, we have synthesized complexes using fluoroquinolones (ciprofloxacin, levofloxacin, ofloxacin, sparfloxacin, and gatifloxacin) as ligands. The compounds were characterized using IR and NMR spectroscopy, thermogravimetric and elemental analyses. The complexes show activity against Mycobacterium tuberculosis strain H(37)Rv. The minimal inhibitory concentration (MIC) of the complexes was determined.

  3. Determination of platinum, palladium, and lead in biological samples by atomic absorption spectrophotometry.

    PubMed Central

    Tillery, J B; Johnson, D E

    1975-01-01

    A flameless atomic absorption method for the coextraction of platinum and palladium from biological and environmental samples by high molecular weight amine (HMWA) is given. Also, methods for lead determination in biological samples by use of extraction flameless analysis and direct aspiration-flame analysis are reported. A study of lead contamination of Vacutainer tubes is given. PMID:1227857

  4. Method for producing electricity using a platinum-ruthenium-palladium catalyst in a fuel cell

    DOEpatents

    Gorer, Alexander

    2004-01-27

    A method for producing electricity using a fuel cell that utilizes a ternary alloy composition as a fuel cell catalyst, the ternary alloy composition containing platinum, ruthenium and palladium. The alloy shows increased activity as compared to well-known catalysts.

  5. Infrared spectroscopic studies of dimethylglyoxime chelates of nickel, cobalt, copper, palladium and platinum

    NASA Astrophysics Data System (ADS)

    Panja, Prabhat K.; Bala, Sibsankar; Pal, Chadramadhab; Ghosh, Pradip N.

    1991-09-01

    Infrared spectra of dimethylglyoxime chelates of nickel, cobalt, copper, palladium and platinum are measured in the range 4000-200 cm -1. The shifts of the OH stretching frequencies caused by chelation provide information on hydrogen bonding. The frequency shifts and hydrogen bond distances are calculated from the Lippincott—Schroeder potential using X-ray crystallographic data and compared with the observed values.

  6. Nickel and platinum group metal nanoparticle production by Desulfovibrio alaskensis G20.

    PubMed

    Capeness, M J; Edmundson, M C; Horsfall, L E

    2015-12-25

    Desulfovibrio alaskensis G20 is an anaerobic sulfate reducing bacteria. While Desulfovibrio species have previously been shown to reduce palladium and platinum to the zero-state, forming nanoparticles in the process; there have been no reports that D. alaskensis is able to form these nanoparticles. Metal nanoparticles have properties that make them ideal for use in many industrial and medical applications, such as their size and shape giving them higher catalytic activity than the bulk form of the same metal. Nanoparticles of the platinum group metals in particular are highly sought after for their catalytic ability and herein we report the formation of both palladium and platinum nanoparticles by D. alaskensis and the biotransformation of solvated nickel ions to nanoparticle form.

  7. The adsorption of gold, palladium and platinum from acidic chloride solutions on mesoporous carbons.

    SciTech Connect

    Zalupski, Peter R.; McDowell, Rocklan; Dutech, Guy

    2014-08-05

    Studies on the adsorption characteristics of gold, palladium and platinum on mesoporous carbon (CMK-3) and sulfur-impregnated mesoporous carbon (CMK-3/S) evaluated the benefits/drawbacks of the presence of a layer of elemental sulfur inside mesoporous carbon structures. Adsorption isotherms collected for Au(III), Pd(II) and Pt(IV) on those materials suggest that sulfur does enhance the adsorption of those metal ions in mildly acidic environment (pH 3). The isotherms collected in 1 M HCl show that the benefit of sulfur disappears due to the competing influence of large concentration of hydrogen ions on the ion-exchanging mechanism of metal ions sorption on mesoporous carbon surfaces. The collected acid dependencies illustrate similar adsorption characteristics for CMK-3 and CMK-3/S in 1-5 M HCl concentration range. Sorption of metal ions from diluted aqueous acidic mixtures of actual leached electronic waste demonstrated the feasibility of recovery of gold from such liquors.

  8. Copper-, palladium-, and platinum-containing complexes of an asymmetric dinucleating ligand.

    PubMed

    Halvagar, Mohammad Reza; Neisen, Benjamin; Tolman, William B

    2013-01-18

    The coordination chemistry of an asymmetric dinucleating hexadentate ligand LH(2) comprising neutral alkyltriamine and potentially dianionic dicarboxamido-pyridyl donor sets with copper, palladium, and platinum has been explored. Monometallic, dicopper, and heterodinuclear Cu-Pd and -Pt complexes have been prepared and characterized, including by NMR, EPR, UV-vis, and IR spectroscopy and X-ray crystallography. For example, the monometallic complexes [(LH(2))MCl]X (M = Cu, X = OTf; M = Pd or Pt, X = Cl) were prepared, wherein the metal(II) ions are coordinated to the triamine portion and the pyridyldicarboxamide is unperturbed. Treatment of LH(2) with [MesCu](x) (Mes = mesityl) provided a monocopper(I) complex, again with the metal coordinated only to the trialkylamine donor set. Reaction of [(LH(2))CuCl]OTf with NaOMe resulted in an unexpected migration of the copper(II)-chloride fragment to the pyridyldicarboxamide site to yield Na[LCuCl], from which a dicopper complex LCu(2)Cl(2) and mixed-metal complexes LCu(Cl)M(Cl) (M = Pd, Pt) were prepared by addition of CuCl(2) or MCl(2), respectively. The heterodinuclear complexes were also prepared by addition of CuCl(2) to [(LH(2))MCl]Cl.

  9. The adsorption of gold, palladium and platinum from acidic chloride solutions on mesoporous carbons.

    DOE PAGES

    Zalupski, Peter R.; McDowell, Rocklan; Dutech, Guy

    2014-08-05

    Studies on the adsorption characteristics of gold, palladium and platinum on mesoporous carbon (CMK-3) and sulfur-impregnated mesoporous carbon (CMK-3/S) evaluated the benefits/drawbacks of the presence of a layer of elemental sulfur inside mesoporous carbon structures. Adsorption isotherms collected for Au(III), Pd(II) and Pt(IV) on those materials suggest that sulfur does enhance the adsorption of those metal ions in mildly acidic environment (pH 3). The isotherms collected in 1 M HCl show that the benefit of sulfur disappears due to the competing influence of large concentration of hydrogen ions on the ion-exchanging mechanism of metal ions sorption on mesoporous carbon surfaces.more » The collected acid dependencies illustrate similar adsorption characteristics for CMK-3 and CMK-3/S in 1-5 M HCl concentration range. Sorption of metal ions from diluted aqueous acidic mixtures of actual leached electronic waste demonstrated the feasibility of recovery of gold from such liquors.« less

  10. Californium--palladium metal neutron source material

    DOEpatents

    Dahlen, B.L.; Mosly, W.C. Jr.; Smith, P.K.; Albenesius, E.L.

    1974-01-22

    Californium, as metal or oxide, is uniformly dispersed throughout a noble metal matrix, provided in compact, rod or wire form. A solution of californium values is added to palladium metal powder, dried, blended and pressed into a compact having a uni-form distribution of californium. The californium values are decomposed to californium oxide or metal by heating in an inert or reducing atmosphere. Sintering the compact to a high density closes the matrix around the dispersed californium. The sintered compact is then mechanically shaped into an elongated rod or wire form. (4 claims, no drawings) (Official Gazette)

  11. Size-dependent catalytic and melting properties of platinum-palladium nanoparticles

    PubMed Central

    2011-01-01

    While nanocatalysis is a very active field, there have been very few studies in the size/shape-dependent catalytic properties of transition metals from a thermodynamical approach. Transition metal nanoparticles are very attractive due their high surface to volume ratio and their high surface energy. In particular, in this paper we focus on the Pt-Pd catalyst which is an important system in catalysis. The melting temperature, melting enthalpy, and catalytic activation energy were found to decrease with size. The face centered cubic crystal structure of platinum and palladium has been considered in the model. The shape stability has been discussed. The phase diagram of different polyhedral shapes has been plotted and the surface segregation has been considered. The model predicts a nanoparticle core rich in Pt surrounded by a layer enriched in Pd. The Pd segregation at the surface strongly modifies the catalytic activation energy compared to the non-segregated nanoparticle. The predictions were compared with the available experimental data in the literature. PACS 65.80-g; 82.60.Qr; 64.75.Jk PMID:21711923

  12. Highly Unsaturated Platinum and Palladium Carbenes PtC_3 and PdC_3 Isolated and Characterized in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Bittner, Dror M.; Zaleski, Daniel P.; Tew, David Peter; Walker, Nick; Legon, Anthony

    2016-06-01

    Carbenes of platinum and palladium, PtC_3 and PdC_3, were generated in the gas phase through laser vaporization of a metal target in the presence of a low concentration of a hydrocarbon precursor undergoing supersonic expansion. Rotational spectroscopy and ab initio calculations confirm that both molecules are linear. The geometry of PtC_3 was accurately determined by fitting to the experimental moments of inertia of twenty-six isotopologues.

  13. Bioaccessibility of palladium and platinum in urban aerosol particulates

    NASA Astrophysics Data System (ADS)

    Puls, Christoph; Limbeck, Andreas; Hann, Stephan

    2012-08-01

    To evaluate potential health hazards caused by environmental Platinum Group Elements (PGEs), bioaccessibility of the metals in question needs to be assessed. To gain appropriate data, airborne particulate matter samples of different size fractions (total suspended particles as well as PM10 and PM2.5) were taken in downtown Vienna, an urban site primarily polluted by traffic. Total PGE concentrations in these samples were in the low picogram per cubic meter range, as determined by ID-ICP-MS after microwave digestion. For elimination of elements interfering with the accurate quantification, the digested samples were subjected to a cleaning procedure involving cation exchange. For determination of the bioaccessible fraction, it was assumed that inhaled particles are removed from the respiratory system by mucociliary clearance and subsequently ingested. Accordingly, the solubility of PGE in synthetic gastric juice was investigated by batch extraction of particulate matter samples followed by microwave assisted UV-digestion, cation exchange cleanup and ID-ICP-MS. The acquired data was used to calculate the bioaccessible fraction of Pd and Pt in airborne particulate matter. Average GIT-extractable fractions for Pd and Pt in TSP were 41% and 27%, in PM10 34% and 26%, respectively, thus exceeding previously determined values for bioaccessibility of PGE from ground catalyst materials by up to an order of magnitude.

  14. Structural characterization and comparison of iridium, platinum and gold/palladium ultra-thin film coatings for STM of biomolecules

    SciTech Connect

    Sebring, R.; Arendt, P.; Imai, B.; Bradbury, E.M.; Gatewood, J.; Panitz, J.; Yau, P.

    1997-10-30

    Scanning tunneling microscopy (STM) is capable of atomic resolution and is ideally suited for imaging surfaces with uniform work function. A biological sample on a conducting substrate in air does not meet this criteria and requires a conductive coating for stable and reproducible STM imaging. In this paper, the authors describe the STM and transmission electron microscopy (TEM) characterization of ultra-thin ion-beam sputtered films of iridium and cathode sputtered gold/palladium and platinum films on highly ordered pyrolytic graphite (HOPG) which were developed for use as biomolecule coatings. The goals were the development of metal coatings sufficiently thin and fine grained that 15--20 {angstrom} features of biological molecules could be resolved using STM, and the development of a substrate/coating system which would allow complementary TEM information to be obtained for films and biological molecules. The authors demonstrate in this paper that ion-beam sputtered iridium on highly ordered pyrolytic graphite (HOPG) has met both these goals. The ion-beam sputtered iridium produced a very fine grained (< 10 {angstrom}) continuous film at 5--6 {angstrom} thickness suitable for stable air STM imaging. In comparison, cathode sputtered platinum produced 16 {angstrom} grains with the thinnest continuous film at 15 {angstrom} thickness, and the sputtered gold/palladium produced 25 {angstrom} grains with the thinnest continuous film at 18 {angstrom} thickness.

  15. Imino-phosphine palladium(II) and platinum(II) complexes: synthesis, molecular structures and evaluation as antitumor agents.

    PubMed

    Motswainyana, William M; Onani, Martin O; Madiehe, Abram M; Saibu, Morounke; Thovhogi, Ntevheleni; Lalancette, Roger A

    2013-12-01

    The imino-phosphine ligands L1 and L2 were prepared via condensation reaction of 2-(diphenylphosphino)benzaldehyde with substituted anilines and obtained in very good yields. An equimolar reaction of L1 and L2 with either PdCl2(cod) or PtCl2(cod) gave new palladium(II) and platinum(II) complexes 1-4. The compounds were characterized by elemental analysis, IR, (1)H and (31)P NMR spectroscopy. The molecular structures of 2, 3 and 4 were confirmed by X-ray crystallography. All the three molecular structures crystallized in monoclinic C2/c space system. The coordination geometry around the palladium and platinum atoms in respective structures exhibited distorted square planar geometry at the metal centers. The complexes were evaluated in vitro for their cytotoxic activity against human breast (MCF-7) and human colon (HT-29) cancer cells, and they exhibited growth inhibitory activities and selectivity that were superior to the standard compound cisplatin.

  16. Phonon anharmonicity and components of the entropy in palladium and platinum

    NASA Astrophysics Data System (ADS)

    Shen, Yang; Li, Chen W.; Tang, Xiaoli; Smith, Hillary L.; Fultz, B.

    2016-06-01

    Inelastic neutron scattering was used to measure the phonon density of states in fcc palladium and platinum metal at temperatures from 7 K to 1576 K. Both phonon-phonon interactions and electron-phonon interactions were calculated by methods based on density functional theory (DFT) and were consistent with the measured shifts and broadenings of phonons with temperature. Unlike the longitudinal modes, the characteristic transverse modes had a nonlinear dependence on temperature owing to the requirement for a population of thermal phonons for upscattering. Kohn anomalies were observed in the measurements at low temperature and were reproduced by calculations based on DFT. Contributions to the entropy from phonons and electrons were assessed and summed to obtain excellent agreement with prior calorimetric data. The entropy from thermal expansion is positive for both phonons and electrons but larger for phonons. The anharmonic phonon entropy is negative in Pt, but in Pd it changes from positive to negative with increasing temperature. Owing to the position of the Fermi level on the electronic DOS, the electronic entropy was sensitive to the adiabatic electron-phonon interaction in both Pd and Pt. The adiabatic EPI depended strongly on thermal atom displacements.

  17. From a Diphosphanegermylene to Nickel, Palladium, and Platinum Complexes Containing Germyl PGeP Pincer Ligands.

    PubMed

    Álvarez-Rodríguez, Lucía; Brugos, Javier; Cabeza, Javier A; García-Álvarez, Pablo; Pérez-Carreño, Enrique

    2017-08-19

    The PGeP pincer-type germylene Ge(NCH2 PtBu2 )2 C6 H4 (1) has been used to prepare a family of group 10 metal complexes, namely, [MCl{κ(3) P,Ge,P-GeCl(NCH2 PtBu2 )2 C6 H4 }] (M=Ni (2Ni ), Pd (2Pd ), Pt (2Pt )), featuring a chloridogermyl PGeP pincer ligand and a Cl-Ge-M-Cl bond sequence. Their reactivity is not initially centered on the metal atom but on their Ge atom. Complexes 2Ni and 2Pd easily led to the hydrolyzed products [Ni2 Cl2 {μ-(κ(3) P,Ge,P-Ge(NCH2 PtBu2 )2 C6 H4 )2 O}], which features a Cl-Ni-Ge-O-Ge-Ni-Cl bond sequence, and [PdCl{κ(3) P,Ge,P-Ge(OH)(NCH2 PtBu2 )2 C6 H4 }], which contains a hydroxidogermyl PGeP pincer ligand (2Pt is reluctant to undergo hydrolysis). Simple chloride exchange reactions led to the methoxidogermyl, methylgermyl, and phenylgermyl derivatives [MCl{κ(3) P,Ge,P-GeR(NCH2 PtBu2 )2 C6 H4 }] (M=Pd, Pt; R=OMe, Me, Ph). Whereas the palladium complexes [PdCl{κ(3) P,Ge,P-GeR(NCH2 PtBu2 )2 C6 H4 }] (R=Me, Ph) reacted with more MeLi or PhLi to give palladium black and GeR2 (NCH2 PtBu2 )2 C6 H4 (R=Me, Ph), similar reactions with the analogous platinum complexes afforded the transmetalation derivatives [PtR{κ(3) P,Ge,P-GeR(NCH2 PtBu2 )2 C6 H4 }] (R=Me, Ph). The short length of the CH2 PtBu2 arms of the PGeP pincer ligands forces the metal atoms of all these complexes to be in a very distorted square-planar ligand environment. The reactivity results have been rationalized with theoretical calculations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Air-stable platinum and palladium complexes featuring bis[2,4-bis(trifluoromethyl)phenyl]phosphinous acid ligands.

    PubMed

    Kurscheid, Boris; Neumann, Beate; Stammler, Hans-Georg; Hoge, Berthold

    2011-12-23

    Secondary phosphane oxides, R(2)P(O)H, are commonly used as preligands for transition-metal complexes of phosphinous acids, R(2)P-OH (R=alkyl, aryl), which are relevant as efficient catalysts in cross-coupling processes. In contrast to previous work by other groups, we are interested in the ligating properties of an electron-deficient phosphinous acid, (R(f))(2)P-OH, bearing the strongly electron-withdrawing and sterically demanding 2,4-bis(trifluoromethyl)phenyl group towards catalysis-relevant metals, such as palladium and platinum. The preligand bis[2,4-bis(trifluoromethyl)phenyl]phosphane oxide, (R(f))(2)P(O)H, reacts smoothly with solid platinum(II) dichloride yielding the trans-configured phosphinous acid platinum complex trans-[PtCl(2)({2,4-(CF(3))(2)C(6)H(3)}(2)POH)(2)]. The deprotonation of one phosphinous acid ligand with an appropriate base leads to the cis-configured monoanion complex cis-[PtCl(2)({2,4-(CF(3))(2)C(6)H(3)}(2)PO)(2)H](-), featuring the quasi-chelating phosphinous acid phosphinito unit, (R(f))(2)P-O-H···O=P(R(f))(2), which exhibits a strong hydrogen bridge substantiated by an O···O distance of 245.1(4) pm. The second deprotonation step is accompanied by a rearrangement to afford the trans-configured dianion trans-[PtCl(2)({2,4-(CF(3))(2)C(6)H(3)}(2)PO)(2)](2-). The reaction of (R(f))(2)P(O)H with solid palladium(II) dichloride initially yields a mononuclear palladium complex [PdCl(2)({2,4-(CF(3))(2)C(6)H(3)}(2)POH)(2)], which condenses under liberation of HCl to the neutral dinuclear palladium complex [Pd(2)(μ-Cl)(2){({2,4-(CF(3))(2)C(6)H(3)}(2)PO)(2)H}(2)]. The equilibrium between the mononuclear [PdCl(2)({2,4-(CF(3))(2)C(6)H(3)}(2)POH)(2)] and dinuclear [Pd(2)(μ-Cl)(2){({2,4-(CF(3))(2)C(6)H(3)}(2)PO)(2)H}(2)] palladium complexes is reversible and can be shifted in each direction by the addition of base or HCl, respectively. Treatment of palladium(II) hexafluoroacetylacetonate, [Pd(F(6)acac)(2)], with a slight excess of (R(f))(2)P

  19. Cis- and trans-platinum and palladium complexes: a comparative study review as antitumour agents.

    PubMed

    al-Allaf, T A; Rashan, L J

    2001-01-01

    A large body of novel platinum and palladium complexes, in both the cis- and trans-forms, with various donor ligands, e.g. beta-carboline alkaloids, pyrazoles, DMSO, ferrocenylphosphines,...... have been tested for their antitumour activity against number of fluid suspension (P388, L1210, K562, and Raji) and solid tumour (KB, T47D, SW948, HeLa, A549, L929, Hep-2, RD,...) cell lines. Remarkable cytotoxic effects against these cell lines were observed by some of these complexes. The preliminary results indicated that most of the trans-palladium complexes showed a better activity than the cis-platinum isomers and superior activity than that of the cis-palladium isomers. More importantly they showed activities equal to (or superior than) those of cisplatin, carboplatin and oxaliplatin (the anti-cancer drugs) in vitro. Although these results are preliminary, however, encouraging since they are in a disagreement with the previous studies that cis-isomers are more active than trans-ones; the complexes which have not received the required attention from the vast number of researchers in this field.

  20. A rapid fire-assay/atomic-absorption method for the determination of platinum, palladium and gold in ores and concentrates: A modification of the tin-collection scheme.

    PubMed

    Moloughney, P E; Faye, G H

    1976-05-01

    The tin-collection scheme of fire-assaying has been simplified to permit the rapid and accurate determination of platinum, palladium and gold in ores and related materials. The presence of tellurium in the charge ensures that the precious metals remain insoluble during the parting of the tin button with hydrochloric acid. The residue is easily collected and dissolved and the resultant solution analysed for the precious metals by AAS. The accuracy of the method has been established by application to five diverse certified reference materials.

  1. Antibacterial activity of microstructured sacrificial anode thin films by combination of silver with platinum group elements (platinum, palladium, iridium).

    PubMed

    Köller, Manfred; Bellova, Petri; Javid, Siyamak Memar; Motemani, Yahya; Khare, Chinmay; Sengstock, Christina; Tschulik, Kristina; Schildhauer, Thomas A; Ludwig, Alfred

    2017-05-01

    Five different Ag dots arrays (16 to 400dots/mm(2)) were fabricated on a continuous platinum, palladium, or iridium thin film and for comparison also on titanium film by sputter deposition and photolithographic patterning. To analyze the antibacterial activity of these microstructured films Staphylococcus aureus (S. aureus) were placed onto the array surfaces and cultivated overnight. To analyze the viability of planktonic as well as surface adherent bacteria, the applied bacterial fluid was subsequently aspirated, plated on blood agar plates and adherent bacteria were detected by fluorescence microscopy. A particular antibacterial effect towards S. aureus was induced by Ag dot arrays on each of the platinum group thin film (sacrificial anode system for Ag) in contrast to Ag dot arrays fabricated on the Ti thin films (non-sacrificial anode system for Ag). Among platinum group elements the Ir-Ag system exerted the highest antibacterial activity which was accompanied by most advanced dissolution of the Ag dots and Ag ion release compared to Ag dots on Pt or Pd. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Occupational Respiratory Exposure to Platinum Group Metals: A Review and Recommendations.

    PubMed

    Linde, Stephanus J L; Franken, Anja; du Plessis, Johannes L

    2017-09-15

    Platinum group metals (PGMs) is a group of metals that include platinum, palladium, rhodium, ruthenium, iridium, and osmium. Occupational respiratory exposure to platinum has been reported since 1945, but studies investigating occupational exposure to palladium, rhodium, ruthenium, iridium, and osmium are scarce. This review provides a summation of the information available on the respiratory exposure to PGMs in various industrial settings, methods used to assess exposure, and the possible adverse health effects resulting from occupational exposure to PGMs. Of these effects, respiratory sensitization caused by soluble PGMs is of most importance. Metallic PGMs have not been shown to cause allergic reactions. This review reiterates that occupational respiratory exposure to PGMs is dependent on the type of industry where exposure takes place, the chemical form (soluble or insoluble) of the PGMs present in the workplace air, and the tasks performed by workers in the specific work areas. Sensitization to soluble platinum is associated with the degree of exposure to soluble platinum compounds, and the highest concentrations of soluble PGMs in workplace air have been reported for precious metals refineries where personal exposures frequently exceed the occupational exposure limit for soluble platinum (2 μg/m(3)). Additionally, this review emphasizes that personal exposure monitoring is preferred over area monitoring when assessing workers' exposure to PGMs. The legislation applicable to occupational exposure to PGMs is also discussed, and it is highlighted that the occupational exposure limit for soluble platinum has remained unchanged, in most countries, since 1970 and that too few countries have classified PGM compounds as respiratory or skin sensitizers. Finally, recommendations are made to ensure that future investigations are comparable in terms of the type of exposure monitoring (personal or area) conducted, the type of tasks included in the exposure monitoring

  3. Palladium and platinum nanoparticles attenuate aging-like skin atrophy via antioxidant activity in mice.

    PubMed

    Shibuya, Shuichi; Ozawa, Yusuke; Watanabe, Kenji; Izuo, Naotaka; Toda, Toshihiko; Yokote, Koutaro; Shimizu, Takahiko

    2014-01-01

    Cu-Zn superoxide dismutase (Sod1) loss causes a redox imbalance as it leads to excess superoxide generation, which results in the appearance of various aging-related phenotypes, including skin atrophy. Noble metal nanoparticles, such as palladium (Pd) and platinum (Pt) nanoparticles, are considered to function as antioxidants due to their strong catalytic activity. In Japan, a mixture of Pd and Pt nanoparticles called PAPLAL has been used to treat chronic diseases over the past 60 years. In the present study, we investigated the protective effects of PAPLAL against aging-related skin pathologies in mice. Transdermal PAPLAL treatment reversed skin thinning associated with increased lipid peroxidation in Sod1-/- mice. Furthermore, PAPLAL normalized the gene expression levels of Col1a1, Mmp2, Has2, Tnf-α, Il-6, and p53 in the skin of the Sod1-/- mice. Pt nanoparticles exhibited marked SOD and catalase activity, while Pd nanoparticles only displayed weak SOD and catalase activity in vitro. Although the SOD and catalase activity of the Pt nanoparticles significantly declined after they had been oxidized in air, a mixture of Pd and Pt nanoparticles continued to exhibit SOD and catalase activity after oxidation. Importantly, a mixture of Pd and Pt nanoparticles with a molar ratio of 3 or 4 to 1 continued to exhibit SOD and catalase activity after oxidation, indicating that Pd nanoparticles prevent the oxidative deterioration of Pt nanoparticles. These findings indicate that PAPLAL stably suppresses intrinsic superoxide generation both in vivo and in vitro via SOD and catalase activity. PAPLAL is a potentially powerful tool for the treatment of aging-related skin diseases caused by oxidative damage.

  4. Palladium and Platinum Nanoparticles Attenuate Aging-Like Skin Atrophy via Antioxidant Activity in Mice

    PubMed Central

    Shibuya, Shuichi; Ozawa, Yusuke; Watanabe, Kenji; Izuo, Naotaka; Toda, Toshihiko; Yokote, Koutaro; Shimizu, Takahiko

    2014-01-01

    Cu-Zn superoxide dismutase (Sod1) loss causes a redox imbalance as it leads to excess superoxide generation, which results in the appearance of various aging-related phenotypes, including skin atrophy. Noble metal nanoparticles, such as palladium (Pd) and platinum (Pt) nanoparticles, are considered to function as antioxidants due to their strong catalytic activity. In Japan, a mixture of Pd and Pt nanoparticles called PAPLAL has been used to treat chronic diseases over the past 60 years. In the present study, we investigated the protective effects of PAPLAL against aging-related skin pathologies in mice. Transdermal PAPLAL treatment reversed skin thinning associated with increased lipid peroxidation in Sod1−/− mice. Furthermore, PAPLAL normalized the gene expression levels of Col1a1, Mmp2, Has2, Tnf-α, Il-6, and p53 in the skin of the Sod1−/− mice. Pt nanoparticles exhibited marked SOD and catalase activity, while Pd nanoparticles only displayed weak SOD and catalase activity in vitro. Although the SOD and catalase activity of the Pt nanoparticles significantly declined after they had been oxidized in air, a mixture of Pd and Pt nanoparticles continued to exhibit SOD and catalase activity after oxidation. Importantly, a mixture of Pd and Pt nanoparticles with a molar ratio of 3 or 4 to 1 continued to exhibit SOD and catalase activity after oxidation, indicating that Pd nanoparticles prevent the oxidative deterioration of Pt nanoparticles. These findings indicate that PAPLAL stably suppresses intrinsic superoxide generation both in vivo and in vitro via SOD and catalase activity. PAPLAL is a potentially powerful tool for the treatment of aging-related skin diseases caused by oxidative damage. PMID:25333617

  5. Platinum, palladium, and rhodium analyses of ultramafic and mafic rocks from the Stillwater Complex, Montana

    USGS Publications Warehouse

    Page, Norman J; Riley, Leonard Benjamin; Haffty, Joseph

    1969-01-01

    Analyses by a combination fire- assay-solution-optical-emission spectrographic method of 137 rocks from the Stillwater Complex, Mont., indicate that platinum, palladium, and rhodium are preferentially concentrated in chromitite zones. The A chromitite zone (21 samples) has an average of 988.9 ppb (pans per billion, 10-9) Pt, 2290.2 ppb Pd, and 245.9 ppb Rh and reaches a maximum (to date) of 8,000 ppb Pt, 11,000 ppb Pd, and 1,700 ppb Rh.

  6. Electrocatalysts having platium monolayers on palladium, palladium alloy, and gold alloy core-shell nanoparticles, and uses thereof

    DOEpatents

    Adzic, Radoslav; Mo, Yibo; Vukmirovic, Miomir; Zhang, Junliang

    2010-12-21

    The invention relates to platinum-coated particles useful as fuel cell electrocatalysts. The particles are composed of a noble metal or metal alloy core at least partially encapsulated by an atomically thin surface layer of platinum atoms. The invention particularly relates to such particles having a palladium, palladium alloy, gold alloy, or rhenium alloy core encapsulated by an atomic monolayer of platinum. In other embodiments, the invention relates to fuel cells containing these electrocatalysts and methods for generating electrical energy therefrom.

  7. Highly Unsaturated Platinum and Palladium Carbenes PtC3 and PdC3 Isolated and Characterized in the Gas Phase

    DOE PAGES

    Bittner, Dror M.; Zaleski, Daniel P.; Tew, David P.; ...

    2016-02-16

    Carbenes of platinum and palladium, PtC3 and PdC3 , were generated in the gas phase through laser vaporization of a metal target in the presence of a low concentration of a hydrocarbon precursor undergoing supersonic expansion. Rotational spectroscopy and abinitio calculations confirm that both molecules are linear. The geometry of PtC3 was accurately determined by fitting to the experimental moments of inertia of twenty-six isotopologues. In conclusion, the results are consistent with the proposal of an autogenic isolobal relationship between O, Au+ , and Ptatoms.

  8. Highly Unsaturated Platinum and Palladium Carbenes PtC3 and PdC3 Isolated and Characterized in the Gas Phase

    SciTech Connect

    Bittner, Dror M.; Zaleski, Daniel P.; Tew, David P.; Walker, Nicholas R.; Legon, Anthony C.

    2016-02-16

    Carbenes of platinum and palladium, PtC3 and PdC3 , were generated in the gas phase through laser vaporization of a metal target in the presence of a low concentration of a hydrocarbon precursor undergoing supersonic expansion. Rotational spectroscopy and abinitio calculations confirm that both molecules are linear. The geometry of PtC3 was accurately determined by fitting to the experimental moments of inertia of twenty-six isotopologues. In conclusion, the results are consistent with the proposal of an autogenic isolobal relationship between O, Au+ , and Ptatoms.

  9. A fire-assay and wet chemical method for the determination of palladium, platinum, gold, and silver in ores and concentrates.

    PubMed

    Moloughney, P E

    1980-04-01

    A method is presented for the determination of palladium, platinum, gold and silver in ores and concentrates by a fire-assay and wet chemical technique. After parting of the lead assay button with dilute nitric acid, and separation of the solution from the residue, the palladium and platinum in the solution are precipitated by the addition of stannous chloride, with tellurium as collector. The resulting precipitate is combined with the gold residue and dissolved in aqua regia, then the solution is analysed for palladium, platinum and gold by atomic-absorption spectrophotometry (AAS). Silver is determined in the original solution by AAS before the reduction step.

  10. Platinum metals magmatic sulfide ores.

    PubMed

    Naldrett, A J; Duke, J M

    1980-06-27

    Platinum-group elements (PGE) are mined predominantly from deposits that have formed by the segregation of molten iron-nickel-copper sulfides from silicate magmas. The absolute concentrations of PGE in sulfides from different deposits vary over a range of five orders of magnitude, whereas those of other chalcophile elements vary by factors of only 2 to 100. However, the relative proportions of the different PGE in a given deposit are systematically related to the nature of the parent magma. The absolute and relative concentrations of PGE in magmatic sulfides are explained in terms of the degree of partial melting of mantle peridotite required to produce the parent magma and the processes of batch equilibration and fractional segregation of sulfides. The Republic of South Africa and the U.S.S.R. together possess more than 97 percent of the world PGE reserves, but significant undeveloped resources occur in North America. The Stillwater complex in Montana is perhaps the most important example.

  11. Palladium(II) and platinum(II) derivatives of benzothiazoline ligands: Synthesis, characterization, antimicrobial and antispermatogenic activity

    NASA Astrophysics Data System (ADS)

    Sharma, Krishna; Singh, R. V.; Fahmi, Nighat

    2011-01-01

    A series of Pd(II) and Pt(II) complexes with two N ∩S donor ligands, 5-chloro-3-(indolin-2-one)benzothiazoline and 6-nitro-3-(indolin-2-one)benzothiazoline, have been synthesized by the reaction of metal chlorides (PdCl 2 and PtCl 2) with ligands in 1:2 molar ratios. All the synthesized compounds were characterized by elemental analyses, melting point determinations and a combination of electronic, IR, 1H NMR and 13C NMR spectroscopic techniques for structure elucidation. In order to evaluate the effect of metal ions upon chelation, both the ligands and their complexes have been screened for their antimicrobial activity against the various pathogenic bacterial and fungal strains. The metal complexes have shown to be more antimicrobial against the microbial species as compared to free ligands. One of the ligands, 5-chloro-3-(indolin-2-one)benzothiazoline and its corresponding palladium and platinum complexes have been tested for their antifertility activity in male albino rats. The marked reduction in sperm motility and density resulted in infertility by 62-90%. Significant alterations were found in biochemical parameters of reproductive organs in treated animals as compared to control group. It is concluded that all these effects may finally impair the fertility of male rats.

  12. Anthropogenic platinum and palladium in the sediments of Boston Harbor

    USGS Publications Warehouse

    Tuit, C.B.; Ravizza, G.E.; Bothner, Michael H.

    2000-01-01

    Anthropogenic activity has increased recent sediment concentrations of Pt and Pd in Boston Harbor by approximately 5 times background concentrations. Surface sediments and downcore profiles were investigated to evaluate Pt and Pd accumulation and behavior in urban coastal sediments. There is no clear correlation between temporal changes in Pt and Pd consumption and sediment concentration. However, Pt/Pb and Pd/Pb ratios suggest that Pt and Pd flux into the Harbor may not be decreasing with cessation of sludge input as rapidly as other metals. This is supported by the large discrepancy between fluxes associated with sludge and effluent release and those calculated from surface sediment concentrations. This evidence supports catalytic converters as a major source of Pd and Pt to Boston Harbor but cannot preclude other sources. Pd does not exhibit signs of post-burial remobilization below the mixed layer in the sediment cores, although near-surface variability in Pd concentrations may indicate a labile Pd component. Pt displays an inverse correlation with Mn above the oxic/suboxic transition, similar to behavior seen in pristine sediments where Pt is thought to be chemically mobile. This study does not support the use of Pd and Pt as tracers of recent contaminated sedimentation. However, the possibility of a labile Pt and Pd in these sediments highlights the need for further study of the biological uptake of these metals.Anthropogenic activity has increased recent sediment concentrations of Pt and Pd in Boston Harbor by approximately 5 times background concentrations. Surface sediments and downcore profiles were investigated to evaluate Pt and Pd accumulation and behavior in urban coastal sediments. There is no clear correlation between temporal changes in Pt and Pd consumption and sediment concentration. However, Pt/Pb and Pd/Pb ratios suggest that Pt and Pd flux into the Harbor may not be decreasing with cessation of sludge input as rapidly as other metals. This is

  13. Stripping voltammetric determination of palladium, platinum and rhodium in freshwater and sediment samples from South African water resources.

    PubMed

    van der Horst, C; Silwana, B; Iwuoha, E; Somerset, V

    2012-01-01

    Stripping voltammetry as technique has proved to be very useful in the analysis of heavy and other metal ions due to its excellent detection limits and its sensitivity in the presence of different metal species or interfering ions. Recent assessments of aquatic samples have shown increased levels of platinum group metals (PGMs) in aquatic ecosystems, caused by automobile exhaust emissions and mining activities. The development of an analytical sensor for the detection and characterisation of PGMs were investigated, since there is an ongoing need to find new sensing materials with suitable recognition elements that can respond selectively and reversibly to specific metal ions in environmental samples. The work reported shows the successful application of another mercury-free sensor electrode for the determination of platinum group metals in environmental samples. The work reported in this study entails the use of a glassy carbon electrode modified with a bismuth film for the determination of platinum (Pt(2+)), palladium (Pd(2+)) or rhodium (Rh(2+)) by means of adsorptive cathodic stripping voltammetry. Optimised experimental conditions included composition of the supporting electrolyte, complexing agent concentration, deposition potential, deposition time and instrumental voltammetry parameters for Pt(2+), Pd(2+) and Rh(2+) determination. Adsorptive differential pulse stripping voltammetric measurements for PGMs were performed in the presence of dimethylglyoxime (DMG) as complexing agent. The glassy carbon bismuth film electrode (GC/BiFE) employed in this study exhibit good and reproducible sensor characteristics. Application of GC/BiFE sensor exhibited well-defined peaks and highly linear behaviour for the stripping analysis of the PGMs in the concentration range between 0 and 3.5 μg/L. The detection limit of Pd, Pt and Rh was found to be 0.12 μg/L, 0.04 μg/L and 0.23 μg/L, respectively for the deposition times of 90 s (Pd) and 150 s (for both Pt and Rh). Good

  14. X-ray characterization of platinum group metal catalysts

    NASA Astrophysics Data System (ADS)

    Peterson, Eric J.

    Platinum group metals (PGMs) are used extensively as catalysts, employed in several sectors of the world energy economy. Fuel cells employing PGM catalysts show promise as power sources in the proposed hydrogen economy, using alcohols as hydrogen storage media. Currently, the most economically important application for PGMs is for the mitigation of emissions from internal combustion engines via catalytic converters. In all applications, efficient use of these expensive metals to fabricate robust catalysts is of the utmost importance. Understanding the catalyst structure/property relationship is the key to the improvement of existing catalysts and the discovery of new catalysts. For example, catalyst particle size can have profound effects on catalyst activity, as in the case of gold nanoparticles. Catalyst particle size control and stability is also important for the efficient use of PGM metals and catalyst deactivation prevention. The challenge is to identify and characterize structural features and determine if and how these features may relate to catalytic properties. The ultimate goal is to simultaneously measure catalyst structural characteristics and catalytic properties under operando conditions, unambiguously establishing the structure/property link. X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are important techniques used for the characterization of PGM catalysts. Microstructural information such as crystallite size, as small as ~ 1 nm, and microstrain can be obtained from Bragg diffraction peak shapes in X-ray diffraction patterns, and long range crystal structure information is found in the intensities and positions of these peaks. In contrast, X-ray absorption spectroscopy provides information about the chemical state and local structure of selected atoms. From the average nearest neighbor coordination numbers, crystallite sizes can also be inferred, with particularly high sensitivity in the sub-nm size range. Electron microscopy

  15. Spectroscopic and structural properties of 2,2'-dipyridylamine and its palladium and platinum complexes

    NASA Astrophysics Data System (ADS)

    Yurdakul, Ş.; Bilkana, M. T.

    2015-10-01

    The structural features such as geometric parameters, vibration frequencies and intensities of the vibrational bands of 2,2'-dipyridylamine ligand (DPA), its palladium (Pd(DPA)Cl2) and platinum (Pt(DPA)Cl2) complexes were studied by the density functional theory (DFT). The calculations were carried out by DFT / B3LYP method with 6-311++G(d,p) and LANL2DZ basis sets. All vibrational frequencies assigned in detail with the help of total energy distribution analysis (TED). Optimized geometric bond lengths and bond angles were compared with experimental X-ray data. Using DPA, K2PtCl4, and Na2PdCl4, the synthesized complex structures were characterized by the combination of elemental analysis, FT-IR (mid and far IR) and Raman spectroscopy.

  16. Coordination chemistry of platinum and palladium in the solid-state: synthesis of imidazole and pyrazole complexes.

    PubMed

    Adams, Christopher J; Haddow, Mairi F; Hughes, Robert J I; Kurawa, Mukhtar A; Orpen, A Guy

    2010-04-21

    Solid-state reactions of palladium(II) and platinum(II) chloride complexes with imidazole (Him) and pyrazole (Hpz) or their hydrochloride salts are shown to produce metal complex salts and coordination compounds. Thus, K(2)[MCl(4)] or MCl(2) can be ground with imidazolium chloride ([H(2)im]Cl) to produce the salts [H(2)im](2)[MCl(4)] (M = Pd, 1; Pt, 5), which can then be dehydrochlorinated in the solid state to produce the coordination compounds trans-[PdCl(2)(Him)(2)] 3 or cis-[PtCl(2)(Him)(2)] 6. The complex cis-[PdCl(2)(Him)(2)] 2 is produced when Pd(OAc)(2) is ground with [H(2)im]Cl. Reaction of platinum chloride reagents with imidazole (Him) also produces cis-[PtCl(2)(Him)(2)] 6, but reaction of imidazole with analogous palladium chloride reagents first produces [Pd(Him)(4)]Cl(2) 4 which then slowly converts to trans-[PdCl(2)(Him)(2)] 3. Grinding pyrazolium chloride with K(2)[MCl(4)] produces [H(2)pz](2)[MCl(4)] (M = Pd, 7; Pt, 10), which may also be dehydrochlorinated in the solid state to produce the coordination compounds trans-[PdCl(2)(Hpz)(2)] 8 or cis-[PtCl(2)(Hpz)(2)] 11. Grinding K(2)[PdCl(4)] or PdCl(2) with pyrazole gives [Pd(Hpz)(4)]Cl(2) 9, which is then slowly converted into trans-[PdCl(2)(Hpz)(2)] 8. Grinding PtCl(2) with Hpz generates [Pt(Hpz)(4)]Cl(2) 12, but using K(2)PtCl(4) as the metal source does not generate the same product. The single-crystal structures of 8, a new polymorph of 11 and [H(2)pz](2)[PtCl(6)].2H(2)O (isolated as a decomposition product) are reported for the first time, and the structures of 5 and 10 have been solved ab ibitio from XRPD data.

  17. Application of cellulose anion-exchangers to separation of palladium from platinum or iridium with glycine as complexing agent and atomic-absorption spectrometry for detection.

    PubMed

    Brajter, K; Słonawska, K

    1983-07-01

    The use of glycine as complexing agent for chromatographie separation of palladium from platinum, or palladium from iridium, on cellulose anion-exchangers has been investigated and found possible over a wide range of concentration ratios. The method can be used for analysis of Pd-Ir alloys. The nature of the complexes taking part in the ion-exchange has been identified.

  18. Novel platinum-palladium bimetallic nanoparticles synthesized by Dioscorea bulbifera: anticancer and antioxidant activities.

    PubMed

    Ghosh, Sougata; Nitnavare, Rahul; Dewle, Ankush; Tomar, Geetanjali B; Chippalkatti, Rohan; More, Piyush; Kitture, Rohini; Kale, Sangeeta; Bellare, Jayesh; Chopade, Balu A

    2015-01-01

    Medicinal plants serve as rich sources of diverse bioactive phytochemicals that might even take part in bioreduction and stabilization of phytogenic nanoparticles with immense therapeutic properties. Herein, we report for the first time the rapid efficient synthesis of novel platinum-palladium bimetallic nanoparticles (Pt-PdNPs) along with individual platinum (PtNPs) and palladium (PdNPs) nanoparticles using a medicinal plant, Dioscorea bulbifera tuber extract (DBTE). High-resolution transmission electron microscopy revealed monodispersed PtNPs of size 2-5 nm, while PdNPs and Pt-PdNPs between 10 and 25 nm. Energy dispersive spectroscopy analysis confirmed 30.88% ± 1.73% elemental Pt and 68.96% ± 1.48% elemental Pd in the bimetallic nanoparticles. Fourier transform infrared spectra indicated strong peaks at 3,373 cm(-1), attributed to hydroxyl group of polyphenolic compounds in DBTE that might play a key role in bioreduction in addition to the sharp peaks at 2,937, 1,647, 1,518, and 1,024 cm(-1), associated with C-H stretching, N-H bending in primary amines, N-O stretching in nitro group, and C-C stretch, respectively. Anticancer activity against HeLa cells showed that Pt-PdNPs exhibited more pronounced cell death of 74.25% compared to individual PtNPs (12.6%) or PdNPs (33.15%). Further, Pt-PdNPs showed an enhanced scavenging activity against 2,2-diphenyl-1-picrylhydrazyl, superoxide, nitric oxide, and hydroxyl radicals.

  19. Anharmonic free energies and phonon dispersions from the stochastic self-consistent harmonic approximation: Application to platinum and palladium hydrides

    NASA Astrophysics Data System (ADS)

    Errea, Ion; Calandra, Matteo; Mauri, Francesco

    2014-02-01

    Harmonic calculations based on density-functional theory are generally the method of choice for the description of phonon spectra of metals and insulators. The inclusion of anharmonic effects is, however, delicate as it relies on perturbation theory requiring a considerable amount of computer time, fast increasing with the cell size. Furthermore, perturbation theory breaks down when the harmonic solution is dynamically unstable or the anharmonic correction of the phonon energies is larger than the harmonic frequencies themselves. We present here a stochastic implementation of the self-consistent harmonic approximation valid to treat anharmonicity at any temperature in the nonperturbative regime. The method is based on the minimization of the free energy with respect to a trial density matrix described by an arbitrary harmonic Hamiltonian. The minimization is performed with respect to all the free parameters in the trial harmonic Hamiltonian, namely, equilibrium positions, phonon frequencies, and polarization vectors. The gradient of the free energy is calculated following a stochastic procedure. The method can be used to calculate thermodynamic properties, dynamical properties, and even anharmonic corrections to the Eliashberg function of the electron-phonon coupling. The scaling with the system size is greatly improved with respect to perturbation theory. The validity of the method is demonstrated in the strongly anharmonic palladium and platinum hydrides. In both cases, we predict a strong anharmonic correction to the harmonic phonon spectra, far beyond the perturbative limit. In palladium hydrides, we calculate thermodynamic properties beyond the quasiharmonic approximation, while in PtH, we demonstrate that the high superconducting critical temperatures at 100 GPa predicted in previous calculations based on the harmonic approximation are strongly suppressed when anharmonic effects are included.

  20. 16 CFR 23.7 - Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.”

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... § 23.7 Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.” (a) It is unfair or deceptive to use the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium... Platinum, Iridium, Palladium, Ruthenium, Rhodium, and Osmium. (b) The following are examples of markings or...

  1. 16 CFR 23.7 - Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.”

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... § 23.7 Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.” (a) It is unfair or deceptive to use the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium... Platinum, Iridium, Palladium, Ruthenium, Rhodium, and Osmium. (b) The following are examples of markings or...

  2. 16 CFR 23.7 - Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.”

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... § 23.7 Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.” (a) It is unfair or deceptive to use the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium... Platinum, Iridium, Palladium, Ruthenium, Rhodium, and Osmium. (b) The following are examples of markings or...

  3. 16 CFR 23.7 - Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.”

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... § 23.7 Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.” (a) It is unfair or deceptive to use the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium... Platinum, Iridium, Palladium, Ruthenium, Rhodium, and Osmium. (b) The following are examples of markings...

  4. 16 CFR 23.7 - Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.”

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... § 23.7 Misuse of the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium,” and “osmium.” (a) It is unfair or deceptive to use the words “platinum,” “iridium,” “palladium,” “ruthenium,” “rhodium... Platinum, Iridium, Palladium, Ruthenium, Rhodium, and Osmium. (b) The following are examples of markings...

  5. Antitumor activity of phenylene bridged binuclear bis(imino-quinolyl)palladium(II) and platinum(II) complexes.

    PubMed

    Motswainyana, William M; Onani, Martin O; Madiehe, Abram M; Saibu, Morounke

    2014-04-01

    Antitumor effects of a known bis(imino-quinolyl)palladium(II) complex 1 and its newly synthesized platinum(II) analogue 2 were evaluated against human breast (MCF-7) and human colon (HT-29) cancer cell lines. The complexes gave cytotoxicity profiles that were better than the reference drug cisplatin. The highest cytotoxic activities were pronounced in complex 2 across the two examined cancer cell lines. Both compounds represent potential active drugs based on bimetallic complexes.

  6. Platinum vs. Palladium in Catalyst-Based Hydrogen Sensors Used for Wide Temperature Range Hydrazine Leak Detection

    NASA Astrophysics Data System (ADS)

    Muntele, Claudiu; Ila, Daryush

    2008-11-01

    Here we are addressing possible solutions to challenges associated with using palladium and platinum as active agents in reverse-biased p-n structures and linear (resistive) structures for hydrazine and hydrogen detection schemes to operate in a temperature range from cryogenic to ambient (room temperature). Preliminary results at room temperature on devices fabricated using high-temperature sensor technology show only a limited response to hydrogen as opposed to dry air.

  7. Antiandrogen and Antimicrobial Aspects of Coordination Compounds of Palladium(II), Platinum(II) and Lead(II)

    PubMed Central

    Joshi, S. C.; Kulshrestha, Shalini; Nagpal, Pooja; Bansal, Anil

    2001-01-01

    Synthesis, characterization and antimicrobial activities of an interesting class of biologically potent macrocyclic complexes have been carried out. All the complexes have been evaluated for their antimicrobial effects on different species of pathogenic fungi and bacteria. The testicular sperm density, testicular sperm morphology, sperm motility, density of cauda epididymal spermatozoa and fertility in mating trails and biochemical parameters of reproductive organs have been examined and discussed. The resulting biologically active [M(MaLn)(R2)]Cl2 and [Pb(MaLn)(R2)X2] (where, M = PdII or PtII and X = Cl or NO3) type of complexes have been synthesized by the reactions of macrocyclic ligands (MaLn) with metal salts and different diamines in 1:1:1 molar ratio in methanol. Initially the complexes were characterized by elemental analyses, molecular weight determinations and conductivity measurements. The mode of bonding was established on the basis of IR, 1H NMR, 13C NMR, 195Pt NMR, 207Pb NMR, XRD and electronic spectral studies. The macrocyclic ligand coordinates through the four azomethine nitrogen atoms which are bridged by benzil moieties. IR spectra suggest that the pyridine nitrogen is not coordinating. The palladium and platinum complexes exhibit tetracoordinated square-planar geometry, whereas a hexacoordinated octahedral geometry is suggested for lead complexes. PMID:18475989

  8. Catalytic wet oxidation of ammonia solution: activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst.

    PubMed

    Hung, Chang-Mao

    2009-04-15

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H(2)PtCl(6), Pd(NO(3))(3) and Rh(NO(3))(3). Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes.

  9. Exhaust system having a gold-platinum group metal catalyst

    DOEpatents

    Ragle, Christie Susan [Havana, IL; Silver, Ronald G [Peoria, IL; Zemskova, Svetlana Mikhailovna [Edelstein, IL; Eckstein, Colleen J [Metamora, IL

    2011-12-06

    A method of providing an exhaust treatment device is disclosed. The method includes applying a catalyst including gold and a platinum group metal to a particulate filter. The concentration of the gold and the platinum group metal is sufficient to enable oxidation of carbon monoxide and nitric oxide.

  10. Exhaust system having a gold-platinum group metal catalyst

    DOEpatents

    Ragle, Christie Susan; Silver, Ronald G.; Zemskova, Svetlana Mikhailovna; Eckstein, Colleen J.

    2012-08-07

    A method of providing an exhaust treatment device is disclosed. The method includes applying a catalyst including gold and a platinum group metal to a particulate filter. The concentration of the gold and the platinum group metal is sufficient to enable oxidation of carbon monoxide and nitric oxide.

  11. Thermodynamic ground states of platinum metal nitrides

    SciTech Connect

    Aberg, D; Sadigh, B; Crowhurst, J; Goncharov, A

    2007-10-09

    We have systematically studied the thermodynamic stabilities of various phases of the nitrides of the platinum metal elements using density functional theory. We show that for the nitrides of Rh, Pd, Ir and Pt two new crystal structures, in which the metal ions occupy simple tetragonal lattice sites, have lower formation enthalpies at ambient conditions than any previously proposed structures. The region of stability can extend up to 17 GPa for PtN{sub 2}. Furthermore, we show that according to calculations using the local density approximation, these new compounds are also thermodynamically stable at ambient pressure and thus may be the ground state phases for these materials. We further discuss the fact that the local density and generalized gradient approximations predict different values of the absolute formation enthalpies as well different relative stabilities between simple tetragonal and the pyrite or marcasite structures.

  12. The influence of ethylenediamine tetra acetic acid (EDTA) on the transformation and solubility of metallic palladium and palladium(II) oxide in the environment.

    PubMed

    Zereini, Fathi; Wiseman, Clare L S; Vang, My; Albers, Peter; Schneider, Wolfgang; Schindl, Roland; Leopold, Kerstin

    2015-05-01

    The environmental occurrence of elevated concentrations of platinum (Pt), palladium (Pd) and rhodium (Rh) from automotive catalytic converters has been well-documented. Limited information exists regarding their chemical behavior post-emission, however, especially in the presence of commonly occurring complexing agents. The purpose of this study is to examine the influence of ethylenediamine tetra acetic acid (EDTA) on the possible environmental transformation and solubility of Pd by conducting batch experiments using metallic palladium (Pd black) and palladium(ii) oxide (PdO). Changes in the particle surface chemistry of treated samples were analyzed using X-ray Photoelectron Spectroscopy (XPS) and Transition Electron Microscopy/Energy Dispersive X-ray Spectrometry (TEM/EDX) techniques. Metallic palladium was partially transformed into PdOx (x < 1), while PdO remained largely unaffected. The pH of EDTA solutions was observed to modulate Pd solubility, with Pd black demonstrating a higher solubility compared to PdO. Solubility was also found to increase with a corresponding increase in the strength of EDTA solution concentrations, as well as with the length of extraction time. The overall solubility of Pd remained relatively low for most samples (<1 wt%). A dissolution rate of 2.01 ± 0.17 nmol m(-2) h(-1) was calculated for Pd black in 0.1 M EDTA (pH 7). In contrast to previously held assumptions about the environmental immobility of Pd, small amounts of this element emitted in metallic form are likely to be soluble in the presence of complexing agents such as EDTA.

  13. Biogenic platinum and palladium nanoparticles as new catalysts for the removal of pharmaceutical compounds.

    PubMed

    Martins, Mónica; Mourato, Cláudia; Sanches, Sandra; Noronha, João Paulo; Crespo, M T Barreto; Pereira, Inês A C

    2017-01-01

    Pharmaceutical products (PhP) are one of the most alarming emergent pollutants in the environment. Therefore, it is of extreme importance to investigate efficient PhP removal processes. Biologic synthesis of platinum nanoparticles (Bio-Pt) has been reported, but their catalytic activity was never investigated. In this work, we explored the potential of cell-supported platinum (Bio-Pt) and palladium (Bio-Pd) nanoparticles synthesized with Desulfovibrio vulgaris as biocatalysts for removal of four PhP: ciprofloxacin, sulfamethoxazole, ibuprofen and 17β-estradiol. The catalytic activity of the biological nanoparticles was compared with the PhP removal efficiency of D. vulgaris whole-cells. In contrast with Bio-Pd, Bio-Pt has a high catalytic activity in PhP removal, with 94, 85 and 70% removal of 17β-estradiol, sulfamethoxazole and ciprofloxacin, respectively. In addition, the estrogenic activity of 17β-estradiol was strongly reduced after the reaction with Bio-Pt, showing that this biocatalyst produces less toxic effluents. Bio-Pt or Bio-Pd did not act on ibuprofen, but this could be completely removed by D. vulgaris whole-cells, demonstrating that sulfate-reducing bacteria are among the microorganisms capable of biotransformation of ibuprofen in anaerobic environments. This study demonstrates for the first time that Bio-Pt has a high catalytic activity, and is a promising catalyst to be used in water treatment processes for the removal of antibiotics and endocrine disrupting compounds, the most problematic PhP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Age-hardening mechanisms in a commercial dental gold alloy containing platinum and palladium.

    PubMed

    Tani, T; Udoh, K; Yasuda, K; Van Tendeloo, G; Van Landuyt, J

    1991-10-01

    The age-hardening mechanism of a commercial dental gold alloy containing platinum and palladium (in wt.%, 15 Cu, 6 Ag, 5 Pt, 3 Pd, 3 Zn, with the balance as gold) was elucidated by means of electrical resistivity, hardness tests, x-ray and electron diffraction and electron microscopy, as well as high-resolution electron microscopy. The sequence of phase transformations during isothermal aging below the critical temperature, Tc = 825 K, was described as follows: disordered solid solution alpha 0 (FCC)----metastable AuCu I' ordered phase (FCT)----metastable alpha 2 disordered phase (FCC) equilibrium AuCu I ordered phase (FCT) + equilibrium alpha 2 disordered phase (FCC). The hardening was due to the introduction of coherency strain at the interface between the AuCu I' platelet and the matrix. These ordered platelets had mutually perpendicular c-axes to compensate for the strain introduced by their tetragonality. A loss of coherency at the interface brought about softening of the alloy, i.e., over-aging.

  15. Outlooks of HLW Partitioning Technologies Usage for Recovering of Platinum Metals from Spent Fuel

    SciTech Connect

    Pokhitonov, Y. A.; Estimantovskiy, V.; Romanovski, v.; Zatsev, B.; Todd, T.

    2003-02-24

    The existing practice of management of high level waste (HLW) generated by NPPs, call for a task of selective separation of the most dangerous long-lived radionuclides with the purpose of their subsequent immobilization and disposal. HLW partitioning allows to reduce substantially the cost of vitrified product storage owing to isolation of the most dangerous radionuclides, such as transplutonium elements (TPE) into separate fractions of small volumes, intended for ultimate storage. By now numerous investigations on partitioning of HLW of various composition have been carried out in many countries and a lot of processes permitting to recover cesium, strontium, TPE and rare earth elements (REE) have been already tested. Apart from enumerated radionuclides, a fair quantity of palladium and rhodium presents in spent fuel, but the problem of these elements recovery has not yet been decided at the operating radiochemical plants. A negative effect of platinum group metals (PGM) occurrence is determined by the formation of separate metal phase, which not only worsens the conditions of glass-melting but also shortens considerably the service life of the equipment. At the same time, the exhaustion of PGMs natural resources may finally lead to such a growth of their costs that the spent nuclear fuel would became a substituting source of these elements industrial production. Allowing above mentioned, it is of interest to develop the technique for ''reactor'' palladium and rhodium recovery process which would be compatible with HLW partitioning and could be realized using the same facilities. In the report the data on platinum metals distribution in spent fuel reprocessing products and the several flowsheets for palladium separation from HLW are presented.

  16. Modified anthracites as selective sorbents for platinum metals

    SciTech Connect

    Tikhonova, L.P.; Lyubchik, S.B.; Tarasenko, Y.A.; Goncharik, V.P.; Galushko, O.L.; Fonseca, I.

    2006-05-15

    Methods of preliminary modification were used to obtain activated carbons with low ash content (0.2%), developed pi-conjugated electronic system, large surface area, and wide pore size distribution, from exclusively microporous carbons to those of mesoporous type. The adsorption of compounds of platinum-group metals on activated anthracite from single-component (as regards the platinum metal: Pd, Pt, or Rh) and multicomponent (Pd, Pt) solutions containing compounds of concomitant metals was studied.

  17. Triphenyl phosphine adducts of platinum(IV) and palladium(II) dithiocarbamates complexes: a spectral and in vitro study

    NASA Astrophysics Data System (ADS)

    Manav, N.; Mishra, A. K.; Kaushik, N. K.

    2004-11-01

    Triphenyl phosphine adducts of dithiocarbamate complexes of platinum(IV) and palladium(II) of the type [Pt(L) 2PPh 3Cl 2] and [Pd(L) 2PPh 3] [L: morpholine dithiocarbamate (L 1), aniline dithiocarbamate (L 2) and N-(methyl, cyclohexyl) dithiocarbamate (L 3)] were prepared and characterized by elemental analysis, electronic, IR, 1H NMR and 13C NMR spectral studies. Thermal studies of the complexes were carried out. In vitro antitumor activity has been screened towards human adenocarcinoma cell lines and showed significant inhibition even at very low concentration.

  18. Microwave assisted synthesis, characterization and biological evaluation of palladium and platinum complexes with azomethines

    NASA Astrophysics Data System (ADS)

    Sharma, Krishna; Singh, Ritu; Fahmi, Nighat; Singh, R. V.

    2010-01-01

    Reactions of 3-acetyl-2,5-dimethylthiophene with thiosemicarbazide and semicarbazide hydrochloride resulted in the formation of new heterocyclic ketimines, 3-acetyl-2,5-dimethylthiophene thiosemicarbazone (C 9H 13N 3OS 2 or L 1H) and 3-acetyl-2,5- dimethylthiophene semicarbazone (C 9H 13N 3OS or L 2H), respectively. The Pd(II) and Pt(II) complexes have been synthesized by mixing metal salts in 1:2 molar ratios with these ligands by using microwave as well as conventional heating method for comparison purposes. The authenticity of these ligands and their complexes has been established on the basis of elemental analysis, melting point determinations, molecular weight determinations, IR, 1H NMR and UV spectral studies. These studies showed that the ligands coordinate to the metal atom in a monobasic bidentate manner and square planar environment around the metal atoms has been proposed to the complexes. Both the ligands and their complexes have been screened for their antimicrobial activities. The antiamoebic activity of both the ligands and their palladium compounds against the protozoan parasite Entamoeba histolytica has been tested.

  19. A combined experimental and theoretical investigation of a new imineoxime and its palladium(II) and platinum(II) complexes: Synthesis, structural characterization and spectroscopic properties

    NASA Astrophysics Data System (ADS)

    Kaya, Yunus; Icsel, Ceyda; Yilmaz, Veysel T.; Buyukgungor, Orhan

    2014-12-01

    A new imineoxime compound {(1E,2E)-(2-hydroxy-ethylimino)-naphthalene-2yl-ethanal oxime (heineoH)} and its palladium(II) and platinum(II) complexes ([M(heineo)2]) have been synthesized and characterized by IR, NMR, UV-vis, elemental analysis, mass spectra and X-ray single crystal diffraction. [Pt(heineo)2] was obtained as a single crystal, while [Pd(heineo)2] was synthesized as a polycrystalline powder. The X-ray diffraction analysis of the [Pt(heineo)2] indicated that the platinum(II) ion is coordinated by two heineo ligands in a distorted square-planar geometry. DFT (B3LYP/6-311++G(d,p) and LANL2DZ) calculations on the ligand and its complexes were carried out to correlate the geometry and vibrational and electronic properties. Additionally, heineoH is fluorescent in EtOH at room temperature, but the fluorescence is quenched in the case of the metal complexes.

  20. A combined experimental and theoretical investigation of a new imineoxime and its palladium(II) and platinum(II) complexes: synthesis, structural characterization and spectroscopic properties.

    PubMed

    Kaya, Yunus; Icsel, Ceyda; Yilmaz, Veysel T; Buyukgungor, Orhan

    2014-12-10

    A new imineoxime compound {(1E,2E)-(2-hydroxy-ethylimino)-naphthalene-2yl-ethanal oxime (heineoH)} and its palladium(II) and platinum(II) complexes ([M(heineo)2]) have been synthesized and characterized by IR, NMR, UV-vis, elemental analysis, mass spectra and X-ray single crystal diffraction. [Pt(heineo)2] was obtained as a single crystal, while [Pd(heineo)2] was synthesized as a polycrystalline powder. The X-ray diffraction analysis of the [Pt(heineo)2] indicated that the platinum(II) ion is coordinated by two heineo ligands in a distorted square-planar geometry. DFT (B3LYP/6-311++G(d,p) and LANL2DZ) calculations on the ligand and its complexes were carried out to correlate the geometry and vibrational and electronic properties. Additionally, heineoH is fluorescent in EtOH at room temperature, but the fluorescence is quenched in the case of the metal complexes.

  1. Petrography, chemistry and distribution of platinum and palladium in ultramafic rocks of the Bird River Sill, SE Manitoba, Canada

    NASA Astrophysics Data System (ADS)

    Theyer, P.

    1991-07-01

    The ultramafic portion of the Archean Bird River Sill, a mafic-ultramafic stratiform intrusion in southeastern Manitoba, is divided into a “lower” and an “upper” series. These series may be the product of two separate magmatic injection pulses that differ in their chemistry, mode of crystallization and petrography. The lower series consists of 80 m of ultramafic rocks and 10 m of mafic rocks. The ultramafic rocks are subdivided into ten periodic units that exhibit gradational variations in major element, sulfur, platinum and palladium concentrations concurrent with systematically evolved changes of the olivine crystal habits. The upper series is divided into a “crackle zone” and a “massive zone”. The 27 m thick crackle zone, consists of a homogeneous olivine cumulate disrupted by a network of conduits containing a fine grained groundmass and olivine crystals that exhibit hopper olivine morphology (Donaldson, 1976). The 38 m thick massive zone comprises mainly subhedral to euhedral olivine crystals hosting PGE enriched layers and chromitite layers near its stratigraphic top. The contrasting petrography, major element, sulfur, platinum and palladium distribution of the lower and the upper series are attributed to different a) parental magmas and b) emplacement mechanisms and crystallization histories.

  2. Platinum and Palladium Overlayers Dramatically Enhance the Activity of Ruthenium Nanotubes for Alkaline Hydrogen Oxidation

    DOE PAGES

    St. John, Samuel; Atkinson, Robert W.; Unocic, Kinga A.; ...

    2015-10-18

    Templated vapor synthesis and thermal annealing were used to synthesize unsupported metallic Ru nanotubes with Pt or Pd overlayers. By controlling the elemental composition and thickness of these overlayers, we obtain nanostructures with very high alkaline hydrogen oxidation activity. For nanotubes with a nominal atomic composition of Ru0.90Pt0.10 display a surface-specific activity (2.4 mA/cm2) that is 35 times greater than that of pure Ru nanotubes at a 50 mV overpotential and 2.5 times greater than that of pure Pt nanotubes (0.98 mA/cm2). The surface-segregated structure also confers dramatically increased Pt utilization efficiency. We find a platinum-mass-specific activity of 1240 A/gPtmore » for the optimized nanotube versus 280 A/gPt for carbon-supported Pt nanoparticles and 109 A/gPt for monometallic Pt nanotubes. Here, we attribute the enhancement of both area- and platinum-mass-specific activity to the atomic-scale homeomorphism of the nanotube form factor with adlayer-modified polycrystals. Subsurface ligand and bifunctional effects previously observed on segregated, adlayer-modified polycrystals are translated to nanoscale catalysts.« less

  3. Platinum and Palladium Overlayers Dramatically Enhance the Activity of Ruthenium Nanotubes for Alkaline Hydrogen Oxidation

    SciTech Connect

    St. John, Samuel; Atkinson, Robert W.; Unocic, Kinga A.; Unocic, Raymond R.; Zawodzinski, Thomas A.; Papandrew, Alexander B.

    2015-10-18

    Templated vapor synthesis and thermal annealing were used to synthesize unsupported metallic Ru nanotubes with Pt or Pd overlayers. By controlling the elemental composition and thickness of these overlayers, we obtain nanostructures with very high alkaline hydrogen oxidation activity. For nanotubes with a nominal atomic composition of Ru0.90Pt0.10 display a surface-specific activity (2.4 mA/cm2) that is 35 times greater than that of pure Ru nanotubes at a 50 mV overpotential and 2.5 times greater than that of pure Pt nanotubes (0.98 mA/cm2). The surface-segregated structure also confers dramatically increased Pt utilization efficiency. We find a platinum-mass-specific activity of 1240 A/gPt for the optimized nanotube versus 280 A/gPt for carbon-supported Pt nanoparticles and 109 A/gPt for monometallic Pt nanotubes. Here, we attribute the enhancement of both area- and platinum-mass-specific activity to the atomic-scale homeomorphism of the nanotube form factor with adlayer-modified polycrystals. Subsurface ligand and bifunctional effects previously observed on segregated, adlayer-modified polycrystals are translated to nanoscale catalysts.

  4. Study of the influence of platinum, palladium and rhodium on duckweed (Lemna minor).

    PubMed

    Bednarova, Ivana; Mikulaskova, Hana; Havelkova, Barbora; Strakova, Lenka; Beklova, Miroslava; Sochor, Jiri; Hynek, David; Adam, Vojtech; Kizek, Rene

    2014-01-01

    Road traffic pollutants and the residues of cytostatics that are widely used in anti-cancer therapy are a significant sources of platinum group elements (PGE; Pt, Pd and Rh) in environment. These metals can migrate into sewage and thus pollute surface waters. The purpose of our study was to evaluate the effect of PtCl4 on the antioxidant and enzymatic activity of duckweed (Lemna minor), a bioindicator of the aquatic environment. The study was performed using a 7-day conventional test based on the OECD 221 (CSN EN ISO 20079)--Lemna sp. Growth Inhibition Test. We also conducted a microbiotest to analyse the effects of PtC4, PdCl2 and RhCl3 on the morphology and vegetative growth of colonies of this plant and compared their inhibitory effects during the microbiotest. We observed inhibition of colony growth and clear morphological changes. Antioxidant and enzymatic activities increased with platinum doses increased. The 168hEC50 of PtCl4 was 12.16 μM (95% confidence interval = 9.88-14.44) and the 168hEC50 of PdCl2 was 50.39 (95% confidence interval = 23.83-76.96). The greatest inhibition of growth by RhCl3 was observed at 25 μM. The obtained results suggest that L. minor phytotoxicity tests should be widely used in the biomonitoring.

  5. Platinum Inhibits Low-Temperature Dry Lean Methane Combustion through Palladium Reduction in Pd-Pt/Al2 O3 : An In Situ X-ray Absorption Study.

    PubMed

    Nassiri, Hanieh; Lee, Kee-Eun; Hu, Yongfeng; Hayes, Robert E; Scott, Robert W J; Semagina, Natalia

    2017-01-18

    Palladium-platinum bimetallic catalysts supported on alumina with palladium/platinum molar ratios ranging from 0.25 to 4 are studied in dry lean methane combustion in the temperature range of 200 to 500 °C. Platinum addition decreases the catalyst activity, which cannot be explained by the decrease in dispersion or the structure sensitivity of the reaction. In situ X-ray absorption near-edge structure and extended X-ray absorption fine structure spectroscopy measurements have been conducted for monometallic Pd, Pt, and 2:1 Pd-Pt catalysts. Monometallic palladium is fully oxidized in the full temperature range, whereas platinum addition promotes palladium reduction, even in a reactive oxidizing environment. The Pd/PdO weight ratio in bimetallic Pd-Pt 2:1 catalysts decreases from 98/2 to 10/90 in the 200-500 °C temperature range under the reaction conditions. Thus, platinum promotes the formation of the reduced palladium phase with a significantly lower activity than that of oxidized palladium. The study sheds light on the effect of platinum on the state of the active palladium surface under low-temperature dry lean methane combustion conditions, which is important for methane-emission control devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. MONTANA PALLADIUM RESEARCH INITIATIVE

    SciTech Connect

    Peters, John; McCloskey, Jay; Douglas, Trevor; Young, Mark; Snyder, Stuart; Gurney, Brian

    2012-05-09

    Project Objective: The overarching objective of the Montana Palladium Research Initiative is to perform scientific research on the properties and uses of palladium in the context of the U.S. Department of Energy's Hydrogen, Fuel Cells and Infrastructure Technologies Program. The purpose of the research will be to explore possible palladium as an alternative to platinum in hydrogen-economy applications. To achieve this objective, the Initiatives activities will focus on several cutting-edge research approaches across a range of disciplines, including metallurgy, biomimetics, instrumentation development, and systems analysis. Background: Platinum-group elements (PGEs) play significant roles in processing hydrogen, an element that shows high potential to address this need in the U.S. and the world for inexpensive, reliable, clean energy. Platinum, however, is a very expensive component of current and planned systems, so less-expensive alternatives that have similar physical properties are being sought. To this end, several tasks have been defined under the rubric of the Montana Palladium Research Iniative. This broad swath of activities will allow progress on several fronts. The membrane-related activities of Task 1 employs state-of-the-art and leading-edge technologies to develop new, ceramic-substrate metallic membranes for the production of high-purity hydrogen, and develop techniques for the production of thin, defect-free platinum group element catalytic membranes for energy production and pollution control. The biomimetic work in Task 2 explores the use of substrate-attached hydrogen-producing enzymes and the encapsulation of palladium in virion-based protein coats to determine their utility for distributed hydrogen production. Task 3 work involves developing laser-induced breakdown spectroscopy (LIBS) as a real-time, in situ diagnostic technique to characterize PGEs nanoparticles for process monitoring and control. The systems engineering work in task 4 will

  7. Composite metal membrane

    DOEpatents

    Peachey, N.M.; Dye, R.C.; Snow, R.C.; Birdsell, S.A.

    1998-04-14

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  8. Composite metal membrane

    DOEpatents

    Peachey, Nathaniel M.; Dye, Robert C.; Snow, Ronny C.; Birdsell, Stephan A.

    1998-01-01

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  9. Greenland snow evidence of large scale atmospheric contamination for platinum, palladium, and rhodium.

    PubMed

    Barbante, C; Veysseyre, A; Ferrari, C; van de Velde, K; Morel, C; Capodaglio, G; Cescon, P; Scarponi, G; Boutron, C

    2001-03-01

    Since 1976 in the United States, Canada, and Japan, and later in other countries, the exhaust system of gasoline powered cars has been equipped with catalytic converters containing Pt and/or Pd and/or Rh. This has resulted in a very significant decrease in urban air pollution for various chemical species such as NOx, CO, and hydrocarbons. There has however been concern that their ever increasing use might lead to Platinum Group Metals (PGMs) becoming widely dispersed in the environment. From the analysis of Pt, Pd, and Rh in central Greenland recent snow and ancient ice using the ultrasensitive inductively coupled plasma sector field mass spectrometry technique, we show here that the concentrations of these metals in snow dated from the mid 1990s are indeed approximately 40-120 times higher than in ice dated from 7000 years ago. The fact that such an increase is observed far away from populated areas at a high altitude location indicates there is now a large scale contamination of the troposphere of the Northern Hemisphere for PGMs. Pt/Rh mass ratio in the most recent snow samples is close to the same ratio documented for catalytic converter exhausts in a recent study, which suggests that a large fraction of the recent increase for Pt and Rh might originate from automobile catalytic converters.

  10. Impact of platinum group metals on the environment: a toxicological, genotoxic and analytical chemistry study.

    PubMed

    Gagnon, Zofia E; Newkirk, Catherine; Hicks, Steven

    2006-01-01

    Recent studies show particles of Platinum Group Metals (PGMs); primarily platinum, palladium and rhodium; released from automobile catalytic converters are being deposited alongside roadways. This deposition is leading to increasing concentrations of PGMs in the environment, raising concerns about the environmental impact and toxicity of these elements in living organisms. The objective of this study was to determine how PGMs alter the patterns of growth, development, and physiology by studying the toxicological and genotoxic effects of these metals. Two vastly different species were used as models: plant-a wild wetland common Sphagnum moss, and animal-6-week old rats Sprague-Dawley. Both species were exposed, in controlled environments, to different concentrations of the PGMs. Toxicological and genotoxic effects were determined by assessment of plant growth, animal survival and pathology, and influence on DNA in both models. Our results on the uptake of PGMs by Sphagnum showed significant decreases in plant length and biomass as PGM concentration increased. Histological and pathological analysis of the animal model revealed vacuolization, eosinophil inclusion bodies in adrenal glands, shrinkage of glomeruli in the kidney, and enlargement of white pulp in the spleen. In both models, DNA damage was detected. Chemical analysis using ICP-AES atomic absorption demonstrated accumulation of PGMs in plant tissues at all PGM levels, proportional to concentration.

  11. Light-induced reduction of rhodium(III) and palladium(II) on titanium dioxide dispersions and the selective photochemical separation and recovery of gold(III), platinum(IV), and rhodium(III) in chloride media

    SciTech Connect

    Borgarello, E.; Serpone, N.; Emo, G.; Harris, R.; Pelizzetti, E.; Minero, C.

    1986-12-03

    Irradiation of aqueous TiO/sub 2/ dispersions containing palladium(II) or rhodium(III) chloride salts with AM1 simulated sunlight leads to the photoreduction of these metals, which are deposited on the semiconductor particle surface. Oxygen is detrimental to the photoreduction of rhodium(III) but not the photoreduction of palladium(II). However, in both cases the reduction process is most efficient if the solution contains CH/sub 3/OH, which acts to scavenge valence band holes of the illuminated TiO/sub 2/ semiconductor. The selective photoreduction and recovery of precious metals from a dilute solution (as might be found in industrial wastes) have been investigated for a mixture of gold(III), platinum(IV), and rhodium(III) chloride salts as a function of various parameters (pH, presence or absence of O/sub 2/, presence or absence of a hole scavenger, and the concentration of the semiconductor). At pH 0, gold is easily separated from platinum and rhodium. The rate of photoreduction of gold(III) on TiO/sub 2/ is nearly independent of the concentration of the semiconductor, under the experimental conditions employed; the limiting rate is 2.7 x 10/sup -7/ M s/sup -1/. The potential utility of this selective photochemical technique is discussed.

  12. Synthesis and vibrational study of platinum(II) and palladium(II) complexes of glyoxilic acid oxime

    NASA Astrophysics Data System (ADS)

    Trendafilova, N.; Bauer, G.; Georgieva, I.; Dodoff, N.

    1999-12-01

    New platinum(II) and palladium(II) complexes of glyoxilic acid oxime (gao) have been prepared and characterised by infrared (4000-150 cm -1) and Raman (4000-200 cm -1) spectra. The gao acts as bidentate ligand bonding through the oxime nitrogen and carboxyl oxygen atoms to form neutral bis-chelate square-planar complexes. The lowest energy conformer of the gao ligand ( ectt) was selected among 16 theoretically possible conformers on the basis of ab initio calculations at HF/3-21G*, HF/6-31G* and HF/6-311** levels of the theory from which structural parameters and conformational stabilities have been obtained. A complete vibrational assignment of the gao was performed for the lowest energy ectt conformer on the basis of ab initio optimised parameters and normal coordinate analysis calculations (PED). NCA calculations of the complexes studied were also performed.

  13. Effects of High-Humidity Aging on Platinum, Palladium, and Gold Loaded Tin Oxide—Volatile Organic Compound Sensors

    PubMed Central

    Itoh, Toshio; Matsubara, Ichiro; Kadosaki, Masahiro; Sakai, Yuichi; Shin, Woosuck; Izu, Noriya; Nishibori, Maiko

    2010-01-01

    This study is an investigation of high-humidity aging effects on the total volatile organic compound (T–VOC) gas-sensing properties of platinum, palladium, and gold-loaded tin oxide (Pt,Pd,Au/SnO2) thick films. The sensor responses of the high-humidity aged Pt,Pd,Au/SnO2, a non-aged Pt,Pd,Au/SnO2, and a high-humidity aged Pt/SnO2 to T–VOC test gas have been measured. The high-humidity aging is an effective treatment for resistance to humidity change for the Pt,Pd,Au/SnO2 but not effective for the Pt/SnO2. The mechanism of the high-humidity aging effects is discussed based on the change of surface state of the SnO2 particles. PMID:22163564

  14. Catalytic activity versus platinum-palladium nanoparticle size in low-temperature nitrogen monoxide reduction with hydrogen

    NASA Astrophysics Data System (ADS)

    Li, Hui

    A series of experimental gamma-alumina (a-Al2O3) supported monometallic platinum (Pt), monometallic palladium (Pd), and bimetallic Pt-Pd catalysts were synthesized. The activities of these catalysts for nitrogen monoxide (NO) reduction by hydrogen (H2) were tested. The uncalcined catalysts were more active than their corresponding calcined catalysts. The uncalcined Pd-rich bimetallic catalysts were found to be synergistic and more active than pure Pt catalysts. The average particle sizes of all these catalysts were smaller than 3.5 nm, except that of the calcined Pd-rich catalyst. Nanoparticles observed in calcined catalysts were smaller than those in uncalcined catalysts. Sizes of nanoparticles in pure Pt and Pt-rich catalysts displayed normal distribution, while sizes of nanoparticles in pure Pd and Pd-rich catalysts displayed bimodal distribution. The various catalytic activities of these catalysts are explained by the differences in the sizes and surface compositions of nanoparticles formed in these catalysts.

  15. Synthesis, structural characterization, and pro-apoptotic activity of 1-indanone thiosemicarbazone platinum(II) and palladium(II) complexes: potential as antileukemic agents.

    PubMed

    Gómez, Natalia; Santos, Diego; Vázquez, Ramiro; Suescun, Leopoldo; Mombrú, Alvaro; Vermeulen, Monica; Finkielsztein, Liliana; Shayo, Carina; Moglioni, Albertina; Gambino, Dinorah; Davio, Carlos

    2011-08-01

    In the search for alternative chemotherapeutic strategies against leukemia, various 1-indanone thiosemicarbazones, as well as eight novel platinum(II) and palladium(II) complexes, with the formula [MCl₂(HL)] and [M(HL)(L)]Cl, derived from two 1-indanone thiosemicarbazones were synthesized and tested for antiproliferative activity against the human leukemia U937 cell line. The crystal structure of [Pt(HL1)(L1)]Cl·2MeOH, where L1=1-indanone thiosemicarbazone, was solved by X-ray diffraction. Free thiosemicarbazone ligands showed no antiproliferative effect, but the corresponding platinum(II) and palladium(II) complexes inhibited cell proliferation and induced apoptosis. Platinum(II) complexes also displayed selective apoptotic activity in U937 cells but not in peripheral blood monocytes or the human hepatocellular carcinoma HepG2 cell line used to screen for potential hepatotoxicity. Present findings show that, in U937 cells, 1-indanone thiosemicarbazones coordinated to palladium(II) were more cytotoxic than those complexed with platinum(II), although the latter were found to be more selective for leukemic cells suggesting that they are promising compounds with potential therapeutic application against hematological malignancies.

  16. Plasmonic enhancement of low cost mesoporous Fe2O3-TiO2 loaded with palladium, platinum or silver for dye sensitized solar cells (DSSCs)

    NASA Astrophysics Data System (ADS)

    Sanad, M. M. S.; Shalan, Ahmed E.; Rashad, M. M.; Mahmoud, M. H. H.

    2015-12-01

    In this article, a low cost mesoporous Fe2O3-TiO2 nanoparticles has been synthesized from Abu Ghalaga ilmenite ore, Egypt using simple hydrothermal route. Meanwhile, silver, platinum and palladium metals nanoparticles from spent catalysts have been extracted and deposited between the anatase TiO2 particles using in situ reduction step. The as-synthesized samples were characterized by X-ray diffraction (XRD), transmission electron microscopic (TEM), N2 adsorption-desorption isotherm (SBET) and X-ray photoelectron spectroscopy (XPS). The as-prepared materials were applied as photoanodes in dye-sensitized solar cells (DSSCs), whose photocurrent-voltage J-V characteristic curves measurements were consistently performed. The 0.5% precious metal doped samples NPs exhibit absorption enhancement over a broad wavelength range due to the excitation of localized surface plasmons (LSPs) at different wavelengths which also exhibited very good and enhanced photovoltaic performance as a result of the strong scattering lightresulting of noticeable enhancement of charge transfer rates. Indeed, the Ag@Fe2O3-TiO2 sample exhibited the maximum overall conversion efficiency (η % = 4.5%) and it can be considered as a cost-effective photoanode for DSSCs.

  17. Process for the separation and recovery of palladium and platinum from spent automobile catalyst leach liquor using LIX 84I and Alamine 336.

    PubMed

    Reddy, B Ramachandra; Raju, B; Lee, Jin Young; Park, Hyung Kyu

    2010-08-15

    Spent catalysts from automobile industry contain environmentally critical and economically valuable metals such as Pt, Pd, Fe, Ni, Mn, and Cr. In this paper, we present a process for the selective separation and complete recovery of palladium (Pd) and platinum (Pt) from hydrochloric acid leach liquors of spent automobile catalyst employing solvent extraction method. Typical composition of leach liquor used for the present study contains (mg/L): Pd-150, Pt-550, Mn-500, Ni-1000, Fe-1500, Cr-100 and 3 M HCl. Selective separation of Pd from the leach liquor is achieved with 0.5 vol.% LIX 84I (2-hydroxy-5-nonylacetophenone oxime in a mixture with a high flash point hydrocarbon diluent) in kerosene at an aqueous to organic (A/O) ratio of 3 in 2 stages, with an enrichment factor of three. Quantitative stripping of Pd from loaded organic is achieved with 0.5 M thiourea and 1 M HCl. Co-extraction of Fe and Pt with 5 vol.% Alamine 336 (tertiary amine of mixed tri-octyl/decyl amine) in kerosene followed by selective scrubbing of Fe with dilute HCl and complete stripping of Pt from loaded organic was proposed with 0.5 M thiourea and 0.1 M HCl. Purity of Pd and Pt strip solutions are 99.7%. Finally, the present process can solve environmental related issues and at the same time recover valuable metals in pure form.

  18. Bio‐palladium: from metal recovery to catalytic applications

    PubMed Central

    De Corte, Simon; Hennebel, Tom; De Gusseme, Bart; Verstraete, Willy; Boon, Nico

    2012-01-01

    Summary While precious metals are available to a very limited extent, there is an increasing demand to use them as catalyst. This is also true for palladium (Pd) catalysts and their sustainable recycling and production are required. Since Pd catalysts exist nowadays mostly under the form of nanoparticles, these particles need to be produced in an environment‐friendly way. Biological synthesis of Pd nanoparticles (‘bio‐Pd’) is an innovative method for both metal recovery and nanocatalyst synthesis. This review will discuss the different bio‐Pd precipitating microorganisms, the applications of the catalyst (both for environmental purposes and in organic chemistry) and the state of the art of the reactors based on the bio‐Pd concept. In addition, some main challenges are discussed, which need to be overcome in order to create a sustainable nanocatalyst. Finally, some outlooks for bio‐Pd in environmental technology are presented. PMID:21554561

  19. Concentration of some platinum-group metals in coal

    USGS Publications Warehouse

    Finkelman, R.B.; Aruscavage, P. J.

    1981-01-01

    New data on some platinum group metals in coal indicate that the concentration of Pt is generally less than about 5 ppb, that of Pd is generally less than 1 ppb, and that of Rh is generally less than 0.5 ppb. No conclusive evidence was obtained concerning the mode of occurrence of these elements in coal. ?? 1981.

  20. Enhancement of Platinum Cathode Catalysis by Addition of Transition Metals

    ERIC Educational Resources Information Center

    Duong, Hung Tuan

    2009-01-01

    The sluggish kinetics of oxygen reduction reaction (ORR) contributes significantly to the loss of cathode overpotential in fuel cells, thus requiring high loadings of platinum (Pt), which is an expensive metal with limited supply. However, Pt and Pt-based alloys are still the best available electrocatalysts for ORR thus far. The research presented…

  1. Enhancement of Platinum Cathode Catalysis by Addition of Transition Metals

    ERIC Educational Resources Information Center

    Duong, Hung Tuan

    2009-01-01

    The sluggish kinetics of oxygen reduction reaction (ORR) contributes significantly to the loss of cathode overpotential in fuel cells, thus requiring high loadings of platinum (Pt), which is an expensive metal with limited supply. However, Pt and Pt-based alloys are still the best available electrocatalysts for ORR thus far. The research presented…

  2. Palladium-platinum core-shell electrocatalysts for oxygen reduction reaction prepared with the assistance of citric acid

    SciTech Connect

    Zhang, Lulu; Su, Dong; Zhu, Shangqian; Chang, Qiaowan; Yue, Jeffrey; Du, Zheng; Shao, Minhua

    2016-04-26

    Core–shell structure is a promising alternative to solid platinum (Pt) nanoparticles as electrocatalyst for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). A simple method of preparing palladium (Pd)–platinum (Pt) core–shell catalysts (Pd@Pt/C) in a gram-batch was developed with the assistance of citric acid. The Pt shell deposition involves three different pathways: galvanic displacement reaction between Pd atoms and Pt cations, chemical reduction by citric acid, and reduction by negative charges on Pd surfaces. The uniform ultrathin (~0.4 nm) Pt shell was characterized by in situ X-ray diffraction (XRD) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images combined with electron energy loss spectroscopy (EELS). Compared with state-of-the-art Pt/C, the Pd@Pt/C core–shell catalyst showed 4 times higher Pt mass activity and much better durability upon potential cycling. As a result, both the mass activity and durability were comparable to that of Pd@Pt/C synthesized by a Cu-mediated-Pt-displacement method, which is more complicated and difficult for mass production.

  3. Palladium-platinum core-shell electrocatalysts for oxygen reduction reaction prepared with the assistance of citric acid

    SciTech Connect

    Zhang, Lulu; Su, Dong; Zhu, Shangqian; Chang, Qiaowan; Yue, Jeffrey; Du, Zheng; Shao, Minhua

    2016-04-26

    Core–shell structure is a promising alternative to solid platinum (Pt) nanoparticles as electrocatalyst for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). A simple method of preparing palladium (Pd)–platinum (Pt) core–shell catalysts (Pd@Pt/C) in a gram-batch was developed with the assistance of citric acid. The Pt shell deposition involves three different pathways: galvanic displacement reaction between Pd atoms and Pt cations, chemical reduction by citric acid, and reduction by negative charges on Pd surfaces. The uniform ultrathin (~0.4 nm) Pt shell was characterized by in situ X-ray diffraction (XRD) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images combined with electron energy loss spectroscopy (EELS). Compared with state-of-the-art Pt/C, the Pd@Pt/C core–shell catalyst showed 4 times higher Pt mass activity and much better durability upon potential cycling. As a result, both the mass activity and durability were comparable to that of Pd@Pt/C synthesized by a Cu-mediated-Pt-displacement method, which is more complicated and difficult for mass production.

  4. Palladium-platinum core-shell electrocatalysts for oxygen reduction reaction prepared with the assistance of citric acid

    DOE PAGES

    Zhang, Lulu; Su, Dong; Zhu, Shangqian; ...

    2016-04-26

    Core–shell structure is a promising alternative to solid platinum (Pt) nanoparticles as electrocatalyst for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). A simple method of preparing palladium (Pd)–platinum (Pt) core–shell catalysts (Pd@Pt/C) in a gram-batch was developed with the assistance of citric acid. The Pt shell deposition involves three different pathways: galvanic displacement reaction between Pd atoms and Pt cations, chemical reduction by citric acid, and reduction by negative charges on Pd surfaces. The uniform ultrathin (~0.4 nm) Pt shell was characterized by in situ X-ray diffraction (XRD) and high-angle annular dark-field scanning transmission electron microscopymore » (HAADF-STEM) images combined with electron energy loss spectroscopy (EELS). Compared with state-of-the-art Pt/C, the Pd@Pt/C core–shell catalyst showed 4 times higher Pt mass activity and much better durability upon potential cycling. As a result, both the mass activity and durability were comparable to that of Pd@Pt/C synthesized by a Cu-mediated-Pt-displacement method, which is more complicated and difficult for mass production.« less

  5. Theoretical studies on vibrational spectra of mixed cyanide-halide complexes of platinum(IV) and palladium(IV)

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhang, Lin; Tao, Hanbing; Sun, Xiaojuan; Zhu, Longgen

    2003-02-01

    The vibrational spectra of mixed cyanide-halide complexes, M(CN) 4X 22- and M(CN) 5X 2- (M=Pt and Pd; X=F, Cl, Br and I), have been systematically investigated by ab initio RHF, B3LYP and MP2 methods with LanL2DZ and SDD basis sets. The calculated vibrational frequencies of platinum complexes are evaluated via comparison with the experimental values. In the infrared frequency region, the CN stretching vibrational frequencies calculated at B3LYP level with two basis sets are in good agreement with the observed values with deviations, -16-4 cm -1 for Pt(CN) 4X 22- and -18 to -2 cm -1 for Pt(CN) 5X 2-. However, in far-infrared region, the results obtained at RHF level are better than those calculated at B3LYP and MP2 levels. For RHF/SDD method, the deviations for PtX and PtC stretching vibrational frequencies are -14-1 and -12 to -2 cm -1 in the complex Pt(CN) 4X 22-, -19 to -11 and -15-14 cm -1 in the Pt(CN) 5X 2- complex, respectively. The vibrational frequencies of palladium(IV) and some platinum(IV) complexes that have not been experimentally reported are predicted.

  6. Synthesis, experimental and theoretical characterization of palladium(II) and platinum(II) saccharinate complexes with 2-(2-pyridyl)benzimidazole

    NASA Astrophysics Data System (ADS)

    Guney, Emel; Kaya, Yunus; Yilmaz, Veysel T.; Gumus, Sedat

    2011-09-01

    New palladium(II) and platinum(II) complexes of saccharinate (sac) with 2-(2-pyridyl)benzimidazole (pybim) have been synthesized and characterized by elemental analysis and spectroscopic techniques. From the experimental studies, these complexes were formulated as [Pd(pybim)(sac) 2] ( 1), and [Pt(pybim)(sac) 2]·4H 2O ( 2). The ground-state geometries of both complexes were optimized using density functional theory (DFT) methods at the B3LYP level. A bidentate pybim ligand together with two N-coordinated sac ligands form the square-planar MN 4 coordination geometry around the palladium(II) and platinum(II) ions. The calculated IR and UV-vis spectral data have been correlated to the experimental results. Thermal analysis data support the molecular structures of both complexes.

  7. Synthesis, characterization and cytotoxicity of platinum(II)/palladium(II) complexes with 1,3-diaminopropane and 4-toluensulfonyl-L-amino acid dianion.

    PubMed

    Zhang, Jinchao; Ma, Lili; Lu, Huiru; Wang, Yuechai; Li, Shenghui; Wang, Shuxiang; Zhou, Guoqiang

    2012-12-01

    Eight novel platinum(II)/palladium(II) complexes with 1,3-dap and 4-toluensulfonyl-l-amino acid dianion, [Pt(1,3-dap)(TsalaNO)]·0.5H(2)O (1a), [Pt(1,3-dap)(TsvalNO)] (1b), [Pt(1,3-dap)(TspheNO)] (1c), [Pt(1,3-dap)(TsserNO)] (1d), [Pd(1,3-dap)(TsalaNO)]·1.5H(2)O (2a), [Pd(1,3-dap)(TsvalNO)] (2b), [Pd(1,3-dap)(TspheNO)] (2c) and [Pd(1,3-dap)(TsileNO)] (2d) have been synthesized and characterized by elemental analysis, IR, UV, (1)H NMR and mass spectrometry techniques. Crystal structure of the complex 1b has been determined by X-ray diffraction. The cytotoxicity was tested by MTT and SRB assays. The complexes (1a-1d and 2a-2d) exert cytotoxicity against Bel-7402, HL-60, KB and BGC-823, but none of them is more active than cisplatin. The results suggest that metal ions, amino acids and aliphatic N-containing ligands have effect on cytotoxicity, while the IC(50) values do not show definite correlation with variation of them. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  8. Global exploration and production capacity for platinum-group metals from 1995 through 2015

    USGS Publications Warehouse

    Wilburn, David R.

    2012-01-01

    Platinum-group metals (PGMs) are required in a variety of commercial, industrial, and military applications for many existing and emerging technologies, yet the United States is highly dependent on foreign sources of PGMs. Information on global exploration for PGMs since 1995 has been used in this study as a basis for identifying locations where the industry has determined that exploration has provided data sufficient to warrant development of a new mine or expansion of an existing operation or where a significant increase in capacity for PGMs is anticipated by 2015. Discussions include an overview of the industry and the selected sites, factors affecting mineral supply, and circumstances leading to the development of mineral properties with the potential to affect mineral supply. Of the 52 sites or regional operations that were considered in this analysis, 16 sites were producing before 1995, 28 sites commenced production from 1995 through 2010, and 8 sites were expected to begin production from 2011 through 2015 if development plans came to fruition. The United States imports PGMs primarily from Canada, Russia, South Africa, and Zimbabwe to meet increasing demand for these materials in a variety of specialized and high-tech applications. Feed sources of PGMs are changing in South Africa and Russia, which together accounted for about 89 percent of platinum production and 82 percent of palladium production in 2009. A greater amount of South African PGM capacity is likely to come from deeper, higher cost Upper Group Reef seam 2 deposits and deposits in the Eastern Bushveld area. Future Russian PGM capacity is likely to come from ore zones with generally lower PGM content and different platinum-to-palladium ratios than the nickel-rich ore that dominated PGM supply in the 1990s. Because PGM supply from Canada and Russia is derived as a byproduct of copper and nickel mining, the PGM supply from these countries is influenced by economic, environmental, political, and

  9. Separation of platinum group metal ions by Donnan dialysis

    SciTech Connect

    Brajter, K.; Slonawska, K.; Cox, J.A.

    1985-10-01

    Separations of metal ions on the basis of Donnan dialysis across anion-exchange membranes should be possible if the receiver electrolyte composition favors the formation of selected anionic complexes of the sample metal ions. Moreover, such a separation has the possibility of being better suited from some applications than batch or column experiments with anion-exchange resins. The above hypothesis are tested on the platinum-group metal ions, Pt(IV), Rh(III), Pd(II), Ir(III), and Ir(IV). 13 references, 4 tables.

  10. Palladium, platinum, and rhodium contents of rocks near the lower margin of the Stillwater complex, Montana.

    USGS Publications Warehouse

    Zientek, M.L.; Foose, M.P.; Leung, Mei

    1986-01-01

    Statistical summaries are reported for Pd, Pt and Rh contents of rocks from the lower part of the Stillwater complex, the underlying contact-metamorphosed sediments, and post-metamorphic dykes and sills wholly within the hornfelses. Variability of the data among the rock types is attributed largely to differences in sulphide content. Non-correlation of sulphur with platinum-group assays of many rock types leads to the suggestion that the immiscible sulphide and silicate liquids did not completely equilibrate with respect to platinum-group elements. -G.J.N.

  11. International strategic minerals inventory summary report: platinum-group metals

    USGS Publications Warehouse

    Sutphin, David M.; Page, Norman J

    1986-01-01

    Major world resources of platinum-group metals are described in this summary report of information in the International Strategic Minerals Inventory {ISMI}. ISMI is a cooperative data-collection effort of earth-science and mineral-resource agencies in Australia, Canada, the Federal Republic of Germany, the Republic of South Africa, and the United States of America. This report, designed to be of benefit to policy analysts, contains two parts. Part I presents an overview of the resources and potential supply of platinum-group metals on the basis of inventory information. Part II contains tables of some of the geologic information and mineral-resource and production data that were collected by ISMI participants.

  12. First determination of the levels of platinum group metals in Manta birostris (manta ray) caught along the Ghanaian coastline.

    PubMed

    Essumang, D K

    2010-06-01

    Tissues from Manta birostris caught by fishermen from Dixcove in the western part of Ghana were analyzed for their Platinum, palladium and rhodium concentrations (PGM). The use of chondrichthyan fish has permitted the study of trace levels of Platinum group metals (PGMs) which have travelled very far into the sea. The analysis showed that Ghana's coastline is fairly polluted with these platinum group metals (PGMs). PGM concentration in manta ray recorded a range of (0.15-0.85) microg/g for Pt, (0.033-0.67) microg/g for Pd and (0.007-0.145) microg/g for Rh. Comparing these values to the UK dietary intake of 0.2 microg/day for Pt and Rh and 1.0 microg/day for Pd, its indicates that the values obtained from the analysis for Pt was above the required level. This is the first study to show the accumulation of PGM in chondrichthyan fish, although the sources of this pollution are not clear as manta birostris is migratory and therefore need to be investigated further. The presence of the PGM is very significant, since manta ray meat is consumed in Ghana. This may presents a health risk, due to a possible accumulation of PGMs in humans.

  13. Platinum metals in magmatic sulfide ores

    USGS Publications Warehouse

    Naldrett, A.J.; Duke, J.M.

    1980-01-01

    Platinum-group elements (PGE) are mined predominantly from deposits that have formed by the segregation of molten iron-nickel-copper sulfides from silicate magmas. The absolute concentrations of PGE in sulfides from different deposits vary over a range of five orders of magnitude, whereas those of other chalcophile elements vary by factors of only 2 to 100. However, the relative proportions of the different PGE in a given deposit are systematically related to the nature of the parent magma. The absolute and relative concentrations of PGE in magmatic sulfides are explained in terms of the degree of partial melting of mantle peridotite required to produce the parent magma and the processes of batch equilibration and fractional segregation of sulfides. The Republic of South Africa and the U.S.S.R. together possess more than 97 percent of the world PGE reserves, but significant undeveloped resources occur in North America. The Stillwater complex in Montana is perhaps the most important example. Copyright ?? 1980 AAAS.

  14. Platinum redispersion on metal oxides in low temperature fuel cells.

    PubMed

    Tripković, Vladimir; Cerri, Isotta; Nagami, Tetsuo; Bligaard, Thomas; Rossmeisl, Jan

    2013-03-07

    We have analyzed the aptitude of several metal oxide supports (TiO(2), SnO(2), NbO(2), ZrO(2), SiO(2), Ta(2)O(5) and Nb(2)O(5)) to redisperse platinum under electrochemical conditions pertinent to the Proton Exchange Membrane Fuel Cell (PEMFC) cathode. The redispersion on oxide supports in air has been studied in detail; however, due to different operating conditions it is not straightforward to link the chemical and the electrochemical environment. The largest differences reflect in (1) the oxidation state of the surface (the oxygen species coverage), (2) temperature and (3) the possibility of platinum dissolution at high potentials and the interference of redispersion with normal working potential of the PEMFC cathode. We have calculated the PtO(x) (x = 0, 1, 2) adsorption energies on different metal oxides' surface terminations as well as inside the metal oxides' bulk, and we have concluded that NbO(2) might be a good support for platinum redispersion at PEMFC cathodes.

  15. Hydrolysis of the amide bond in histidine- and methionine-containing dipeptides promoted by pyrazine and pyridazine palladium(II)-aqua dimers: Comparative study with platinum(II) analogues.

    PubMed

    Živković, Marija D; Rajković, Snežana; Glišić, Biljana Đ; Drašković, Nenad S; Djuran, Miloš I

    2017-06-01

    Two dinuclear palladium(II) complexes, [{Pd(en)Cl}2(μ-pz)](NO3)2 and [{Pd(en)Cl}2(μ-pydz)](NO3)2, have been synthesized and characterized by elemental microanalysis and spectroscopic ((1)H and (13)C NMR, IR and UV-vis) techniques (en is ethylenediamine; pz is pyrazine and pydz is pyridazine). The square planar geometry of palladium(II) metal centers in these complexes has been predicted by DFT calculations. The chlorido complexes were converted into the corresponding aqua complexes, [{Pd(en)(H2O)}2(μ-pz)](4+) and [{Pd(en)(H2O)}2(μ-pydz)](4+), and their reactions with N-acetylated l-histidylglycine (Ac-l-His-Gly) and l-methionylglycine (Ac-l-Met-Gly) were studied by (1)H NMR spectroscopy. The palladium(II)-aqua complexes and dipeptides were reacted in 1:1 M ratio, and all reactions performed in the pH range 2.0palladium(II)-aqua complexes were compared with those previously reported in the literature for the analogues platinum(II)-aqua complexes, [{Pt(en)(H2O)}2(μ-pz)](4+) and [{Pt(en)(H2O)}2(μ-pydz)](4+). Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Preparation of organic solutions or solid films of small particles of ruthenium, palladium, and platinum from organometallic precursors in the presence of cellulose derivatives

    SciTech Connect

    Duteil, A.; Queau, R.; Chaudret, B. ); Mazel, R.; Roucau, C. ); Bradley, J.S. )

    1993-03-01

    Reaction of Ru(cod)(cot) with hydrogen in the presence of nitrocellulose (NC) or cellulose acetate (CA) at 20[degree]C yields colloidal ruthenium solutions containing particles of 10, 15, and 20 [angstrom], respectively, and showing a low dispersity for concentrations in Ru of 2, 5, and 10 wt% (NC) or particles of average size 15, 20, and 25 [angstrom] for concentrations in Ru of 2, 5, and 10 wt% (CA). No change in particle size is observed upon reaction with CO in NC whereas agglomeration occurs in CA. The infrared spectra of CO adsorbed on Ru colloids have been recorded. Whatever the stabilizing polymer, two bands were observed. A band at 2030 cm[sup [minus]1] has been assigned to the stretching vibration of CO linearly adsorbed on the Ru surface. A low-frequency band at 1965 cm[sup [minus]1] has been assigned to bridging CO. The relative intensities of these two bands were found to vary with particle size. Reaction of M(dba)[sub 2] (M = Pd, Pt; dba = dibenzylidene acetone) under CO in the presence of NC or AC leads to colloidal solutions containing small metal particles (respectively 35 [angstrom] for Pd in NC or CA, 12 [angstrom] for Pt in NC, 15 [angstrom] for Pt in CA independent of metal/polymer concentration). The presence of coordinated CO was observed in all cases. At maximum coverage, palladium colloids showed 3-fold and 2-fold bridging CO respectively at 1950 and 1890 cm[sup [minus]1]; platinum colloids showed both bridging and terminal CO at 1880 and 2050 cm[sup [minus]1]. 35 refs., 7 figs.

  17. Fuel cell performance of palladium-platinum core-shell electrocatalysts synthesized in gram-scale batches

    SciTech Connect

    Khateeb, Siddique; Su, Dong; Guerreo, Sandra; Darling, Robert M.; Protsailo, Lesia V.; Shao, Minhua

    2016-05-03

    This article presents the performance of palladium-platinum core-shell catalysts (Pt/Pd/C) for oxygen reduction synthesized in gram-scale batches in both liquid cells and polymer-electrolyte membrane fuel cells. Core-shell catalyst synthesis and characterization, ink fabrication, and cell assembly details are discussed. The Pt mass activity of the Pt/Pd core-shell catalyst was 0.95 A mg–1 at 0.9 V measured in liquid cells (0.1 M HClO4), which was 4.8 times higher than a commercial Pt/C catalyst. The performances of Pt/Pd/C and Pt/C in large single cells (315 cm2) were assessed under various operating conditions. The core-shell catalyst showed consistently higher performance than commercial Pt/C in fuel cell testing. A 20–60 mV improvement across the whole current density range was observed on air. Sensitivities to temperature, humidity, and gas composition were also investigated and the core-shell catalyst showed a consistent benefit over Pt under all conditions. However, the 4.8 times activity enhancement predicated by liquid cell measurements was not fully realized in fuel cells.

  18. Fuel cell performance of palladium-platinum core-shell electrocatalysts synthesized in gram-scale batches

    DOE PAGES

    Khateeb, Siddique; Su, Dong; Guerreo, Sandra; ...

    2016-05-03

    This article presents the performance of palladium-platinum core-shell catalysts (Pt/Pd/C) for oxygen reduction synthesized in gram-scale batches in both liquid cells and polymer-electrolyte membrane fuel cells. Core-shell catalyst synthesis and characterization, ink fabrication, and cell assembly details are discussed. The Pt mass activity of the Pt/Pd core-shell catalyst was 0.95 A mg–1 at 0.9 V measured in liquid cells (0.1 M HClO4), which was 4.8 times higher than a commercial Pt/C catalyst. The performances of Pt/Pd/C and Pt/C in large single cells (315 cm2) were assessed under various operating conditions. The core-shell catalyst showed consistently higher performance than commercial Pt/Cmore » in fuel cell testing. A 20–60 mV improvement across the whole current density range was observed on air. Sensitivities to temperature, humidity, and gas composition were also investigated and the core-shell catalyst showed a consistent benefit over Pt under all conditions. However, the 4.8 times activity enhancement predicated by liquid cell measurements was not fully realized in fuel cells.« less

  19. Structural, spectroscopic and quantum chemical studies of acetyl hydrazone oxime and its palladium(II) and platinum(II) complexes

    NASA Astrophysics Data System (ADS)

    Kaya, Yunus; Icsel, Ceyda; Yilmaz, Veysel T.; Buyukgungor, Orhan

    2015-09-01

    Acetyl hydrazone oxime, [(1E,2E)-2-(hydroxyimino)-1-phenylethylidene]acetohydrazone (hipeahH2) and its palladium(II) and platinum(II) complexes, [M(hipeahH)2] (M = PdII and PtII), have been synthesized and characterized by elemental analysis, UV-vis IR, NMR and LC-MS techniques. X-ray diffraction analysis of [Pd(hipeahH)2] shows that the two hipeahH2 ligands are not equal; one of the ligands loses the hydrazone proton, while the other one loses the oxime proton, resulting in a different coordination behavior to form five- and six-membered chelate rings. The molecular geometries from X-ray experiments in the ground state were compared using the density functional theory (DFT) with the B3LYP method combined with the 6-311++G(d,p) basis set for the ligand and the LanL2DZ basis set for the complexes. Comprehensive theoretical and experimental structural studies on the molecule have been carried out by FT-IR, NMR and UV-vis spectrometry. In addition, the isomer studies of ligand and its complexes were made by DFT.

  20. Investigation of platinum and palladium as potential anodic catalysts for direct borohydride and ammonia borane fuel cells

    NASA Astrophysics Data System (ADS)

    Olu, Pierre-Yves; Deschamps, Fabien; Caldarella, Giuseppe; Chatenet, Marian; Job, Nathalie

    2015-11-01

    Platinum and palladium are investigated as anodic catalysts for direct borohydride and direct ammonia borane fuel cells (DBFC and DABFC). Half-cell characterizations performed at 25 °C using NH3BH3 or NaBH4 alkaline electrolytes demonstrate the lowest open-circuit potential and highest electrocatalytic activity for the NH3BH3 alkaline electrolyte for Pd and Pt rotating disk electrodes, respectively. Voltammograms performed in fuel cell configuration at 25 °C confirm this trend: the highest open circuit voltage (1.05 V) and peak power density (181 mW·cm-2) are monitored for DABFC using Pd/C and Pt/C anodes, respectively. Increasing the temperature heightens the peak power density (that reaches 420 mW·cm-2 at 60 °C for DBFC using Pt/C anodes), but strongly generates gas from the fuel hydrolysis, hindering the overall fuel cells performances. The anode texture strongly influences the fuel cell performances, highlighting: (i) that an open anode texture is required to efficiently circulate the anolyte and (ii) the difficulty to compare potential anodic catalysts characterized using different fuel cell setups within the literature. Furthermore, TEM imaging of Pt/C and Pd/C catalysts prior/post DBFC and DABFC operation shows fast degradation of the carbon-supported nanoparticles.

  1. Palladium(II)-catalyzed direct alkoxylation of arenes: evidence for solvent-assisted concerted metalation deprotonation.

    PubMed

    Anand, Megha; Sunoj, Raghavan B

    2011-09-16

    Density functional theory investigations on the mechanism of palladium acetate catalyzed direct alkoxylation of N-methoxybenzamide in methanol reveal that the key steps involve solvent-assisted N-H as well as C-H bond activations. The transition state for the critical palladium-carbon bond formation through a concerted metalation deprotonation (CMD) process leading to a palladacycle intermediate has been found to be more stable in the methanol-assisted pathway as compared to an unassisted route.

  2. Platinum, palladium, gold and ruthenium complexes as anticancer agents: Current clinical uses, cytotoxicity studies and future perspectives.

    PubMed

    Lazarević, Tatjana; Rilak, Ana; Bugarčić, Živadin D

    2017-04-18

    Metallodrugs offer potential for unique mechanism of drug action based on the choice of the metal, its oxidation state, the types and number of coordinated ligands and the coordination geometry. This review illustrates notable recent progress in the field of medicinal bioinorganic chemistry as many new approaches to the design of innovative metal-based anticancer drugs are emerging. Current research addressing the problems associated with platinum drugs has focused on other metal-based therapeutics that have different modes of action and on prodrug and targeting strategies in an effort to diminish the side-effects of cisplatin chemotherapy. Examples of metal compounds and chelating agents currently in clinical use, clinical trials or preclinical development are highlighted. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Platinum Group Coatings for Refractory Metals

    DTIC Science & Technology

    1984-06-01

    Currently the only effective materials available for oxidation protective coatings are silicide -based, These materials are not without their...the silicide and the base metal, repeated temperature cycling results in craching of the coating which allows oxygen to diffuse into the cracks and...ultimately destroy the base material. The upper limit for silicide coatings is approximately 1400 0 C but at these temperatures evaporation of the

  4. Comparative study of hematological responses to platinum group metals, antimony and silver nanoparticles in animal models.

    PubMed

    Newkirk, Catherine E; Gagnon, Zofia E; Pavel Sizemore, Ioana E

    2014-01-01

    Research was conducted to examine the hematological effects of heavy metals (platinum (Pt ((IV))), palladium (Pd ((II))), rhodium (Rh ((III))), antimony (Sb ((III)) and Sb ((V))), and silver nanoparticles (AgNPs)) on white blood cells in mammalian (rat) and avian (chick embryo) models. These metals are used in many everyday products and are accumulating in our environment. Six-week old Sprague-Dawley female rats were treated daily by gavage and six-day old, fertile, specific pathogen-free white leghorn strain chick embryos' eggs were injected on days 7 and 14 of incubation with 0.0, 1.0, 5.0 or 10.0 ppm concentrations of Pt ((IV)) and a platinum group metal (PGM) mix of Pt ((IV)), Pd ((II)) and Rh ((III)). Chick embryos were also tested with 1.0 or 5.0 ppm of antimony compounds (Sb ((III)) and Sb ((V))) and 0.0, 15.0, 30.0, 60.0, or 100.0 ppm of silver nanoparticles (AgNPs). After 8 weeks of treatment, blood was obtained from the rats by jugular cut down and from chick embryos on day 20 of incubation by heart puncture. Blood smears were made and stained and a differential white cell count was performed on each. Examination of the smears revealed unconventional dose responses, stimulation of the immune response, and decreases in leukocyte production with various metals and concentrations. Chick embryos responded differently than rats to Pt and the PGM mix; suggesting that species differences and/or stage of development are important components of response to heavy metals. Route of administration of the metals might also influence the response. All of the heavy metals tested affected the immune responses of the tested animals as demonstrated by changes in the types and numbers of leukocytes. Our findings warrant further research to determine the mechanism of these effects and to understand and prevent toxicological effects in humans and other living organisms.

  5. The separation of platinum, palladium and gold from silicate rocks by the anion exchange separation of chloro complexes after a sodium peroxide fusion: an investigation of low recoveries.

    PubMed

    Enzweiler, J; Potts, P J

    1995-10-01

    A series of experiments was undertaken to measure the recovery efficiency of platinum, palladium and gold from silicate rocks using a sodium peroxide fusion followed by anion exchange separation of the analytes as chloro complexes. Results obtained by graphite furnace atomic absorption spectrometric analysis of standard solutions prepared in dilute HCl or HCl-acidified sodium peroxide solution showed that recoveries were near quantitative. However, when standard solutions were added to an alkaline sodium peroxide solution, which was then acidified, low results were obtained for platinum and gold (46% and 76% respectively). Low and variable results were also obtained when standard solutions were added to a peridotite sample that had been dissolved by the state procedure, and in the analysis of the South African Bureau of Standards certified reference material, SARM 7. Various experiments were undertaken to investigate these low recoveries, but the reason proposed here is the formation of hydroxychloro compounds in alkaline solution which are not, on acidification with HCl, converted quantitatively to the chloro complex necessary for quantitative anion exchange separation. It is concluded that a sodium peroxide fusion followed by an anion-exchange separation does not appear to form the basis of a successful technique for the determination of platinum, palladium and gold in silicate rocks.

  6. Palladium and platinum catalyzed addition of allylstannanes to aldehydes and imines

    SciTech Connect

    Nakamura, Hiroyuki; Yamamoto, Yoshinori

    1995-12-31

    The reaction of allylstannanes with aldehydes in THF was catalyzed by Pd(II) or Pt(II) complexes (10 mole %) either at room temperature or at reflux, giving the corresponding homoallyl alcohols in high to good yields. Among the catalysts examined, PtCl{sub 2}(PPh{sub 3}){sub 2} gave the best result. Aromatic, aliphatic, and {alpha},{beta}-unsaturated aldehydes can be utilized and even cyclohexanone undergoes the allylation reaction. Allyl and methallyltributylstannane reacted very smoothly. Crotyltributylstannane also reacted with aldehydes to give the branched homoallyl alcohols in good yields, but the reaction speed was slower than that of allylstannane. Detailed mechanistic studies of the Pd(II) catalyzed allylation, using NMR spectra, revealed that bis-{pi}-allyl palladium 5 is a key intermediate for the catalytic cycle and it exhibits nucleophilic reactivity.

  7. Synthesis, characterization and modification of LiFePO4 by doping with platinum and palladium for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Talebi-Esfandarani, Majid

    Lithium iron phosphate (LiFePO4) with features of excellent thermal stability, non-toxicity, low cost and abundance in nature is one of the most promising cathode materials to be used in lithium ion batteries. However, as it suffers from the low electrical conductivity and poor ionic diffusion, it operates only at low charge/discharge current rates. In this thesis, a dual approach of metal doping and carbon coating was employed to solve the aforementioned problem. This work is mainly on the study, for the first time, of the effect of platinum and palladium doping of LiFePO 4 on its physical-chemical properties. The effect of Pt and Pd doping on the LiFePO4 performance as Li-ion cathode will be also shown. Sol-gel and hydrothermal methods were used to synthesize the LiFePO4 and doped-LiFePO4 cathode materials. The prepared materials were characterized using different methods such as XRD (X-ray Diffraction), XPS (X-ray Photoelectron Spectroscopy), SEM (Scanning Electron Microscopy) and BET (Brunauer Emmett Teller). The electrochemical characterization techniques including charge/discharge test, CV (Cyclic Voltammetry), EIS (Electrochemical Impedance Spectroscopy) and cycling were also used. The effects of metals doping on chemical-physical properties, particles sizes, morphology, structure and purity of the electrodes were investigated and their correlation to the electrochemical properties of materials were studied. In the first section, we determine the optimized amount of carbon support and morphology of the particles using SEM which help to obtain LiFePO 4/C cathode material with an excellent electrochemical performance. It was found that when the amount of coated carbon exceeds the optimized value, the discharge capacity of the LiFePO4/C material decreased. This might indicate a low diffusion of the Li+ ions through the carbon layers during the charge/discharge process. On the other hand, for LiFePO4 coated with carbon quantity lower than the optimum value, Li

  8. Phosphorescent Platinum(II) and Palladium(II) Complexes with Azatetrabenzoporphyrins—New Red Laser Diode-Compatible Indicators for Optical Oxygen Sensing

    PubMed Central

    2010-01-01

    A new class of oxygen indicators is described. Platinum(II) and palladium(II) complexes of azatetrabenzoporphyrins occupy an intermediate position between tetrabenzoporphyrins and phthalocyanines and combine features of both. The new dyes are excitable in the red part of the spectrum and possess strong room-temperature NIR phosphorescence. Other features include excellent spectral compatibility with the red laser diodes and 632.8 nm line of He−Ne laser, excellent photostability, and significantly shorter decay times than for the respective meso-tetraphenyltetrabenzoporphyrins. Applicability of the complexes for optical oxygen sensing is demonstrated. PMID:20186289

  9. PALLADIUM, PLATINUM, RHODIUM, RUTHENIUM AND IRIDIUM IN PERIDOTITES AND CHROMITITES FROM OPHIOLITE COMPLEXES IN NEWFOUNDLAND.

    USGS Publications Warehouse

    Page, Norman J; Talkington, Raymond W.

    1984-01-01

    Samples of spinel lherzolite, harzburgite, dunite, and chromitite from the Bay of Islands, Lewis Hills, Table Mountain, Advocate, North Arm Mountain, White Hills Periodite Point Rousse, Great Bend and Betts Cove ophiolite complexes in Newfoundland were analyzed for the platinum-group elements (PGE) Pd, Pt, Rh, Ru and Ir. The ranges of concentration (in ppb) observed for all rocks are: less than 0. 5 to 77 (Pd), less than 1 to 120 (Pt), less than 0. 5 to 20 (Rh), less than 100 to 250 (Ru) and less than 20 to 83 (Ir). Chondrite-normalized PGE ratios suggest differences between rock types and between complexes. Samples of chromitite and dunite show relative enrichment in Ru and Ir and relative depletion in Pt and Pd.

  10. Palladium, platinum, rhodium, iridium and ruthenium in chromite- rich rocks from the Samail ophiolite, Oman.

    USGS Publications Warehouse

    Page, N.J.; Pallister, J.S.; Brown, M.A.; Smewing, J.D.; Haffty, J.

    1982-01-01

    30 samples of chromitite and chromite-rich rocks from two stratigraphic sections, 250 km apart, through the basal ultramafic member of the Samail ophiolite were spectrographically analysed for platinum-group elements (PGE) and for Co, Cu, Ni and V. These data are reported as are Cr/(Cr + Al), Mg/(Mg + Fe) and wt.% TiO2 for most samples. The chromitite occurs as pods or lenses in rocks of mantle origin or as discontinuous layers at the base of the overlying cumulus sequence. PGE abundances in both sections are similar, with average contents in chromite-rich rocks: Pd 8 ppb, Pt 14 ppb, Rh 6 ppb, Ir 48 ppb and Ru 135 ppb. The PGE data, combined with major-element and petrographic data on the chromitite, suggest: 1) relatively larger Ir and Ru contents and highest total PGE in the middle part of each section; 2) PGE concentrations and ratios do not correlate with coexisting silicate and chromite abundances or chromite compositions; 3) Pd/PGE, on average, increases upward in each section; 4) Samail PGE concentrations, particularly Rh, Pt and Pd, are lower than the average values for chromite-rich rocks in stratiform intrusions. 2) suggests that PGEs occur in discrete alloy or sulphide phases rather than in the major oxides or silicates, and 4) suggests that chromite-rich rocks from the oceanic upper mantle are depleted in PGE with respect to chondrites. L.C.C.

  11. Hydrodechlorination of chlorobenzene over polymer-stabilized palladium-platinum bimetallic colloidal nanocatalysts.

    PubMed

    Liu, Manhong; Wang, Chao; Yu, William W

    2010-11-01

    Poly(N-vinyl-2-pyrrolidone) (PVP)-stabilized Pd, Pt, Pd-Pt nanocatalysts were prepared and characterized by transmission electron microscopy (TEM). Hydrogenation of chlorobenzene was carried out over these colloidal nanocatalysts under ambient conditions. The catalytic properties for the hydrogenation of chlorobenzene depended on the composition of the bimetallic nanocatalysts. The conversion of chlorobenzene over PVP-Pd (83.64%) was higher than that of PVP-Pt (66.67%), which indicated that the activity of Pd was higher than that of Pt. In 10 hrs. the conversions of all the bimetallic nanocatalysts were higher than that of PVP-Pt (66.67%) monometallic nanocatalysts, and the maximum conversion of chlorobenzene (95.34%) was achieved using PVP-Pd/Pt = 1/1 catalytic system, which was much higher than that of the physical mixture of monometallic nanocatalysts (PVP-Pd and PVP-Pt) at the same Pd/Pt ratio as the PVP-Pd/Pt bimetallic nanocatalysts used. The selectivity to benzene and cyclohexane of the bimetallic nanocatalysts (with < or = 40 mol% Pt) was similar to that of PVP-Pd monometallic nanocatalysts, and nearly approximately 100% selectivity to benzene could be obtained, the selectivity to cyclohexane increased slowly with increasing of platinum content in bimetallic nanocatalysts.

  12. Palladium(II) and platinum(II) organometallic complexes with 4,7-dihydro-5-methyl-7-oxo[1,2,4]triazolo[1,5-a]pyrimidine. Antitumor activity of the platinum compounds.

    PubMed

    Ruiz, José; Villa, María Dolores; Cutillas, Natalia; López, Gregorio; de Haro, Concepción; Bautista, Delia; Moreno, Virtudes; Valencia, Laura

    2008-06-02

    Palladium and platinum complexes with HmtpO (where HmtpO=4,7-dihydro-5-methyl-7-oxo[1,2,4]triazolo[1,5-a]pyrimidine, an analogue of the natural occurring nucleobase hypoxanthine) of the types [M(dmba)(PPh3)(HmtpO)]ClO4[dmba=N,C-chelating 2-(dimethylaminomethyl)phenyl; M=Pd or Pt], [Pd(N-N)(C6F5)(HmtpO)]ClO4[N-N=2,2'-bipyridine (bpy), 4,4'-dimethyl-2,2'-bipyridine (Me2bpy), or N, N, N', N'-tetramethylethylenediamine (tmeda)] and cis-[M(C6F5)2(HmtpO)2] (M=Pd or Pt) (head-to-head atropisomer in the solid state) have been obtained. Pd(II) and Pt(II) complexes with the anion of HmtpO of the types [Pd(tmeda)(C6F5)(mtpO)], [Pd(dmba)(micro-mtpO)] 2, and [NBu4]2[M(C6F5)2(micro-mtpO)]2(M=Pd or Pt) have been prepared starting from the corresponding hydroxometal complexes. Complexes containing simultaneously both the neutral HmtpO ligand and the anionic mtpO of the type [NBu4][M(C6F5)2(HmtpO)(mtpO)] (M=Pd or Pt) have been also obtained. In these mtpO-HmtpO metal complexes, for the first time, prototropic exchange is observed between the two heterocyclic ligands. The crystal structures of [Pd(dmba)(PPh 3)(HmtpO)]+, cis-[Pt(C6F5)2(HmtpO)2].acetone, [Pd(C6F5)(tmeda)(mtpO)].2H2O, [Pd(dmba)(micro-mtpO)]2, [NBu4]2[Pd(C6F5)2(micro-mtpO)]2.CH2Cl2.toluene, [NBu4]2[Pt(C6F5)2(micro-mtpO)](2).0.5(toluene), and [NBu4][Pt(C6F5)2(mtpO)(HmtpO)] have been established by X-ray diffraction. Values of IC50 were calculated for the new platinum complexes cis-[Pt(C6F5)2(HmtpO)2] and [Pt(dmba)(PPh3)(HmtpO)]ClO4 against a panel of human tumor cell lines representative of ovarian (A2780 and A2780 cisR), lung (NCI-H460), and breast cancers (T47D). At 48 h incubation time, both complexes were about 8-fold more active than cisplatin in T47D and show very low resistance factors against an A2780 cell line, which has acquired resistance to cisplatin. The DNA adduct formation of cis-[Pt(C6F5)2(HmtpO)2] and [Pt(dmba)(PPh3)(HmtpO)]ClO4 was followed by circular dichroism and electrophoretic mobility. Atomic

  13. Complexing sorbents with heterocyclic amino groups for concentrating platinum-group metals

    SciTech Connect

    Myasoedova, G.V.; Shcherbinina, N.I.; Komozin, P.N.

    1995-06-01

    Sorbents prepared on the basis of amines, in particular, those bearing heterocyclic amino groups and nitrogen-containing matrices, hold much promise for the sorptifve sepatration of platinum-group metals. The results of the study of new complexing sorbents based on 2,4,6-triamino-1,3,5-triazine (melamine) and bearing 3(5)-methylpyrazole, imidazole, and benzimidazole groups are presented in this work. The sorption and complexing properties of the sorbents with respect to platinum-group metals were studied. The possibility of using new sorbents for the group concentration of platinum-group metals was demonstrated.

  14. Removal of heavy metals from aqueous solution using platinum nanopartcles/Zeolite-4A

    PubMed Central

    2014-01-01

    The effects of varying operating conditions on metals removal from aqueous solution using a novel platinum nanopartcles/Zeolite-4A adsorbent are reported in this paper. Characterization of the adsorbent showed successful production of platinum nanopartcles on Zeolite-4A using 3 Wt% platinum. The effects of operation conditions on metals removal using this adsorbent were investigated. The optimal metals adsorption was observed at pH 7, 0.1 g/10 mL dosage and 30 min contact time. Sorption data have been interpreted in terms of Langmuir and Freundlich isotherms. PMID:24397886

  15. A rapid and practical strategy for the determination of platinum, palladium, ruthenium, rhodium, iridium and gold in large amounts of ultrabasic rock by inductively coupled plasma optical emission spectrometry combined with ultrasound extraction

    NASA Astrophysics Data System (ADS)

    Zhang, Gai; Tian, Min

    2015-04-01

    This proposed method regulated the determination of platinum, palladium, ruthenium, rhodium, iridium and gold in platinum-group ores by nickel sulfide fire assay—inductively coupled plasma optical emission spectrometry (ICP-OES) combined with ultrasound extraction for the first time. The quantitative limits were 0.013-0.023μg/g. The samples were fused to separate the platinum-group elements from matrix. The nickel sulfide button was then dissolved with hydrochloric acid and the insoluble platinum-group sulfide residue was dissolved with aqua regia by ultrasound bath and finally determined by ICP-OES. The proposed method has been applied into the determination of platinum-group element and gold in large amounts of ultrabasic rocks from the Great Dyke of Zimbabwe.

  16. Ab-initio study of several static and dynamic properties of liquid palladium and platinum

    NASA Astrophysics Data System (ADS)

    González, L. E.; González, D. J.; Molla, Mohammad Riazuddin; Ahmed, A. Z. Ziauddin; Bhuiyan, G. M.

    2017-08-01

    We report a study on several static and dynamic properties of liquid Pd and Pt metals at thermodynamic conditions near their respective triple points. The calculations have been carried out by an ab initio molecular dynamics simulation technique. Results are reported for several static structural magnitudes which are compared with the available X-ray diffraction. As for the dynamic properties, results have been obtained for both single and collective dynamical magnitudes as well as for some transport coeffcients which are compared with the corresponding experimental data.

  17. Evidence for the Formation of Nitrogen-Rich Platinum and Palladium Nitride Nanoparticles

    SciTech Connect

    Veith, Gabriel M.; Lupini, Andrew R.; Baggetto, Loïc; Browning, James F.; Keum, Jong K.; Villa, Alberto; Prati, Laura; Papandrew, Alexander B.; Goenaga, Gabriel A.; Mullins, David R.; Bullock, Steven E.; Dudney, Nancy J.

    2013-12-03

    Here, we report evidence for the formation of nitrogen-rich precious metal nanoparticles (Pt, Pd) prepared by reactive sputtering of the pure metal in a N2 plasma. The composition of the nanoparticles varies as a function of particle size and growth conditions. For the smallest particles the nitrogen content appears to be as high as 6.7 N atoms for each Pd atom or 5.9 N atoms for each Pt atom whereas bulk films have nominal compositions of Pt7.3N and Pd2.5N. The nanoparticles are metastable in air and moisture, slowly decomposing over several years. This paper describes the synthesis of these materials along with experimental evidence of the composition, oxidation state, and growth modes. Moreover, the catalytic properties of these N-rich nanoparticles were accessed by rotating disk electrode electrochemical studies, the liquid phase oxidation of benzyl alcohol and gas phase CO oxidation and support the experimental evidence for the materials composition.

  18. Evidence for the Formation of Nitrogen-Rich Platinum and Palladium Nitride Nanoparticles

    DOE PAGES

    Veith, Gabriel M.; Lupini, Andrew R.; Baggetto, Loïc; ...

    2013-12-03

    Here, we report evidence for the formation of nitrogen-rich precious metal nanoparticles (Pt, Pd) prepared by reactive sputtering of the pure metal in a N2 plasma. The composition of the nanoparticles varies as a function of particle size and growth conditions. For the smallest particles the nitrogen content appears to be as high as 6.7 N atoms for each Pd atom or 5.9 N atoms for each Pt atom whereas bulk films have nominal compositions of Pt7.3N and Pd2.5N. The nanoparticles are metastable in air and moisture, slowly decomposing over several years. This paper describes the synthesis of these materialsmore » along with experimental evidence of the composition, oxidation state, and growth modes. Moreover, the catalytic properties of these N-rich nanoparticles were accessed by rotating disk electrode electrochemical studies, the liquid phase oxidation of benzyl alcohol and gas phase CO oxidation and support the experimental evidence for the materials composition.« less

  19. The direct synthesis of hydrogen peroxide using platinum-promoted gold-palladium catalysts.

    PubMed

    Edwards, Jennifer K; Pritchard, James; Lu, Li; Piccinini, Marco; Shaw, Greg; Carley, Albert F; Morgan, David J; Kiely, Christopher J; Hutchings, Graham J

    2014-02-24

    The direct synthesis of hydrogen peroxide offers a potentially green route to the production of this important commodity chemical. Early studies showed that Pd is a suitable catalyst, but recent work indicated that the addition of Au enhances the activity and selectivity significantly. The addition of a third metal using impregnation as a facile preparation method was thus investigated. The addition of a small amount of Pt to a CeO2-supported AuPd (weight ratio of 1:1) catalyst significantly enhanced the activity in the direct synthesis of H2O2 and decreased the non-desired over-hydrogenation and decomposition reactions. The addition of Pt to the AuPd nanoparticles influenced the surface composition, thus leading to the marked effects that were observed on the catalytic formation of hydrogen peroxide. In addition, an experimental approach that can help to identify the optimal nominal ternary alloy compositions for this reaction is demonstrated.

  20. Development of advanced model catalysts: A study of catalysis over epitaxially grown titanium oxide films, palladium foils and platinum nano-particle arrays

    NASA Astrophysics Data System (ADS)

    Jacobs, Peter W.

    1997-11-01

    Titania overlayers were grown in two different ordered structures on Pt(111) as seen by Low Energy Electron Diffraction (LEED). Fully oxidized, films maintain the symmetry of top layer of the substrate and form a coincident 18.2 A unit cell. These overlayers could be grown in monolayer and multi-layer coverages. They are seen by X-Ray Photoelectron Spectroscopy (XPS) to have TiOsb2 stoichiometry. Above 400sp°C the oxide disproportionates and titanium migrates into the bulk to form an alloy. The LEED and XPS data are consistent with the model of a close-packed lattice of oxygen anions with titanium cations in the octahedral sites. Vacuum annealing above 600sp°C forms a partially reduced monolayer with the stoichiometry Tisb4Osb7. This overlayer does not have the symmetry of the substrate. The unit cell is given by the coincidence of the substrate lattice with a rectangular cell of 3.5 A x 4.2 A. Ion Scattering Spectroscopy data suggests the structure is formed upon creating oxygen vacancies. Ethane oxidation was performed over palladium foils under a wide range of reactant concentrations to produce COsb2, Hsb2O, CHsb4 and Csb2Hsb4. The foils required an initial activation period at high temperature (>400sp°C) under fuel rich reaction conditions. Methane and COsb2 displayed similar kinetics although methane was produced with ˜1/85spth the rate. Ethylene was a reaction intermediate and eventually converted to COsb2. Depending on their concentration, water and oxygen inhibited combustion. A mechanism consistent with the observed kinetics is proposed in which the rate determining step is ethyl formation on a Pd-PdO or PdO-PdO two-atom site. Electron Beam Lithography was used to fabricate nanometer-scale arrays of platinum particles on an oxidized silicon wafer. Low energy ion bombardment was used to clean the array, which was then active for ethylene hydrogenation with rates comparable to the literature. Thermal desorption experiments demonstrated the possibility of

  1. Platinum/Palladium hollow nanofibers as high-efficiency counter electrodes for enhanced charge transfer

    NASA Astrophysics Data System (ADS)

    Navarro Pardo, F.; Benetti, D.; Zhao, H. G.; Castaño, V. M.; Vomiero, A.; Rosei, F.

    2016-12-01

    Pt/Pd hollow nanofibers were obtained by sputtering a Pt/Pd alloy (80/20 wt%) onto polymer nanofibers (used as sacrificial template) and were used as counter-electrodes (CEs) in dye-sensitized solar cells (DSSCs). We demonstrate that optimization of nanofiber density and Pt/Pd sputtering thickness can increase the short circuit current density and consequently lead to a ∼15% enhancement in power conversion efficiency (PCE), when compared to the commonly used flat Pt/Pd CEs with the same thickness. The processes that contribute to such PCE improvement are: (i) increased surface area provided by the high aspect ratio hollow nanofibers and (ii) improved electro-catalytic performance, as validated by electrochemical impedance spectroscopy (EIS) measurements. The latter showed a two-fold decrease in the charge-transfer resistance of the nanostructured-CE, compared to the flat CE. The contribution of the Pt/Pd hollow nanofiber to light scattering was negligible as shown by reflectance measurements. These results suggest a simple and straightforward strategy to increase PCE in DSSCs, to minimize the use of precious metals used in this kind of devices and, more generally, to tailor the CE structure in photoelectrochemical systems to boost their functional properties, thanks to the advantages afforded by this complex morphology.

  2. Electrocatalysis of formic acid on palladium and platinum surfaces: from fundamental mechanisms to fuel cell applications.

    PubMed

    Jiang, Kun; Zhang, Han-Xuan; Zou, Shouzhong; Cai, Wen-Bin

    2014-10-14

    Formic acid as a natural biomass and a CO2 reduction product has attracted considerable interest in renewable energy exploitation, serving as both a promising candidate for chemical hydrogen storage material and a direct fuel for low temperature liquid fed fuel cells. In addition to its chemical dehydrogenation, formic acid oxidation (FAO) is a model reaction in the study of electrocatalysis of C1 molecules and the anode reaction in direct formic acid fuel cells (DFAFCs). Thanks to a deeper mechanistic understanding of FAO on Pt and Pd surfaces brought about by recent advances in the fundamental investigations, the "synthesis-by-design" concept has become a mainstream idea to attain high-performance Pt- and Pd-based nanocatalysts. As a result, a large number of efficient nanocatalysts have been obtained through different synthesis strategies by tailoring geometric and electronic structures of the two primary catalytic metals. In this paper, we provide a brief overview of recent progress in the mechanistic studies of FAO, the synthesis of novel Pd- and Pt-based nanocatalysts as well as their practical applications in DFAFCs with a focus on discussing studies significantly contributing to these areas in the past five years.

  3. Near Infrared Phosphorescent, Non-oxidizable Palladium and Platinum Perfluoro-phthalocyanines.

    PubMed

    Łapok, Łukasz; Obłoza, Magdalena; Gorski, Alexandr; Knyukshto, Valeri; Raichyonok, Tamara; Waluk, Jacek; Nowakowska, Maria

    2016-04-18

    New Pd(II) and Pt(II) complexes with a highly electron-deficient ligand (H2 PcF64 ) were conveniently prepared in a three-step synthesis. This is the first time that the phosphorescence of phthalocyanines with a H2 PcF64 framework has been measured. Based on these measurements, the triplet-state energies (ET ) were directly determined. Transient absorption experiments revealed broad T1 →Tn absorption spanning from ca. 350 to ca. 1000 nm and allowed determination of the triplet-state lifetimes. Removal of the Pd or Pt from the perfluoro-phthalocyanine resulted in a significant increase of the triplet lifetime for H2 PcF64 . The very efficient intersystem crossing observed for both PdPcF64 and PtPcF64 leads to residual fluorescence and suppresses the fluorescence lifetimes to less than 50 ps. The absence of Pd and Pt in the perfluoro-phthalocyanine ligand, viz. H2 PcF64 , led to a recovery of fluorescence. Cyclic voltamperometry studies pointed to complete resistance of PdPcF64 and PtPcF64 to oxidation and very strong electron affinity, which rendered these materials very good electron acceptors (n-type materials). The presence of d-orbital metals such as Pd(II) and Pt(II) in the phthalocyanine ring stabilizes their reduced forms, as indicated by the spectroelectrochemical experiments. PdPcF64 and PtPcF64 easily sensitize singlet oxygen production with very high quantum yields. Both phthalocyanines presented resistance to photodegradation in the solid state under aerobic conditions and under intense irradiation.

  4. Highly fluorescent complexes with gold, palladium or platinum linked to perylene through a tetrafluorophenyl group.

    PubMed

    Lentijo, Sergio; Aullón, Gabriel; Miguel, Jesús A; Espinet, Pablo

    2013-05-14

    Treatment of 3-(1-hexynyl)perylene with Co2(CO)8 resulted in the formation of the dinuclear cobalt complex [Co2(CO)6(μ-η(2)-C4H9C≡C-Per)] (Per = 3-perylenyl) (1). The perylene derivatives 3-(2,3,5,6-tetrafluorophenyl)perylene (PerC6F4H) and 3-(2,3,5,6-tetrafluorophenyl)-9(10)hexylperylene (C6-PerC6F4H) were prepared and used to synthesize [AuR(CN(t)Bu)] (R = PerC6F4 2a), [AuR(CN(C6H2)-3,4,5-(OC12H25)3)] (R = PerC6F4 (3a), R = C6-PerC6F4 (3b)), trans-[PdR(PR'3)2X] (R = PerC6F4, R' = Ph, X = I (4a)); (R = C6-PerC6F4, R' = Ph, X = I (4b)); (R = PerC6F4, R' = Et, X = I (5a)); (R = C6-PerC6F4, R' = Et, X = I (5b)); (R = PerC6F4, R' = Ph, X = NCS (6a)), and trans-[Pd(PerC6F4)(PEt3)2X] (X = Br (7a); X = I (8a)). The molecular structure of complexes 1, 2a and 6a has been determined by X-ray diffraction analysis. The perylenyl fragments of complexes 2a or 6a are essentially planar and make dihedral angles to the tetrafluorophenyl plane of 57.49° (2a) and 77.75° (6a). No π-π stacking of perylenyl rings is observed in any of the three molecules, but 2a shows association of two monomers (arranged almost antiparallel), with an Au···Au distance of 3.114 Å. DFT calculations were performed on the absorption spectra of representative PerC6F4Y (Y = H, F, Au(CNMe), PtBr(PMe3)2 and PdBr(PMe3)2). All complexes exhibit fluorescence associated with the perylene fragment with emission quantum yields, in solution at room temperature, in the range 0.20-0.90 and emission lifetimes ~4 ns, and no significant differences in the emission maxima, due to an efficient electronic decoupling of the metal fragment from the HOMO and LUMO of the perylene chromophore. The latter is confirmed by DFT calculations.

  5. Donnan dialysis of bromocomplexes of some platinum group metal ions

    SciTech Connect

    Brajter, K.; Slonawska, K. ); Cox, J.A. )

    1989-03-01

    The separation of bromocomplexes of platinum group metals by Donnan dialysis is demonstrated with both anion and cation exchange membranes. The inclusion of ethylenediamine (en) in the sample improves the separation of Pd(II) from Pt(IV) with experiments performed with an anion exchange membrane and decreases the amount of metal retained on the membrane phase. With a cation exchange membrane, the addition of a ligand such as en is required for transport. With 5.6 mM en in the sample at pH 10, 74% of Pd(II) is transported across an anion exchange membrane into 0.5 M NH{sub 4} Br after 6 hours while only 8% of the Pt(IV) is dialyzed. Rhodium(III) and iridium(III) behave like Pt(IV). Using a cation exchange membrane under the same conditions except with a 1 hour dialysis results in a 30-fold preferential preconcentration of Pd(II) relative to Pt(IV), and, based on the amount retained in the membrane, a preconcentration of Ir(III) which exceeds that of Pd(II) and Pt(IV) by factors of 40 and 20, respectively.

  6. Palladium(II) and platinum(II) organometallic complexes with the model nucleobase anions of thymine, uracil, and cytosine: antitumor activity and interactions with DNA of the platinum compounds.

    PubMed

    Ruiz, José; Lorenzo, Julia; Sanglas, Laura; Cutillas, Natalia; Vicente, Consuelo; Villa, María Dolores; Avilés, Francesc X; López, Gregorio; Moreno, Virtudes; Pérez, José; Bautista, Delia

    2006-08-07

    Pd(II) and Pt(II) complexes with the anions of the model nucleobases 1-methylthymine (1-MethyH), 1-methyluracil (1-MeuraH), and 1-methylcytosine (1-MecytH) of the types [Pd(dmba)(mu-L)]2 [dmba = N,C-chelating 2-((dimethylamino)methyl)phenyl; L = 1-Methy, 1-Meura or 1-Mecyt] and [M(dmba)(L)(L')] [L = 1-Methy or 1-Meura; L' = PPh(3) (M = Pd or Pt), DMSO (M = Pt)] have been obtained. Palladium complexes of the types [Pd(C6F5)(N-N)(L)] [L = 1-Methy or 1-Meura; N-N = N,N,N',N'-tetramethylethylenediamine (tmeda), 2,2'-bipyridine (bpy), or 4,4'-dimethyl-2,2'-bipyridine (Me2bpy)] and [NBu4][Pd(C6F5)(1-Methy)2(H2O)] have also been prepared. The crystal structures of [Pd(dmba)(mu-1-Methy)]2, [Pd(dmba)(mu-1-Mecyt)]2.2CHCl3, [Pd(dmba)(1-Methy)(PPh3)].3CHCl3, [Pt(dmba)(1-Methy)(PPh3)], [Pd(tmeda)(C6F5)(1-Methy)], and [NBu4][Pd(C6F5)(1-Methy)2(H2O)].H2O have been established by X-ray diffraction. The DNA adduct formation of the new platinum complexes synthesized was followed by circular dichroism and electrophoretic mobility. Atomic force microscopy images of the modifications caused by the platinum complexes on plasmid DNA pBR322 were also obtained. Values of IC50 were also calculated for the new platinum complexes against the tumor cell line HL-60. All the new platinum complexes were more active than cisplatin (up to 20-fold in some cases).

  7. l-Glutamic acid assisted eco-friendly one-pot synthesis of sheet-assembled platinum-palladium alloy networks for methanol oxidation and oxygen reduction reactions.

    PubMed

    Shi, Ya-Cheng; Mei, Li-Ping; Wang, Ai-Jun; Yuan, Tao; Chen, Sai-Sai; Feng, Jiu-Ju

    2017-10-15

    In this work, bimetallic platinum-palladium sheet-assembled alloy networks (PtPd SAANs) were facilely synthesized by an eco-friendly one-pot aqueous approach under the guidance of l-glutamic acid at room temperature, without any additive, seed, toxic or organic solvent involved. l-Glutamic acid was served as the green shape-director and weak-stabilizing agent. A series of characterization techniques were employed to examine the morphology, structure and formation mechanism of the product. The architectures exhibited improved electrocatalytic activity and durable ability toward methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) in contrast with commercial Pt black and Pd black catalysts. This is ascribed to the unique structures of the obtained PtPd SAANs and the synergistic effects of the bimetals. These results demonstrate the potential application of the prepared catalyst in fuel cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Antimicrobial and antitumor activity of platinum and palladium complexes of novel spherical aramides nanoparticles containing flexibilizing linkages: structure-property relationship.

    PubMed

    Elhusseiny, Amel F; Hassan, Hammed H A M

    2013-02-15

    Square planar Pd (II) and octahedral Pt (IV) complexes with novel spherical aramides nanoparticles containing flexible linkages ligands have been synthesized and characterized using analytical and spectral techniques. The synthesized complexes have been tested for their antimicrobial activity using Kirby-Bauer disc diffusion method. The antitumor activity has been performed using liver carcinoma (HEPG2), breast carcinoma (MCF7) and colon carcinoma (HCT 116) cell lines. Palladium complexes of polyamides containing sulfones showed the highest potency as antibacterial and antifungal agents. Platinum complexes containing sulfone and ether flexible linkages and chloro groups exhibited high potency as antitumor and antimicrobial agents. The uniform sizes of these nanomaterials could find biological uses such as immune assay and other medical purposes. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Antimicrobial and antitumor activity of platinum and palladium complexes of novel spherical aramides nanoparticles containing flexibilizing linkages: Structure-property relationship

    NASA Astrophysics Data System (ADS)

    Elhusseiny, Amel F.; Hassan, Hammed H. A. M.

    2013-02-01

    Square planar Pd (II) and octahedral Pt (IV) complexes with novel spherical aramides nanoparticles containing flexible linkages ligands have been synthesized and characterized using analytical and spectral techniques. The synthesized complexes have been tested for their antimicrobial activity using Kirby-Bauer disc diffusion method. The antitumor activity has been performed using liver carcinoma (HEPG2), breast carcinoma (MCF7) and colon carcinoma (HCT 116) cell lines. Palladium complexes of polyamides containing sulfones showed the highest potency as antibacterial and antifungal agents. Platinum complexes containing sulfone and ether flexible linkages and chloro groups exhibited high potency as antitumor and antimicrobial agents. The uniform sizes of these nanomaterials could find biological uses such as immune assay and other medical purposes.

  10. Synthesis, structural characterization and cell death-inducing effect of novel palladium(II) and platinum(II) saccharinate complexes with 2-(hydroxymethyl)pyridine and 2-(2-hydroxyethyl)pyridine on cancer cells in vitro.

    PubMed

    Ari, Ferda; Aztopal, Nazlihan; Icsel, Ceyda; Yilmaz, Veysel T; Guney, Emel; Buyukgungor, Orhan; Ulukaya, Engin

    2013-11-01

    Four palladium(II) and platinum(II) saccharinate (sac) complexes with 2-(hydroxymethyl)pyridine (2-hmpy) and 2-(2-hydroxyethyl)pyridine (2-hepy), namely trans-[Pd(2-hmpy)2(sac)2]·H2O (1), trans-[Pt(2-hmpy)2(sac)2]·3H2O (2), trans-[Pd(2-hepy)2(sac)2] (3) and trans-[Pt(2-hepy)2(sac)2] (4), have been synthesized and characterized by elemental analysis, UV-vis, IR and NMR. Single crystal X-ray analysis reveals that the metal(II) ions in each complex are coordinated by two sac and two 2-hmpy or 2-hepy ligands with a trans arrangement. Anticancer effects of 1-4 were tested against four different cancer cell lines (A549 and PC3 for lung cancer, C6 for glioblastoma, and Hep3B for liver cancer). Cytotoxicity was first screened by the MTT assay and the results were further confirmed by the ATP assay. The mode of cell death was determined by both histological and biochemical methods. Among the metal complexes, complex 2 resulted in relatively stronger anti-growth effect in a dose-dependent manner (3.13-200μM), compared to the others, by inducing apoptosis.

  11. Complexes of platinum and palladium with β-diketones and DMSO: Synthesis, characterization, molecular modeling, and biological studies

    NASA Astrophysics Data System (ADS)

    do Couto Almeida, J.; Marzano, I. M.; de Paula, F. C. Silva; Pivatto, M.; Lopes, N. P.; de Souza, P. C.; Pavan, F. R.; Formiga, A. L. B.; Pereira-Maia, E. C.; Guerra, W.

    2014-10-01

    This work reports on the synthesis and characterization of new complexes of the type [MCl(L)DMSO], where L = 4,4,4-trifluoro-1-phenyl-1,3-butanedione (HTPB) or 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione (HTTA) and M = Pt2+ or Pd2+. These complexes were characterized by elemental analyses, conductivity measurements, FT-IR, UV-Vis, high-resolution mass spectra (HRESIMS) and TG/DTA. In the complexes, the metallic ions bind to β-diketone via the oxygen atoms and to DMSO molecule via sulfur atom. The structures of complexes were optimized and theoretical data showed good agreement with the experimental results. The cytotoxic activity of the compounds was evaluated in a chronic myelogenous leukemia cell line. The platinum complexes were more cytotoxic than the free ligands and carboplatin and are promising candidates for further investigations. As example, the compound [PtCl(TPB)(DMSO)] inhibits the growth of K562 cells with an IC50 value equal to 2.5 μM. Furthermore, microbiological assays against Mycobacterium tuberculosis showed that all complexes exhibit low cytotoxicity against this bacterial strain while the free ligands exhibited MIC values of approximately 10 μg mL-1.

  12. Pyrometallurgical Recovery of Platinum Group Metals from Spent Catalysts

    NASA Astrophysics Data System (ADS)

    Peng, Zhiwei; Li, Zhizhong; Lin, Xiaolong; Tang, Huimin; Ye, Lei; Ma, Yutian; Rao, Mingjun; Zhang, Yuanbo; Li, Guanghui; Jiang, Tao

    2017-09-01

    As an important secondary resource with abundant platinum group metals (PGMs), spent catalysts demand recycling for both economic and environmental benefits. This article reviews the main pyrometallurgical processes for PGM recovery from spent catalysts. Existing processes, including smelting, vaporization, and sintering processes, are discussed based in part on a review of the physiochemical characteristics of PGMs in spent catalysts. The smelting technology, which produces a PGM-containing alloy, is significantly influenced by the addition of various collectors, such as lead, copper, iron, matte, or printed circuit board (PCB), considering their chemical affinities for PGMs. The vaporization process can recover PGMs in vapor form at low temperatures (250-700°C), but it suffers high corrosion and potential environmental and health risks as a result of involvement of the hazardous gases, mainly Cl2 and CO. The sintering process serves as a reforming means for recycling of the spent catalysts by in situ reduction of their oxidized PGMs components. Among these processes, the smelting process seems more promising although its overall performance can be further improved by seeking a suitable target-oriented collector and flux, together with proper pretreatment and process intensification using an external field.

  13. Pyrometallurgical Recovery of Platinum Group Metals from Spent Catalysts

    NASA Astrophysics Data System (ADS)

    Peng, Zhiwei; Li, Zhizhong; Lin, Xiaolong; Tang, Huimin; Ye, Lei; Ma, Yutian; Rao, Mingjun; Zhang, Yuanbo; Li, Guanghui; Jiang, Tao

    2017-07-01

    As an important secondary resource with abundant platinum group metals (PGMs), spent catalysts demand recycling for both economic and environmental benefits. This article reviews the main pyrometallurgical processes for PGM recovery from spent catalysts. Existing processes, including smelting, vaporization, and sintering processes, are discussed based in part on a review of the physiochemical characteristics of PGMs in spent catalysts. The smelting technology, which produces a PGM-containing alloy, is significantly influenced by the addition of various collectors, such as lead, copper, iron, matte, or printed circuit board (PCB), considering their chemical affinities for PGMs. The vaporization process can recover PGMs in vapor form at low temperatures (250-700°C), but it suffers high corrosion and potential environmental and health risks as a result of involvement of the hazardous gases, mainly Cl2 and CO. The sintering process serves as a reforming means for recycling of the spent catalysts by in situ reduction of their oxidized PGMs components. Among these processes, the smelting process seems more promising although its overall performance can be further improved by seeking a suitable target-oriented collector and flux, together with proper pretreatment and process intensification using an external field.

  14. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination.

    PubMed

    Strickland, Kara; Miner, Elise; Jia, Qingying; Tylus, Urszula; Ramaswamy, Nagappan; Liang, Wentao; Sougrati, Moulay-Tahar; Jaouen, Frédéric; Mukerjee, Sanjeev

    2015-06-10

    Replacement of noble metals in catalysts for cathodic oxygen reduction reaction with transition metals mostly create active sites based on a composite of nitrogen-coordinated transition metal in close concert with non-nitrogen-coordinated carbon-embedded metal atom clusters. Here we report a non-platinum group metal electrocatalyst with an active site devoid of any direct nitrogen coordination to iron that outperforms the benchmark platinum-based catalyst in alkaline media and is comparable to its best contemporaries in acidic media. In situ X-ray absorption spectroscopy in conjunction with ex situ microscopy clearly shows nitrided carbon fibres with embedded iron particles that are not directly involved in the oxygen reduction pathway. Instead, the reaction occurs primarily on the carbon-nitrogen structure in the outer skin of the nitrided carbon fibres. Implications include the potential of creating greater active site density and the potential elimination of any Fenton-type process involving exposed iron ions culminating in peroxide initiated free-radical formation.

  15. Cross-sectional study of platinum salts sensitization among precious metals refinery workers.

    PubMed

    Baker, D B; Gann, P H; Brooks, S M; Gallagher, J; Bernstein, I L

    1990-01-01

    A cross-sectional medical evaluation was conducted to determine respiratory and dermatological effects of platinum salts sensitization among workers in a secondary refinery of precious metals. Fifteen of 107 current employees and eight (28%) of 29 former employees, who had been terminated from employment on average for 5 years because of respiratory symptoms, had positive skin reactivity to platinum salts. Platinum salts skin reactivity was significantly associated with average air concentrations of platinum salts in employees' present work area. Workers with positive platinum salts skin tests had significantly higher prevalences of reported rhinitis, asthma, and dermatitis than negative skin test workers. They also had increased bronchial response to cold air challenge and elevated levels of total serum IgE. Platinum salts sensitization was not associated with atopic tendency as measured by sensitivity to common aeroallergens, but was strongly associated with cigarette smoking status. The findings indicate that cigarette smoking may be a risk factor for the development of platinum salts allergy. The persistence of platinum salts sensitization and high prevalence of adverse health outcomes among former workers demonstrate the importance of regular medical monitoring so that sensitized workers can be removed from exposure before they develop long-term health problems.

  16. Friction behavior of members of the platinum metals group with gold

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1975-01-01

    The adhesion and friction behavior of the platinum metals group was examined with clean surfaces and surfaces selectively contaminated with oxygen, vinyl chloride (C2H3Cl), and methyl mercaptan (CH3SH). A pin or disk specimen configuration was used with the pin being a single crystal of gold of the (111) orientation and with the platinum metal disks also being single crystals of the (111) or (0001) orientation. Loads applied ranged from 1 to 10 g and a sliding velocity of 0.7 mm/min was employed. Results indicate adhesion and transfer of gold to all of the platinum metals. Despite this observation friction differences existed among the metals in the group. These differences are related to surface chemical activity. Adsorption of various friction reducing species was selective. With some adsorbates present strong adhesive forces between metals were still observed.

  17. Electronic metal-support interaction enhanced oxygen reduction activity and stability of boron carbide supported platinum

    NASA Astrophysics Data System (ADS)

    Jackson, Colleen; Smith, Graham T.; Inwood, David W.; Leach, Andrew S.; Whalley, Penny S.; Callisti, Mauro; Polcar, Tomas; Russell, Andrea E.; Levecque, Pieter; Kramer, Denis

    2017-06-01

    Catalysing the reduction of oxygen in acidic media is a standing challenge. Although activity of platinum, the most active metal, can be substantially improved by alloying, alloy stability remains a concern. Here we report that platinum nanoparticles supported on graphite-rich boron carbide show a 50-100% increase in activity in acidic media and improved cycle stability compared to commercial carbon supported platinum nanoparticles. Transmission electron microscopy and x-ray absorption fine structure analysis confirm similar platinum nanoparticle shapes, sizes, lattice parameters, and cluster packing on both supports, while x-ray photoelectron and absorption spectroscopy demonstrate a change in electronic structure. This shows that purely electronic metal-support interactions can significantly improve oxygen reduction activity without inducing shape, alloying or strain effects and without compromising stability. Optimizing the electronic interaction between the catalyst and support is, therefore, a promising approach for advanced electrocatalysts where optimizing the catalytic nanoparticles themselves is constrained by other concerns.

  18. The platinum group metals in Younger Dryas Horizons are terrestrial

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Wikes, E.; Kennett, J.; West, A.; Sharma, M.

    2009-12-01

    The Younger Dryas (YD) event, which began 12,900 years ago, was a period of abrupt and rapid cooling in the Northern Hemisphere whose primary cause remains unclear. The prevalent postulated mechanism is a temporary shutdown of the thermohaline circulation following the breakup of an ice dam in North America. Firestone et al. (2007) proposed that the cooling was triggered by multiple cometary airbursts and/or impacts that engendered enormous environmental changes and disrupted the thermohaline circulation. The evidence in support for this hypothesis is a black layer in North America and in Europe marking the YD boundary containing charcoal, soot, carbon spherules and glass-like carbon suggesting extensive and intense forest fires. This layer is also enriched in magnetic grains high in iridium, magnetic microspherules, fullerenes containing extraterrestrial He-3, and nanodiamonds. Whereas the nanodiamonds could be produced in an impact or arrive with the impactor, the cometary burst/impact hypothesis remains highly controversial as the YD horizon lacks important impact markers such as craters, breccias, tektites and shocked minerals. Firestone et al. (2007) contend that bulk of Ir found at the YD boundary is associated with magnetic grains. The key issue is whether this Ir is meteorite derived. We used Ir and Os concentrations and Os isotopes to investigate the provenance of the platinum group metals in the YD horizon. The bulk sediment samples from a number of North American YD sites (Blackwater Draw, Murray Springs, Gainey, Sheriden Cave, and Myrtle Beach) and a site in Europe (Lommel) do not show any traces of meteorite derived Os and Ir. The [Os] = 2 to 45 pg/g in these sediments and the 187Os/188Os ratios are similar to the upper continental crustal values (~1.3), much higher than those in meteorites (0.13). Higher [Os] is observed in Blackwater Draw (= 194 pg/g). However, the Os/Ir ratio in Blackwater Draw is 5 (not 1 as expected for a meteorite) and 187Os/188

  19. C-H Oxidation by Platinum Group Metal Oxo or Peroxo Species

    SciTech Connect

    Zhou, Meng; Crabtree, Robert H

    2011-01-01

    While C–H oxidation by ruthenium oxo compounds has been broadly applied in organic synthesis, examples of C–H oxidation by metal oxo complexes from the rest of the platinum group are still rare. We survey the preparation and reactivity of these late-transition metal oxo and peroxo complexes in this tutorial review.

  20. Coating Carbon Fibers With Platinum

    NASA Technical Reports Server (NTRS)

    Effinger, Michael R.; Duncan, Peter; Coupland, Duncan; Rigali, Mark J.

    2007-01-01

    A process for coating carbon fibers with platinum has been developed. The process may also be adaptable to coating carbon fibers with other noble and refractory metals, including rhenium and iridium. The coated carbon fibers would be used as ingredients of matrix/fiber composite materials that would resist oxidation at high temperatures. The metal coats would contribute to oxidation resistance by keeping atmospheric oxygen away from fibers when cracks form in the matrices. Other processes that have been used to coat carbon fibers with metals have significant disadvantages: Metal-vapor deposition processes yield coats that are nonuniform along both the lengths and the circumferences of the fibers. The electrical resistivities of carbon fibers are too high to be compatible with electrolytic processes. Metal/organic vapor deposition entails the use of expensive starting materials, it may be necessary to use a furnace, and the starting materials and/or materials generated in the process may be hazardous. The present process does not have these disadvantages. It yields uniform, nonporous coats and is relatively inexpensive. The process can be summarized as one of pretreatment followed by electroless deposition. The process consists of the following steps: The surfaces of the fiber are activated by deposition of palladium crystallites from a solution. The surface-activated fibers are immersed in a solution that contains platinum. A reducing agent is used to supply electrons to effect a chemical reduction in situ. The chemical reduction displaces the platinum from the solution. The displaced platinum becomes deposited on the fibers. Each platinum atom that has been deposited acts as a catalytic site for the deposition of another platinum atom. Hence, the deposition process can also be characterized as autocatalytic. The thickness of the deposited metal can be tailored via the duration of immersion and the chemical activity of the solution.

  1. Biological role in the transformation of platinum-group mineral grains

    NASA Astrophysics Data System (ADS)

    Reith, Frank; Zammit, Carla M.; Shar, Sahar S.; Etschmann, Barbara; Bottrill, Ralph; Southam, Gordon; Ta, Christine; Kilburn, Matthew; Oberthür, Thomas; Ball, Andrew S.; Brugger, Joël

    2016-04-01

    Platinum-group elements are strategically important metals. Finding new deposits is becoming increasingly difficult owing to our limited understanding of the processes that affect their mobility in surface environments. Microorganisms have been shown to promote the mobility of metals around ore deposits. Here we show that microorganisms influence the mobility of platinum-group elements in mineral grains collected from Brazil, Australia and Colombia. Scanning electron microscopy showed biofilms covering the platinum-group mineral grains. The biofilms contained abundant platinum-group element nanoparticles and microcrystalline aggregates, and were dominated by Proteobacteria, many of which were closely related to known metal-resistant species. Some platinum-group mineral grains contained carbon, nitrogen, sulfur, selenium and iodine, suggesting the grains may be biogenic in origin. Molecular analyses show that Brazilian platinum-palladium grains hosted specific bacterial communities, which were different in composition from communities associated with gold grains, or communities in surrounding soils and sediments. Nano-phase metallic platinum accumulated when a metallophillic bacterium was incubated with a percolating platinum-containing medium, suggesting that biofilms can cause the precipitation of mobile platinum complexes. We conclude that biofilms are capable of forming or transforming platinum-group mineral grains, and may play an important role for platinum-group element dispersion and re-concentration in surface environments.

  2. Effects of soldering methods on tensile strength of a gold-palladium metal ceramic alloy.

    PubMed

    Ghadhanfari, Husain A; Khajah, Hasan M; Monaco, Edward A; Kim, Hyeongil

    2014-10-01

    The tensile strength obtained by conventional postceramic application soldering and laser postceramic welding may require more energy than microwave postceramic soldering, which could provide similar tensile strength values. The purpose of the study was to compare the tensile strength obtained by microwave postceramic soldering, conventional postceramic soldering, and laser postceramic welding. A gold-palladium metal ceramic alloy and gold-based solder were used in this study. Twenty-seven wax specimens were cast in gold-palladium noble metal and divided into 4 groups: laser welding with a specific postfiller noble metal, microwave soldering with a postceramic solder, conventional soldering with the same postceramic solder used in the microwave soldering group, and a nonsectioned control group. All the specimens were heat treated to simulate a normal porcelain sintering sequence. An Instron Universal Testing Machine was used to measure the tensile strength for the 4 groups. The means were analyzed statistically with 1-way ANOVA. The surface and fracture sites of the specimens were subjectively evaluated for fracture type and porosities by using a scanning electron microscope. The mean (standard deviation) ultimate tensile strength values were as follows: nonsectioned control 818 ±30 MPa, microwave 516 ±34 MPa, conventional 454 ±37 MPa, and laser weld 191 ±39 MPa. A 1-way ANOVA showed a significant difference in ultimate tensile strength among the groups (F3,23=334.5; P<.001). Follow-up multiple comparisons showed a significant difference among all the groups. Microwave soldering resulted in a higher tensile strength for gold and palladium noble metals than either conventional soldering or laser welding. Conventional soldering resulted in a higher tensile strength than laser welding. Under the experimental conditions described, either microwave or conventional postceramic soldering would appear to satisfy clinical requirements related to tensile strength

  3. Mechanisms for the reactions between methane and the neutral transition metal atoms from yttrium to palladium

    SciTech Connect

    Blomberg, M.R.A.; Siegbahn, P.E.M.; Svensson, M.

    1992-07-15

    Calculations including electron correlations have been performed for the oxidative addition reactions between methane and the whole sequence of second row transition metal atoms from yttrium to palladium. The lowest barrier for the C-H insertion reaction is found for the rhodium atom. Palladium has the lowest methane elimination barrier. The barrier height is governed by two factors. In the reactant channel low repulsion favors a low barrier, and in the product channel strong bond formation is important. The atomic state with lowest repulsion toward methane is the d{sup n+2} state and the strongest bonds are formed to the d{sup n+1} s state. For rhodium both these states are energetically low lying. Only palladium has a bound {eta}{sup 2} precursor state on the ground state potential surface. Another interesting result is that the potential surface for the reaction between methane and the rhodium atom is remarkably similar to the potential surface for the reaction between methane and ClRhL{sub 2}, which has been studied experimentally. 44 refs., 5 figs., 5 tabs.

  4. Doped palladium containing oxidation catalysts

    SciTech Connect

    Mohajeri, Nahid

    2014-02-18

    A supported oxidation catalyst includes a support having a metal oxide or metal salt, and mixed metal particles thereon. The mixed metal particles include first particles including a palladium compound, and second particles including a precious metal group (PMG) metal or PMG metal compound, wherein the PMG metal is not palladium. The oxidation catalyst may also be used as a gas sensor.

  5. Electrochemical metallization switching with a platinum group metal in different oxides

    NASA Astrophysics Data System (ADS)

    Wang, Zhongrui; Jiang, Hao; Hyung Jang, Moon; Lin, Peng; Ribbe, Alexander; Xia, Qiangfei; Yang, J. Joshua

    2016-07-01

    In a normal electrochemical metallization (ECM) switch, electrochemically active metals, such as Ag and Cu are used to provide mobile ions for the conducting filament. In both ECM and valence change memory (VCM) devices, platinum group metals, such as Pt and Pd, are typically used as the counter electrode and assumed to be chemically and physically inert. In this study, we explore whether the so-called inert metal itself can form a conducting filament and result in repeatable resistance switching. Pd and different oxide host matrices are used for this purpose. We have observed that the transport of oxygen anions dominates over Pd metal cations in ALD deposited AlOx and HfOx. However, in sputtered SiOx, Pd cation transport was revealed, accompanied by the formation of nano-crystalline Pd filament(s) in the junctions. Based on these observations, memristors with reversible and repeatable switching were obtained by using Pd doped SiOx as the switching material.In a normal electrochemical metallization (ECM) switch, electrochemically active metals, such as Ag and Cu are used to provide mobile ions for the conducting filament. In both ECM and valence change memory (VCM) devices, platinum group metals, such as Pt and Pd, are typically used as the counter electrode and assumed to be chemically and physically inert. In this study, we explore whether the so-called inert metal itself can form a conducting filament and result in repeatable resistance switching. Pd and different oxide host matrices are used for this purpose. We have observed that the transport of oxygen anions dominates over Pd metal cations in ALD deposited AlOx and HfOx. However, in sputtered SiOx, Pd cation transport was revealed, accompanied by the formation of nano-crystalline Pd filament(s) in the junctions. Based on these observations, memristors with reversible and repeatable switching were obtained by using Pd doped SiOx as the switching material. Electronic supplementary information (ESI) available

  6. Fluorescence Spectral Properties of Indocyanine Green on a Roughened Platinum Electrode: Metal-Enhanced Fluorescence

    PubMed Central

    Geddes, Chris D.; Parfenov, Alexandr; Roll, David; Uddin, Md. Jamal; Lakowicz, Joseph R.

    2009-01-01

    The interactions of fluorophores with noble metal particles can modify their emission spectral properties, a relatively new phenomenon in fluorescence. We subsequently examined indocyanine green (ICG), which is widely used in medical testing and imaging, in close proximity to an electrically roughened platinum electrode. The emission intensity and lifetimes were decreased about 2-fold on the roughened surface as compared to a smooth Pt surface, and the photostability about the same. Platinum does not appear promising for metal enhanced fluorescence, at least for long wavelength fluorophores. PMID:20740066

  7. Effective and selective recovery of gold and palladium ions from metal wastewater using a sulfothermophilic red alga, Galdieria sulphuraria.

    PubMed

    Ju, Xiaohui; Igarashi, Kensuke; Miyashita, Shin-Ichi; Mitsuhashi, Hiroaki; Inagaki, Kazumi; Fujii, Shin-Ichiro; Sawada, Hitomi; Kuwabara, Tomohiko; Minoda, Ayumi

    2016-07-01

    The demand for precious metals has increased in recent years. However, low concentrations of precious metals dissolved in wastewater are yet to be recovered because of high operation costs and technical problems. The unicellular red alga, Galdieria sulphuraria, efficiently absorbs precious metals through biosorption. In this study, over 90% of gold and palladium could be selectively recovered from aqua regia-based metal wastewater by using G. sulphuraria. These metals were eluted from the cells into ammonium solutions containing 0.2M ammonium salts without other contaminating metals. The use of G. sulphuraria is an eco-friendly and cost-effective way of recovering low concentrations of gold and palladium discarded in metal wastewater. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. 21 CFR 872.3060 - Noble metal alloy.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Noble metal alloy. 872.3060 Section 872.3060 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal alloy is a device composed primarily of noble metals, such as gold, palladium, platinum, or silver,...

  9. 21 CFR 872.3060 - Noble metal alloy.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Noble metal alloy. 872.3060 Section 872.3060 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal alloy is a device composed primarily of noble metals, such as gold, palladium, platinum, or silver,...

  10. 21 CFR 872.3060 - Noble metal alloy.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Noble metal alloy. 872.3060 Section 872.3060 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal alloy is a device composed primarily of noble metals, such as gold, palladium, platinum, or silver,...

  11. 21 CFR 872.3060 - Noble metal alloy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Noble metal alloy. 872.3060 Section 872.3060 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal alloy is a device composed primarily of noble metals, such as gold, palladium, platinum, or silver,...

  12. 21 CFR 872.3060 - Noble metal alloy.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Noble metal alloy. 872.3060 Section 872.3060 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal alloy is a device composed primarily of noble metals, such as gold, palladium, platinum, or silver,...

  13. Palladium: a future key player in the nanomedical field?

    PubMed Central

    Dumas, Anaëlle

    2015-01-01

    Metal nanostructures offer invaluable possibilities for targeted drug delivery, detection/diagnosis and imaging. Whereas iron, gold, silver and platinum nanoarchitectures have largely dominated this field to date, several hurdles impede the widespread application of those nanopharmaceuticals in a clinical context. Therefore, technologies based on alternative metals are now being evaluated for their potential in medical applications. Palladium nanostructures are characterized by remarkable catalytic and optical properties. However, until recently, very few studies have taken advantage of these unique characteristics for applications in the biomedical field. Very recently, palladium nanostructures have been reported as prodrug activator, as photothermal agents and for anti-cancer/anti-microbial therapy. With only a handful of reports available, the pharmaceutical applications of palladium nanostructures reviewed here are in their infancy. Yet their interesting performance and toxicity profiles may qualify them as future key players in the nanomedical field. PMID:28694948

  14. Making A Noble-Metal-On-Metal-Oxide Catalyst

    NASA Technical Reports Server (NTRS)

    Miller, Irvin M.; Davis, Patricia P.; Upchurch, Billy T.

    1989-01-01

    Catalyst exhibits superior performance in oxidation of CO in CO2 lasers. Two-step process developed for preparing platinum- or palladium-on-tin-oxide catalyst for recombination of CO and O2, decomposition products that occur in high-voltage discharge region of closed-cycle CO2 laser. Process also applicable to other noble-metal/metal-oxide combinations.

  15. Tetrahedral Palladium Nanocrystals: A New Support for Platinum Monolayer Electrocatalysts with High Activity and Stability in the Oxygen Reduction Reaction

    SciTech Connect

    Gong, Kuanping; Choi, YongMan; Vukmirovic, Miomir B.; Liu, Ping; Ma, Chao; Su, Dong; Adzic, Radoslav R.

    2012-10-01

    The recent availability of tetrahedral palladium (PdTH) nanocrystals with cleaned surfaces allowed us to evaluate their facet-specific electrochemical properties as a new support of platinum monolayer (PtML) catalysts. The Pd–PtML core-shell electrocatalyst was examined by combining structural analyses and Density Functional Theory (DFT) with electrochemical techniques. The surfaces of the PdTH core are composed of (111) facets wherein the Pd atoms are highly coordinated and have low surface energy. Our results revealed that in comparison with sphere Pd (PdSP)-supported PtML or pure Pt, the PdTH-supported PtML features more surface contraction and a downshift of d-band relative to the Fermi level. These geometric- and electronic-effects determine the higher activity of PtML/PdTH/C for the oxygen reduction reaction (ORR) compared to that of PtML/PdSP/C. This shape-property interdependence illuminated new approaches to basic- and applied- research on Pt-based ORR electrocatalysts of significant importance to the widespread use of fuel cells.

  16. Palladium-Catalyzed Reactions of Arylindium Reagents Prepared Directly from Aryl Iodides and Indium Metal

    PubMed Central

    Papoian, Vardan

    2008-01-01

    Treatment of aryl iodides with indium metal in the presence of lithium chloride leads to the formation of an organoindium reagent capable of participating in cross-coupling reactions under transition-metal catalysis. Combination with aryl halides in the presence of 5 mol% Cl2Pd(dppf) furnishes biaryl compounds in good yields; similarly, reaction with acyl halides or allylic acetates/carbonates in the presence of 5–10 mol % palladium catalyst leads to arylketones and allylic substitution products, respectively, in moderate yields. The reactions are tolerant of the presence of protic solvents, and ~85% of the indium metal employed can be recovered by reduction of the residual indium salts with zinc(0). PMID:18722408

  17. Source characterisation of atmospheric platinum group element deposition into an ombrotrophic peat bog.

    PubMed

    Rauch, Sebastien; Hemond, Harold F; Peucker-Ehrenbrink, Bernhard

    2004-04-01

    Platinum, palladium, rhodium, iridium and osmium were found to be enriched relative to their expected natural concentrations in peat samples from Thoreau's Bog, an ombrotrophic peat bog in Concord, Massachusetts. The source of osmium into the bog was determined from its isotopic composition (187Os/188Os). Osmium is composed of 4% lithogenic osmium from atmospheric soil dust, 41% of anthropogenic osmium and 55% of osmium from a non-lithogenic, non anthropogenic source, with rain being a likely candidate for the latter. Significant anthropogenic and rain contributions are also expected for iridium. In contrast, platinum, palladium and rhodium are almost exclusively anthropogenic. The larger enrichments of platinum, palladium and rhodium indicate that automobile catalysts are the source of platinum group elements to Thoreau's bog. The bog is located approximately 300 m from a major road and, therefore, the occurrence of platinum elements is evidence for regional dispersion of these metals. The absence of a clear trend following the introduction of catalysts indicates that platinum group elements are not quantitatively conserved in peat with downward leaching and plants playing an important role in the accumulation of platinum group elements.

  18. 76 FR 67793 - Notification of Expanded Pricing Grid for Precious Metals Products Containing Platinum and Gold...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-02

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF THE TREASURY United States Mint Notification of Expanded Pricing Grid for Precious Metals Products Containing Platinum and Gold--Excluding Commemorative Gold Coins AGENCY: United States Mint, Department of the...

  19. Peruvian perovskite Between Transition-metal to PGM/PlatinumGroupMetal Catalytic Fusion

    NASA Astrophysics Data System (ADS)

    Maksoed, Wh-

    2016-11-01

    Strongly correlated electronic materials made of simple building blocks, such as a transition-metal ion in an octahedral oxygen cage forming a perovskite structure- Dagotto & Tokura for examples are the high-temperature superconductivity & the CMR/Colossal Magnetoresistance . Helium-4 denotes from LC Case,ScD: "Catalytic Fusion of Deuterium into Helium-4"- 1998 dealt with gaseous D2- "contacted with a supported metallic catalyst at superatmospheric pressure". The catalyst is a platinum-group metal, at about 0.5% - 1% by weight, on activated C. Accompanies Stephen J Geier, 2010 quotes "transition metal complexes", the Energy thus produced is enormous, and because the deuterium is very cheap in the form of heavy water (less than US 1/g), the fuel cost is very low (<<1 %/KwH). "The oceans contain enough deuterium to satisfy the Earth's energy needs for many millions of year" to keep "maria"/Latin name of seas &Deuteronomy to be eternally preserves. Heartfelt Gratitudes to HE. Mr. Prof. Ir. HANDOJO.

  20. Synthesis of Ultra-Small Palladium Nanoparticles Deposited on CdS Nanorods by Pulsed Laser Ablation in Liquid: Role of Metal Nanocrystal Size in the Photocatalytic Hydrogen Production.

    PubMed

    Park, Hanbit; Reddy, D Amaranatha; Kim, Yujin; Lee, Seunghee; Ma, Rory; Kim, Tae Kyu

    2017-09-21

    It is imperative to suppress the rate of recombination of photogenerated carriers to improve the semiconductor-catalyzed solar-driven production of hydrogen. To this end, photocatalysts comprising active sunlight-harvesting photo-absorbers and stable metal co-catalysts have attracted significant attention. However, the size, clean surface, and highly dispersed nature of the metal co-catalysts are crucial factors affecting catalyst performance and reaction rate. Nevertheless, most of the available metal nanocrystals have been synthesized by complex procedures using harmful organic templates and stabilizers, affording high-purity compounds with difficulty and high cost. To overcome these problems, in this study, the pulsed laser ablation in liquid approach was utilized to generate palladium and bimetallic palladium-platinum nanoparticles with an average size and distribution by adjusting the laser wavelength and fluence. A high rate of evolution of hydrogen of 130.33 mmol g(-1)  h(-1) was obtained by using the optimized CdS-PdPt catalyst under simulated sunlight irradiation. This value is 51.31 times greater than that observed for bare CdS nanostructures. Furthermore, the amount of hydrogen evolved was significantly better than that obtained by using several other noble-metal co-catalysts deposited on CdS. This proposed strategy is thought to open new avenues for the design of advanced photocatalytic materials for efficient solar-driven production of hydrogen. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Mechanistic differences between electrochemical and gas-phase thermal oxidation of platinum-group transition metals as discerned by surface-enhanced Raman spectroscopy

    SciTech Connect

    Chan, H.Y.H.; Zou, S.; Weaver, M.J.

    1999-12-16

    The oxidation of five Pt-group metals--platinum, palladium, iridium, rhodium, and ruthenium--is examined by means of surface-enhanced Raman spectroscopy (SERS) in aqueous electrochemical and gaseous dioxygen environments as a function of electrode potential and temperature, respectively, with the objective of intercomparing systematically the conditions required for surface oxide formation and discerning the reaction mechanisms involved. The SERS strategy, utilizing ultrathin Pt-group metal films electrodeposited on a gold substrate, enables monolayer-level metal oxide vibrational spectra to readily be obtained in both the electrochemical and gaseous environments. The SER spectra obtained during positive- and then negative-going potential excursions in aqueous 0.1 M HCLO{sub 4} display metal-oxygen vibrational bands signaling anodic oxide formation and subsequent removal at potentials consistent with corresponding voltammetric data. The nature of the amorphous oxides (or hydroxides) formed is deduced by comparison with bulk-phase metal oxide Raman spectra. The onset potentials for surface oxide formation are comparable to the thermodynamic potentials for the bulk-phase metal oxides. In contrast, the onset of surface oxidation even in ambient-pressure dioxygen uniformly requires elevated temperatures, {gt}200 C for each metal except for iridium, where oxide formation occurs at ca. 100 C. While spectral differences are evident, especially on palladium and ruthenium, the nature of the oxides formed in the electrochemical and gaseous systems is largely similar. The highly activated nature of the gaseous O{sub 2} oxidations is consistent with literature reports for Pt-group surfaces in ultrahigh vacuum as well as higher-pressure conditions. Likely reasons for the markedly more efficacious metal electrooxidations are discussed. Thermodynamic factors are not responsible, since the free-energy driving forces for the gaseous O{sub 2} oxidations are larger than for the

  2. Surface platinum metal plasma resonance photonic crystal fiber sensor

    NASA Astrophysics Data System (ADS)

    Cui, Deyu; Chen, Heming; Bai, Xiuli

    2016-01-01

    A two rings, triangular lattice photonic crystal fiber sensor element using surface plasma resonance phenomenon is proposed. The performance of the sensor is analyzed by finite element (FEM) analysis software Multiphysics COMSOL. The influence of structural parameters on the performance of the sensor is discussed. The results show that the maximum sensitivity is 6000nm/RIU, when refractive index is in the range of 1.31 to 1.38. The sensor can be directly placed in the liquid and platinum layer is placed outer surface of the photonic crystal fiber, which can simplify the manufacturing process and the measurement process , has important practical value.

  3. Metal-enhanced intrinsic fluorescence of nucleic acids using platinum nanostructured substrates

    NASA Astrophysics Data System (ADS)

    Akbay, Nuriye; Mahdavi, Farhad; Lakowicz, Joseph R.; Ray, Krishanu

    2012-10-01

    We investigated the feasibility of using platinum nanostructures to accomplish the metal-enhanced fluorescence (MEF) in the UV spectral region. We examine the possibility for detection of the intrinsic fluorescence from nucleotides and G-quadruplex DNA on platinum nanoparticles. Guanosine monophosphate (GMP) showed significant increases (˜20-fold) in fluorescence intensities in the presence of platinum nanostructures when compared to quartz controls. G-quadruplex DNA demonstrated ˜5-fold increase in fluorescence intensity and higher photostability in the presence of Pt nanostructures. We performed Finite Element Method simulations to explore how Pt nanoparticles interact with plane waves and conformed that the Pt nanostructures are promising for enhancing the fluorescence emission in the UV region.

  4. Metal-enhanced intrinsic fluorescence of nucleic acids using platinum nanostructured substrates

    PubMed Central

    Akbay, Nuriye; Mahdavi, Farhad; Lakowicz, Joseph R.; Ray, Krishanu

    2012-01-01

    We investigated the feasibility of using platinum nanostructures to accomplish the metal-enhanced fluorescence (MEF) in the UV spectral region. We examine the possibility for detection of the intrinsic fluorescence from nucleotides and G-quadruplex DNA on platinum nanoparticles. Guanosine monophosphate (GMP) showed significant increases (~20-fold) in fluorescence intensities in the presence of platinum nanostructures when compared to quartz controls. G-quadruplex DNA demonstrated ~5-fold increase in fluorescence intensity and higher photostability in the presence of Pt nanostructures. We performed finite element method simulations to explore how Pt nanoparticles interact with plane waves and conformed that the Pt nanostructures are promising for enhancing the fluorescence emission in the UV region. PMID:23002289

  5. Excitation of highly conjugated (porphinato)palladium(II) and (porphinato)platinum(II) oligomers produces long-lived, triplet states at unit quantum yield that absorb strongly over broad spectral domains of the NIR.

    PubMed

    Duncan, Timothy V; Frail, Paul R; Miloradovic, Ivan R; Therien, Michael J

    2010-11-18

    Transient dynamical studies of bis[(5,5'-10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)palladium(II)]ethyne (PPd(2)), 5,15-bis{[(5'-10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)palladium(II)]ethynyl}(10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)palladium(II) (PPd(3)), bis[(5,5'-10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)platinum(II)]ethyne (PPt(2)), and 5,15-bis{[(5'-10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)platinum(II)]ethynyl}(10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)platinum(II) (PPt(3)) show that the electronically excited triplet states of these highly conjugated supermolecular chromophores can be produced at unit quantum yield via fast S(1) → T(1) intersystem crossing dynamics (τ(isc): 5.2-49.4 ps). These species manifest high oscillator strength T(1) → T(n) transitions over broad NIR spectral windows. The facts that (i) the electronically excited triplet lifetimes of these PPd(n) and PPt(n) chromophores are long, ranging from 5 to 50 μs, and (ii) the ground and electronically excited absorptive manifolds of these multipigment ensembles can be extensively modulated over broad spectral domains indicate that these structures define a new precedent for conjugated materials featuring low-lying π-π* electronically excited states for NIR optical limiting and related long-wavelength nonlinear optical (NLO) applications.

  6. In vitro investigations of platinum, palladium, and rhodium mobility in urban airborne particulate matter (PM10, PM2.5, and PM1) using simulated lung fluids.

    PubMed

    Zereini, Fathi; Wiseman, Clare L S; Püttmann, Wilhelm

    2012-09-18

    Environmental concentrations of platinum group elements (PGE) have been increasing since the introduction of automotive catalytic converters to control harmful emissions. Assessments of the human health risks of exposures to these elements, especially through the inhalation of PGE-associated airborne particulate matter (PM), have been hampered by a lack of data on their bioaccessibility. The purpose of this study is to apply in vitro methods using simulated human lung fluids [artificial lysosomal fluid (ALF) and Gamble's solution] to assess the mobility of the PGE, platinum (Pt), palladium (Pd), and rhodium (Rh) in airborne PM of human health concern. Airborne PM samples (PM(10), PM(2.5), and PM(1)) were collected in Frankfurt am Main, Germany. For comparison, the same extraction experiments were conducted using the standard reference material, Used Auto Catalyst (monolith) (NIST 2557). Pt and Pd concentrations were measured using isotope dilution ICP-Q-MS, while Rh was measured directly with ICP-Q-MS (in collision mode with He), following established matrix separation and enrichment procedures, for both solid (filtered residues) and extracted sample phases. The mobilized fractions measured for PGE in PM(10), PM(2.5), and PM(1) were highly variable, which can be attributed to the heterogenic nature of airborne PM and its composition. Overall, the mobility of PGE in airborne PM samples was notable, with a mean of 51% Rh, 22% Pt, and 29% Pd present in PM(1) being mobilized by ALF after 24 h. For PM(1) exposed to Gamble's solution, a mean of 44% Rh, 18% Pt, and 17% Pd was measured in solution after 24 h. The mobility of PGE associated with airborne PM was also determined to be much higher compared to that measured for the auto catalyst standard reference material. The results suggest that PGE emitted from automotive catalytic converters are likely to undergo chemical transformations during and/or after being emitted in the environment. This study highlights the need

  7. Core-Protected Platinum Monolayer Shell High-Stability Electrocatalysts for Fuel-Cell Cathodes

    SciTech Connect

    K Sasaki; H Naohara; Y Cai; Y Choi; P Liu; M Vukmirovic; J Wang; R Adzic

    2011-12-31

    Platinum monolayers can act as shells for palladium nanoparticles to lead to electrocatalysts with high activities and an ultralow platinum content, but high platinum utilization. The stability derives from the core protecting the shell from dissolution. In fuel-cell tests, no loss of platinum was observed in 200,000 potential cycles, whereas loss of palladium was significant.

  8. Core-Protected Platinum Monolayer Shell High-Stability Electrocatalysts for Fuel-Cell Cathodes

    SciTech Connect

    Adzic, R.R.; Sasaki, K.; Naohara, H.; Cai, Y.; Choi, Y.M.; Liu, P.; Vukmirovic, M.B.; Wang, J.X.

    2010-11-08

    More than skin deep: Platinum monolayers can act as shells for palladium nanoparticles to lead to electrocatalysts with high activities and an ultralow platinum content, but high platinum utilization. The stability derives from the core protecting the shell from dissolution. In fuel-cell tests, no loss of platinum was observed in 200?000 potential cycles, whereas loss of palladium was significant.

  9. Platinum Group Metal Recycling Technology Development - Final Report

    SciTech Connect

    Lawrence Shore

    2009-08-19

    BASF Catalysts LLC, formerly Engelhard Corporation, has completed a project to recover Pt from PEM fuel cell membrane electrode assemblies. The project, which began in 2003, has met the project objective of an environmentally-friendly, cost-effective method for recovery of platinum without release of hydrogen fluoride. This has been achieved using a combination of milling, dispersion and acid leaching. 99% recovery of Pt was achieved, and this high yield can be scaled up using one vessel for a single leach and rinse. Leaching was been successfully achieved using a 10% solids level, double the original target. At this solids content, the reagent and utility costs represent ~0.35% of the Pt value of a lot, using very conservative assumptions. The main cost of the process is capital depreciation, followed by labor.

  10. Virus templated metallic nanoparticles.

    PubMed

    Aljabali, Alaa A A; Barclay, J Elaine; Lomonossoff, George P; Evans, David J

    2010-12-01

    Plant viruses are considered as nanobuilding blocks that can be used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subsequent metal deposition from solution. The method, although simple, produced highly monodisperse metallic nanoparticles with a diameter of ca. ≤35 nm. CPMV-templated particles were prepared with cobalt, nickel, iron, platinum, cobalt-platinum and nickel-iron.

  11. Hydrogen storage studies on palladium-doped carbon materials (AC, CB, CNMs) @ metal-organic framework-5.

    PubMed

    Viditha, V; Srilatha, K; Himabindu, V

    2016-05-01

    Metal organic frameworks (MOFs) are a rapidly growing class of porous materials and are considered as best adsorbents for their high surface area and extraordinary porosity. The MOFs are synthesized by using various chemicals like triethylamine, terepthalic acid, zinc acetate dihydrate, chloroform, and dimethylformamide (DMF). Synthesized MOFs are intercalated with palladium/activated carbon, carbon black, and carbon nanomaterials by chemical reduction method for the purpose of enhancing the hydrogen adsorption capacities. We have observed that the palladium doped activated carbon on MOF-5 showed high hydrogen storage capacity. This may be due to the affinity of the palladium toward hydrogen molecule. The samples are characterized by X-ray diffraction, scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area analysis. We have observed a clear decrease in the BET surface area and pore volume. The obtained results show a better performance for the synthesized sample. To our best knowledge, no one has reported the work on palladium-doped carbon materials (activated carbon, carbon black, carbon nanomaterials) impregnated to the metal-organic framework-5. We have attempted to synthesize carbon nanomaterials using indigenously fabricated chemical vapor deposition (CVD) unit as a support. We have observed an increase in the hydrogen storage capacities.

  12. Localization of alkali metal ions in sodium-promoted palladium catalysts as studied by low energy ion scattering and transmission electron microscopy

    SciTech Connect

    Liotta, L.F.; Deganello, G.; Delichere, P.

    1996-12-01

    Three series of palladium-based catalysts have been studied by Low Energy Ion Scattering (LEIS) and Transmission Electron Microscopy (TEM). The first series is comprised of Na-Pd/SiO{sub 2} catalysts, obtained by addition of palladium to a silica support and by further addition of sodium ions with a Na/Pd atomic ratio (R) equal to 0,6.4 and 25.6. The second series consists of palladium catalysts supported on natural pumice, in which, due to a different loading of supported palladium, R{prime}, the (Na+K)/Pd atomic ratio, is equal to 17.0 and 39.4. The third series is represented by two palladium-based catalysts supported on {open_quotes}model pumices,{close_quotes} synthetic silico-aluminates, obtained by sol-gel techniques, with a different amount of sodium, and R equal to 2.1 and 6.1 respectively. LEIS experiments and electron microscopy demonstrate a different location of alkali metal ions in the first two series: in the Na-Pd/SiO{sub 2} catalysts sodium is distributed in a way which is not uniform on the support and on the palladium metal, which is partly decorated with Na ions, whereas in the Pd/natural-pumice series the palladium surface is sodium-free. The results on the third series of catalysts, Pd/model pumice, are not definitive on the basis of the LEIS and TEM analyses, but by FTIR study of CO and CO{sub 2} adsorption, the decoration of palladium by sodium ions could be excluded. The results confirm the importance of the alkali metal ion location in alkali-promoted palladium catalysts and open new possibilities in the design of palladium-supported catalysts by a better control of promoter location. 18 refs., 5 figs., 2 tabs.

  13. Microbeam Hard X-ray Photoemission Study on Platinum-Group Metal Pernitrides

    NASA Astrophysics Data System (ADS)

    Soda, Kazuo; Mizui, Tatsuya; Komabuchi, Mai; Kato, Masahiko; Terabe, Toshiki; Suzuki, Kentaro; Niwa, Ken; Shirako, Yuichi; Hasegawa, Masashi; Akaogi, Masaki; Kojitani, Hiroshi; Ikenaga, Eiji

    2017-06-01

    Using microbeam hard X-ray photoelectron spectroscopy, we clarified the valence-band electronic structures and chemical states of platinum-group metal (Ru, Ir, and Pt) pernitrides, which have been synthesized in supercritical nitrogen fluid under extremely high pressures and temperatures. Their nitrogen contents relative to the platinum-group metal are estimated to be 2 from the photoemission intensity, which is consistent with the studies reported to date. The observed valence-band structures agree quite well with theoretically predicted structures for the pyrite-type PtN2, arsenopyrite-type IrN2, and marcasite-type RuN2. The origin of their extremely large bulk moduli is discussed based on the current results of the valence-band structures and core-level chemical shifts.

  14. Determination of platinum and palladium in road dust after their separation on immobilized fungus by electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Woińska, Sylwia; Godlewska-Żyłkiewicz, Beata

    2011-07-01

    A flow solid phase extraction procedure based on biosorption of Pt(IV) and Pd(II) on Aspergillus sp. immobilized on cellulose resin Cellex-T was proposed for the separation and preconcentration of Pt and Pd before their determination by electrothermal atomic absorption spectrometry (ETAAS). The analytical conditions including sample pH, eluent type, flow rates of sample and eluent solutions were examined. The analytes were selectively retained on the biosorbent in acidic medium (pH 1) and subsequently eluted from the column with 1 mL of thiourea solution (0.25 mol L - 1 thiourea in 0.3 mol L - 1 HCl). The reproducibility of the procedure was below 5%. The limit of detection of the method was 0.020 ng mL - 1 for Pt and 0.012 ng mL - 1 for Pd. The method validation was performed by analysis of certified reference materials BCR-723 (tunnel dust) and SARM-76 (platinum ore). The developed separation procedure was applied to the determination of Pt and Pd in road dust samples by ETAAS. The applied biosorbent is characterized by high sorption capacity: 0.47 mg g - 1 for Pt and 1.24 mg g - 1 for Pd.

  15. Importance of automobile exhaust catalyst emissions for the deposition of platinum, palladium, and rhodium in the northern hemisphere.

    PubMed

    Rauch, Sebastien; Hemond, Harold F; Barbante, Carlo; Owari, Masanori; Morrison, Gregory M; Peucker-Ehrenbrink, Bernhard; Wass, Urban

    2005-11-01

    An estimated 500 million vehicles worldwide are equipped with an exhaust catalyst that uses platinum group elements (PGE) as the main active components and thus contribute to global PGE emissions. Although PGE emitted from automobile exhaust catalysts were first believed to remain in the roadside environment, we propose here that fine PGE-containing particles in automobile exhaust have resulted in a widespread distribution of emitted PGE. Regional and long-range transport of PGE from automobile exhaust catalysts is supported by elevated PGE deposition in both a peat bog located 250 m from traffic and in central Greenland, respectively. Russian smelters were also found to contribute to PGE contamination in central Greenland. Deposition rates estimated for the roadside environment, the peat bog, and central Greenland were used to provide a first estimate of PGE deposition in the northern hemisphere. The results show that deposition of regionally or long-range transported PGE accounts for a large fraction of total PGE deposition, and PGE deposition in the roadside environment represents less than 5% of the total deposition. Transport at the regional and global scales represents an important component in the environmental cycle of emitted PGE and needs to be further studied to fully assess the environmental fate of PGE from automobile exhaust catalysts.

  16. Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium.

    PubMed

    Li, Junnan; Liu, Wenqi; Wu, Xiaochun; Gao, Xingfa

    2015-04-01

    Despite being increasingly used as artificial enzymes, little has been known for the origin of the pH-switchable peroxidase-like and catalase-like activities of metals. Using calculations and experiments, we report the mechanisms for both activities and their pH-switchability for metals Au, Ag, Pd and Pt. The calculations suggest that both activities are intrinsic properties of metals, regardless of the surfaces and intersections of facets exposed to environments. The pre-adsorbed OH groups on the surfaces, which are only favorably formed in basic conditions, trigger the switch between both activities and render the pH-switchability. The adsorption energies between H2O2 and metals can be used as convenient descriptors to predict the relative enzyme-like activities of the metals with similar surface morphologies. The results agree with the enzyme-mimic activities that have been experimentally reported for Au, Ag, Pt and predict that Pd should have the similar properties. The prediction, as well as the predicted activity order for the four metals, has been verified by the experimental tests. The results thus provide an in-depth insight into the peroxidase-like and catalase-like activities of the metals and will guide the de novo design, synthesis and application of artificial enzymes based on inorganic materials.

  17. Higher fluorescence in platinum(iv) orthometallated complexes of perylene imine compared with their platinum(ii) or palladium(ii) analogues.

    PubMed

    Expósito, J Emilio; Álvarez-Paíno, Marta; Aullón, Gabriel; Miguel, Jesús A; Espinet, Pablo

    2015-09-28

    The reaction of 3-perylenylmethylen-4'-ethylaniline () with [Pt2Me4(μ-SMe2)2] (and subsequent addition of PPh3) or with [Pt2(η(3)-C4H7)2(μ-Cl)2] produced cyclometallated Pt(II) complexes [Pt(C^N)Me(PPh3)] () and, respectively, [Pt2(C^N)2(μ-Cl)2] () (HC^N = 3-C20H11CH[double bond, length as m-dash]NC6H4-p-C2H5), with Pt bound to the ortho site of the perylenyl fragment. From the mononuclear complexes [Pt(C^N)L2] (L2 = acac (); S2COMe (); S2CNEt2 () are easily formed. Oxidative addition of methyl iodide to the square-planar Pt(II) complexes , , and gave the corresponding cyclometallated Pt(IV) compounds [Pt(C^N)L2MeI] , and . The X-ray structures of , , and show that the perylenyl fragment remains essentially flat in and and slightly twisted in . Comparison of the optical properties of these Pt(II) complexes with those reported for similar Pd(II) derivatives reveals that the change of metal exerts a notable influence on the UV-vis spectra. In solution at room temperature, all the Pt complexes exhibit fluorescence associated with the perylene fragment with low emission quantum yields for the Pt(II) complexes (<1%) and remarkably higher emission values for the Pt(IV) complexes: up to 29%, with emission lifetimes of 1-5 ns. Time-dependent density functional theory (TD-DFT) calculations were performed on the perylene imine and on representative complexes [M(C^N)(acac)] (M = Pd, Pt) and [Pt(C^N)(acac)MeI] to analyse the absorption spectra. These calculations support a perylene-dominated intraligand π-π*emissive state based on the HOMO and LUMO orbitals of the perylene chromophore, and a ligand-to-ligand charge-transfer (more intense for the Pt(II) complex) that explains the observed influence of the metal on the absorption properties.

  18. Partitioning of palladium, iridium, and platinum between sulfide liquid and basalt melt: Effects of melt composition, concentration, and oxygen fugacity

    NASA Astrophysics Data System (ADS)

    Fleet, M. E.; Stone, W. E.; Crocket, J. H.

    1991-09-01

    The partitioning of Pd, Ir, and Pt between immiscible (Fe, Ni)-monosulfide liquid and basalt melt has been investigated at 1300°C and at low pressure over the concentration range 40 to 20,000 ppm platinum-group element(s) (PGE) in the sulfide liquid and at oxygen fugacities from the C-CO-CO2 to the wüstite-magnetite buffers. The experiments used sealed silica-glass tubes with internal oxygen buffers: PGE in glass were determined by radiochemical neutron activation analysis (RNAA). Partition coefficients (D) vary markedly with compositions of the sulfide liquid and silicate melt, increasing with decrease in oxygen fugacity, S, Fe, and possibly Ni, and with increase in total concentration of PGE. For 5 ppb PGE in the silicate melt and the iron-silica phase-fayalite (IQF) buffer, D(Pd) and D(Pt) are about 2 × 103, and D(Ir) is about 3 × 103; whereas, at the maximum concentration of PGE investigated, D(Pd) and D(Pt) are about 2 × 104, and D(Ir) is about 3 × 104. A single experiment confirms the marked fractionation of Pt from Pd predicted for partitioning with alloy in S-bearing and S-saturated silicate melts. The experimental D(PGE) values for low concentration of PGE are similar to D(PGE) calculated for many sulfide ore deposits, but are several orders of magnitude lower than calculated values for concordant sulfide PGE deposits in layered complexes.

  19. Palladium on kieselguhr

    SciTech Connect

    Mosley, W.C.

    1988-01-11

    Palladium supported in kieselguhr (Pd/K) is a candidate material for processing of hydrogen isotopes at Savannah River Laboratory (SRL) and Savannah River Plant (SRP). Kieselguhr is a porous, sedimentary rock composed of silicified skeletal remains of single-celled aquatic plants called diatoms. SRL has developed a process for deposition of palladium on kieselguhr particles using immersion in an ammonical palladium chloride solution followed by heating in hydrogen to decompose the chloride to metallic palladium. The goal is to produce Pd/K particles with less than 250 ppm chlorine.

  20. High Temperature Strength of YSZ Joints Brazed with Palladium Silver Copper Oxide Filler Metals

    SciTech Connect

    Darsell, Jens T.; Weil, K. Scott

    2010-06-09

    The Ag-CuOx system is being investigated as potential filler metals for use in air brazing high-temperature electrochemical devices such as solid oxide fuel cells and gas concentrators. The current study examines the effects of palladium addition on the high temperature joint strength of specimens prepared from yttria stabilized zirconia (YSZ) bars brazed with the binary Ag-CuOx, and 15Pd-Ag-CuO. It was found that while the binary Ag-CuOx system exhibits stronger room temperature strength than the 15Pd system the strength is reduced to values equivalent of the 15Pd system at 800°C. The 15Pd system exhibits a lower ambient temperature strength that is retained at 800°C. In both systems the failure mechanism at high temperature appears to be peeling of the noble metal component from the oxide phases and tearing through the noble metal phase whereas sufficient adhesion is retained at lower temperatures to cause fracture of the YSZ substrate.

  1. Hydrothermal synthesis of platinum-group-metal nanoparticles by using HEPES as a reductant and stabilizer.

    PubMed

    So, Man-Ho; Ho, Chi-Ming; Chen, Rong; Che, Chi-Ming

    2010-06-01

    Platinum-group-metal (Ru, Os, Rh, Ir, Pd and Pt) nanoparticles are synthesized in an aqueous buffer solution of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) (200 mM, pH 7.4) under hydrothermal conditions (180 degrees C). Monodispersed (monodispersity: 11-15%) metal nanoparticles were obtained with an average particle size of less than 5 nm (Ru: 1.8+/-0.2, Os: 1.6+/-0.2, Rh: 4.5+/-0.5, Ir: 2.0+/-0.3, Pd: 3.8+/-0.4, Pt: 1.9+/-0.2 nm). The size, monodispersity, and stability of the as-obtained metal nanoparticles were affected by the HEPES concentration, pH of the HEPES buffer solution, and reaction temperature. HEPES with two tertiary amines (piperazine groups) and terminal hydroxyl groups can act as a reductant and stabilizer. The HEPES molecules can bind to the surface of metal nanoparticles to prevent metal nanoparticles from aggregation. These platinum-group-metal nanoparticles could be deposited onto the surface of graphite, which catalyzed the aerobic oxidation of alcohols to aldehydes.

  2. Supergene leaching and formation of platinum in alluvium: evidence from Serro, Minas Gerais, Brazil

    NASA Astrophysics Data System (ADS)

    Cabral, A. R.; Beaudoin, G.; Choquette, M.; Lehmann, B.; Polônia, J. C.

    2007-05-01

    The Córrego Bom Sucesso alluvial deposit near Serro, Minas Gerais, probably provided the specimens from which the element palladium was first discovered. Its Pt-Pd nuggets are characteristically botryoidal, arborescent and coralloidal, and exhibit an external halo with the composition of palladiferous platinum to virtually pure platinum. X-ray mapping of an arborescent Pt-Pd nugget from the historical occurrence documents selective palladium depletion, similar to the high-fineness gold haloes developed on detrital Au-Ag grains under supergene conditions. The Pd-depleted alteration zone truncates inclusions of crystals stoichiometrically close to PdPt within the Pt-Pd aggregate. Selective metal leaching in the weathering environment can account for the frequently observed Pt-enriched rims on alluvial platiniferous alloys which may lead to the formation of platinum nuggets at an advanced degree of weathering.

  3. SERS and DFT study of water on metal cathodes of silver, gold and platinum nanoparticles.

    PubMed

    Li, Jian-Feng; Huang, Yi-Fan; Duan, Sai; Pang, Ran; Wu, De-Yin; Ren, Bin; Xu, Xin; Tian, Zhong-Qun

    2010-03-14

    The observed surface-enhanced Raman scattering (SERS) spectra of water adsorbed on metal film electrodes of silver, gold, and platinum nanoparticles were used to infer interfacial water structures on the basis of the change of the electrochemical vibrational Stark tuning rates and the relative Raman intensity of the stretching and bending modes. To explain the increase of the relative Raman intensity ratio of the bending and stretching vibrations at the very negative potential region, density functional theory calculations provide the conceptual model. The specific enhancement effect for the bending mode was closely associated with the water adsorption structure in a hydrogen bonded configuration through its H-end binding to surface sites with large polarizability due to strong cathodic polarization. The present results allow us to propose that interfacial water molecules exist on these metal cathodes with different hydrogen bonding interactions, i.e., the HO-HH-Pt dihydrogen bond for platinum and the HO-HAg(Au) for silver and gold. This dihydrogen bonding configuration on platinum is further supported from observation of the Pt-H stretching band. Furthermore, the influences of the pH effect on SERS intensity and vibrational Stark effect on the gold electrode indicate that the O-H stretching SERS signals are enhanced in the alkaline solutions because of the hydrated hydroxide surface species adsorbed on the gold cathode.

  4. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal–nitrogen coordination

    PubMed Central

    Strickland, Kara; Miner, Elise; Jia, Qingying; Tylus, Urszula; Ramaswamy, Nagappan; Liang, Wentao; Sougrati, Moulay-Tahar; Jaouen, Frédéric; Mukerjee, Sanjeev

    2015-01-01

    Replacement of noble metals in catalysts for cathodic oxygen reduction reaction with transition metals mostly create active sites based on a composite of nitrogen-coordinated transition metal in close concert with non-nitrogen-coordinated carbon-embedded metal atom clusters. Here we report a non-platinum group metal electrocatalyst with an active site devoid of any direct nitrogen coordination to iron that outperforms the benchmark platinum-based catalyst in alkaline media and is comparable to its best contemporaries in acidic media. In situ X-ray absorption spectroscopy in conjunction with ex situ microscopy clearly shows nitrided carbon fibres with embedded iron particles that are not directly involved in the oxygen reduction pathway. Instead, the reaction occurs primarily on the carbon–nitrogen structure in the outer skin of the nitrided carbon fibres. Implications include the potential of creating greater active site density and the potential elimination of any Fenton-type process involving exposed iron ions culminating in peroxide initiated free-radical formation. PMID:26059552

  5. Palladium(II) and platinum(II) complexes containing benzimidazole ligands: Molecular structures, vibrational frequencies and cytotoxicity

    NASA Astrophysics Data System (ADS)

    Abdel Ghani, Nour T.; Mansour, Ahmed M.

    2011-04-01

    (1H-benzimidazol-2-ylmethyl)-(4-methoxyl-phenyl)-amine (L 1), (1H-benzimidazol-2-ylmethyl)-(4-methyl-phenyl)-amine (L 2) and their Pd(II) and Pt(II) complexes have been synthesized as potential anticancer compounds and their structures were elucidated using a variety of physico-chemical techniques. Theoretical calculations invoking geometry optimization, vibrational assignments, 1H NMR, charge distribution and molecular orbital description HOMO and LUMO were done using density functional theory. Natural bond orbital analysis (NBO) method was performed to provide details about the type of hybridization and the nature of bonding in the studied complexes. Strong coordination bonds (LP(1)N11 → σ *(M sbnd Cl22)) and (LP(1)N21 → σ *(M sbnd Cl23)) (M = Pd or Pt) result from donation of electron density from a lone pair orbital on the nitrogen atoms to the acceptor metal molecular orbitals. The experimental results and the calculated molecular parameters revealed square-planar geometries around the metallic centre through the pyridine-type nitrogen of the benzimidazole ring and secondary amino group and two chlorine atoms. The activation thermodynamic parameters were calculated using non-isothermal methods. The synthesized ligands, in comparison to their metal complexes were screened for their antibacterial activity. In addition, the studied complexes showed activity against three cell lines of different origin, breast cancer (MCF-7), Colon Carcinoma (HCT) and human heptacellular carcinoma (Hep-G2) comparable to cis-platin.

  6. Self-assembly directed synthesis of poly(ortho-toluidine)-metal(gold and palladium) composite nanospheres.

    PubMed

    Reddy, Kakarla Raghava; Lee, Kwang-Pill; Gopalan, Anantha Iyenger

    2007-09-01

    Poly(ortho-toluidine) (POT)-gold (Au) and palladium (Pd) composite nanospheres were successfully synthesized by the reaction of o-toluidine with the corresponding metal (Au or Pd) colloidal solution through self-assembly process in the presence of dodecylbenzenesulfonic acid (DBSA), which acts as both a dopant and surfactant, and ammonium peroxydisulfate as an oxidizing agent. The composites (POT-DBSA/Au or Pd) were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, UV-Visible (UV-Vis) spectroscopy, and electrical conductivity measurements. TEM images of the nanocomposites reveal that metal (Au or Pd) nanoparticles were well dispersed on POT spheres. TGA and XRD results show that the composites exhibit high thermal stability and are more crystalline compared with pristine POT. It was found that the electrical conductivity of the POT-DBSA/Au or Pd composites is 2 orders of magnitude higher than that of pristine polymer. Also, the POT-DBSA/Pd composite exhibits magnetic property. The formation mechanism of the POT-DBSA/Au or Pd composite nanosphere is discussed.

  7. Platinum and palladium nano-structured catalysts for polymer electrolyte fuel cells and direct methanol fuel cells.

    PubMed

    Long, Nguyen Viet; Thi, Cao Minh; Yong, Yang; Nogami, Masayuki; Ohtaki, Michitaka

    2013-07-01

    In this review, we present the synthesis and characterization of Pt, Pd, Pt based bimetallic and multi-metallic nanoparticles with mixture, alloy and core-shell structure for nano-catalysis, energy conversion, and fuel cells. Here, Pt and Pd nanoparticles with modified nanostructures can be controllably synthesized via chemistry and physics for their uses as electro-catalysts. The cheap base metal catalysts can be studied in the relationship of crystal structure, size, morphology, shape, and composition for new catalysts with low cost. Thus, Pt based alloy and core-shell catalysts can be prepared with the thin Pt and Pt-Pd shell, which are proposed in low and high temperature proton exchange membrane fuel cells (PEMFCs), and direct methanol fuel cells (DMFCs). We also present the survey of the preparation of Pt and Pd based catalysts for the better catalytic activity, high durability, and stability. The structural transformations, quantum-size effects, and characterization of Pt and Pd based catalysts in the size ranges of 30 nm (1-30 nm) are presented in electro-catalysis. In the size range of 10 nm (1-10 nm), the pure Pt catalyst shows very large surface area for electro-catalysis. To achieve homogeneous size distribution, the shaped synthesis of the polyhedral Pt nanoparticles is presented. The new concept of shaping specific shapes and morphologies in the entire nano-scale from nano to micro, such as polyhedral, cube, octahedra, tetrahedra, bar, rod, and others of the nanoparticles is proposed, especially for noble and cheap metals. The uniform Pt based nanosystems of surface structure, internal structure, shape, and morphology in the nanosized ranges are very crucial to next fuel cells. Finally, the modifications of Pt and Pd based catalysts of alloy, core-shell, and mixture structures lead to find high catalytic activity, durability, and stability for nano-catalysis, energy conversion, fuel cells, especially the next large-scale commercialization of next

  8. Materials discovery by crystal growth: Lanthanide metal containing oxides of the platinum group metals (Ru, Os, Ir, Rh, Pd, Pt) from molten alkali metal hydroxides

    SciTech Connect

    Mugavero, Samuel J.; Gemmill, William R.; Roof, Irina P.; Loye, Hans-Conrad zur

    2009-07-15

    This review addresses the process of materials discovery via crystal growth, specifically of lanthanide metal containing oxides of the platinum group metals (Ru, Os, Ir, Rh, Pd, Pt). It provides a detailed overview of the use of hydroxide fluxes for crystal growth. The melt chemistry of hydroxide fluxes, specifically, the extensive acid base chemistry, the metal cation solubility, and the ability of hydroxide melts to oxidize metals are described. Furthermore, a general methodology for the successful crystal growth of oxides is provided, including a discussion of experimental considerations, suitable reaction vessels, reaction profiles and temperature ranges. Finally, a compilation of complex platinum group metal oxides recently synthesized using hydroxide melts, focusing on their crystal growth and crystal structures, is included. - Graphical abstract: A review that addresses the process of materials discovery via crystal growth using hydroxide fluxes. It provides a detailed overview of the use of hydroxide fluxes for crystal growth and describes the melt chemistry of hydroxide fluxes, specifically, the extensive acid base chemistry, the metal cation solubility, and the ability of hydroxide melts to oxidize metals. In addition, a compilation of complex platinum group metal oxides recently synthesized using hydroxide melts is included.

  9. Platinum metallization for MEMS application: focus on coating adhesion for biomedical applications.

    PubMed

    Guarnieri, Vittorio; Biazi, Leonardo; Marchiori, Roberto; Lago, Alexandre

    2014-01-01

    The adherence of Platinum thin film on Si/SiO 2 wafer was studies using Chromium, Titanium or Alumina (Cr, Ti, Al 2O 3) as interlayer. The adhesion of Pt is a fundamental property in different areas, for example in MEMS devices, which operate at high temperature conditions, as well as in biomedical applications, where the problem of adhesion of a Pt film to the substrate is known as a major challenge in several industrial applications health and in biomedical devices, such as for example in the stents. (1)(-) (4) We investigated the properties of Chromium, Titanium, and Alumina (Cr, Ti, and Al 2O 3) used as adhesion layers of Platinum (Pt) electrode. Thin films of Chromium, Titanium and Alumina were deposited on Silicon/Silicon dioxide (Si/SiO 2) wafer by electron beam. We introduced Al 2O 3 as a new adhesion layer to test the behavior of the Pt film at higher temperature using a ceramic adhesion thin film. Electric behaviors were measured for different annealing temperatures to know the performance for Cr/Pt, Ti/Pt, and Al 2O 3/Pt metallic film in the gas sensor application. All these metal layers showed a good adhesion onto Si/SiO 2 and also good Au wire bondability at room temperature, but for higher temperature than 400 °C the thin Cr/Pt and Ti/Pt films showed poor adhesion due to the atomic inter-diffusion between Platinum and the metal adhesion layers. (5) The proposed Al 2O 3/Pt ceramic-metal layers confirmed a better adherence for the higher temperatures tested.

  10. Platinum metallization for MEMS application. Focus on coating adhesion for biomedical applications.

    PubMed

    Guarnieri, Vittorio; Biazi, Leonardo; Marchiori, Roberto; Lago, Alexandre

    2014-01-01

    The adherence of Platinum thin film on Si/SiO2 wafer was studies using Chromium, Titanium or Alumina (Cr, Ti, Al2O3) as interlayer. The adhesion of Pt is a fundamental property in different areas, for example in MEMS devices, which operate at high temperature conditions, as well as in biomedical applications, where the problem of adhesion of a Pt film to the substrate is known as a major challenge in several industrial applications health and in biomedical devices, such as for example in the stents. We investigated the properties of Chromium, Titanium, and Alumina (Cr, Ti, and Al2O3) used as adhesion layers of Platinum (Pt) electrode. Thin films of Chromium, Titanium and Alumina were deposited on Silicon/Silicon dioxide (Si/SiO2) wafer by electron beam. We introduced Al2O3 as a new adhesion layer to test the behavior of the Pt film at higher temperature using a ceramic adhesion thin film. Electric behaviors were measured for different annealing temperatures to know the performance for Cr/Pt, Ti/Pt, and Al2O3/Pt metallic film in the gas sensor application. All these metal layers showed a good adhesion onto Si/SiO2 and also good Au wire bondability at room temperature, but for higher temperature than 400 °C the thin Cr/Pt and Ti/Pt films showed poor adhesion due to the atomic inter-diffusion between Platinum and the metal adhesion layers. The proposed Al2O3/Pt ceramic-metal layers confirmed a better adherence for the higher temperatures tested.

  11. Metal-support effects on acetone hydrogenation over platinum catalysts

    SciTech Connect

    Sen, B.; Vannice, M.A. )

    1988-09-01

    Acetone hydrogenation was studied over Pt/TiO{sub 2}, Pt/{eta}-Al{sub 2}O{sub 3}, Pt/SiO{sub 2}, Pt powder, and Pt/Au catalysts to test the hypothesis that the metal-support effect responsible for higher CO hydrogenation rates over certain metal/TiO{sub 2} catalysts represents a phenomenon capable of activating carbonyl bonds in general. Compared with the other catalysts, the high-temperature reduced (HTR) Pt/TiO{sub 2} samples had turnover frequencies more than 500 times higher than those of unsupported Pt and Pt/SiO{sub 2} catalysts, and the specific activity (per g Pt) of the Pt/TiO{sub 2} catalyst was 10 times that of a Pt/SiO{sub 2} catalyst with comparable dispersion. Complete hydrogenation to C{sub 3}H{sub 8} and H{sub 2}O occurred only on large, unsupported Pt crystallites; however, partial hydrogenation to isopropyl alcohol appeared to be structure insensitive and activation energies were similar over all catalysts, as were pressure dependencies, which associates the higher activity with a larger preexponential factor. Only one Langmuir-Hinshelwood model provided a rate expression consistent with experimental results - that which assumed competitive adsorption of H{sub 2} and acetone on the same sites and addition of the second H atom as the rate-determining step. This model is consistent with previous TPD, IR, and EELs studies and is also substantiated by theoretical calculations based on the bond-order conservation method. The much higher activities over Pt/TiO{sub 2} catalysts are attributed to an increase in the active site concentration in the Pt-titania interface region. These special sites are presumed to be defects on the titania surface near the Pt that can activate the carbonyl bond in the presence of atomic hydrogen provided by the Pt. 131 refs.

  12. Corrosion resistance of the soldering joint of post-soldering of palladium-based metal-ceramic alloys.

    PubMed

    Kawada, E; Sakurai, Y; Oda, Y

    1997-05-01

    To evaluate the corrosion resistance of post soldering of metal-ceramic alloys, four commercially available palladium-system metal-ceramic alloys (Pd-Cu, Pd-Ni, Pd-Ag, and Pd-Sb systems) and two types of solder (12 k gold solder and 16 k gold solder) with different compositions and melting points were used. The corrosion resistance of the soldered joint was evaluated by anodic polarization. The electrochemical characteristics of soldered surface were measured using electrochemical equipment. Declines in corrosion resistance were not detectable with Pd-Cu, Pd-Ag and Pd-Sb types, but break down at low potential occurred with Pd-Ni type.

  13. Fractionation of palladium and platinum in a Mesozoic diabase sheet, Gettysburg basin, Pennsyvania: implications for mineral exploration

    USGS Publications Warehouse

    Gottfried, D.; Froelich, A.J.; Rait, N.; Aruscavage, P. J.

    1990-01-01

    The York Haven diabase sheet displays clear-cut evidence of fractionation of Pd and Pt during differentiation of a high-Ti (about 1.1%) quartz-normative tholeiitic magma (York Haven type). At York Haven the sheet is about 750 m thick. It is characterized by abundant cumulus MgO-rich orthopyroxene (bronzite), and is markedly depleted in incompatible elements relative to the chilled margins. In contrast, at Reesers Summit, 16 km to the northwest, the sheet is about 500 m thick and consists of evolved rocks that have contents of incompatible elements two to three times greater than in the enclosing chilled margins. These evolved rocks represent complementary fractions to the cumulate rocks at York Haven. Mineralogic, petrologic and geochemical variations suggest considerable lateral migration and fractionation of the initial magma. Chilled margins of both sections have essentially the same Pd and Pt contents (10 ppb each) and similar Pd to Pt ratios (1.2). During differentiation, the cumulate rocks at York Haven were enriched in Pt and depleted in Pd, whereas at Reesers Summit, the low-MgO diabase and ferrogabbro zone were enriched in Pd relative to Pt. Anomalously high contents of Pd (to 165 ppb), Au (to 54 ppb), and Te (to 26 ppb) were found in an iron- (to 18%) and chlorine- (to 0.44%) rich ferrogabbro at Reesers Summit, suggesting possible late or post-magmatic enrichment of precious metals. Field relations, geochemical and petrographic data provide guides for further exploration for Pd and Pt in differentiated high-Ti quartz-normative diabase sheets. Based on present information, the most favorable sites for economic deposits are late-stage differentiates enriched in Fe and Cl. ?? 1990.

  14. Activity of phosphino palladium(II) and platinum(II) complexes against HIV-1 and Mycobacterium tuberculosis.

    PubMed

    Gama, Ntombenhle H; Elkhadir, Afag Y F; Gordhan, Bhavna G; Kana, Bavesh D; Darkwa, James; Meyer, Debra

    2016-08-01

    Treatment of human immunodeficiency virus (HIV) is currently complicated by increased prevalence of co-infection with Mycobacterium tuberculosis. The development of drug candidates that offer the simultaneous management of HIV and tuberculosis (TB) would be of great benefit in the holistic treatment of HIV/AIDS, especially in sub-Saharan Africa which has the highest global prevalence of HIV-TB coinfection. Bis(diphenylphosphino)-2-pyridylpalladium(II) chloride (1), bis(diphenylphosphino)-2-pyridylplatinum(II) chloride (2), bis(diphenylphosphino)-2-ethylpyridylpalladium(II) chloride (3) and bis(diphenylphosphino)-2-ethylpyridylplatinum(II) (4) were investigated for the inhibition of HIV-1 through interactions with the viral protease. The complexes were subsequently assessed for biological potency against Mycobacterium tuberculosis H37Rv by determining the minimal inhibitory concentration (MIC) using broth microdilution. Complex (3) showed the most significant and competitive inhibition of HIV-1 protease (p = 0.014 at 100 µM). Further studies on its in vitro effects on whole virus showed reduced viral infectivity by over 80 % at 63 µM (p < 0.05). In addition, the complex inhibited the growth of Mycobacterium tuberculosis at an MIC of 5 µM and was non-toxic to host cells at all active concentrations (assessed by tetrazolium dye and real time cell electronic sensing). In vitro evidence is provided here for the possibility of utilizing a single metal-based compound for the treatment of HIV/AIDS and TB.

  15. Platinum-group element distribution in base-metal sulfides of the UG2 chromitite, Bushveld Complex, South Africa—a reconnaissance study

    NASA Astrophysics Data System (ADS)

    Osbahr, Inga; Oberthür, Thomas; Klemd, Reiner; Josties, Anja

    2014-08-01

    Two drill cores of the UG2 chromitite from the eastern and western Bushveld Complex were studied by whole-rock analysis, ore microscopy, SEM/Mineral Liberation Analysis (MLA), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis. The top and base of the UG2 main seam have the highest bulk-rock Pd and Pt concentrations. Sulfides mostly occur as aggregates of pentlandite, chalcopyrite, and rare pyrrhotite and pyrite or as individual grains associated mostly with chromite grains. In situ LA-ICP-MS analyses reveal that pentlandite carries distinctly elevated platinum-group element (PGE) contents. In contrast, pyrrhotite and chalcopyrite contain very low PGE concentrations. Pentlandite shows average maximum values of 350-1,000 ppm Pd, 200 ppm Rh, 130-175 ppm Ru, 20 ppm Os, and 150 ppm Ir, and is the principal host of Pd and Rh in the studied ores of the UG2. Mass balance calculations were conducted for samples representing the UG2 main seam of the drill core DT46, eastern Bushveld. Pentlandite consistently hosts elevated contents of the whole-rock Pd (up to 55 %) and Rh (up to 46 %), and erratic contents of Os (up to 50 %), Ir (2 to 17 %), and Ru (1-39 %). Platinum-group mineral (PGM) investigations support these mass balance results; most of the PGM are Pt-dominant such as braggite/cooperite and Pt-Fe alloys or laurite (carrying elevated concentrations of Os and Ir). Palladium and Rh-bearing PGM are rare. Both PGE concentrations and their distribution in base-metal sulfides (BMS) in the UG2 largely resemble that of the Merensky Reef, as most of the Pd and Rh are incorporated in pentlandite, whereas pyrrhotite, chalcopyrite, and pyrite are almost devoid of PGE.

  16. Palladium-indium catalyzed reduction of N-nitrosodimethylamine: indium as a promoter metal.

    PubMed

    Davie, Matthew G; Shih, Kaimin; Pacheco, Federico A; Leckie, James O; Reinhard, Martin

    2008-04-15

    An emerging technology for the removal of N-nitrosodimethylamine (NDMA) from drinking and groundwater is reductive destruction using noble metal catalysts and hydrogen gas as a reducing agent. Bimetallic palladium-indium (Pd-In) supported on alumina combines the ability of Into activate NDMA with the hydrogen activating properties of Pd. This study examined the effect of In addition to a commercial 5% Pd by weight on gamma-Al2O3 catalyst on the efficacy of NDMA reduction. The pseudo-first-order rate constant increased proportionately to In loading from 0.057 h(-1) for 0% In to a maximum of 0.25 h(-1) for 1% In and then decreased with additional in loading. Data suggest that hydrogen activation occurred only on Pd surfaces and In activated NDMA 20 times more effectively than Pd on a mass basis. The rate-limiting factor was NDMA activation for In loadings below 1%. The decrease at higher loadings is interpreted as In blocking pore spaces and limiting access to Pd sites, suggesting monatomic hydrogen limitation. The only products detected were dimethylamine and ammonium with carbon and nitrogen balances in excess of 92%, consistent with a mechanism involving reductive N-N bond cleavage. Results from this study serve as a basis for optimizing bimetallic catalysts for treating NDMA contaminated waters.

  17. Insights into the intramolecular donor stabilisation of organostannylene palladium and platinum complexes: syntheses, structures and DFT calculations.

    PubMed

    Wagner, Michael; Deáky, Vajk; Dietz, Christina; Martincová, Jana; Mahieu, Bernard; Jambor, Roman; Herres-Pawlis, Sonja; Jurkschat, Klaus

    2013-05-17

    The syntheses of the transition metal complexes cis-[(4-tBu-2,6-{P(O)(OiPr)2}2C6H2SnCl)2MX2] (1, M = Pd, X = Cl; 2, M = Pd, X = Br; 3, M = Pd, X = I; 4, M = Pt, X = Cl), cis-[{2,6-(Me2NCH2)2C6H3SnCl}2MX2] (5, M = Pd, X = I; 6, M = Pt, X = Cl), trans-[{2,6-(Me2NCH2)2C6H3SnI}2PtI2] (7) and trans-[(4-tBu-2,6-{P(O)(OiPr)2}2C6H2SnCl)PdI2]2 (8) are reported. Also reported is the serendipitous formation of the unprecedented complexes trans-[(4-tBu-2,6-{P(O)(OiPr)2}2C6H2SnCl)2Pt(SnCl3)2] (10) and [(4-tBu-2,6-{P(O)(OiPr)2}2C6H2SnCl)3Pt(SnCl3)2] (11). The compounds were characterised by elemental analyses, (1)H, (13)C, (31)P, (119)Sn and (195)Pt NMR spectroscopy, single-crystal X-ray diffraction analysis, UV/Vis spectroscopy and, in the cases of compounds 1, 3 and 4, also by Mössbauer spectroscopy. All the compounds show the tin atoms in a distorted trigonal-bipyramidal environment. The Mössbauer spectra suggest the tin atoms to be present in the oxidation state III. The kinetic lability of the complexes was studied by redistribution reactions between compounds 1 and 3 as well as between 1 and cis-[{2,6-(Me2 NCH2)2C6H3SnCl}2PdCl2]. DFT calculations provided insights into both the bonding situation of the compounds and the energy difference between the cis and trans isomers. The latter is influenced by the donor strength of the pincer-type ligands.

  18. Estimated thermodynamic stability of intermetallides of actinides with platinum-group metals

    SciTech Connect

    Kalevich, E.S.; Ryabinin, M.A.; Vasil`ev, V.Y.

    1994-07-01

    The upper limits of the molar free energy of formation of intermetallides of actinides (An = Am, Cm, Bk, Cf) with platinum-group metals (M = Pt, Ir, Pd, Rh) and AnM{sub y} (y = 2, 3, 5) are calculated. The quantity {triangle}G{sup O}{sub f} varies from -340 kJ/mole for Cf compounds to -400 kJ/mole for Am compounds. The change of {triangle}G{sup O}{sub f}(AnM{sub y}) as a function of An atomic number correlates with the change of other properties of the studied intermetallides.

  19. Clinical utility of platinum chromium bare-metal stents in coronary heart disease

    PubMed Central

    Jorge, Claudia; Dubois, Christophe

    2015-01-01

    Coronary stents represent a key development for the treatment of obstructive coronary artery disease since the introduction of percutaneous coronary intervention. While drug-eluting stents gained wide acceptance in contemporary percutaneous coronary intervention practice, further developments in bare-metal stents remain crucial for patients who are not candidates for drug-eluting stents, or to improve metallic platforms for drug elution. Initially, stent platforms used biologically inert stainless steel, restricting stent performance due to limitations in flexibility and strut thickness. Later, cobalt chromium stent alloys outperformed steel as the material of choice for stents, allowing latest generation stents to be designed with significantly thinner struts, while maintaining corrosion resistance and radial strength. Most recently, the introduction of the platinum chromium alloy refined stent architecture with thin struts, high radial strength, conformability, and improved radiopacity. This review will provide an overview of the novel platinum chromium bare-metal stent platforms available for coronary intervention. Mechanical properties, clinical utility, and device limitations will be summarized and put into perspective. PMID:26345228

  20. Investigation of UV-laser induced metallization: Platinum from Pt (PF3)4

    NASA Astrophysics Data System (ADS)

    Schröder, H.; Kompa, K. L.; Masci, D.; Gianinoni, I.

    1985-11-01

    We have measured the Pt deposition yields on various substrate materials from Pt(PF3)4 in the case where a KrF laser irradiates the solid surface. The data imply that an ample amount of electrons is produced by the laser surface interaction and dissociative electron capture initiates the metal deposition. The metal atom release is completed by a concerted surface reaction at a reduced energy demand. This is evidenced by thermochemical considerations. A simple criterion is derived to estimate the attainable spatial resolution. Sudden melting and evaporation beyond a certain layer thickness interferes with the deposition process. This is in accord to a model given, based on a poor thermal contact at the platinum substrate interface. The results may help to optimize uv laser induced metal deposition with respect to purity, adherence and structure.

  1. Alkene epoxidation employing metal nitro complexes

    DOEpatents

    Andrews, M.A.; Cheng, C.W.; Kelley, K.P.

    1982-07-15

    Process for converting alkenes to form epoxides utilizes transition metal nitro complexes of the formula: M(RCN)/sub 2/XNO/sub 2/ wherein M is palladium or platinum, R is an alkyl or aryl group containing up to 12 carbon atoms, and X is a monoanionic, monodentate ligand such as chlorine, optionally in the presence of molecular oxygen.

  2. CONTROL ROD ALLOY CONTAINING NOBLE METAL ADDITIONS

    DOEpatents

    Anderson, W.K.; Ray, W.E.

    1960-05-01

    Silver-base alloys suitable for use in the fabrication of control rods for neutronic reactors are given. The alloy consists of from 0.5 wt.% to about 1.5 wt.% of a noble metal of platinum, ruthenium, rhodium, osmium, or palladium, up to 10 wt.% of cadmium, from 2 to 20 wt.% indium, the balance being silver.

  3. Synthesis, characterization and antimicrobial activity of novel platinum(IV) and palladium(II) complexes with meso-1,2-diphenyl-ethylenediamine-N,N‧-di-3-propanoic acid - Crystal structure of H2-1,2-dpheddp·2HCl·H2O

    NASA Astrophysics Data System (ADS)

    Radić, Gordana P.; Glođović, Verica V.; Ratković, Zoran R.; Novaković, Slađana B.; Garcia-Granda, Santiago; Roces, Laura; Menéndez-Taboada, Laura; Radojević, Ivana D.; Stefanović, Olgica D.; Čomić, Ljiljana R.; Trifunović, Srećko R.

    2012-12-01

    In the reaction of meso-1,2-diphenyl-ethylenediamine (1,2-dphen) with neutralized 3-chlor-propanoic acid, the new linear tetradentate edda-like ligand (edda = ethylenediamine-N,N'-diacetic ion) meso-1,2-diphenyl-ethylenediamine-N,N'-di-3-propanoic acid dihydrochloride monohydrate (H2-1,2-dpheddp·2HCl·H2O) was prepared. The corresponding platinum(IV) complex, s-cis-dichlorido-(meso-1,2-diphenyl-ethylenediamine-N,N'-di-3-propanoate)-platinum(IV) ([PtCl2(1,2-dpheddp)]) was synthesized by heating potassium-hexachloridoplatinate(IV) and H2-1,2-dpheddp·2HCl·H2O on steam bath for 12 h with neutralization by means of lithium-hydroxide. The palladium(II) complex, cis-dichlorido-(meso-1,2-diphenyl-ethylenediamine-N,N'-di-3-propanoate)-palladium(II) ([PdCl2(1,2-dpheddp)]) was obtained in the similar way using potassium-tetrachloridopalladate(II), H2-1,2-dpheddp·2HCl·H2O and lithium-hydroxide. The compounds were characterized by elemental analysis and infrared spectroscopy. The spectroscopically predicted structure of the synthesized tetradentate ligand was confirmed by X-ray analysis of the H2-1,2-dpheddp·2HCl·H2O. Antimicrobial activity of the ligand and corresponding palladium(II) and platinum(IV) complexes is investigated against 25 species of microorganisms. Testing is preformed by microdilution method and minimum inhibitory concentrations (MIC) and minimum microbicidal concentration (MMC) have been determined. The difference between antimicrobial activity of the ligand and corresponding platinum(IV) and palladium(II) complex is noticed and, in general, palladium(II) complex was the most active.

  4. Stable optical oxygen sensing materials based on click-coupling of fluorinated platinum(II) and palladium(II) porphyrins—A convenient way to eliminate dye migration and leaching

    PubMed Central

    Koren, Klaus; Borisov, Sergey M.; Klimant, Ingo

    2012-01-01

    Nucleophilic substitution of the labile para-fluorine atoms of 2,3,4,5,6-pentafluorophenyl groups enables a click-based covalent linkage of an oxygen indicator (platinum(II) or palladium(II) 5,10,15,20-meso-tetrakis-(2,3,4,5,6-pentafluorophenyl)-porphyrin) to the sensor matrix. Copolymers of styrene and pentafluorostyrene are chosen as polymeric materials. Depending on the reaction conditions either soluble sensor materials or cross-linked microparticles are obtained. Additionally, we prepared Ormosil-based sensors with linked indicator, which showed very high sensitivity toward oxygen. The effect of covalent coupling on sensor characteristics, stability and photophysical properties is studied. It is demonstrated that leaching and migration of the dye are eliminated in the new materials but excellent photophysical properties of the indicators are preserved. PMID:23576845

  5. Virus templated metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Aljabali, Alaa A. A.; Barclay, J. Elaine; Lomonossoff, George P.; Evans, David J.

    2010-12-01

    Plant viruses are considered as nanobuilding blocks that can be used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subsequent metal deposition from solution. The method, although simple, produced highly monodisperse metallic nanoparticles with a diameter of ca. <=35 nm. CPMV-templated particles were prepared with cobalt, nickel, iron, platinum, cobalt-platinum and nickel-iron.Plant viruses are considered as nanobuilding blocks that can be used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subsequent metal deposition from solution. The method, although simple, produced highly monodisperse metallic nanoparticles with a diameter of ca. <=35 nm. CPMV-templated particles were prepared with cobalt, nickel, iron, platinum, cobalt-platinum and nickel-iron. Electronic supplementary information (ESI) available: Additional experimental detail, agarose gel electrophoresis results, energy dispersive X-ray spectra, ζ-potential measurements, dynamic light scattering data, nanoparticle tracking analysis and an atomic force microscopy image of Ni-CPMV. See DOI: 10.1039/c0nr00525h

  6. Noble-metal minerals in ores of the black-shale type in the Voronezh Crystalline Massif, central Russia

    NASA Astrophysics Data System (ADS)

    Chernyshov, N. M.

    2009-12-01

    High-carbonaceous stratified formations and related metasomatic rocks of global abundance are among highly promising sources of gold and platinum-group metals (PGMs) in the 21st century. The Au-PGM mineralization of the black-shale type hosted in the Early Karelian Kursk and Oskol groups in central Russia is characterized by complex multicomponent and polymineralic composition (more than 60 ore minerals, including more than 20 Au and PGM phases) and diverse speciation of noble metals in form of (1) native elements (gold, palladium, platinum, osmium, silver); (2) metallic solid solutions and intermetallic compounds (Pt-bearing palladium, Fe-bearing platinum, gold-platinum-palladium, osmiridium, rutheniridosmin, platiridosmin, platosmiridium, Hg-Te-Ag-bearing gold, gold-silver amalgam, arquerite, palladium stannide (unnamed mineral), platinum-palladium-gold-silver-tin); (3) PGM, Au, and Ag sulfoarsenides, tellurides, antimonides, selenides, and sulfosalts (sperrylite, irarsite, hessite, Pd and Pt selenide (unnamed mineral)), testibiopalladinite, Pd antimonide (unnamed mineral), etc.; and (4) impurities in ore-forming sulfides, sulfoarsenides, tellurides, antimonides, and selenides. The chemical analyses of PGM and Au minerals are presented, and their morphology and microstructure are considered.

  7. Platinum group metal particles aggregation in nuclear glass melts under the effect of temperature

    NASA Astrophysics Data System (ADS)

    Hanotin, Caroline; Puig, Jean; Neyret, Muriel; Marchal, Philippe

    2016-08-01

    The viscosity of simulated high level radioactive waste glasses containing platinum group metal particles is studied over a wide range of shear stress, as a function of the particles content and the temperature, thanks to a stress imposed rheometer, coupled to a high-temperature furnace. The system shows a very shear thinning behavior. At high shear rate, the system behaves as a suspension of small clusters and individual particles and is entirely controlled by the viscosity of the glass matrix as classical suspensions. At low shear rate, above a certain fraction in platinum group metal particles, the apparition of macroscopic aggregates made up of chains of RuO2 particles separated by thin layers of glass matrix strongly influences the viscosity of the nuclear glass and leads, in particular, to the apparition of yield stress and thixotropic effects. The maximum size of these clusters as well as their effective volume fraction have been estimated by a balance between Van der Waals attractive forces and hydrodynamic forces due to shear flow. We showed experimentally and theoretically that this aggregation phenomenon is favored by an increase of the temperature, owing to the viscosity decrease of the glass matrix, leading to an unusual increase of the suspension viscosity.

  8. Versatile Oxidation Methods for Organic and Inorganic Substrates Catalyzed by Platinum-Group Metals on Carbons.

    PubMed

    Sawama, Yoshinari; Asai, Shota; Monguchi, Yasunari; Sajiki, Hironao

    2016-02-01

    Platinum-group metals on activated carbon catalysts, represented by Pd/C, Ru/C, Rh/C, etc., are widely utilized to accomplish green and sustainable organic reactions due to their favorable features, such as easy handling, recoverability, and reusability. The efficient oxidation methods of various organic compounds using heterogeneous platinum-group metals on carbons with or without added oxidants are summarized in this Personal Account. The oxidation of internal alkynes into diketones was effectively catalyzed by Pd/C in the presence of dimethyl sulfoxide and molecular oxygen or pyridine N-oxide. The Pd/C-catalyzed mild combustion of gaseous hydrogen with molecular oxygen provided hydrogen peroxide, which could be directly utilized for the oxidation of sulfide derivatives into sulfoxides. Furthermore, the Ru/C-catalyzed aerobic oxidation of primary and secondary alcohols gave the corresponding aldehydes and ketones, respectively. On the other hand, the dehydrogenative oxidation of secondary alcohols into ketones was achieved using Rh/C in water, and primary alcohols were effectively dehydrogenated by Pd/C in water under mildly reduced pressure to produce carboxylic acids.

  9. Anti-cancer palladium complexes: a focus on PdX2L2, palladacycles and related complexes.

    PubMed

    Kapdi, Anant R; Fairlamb, Ian J S

    2014-07-07

    Much success has been achieved with platinum-based chemotherapeutic agents, i.e. through interactions with DNA. The long-term application of Pt complexes is thwarted by issues, leading scientists to examine other metals such as palladium which could exhibit complementary modes of action (given emphasis wherever known). Over the last 10 years several research groups have focused on the application of an eclectic array of palladium complexes (of the type PdX2L2, palladacycles and related structures) as potential anti-cancer agents. This review therefore provides readers with an up to date account of the advances that have taken place over the past several decades.

  10. Transition-metal-catalyzed Suzuki-Miyaura cross-coupling reactions: a remarkable advance from palladium to nickel catalysts.

    PubMed

    Han, Fu-She

    2013-06-21

    In the transition-metal-catalyzed cross-coupling reactions, the use of the first row transition metals as catalysts is much more appealing than the precious metals owing to the apparent advantages such as cheapness and earth abundance. Within the last two decades, particularly the last five years, explosive interests have been focused on the nickel-catalyzed Suzuki-Miyaura reactions. This has greatly advanced the chemistry of transition-metal-catalyzed cross-coupling reactions. Most notably, a broad range of aryl electrophiles such as phenols, aryl ethers, esters, carbonates, carbamates, sulfamates, phosphates, phosphoramides, phosphonium salts, and fluorides, as well as various alkyl electrophiles, which are conventionally challenging, by applying palladium catalysts can now be coupled efficiently with boron reagents in the presence of nickel catalysts. In this review, we would like to summarize the progress in this reaction.

  11. Maximum noble-metal efficiency in catalytic materials: atomically dispersed surface platinum.

    PubMed

    Bruix, Albert; Lykhach, Yaroslava; Matolínová, Iva; Neitzel, Armin; Skála, Tomáš; Tsud, Nataliya; Vorokhta, Mykhailo; Stetsovych, Vitalii; Ševčíková, Klára; Mysliveček, Josef; Fiala, Roman; Václavů, Michal; Prince, Kevin C; Bruyère, Stéphanie; Potin, Valérie; Illas, Francesc; Matolín, Vladimír; Libuda, Jörg; Neyman, Konstantin M

    2014-09-22

    Platinum is the most versatile element in catalysis, but it is rare and its high price limits large-scale applications, for example in fuel-cell technology. Still, conventional catalysts use only a small fraction of the Pt content, that is, those atoms located at the catalyst's surface. To maximize the noble-metal efficiency, the precious metal should be atomically dispersed and exclusively located within the outermost surface layer of the material. Such atomically dispersed Pt surface species can indeed be prepared with exceptionally high stability. Using DFT calculations we identify a specific structural element, a ceria "nanopocket", which binds Pt(2+) so strongly that it withstands sintering and bulk diffusion. On model catalysts we experimentally confirm the theoretically predicted stability, and on real Pt-CeO2 nanocomposites showing high Pt efficiency in fuel-cell catalysis we also identify these anchoring sites.

  12. Distribution of platinum and other traffic related metals in sediments and clams (Corbicula sp.).

    PubMed

    Ruchter, Nadine; Sures, Bernd

    2015-03-01

    Platinum is part of traffic-emitted metals since the introduction of automotive catalyst converters. Still, automobile emissions are one of the major sources for metals in European river systems. However, field data on Pt is scarce and there is a lack of knowledge concerning the distribution and biological availability of Pt. Therefore, the distribution of traffic related metals (Cd, Cr, Cu, Ni, Pb, Pt, and Zn) was analyzed in sediment samples and in the Asian clam Corbicula sp. Samples were taken from three transects following road runoff inlets. Pt was introduced into the river by road runoff. The highest Pt concentrations in sediments were analyzed in the silt/clay fraction (45 ng/g), while the highest total Pt burden was obtained for the sand fraction, that makes up more than 60% of the sediment. Metal concentrations were related to the area of the drained street section as well as to their distance from the discharge point, and to grain size distribution within the sediment. Pt and other traffic related metals were accumulated by clams. Due to the feeding behavior of the freshwater mussel Corbicula sp. Pt concentrations in the soft tissue remain relatively low (max Pt concentration: 1.3 ng/g freeze dried soft tissue) and acute lethal or toxic effects therefore appear to be unlikely. Nonetheless, chronic exposure effects still have to be examined.

  13. The catalytic inactivation of cellulase enzyme components by palladium complexes

    SciTech Connect

    Woodward, J.; Gooch, M.G.; Shultz, M.D.

    1993-10-01

    It has been discovered that sodium hexachloropalladate is a strong inhibitor of cellobiohydrolase I (CBH I) from Trichoderma reesei having an I{sub 50} of <50 {mu}M with p-nitrophenylcellobioside (PNPC) as the substrate. Similar complexes of the metals platinum, osmium, iridium, and rhodium have little effect on CBH I. Other cellulase activities (Avicelase, {beta}-glucanase) are also inhibited by the palladium complex, suggesting that inhibition of two major types of catalytic activity in cellulase are affected. Preliminary data on the kinetics of inhibition of CBH I by sodium hexachloropalladate indicate that the inhibition is reversible and, possibly, uncompetitive. It is anticipated that sodium hexachloropalladate and other palladium complexes will be useful for determining the effect of the binding of catalytically inactivated CBH I and other cellulase components on the structure of cellulose fibers.

  14. Effects of interdigitated platinum finger geometry on spectral response characteristics of germanium metal-semiconductor-metal photodetectors.

    PubMed

    Yang, Hyun-Duk; Janardhanam, V; Shim, Kyu-Hwan; Choi, Chel-Jong

    2014-10-01

    We fabricated interdigitated germanium (Ge) metal-semiconductor-metal photodetectors (MSM PDs) with interdigitated platinum (Pt) finger electrodes and investigated the effects of Pt finger width and spacing on their spectral response. An increase in the incident optical power enhances the creation of electron-hole pairs, resulting in a significant increase in photo current. Lowering of the Schottky barrier could be a main cause of the increase in both photo and dark current with increasing applied bias. The manufactured Ge MSM PDs exhibited a considerable spectral response for wavelengths in the range of 1.53-1.56 μm, corresponding to the entire C-band spectrum range. A reduction in the area fraction of the Pt finger electrode in the active region by decreasing and increasing finger width and spacing, respectively, led to an increase in illuminated active area and suppression of dark current, which was responsible for the improvement in responsivity and quantum efficiency of Ge MSM PDs.

  15. Noble metal alloy clusters in the gas phase derived from protein templates: unusual recognition of palladium by gold

    NASA Astrophysics Data System (ADS)

    Baksi, Ananya; Pradeep, T.

    2013-11-01

    Matrix assisted laser desorption ionization of a mixture of gold and palladium adducts of the protein lysozyme (Lyz) produces naked alloy clusters of the type Au24Pd+ in the gas phase. While a lysozyme-Au adduct forms Au18+, Au25+, Au38+ and Au102+ ions in the gas phase, lysozyme-Pd alone does not form any analogous cluster. Addition of various transition metal ions (Ag+, Pt2+, Pd2+, Cu2+, Fe2+, Ni2+ and Cr3+) in the adducts contributes to drastic changes in the mass spectrum, but only palladium forms alloys in the gas phase. Besides alloy formation, palladium enhances the formation of specific single component clusters such as Au38+. While other metal ions like Cu2+ help forming Au25+ selectively, Fe2+ catalyzes the formation of Au25+ over all other clusters. Gas phase cluster formation occurs from protein adducts where Au is in the 1+ state while Pd is in the 2+ state. The creation of alloys in the gas phase is not affected whether a physical mixture of Au and Pd adducts or a Au and Pd co-adduct is used as the precursor. The formation of Au cores and AuPd alloy cores of the kind comparable to monolayer protected clusters implies that naked clusters themselves may be nucleated in solution.Matrix assisted laser desorption ionization of a mixture of gold and palladium adducts of the protein lysozyme (Lyz) produces naked alloy clusters of the type Au24Pd+ in the gas phase. While a lysozyme-Au adduct forms Au18+, Au25+, Au38+ and Au102+ ions in the gas phase, lysozyme-Pd alone does not form any analogous cluster. Addition of various transition metal ions (Ag+, Pt2+, Pd2+, Cu2+, Fe2+, Ni2+ and Cr3+) in the adducts contributes to drastic changes in the mass spectrum, but only palladium forms alloys in the gas phase. Besides alloy formation, palladium enhances the formation of specific single component clusters such as Au38+. While other metal ions like Cu2+ help forming Au25+ selectively, Fe2+ catalyzes the formation of Au25+ over all other clusters. Gas phase cluster

  16. Thickness dependence of the resistivity of platinum-group metal thin films

    NASA Astrophysics Data System (ADS)

    Dutta, Shibesh; Sankaran, Kiroubanand; Moors, Kristof; Pourtois, Geoffrey; Van Elshocht, Sven; Bömmels, Jürgen; Vandervorst, Wilfried; Tőkei, Zsolt; Adelmann, Christoph

    2017-07-01

    We report on the thin film resistivity of several platinum-group metals (Ru, Pd, Ir, and Pt). Platinum-group thin films show comparable or lower resistivities than Cu for film thicknesses below about 5 nm due to a weaker thickness dependence of the resistivity. Based on experimentally determined mean linear distances between grain boundaries as well as ab initio calculations of the electron mean free path, the data for Ru, Ir, and Cu were modeled within the semiclassical Mayadas-Shatzkes model [Phys. Rev. B 1, 1382 (1970)] to assess the combined contributions of surface and grain boundary scattering to the resistivity. For Ru, the modeling results indicated that surface scattering was strongly dependent on the surrounding material with nearly specular scattering at interfaces with SiO2 or air but with diffuse scattering at interfaces with TaN. The dependence of the thin film resistivity on the mean free path is also discussed within the Mayadas-Shatzkes model in consideration of the experimental findings.

  17. Thermally tolerant multilayer metal membrane

    DOEpatents

    Dye, Robert C.; Snow, Ronny C.

    2001-01-01

    A composite metal membrane including a first metal layer of a Group IVB or Group VB metal sandwiched between two layers of a Group VIIIB metal selected from the group consisting of palladium, platinum, nickel, rhodium, iridium, cobalt, and alloys thereof, and a non-continuous layer of a metal chalcogenide upon one layer of the Group VIIIB metal is disclosed together with a process for the recovery of hydrogen from a gaseous mixture using such a composite membrane and a process for forming such a composite metal membrane.

  18. Novel palladium(II) and platinum(II) complexes with 1H-benzimidazol-2-ylmethyl-N-(4-bromo-phenyl)-amine: structural studies and anticancer activity.

    PubMed

    Abdel Ghani, Nour T; Mansour, Ahmed M

    2012-01-01

    [MLCl(2)] (L = (1H-benzimidazol-2-ylmethyl)-N-(4-bromo-phenyl)-amine; M = Pd & Pt) and [PdL(OH(2))(2)]∙2X∙zH(2)O (X = Br, I, z = 2; X = SCN, z = 1; X = NO(3), z = 0) complexes have been synthesized as potential anticancer compounds and their structures were elucidated using elemental analysis, spectral, thermal analysis and X-ray powder diffraction. The benzimidazole (L) crystallizes in the space group P2(1)/c with a = 8.6660(3) Å, b = 16.6739(7) Å, c = 9.8611(4) Å and β = 113.505(3) ° and forms an infinite chain structure with a trans-zigzag type along the crystallographic axis "a", through the intermolecular H-bond. FT-IR and (1)H NMR studies revealed that the ligand L is coordinated to the metal ion via the pyridine-type nitrogen (N(py)) of the benzimidazole ring and secondary amino group (NH(sec)). Quantum mechanical calculations of energies, geometries, vibrational wavenumbers, and (1)H NMR of the benzimidazole L and its complexes were carried out by DFT/B3LYP method combined with 6-31G(d) and LANL2DZ basis sets. Natural bond orbital (NBO) analysis and frontier molecular orbitals (FMO) were performed at B3LYP/LANL2DZ level of theory. The benzimidazole L, in comparison to its metal complexes was screened for its antibacterial activity. The complexes showed cyctotoxic effects against human breast cancer (MCF7), hepatocarcinoma (HepG(2)) and colon carcinoma cells (HCT). The platinum complex (6) exhibited a moderate antitumor activity against MCF7 with IC(50) = 10.2 μM comparing to that reported for cis-platin 9.91 μM. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  19. Polyhydrides of Platinum Group Metals: Nonclassical Interactions and σ-Bond Activation Reactions.

    PubMed

    Esteruelas, Miguel A; López, Ana M; Oliván, Montserrat

    2016-08-10

    The preparation, structure, dynamic behavior in solution, and reactivity of polyhydride complexes of platinum group metals, described during the last three decades, are contextualized from both organometallic and coordination chemistry points of view. These compounds, which contain dihydrogen, elongated dihydrogen, compressed dihydride, and classical dihydride ligands promote the activation of B-H, C-H, Si-H, N-H, O-H, C-C, C-N, and C-F, among other σ-bonds. In this review, it is shown that, unlike other more mature areas, the chemistry of polyhydrides offers new exciting conceptual challenges and at the same time the possibility of interacting with other fields including the conversion and storage of regenerative energy, organic synthetic chemistry, drug design, and material science. This wide range of possible interactions foresees promising advances in the near future.

  20. Life cycle benefits of using nanotechnology to stabilize platinum-group metal particles in automotive catalysts.

    PubMed

    Lloyd, Shannon M; Lave, Lester B; Matthews, H Scott

    2005-03-01

    Due to advances in nanotechnology, the approach to catalytic design is transitioning from trial-and-error to planned design and control. Expected advances should enable the design and construction of catalysts to increase reaction speed, yield, and catalyst durability while also reducing active species loading levels. Nanofabrication techniques enabling precise control over the shape, size, and position of nanoscale platinum-group metal (PGM) particles in automotive catalysts should result in reduced PGM loading levels. These reductions would decrease energy consumption, improve environmental quality, and contribute to sustainable resource usage. We estimate the amount of PGM required to meet U.S. vehicle emissions standards through 2030 based on current catalysttechnology. We then estimate the range of PGM that could be saved from potential nanotechnology advances. Finally, we employ economic input-output and process-based life cycle assessment models to estimate the direct and life cycle benefits from reducing PGM mining and refining.

  1. Stable palladium alloys for diffusion of hydrogen

    NASA Technical Reports Server (NTRS)

    Patapoff, M.

    1973-01-01

    Literature search on hydrogen absorption effect on palladium alloys revealed existence of alloy compositions in which alpha--beta transition does not take place. Survey conclusions: 40 percent gold alloy of palladium should be used in place of palladium; alloy must be free of interstitial impurities; and metallic surfaces of tube must be clean.

  2. The relative stabilities of tungsten hexacarbonyl, silver neodecanoate some metal acetyl- and hexafluoroacetylacetonates and the thermal properties of the palladium(II) acetonates

    NASA Astrophysics Data System (ADS)

    Poston, S.; Reisman, A.

    1989-07-01

    The relative stabilities of silver neodecanoate, tungsten hexacarbonyl, and a series of metal acetyl- and hexafluoroacetyl- acetonates, were determined using differential ther-mal analysis (DTA) and weight loss analysis. In general, the acetylacetonates decom-pose in the solid state at relatively low temperatures (100-200° C), with several of them exhibiting appreciable vapor pressures at temperatures below which their decomposi-tion rate is significant. Hexaf luoro derivatives of these compounds are, in general, more volatile and decompose at higher temperatures. The thermal decomposition behavior of palladium(II) acetylacetonate and palladium(II) hexafluoroacetylacetonate were each investigated using DTA at atmospheric pressure and under each compound’s equilib-rium or decomposition product(s) vapor pressure in conjunction with weight loss and residue composition analysis. At the heating rates employed, ≤2° C/min, palladium(II) acetylacetonate tends to decompose upon heating in either an inert or oxidizing atmo-sphere before significant quantities volatilize. On the other hand, palladium(II) hex-afluoroacetylacetonate tends to volatilize completely before any signs of decomposition are observed under the same conditions. Heating palladium(II) acetylacetonate in ar-gon, at ≤2° C/min, shows the onset of an endotherm at approximately 196° C, at the conclusion of which a product containing 75% palladium was found, the remainder com-prised of carbon, hydrogen and oxygen. In an oxidizing atmosphere at the above men-tioned heating rate, Palladium(II) acetylacetonate decomposes exothermically at 180° C yielding essentially pure palladium. Continued heating in oxygen, to 800° C results in pure PdO. At 900° C, the PdO decomposes yielding pure palladium. Depending upon the heating rates applied, one or two endotherms may be observed during the heating of palladium(II) hexafluoroacetylacetonate. Heating at 2° C/min in either an argon or ox-ygen atmosphere

  3. Development of deuterium labeling method based on the heterogeneous platinum group metal-catalyzed C-H activation.

    PubMed

    Sajiki, Hironao

    2013-01-01

    Deuterium (D) labeled compounds are utilized in various scientific fields such as mechanistic elucidation of reactions, preparation of new functional materials, tracers for microanalysis, deuterium labeled heavy drugs and so on. Although the H-D exchange reaction is a straightforward method to produce deuterated organic compounds, many precedent methods require expensive deuterium gas and/or harsh reaction conditions. A part of our leading research agendas is intended to the development of novel and functional heterogeneous platinum-group catalysts and the reclamation of unknown functionalities of existing heterogeneous platinum-group catalysts. During the course of the study, benzylic positions of substrates were site-selectively deuterated under mild and palladium-on-carbon (Pd/C)-catalyzed hydrogenation conditions in heavy water (D2O). Heat conditions promoted the H-D exchange reactivity and facilitated the H-D exchange reaction at not only the benzylic sites but also inactive C-H bonds and heterocyclic nuclei. It is noteworthy that platinum-on-carbon (Pt/C) indicated a quite high affinity toward aromatic nuclei, and the H-D exchange reaction was strongly enhanced by the use of Pt/C as a catalyst under milder conditions. The mixed use of Pd/C and Pt/C was found to be more efficient in the H-D exchange reaction compared to the independent use of Pd/C or Pt/C. Furthermore, simple alkanes could also be efficiently deuterated under rhodium-on-carbon (Rh/C)-catalyzed conditions. The use of ruthenium-on-carbon (Ru/C) enabled the regiospecific and efficient deuterium incorporation at α-positions of alcohols and results were applied as a regio- and stereoselective multi-deuteration method of sugar derivatives.

  4. Extraction and pre-concentration of platinum and palladium from microwave-digested road dust via ion exchanging mesoporous silica microparticles prior to their quantification by quadrupole ICP-MS.

    PubMed

    Nischkauer, Winfried; Neouze, Marie-Alexandra; Vanhaecke, Frank; Limbeck, Andreas

    We report on the use of mesoporous silica microparticles (μPs) functionalized with quarternary amino groups for the isolation of platinum and palladium tetrachloro complexes from aqueous road dust digests. The μPs have a size ranging from 450 to 850 nm and are suspended directly in the aqueous digests, upon which the anionic Pt and Pd complexes are retained on the cationic surface. Subsequently, the μPs are separated by centrifugation. Elements that cause spectral interferences in ICP-MS determination of Pt and Pd can be quantitatively removed by adding fresh 0.240 mol L(-1) HCl to the μPs and by repeating the centrifugation step. The analyte-loaded μPs are then dissolved in 0.1 mL of 2 mol L(-1) HF, diluted to 2 mL, and the solutions thus obtained are analyzed by quadrupole ICP-MS. This method avoids analyte elution from the sorbent. This "dispersed particle extraction" approach yielded a run-to-run relative standard deviation ≤ 5 % for Pt and ≤ 4 % for Pd (at 0.1 ng mL(-1), n = 4 road dust digests). Method detection limits (expressed as concentrations in the dust samples) are 2 and 1 ng g(-1) for Pt and Pd, respectively. The method was validated by analysis of a reference material (BCR CRM 723) and applied to the analysis of road dust samples collected in downtown Vienna. Pt and Pd concentrations in samples collected in summer and in winter were compared, with concentrations ranging from 205 to 1445 ng g(-1) for Pt and from 201 to 1230 ng g(-1) for Pd. Graphical AbstractMesoporous silica microparticles (μPs) functionalized with quarternary amino groups were used for isolating platinum and palladium from aqueous road dust digests. The μPs were suspended directly in the aqueous digests, and the analyte-loaded μPs were analyzed using "dispersed particle extraction".

  5. Spectral and structural characterization of amidate-bridged platinum-thallium complexes with strong metal-metal bonds.

    PubMed

    Chen, Wanzhi; Liu, Fenghui; Matsumoto, Kazuko; Autschbach, Jochen; Le Guennic, Boris; Ziegler, Tom; Maliarik, Mikhail; Glaser, Julius

    2006-05-29

    The reactions of [Pt(NH3)2(NHCOtBu)2] and TlX3 (X = NO3-, Cl-, CF3CO2-) yielded dinuclear [{Pt(ONO2)(NH3)2(NHCOtBu)}Tl(ONO2)2(MeOH)] (2) and trinuclear complexes [{PtX(RNH2)2(NHCOtBu)2}2Tl]+ [X = NO3- (3), Cl- (5), CF3CO2- (6)], which were spectroscopically and structurally characterized. Strong Pt-Tl interaction in the complexes in solutions was indicated by both 195Pt and 205Tl NMR spectra, which exhibit very large one-bond spin-spin coupling constants between the heteronuclei (1J(PtTl)), 146.8 and 88.84 kHz for 2 and 3, respectively. Both the X-ray photoelectron spectra and the 195Pt chemical shifts reveal that the complexes have Pt centers whose oxidation states are close to that of Pt(III). Characterization of these complexes by X-ray diffraction analysis confirms that the Pt and Tl atoms are held together by very short Pt-Tl bonds and are supported by the bridging amidate ligands. The Pt-Tl bonds are shorter than 2.6 Angstrom, indicating a strong metal-metal attraction between these two metals. Compound 2 was found to activate the C-H bond of acetone to yield a platinum(IV) acetonate complex. This reactivity corresponds to the property of Pt(III) complexes. Density functional theory calculations were able to reproduce the large magnitude of the metal-metal spin-spin coupling constants. The couplings are sensitive to the computational model because of a delicate balance of metal 6s contributions in the frontier orbitals. The computational analysis reveals the role of the axial ligands in the magnitude of the coupling constants.

  6. Mapping the UV Photophysics of Platinum Metal Complexes Bound to Nucleobases

    NASA Astrophysics Data System (ADS)

    Sen, Ananya; Dessent, Caroline

    2015-03-01

    We report the first UV laser spectroscopic study of isolated gas-phase complexes of Platinum metal complex anions bound to a nucleobase as model systems for exploring at the molecular level the key photophysical processes involved in photodynamic therapy. Spectra of the PtIV CN 6 2 - • Uracil and PtII CN 4 2 - • Uracil complexes were acquired across the 220 -320 nm range using mass-selective photodepletion and photofragment action spectroscopy. The spectra of both complexes reveal prominent UV absorption bands that we assign primarily to excitation of the Uracil π - π * localized chromophore. Distinctive UV photofragments are observed for the complexes, with PtIV CN 6 2 - • Uracil photoexcitation resulting in complex fission, while PtII CN 4 2 - • Uracil photoexcitation initiates a nucleobase proton-transfer reaction across 4.4 -5.2 eV and electron detachment above 5.2 eV. The observed photofragments are consistent with ultrafast decay of a Uracil localized excited state back to the electronic ground state followed by intramolecular vibrational relaxation and ergodic complex fragmentation. In addition, we present recent results to explore how the photophysics of the Platinum complex-nucleobase clusters evolves as a function of nucleobase. Results are presented for PtII CN 4 2 - • Uracil complexed to Cytosine, Thymine and Adenine, reveal distinctive decay dynamics which we attribute to the intrinsic decay dynamics of the nucleobase. JPC. Lett. 2014, 5, 3281 to 3285 and PCCP 2014, 16, 15490 to 15500.

  7. The calculated solubility of platinum and gold in oxygen-saturated fluids and the genesis of platinum-palladium and gold mineralization in the unconformity-related uranium deposits

    NASA Astrophysics Data System (ADS)

    Jaireth, S.

    1992-01-01

    Thermodynamic calculations on the solubility of platinum and gold indicate that saline (1 m NaCl), fluids saturated with atmospheric oxygen can transport geologically realistic concentrations of platinum-group-elements (PGE), gold, and uranium as chloro-complexes. A number of calculations involving fluid-rock interaction suggest that the oxygen-saturated fluids flowing through rocks containing quartz, muscovite, kaolinite, magnetite and hematite, initially oxidize any magnetite to hematite, allowing subsequent batches of ore fluids to retain their high oxidation state. During their migration through the aquifer, the oxidizing fluids would move the oxidation-reduction interface deeper into the aquifer, leaching and redepositing platinum and gold. The redissolution of earlier precipitated platinum and gold depends on the fluid/ rock ratio and the associated increase in the oxidation state. Therefore, lowering of fluid/rock ratios and/or mixing of the oxidized fluids with a large amount of reduced fluid will precipitate uranium, PGE, and gold. It is suggested that this model can explain the genesis of gold and PGE mineralization in the unconformity-related uranium deposits of the Alligator Rivers Uranium Field in the Northern Territory, Australia.

  8. Solid-state structural characterization of cutinase-ECE-pincer-metal hybrids.

    PubMed

    Rutten, Lucy; Wieczorek, Birgit; Mannie, Jean-Paul B A; Kruithof, Cornelis A; Dijkstra, Harm P; Egmond, Maarten R; Lutz, Martin; Klein Gebbink, Robertus J M; Gros, Piet; van Koten, Gerard

    2009-01-01

    The first crystal structures of lipases that have been covalently modified through site-selective inhibition by different organometallic phosphonate-pincer-metal complexes are described. Two ECE-pincer-type d(8)-metal complexes, that is, platinum (1) or palladium (2) with phosphonate esters (ECE = [(EtO)-(O=)P(-O-C(6)H(4)-(NO(2))-4)(-C(3)H(6)-4-(C(6)H(2)-(CH(2)E)(2))](-); E = NMe(2) or SMe) were introduced prior to crystallization and have been shown to bind selectively to the Ser(120) residue in the active site of the lipase cutinase to give cut-1 (platinum) or cut-2 (palladium) hybrids. For all five presented crystal structures, the ECE-pincer-platinum or -palladium head group sticks out of the cutinase molecule and is exposed to the solvent. Depending on the nature of the ECE-pincer-metal head group, the ECE-pincer-platinum and -palladium guests occupy different pockets in the active site of cutinase, with concomitant different stereochemistries on the phosphorous atom for the cut-1 (S(P)) and cut-2 (R(P)) structures. When cut-1 was crystallized under halide-poor conditions, a novel metal-induced dimeric structure was formed between two cutinase-bound pincer-platinum head groups, which are interconnected through a single mu-Cl bridge. This halide-bridged metal dimer shows that coordination chemistry is possible with protein-modified pincer-metal complexes. Furthermore, we could use NCN-pincer-platinum complex 1 as site-selective tool for the phasing of raw protein diffraction data, which shows the potential use of pincer-platinum complex 1 as a heavy-atom derivative in protein crystallography.

  9. Metallization Process of a Polyimide Surface with Palladium-Free Activation for Electronic Field Applications

    NASA Astrophysics Data System (ADS)

    Li, Libo; Ma, Yue; Xie, Jingchen; Yang, Xiuchun; Wang, Heng; Tian, Haiyan; Mu, Hongjing; Wang, Wentao

    2015-10-01

    A new copper plating bath without Pd activation for electroless deposition on polyimide (PI) film is reported. The characteristics of Cu coatings on the PI via electroless plating and the effects of operating parameters on the coating coverage are discussed. The pre-treatment and plating processes are further optimized based on orthogonal experiment methods, involving variations of multiple process parameters. The electroless copper coating was characterized by scanning electron microscopy and atomic force microscopy, while the composition and crystalline structure are estimated by energy dispersive spectrometer and x-ray diffraction, respectively. These results show that the crystalline copper layer on the PI surface after electroless plating is dense, continuous and uniform. The joint tensile experiment is used to measure the adhesive strength of the coating with palladium-free and palladium activation, and the former is higher. Furthermore, the pre-treatment method proposed in this work without using palladium compounds is considered to be environmentally friendly. In addition, it provides a new concept of electroless Cu plating on the PI, which is generally difficult to plate due to its hydrophobic nature.

  10. Platinum-coated non-noble metal-noble metal core-shell electrocatalysts

    DOEpatents

    Adzic, Radoslav; Zhang, Junliang; Mo, Yibo; Vukmirovic, Miomir

    2015-04-14

    Core-shell particles encapsulated by a thin film of a catalytically active metal are described. The particles are preferably nanoparticles comprising a non-noble core with a noble metal shell which preferably do not include Pt. The non-noble metal-noble metal core-shell nanoparticles are encapsulated by a catalytically active metal which is preferably Pt. The core-shell nanoparticles are preferably formed by prolonged elevated-temperature annealing of nanoparticle alloys in an inert environment. This causes the noble metal component to surface segregate and form an atomically thin shell. The Pt overlayer is formed by a process involving the underpotential deposition of a monolayer of a non-noble metal followed by immersion in a solution comprising a Pt salt. A thin Pt layer forms via the galvanic displacement of non-noble surface atoms by more noble Pt atoms in the salt. The overall process is a robust and cost-efficient method for forming Pt-coated non-noble metal-noble metal core-shell nanoparticles.

  11. A Capped Octahedral MHC6 Compound of a Platinum Group Metal.

    PubMed

    Eguillor, Beatriz; Esteruelas, Miguel A; Lezáun, Virginia; Oliván, Montserrat; Oñate, Enrique; Tsai, Jui-Yi; Xia, Chuanjun

    2016-06-27

    A MHC6 complex of a platinum group metal with a capped octahedral arrangement of donor atoms around the metal center has been characterized. This osmium compound OsH{κ(2) -C,C-(PhBIm-C6 H4 )}3 , which reacts with HBF4 to afford the 14 e(-) species [Os{κ(2) -C,C-(PhBIm-C6 H4 )}(Ph2 BIm)2 ]BF4 stabilized by two agostic interactions, has been obtained by reaction of OsH6 (PiPr3 )2 with N,N'-diphenylbenzimidazolium chloride ([Ph2 BImH]Cl) in the presence of NEt3 . Its formation takes place through the C,C,C-pincer compound OsH2 {κ(3) -C,C,C-(C6 H4 -BIm-C6 H4 )}(PiPr3 )2 , the dihydrogen derivative OsCl{κ(2) -C,C-(PhBIm-C6 H4 )}(η(2) -H2 )(PiPr3 )2 , and the five-coordinate osmium(II) species OsCl{κ(2) -C,C-(PhBIm-C6 H4 )}(PiPr3 )2 .

  12. Evaluating the abnormal ossification in tibiotarsi of developing chick embryos exposed to 1.0ppm doses of platinum group metals by spectroscopic techniques.

    PubMed

    Stahler, Adam C; Monahan, Jennifer L; Dagher, Jessica M; Baker, Joshua D; Markopoulos, Marjorie M; Iragena, Diane B; NeJame, Britney M; Slaughter, Robert; Felker, Daniel; Burggraf, Larry W; Isaac, Leon A C; Grossie, David; Gagnon, Zofia E; Sizemore, Ioana E Pavel

    2013-04-01

    Platinum group metals (PGMs), i.e., palladium (Pd), platinum (Pt) and rhodium (Rh), are found at pollutant levels in the environment and are known to accumulate in plant and animal tissues. However, little is known about PGM toxicity. Our previous studies showed that chick embryos exposed to PGM concentrations of 1mL of 5.0ppm (LD50) and higher exhibited severe skeletal deformities. This work hypothesized that 1.0ppm doses of PGMs will negatively impact the mineralization process in tibiotarsi. One milliliter of 1.0ppm of Pd(II), Pt(IV), Rh(III) aqueous salt solutions and a PGM-mixture were injected into the air sac on the 7th and 14th day of incubation. Control groups with no-injection and vehicle injections were included. On the 20th day, embryos were sacrificed to analyze the PGM effects on tibiotarsi using four spectroscopic techniques. 1) Micro-Raman imaging: Hyperspectral Raman data were collected on paraffin embedded cross-sections of tibiotarsi, and processed using in-house-written MATLAB codes. Micro-Raman univariate images that were created from the ν1(PO4(3-)) integrated areas revealed anomalous mineral inclusions within the bone marrow for the PGM-mixture treatment. The age of the mineral crystals (ν(CO3(2-))/ν1(PO4(3-))) was statistically lower for all treatments when compared to controls (p≤0.05). 2) FAAS: The percent calcium content of the chemically digested tibiotarsi in the Pd and Pt groups changed by ~45% with respect to the no-injection control (16.1±0.2%). 3) Micro-XRF imaging: Abnormal calcium and phosphorus inclusions were found within the inner longitudinal sections of tibiotarsi for the PGM-mixture treatment. A clear increase in the mineral content was observed for the outer sections of the Pd treatment. 4) ICP-OES: PGM concentrations in tibiotarsi were undetectable (<5ppb). The spectroscopic techniques gave corroborating results, confirmed the hypothesis, and explained the observed pathological (skeletal developmental abnormalities

  13. New palladium(II) and platinum(II) 5,5-diethylbarbiturate complexes with 2-phenylpyridine, 2,2'-bipyridine and 2,2'-dipyridylamine: synthesis, structures, DNA binding, molecular docking, cellular uptake, antioxidant activity and cytotoxicity.

    PubMed

    Icsel, Ceyda; Yilmaz, Veysel T; Kaya, Yunus; Samli, Hale; Harrison, William T A; Buyukgungor, Orhan

    2015-04-21

    Novel palladium(ii) and platinum(ii) complexes of 5,5-diethylbarbiturate (barb) with 2-phenylpyridine (Hppy), 2,2'-bipyridine (bpy) and 2,2'-dipyridylamine (dpya) have been prepared and characterized by elemental analysis, IR, UV-Vis, NMR and ESI-MS. Single-crystal diffraction measurements show that complex consists of binuclear [Pd2(μ-barb-κN,O)2(ppy-κN,C)2] moieties, while complexes are mononuclear, [M(barb-κN)2(L-κN,N')] (L = bpy or dpya). has a composition of [Pt(dpya-κN,N')2][Ag(barb-κN)2]2·4H2O and was assumed to have a structure of [Pt(barb-κN)(Hppy-κN)(ppy-κN,C)]·3H2O. The complexes were found to exhibit significant DNA binding affinity by a non-covalent binding mode, in accordance with molecular docking studies. In addition, complexes and displayed strong binding with supercoiled pUC19 plasmid DNA. Cellular uptake studies were performed to assess the subcellular localization of the selected complexes. A moderate radical scavenging activity of and was confirmed by DPPH and ABTS tests. Complexes , , and showed selectivity against HT-29 (colon) cell line.

  14. Synthesis of platinum(II) and palladium(II) complexes with 9,9-dihexyl-4,5-diazafluorene and their in vivo antitumour activity against Hep3B xenografted mice.

    PubMed

    Wang, Q-W; Lam, P-L; Wong, R S-M; Cheng, G Y-M; Lam, K-H; Bian, Z-X; Ho, C-L; Feng, Y-H; Gambari, R; Lo, Y-H; Wong, W-Y; Chui, C-H

    2016-11-29

    Two complexes dichloro(9,9-dihexyl-4,5-diazafluorene)platinum(II) (Pt-DHF) and dichloro(9,9-dihexyl-4,5-diazafluorene)palladium(II) (Pd-DHF) were synthesized and their in vivo antitumour activity was investigated using an athymic nude mice model xenografted with human Hep3B carcinoma cells. Pt-DHF- and Pd-DHF-treated groups showed significant tumour growth inhibition (with about 9-fold and 3-fold tumour growth retardation) when compared with the vehicle control group. The liver toxicology effects on the animals of the two compounds were investigated. Pt-DHF and Pd-DHF-treated groups had a lower alanine transaminase and aspartate transaminase values than those of the vehicle treated group as the animals from the vehicle control group had very heavy hepatoma burden. We assume that both complexes could be further investigated as effective antitumour agents and it is worthwhile to study their underlying working mechanism.

  15. Platinum-nickel frame within metal-organic framework fabricated in situ for hydrogen enrichment and molecular sieving

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Yu, Rong; Huang, Jinglu; Shi, Yusheng; Zhang, Diyang; Zhong, Xiaoyan; Wang, Dingsheng; Wu, Yuen; Li, Yadong

    2015-09-01

    Developing catalysts that provide the effective activation of hydrogen and selective absorption of substrate on metal surface is crucial to simultaneously improve activity and selectivity of hydrogenation reaction. Here we present an unique in situ etching and coordination synthetic strategy for exploiting a functionalized metal-organic framework to incorporate the bimetallic platinum-nickel frames, thereby forming a frame within frame nanostructure. The as-grown metal-organic framework serves as a `breath shell' to enhance hydrogen enrichment and activation on platinum-nickel surface. More importantly, this framework structure with defined pores can provide the selective accessibility of molecules through its one-dimensional channels. In a mixture containing four olefins, the composite can selectively transport the substrates smaller than its pores to the platinum-nickel surface and catalyse their hydrogenation. This molecular sieve effect can be also applied to selectively produce imines, which are important intermediates in the reductive imination of nitroarene, by restraining further hydrogenation via cascade processes.

  16. Palladium fluoride complexes: one more step toward metal-mediated C-F bond formation.

    PubMed

    Grushin, Vladimir V

    2002-03-01

    The first molecular complexes of palladium containing a Pd-F bond, both fluorides and bifluorides, were synthesized and fully characterized in the solid state and in solution. Reactivity studies of the Pd fluoride complexes revealed their unexpected stability and unusual chemical properties, different from the hydroxo, chloro, bromo, and iodo analogues. A novel efficient method to generate "naked fluoride" was developed using [(Ph(3)P)(2)Pd(F)Ph]. The naked fluoride from the Pd source fluorinated dichloromethane, deprotonated chloroform, and catalyzed di- and trimerization of hexafluoropropene under uncommonly mild conditions.

  17. Computer simulations studies of the catalytic oxidation of carbon monoxide on platinum metals

    NASA Astrophysics Data System (ADS)

    Kaukonen, H.-P.; Nieminen, R. M.

    1989-10-01

    The steady-state catalytic oxidation process of carbon monoxide on platinum metal surfaces is studied using two irreversible kinetic computer simulation models: (a) An extended version of the model introduced by Ziff, Gulari, and Barshad (ZGB) with the effects of CO desorption and diffusion as well as finite reaction probability taken into account. The different physical processes, diffusion and desorption are studied independently and their effect on the equilibrium window, i.e., the regime where steady CO2 formation occurs is determined. (b) An interaction model where adatom-adatom nearest-neighbor (nn) interactions are taken explicitly into account through Boltzmann terms J1, J2, and J3 which are the energies of the CO-CO, O-O, and CO-O interactions, respectively. The phase diagrams in the temperature-CO-partial pressure (T,pCO-) plane are determined for different values of the nn interactions. The behavior of the system is dependent on the sign of J1(=J2 in the simulations) as well as the sign of the difference J1-J3. There is thus a clear analogy with a two-component equilibrium lattice gas with nn interactions.

  18. Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells.

    PubMed

    Setzler, Brian P; Zhuang, Zhongbin; Wittkopf, Jarrid A; Yan, Yushan

    2016-12-06

    Fuel cells are the zero-emission automotive power source that best preserves the advantages of gasoline automobiles: low upfront cost, long driving range and fast refuelling. To make fuel-cell cars a reality, the US Department of Energy has set a fuel cell system cost target of US$30 kW(-1) in the long-term, which equates to US$2,400 per vehicle, excluding several major powertrain components (in comparison, a basic, but complete, internal combustion engine system costs approximately US$3,000). To date, most research for automotive applications has focused on proton exchange membrane fuel cells (PEMFCs), because these systems have demonstrated the highest power density. Recently, however, an alternative technology, hydroxide exchange membrane fuel cells (HEMFCs), has gained significant attention, because of the possibility to use stable platinum-group-metal-free catalysts, with inherent, long-term cost advantages. In this Perspective, we discuss the cost profile of PEMFCs and the advantages offered by HEMFCs. In particular, we discuss catalyst development needs for HEMFCs and set catalyst activity targets to achieve performance parity with state-of-the-art automotive PEMFCs. Meeting these targets requires careful optimization of nanostructures to pack high surface areas into a small volume, while maintaining high area-specific activity and favourable pore-transport properties.

  19. Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Setzler, Brian P.; Zhuang, Zhongbin; Wittkopf, Jarrid A.; Yan, Yushan

    2016-12-01

    Fuel cells are the zero-emission automotive power source that best preserves the advantages of gasoline automobiles: low upfront cost, long driving range and fast refuelling. To make fuel-cell cars a reality, the US Department of Energy has set a fuel cell system cost target of US$30 kW-1 in the long-term, which equates to US$2,400 per vehicle, excluding several major powertrain components (in comparison, a basic, but complete, internal combustion engine system costs approximately US$3,000). To date, most research for automotive applications has focused on proton exchange membrane fuel cells (PEMFCs), because these systems have demonstrated the highest power density. Recently, however, an alternative technology, hydroxide exchange membrane fuel cells (HEMFCs), has gained significant attention, because of the possibility to use stable platinum-group-metal-free catalysts, with inherent, long-term cost advantages. In this Perspective, we discuss the cost profile of PEMFCs and the advantages offered by HEMFCs. In particular, we discuss catalyst development needs for HEMFCs and set catalyst activity targets to achieve performance parity with state-of-the-art automotive PEMFCs. Meeting these targets requires careful optimization of nanostructures to pack high surface areas into a small volume, while maintaining high area-specific activity and favourable pore-transport properties.

  20. Magnetic Concentration of Platinum Group Metals from Catalyst Scraps Using Iron Deposition Pretreatment

    NASA Astrophysics Data System (ADS)

    Taninouchi, Yu-ki; Watanabe, Tetsuo; Okabe, Toru H.

    2017-08-01

    Spent automobile catalysts are the most important secondary source of platinum group metals (PGMs). However, effective recovery of PGMs from catalyst scraps is difficult because they are present in only small quantities as chemically stable substances. In this study, in order to improve the efficiency of the existing recycling processes, the authors experimentally investigated a novel physical concentration pretreatment process for PGMs using samples that simulate an automobile catalyst. In order to magnetically separate PGMs directly from the catalysts, ferromagnetic Fe was deposited on the PGM particles (or the porous catalyst layer) using an electroless plating technique. By using a plating bath containing sodium borohydride and potassium sodium tartrate as the reducing and complexing agents, respectively, Fe was successfully deposited on the sample without requiring complicated pretreatments such as sensitization and activation. After Fe deposition and subsequent pulverization, the PGMs could be extracted and concentrated in the form of magnetic powder using a magnet. The proposed magnetic concentration process was demonstrated to be feasible, and it has the potential to make the recycling of PGMs more efficient and environmentally friendly.

  1. The Bioaccumulation and Toxicity of Platinum Group Metals in Developing Chick Embryos

    NASA Astrophysics Data System (ADS)

    Pavel, Ioana; Monahan, Jennifer; Markopoulos, Marjorie; Gagnon, Zofia; Nejame, Britney; Cawley, Jacob; Reens, David

    2008-10-01

    Recent studies showed that platinum group metals (PGMs) such as Pt, Pd, and Rh from automobile catalytic converters, can accumulate in the soft tissues of a variety of living organisms. However, the effects of PGMs on bone and organs development of animals are not clearly understood. To examine these aspects, developing chick embryos were injected with 0.1, 1.0, 5, or 10 ppm solutions of Pt, Rh, Pd, or with a PGMs mixture. 1) Pathological Changes: were observed for all PGM treatments above 1 ppm. Bone Cells Assesment: Chondrocyte cells in thibiotarsus showed decreased diameter and length. 2) PGMs Accumulation in Tissues: was quantified by GFAAS spectrometry on finely ground tissue powder. 3) Bone Demineralization: was detected by micro-Raman spectroscopy imaging on paraffin embedded bone sections. 4) DNA Damage in Cells: was determined by using a Comet assay and fluorescence spectroscopy. Oxidative Damage in Tissues: was analyzed using a glutathione peroxidase assay. The overall results indicated that PGMs presence in our environment raises concerns about their long-term health effects on all organisms.

  2. Palladium/kieselguhr composition and method

    DOEpatents

    Mosley, W.C. Jr.

    1993-09-28

    A hydrogen-absorbing composition and method for making such a composition are described. The composition comprises a metal hydride, preferably palladium, deposited onto a porous substrate such as kieselguhr, for use in hydrogen-absorbing processes. The composition is made by immersing a substrate in a concentrated solution containing palladium, such as tetra-amine palladium nitrate. Palladium from the solution is deposited onto the porous substrate, which is preferably in the form of kieselguhr particles. The substrate is then removed from the solution, calcined, and heat treated. This process is repeated until the desired amount of palladium has been deposited onto the substrate.

  3. Palladium/kieselguhr composition and method

    DOEpatents

    Mosley, Jr., Wilbur C.

    1993-01-01

    A hydrogen-absorbing composition and method for making such a composition. The composition comprises a metal hydride, preferably palladium, deposited onto a porous substrate such as kieselguhr, for use in hydrogen-absorbing processes. The composition is made by immersing a substrate in a concentrated solution containing palladium, such as tetra-amine palladium nitrate. Palladium from the solution is deposited onto the porous substrate, which is preferably in the form of kieselguhr particles. The substrate is then removed from the solution, calcined, and heat treated. This process is repeated until the desired amount of palladium has been deposited onto the substrate.

  4. Noble metals in mid-ocean ridge volcanism: A significant fractionation of gold with respect to platinum group metals

    NASA Technical Reports Server (NTRS)

    Crocket, James H.

    1988-01-01

    Hydrothermal precipitates, black smoker particulate, and massive sulphide dredge samples from the Explorer Ridge on the Juan de Fuca Plate and the TAG hydrothermal area on the Mid-Atlantic Ridge were analyzed for selected noble metals including Au, Ir and Pd by radiochemical neutron activation analysis. The preliminary results indicate that gold contents may reach the ppm range although values in the neighborhood of 100 to 200 ppb are more typical. The platinum group elements (PGE) represented by Ir and Pd are typically less than 0.02 ppb and less than 2 ppb respectively. These abundances represent a significant enrichment of gold relative to the PGE in comparison with average noble metal abundances in mid-ocean ridge basalts (MORB). A partial explanation of this distinctive fractionation can be found in the concepts of sulfur-saturation of basic magma in mid-ocean ridge (MOR) settings, and the origin of MOR hydrothermal fluids. Experimental and petrological data suggest that MORBs are sulfur-saturated at the time of magma generation and that an immiscible sulfide component remains in the mantle residue. Hence, MORBs are noble metal-poor, particularly with respect to PGE. Consequently, black smoker fluids can be expected to reflect the low Ir and Pd contents of the rock column. The average Au content of MORB is 1.3 ppb, and so the rock column is not significantly enriched in Au. The generation of fluids which precipitate solids with 200 ppb Au is apparently dependent on highly efficient fluid chemistry to mobilize Au from the rock column, high Au solubility in seawater hydrothermal fluids and efficient precipitation mechanisms to coprecipitate Au on Fe, Zn and Cu sulfides. Significant differences in these parameters appear to be the ultimate cause of the strong Au-PGE fractionation in the MOR setting. It does not appear from the current data base that MOR hydrothermal fluids are significant contributors to the Ir enrichment seen in Cretaceous-Tertiary boundary

  5. Linking structure to function: The search for active sites in non-platinum group metal oxygen reduction reaction catalysts

    SciTech Connect

    Holby, Edward F.; Zelenay, Piotr

    2016-05-17

    Atomic-scale structures of oxygen reduction reaction (ORR) active sites in non-platinum group metal (non-PGM) catalysts, made from pyrolysis of carbon, nitrogen, and transition-metal (TM) precursors have been the subject of continuing discussion in the fuel cell electrocatalysis research community. We found that quantum chemical modeling is a path forward for understanding of these materials and how they catalyze the ORR. Here, we demonstrate through literature examples of how such modeling can be used to better understand non-PGM ORR active site relative stability and activity and how such efforts can also aid in the interpretation of experimental signatures produced by these materials.

  6. Linking structure to function: The search for active sites in non-platinum group metal oxygen reduction reaction catalysts

    SciTech Connect

    Holby, Edward F.; Zelenay, Piotr

    2016-05-17

    Atomic-scale structures of oxygen reduction reaction (ORR) active sites in non-platinum group metal (non-PGM) catalysts, made from pyrolysis of carbon, nitrogen, and transition-metal (TM) precursors have been the subject of continuing discussion in the fuel cell electrocatalysis research community. We found that quantum chemical modeling is a path forward for understanding of these materials and how they catalyze the ORR. Here, we demonstrate through literature examples of how such modeling can be used to better understand non-PGM ORR active site relative stability and activity and how such efforts can also aid in the interpretation of experimental signatures produced by these materials.

  7. Palladium Nanoparticles Supported on Ce-Metal-Organic Framework for Efficient CO Oxidation and Low-Temperature CO2 Capture.

    PubMed

    Lin, Andrew; Ibrahim, Amr Awad; Arab, Pezhman; El-Kaderi, Hani M; El-Shall, M Samy

    2017-05-31

    In this article, we report the lowest-temperature CO oxidation catalyst supported on metal-organic frameworks (MOFs). We have developed a facile, general, and effective approach based on microwave irradiation for the incorporation of Pd nanoparticle catalyst within Ce-MOF. The resulting Pd/Ce-MOF material is a unique catalyst that is capable of CO oxidation at modest temperatures and also of efficient uptake of the product CO2 gas at low temperatures. The observed catalytic activity of this material toward CO oxidation is significantly higher than those of other reported metal nanoparticles supported on MOFs. The high activity of the Pd/Ce-MOF catalyst is due to the presence of Ce(III) and Ce(IV) ions within the metal-organic framework support. The Pd nanoparticles supported on the Ce-MOF store oxygen in the form of a thin palladium oxide layer at the particle-support interface, in addition to the oxygen stored on the Ce(III)/Ce(IV) centers. Oxygen from these reservoirs can be released during CO oxidation at 373 K. At lower temperatures (273 K), the Pd/Ce-MOF has a significant CO2 uptake of 3.5 mmol/g.

  8. Metal Bromide Controlled Interfacial Aromatization Reaction for Shape-Selective Synthesis of Palladium Nanostructures with Efficient Catalytic Performances.

    PubMed

    Dutta, Soumen; Ray, Chaiti; Roy, Anindita; Sahoo, Ramkrishna; Pal, Tarasankar

    2016-07-11

    Herein, the effect of diverse metal bromides for the shape evolution of palladium nanostructures (Pd NS) has been demonstrated. Aromaticity-driven reduction of bromopalladate(II) is optimized to reproducibly obtain different Pd NS at the water/organic layer interface. In this soft interfacial strategy, a redox potential driven reaction has been performed, forming the thermodynamically more stable (>10(4) -fold) PdBr4 (2-) precursor from PdCl4 (2-) by adding extra metal bromides. In the process, the reductant, Hantzsch dihydropyridine ester (DHPE), is aromatized. Interestingly, alkali metal bromides devoid of coordination propensity exclusively evolve Pd nanowires (Pd NWs), whereas in the case of transition metal bromides the metal ions engage the 'N' donor of DHPE at the interface, making the redox reaction sluggish. Hence, controlled Pd nanoparticles growth is observed, which evolves Pd broccolis (Pd NBRs) and Pd nanorods (Pd NRs) at the interface in the presence of NiBr2 and CuBr2 , respectively, in the aqueous solution. Thus, the effect of diverse metal bromides in the reaction mixture for tailor-made growth of the various Pd NS is reported. Among the as-synthesized materials, the Pd NWs stand to be superior catalysts and their efficiency is almost 6 and 2.5 times higher than commercial 20 % Pd/C in the electrooxidation of ethanol and Cr(VI) reduction reaction by formic acid, respectively. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Extended Platinum Nanotubes as Fuel Cell Catalysts

    SciTech Connect

    Alia, S.; Pivovar, B. S.; Yan, Y.

    2012-01-01

    Energy consumption has relied principally on fossil fuels as an energy source; fuel cells, however, can provide a clean and sustainable alternative, an answer to the depletion and climate change concerns of fossil fuels. Within proton exchange membrane fuel cells, high catalyst cost and poor durability limit the commercial viability of the device. Recently, platinum nanotubes (PtNTs) were studied as durable, active catalysts, providing a platform to meet US Department of Energy vehicular activity targets.[1] Porous PtNTs were developed to increase nanotube surface area, improving mass activity for oxygen reduction without sacrificing durability.[2] Subsurface platinum was then replaced with palladium, forming platinum-coated palladium nanotubes.[3] By forming a core shell structure, platinum utilization was increased, reducing catalyst cost. Alternative substrates have also been examined, modifying platinum surface facets and increasing oxygen reduction specific activity. Through modification of the PtNT platform, catalyst limitations can be reduced, ensuring a commercially viable device.

  10. Global flows of critical metals necessary for low-carbon technologies: the case of neodymium, cobalt, and platinum.

    PubMed

    Nansai, Keisuke; Nakajima, Kenichi; Kagawa, Shigemi; Kondo, Yasushi; Suh, Sangwon; Shigetomi, Yosuke; Oshita, Yuko

    2014-01-01

    This study, encompassing 231 countries and regions, quantifies the global transfer of three critical metals (neodymium, cobalt, and platinum) considered vital for low-carbon technologies by means of material flow analysis (MFA), using trade data (BACI) and the metal contents of trade commodities, resolving the optimization problem to ensure the material balance of the metals within each country and region. The study shows that in 2005 international trade led to global flows of 18.6 kt of neodymium, 154 kt of cobalt, and 402 t of platinum and identifies the main commodities and top 50 bilateral trade links embodying these metals. To explore the issue of consumption efficiency, the flows were characterized according to the technological level of each country or region and divided into three types: green ("efficient use"), yellow ("moderately efficient use"), and red ("inefficient use"). On this basis, the shares of green, yellow, and red flows in the aggregate global flow of Nd were found to be 1.2%, 98%, and 1.2%, respectively. For Co, the respective figures are 53%, 28%, and 19%, and for Pt 15%, 84%, and 0.87%. Furthermore, a simple indicator focusing on the composition of the three colored flows for each commodity was developed to identify trade commodities that should be prioritized for urgent technical improvement to reduce wasteful use of the metals. Based on the indicator, we discuss logical, strategic identification of the responsibilities and roles of the countries involved in the global flows.

  11. Synthesis Dependent Core Level Binding Energy Shift in the Oxidation State of Platinum Coated on Ceria–Titania and its Effect on Catalytic Decomposition of Methanol

    SciTech Connect

    Karakoti, A. S.; King, Jessica; Vincent, Abhilash; Seal, Sudipta

    2010-11-20

    Synergistic interaction of catalyst and support has attracted the interest of the catalytic community for several decades. The decomposition/oxidation of alcohols for the production of hydrogen as a source of fuel requires such support catalyst interaction. Recent studies have suggested the active role of oxide based supports on the catalytic ability of noble metals such as gold, platinum and palladium. Herein, we report the effect of synthesis technique on the catalytic activity of platinum coated on mixed ceria-titania support system. Wet impregnation technique followed by calcination was compared with the chemical reduction of platinum during the coating over oxide support. Methanol decomposition studied using an in-house built catalytic reactor coupled to a mass spectrometer showed that catalyst prepared by thermal reduction of platinum demonstrated better catalytic ability than the catalyst prepared by chemical reduction of platinum. Transmission electron microscopy revealed that the size of both platinum and ceria-titania particles remained unchanged, while the X-ray photoelectron spectroscopy (XPS) revealed that the oxidation state of platinum was modified by different coating procedures. A shift in the core level binding energy of the Pt 4f towards lower binding energy was observed with chemical reduction. Based on the XPS data it was found that platinum (on ceria-titania supports) in mixed oxidation state outperformed the Pt in reduced metallic state. Results from catalysis and in situ Fourier transform infra red spectroscopy are presented and discussed.

  12. Osmium isotope constraints on ore metal recycling in subduction zones

    PubMed

    McInnes; McBride; Evans; Lambert; Andrew

    1999-10-15

    Veined peridotite xenoliths from the mantle beneath the giant Ladolam gold deposit on Lihir Island, Papua New Guinea, are 2 to 800 times more enriched in copper, gold, platinum, and palladium than surrounding depleted arc mantle. Gold ores have osmium isotope compositions similar to those of the underlying subduction-modified mantle peridotite source region, indicating that the primary origin of the metals was the mantle. Because the mantle is relatively depleted in gold, copper, and palladium, tectonic processes that enhance the advective transport and concentration of these fluid soluble metals may be a prerequisite for generating porphyry-epithermal copper-gold deposits.

  13. Problems, possibilities and limitations of inductively coupled plasma atomic emission spectrometry in the determination of platinum, palladium and rhodium in samples with different matrix composition

    NASA Astrophysics Data System (ADS)

    Petrova, P.; Velichkov, S.; Velitchkova, N.; Havezov, I.; Daskalova, N.

    2010-02-01

    The economic and geological importance of platinum group of elements has led to the development of analytical methods to quantify them in different types of samples. In the present paper the quantitative information for spectral interference in radial viewing 40.68 MHz inductively coupled plasma atomic emission spectrometry in the determination of Pt, Pd and Rh in the presence of complex matrix, containing Al, Ca, Fe, Mg, Mn, P and Ti as matrix constituents was obtained. The database was used for optimum line selections. By using the selected analysis lines the following detection limits in ng g - 1 were obtained: Pt 1700, Pd-1440, Rh-900. The reached detection limits determine the possibilities and limitation of the direct ICP-AES method in the determination of Pt, Pd and Rh in geological and environmental materials. The database for spectral interferences in the presence of aluminum can be used for the determination of platinum group of elements in car catalysts. The accuracy of the analytical results was experimentally demonstrated by two certified reference materials that were analyzed: SARM 7, Pt ore and recycled auto-catalyst certified reference material SRM 2556.

  14. Novel Di- and Trinuclear Palladium Complexes Supported by N,N'-Diphosphanyl NHC Ligands and N,N'-Diphosphanylimidazolium Palladium, Gold, and Mixed-Metal Copper-Gold Complexes.

    PubMed

    Ai, Pengfei; Gourlaouen, Christophe; Danopoulos, Andreas A; Braunstein, Pierre

    2016-02-01

    The reaction of the trinuclear complex [Ag3(μ3-PC(NHC)P,κP,κC(NHC),κP)2](OTf)3 (Ag3; PC(NHC)P = N,N'-bis(di-tert-butylphosphanyl)imidazol-2-ylidene) with [Pd(dba)2] afforded the trinuclear palladium complex [Pd3(μ3-PC(NHC)P,κP,κC(NHC),κP)2](OTf)2 (Pd3) and the dinuclear palladium(I) complex [Pd2(μ2-PC(NHC)P,κP,κC(NHC),κP)2](OTf)2 (Pd2). The assignment of the oxidation state of the metals in the mixed-valence Pd3 chain as Pd(0)-Pd(II)-Pd(0) was based on the reactivity of the complex with 2,6-dimethylphenyl isocyanide and density functional theory calculations. Reaction of PCNHCP with [PdMe2(tmeda)] afforded the palladium(II) complex [PdMe2(PC(NHC)P,κP,κC(NHC))] (Pd-Me2), with PC(NHC)P acting as a bidentate ligand. The reaction of PC(NHC)P with [Pd(dba)2] led to a dinuclear palladium(0) complex [Pd2(μ2-PC(NHC)P,κP,κC(NHC),κP)](dba) (Pd2-dba); attempted replacement of the remaining dba by PC(NHC)P failed. The imidazolium triflate PCHP, precursor to PC(NHC)P, was reacted with [Pd2(dba)3]·CHCl3 to give the (2 + 2) metalla-mesocyclic cationic palladium(0) complex [Pd2(μ2-PCHP,κP,κP)2] (PCHP-Pd2), which resisted further deprotonation of the imidazolium cation. In contrast, PCHP reacted with [AuCl(tht)] to give [Au2Cl2(μ2-PCHP,κP,κP)] (PCHP-Au2), in which one Au-Cl moiety is bound to each P donor. Further reaction of PCHP-Au2 with [Au{N(SiMe3)2}(PPh3)] afforded a mixture of the trinuclear [Au3(μ3-PC(NHC)P,κP,κC(NHC),κP)2](OTf)3 (Au3) and [AuCl(PPh3)], while reaction with [CuMes]5, where Mes = 2,4,6-trimethylphenyl, resulted in a novel, centrosymmetric, heterometallic complex [Au2Mes2(Cu4Cl4)(PCHP,κP,κP)2] (PCHP-AuCu) featuring a new PCHP-AuMes metalloligand bridging a Cu···Cu diagonal of a Cu4Cl4 cubane via the P and AuMes functionalities.

  15. Bulk Modulus of Spherical Palladium Nanoparticles by Chen-Mobius Lattice Inversion Method

    NASA Astrophysics Data System (ADS)

    Abdul-Hafidh, Esam

    2015-03-01

    Palladium is a precious and rare element that belongs to the Platinum group metals (PGMS) with the lowest density and melting point. Numerous uses of Pd in dentistry, medicine and industrial applications attracted considerable investment. Preparation and characterization of palladium nanoparticles have been conducted by many researchers, but very little effort has taken place on the study of Pd physical properties, such as, mechanical, optical, and electrical. In this study, Chen-Mobius lattice inversion method is used to calculate the cohesive energy and modulus of palladium. The method was employed to calculate the cohesive energy by summing over all pairs of atoms within palladium spherical nanoparticles. The modulus is derived from the cohesive energy curve as a function of particles' sizes. The cohesive energy has been calculated using the potential energy function proposed by (Rose et al., 1981). The results are found to be comparable with previous predictions of metallic nanoparticles. This work is supported by the Royal commission at Yanbu- Saudi Arabia.

  16. Copper-Based Electrochemical Sensor with Palladium Electrode for Cathodic Stripping Voltammetry of Manganese

    PubMed Central

    2015-01-01

    In this work, we report on the development of a palladium-based, microfabricated point-of-care electrochemical sensor for the determination of manganese using square wave cathodic stripping voltammetry. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Voltammetry offers an attractive approach to metal detection on the microscale, but traditional carbon, gold, or platinum electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor uses palladium working and auxiliary electrodes and integrates them with a copper-based reference electrode for simple fabrication and compatibility with microfabrication and printed circuit board processing, while maintaining competitive performance in electrochemical detection. Copper electrodes were prepared on glass substrate using a combination of microfabrication procedures followed by electrodeposition of palladium. The disposable sensor system was formed by bonding a poly(dimethylsiloxane) (PDMS) well to the glass substrate. Cathodic stripping voltammetry of manganese using our new disposable palladium-based sensors exhibited 334 nM (18.3 ppb) limit of detection in borate buffer. The sensor was used to demonstrate manganese determination in natural water samples from a pond in Burnet Woods, located in Cincinnati, OH, and the Ohio River. PMID:25476591

  17. Copper-based electrochemical sensor with palladium electrode for cathodic stripping voltammetry of manganese.

    PubMed

    Kang, Wenjing; Pei, Xing; Bange, Adam; Haynes, Erin N; Heineman, William R; Papautsky, Ian

    2014-12-16

    In this work, we report on the development of a palladium-based, microfabricated point-of-care electrochemical sensor for the determination of manganese using square wave cathodic stripping voltammetry. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Voltammetry offers an attractive approach to metal detection on the microscale, but traditional carbon, gold, or platinum electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor uses palladium working and auxiliary electrodes and integrates them with a copper-based reference electrode for simple fabrication and compatibility with microfabrication and printed circuit board processing, while maintaining competitive performance in electrochemical detection. Copper electrodes were prepared on glass substrate using a combination of microfabrication procedures followed by electrodeposition of palladium. The disposable sensor system was formed by bonding a poly(dimethylsiloxane) (PDMS) well to the glass substrate. Cathodic stripping voltammetry of manganese using our new disposable palladium-based sensors exhibited 334 nM (18.3 ppb) limit of detection in borate buffer. The sensor was used to demonstrate manganese determination in natural water samples from a pond in Burnet Woods, located in Cincinnati, OH, and the Ohio River.

  18. Material and Energy Flows Associated with Select Metals in GREET 2. Molybdenum, Platinum, Zinc, Nickel, Silicon

    SciTech Connect

    Benavides, Pahola T.; Dai, Qiang; Sullivan, John L.; Kelly, Jarod C.; Dunn, Jennifer B.

    2015-09-01

    In this work, we analyzed the material and energy consumption from mining to production of molybdenum, platinum, zinc, and nickel. We also analyzed the production of solar- and semiconductor-grade silicon. We described new additions to and expansions of the data in GREET 2. In some cases, we used operating permits and sustainability reports to estimate the material and energy flows for molybdenum, platinum, and nickel, while for zinc and silicon we relied on information provided in the literature.

  19. Transition metal sensing by Toll-like receptor-4: next to nickel, cobalt and palladium are potent human dendritic cell stimulators.

    PubMed

    Rachmawati, Dessy; Bontkes, Hetty J; Verstege, Marleen I; Muris, Joris; von Blomberg, B Mary E; Scheper, Rik J; van Hoogstraten, Ingrid M W

    2013-06-01

    Nickel was recently identified as a potent activator of dendritic cells through ligating with human Toll-like receptor (TLR)-4. Here, we studied an extended panel of transition metals neighbouring nickel in the periodic table of elements, for their capacity to activate human monocyte-derived dendritic cells (MoDCs). The panel included chromium, cobalt, and palladium, all of which are known to be frequent clinical sensitizers. MoDC activation was monitored by assessment of release of the pro-inflammatory mediator interleukin (IL)-8, a major downstream result of TLR ligation. Results The data obtained in the present study show that cobalt and palladium also have potent MoDC-activating capacities, whereas copper and zinc, but not iron and chromium, have low but distinct MoDC-activating potential. Involvement of endotoxin contamination in MoDC activation was excluded by Limulus assays and consistent stimulation in the presence of polymyxin B. The critical role of TLR4 in nickel-induced, cobalt-induced and palladium-induced activation was confirmed by essentially similar stimulatory patterns obtained in an HEK293 TLR4/MD2 transfectant cell line. Given the adjuvant role of costimulatory danger signals, the development of contact allergies to the stimulatory metals may be facilitated by signals from direct TLR4 ligation, whereas other metal sensitizers, such as chromium, may rather depend on microbial or tissue-derived cofactors to induce clinical sensitization. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Metal-support interactions during the adsorption of CO on thin layers and islands of epitaxial palladium

    NASA Technical Reports Server (NTRS)

    Park, C.; Poppa, H.; Soria, F.

    1984-01-01

    Islands and continuous layers of palladium were grown in an ultrahigh vacuum on substrates of Mo(110)c(14 x 7)-O, designated MoO(x), and of clean Mo(110). It was found that as-deposited islands and layers exhibited bulk palladium adsorption properties for CO when deposited at room temperature and for palladium thicknesses in excess of about 3 monolayers. CO adsorption was drastically reduced, however, on annealing. For islands, annealing temperatures of as low as 400 K led to some reduction in CO adsorption whereas more severe reductions were found to occur at 600 K for islands and at 800 K for continuous multilayers. The deactivation depended on the palladium thickness, the substrate species and the extent of thermal treatments. Auger electron spectroscopy, temperature-programmed desorption and Delta-Phi measurements were combined to interpret the deactivation behavior in terms of substrate-support interactions involving the diffusion of substrate species towards the palladium surface.

  1. Metal-support interactions during the adsorption of CO on thin layers and islands of epitaxial palladium

    NASA Technical Reports Server (NTRS)

    Park, C.; Poppa, H.; Soria, F.

    1984-01-01

    Islands and continuous layers of palladium were grown in an ultrahigh vacuum on substrates of Mo(110)c(14 x 7)-O, designated MoO(x), and of clean Mo(110). It was found that as-deposited islands and layers exhibited bulk palladium adsorption properties for CO when deposited at room temperature and for palladium thicknesses in excess of about 3 monolayers. CO adsorption was drastically reduced, however, on annealing. For islands, annealing temperatures of as low as 400 K led to some reduction in CO adsorption whereas more severe reductions were found to occur at 600 K for islands and at 800 K for continuous multilayers. The deactivation depended on the palladium thickness, the substrate species and the extent of thermal treatments. Auger electron spectroscopy, temperature-programmed desorption and Delta-Phi measurements were combined to interpret the deactivation behavior in terms of substrate-support interactions involving the diffusion of substrate species towards the palladium surface.

  2. Method of synthesizing metal doped diamond-like carbon films

    NASA Technical Reports Server (NTRS)

    Ueno, Mayumi (Inventor); Sunkara, Mahendra Kumar (Inventor)

    2003-01-01

    A method of synthesizing metal doped carbon films by placing a substrate in a chamber with a selected amount of a metalorganic compound. An electron cyclotron resonance is applied to the chamber in order to vaporize the metalorganic compound. The resonance is applied to the chamber until a metal doped carbon film is formed. The metalorganic compound is preferably selected from the group consisting of an organic salt of ruthenium, palladium, gold or platinum.

  3. Discrete Silver(I)-Palladium(II)-Oxo Nanoclusters, {Ag4 Pd13 } and {Ag5 Pd15 }, and the Role of Metal-Metal Bonding Induced by Cation Confinement.

    PubMed

    Yang, Peng; Xiang, Yixian; Lin, Zhengguo; Lang, Zhongling; Jiménez-Lozano, Pablo; Carbó, Jorge J; Poblet, Josep M; Fan, Linyuan; Hu, Changwen; Kortz, Ulrich

    2016-12-19

    We introduce the class of discrete silver(I)-palladium(II)-oxo nanoclusters with the preparation of {Ag4 Pd13 } and {Ag5 Pd15 }. Both polyanions represent the first examples of noble metal-capped polyoxo-noble-metalates in a fully inorganic assembly, featuring an unprecedented host-guest mode containing hetero- and homometallic Ag-Pd and Ag-Ag bonding interactions. Comprehensive theoretical calculations suggest that the Ag-Pd metallic bonds originate partially from surface confinement of Ag(I) guest ions onto the anionic polyoxopalladate host that is induced by strong electrostatic forces. This work opens the field of fully inorganic silver-palladium-oxo nanoclusters, which can be considered as discrete mixed noble metal precursors for the formation of monodisperse core-shell nanoparticles, with high relevance for catalysis.

  4. Thin metal bilayer for surface plasmon resonance sensors in a multimode plastic optical fiber: the case of palladium and gold metal films

    NASA Astrophysics Data System (ADS)

    Cennamo, Nunzio; Zuppella, Paola; Bacco, Davide; Corso, Alain J.; Pelizzo, Maria G.; Pesavento, Maria; Zeni, Luigi

    2016-05-01

    A novel sensing platform based on thin metal bilayer for surface plasmon resonance (SPR) in a D-shaped plastic optical fiber (POF) has been designed, implemented and tested. The experimental results are congruent with the numerical studies. This platform has been properly optimized to work in the 1.38 -1.42 refractive index range and it exhibits excellent sensitivity. This refractive index range is very interesting for bio-chemical applications, where the polymer layer are used as receptors (e.g. molecularly imprinted polymer) or to immobilize the bio-receptor on the metal surface. The proposed metallic bilayer is based on palladium and gold films and replaces the traditional gold by exhibiting higher performances. Furthermore, the deposition of the thin bilayer is a single process and no further manufacturing step is required. In fact, in this case the photoresist buffer layer between the POF core and the metal layer, usually required to increase the refractive index range, is no longer necessary.

  5. Automated on-line preconcentration of palladium on different sorbents and its determination in environmental samples.

    PubMed

    Sánchez Rojas, Fuensanta; Bosch Ojeda, Catalina; Cano Pavón, José Manuel

    2007-01-01

    The determination of noble metals in environmental samples is of increasing importance. Palladium is often employed as a catalyst in chemical industry and is also used with platinum and rhodium in motor car catalytic converters which might cause environmental pollution problems. Two different sorbents for palladium preconcentration in different samples were investigated: silica gel functionalized with 1,5-bis(di-2-pyridyl)methylene tbiocarbohydrazide (DPTH-gel) and [1,5-Bis(2-pyridyl)-3-sulphophenyI methylene thiocarbonohydrazide (PSTH) immobilised on an anion-exchange resin (Dowex lx8-200)]. The sorbents were tested in a micro-column, placed in the auto-sampler arm, at the flow rate 2.8 mL min(-1). Elution was performed with 4 M HCl and 4 M HNO3, respectively. Satisfactory results were obtained for two sorbents.

  6. Calculating the melting curves by the thermodynamic data matching method: Platinum-group refractory metals (Ru, Os, and Ir)

    NASA Astrophysics Data System (ADS)

    Kulyamina, E. Yu.; Zitserman, V. Yu.; Fokin, L. R.

    2017-01-01

    A technique for reconstructing thermal properties, including the melting curve, of refractory metals based on the use of experimental data on caloric properties available up to the melting point and some regularities of the Debye-Grüneisen theory has been proposed. The calculation result is the consistent system of high-temperature thermal data, including the thermal expansion coefficient, solid-phase density, and volume jump upon melting. This technique was tried-out on refractory platinum-group metals based on experimental data on the enthalpy of the metals and confirmed by consistency with a thermodynamic calculation using shock-wave experiments and results obtained by the quantum molecular dynamics method.

  7. Polymer Nanocomposite Film with Metal Rich Surface Prepared by In Situ Single-Step Formation of Palladium Nanoparticles: An Interesting Way to Combine Specific Functional Properties.

    PubMed

    Thompson, David; Kranbuehl, David; Espuche, Eliane

    2016-10-18

    This paper presents a continuous single-step route that permits preparation of a thermostable polymer/metal nanocomposite film and to combine different functional properties in a unique material. More precisely, palladium nanoparticles are in situ generated in a polyimide matrix thanks to a designed curing cycle which is applied to a polyamic acid/metal precursor solution cast on a glass plate. A metal-rich surface layer which is strongly bonded to the bulk film is formed in addition to homogeneously dispersed metal nanoparticles. This specific morphology leads to obtaining an optically reflective film. The metal nanoparticles act as gas diffusion barriers for helium, oxygen, and carbon dioxide; they induce a tortuosity effect which allows dividing the gas permeation coefficients by a factor near to 2 with respect to the neat polyimide matrix. Moreover, the ability of the in situ synthesized palladium nanoparticles to entrap hydrogen is evidenced. The nanocomposite film properties can be modulated as a function of the location of the film metal-rich surface with respect to the hydrogen feed. The synthesized nanocomposite could represent a major interest for a wide variety of applications, from specific coatings for aerospace or automotive industry, to catalysis applications or sensors.

  8. Polymer Nanocomposite Film with Metal Rich Surface Prepared by In Situ Single-Step Formation of Palladium Nanoparticles: An Interesting Way to Combine Specific Functional Properties

    PubMed Central

    Thompson, David; Kranbuehl, David; Espuche, Eliane

    2016-01-01

    This paper presents a continuous single-step route that permits preparation of a thermostable polymer/metal nanocomposite film and to combine different functional properties in a unique material. More precisely, palladium nanoparticles are in situ generated in a polyimide matrix thanks to a designed curing cycle which is applied to a polyamic acid/metal precursor solution cast on a glass plate. A metal-rich surface layer which is strongly bonded to the bulk film is formed in addition to homogeneously dispersed metal nanoparticles. This specific morphology leads to obtaining an optically reflective film. The metal nanoparticles act as gas diffusion barriers for helium, oxygen, and carbon dioxide; they induce a tortuosity effect which allows dividing the gas permeation coefficients by a factor near to 2 with respect to the neat polyimide matrix. Moreover, the ability of the in situ synthesized palladium nanoparticles to entrap hydrogen is evidenced. The nanocomposite film properties can be modulated as a function of the location of the film metal-rich surface with respect to the hydrogen feed. The synthesized nanocomposite could represent a major interest for a wide variety of applications, from specific coatings for aerospace or automotive industry, to catalysis applications or sensors. PMID:28335316

  9. Platinum-group element distribution in base-metal sulfides of the Merensky Reef from the eastern and western Bushveld Complex, South Africa

    NASA Astrophysics Data System (ADS)

    Osbahr, Inga; Klemd, Reiner; Oberthür, Thomas; Brätz, Helene; Schouwstra, Robert

    2013-02-01

    Base-metal sulfides in magmatic Ni-Cu-PGE deposits are important carriers of platinum-group elements (PGE). The distribution and concentrations of PGE in pentlandite, pyrrhotite, chalcopyrite, and pyrite were determined in samples from the mineralized portion of four Merensky Reef intersections from the eastern and western Bushveld Complex. Electron microprobe analysis was used for major elements, and in situ laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) for trace elements (PGE, Ag, and Au). Whole rock trace element analyses were performed on representative samples to obtain mineralogical balances. In Merensky Reef samples from the western Bushveld, both Pt and Pd are mainly concentrated in the upper chromitite stringer and its immediate vicinity. Samples from the eastern Bushveld reveal more complex distribution patterns. In situ LA-ICP-MS analyses of PGE in sulfides reveal that pentlandite carries distinctly elevated PGE contents, whereas pyrrhotite and chalcopyrite only contain very low PGE concentrations. Pentlandite is the principal host of Pd and Rh in the ores. Palladium and Rh concentrations in pentlandite reach up to 700 and 130 ppm, respectively, in the samples from the eastern Bushveld, and up to 1,750 ppm Pd and up to 1,000 ppm Rh in samples from the western Bushveld. Only traces of Pt are present in the base-metal sulfides (BMS). Pyrrhotite contains significant though generally low amounts of Ru, Os, and Ir, but hardly any Pd or Rh. Chalcopyrite contains most of the Ag but carries only extremely low PGE concentrations. Mass balance calculations performed on the Merensky Reef samples reveal that in general, pentlandite in the feldspathic pyroxenite and the pegmatoidal feldspathic pyroxenite hosts up to 100 % of the Pd and Rh and smaller amounts (10-40 %) of the Os, Ir, and Ru. Chalcopyrite and pyrrhotite usually contain less than 10 % of the whole rock PGE. The remaining PGE concentrations, and especially most of the Pt (up to

  10. Encapsulation of palladium porphyrin photosensitizer in layered metal oxide nanoparticles for photodynamic therapy against skin melanoma

    PubMed Central

    Chen, Zih-An; Kuthati, Yaswanth; Kankala, Ranjith Kumar; Chang, Yu-Chuan; Liu, Chen-Lun; Weng, Ching-Feng; Mou, Chung-Yuan; Lee, Chia-Hung

    2015-01-01

    We designed a biodegradable nanocarrier of layered double hydroxide (LDH) for photodynamic therapy (PDT) based on the intercalation of a palladium porphyrin photosensitizer (PdTCPP) in the gallery of LDH for melanoma theragnosis. Physical and chemical characterizations have demonstrated the photosensitizer was stable in the layered structures. In addition, the synthesized nanocomposites rendered extremely efficacious therapy in the B16F10 melanoma cell line by improving the solubility of the hydrophobic PdTCPP photosensitizer. The detection of singlet oxygen generation under irradiation at the excitation wavelength of a 532 nm laser was indeed impressive. Furthermore, the in vivo results using a tumour xenograft model in mice indicated the apparent absence of body weight loss and relative organ weight variation to the liver and kidney demonstrated that the nanocomposites were biosafe with a significant reduction in tumour volume for the anti-cancer efficacy of PDT. This drug delivery system using the nanoparticle–photosensitizer hybrid has great potential in melanoma theragnosis. PMID:27877834

  11. Encapsulation of palladium porphyrin photosensitizer in layered metal oxide nanoparticles for photodynamic therapy against skin melanoma.

    PubMed

    Chen, Zih-An; Kuthati, Yaswanth; Kankala, Ranjith Kumar; Chang, Yu-Chuan; Liu, Chen-Lun; Weng, Ching-Feng; Mou, Chung-Yuan; Lee, Chia-Hung

    2015-10-01

    We designed a biodegradable nanocarrier of layered double hydroxide (LDH) for photodynamic therapy (PDT) based on the intercalation of a palladium porphyrin photosensitizer (PdTCPP) in the gallery of LDH for melanoma theragnosis. Physical and chemical characterizations have demonstrated the photosensitizer was stable in the layered structures. In addition, the synthesized nanocomposites rendered extremely efficacious therapy in the B16F10 melanoma cell line by improving the solubility of the hydrophobic PdTCPP photosensitizer. The detection of singlet oxygen generation under irradiation at the excitation wavelength of a 532 nm laser was indeed impressive. Furthermore, the in vivo results using a tumour xenograft model in mice indicated the apparent absence of body weight loss and relative organ weight variation to the liver and kidney demonstrated that the nanocomposites were biosafe with a significant reduction in tumour volume for the anti-cancer efficacy of PDT. This drug delivery system using the nanoparticle-photosensitizer hybrid has great potential in melanoma theragnosis.

  12. Encapsulation of palladium porphyrin photosensitizer in layered metal oxide nanoparticles for photodynamic therapy against skin melanoma

    NASA Astrophysics Data System (ADS)

    Chen, Zih-An; Kuthati, Yaswanth; Kankala, Ranjith Kumar; Chang, Yu-Chuan; Liu, Chen-Lun; Weng, Ching-Feng; Mou, Chung-Yuan; Lee, Chia-Hung

    2015-10-01

    We designed a biodegradable nanocarrier of layered double hydroxide (LDH) for photodynamic therapy (PDT) based on the intercalation of a palladium porphyrin photosensitizer (PdTCPP) in the gallery of LDH for melanoma theragnosis. Physical and chemical characterizations have demonstrated the photosensitizer was stable in the layered structures. In addition, the synthesized nanocomposites rendered extremely efficacious therapy in the B16F10 melanoma cell line by improving the solubility of the hydrophobic PdTCPP photosensitizer. The detection of singlet oxygen generation under irradiation at the excitation wavelength of a 532 nm laser was indeed impressive. Furthermore, the in vivo results using a tumour xenograft model in mice indicated the apparent absence of body weight loss and relative organ weight variation to the liver and kidney demonstrated that the nanocomposites were biosafe with a significant reduction in tumour volume for the anti-cancer efficacy of PDT. This drug delivery system using the nanoparticle-photosensitizer hybrid has great potential in melanoma theragnosis.

  13. Highly active carbon supported palladium catalysts decorated by a trace amount of platinum by an in-situ galvanic displacement reaction for formic acid oxidation

    NASA Astrophysics Data System (ADS)

    Li, Zuopeng; Li, Muwu; Han, Mingjia; Wu, Xin; Guo, Yong; Zeng, Jianhuang; Li, Yuexia; Liao, Shijun

    2015-03-01

    Aimed at reducing platinum usage and improved catalytic activity for formic acid oxidation, a series of Pt decorated Pd/C catalysts are prepared by an in-situ galvanic displacement reaction between freshly prepared Pd/C ink and H2PtCl6 in an aqueous solution. The catalysts with 4 nm particle sizes and 20 wt.% loadings have been characterized by transmission electron microscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy (XPS). The electrochemical evaluations by cyclic voltammetry are conducted to test out the CO tolerance and catalytic activities. In addition to XPS analysis, a theoretical calculation has been attempted the first time to find out the surface Pd/Pt molar ratios. The decay rate of the catalysts has been evaluated by the percentage of the forward/backward peak current retained using the value at the 20th cycle divided by that in the first cycle. Compared with a Pd/C benchmark, all Pt decorated Pd/C register enhanced activity while the cost remains virtually unchanged. The optimized catalyst is found to have a Pd/Pt molar ratio of 75:1 but with 2.5 times activity relative to that of Pd/C.

  14. Nanostructured metal foams: synthesis and applications

    SciTech Connect

    Luther, Erik P; Tappan, Bryce; Mueller, Alex; Mihaila, Bogdan; Volz, Heather; Cardenas, Andreas; Papin, Pallas; Veauthier, Jackie; Stan, Marius

    2009-01-01

    Fabrication of monolithic metallic nanoporous materials is difficult using conventional methodology. Here they report a relatively simple method of synthesizing monolithic, ultralow density, nanostructured metal foams utilizing self-propagating combustion synthesis of novel metal complexes containing high nitrogen energetic ligands. Nanostructured metal foams are formed in a post flame-front dynamic assembly with densities as low as 0.011 g/cc and surface areas as high as 270 m{sup 2}/g. They have produced metal foams via this method of titanium, iron, cobalt, nickel, zirconium, copper, palladium, silver, hafnium, platinum and gold. Microstructural features vary as a function of composition and process parameters. Applications for the metal foams are discussed including hydrogen absorption in palladium foams. A model for the sorption kinetics of hydrogen in the foams is presented.

  15. Palladium nanoparticles encapsulated in a metal-organic framework as efficient heterogeneous catalysts for direct C2 arylation of indoles.

    PubMed

    Huang, Yuanbiao; Lin, Zujin; Cao, Rong

    2011-11-04

    Highly dispersed palladium nanoparticles (Pd NPs) encapsulated in the mesoporous cages of the metal-organic framework (MOF) MIL-101(Cr) have been prepared by using the wetness impregnation method. The Pd NPs were characterized by powder X-ray diffraction (PXRD), N(2) adsorption, transmission electron microscopy, inductively coupled plasma atomic emission spectroscopy (ICP-AES), and X-ray photoelectron spectroscopy (XPS). The particles size ((2.6±0.5) nm) of the obtained Pd NPs was in good agreement with the cage diameters (2.9 and 3.4 nm) of the MOF. The resulting Pd/MIL-101(Cr) catalyst exhibited extremely high catalytic activities in the direct C2 arylation of substituted indoles by using only 0.1 mol% of the Pd catalyst. Moreover, the catalyst is easily recoverable and can be reused several times without leaching into solution and loss of activity. The combination of the highly dispersible Pd NPs within the accessible mesoporous cages and the favorable adsorption of the aryl halides on MIL-101 are suspected to be the main reasons for the observed high activities of the Pd/MIL-101(Cr) catalyst in the direct C2 arylation of indoles.

  16. Experimental partitioning of Zr, Ti, and Nb between silicate liquid and a complex noble metal alloy and the partitioning of Ti between perovskite and platinum metal

    NASA Technical Reports Server (NTRS)

    Jurewicz, Stephen R.; Jones, John H.

    1993-01-01

    El Goresy et al.'s observation of Nb, Zr, and Ta in refractory platinum metal nuggets (RPMN's) from Ca-Al-rich inclusions (CAI's) in the Allende meteorite led them to propose that these lithophile elements alloyed in the metallic state with noble metals in the early solar nebula. However, Grossman pointed out that the thermodynamic stability of Zr in the oxide phase is vastly greater than metallic Zr at estimated solar nebula conditions. Jones and Burnett suggested this discrepancy may be explained by the very non-ideal behavior of some lithophile transition elements in noble metal solutions and/or intermetallic compounds. Subsequently, Fegley and Kornacki used thermodynamic data taken from the literature to predict the stability of several of these intermetallic compounds at estimated solar nebula conditions. Palme and Schmitt and Treiman et al. conducted experiments to quantify the partitioning behavior of certain lithophile elements between silicate liquid and Pt-metal. Although their results were somewhat variable, they did suggest that Zr partition coefficients were too small to explain the observed 'percent' levels in some RPMN's. Palme and Schmitt also observed large partition coefficients for Nb and Ta. No intermetallic phases were identified. Following the work of Treiman et al., Jurewicz and Jones performed experiments to examine Zr, Nb, and Ti partitioning near solar nebula conditions. Their results showed that Zr, Nb, and Ti all have an affinity for the platinum metal, with Nb and Ti having a very strong preference for the metal. The intermetallic phases (Zr,Fe)Pt3, (Nb,Fe)Pt3, and (Ti,Fe)Pt3 were identified. Curiously, although both experiments and calculations indicate that Ti should partition strongly into Pt-metal (possibly as TiPt3), no Ti has ever been observed in any RPMN's. Fegley and Kornacki also noticed this discrepancy and hypothesized that the Ti was stabilized in perovskite which is a common phase in Allende CAI's.

  17. Mechanisms of Oxidase and Superoxide Dismutation-like Activities of Gold, Silver, Platinum, and Palladium, and Their Alloys: A General Way to the Activation of Molecular Oxygen.

    PubMed

    Shen, Xiaomei; Liu, Wenqi; Gao, Xuejiao; Lu, Zhanghui; Wu, Xiaochun; Gao, Xingfa

    2015-12-23

    Metal and alloy nanomaterials have intriguing oxidase- and superoxide dismutation-like (SOD-like) activities. However, origins of these activities remain to be studied. Using density functional theory (DFT) calculations, we investigate mechanisms of oxidase- and SOD-like properties for metals Au, Ag, Pd and Pt and alloys Au4-xMx (x = 1, 2, 3; M = Ag, Pd, Pt). We find that the simple reaction-dissociation of O2-supported on metal surfaces can profoundly account for the oxidase-like activities of the metals. The activation (Eact) and reaction energies (Er) calculated by DFT can be used to effectively predict the activity. As verification, the calculated activity orders for series of metal and alloy nanomaterials are in excellent agreement with those obtained by experiments. Briefly, the activity is critically dependent on two factors, metal compositions and exposed facets. On the basis of these results, an energy-based model is proposed to account for the activation of molecular oxygen. As for SOD-like activities, the mechanisms mainly consist of protonation of O2(•-) and adsorption and rearrangement of HO2(•) on metal surfaces. Our results provide atomistic-level insights into the oxidase- and SOD-like activities of metals and pave a way to the rational design of mimetic enzymes based on metal nanomaterials. Especially, the O2 dissociative adsorption mechanism will serve as a general way to the activation of molecular oxygen by nanosurfaces and help understand the catalytic role of nanomaterials as pro-oxidants and antioxidants.

  18. Global Flows of Critical Metals Necessary for Low-Carbon Technologies: The Case of Neodymium, Cobalt, and Platinum

    PubMed Central

    2014-01-01

    This study, encompassing 231 countries and regions, quantifies the global transfer of three critical metals (neodymium, cobalt, and platinum) considered vital for low-carbon technologies by means of material flow analysis (MFA), using trade data (BACI) and the metal contents of trade commodities, resolving the optimization problem to ensure the material balance of the metals within each country and region. The study shows that in 2005 international trade led to global flows of 18.6 kt of neodymium, 154 kt of cobalt, and 402 t of platinum and identifies the main commodities and top 50 bilateral trade links embodying these metals. To explore the issue of consumption efficiency, the flows were characterized according to the technological level of each country or region and divided into three types: green (“efficient use”), yellow (“moderately efficient use”), and red (“inefficient use”). On this basis, the shares of green, yellow, and red flows in the aggregate global flow of Nd were found to be 1.2%, 98%, and 1.2%, respectively. For Co, the respective figures are 53%, 28%, and 19%, and for Pt 15%, 84%, and 0.87%. Furthermore, a simple indicator focusing on the composition of the three colored flows for each commodity was developed to identify trade commodities that should be prioritized for urgent technical improvement to reduce wasteful use of the metals. Based on the indicator, we discuss logical, strategic identification of the responsibilities and roles of the countries involved in the global flows. PMID:24387330

  19. Biological activity of palladium(II) and platinum(II) complexes of the acetone Schiff bases of S-methyl- and S-benzyldithiocarbazate and the X-ray crystal structure of the [Pd(asme)2] (asme=anionic form of the acetone Schiff base of S-methyldithiocarbazate) complex.

    PubMed

    Akbar Ali, Mohammad; Mirza, Aminul Huq; Butcher, Raymond J; Tarafder, M T H; Keat, Tan Boon; Ali, A Manaf

    2002-11-25

    Palladium(II) and platinum(II) complexes of general empirical formula, [M(NS)(2)] (NS=uninegatively charged acetone Schiff bases of S-methyl- and S-benzyldithiocarbazate; M=Pt(II) and Pd(II)) have been prepared and characterized by a variety of physicochemical techniques. Based on conductance, IR and electronic spectral evidence, a square-planar structure is assigned to these complexes. The crystal and molecular structure of the [Pd(asme)(2)] complex (asme=anionic form of the acetone Schiff base of S-methyldithiocarbazate) has been determined by X-ray diffraction. The complex has a distorted cis-square planar structure with the ligands coordinated to the palladium(II) ions as uninegatively charged bidentate NS chelating agents via the azomethine nitrogen and the mercaptide sulfur atoms. The distortion from a regular square-planar geometry is attributed to the restricted bite angles of the ligands. Antimicrobial tests indicate that the Schiff bases exhibit strong activities against the pathogenic bacteria, Bacillus subtilis (mutant defective DNA repair), methicillin-resistant Staphylococcus aureus, B. subtilis (wild type) and Pseudomonas aeruginosa and the fungi, Candida albicans (CA), Candida lypotica (2075), Saccharomyces cerevisiae (20341) and Aspergillus ochraceous (398)-the activities exhibited by these compounds being greater than that of the standard antibacterial and antifungal drugs, streptomycin and nystatin, respectively. The palladium(II) and platinum(II) complexes are inactive against most of these organisms but, the microbe, Pseudomonas aeruginosa shows strong sensitivity to the platinum(II) complexes. Screening of the compounds for their cytotoxicities against T-lymphoblastic leukemia cancer cells has shown that the acetone Schiff base of S-methyldithiocarbazate (Hasme) exhibits a very weak activity, whereas the S-benzyl derivative (Hasbz) is inactive. However, the palladium(II) complexes exhibit strong cytotoxicities against this cancer; their

  20. The distribution of automobile catalysts-cast platinum, palladium and rhodium in soils adjacent to roads and their uptake by grass.

    PubMed

    Hooda, P S; Miller, A; Edwards, A C

    2007-10-01

    The introduction of automobile catalysts has raised environmental concern, as this pollution control technology is also an emission source for the platinum group elements (PGE). The main aim of this study was to assess the concentrations of Pt, Pd, Rh and Au in soil and grass herbage collected adjacent to 5 roads. Soil and grass samples were collected from 4 fixed distances (0, 1, 2 and 5 m) from the road edge at each site. PGE and Au were determined by ICP-MS in all samples after acid digestion. The maximum soil Pt, Rh and Pd concentrations were measured at the road perimeters. Averaged across the sites, the Pt and Rh concentrations of 15.9+/-7.5 microg Pt kg(-1) and 22.40+/-4.73 microg Rh kg(-1) at 0-m distance decreased to 2.04+/-1.7 microg Pt kg(-1) and 3.51+/-1.96 microg Rh kg(-1), respectively at 5-m away from the roads. Pd concentrations were much higher than Pt or Rh, ranging from 120.8+/-12.0 microg Pd kg(-1) (0-m) to 84.2+/-10.9 microg Pd kg(-1) (5-m), possibly due to differences in its use, emission and/or soil chemistry. Au showed little or no change with distance from the roads. However, the average Au concentration of 18.98+/-0.98 microg Au kg(-1) provides clear evidence of some input possibly due to attrition of automobile electronics. No straightforward influence of traffic flow rates on PGE distribution was found. A combination of dispersal impeding local features and slow moving and stop-and-start traffic conditions or fast moving traffic with flat open spaces may have offset the expected impacts. Rh and Pt soil concentration accounted for 66% and 34% (P<0.01) of the variability observed, respectively in their plant concentrations. Grass Pd and Au concentrations had no relationship with their respective soil concentrations.

  1. A Comparative Life Cycle Assessment of Recycling the Platinum Group Metals from Automobile Catalytic Converter: An Australian Perspective

    NASA Astrophysics Data System (ADS)

    Ghodrat, Maryam; Rhamdhani, M. Akbar; Sharafi, Pezhman; Samali, Bijan

    2017-12-01

    This study provides a comparison between environmental impacts of the recovery of platinum group metals (PGMs) from the end-of-life catalytic converters by hydrometallurgical and pyrometallurgical methods. A gate to grave life cycle assessment of a typical three-way catalytic converter manufactured for an Australian passenger car was carried out using GaBi professional environmental package. Recovery rates, as well as qualities, quantities, losses, and fugitive emissions for all materials and elements used in both methods were calculated based on the developed flowsheets. A life cycle impact assessment was then made by carrying out a mass balance calculation. Inventory data show that the hydrometallurgical route for recycling of the platinum group metals out of catalytic converter scrap has lower impacts on the environment compared with the pyrometallurgical method. In terms of emission effects, the hydrometallurgical process was found to be highly advantageous since it causes insignificant emissions to air, sea water, and fresh water. It is also found that the hydrometallurgical route performs comparatively superior in terms of acidification, eutrophication, fossil depletion, and human toxicity. The obtained results are applicable only to the Australian setting.

  2. Linking structure to function: The search for active sites in non-platinum group metal oxygen reduction reaction catalysts

    DOE PAGES

    Holby, Edward F.; Zelenay, Piotr

    2016-05-17

    Atomic-scale structures of oxygen reduction reaction (ORR) active sites in non-platinum group metal (non-PGM) catalysts, made from pyrolysis of carbon, nitrogen, and transition-metal (TM) precursors have been the subject of continuing discussion in the fuel cell electrocatalysis research community. We found that quantum chemical modeling is a path forward for understanding of these materials and how they catalyze the ORR. Here, we demonstrate through literature examples of how such modeling can be used to better understand non-PGM ORR active site relative stability and activity and how such efforts can also aid in the interpretation of experimental signatures produced by thesemore » materials.« less

  3. Elemental characterization of PM2.5 and PM10 emitted from light duty vehicles in the Washburn Tunnel of Houston, Texas: release of rhodium, palladium, and platinum.

    PubMed

    Bozlaker, Ayşe; Spada, Nicholas J; Fraser, Matthew P; Chellam, Shankararaman

    2014-01-01

    We report the elemental composition, including Rh, Pd, and Pt, of total (i.e., tailpipe and nontailpipe) PM2.5 and PM10 emissions from predominantly gasoline-driven light-duty vehicles (LDVs) traversing the Washburn Tunnel in Houston, Texas during November and December, 2012. Using a novel sample preparation and dynamic reaction cell-quadrupole-inductively coupled plasma-mass spectrometry technique, we quantify the emission of numerous representative, transition, and lanthanoid elements. Two sets of time integrated PM samples were collected over 3-4week duration both inside the tunnel as well as from the tunnel ventilation air supply to derive accurate LDV source profiles incorporating three platinum group elements (PGEs) for the first time. Average Rh, Pd, and Pt concentrations from the tunnel ventilation air supply were 1.5, 11.1, and 4.5pgm(-3) in PM2.5 and 3.8, 23.1, and 15.1pgm(-3) in PM10, respectively. Rh, Pd, and Pt levels were elevated inside the Washburn Tunnel reaching 12.5, 91.1, and 30.1pgm(-3) in PM2.5 and 36.3, 214, and 61.1pgm(-3) in PM10, respectively. Significantly higher enrichment factors of Cu, Zr, Rh, Pd, Sb, and Pt (referenced to Ti in the upper continental crust) inside the tunnel compared with the ventilation air supply suggested that they are unique elemental tracers of PM derived from gasoline-driven LDVs. This highlights the importance of advancing methods to quantify the trace level PGE emissions as a technique to more accurately estimate LDVs' contributions to airborne PM. Using the emission profile based on PGEs and ambient quantification, mass balancing revealed that approximately half the fine PM mass in the tunnel could be attributed to tailpipe emissions, approximately one-quarter to road dust, with smaller contributions from brake (7%) and tire (3%) wear. On the other hand, PM10 mostly originated from resuspended road dust (∼50%), with progressively lower contributions from tailpipe emissions (14%), brake wear (9%), and tire

  4. The influence of alkali metal ions in the chemisorption of CO and CO{sub 2} on supported palladium catalysts: A Fourier transform infrared spectroscopic study

    SciTech Connect

    Liotta, L.F.; Deganello, G.; Martin, G.A.

    1996-12-01

    Two series of palladium-based catalysts were compared on the basis of the adsorption of CO and CO{sub 2}, monitored by Fourier transform infrared spectroscopy. The first series is represented by a silica-supported palladium catalyst and by some catalysts derived from it by addition of different amounts of sodium ion 0 {le} R {le} 25.6, where R is the atomic ratio Na/Pd. The second series consists of palladium catalysts supported on {open_quotes}model{close_quotes} and natural pumices. The model pumices, obtained by sol-gel techniques, are silico-aluminates containing variable amounts of sodium so that the corresponding Pd catalysts have an R value in the range 0{le}R{le}6.1. In the Pd/natural pumice catalysts, changes of the atomic ratio R{prime} = (Na + K)/Pd are achieved with different palladium loadings. Despite the analogous behaviour of the catalysts of both series when R=0, the presence of increasing alkali metal ions induces different behaviour towards the adsorption of CO. On increasing R in the Na-Pd/SiO{sub 2} series there is a progressive weakening of the C-O bond to produce eventually carbonates, whereas only a decrease of the amount of adsorbed CO occurs in the Pd/model pumice series (R{le}6.1). Furthermore, only physisorbed CO bands are observed in Pd/natural pumice catalysts (R{prime}{le}17). Different behaviour is also noticed towards the adsorption of CO{sub 2}: the equilibrium CO{sub 2}(gas){r_equilibrium}CO{sub ads}+O{sub ads} occurs in the Pd/SiO{sub 2} series, in contrast to the Pd/pumice series where only carbonate species on the surface of the support are detected. 83 refs., 12 figs., 4 tabs.

  5. Determination of platinum group metal catalyst residues in active pharmaceutical ingredients by means of total reflection X-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Marguí, Eva; Queralt, Ignasi; Hidalgo, Manuela

    2013-08-01

    The control of metal catalyst residues (i.e., platinum group metals (PGMs)) in different stages of the manufacturing processes of the active pharmaceutical ingredients (APIs) and, especially, in the final product is crucial. For API specimens, there are strict guidelines to limit the levels of metal residues based on their individual levels of safety concern. For PGMs the concentration limit has been established at 10 mg/kg in the API. Therefore great effort is currently being devoted to the development of new and simple procedures to control metals in pharmaceuticals. In the present work, an analytical methodology based on benchtop total reflection X-ray fluorescence spectrometry (TXRF) has been developed for the rapid and simple determination of some PGM catalyst impurities (Rh, Pd, Ir and Pt) in different types of API samples. An evaluation of different sample treatments (dissolution and digestion of the solid pharmaceutical samples) has been carried out and the developed methodologies have been validated according to the analytical parameters to be considered and acceptance criteria for PGM determination according to the United States Pharmacopeia (USP). Limits of quantification obtained for PGM metals were in the range of 2-4 mg/kg which are satisfactory according to current legislation. From the obtained results it is shown that the developed TXRF method can be implemented in the pharmaceutical industries to increase productivity of the laboratory; offering an interesting and complementary analytical tool to other atomic spectroscopic methods.

  6. Dissolution Process of Palladium in Hydrochloric Acid: A Route via Alkali Metal Palladates

    NASA Astrophysics Data System (ADS)

    Kasuya, Ryo; Miki, Takeshi; Morikawa, Hisashi; Tai, Yutaka

    2015-12-01

    To improve the safety of the Pd recovery processes that use toxic oxidizers, dissolution of Pd in hydrochloric acid with alkali metal palladates was investigated. Alkali metal palladates were prepared by calcining a mixture of Pd black and alkali metal (Li, Na, and K) carbonates in air. Almost the entire amount of Pd was converted into Li2PdO2 after calcination at 1073 K (800 °C) using Li2CO3. In contrast, PdO was obtained by calcination at 1073 K (800 °C) using Na and K carbonates. Our results indicated that Li2CO3 is the most active reagent among the examined alkali metal carbonates for the formation of palladates. In addition, dissolution of the resulting Li2PdO2 in HCl solutions was evaluated under various conditions. In particular, Li2PdO2 rapidly dissolved in diluted (0.1 M) HCl at ambient temperature. Solubility of Pd of Li2PdO2 was found to be 99 pct or larger after dissolution treatment at 353 K (80 °C) for 5 minutes; in contrast, PdO hardly dissolved in 0.1 M HCl. The dissolution mechanism of Li2PdO2 in HCl was also elucidated by analysis of crystal structures and particulate properties. Since our process is completely free from toxic oxidizers, the dissolution process via alkali metal palladates is much safer than currently employed methods.

  7. Gold and palladium adsorption from leached electronic scrap using ordered mesoporous carbon nanoscaffolds

    SciTech Connect

    McDowell, Rocklan; Dutech, Guy

    2014-09-01

    Ordered mesoporous carbon (OMC) nanoscaffolds are engineered agglomerates of carbon nanotubes held together by small carbon nanofibers with uniform pore sizes, high pore volume, and high channel permeability. These materials exhibit very high affinity for the adsorption of gold from aqueous acidic mixtures. The efficiency of gold recovery is comparable to those typically accomplished using biopolymer-based adsorbents. The adsorption efficiency for other precious metals such as palladium and platinum is lower. Studies on the precious metal (Au, Pd) adsorption on OMC materials from actual liquors of leached electronics will be presented. Adsorption properties will be compared for several different sorbents used for the recovery of precious metals. The leach liquor compositions for three different types of electronic scrap materials (personal computer board, cell phone and tv input/output board) will be presented. The sorption efficiencies for Au, Pd, together with a spectrum of competing and non-competing metals, from such leach mixtures will be compared.

  8. Metal-enhanced fluorescence of graphene oxide by palladium nanoparticles in the blue-green part of the spectrum

    NASA Astrophysics Data System (ADS)

    Omidvar, A.; RashidianVaziri, M. R.; Jaleh, B.; Partovi Shabestari, N.; Noroozi, M.

    2016-11-01

    Graphene oxide (GO) has a wide fluorescence bandwidth, which makes it a prospective candidate for numerous applications. For many of these applications, the fluorescence yield of GO should be further increased. The sp2-hybridized carbons in GO confine the π-electrons. Radiative recombination of electron-hole pairs in such sp2 clusters is the source of fluorescence in this material. Palladium nanoparticles are good catalysts for sp2 bond formations. We report on the preparation of GO, palladium nanoparticles and their nanocomposites in two different solvents. It is shown that palladium nanoparticles can considerably enhance the intrinsic fluorescence of GO in the blue-green part of the visible light spectrum. Fluorescence enhancement has been attributed to the catalytic role of palladium nanoparticles in increasing the number of sp2 bonds of GO with the molecules of the surrounding media. It is shown that palladium nanoparticles could be the nanoparticle of choice for fluorescence enhancement of GO because of their catalytic role in sp2 bond formation.

  9. Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction

    PubMed Central

    Wang, Deli; Liu, Sufen; Wang, Jie; Lin, Ruoqian; Kawasaki, Masahiro; Rus, Eric; Silberstein, Katharine E.; Lowe, Michael A.; Lin, Feng; Nordlund, Dennis; Liu, Hongfang; Muller, David A.; Xin, Huolin L.; Abruña, Héctor D.

    2016-01-01

    Replacing platinum by a less precious metal such as palladium, is highly desirable for lowering the cost of fuel-cell electrocatalysts. However, the instability of palladium in the harsh environment of fuel-cell cathodes renders its commercial future bleak. Here we show that by incorporating trace amounts of gold in palladium-based ternary (Pd6CoCu) nanocatalysts, the durability of the catalysts improves markedly. Using aberration-corrected analytical transmission electron microscopy in conjunction with synchrotron X-ray absorption spectroscopy, we show that gold not only galvanically replaces cobalt and copper on the surface, but also penetrates through the Pd–Co–Cu lattice and distributes uniformly within the particles. The uniform incorporation of Au provides a stability boost to the entire host particle, from the surface to the interior. The spontaneous replacement method we have developed is scalable and commercially viable. This work may provide new insight for the large-scale production of non-platinum electrocatalysts for fuel-cell applications. PMID:27336795

  10. Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction

    SciTech Connect

    Wang, Deli; Liu, Sufen; Wang, Jie; Lin, Ruoqian; Kawasaki, Masahiro; Rus, Eric; Silberstein, Katharine E.; Lowe, Michael A.; Lin, Feng; Nordlund, Dennis; Liu, Hongfang; Muller, David A.; Xin, Huolin L.; Abruña, Héctor D.

    2016-06-23

    Replacing platinum by a less precious metal such as palladium, is highly desirable for lowering the cost of fuel-cell electrocatalysts. However, the instability of palladium in the harsh environment of fuel-cell cathodes renders its commercial future bleak. Here we show that by incorporating trace amounts of gold in palladium-based ternary (Pd6CoCu) nanocatalysts, the durability of the catalysts improves markedly. Using aberration-corrected analytical transmission electron microscopy in conjunction with synchrotron X-ray absorption spectroscopy, we show that gold not only galvanically replaces cobalt and copper on the surface, but also penetrates through the Pd–Co–Cu lattice and distributes uniformly within the particles. The uniform incorporation of Au provides a stability boost to the entire host particle, from the surface to the interior. The spontaneous replacement method we have developed is scalable and commercially viable. This work may provide new insight for the large-scale production of non-platinum electrocatalysts for fuel-cell applications.

  11. Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction

    DOE PAGES

    Wang, Deli; Liu, Sufen; Wang, Jie; ...

    2016-06-23

    Replacing platinum by a less precious metal such as palladium, is highly desirable for lowering the cost of fuel-cell electrocatalysts. However, the instability of palladium in the harsh environment of fuel-cell cathodes renders its commercial future bleak. Here we show that by incorporating trace amounts of gold in palladium-based ternary (Pd6CoCu) nanocatalysts, the durability of the catalysts improves markedly. Using aberration-corrected analytical transmission electron microscopy in conjunction with synchrotron X-ray absorption spectroscopy, we show that gold not only galvanically replaces cobalt and copper on the surface, but also penetrates through the Pd–Co–Cu lattice and distributes uniformly within the particles. Themore » uniform incorporation of Au provides a stability boost to the entire host particle, from the surface to the interior. The spontaneous replacement method we have developed is scalable and commercially viable. This work may provide new insight for the large-scale production of non-platinum electrocatalysts for fuel-cell applications.« less

  12. Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Wang, Deli; Liu, Sufen; Wang, Jie; Lin, Ruoqian; Kawasaki, Masahiro; Rus, Eric; Silberstein, Katharine E.; Lowe, Michael A.; Lin, Feng; Nordlund, Dennis; Liu, Hongfang; Muller, David A.; Xin, Huolin L.; Abruña, Héctor D.

    2016-06-01

    Replacing platinum by a less precious metal such as palladium, is highly desirable for lowering the cost of fuel-cell electrocatalysts. However, the instability of palladium in the harsh environment of fuel-cell cathodes renders its commercial future bleak. Here we show that by incorporating trace amounts of gold in palladium-based ternary (Pd6CoCu) nanocatalysts, the durability of the catalysts improves markedly. Using aberration-corrected analytical transmission electron microscopy in conjunction with synchrotron X-ray absorption spectroscopy, we show that gold not only galvanically replaces cobalt and copper on the surface, but also penetrates through the Pd-Co-Cu lattice and distributes uniformly within the particles. The uniform incorporation of Au provides a stability boost to the entire host particle, from the surface to the interior. The spontaneous replacement method we have developed is scalable and commercially viable. This work may provide new insight for the large-scale production of non-platinum electrocatalysts for fuel-cell applications.

  13. NMR studies of chiral P,S-chelate platinum, rhodium, and iridium complexes and the X-ray structure of a palladium(II) allyl derivative

    SciTech Connect

    Albinati, A.; Eckert, J.; Pregosin, P.; Ruegger, H.; Salzmann, R.; Stoessel, C.

    1997-02-18

    Several Rh(I), Ir(III), and Pt(II) complexes of the chiral P,S-bidentate ligand 2 have been prepared and characterized. Detailed two-dimensional NMR studies show that (i) the boat-type chelate ring and the stereogenic sulfur center can invert rapidly at ambient temperature and (ii) the sulfur donor may dissociate, essentially destroying the chiral pocket. The solid-state structure of [Pt({eta}{sup 3}-C{sub 3}H{sub 5})(2)]PF{sub 6} (3) has been determined and the sulfur substituent shown to have an axial orientation. The six-membered chelate ring takes up a boat-like conformation. As shown by an X-ray diffraction study for 3, and via incoherent inelastic neutron scattering (IINS) measurements for the Pd analog, 4, the OH group is remote from the metal atom. 42 refs., 11 figs., 6 tabs.

  14. Binding of kinetically inert metal ions to RNA: the case of platinum(II).

    PubMed

    Chapman, Erich G; Hostetter, Alethia A; Osborn, Maire F; Miller, Amanda L; DeRose, Victoria J

    2011-01-01

    In this chapter several aspects of Pt(II) are highlighted that focus on the properties of Pt(II)-RNA adducts and the possibility that they influence RNA-based processes in cells. Cellular distribution of Pt(II) complexes results in significant platination of RNA, and localization studies find Pt(II) in the nucleus, nucleolus, and a distribution of other sites in cells. Treatment with Pt(II) compounds disrupts RNA-based processes including enzymatic processing, splicing, and translation, and this disruption may be indicative of structural changes to RNA or RNA-protein complexes. Several RNA-Pt(II) adducts have been characterized in vitro by biochemical and other methods. Evidence for Pt(II) binding in non-helical regions and for Pt(II) cross-linking of internal loops has been found. Although platinated sites have been identified, there currently exists very little in the way of detailed structural characterization of RNA-Pt(II) adducts. Some insight into the details of Pt(II) coordination to RNA, especially RNA helices, can be gained from DNA model systems. Many RNA structures, however, contain complex tertiary folds and common, purine-rich structural elements that present suitable Pt(II) nucleophiles in unique arrangements which may hold the potential for novel types of platinum-RNA adducts. Future research aimed at structural characterization of platinum-RNA adducts may provide further insights into platinum-nucleic acid binding motifs, and perhaps provide a rationale for the observed inhibition by Pt(II) complexes of splicing, translation, and enzymatic processing.

  15. Binding of Kinetically Inert Metal Ions to RNA: The Case of Platinum(II)

    PubMed Central

    Chapman, Erich G.; Hostetter, Alethia A.; Osborn, Maire F.; Miller, Amanda L.; DeRose, Victoria J.

    2014-01-01

    In this chapter several aspects of Pt(II) are highlighted that focus on the properties of Pt(II)-RNA adducts and the possibility that they influence RNA-based processes in cells. Cellular distribution of Pt(II) complexes results in significant platination of RNA, and localization studies find Pt(II) in the nucleus, nucleolus, and a distribution of other sites in cells. Treatment with Pt(II) compounds disrupts RNA-based processes including enzymatic processing, splicing, and translation, and this disruption may be indicative of structural changes to RNA or RNA-protein complexes. Several RNA-Pt(II) adducts have been characterized in vitro by biochemical and other methods. Evidence for Pt(II) binding in non-helical regions and for Pt(II) cross-linking of internal loops has been found. Although platinated sites have been identified, there currently exists very little in the way of detailed structural characterization of RNA-Pt(II) adducts. Some insight into the details of Pt(II) coordination to RNA, especially RNA helices, can be gained from DNA model systems. Many RNA structures, however, contain complex tertiary folds and common, purine-rich structural elements that present suitable Pt(II) nucleophiles in unique arrangements which may hold the potential for novel types of platinum-RNA adducts. Future research aimed at structural characterization of platinum-RNA adducts may provide further insights into platinum-nucleic acid binding motifs, and perhaps provide a rationale for the observed inhibition by Pt(II) complexes of splicing, translation, and enzymatic processing. PMID:22010278

  16. Methanol-Tolerant Platinum-Palladium Catalyst Supported on Nitrogen-Doped Carbon Nanofiber for High Concentration Direct Methanol Fuel Cells

    PubMed Central

    Kim, Jiyoung; Jang, Jin-Sung; Peck, Dong-Hyun; Lee, Byungrok; Yoon, Seong-Ho; Jung, Doo-Hwan

    2016-01-01

    Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF) was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC). The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR) activities and the electrochemical double layer compared with common carbon black (CB). To attain the competitive oxygen reduction reaction activity with methanol tolerance, the Pt and Pd metals were supported on the CB or the N-CNF. The physical and electrochemical characteristics of the N-CNF–supported Pt-Pd catalyst were examined and compared with catalyst supported on the CB. In addition, DMFC single cells using these catalysts as the cathode electrode were applied to obtain I-V polarization curves and constant current operating performances with high-concentration methanol as the fuel. Pt-Pd catalysts had obvious ORR activity even in the presence of methanol. The higher power density was obtained at all the methanol concentrations when it applied to the membrane electrode assembly (MEA) of the DMFC. When the N-CNF is used as the catalyst support material, a better performance with high-concentration methanol is expected. PMID:28335275

  17. Methanol-Tolerant Platinum-Palladium Catalyst Supported on Nitrogen-Doped Carbon Nanofiber for High Concentration Direct Methanol Fuel Cells.

    PubMed

    Kim, Jiyoung; Jang, Jin-Sung; Peck, Dong-Hyun; Lee, Byungrok; Yoon, Seong-Ho; Jung, Doo-Hwan

    2016-08-15

    Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF) was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC). The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR) activities and the electrochemical double layer compared with common carbon black (CB). To attain the competitive oxygen reduction reaction activity with methanol tolerance, the Pt and Pd metals were supported on the CB or the N-CNF. The physical and electrochemical characteristics of the N-CNF-supported Pt-Pd catalyst were examined and compared with catalyst supported on the CB. In addition, DMFC single cells using these catalysts as the cathode electrode were applied to obtain I-V polarization curves and constant current operating performances with high-concentration methanol as the fuel. Pt-Pd catalysts had obvious ORR activity even in the presence of methanol. The higher power density was obtained at all the methanol concentrations when it applied to the membrane electrode assembly (MEA) of the DMFC. When the N-CNF is used as the catalyst support material, a better performance with high-concentration methanol is expected.

  18. Contamination from gold and platinum-group metals mining in the Gulf of Darién, Colombia

    NASA Astrophysics Data System (ADS)

    Vasquez-Bedoya, L.; Palacio Baena, J.

    2013-12-01

    Gulf of Darién, triangular southernmost extension of the Caribbean Sea, bounded by Panama on the southwest and by Colombia on the southeast and east. The Gulf is made up of 17 municipalities in the department of Choco and Antioquia. The Gulf of Darién is a geostrategic region, rich in biodiversity, known for its natural resources of minerals, oil, lumber as well as its water and fertile land. The Darién also acts as the bridge between South America and Central America and has access to the Pacific Ocean and the Caribbean Sea. The economy in the region is based mainly on agribusinesses, tourism and mining activities, mainly the 'mining of gold and platinum-group metals'. In our study we determined the degree of trace element contamination in estuarine sediment samples originated from mining activities and municipal waste water discharges of effluents on the gulf of Darién. . Surface samples were taken from 17 locations through the entire Gulf. Grain size, Corg, Ag, Al, Ca , Cr, Cu, Fe, Mg, Mn, Na, Ni, Pb and Zn concentrations were analyzed, and enrichment factors (EF) as well as geo-accumulation indices (Igeo) were calculated. Concentrations of Pb, Zn, Ni, Cu and Cr show levels that are consistent with those typically found in urbanized marine environments. EF and Igeo values revealed that the Gulf is extremely contaminated with Ag and moderately contaminated with Cr and Zn. The sources of Cr, Ag, Hg and Zn are associated with the development of mining activities in the Atrato River basin. The observed enrichment of Ag may be explained as a residue of the extraction of gold and platinum-group metals.

  19. Texture of gold-palladium couples

    SciTech Connect

    Chung, Y.S.; Evans, K.; Glaunsinger, W.

    1997-07-01

    The crystal textures of polycrystalline films of gold-palladium couples on an oxidized silicon (100) substrates were investigated via x-ray diffraction (XRD) pole figures. Studies were performed on both as-deposited and thermally annealed films. Scanning electron microscopy (SEM) was used to examine the microstructures of the seed layer thin films as deposited. The {l{underscore}brace}111{r{underscore}brace} texture formation of gold-palladium thin film couples displayed a strong dependence on the nature of the underlying seed layer. Gold films deposited on a palladium seed layer revealed much less degree of {l{underscore}brace}111{r{underscore}brace} texture, than gold films deposited directly on a silicon dioxide surface. In contrast, palladium films deposited on polycrystalline gold films showed a higher degree of {l{underscore}brace}111{r{underscore}brace} texture, compared to palladium films deposited directly on silicon dioxide. The {l{underscore}brace}111{r{underscore}brace} texture of annealed gold-palladium alloy thin films was greater for palladium on gold than for gold on palladium. These results are interpreted in terms of the gold-palladium diffusion mechanism and the interaction of the condensing metals with the oxygens of the SiO{sub 2} substrate surface.

  20. Method of forming supported doped palladium containing oxidation catalysts

    SciTech Connect

    Mohajeri, Nahid

    2014-04-22

    A method of forming a supported oxidation catalyst includes providing a support comprising a metal oxide or a metal salt, and depositing first palladium compound particles and second precious metal group (PMG) metal particles on the support while in a liquid phase including at least one solvent to form mixed metal comprising particles on the support. The PMG metal is not palladium. The mixed metal particles on the support are separated from the liquid phase to provide the supported oxidation catalyst.

  1. Understanding the Thermal Stability of Palladium-Platinum Core-Shell Nanocrystals by In Situ Transmission Electron Microscopy and Density Functional Theory.

    PubMed

    Vara, Madeline; Roling, Luke T; Wang, Xue; Elnabawy, Ahmed O; Hood, Zachary D; Chi, Miaofang; Mavrikakis, Manos; Xia, Younan

    2017-05-23

    Core-shell nanocrystals offer many advantages for heterogeneous catalysis, including precise control over both the surface structure and composition, as well as reduction in loading for rare and costly metals. Although many catalytic processes are operated at elevated temperatures, the adverse impacts of heating on the shape and structure of core-shell nanocrystals are yet to be understood. In this work, we used ex situ heating experiments to demonstrate that Pd@Pt4L core-shell nanoscale cubes and octahedra are promising for catalytic applications at temperatures up to 400 °C. We also used in situ transmission electron microscopy to monitor the thermal stability of the core-shell nanocrystals in real time. Our results demonstrate a facet dependence for the thermal stability in terms of shape and composition. Specifically, the cubes enclosed by {100} facets readily deform shape at a temperature 300 °C lower than that of the octahedral counterparts enclosed by {111} facets. A reversed trend is observed for composition, as alloying between the Pd core and the Pt shell of an octahedron occurs at a temperature 200 °C lower than that for the cubic counterpart. Density functional theory calculations provide atomic-level explanations for the experimentally observed behaviors, demonstrating that the barriers for edge reconstruction determine the relative ease of shape deformation for cubes compared to octahedra. The opposite trend for alloying of the core-shell structure can be attributed to a higher propensity for subsurface Pt vacancy formation in octahedra than in cubes.

  2. Photobiomolecular metallic particles and films

    DOEpatents

    Hu, Zhong-Cheng

    2003-05-06

    The method of the invention is based on the unique electron-carrying function of a photocatalytic unit such as the photosynthesis system I (PSI) reaction center of the protein-chlorophyll complex isolated from chloroplasts. The method employs a photo-biomolecular metal deposition technique for precisely controlled nucleation and growth of metallic clusters/particles, e.g., platinum, palladium, and their alloys, etc., as well as for thin-film formation above the surface of a solid substrate. The photochemically mediated technique offers numerous advantages over traditional deposition methods including quantitative atom deposition control, high energy efficiency, and mild operating condition requirements.

  3. Detection and Recovery of Palladium, Gold and Cobalt Metals from the Urban Mine Using Novel Sensors/Adsorbents Designated with Nanoscale Wagon-wheel-shaped Pores.

    PubMed

    El-Safty, Sherif A; Shenashen, Mohamed A; Sakai, Masaru; Elshehy, Emad; Halada, Kohmei

    2015-12-06

    Developing low-cost, efficient processes for recovering and recycling palladium, gold and cobalt metals from urban mine remains a significant challenge in industrialized countries. Here, the development of optical mesosensors/adsorbents (MSAs) for efficient recognition and selective recovery of Pd(II), Au(III), and Co(II) from urban mine was achieved. A simple, general method for preparing MSAs based on using high-order mesoporous monolithic scaffolds was described. Hierarchical cubic Ia3d wagon-wheel-shaped MSAs were fabricated by anchoring chelating agents (colorants) into three-dimensional pores and micrometric particle surfaces of the mesoporous monolithic scaffolds. Findings show, for the first time, evidence of controlled optical recognition of Pd(II), Au(III), and Co(II) ions and a highly selective system for recovery of Pd(II) ions (up to ~95%) in ores and industrial wastes. Furthermore, the controlled assessment processes described herein involve evaluation of intrinsic properties (e.g., visual signal change, long-term stability, adsorption efficiency, extraordinary sensitivity, selectivity, and reusability); thus, expensive, sophisticated instruments are not required. Results show evidence that MSAs will attract worldwide attention as a promising technological means of recovering and recycling palladium, gold and cobalt metals.

  4. Kinetics and mechanism for reversible chloride transfer between mercury(II) and square-planar platinum(II) chloro ammine, aqua, and sulfoxide complexes. Stabilities, spectra, and reactivities of transient metal-metal bonded platinum-mercury adducts.

    PubMed

    Gröning, O; Sargeson, A M; Deeth, R J; Elding, L I

    2000-09-18

    The Hg2+aq- and HgCl+aq-assisted aquations of [PtCl4]2- (1), [PtCl3(H2O)]- (2), cis-[PtCl2(H2O)2] (3), trans-[PtCl2(H2O)2] (4), [PtCl(H2O)3]+ (5), [PtCl3Me2SO]- (6), trans-[PtCl2(H2O)Me2SO] (7), cis-[PtCl(H2O)2Me2SO]+ (8), trans-[PtCl(H2O)2M32SO]+ (9), trans-[PtCl2(NH3)2] (10), and cis-[PtCl2(NH3)2] (11) have been studied at 25.0 degrees C in a 1.00 M HClO4 medium buffered with chloride, using stopped-flow and conventional spectrophotometry. Saturation kinetics and instantaneous, large UV/vis spectral changes on mixing solutions of platinum complex and mercury are ascribed to formation of transient adducts between Hg2+ and several of the platinum complexes. Depending on the limiting rate constants, these adducts are observed for a few milliseconds to a few minutes. Thermodynamic and kinetics data together with the UV/vis spectral changes and DFT calculations indicate that their structures are characterized by axial coordination of Hg to Pt with remarkably short metal-metal bonds. Stability constants for the Hg2+ adducts with complexes 1-6, 10, and 11 are (2.1 +/- 0.4) x 10(4), (8 +/- 1) x 10(2), 94 +/- 6, 13 +/- 2, 5 +/- 2, 60 +/- 6, 387 +/- 2, and 190 +/- 3 M-1, respectively, whereas adduct formation with the sulfoxide complexes 7-9 is too weak to be observed. For analogous platinum(II) complexes, the stabilities of the Pt-Hg adducts increase in the order sulfoxide < aqua < ammine complex, reflecting a sensitivity to the pi-acid strength of the Pt ligands. Rate constants for chloride transfer from HgCl+ and HgCl2 to complexes 1-11 have been determined. Second-order rate constants for activation by Hg2+ are practically the same as those for activation by HgCl+ for each of the platinum complexes studied, yet resolved contributions for Hg2+ and HgCl+ reveal that the latter does not form dinuclear adducts of any significant stability. The overall experimental evidence is consistent with a mechanism in which the accumulated Pt(II)-Hg2+ adducts are not reactive

  5. Electrochemical study on the adsorption of carbon oxides and oxidation of their adsorption products on platinum group metals and alloys.

    PubMed

    Siwek, Hanna; Lukaszewski, Mariusz; Czerwiński, Andrzej

    2008-07-07

    CO(2) reduction and CO adsorption on noble metals (Pt, Rh, Pd) and their alloys (Pt-Rh, Pd-Pt, Pd-Rh, Pd-Pt-Rh) prepared as thin rough deposits have been studied by chronoamperometry (CA), cyclic voltammetry (CV) and the electrochemical quartz crystal microbalance (EQCM). The influence of alloy surface composition on the values of surface coverage, eps (electron per site) and potential of the oxidation of CO(2) reduction and CO adsorption products is shown. The oxidation of the adsorbate on Pt-Rh alloys proceeds more easily (at lower potentials) than on pure metals. On the other hand, in the case of Pd-Pt and Pd-Rh alloys the adsorbate oxidation is more difficult and requires higher potentials than on Pt or Rh. The analysis of the EQCM signal is presented for the case of adsorption and oxidation of carbon oxide adsorption products on the electrodes studied. The comparison of adsorption parameters and the EQCM response obtained for platinum group metals and alloys leads to the conclusion that reduced CO(2) cannot be totally identified with adsorbed CO.

  6. DFT study of adsorption of CO2 on palladium cluster doped by transition metal

    NASA Astrophysics Data System (ADS)

    Saputro, A. G.; Agusta, M. K.; Wungu, T. D. K.; Suprijadi; Rusydi, F.; Dipojono, H. K.

    2016-08-01

    We report on a theoretical study of CO2 adsorption on Pd6-M (M: Ni, Cu, Pt, Rh) cluster using first-principles density functional theory (DFT) calculations. We find that CO2 molecule is adsorbed with a bidendate configuration on Pd7 and on most of Pd6M clusters. The bidendate adsorption configuration is formed due to the filling of the unoccupied n* orbital of CO2 molecule upon its interaction with d-orbitals of the cluster. We find that transition metal doping could modify the adsorption energy, adsorption site and adsorption configuration of CO2 molecule on Pd7 cluster. We also predict that the usage of Pd6M clusters as CO2 hydrogenation catalysts might facilitate the formations of HCOO/COOH.

  7. Metal-conductive polymer hybrid nanostructures: preparation and electrical properties of palladium-polyimidazole nanowires

    NASA Astrophysics Data System (ADS)

    Al-Hinai, Mariam; Hassanien, Reda; Watson, Scott M. D.; Wright, Nicholas G.; Houlton, Andrew; Horrocks, Benjamin R.

    2016-03-01

    A simple, convenient method for the formation of hybrid metal/conductive polymer nanostructures is described. Polyimidazole (PIm) has been templated on λ-DNA via oxidative polymerisation of imidazole using FeCl3 to produce conductive PIm/DNA nanowires. The PIm/DNA nanowires were decorated with Pd (Pd/PIm/DNA) by electroless reduction of {{{{PdCl}}}4}2- with NaBH4 in the presence of PIm/DNA; the choice of imidazole was motivated by the potential Pd(II) binding site at the pyridinic N atom. The formation of PIm/DNA and the presence of metallic Pd on Pd/PIm/DNA nanowires were verified by FTIR, UV-vis and XPS spectroscopy techniques. AFM studies show that the nanowires have diameters in the range 5-45 nm with a slightly greater mean diameter (17.1 ± 0.75 nm) for the Pd-decorated nanowires than the PIm/DNA nanowires (14.5 ± 0.89 nm). After incubation for 24 h in the polymerisation solution, the PIm/DNA nanowires show a smooth, uniform morphology, which is retained after decoration with Pd. Using a combination of scanned conductance microscopy, conductive AFM and two-terminal measurements we show that both types of nanowire are conductive and that it is possible to discriminate different possible mechanisms of transport. The conductivity of the Pd/PIm/DNA nanowires, (0.1-1.4 S cm-1), is comparable to the PIm/DNA nanowires (0.37 ± 0.029 S cm-1). In addition, the conductance of Pd/PIm/DNA nanowires exhibits Arrhenius behaviour (E a = 0.43 ± 0.02 eV) as a function of temperature in contrast to simple Pd/DNA nanowires. These results indicate that although the Pd crystallites on Pd/PIm/DNA nanowires decorate the PIm polymer, the major current pathway is through the polymer rather than the Pd.

  8. Metal-conductive polymer hybrid nanostructures: preparation and electrical properties of palladium-polyimidazole nanowires.

    PubMed

    Al-Hinai, Mariam; Hassanien, Reda; Watson, Scott M D; Wright, Nicholas G; Houlton, Andrew; Horrocks, Benjamin R

    2016-03-04

    A simple, convenient method for the formation of hybrid metal/conductive polymer nanostructures is described. Polyimidazole (PIm) has been templated on λ-DNA via oxidative polymerisation of imidazole using FeCl3 to produce conductive PIm/DNA nanowires. The PIm/DNA nanowires were decorated with Pd (Pd/PIm/DNA) by electroless reduction of PdCl4(-2) with NaBH4 in the presence of PIm/DNA; the choice of imidazole was motivated by the potential Pd(II) binding site at the pyridinic N atom. The formation of PIm/DNA and the presence of metallic Pd on Pd/PIm/DNA nanowires were verified by FTIR, UV-vis and XPS spectroscopy techniques. AFM studies show that the nanowires have diameters in the range 5-45 nm with a slightly greater mean diameter (17.1 ± 0.75 nm) for the Pd-decorated nanowires than the PIm/DNA nanowires (14.5 ± 0.89 nm). After incubation for 24 h in the polymerisation solution, the PIm/DNA nanowires show a smooth, uniform morphology, which is retained after decoration with Pd. Using a combination of scanned conductance microscopy, conductive AFM and two-terminal measurements we show that both types of nanowire are conductive and that it is possible to discriminate different possible mechanisms of transport. The conductivity of the Pd/PIm/DNA nanowires, (0.1-1.4 S cm(-1)), is comparable to the PIm/DNA nanowires (0.37 ± 0.029 S cm(-1)). In addition, the conductance of Pd/PIm/DNA nanowires exhibits Arrhenius behaviour (E(a )= 0.43 ± 0.02 eV) as a function of temperature in contrast to simple Pd/DNA nanowires. These results indicate that although the Pd crystallites on Pd/PIm/DNA nanowires decorate the PIm polymer, the major current pathway is through the polymer rather than the Pd.

  9. On the Nature of Voltammetric Signals Originating from Hydrogen Electrosorption into Palladium-Noble Metal Alloys

    PubMed Central

    Łukaszewski, Mariusz; Hubkowska, Katarzyna; Koss, Urszula; Czerwiński, Andrzej

    2013-01-01

    Hydrogen sorption/desorption signals observed on cyclic voltammograms in experiments on hydrogen electrosorption into Pd-noble metal alloys (Pd-Au, Pd-Pt, Pd-Rh, Pd-Ru, Pd-Pt-Rh, Pd-Pt-Au) were characterized. The influence of electrosorption potential, scan rate and alloy bulk composition on the features of the hydrogen peaks was investigated. The experimental results were compared with those obtained on the basis of a model taken from the literature. It was confirmed that the rate of the α-β phase transition controls the overall rate of the process of hydrogen absorption/desorption into/from thin Pd-based electrodes. It was demonstrated that from the analysis of the changes of the hydrogen oxidation peak potential with the hydrogen electrosorption potential in cyclic voltammetric experiments it is possible to determine the limiting Pd bulk content, below which the β-phase in the alloy-hydrogen system is not formed. PMID:28788362

  10. Effect of cold working of the metal on the conductance of platinum, copper, and silver nanocontacts

    NASA Astrophysics Data System (ADS)

    Shklyarevskii, O. I.; Yanson, I. K.

    2013-03-01

    Cold metal working, which leads to strengthening and changes in various physical properties of metals on a macroscopic level, can have a significant effect on the conductance of nanowires drawn from these materials when they break. This effect is studied for Ag, Cu, Pt, and a number of other metals. Molecular hydrogen is found to affect the characteristics of breaking in silver nanowires.

  11. Synthesis and characterization of nanostructured palladium-based alloy electrocatalysts

    NASA Astrophysics Data System (ADS)

    Sarkar, Arindam

    Low temperature fuel cells like proton exchange membrane fuel cells (PEMFC) are expected to play a crucial role in the future hydrogen economy, especially for transportation applications. These electrochemical devices offer significantly higher efficiency compared to conventional heat engines. However, use of exotic and expensive platinum as the electrocatalyst poses serious problems for commercial viability. In this regard, there is an urgent need to develop low-platinum or non-platinum electrocatalysts with electrocatalytic activity for the oxygen reduction reaction (ORR) superior or comparable to that of platinum. This dissertation first investigates non-platinum, palladium-based alloy electrocatalysts for ORR. Particularly, Pd-M (M = Mo and W) alloys are synthesized by a novel thermal decomposition of organo-metallic precursors. The carbon-supported Pd-M (M = Mo, W) electrocatalyts are then heat treated up to 900°C in H2 atmosphere and investigated for their phase behavior. Cyclic voltammetry (CV) and rotating disk electrode (RDE) measurements reveal that the alloying of Pd with Mo or W significantly enhances the catalytic activity for ORR as well as the stability (durability) of the electrocatalysts. Additionally, both the alloy systems exhibit high tolerance to methanol, which is particularly advantageous for direct methanol fuel cells (DMFC). The dissertation then focuses on one-pot synthesis of carbon-supported multi-metallic Pt-Pd-Co nanoalloys by a rapid microwave-assisted solvothermal (MW-ST) method. The multi-metallic alloy compositions synthesized by the MW-ST method show much higher catalytic activity for ORR compared to their counterparts synthesized by the conventional borohydride reduction method. Additionally, a series of Pt encapsulated Pd-Co nanoparticle electrocatalysts are synthesized by the MW-ST method and characterized to understand their phase behavior, surface composition, and electrocatalytic activity for ORR. Finally, the dissertation

  12. First-principles study of spin-dependent thermoelectric properties of half-metallic Heusler thin films between platinum leads

    NASA Astrophysics Data System (ADS)

    Comtesse, Denis; Geisler, Benjamin; Entel, Peter; Kratzer, Peter; Szunyogh, László

    2014-03-01

    The electronic and magnetic bulk properties of half-metallic Heusler alloys such as Co2FeSi,Co2FeAl, Co2MnSi, and Co2MnAl are investigated by means of ab initio calculations in combination with Monte Carlo simulations. The electronic structure is analyzed using the plane-wave code quantum espresso and the magnetic exchange interactions are determined using the Korringa-Kohn-Rostoker (KKR) method. From the magnetic exchange interactions, the Curie temperature is obtained via Monte Carlo simulations. In addition, electronic transport properties of trilayer systems consisting of two semi-infinite platinum leads and a Heusler layer in-between are obtained from the fully relativistic screened KKR method by employing the Kubo-Greenwood formalism. The focus is on thermoelectric properties, namely, the Seebeck effect and its spin dependence. It turns out that already thin Heusler layers provide highly spin-polarized currents. This is attributed to the recovery of half-metallicity with increasing layer thickness. The absence of electronic states of spin-down electrons around the Fermi level suppresses the contribution of this spin channel to the total conductance, which strongly influences the thermoelectric properties and results in a spin polarization of thermoelectric currents.

  13. Assessing Economic Modulation of Future Critical Materials Use: The Case of Automotive-Related Platinum Group Metals.

    PubMed

    Zhang, Jingshu; Everson, Mark P; Wallington, Timothy J; Field, Frank R; Roth, Richard; Kirchain, Randolph E

    2016-07-19

    Platinum-group metals (PGMs) are technological and economic enablers of many industrial processes. This important role, coupled with their limited geographic availability, has led to PGMs being labeled as "critical materials". Studies of future PGM flows have focused on trends within material flows or macroeconomic indicators. We complement the previous work by introducing a novel technoeconomic model of substitution among PGMs within the automotive sector (the largest user of PGMs) reflecting the rational response of firms to changing prices. The results from the model support previous conclusions that PGM use is likely to grow, in some cases strongly, by 2030 (approximately 45% for Pd and 5% for Pt), driven by the increasing sales of automobiles. The model also indicates that PGM-demand growth will be significantly influenced by the future Pt-to-Pd price ratio, with swings of Pt and Pd demand of as much as 25% if the future price ratio shifts higher or lower even if it stays within the historic range. Fortunately, automotive catalysts are one of the more effectively recycled metals. As such, with proper policy support, recycling can serve to meet some of this growing demand.

  14. Barrier Modification of Metal-contact on Silicon by Sub-2 nm Platinum Nanoparticles and Thin Dielectrics

    PubMed Central

    Zheng, Haisheng; Mahajan, Bikram K.; Su, Sheng C.; Mukherjee, Somik; Gangopadhyay, Keshab; Gangopadhyay, Shubhra

    2016-01-01

    We report metal/p-Si contact barrier modification through the introduction of either “isolated” or “nonisolated” tilted-target-sputtered sub-2 nm platinum nanoparticles (Pt NPs) in combination with either a 0.98 nm Atomic Layer Deposited Al2O3 or a 1.6 nm chemically grown SiO2 dielectric layer, or both. Here, we study the role of these Pt NP’s size dependent properties, i.e., the Pt NP-metal surface dipole, the Coulomb blockade and quantum confinement effect in determining the degree of Fermi level depinning observed at the studied metal/p-Si interfaces. By varying only the embedded Pt NP size and its areal density, the nature of the contact can also be modulated to be either Schottky or Ohmic upon utilizing the same gate metal. 0.74 nm Pt NPs with an areal density of 1.1 × 1013 cm−2 show ~382 times higher current densities compared to the control sample embedded with similarly sized Pt NPs with ~1.6 times lower areal densities. We further demonstrate that both Schottky (Ti/p-Si) and poor Ohmic (Au/p-Si) contact can be modulated into a good Ohmic contact with current density of 18.7 ± 0.6 A/cm2 and 10.4 ± 0.4 A/cm2, respectively, showing ~18 and ~30 times improvement. A perfect forward/reverse current ratio of 1.041 is achieved for these low doped p-Si samples. PMID:27121605

  15. Detection and Recovery of Palladium, Gold and Cobalt Metals from the Urban Mine Using Novel Sensors/Adsorbents Designated with Nanoscale Wagon-wheel-shaped Pores

    PubMed Central

    El-Safty, Sherif A.; Shenashen, Mohamed A.; Sakai, Masaru; Elshehy, Emad; Halada, Kohmei

    2015-01-01

    Developing low-cost, efficient processes for recovering and recycling palladium, gold and cobalt metals from urban mine remains a significant challenge in industrialized countries. Here, the development of optical mesosensors/adsorbents (MSAs) for efficient recognition and selective recovery of Pd(II), Au(III), and Co(II) from urban mine was achieved. A simple, general method for preparing MSAs based on using high-order mesoporous monolithic scaffolds was described. Hierarchical cubic Ia3d wagon-wheel-shaped MSAs were fabricated by anchoring chelating agents (colorants) into three-dimensional pores and micrometric particle surfaces of the mesoporous monolithic scaffolds. Findings show, for the first time, evidence of controlled optical recognition of Pd(II), Au(III), and Co(II) ions and a highly selective system for recovery of Pd(II) ions (up to ~95%) in ores and industrial wastes. Furthermore, the controlled assessment processes described herein involve evaluation of intrinsic properties (e.g., visual signal change, long-term stability, adsorption efficiency, extraordinary sensitivity, selectivity, and reusability); thus, expensive, sophisticated instruments are not required. Results show evidence that MSAs will attract worldwide attention as a promising technological means of recovering and recycling palladium, gold and cobaltmetals. PMID:26709467

  16. Epitaxial overgrowth of platinum on palladium nanocrystals

    NASA Astrophysics Data System (ADS)

    Jiang, Majiong; Lim, Byungkwon; Tao, Jing; Camargo, Pedro H. C.; Ma, Chao; Zhu, Yimei; Xia, Younan

    2010-11-01

    This paper describes a systematic study on the epitaxial overgrowth of Pt on well-defined Pd nanocrystals with different shapes (and exposed facets), including regular octahedrons, truncated octahedrons, and cubes. Two different reducing agents, i.e., citric acid and L-ascorbic acid, were evaluated and compared for the reduction of K2PtCl4 in an aqueous solution in the presence of Pd nanocrystal seeds. When citric acid was used as a reducing agent, conformal overgrowth of octahedral Pt shells on regular and truncated octahedrons of Pd led to the formation of Pd-Pt core-shell octahedrons, while non-conformal overgrowth of Pt on cubic Pd seeds resulted in the formation of an incomplete octahedral Pt shell. On the contrary, localized overgrowth of Pt branches was observed when L-ascorbic acid was used as a reducing agent regardless of the facets expressed on the surface of Pd nanocrystal seeds. This work shows that both the binding affinity of a reducing agent to the Pt surface and the reduction kinetics for a Pt precursor play important roles in determining the mode of Pt overgrowth on Pd nanocrystal surface.

  17. Platinum group element and cerium concentrations in roadside environments in Toronto, Canada.

    PubMed

    Wiseman, Clare L S; Hassan Pour, Zahra; Zereini, Fathi

    2016-02-01

    Platinum (Pt), palladium (Pd) and rhodium (Rh) are accumulating globally in the environment, due to their use as catalysts to control automotive exhaust emissions. While environmental increases in platinum metal concentrations have been well documented for a number of countries, published data for Canada have been missing to date. The aim of this study is to examine the concentrations of Pt, Pd and Rh, as well as Ce, in soils and dust as a function of traffic volume in Toronto, Ontario. Soils and road and underpass dust were collected from two sites with medium and high volumes of traffic. Samples were acid digested and co-precipitated with Hg (for Pd) and Te (for Pt and Rh), prior to measurement using ICP-Q-MS. Palladium occurred at the highest levels in samples, followed by Pt and Rh. Median concentrations for all soil samples were 63 μg Pd/kg, 8.7 μg Pt/kg, 1.7 μg Rh/kg and 41 mg Ce/kg. The results support existing data regarding PGE accumulation trends in urban and roadside environments, due to their use as catalysts in automotive catalytic converters. This study also confirms a shift toward the heavier use of Pd as the catalyst of choice in recent years, as reflected in the higher concentrations measured for this metal relative to Pt and Rh. The results highlight a need to continue monitoring the accumulation of PGE, most notably Pd, in urban environments.

  18. Platinum nitride with fluorite structure

    SciTech Connect

    Yu, Rong; Zhang, Xiao-Feng

    2005-01-31

    The mechanical stability of platinum nitride has been studied using first-principles calculations. By calculating the single-crystal elastic constants, we show that platinum nitride can be stabilized in the fluorite structure, in which the nitrogen atoms occupy all the tetrahedral interstitial sites of the metal lattice. The stability is attributed to the pseudogap effect from analysis of the electronic structure.

  19. Gold-promoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Kuttiyiel, Kurian A.; Sasaki, Kotaro; Su, Dong; Wu, Lijun; Zhu, Yimei; Adzic, Radoslav R.

    2014-11-01

    Considerable efforts to make palladium and palladium alloys active catalysts and a possible replacement for platinum have had a marginal success. Here we report on a structurally ordered Au10Pd40Co50 catalyst that exhibits comparable activity to conventional platinum catalysts in both acid and alkaline media. Electron microscopic techniques demonstrate that, at elevated temperatures, palladium cobalt nanoparticles undergo an atomic structural transition from core-shell to a rare intermetallic ordered structure with twin boundaries forming stable {111}, {110} and {100} facets via addition of gold atoms. The superior stability of this catalyst compared with platinum after 10,000 potential cycles in alkaline media is attributed to the atomic structural order of PdCo nanoparticles along with protective effect of clusters of gold atoms on the surface. This strategy of making ordered palladium intermetallic alloy nanoparticles can be used in diverse heterogeneous catalysis where particle size and structural stability matter.

  20. Palladium–platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction

    SciTech Connect

    Wang, Xue; Choi, Sang-Il; Roling, Luke T.; Luo, Ming; Ma, Cheng; Zhang, Lei; Chi, Miaofang; Liu, Jingyue; Xie, Zhaoxiong; Herron, Jeffrey A.; Mavrikakis, Manos; Xia, Younan

    2015-07-02

    Conformal deposition of platinum as ultrathin shells on facet-controlled palladium nanocrystals offers a great opportunity to enhance the catalytic performance while reducing its loading. Here we report such a system based on palladium icosahedra. Owing to lateral confinement imposed by twin boundaries and thus vertical relaxation only, the platinum overlayers evolve into a corrugated structure under compressive strain. For the core-shell nanocrystals with an average of 2.7 platinum overlayers, their specific and platinum mass activities towards oxygen reduction are enhanced by eight- and sevenfold, respectively, relative to a commercial catalyst. Density functional theory calculations indicate that the enhancement can be attributed to the weakened binding of hydroxyl to the compressed platinum surface supported on palladium. After 10,000 testing cycles, the mass activity of the core-shell nanocrystals is still four times higher than the commercial catalyst. Ultimately, these results demonstrate an effective approach to the development of electrocatalysts with greatly enhanced activity and durability.

  1. Platinum(II) metal complexes as potential anti-Trypanosoma cruzi agents.

    PubMed

    Vieites, Marisol; Otero, Lucía; Santos, Diego; Toloza, Jeannette; Figueroa, Roberto; Norambuena, Ester; Olea-Azar, Claudio; Aguirre, Gabriela; Cerecetto, Hugo; González, Mercedes; Morello, Antonio; Maya, Juan Diego; Garat, Beatriz; Gambino, Dinorah

    2008-01-01

    In the search for new therapeutic tools against Chagas' disease (American Trypanosomiasis) two series of new platinum(II) complexes with bioactive 5-nitrofuryl containing thiosemicarbazones as ligands were synthesized, characterized and in vitro evaluated. Most of the complexes showed IC50 values in the muM range against two different strains of Trypanosoma cruzi, causative agent of the disease, being as active as the anti-trypanosomal drug Nifurtimox. In particular, the coordination of L3 (4-ethyl-1-(5-nitrofurfurylidene)thiosemicarbazide) to Pt(II) forming [Pt(L3)2] lead to almost a five-fold activity increase in respect to the free ligand. Trying to get an insight into the trypanocidal mechanism of action of these compounds, DNA and redox metabolism (intra-parasite free radical production) were evaluated as potential parasite targets. Results suggest that the complexes could inhibit parasite growth through a dual mechanism of action involving production of toxic free radicals by bioreduction and DNA interaction.

  2. Process for Making a Noble Metal on Tin Oxide Catalyst

    NASA Technical Reports Server (NTRS)

    Davis, Patricia; Miller, Irvin; Upchurch, Billy

    2010-01-01

    To produce a noble metal-on-metal oxide catalyst on an inert, high-surface-area support material (that functions as a catalyst at approximately room temperature using chloride-free reagents), for use in a carbon dioxide laser, requires two steps: First, a commercially available, inert, high-surface-area support material (silica spheres) is coated with a thin layer of metal oxide, a monolayer equivalent. Very beneficial results have been obtained using nitric acid as an oxidizing agent because it leaves no residue. It is also helpful if the spheres are first deaerated by boiling in water to allow the entire surface to be coated. A metal, such as tin, is then dissolved in the oxidizing agent/support material mixture to yield, in the case of tin, metastannic acid. Although tin has proven especially beneficial for use in a closed-cycle CO2 laser, in general any metal with two valence states, such as most transition metals and antimony, may be used. The metastannic acid will be adsorbed onto the high-surface-area spheres, coating them. Any excess oxidizing agent is then evaporated, and the resulting metastannic acid-coated spheres are dried and calcined, whereby the metastannic acid becomes tin(IV) oxide. The second step is accomplished by preparing an aqueous mixture of the tin(IV) oxide-coated spheres, and a soluble, chloride-free salt of at least one catalyst metal. The catalyst metal may be selected from the group consisting of platinum, palladium, ruthenium, gold, and rhodium, or other platinum group metals. Extremely beneficial results have been obtained using chloride-free salts of platinum, palladium, or a combination thereof, such as tetraammineplatinum (II) hydroxide ([Pt(NH3)4] (OH)2), or tetraammine palladium nitrate ([Pd(NH3)4](NO3)2).

  3. Photobiomolecular deposition of metallic particles and films

    DOEpatents

    Hu, Zhong-Cheng

    2005-02-08

    The method of the invention is based on the unique electron-carrying function of a photocatalytic unit such as the photosynthesis system I (PSI) reaction center of the protein-chlorophyll complex isolated from chloroplasts. The method employs a photo-biomolecular metal deposition technique for precisely controlled nucleation and growth of metallic clusters/particles, e.g., platinum, palladium, and their alloys, etc., as well as for thin-film formation above the surface of a solid substrate. The photochemically mediated technique offers numerous advantages over traditional deposition methods including quantitative atom deposition control, high energy efficiency, and mild operating condition requirements.

  4. Batch leaching tests of motherboards to assess environmental contamination by bromine, platinum group elements and other selected heavy metals.

    PubMed

    Almeida, César; Grosselli, Melina; González, Patricia; Martínez, Dante; Gil, Raúl

    2016-02-01

    In this study, a batch leaching test was executed to evaluate the toxicity associated with chemicals contained in motherboards. The leaching solutions used were distilled water, nitric acid, acetic acid and synthetic acid rain solution. A total of 21 elements including Ag, As, Au, Br, Cd, Co, Cr, Cu, Hf, Ir, Mn, Ni, Os, Pb, Pd, Pt, Rd, Rh, Se, U and Zn were analyzed. In this study, the pH values of all the leachates fell within the range of 2.33-4.88. The highest concentrations of metals were obtained from the acid rain solution, whilst the maximum value of bromine was achieved with solution of acetic acid. Appreciable concentrations of platinum group elements were detected with concentrations around 3.45, 1.43, 1.21 and 22.19 µg L(-1) for Ir, Pd, Pt and Rh, respectively. The different leaching of the motherboards revealed the predominant presence of the toxic substances in the leached from the e-waste. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Chromatographic separation of platinum group metals from simulated high level liquid waste using macroporous silica-based adsorbents.

    PubMed

    Xu, Yuanlai; Kim, Seong-Yun; Ito, Tatsuya; Tokuda, Haruki; Hitomi, Keitaro; Ishii, Keizo

    2013-10-18

    To separate platinum group metals (PGMs) from high level liquid waste, three novel macroporous silica-based adsorbents, namely, (Crea+Dodec)/SiO2-P, (Crea+TOA)/SiO2-P and (MOTDGA+TOA)/SiO2-P, were synthesized by introducing extractants Crea (N',N'-di-n-hexyl-thiodiglycolamide), TOA (Tri-n-octylamine), MOTDGA (N,N'-dimethyl-N,N'-di-n-octyl-thiodiglycolamide) along with theirs modifier, Dodec (n-dodecyl alcohol), into 50μm diameter SiO2-P particles by impregnation. Chromatographic separation of PGMs from simulated high level liquid waste was investigated by column method. It was found that 100% of Pd(II) and Re(VII) could be eluted out from simulate HLLW in 3.0M HNO3 solution using three adsorbents. For Ru(III) and Rh(III), high temperature has distinct effect on the adsorption rate and a further study for Ru(III) and Rh(III) is necessary to separate them from HLLW completely. In all six column experiments, a relatively satisfactory chromatographic separation operating for PGMs from simulated HLLW was obtained using (Crea+TOA)/SiO2-P adsorbent packed column at 323K.

  6. Transition metal oxides deposited on rhodium and platinum: Surface chemistry and catalysis

    SciTech Connect

    Boffa, Alexander Bowman

    1994-07-01

    The surface chemistry and catalytic reactivity of transition metal oxides deposited on Rh and Pt substrates has been examined in order to establish the role of oxide-metal interactions in influencing catalytic activity. The oxides investigated included titanium oxide (TiOx), vanadium oxide (VOx), iron oxide (FeOx), zirconium oxide (ZrOx), niobium oxide (NbOx), tantalum oxide (TaOx), and tungsten oxide (WOx). The techniques used to characterize the sample included AES, XPS, LEED, TPD, ISS, and STM. After characterization of the surface in UHV, the sample was enclosed in an atmospheric reaction cell to measure the influence of the oxide deposits on the catalytic activity of the pure metal for CO and CO2 hydrogenation. The oxide deposits were found to strongly enhance the reactivity of the Rh foil. The rates of methane formation were promoted by up to 15 fold with the maximum in rate enhancement occurring at oxide coverages of approximately 0.5 ML. TiOx TaOx, and NbOx were the most effective promoters and were stable in the highest oxidation states during both reactions (compared to VOx, WOx, and FeOx). The trend in promoter effectiveness was attributed to the direct relationship between oxidation state and Lewis acidity. Bonding at the metal oxide/metal interface between the oxygen end of adsorbed CO and the Lewis acidic oxide was postulated to facilitate C-O bond dissociation and subsequent hydrogenation. 192 refs.

  7. Synthesis and characterization of functionalized ionic liquid-stabilized metal (gold and platinum) nanoparticles and metal nanoparticle/carbon nanotube hybrids.

    PubMed

    Zhang, Hao; Cui, Hua

    2009-03-03

    Carboxylic acid- and amino-functionalized ionic liquids were used as the stabilizer for the systhesis of metal nanoparticles in aqueous solution. Smaller gold nanoparticles (3.5 nm) and platinum nanoparticles (2.5 nm) were prepared with NaBH4 as the reductant. Larger gold nanospheres (23, 42, and 98 nm) were synthesized using different quantities of trisodiumcitrate reductant. The morphology and the surface state of the metal nanoparticles were characterized by high-resolution transmission electron microscopy, UV-visible spectroscopy, and X-ray photoelectron spectroscopy. X-ray photoelectron spectroscopy spectra indicated that binding energies of C 1s and N 1s from ionic liquids on the surface of metal nanoparticles shifted negatively compared with that from pure ionic liquids. The mechanism of stabilization is proposed to be due to the interactions between imidazolium ions/functional groups in ionic liquids and metal atoms. Resonance Rayleigh scattering property of the functionalized ionic liquid-stabilized metal nanoparticles was also explored. It was found that amino-functionalized ionic liquid-stabilized gold nanoparticles exhibited lower resonance Rayleigh scattering intensity than trisodiumcitrate stabilized gold nanoparticles, which is expected to decrease the background of the resonance Rayleigh scattering intensity in the determination of various analytes. Moreover, it was found that all the as-prepared metal nanoparticles could be easily assembled on the multiwalled carbon nanotubes, which was confirmed by high-resolution transmission electron microscopy and energy dispersive X-ray spectroscopy. In this case, ionic liquids acted as a linker to connect metal nanoparticles with carbon nanotubes. The imidazolium ring moiety of ionic liquids might interact with the pi-electronic nanotube surface by virtue of cation-pi and/or pi-pi interactions, and the functionalized group moiety of ionic liquids might interact with the metal NPs surface. Finally, it was

  8. Cubic colloidal platinum nanoparticles

    SciTech Connect

    Ahmadi, T.S.; Wang, Z.L.; Henglein, A.; El-Sayed, M.A.

    1996-06-01

    Cubic platinum nanoparticles (4-18 nm) have been synthesized for the first time in solution by the controlled reduction of K{sub 2}PtCl{sub 4} with hydrogen gas in the presence of sodium polyacrylate as a capping material. The nanoparticles are found to have fcc structures, similar to the bulk metal with (100) facets.

  9. Ni-BaTiO3-Based Base-Metal Electrode (BME) Ceramic Capacitors for Space Applications

    NASA Technical Reports Server (NTRS)

    Liu, Donhang; Fetter, Lula; Meinhold, Bruce

    2015-01-01

    A multi-layer ceramic capacitor (MLCC) is a high-temperature (1350C typical) co-fired ceramic monolithic that is composed of many layers of alternately stacked oxide-based dielectric and internal metal electrodes. To make the dielectric layers insulating and the metal electrode layers conducting, only highly oxidation-resistant precious metals, such as platinum, palladium, and silver, can be used for the co-firing of insulating MLCCs in a regular air atmosphere. MLCCs made with precious metals as internal electrodes and terminations are called precious-metal electrode (PME) capacitors. Currently, all military and space-level applications only address the use of PME capacitors.

  10. Cytotoxic properties of a new organometallic platinum(II) complex and its gold(I) heterobimetallic derivatives.

    PubMed

    Serratrice, Maria; Maiore, Laura; Zucca, Antonio; Stoccoro, Sergio; Landini, Ida; Mini, Enrico; Massai, Lara; Ferraro, Giarita; Merlino, Antonello; Messori, Luigi; Cinellu, Maria Agostina

    2016-01-14

    A novel platinum(ii) organometallic complex, [Pt(pbi)(Me)(DMSO)], bearing the 2-(2'-pyridyl)-benzimidazole (pbiH) ligand, was synthesized and fully characterized. Interestingly, the reaction of this organometallic platinum(ii) complex with two distinct gold(i) phosphane compounds afforded the corresponding heterobimetallic derivatives with the pbi ligand bridging the two metal centers. The antiproliferative properties in vitro of [Pt(pbi)(Me)(DMSO)] and its gold(i) derivatives as well as those of the known coordination platinum(ii) and palladium(ii) complexes with the same ligand, of the general formula [MCl2(pbiH)], were comparatively evaluated against A2780 cancer cells, either sensitive or resistant to cisplatin. A superior biological activity of the organometallic compound clearly emerged compared to the corresponding platinum(ii) complex; the antiproliferative effects are further enhanced upon attaching the gold(i) triphenylphosphine moiety to the organometallic Pt compound. Remarkably, these novel metal species are able to overcome nearly complete resistance to cisplatin. Significant mechanistic insight into the study compounds was gained after investigating their reactions with a few representative biomolecules by electrospray mass spectrometry and X-ray crystallography. The obtained results are comprehensively discussed.

  11. Request for Correction 11001 Toxicological Review of Halogenated Platinum Salts and Platinum Compounds

    EPA Pesticide Factsheets

    Request for Correction by the International Platinum Group Metals Association seeking the correction of information disseminated in the draft EPA document Toxicological Review of Halogenated Platinum Salts and Platinum Compounds: In Support of Summary Information on the Integrated Risk Information System (IRIS).

  12. Development of novel low-temperature selective hydrogen gas sensors made of palladium/oxide or nitride capped Magnesium-transition metal hydride films

    NASA Astrophysics Data System (ADS)

    Tang, Yu Ming

    Palladium capped Mg-based transition metal alloy film (Pd/Mg-TM) is a potentially useful hydrogen gas (H2) sensing material, which can operate at low temperature for detection of H2 leakage in an environment to ensure safe use and storage of the gas. The Pd layer catalytically dissociates hydrogen molecules, and the hydrogen atoms produced can enter (hydridation) or be detached (dehydridation) from the alloy layer. These processes are reversible, such that the film is switchable between a metal state and a hydride state, giving rise to substantial changes in its optical transmittance/reflectance and electrical resistivity. Unlike a conventional metal-oxide (MOx) H2 sensor, hydridation of an Mg-TM film is associated with relatively low enthalpy, and hence can perform at temperature much lower than the operation temperature of an MOx sensor (typically around 500°C or above). As such, an Mg-TM based sensor does not experience undesired annealing effect during operation, and hence is much more stable and durable. Furthermore, the detection selectivity of a Pd/Mg-TM film versus other reducing gases is superior to most conventional MOx-type hydrogen sensors. In this project, we systematically investigated the H2 sensing properties of Pd/Mg-TM films.

  13. Silica chemically bonded N-propyl kriptofix 21 and 22 with immobilized palladium nanoparticles for solid phase extraction and preconcentration of some metal ions.

    PubMed

    Ghaedi, Mehrorang; Niknam, Khodabakhsh; Zamani, Saeed; Larki, Habib Abasi; Roosta, Mostafa; Soylak, Mustafa

    2013-08-01

    Silica gel chemically bonded N-propyl kriptofix 21 (SBNPK 21) and N-propyl kriptofix 22 (SBNPK 22) and subsequently immobilized with palladium nanoparticles (PNP-SBNPK 21 and PNP-SBNPK 22) to produce two new complexing lipophilic materials. Then these novel sorbents were applied for the enrichment of some metal ions and their subsequent determination by flame atomic absorption spectroscopy (FAAS). The influences of the variables including pH, amount of solid phase, sample flow rate, eluent conditions and sample volume on the metal ion recoveries were investigated. The detection limit of proposed method was in the interval 2.1-2.3 and 1.7-2.8 ng mL(-1) for PNP-SBNPK 21 and PNP-SBNPK 22 respectively, while the preconcentration factor was 80 for two sorbents. The relative standard deviations of recoveries were between 1.23-1.31 and 1.28-1.49 for PNP-SBNPK 21 and PNP-SBNPK 22 respectively. The method has high sorption-preconcentration efficiency even in the presence of various interfering ions. Due to the reasonable selectivity of proposed method, the relative standard deviation of recoveries of all understudied metal ions in some complicated matrices was less than 3.0%.

  14. Recovery of Elemental Palladium by Shewanella putrefaciens

    NASA Astrophysics Data System (ADS)

    Akasaka, S.; Xia, X.; Sawada, K.; Enokida, Y.; Yamamoto, I.; Ohnuki, T.

    2006-12-01

    Microbial reduction of metals plays an important role in environmental behavior and provides a technique for the recovery of metals from industrial wastewater. Recently, demand for platinum group metals (PGMs) increases by their catalytic properties. The extreme rarity of PGMs have led to a growing interest in their recovery. Palladium, one of PGMs, has different oxidation states of Pd(II) and Pd(0). The oxidized form of Pd(II) is soluble, while the reduced form of Pd(0) is insoluble. In this study, microbial reduction of palladium by Fe(III)- reducing bacterium, Shewanella putrefaceins was conducted. This bacterium is known to be capable of reducing metals, such as Mn(IV), U(VI), or Tc(VII) with organic C or H2 as an electron donor. In order to investigate the potential of S. putrefaciens to reduce Pd(II) in solution, resting cells or heat-killed cells were suspended under anaerobic conditions with lactate or H2 as an electron donor. The cells of S. putrefaciens (NBRC3908) were grown in aerobic medium, harvested by centrifugation, and then washed with 25 mmol/dm3 HEPES and 100 mmol/dm3 NaCl (HEPES-NaCl) solution (pH 7.0). The heat-killed cells were autoclaved for 20 min at 121 degrees C. The cell suspension (21.5 mg in dry weight) was resuspended in the HEPES-NaCl solution which contained 1.0 mmol/dm3 Na2PdCl4 (Wako Pure chemical Industries, Ltd). The suspensions were bubbled with N2 for 15 min before 10 mmol/dm3 lactate or 4.8 v/v% H2 was added. The suspensions were then incubated at 30 degrees C. Redox potential (Eh) and pH of the solutions were measured in an inert glove box with Ar gas. Concentration of Pd(II) was measured by Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES). Deposited Pd and cells were analyzed by X-ray powder diffraction (XRD) and Scanning Electron Microscope (SEM) with Energy-Dispersive Spectroscopy (EDS). Approximately 86% of Pd(II) of the initial concentration was removed from solution by the resting cells within 24 h when

  15. Method for forming porous platinum films

    DOEpatents

    Maya, Leon

    2000-01-01

    A method for forming a platinum film includes providing a substrate, sputtering a crystalline platinum oxide layer over at least a portion of the substrate, and reducing the crystalline platinum oxide layer to form the platinum film. A device includes a non-conductive substrate and a platinum layer having a density of between about 2 and 5 g/cm.sup.3 formed over at least a portion of the non-conductive substrate. The platinum films produced in accordance with the present invention provide porous films suitable for use as electrodes, yet require few processing steps. Thus, such films are less costly. Such films may be formed on both conductive and non-conductive substrates. While the invention has been illustrated with platinum, other metals, such as noble metals, that form a low density oxide when reactively sputtered may also be used.

  16. Dynamics of palladium on nanocarbon in the direct synthesis of H2O2.

    PubMed

    Arrigo, Rosa; Schuster, Manfred E; Abate, Salvatore; Wrabetz, Sabine; Amakawa, Kazuhiko; Teschner, Detre; Freni, Maria; Centi, Gabriele; Perathoner, Siglinda; Hävecker, Michael; Schlögl, Robert

    2014-01-01

    This work aims to clarify the nanostructural transformation accompanying the loss of activity and selectivity for the hydrogen peroxide synthesis of palladium and gold-palladium nanoparticles supported on N-functionalized carbon nanotubes. High-resolution X-ray photoemission spectroscopy (XPS) allows the discrimination of metallic palladium, electronically modified metallic palladium hosting impurities, and cationic palladium. This is paralleled by the morphological heterogeneity observed by high-resolution TEM, in which nanoparticles with an average size of 2 nm coexisted with very small palladium clusters. The morphological distribution of palladium is modified after reaction through sintering and dissolution/redeposition pathways. The loss of selectivity is correlated to the extent to which these processes occur as a result of the instability of the particle at the carbon surface. We assign beneficial activity in the selective hydrogenation of oxygen to palladium clusters with a modified electronic structure compared with palladium metal or palladium oxides. These beneficial species are formed and stabilized on carbons modified with nitrogen atoms in substitutional positions. The formation of larger metallic palladium particles not only reduces the number of active sites for the synthesis, but also enhances the activity for deep hydrogenation to water. The structural instability of the active species is thus detrimental in a dual way. Minimizing the chance of sintering of palladium clusters by all means is thus the key to better performing catalysts.

  17. The solubility of platinum in silicate melt under reducing conditions: Results from experiments without metal inclusions

    NASA Astrophysics Data System (ADS)

    Bennett, N. R.; Brenan, J. M.; Koga, K. T.

    2014-05-01

    The solubility of Pt in silicate melt was investigated at conditions of 2073-2573 K, 2 GPa and ˜IW -1.5 to +3.5. These are the first measurements of Pt solubility under conditions more reducing than the iron-wüstite buffer (IW) which are demonstrably free from contamination by metal-inclusions. Pt solubility increases with increasing temperature and decreasing oxygen fugacity. The ability of carbon to enhance Pt solubility under reducing conditions (Metal-silicate partition coefficients calculated from our Pt solubility data show that, for core-mantle equilibrium at IW -2, Pt concentrations in the primitive upper mantle (PUM) can be satisfied if the temperature of equilibration is >3500 K. Under these conditions however, the estimated Pt/Os ratio is ˜40,000 times higher than that estimated for the PUM (Brandon et al., 2006). Instead, the PUM composition is generated most readily by metal-silicate equilibrium at more modest temperatures (˜3100 K), followed by a late accretion of chondritic material subsequent to core formation.

  18. [Synthesis and luminescent spectral characteristics of porphyrin complexes with platinum group metals].

    PubMed

    Rumiantseva, V D; Ivanovskaia, N P; Konovalenko, L I; Tsukanov, S V; Mironov, A F; Osin, N S

    2008-01-01

    The synthesis of natural and synthetic porphyrin complexes with Pt, Pd, Rh, and Ru is reported. Their electronic absorption spectra, phosphorescence spectra, and lifetimes at room temperature both in the presence and in the absence of oxygen were studied. It has been shown that the variation of the nature of the central metal atom and of the substituents in pyrrole and phenyl rings allows the obtaining of metalloporphyrins with various phosphorescence excitation and phosphorescing emission spectra at room temperature. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2008, vol. 34, no. 2; see also http://www.maik.ru.

  19. Performance of Bond Coats Modified by Platinum Group Metals for Applications in Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Tawancy, H. M.; Alhems, Luai M.; Aboelfotoh, M. O.

    2017-07-01

    We have investigated the partial replacement of Pt with other less expensive Pt group metals on the properties of γ' + γ bond coats used in thermal barrier coatings (TBCs) deposited on a nickel-base superalloy. The microstructure, thermal stability, oxidation behavior and performance in TBC systems of bond coats synthesized with Pt + Ru, Pt + Ir and Pt + Rh are compared with those of a reference bond coat synthesized with Pt. Yttria-stabilized zirconia has been employed as top coat in all coating systems. It is shown that at high temperatures all bond coats are degraded by interdiffusion and oxidation, however, with different kinetics. The lifetime of each TBC system is found to be limited by the cohesion between the thermally grown oxide and underlying bond coat. Differences in the behavior of various bond coats are correlated with their properties. Among the three Pt group metals investigated, the properties of the Pt + Ru bond coat are shown to closely approach those of the Pt bond coat. It is concluded that Ru with much lower cost presents a potential candidate for reducing the consumption of Pt.

  20. Gold and platinum in shales with evidence against extraterrestrial sources of metals

    USGS Publications Warehouse

    Coveney, R.M.; Murowchick, J.B.; Grauch, R.I.; Glascock, M.D.; Denison, J.R.

    1992-01-01

    Few black shales contain concentrations of precious metals higher than average continental crust (i.e. ???5 ppb Au). Yet Au and Pt alloys have been reported from the Kupferschiefer in Poland. Moreover, thin sulfide beds in certain Chinese and Canadian shales contain several hundred ppb Au, Pd and Pt and average ???4% Mo and ???2.5% Ni in an association that is difficult to explain. Volcanic and non-volcanic exhalations, hydrothermal epigenesis involving either igneous or sedex fluids, biogenic processes and low-temperature secondary enrichment are among the possible factors involved in deriving Ni, PGE and Au for black shales and sulfide beds in black shales. Extraterrestrial sources have been invoked in some cases (e.g., the Cambrian of China). However, available data on abundances of PGE indicate relatively low values for Ir (<0.02-2 ppb) in comparison with amounts for other PGE (up to 700 ppb Pt and 1255 ppb Pd). These data and high contents for Mo are not consistent with extraterrestrial sources of metals for Chinese shales and Ni-Mo-sulfide beds. Data are less complete for the U.S. shales, but nevertheless are suggestive of earthly origins for PGE. ?? 1992.

  1. Communication: Photoactivation of nucleobase bound platinum{sup II} metal complexes: Probing the influence of the nucleobase

    SciTech Connect

    Sen, Ananya; Dessent, Caroline E. H.

    2014-12-28

    We present UV laser action spectra (220-300 nm) of isolated nucleobase-bound Pt{sup II}(CN){sub 4}{sup 2−} complexes, i.e., Pt(CN){sub 4}{sup 2−}⋅M, where M = uracil, thymine, cytosine, and adenine. These metal complex-nucleobase clusters represent model systems for identifying the fundamental photophysical and photochemical processes occurring in photodynamic platinum (II) drug therapies that target DNA. This is the first study to explore the specific role of the nucleobase in the photophysics of the aggregate complex. Each of the complexes studied displays a broadly similar absorption spectra, with a strong λ{sub max} ∼ 4.7 eV absorption band (nucleobase localized chromophore) and a subsequent increase in the absorption intensity towards higher spectral-energy (Pt(CN){sub 4}{sup 2−} localized chromophore). However, strikingly different band widths are observed across the series of complexes, decreasing in the order Pt(CN){sub 4}{sup 2−}⋅Thymine > Pt(CN){sub 4}{sup 2−}⋅Uracil > Pt(CN){sub 4}{sup 2−}⋅Adenine > Pt(CN){sub 4}{sup 2−}⋅Cytosine. Changes in the bandwidth of the ∼4.7 eV band are accompanied by distinctive changes in the photofragment product ions observed following photoexcitation, with the narrower-bandwidth complexes showing a greater propensity to decay via electron detachment decay. We discuss these observations in the context of the distinctive nucleobase-dependent excited state lifetimes.

  2. Magnesium, zinc, arsenic, selenium and platinum urinary excretion from cancer patients of Antofagasta region, Chile: multi-metal approach

    PubMed Central

    Pizarro, I; Rivera, L; Ávila, J; Cortés, P

    2016-01-01

    Objectives To evaluate the short-term 24 h urinary excretion of platinum, arsenic, selenium, magnesium and zinc in patients with lung cancer and with cancer other than lungs treated with cisplatin or/and carboplatin from Antofagasta, Chile. Design Urine measurements of Pt and Se were made by inductively coupled plasma optical emission spectrometry, As by hydride-generation atomic absorption spectrometry and Mg and Zn by means of flame furnace atomic absorption spectrometry. Setting All samples were provided by the Oncological Centre of Antofagasta Regional Hospital (Region of Antofagasta, Chile). Participants Ninety 24-h urine samples from cancer patients after the infusion of Pt-base drugs and 10 24-h urine samples from cancer patients not treated with metal-base drugs. Main outcome measures Concentrations of Pt, Se, As, Zn and Mg coming from 24-h urine samples. Results Pt excreted was not significantly different between patients with lung and other cancers treated with cisplatin. The excretion of Mg, Zn and Se was greater than As. Then, Pt favours the excretion of essential elements. For lung and other types of cancers treated with drugs without Pt, excretion of Mg, Zn and Se was also greater than that of As, suggesting antagonism Mg-Zn-Se–anti-cancer drug relationship. Conclusions The amounts of Mg, Zn and Se excreted were greater than for As either with or without Pt-containing drugs, suggesting antagonist Mg-Zn-Se–anti-cancer drug relationships. The excretion of As, Mg, Zn and Se is induced by Pt. Knowledge obtained can contribute to understanding the arsenic cancer mechanism and the As-Mg-Zn-Se-Pt inter-element association for lung cancer and other types of cancer. PMID:27757244

  3. Biogenic metals in advanced water treatment.

    PubMed

    Hennebel, Tom; De Gusseme, Bart; Boon, Nico; Verstraete, Willy

    2009-02-01

    Microorganisms can change the oxidation state of metals and concomitantly deposit metal oxides and zerovalent metals on or into their cells. The microbial mechanisms involved in these processes have been extensively studied in natural environments, and researchers have recently gained interest in the applications of microbe-metal interactions in biotechnology. Because of their specific characteristics, such as high specific surface areas and high catalytic reactivity, biogenic metals offer promising perspectives for the sorption and (bio)degradation of contaminants. In this review, the precipitation of biogenic manganese and iron species and the microbial reduction of precious metals, such as palladium, platinum, silver and gold, are discussed with specific attention to the application of these biogenic metals in innovative remediation technologies in advanced water treatment.

  4. Platinum-group elements: so many excellent properties

    USGS Publications Warehouse

    Zientek, Michael L.; Loferski, Patricia J.

    2014-01-01

    The platinum-group elements (PGE) include platinum, palladium, rhodium, ruthenium, iridium, and osmium. These metals have similar physical and chemical properties and occur together in nature. The properties of PGE, such as high melting points, corrosion resistance, and catalytic qualities, make them indispensable to many industrial applications. PGE are strategic and critical materials for many nations because they are essential for important industrial applications but are mined in a limited number of places and have no adequate substitutes. Exploration and mining companies have found approximately 104,000 metric tons of PGE (with minor gold) in mineral deposits around the world that could be developed. For PGE, almost all known production and resources are associated with three geologic features: the Bushveld Complex, a layered mafic-to-ultramafic intrusion in South Africa; the Great Dyke, a layered mafic-to-ultramafic intrusion in Zimbabwe; and sill-like intrusions associated with flood basalts in the Noril’sk-Talnakh area, Russia. To help predict where PGE supplies might be located, USGS scientists study how and where PGE resources are concentrated in the Earth's crust and use that knowledge to assess the likelihood that undiscovered PGE deposits may exist. Techniques used for assessing mineral resources were developed by the USGS to support the stewardship of Federal lands and evaluate mineral resource availability in a global context. The USGS also compiles statistics and information on the worldwide supply, demand, and flow of PGE. These data are all used to inform U.S. national policymakers.

  5. α-Alkylation of ketones with primary alcohols driven by visible light and bimetallic gold and palladium nanoparticles supported on transition metal oxide

    NASA Astrophysics Data System (ADS)

    Bai, Meifen; Xin, Hui; Guo, Zhi; Guo, Dapeng; Wang, Yan; Zhao, Peng; Li, Jingyi

    2017-01-01

    The direct α-alkylation of ketones with primary alcohols to obtain the corresponding saturated coupled ketones was achieved with bimetallic gold(Au)-palladium(Pd) nanoparticles(NPs) supported on a transition metal oxide (such as CeO2). This system demonstrated a higher catalytic property than Au/CeO2 and Pd/CeO2 under visible light irradiation at 40 ± 3 °C in an Ar atmosphere. Such phenomenon was caused by the synergistic effect between Au and Pd. Isopropyl alcohol was used as the solvent and CH3ONa as the base. The effect of the bimetallic Au-Pd mass ratio and the two different transition metal oxide supports (such as CeO2 or ZrO2) during the reaction process was studied. The highest catalytic activity of those examined happened with the 1.5 wt% Au-1.5 wt% Pd (Au and Pd mass ratio 1:1)/CeO2 photo-catalyst. The intensity and wavelength of the visible light had a strong influence on the system. The catalyst can be reused for four times. A reaction mechanism was proposed for the α-alkylation of ketones with primary alcohols.

  6. Global mining risk footprint of critical metals necessary for low-carbon technologies: the case of neodymium, cobalt, and platinum in Japan.

    PubMed

    Nansai, Keisuke; Nakajima, Kenichi; Kagawa, Shigemi; Kondo, Yasushi; Shigetomi, Yosuke; Suh, Sangwon

    2015-02-17

    Meeting the 2-degree global warming target requires wide adoption of low-carbon energy technologies. Many such technologies rely on the use of precious metals, however, increasing the dependence of national economies on these resources. Among such metals, those with supply security concerns are referred to as critical metals. Using the Policy Potential Index developed by the Fraser Institute, this study developed a new footprint indicator, the mining risk footprint (MRF), to quantify the mining risk directly and indirectly affecting a national economy through its consumption of critical metals. We formulated the MRF as a product of the material footprint (MF) of the consuming country and the mining risks of the countries where the materials are mined. A case study was conducted for the 2005 Japanese economy to determine the MF and MRF for three critical metals essential for emerging energy technologies: neodymium, cobalt and platinum. The results indicate that in 2005 the MFs generated by Japanese domestic final demand, that is, the consumption-based metal output of Japan, were 1.0 × 10(3) t for neodymium, 9.4 × 10(3) t for cobalt, and 2.1 × 10 t for platinum. Export demand contributes most to the MF, accounting for 3.0 × 10(3) t, 1.3 × 10(5) t, and 3.1 × 10 t, respectively. The MRFs of Japanese total final demand (domestic plus export) were calculated to be 1.7 × 10 points for neodymium, 4.5 × 10(-2) points for cobalt, and 5.6 points for platinum, implying that the Japanese economy is incurring a high mining risk through its use of neodymium. This country's MRFs are all dominated by export demand. The paper concludes by discussing the policy implications and future research directions for measuring the MFs and MRFs of critical metals. For countries poorly endowed with mineral resources, adopting low-carbon energy technologies may imply a shifting of risk from carbon resources to other natural resources, in particular critical metals, and a trade

  7. Probing Interaction Between Platinum Group Metal (PGM) and Non-PGM Support Through Surface Characterization and Device Performance

    NASA Astrophysics Data System (ADS)

    Saha, Shibely

    High cost and limited abundance of Platinum (Pt) have hindered effective commercialization of Proton Exchange Membrane Fuel Cell and Electrolyzer. Efforts have been undertaken to reduce precious group metal (PGM) requirement for these devices without compromising the activity of the catalyst by using transition metal carbides (TMC) as non-PGM support thanks to their similar electronic and geometric structures as Pt. In this work Mo2C was selected as non-PGM support and Pt was used as the PGM of interest. We hypothesize that the hollow nanotube morphology of Mo2C support combined with Pt nano particles deposited on it via atomic layer deposition (ALD) technique would allow increased interaction between them which may increase the activity of Pt and Mo2C as well as maximize the Pt active surface area. Specifically, a rotary ALD equipment was used to grow Pt particles from atomic level to 2--3 nanometers by simply adjusting number of ALD cycles in order to probe the interaction between the deposited Pt nanoparticles and Mo2C nanotube support. Interaction between the Pt and Mo2 C was analyzed via surface characterization and electrochemical characterization. Interaction between Pt and Mo2C arises due to the lattice mismatch between Pt and Mo2C as well as electron migration between them. Lattice spacing analysis using high resolution transmission electron microscopy (HRTEM) images, combined with Pt binding energy shift in XPS results, clearly showed strong bonding between Pt nanoparticles and the Mo2C nanotube support in all the resultant Pt/Mo2C samples. We postulate that this strong interaction is responsible for the significantly enhanced durability observed in our constant potential electrolysis (CPE) and accelerated degradation testing (ADT). Of the three samples from different ALD cycles (15, 50 and 100), Mo2C nanotubes modified by 50 (1.07 wt% Pt loading) and 100 cycles (4.4 wt% Pt) of Pt deposition, showed higher HER and HOR activity per Pt mass than commercial

  8. Platinum Group Metal-free Catalysts for Hydrogen Evolution Reaction in Microbial Electrolysis Cells.

    PubMed

    Yuan, Heyang; He, Zhen

    2017-07-01

    Hydrogen gas is a green energy carrier with great environmental benefits. Microbial electrolysis cells (MECs) can convert low-grade organic matter to hydrogen gas with low energy consumption and have gained a growing interest in the past decade. Cathode catalysts for the hydrogen evolution reaction (HER) present a major challenge for the development and future applications of MECs. An ideal cathode catalyst should be catalytically active, simple to synthesize, durable in a complex environment, and cost-effective. A variety of noble-metal free catalysts have been developed and investigated for HER in MECs, including Nickel and its alloys, MoS2 , carbon-based catalysts and biocatalysts. MECs in turn can serve as a research platform to study the durability of the HER catalysts. This personal account has reviewed, analyzed, and discussed those catalysts with an emphasis on synthesis and modification, system performance and potential for practical applications. It is expected to provide insights into the development of HER catalysts towards MEC applications. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Inherent size effects on XANES of nanometer metal clusters: Size-selected platinum clusters on silica

    SciTech Connect

    Dai, Yang; Gorey, Timothy J.; Anderson, Scott L.; Lee, Sungsik; Lee, Sungwon; Seifert, Soenke; Winans, Randall E.

    2016-12-12

    X-ray absorption near-edge structure (XANES) is commonly used to probe the oxidation state of metal-containing nanomaterials, however, as the particle size in the material drops below a few nanometers, it becomes important to consider inherent size effects on the electronic structure of the materials. In this paper, we analyze a series of size-selected Ptn/SiO2 samples, using X-ray photoelectron spectroscopy (XPS), low energy ion scattering, grazing-incidence small angle X-ray scattering, and XANES. The oxidation state and morphology are characterized both as-deposited in UHV, and after air/O2 exposure and annealing in H2. Here, the clusters are found to be stable during deposition and upon air exposure, but sinter if heated above ~150 °C. XANES shows shifts in the Pt L3 edge, relative to bulk Pt, that increase with decreasing cluster size, and the cluster samples show high white line intensity. Reference to bulk standards would suggest that the clusters are oxidized, however, XPS shows that they are not. Instead, the XANES effects are attributable to development of a band gap and localization of empty state wavefunctions in small clusters.

  10. Inherent size effects on XANES of nanometer metal clusters: Size-selected platinum clusters on silica

    DOE PAGES

    Dai, Yang; Gorey, Timothy J.; Anderson, Scott L.; ...

    2016-12-12

    X-ray absorption near-edge structure (XANES) is commonly used to probe the oxidation state of metal-containing nanomaterials, however, as the particle size in the material drops below a few nanometers, it becomes important to consider inherent size effects on the electronic structure of the materials. In this paper, we analyze a series of size-selected Ptn/SiO2 samples, using X-ray photoelectron spectroscopy (XPS), low energy ion scattering, grazing-incidence small angle X-ray scattering, and XANES. The oxidation state and morphology are characterized both as-deposited in UHV, and after air/O2 exposure and annealing in H2. Here, the clusters are found to be stable during depositionmore » and upon air exposure, but sinter if heated above ~150 °C. XANES shows shifts in the Pt L3 edge, relative to bulk Pt, that increase with decreasing cluster size, and the cluster samples show high white line intensity. Reference to bulk standards would suggest that the clusters are oxidized, however, XPS shows that they are not. Instead, the XANES effects are attributable to development of a band gap and localization of empty state wavefunctions in small clusters.« less

  11. 1H and 129Xe nuclear magnetic resonance studies of hydrogen chemisorption on supported platinum. Application to the metal dispersion and spillover.

    PubMed

    Rouabah, D; Fraissard, J

    1994-06-01

    Chemisorption of hydrogen, electron microscopy and 1H nuclear magnetic resonance (NMR) have confirmed that the chemical shift of hydrogen chemisorbed on platinum is directly related to the size of the metal particles. The influence of the hydrogen adsorbate concentration and the chemisorption temperature on the chemical shift delta H and the distribution of the hydrogen chemisorbed on these particles have been determined. This study also shows how the dispersion can be deduced from the variation of delta H with the H2 concentration and clarifies the effect of temperature on the concentration of spillover H2. 129Xe NMR of adsorbed xenon used as a probe confirmed most of the previous results.

  12. An Examination of the Surface and Sub-Surface of Modern and Historical Platinum Photographic Prints Using Low Vacuum High-Resolution Scanning Electron Microscopy.

    PubMed

    Ravines, Patrick; Erdman, Natasha; McElroy, Rob

    2016-08-01

    Photographic prints of platinum metal on paper supports are some of the most exquisite and expressive in the world of fine art photography. Platinum prints were produced from about 1890 to 1920 in the USA and Europe. The chemical and material nature of these valuable prints is of great interest to many who are interested in their long-term preservation, in the intersection of science and art, and in the scientific and technical study of cultural heritage. This paper presents the results of a characterization study using newer electron microscopy techniques. In this study, a low vacuum high-resolution scanning electron microscope was used to study the surface and sub-surface of historic and modern platinum and/or palladium print samples. Using environmental SEM pressures allowed us to investigate the actual top surface and sub-surface with cross-sections without any preparation; no coatings of carbon or other material. Cross-sections were prepared using an argon plasma cross-polishing system. This study shows that the photographic image of platinum prints is composed of platinum nanoparticles embedded in the upper layers of the paper's cellulosic fibers.

  13. Luminescent liquid crystalline materials based on palladium(II) imine derivatives containing the 2-phenylpyridine core.

    PubMed

    Micutz, Marin; Iliş, Monica; Staicu, Teodora; Dumitraşcu, Florea; Pasuk, Iuliana; Molard, Yann; Roisnel, Thierry; Cîrcu, Viorel

    2014-01-21

    In this work we report our studies concerning the synthesis and characterisation of a series of imine derivatives that incorporate the 2-phenylpyridine (2-ppy) core. These derivatives were used in the cyclometalating reactions of platinum(II) or palladium(II) in order to prepare several complexes with liquid crystalline properties. Depending on the starting materials used as well as the solvents employed, different metal complexes were obtained, some of them showing both liquid crystalline behaviour and luminescence properties at room temperature. It was found that, even if there are two competing coordination sites, the cyclometalation process takes place always at the 2-ppy core with (for Pt) or without (for Pd) the imine bond cleavage. We successfully showed that it is possible to prepare emissive room temperature liquid crystalline materials based on double cyclopalladated heteroleptic complexes by varying the volume fraction of the long flexible alkyl tails on the ancillary benzoylthiourea (BTU) ligands.

  14. Bimetallic platinum group metal-free catalysts for high power generating microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Kodali, Mounika; Santoro, Carlo; Herrera, Sergio; Serov, Alexey; Atanassov, Plamen

    2017-10-01

    M1-M2-N-C bimetallic catalysts with M1 as Fe and Co and M2 as Fe, Co, Ni and Mn were synthesized and investigated as cathode catalysts for oxygen reduction reaction (ORR). The catalysts were prepared by Sacrificial Support Method in which silica was the template and aminoantipyrine (AAPyr) was the organic precursor. The electro-catalytic properties of these catalysts were investigated by using rotating ring disk (RRDE) electrode setup in neutral electrolyte. Fe-Mn-AAPyr outperformed Fe-AAPyr that showed higher performances compared to Fe-Co-AAPyr and Fe-Ni-AAPyr in terms of half-wave potential. In parallel, Fe-Co-AAPyr, Co-Mn-AAPyr and Co-Ni-AAPyr outperformed Co-AAPyr. The presence of Co within the catalyst contributed to high peroxide production not desired for efficient ORR. The catalytic capability of the catalysts integrated in air-breathing cathode was also verified. It was found that Co-based catalysts showed an improvement in performance by the addition of second metal compared to simple Co- AAPyr. Fe-based bimetallic materials didn't show improvement compared to Fe-AAPyr with the exception of Fe-Mn-AAPyr catalyst that had the highest performance recorded in this study with maximum power density of 221.8 ± 6.6 μWcm-2. Activated carbon (AC) was used as control and had the lowest performances in RRDE and achieved only 95.6 ± 5.8 μWcm-2 when tested in MFC.

  15. Superconductivity and spin fluctuations in the actinoid-platinum metal borides {Th ,U } Pt3B

    NASA Astrophysics Data System (ADS)

    Bauer, E.; Royanian, E.; Michor, H.; Sologub, O.; Scheidt, E.-W.; Gonçalves, A. P.; Bursik, J.; Wolf, W.; Reith, D.; Blaas-Schenner, C.; Moser, R.; Podloucky, R.; Rogl, P.

    2015-07-01

    Investigating the phase relations of the system {Th ,U } -Pt-B at 900 °C the formation of two compounds has been observed: cubic ThPt3B with P m 3 ¯m structure as a representative of the perovskites, and tetragonal UPt3B with P 4 m m structure being isotypic to the noncentrosymmetric structure of CePt3B . The crystal structures of the two compounds are defined by combined x-ray diffraction and transmission electron microscopy. Characterization of physical properties for ThPt3B reveals a superconducting transition at 0.75 K and an upper critical field at T =0 exceeding 0.4 T. For nonsuperconducting UPt3B a metallic resistivity behavior was found in the entire temperature range; at very low temperatures spin fluctuations become evident and the resistivity ρ (T ) follows non-Fermi liquid characteristics, ρ =ρ0+A T n with n =1.6 . Density functional theory (DFT) calculations were performed for both compounds for both types of structures. They predict that the experimentally claimed cubic structure of ThPt3B is thermodynamically not stable in comparison to a tetragonal phase, with a very large enthalpy difference of 25 kJ/mol, which cannot be explained by the formation energy of B vacancies. However, the presence of random boron vacancies possibly stabilizes the cubic structure via a local strain compensation mechanism during the growth of the crystal. For UPt3B the DFT results agree well with the experimental findings.

  16. The influence of deposits on palladium cathodes in D[sub 2]O electrolysis

    SciTech Connect

    Lihn, C.J.; Wan, C.C.; Wan, C.M.; Perng, T.P. )

    1993-11-01

    Platinum and silicon have been found deposited on the palladium cathode during the electrolysis of a 0.1 M LiOD solution with a platinum anode in a glass cell. Various techniques including surface analysis, cyclic voltammetry, and electrochemical permeation were used to study the surface deposits, electrochemical deuterium-sorption behavior, and permeation rate of deuterium into palladium, respectively. It was shown that palladium cathodes were contaminated by platinum and silicon deposits after a certain period of electrolysis. These deposits could affect the electrochemical processes during electrolysis. The contamination may be a cause of the sporadic results reported in [open quotes]cold fusion[close quotes] research. 18 refs., 15 figs.

  17. Gold–promoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction

    SciTech Connect

    Kuttiyiel, Kurian A.; Sasaki, Kotaro; Su, Dong; Wu, Lijun; Zhu, Yimei; Adzic, Radoslav R.

    2014-11-06

    Considerable efforts to make palladium and palladium alloys active catalysts and a possible replacement for platinum have had a marginal success. Here, we report on a structurally ordered Au₁₀Pd₄₀Co₅₀ catalyst that exhibits comparable activity to conventional platinum catalysts in both acid and alkaline media. Electron microscopic techniques demonstrate that via addition of gold atoms PdCo nanoparticles undergo at elevated temperatures an atomic structural transition from core-shell to a rare intermetallic ordered structure with twin boundaries forming stable {111}, {110} and {100} facets. The superior stability of this catalyst compared to platinum after 10,000 potential cycles in alkaline media is attributed to the atomic structural order of PdCo nanoparticles along with protective effect of clusters of gold atoms on the surface. This strategy of making ordered palladium intermetallic alloy nanoparticles can be used in diverse heterogeneous catalysis where particle size and structural stability matters.

  18. Noble metals: a toxicological appraisal of potential new environmental contaminants.

    PubMed Central

    Brubaker, P E; Moran, J P; Bridbord, K; Hueter, F G

    1975-01-01

    The public health benefits expected by reducing known hazardous emissions from mobile sources should not be compromised by increasing levels of other potentially hazardous unregulated emissions. Catalytic converters are going to be used to meet the statutory requirements on carbon monoxide and hydrocarbon emissions from light duty motor vehicles. Platinum and palladium metals are the catalytic materials to be used in these emission control devices. Preliminary experimental evidence and analysis of the impact of these control devices on the future use and demand for platinum indicates that this metal may appear at detectable levels in the environment by the end of this decade. At the present time, platinum and palladium are not present in the public environment and represent potentially new environmental contaminants as a consequence of use of this new abatement control technology. There is relatively little information available to adequately assess the potential health hazards that may be associated with exposure to these metals and their compounds. Analysis of the environmental problems and concerns associated with possible new environmental contaminants are discussed. Limited estimates are made on community exposure by use of a meteorological dispersion model. Biodegradation potential and attention is also given to the limited toxicological information available. PMID:50939

  19. Platinum-group element, Gold, Silver and Base Metal distribution in compositionally zoned sulfide droplets from the Medvezky Creek Mine, Noril'sk, Russia

    USGS Publications Warehouse

    Barnes, S.-J.; Cox, R.A.; Zientek, M.L.

    2006-01-01

    Concentrations of Ag, Au, Cd, Co, Re, Zn and Platinum-group elements (PGE) have been determined in sulfide minerals from zoned sulfide droplets of the Noril'sk 1 Medvezky Creek Mine. The aims of the study were; to establish whether these elements are located in the major sulfide minerals (pentlandite, pyrrhotite, chalcopyrite and cubanite), to establish whether the elements show a preference for a particular sulfide mineral and to investigate the model, which suggests that the zonation in the droplets is caused by the crystal fractionation of monosulfide solid solution (mss). Nickel, Cu, Ag, Re, Os, Ir, Ru, Rh and Pd, were found to be largely located in the major sulfide minerals. In contrast, less than 25% of the Au, Cd, Pt and Zn in the rock was found to be present in these sulfides. Osmium, Ir, Ru, Rh and Re were found to be concentrated in pyrrhotite and pentlandite. Palladium and Co was found to be concentrated in pentlandite. Silver, Cd and Zn concentrations are highest in chalcopyrite and cubanite. Gold and platinum showed no preference for any of the major sulfide minerals. The enrichment of Os, Ir, Ru, Rh and Re in pyrrhotite and pentlandite (exsolution products of mss) and the low levels of these elements in the cubanite and chalcopyrite (exsolution products of intermediate solid solution, iss) support the mss crystal fractionation model, because Os, Ir, Ru, Rh and Re are compatible with mss. The enrichment of Ag, Cd and Zn in chalcopyrite and cubanite also supports the mss fractionation model these minerals are derived from the fractionated liquid and these elements are incompatible with mss and thus should be enriched in the fractionated liquid. Gold and Pt do not partition into either iss or mss and become sufficiently enriched in the final fractionated liquid to crystallize among the iss and mss grains as tellurides, bismithides and alloys. During pentlandite exsolution Pd appears to have diffused from the Cu-rich portion of the droplet into

  20. Catalytic Activity of Platinum Monolayer on Iridium and Rhenium Alloy Nanoparticles for the Oxygen Reduction Reaction

    SciTech Connect

    Karan, Hiroko I.; Sasaki, Kotaro; Kuttiyiel, Kurian; Farberow, Carrie A.; Mavrikakis, Manos; Adzic, Radoslav R.

    2012-05-04

    A new type of electrocatalyst with a core–shell structure that consists of a platinum monolayer shell placed on an iridium–rhenium nanoparticle core or platinum and palladium bilayer shell deposited on that core has been prepared and tested for electrocatalytic activity for the oxygen reduction reaction. Carbon-supported iridium–rhenium alloy nanoparticles with several different molar ratios of Ir to Re were prepared by reducing metal chlorides dispersed on Vulcan carbon with hydrogen gas at 400 °C for 1 h. These catalysts showed specific electrocatalytic activity for oxygen reduction reaction comparable to that of platinum. The activities of PtML/PdML/Ir2Re1, PtML/Pd2layers/Ir2Re1, and PtML/Pd2layers/Ir7Re3 catalysts were, in fact, better than that of conventional platinum electrocatalysts, and their mass activities exceeded the 2015 DOE target. Our density functional theory calculations revealed that the molar ratio of Ir to Re affects the binding strength of adsorbed OH and, thereby, the O2 reduction activity of the catalysts. The maximum specific activity was found for an intermediate OH binding energy with the corresponding catalyst on the top of the volcano plot. The monolayer concept facilitates the use of much less platinum than in other approaches. Finally, the results with the PtML/PdML/Ir2Re electrocatalyst indicate that it is a promising alternative to conventional Pt electrocatalysts in low-temperature fuel cells.

  1. Interaction of Some Non-Platinum Metal Anticancer Complexes With Nucleotides and DNA and The Two-Pole Complementary Principle (TPCP) Arising Therefrom

    PubMed Central

    Guo, Maolin

    1998-01-01

    The binding modes of some non-platinum metal anticancer complexes, Cp2TiCl2, Cp2ZrCl2, (CH3)2SnCl2, (C2H5)2SnCl2, (C2H5)2SnCl2(phen) (phen=Phenanthroline) and cis-RuIICl2(DMSO)3 (DMSO) (cis-RDT) with nucleotides and DNA in aqueous solution at physiological pH values were investigated by various modern techniques. 5'-dGMP with Cp2TiCl2 or cis-RDT forms chelate complexes in which both N7 and phosphate of dGMP bind to the metal center. Whereas Cp2ZrCl2 and all the diorganotin compounds can bind dGMP only via the phosphate group. The investigations of the interactions between Cp2TiCl2 or (C2H5)2SnCl2 and DNA indicate that there are two types of binding sites on DNA for Cp2TiCl2, i.e., the base nitrogen rings and the phosphate group, while (C2H5)2SnCl2 can bind to DNA only via the phosphate group. At last, by carefully comparing and analysing the binding modes-activity relationships of the above anticancer complexes and other non-platinum and platinum anticancer complexes, a hypothesis named “Two-Pole Complementary Principle” was put forward. PMID:18475823

  2. Europium palladium hydrides.

    PubMed

    Kohlmann, H; Fischer, H E; Yvon, K

    2001-05-21

    The first fully structurally characterized ternary europium palladium hydrides (deuterides) are reported. The most Eu rich compound is Eu(2)PdD(4). Its beta-K(2)SO(4) type structure (space group Pnma, a = 749.47(1) pm, b = 543.34(1) pm, c = 947.91(1) pm, Z = 4) contains tetrahedral 18-electron [PdD(4)](4)(-) complex anions and divalent Eu cations. The compound is presumably nonmetallic and shows paramagnetic behavior (mu(eff) = 8.0(2) mu(B)) with ferromagnetic ordering at T(C) = 15.1(4) K. A metallic compound at intermediate Eu content is EuPdD(3). It crystallizes with the cubic perovskite structure (space group Pm3m, a = 380.01(2) pm, Z = 1) in which palladium is octahedrally surrounded by fully occupied deuterium sites. Metallic hydrides at low Eu content form by reversible hydrogen absorption of intermetallic EuPd(2) (Fd3m, a = 775.91(1) pm, Z = 8). Depending on the experimental conditions at least three phases with distinctly different hydrogen contents x exist: EuPd(2)H(x) ( approximately )(0.1) (a = 777.02(2) pm, Z = 8, T = 298 K, p(H(2)) = 590 kPa), EuPd(2)H(x) ( approximately )(1.5) (a = 794.47(5) pm, Z = 8, T = 298 K, p(H(2)) = 590 kPa), and EuPd(2)H(x) ( approximately )(2.1) (a = 802.1(1) pm, Z = 8, T = 350 K, p(H(2)) = 610 kPa). All crystallize with cubic Laves phase derivative structures and have presumably disordered hydrogen distributions.

  3. Facile preparation of an immobilized surfactant-free palladium nanocatalyst for metal hydride trapping: a novel sensing platform for TXRF analysis.

    PubMed

    Romero, V; Costas-Mora, I; Lavilla, I; Bendicho, C

    2015-02-07

    In this work, a simple route for the synthesis of surfactant-free immobilized palladium nanoparticles (Pd NPs) and their use as effective nanocatalysts for metal hydride decomposition is described. A mixture of ethanol : water was used as the reducing agent. Ethanol was added in a large excess to reduce the ionic Pd and stabilize the obtained Pd NPs. Ethanol is adsorbed on the surface of Pd allowing steric stabilization. Freshly prepared Pd NPs were immobilized onto quartz substrates modified with 3-mercaptopropyltrimethoxysilane. Pd interacts with the thiol group of the alkoxysilane that is adsorbed on the surface of NPs without the dissociation of the S-H bond. Different parameters affecting the synthesis of Pd NPs and their immobilization onto quartz substrates were evaluated. A comprehensive characterization of the synthesized Pd NPs was carried out by transmission electron microscopy (TEM), whereas total reflection X-ray fluorescence (TXRF) spectrometry was applied in order to evaluate their catalytic activity for solid-gas reactions. Immobilized Pd NPs were applied as nanocatalysts for the dissociative chemisorption of arsine at room temperature, yielding the formation of As-Pd bonds. Quartz substrates coated with nanosized Pd could be used as novel sensing platforms for total reflection X-ray fluorescence analysis. Arsenic can be detected in situ in natural water with a limit of detection of 0.08 μg L(-1).

  4. Properties and behavior of the platinum group metals in the glass resulting from the vitrification of simulated nuclear fuel reprocessing waste

    SciTech Connect

    Krause, C. ); Luckscheiter, B. )

    1991-12-01

    Two types of platinum group metal particles were found in borosilicate nuclear waste glasses: needle-shaped RuO{sub 2} particles and spherical PdRh{sub {ital x}}Te{sub {ital y}} alloys. They form a dense sediment of high electrical conductivity and relatively high viscosity at the bottom of the ceramic melting furnace. The sludge shows a non-Newtonian flow behavior. The viscosity and conductivity of the sludge depend not only on the platinum group metal content but also on the texture and morphology of the RuO{sub 2} particles. RuO{sub 2} forms long, needle-shaped crystals which are caused by alkalimolybdate salt melts that formed in the calcine layer. The salt melts oxidize the Ru present as small RuO{sub 2} particles after calcination to higher oxidation states. Ruthenium (VI) compounds are formed, presumably, which are not stable with respect to RuO{sub 2} under the melting conditions. RuO{sub 2} precipitates and crystallizes into long, needle-like particles.

  5. Scalable synthesis of nanoporous palladium powders.

    SciTech Connect

    Robinson, David B.; Tran, Kim L.; Clift, W. Miles; Arslan Ilke; Langham, Mary Elizabeth; Ong, Markus D.; Fares, Stephen James

    2009-03-01

    Nanoporous palladium powders are synthesized on milligram to gram scales by chemical reduction of tetrachloro complexes by ascorbate in a concentrated aqueous surfactant at temperatures between -20 and 30 C. Particle diameters are approximately 50 nm, and each particle is perforated by 3 nm pores, as determined by electron tomography. These materials are of potential value for storage of hydrogen isotopes and electrical charge; producing them at large scales in a safe and efficient manner will help realize this. A slightly modified procedure also results in nanoporous platinum.

  6. Electronic transitions of palladium dimer

    SciTech Connect

    Qian, Yue; Ng, Y. W.; Chen, Zhihua; Cheung, A. S.-C.

    2013-11-21

    The laser induced fluorescence spectrum of palladium dimer (Pd{sub 2}) in the visible region between 480 and 700 nm has been observed and analyzed. The gas-phase Pd{sub 2} molecule was produced by laser ablation of palladium metal rod. Eleven vibrational bands were observed and assigned to the [17.1] {sup 3}II{sub g} - X{sup 3}Σ{sub u}{sup +} transition system. The bond length (r{sub o}) and vibrational frequency (ΔG{sub 1/2}) of the ground X{sup 3}Σ{sub u}{sup +} state were determined to be 2.47(4) Å and 211.4(5) cm{sup −1}, respectively. A molecular orbital energy level diagram was used to understand the observed ground and excited electronic states. This is the first gas-phase experimental investigation of the electronic transitions of Pd{sub 2}.

  7. Synthesis of novel palladium(0) nanocatalysts by microorganisms from heavy-metal-influenced high-alpine sites for dehalogenation of polychlorinated dioxins.

    PubMed

    Schlüter, Michael; Hentzel, Thomas; Suarez, Christian; Koch, Mandy; Lorenz, Wilhelm G; Böhm, Leonard; Düring, Rolf-Alexander; Koinig, Karin A; Bunge, Michael

    2014-12-01

    In a search for new aqueous-phase systems for catalyzing reactions of environmental and industrial importance, we prepared novel biogenerated palladium (Pd) nanocatalysts using a "green" approach based on microorganisms isolated from high-alpine sites naturally impacted by heavy metals. Bacteria and fungi were enriched and isolated from serpentinite-influenced ponds (Totalp region, Parsenn, near Davos, Graubünden, Switzerland). Effects on growth dynamics were monitored using an automated assay in 96-well microtiter plates, which allowed for simultaneous cultivation and on-line analysis of Pd(II)- and Ni(II)-mediated growth inhibition. Microorganisms from Totalp ponds tolerated up to 3mM Pd(II) and bacterial isolates were selected for cultivation and reductive synthesis of Pd(0) nanocatalysts at microbial interfaces. During reduction of Pd(II) with formate as the electron donor, Pd(0) nanoparticles were formed and deposited in the cell envelope. The Pd(0) catalysts produced in the presence of Pd(II)-tolerant Alpine Pseudomonas species were catalytically active in the reductive dehalogenation of model polychlorinated dioxin congeners. This is the first report which shows that Pd(0) synthesized in the presence of microorganisms catalyzes the reductive dechlorination of polychlorinated dibenzo-p-dioxins (PCDDs). Because the "bioPd(0)" catalyzed the dechlorination reactions preferably via non-lateral chlorinated intermediates, such a pathway could potentially detoxify PCDDs via a "safe route". It remains to be determined whether the microbial formation of catalytically active metal catalysts (e.g., Zn, Ni, Fe) occurs in situ and whether processes involving such catalysts can alter the fate and transport of persistent organic pollutants (POPs) in Alpine habitats.

  8. Electrothermal atomisation atomic absorption conditions and matrix modifications for determining antimony, arsenic, bismuth, cadmium, gallium, gold, indium, lead, molybdenum, palladium, platinum, selenium, silver, tellurium, thallium and tin following back-extraction of organic aminohalide extracts

    USGS Publications Warehouse

    Clark, J.R.

    1986-01-01

    A multi-element organic-extraction and back-extraction procedure, that had been developed previously to eliminate matrix interferences in the determination of a large number of trace elements in complex materials such as geological samples, produced organic and aqueous solutions that were complex. Electrothermal atomisation atomic absorption conditions and matrix modifications have been developed for 13 of the extracted elements (Ag, As, Au, Bi, Cd, Ga, In, Pb, Sb, Se, Sn, Te and Tl) that enhance sensitivity, alleviate problems resulting from the complex solutions and produce acceptable precision. Platinum, Pd and Mo can be determined without matrix modification directly on the original unstripped extracts.

  9. Palladium alloys for biomedical devices.

    PubMed

    Wataha, John C; Shor, Kavita

    2010-07-01

    In the biomedical field, palladium has primarily been used as a component of alloys for dental prostheses. However, recent research has shown the utility of palladium alloys for devices such as vascular stents that do not distort magnetic resonance images. Dental palladium alloys may contain minor or major percentages of palladium. As a minor constituent, palladium hardens, strengthens and increases the melting range of alloys. Alloys that contain palladium as the major component also contain copper, gallium and sometimes tin to produce strong alloys with high stiffness and relatively low corrosion rates. All current evidence suggests that palladium alloys are safe, despite fears about harmful effects of low-level corrosion products during biomedical use. Recent evidence suggests that palladium poses fewer biological risks than other elements, such as nickel or silver. Hypersensitivity to palladium alone is rare, but accompanies nickel hypersensitivity 90-100% of the time. The unstable price of palladium continues to influence the use of palladium alloys in biomedicine.

  10. Accumulation and distribution characteristics of platinum group elements in roadside dusts in Beijing, China.

    PubMed

    Gao, Bo; Yu, Yanke; Zhou, Huaidong; Lu, Jin

    2012-06-01

    The concentrations, distribution, and accumulation of platinum group elements (PGEs) were investigated in roadside dusts collected in four different foundational areas in Beijing during February to May 2010. The results showed that PGE levels in all samples were above the average upper crust values, with mean concentrations of 57.5 ng · g(-1) Pd, 28.2 ng · g(-1) Pt, and 9.8 ng · g(-1) Rh, respectively. Palladium concentration has increased rapidly in recent years. The rank of PGE levels in four different functional regions for roadside dusts was: heavy density traffic area > residential area > educational area > tourism area. Palladium, Pt, and Rh concentrations in dusts showed strong positive correlations, indicating a common traffic-related source of these metals. Meanwhile, PGEs in these samples were not correlated with other traffic-related metals except for Cr. The average PGE ratios of road dusts from Beijing were consistent with those in Germany and Western Australia, but lower than those in the United States and Mexico, indicating that various catalyst productions were used in different countries. In addition, grain-size partitioning of PGEs in dusts indicated that concentrations of PGEs differed from one particle size to another. The coarse fraction had higher PGE concentrations than the fine fraction in roadside dusts. These results showed that autocatalyst PGE contamination estimates in the environment would be significantly underestimated if only a fine-grain size fraction (<0.063 mm) is analyzed. Copyright © 2012 SETAC.

  11. Hydrogenation of nitrotoluene using palladium supported on chitosan hollow fiber: catalyst characterization and influence of operative parameters studied by experimental design methodology.

    PubMed

    Blondet, Francisco Peirano; Vincent, Thierry; Guibal, Eric

    2008-07-01

    The strong affinity of chitosan for metal ions and more specifically for precious metals such as palladium and platinum has focused the interest on using this biopolymer as a support for catalytic metals. The manufacturing of hollow chitosan fibers, softly cross-linked with glutaraldehyde, followed by palladium sorption at pH 2 in HCl solutions and further reduction using hydrogen gas, opened the route for the design of a new continuous catalytic system. This material was used for the hydrogenation of nitrotoluene, which was converted into o-toluidine, in methanol solutions. The substrate was circulated inside the lumen of the fiber, while the hydrogen donor (hydrogen gas) was maintained at constant pressure in the outlet compartment of the reactor. Several parameters (substrate concentration, metal content in the fiber, and flow rate) have been tested for their impact on catalytic performance, measured by the turnover frequency (TOF), conversion yield or o-toluidine production, using a surface response methodology for the optimization of the process. Metal content in the fiber revealed a critical parameter; the influence of this parameter was extensively studied through the structural characterization of the fibers using XPS analysis (oxidation state of Pd), X-ray diffraction analysis (size of Pd crystals), TEM analysis (size and distribution of Pd crystals), and diffusion profiles (porosity) in order to correlate catalytic performance to fiber characterization.

  12. Adhesive performance of silver-palladium-copper-gold alloy and component metals bonded with organic sulfur-based priming agents and a tri-n-butylborane initiated luting material.

    PubMed

    Yamashita, Miyuki; Koizumi, Hiroyasu; Ishii, Takaya; Nakayama, Daisuke; Oba, Yusuke; Matsumura, Hideo

    2013-01-01

    The purpose of the current study was to evaluate the effect of thione-based metal priming agents on the adhesive behavior of a Ag-Pd-Cu-Au alloy and component metals bonded with an acrylic resin. Disk specimens (10 mm in diameter by 3 mm thick) were prepared from a silver-palladium-copper-gold (Ag-Pd-Cu-Au) alloy (Castwell M.C.12), high-purity silver, palladium, copper and gold. Four single-liquid priming agents containing organic sulfur compound (Alloy Primer, Metaltite, M.L. Primer and V-Primer) and three acidic priming agents (All Bond II Primer B, Estenia Opaque Primer and Super-Bond Liquid) were assessed. The metal specimens were flat-ground with abrasive papers, primed with one of the agents and bonded with a tri-n-butylborane initiated resin. The shear bond strengths were determined both before and after repeated thermocycling (5°C and 55°C, 1 min each, 20,000 cycles). The results were statistically analyzed with a non-parametric procedure (p = 0.05 level). The post-thermocycling bond strengths in MPa (median; n = 11) associated with the Alloy Primer, Metaltite, M.L. Primer and V-Primer materials were, respectively, 20.8, 22.8, 17.8 and 18.4 for the Ag-Pd-Cu-Au alloy; 19.6, 21.9, 14.4 and 20.1 for silver; 5.4, 4.5, 12.8 and 5.3 for palladium; 17.1, 19.2, 0.7 and 6.6 for copper; and 18.5, 17.7, 22.8 and 15.4 for gold. It can be concluded that the use of the four priming agents, which are based on organic sulfur compounds, effectively enhanced bonding to the Ag-Pd-Cu-Au alloy and the component metals, although the bonding performance varied among the priming agents and metal elements. The priming agents appeared to have more of an effect on the alloy, silver and gold than on the palladium and copper.

  13. Failure mechanism characterization of platinum alloy

    NASA Technical Reports Server (NTRS)

    Rosen, J. M.; Mcfarlen, W. T.

    1986-01-01

    This article describes procedures and results of testing performed on a platinum/10-percent rhodium, thin-wall tubular product. The purpose of the testing was to develop exemplar SEM fractographs to be used to characterize failures under various environmental conditions. Conditions evaluated for the platinum alloys included high temperature, hydrogen environment, braze metal contamination, and cyclic loading.

  14. Experimental observations on noble metal nanonuggets and Fe-Ti oxides, and the transport of platinum group elements in silicate melts

    NASA Astrophysics Data System (ADS)

    Anenburg, Michael; Mavrogenes, John A.

    2016-11-01

    Platinum group element (PGE) nanonuggets are a nuisance in experimental studies designed to measure solubility or partitioning of noble metals in silicate melts. Instead of treating nanonuggets as experimental artifacts, we studied their behaviour motivated by recent discoveries of PGE nanonuggets in a variety of natural settings. We used an experimental setup consisting of AgPd, Pt or AuPd capsules and Fe(-Ti) oxide-saturated hydrous peralkaline silicate melts to maximise nanonugget production. TABS (Te, As, Bi, Sb, Sn) commonly occur in PGM (platinum group minerals), prompting addition of Bi to our experiments to investigate its properties as well. Three-dimensional optical examination by 100× objective and immersion oil reveals variable colour which correlates with nanonugget size and shape due to plasmon resonance effects. We observe two textural types: (1) intermediate-sized nanonuggets dispersed in the glass and adhering to oxides, and (2) abundant fine nanonuggets dispersed in the glass with coarse euhedral crystals in contact with oxides. Slow cooling removes dispersed nanonuggets and greatly coarsens existing oxide-associated metal crystals. Nanonugget-free halos are commonly observed around oxide grains. All metal phases are composed of major (Ag, Pd) and trace (Pt, Ir, Au) capsule material. Our results show reduction processes, imposed by growing oxides, causing local metal saturation in the oxide rich zones with preferential nucleation on smaller oxide grains. The redox gradient then blocks additional metals from diffusing into oxide rich zones, forming halos. As the entire experimental charge is reduced throughout the run, nanonuggets form in the distal glass. Bismuth contents of metal phases do not depend on Bi2O3 amounts dissolved in the melt. Further PGM crystallisation consumes nanonuggets as feedstock. We conclude that the appearance of metallic PGE phases happens in two stages: first as nanonuggets and then as larger PGM. Once formed

  15. The friction behavior of semiconductors Si and GaAs in contact with pure metals

    NASA Technical Reports Server (NTRS)

    Mishina, H.

    1984-01-01

    The friction behavior of the semiconductors silicon and gallium arsenide in contact with pure metals was studied. Five transition and two nontransition metals, titanium, tantalum, nickel, palladium, platinum, copper, and silver, slid on a single crystal silicon (111) surface. Four metals, indium, nickel, copper and silver, slid on a single crystal gallium arsenide (100) surface. Experiments were conducted in room air and in a vacuum of 10 to the minus 7th power N/sq cm (10 to the minus 9th power torr). The results indicate that the sliding of silicon on the transition metals exhibits relatively higher friction than for the nontransition metals in contact with silicon. There is a clear correlation between friction and Schottky barrier height formed at the metal silicon interface for the transition metals. Transition metals with a higher barrier height on silicon had a lower friction. The same effect of barrier height was found for the friction of gallium arsenide in contact with metals.

  16. Resolving Electrode Morphology’s Impact on Platinum Group Metal-Free Cathode Performance Using Nano-CT of 3D Hierarchical Pore and Ionomer Distribution

    SciTech Connect

    Komini Babu, Siddharth; Chung, Hoon T.; Zelenay, Piotr; Litster, Shawn

    2016-11-02

    This paper reports on the characterization of polymer electrolyte fuel cell (PEFC) cathodes featuring a platinum group metal-free (PGM-free) catalyst using nano-scale resolution X-ray computed tomography (nano-CT) and morphological analysis. PGM-free PEFC cathodes have gained significant interest in the past decade since they have the potential to dramatically reduce PEFC costs by eliminating the large platinum (Pt) raw material cost. However, several challenges remain before they are commercially viable. Since these catalysts have lower volumetric activity, the PGM-free cathodes are thicker and are subject to increased gas and proton transport resistances that reduce the performance. To better understand the efficacy of the catalyst and improve electrode performance, a detailed understanding the correlation between electrode fabrication, morphology, and performance is crucial. In this work, the pore/solid structure and the ionomer distribution was resolved in three dimensions (3D) using nano-CT for three PGM-free electrodes of varying Nafion® loading. The associated transport properties were evaluated from pore/particlescale simulations within the nano-CT imaged structure. These characterizations are then used to elucidate the microstructural origins of the dramatic changes in fuel cell performance with varying Nafion® ionomer loading. We show that this is primarily a result of distinct changes in ionomer’s spatial distribution. The significant impact of electrode morphology on performance highlights the importance of PGM-free electrode development in concert with efforts to improve catalyst activity and durability.

  17. Innovative Use of Palladium Compounds To Selectively Detect Live Enterobacteriaceae in Milk by PCR

    PubMed Central

    Iwatsuki, Kei-ji

    2016-01-01

    ABSTRACT Ethidium monoazide and propidium monoazide (EMA and PMA) have been used in combination with PCR for more than a decade to facilitate the discrimination of live and dead bacteria (LD discrimination). These methods, however, require many laborious procedures, including the use of a darkroom. Here, we demonstrate an innovative use of palladium compounds involving lower limits of detection and quantification of targeted live cells, fewer laborious procedures, lower costs, and potentially higher-throughput analysis than the use of EMA and PMA. We have also recently reported platinum compounds for LD discrimination, but platinum compounds carry costs that are 3 times higher because of the requirement for much larger amounts for LD discrimination than palladium compounds. Palladium compounds can penetrate dead (compromised) but not live bacteria and can be chelated primarily by chromosomal DNA and cell wall transmembrane proteins, with small amounts of DNA-binding proteins in vivo. The new mechanism for palladium compounds is obviously different from that of platinum compounds, which primarily target DNA. Combining palladium compounds with PCR (Pd-PCR) in water resulted in discrimination between live and dead Enterobacteriaceae bacteria that was much clearer than that seen with the PMA method. Pd-PCR correlated with reference plating or with the currently used PMA-PCR method for pasteurized milk, based on EN ISO 16140:2003 validation. Pd-PCR enabled us to specifically detect and assay viable Enterobacteriaceae cells at concentrations of 5 to 10 CFU/ml in milk while following U.S./EU regulations after a 4.5-h process in a typical laboratory exposed to natural or electric light, as specified by U.S./EU regulations. IMPORTANCE Ethidium monoazide and propidium monoazide (EMA and PMA) facilitate the discrimination of live and dead bacteria (LD discrimination). These methods, however, require many laborious procedures, including the use of a darkroom. Here, we

  18. Facile preparation of an immobilized surfactant-free palladium nanocatalyst for metal hydride trapping: a novel sensing platform for TXRF analysis

    NASA Astrophysics Data System (ADS)

    Romero, V.; Costas-Mora, I.; Lavilla, I.; Bendicho, C.

    2015-01-01

    In this work, a simple route for the synthesis of surfactant-free immobilized palladium nanoparticles (Pd NPs) and their use as effective nanocatalysts for metal hydride decomposition is described. A mixture of ethanol : water was used as the reducing agent. Ethanol was added in a large excess to reduce the ionic Pd and stabilize the obtained Pd NPs. Ethanol is adsorbed on the surface of Pd allowing steric stabilization. Freshly prepared Pd NPs were immobilized onto quartz substrates modified with 3-mercaptopropyltrimethoxysilane. Pd interacts with the thiol group of the alkoxysilane that is adsorbed on the surface of NPs without the dissociation of the S-H bond. Different parameters affecting the synthesis of Pd NPs and their immobilization onto quartz substrates were evaluated. A comprehensive characterization of the synthesized Pd NPs was carried out by transmission electron microscopy (TEM), whereas total reflection X-ray fluorescence (TXRF) spectrometry was applied in order to evaluate their catalytic activity for solid-gas reactions. Immobilized Pd NPs were applied as nanocatalysts for the dissociative chemisorption of arsine at room temperature, yielding the formation of As-Pd bonds. Quartz substrates coated with nanosized Pd could be used as novel sensing platforms for total reflection X-ray fluorescence analysis. Arsenic can be detected in situ in natural water with a limit of detection of 0.08 μg L-1.In this work, a simple route for the synthesis of surfactant-free immobilized palladium nanoparticles (Pd NPs) and their use as effective nanocatalysts for metal hydride decomposition is described. A mixture of ethanol : water was used as the reducing agent. Ethanol was added in a large excess to reduce the ionic Pd and stabilize the obtained Pd NPs. Ethanol is adsorbed on the surface of Pd allowing steric stabilization. Freshly prepared Pd NPs were immobilized onto quartz substrates modified with 3-mercaptopropyltrimethoxysilane. Pd interacts with the thiol

  19. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy

    PubMed Central

    Zheng, Jie; Sheng, Wenchao; Zhuang, Zhongbin; Xu, Bingjun; Yan, Yushan

    2016-01-01

    Understanding how pH affects the activity of hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) is key to developing active, stable, and affordable HOR/HER catalysts for hydroxide exchange membrane fuel cells and electrolyzers. A common linear correlation between hydrogen binding energy (HBE) and pH is observed for four supported platinum-group metal catalysts (Pt/C, Ir/C, Pd/C, and Rh/C) over a broad pH range (0 to 13), suggesting that the pH dependence of HBE is metal-independent. A universal correlation between exchange current density and HBE is also observed on the four metals, indicating that they may share the same elementary steps and rate-determining steps and that the HBE is the dominant descriptor for HOR/HER activities. The onset potential of CO stripping on the four metals decreases with pH, indicating a stronger OH adsorption, which provides evidence against the promoting effect of adsorbed OH on HOR/HER. PMID:27034988

  20. Ultraviolet Spectroscopy of Metal-Poor Stars: New Detections of Phosphorus, Germanium, Arsenic, Selenium, Cadmium, Tellurium, Lutetium, Osmium, Iridium, Platinum, Gold, and More!

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.

    2015-01-01

    Ultraviolet spectroscopy with HST/STIS provides a 30% increase in the number of elements that can be detected in metal-poor stars. Although nearly every element from hydrogen through bismuth is probably present in most metal-poor stars, not all elements can be detected. The resonance lines of the dominant species of some elements are only found in the UV in late-type stars. The chemical compositions of these stars reflect the history of stellar nucleosynthesis from the first stars to today. Here, I present a summary of recent work that has expanded the chemical inventory in metal-poor stars using UV spectroscopy conducted using HST/STIS. The highlights include new detections of phosphorus, germanium, arsenic, selenium, cadmium, tellurium, lutetium, osmium, iridium, platinum, and gold in metal-poor stars. These detections reveal new insights into stellar nucleosynthesis in the earliest generations of massive stars, provide new constraints on the r-process, and open new channels for chemically-tagging stars that have assembled to form the Milky Way stellar halo.

  1. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy.

    PubMed

    Zheng, Jie; Sheng, Wenchao; Zhuang, Zhongbin; Xu, Bingjun; Yan, Yushan

    2016-03-01

    Understanding how pH affects the activity of hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) is key to developing active, stable, and affordable HOR/HER catalysts for hydroxide exchange membrane fuel cells and electrolyzers. A common linear correlation between hydrogen binding energy (HBE) and pH is observed for four supported platinum-group metal catalysts (Pt/C, Ir/C, Pd/C, and Rh/C) over a broad pH range (0 to 13), suggesting that the pH dependence of HBE is metal-independent. A universal correlation between exchange current density and HBE is also observed on the four metals, indicating that they may share the same elementary steps and rate-determining steps and that the HBE is the dominant descriptor for HOR/HER activities. The onset potential of CO stripping on the four metals decreases with pH, indicating a stronger OH adsorption, which provides evidence against the promoting effect of adsorbed OH on HOR/HER.

  2. Transition-state metal aryl bond stability determines regioselectivity in palladium acetate mediated C-H bond activation of heteroarenes.

    PubMed

    Petit, Alban; Flygare, Josh; Miller, Alex T; Winkel, Gerrit; Ess, Daniel H

    2012-07-20

    Density functional calculations reveal that the stability of developing metal aryl bonds in Pd(II)-acetate C-H activation transition states determines regioselectivity in arene and heteroarene compounds. This kinetic-thermodynamic connection explains the general preference for activation of the strongest C-H bond and provides the possibility for regioselectivity prediction.

  3. Synthesis of palladium nanoparticles by sonochemical reduction of palladium(II) nitrate in aqueous solution.

    PubMed

    Nemamcha, Abderrafik; Rehspringer, Jean-Luc; Khatmi, Djameledine

    2006-01-12

    The sonochemical synthesis of stable palladium nanoparticles has been achieved by ultrasonic irradiation of palladium(II) nitrate solution. The starting solutions were prepared by the addition of different concentrations of palladium(II) nitrate in ethylene glycol and poly(vinylpyrrolidone) (PVP). The resulting mixtures were irradiated with ultrasonic 50 kHz waves in a glass vessel for 180 min. The UV-visible absorption spectroscopy and pH measurements revealed that the reduction of Pd(II) to metallic Pd has been successfully achieved and that the obtained suspensions have a long shelf life. The protective effect of PVP was studied using Fourier transform infrared (FT-IR) spectroscopy. It has been found that, in the presence of ethylene glycol, the stabilization of the nanoparticles results from the adsorption of the PVP chain on the palladium particle surface via the coordination of the PVP carbonyl group to the palladium atoms. The effect of the initial Pd(II) concentration on the Pd nanoparticle morphology has been investigated by transmission electron microscopy. It has been shown that the increase of the Pd(II)/PVP molar ratio from 0.13 x 10(-3) to 0.53 x 10(-3) decreases the number of palladium nanoparticles with a slight increase in particle size. For the highest Pd(II)/PVP value, 0.53 x 10(-3), the reduction reaction leads to the unexpected smallest nanoparticles in the form of aggregates.

  4. Direct Simulations of Coupled Transport and Reaction on Nano-Scale X-Ray Computed Tomography Images of Platinum Group Metal-Free Catalyst Cathodes

    SciTech Connect

    Ogawa, S.; Komini Babu, S.; Chung, H. T.; Zelenay, P.; Litster, S.

    2016-08-22

    The nano/micro-scale geometry of polymer electrolyte fuel cell (PEFC) catalyst layers critically affects cell performance. The small length scales and complex structure of these composite layers make it challenging to analyze cell performance and physics at the particle scale by experiment. We present a computational method to simulate transport and chemical reaction phenomena at the pore/particle-scale and apply it to a PEFC cathode with platinum group metal free (PGM-free) catalyst. Here, we numerically solve the governing equations for the physics with heterogeneous oxygen diffusion coefficient and proton conductivity evaluated using the actual electrode structure and ionomer distribution obtained using nano-scale resolution X-ray computed tomography (nano-CT). Using this approach, the oxygen concentration and electrolyte potential distributions imposed by the oxygen reduction reaction are solved and the impact of the catalyst layer structure on performance is evaluated.

  5. Effects of Sub-100 nm Platinum Metal Particle on the Acoustic Attenuation Properties of Silicone Rubber Lens for Medical Array Probe

    NASA Astrophysics Data System (ADS)

    Yamashita, Yohachi (John); Hosono, Yasuharu; Itsumi, Kazuhiro

    2006-05-01

    The acoustic attenuation properties of room temperature vulcanization (RTV) silicone rubber lenses with platinum (Pt) metal particle sizes ranging from 10 to 94 nm were investigated for the acoustic lens application for a medical ultrasound array probe. Pt particle size did not change their sound velocities, 858-861 m/s, but changed their acoustic attenuation property noticeably. RTV silicone rubber doped with the largest Pt particle, 94 nm, showed the largest attenuation, 2.24 dB/mmMHz, whereas, RTV silicone rubber doped with the smallest Pt particle, 10 nm, showed the smallest attenuation, 0.84 dB/mmMHz, with an acoustic impedance of 1.31 MRayls. The fine particle size with the application of a high-density dopant to RTV silicone rubber is important for realizing a low-acoustic-attenuation silicone lens for a probe for high-frequencies of higher than 5 MHz.

  6. Direct Simulations of Coupled Transport and Reaction on Nano-Scale X-Ray Computed Tomography Images of Platinum Group Metal-Free Catalyst Cathodes

    DOE PAGES

    Ogawa, S.; Komini Babu, S.; Chung, H. T.; ...

    2016-08-22

    The nano/micro-scale geometry of polymer electrolyte fuel cell (PEFC) catalyst layers critically affects cell performance. The small length scales and complex structure of these composite layers make it challenging to analyze cell performance and physics at the particle scale by experiment. We present a computational method to simulate transport and chemical reaction phenomena at the pore/particle-scale and apply it to a PEFC cathode with platinum group metal free (PGM-free) catalyst. Here, we numerically solve the governing equations for the physics with heterogeneous oxygen diffusion coefficient and proton conductivity evaluated using the actual electrode structure and ionomer distribution obtained using nano-scalemore » resolution X-ray computed tomography (nano-CT). Using this approach, the oxygen concentration and electrolyte potential distributions imposed by the oxygen reduction reaction are solved and the impact of the catalyst layer structure on performance is evaluated.« less

  7. Palladium deuteride formation in the cathode of an electrochemical cell: An in situ neutron diffraction study

    SciTech Connect

    Rotella, F.J.; Richardson, J.W. Jr.; Redey, L.; Felcher, G.P.; Hitterman, R.L.; Kleb, R.

    1991-12-31

    In this report, neutron diffraction of palladium cathodes is utilized to reveal palladium deuteride formation within the crystal structure of the metal. The experiment described in this report demonstrates the efficacy of neutron powder diffraction as a tool for structural studies of metal deuterides/hydrides and the feasibility of in situ diffraction measurements from a working electrochemical cell. (JL)

  8. Palladium deuteride formation in the cathode of an electrochemical cell: An in situ neutron diffraction study

    SciTech Connect

    Rotella, F.J.; Richardson, J.W. Jr.; Redey, L.; Felcher, G.P.; Hitterman, R.L.; Kleb, R.

    1991-01-01

    In this report, neutron diffraction of palladium cathodes is utilized to reveal palladium deuteride formation within the crystal structure of the metal. The experiment described in this report demonstrates the efficacy of neutron powder diffraction as a tool for structural studies of metal deuterides/hydrides and the feasibility of in situ diffraction measurements from a working electrochemical cell. (JL)

  9. Synthesis of metal silicide at metal/silicon oxide interface by electronic excitation

    SciTech Connect

    Lee, J.-G.; Nagase, T.; Yasuda, H.; Mori, H.

    2015-05-21

    The synthesis of metal silicide at the metal/silicon oxide interface by electronic excitation was investigated using transmission electron microscopy. A platinum silicide, α-Pt{sub 2}Si, was successfully formed at the platinum/silicon oxide interface under 25–200 keV electron irradiation. This is of interest since any platinum silicide was not formed at the platinum/silicon oxide interface by simple thermal annealing under no-electron-irradiation conditions. From the electron energy dependence of the cross section for the initiation of the silicide formation, it is clarified that the silicide formation under electron irradiation was not due to a knock-on atom-displacement process, but a process induced by electronic excitation. It is suggested that a mechanism related to the Knotek and Feibelman mechanism may play an important role in silicide formation within the solid. Similar silicide formation was also observed at the palladium/silicon oxide and nickel/silicon oxide interfaces, indicating a wide generality of the silicide formation by electronic excitation.

  10. Relaxation kinetics of the interaction between RNA and metal-intercalators: the Poly(A).Poly(U)/platinum-proflavine system.

    PubMed

    Biver, Tarita; Secco, Fernando; Venturini, Marcella

    2005-05-15

    The interactions of Poly(A).Poly(U) with the cis-platinum derivative of proflavine [{PtCl(tmen)}(2){HNC(13)H(7)(NHCH(2)CH(2))(2)}](+) (PRPt) and proflavine (PR) are investigated by spectrophotometry, spectrofluorimetry and T-jump relaxation at I=0.2M, pH 7.0, and T=25 degrees C. Base-dye interactions prevail at high RNA/dye ratio and binding isotherms analysis reveals that both dyes bind to Poly(A).Poly(U) according to the excluded site model (n=2). Only one relaxation effect is observed for the Poly(A).Poly(U)/PRPt system, whereas two effects are observed with Poly(A).Poly(U)/PR. The results agree with the sequence D+S <==> D, S <==> DS(I) <==> DS(II), where D,S is an external complex, DS(I) is a partially intercalated species, and DS(II) is the fully intercalated complex. Formation of DS(II) could be observed in the case of proflavine only. This result is interpreted by assuming that the platinum-containing residue of PRPt hinders the full intercalation of the acridine residue.

  11. Levels of platinum group metals in selected species (Sarotherodon melanotheron, Chonophorus lateristriga, Macrobrachium vollenhovenii and Crassostrea tulipa) in some estuaries and lagoons along the coast of Ghana.

    PubMed

    Essumang, D K; Adokoh, C K; Boamponsem, L

    2010-10-12

    The use of some biota as bioindicators of heavy metal pollution has been demonstrated as particularly adequate due to their capacity of bioconcentration. This study evaluated the levels of platinum group metals (PGMs) in some selected species along the coastal belt of Ghana, using the neutron activation analysis (NAA) method. The result was processed to evaluate pollution indices in order to map the distribution of the metals in those species in the lagoons and estuaries along the costal belt of Ghana. The analysis showed significant levels of all PGMs in blackchin tilapia (Sarotherodon melanotheron Cichlidae), brown goby (Chonophorus lateristriga Gobiidae), shrimp (Macrobrachium vollenhovenii Palaemonidae), and mangrove oysters (Crassostrea tulipa Ostreidae) in the lagoons and river Pra estuary. However, the oysters showed an elevated mean concentration of 0.13 μg/g (dry weight) Pd. From the pollution indices, most of the sampling sites registered mean contamination factor (CF) values between 1.20 and 3.00 for Pt, Pd, and Rh. The pollution load index (PLI) conducted also gave an average pollution index between 0.79 and 2.37, indicating progressive contamination levels. The results revealed that anthropogenic sources, industrial and hospital effluent, etc., together with vehicular emissions, could be the contributing factors to the deposition of PGMs along the Ghanaian coast.

  12. Nanostructuring of Palladium with Low-Temperature Helium Plasma.

    PubMed

    Fiflis, P; Christenson, M P; Connolly, N; Ruzic, D N

    2015-11-25

    Impingement of high fluxes of helium ions upon metals at elevated temperatures has given rise to the growth of nanostructured layers on the surface of several metals, such as tungsten and molybdenum. These nanostructured layers grow from the bulk material and have greatly increased surface area over that of a not nanostructured surface. They are also superior to deposited nanostructures due to a lack of worries over adhesion and differences in material properties. Several palladium samples of varying thickness were biased and exposed to a helium helicon plasma. The nanostructures were characterized as a function of the thickness of the palladium layer and of temperature. Bubbles of ~100 nm in diameter appear to be integral to the nanostructuring process. Nanostructured palladium is also shown to have better catalytic activity than not nanostructured palladium.

  13. Nanostructuring of Palladium with Low-Temperature Helium Plasma

    PubMed Central

    Fiflis, P.; Christenson, M.P.; Connolly, N.; Ruzic, D.N.

    2015-01-01

    Impingement of high fluxes of helium ions upon metals at elevated temperatures has given rise to the growth of nanostructured layers on the surface of several metals, such as tungsten and molybdenum. These nanostructured layers grow from the bulk material and have greatly increased surface area over that of a not nanostructured surface. They are also superior to deposited nanostructures due to a lack of worries over adhesion and differences in material properties. Several palladium samples of varying thickness were biased and exposed to a helium helicon plasma. The nanostructures were characterized as a function of the thickness of the palladium layer and of temperature. Bubbles of ~100 nm in diameter appear to be integral to the nanostructuring process. Nanostructured palladium is also shown to have better catalytic activity than not nanostructured palladium. PMID:28347109

  14. Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts.

    PubMed

    Cargnello, Matteo; Doan-Nguyen, Vicky V T; Gordon, Thomas R; Diaz, Rosa E; Stach, Eric A; Gorte, Raymond J; Fornasiero, Paolo; Murray, Christopher B

    2013-08-16

    Interactions between ceria (CeO2) and supported metals greatly enhance rates for a number of important reactions. However, direct relationships between structure and function in these catalysts have been difficult to extract because the samples studied either were heterogeneous or were model systems dissimilar to working catalysts. We report rate measurements on samples in which the length of the ceria-metal interface was tailored by the use of monodisperse nickel, palladium, and platinum nanocrystals. We found that carbon monoxide oxidation in ceria-based catalysts is greatly enhanced at the ceria-metal interface sites for a range of group VIII metal catalysts, clarifying the pivotal role played by the support.

  15. Control of Metal Nanocrystal Size Reveals Metal-Support Interface Role for Ceria Catalysts

    SciTech Connect

    Cargnello, M; Doan-Nguyen, VVT; Gordon, TR; Diaz, RE; Stach, EA; Gorte, RJ; Fornasiero, P; Murray, CB

    2013-08-15

    Interactions between ceria (CeO2) and supported metals greatly enhance rates for a number of important reactions. However, direct relationships between structure and function in these catalysts have been difficult to extract because the samples studied either were heterogeneous or were model systems dissimilar to working catalysts. We report rate measurements on samples in which the length of the ceria-metal interface was tailored by the use of monodisperse nickel, palladium, and platinum nanocrystals. We found that carbon monoxide oxidation in ceria-based catalysts is greatly enhanced at the ceria-metal interface sites for a range of group VIII metal catalysts, clarifying the pivotal role played by the support.

  16. Layer-type palladium phosphosulphide and its reduced graphene oxide composite as electrode materials for metal-ion batteries

    NASA Astrophysics Data System (ADS)

    Sarkar, Sujoy; Mukherjee, Debdyuti; Sampath, Srinivasan

    2017-09-01

    Ternary, layer-type, transition metal phosphosulphide, PdPS, is synthesized by vapour transport method and used as battery electrode for lithium-ion battery. The performance of the electrode in bulk form is enhanced when it is made into a composite with reduced graphene oxide (rGO). The specific capacity, capacity retention and cycling behaviour at different current densities have been investigated. Relatively stable capacities of ∼350 mAh g-1 at a current density of 25 mA g-1 and ∼200 mAh g-1 at 100 mA g-1 are observed. The composite electrode is found to be active for sodium-ion battery as well.

  17. Investigation of the usefulness of NTA, EDTA and DTPA in separation of some platinum metals on cellulose exchangers.

    PubMed

    Brajter, K; Słonawska, K

    1980-09-01

    The possibility of using NTA, EDTA and DTPA as complexing agents for separation of some platinum group ions on cellulose ion-exchangers has been investigated. The greatest differences in the affinities of Pd(II) and Pt(IV) toward the cellulose ion-exchangers are obtained in the presence of DPTA, Cellex D (as ion-exchanger) in hydroxide form. The column separation of Pd(II) from Pt(IV), Rh(III) from Pd(II) and of a Rh(III)Pd(II)Pt(IV) mixture can be achieved with DPTA and chloride solutions. The method can be for determination of the components of RhPdPt alloys.

  18. Experimental investigations of the hydrothermal geochemistry of platinum and palladium: IV. The stoichiometry of Pt(IV) and Pd(II) chloride complexes at 100 to 300°C

    NASA Astrophysics Data System (ADS)

    Gammons, C. H.

    1995-05-01

    A technique based on the common ion effect was used to obtain information on the stoichiometry of the Pt(IV) and Pd(II) chloride complexes at elevated temperature. The solubility of AgCl(s) was measured in solutions of fixed mHCl and varying ΣPt(IV) or ΣPd(II) concentration. Parallel experiments were conducted at Me/Cl mole ratios (Me = Pt or Pd) of 0.0-0.5 for mHCl = 0.03-3.0, at T = 100, 200, and 300°C. The average Cl ligand numbers for Pt ranged from 4.2 to 5.8, with the majority of values > 5. These results are adequately explained by a mixture of the simple monomeric species PtCl 62t-, PtCl 5-, and PtCl 40. The temperature dependence of the equilibrium constant for the dissociation reaction PtCl 62- = PtCl 5- + Cl - was obtained: log K = 2.40(±0.25) - 1278/ T, K (valid to 573 K), which is in good agreement with published low temperature data. The neutral PtCl 40 species may become important at 300°C and low chloride concentrations (0.016 m HCl). Extrapolation of existing data indicates that the Pt(IV) chloride complexes are stable with respect to Pt(II) chloride complexes over a range of ƒO 2-pH conditions which narrows quickly with increase in temperature. Nonetheless, PtCl 62- may be the dominant form of dissolved Pt in highly oxidized brines to at least 100°C. The average Cl ligand numbers for palladium ranged from 2.164 to 2.83, and were insensitive to temperature. These results could be explained by a mixture of PdCl 2 and PdCl 3-. However, this is in disagreement with published experimental data which indicate that PdCl 4-2 is the predominant form of aqueous Pd at high chloride concentrations. An alternate explanation is that a significant quantity of the total aqueous Pd was present as polynuclear complexes, due to the very high Pd/Cl ratios of the experiments. Insufficient data exist to discriminate between these two hypotheses.

  19. Resolving Electrode Morphology’s Impact on Platinum Group Metal-Free Cathode Performance Using Nano-CT of 3D Hierarchical Pore and Ionomer Distribution

    DOE PAGES

    Komini Babu, Siddharth; Chung, Hoon T.; Zelenay, Piotr; ...

    2016-11-02

    This paper reports on the characterization of polymer electrolyte fuel cell (PEFC) cathodes featuring a platinum group metal-free (PGM-free) catalyst using nano-scale resolution X-ray computed tomography (nano-CT) and morphological analysis. PGM-free PEFC cathodes have gained significant interest in the past decade since they have the potential to dramatically reduce PEFC costs by eliminating the large platinum (Pt) raw material cost. However, several challenges remain before they are commercially viable. Since these catalysts have lower volumetric activity, the PGM-free cathodes are thicker and are subject to increased gas and proton transport resistances that reduce the performance. To better understand the efficacymore » of the catalyst and improve electrode performance, a detailed understanding the correlation between electrode fabrication, morphology, and performance is crucial. In this work, the pore/solid structure and the ionomer distribution was resolved in three dimensions (3D) using nano-CT for three PGM-free electrodes of varying Nafion® loading. The associated transport properties were evaluated from pore/particlescale simulations within the nano-CT imaged structure. These characterizations are then used to elucidate the microstructural origins of the dramatic changes in fuel cell performance with varying Nafion® ionomer loading. We show that this is primarily a result of distinct changes in ionomer’s spatial distribution. The significant impact of electrode morphology on performance highlights the importance of PGM-free electrode development in concert with efforts to improve catalyst activity and durability.« less

  20. Preparation of small size palladium nanoparticles by picosecond laser ablation and control of metal concentration in the colloid.

    PubMed

    Giorgetti, E; Marsili, P; Cicchi, S; Lascialfari, L; Albiani, M; Severi, M; Caporali, S; Muniz-Miranda, M; Pistone, A; Giammanco, F

    2015-03-15

    We assessed a method for the preparation of small, highly stable and unprotected Pd nanoparticles by picosecond laser ablation in 2-propanol. The nanoparticles can be extracted from 2-propanol by centrifugation and redispersed in water, where a strongly negative ζ-potential assures long term stability. The proposed procedure permits reduction of particle size down to 1.6nm and optimization of the Pd(0):Pd(II) ratio which, in the best cases, was of the order of 6:1. The increase of this ratio with ablation times has been correlated to the high temperature conversion of PdO to metallic Pd by a simple theoretical model. A study of the relationship between colloid absorption at 400nm and Pd concentration permitted the role of PdO in the determination of the UV-vis spectra to be clarified and the limits of the Mie theory for the evaluation of colloid concentration to be established. The absorption at 400nm can be used as a fast method to estimate the Pd content in the colloids, provided that a calibration of the ablation process is preliminarily performed. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Study on separation of platinum group metals from high level liquid waste using macroporous (MOTDGA-TOA)/SiO{sub 2}-P silica-based absorbent

    SciTech Connect

    Ito, Tatsuya; Kim, Seong-Yun; Xu, Yuanlai; Hitomi, Keitaro; Ishii, Keizo; Nagaishi, Ryuji; Kimura, Takaumi

    2013-07-01

    The recovery of platinum group metals (PGMs) from high level liquid waste (HLLW) by macroporous silica-based adsorbent, (MOTDGA-TOA)/SiO{sub 2}-P has been developed by impregnating two extractants of N,N'-dimethyl-N,N'-di-n-octyl-thio-diglycolamide (MOTDGA) and tri-n-octylamine (TOA) into a silica/polymer composite support (SiO{sub 2}-P). The adsorption of Ru(III), Rh(III) and Pd(II) have been investigated in simulated HLLW by batch method. The adsorbent has shown good uptake property for Pd(II). In addition, the combined use of MOTDGA and TOA improved the adsorption of Ru(III) and Rh(III) better than the individual use of them. The usability of adsorbent in radiation fields was further confirmed by irradiation experiments. The adsorbent remained to have the uptake capability for PGMs over the absorbed dose of 100 kGy, corresponding with one really adsorbed by the adsorbent, and showed good retention capability for Pd(II) even at the absorbed dose of 800 kGy. The chromatographic separation of metal ions was demonstrated with the adsorbent packed column, there is no influence of Re(VII) (instead of Tc) on the excellent separation behavior of Pd(II). (authors)

  2. Phosphorus adlayers on Platinum (110)

    NASA Astrophysics Data System (ADS)

    Heikkinen, Olli; Riihimäki, Ari; Sainio, Jani; Lahtinen, Jouko

    2017-10-01

    Platinum is a metal utilized in many applications. Its catalytic activity can be decreased due to chemical poisoning caused e.g. by phosphorus. To gain more understanding of its poisoning, we present a study of phosphorus adsorption on a platinum (110) single crystal surface. Using X-ray photoelectron spectroscopy, we have found that the adsorbate coverage saturates at around 3 monolayers. Annealing the phosphorus-covered platinum surface at 750 °C gives rise to three different ordered adlayer structures, with symmetries of 2 × 3, 11 × 4 and √{ 2} × 1 , from the lowest to the highest coverage, detected with low-energy electron diffraction. We have studied the sample topography with scanning tunnelling microscopy. We also present a tentative model for the observed structures and their evolution.

  3. Platinum recycling in the United States in 1998

    USGS Publications Warehouse

    Hilliard, Henry E.

    2001-01-01

    In the United States, catalytic converters are the major source of secondary platinum for recycling. Other sources of platinum scrap include reforming and chemical process catalysts. The glass industry is a small but significant source of platinum scrap. In North America, it has been estimated that in 1998 more than 20,000 kilograms per year of platinum-group metals from automobile catalysts were available for recycling. In 1998, an estimated 7,690 kilograms of platinum were recycled in the United States. U.S. recycling efficiency was calculated to have been 76 percent in 1998; the recycling rate was estimated at 16 percent.

  4. Tetramine dichloro-palladium subcellular localization in the kidney: electron microprobe study.

    PubMed

    Berry, J P

    1987-01-01

    Palladium salt has been used for some time in experimental therapy protocols; with this in mind, we carried out a study of the effect of tetramine dichloro-palladium (soluble salt) upon kidney cells. Using an electron microprobe, we were able to detect the presence of palladium associated with sulfur and iron in the lysosomes of the proximal tubule cells. Our results were compared with those obtained using Cis-diaminedichloro-platinum (Cis-DDP), an anti-cancer drug used in the treatment of diverse tumors. The mechanism of intralysosomal concentration of palladium as a non soluble salt associated with sulfur appeared to be related to local sulfatase activity. Finally, iron concentration appeared to be related to the inhibition process of erythropoiesis.

  5. Chemical and Electrochemical Synthesis of Platinum Black.

    PubMed

    Stanca, S E; Hänschke, F; Ihring, A; Zieger, G; Dellith, J; Kessler, E; Meyer, H-G

    2017-04-21

    We present electrochemical and chemical synthesis of platinum black at room temperature in aqueous and non-aqueous media. X-ray analysis established the purity and crystalline nature. The electron micrographs indicate that the nanostructures consist of platinum crystals that interconnect to form porous assemblies. Additionally, the electron micrographs of the platinum black thin layer, which was electrochemically deposited on different metallic and semiconductive substrates (aluminium, platinum, silver, gold, tin-cooper alloy, indium-tin-oxide, stainless steel, and copper), indicate that the substrate influences its porous features but not its absorbance characteristics. The platinum black exhibited a broad absorbance and low reflectance in the ultraviolet, visible, and infrared regions. These characteristics make this material suitable for use as a high-temperature resistant absorber layer for the fabrication of microelectronics.

  6. In situ-generated metal oxide catalyst during CO oxidation reaction transformed from redox-active metal-organic framework-supported palladium nanoparticles

    PubMed Central

    2012-01-01

    The preparation of redox-active metal-organic framework (ra-MOF)-supported Pd nanoparticles (NPs) via the redox couple-driven method is reported, which can yield unprotected metallic NPs at room temperature within 10 min without the use of reducing agents. The Pd@ra-MOF has been exploited as a precursor of an active catalyst for CO oxidation. Under the CO oxidation reaction condition, Pd@ra-MOF is transformed into a PdOx-NiOy/C nanocomposite to generate catalytically active species in situ, and the resultant nanocatalyst shows sustainable activity through synergistic stabilization. PMID:22898143

  7. Fano profiles in palladium nanoconstrictions

    NASA Astrophysics Data System (ADS)

    Islam, M. S.; Takata, H.; Ienaga, K.; Inagaki, Y.; Tsujii, H.; Kawae, T.

    2017-08-01

    We have performed the differential conductance (dI/dV) measurements of palladium (Pd) nanoconstrictions made by a mechanically controllable break junction technique to examine the origin of Fano resonance observed in atomic sized contacts of ferromagnetic metals such as Ni. As a quasimagnetic metal of Pd undergoing ferromagnetic transition by downsizing, the dI/dV spectra exhibit zero-bias anomalies with a dip, peak or asymmetric shape and are well-fitted by the Fano formula. Moreover, the amplitude of the anomalies varies with the temperature in logarithmic scale, suggesting that the origin of the anomaly is caused by the Kondo effect. These results indicate that the appearance of Kondo effect would be ubiquitous in ferromagnetic atomic scale contacts.

  8. Nanosized Pd37(CO)28{P(p-Tolyl)3}12 containing geometrically unprecedented central 23-atom interpenetrating tri-icosahedral palladium kernel of double icosahedral units: its postulated metal-core evolution and resulting stereochemical implications.

    PubMed

    Mednikov, Evgueni G; Dahl, Lawrence F

    2008-11-05

    Pd37(CO)28{P(p-Tolyl)3}12 (1) was obtained in approximately 50% yield by the short-time thermolysis of Pd10(CO)12{P(p-Tolyl)3}6 in THF solution followed by crystallization via layering with hexane under N2. The low-temperature (100 K) CCD X-ray diffraction study of 1 revealed an unusual non-spheroidal Pd37-atom polyhedron, which may be readily envisioned to originate via the initial formation of a heretofore non-isolated central Pd23 kernel composed of three interpenetrating trigonal-planar double icosahedra (DI) that are oriented along the three bonding edges of its interior Pd3 triangle. This central Pd23 kernel is augmented by face condensations with two additional phosphorus-free and 12 tri(p-C6H4Me)phosphine-ligated Pd atoms, which lower the pseudo-symmetry of the resulting 37-atom metal core from D(3h) to C2. The 12 P atoms and 28 bridging CO connectivities preserve the pseudo-C2 symmetry. The central Pd23 kernel in 1 provides the only crystallographic example of the 23-atom member of the double icosahedral family of "twinned" interpenetrating icosahedra (II), which includes the 19-atom two II (1 DI), the 23-atom three II (3 DI), the 26-atom four II (6 DI), and the 29-atom five II (9 DI). The n-atoms of these DI models coincide exactly with prominent atom-peak maxima of 19, 23, 26, and 29, respectively, in the mass spectrum of charged argon clusters formed in a low-temperature free-jet expansion. The only previous crystallographically proven 26- and 29-atom DI members are the central pseudo-T(d) tetrahedral Pd26 kernel (4 II, 6 DI) in the PMe3-ligated Pd29Ni3(CO)22(PMe3)13 (2) and the central pseudo-D(3h) trigonal-bipyramidal Pd29 kernel (5 II, 9 DI) in the PMe3-ligated Pd35(CO)23(PMe3)15 (3). Two highly important major stereochemical implications are noted: (1) The formation of geometrically identical idealized architectures for these three II palladium kernels with corresponding DI models constructed for the charged argon clusters provides compelling

  9. DNA interaction studies of a platinum (II) complex containing an antiviral drug, ribavirin: the effect of metal on DNA binding.

    PubMed

    Shahabadi, Nahid; Mirzaei kalar, Zeinab; Moghadam, Neda Hosseinpour

    2012-10-01

    The water-soluble Pt (II) complex, [PtCl (DMSO)(N(4)N(7)-ribavirin)]· H(2)O (ribavirin is an antiviral drug) has been synthesized and characterized by physico-chemical and spectroscopic methods. The binding interactions of this complex with calf thymus DNA (CT-DNA) were investigated using fluorimetry, spectrophotometry, circular dichroism and viscosimetry. The complex binds to CT-DNA in an intercalative mode. The calculated binding constant, K(b), was 7.2×10(5) M(-1). In fluorimetric studies, the enthalpy (ΔH<0) and entropy (ΔS>0) changes of the reaction between the Pt (II) complex with CT-DNA showed hydrophobic interaction. In addition, CD study showed stabilization of the right-handed B form of CT-DNA. All these results prove that the complex interacts with CT-DNA via intercalative mode of binding. In comparison with the previous study of the DNA interaction with ribavirin, these results show that platinum complex has greater affinity to CT-DNA.

  10. DNA interaction studies of a platinum (II) complex containing an antiviral drug, ribavirin: The effect of metal on DNA binding

    NASA Astrophysics Data System (ADS)

    Shahabadi, Nahid; Mirzaei kalar, Zeinab; Hosseinpour Moghadam, Neda

    2012-10-01

    The water-soluble Pt (II) complex, [PtCl (DMSO)(N4N7-ribavirin)]· H2O (ribavirin is an antiviral drug) has been synthesized and characterized by physico-chemical and spectroscopic methods. The binding interactions of this complex with calf thymus DNA (CT-DNA) were investigated using fluorimetry, spectrophotometry, circular dichroism and viscosimetry. The complex binds to CT-DNA in an intercalative mode. The calculated binding constant, Kb, was 7.2 × 105 M-1. In fluorimetric studies, the enthalpy (ΔH < 0) and entropy (ΔS > 0) changes of the reaction between the Pt (II) complex with CT-DNA showed hydrophobic interaction. In addition, CD study showed stabilization of the right-handed B form of CT-DNA. All these results prove that the complex interacts with CT-DNA via intercalative mode of binding. In comparison with the previous study of the DNA interaction with ribavirin, these results show that platinum complex has greater affinity to CT-DNA.

  11. Facet effects of palladium nanocrystals for oxygen reduction in ionic liquids and for sensing applications

    NASA Astrophysics Data System (ADS)

    Tang, Yongan; Chi, Xiaowei; Zou, Shouzhong; Zeng, Xiangqun

    2016-03-01

    Palladium nanocrystals enclosed by {100} and {110} crystal facets, were successfully synthesized through an aqueous one-pot synthesis method. A new thermal annealing approach was developed for fabricating these palladium nanocrystals as a working electrode on a gas permeable membrane to study the facet effects of the oxygen reduction process in an ionic liquid, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([Bmpy][NTf2]). Results were compared with the same processes at a conventional platinum electrode. Our study shows that the structural difference between the two facets of Pd nanocrystals has little effect on the oxygen reduction process but significantly affects the oxidation process of the superoxide. It is found that the Pd{110}/IL interface can better stabilize superoxide radicals revealed by a more positive oxidation potential compared to that of Pd{100}. In addition, the analytical characteristic of utilizing both palladium nanocrystals as electrodes for oxygen sensing is comparable with a polycrystal platinum oxygen sensor, in which Pd{110} presents the best sensitivity and lowest detection limit. Our results demonstrate the facet-dependence of oxygen reduction in an ionic liquid medium and provide the fundamental information needed to guide the applications of palladium nanocrystals in electrochemical gas sensor and fuel cell research.Palladium nanocrystals enclosed by {100} and {110} crystal facets, were successfully synthesized through an aqueous one-pot synthesis method. A new thermal annealing approach was developed for fabricating these palladium nanocrystals as a working electrode on a gas permeable membrane to study the facet effects of the oxygen reduction process in an ionic liquid, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([Bmpy][NTf2]). Results were compared with the same processes at a conventional platinum electrode. Our study shows that the structural difference between the two facets of Pd

  12. Combination of three metals for the treatment of cancer: gallium, rhenium and platinum. 1. Determination of the optimal schedule of treatment.

    PubMed

    Collery, Philippe; Mohsen, Ahmed; Kermagoret, Anthony; D'Angelo, Jean; Morgant, Georges; Desmaele, Didier; Tomas, Alain; Collery, Thomas; Wei, Ming; Badawi, Abdelfattah

    2012-07-01

    Platinum is well known for its anticancer activity, firstly used as cis-diaminedichloroplatinum (II) (CDDP), with a wide range of activity. Its main mechanism of action involves its binding to DNA. Gallium, another metal, has also demonstrated apoptotic effects on malignant cells, but through interaction with targets other than DNA, such as the membrane, cytoskeleton and proteasome, and on enzyme activities. An antitumor synergism between CDDP and both gallium and rhenium compounds has been demonstrated. For these reasons, we proposed to combine these three metals and to determine at which doses each compound could be administered without major toxicity. CDDP, tetrakis(1-octanol) tris(5-aminosalicylate)gallium(III), and a diseleno-ether rhenium(I) complex were used in this experimental study in breast cancer MCF-7 tumor-bearing mice. CDDP was administered intraperitoneally (i.p.) twice a week at the dose of 3 mg/kg. Tetrakis(1-octanol) tris(5-aminosalicylate) gallium (III) and rhenium(I) diseleno-ether complexes were administered orally, daily, five days a week for three weeks, at doses ranging from 20 to 100 mg/kg for the gallium compound and from 10 to 50 mg/kg for the rhenium compound. Doses of 10 mg/kg of rhenium(I) diseleno-ether, and 100 mg/kg of the salicylate gallium compound, in combination with CDDP induced a significant decrease of 50% of the tumor volume, by comparison with the control group. In contrast, the decrease of the tumor volume in mice treated by CDDP alone was less than 25%. Changes in the sequence of administration of the three metals will be discussed to improve the therapeutic index.

  13. Ultrathin (1 nm) vertically shadowed platinum-carbon replicas for imaging individual molecules in freeze-etched biological DNA and material science metal and plastic specimens.

    PubMed

    Ruben, G C

    1989-12-01

    Single molecule resolution in beam-sensitive, uncoated, noncrystalline materials has heretofore not been possible except in thin (less than or equal to 150 A) platinum-carbon (Pt-C) replicas, which are resistant to electron beam destruction. Previously, the granularity of metal film replicas limited their resolution to greater than or equal to 20 A. This paper demonstrates that Pt-C film granularity and resolution are a function of the method of replication and other controllable factors. Low-angle 20 degrees rotary, 45 degrees unidirectional, and vertical 9.7 +/- 1 A Pt-C films deposited on mica under the same conditions were compared. Vertical replication had a 5 A granularity, the highest resolution, and evenly coated the whole surface. A 45 degrees replication had a 9.5 A granularity, a slightly poorer resolution, and a discontinuous surface coating. The use of 20 degrees rotary replication proved to be unsuitable for high-resolution imaging, with 20-25 A granularity and resolution two to three times poorer. Vertical and 45 degrees Pt-C replicas can visualize the deep-etched DNA helix and the 13.3 A 3(2) helix of pectin in a gel. The DNA double helix, the complex structures of sol-gel glasses, Immobilon filters (polyvinylidene fluoride), a polymethacrylate plastic, the metal oxide surfaces of 440c stainless steel, and aluminum are illustrated. This high-resolution vertical Pt-C replica technique can image in the context of solutions, gels, or solids, single molecular chains 3-7 A wide, their associations, and their conformation. Included in the present article are first time descriptions for removing replicas from metals and plastics and for making high-magnification photographic prints of normal contrast using a reversal rephotographic process.

  14. Combine palladium with iron for enhanced dechlorination

    SciTech Connect

    1995-07-01

    Research Corporation Technologies (RCT; Tucson, Arizona) is completing bench-scale testing of a new groundwater-treatment process that uses particles of palladium-coated iron to dechlorinate organic compounds. The palladized-iron process, developed by a research team at the University of Arizona, dechlorinates low-molecular-weight hydrocarbons by converting the chlorinated organics to chloride ions and either methane or ethane gas. A three-month test of an above-ground treatment unit is scheduled to begin in September. The key to the new process is the palladium. When elemental iron is immersed in water, it oxidizes and releases electrons, which create a reducing environment. This reducing environment breaks down chlorinated and fluorinated organic compounds. Unfortunately, a layer of metal oxide (rust) forms on the iron surface. This layer ultimately impedes the flow of electrons into the water and makes the reduction process slow and inefficient. To overcome this, RCT deposits a small amount (0.05 wt%) of palladium as discrete islands on the iron particles. This palladium prevents rust from coating the iron but does not impede the steady flow of the electrons needed to sustain a reducing environment.

  15. The solid phase extraction of some metal ions using palladium nanoparticles attached to silica gel chemically bonded by silica-bonded N-propylmorpholine as new sorbent prior to their determination by flame atomic absorption spectroscopy.

    PubMed

    Ghaedi, M; Rezakhani, M; Khodadoust, S; Niknam, K; Soylak, M

    2012-01-01

    In this research at first palladium nanoparticle attached to a new chemically bonded silica gel has been synthesized and has been characterized with different techniques such as X-ray diffraction (XRD), fourier transform infrared (FT-IR), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Then, this new sorbent (chemically modified silica gel with N-propylmorpholine (PNP-SBNPM)) was efficiently used for preconcentration of some metal ions in various food samples. The influence of effective variables including mass of sorbent, flow rate, pH of sample solutions and condition of eluent such as volume, type and concentration on the recoveries of understudy metal ions were investigated. Following the optimization of variables, the interfering effects of some foreign ions on the preconcentration and determination of the investigated metal ions described. At optimum values of variables, all investigated metal ions were efficiently recovered with efficiency more than 95%, relative standard deviation (RSD) between 2.4 and 2.8, and detection limit in the range of 1.4-2.7 ng mL⁻¹. The present method is simple and rapidly applicable for the determination of the understudied metal ions (ng mL⁻¹) in different natural food samples.

  16. The Solid Phase Extraction of Some Metal Ions Using Palladium Nanoparticles Attached to Silica Gel Chemically Bonded by Silica-Bonded N-Propylmorpholine as New Sorbent prior to Their Determination by Flame Atomic Absorption Spectroscopy

    PubMed Central

    Ghaedi, M.; Rezakhani, M.; Khodadoust, S.; Niknam, K.; Soylak, M.

    2012-01-01

    In this research at first palladium nanoparticle attached to a new chemically bonded silica gel has been synthesized and has been characterized with different techniques such as X-ray diffraction (XRD), fourier transform infrared (FT-IR), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Then, this new sorbent (chemically modified silica gel with N-propylmorpholine (PNP-SBNPM)) was efficiently used for preconcentration of some metal ions in various food samples. The influence of effective variables including mass of sorbent, flow rate, pH of sample solutions and condition of eluent such as volume, type and concentration on the recoveries of understudy metal ions were investigated. Following the optimization of variables, the interfering effects of some foreign ions on the preconcentration and determination of the investigated metal ions described. At optimum values of variables, all investigated metal ions were efficiently recovered with efficiency more than 95%, relative standard deviation (RSD) between 2.4 and 2.8, and detection limit in the range of 1.4–2.7 ng mL−1. The present method is simple and rapidly applicable for the determination of the understudied metal ions (ng mL−1) in different natural food samples. PMID:22666150

  17. The semiconductivity and stability of palladium oxide

    NASA Technical Reports Server (NTRS)

    Rey, E.; Miles, R. B.; Royce, B. S. H.; Kamal, M. R.

    1978-01-01

    Palladium metal films are prepared on quartz substrates by RF sputtering from a pure palladium target in an argon atmosphere. These films are then oxidized in air or in an oxygen atmosphere at 700 C for periods between 24 hr and 6 days. Either treatment is found to produce good-quality thin films of PdO with a uniform orange transmission. Attention is focused on optical and electrical conductivity measurements made on PdO films with a view toward determining their band gap, conductivity and thermal stability in vacuum and in the presence of oxygen. It is shown that hydrogen greatly reduces the thermal stability of PdO. The film decomposes to Pd metal by 350 K in the presence of hydrogen as compared to a temperature of about 580 K in vacuum.

  18. The semiconductivity and stability of palladium oxide

    NASA Technical Reports Server (NTRS)

    Rey, E.; Miles, R. B.; Royce, B. S. H.; Kamal, M. R.

    1978-01-01

    Palladium metal films are prepared on quartz substrates by RF sputtering from a pure palladium target in an argon atmosphere. These films are then oxidized in air or in an oxygen atmosphere at 700 C for periods between 24 hr and 6 days. Either treatment is found to produce good-quality thin films of PdO with a uniform orange transmission. Attention is focused on optical and electrical conductivity measurements made on PdO films with a view toward determining their band gap, conductivity and thermal stability in vacuum and in the presence of oxygen. It is shown that hydrogen greatly reduces the thermal stability of PdO. The film decomposes to Pd metal by 350 K in the presence of hydrogen as compared to a temperature of about 580 K in vacuum.

  19. Fexofenadine Suppresses Delayed-Type Hypersensitivity in the Murine Model of Palladium Allergy

    PubMed Central

    Matsubara, Ryota; Kumagai, Kenichi; Shigematsu, Hiroaki; Kitaura, Kazutaka; Nakasone, Yasunari; Suzuki, Satsuki; Hamada, Yoshiki; Suzuki, Ryuji

    2017-01-01

    Palladium is frequently used in dental materials, and sometimes causes metal allergy. It has been suggested that the immune response by palladium-specific T cells may be responsible for the pathogenesis of delayed-type hypersensitivity in study of palladium allergic model mice. In the clinical setting, glucocorticoids and antihistamine drugs are commonly used for treatment of contact dermatitis. However, the precise mechanism of immune suppression in palladium allergy remains unknown. We investigated inhibition of the immune response in palladium allergic mice by administration of prednisolone as a glucocorticoid and fexofenadine hydrochloride as an antihistamine. Compared with glucocorticoids, fexofenadine hydrochloride significantly suppressed the number of T cells by interfering with the development of antigen-presenting cells from the sensitization phase. Our results suggest that antihistamine has a beneficial effect on the treatment of palladium allergy compared to glucocorticoids. PMID:28672829

  20. Aptamer selection for fishing of palladium ion using graphene oxide-adsorbed nanoparticles.

    PubMed

    Cho, Yea Seul; Lee, Eun Jeong; Lee, Gwan-Ho; Hah, Sang Soo

    2015-12-01

    A new aptamer selection method using graphene oxide (GO)-adsorbed nanoparticles (GO-adsorbed NPs) was employed for specific fishing of palladium ion. High affinity ssDNA aptamers were isolated through 13 rounds of selection and the capacity of the selected DNA aptamers for palladium ion uptake was measured, clarifying that DNA01 exhibits the highest affinity to palladium ion with a dissociation constant (Kd) of 4.60±1.17 μM. In addition, binding ability of DNA01 to palladium ion was verified against other metal ions, such as Li(+), Cs(+), Mg(2+), and Pt(2+). Results of the present study suggest that future modification of DNA01 may improve palladium ion-binding ability, leading to economic recovery of palladium from water solution.

  1. Stabilizing platinum in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Remick, R. J.

    1981-01-01

    The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst supported on a carbon substrate. During operation, the small platinum crystallites sinter, causing loss in cell performance. A support was developed that stabilizes platinum in the high surface area condition by retarding or preventing the sintering process. The approach is to form etch pits in the carbon by oxidizing the carbon in the presence of a metal oxide catalyst, remove the metal oxide by an acid wash, and then deposit platinum in these pits. Results confirm the formation of etch pits in each of the three supports chosen for investigation: Vulcan XC-72R, Vulcan XC-72 that was graphized at 2500 C, and Shawinigan Acetylene Black.

  2. Concentrations of platinum group elements in 122 U.S. coal samples

    USGS Publications Warehouse

    Oman, C.L.; Finkelman, R.B.; Tewalt, S.J.

    1997-01-01

    Analysis of more than 13,000 coal samples by semi-quantitative optical emission spectroscopy (OES) indicates that concentrations of the platinum group elements (iridium, palladium, platinum, osmium, rhodium, and ruthenium) are less than 1 ppm in the ash, the limit of detection for this method of analysis. In order to accurately determine the concentration of the platinum group elements (PGE) in coal, additional data were obtained by inductively coupled plasma mass spectroscopy, an analytical method having part-per-billion (ppb) detection limits for these elements. These data indicate that the PGE in coal occur in concentrations on the order of 1 ppb or less.

  3. Hydrothermal synthesis of nanosize phases based on non-ferrous and noble metals

    SciTech Connect

    Tupikova, E. N. Platonov, I. A. Lykova, T. N.

    2016-04-13

    Research is devoted to reactions of binary complexes containing noble (platinum, palladium) and non-ferrous (cobalt, chrome) metals. Reactions proceed under hydrothermal conditions by the autoclave technique. Initials complexes and products of autoclave thermolysis were characterized by the FT-IR spectroscopy, the transmission electron microscopy (TEM) and the energy-dispersive X-ray spectroscopy (EDX). Comparative catalytic experiments in the test reaction were conducted. The obtained results can form the basis of new methods of nanosize multicomponent phases synthesis under hydrothermal conditions.

  4. Hydrothermal synthesis of nanosize phases based on non-ferrous and noble metals

    NASA Astrophysics Data System (ADS)

    Tupikova, E. N.; Platonov, I. A.; Lykova, T. N.

    2016-04-01

    Research is devoted to reactions of binary complexes containing noble (platinum, palladium) and non-ferrous (cobalt, chrome) metals. Reactions proceed under hydrothermal conditions by the autoclave technique. Initials complexes and products of autoclave thermolysis were characterized by the FT-IR spectroscopy, the transmission electron microscopy (TEM) and the energy-dispersive X-ray spectroscopy (EDX). Comparative catalytic experiments in the test reaction were conducted. The obtained results can form the basis of new methods of nanosize multicomponent phases synthesis under hydrothermal conditions.

  5. Toward Financially Viable Phytoextraction and Production of Plant-Based Palladium Catalysts.

    PubMed

    Harumain, Zakuan A S; Parker, Helen L; Muñoz García, Andrea; Austin, Michael J; McElroy, Con Robert; Hunt, Andrew J; Clark, James H; Meech, John A; Anderson, Christopher W N; Ciacci, Luca; Graedel, T E; Bruce, Neil C; Rylott, Elizabeth L

    2017-02-27

    Although a promising technique, phytoextraction has yet to see significant commercialization. Major limitations include metal uptake rates and subsequent processing costs. However, it has been shown that liquid-culture-grown Arabidopsis can take up and store palladium as nanoparticles. The processed plant biomass has catalytic activity comparable to that of commercially available catalysts, creating a product of higher value than extracted bulk metal. We demonstrate that the minimum level of palladium in Arabidopsis dried tissues for catalytic activity comparable to commercially available 3% palladium-on-carbon catalysts was achieved from dried plant biomass containing between 12 and 18 g·kg(-1) Pd. To advance this technology, species suitable for in-the-field application: mustard, miscanthus, and 16 willow species and cultivars, were tested. These species were able to grow, and take up, palladium from both synthetic and mine-sourced tailings. Although levels of palladium accumulation in field-suitable species are below that required for commercially available 3% palladium-on-carbon catalysts, this study both sets the target, and is a step toward, the development of field-suitable species that concentrate catalytically active levels of palladium. Life cycle assessment on the phytomining approaches described here indicates that the use of plants to accumulate palladium for industrial applications has the potential to decrease the overall environmental impacts associated with extracting palladium using present-day mining processes.

  6. Palladium-Catalyzed, Enantioselective Heine Reaction

    PubMed Central

    2016-01-01

    Aziridines are important synthetic intermediates for the generation of nitrogen-containing molecules. N-Acylaziridines undergo rearrangement by ring expansion to produce oxazolines, a process known as the Heine reaction. The first catalytic, enantioselective Heine reaction is reported for meso-N-acylaziridines where a palladium(II)–diphosphine complex is employed. The highly enantioenriched oxazoline products are valuable organic synthons and potential ligands for transition-metal catalysis. PMID:27398262

  7. Palladium-Catalyzed, Enantioselective Heine Reaction.

    PubMed

    Punk, Molly; Merkley, Charlotte; Kennedy, Katlyn; Morgan, Jeremy B

    2016-07-01

    Aziridines are important synthetic intermediates for the generation of nitrogen-containing molecules. N-Acylaziridines undergo rearrangement by ring expansion to produce oxazolines, a process known as the Heine reaction. The first catalytic, enantioselective Heine reaction is reported for meso-N-acylaziridines where a palladium(II)-diphosphine complex is employed. The highly enantioenriched oxazoline products are valuable organic synthons and potential ligands for transition-metal catalysis.

  8. Morphology of the base of the J-M Reef Package and its bearing on the localization of platinum group metal mineralization in the Stillwater Complex, Montana

    SciTech Connect

    Wolfgram, D. . Dept. of Geological Engineering); Evans-Holmgren, J.A.

    1993-04-01

    Economic concentrations of platinum group metals (PGM) in the Stillwater Complex are typically localized within a unique lithologic sequence, the J-M Reef Package. The J-M Reef Package is generally believed to be the result of the influx of a pulse of undifferentiated' magma into the chamber subsequent to the appearance of plagioclase as a cumulus mineral in the more differentiated resident melt. Underground workings of Stillwater Mining Company, together with over 3,000 underground core holes on 50-foot centers, facilitate the definition of the igneous stratigraphy below the J-M Reef Package and the relationship of its base to it. As much as 350 feet of consolidated footwall igneous cumulates were removed by thermochemical ablation in terraced channels prior to the accumulation of the J-M Reef Package. Distribution of PGM mineralization within the J-M Reef Package, as well as the differential accumulation of the Reef Package itself, is related to channel morphology. Models of ore genesis must account for a new magma pulse that debouched with vigor along the top of the pre-existing cumulus pile.

  9. Integration of Platinum Group Metal-Free Catalysts and Bilirubin Oxidase into a Hybrid Material for Oxygen Reduction: Interplay of Chemistry and Morphology.

    PubMed

    Rojas-Carbonell, Santiago; Babanova, Sofia; Serov, Alexey; Artyushkova, Kateryna; Workman, Michael J; Santoro, Carlo; Mirabal, Alex; Calabrese Barton, Scott; Atanassov, Plamen

    2017-04-10

    Catalytic activity toward the oxygen reduction reaction (ORR) of platinum group metal-free (PGM-free) electrocatalysts integrated with an enzyme (bilirubin oxidase, BOx) in neutral media was studied. The effects of chemical and morphological characteristics of PGM-free materials on the enzyme enhancement of the overall ORR kinetics was investigated. The surface chemistry of the PGM-free catalyst was studied using X-ray Photoelectron Spectroscopy. Catalyst surface morphology was characterized using two independent methods: length-scale specific image analysis and nitrogen adsorption. Good agreement of macroscopic and microscopic morphological properties was found. Enhancement of ORR activity by the enzyme is influenced by chemistry and surface morphology of the catalyst itself. Catalysts with a higher nitrogen content, specifically pyridinic moieties, showed the greatest enhancement. Furthermore, catalysts with a higher fraction of surface roughness in the range of 3-5 nm exhibited greater performance enhancement than catalysts lacking features of this size. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Platinum group metal-free electrocatalysts: Effects of synthesis on structure and performance in proton-exchange membrane fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Workman, Michael J.; Dzara, Michael; Ngo, Chilan; Pylypenko, Svitlana; Serov, Alexey; McKinney, Sam; Gordon, Jonathan; Atanassov, Plamen; Artyushkova, Kateryna

    2017-04-01

    Development of platinum group metal free catalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs) requires understanding of the interactions between surface chemistry and performance, both of which are strongly dependent on synthesis conditions. To elucidate these complex relationships, a set of Fe-N-C catalysts derived from the same set of precursor materials is fabricated by varying several key synthetic parameters under controlled conditions. The results of physicochemical characterization are presented and compared with the results of rotating disk electrode (RDE) analysis and fuel cell testing. We find that electrochemical performance is strongly correlated with three key properties related to catalyst composition: concentrations of 1) atomically dispersed Fe species, 2) species in which N is bound to Fe, and 3) surface oxides. Not only are these factors related to performance, these types of chemical species are shown to correlate with each other. This study provides evidence supporting the role of iron coordinated with nitrogen as an active species for the ORR, and offers synthetic pathways to increase the density of atomically dispersed iron species and surface oxides for optimum performance.

  11. Removal of carbon monoxide from hydrogen-rich fuels by selective low-temperature oxidation over base metal added platinum catalysts

    NASA Astrophysics Data System (ADS)

    Suh, Dong Jin; Kwak, Chan; Kim, Jin-Hong; Kwon, Se Mann; Park, Tae-Jin

    Various catalysts containing different catalytic materials, supports, and additives were tested for the preferential oxidation (PROX) of carbon monoxide from a hydrogen-rich gas stream. The results were analyzed based on three reactions involved in the PROX: oxidation of carbon monoxide, H 2-O 2 reaction, and methanation. The PROX reactions were performed in two reaction systems, one for catalyst screening and kinetic study and the other for simulation of the catalytic performance under real reaction conditions. The performances of PROX on different catalysts, varying active components, supports, and additives, were ranked in terms of carbon monoxide conversion and hydrogen consumption. Base metal added platinum catalysts exhibited excellent ability for the carbon monoxide removal. TPR results indicated that a new active species was formed resulting in the enhancement of catalytic activity. PtCo/Al 2O 3 was tested with a simulated steam-reformed fuel for confirmation of its high activity. The effect of operating conditions was analyzed on the PtCo/Al 2O 3, and the optimum conditions for PROX were obtained.

  12. The first occurrence of platinum group minerals (PGM) in a chromite deposit in the Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Elhaddad, M. A.

    1996-07-01

    The platinum-group mineralogy (PGM) of the chromitite from Gebel Lawi, in the southeastern desert has been investigated. The most abundant base metal sulfides (BMS) associated with the Lawi chromite are pentlandite, millerite and heazlewoodite. The major platinum-group minerals identified were as follows: laurite (IrOsRu)S2, osmian iridium (OsIr), hollingworthite (RhAsS), tellurian arsenopalladinite (PdTeSbAs), potarite (PdHg) besides cuprian palladian gold (CuPdAu), a Pd-Sb-Hg and HgTe phases. Laurite and osmian iridium occur preferentially in chromite. Os-Ir commonly forms composite PGM with laurite. Hollingworthite and tellurian arsenopalladinite are included within serpentine and, close to the base-metal sulfides, the cuprian palladian gold shares boundaries with chromite. Potarite together with the Pd-Sb-Hg and HgTe phases are embedded in serpentine. Palladium is the most abundant PGE in the Gebel Lawi chromite. A paragenetic sequence of PGM formation is described. Textural evidence indicates that Os-, Ir- and Ru-bearing PGM formed early and were followed by Rh- and Pd-bearing PGM. The concentration of all five PGE could be magmatic, but much of the PGE mineralogy except for laurite and osmian iridium in the center of chromite grains, has been modified by subsequent processes. At later stages, the environment became Te-, Sb-, As- and Hg-rich, which finally led to the formation of low-temperature alteration minerals.

  13. Platinum-group element signatures in the North Atlantic Igneous Province: Implications for mantle controls on metal budgets during continental breakup

    NASA Astrophysics Data System (ADS)

    Hughes, Hannah S. R.; McDonald, Iain; Kerr, Andrew C.

    2015-09-01

    The North Atlantic Igneous Province (NAIP) is a large igneous province (LIP) that includes a series of lava suites erupted from the earliest manifestations of the (proto)-Icelandic plume, through continental rifting and ultimate ocean opening. The lavas of one of these sub-provinces, the British Palaeogene Igneous Province (BPIP), were some of the first lavas to be erupted in the NAIP and overlie a thick crustal basement and sedimentary succession with abundant S-rich mudrocks. We present the first platinum-group element (PGE) and Au analyses of BPIP flood basalts from the main lava fields of the Isle of Mull and Morvern and the Isle of Skye, in addition to a suite of shallow crustal dolerite volcanic plugs on Mull, and other minor lavas suites. BPIP lavas display both S-saturated and S-undersaturated trends which, coupled with elevated PGE abundances (> MORB), suggest that the BPIP is one of the most prospective areas of the NAIP to host Ni-Cu-PGE-(Au) mineralisation in conduit systems. Platinum-group element, Au and chalcophile element abundances in lavas from West and East Greenland, and Iceland, are directly comparable to BPIP lavas, but the relative abundances of Pt and Pd vary systematically between lavas suites of different ages. The oldest lavas (BPIP and West Greenland) have a broadly chondritic Pt/Pd ratio ( 1.9). Lavas from East Greenland have a lower Pt/Pd ratio ( 0.8) and the youngest lavas from Iceland have the lowest Pt/Pd ratio of the NAIP ( 0.4). Hence, Pt/Pd ratio of otherwise equivalent flood basalt lavas varies temporally across the NAIP and appears to be coincident with the changing geodynamic environment of the (proto)-Icelandic plume through time. We assess the possible causes for such systematic Pt/Pd variation in light of mantle plume and lithospheric controls, and suggest that this reflects a change in the availability of lithospheric mantle Pt-rich sulphides for entrainment in ascending plume magmas. Hence the precious metal systematics

  14. Method for the preparation of metal colloids in inverse micelles and product preferred by the method

    DOEpatents

    Wilcoxon, Jess P.

    1992-01-01

    A method is provided for preparing catalytic elemental metal colloidal particles (e.g. gold, palladium, silver, rhodium, iridium, nickel, iron, platinum, molybdenum) or colloidal alloy particles (silver/iridium or platinum/gold). A homogeneous inverse micelle solution of a metal salt is first formed in a metal-salt solvent comprised of a surfactant (e.g. a nonionic or cationic surfactant) and an organic solvent. The size and number of inverse micelles is controlled by the proportions of the surfactant and the solvent. Then, the metal salt is reduced (by chemical reduction or by a pulsed or continuous wave UV laser) to colloidal particles of elemental metal. After their formation, the colloidal metal particles can be stabilized by reaction with materials that permanently add surface stabilizing groups to the surface of the colloidal metal particles. The sizes of the colloidal elemental metal particles and their size distribution is determined by the size and number of the inverse micelles. A second salt can be added with further reduction to form the colloidal alloy particles. After the colloidal elemental metal particles are formed, the homogeneous solution distributes to two phases, one phase rich in colloidal elemental metal particles and the other phase rich in surfactant. The colloidal elemental metal particles from one phase can be dried to form a powder useful as a catalyst. Surfactant can be recovered and recycled from the phase rich in surfactant.

  15. Platinum-group elements in the Merensky reef. I. PGE in solid solution in base metal sulfides and the down-temperature equilibration history of Merensky ores

    NASA Astrophysics Data System (ADS)

    Ballhaus, C.; Ryan, C. G.

    1995-12-01

    The platinum-group elements (PGE) in base metal sulfides (BMS) of the Merensky reef are mostly close to the detection limit of the proton microprobe. The only phase that accommodates appreciable PGE is pentlandite. Total average PGE plus Au grades of the sulfide fraction of the Merensky reef are about 500 ppm. We estimate the modal proportions of the major BMS to be around 53 percent pyrrhotite, 25 percent pentlandite, and 22 percent chalcopyrite (ignoring minor phases). Using this estimate, we calculate by how much the sulfides are oversaturated with respect to individual PGE. With respect to Pt, the sulfides are many times oversaturated, i.e., nearly all Pt occurs as discrete PGE phases. With regard to Pd the sulfides are oversaturated by about a factor of two. The Ru and Rh levels are at and below saturation levels. Available experiments suggest that the entire PGE content of the sulfide fraction can easily be accommodated in solid solution in BMS at temperatures as low as 500°C. The fact that the BMS are oversaturated with most PGE thus indicates that the sulfides have continued to exsolve PGE below that temperature. Calculated sulfur fugacities indicate that f S2 is controlled by silica activity, as expected in high-temperature ores, suggesting that metal/sulfur ratios of the ore may not have changed much since complete solidification of the intercumulus silicate melt of the Merensky reef. All sulfides investigated have cooled below the maximum temperature of pentlandite-pyrite coexistence, which experiments place at 250±30°C. Final closure temperatures of the sulfide-PGE mineral assemblages, approximated by extrapolating the pentlandite-pyrrhotite solvus beyond its experimentally determined range, are possibly as low as 80 to 90°C.

  16. Platinum oxidation responsible for degradation of platinum-cobalt alloy cathode catalysts for polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Hidai, Shoichi; Kobayashi, Masaki; Niwa, Hideharu; Harada, Yoshihisa; Oshima, Masaharu; Nakamori, Yoji; Aoki, Tsutomu

    2012-10-01

    Platinum oxidation of Pt-Co alloy catalysts for polymer electrolyte fuel cells was investigated for a series of Pt-Co alloy catalysts with different specification. The chemical state of platinum evaluated by soft X-ray photoemission spectroscopy was compared with the electrochemical properties to elucidate the origin of catalyst degradation. Increase in the particle size of Pt-Co alloy catalysts caused the decrease in the concentration of platinum hydroxide and improved the catalyst durability. Applying potential cycling below 1.0 V, only platinum hydroxide was observed, while platinum oxides, PtO and PtO2, appeared after potential cycling up to 1.2 V. The peak shift of Pt 4f spectra after the potential cycling implies that these platinum hydroxide and oxide are dissolved and deposited on another platinum catalyst in a reduced metallic state, which causes the catalyst degradation.

  17. Enhancing colloidal metallic nanocatalysis: sharp edges and corners for solid nanoparticles and cage effect for hollow ones.

    PubMed

    Mahmoud, Mahmoud A; Narayanan, Radha; El-Sayed, Mostafa A

    2013-08-20

    There are two main classes of metallic nanoparticles: solid and hollow. Each type can be synthesized in different shapes and structures. Practical use of these nanoparticles depends on the properties they acquire on the nanoscale. Plasmonic nanoparticles of silver and gold are the most studied, with applications in the fields of sensing, medicine, photonics, and catalysis. In this Account, we review our group's work to understand the catalytic properties of metallic nanoparticles of different shapes. Our group was the first to synthesize colloidal metallic nanoparticles of different shapes and compare their catalytic activity in solution. We found that the most active among these were metallic nanoparticles having sharp edges, sharp corners, or rough surfaces. Thus, tetrahedral platinum nanoparticles are more active than spheres. We proposed this happens because sharper, rougher particles have more valency-unsatisfied surface atoms (i.e., atoms that do not have the complete number of bonds that they can chemically accommodate) to act as active sites than smoother nanoparticles. We have not yet resolved whether these catalytically active atoms act as catalytic centers on the surface of the nanoparticle (i.e., heterogeneous catalysis) or are dissolved by the solvent and perform the catalysis in solution (i.e., homogenous catalysis). The answer is probably that it depends on the system studied. In the past few years, the galvanic replacement technique has allowed synthesis of hollow metallic nanoparticles, often called nanocages, including some with nested shells. Nanocage catalysts show strong catalytic activity. We describe several catalytic experiments that suggest the reactions occurred within the cage of the hollow nanocatalysts: (1) We synthesized two types of hollow nanocages with double shells, one with platinum around palladium and the other with palladium around platinum, and two single-shelled nanocages, one made of pure platinum and the other made of pure

  18. Palladium–platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction

    PubMed Central

    Wang, Xue; Choi, Sang-Il; Roling, Luke T.; Luo, Ming; Ma, Cheng; Zhang, Lei; Chi, Miaofang; Liu, Jingyue; Xie, Zhaoxiong; Herron, Jeffrey A.; Mavrikakis, Manos; Xia, Younan

    2015-01-01

    Conformal deposition of platinum as ultrathin shells on facet-controlled palladium nanocrystals offers a great opportunity to enhance the catalytic performance while reducing its loading. Here we report such a system based on palladium icosahedra. Owing to lateral confinement imposed by twin boundaries and thus vertical relaxation only, the platinum overlayers evolve into a corrugated structure under compressive strain. For the core-shell nanocrystals with an average of 2.7 platinum overlayers, their specific and platinum mass activities towards oxygen reduction are enhanced by eight- and sevenfold, respectively, relative to a commercial catalyst. Density functional theory calculations indicate that the enhancement can be attributed to the weakened binding of hydroxyl to the compressed platinum surface supported on palladium. After 10,000 testing cycles, the mass activity of the core-shell nanocrystals is still four times higher than the commercial catalyst. These results demonstrate an effective approach to the development of electrocatalysts with greatly enhanced activity and durability. PMID:26133469

  19. Palladium–platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction

    DOE PAGES

    Wang, Xue; Choi, Sang-Il; Roling, Luke T.; ...

    2015-07-02

    Conformal deposition of platinum as ultrathin shells on facet-controlled palladium nanocrystals offers a great opportunity to enhance the catalytic performance while reducing its loading. Here we report such a system based on palladium icosahedra. Owing to lateral confinement imposed by twin boundaries and thus vertical relaxation only, the platinum overlayers evolve into a corrugated structure under compressive strain. For the core-shell nanocrystals with an average of 2.7 platinum overlayers, their specific and platinum mass activities towards oxygen reduction are enhanced by eight- and sevenfold, respectively, relative to a commercial catalyst. Density functional theory calculations indicate that the enhancement can bemore » attributed to the weakened binding of hydroxyl to the compressed platinum surface supported on palladium. After 10,000 testing cycles, the mass activity of the core-shell nanocrystals is still four times higher than the commercial catalyst. Ultimately, these results demonstrate an effective approach to the development of electrocatalysts with greatly enhanced activity and durability.« less

  20. Are scarce metals in cars functionally recycled?

    PubMed

    Andersson, Magnus; Ljunggren Söderman, Maria; Sandén, Björn A

    2017-02-01

    Improved recycling of end-of-life vehicles (ELVs) may serve as an important strategy to address resource security risks related to increased global demand for scarce metals. However, in-depth knowledge of the magnitude and fate of such metals entering ELV recycling is lacking. This paper quantifies input of 25 scarce metals to Swedish ELV recycling, and estimates the extent to which they are recycled to material streams where their metal properties are utilised, i.e. are functionally recycled. Methodologically, scarce metals are mapped to main types of applications within newly produced Swedish car models and subsequently, material flow analysis of ELV waste streams is used as basis for identifying pathways of these applications and assessing whether contained metals are functionally recycled. Results indicate that, of the scarce metals, only platinum may be functionally recycled in its main application. Cobalt, gold, manganese, molybdenum, palladium, rhodium and silver may be functionally recycled depending on application and pathways taken. For remaining 17 metals, functional recycling is absent. Consequently, despite high overall ELV recycling rates of materials in general, there is considerable risk of losing ELV scarce metals to carrier metals, construction materials, backfilling materials and landfills. Given differences in the application of metals and identified pathways, prospects for increasing functional recycling are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. X-ray-photoelectron-spectroscopy and Auger-electron-spectroscopy study of ultrathin palladium films on a Pt(111) substrate

    NASA Astrophysics Data System (ADS)

    Han, Moonsup; Mrozek, P.; Wieckowski, A.

    1993-09-01

    We have studied ultrathin palladium films vacuum deposited onto a Pt(111) substrate utilizing Auger-electron spectroscopy (AES), low-energy electron diffraction, and x-ray photoelectron spectroscopy. The AES results fit well to a layer-by-layer growth deposition. Below a coverage of 4 monolayers, the electron-diffraction data only show a (1×1) structure of palladium adatoms on the Pt(111) substrate, supporting the Frank-van der Merve growth mechanism. In contrast to two-dimensional palladium clusters and palladium bimetallic systems, the Pd 3d core-level binding energy of palladium on Pt(111) shifts toward lower binding energy relative to the value of bulk palladium with decreasing palladium overlayer coverage. This negative binding-energy shift of a surface adatom core level results mainly from the initial-state band-narrowing effect predicted by Citrin, Wertheim, and Baer. Also, the absence of the final-state effect after creating a core hole in the Pd/Pt(111) system indicates that efficient screening or very fast relaxation occurs, and that hybridization of the valence bands of the palladium adlayer and the platinum substrate plays an implortant role in the negative surface-atom binding-energy shift of the Pd 3d core level.

  2. Ceramic-metal composite article and joining method

    DOEpatents

    Kang, S.; Selverian, J.H.; Kim, H.J.; Dunn, E.M.; Kim, K.S.

    1992-04-28

    A ceramic-metal article including a ceramic rod, a metal rod, and a braze joining the ceramic and metal rods at a braze area of a coaxial bore in the metal rod is described. The bore gradually decreases in diameter, having an inward seat area sized for close sliding fit about the ceramic, a larger brazing area near the joint end, and a void area intermediate the braze and seat areas. The ceramic is seated without brazing in the bore seat area. The side wall between the brazing area and the metal outer surface is about 0.030-0.080 inch. The braze includes an inner braze layer, an outer braze layer, and an interlayer about 0.030-0.090 inch thick. A shoulder between the brazing and void areas supports the interlayer during bonding while preventing bonding between the void area and the ceramic member, leaving a void space between the void area and the ceramic member. A venting orifice extends generally radially through the metal member from the outer surface to the void space. The braze layers are palladium, platinum, gold, silver, copper, nickel, indium, chromium, molybdenum, niobium, iron, aluminum, or alloys thereof. Preferred is a gold-palladium-nickel brazing alloy. The interlayer is nickel, molybdenum, copper, tantalum, tungsten, niobium, aluminum, cobalt, iron, or an alloy thereof. 4 figs.

  3. Ceramic-metal composite article and joining method

    DOEpatents

    Kang, Shinhoo; Selverian, John H.; Kim, Hans J.; Dunn, Edmund M.; Kim, Kyung S.

    1992-01-01

    A ceramic-metal article including a ceramic rod, a metal rod, and a braze joining the ceramic and metal rods at a braze area of a coaxial bore in the metal rod. The bore gradually decreases in diameter, having an inward seat area sized for close sliding fit about the ceramic, a larger brazing area near the joint end, and a void area intermediate the braze and seat areas. The ceramic is seated without brazing in the bore seat area. The side wall between the brazing area and the metal outer surface is about 0.030-0.080 inch. The braze includes an inner braze layer, an outer braze layer, and an interlayer about 0.030-0.090 inch thick. A shoulder between the brazing and void areas supports the interlayer during bonding while preventing bonding between the void area and the ceramic member, leaving a void space between the void area and the ceramic member. A venting orifice extends generally radially through the metal member from the outer surface to the void space. The braze layers are palladium, platinum, gold, silver, copper, nickel, indium, chromium, molybdenum, niobium, iron, aluminum, or alloys thereof. Preferred is a gold-palladium-nickel brazing alloy. The interlayer is nickel, molybdenum, copper, tantalum, tungsten, niobium, aluminum, cobalt, iron, or an alloy thereof.

  4. Preparation and characterization of magnetic nanoparticles for the on-line determination of gold, palladium, and platinum in mine samples based on flow injection micro-column preconcentration coupled with graphite furnace atomic absorption spectrometry.

    PubMed

    Ye, Juanjuan; Liu, Shuxia; Tian, Miaomiao; Li, Wanjun; Hu, Bin; Zhou, Weihong; Jia, Qiong

    2014-01-01

    A simple and highly selective procedure for on-line determination of trace levels of Au, Pd, and Pt in mine samples has been developed using flow injection-column adsorption preconcentration coupled with graphite furnace atomic absorption spectrophotometry (FI-column-GFAAS). The precious metals were adsorbed on the as-synthesized magnetic nanoparticles functionalized with 4'-aminobenzo-15-crown-5-ether packed into a micro-column and then eluted with 2% thiourea + 0.1 mol L(-1) HCl solution prior to the determination by GFAAS. The properties of the magnetic adsorbents were investigated by scanning electron microscope (SEM), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). Various experimental parameters affecting the preconcentration of Au, Pd, and Pt were investigated and optimized. Under the optimal experimental conditions, the detection limits of the developed technique were 0.16 ng mL(-1) for Au, 0.28 ng mL(-1) for Pd, and 1.01 ng mL(-1) for Pt, with enrichment factors of 24.3, 13.9, and 17.8, respectively. Precisions, evaluated as repeatability of results, were 1.1%, 3.9%, and 4.4% respectively for Au, Pd, and Pt. The developed method was validated by the analysis of Au, Pd, and Pt in certified reference materials and mine samples with satisfactory results.

  5. High Performance Palladium Supported on Nanoporous Carbon under Anhydrous Condition

    NASA Astrophysics Data System (ADS)

    Yang, Zehui; Ling, Ying; Zhang, Yunfeng; Xu, Guodong

    2016-11-01

    Due to the high cost of polymer electrolyte fuel cells (PEFCs), replacing platinum (Pt) with some inexpensive metal was carried out. Here, we deposited palladium nanoparticles (Pd-NPs) on nanoporous carbon (NC) after wrapping by poly[2,2‧-(2,6-pyridine)-5,5‧-bibenzimidazole] (PyPBI) doped with phosphoric acid (PA) and the Pd-NPs size was successfully controlled by varying the weight ratio between Pd precursor and carbon support doped with PA. The membrane electrode assembly (MEA) fabricated from the optimized electrocatalyst with 0.05 mgPd cm-2 for both anode and cathode sides showed a power density of 76 mW cm-2 under 120 °C without any humidification, which was comparable to the commercial CB/Pt, 89 mW cm-2 with 0.45 mgPt cm-2 loaded in both anode and cathode. Meanwhile, the power density of hybrid MEA with 0.45 mgPt cm-2 in cathode and 0.05 mgPd cm-2 in anode reached 188 mW cm-2. The high performance of the Pt-free electrocatalyst was attributed to the porous structure enhancing the gas diffusion and the PyPBI-PA facilitating the proton conductivity in catalyst layer. Meanwhile, the durability of Pd electrocatalyst was enhanced by coating with acidic polymer. The newly fabricated Pt-free electrocatalyst is extremely promising for reducing the cost in the high-temperature PEFCs.

  6. High Performance Palladium Supported on Nanoporous Carbon under Anhydrous Condition

    PubMed Central

    Yang, Zehui; Ling, Ying; Zhang, Yunfeng; Xu, Guodong

    2016-01-01

    Due to the high cost of polymer electrolyte fuel cells (PEFCs), replacing platinum (Pt) with some inexpensive metal was carried out. Here, we deposited palladium nanoparticles (Pd-NPs) on nanoporous carbon (NC) after wrapping by poly[2,2′-(2,6-pyridine)-5,5′-bibenzimidazole] (PyPBI) doped with phosphoric acid (PA) and the Pd-NPs size was successfully controlled by varying the weight ratio between Pd precursor and carbon support doped with PA. The membrane electrode assembly (MEA) fabricated from the optimized electrocatalyst with 0.05 mgPd cm−2 for both anode and cathode sides showed a power density of 76 mW cm−2 under 120 °C without any humidification, which was comparable to the commercial CB/Pt, 89 mW cm−2 with 0.45 mgPt cm−2 loaded in both anode and cathode. Meanwhile, the power density of hybrid MEA with 0.45 mgPt cm−2 in cathode and 0.05 mgPd cm−2 in anode reached 188 mW cm−2. The high performance of the Pt-free electrocatalyst was attributed to the porous structure enhancing the gas diffusion and the PyPBI-PA facilitating the proton conductivity in catalyst layer. Meanwhile, the durability of Pd electrocatalyst was enhanced by coating with acidic polymer. The newly fabricated Pt-free electrocatalyst is extremely promising for reducing the cost in the high-temperature PEFCs. PMID:27811971

  7. Palladium(II)-Catalyzed Annulation between ortho-Alkenylphenols and Allenes. Key Role of the Metal Geometry in Determining the Reaction Outcome

    PubMed Central

    2016-01-01

    2-Alkenylphenols react with allenes, upon treatment with catalytic amounts of Pd(II) and Cu(II), to give benzoxepine products in high yields and with very good regio- and diastereoselectivities. This contrasts with the results obtained with Rh catalysts, which provided chromene-like products through a pathway involving a β-hydrogen elimination step. Computational studies suggest that the square planar geometry of the palladium is critical to favor the reductive elimination process required for the formation of the oxepine products. PMID:27807509

  8. Tripodal polyphosphine ligands as inductors of chelate ring-opening processes in mononuclear palladium(II) and platinum(II) compounds. The X-ray crystal structure of two derivatives containing dangling phosphorus.

    PubMed

    Fernández-Anca, Damián; García-Seijo, M Inés; García-Fernández, M Esther

    2010-03-07

    The reaction of NP(3) (tris[2-(diphenylphosphino)ethyl]amine and PP(3) (tris[2-(diphenylphosphino)ethyl]phosphine) with the five-coordinate complexes [PdCl(NP(3))]Cl (1) and [MX(PP(3))]X [M = Pd: X = Cl(2), Br(3), I(4); M = Pt: X = Cl(5), Br(6), I(7)], respectively, followed by (31)P{(1)H}NMR when X = Cl, led to the formation of unprecedented four-coordinate halides in a 1 : 2 metal to ligand ratio, [M(AP(3))(2)]X(2) [A = N, M = Pd: X = Cl(8); A = P, M = Pd: X = Cl(9), Br(10), I(11); A = P, M = Pt: X = Cl(12), Br(13), I (14)], containing reactive dangling phosphorus. Given the non characterised precursors [M(ONO(2))(PP(3))](NO(3))], the interaction between the heteronuclear species [MAg(NO(3))(3)(PP(3))] [M = Pd(15), Pt(16)] and PP(3) was explored. It was found that the addition of 1 equivalent of phosphine afforded [MAg(NO(3))(PP(3))(2)](NO(3))(2) [M = Pd(15*), Pt(16*)] containing Ag(I) bound to two dangling phosphorus while the reaction with 2 equivalents led to the complexes [M(PP(3))(2)](NO(3))(2) [M = Pd (17), Pt (18)] in coexistence with [Ag(2)(mu-PP(3))(2)](NO(3))(2). The fate of Ag(I) on the reaction of the mixed metal compounds with excess PP(3) consisted of preventing dissociation, observed in solution for halides, and acting as an assistant for crystallization. Colourless single crystals of 18 and 10, studied by X-ray diffraction, were afforded by reaction of 16 with 4 equivalents of PP(3) and from solutions of 10 in chloroform coexisting with red crystals of 3, respectively. The structures revealed the presence of dications [M(PP(3))(2)](2+) that show two five-membered chelate rings to M(II) in a square-planar arrangement and four uncoordinated phosphine arms with the counter anions being symmetrically placed at 4.431 (Br(-)) and 13.823 (NO(3)(-)) A from M(II) above and below its coordination, MP(4), plane. Complexes 9 and 12 were shown to undergo an interesting reactivity in solution versus group 11 monocations. The reactions consisted of conversions

  9. Dihydrogen and Acetylene Activation by a Gold(I)/Platinum(0) Transition Metal Only Frustrated Lewis Pair.

    PubMed

    Campos, Jesús

    2017-03-01

    The first example of a frustrated Lewis pair (FLP) solely constructed around transition metal centers is described in this work. We have focused on the established capacity of Au(I) and Pt(0) complexes to act as Lewis acidic and basic fragments, respectively, while employing sufficiently bulky P(t)Bu3 and terphenyl phosphine ligands. This avoids formation of metallic Lewis adducts and confers the Au(I)/Pt(0) pair a remarkable capacity to activate dihydrogen and acetylene molecules in a fashion that closely resembles that of traditional main group FLP systems. As a consequence, unusual heterobimetallic Au(I)/Pt(II) complexes containing hydride (-H), acetylide (-C≡CH), and vinylene (-HC═CH-) bridges have been isolated.

  10. Palladium and platinum complexes of tellurium-containing imidodiphosphinate ligands: nucleophilic attack of Li[(P(i)Pr2)(TeP(i)Pr2)N] on coordinated 1,5-cyclooctadiene.

    PubMed

    Robertson, Stuart D; Ritch, Jamie S; Chivers, Tristram

    2009-10-28

    Homoleptic group 10 complexes of ditellurido PNP (PNP = imidodiphosphinate), heterodichalcogenido PNP and monotellurido PNP ligands, M[(TeP(i)Pr2)2N]2 (1: M = Pd; 2: M = Pt), M[(EP(i)Pr2)(TeP(i)Pr2)N]2 (3: M = Pd, E = Se; 4: M = Pt, E = Se; 5: M = Pd, E = S; 6: M = Pt, E = S) and M[(P(i)Pr2)(TeP(i)Pr2)N]2 (7: M = Pd; 8: M = Pt), respectively, were prepared by metathesis between alkali-metal derivatives of the appropriate ligand and MCl2(COD) in THF. Complexes 1-8 were characterised in solution by multinuclear (31P, 77Se, 125Te and 195Pt) NMR spectroscopy and, in the case of 1, 2, trans-7, cis-7 and trans-8, in the solid state by X-ray crystallography. The square-planar complexes 3-6 are formed as a mixture of cis- and trans-isomers on the basis of NMR data. The cis and trans isomers of 7 were separated by crystallisation from different solvents. In addition to trans-8, the reaction of Li[(P(i)Pr2)(TeP(i)Pr2)N] with MCl2(COD) produced the heteroleptic complex Pt[(P(i)Pr2)(TeP(i)Pr2)N][sigma:eta2-C8H12(P(i)Pr2NP(i)Pr2Te)] (9) resulting from nucleophilic attack on coordinated 1,5-cyclooctadiene. Complex 9 was identified by multinuclear (13C, 31P, 125Te and 195Pt) NMR spectroscopy, which revealed a mixture of geometric isomers, and by X-ray crystallography.

  11. PLATINUM AND FUEL CELLS

    EPA Science Inventory

    Platinum requirements for fuel cell vehicles (FCVS) have been identified as a concern and possible problem with FCV market penetration. Platinum is a necessary component of the electrodes of fuel cell engines that power the vehicles. The platinum is deposited on porous electrodes...

  12. PLATINUM AND FUEL CELLS

    EPA Science Inventory

    Platinum requirements for fuel cell vehicles (FCVS) have been identified as a concern and possible problem with FCV market penetration. Platinum is a necessary component of the electrodes of fuel cell engines that power the vehicles. The platinum is deposited on porous electrodes...

  13. Modelling oxide formation and growth on platinum

    NASA Astrophysics Data System (ADS)

    Baroody, Heather A.; Jerkiewicz, Gregory; Eikerling, Michael H.

    2017-04-01

    We present a mathematical model of oxide formation and growth on platinum. The motivation stems from the necessity to understand platinum dissolution in the cathode catalyst layer of polymer electrolyte fuel cells. As is known, platinum oxide formation and reduction are strongly linked to platinum dissolution processes. However, a consistent model of the oxidation processes on platinum does not exist. Our oxide growth model links interfacial exchange processes between platinum and oxygen ions with the transport of oxygen ion vacancies via diffusion and migration. A parametric analysis is performed to rationalize vital trends in oxide growth kinetics. The rate determining step of oxide formation and growth is identified as the extraction of platinum atoms at the metal-oxide interface. A kinetic effect is observed while adjusting the potential when growing the oxide layer, and the solution indicates that a structural change occurs at high potentials, around 1.5 VRHE. The model compares well to experimental data for various materials from various sources.

  14. Characterization of electrochemically modified polycrystalline platinum surfaces

    SciTech Connect

    Krebs, L.C.; Ishida, Takanobu.

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between {minus}0.24 and +1.25 V{sub SCE} while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-{rho}-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  15. Characterization of electrochemically modified polycrystalline platinum surfaces

    SciTech Connect

    Krebs, Leonard C.; Ishida, Takanobu

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between -0.24 and +1.25 VSCE while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-ρ-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  16. Catalytic Reduction of Noble Metal Salts by Sodium Hypophosphite Promoted by the Film Poly-(p-Allyl Ether Benzenesulfonic Acid)

    PubMed Central

    Costa, M. I. C. F.; Steter, J. R.; Purgato, F. L. S.; Romero, J. R.

    2011-01-01

    Glassy carbon electrodes were coated with the film poly-(p-allyl ether benzenesulfonic acid) by an anodic procedure. Nickel, platinum, and palladium ions were introduced into the film by ion exchange of H+ with the corresponding salts. These ions were catalytically reduced to their corresponding metals using the known electroless reducing agent sodium hypophosphite. Scanning electron microcopy and energy dispersive X-ray spectroscopy were carried out to demonstrate the occurrence of the catalytic process. To compare this method with another one carried out in our laboratory, the electrocatalytic reduction of H+ was studied using the same modified electrodes. A suggested mechanism for the catalysis is proposed. PMID:24052832

  17. Organometallic Palladium Reagents for Cysteine Bioconjugation

    PubMed Central

    Vinogradova, Ekaterina V.; Zhang, Chi; Spokoyny, Alexander M.; Pentelute, Bradley L.; Buchwald, Stephen L.

    2015-01-01

    Transition-metal based reactions have found wide use in organic synthesis and are used frequently to functionalize small molecules.1,2 However, there are very few reports of using transition-metal based reactions to modify complex biomolecules3,4, which is due to the need for stringent reaction conditions (for example, aqueous media, low temperature, and mild pH) and the existence of multiple, reactive functional groups found in biopolymers. Here we report that palladium(II) complexes can be used for efficient and highly selective cysteine conjugation reactions. The bioconjugation reaction is rapid and robust under a range of biocompatible reaction conditions. The straightforward synthesis of the palladium reagents from diverse and easily accessible aryl halide and trifluoromethanesulfonate precursors makes the method highly practical, providing access to a large structural space for protein modification. The resulting aryl bioconjugates are stable towards acids, bases, oxidants, and external thiol nucleophiles. The broad utility of the new bioconjugation platform was further corroborated by the synthesis of new classes of stapled peptides and antibody-drug conjugates. These palladium complexes show potential as a new set of benchtop reagents for diverse bioconjugation applications. PMID:26511579

  18. Organometallic palladium reagents for cysteine bioconjugation

    NASA Astrophysics Data System (ADS)

    Vinogradova, Ekaterina V.; Zhang, Chi; Spokoyny, Alexander M.; Pentelute, Bradley L.; Buchwald, Stephen L.

    2015-10-01

    Reactions based on transition metals have found wide use in organic synthesis, in particular for the functionalization of small molecules. However, there are very few reports of using transition-metal-based reactions to modify complex biomolecules, which is due to the need for stringent reaction conditions (for example, aqueous media, low temperature and mild pH) and the existence of multiple reactive functional groups found in biomolecules. Here we report that palladium(II) complexes can be used for efficient and highly selective cysteine conjugation (bioconjugation) reactions that are rapid and robust under a range of bio-compatible reaction conditions. The straightforward synthesis of the palladium reagents from diverse and easily accessible aryl halide and trifluoromethanesulfonate precursors makes the method highly practical, providing access to a large structural space for protein modification. The resulting aryl bioconjugates are stable towards acids, bases, oxidants and external thiol nucleophiles. The broad utility of the bioconjugation platform was further corroborated by the synthesis of new classes of stapled peptides and antibody-drug conjugates. These palladium complexes show potential as benchtop reagents for diverse bioconjugation applications.

  19. Organometallic palladium reagents for cysteine bioconjugation.

    PubMed

    Vinogradova, Ekaterina V; Zhang, Chi; Spokoyny, Alexander M; Pentelute, Bradley L; Buchwald, Stephen L

    2015-10-29

    Reactions based on transition metals have found wide use in organic synthesis, in particular for the functionalization of small molecules. However, there are very few reports of using transition-metal-based reactions to modify complex biomolecules, which is due to the need for stringent reaction conditions (for example, aqueous media, low temperature and mild pH) and the existence of multiple reactive functional groups found in biomolecules. Here we report that palladium(II) complexes can be used for efficient and highly selective cysteine conjugation (bioconjugation) reactions that are rapid and robust under a range of bio-compatible reaction conditions. The straightforward synthesis of the palladium reagents from diverse and easily accessible aryl halide and trifluoromethanesulfonate precursors makes the method highly practical, providing access to a large structural space for protein modification. The resulting aryl bioconjugates are stable towards acids, bases, oxidants and external thiol nucleophiles. The broad utility of the bioconjugation platform was further corroborated by the synthesis of new classes of stapled peptides and antibody-drug conjugates. These palladium complexes show potential as benchtop reagents for diverse bioconjugation applications.

  20. Ozone sensing based on palladium decorated carbon nanotubes.

    PubMed

    Colindres, Selene Capula; Aguir, Khalifa; Cervantes Sodi, Felipe; Vargas, Luis Villa; Salazar, José Moncayo; Febles, Vicente Garibay

    2014-04-14

    Multiwall carbon nanotubes (MWCNTs) were easily and efficiently decorated with Pd nanoparticles through a vapor-phase impregnation-decomposition method starting from palladium acetylacetonates. The sensor device consisted on a film of sensitive material (MWCNTs-Pd) deposited by drop coating on platinum interdigitated electrodes on a SiO₂ substrate. The sensor exhibited a resistance change to ozone (O₃) with a response time of 60 s at different temperatures and the capability of detecting concentrations up to 20 ppb. The sensor shows the best response when exposed to O3 at 120 °C. The device shows a very reproducible sensor performance, with high repeatability, full recovery and efficient response.