Science.gov

Sample records for metals silver mercury

  1. Multiplexed analysis of silver(I) and mercury(II) ions using oligonucletide-metal nanoparticle conjugates.

    PubMed

    Huy, Gioi Dong; Zhang, Min; Zuo, Peng; Ye, Bang-Ce

    2011-08-21

    A colorimetric assay has been developed for the simultaneous selective detection of silver(I) and mercury(II) ions utilizing metal nanoparticles (NPs) as sensing element based on their unique surface plasmon resonance properties. In this method, sulfhydryl group modified cytosine-(C)-rich ssDNA (SH-C-ssDNA) was self-assembled on gold nanoparticles (AuNPs) to produce the AuNPs-C-ssDNA complex, and sulfhydryl group modified thymine-(T)-rich ssDNA (SH-T-ssDNA) was self-assembled on silver nanoparticles (AgNPs) to produce the AgNPs-T-ssDNA complex. Oligonucleotides (SH-C-ssDNA or SH-T-ssDNA) could enhance the AuNPs or AgNPs against salt-induced aggregation. However, the presence of silver(I) ions (Ag(+)) in the complex of ssDNA-AuNPs would reduce the stability of AuNPs due to the formation of Ag(+) mediated C-Ag(+)-C base pairs accompanied with the AuNPs color change from red to purple or even to dark blue. Moreover, the presence of mercury(II) ions (Hg(2+)) would also reduce the stability of AgNPs due to the formation of Hg(2+) mediated T-Hg(2+)-T base pairs accompanied with the AgNPs color change from yellow to brown, then to dark purple. The presence of both Ag(+) and Hg(2+) will reduce the stability of both AuNPs and AgNPs and cause the visible color change. As a result, Ag(+) and Hg(2+) could be detected qualitatively and quantitatively by the naked eye or by UV-vis spectral measurement. The lowest detectable concentration of a 5 nM mixture of Ag(+) and Hg(2+) in the river water was gotten by the UV-vis spectral measurement.

  2. Mercury

    MedlinePlus

    Mercury is an element that is found in air, water and soil. It has several forms. Metallic mercury is a shiny, silver-white, odorless liquid. If ... with other elements to form powders or crystals. Mercury is in many products. Metallic mercury is used ...

  3. [Chronic occupational metallic mercurialism].

    PubMed

    Faria, Marcília de Araújo Medrado

    2003-02-01

    This is a review on current knowledge of chronic occupational mercurialism syndrome. Major scientific studies and reviews on clinical manifestation and physiopathology of mercury poisoning were evaluated. The search was complemented using Medline and Lilacs data. Erethism or neuropsychological syndrome, characterized by irritability, personality change, loss of self-confidence, depression, delirium, insomnia, apathy, loss of memory, headaches, general pain, and tremors, is seen after exposure to metallic mercury. Hypertension, renal disturbances, allergies and immunological conditions are also common. Mercury is found in many different work processes: industries, gold mining, and dentistry. As prevention measures are not often adopted there is an increasing risk of mercury poisoning. The disease has been under diagnosed even though 16 clinical forms of mercury poisoning are described by Brazilian regulations. Clinical diagnosis is important, especially because abnormalities in the central nervous, renal and immunological systems can be detected using current medical technology, helping to develop the knowledge and control measures for mercurialism.

  4. Mercury Quick Facts: Health Effects of Mercury Exposure

    MedlinePlus

    ... the shiny, silver-gray metal found in thermometers, barometers, and thermostats and other electrical switches. • • Mercury can ... the shiny, silver-gray metal found in thermometers, barometers, and thermostats and other electrical switches. Mercury: • • Can ...

  5. Impact of mercury emissions from historic gold and silver mining: Global modeling

    NASA Astrophysics Data System (ADS)

    Strode, Sarah; Jaeglé, Lyatt; Selin, Noelle E.

    We compare a global model of mercury to sediment core records to constrain mercury emissions from the 19th century North American gold and silver mining. We use information on gold and silver production, the ratio of mercury lost to precious metal produced, and the fraction of mercury lost to the atmosphere to calculate an a priory mining inventory for the 1870s, when the historical gold rush was at its highest. The resulting global mining emissions are 1630 Mg yr -1, consistent with previously published studies. Using this a priori estimate, we find that our 1880 simulation over-predicts the mercury deposition enhancements archived in lake sediment records. Reducing the mining emissions to 820 Mg yr -1 improves agreement with observations, and leads to a 30% enhancement in global deposition in 1880 compared to the pre-industrial period. For North America, where 83% of the mining emissions are located, deposition increases by 60%. While our lower emissions of atmospheric mercury leads to a smaller impact of the North American gold rush on global mercury deposition than previously estimated, it also implies that a larger fraction of the mercury used in extracting precious metals could have been directly lost to local soils and watersheds.

  6. MOD silver metallization for photovoltaics

    NASA Technical Reports Server (NTRS)

    Vest, G. M.; Vest, R. W.

    1984-01-01

    The development of flat plate solar arrays is reported. Photovoltaic cells require back side metallization and a collector grid system on the front surface. Metallo-organic decomposition (MOD) silver films can eliminate most of the present problems with silver conductors. The objectives are to: (1) identify and characterize suitable MO compounds; (2) develop generic synthesis procedures for the MO compounds; (3) develop generic fabrication procedures to screen printable MOD silver inks; (4) optimize processing conditions to produce grid patterns and photovoltaic cells; and (5) develop a model which describes the adhesion between the fired silver film and the silicon surface.

  7. MOD silver metallization for photovoltaics

    NASA Technical Reports Server (NTRS)

    Vest, G. M.; Vest, R. W.

    1985-01-01

    The feasibility of utilizing metallo-organic decomposition (MOD) silver inks were investigated for front contact metallization of solar cells. Generic synthesis procedures were developed for all metallo-organic compounds investigated. Silver neodecanoate was found to be the most suitable silver metallo-organic compound for use in thick film inks, but the quality of the inks was found to be highly dependent on its purity. Although neither the process nor inks were completely optimized for solar cell front contact metallization, they show great promise for this application.

  8. Enhancement of elemental mercury adsorption by silver supported material.

    PubMed

    Khunphonoi, Rattabal; Khamdahsag, Pummarin; Chiarakorn, Siriluk; Grisdanurak, Nurak; Paerungruang, Adjana; Predapitakkun, Somrudee

    2015-06-01

    Mercury, generally found in natural gas, is extremely hazardous. Although average mercury levels are relatively low, they are further reduced to comply with future mercury regulations, which are stringent in order to avoid releasing to the environment. Herein, vapor mercury adsorption was therefore investigated using two kinds of supports, granular activated carbon (GAC) and titanium dioxide (TiO2). Both supports were impregnated by silver (5 and 15 wt.%), before testing against a commercial adsorbent (sulfur-impregnated activated carbon, SAC). The adsorption isotherm, kinetics, and its thermodynamics of mercury adsorption were reported. The results revealed that Langmuir isotherm provided a better fit to the experimental data. Pseudo second-order was applicable to describe adsorption kinetics. The higher uniform Ag dispersion was a key factor for the higher mercury uptake. TiO2 supported silver adsorbent showed higher mercury adsorption than the commercial one by approximately 2 times. Chemisorption of mercury onto silver active sites was confirmed by an amalgam formation found in the spent adsorbents.

  9. Process for making silver metal filaments

    DOEpatents

    Bamberger, Carlos E.

    1997-01-01

    A process for making silver metal particles from silver salt particles having the same morphology. Precursor silver salt particles selected from the group consisting of silver acetate and silver sulfide having a selected morphology are contained in a reactor vessel having means for supporting the particles in an air suspension to prevent the agglomeration of the particles. Air is flowed through the reactor vessel at a flow rate sufficient to suspend the particles in the reactor vessel. The suspended precursor silver salt particles are heated to a processing temperature and at a heating rate below which the physical deterioration of the suspended precursor silver salt particles takes place. The suspended precursor silver salt particles are maintained at the processing temperature for a period of time sufficient to convert the particles into silver metal particles having the same morphology as the precursor silver salt particles.

  10. The Hydrothermal Chemistry of Gold, Arsenic, Antimony, Mercury and Silver

    SciTech Connect

    Bessinger, Brad; Apps, John A.

    2003-03-23

    A comprehensive thermodynamic database based on the Helgeson-Kirkham-Flowers (HKF) equation of state was developed for metal complexes in hydrothermal systems. Because this equation of state has been shown to accurately predict standard partial molal thermodynamic properties of aqueous species at elevated temperatures and pressures, this study provides the necessary foundation for future exploration into transport and depositional processes in polymetallic ore deposits. The HKF equation of state parameters for gold, arsenic, antimony, mercury, and silver sulfide and hydroxide complexes were derived from experimental equilibrium constants using nonlinear regression calculations. In order to ensure that the resulting parameters were internally consistent, those experiments utilizing incompatible thermodynamic data were re-speciated prior to regression. Because new experimental studies were used to revise the HKF parameters for H2S0 and HS-1, those metal complexes for which HKF parameters had been previously derived were also updated. It was found that predicted thermodynamic properties of metal complexes are consistent with linear correlations between standard partial molal thermodynamic properties. This result allowed assessment of several complexes for which experimental data necessary to perform regression calculations was limited. Oxygen fugacity-temperature diagrams were calculated to illustrate how thermodynamic data improves our understanding of depositional processes. Predicted thermodynamic properties were used to investigate metal transport in Carlin-type gold deposits. Assuming a linear relationship between temperature and pressure, metals are predicted to predominantly be transported as sulfide complexes at a total aqueous sulfur concentration of 0.05 m. Also, the presence of arsenic and antimony mineral phases in the deposits are shown to restrict mineralization within a limited range of chemical conditions. Finally, at a lesser aqueous sulfur

  11. 49 CFR 173.164 - Mercury (metallic and articles containing mercury).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Mercury (metallic and articles containing mercury... Than Class 1 and Class 7 § 173.164 Mercury (metallic and articles containing mercury). (a) For transportation by aircraft, mercury must be packaged in packagings which meet the requirements of part 178 of...

  12. 49 CFR 173.164 - Mercury (metallic and articles containing mercury).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Mercury (metallic and articles containing mercury... Than Class 1 and Class 7 § 173.164 Mercury (metallic and articles containing mercury). (a) For transportation by aircraft, mercury must be packaged in packagings which meet the requirements of part 178 of...

  13. 49 CFR 173.164 - Mercury (metallic and articles containing mercury).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Mercury (metallic and articles containing mercury... Than Class 1 and Class 7 § 173.164 Mercury (metallic and articles containing mercury). (a) For transportation by aircraft, mercury must be packaged in packagings which meet the requirements of part 178 of...

  14. 49 CFR 173.164 - Mercury (metallic and articles containing mercury).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Mercury (metallic and articles containing mercury... Than Class 1 and Class 7 § 173.164 Mercury (metallic and articles containing mercury). (a) For transportation by aircraft, mercury must be packaged in packagings which meet the requirements of part 178...

  15. 49 CFR 173.164 - Mercury (metallic and articles containing mercury).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Mercury (metallic and articles containing mercury... Than Class 1 and Class 7 § 173.164 Mercury (metallic and articles containing mercury). (a) For transportation by aircraft, mercury must be packaged in packagings which meet the requirements of part 178...

  16. Selective extraction of copper, mercury, silver and palladium ionsfrom water using hydrophobic ionic liquids.

    SciTech Connect

    Papaiconomou, Nicolas; Lee, Jong-Min; Salminen, Justin; VonStosch, Moritz; Prausnitz, John M.

    2007-06-25

    Extraction of dilute metal ions from water was performed near room temperature with a variety of ionic liquids. Distribution coefficients are reported for fourteen metal ions extracted with ionic liquids containing cations 1-octyl-4-methylpyridinium [4MOPYR]{sup +}, 1-methyl-1-octylpyrrolidinium [MOPYRRO]{sup +} or 1-methyl-1-octylpiperidinium [MOPIP]{sup +}, and anions tetrafluoroborate [BF{sub 4}]{sup +}, trifluoromethyl sulfonate [TfO]{sup +} or nonafluorobutyl sulfonate [NfO]{sup +}. Ionic liquids containing octylpyridinium cations are very good for extracting mercury ions. However, other metal ions were not significantly extracted by any of these ionic liquids. Extractions were also performed with four new task-specific ionic liquids. Such liquids containing a disulfide functional group are efficient and selective for mercury and copper, whereas those containing a nitrile functional group are efficient and selective for silver and palladium.

  17. Exploiting the higher specificity of silver amalgamation: selective detection of mercury(II) by forming Ag/Hg amalgam.

    PubMed

    Deng, Li; Ouyang, Xiangyuan; Jin, Jianyu; Ma, Cheng; Jiang, Ying; Zheng, Jing; Li, Jishan; Li, Yinhui; Tan, Weihong; Yang, Ronghua

    2013-09-17

    Heavy metal ion pollution poses severe risks in human health and the environment. Driven by the need to detect trace amounts of mercury, this article demonstrates, for the first time, that silver/mercury amalgamation, combining with DNA-protected silver nanoparticles (AgNPs), can be used for rapid, easy and reliable screening of Hg(2+) ions with high sensitivity and selectivity over competing analytes. In our proposed approach, Hg(2+) detection is achieved by reducing the mercury species to elemental mercury, silver atoms were chosen as the mercury atoms' acceptors by forming Ag/Hg amalgam. To signal fluorescently this silver amalgamation event, a FAM-labeled ssDNA was employed as the signal reporter. AgNPs were grown on the DNA strand that resulted in greatly quenching the FAM fluorescence. Formation of Ag/Hg amalgam suppresses AgNPs growth on the DNA, leading to fluorescence signal increase relative to the fluorescence without Hg(2+) ions, as well as marked by fluorescence quenching. This FAM fluorescence enhancement can be used for detection of Hg(2+) at the a few nanomolar level. Moreover, due to excellent specificity of silver amalgamation with mercury, the sensing system is highly selective for Hg(2+) and does not respond to other metal ions with up to millimolar concentration levels. This sensor is successfully applied to determination of Hg(2+) in tap water, spring water and river water samples. The results shown herein have important implications in the development of new fluorescent sensors for the fast, easy, and selective detection and quantification of Hg(2+) in environmental and biological samples.

  18. Mercury and Silver in Clinic Wastewater Goodfellow AFB, Texas

    DTIC Science & Technology

    1989-07-01

    bowl allows for visual inspection with"u cksassorrly. Suns-Ni or Wion PTpnszonly Sn-N or EPDM gasket . 10. 20,.40. 80 mesh with 20 Mesh r 𔃼,4,or 80...Page I Silver and Mercury Results 7 2 EP roxicity Testing on Amalgum Capsules 8 Figure I Typical Duplex Vacuum Equipment Installation 2 2 Easy Access...not a characteristic EP toxic hazardous waste. Results are as follows: Table 2. EP Toxicity Testing on Amalgam Capsules Parameter Concentrations (mg/L

  19. Occupational Metallic Mercury Poisoning in Gilders.

    PubMed

    Vahabzadeh, M; Balali-Mood, M

    2016-04-01

    Occupational exposure to elemental mercury vapor usually occurs through inhalation during its utilizations. This leads to a variety of adverse health effects. In some Islamic cities, this type of poisoning may occur during gilding of shrines using elemental mercury with gold. Herein, we report on three male patients aged 20-53 years, who were diagnosed with occupational metallic mercury poisoning due to gilding of a shrine. All patients presented with neuro-psychiatric disorders such as anxiety, loss of memory and concentration, and sleep disorders with high urinary mercury concentrations of 326-760 μg/L upon referring, 3-10 days after cessation of elemental mercury exposure. Following chelating therapy, the patients recovered clinically and their mercury concentrations declined to non-toxic level (<25 μg/L). Health, environmental and labor authorities, as well as the gilders should be aware of the toxicity risk of exposure to metalic mercury during gilding in closed environments and act accordingly.

  20. Reaction of mercury with silver-tin dental amalgam alloy.

    PubMed

    Abbott, J R; Miller, D R; Netherway, D J

    1982-09-01

    Electron diffraction evidence confirming the ordered orthorhombic crystal structure of the gamma phase of the silver-tin system has been obtained, and it has been established by optical metallography that an alloy with a composition corresponding to the dental amalgam alloy formula Ag3Sn (i.e., 26.85 wt % Sn) lies outside the single gamma phase field and in the duplex (gamma + Sn) phase field adjacent to it. Studies of the mechanism of the hardening reaction of single crystals of homogeneous gamma phase alloys with mercury were carried out using both scanning and transmission electron microscopy. Mercury attack occurred preferentially along well-defined planes in the single crystals. Using electron channeling and trace analysis techniques these planes of preferential attack were found to be [010] and [011], and from transmission electron microscopy of thin foils these were shown to be slip bands and deformation twins, respectively. In bicrystals of gamma phase material, preferential attack also occurred along grain boundaries. Similar preferential mercury attack, leading to the development of deep planar intrusions into the gamma phase material, was observed in an experimental dental amalgam prepared from a lathe-cut homogeneous gamma phase amalgam alloy. It is believed that the presence of such features would have important implications for the clinical performance of dental amalgam.

  1. Silver doped metal layers for medical applications

    NASA Astrophysics Data System (ADS)

    Kocourek, T.; Jelínek, M.; Mikšovský, J.; Jurek, K.; Weiserová, M.

    2014-04-01

    Biological, physical and mechanical properties of silver-doped layers of titanium alloy Ti6Al4V and 316L steel prepared by pulsed laser deposition were studied. Metallic silver-doped coatings could be a new route for antibacterial protection in medicine. Thin films of silver and silver-doped materials were synthesized using KrF excimer laser deposition. The materials were ablated from two targets, which were composed either from titanium alloy with silver segments or from steel with silver segments. The concentration of silver ranged from 1.54 at% to 4.32 at% for steel and from 3.04 at% to 13.05 at% for titanium alloy. The layer properties such as silver content, structure, adhesion, surface wettability, and antibacterial efficacy (evaluated by Escherichia coli and Bacillus subtilis bacteria) were measured. Film adhesion was studied using scratch test. The antibacterial efficacy changed with silver doping up to 99.9 %. Our investigation was focused on minimum Ag concentration needed to reach high antibacterial efficiency, high film adhesion, and hardness.

  2. ELEMENTAL MERCURY IN COPPER, SILVER, AND GOLD ORES: AN UNEXPECTED CONTRIBUTION TO LAKE SUPERIOR SEDIMENTS WITH GLOBAL IMPLICATIONS

    EPA Science Inventory

    Mercury and copper inventories are low in central Lake Superior and increase markedly towards the Keweenaw Peninsula...where copper, mercury, and silver inventories are elevated and highly correlated. High copper, silver, and mercury inventories can be traced back to shoreline st...

  3. ELEMENTAL MERCURY IN COPPER, SILVER, AND GOLD ORES: AN UNEXPECTED CONTRIBUTION TO LAKE SUPERIOR SEDIMENTS WITH GLOBAL IMPLICATIONS

    EPA Science Inventory

    Mercury and copper inventories are low in central Lake Superior and increase markedly towards the Keweenaw Peninsula...where copper, mercury, and silver inventories are elevated and highly correlated. High copper, silver, and mercury inventories can be traced back to shoreline st...

  4. Process for making silver metal filaments

    SciTech Connect

    Bamberger, C.E.

    1998-04-01

    This invention relates to a process for making filaments of metal compounds and more particularly to a process for making silver metal filaments. The United States Government has rights to this invention pursuant to Contract No. DE-AC05-8421400 with Lockheed Martin Energy Systems, Inc. awarded by the US Department of Energy.

  5. Stabilization process of metallic mercury by sulphur

    SciTech Connect

    Vaudey, Claire-Emilie; Bardy, Maud; Huc, Christelle

    2013-07-01

    The technical field of this subject can be described as the treatment of mercury based wastes in order to stock or eliminate them. Toxic mercury vapours prevent from directly stocking or incinerating the wastes. Therefore, some processes have already been implemented to reduce the mercury mobility. Those immobilization processes are created to avoid mercury release in the atmosphere by volatilization or in the soil by leaching. Among the 3 current processes: encapsulation, amalgamation and stabilization, we took an interest on the last one. Stabilization can be defined as an immobilization due to a combination between a molecule and motionless particles to reduce the release of dangerous elements in the atmosphere or the biosphere. The most common technique of metallic mercury stabilization found in readings is the sulphur amalgamation technique. It consists in the chemical reaction: Hg + S → HgS. A mercury sulphide is then produced and is very insoluble in the water. A 386 deg. C heating transforms it in red sulphide. The obtained mixture can be easily and safely stored in a waste storage. In this context, solid sulphur is added in wide excess compared to the liquid mercury to cause the reaction: Hg(l) + S(s) → HgS(s) with a molar ratio between 1/6.5 and 1/19. The main drawback of this technique is the generation of an important waste quantity: a mixture of HgS and sulphur. Moreover there's no guarantee about the absence of mercury vapours. Therefore there's a real need to improve the ratio and the safety of the reaction, which is the purpose of this study. The volume of the created product is greatly reduced in this case and authorizes significant savings on storage costs. The other experimental parameters discussed in this study are temperature, volume, flask type and mixing speed. (authors)

  6. Irradiation of silver and agar/silver nanoparticles with argon, oxygen glow discharge plasma, and mercury lamp.

    PubMed

    Ahmad, Mahmoud M; Abdel-Wahab, Essam A; El-Maaref, A A; Rawway, Mohammed; Shaaban, Essam R

    2014-01-01

    The irradiation effect of argon, oxygen glow discharge plasma, and mercury lamp on silver and agar/silver nanoparticle samples is studied. The irradiation time dependence of the synthesized silver and agar/silver nanoparticle absorption spectra and their antibacterial effect are studied and compared. In the agar/silver nanoparticle sample, as the irradiation time of argon glow discharge plasma or mercury lamp increases, the peak intensity and the full width at half maximum, FWHM, of the surface plasmon resonance absorption band is increased, however a decrease of the peak intensity with oxygen glow plasma has been observed. In the silver nanoparticle sample, as the irradiation time of argon, oxygen glow discharge plasma or mercury lamp increases, the peak intensity of the surface plasmon resonance absorption band is increased, however, there is no significant change in the FWHM of the surface plasmon resonance absorption band. The SEM results for both samples showed nanoparticle formation with mean size about 50 nm and 40 nm respectively. Throughout the irradiation time with the argon, oxygen glow discharge plasma or mercury lamp, the antibacterial activity of several kinds of Gram-positive and Gram-negative bacteria has been examined.

  7. Mercury release of amalgams with various silver contents after exposure to bleaching agent

    PubMed Central

    Bahari, Mahmoud; Alizadeh Oskoee, Parnian; Savadi Oskoee, Siavash; Pouralibaba, Firoz; Morsali Ahari, Ali

    2016-01-01

    Background. Since it is possible for carbamide peroxide (CP) bleaching agent to contact old amalgam restorations, the present in vitro study evaluated the amount of dissolved mercury released from amalgam restorations with various percent-ages of silver content subsequent to the use of 15% CP. Methods. Thirty ANA 2000 amalgam disks with 43.1% silver content and thirty ANA 70 amalgam disks with 69.3% silver content were prepared. In each group, 15 samples were randomly placed in glass tubes containing 15% CP (as experimental groups) and the remaining 15 samples were placed in buffered phosphate solution (as control groups) with the same 3-mL volume for 48 hours. Subsequently, the amount of mercury dissolved in each test tube was measured using Mercury Analyzing System (Cold Vapor Atomic Absorption, MASLO, Shimadzu, Japan). Data was analyzed with two-way ANOVA and a post hoc Tukey test. (α = 0.05). Results. The amount of mercury released after exposure to CP was significantly higher than that released after exposure to buffered phosphate (P < 0.001). In addition, the amount of mercury released from dental amalgam with a silver content of 43% was significantly higher than that released from dental amalgam with a silver content of 69% (P < 0.001). Conclusion. The amount of mercury release is inversely proportional to the silver content of dental amalgam. PMID:27429729

  8. Metal-metal bonding using silver/copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Kobayashi, Y.; Maeda, T.; Yasuda, Y.; Morita, T.

    2016-08-01

    A method for producing nanoparticles composed of silver and copper and a metal-metal bonding technique using the silver/copper nanoparticles are proposed. The method consists of three steps. First, copper oxide nanoparticles are produced by mixing Cu(NO3)2 aqueous solution and NaOH aqueous solution. Second, copper metal nanoparticles are fabricated by reducing the copper oxide nanoparticles with hydrazine in the presence of poly(vinylpyrrolidone) (PVP). Third, silver/copper nanoparticles are synthesized by reducing Ag+ ions with hydrazine in the presence of the copper metal nanoparticles. Initial concentrations in the final silver/copper particle colloid, composed of 0.0075 M Cu2+, 0.0025 M Ag+, 1.0 g/L PVP, and 0.6 M hydrazine, produced silver/copper nanoparticles with an average size of 49 nm and a crystal size of 16.8 nm. Discs of copper metal were successfully bonded by the silver/copper nanoparticles under annealing at 400 °C and pressurizing at 1.2 MPa for 5 min in not only hydrogen gas but also nitrogen gas. The shear force required to separate the bonded discs was 22.3 MPa for the hydrogen gas annealing and 14.9 MPa for the nitrogen gas annealing (namely, 66.8 % of that for hydrogen gas annealing).

  9. Mercury Production and Use in Colonial Andean Silver Production: Emissions and Health Implications

    PubMed Central

    Hagan, Nicole A.

    2012-01-01

    Background: Colonial cinnabar mining and refining began in Huancavelica, Peru, in 1564. With a local source of mercury, the amalgamation process was adopted to refine silver in Potosí, Bolivia, in the early 1570s. As a result, large quantities of mercury were released into the environment. Objectives: We used archival, primary, and secondary sources to develop the first estimate of mercury emissions from cinnabar refining in Huancavelica and to revise previous estimates of emissions from silver refining in Potosí during the colonial period (1564–1810). Discussion: Although other estimates of historical mercury emissions have recognized Potosí as a significant source, Huancavelica has been overlooked. In addition, previous estimates of mercury emissions from silver refining under-estimated emissions because of unrecorded (contra-band) production and volatilization of mercury during processing and recovery. Archival descriptions document behavioral and health issues during the colonial period that are consistent with known effects of mercury intoxication. Conclusions: According to our calculations, between 1564 and 1810, an estimated 17,000 metric tons of mercury vapor were emitted from cinnabar smelting in Huancavelica, and an estimated 39,000 metric tons were released as vapor during silver refining operations in Potosí. Huancavelica and Potosí combined contributed > 25% of the 196,000 metric tons of mercury vapor emissions in all of Latin America between 1500 and 1800. The historical record is laden with evidence of mercury intoxication consistent with effects recognized today. Our estimates serve as the foundation of investigations of present-day contamination in Huancavelica and Potosí resulting from historical emissions of mercury. PMID:22334094

  10. MOD silver metallization for photovoltaics

    NASA Technical Reports Server (NTRS)

    Vest, G. M.; Vest, R. W.

    1984-01-01

    Photovoltaic cells require back side metallization and a collector grid system on the front surface. Both front and back surface metallizations should have good adhesion, low contact resistance, low sheet resistance, long term stability, and their deposition methods should not degrade the n-p junction. Advantages and disadvantages of different deposition methods are discussed.

  11. Mercury dispersion in soils of an abandoned lead-zinc-silver mine, San Quintín (Spain)

    NASA Astrophysics Data System (ADS)

    Esbrí, José Maria; Martín-Crespo, T.; Gómez-Ortiz, D.; Monescillo, C. I.; Lorenzo, S.; Higueras, P.

    2010-05-01

    The mine considered on this work, namely San Quintín, is a filonian field with hydrothermal ores exploited during almost fifty years (1887-1934), producing 550.000Tm of galena, 550Tm of silver and 5.000 of sphalerite. Some rewashing works of tailings muds was achieved in recent times (1973-1985), including flotation tests of cinnabar ore from Almadén mines. The main problems remaining on the site are an active acid mine drainage (with pH ~ 2) and heavy metal dispersion on soils including gaseous mercury emissions. We present here results of a survey including soils sampling with mercury analysis and other pedological parameters, as well as determinations of mercury inmission in the atmosphere, using a common sampling grid. Analysis of soils samples has been carried out using an atomic absorption spectrometer AMA254, while air determinations were made by the same technique, using a Lumex RA-915+. The maps have been obtained by means of SURFER 8 software, as well as by ArcGIS software, and puts forward dispersion of mercury from cinnabar ore dump (108 ?g×g-1) to nearby soils (0.3 ?g×g-1 at 700 m of distance). The dispersion of mercury vapor exceed WHO level for chronic exposure (200 ng×m-3) in a small area (250 meters from cinnabar dump).

  12. Intravenous injection of metallic mercury: case report and course of mercury during chelation therapy with DMPS.

    PubMed

    Vallant, Birgit; Deutsch, Josef; Muntean, Michael; Goessler, Walter

    2008-07-01

    Although several cases of i.v. injection of metallic mercury have been reported, it still remains an uncommon event. A 34-year-old male came to hospital because complaining of pleuritic chest pain. X-ray showed radio dense punctate lesions in both lung fields, as well as around both elbows. Mercury concentration in blood (140 microg/L) and urine (320 microg/L) from the patient were significantly elevated, compared with the reference concentrations of < or = 2.0 mug/L mercury in blood and urine. The course of renal elimination of mercury and the mercury concentration in whole blood during 5 months of chelation therapy with sodium 2,3-dimercapto-1-propanesulfonate (Dimaval) were monitored. Furthermore, the time-course of mercury in scalp hair from the patient was determined. We report a case of probable consecutive i.v. administration of metallic mercury.

  13. Green synthesis of silver nanoparticles using Carica Papaya fruit extract under sunlight irradiation and their colorimetric detection of mercury ions

    NASA Astrophysics Data System (ADS)

    Firdaus, M.; Andriana, S.; Elvinawati; Alwi, W.; Swistoro, E.; Ruyani, A.; Sundaryono, A.

    2017-04-01

    We have successfully synthesized silver nanoparticles (AgNPs) by using aqueous extract of papaya (Carica papaya) fruit as bioreductant under sunlight irradiation without additional capping agent. Characterizations were done using UV-Visible spectrophotometry and Fourier Transform Infrared Spectroscopy (FTIR). The synthesized AgNPs have yellowish-brown color with surface plasmon resonance peak at 410 nm. Good selectivity of the AgNPs towards hazardous heavy metal of mercury ions in aqueous solution has been developed as a green environmental sensor. The presence of Hg(II) ions in the mixture changed the yellowish-brown color of AgNPs to colorless due to oxidation of Ag(O) in AgNPs to Ag(I) ions. Effect of samples matrix such as alkali metal, alkaline earth metal and transition metal ions were evaluated.

  14. Residual mercury content and leaching of mercury and silver from used amalgam capsules.

    PubMed

    Stone, M E; Pederson, E D; Cohen, M E; Ragain, J C; Karaway, R S; Auxer, R A; Saluta, A R

    2002-06-01

    The objective of this investigation was to carry out residual mercury (Hg) determinations and toxicity characteristic leaching procedure (TCLP) analysis of used amalgam capsules. For residual Hg analysis, 25 capsules (20 capsules for one brand) from each of 10 different brands of amalgam were analyzed. Total residual Hg levels per capsule were determined using United States Environmental Protection Agency (USEPA) Method 7471. For TCLP analysis, 25 amalgam capsules for each of 10 brands were extracted using a modification of USEPA Method 1311. Hg analysis of the TCLP extracts was done with USEPA Method 7470A. Analysis of silver (Ag) concentrations in the TCLP extract was done with USEPA Method 6010B. Analysis of the residual Hg data resulted in the segregation of brands into three groups: Dispersalloy capsules, Group A, retained the most Hg (1.225 mg/capsule). These capsules were the only ones to include a pestle. Group B capsules, Valliant PhD, Optaloy II, Megalloy and Valliant Snap Set, retained the next highest amount of Hg (0.534-0.770 mg/capsule), and were characterized by a groove in the inside of the capsule. Group C, Tytin regular set double-spill, Tytin FC, Contour, Sybraloy regular set, and Tytin regular set single-spill retained the least amount of Hg (0.125-0.266 mg/capsule). TCLP analysis of the triturated capsules showed Sybraloy and Contour leached Hg at greater than the 0.2 mg/l Resource Conservation and Recovery Act (RCRA) limit. This study demonstrated that residual mercury may be related to capsule design features and that TCLP extracts from these capsules could, in some brands, exceed RCRA Hg limits, making their disposal problematic. At current RCRA limits, the leaching of Ag is not a problem.

  15. Metal chlorides loaded on activated carbon to capture elemental mercury.

    PubMed

    Shen, Zhemin; Ma, Jing; Mei, Zhijian; Zhang, Jianda

    2010-01-01

    Activated carbon (AC) was considered to be an effective sorbent to control mercury in combustion systems. However, its capture capacity was low and it required a high carbon-to-mercury mass ratio. AC loaded with catalyst showed a high elemental mercury (Hg0) capture capacity due to large surface area of AC and high oxidization ability of catalyst. In this study, several metal chlorides and metal oxides were used to promote the sorption capacity of AC. As a result, metal chlorides were better than metal oxides loaded on AC to remove gaseous mercury. X-ray diffractometer (XRD), thermogravimetric analyzer (TGA) and specific surface area by Brunauer-Emmett-Teller method (BET) analysis showed the main mechanisms: first, AC had an enormous surface area for loading enough MClx; second, Cl and MxOy were generated during pyrogenation of MClx; finally, there were lots of active elements such as Cl and MxOy which could react with elemental mercury and convert it to mercury oxide and mercury chloride. The HgO and HgCl2 might be released from AC's porous structure by thermo regeneration. A catalytic chemisorption mechanism predominates the sorption process of elemental mercury. As Co and Mn were valence variable metal elements, their catalytic effect on Hg0 oxidization may accelerate both oxidation and halogenation of Hg0. The sorbents loaded with metal chlorides possessed a synergistic function of catalytic effect of valence variable metal and chlorine oxidation.

  16. Silver plating ensures reliable diffusion bonding of dissimilar metals

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Dissimilar metals are reliably joined by diffusion bonding when the surfaces are electroplated with silver. The process involves cleaning and etching, anodization, silver striking, and silver plating with a conventional plating bath. It minimizes the formation of detrimental intermetallic phases and provides greater tolerance of processing parameters.

  17. Observations of Metallic Species in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.; Potter, Andrew E.; Vervack, Ronald J., Jr.; Bradley, E. Todd; McClintock, William E.; Anderson, Carrie M.; Burger, Matthew H.

    2010-01-01

    From observations of the metallic species sodium (Na), potassium (K), and magnesium (Mg) in Mercury's exosphere, we derive implications for source and loss processes. All metallic species observed exhibit a distribution and/or line width characteristic of high to extreme temperature - tens of thousands of degrees K. The temperatures of refractory species, including magnesium and calcium, indicate that the source process for the atoms observed in the tail and near-planet exosphere are consistent with ion sputtering and/or impact vaporization of a molecule with subsequent dissociation into the atomic form. The extended Mg tail is consistent with a surface abundance of 5-8% Mg by number, if 30% of impact-vaporized Mg remains as MgO and half of the impact vapor condenses. Globally, ion sputtering is not a major source of Mg, but locally the sputtered source can be larger than the impact vapor source. We conclude that the Na and K in Mercury's exosphere can be derived from a regolith composition similar to that of Luna 16 soil (or Apollo 17 orange glass), in which the abundance by number is 0.0027 (0.0028) for Na and 0.0006 (0.0045) for K.

  18. A Comparative Electrochemical Behaviour Study and Analytical Detection of the p-Nitrophenol Using Silver Solid Amalgam, Mercury, and Silver Electrodes

    PubMed Central

    De Souza, Djenaine; Mascaro, Lucia H.; Fatibello-Filho, Orlando

    2011-01-01

    This work reports a comparative electrochemical behaviour study and p-nitrophenol analytical detection using silver solid amalgam, hanging dropping mercury, and silver electrodes. For this, square wave voltammetry was employed, where the analytical responses and the redox mechanisms could be compared for reduction processes of 4-nitrophenol by analysis of the voltammetric responses. The analytical performance of the electrode was evaluated and detection and quantification limits, recovery percentages, repeatability, and reproducibility for the silver solid amalgam and hanging dropping mercury electrodes presented similar values; the results presented for the silver electrode indicated worse analytical parameters than the other electrodes. The results indicate that the silver solid amalgam electrode can be considered a suitable tool and an interesting alternative for the analytical determination of 4-nitrophenol, as well as for the determination of other biological and environmentally interesting compounds that present analytical responses on mercury surfaces. PMID:21647286

  19. Mercury-impacted scrap metal: Source and nature of the mercury.

    PubMed

    Finster, Molly E; Raymond, Michelle R; Scofield, Marcienne A; Smith, Karen P

    2015-09-15

    The reuse and recycling of industrial solid wastes such as scrap metal is supported and encouraged both internationally and domestically, especially when such wastes can be used as substitutes for raw material. However, scrap metal processing facilities, such as mini-mills, have been identified as a source of mercury (Hg) emissions in the United States. This research aims to better define some of the key issues related to the source and nature of mercury in the scrap metal waste stream. Overall, it is difficult to pinpoint the key mercury sources feeding into scrap metal recycling facilities, quantify their associated mercury concentrations, or determine which chemical forms are most significant. Potential sources of mercury in scrap metal include mercury switches from discarded vehicles, electronic-based scrap from household appliances and related industrial systems, and Hg-impacted scrap metal from the oil and gas industry. The form of mercury associated with scrap metal varies and depends on the source type. The specific amount of mercury that can be adsorbed and retained by steel appears to be a function of both metallurgical and environmental factors. In general, the longer the steel is in contact with a fluid or condensate that contains measurable concentrations of elemental mercury, the greater the potential for mercury accumulation in that steel. Most mercury compounds are thermally unstable at elevated temperatures (i.e., above 350 °C). As such, the mercury associated with impacted scrap is expected to be volatilized out of the metal when it is heated during processing (e.g., shredding or torch cutting) or melted in a furnace. This release of fugitive gas (Hg vapor) and particulates, as well as Hg-impacted bag-house dust and control filters, could potentially pose an occupational exposure risk to workers at a scrap metal processing facility. Thus, identifying and characterizing the key sources of Hg-impacted scrap, and understanding the nature and extent

  20. Mercury-Impacted Scrap Metal: Source and Nature of the Mercury

    SciTech Connect

    Finster, Molly E; Raymond, Michelle R.; Scofield, Marcienne A.; Smith, Karen P.

    2015-09-15

    The reuse and recycling of industrial solid wastes such as scrap metal is supported and encouraged both internationally and domestically, especially when such wastes can be used as substitutes for raw material. However, scrap metal processing facilities, such as mini-mills, have been identified as a source of mercury (Hg) emissions in the United States. This research aims to better define some of the key issues related to the source and nature of mercury in the scrap metal waste stream. Overall, it is difficult to pinpoint the key mercury sources feeding into scrap metal recycling facilities, quantify their associated mercury concentrations, or determine which chemical forms are most significant. Potential sources of mercury in scrap metal include mercury switches from discarded vehicles, electronic-based scrap from household appliances and related industrial systems, and Hg-impacted scrap metal from the oil and gas industry. The form of mercury associated with scrap metal varies and depends on the source type. The specific amount of mercury that can be adsorbed and retained by steel appears to be a function of both metallurgical and environmental factors. In general, the longer the steel is in contact with a fluid or condensate that contains measurable concentrations of elemental mercury, the greater the potential for mercury accumulation in that steel. Most mercury compounds are thermally unstable at elevated temperatures (i.e., above 350°C). As such, the mercury associated with impacted scrap is expected to be volatilized out of the metal when it is heated during processing (e.g., shredding or torch cutting) or melted in a furnace. This release of fugitive gas (Hg vapor) and particulates, as well as Hg-impacted bag-house dust and control filters, could potentially pose an occupational exposure risk to workers at a scrap metal processing facility. Thus, identifying and characterizing the key sources of Hg-impacted scrap, and understanding the nature and extent

  1. Enhancement of metal bioleaching from contaminated sediment using silver ion.

    PubMed

    Chen, Shen-Yi; Lin, Jih-Gaw

    2009-01-30

    A silver-catalyzed bioleaching process was used to remove heavy metals from contaminated sediment in this study. The effects of silver concentration added on the performance of bioleaching process were investigated. High pH reduction rate was observed in the bioleaching process with silver ion. The silver ion added in the bioleaching process was incorporated into the lattice of the initial sulfide through a cationic interchange reaction. This resulted in the short lag phase and high metal solubilization in the bioleaching process. The maximum pH reduction rate and the ideal metal solubilization were obtained in the presence of 30 mg/L of silver ion. When the added silver ion was greater than 30 mg/L, the rates of pH reduction and metal solubilization gradually decreased. The solubilization efficiencies of heavy metals (Cu, Zn, Mn, Ni and Cr) were relatively high in the silver-enhanced bioleaching process, except Pb. No apparent effect of silver ion on the growth of sulfur-oxidizing bacteria was found in the bioleaching. These results indicate that the kinetics of metal solubilization can be enhanced by the addition of silver ion.

  2. Mercury emission and behavior in primary ferrous metal production

    NASA Astrophysics Data System (ADS)

    Fukuda, Naomichi; Takaoka, Masaki; Doumoto, Shingo; Oshita, Kazuyuki; Morisawa, Shinsuke; Mizuno, Tadao

    2011-07-01

    Ferrous metal production is thought to be a major mercury emission source because it uses large amounts of coal and iron ore, which contain trace amounts of mercury impurities. However, there is limited information about mercury emissions during the production process. In this study, we focused on the coke-oven process, sintering furnace process, and blast furnace process. We measured the mercury concentration in the raw materials, products, and byproducts to estimate the amount of mercury emitted and to investigate the behavior of mercury during the processes. Average mercury concentrations were 30.8 μg kg -1 in 54 samples of iron ore and 59.9 μg kg -1 in 33 samples of coal. The total mercury used for ferrous metal production in Japan was estimated to be 8.45 tons in 2005, with 4.07 tons from iron ore, 3.76 tons from coal, and 0.478 tons from limestone. Emissions from the sintering process accounted for more than 90% of the total emissions, and mercury in the exhaust gas was reduced using an activated coke tower and desulfurization equipment installed downstream of an electrostatic precipitator. When byproduct gas generated from coke-oven and blast furnace processes were included, mercury emissions estimates based on actual measurements were 4.08 tons y -1 (in 2005). Thus, about 50% of the mercury input in ferrous metal production was emitted to the atmosphere. The emission factor was calculated as 0.0488 g Hg ton -1 for crude steel production. The introduction of activated coke tower or desulfurization equipment in sintering furnace facilities would reduce mercury emissions.

  3. Improper waste disposal of silver-mercury amalgam.

    PubMed

    de Souza, J P B Lollobrigida; Nozawa, S R; Honda, R T

    2012-05-01

    The objective of this work was to estimate the quantity of mercury residue present in dental amalgam that is generated and discarded in the city of Manaus (Amazon-Brazil). For this purpose, the locations of amalgam usage (10 public and 31 private dental clinics), the method by which the residue is discarded (14 clinics improper disposal), and the analysis of total mercury in the sediment of the controlled landfill (2.68-3 μgHg/g), were described. It was concluded that: there are dental clinics in the city that discard mercury residue into the common waste disposal system, which contravenes health safety standards.

  4. Environmental impact of mercury and other heavy metals

    NASA Astrophysics Data System (ADS)

    Lindqvist, Oliver

    The environmental impact of heavy metals is reviewed. One significant source of emissions of heavy metals to air is waste incineration. Consumer batteries contributes significantly to this problem, as well as to heavy metal leakage to groundwater from landfill deposits. The situation in Sweden is used as an example to describe how the deposition from the atmosphere still is increasing the load of heavy metals, like mercury, cadmium and lead, in top soils and aquatic sediments. Critical factors and effect levels for Hg, Cd, Pb, Cu, Zn and As are discussed. Specific questions like mercury contents in present battery waste and heavy metal contents in new and future secondary batteries are addressed.

  5. Mercury sensing and toxicity studies of novel latex fabricated silver nanoparticles.

    PubMed

    Borase, Hemant P; Patil, Chandrashekhar D; Salunkhe, Rahul B; Suryawanshi, Rahul K; Salunke, Bipinchandra K; Patil, Satish V

    2014-11-01

    Safe and eco-friendly alternatives to currently used hazardous chemico-physical methods of silver nanoparticles (AgNPs) synthesis are need of time. Rapid, low cost, selective detection of toxic metals in environmental sample is important to take safety action. Toxicity assessment of engineered AgNPs is essential to avoid its side effects on human and non-target organisms. In the present study, biologically active latex from Euphorbia heterophylla (Poinsettia) was utilized for synthesis of AgNPs. AgNPs was of spherical shape and narrow size range (20-50 nm). Occurrence of elemental silver and crystalline nature of AgNPs was analyzed. Role of latex metabolites in reduction and stabilization of AgNPs was analyzed by FT-IR, protein coagulation test and phytochemical analysis. Latex-synthesized AgNPs showed potential in selective and sensitive detection of toxic mercury ions (Hg(2+)) with limit of detection around 100 ppb. Addition of Hg(2+) showed marked deviation in color and surface plasmon resonance spectra of AgNPs. Toxicity studies on aquatic non-target species Daphnia magna showed that latex-synthesized AgNPs (20.66 ± 1.52% immobilization) were comparatively very less toxic than chemically synthesized AgNPs (51.66 ± 1.52% immobilization). Similarly, comparative toxicity study on human red blood cells showed lower hemolysis (4.46 ± 0.01%) by latex-synthesized AgNPs as compared to chemically synthesized AgNPs causing 6.14 ± 0.01% hemolysis.

  6. 40 CFR 421.250 - Applicability: Description of the primary precious metals and mercury subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... primary precious metals and mercury subcategory. 421.250 Section 421.250 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Precious Metals and Mercury Subcategory § 421.250...

  7. 40 CFR 421.250 - Applicability: Description of the primary precious metals and mercury subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... primary precious metals and mercury subcategory. 421.250 Section 421.250 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Precious Metals and Mercury Subcategory § 421.250...

  8. 40 CFR 421.250 - Applicability: Description of the primary precious metals and mercury subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... primary precious metals and mercury subcategory. 421.250 Section 421.250 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Precious Metals and Mercury Subcategory § 421.250...

  9. Practical limitations of ITS-90 from the mercury triple point to the silver freeze point

    NASA Astrophysics Data System (ADS)

    Tavener, J. P.; Tavener, S. J.; Tavener, I. F.; Davies, N.

    2013-09-01

    The NPL published a forward to the ITS-90 text as follows:- "The purpose of the ITS is to define procedures by which certain specified practical thermometers of the required quality can be calibrated in such a way that the values of temperature obtained from them can be precise and reproducible, while at the same time closely approximating the corresponding thermodynamic values." [1]. The paper investigates the properties of thirty four lots of 6N pure metal used to make cells conforming to ITS-90 from mercury through silver over a period of twenty years. Three hundred individual cells are analysed by the impurities listed and supplied with each lot, melt and freeze curve slopes are also summarised for each lot and depressions calculated. These are then compared to the slopes and depressions suggested in the Supplementary Information for the ITS-90 and in CCT/2000-13 "Optimal Realizations". Results are summarised, tabulated and discussed. Three lots of the thirty four were found to produce cells outside 6N expectations; however the remaining thirty one lots no matter how well or badly the accompanying certification was presented produced cells that conformed to 6N expectations as suggested in Supplementary Information to ITS-90 and CCT/2000-13.

  10. Practical limitations of ITS-90 from the mercury triple point to the silver freeze point

    SciTech Connect

    Tavener, J. P.; Tavener, S. J.; Tavener, I. F.; Davies, N.

    2013-09-11

    The NPL published a forward to the ITS-90 text as follows:- 'The purpose of the ITS is to define procedures by which certain specified practical thermometers of the required quality can be calibrated in such a way that the values of temperature obtained from them can be precise and reproducible, while at the same time closely approximating the corresponding thermodynamic values.' [1]. The paper investigates the properties of thirty four lots of 6N pure metal used to make cells conforming to ITS-90 from mercury through silver over a period of twenty years. Three hundred individual cells are analysed by the impurities listed and supplied with each lot, melt and freeze curve slopes are also summarised for each lot and depressions calculated. These are then compared to the slopes and depressions suggested in the Supplementary Information for the ITS-90 and in CCT/2000-13 'Optimal Realizations'. Results are summarised, tabulated and discussed. Three lots of the thirty four were found to produce cells outside 6N expectations; however the remaining thirty one lots no matter how well or badly the accompanying certification was presented produced cells that conformed to 6N expectations as suggested in Supplementary Information to ITS-90 and CCT/2000-13.

  11. Mineral resource of the month: mercury

    USGS Publications Warehouse

    Brooks, William E.

    2006-01-01

    The ore of mercury, cinnabar, is soft and dark red, and native mercury is one of a few metals that is liquid at room temperatures. Cinnabar from Almaden, Spain, the world’s oldest producing mercury mine, was used during Roman times, and the chemical symbol for mercury (Hg) is from "hydrargyrum," from the Greek word meaning liquid silver. Cinnabar and mercury are associated with some hydrothermal mineral deposits and occur in fine-grained or sedimentary and volcanic rocks near hot springs or volcanic centers. Mercury may be recovered as a byproduct of processing copper, gold, lead-zinc or silver.

  12. Silver impregnated carbon for adsorption and desorption of elemental mercury vapors.

    PubMed

    Karatza, Despina; Prisciandaro, Marina; Lancia, Amedeo; Musmarra, Dino

    2011-01-01

    The Hg(0) vapor adsorption experimental results on a novel sorbent obtained by impregnating a commercially available activated carbon (Darco G60 from BDH) with silver nitrate were reported. The study was performed by using a fundamental approach, in an apparatus at laboratory scale in which a synthetic flue gas, formed by Hg(0) vapors in a nitrogen gas stream, at a given temperature and mercury concentration, was flowed through a fixed bed of adsorbent material. Breakthrough curves and adsorption isotherms were obtained for bed temperatures of 90, 120 and 150 degrees C and for Hg(0) concentrations in the gas varying in the range of 0.8-5.0 mg/m3. The experimental gas-solid equilibrium data were used to evaluate the Langmuir parameters and the heat of adsorption. The experimental results showed that silver impregnated carbon was very effective to capture elemental mercury and the amount of mercury adsorbed by the carbon decreased as the bed temperature increased. In addition, to evaluate the possibility of adsorbent recovery, desorption was also studied. Desorption runs showed that both the adsorbing material and the mercury could be easily recovered, since at the end of desorption the residue on solid was almost negligible. The material balance on mercury and the constitutive equations of the adsorption phenomenon were integrated, leading to the evaluation of only one kinetic parameter which fits well both the experimentally determined breakthrough and desorption curves.

  13. Dual mechanism-based sensing of mercury using unmodified, heteroepitaxially synthesized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Nain, Amit; Barman, Snigdha Roy; Jain, Saumey; Mukherjee, Amitava; Satija, Jitendra

    2017-06-01

    Mercury and its compounds are widely distributed in the environment and have a significant negative impact on human health. In this paper, we report the development of a rapid and facile method for the detection of mercury ions (Hg2+) using heteroepitaxially synthesized unmodified silver nanoparticle-based smart probes using UV-Vis spectrophotometer and also through the naked eye by means of a paper-based sensor strip. The silver nanoparticles were prepared by heteroepitaxial growth method using gold seed nanoparticle of 2.4 nm size as the template. The silver is grown on the seed particles by reducing the silver-ammonia complex using glucose, which resulted in Glu-AgNPs having an average size of 14.65 ± 3.53 nm. The sensing of mercury ions was carried out in aqueous solution and the reaction response was monitored by UV-Vis spectrophotometer. The interaction of Hg2+ with Glu-AgNPs resulted in a significant drop in the absorbance at 402 nm along with a prominent color change (from bright yellow to colorless) and wavelength shift (blue shift). The limit of detection (LOD) of this assay was found to be 100 nM (i.e., 20 ppb) with a good linearity in the concentration range of 100-10 mM. To further ease the detection process and make it field deployable, we attempted to develop a paper-based sensor strip by immobilizing Glu-AgNPs on a paper strip. Upon interaction with mercury solution of varying concentrations, the decoloration of the spots could be observed easily through naked eyes, with the limit of detection under sub-optical conditions being 1 µM.

  14. Dual mechanism-based sensing of mercury using unmodified, heteroepitaxially synthesized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Nain, Amit; Barman, Snigdha Roy; Jain, Saumey; Mukherjee, Amitava; Satija, Jitendra

    2017-08-01

    Mercury and its compounds are widely distributed in the environment and have a significant negative impact on human health. In this paper, we report the development of a rapid and facile method for the detection of mercury ions (Hg2+) using heteroepitaxially synthesized unmodified silver nanoparticle-based smart probes using UV-Vis spectrophotometer and also through the naked eye by means of a paper-based sensor strip. The silver nanoparticles were prepared by heteroepitaxial growth method using gold seed nanoparticle of 2.4 nm size as the template. The silver is grown on the seed particles by reducing the silver-ammonia complex using glucose, which resulted in Glu-AgNPs having an average size of 14.65 ± 3.53 nm. The sensing of mercury ions was carried out in aqueous solution and the reaction response was monitored by UV-Vis spectrophotometer. The interaction of Hg2+ with Glu-AgNPs resulted in a significant drop in the absorbance at 402 nm along with a prominent color change (from bright yellow to colorless) and wavelength shift (blue shift). The limit of detection (LOD) of this assay was found to be 100 nM (i.e., 20 ppb) with a good linearity in the concentration range of 100-10 mM. To further ease the detection process and make it field deployable, we attempted to develop a paper-based sensor strip by immobilizing Glu-AgNPs on a paper strip. Upon interaction with mercury solution of varying concentrations, the decoloration of the spots could be observed easily through naked eyes, with the limit of detection under sub-optical conditions being 1 µM.

  15. Method for Reduction of Silver Biocide Plating on Metal Surfaces

    NASA Technical Reports Server (NTRS)

    Steele, John; Nalette, Timothy; Beringer, Durwood

    2013-01-01

    Silver ions in aqueous solutions (0.05 to 1 ppm) are used for microbial control in water systems. The silver ions remain in solution when stored in plastic containers, but the concentration rapidly decreases to non-biocidal levels when stored in metal containers. The silver deposits onto the surface and is reduced to non-biocidal silver metal when it contacts less noble metal surfaces, including stainless steel, titanium, and nickel-based alloys. Five methods of treatment of contact metal surfaces to deter silver deposition and reduction are proposed: (1) High-temperature oxidation of the metal surface; (2) High-concentration silver solution pre-treatment; (3) Silver plating; (4) Teflon coat by vapor deposition (titanium only); and (5) A combination of methods (1) and (2), which proved to be the best method for the nickel-based alloy application. The mechanism associated with surface treatments (1), (2), and (5) is thought to be the development of a less active oxide layer that deters ionic silver deposition. Mechanism (3) is an attempt to develop an equilibrium ionic silver concentration via dissolution of metallic silver. Mechanism (4) provides a non-reactive barrier to deter ionic silver plating. Development testing has shown that ionic silver in aqueous solution was maintained at essentially the same level of addition (0.4 ppm) for up to 15 months with method (5) (a combination of methods (1) and (2)), before the test was discontinued for nickel-based alloys. Method (1) resulted in the maintenance of a biocidal level (approximately 0.05 ppm) for up to 10 months before that test was discontinued for nickel-based alloys. Methods (1) and (2) used separately were able to maintain ionic silver in aqueous solution at essentially the same level of addition (0.4 ppm) for up to 10 months before the test was discontinued for stainless steel alloys. Method (3) was only utilized for titanium alloys, and was successful at maintaining ionic silver in aqueous solution at

  16. Tremor in workers with low exposure to metallic mercury

    SciTech Connect

    Verberk, M.M.; Salle, H.J.A.; Kemper, C.H.

    1986-09-01

    In a fluorescent lamp production factory, a newly developed lightweight balance-tremormeter was used to measure postural tremor of the finger in 21 workers (ages 28 to 61) exposed for 0.5-19 yr to metallic mercury. In addition, tremor was measured in an indirect way by means of a hole-tremormeter. The excretion of mercury in urine was 9-53 (average 20) ..mu..mol/mol creatinine. With increasing mercury excretion, the following parameters increased: the acceleration of the tremor, the contribution of the neuromuscular component (8-12 Hz) to the power spectrum of the acceleration, the width of the power-spectrum and the score on the hole-tremormeter. The study indicates that exposure to metallic mercury below the current TLV (50 ..mu..g/m/sup 3/) may increase the tremor of the finger.

  17. Special Issue: Coinage Metal (Copper, Silver, and Gold) Catalysis.

    PubMed

    Carabineiro, Sónia Alexandra Correia

    2016-06-08

    The subject of catalysis by coinage metals (copper, silver, and gold) comes up increasingly day-by-day. This Special Issue aims to cover the numerous aspects of the use of these metals as catalysts for several reactions. It deals with synthesis and characterization of copper, silver and gold based catalysis, their characterization and use, both for heterogeneous and homogeneous catalysis, and some of their potential applications.

  18. The effect of a 16% carbamide peroxide gel on mercury and silver ion release from admixed and spherical dental amalgams.

    PubMed

    Kasraei, Shahin; Rezaei-Soufi, Loghman; Azarsina, Mohaddese

    2010-12-01

    The aim of this study was to investigate the effect of 16 percent carbamide peroxide gel on mercury and silver ions released from admixed and spherical dental amalgams. A total of 96 amalgam discs were prepared from two different types and brands of dental amalgam (admixed and spherical). The samples were stored at room temperature in glass tubes containing distilled water for 24 hours. The specimens were then polished and again immersed in distilled water at room temperature and stored for one month. Samples of both types of dental amalgam were treated with carbamide peroxide 16 percent gel (Nite White, Discus Dental, Inc., Culver City, CA, USA) for 14 and 28 hours (experimental group) and compared to samples not exposed to the bleaching agent but stored continuously in distilled water. Mercury and silver levels of each solution were measured using the VAV-440 analyzer system. Mercury and silver ions released from the experimental group were significantly greater than from the control group (p<0.001). There was no significant difference between the mean levels of mercury and silver ions in the two kinds of amalgams after treatment with 16 percent carbamide peroxide (p=0.119 for mercury and p=0.199 for silver). Increasing the storage time in the carbamide peroxide gel from 14 to 28 hours did not result in significant changes in the amount of ions released (p=0.329 for mercury and p=0.082 for silver). Also, the interaction effect between amalgam particles' shape (admixed and spherical) versus storage time (14 versus 28 hours) was not statistically significant (p=0.901 for mercury and p=0.951 for silver). Treatment with 16 percent carbamide peroxide gel increased mercury and silver ions released from admixed and spherical amalgams, compared to samples in the control group, but the difference between the two amalgams was not statistically significant. The amount of mercury and silver ions released from high-copper dental amalgams during bleaching with 16 percent

  19. Comparison of discharge silver concentrations from electrolytic plating and metallic replacement silver recovery units.

    PubMed

    Harper, Martin; Siegel, Julie M

    2003-04-01

    Silver-based photographic X-ray film is made of solid crystals of silver chloride or silver bromide suspended in a gelatin and then coated on a film. During the X-ray developing process, the image is processed and the nonimage areas containing solid silver chloride or silver bromide crystals are removed in a solution called the fixer. There may be local environmental regulations that regulate the amount of silver discharged from a facility. To meet these regulations, many facilities have added silver recovery units to their processes. Two different types of recovery processes are in use in a large hospital and three clinics under study. All of the units were claimed by their respective manufacturers to be able to recover silver down to concentrations of 5 mg/L. This concentration would ensure that the building that houses each unit would meet the local county limit of 0.5 mg/L silver for total building silver discharge. The hypothesis for this research is that one system, newer and more expensive, consisting of so-called electrolytic plating units (EPUs) (which are followed by so-called metallic replacement units [MRUs] as a backup), will have better silver recovery than MRUs alone. A total of six units were sampled, three EPUs (in combination with MRUs) and three MRUs. The units were sampled once or twice a day for 10 days for a total of 17 samples from each. The samples then were analyzed by inductively coupled plasma spectroscopy, and an analysis of variance was performed on the results. The range for the electrolytic plating unit/metallic replacement unit combinations was 0.20-99.9 mg/L (mean of 35.15 mg/L; median of 33.8 mg/L). The range for the MRUs alone was 7.2-1112 mg/L (mean of 565.5 mg/L; median of 720 mg/L). Many individual results exceeded 5 mg/L, such that extensive dilution would be required to ensure the building effluent did not exceed 0.5 mg/L. It is suggested that the metallic replacement units be changed to EPUs (with metallic replacement backup

  20. Silver-doped metal layers for medical applications

    NASA Astrophysics Data System (ADS)

    Kocourek, T.; Jelínek, M.; Mikšovský, J.; Jurek, K.; Weiserová, M.

    2014-08-01

    Biological, physical and mechanical properties of silver-doped layers of titanium alloy Ti6Al4V and 316 L steel prepared by pulsed laser deposition were studied. Metallic silver-doped coatings could be a new route for antibacterial protection in medicine. Thin films of silver and silver-doped materials were synthesized using KrF excimer laser deposition. The materials were ablated from two targets, which were composed either from titanium alloy with silver segments or from steel with silver segments. The concentration of silver ranged from 1.54 to 4.32 at% for steel and from 3.04 to 13.05 at% for titanium alloy. The layer properties such as silver content, structure, adhesion, surface wettability, and antibacterial efficiency (evaluated by Escherichia coli and Bacillus subtilis bacteria) were measured. Film adhesion was studied using a scratch test. The antibacterial efficiency changed with silver doping up to 99.9 %. Our investigation was focused on the minimum Ag concentration needed to reach high antibacterial efficiency, high film adhesion, and hardness.

  1. Advanced mercury removal from gold leachate solutions prior to gold and silver extraction: a field study from an active gold mine in Peru.

    PubMed

    Matlock, Matthew M; Howerton, Brock S; Van Aelstyn, Mike A; Nordstrom, Fredrik L; Atwood, David A

    2002-04-01

    Mercury contamination in the Gold-Cyanide Process (GCP) is a serious health and environmental problem. Following the heap leaching of gold and silver ores with NaCN solutions, portions of the mercury-cyano complexes often adhere to the activated carbon (AC) used to extract the gold. During the electrowinning and retorting steps, mercury can be (and often is) emitted to the air as a vapor. This poses a severe health hazard to plant workers and the local environment. Additional concerns relate to the safety of workers when handling the mercury-laden AC. Currently, mercury treatment from the heap leach solution is nonexistent. This is due to the fact that chelating ligands which can effectively work under the adverse pH conditions (as present in the heap leachate solutions) do not exist. In an effort to economically and effectively treat the leachate solution prior to passing over the AC, a dipotassium salt of 1,3-benzenediamidoethanethiol (BDET2-) has been developed to irreversibly bind and precipitate the mercury. The ligand has proven to be highly effective by selectively reducing mercury levels from average initial concentrations of 34.5 ppm (parts per million) to 0.014 ppm within 10 min and to 0.008 ppm within 15 min. X-ray powder diffraction (XRD), proton nuclear magnetic resonance (1H NMR), Raman, and infrared (IR) spectroscopy demonstrate the formation of a mercury-ligand compound, which remains insoluble over pH ranges of 0.0-14.0. Leachate samples from an active gold mine in Peru have been analyzed using cold vapor atomic fluorescence (CVAF) and inductively coupled plasma optical emission spectroscopy (ICP-OES) for metal concentrations before and after treatment with the BDET2- ligand.

  2. 40 CFR 421.250 - Applicability: Description of the primary precious metals and mercury subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... primary precious metals and mercury subcategory. 421.250 Section 421.250 Protection of Environment... POINT SOURCE CATEGORY Primary Precious Metals and Mercury Subcategory § 421.250 Applicability: Description of the primary precious metals and mercury subcategory. The provisions of this subpart...

  3. 40 CFR 421.250 - Applicability: Description of the primary precious metals and mercury subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... primary precious metals and mercury subcategory. 421.250 Section 421.250 Protection of Environment... POINT SOURCE CATEGORY Primary Precious Metals and Mercury Subcategory § 421.250 Applicability: Description of the primary precious metals and mercury subcategory. The provisions of this subpart...

  4. Screenable silver and base metal solar cell contacts

    NASA Technical Reports Server (NTRS)

    Ross, B.

    1980-01-01

    The metallurgical soundness of the all-metal screenable thick film electrode system is established for silver and copper electrodes. Silver fluoride was identified as a successful etchant material and is found most effective in the liquid phase (435-460 C). Best results were achieved with the eutectic alloys of dopants and semiconductors. The air-fired silver inks were strongly adherent, rugged, and solderable, whereas the hydrogen-fired silver inks had very poor adhesion. A two-step firing process was devised in which copper inks containing silver fluoride were activated in a nitrogen atmosphere, with sintering done at the same or higher temperatures in hydrogen. Good solar cells were made using the copper paste back contacts demonstrating that the electrodes are not the limiting factors in efficiency.

  5. Method for extracting copper, silver and related metals

    DOEpatents

    Moyer, Bruce A.; McDowell, W. J.

    1990-01-01

    A process for selectively extracting precious metals such as silver and gold concurrent with copper extraction from aqueous solutions containing the same. The process utilizes tetrathiamacrocycles and high molecular weight organic acids that exhibit a synergistic relationship when complexing with certain metal ions thereby removing them from ore leach solutions.

  6. Method for extracting copper, silver and related metals

    DOEpatents

    Moyer, B.A.; McDowell, W.J.

    1987-10-23

    A process for selectively extracting precious metals such as silver and gold concurrent with copper extraction from aqueous solutions containing the same. The process utilizes tetrathiamacrocycles and high molecular weight organic acids that exhibit a synergistic relationship when complexing with certain metal ions thereby removing them from ore leach solutions.

  7. Synthesis and spectral characterization of silver embedded chitosan matrix nanocomposite for the selective colorimetric sensing of toxic mercury

    NASA Astrophysics Data System (ADS)

    Nivethaa, E. A. K.; Narayanan, V.; Stephen, A.

    2015-05-01

    Polymer matrix type chitosan-silver nanocomposite containing different weight percentage of silver was synthesized by the chemical method. HRTEM images confirm the embedment of silver in the chitosan matrix. The binding of silver to the NH2 and OH groups of chitosan is evident from XPS and FTIR studies. An increase in the absorbance observed from UV-Vis analysis on raising the weight percentage of silver showed the increase in the amount of silver in the nanocomposite. The face centered cubic structure of silver and the semi-crystalline nature of chitosan are evident from the XRD studies. On interaction with mercury the UV-Vis spectra of the composite showed a decrease in intensity and a blue shift confirming the use of the composite as a colorimetric sensor for the detection of mercury. The limit of detection was found to be about 7.2 × 10-8 M. High specificity and the sensitivity of the environmental friendly and non-toxic nanocomposite to detect very low concentrations of mercury make the system a perspective one.

  8. Synthesis and spectral characterization of silver embedded chitosan matrix nanocomposite for the selective colorimetric sensing of toxic mercury.

    PubMed

    Nivethaa, E A K; Narayanan, V; Stephen, A

    2015-05-15

    Polymer matrix type chitosan-silver nanocomposite containing different weight percentage of silver was synthesized by the chemical method. HRTEM images confirm the embedment of silver in the chitosan matrix. The binding of silver to the NH2 and OH groups of chitosan is evident from XPS and FTIR studies. An increase in the absorbance observed from UV-Vis analysis on raising the weight percentage of silver showed the increase in the amount of silver in the nanocomposite. The face centered cubic structure of silver and the semi-crystalline nature of chitosan are evident from the XRD studies. On interaction with mercury the UV-Vis spectra of the composite showed a decrease in intensity and a blue shift confirming the use of the composite as a colorimetric sensor for the detection of mercury. The limit of detection was found to be about 7.2×10(-8)M. High specificity and the sensitivity of the environmental friendly and non-toxic nanocomposite to detect very low concentrations of mercury make the system a perspective one. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. High-pressure dissociation of silver mercury iodide, Ag{sub 2}HgI{sub 4}

    SciTech Connect

    Parfitt, D.C.; Hull, S. . E-mail: s.hull@rl.ac.uk; Keen, D.A.; Crichton, W.

    2004-10-01

    High-pressure X-ray diffraction has been used to probe the behavior of the superionic conductor silver mercury iodide (Ag{sub 2}HgI{sub 4}) at pressures up to 5GPa and at temperatures from 295 to 370K. Significant changes in the diffraction spectra, indicative of structural transitions, are observed around 0.7 and 1.3GPa across the range of temperatures studied. The change at 0.7GPa is shown to correspond to the dissociation of silver mercury iodide into silver iodide and mercury iodide, i.e., Ag{sub 2}HgI{sub 4}->2AgI+HgI{sub 2}. The second transition, at 1.3GPa, is due to a structural phase transition within HgI{sub 2}. Rietveld analysis of the diffraction data is used to confirm and refine all the known crystal structures.

  10. Old tree with new shoots: silver nanoparticles for label-free and colorimetric mercury ions detection

    NASA Astrophysics Data System (ADS)

    Gao, Shuyan; Jia, Xiaoxia; Chen, Yanli

    2013-01-01

    Mercury in the environment from global mercury emissions as well as various forms of contamination poses severe threats to both human health and the environment. Long-term exposure to high levels of Hg-based toxins results in serious and irreversible damage of the central nervous system and other organs. Therefore, the development of effective sensing systems for mercury detection becomes an increasing demand. In this article, a yogurt-mediated silver nanostructure is reported to be unprecedentedly used in the naked-eye and label-free detection of mercury. The method relies on the redox reaction resulting from the electrode potential difference between Ag+/Ag (0.7996 V) and Hg2+/Hg2 2+ (0.920 V) that makes colorless Hg2+ ions which oxidize colored silver nanoparticle (AgNP) to colorless Ag+. The labor-intensive modification of AgNPs and expensive labeling are avoided, and the traditional AuNPs are substituted by AgNPs in this Hg2+ ions sensing platform, which makes it facile, low-cost, and particularly useful for home, clinic, or field applications as well as resource-limited conditions. This sensing system achieves a detection limit as low as 10 nM, lower than the toxicity level of Hg2+ ions in drinking water (30 nM) defined by World Health Organization, and exhibits excellent selectivity, largely free from the matrix effect of the real water samples. This visual label-free Hg2+ ions sensing motif shows great promise for sensing Hg2+ ions in terms of sensitivity, selectivity, cost, and maneuverability. It is also a good example for the organic combination of green chemistry and functional materials, which may trigger interest in furthering biosystems for environmental science applications.

  11. Mercury- and silver-rich ferromanganese oxides, southern California Borderland: Deposit model and environmental implications

    USGS Publications Warehouse

    Hein, J.R.; Koschinsky, A.; McIntyre, B.R.

    2005-01-01

    Mercury- and silver-enriched ferromanganese oxide crusts were recovered at water depths of 1,750 tol,300 m from La Victoria knoll, located about 72 km off the coast of northern Baja California. No other ferromanganese precipitate found so far in the modern ocean basins is similarly enriched in Hg and Ag. The precipitates consist of submetallic gray, brecciated, Mn oxide layers overlain by brown earthy, laminated Fe-Mn oxide crusts. Both oxide types are rich in Hg (to 10 ppm) and Ag (to 5.5 ppm). The Mn-rich layers are composed of ??MnO2, with lesser amounts of 10A?? and 7A?? manganates, whereas the Mn phase in the Fe-Mn crusts is solely ??MnO2. The Fe phase in both layers is X-ray amorphous. Established criteria for distinguishing hydrothermal versus hydrogenetic crusts indicate that the Mn-rich layers are predominantly of low-temperature hydrothermal origin, whereas the Fe-Mn crusts are hydrogenetic, although there is some overlap in the source of chemical components in both types. La Victoria knoll is uplifted continental basement rock with basalt, andesite, and schist cropping out at the surface; the knoll may have an intrusive core. The Hg and Ag were derived from leaching by hydrothermal fluids of organic matter-rich sediments in basins adjacent to La Victoria knoll and, to a lesser extent, from continental basement rocks underlying the knoll and adjacent basins. Both rock types are notably enriched in Ag and Hg. Faults were the main fluid transport pathway, and hydrothermal circulation was driven by high heat flow associated with thinned crust. Other elements derived from the hydrothermal fluids include Tl, Cd, Cr, and Li. The main host for Hg and Ag is FeOOH, although MnO2 likely hosts some of the Ag. Minor sulfide and barite also may contain small amounts of these metals. Possible analogs in the geologic record for this deposit type are found in the Basin and Range province of the western United States and Mexico. The discovery highlights the fact that

  12. The Enhancement of Metallic Silver Monomer Evaporation by the Adhesion of Polar Molecules to Silver Nanocluster Ions

    DTIC Science & Technology

    1994-09-21

    POLAR MOLECULES TO SILVER NANOCLUSTER IONS by Clifton Fagerquist, Dilip K. Sensharma, Angel Rubio, Marvin L. Cohen and M. A. EI-Sayed Prepared for...MOLECULES TO SILVER NANOCLUSTER IONS Clifton K. Fagerquist#, Dilip K. Sensharma and Mostafa A. E1-Sayed* Department of Chemistry and Biochemistry...CZVERED 4. TITLE AND SUBTITLE S. .:UNO:NG :.UMBERS Tl1E ENANCDEET OF METALLIC SILVER MONOMER EVAPORATION .- 1 9Y THE ADHESION OF POLAR MOLECULES TO SILVER

  13. Photodeposition of Silver Can Result in Metal-Enhanced Fluorescence

    PubMed Central

    GEDDES, CHRIS D.; PARFENOV, ALEXANDR

    2009-01-01

    Chemically deposited silver particles are widely used for surface-enhanced Raman scattering (SERS) and more recently for surface-enhanced fluorescence (SEF), also known as metal-enhanced fluorescence (MEF). We now show that metallic silver deposited by laser illumination results in an ~7-fold increased intensity of locally bound indocyanine green. The increased intensity is accompanied by a decreased lifetime and increased photostability. These results demonstrate the possibility of photolithographic preparation of surfaces for enhanced fluorescence in microfluidics, medical diagnostics, and other applications. PMID:14658678

  14. Synthetic silver oxide and mercury-free zinc electrodes for silver-zinc reserve batteries

    NASA Astrophysics Data System (ADS)

    Smith, David F.; Gucinski, James A.

    Reserve activated silver oxide-zinc cells were constructed with synthetic silver oxide (Ag 2O) electrodes with Pb-treated zinc electrodes produced by a non-electrolytic process. The cells were tested before and after thermally accelerated aging. At discharge rates up to 80 mA cm -2, the discharge was limited by the Ag 2O electrode, with a coulombic efficiency between 89-99%. At higher rates, the cells are apparently zinc-limited. Test cells were artificially aged at 90°C for 19 h and discharged at 21°C at 80 mA cm -2. No capacity loss was measured, but a delayed activation rise time was noted (192 ms fresh vs. 567 ms aged). The delay is thought to be caused by zinc passivation due to the outgassing of cell materials.

  15. ADVANCED GASIFICATION MERCURY/TRACE METAL CONTROL WITH MONOLITH TRAPS

    SciTech Connect

    Mark A. Musich; Michael L. Swanson; Grant E. Dunham; Joshua J. Stanislowski

    2010-07-31

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-μg/m3 (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-μg/m3 (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most effective arsine

  16. Advanced Gasification Mercury/Trace Metal Control with Monolith Traps

    SciTech Connect

    Musich, Mark; Swanson, Michael; Dunham, Grant; Stanislowski, Joshua

    2010-10-05

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-μg/m{sup 3} (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-μg/m{sup 3} (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most

  17. [Metallic mercury poisoning and neuropsychological effects: a case report].

    PubMed

    Cöp, Esra; Cengel Kültür, S Ebru; Erdoğan Bakar, Emel

    2014-01-01

    Mercury is an extremely toxic heavy metal that can devastate central nervous system. We present the case of a 15 year old adolescent with mercury intoxication following 4 days of exposure to elemental mercury at home who was consulted by department of pediatrics with complaints of demonstrated emotional lability, memory impairment, disinhibition, and impulsivity. Olanzapin 2,5 mg/day was initiated. Her neuropsychological performance was evaluated by a neuropsychological test battery at initial examination. Deterioration in neuropsychological functions like interference effect and attention (Stroop Test TBAG form), verbal fluency and switching to other category (Verbal Fluency Test, /(VFT), verbal short term and long term memory and recognition (Auditory Verbal Learning Test, /(AVLT) was detected. In 9 months follow up period her complaints resolved. Initial neuropsychological deficits were also fully recovered at follow up. There was an increase in intelligence scores with increased ability to pay and sustain attention. She had better performance at Stroop Test TBAG form, VFT and AVLT which was similar to her normal peers. In this case report, the clinical aspects of central nervous system involvement in mercury intoxication and protection from potential toxic effects of laboratory materials like mercury at schools were discussed. School administrators should be aware of and parents and students should be given necessary protective information.

  18. Quantification of metal loading to Silver Creek through the Silver Maple Claims area, Park City, Utah, May 2002

    USGS Publications Warehouse

    Kimball, Briant A.; Johnson, Kevin K.; Runkel, Robert L.; Steiger, Judy I.

    2004-01-01

    The Silver Maple Claims area along Silver Creek, near Park City, Utah, is administered by the Bureau of Land Management. To quantify possible sources of elevated zinc concentrations in Silver Creek that exceed water-quality standards, the U.S. Geological Survey conducted a mass-loading study in May 2002 along a 1,400-meter reach of Silver Creek that included the Silver Maple Claims area. Additional samples were collected upstream and downstream from the injection reach to investigate other possible sources of zinc and other metals to the stream. Many metals were investigated in the study, but zinc is of particular concern for water-quality standards. The total loading of zinc along the study reach from Park City to Wanship, Utah, was about 49 kilograms per day. The Silver Maple Claims area contributed about 38 percent of this load. The Silver Creek tailings discharge pipe, which empties just inside the Silver Maple Claims area, contributed more than half the load of the Silver Maple Claims area. Substantial zinc loads also were added to Silver Creek downstream from the Silver Maple Claims area. Ground-water discharge upstream from the waste-water treatment plant contributed 20 percent of the total zinc load, and another 17 percent was contributed near the waste-water treatment plant. By identifying the specific areas where zinc and other metal loads are contributed to Silver Creek, it is possible to assess the needs of a remediation plan. For example, removing the tailings from the Silver Maple Claims area could contribute to lowering the zinc concentration in Silver Creek, but without also addressing the loading from the Silver Creek tailings discharge pipe and the ground-water discharge farther downstream, the zinc concentration could not be lowered enough to meet water-quality standards. Additional existing sources of zinc loading downstream from the Silver Maple Claims area could complicate the process of lowering zinc concentration to meet water

  19. Estimating historical atmospheric mercury concentrations from silver mining and their legacies in present-day surface soil in Potosí, Bolivia

    NASA Astrophysics Data System (ADS)

    Hagan, Nicole; Robins, Nicholas; Hsu-Kim, Heileen; Halabi, Susan; Morris, Mark; Woodall, George; Zhang, Tong; Bacon, Allan; Richter, Daniel De B.; Vandenberg, John

    2011-12-01

    Detailed Spanish records of mercury use and silver production during the colonial period in Potosí, Bolivia were evaluated to estimate atmospheric emissions of mercury from silver smelting. Mercury was used in the silver production process in Potosí and nearly 32,000 metric tons of mercury were released to the environment. AERMOD was used in combination with the estimated emissions to approximate historical air concentrations of mercury from colonial mining operations during 1715, a year of relatively low silver production. Source characteristics were selected from archival documents, colonial maps and images of silver smelters in Potosí and a base case of input parameters was selected. Input parameters were varied to understand the sensitivity of the model to each parameter. Modeled maximum 1-h concentrations were most sensitive to stack height and diameter, whereas an index of community exposure was relatively insensitive to uncertainty in input parameters. Modeled 1-h and long-term concentrations were compared to inhalation reference values for elemental mercury vapor. Estimated 1-h maximum concentrations within 500 m of the silver smelters consistently exceeded present-day occupational inhalation reference values. Additionally, the entire community was estimated to have been exposed to levels of mercury vapor that exceed present-day acute inhalation reference values for the general public. Estimated long-term maximum concentrations of mercury were predicted to substantially exceed the EPA Reference Concentration for areas within 600 m of the silver smelters. A concentration gradient predicted by AERMOD was used to select soil sampling locations along transects in Potosí. Total mercury in soils ranged from 0.105 to 155 mg kg-1, among the highest levels reported for surface soils in the scientific literature. The correlation between estimated air concentrations and measured soil concentrations will guide future research to determine the extent to which the

  20. 41 CFR 109-45.1003 - Recovery of silver from precious metals bearing materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Recovery of silver from... of Precious Metals § 109-45.1003 Recovery of silver from precious metals bearing materials. The... establishment and maintenance of a program for silver recovery from used hypo solution and scrap film. ...

  1. Mercury and Your Health

    MedlinePlus

    ... the Risk of Exposure to Mercury Learn About Mercury What is Mercury What is Metallic mercury? Toxicological Profile ToxFAQs Mercury Resources CDC’s National Biomonitoring Program Factsheet on Mercury ...

  2. Ultrabright Fluorescein-Labeled Antibodies Near Silver Metallic Surfaces

    PubMed Central

    Lakowicz, Joseph R.; Malicka, Joanna; Huang, Jun; Gryczynski, Zygmunt; Gryczynski, Ignacy

    2009-01-01

    Fluorescein-labeled antibodies are widely used in clinical assays and fluorescence microscopy. The fluorescent signal per labeled antibody is limited by fluorescein self-quenching, which occurs when the antibody is heavily labeled with multiple fluoresceins. We examined immunoglobulin G (IgG) when labeled with 0.7 to about 30 fluoresceins per antibody molecule. The extent of self-quenching was decreased, and the signal increased, when the labeled antibody was in close proximity to metallic silver particles. Time-resolved measurements showed that the intensity increase was due in part to a silver-induced increase in the radiative decay rate. These results suggest the use of labeled antibodies conjugated to silver particles as ultrabright probes for imaging or analytical applications. PMID:15274090

  3. Toxicological interactions of silver nanoparticles and non-essential metals in human hepatocarcinoma cell line.

    PubMed

    Miranda, Renata Rank; Bezerra, Arandi Ginane; Oliveira Ribeiro, Ciro Alberto; Randi, Marco Antônio Ferreira; Voigt, Carmen Lúcia; Skytte, Lilian; Rasmussen, Kaare Lund; Kjeldsen, Frank; Filipak Neto, Francisco

    2017-04-01

    Toxicological interaction represents a challenge to toxicology, particularly for novel contaminants. There are no data whether silver nanoparticles (AgNPs), present in a wide variety of products, can interact and modulate the toxicity of ubiquitous contaminants, such as nonessential metals. In the current study, we investigated the toxicological interactions of AgNP (size=1-2nm; zeta potential=-23mV), cadmium and mercury in human hepatoma HepG2 cells. The results indicated that the co-exposures led to toxicological interactions, with AgNP+Cd being more toxic than AgNP+Hg. Early (2-4h) increases of ROS (DCF assay) and mitochondrial O2(-) levels (Mitosox® assay) were observed in the cells co-exposed to AgNP+Cd/Hg, in comparison to control and individual contaminants, but the effect was partially reverted in AgNP+Hg at the end of 24h-exposure. In addition, decreases of mitochondrial metabolism (MTT), cell viability (neutral red uptake assay), cell proliferation (crystal violet assay) and ABC-transporters activity (rhodamine accumulation assay) were also more pronounced in the co-exposure groups. Foremost, co-exposure to AgNP and metals potentiated cell death (mainly by necrosis) and Hg(2+) (but not Cd(2+)) intracellular levels (ICP-MS). Therefore, toxicological interactions seem to increase the toxicity of AgNP, cadmium and mercury.

  4. Mercury-like Planets: Separating Metals and Silicates by Photophoresis

    NASA Astrophysics Data System (ADS)

    Wurm, Gerhard; Trieloff, M.; Rauer, H.; Kuepper, M.

    2013-10-01

    Particles at the inner edge of protoplanetary disks are embedded in gas and are illuminated by starlight. This leads to photophoretic forces which - acting best on low thermal conductivity particles - push silicates outward. Metal grains remain behind and get separated from the silicates. If planetesimal formation is set on top of this separation an outward migrating edge will naturally lead to a metal-silicate gradient. Metal rich bodies like Mercury will form close to the star and metal poor bodies will be located further outward. This is consistent with chondrites being mostly metal poor and it is consistent with the smallest rocky planets CoRoT-7b and Kepler-10b - found close to their host star - being Mercury-like. In contrast to high temperature processing photophoresis does not change the abundance of volatile elements. We started to model the particle transport in the transition region between the optical thin disk gap and the optical thick outer protoplanetary disk. Also, first drop tower experiments have been carried out to quantify the strength of the photophoretic force on silicate grains.

  5. Mercury retorts for the processing of precious metals and hazardous wastes

    NASA Astrophysics Data System (ADS)

    Washburn, Charles; Hill, Eldan

    2003-04-01

    In this paper, the authors describe some of the considerations for the design and operation of mercury retort facilities. These retort facilities are used for precious metals processing and for the treatment of mercury-bearing hazardous wastes. The relevant properties and characteristics of mercury and mercury vapor are presented, as well as facility engineering with respect to industrial hygiene, area ventilation, and material handling.

  6. Sunlight mediated synthesis of silver nanoparticles using redox phytoprotein and their application in catalysis and colorimetric mercury sensing.

    PubMed

    Ahmed, Khan Behlol Ayaz; Senthilnathan, Rajendran; Megarajan, Sengan; Anbazhagan, Veerappan

    2015-10-01

    Owing to the benign nature, plant extracts mediated green synthesis of metal nanoparticles (NPs) is rapidly expanding. In this study, we demonstrated the successful green synthesis of silver nanoparticles (AgNPs) by utilizing natural sunlight and redox protein complex composed of ferredoxin-NADP(+) reductase (FNR) and ferredoxin (FD). The capping and stabilization of the AgNPs by the redox protein was confirmed by Fourier transform infrared spectroscopy. Light and redox protein is the prerequisite factor for the formation of AgNPs. The obtained result shows that the photo generated free radicals by the redox protein is responsible for the reduction of Ag(+) to Ag(0). Transmission electron microscopy revealed the formation of spherical AgNPs with size ranging from 10 to 15 nm. As-prepared AgNPs exhibit excellent catalytic activity toward the degradation of hazardous organic dyes, such as methylene blue, methyl orange and methyl red. These bio-inspired AgNPs is highly sensitive and selective in sensing hazardous mercury ions in the water at micromolar concentration. In addition, FNR/FD extract stabilized AgNPs showed good antimicrobial activity against gram positive and gram negative bacteria.

  7. Synergistic Antimicrobial Effects of Silver/Transition-metal Combinatorial Treatments.

    PubMed

    Garza-Cervantes, Javier A; Chávez-Reyes, Arturo; Castillo, Elena C; García-Rivas, Gerardo; Antonio Ortega-Rivera, Oscar; Salinas, Eva; Ortiz-Martínez, Margarita; Gómez-Flores, Sara Leticia; Peña-Martínez, Jorge A; Pepi-Molina, Alan; Treviño-González, Mario T; Zarate, Xristo; Elena Cantú-Cárdenas, María; Enrique Escarcega-Gonzalez, Carlos; Morones-Ramírez, J Rubén

    2017-04-18

    Due to the emergence of multi-drug resistant strains, development of novel antibiotics has become a critical issue. One promising approach is the use of transition metals, since they exhibit rapid and significant toxicity, at low concentrations, in prokaryotic cells. Nevertheless, one main drawback of transition metals is their toxicity in eukaryotic cells. Here, we show that the barriers to use them as therapeutic agents could be mitigated by combining them with silver. We demonstrate that synergism of combinatorial treatments (Silver/transition metals, including Zn, Co, Cd, Ni, and Cu) increases up to 8-fold their antimicrobial effect, when compared to their individual effects, against E. coli and B. subtilis. We find that most combinatorial treatments exhibit synergistic antimicrobial effects at low/non-toxic concentrations to human keratinocyte cells, blast and melanoma rat cell lines. Moreover, we show that silver/(Cu, Ni, and Zn) increase prokaryotic cell permeability at sub-inhibitory concentrations, demonstrating this to be a possible mechanism of the synergistic behavior. Together, these results suggest that these combinatorial treatments will play an important role in the future development of antimicrobial agents and treatments against infections. In specific, the cytotoxicity experiments show that the combinations have great potential in the treatment of topical infections.

  8. A universal sensor for mercury (Hg, Hg(I), Hg(II)) based on silver nanoparticle-embedded polymer thin film.

    PubMed

    Ramesh, G V; Radhakrishnan, T P

    2011-04-01

    Detection of mercury at concentration levels down to parts-per-billion is a problem of fundamental and practical interest due to the high toxicity of the metal and its role in environmental pollution. The extensive research in this area has been focused primarily on specific sensing of mercuric (Hg(2+)) ion. As mercury exists in the oxidation states, +2, +1 and 0 all of which are highly toxic, a universal sensor covering all the three while ensuring high sensitivity, selectivity, and linearity of response, and facilitating in situ as well as ex situ deployment, would be very valuable. Silver nanoparticle-embedded poly(vinyl alcohol) (Ag-PVA) thin film fabricated through a facile protocol is shown to be a fast, efficient and selective sensor for Hg(2+), Hg(2)(2+) and Hg in aqueous medium with a detection limit of 1 ppb. The sensor response is linear in the 10 ppb to 1 ppm concentration regime. A unique characteristic of the thin film based sensor is the blue shift occurring concomitantly with the decrease in the surface plasmon resonance absorption upon interaction with mercury, making the sensing highly selective. Unlike the majority of known sensors that work only in situ, the thin film sensor can be used ex situ as well. Examination of the thin film using microscopy and spectroscopy through the sensing process provides detailed insight into the sensing event.

  9. Local Stoichiometry and Atomic Interdiffusion during Reactive Metal/Mercury-Cadmium-Telluride Junction Formation.

    DTIC Science & Technology

    1987-10-23

    CHART NATIONAL BUREAU OF STANDARDS- 1963-A IfP LOCAL STOICHIOMETRY AND ATOMIC INTERDIFFUSION DURING REACTIVE METAL/ MERCURY- CADMIUM -TELLURIDE...TITLE rand Subtitle) S. TYPE OF REPORT PERIOED LOCAL STOICHIOMETRY AND ATOMIC INTERDIFFUSION Interim, 1/8 DURING REACTIVE METAL/MERCURY- CADMIUM ...identliy by block nuembw) Ag, Ge and Sm overlayers on Mercury- Cadmium -Telluride surfaces exhibit widely different interface reactivity and yield a

  10. 41 CFR 109-45.1003 - Recovery of silver from precious metals bearing materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Recovery of silver from precious metals bearing materials. 109-45.1003 Section 109-45.1003 Public Contracts and Property Management... of Precious Metals § 109-45.1003 Recovery of silver from precious metals bearing materials. The...

  11. 41 CFR 109-45.1003 - Recovery of silver from precious metals bearing materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Recovery of silver from precious metals bearing materials. 109-45.1003 Section 109-45.1003 Public Contracts and Property Management... of Precious Metals § 109-45.1003 Recovery of silver from precious metals bearing materials. The...

  12. 41 CFR 109-45.1003 - Recovery of silver from precious metals bearing materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Recovery of silver from precious metals bearing materials. 109-45.1003 Section 109-45.1003 Public Contracts and Property Management... of Precious Metals § 109-45.1003 Recovery of silver from precious metals bearing materials. The...

  13. 41 CFR 109-45.1003 - Recovery of silver from precious metals bearing materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Recovery of silver from precious metals bearing materials. 109-45.1003 Section 109-45.1003 Public Contracts and Property Management... of Precious Metals § 109-45.1003 Recovery of silver from precious metals bearing materials....

  14. Silver nanorod structures for metal enhanced fluorescence

    NASA Astrophysics Data System (ADS)

    Badshah, Mohsin Ali; Lu, Xun; Ju, Jonghyun; Kim, Seok-min

    2016-09-01

    Fluorescence based detection is a commonly used methodology in biotechnology and medical diagnostics. Metalenhanced fluorescence (MEF) becomes a promising strategy to improve the sensitivity of fluorescence detection, where fluorophores coupling with surface plasmon on metallic structures results fluorescence enhancement. To apply the MEF methodology in real medical diagnostics, especially for protein or DNA microarray detection, a large area (e.g., slide glass, 75 × 25 mm2) with uniform metallic nanostructures is required. In this study, we fabricated a large area MEF substrates using oblique angle deposition (OAD), which is a single step, inexpensive large area fabrication method of nanostructures. To optimize the morphological effect, Ag-nanorods with various lengths were fabricated on the conventional slide glass substrates. Streptavidin-Cy5 dissolved in buffer solution with different concentration (100ng/ml 100μg/ml) were applied to MEF substrates using a pipette, and the fluorescence signals were measured. The enhancement factor increased with the increase in length of Ag-nanorods and maximum enhancement factor 91x was obtained from Ag-nanorods 750nm length compare to bare glass due to higher surface Plasmon effect.

  15. Application of artificial neural network to simultaneous potentiometric determination of silver(I), mercury(II) and copper(II) ions by an unmodified carbon paste electrode.

    PubMed

    Shamsipur, Mojtaba; Tashkhourian, Javad; Hemmateenejad, Bahram; Sharghi, Hashem

    2004-10-20

    The response characteristics and selectivity coefficients of an unmodified carbon paste electrode (CPEs) towards Ag(+), Cu(2+) and Hg(2+) were evaluated. The electrode was used as an indicator electrode for the simultaneous determination of the three metal ions in their mixtures via potentiometric titration with a standard thiocyanate solution. A three-layered feed-forward artificial neural network (ANN) trained by back-propagation learning algorithm was used to model the complex non-linear relationship between the concentration of silver, copper and mercury in their different mixtures and the potential of solution at different volumes of the added titrant. The network architecture and parameters were optimized to give low prediction errors. The optimized networks were able to precisely predict the concentrations of the three cations in synthetic mixtures.

  16. Packaging a liquid metal ESD with micro-scale Mercury droplet.

    SciTech Connect

    Barnard, Casey Anderson

    2011-08-01

    A liquid metal ESD is being developed to provide electrical switching at different acceleration levels. The metal will act as both proof mass and electric contact. Mercury is chosen to comply with operation parameters. There are many challenges surrounding the deposition and containment of micro scale mercury droplets. Novel methods of micro liquid transfer are developed to deliver controllable amounts of mercury to the appropriate channels in volumes under 1 uL. Issues of hermetic sealing and avoidance of mercury contamination are also addressed.

  17. Mercury heavy-metal-induced physiochemical changes and genotoxic alterations in water hyacinths [Eichhornia crassipes (Mart.)].

    PubMed

    Malar, Srinivasan; Sahi, Shivendra Vikram; Favas, Paulo J C; Venkatachalam, Perumal

    2015-03-01

    Mercury heavy metal pollution has become an important environmental problem worldwide. Accumulation of mercury ions by plants may disrupt many cellular functions and block normal growth and development. To assess mercury heavy metal toxicity, we performed an experiment focusing on the responses of Eichhornia crassipes to mercury-induced oxidative stress. E. crassipes seedlings were exposed to varying concentrations of mercury to investigate the level of mercury ions accumulation, changes in growth patterns, antioxidant defense mechanisms, and DNA damage under hydroponics system. Results showed that plant growth rate was significantly inhibited (52 %) at 50 mg/L treatment. Accumulation of mercury ion level were 1.99 mg/g dry weight, 1.74 mg/g dry weight, and 1.39 mg/g dry weight in root, leaf, and petiole tissues, respectively. There was a decreasing trend for chlorophyll a, b, and carotenoids with increasing the concentration of mercury ions. Both the ascorbate peroxidase and malondialdehyde contents showed increased trend in leaves and roots up to 30 mg/L mercury treatment and slightly decreased at the higher concentrations. There was a positive correlation between heavy metal dose and superoxide dismutase, catalase, and peroxidase antioxidative enzyme activities which could be used as biomarkers to monitor pollution in E. crassipes. Due to heavy metal stress, some of the normal DNA bands were disappeared and additional bands were amplified compared to the control in the random amplified polymorphic DNA (RAPD) profile. Random amplified polymorphic DNA results indicated that genomic template stability was significantly affected by mercury heavy metal treatment. We concluded that DNA changes determined by random amplified polymorphic DNA assay evolved a useful molecular marker for detection of genotoxic effects of mercury heavy metal contamination in plant species.

  18. Silver metal colloidal film on a flexible polymer substrate

    NASA Astrophysics Data System (ADS)

    del Rocío Balaguera Gelves, Marcia; El Burai-Félix, Alia; De La Cruz-Montoya, Edwin; Jeréz Rozo, Jaqueline I.; Hernández-Rivera, Samuel P.

    2006-05-01

    A method to prepare metallic nanoparticles films in the presence of a hydrophilic copolymer with the aim of inhibiting the formation of clusters in the nanoparticles has been developed. Thin films prepared could be used in applications such as sensors development and substrates for surface-enhanced Raman spectroscopy. The synthesis of colloidal solutions of silver nanoparticles was achieved by the reduction AgNO 3 using sodium citrate with thermal treatment which results in a robust fabrication of gold and silver films. The polymeric films were prepared by polymerization 2-hydroxyethyl methacrylate with methacrylic acid (method 1). The other procedure employed (method 2) incorporated the use of polyvinyl pyrrolidone and polyethylene glycol as copolymers. A scanning electron microscope was used to provide microstructural information of coverage achieved. The ability to tune the nanocoating structure and spectral and electronic properties can be used for applications such as sensors used in the detection of explosives. Silver nanoparticles were also characterized by surface-enhanced Raman scattering (SERS), which integrates high chemical sensitivity with spectroscopic identification and has enormous potential for applications involving ultra-sensitive chemical detection. Spectra were obtained using a Renishaw RM2000 Raman Microspectrometer system operating in the visible region excitation (532 nm).

  19. In situ reduction of antibacterial silver ions to metallic silver nanoparticles on bioactive glasses functionalized with polyphenols

    NASA Astrophysics Data System (ADS)

    Ferraris, S.; Miola, M.; Cochis, A.; Azzimonti, B.; Rimondini, L.; Prenesti, E.; Vernè, E.

    2017-02-01

    The realization of surfaces with antibacterial properties due to silver nanoparticles loaded through a green approach is a promising research challenge of the biomaterial field. In this research work, two bioactive glasses have been doubly surface functionalized with polyphenols (gallic acid or natural polyphenols extracted from red grape skins and green tea leaves) and silver nanoparticles deposited by in situ reduction from a silver nitrate aqueous solution. The presence of biomolecules - showing reducing ability to directly obtain in situ metallic silver - and silver nanoparticles was investigated by means of UV-vis spectroscopy, X-Ray Photoelectron Spectroscopy (XPS) and Field Emission Scanning Electron Microscopy (FESEM). The antibacterial activity of the modified surfaces was tested against a multidrug resistant Staphylococcus aureus bacterial strain.

  20. Advanced Gasification Mercury/Trace Metal Control with Monolith Traps

    SciTech Connect

    Michael L. Swanson; Grant E. Dunham; Mark A. Musich

    2007-02-01

    Three potential additives for controlling mercury emissions from syngas at temperatures ranging from 350 to 500 F (177 to 260 C) were developed. Current efforts are being directed at increasing the effective working temperature for these sorbents and also being able to either eliminate any potential mercury desorption or trying to engineer a trace metal removal system that can utilize the observed desorption process to repeatedly regenerate the same sorbent monolith for extended use. Project results also indicate that one of these same sorbents can also successfully be utilized for arsenic removal. Capture of the hydrogen selenide in the passivated tubing at elevated temperatures has resulted in limited results on the effective control of hydrogen selenide with these current sorbents, although lower-temperature results are promising. Preliminary economic analysis suggests that these Corning monoliths potentially could be more cost-effective than the conventional cold-gas (presulfided activated carbon beds) technology currently being utilized. Recent Hg-loading results might suggest that the annualized costs might be as high as 2.5 times the cost of the conventional technology. However, this annualized cost does not take into account the significantly improved thermal efficiency of any plant utilizing the warm-gas monolith technology currently being developed.

  1. Mercury

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002476.htm Mercury To use the sharing features on this page, please enable JavaScript. This article discusses poisoning from mercury. This article is for information only. Do NOT ...

  2. Roles of metal/activated carbon hybridization on elemental mercury adsorption.

    PubMed

    Bae, Kyong-Min; Kim, Byung-Joo; Rhee, Kyong Yop; Park, Soo-Jin

    2014-08-01

    In this study, the elemental mercury removal behavior of metal (copper or nickel)/activated carbon hybrid materials were investigated. The pore structures and total pore volumes of the hybrid materials were analyzed using the N2/77 K adsorption isotherms. The microstructure and surface morphologies of the hybrid materials were characterized by X-ray diffraction and scanning electron microscopy, respectively. In the experimental results, the elemental mercury adsorption capacities of all copper/activated carbon hybrid materials were higher than that of the as-received material despite the decrease in specific surface areas and total pore volumes after the metal loading. All the samples containing the metal particles showed excellent elemental mercury adsorption. The Ni/ACs exhibited superior elemental mercury adsorption to those of Cu/ACs. This suggests that Ni/ACs have better elemental mercury adsorption due to the higher activity of nickel.

  3. Oil-Soluble Silver-Organic Molecule for in Situ Deposition of Lubricious Metallic Silver at High Temperatures.

    PubMed

    Desanker, Michael; Johnson, Blake; Seyam, Afif M; Chung, Yip-Wah; Bazzi, Hassan S; Delferro, Massimiliano; Marks, Tobin J; Wang, Q Jane

    2016-06-01

    A major challenge in lubrication technology is to enhance lubricant performance at extreme temperatures that exceed conventional engine oil thermal degradation limits. Soft noble metals such as silver have low reactivity and shear strength, which make them ideal solid lubricants for wear protection and friction reduction between contacting surfaces at high temperatures. However, achieving adequate dispersion in engine lubricants and metallic silver deposition over predetermined temperatures ranges presents a significant chemical challenge. Here we report the synthesis, characterization, and tribological implementation of the trimeric silver pyrazolate complex, [Ag(3,5-dimethyl-4-n-hexyl-pyrazolate)]3 (1). This complex is oil-soluble and undergoes clean thermolysis at ∼310 °C to deposit lubricious, protective metallic silver particles on metal/metal oxide surfaces. Temperature-controlled tribometer tests show that greater than 1 wt % loading of 1 reduces wear by 60% in PAO4, a poly-α-olefin lubricant base fluid, and by 70% in a commercial fully formulated 15W40 motor oil (FF oil). This silver-organic complex also imparts sufficient friction reduction so that the tribological transition from oil as the primary lubricant through its thermal degradation, to 1 as the primary lubricant, is experimentally undetectable.

  4. MERCURY CONTRIBUTIONS TO THE ENVIRONMENT FROM HISTORIC MINING PRACTICES

    EPA Science Inventory

    Significant quantities of mercury have been released to the environment as a result of historic precious metal mining. Many gold and silver deposits are enriched in mercury, which is released during mining and processing activities. Historically in the U.S., although a modern ...

  5. MERCURY CONTRIBUTIONS TO THE ENVIRONMENT FROM HISTORIC MINING PRACTICES

    EPA Science Inventory

    Significant quantities of mercury have been released to the environment as a result of historic precious metal mining. Many gold and silver deposits are enriched in mercury, which is released during mining and processing activities. Historically in the U.S., although a modern ...

  6. Silver metal nanoparticles study for biomedical and green house applications

    NASA Astrophysics Data System (ADS)

    Rauwel, E.; Simón-Gracia, L.; Guha, M.; Rauwel, P.; Kuunal, S.; Wragg, D.

    2017-02-01

    Metallic nanoparticles (MNP) with diameters ranging from 2 to 100nm have received extensive attention during the past decades due to their many potential applications. This paper presents a structural and cytotoxicity study of silver metal nanoparticles targeted towards biomedical applications. Spherical Ag MNPs of diameter from 20 to 50 nm have been synthesized. The encapsulation of Ag MNPs inside pH-sensitive polymersomes has been also studied for the development of biomedical applications. A cytotoxicity study of the Ag MNPs against primary prostatic cancer cell line (PPC-1) has demonstrated a high mortality rate for concentrations ranging from 100 to 200mg/L. The paper will discuss the potential for therapeutic treatments of these Ag MNPs.

  7. Fast and slow deposition of silver nanorods on planar surfaces: application to metal-enhanced fluorescence.

    PubMed

    Aslan, Kadir; Leonenko, Zoya; Lakowicz, Joseph R; Geddes, Chris D

    2005-03-03

    Two methods have been considered for the deposition of silver nanorods onto conventional glass substrates. In the first method, silver nanorods were deposited onto 3-(aminopropyl)triethoxysilane-coated glass substrates simply by immersing the substrates into the silver nanorod solution. In the second method, spherical silver seeds that were chemically attached to the surface were subsequently converted and grown into silver nanorods in the presence of a cationic surfactant and silver ions. The size of the silver nanorods was controlled by sequential immersion of silver seed-coated glass substrates into a growth solution and by the duration of immersion, ranging from tens of nanometers to a few micrometers. Atomic force microscopy and optical density measurements were used to characterize the silver nanorods deposited onto the surface of the glass substrates. The application of these new surfaces is for metal-enhanced fluorescence (MEF), whereby the close proximity of silver nanostructures can alter the radiative decay rate of fluorophores, producing enhanced signal intensities and an increased fluorophore photostability. In this paper, it is indeed shown that irregularly shaped silver nanorod-coated surfaces are much better MEF surfaces as compared to traditional silver island or colloid films. Subsequently, these new silver nanorod preparation procedures are likely to find a common place in MEF, as they are a quicker and much cheaper alternative as compared to surfaces fabricated by traditional nanolithographic techniques.

  8. Native fungi as metal remediators: Silver myco-accumulation from metal contaminated waste-rock dumps (Libiola Mine, Italy).

    PubMed

    Cecchi, Grazia; Marescotti, Pietro; Di Piazza, Simone; Zotti, Mirca

    2017-03-04

    Metal contamination constitutes a major source of pollution globally. Many recent studies emphasized the need to develop cheap and green technologies for the remediation or reclamation of environmental matrices contaminated by heavy metals. In this context, fungi are versatile organisms that can be exploited for bioremediation activities. In our work, we tested silver (Ag) bioaccumulation capabilities of three microfungal strains (Aspergillus alliaceus Thom & Church, Trichoderma harzianum Rifai, Clonostachys rosea (Link) Schroers, Samuels, Seifert & W. Gams) isolated from a silver polluted site. The aim was to select silver tolerant native strains and test their potential silver uptake. Among the three species tested, T. harzianum was the most efficient strain to tolerate and accumulate silver, showing an uptake capability of 153 mg L(-1) taken at the Ag concentration of 330 mg L(-1). Our study highlights the potential use of native microfungi spontaneously growing in sulphide-rich waste rock dumps, for silver bioaccumulation and bioremediation.

  9. Submicron silica spheres decorated with silver nanoparticles as a new effective sorbent for inorganic mercury in surface waters.

    PubMed

    Yordanova, Tanya; Vasileva, Penka; Karadjova, Irina; Nihtianova, Diana

    2014-03-21

    An analytical method using silica supported silver nanoparticles as a novel sorbent for the enrichment and determination of inorganic mercury (iHg) in surface water samples has been developed. Silver nanoparticles (AgNPs) were synthesized by a completely green procedure and were deposited onto the amine functionalized surface of silica submicrospheres (SiO2-NH2). The prepared nanocomposite material (SiO2/AgNPs) was characterized by transmission electron microscopy, UV-vis spectroscopy, X-ray diffraction and atomic force microscopy. The sorption and desorption characteristics of the nanosorbent SiO2/AgNPs toward Hg species were investigated by a batch method. An excellent separation of iHg and methylHg was achieved in 20 minutes at pH 2. The high selectivity of the SiO2/AgNPs toward iHg was explained by Hg(ii) reduction and subsequent silver-mercury amalgam formation. The analytical procedure for the enrichment and determination of inorganic mercury in surface waters was developed based on solid phase extraction and ICP-MS measurements. The total Hg content was determined after water sample mineralization. The recoveries reached for iHg in different surface waters e.g. river and Black sea water samples varied from 96-101%. The limits of quantification are 0.002 μg L(-1) and 0.004 μg L(-1) for iHg and total Hg, respectively; the relative standard deviations varied in the ranges of 5-9% and 6-11% for iHg and total Hg, respectively, for Hg content from 0.005 to 0.2 μg L(-1). The accuracy of the procedure developed for total Hg determination was confirmed by a comparative analysis of surface river (ICP-MS) and sea (CV AFS) waters.

  10. Metal-Enhanced Fluorescence of Silver Island Associated with Silver Nanoparticle

    NASA Astrophysics Data System (ADS)

    Liaw, Jiunn-Woei; Wu, Hsin-Yu; Huang, Chu-Chuan; Kuo, Mao-Kuen

    2016-01-01

    The coupling plasmon of a hybrid nanostructure, silver island (SI) associated with silver nanoparticle (SNP), on metal-enhanced fluorescence (MEF) was studied theoretically. We used the multiple multipole method to analyze the plasmon-mediated enhancement factor on the fluorescence of a molecule immobilized on SNP and located in the gap zone between SI and SNP; herein, the SI was modeled as an oblate spheroid. Numerical results show that the enhancement factor of the hybrid nanostructure is higher than that of a SNP or a SI alone due to the coupled gap mode. This finding is in agreement with the previous experimental results. In addition, the plasmon band of the structure is broadband and tunable, which can be red-shifted and broadened by flattening or enlarging SI. Based on this property, the hybrid nanostructure can be tailored to obtain the optimal enhancement factor on a specific molecule according to its excitation spectrum. Moreover, we found that there is an induced optical force allowing SNP be attracted by SI. Consequently, the gap is reduced gradually to perform a stronger MEF effect.

  11. Reversible transformations of silver oxide and metallic silver nanoparticles inside SiO{sub 2} films

    SciTech Connect

    Pal, Sudipto; De, Goutam

    2009-02-04

    Reversible transformation of silver oxide and metallic nanoparticles inside a relatively porous silica film has been established. Annealing of Ag-doped films in oxidizing (air) atmosphere at 450 deg. C yielded colorless films containing AgO{sub x}. These films were turned yellow when heated in H{sub 2}-N{sub 2} (reducing atmosphere) due to the formation of Ag nanoparticles. This yellow coloration (due to nano Ag{sup 0}) and bleaching (conversion of Ag{sup 0} {yields} Ag{sup +}) are reversible. Optical and photoluminescence spectra are well consistent with this coloration and bleaching. The soaking test of the air-annealed film in Na{sub 2}S{sub 2}O{sub 3} solution supports the presence of Ag{sup +}. Grazing incidence X-ray diffraction and transmission electron microscopy studies reveal the formation of Ag-oxides and Ag nanoparticles in the oxidized and reduced films, respectively.

  12. INKJET PRINTING OF NICKEL AND SILVER METAL SOLAR CELL CONTACTS

    SciTech Connect

    Pasquarelli, R.; Curtis, C.; Van Hest, M.

    2008-01-01

    With about 125,000 terawatts of solar power striking the earth at any given moment, solar energy may be the only renewable energy resource with enough capacity to meet a major portion of our future energy needs. Thin-fi lm technologies and solution deposition processes seek to reduce manufacturing costs in order to compete with conventional coal-based electricity. Inkjet printing, as a derivative of the direct-write process, offers the potential for low-cost, material-effi cient deposition of the metals for photovoltaic contacts. Advances in contact metallizations are important because they can be employed on existing silicon technology and in future-generation devices. We report on the atmospheric, non-contact deposition of nickel (Ni) and silver (Ag) metal patterns on glass, Si, and ZnO substrates at 180–220°C from metal-organic precursor inks using a Dimatix inkjet printer. Near-bulk conductivity Ag contacts were successfully printed up to 4.5 μm thick and 130 μm wide on the silicon nitride antirefl ective coating of silicon solar cells. Thin, high-resolution Ni adhesion-layer lines were printed on glass and zinc oxide at 80 μm wide and 55 nm thick with a conductivity two orders of magnitude less than the bulk metal. Additionally, the ability to print multi-layered metallizations (Ag on Ni) on transparent conducting oxides was demonstrated and is promising for contacts in copper-indium-diselenide (CIS) solar cells. Future work will focus on further improving resolution, printing full contact devices, and investigating copper inks as a low-cost replacement for Ag contacts.

  13. Vibrational spectra of saccharin nitranion and its orientation on the surface of silver metal particles

    NASA Astrophysics Data System (ADS)

    Imai, Yoshika; Kamada, Jun-ichi

    2005-02-01

    Infrared-reflectance spectra of the saccharin nitranion adsorbed on silver powder was observed. Surface-Enhanced Raman Scattering (SERS) spectra of the saccharin nitranion were also recorded using cellulose acetate films doped with fine silver particles. The spectra suggested that the saccharin nitranion is bonded to the silver metal surface through the oxygen atom of carbonyl and the nitrogen atom of the imide ring groups and that the nitranion tilts at the surface.

  14. Environment-dependent photochromism of silver nanoparticles interfaced with metal-oxide films

    NASA Astrophysics Data System (ADS)

    Fu, Shencheng; Sun, Shiyu; Zhang, Xintong; Zhang, Cen; Zhao, Xiaoning; Liu, Yichun

    2015-12-01

    Different metal-oxide films were fabricated by radio frequency magnetron sputtering. Further, a layer of silver nanoparticles (NPs) was deposited on the surface of the substrate by physical sputtering. Photochromism of the silver/metal-oxide nanocomposite films were investigated in situ under the irradiation of a linearly-polarized green laser beam (532 nm). Silver NPs were found to be easily photo-dissolved on the n-type metal-oxide films. By changing experimental conditions, it was also verified that both oxygen and humidity accelerate the photochromism of silver NPs. The corresponding micro-mechanism on charge separation and Ag+-ions mobility was also discussed. These results provided theoretical basis for the application of silver NPs in biological, chemical and medical areas.

  15. Process for the removal of mercury from precious metal-cyanide liquors

    SciTech Connect

    Touro, F.J.

    1988-02-23

    A process for removing mercury from a cyanide solution is described comprising: (a) reacting solubilized mercury with a sulfide ion-providing compound in a precious metal-containing, cyanide leach solution to produce mercuric sulfide, the sulfide ion-providing compound being a member selected from the group consisting of sodium sulfide, sodium hydrosulfide, and hydrogen sulfide; (b) flocculating the mercuric sulfide with a flocculating agent, the flocculating agent being an anionic, high molecular polyacrylamide polymer, whereby flocs of mercuric sulfide are formed to produce a mercury-free precious metal-containing, cyanide solution; and (c) separating the mercuric sulfide flocs from the mercury-free precious metal-containing, cyanide solution.

  16. Auto-aggressive metallic mercury injection around the knee joint: a case report

    PubMed Central

    2011-01-01

    Background Accidental or intentional subcutaneous and/or intramuscular injection of metallic mercury is an uncommon form of poisoning. Although it does not carry the same risk as mercury vapour inhalation, it may cause destructive early and late reactions. Case Presentation Herein we present the case of a 29-year-old male patient who developed an obsessive-compulsive disorder causing auto-aggressive behaviour with injection of elemental mercury and several other foreign bodies into the soft tissues around the left knee about 15 years before initial presentation. For clinical examination X-rays and a CT-scan of the affected area were performed. Furthermore, blood was taken to determine the mercury concentration in the blood, which showed a concentration 17-fold higher than recommended. As a consequence, the mercury depots and several foreign bodies were resected marginally. Conclusion Blood levels of mercury will decrease rapidly following surgery, especially in combination with chelating therapy. In case of subcutaneous and intramuscular injection of metallic mercury we recommend marginal or wide excision of all contaminated tissue to prevent migration of mercury and chronic inflammation. Nevertheless, prolonged clinical and biochemical monitoring should be performed for several years to screen for chronic intoxication. PMID:22093686

  17. Silver metallation of hen egg white lysozyme: X-ray crystal structure and NMR studies.

    PubMed

    Panzner, Matthew J; Bilinovich, Stephanie M; Youngs, Wiley J; Leeper, Thomas C

    2011-12-14

    The X-ray crystal structure, NMR binding studies, and enzyme activity of silver(I) metallated hen egg white lysozyme are presented. Primary bonding of silver is observed through His15 with secondary bonding interactions coming from nearby Arg14 and Asp87. A covalently bound nitrate completes a four coordinate binding pocket.

  18. Brazing of copper to stainless steel with a low-silver-content brazing filler metal

    NASA Astrophysics Data System (ADS)

    Fukikoshi, Tatsuya; Watanabe, Yūki; Miyazawa, Yasuyuki; Kanasaki, Fumio

    2014-08-01

    The brazing of copper to stainless steel (SUS304 JIS) was performed using a low- silver-content brazing filler metal, Ag-50Cu, under an Ar gas atmosphere with a conventional furnace, owing to the potential economic benefits of using low-silver-content filler metals. The brazeability of the low-silver-content brazing filler metal to copper and SUS304 was investigated. A good joint was obtained, and a drastic dissolution reaction occurred at the copper side. Molten BAg8 penetrated along the crystal grain boundary of the copper base metal when BAg8 was used as the filler metal. This was caused by the dissolution of Ni from the stainless steel into the molten filler metal. Ag-50Cu, which was investigated in this work, can be used instead of BAg8 filler metal.

  19. Accumulation of mercury and other heavy metals in edible fishes of Cochin backwaters, Southwest India.

    PubMed

    Mohan, Mahesh; Deepa, M; Ramasamy, E V; Thomas, A P

    2012-07-01

    Mercury, a global pollutant, has become a real threat to the developing countries like India and China, where high usage of mercury is reported. Mercury and other heavy metals deposited in to the aquatic system can cause health risk to the biota. The common edible fishes such as Mugil cephalus, Arius arius, Lutjanus ehrenbergii, Etroplus suratensis were collected from Cochin backwaters, Southwest India and analysed for mercury and other heavy metals (zinc, cadmium, lead and copper) in various body parts. Kidney and liver showed highest concentration of metals in most fishes. The omnivore and bottom feeder (E. suratensis) showed high concentration of mercury (14.71 mg/kg dry weight) and other metals (1.74 mg/g-total metal concentration). The average mercury concentration obtained in muscle was 1.6 mg/kg dry weight (0.352 mg/kg wet weight), which is higher than the prescribed limits (0.3 mg/kg wet weight). The concentration of other heavy metals in the muscles of fishes were found in a decreasing order Zn>Cu>Cd>Pb and are well below WHO permissible limits that were safe for human consumption. Metal selectivity index (MSI) obtained for all the metals except mercury showed that both carnivores and omnivores have almost same kind of affinity towards the metals especially Zn and Cd, irrespective of their feeding habit. The MSI values also indicate that the fishes have the potential to accumulate metals. High tissue selectivity index (TSI) values were reported for kidney, muscle and brain for all metals suggests that the metal concentration in these tissues can serve as an indication of metal polluted environment. Even if the daily intakes of Zn, Cd, Pb and Cu from these fishes are within the provisional maximum daily intake recommended by WHO/FAO, the quality is questionable due to the high hazard index obtained for mercury (>1). Fishes like E. suratensis being a favourite food of people in this region, the high consumption of it can lead to chronic disorders as this

  20. Sulfidation kinetics of silver nanoparticles reacted with metal sulfides.

    PubMed

    Thalmann, Basilius; Voegelin, Andreas; Sinnet, Brian; Morgenroth, Eberhard; Kaegi, Ralf

    2014-05-06

    Recent studies have documented that the sulfidation of silver nanoparticles (Ag-NP), possibly released to the environment from consumer products, occurs in anoxic zones of urban wastewater systems and that sulfidized Ag-NP exhibit dramatically reduced toxic effects. However, whether Ag-NP sulfidation also occurs under oxic conditions in the absence of bisulfide has not been addressed, yet. In this study we, therefore, investigated whether metal sulfides that are more resistant toward oxidation than free sulfide, could enable the sulfidation of Ag-NP under oxic conditions. We reacted citrate-stabilized Ag-NP of different sizes (10-100 nm) with freshly precipitated and crystalline CuS and ZnS in oxygenated aqueous suspensions at pH 7.5. The extent of Ag-NP sulfidation was derived from the increase in dissolved Cu(2+) or Zn(2+) over time and linked with results from X-ray absorption spectroscopy (XAS) analysis of selected samples. The sulfidation of Ag-NP followed pseudo first-order kinetics, with rate coefficients increasing with decreasing Ag-NP diameter and increasing metal sulfide concentration and depending on the type (CuS and ZnS) and crystallinity of the reacting metal sulfide. Results from analytical electron microscopy revealed the formation of complex sulfidation patterns that seemed to follow preexisting subgrain boundaries in the pristine Ag-NP. The kinetics of Ag-NP sulfidation observed in this study in combination with reported ZnS and CuS concentrations and predicted Ag-NP concentrations in wastewater and urban surface waters indicate that even under oxic conditions and in the absence of free sulfide, Ag-NP can be transformed into Ag2S within a few hours to days by reaction with metal sulfides.

  1. [Mercury (and...) through the centuries].

    PubMed

    Kłys, Małgorzata

    2010-01-01

    Mercury has a long history, fascinating in its many aspects. Through the centuries--from ancient times to the present day--the metal in its various forms, also known under the name "quicksilver", accompanied the man and was used for diversified purposes. Today, mercury is employed in manufacturing thermometers, barometers, vacuum pumps and explosives. It is also used in silver and gold mining processes. Mercury compounds play a significant role in dentistry, pharmaceutical industry and crop protection. The contemporary use of mercury markedly decreases, but historically speaking, the archives abound in materials that document facts and events occurring over generations and the immense intellectual effort aiming at discovering the true properties and mechanisms of mercury activity. Mercury toxicity, manifested in destruction of biological membranes and binding of the element with proteins, what disturbs biochemical processes occurring in the body, was discovered only after many centuries of the metal exerting its effect on the lives of individuals and communities. For centuries, mercury was present in the work of alchemists, who searched for the universal essence or quintessence and the so-called philosopher's stone. In the early modern era, between the 16th and 19th centuries, mercury was used to manufacture mirrors. Mercury compounds were employed as a medication against syphilis, which plagued mankind for more than four hundred years--from the Middle Ages till mid 20th century, when the discovery of penicillin became the turning point. This extremely toxic therapy resulted in much suffering, individual tragedies, chronic poisonings leading to fatalities and dramatic sudden deaths. In the last fifty years, there even occurred attempts of mentally imbalanced individuals at injecting themselves with metallic mercury, also as a performance-enhancing drug. Instances of mass mercury poisoning occurred many times in the past in consequence of eating food products

  2. Silver nanowires-templated metal oxide for broadband Schottky photodetector

    NASA Astrophysics Data System (ADS)

    Patel, Malkeshkumar; Kim, Hong-Sik; Park, Hyeong-Ho; Kim, Joondong

    2016-04-01

    Silver nanowires (AgNWs)-templated transparent metal oxide layer was applied for Si Schottky junction device, which remarked the record fastest photoresponse of 3.4 μs. Self-operating AgNWs-templated Schottky photodetector showed broad wavelength photodetection with high responsivity (42.4 A W-1) and detectivity (2.75 × 1015 Jones). AgNWs-templated indium-tin-oxide (ITO) showed band-to-band excitation due to the internal photoemission, resulting in significant carrier collection performances. Functional metal oxide layer was formed by AgNWs-templated from ITO structure. The grown ITO above AgNWs has a cylindrical shape and acts as a thermal protector of AgNWs for high temperature environment without any deformation. We developed thermal stable AgNWs-templated transparent oxide devices and demonstrated the working mechanism of AgNWs-templated Schottky devices. We may propose the high potential of hybrid transparent layer design for various photoelectric applications, including solar cells.

  3. Recovery of silver metal from low concentrated wastewater by photocatalysis

    NASA Astrophysics Data System (ADS)

    Ding, Mali; Han, Jie; Qiu, Wei; Zhang, Weijun; Gao, Wei

    2015-03-01

    This work studies the photocatalytic activity of zinc oxide (ZnO) nanopowder to recover silver (Ag) metal from low Ag+ concentrated solution under artificial ultraviolet (UV) light. Benchmark titanium dioxide (P25 TiO2) was used for comparison purpose. Experimental results indicated that ZnO exhibited superior performance for Ag recovery compared to TiO2. Under optimal catalyst loading, the achieved Ag removal efficiencies were 100% and 99.94% at 0.2 g/L ZnO (1 h) and 2 g/L TiO2 (2 h), respectively. An induction period at low concentration of TiO2 (0.1 g/L) was observed and a mechanism was proposed. The photodissolution of ZnO was assessed and proved to be negligible. Recovered pure Ag metal was characterized by X-ray diffractometry (XRD) and scanning electron microscopy (SEM), showing a promising effective Ag recovery technology using ZnO photocatalyst.

  4. Silver nanowires-templated metal oxide for broadband Schottky photodetector

    SciTech Connect

    Patel, Malkeshkumar; Kim, Hong-Sik; Kim, Joondong; Park, Hyeong-Ho

    2016-04-04

    Silver nanowires (AgNWs)-templated transparent metal oxide layer was applied for Si Schottky junction device, which remarked the record fastest photoresponse of 3.4 μs. Self-operating AgNWs-templated Schottky photodetector showed broad wavelength photodetection with high responsivity (42.4 A W{sup −1}) and detectivity (2.75 × 10{sup 15} Jones). AgNWs-templated indium-tin-oxide (ITO) showed band-to-band excitation due to the internal photoemission, resulting in significant carrier collection performances. Functional metal oxide layer was formed by AgNWs-templated from ITO structure. The grown ITO above AgNWs has a cylindrical shape and acts as a thermal protector of AgNWs for high temperature environment without any deformation. We developed thermal stable AgNWs-templated transparent oxide devices and demonstrated the working mechanism of AgNWs-templated Schottky devices. We may propose the high potential of hybrid transparent layer design for various photoelectric applications, including solar cells.

  5. [Determination of Ag, Cu, Zn and Cd in silver brazing filler metals by ICP-AES].

    PubMed

    Yang, X

    1997-06-01

    A method of simultaneous and direct determination for Ag, Cu, Zn and Cd in silver brazing filler metals by ICP-AES is reported. The spectral interferences and effect of acidity have been investigated. Working conditions were optimized. The method has been applied to the analysis of silver brazing filler metals with RSD of 4-7% and recovery of 94-105%. This method was accurate, simple and rapid.

  6. Thermal decomposition of silver acetate in silver paste for solar cell metallization: An effective route to reduce contact resistance

    NASA Astrophysics Data System (ADS)

    Jun Kim, Suk; Yun Kim, Se; Man Park, Jin; Hwan Park, Keum; Ho Lee, Jun; Mock Lee, Sang; Taek Han, In; Hyang Kim, Do; Ram Lim, Ka; Tae Kim, Won; Cheol Park, Ju; Soo Jee, Sang; Lee, Eun-Sung

    2013-08-01

    A screen printed silver/metallic glass (MG) paste formulated with Ag acetate resulted in a specific contact resistance in the range of 0.6-0.7 mΩ.cm2 on both the n- and p-type Si emitters of interdigitated back-contact solar cells. Silver nanocrystallites resulting from thermally decomposed Ag acetate prevented the Al MG frits from directly interacting with the Si emitter, thus reducing the amount of Al diffused into the Si emitters, and subsequently, the contact resistance. A photovoltaic conversion efficiency of 20.3% was achieved using this technique.

  7. Effect of cold working of the metal on the conductance of platinum, copper, and silver nanocontacts

    NASA Astrophysics Data System (ADS)

    Shklyarevskii, O. I.; Yanson, I. K.

    2013-03-01

    Cold metal working, which leads to strengthening and changes in various physical properties of metals on a macroscopic level, can have a significant effect on the conductance of nanowires drawn from these materials when they break. This effect is studied for Ag, Cu, Pt, and a number of other metals. Molecular hydrogen is found to affect the characteristics of breaking in silver nanowires.

  8. Noble Metal Catalysts for Mercury Oxidation in Utility Flue Gas: Gold, Palladium and Platinum Formulations

    SciTech Connect

    Presto, A.A.; Granite, E.J

    2008-07-01

    The use of noble metals as catalysts for mercury oxidation in flue gas remains an area of active study. To date, field studies have focused on gold and palladium catalysts installed at pilot scale. In this article, we introduce bench-scale experimental results for gold, palladium and platinum catalysts tested in realistic simulated flue gas. Our initial results reveal some intriguing characteristics of catalytic mercury oxidation and provide insight for future research into this potentially important process.

  9. Comparison of metallic silver and copper doping effects on single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kharlamova, M. V.; Niu, J. J.

    2012-10-01

    In this work we performed the filling of single-walled carbon nanotube channels with metallic silver and copper by means of two-step synthesis including imbuing with metal nitrate aqueous solution and further annealing. It has been shown that metal insertion into the nanotube cavities results in the Fermi level upshift and the charge transfer from metal to carbon atoms, thus donor doping of single-walled carbon nanotubes takes place. At the same time, encapsulated silver has a larger donor effect on the carbon nanotubes that has been proved by Raman spectroscopy and X-ray photoelectron spectroscopy.

  10. IMPACT OF NOBLE METALS AND MERCURY ON HYDROGEN GENERATION DURING HIGH LEVEL WASTE PRETREATMENT AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Stone, M; Tommy Edwards, T; David Koopman, D

    2009-03-03

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies radioactive High Level Waste (HLW) for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. HLW consists of insoluble metal hydroxides (primarily iron, aluminum, calcium, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, and sulfate). The pretreatment process in the Chemical Processing Cell (CPC) consists of two process tanks, the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) as well as a melter feed tank. During SRAT processing, nitric and formic acids are added to the sludge to lower pH, destroy nitrite and carbonate ions, and reduce mercury and manganese. During the SME cycle, glass formers are added, and the batch is concentrated to the final solids target prior to vitrification. During these processes, hydrogen can be produced by catalytic decomposition of excess formic acid. The waste contains silver, palladium, rhodium, ruthenium, and mercury, but silver and palladium have been shown to be insignificant factors in catalytic hydrogen generation during the DWPF process. A full factorial experimental design was developed to ensure that the existence of statistically significant two-way interactions could be determined without confounding of the main effects with the two-way interaction effects. Rh ranged from 0.0026-0.013% and Ru ranged from 0.010-0.050% in the dried sludge solids, while initial Hg ranged from 0.5-2.5 wt%, as shown in Table 1. The nominal matrix design consisted of twelve SRAT cycles. Testing included: a three factor (Rh, Ru, and Hg) study at two levels per factor (eight runs), three duplicate midpoint runs, and one additional replicate run to assess reproducibility away from the midpoint. Midpoint testing was used to identify potential quadratic effects from the three factors. A single sludge

  11. Use of Mercury in Dental Silver Amalgam: An Occupational and Environmental Assessment

    PubMed Central

    Jamil, Nadia; Ilyas, Samar; Qadir, Abdul; Arslan, Muhammad; Salman, Muhammad; Ahsan, Naveed; Zahid, Hina

    2016-01-01

    The objective of this study was to assess the occupational exposure to mercury in dentistry and associated environmental emission in wastewater of Lahore, Pakistan. A total of ninety-eight blood samples were collected comprising 37 dentists, 31 dental assistants, and 30 controls. Results demonstrate that the dentistry personnel contained significantly higher mean concentration of mercury in their blood samples (dentists: 29.835 µg/L and dental assistants: 22.798 µg/L) compared to that of the controls (3.2769 µg/L). The mean concentration of mercury was found maximum in the blood samples of older age group (62.8 µg/L) in dentists and (44.3 µg/L) in dental assistants. The comparison of mercury concentration among dentists, dental assistants, and controls (pairing based on their ages) revealed that the concentration increased with the age and experience among the dentists and dental assistants. Moreover, the mercury concentration in all the studied dental wastewater samples, collected from twenty-two dental clinics, was found to be exceeding the recommended discharge limit of 0.01 mg/L. Therefore, we recommend that immediate steps must be taken to ensure appropriate preventive measures to avoid mercury vapors in order to prevent potential health hazards to dentistry personnel. Strong regulatory and administrative measures are needed to deal with mercury pollution on emergency basis. PMID:27446955

  12. Use of Mercury in Dental Silver Amalgam: An Occupational and Environmental Assessment.

    PubMed

    Jamil, Nadia; Baqar, Mujtaba; Ilyas, Samar; Qadir, Abdul; Arslan, Muhammad; Salman, Muhammad; Ahsan, Naveed; Zahid, Hina

    2016-01-01

    The objective of this study was to assess the occupational exposure to mercury in dentistry and associated environmental emission in wastewater of Lahore, Pakistan. A total of ninety-eight blood samples were collected comprising 37 dentists, 31 dental assistants, and 30 controls. Results demonstrate that the dentistry personnel contained significantly higher mean concentration of mercury in their blood samples (dentists: 29.835 µg/L and dental assistants: 22.798 µg/L) compared to that of the controls (3.2769 µg/L). The mean concentration of mercury was found maximum in the blood samples of older age group (62.8 µg/L) in dentists and (44.3 µg/L) in dental assistants. The comparison of mercury concentration among dentists, dental assistants, and controls (pairing based on their ages) revealed that the concentration increased with the age and experience among the dentists and dental assistants. Moreover, the mercury concentration in all the studied dental wastewater samples, collected from twenty-two dental clinics, was found to be exceeding the recommended discharge limit of 0.01 mg/L. Therefore, we recommend that immediate steps must be taken to ensure appropriate preventive measures to avoid mercury vapors in order to prevent potential health hazards to dentistry personnel. Strong regulatory and administrative measures are needed to deal with mercury pollution on emergency basis.

  13. [Animal experiments and clinical observations on poisoning with metallic mercury].

    PubMed

    Glatzel, W; Tietze, K; Grimm, I; Ponsold, W; Roschig, M

    1980-03-15

    Albino rats of an own culture strain exposed to mercury were investigated electroneurographically. A disturbance of the motor nerve conduction of the ischiadic and the tibial nerve could not be established after one year. Workers exposed to mercury of two chemical plants of the district of Halle were examined neurologically and electrophysiologically. The motor nerve conduction was measured on eight peripheral nerves. The measuring values above all deviate from the normal value up to 10% more infrequently up to 20% or more.

  14. Forest Fire Effects on Mercury and Other Trace Metal Concentrations in a Rocky Mountain Forest Ecosystem

    NASA Astrophysics Data System (ADS)

    Biswas, A.; Blum, J. D.; Keeler, G. J.

    2003-12-01

    The impacts of forest fires on pools of major elements including carbon, calcium, and sulfur, have been extensively studied while their effects on potentially toxic trace metals are not as well understood. We examined the effect of the summer 2001, 4470 acre Green Knoll Fire (GKF) in northeastern Wyoming on mercury (Hg) and other trace metal concentrations in forest ecosystem pools. A paired watershed study was conducted using a burned and unburned watershed of similar stand age, climate, vegetation, and geology to investigate wildfire effects on the evolution and dispersal of pools of Hg and trace metals in forests. Mercury and other trace metal concentrations were determined through a 15 cm soil profile as well as in vegetation. Atmospheric sampling suggests that possibly due to geothermal inputs, ambient atmospheric and soil mercury concentrations are elevated in this region compared to other rural areas in the US, with typical concentrations of vapor phase mercury >5 ng/m3. The burned watershed soil profile had much lower mercury concentrations than that of the unburned watershed, suggesting Hg volatilization by wildfires. Previous studies have suggested that leaf litter releases 97-100%\\ of its mercury content, while this study suggests that the Hg release from soil organic matter may not be as complete. Mercury concentrations in the unburned soil column decreased from an average of 158 ppb at the surface to 38 ppb at 10-15 cm. In contrast, average concentrations in the burned soil were near 30 ppb from 0-15 cm. This result indicates the GKF released only ˜ 85%\\ of the mercury present in the organic soil horizon, which may be attributed to relatively low fire intensity. Extrapolations from our results indicate that this relatively small fire released ˜ 0.1 Mg of Hg from the soil. On average, 4.2 million acres are burned yearly in the US, suggesting that soil burning releases an approximate 100 Mg annual Hg flux into the atmosphere, 70%\\ of the estimated

  15. Electrospun metal oxide-TiO2 nanofibers for elemental mercury removal from flue gas.

    PubMed

    Yuan, Yuan; Zhao, Yongchun; Li, Hailong; Li, Yang; Gao, Xiang; Zheng, Chuguang; Zhang, Junying

    2012-08-15

    Nanofibers prepared by an electrospinning method were used to remove elemental mercury (Hg(0)) from simulated coal combustion flue gas. The nanofibers composed of different metal oxides (MO(x)) including CuO, In(2)O(3), V(2)O(5), WO(3) and Ag(2)O supported on TiO(2) have been characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersing X-ray (EDX) and UV-vis spectra. The average diameters of these nanofibers were about 200nm. Compared to pure TiO(2), the UV-vis absorption intensity for MO(x)-TiO(2) increased significantly and the absorption bandwidth also expanded, especially for Ag(2)O-TiO(2) and V(2)O(5)-TiO(2). Hg(0) oxidation efficiencies over the MO(x)-TiO(2) nanofibers were tested under dark, visible light (vis) irradiation and UV irradiation, respectively. The results showed that WO(3) doped TiO(2) exhibited the highest Hg(0) removal efficiency of 100% under UV irradiation. Doping V(2)O(5) into TiO(2) enhanced Hg(0) removal efficiency greatly from 6% to 63% under visible light irradiation. Ag(2)O doped TiO(2) showed a steady Hg(0) removal efficiency of around 95% without any light due to the formation of silver amalgam. An extended experiment with 8 Hg(0) removal cycles showed that the MO(x)-TiO(2) nanofibers were stable for removing Hg(0) from flue gas. Factors responsible for the enhanced photocatalytic activities of the MO(x)-TiO(2) nanofibers were also discussed.

  16. Assessment of the release of mercury from silver amalgam alloys exposed to different 10% carbamide peroxide bleaching agents.

    PubMed

    Salomone, Paloma; Bueno, Renata Pla Rizzolo; Trinidade, Rodrigo Farcili; Nascimento, Paulo Cicero; Pozzobon, Roselaine Tezezinha

    2013-01-01

    This in vitro study assessed the amount of mercury (Hg) released from a silver amalgam alloy following the application of different 10% carbamide peroxide bleaching agents. A total of 30 specimens (2 mm thick x 4 mm in diameter) were stored in deionized water at 37°C for 7 days. Next, the control group (n = 10) remained in the deionized water for 15 days, while the remaining samples were exposed to 1 of 2 bleaching agents (n = 10) for 8 hours daily (total exposure = 120 hours); for the remaining 16 hours, specimens in the test groups were stored in deionized water at 37°C under relative humidity. After this period, the quantity of Hg in the deionized water was assessed (using atomic absorption spectrophotometry) and compared to the amount of Hg at baseline. The results indicate that exposing amalgam alloys to bleaching agents released greater amounts of Hg compared to exposing samples to deionized [corrected] water.

  17. Method for fixating sludges and soils contaminated with mercury and other heavy metals

    DOEpatents

    Broderick, Thomas E.; Roth, Rachel L.; Carlson, Allan L.

    2005-06-28

    The invention relates to a method, composition and apparatus for stabilizing mercury and other heavy metals present in a particulate material such that the metals will not leach from the particulate material. The method generally involves the application of a metal reagent, a sulfur-containing compound, and the addition of oxygen to the particulate material, either through agitation, sparging or the addition of an oxygen-containing compound.

  18. A comparative study of accumulated total mercury among white muscle, red muscle and liver tissues of common carp and silver carp from the Sanandaj Gheshlagh Reservoir in Iran.

    PubMed

    Khoshnamvand, Mehdi; Kaboodvandpour, Shahram; Ghiasi, Farzad

    2013-01-01

    The Sanandaj Gheshlagh Reservoir (SGR) is a mercury polluted lake that is located in the West of Iran. Common carp (Cyprinus carpio) and silver carp (Hypophthalmichthys molitrix) are the most abundant fishes in the SGR. A total of 48 common and silver carps (24 each) were captured randomly, using 50×6 m gill net (mesh size: 5×5 cm) during July to December 2009. Each month, the levels of accumulated total mercury (T-Hg) in white muscle, red muscle and liver tissues of these fishes were measured using an Advanced Mercury Analyzer (Model; Leco 254 AMA, USA) on the dry weight basis. There were no statistically significant differences between T-Hg concentrations in white muscle, red muscle and liver in common carp in comparison with similar tissues in silver carp (P>0.05). The content of T-Hg in liver tissue of both species was lower than of white and red muscle tissues. Higher levels of accumulated T-Hg were observed during summer. Results showed that T-Hg concentrations in common and silver carps target tissues were strongly dependent on age, length and weight (P<0.05). The results indicated that the levels of accumulated T-Hg in tissues of all samples with weights of over 850 g were greater than those limits established by WHO and FAO (500 ng g(-1)). Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Atmospheric mercury data for the Coquimbo region, Chile: influence of mineral deposits and metal recovery practices

    NASA Astrophysics Data System (ADS)

    Higueras, Pablo; Oyarzun, Roberto; Lillo, Javier; Oyarzún, Jorge; Maturana, Hugo

    This work reports data of atmospheric mercury for northern Chile. The study was centered in the Coquimbo region, a realm rich in mineral deposits. Some of the mining districts have historic importance and have been exploited almost continuously since the Spanish colonial time (16-18th century). Two of these districts are particularly relevant: (1) Andacollo, initially exploited for gold, and then for copper and gold; and (2) Punitaqui, initially exploited for mercury, and then for copper and gold. The continuous mercury measurement procedures carried out during this survey, have proved to be an excellent tool to detect Hg signatures associated with the mining industrial activities. The combination of cumulative log-probability graphs and atmospheric mercury concentration profiles, allows clear differentiation between areas subjected to agriculture (2-3 ngHg m -3), from those in which mining and metal concentration activities take place (>10 ngHg m -3, most data well beyond this figure). Gold recovery involving milling and amalgamation appear as the most contaminant source of mercury, and yield concentrations in the order of 10 4-10 5 ngHg m -3 (Andacollo). Second in importance are the vein mercury deposits of Punitaqui, with concentrations above 100 ngHg m -3, whereas the flotation tailings of the district yield concentrations near to 100 ngHg m -3. The large and modern open pit operations of Andacollo (Carmen: Cu; Dayton: Au) do not show high concentrations of atmospheric mercury.

  20. Green synthesis of silver nanoparticle for the selective and sensitive colorimetric detection of mercury (II) ion.

    PubMed

    Kumar, Vijay; Singh, Devendra K; Mohan, Sweta; Bano, Daraksha; Gundampati, Ravi Kumar; Hasan, Syed Hadi

    2017-03-01

    An ecofriendly and zero cost approach has been developed for the photoinduced synthesis of more stable AgNPs using an aqueous extract of Murraya koenigii (AEM) as a reducing and stabilizing agent. The exposed reaction mixture of AEM and AgNO3 to sunlight turned dark brown which primarily confirmed the biosynthesis of AgNPs. The biosynthesis was monitored by UV-vis spectroscopy which exhibited a sharp SPR band at 430nm after 30min of sunlight exposure. The optimum conditions for biosynthesis of AgNPs were 30min of sunlight exposure, 2.0% (v/v) of AEM inoculuam dose and 4.0mM AgNO3 concentration. TEM analysis confirmed the presence of spherical AgNPs with average size 8.6nm. The crystalline nature of the AgNPs was confirmed by XRD analysis where the Bragg's diffraction pattern at (111), (200), (220) and (311) corresponded to face centered cubic crystal lattice of metallic silver. The surface texture was analyzed by AFM analysis where the average roughness of the synthesized AgNPs was found 1.8nm. FTIR analysis was recorded between 4000 and 400cm(-1) which confirmed the involvement of various functional groups in the synthesis of AgNPs. On the basis of the linear relationship between SPR band intensity and different concentration of Hg(2+), the synthesized AgNPs can be used for colorimetric detection of Hg(2+) with a linear range from 50nm to 500μM. Based on experimental findings, an oxidation-reduction mechanism between AgNPs and Hg(2+) was also proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Metal ion release from silver soldering and laser welding caused by different types of mouthwash.

    PubMed

    Erdogan, Ayse Tuygun; Nalbantgil, Didem; Ulkur, Feyza; Sahin, Fikrettin

    2015-07-01

    To compare metal ion release from samples welded with silver soldering and laser welding when immersed into mouthwashes with different ingredients. A total of 72 samples were prepared: 36 laser welded and 36 silver soldered. Four samples were chosen from each subgroup to study the morphologic changes on their surfaces via scanning electron microscopy (SEM). Each group was further divided into four groups where the samples were submerged into mouthwash containing sodium fluoride (NaF), mouthwash containing sodium fluoride + alcohol (NaF + alcohol), mouthwash containing chlorhexidine (CHX), or artificial saliva (AS) for 24 hours and removed thereafter. Subsequently, the metal ion release from the samples was measured with inductively coupled plasma mass spectrometry (ICP-MS). The metal ion release among the solutions and the welding methods were compared. The Kruskal-Wallis and analysis of variance (ANOVA) tests were used for the group comparisons, and post hoc Dunn multiple comparison test was utilized for the two group comparisons. The level of metal ion release from samples of silver soldering was higher than from samples of laser welding. Furthermore, greater amounts of nickel, chrome, and iron were released from silver soldering. With regard to the mouthwash solutions, the lowest amounts of metal ions were released in CHX, and the highest amounts of metal ions were released in NaF + alcohol. SEM images were in accord with these findings. The laser welding should be preferred over silver soldering. CHX can be recommended for patients who have welded appliances for orthodontic reasons.

  2. Were mercury emission factors for Chinese non-ferrous metal smelters overestimated? Evidence from onsite measurements in six smelters.

    PubMed

    Zhang, Lei; Wang, Shuxiao; Wu, Qingru; Meng, Yang; Yang, Hai; Wang, Fengyang; Hao, Jiming

    2012-12-01

    Non-ferrous metal smelting takes up a large proportion of the anthropogenic mercury emission inventory in China. Zinc, lead and copper smelting are three leading sources. Onsite measurements of mercury emissions were conducted for six smelters. The mercury emission factors were 0.09-2.98 g Hg/t metal produced. Acid plants with the double-conversion double-absorption process had mercury removal efficiency of over 99%. In the flue gas after acid plants, 45-88% was oxidized mercury which can be easily scavenged in the flue gas scrubber. 70-97% of the mercury was removed from the flue gas to the waste water and 1-17% to the sulfuric acid product. Totally 0.3-13.5% of the mercury in the metal concentrate was emitted to the atmosphere. Therefore, acid plants in non-ferrous metal smelters have significant co-benefit on mercury removal, and the mercury emission factors from Chinese non-ferrous metal smelters were probably overestimated in previous studies.

  3. Optimization of method for zinc analysis in several bee products on renewable mercury film silver based electrode.

    PubMed

    Opoka, Włodzimierz; Szlósarczyk, Marek; Maślanka, Anna; Piech, Robert; Baś, Bogusław; Włodarczyk, Edyta; Krzek, Jan

    2013-01-01

    Zinc is an interesting target for detection as it is one of the elements necessary for the proper functioning of the human body, its excess and deficiency can cause several symptoms. Several techniques including electrochemistry have been developed but require laboratory equipment, preparative steps and mercury or complex working electrodes. We here described the development of a robust, simple and commercially available electrochemical system. Differential pulse (DP) voltammetry was used for this purpose with the cyclic renewable mercury film silver based electrode (Hg(Ag)FE) and 0.05 M KNO3 solution as a supporting electrolyte. The effect of various factors such as: preconcentration potential and time, pulse amplitude and width, step potential and supporting electrolyte composition are optimized. The limits of detection (LOD) and quantification (LOQ) were 1.62 ng/mL and 4.85 ng/mL, respectively. The repeatability of the method at a concentration level of the analyte as low as 3 ng/mL, expressed as RSD is 3.5% (n = 6). Recovery was determined using certified reference material: Virginia Tobacco Leaves (CTA-VTL-2). The recovery of zinc ranged from 96.6 to 106.5%. The proposed method was successfully applied for determination of zinc in bee products (honey, propolis and diet supplements) after digestion procedure.

  4. Principal Locations of Metal Loading from Flood-Plain Tailings, Lower Silver Creek, Utah, April 2004

    USGS Publications Warehouse

    Kimball, Briant A.; Runkel, Robert L.; Walton-Day, Katherine

    2007-01-01

    Because of the historical deposition of mill tailings in flood plains, the process of determining total maximum daily loads for streams in an area like the Park City mining district of Utah is complicated. Understanding the locations of metal loading to Silver Creek and the relative importance of these locations is necessary to make science-based decisions. Application of tracer-injection and synoptic-sampling techniques provided a means to quantify and rank the many possible source areas. A mass-loading study was conducted along a 10,000-meter reach of Silver Creek, Utah, in April 2004. Mass-loading profiles based on spatially detailed discharge and chemical data indicated five principal locations of metal loading. These five locations contributed more than 60 percent of the cadmium and zinc loads to Silver Creek along the study reach and can be considered locations where remediation efforts could have the greatest effect upon improvement of water quality in Silver Creek.

  5. Copper-silver-titanium filler metal for direct brazing of structural ceramics

    DOEpatents

    Moorhead, Arthur J.

    1987-01-01

    A method of joining ceramics and metals to themselves and to one another is described using a brazing filler metal consisting essentially of 35 to 50 atomic percent copper, 15 to 50 atomic percent silver and 10 to 45 atomic percent titanium. This method produces strong joints that can withstand high service temperatures and oxidizing environments.

  6. Copper-silver-titanium-tin filler metal for direct brazing of structural ceramics

    DOEpatents

    Moorhead, Arthur J.

    1988-04-05

    A method of joining ceramics and metals to themselves and to one another at about 800.degree. C. is described using a brazing filler metal consisting essentially of 35 to 50 at. % copper, 40 to 50 at. % silver, 1 to 15 at. % titanium, and 2 to 8 at. % tin. This method produces strong joints that can withstand high service temperatures and oxidizing environments.

  7. Measurement of hand tremor induced by industrial exposure to metallic mercury.

    PubMed Central

    Fawer, R F; de Ribaupierre, Y; Guillemin, M P; Berode, M; Lob, M

    1983-01-01

    Hand tremor due to industrial exposure to metallic mercury vapour was recorded in 26 exposed and 25 non-exposed male workers by an accelerometer attached to the dorsum of the hand. The subjects were instructed to hold the hand and the forearm in the same position first without and then with a load of 1250 g supported by the hand. Analysis of the records showed that the highest peak frequencies (HPF) (the frequency corresponding to the highest acceleration) were higher in the exposed men than in the controls and were related to the duration of exposure to mercury and to age. The changes in HPF between rest and load were again higher in the exposed men than in the controls and again related to the duration of exposure and to age. The second moment (M2) (an index taking into account the whole recorded spectrum) was similar in the exposed men and controls at rest. The changes in M2 between rest and load were higher in the exposed men than in the controls but were related to duration of exposure and to the biological measurements (loge of mercury in urine or blood) and not to age. These neurophysiological impairments might result from the tendency of metallic mercury to accumulate in the cerebellum and the basal ganglia. These results are consistent with the hypothesis that metallic mercury, even at concentrations probably below the current TLV-TWA of 0.05 mg/m3, can lead to neurological disorders. PMID:6830719

  8. Silver-modified clinoptilolite for the removal of Escherichia coli and heavy metals from aqueous solutions.

    PubMed

    Akhigbe, Lulu; Ouki, Sabeha; Saroj, Devendra; Lim, Xiang Min

    2014-09-01

    This paper investigates the potential of using the silver antibacterial properties combined with the metal ion exchange characteristics of silver-modified clinoptilolite to produce a treatment system capable of removing both contaminants from aqueous streams. The results have shown that silver-modified clinoptilolite is capable of completely eliminating Escherichia coli after 30-min contact time demonstrating its effectiveness as a disinfectant. Systems containing both E. coli and metals exhibited 100 % E. coli reduction after 15-min contact time and maximum metal adsorption removal efficiencies of 97, 98, and 99 % for Pb(2+), Cd(2+), and Zn(2+) respectively after 60 min; 0.182-0.266 mg/g of metal ions were adsorbed by the zeolites in the single- and mixed-metal-containing solutions. Nonmodified clinoptilolite showed no antibacterial properties. This study demonstrated that silver-modified clinoptilolite exhibited high disinfection and heavy metal removal efficiencies and consequently could provide an effective combined treatment system for the removal of E. coli and metals from contaminated water streams.

  9. Solution-based metal enhanced fluorescence with gold and gold/silver core-shell nanorods

    NASA Astrophysics Data System (ADS)

    Ren, Zebin; Li, Xiaoyi; Guo, Jingxia; Wang, Ruibo; Wu, Yanni; Zhang, Mingdi; Li, Caixia; Han, Qingyan; Dong, Jun; Zheng, Hairong

    2015-12-01

    Metal enhanced fluorescence of Oxazine720 fluorophore with gold and gold/silver core-shell nanorods is investigated experimentally in aqueous solution system. Metallic nanorods are synthesized for providing proper localized surface plasmon resonance and necessary enhancement to the fluorophore molecule. The experimental observation shows that the fluorescence enhancement increases firstly and then decreases when the concentration of metallic nanorods increases, which is resulted by the competition between enhanced emission and inner-filtering effect. Further investigation with different amounts of metallic nanorods shows that the relationship between metal enhanced fluorescence and spectral correlation strongly depends on the concentration of metallic nanorods.

  10. Mercury

    NASA Technical Reports Server (NTRS)

    Gault, D. E.; Burns, J. A.; Cassen, P.; Strom, R. G.

    1977-01-01

    Prior to the flight of the Mariner 10 spacecraft, Mercury was the least investigated and most poorly known terrestrial planet (Kuiper 1970, Devine 1972). Observational difficulties caused by its proximity to the Sun as viewed from Earth caused the planet to remain a small, vague disk exhibiting little surface contrast or details, an object for which only three major facts were known: 1. its bulk density is similar to that of Venus and Earth, much greater than that of Mars and the Moon; 2. its surface reflects electromagnetic radiation at all wavelengths in the same manner as the Moon (taking into account differences in their solar distances); and 3. its rotation period is in 2/3 resonance with its orbital period. Images obtained during the flyby by Mariner 10 on 29 March 1974 (and the two subsequent flybys on 21 September 1974 and 16 March 1975) revealed Mercury's surface in detail equivalent to that available for the Moon during the early 1960's from Earth-based telescopic views. Additionally, however, information was obtained on the planet's mass and size, atmospheric composition and density, charged-particle environment, and infrared thermal radiation from the surface, and most significantly of all, the existence of a planetary magnetic field that is probably intrinsic to Mercury was established. In the following, this new information is summarized together with results from theoretical studies and ground-based observations. In the quantum jumps of knowledge that have been characteristic of "space-age" exploration, the previously obscure body of Mercury has suddenly come into sharp focus. It is very likely a differentiated body, probably contains a large Earth-like iron-rich core, and displays a surface remarkably similar to that of the Moon, which suggests a similar evolutionary history.

  11. Carbon Solubility in Silicon-Iron-Bearing Metals during Core Formation on Mercury

    NASA Technical Reports Server (NTRS)

    Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Ross, D. Kent; Rapp, Jennifer F.; Danielson, Lisa R.; Keller, Lindsay P.; Righter, Kevin

    2016-01-01

    Recent results obtained from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft showed the surface of Mercury has high S abundances (approximately 4 wt%) and low Iron(II) Oxide abundances (less than 2 wt%). Based on these extreme values, the oxygen fugacity of Mercury's surface materials was estimated to be approximately 3 to 7 log(sub 10) units below the IW buffer (Delta IW-3 to Delta IW-7). This highly reducing nature of the planet has resulted in a large core and relatively thin mantle, extending to only approximately 420 km depth (corresponding to a core-mantle boundary pressure of approximately 4-7 GPa) within the planet. Furthermore, MESSENGER results have suggested the presence of carbon on the surface of the planet. Previous experimental results from have also suggested the possibility of a primary floatation crust on Mercury composed of graphite, produced after a global magma ocean event. With these exotic conditions of this compositional end-member planet, it begs the question, what is the core composition of Mercury? Although no definitive conclusion has been reached, previous studies have made advances towards answering this question. Riner et al. and Chen et al. looked at iron sulfide systems and implemented various crystallization and layered core scenarios to try and determine the composition and structure of Mercury's core. Malavergne et al. examined core crystallization scenarios in the presence of sulfur and silicon. Hauck et al. used the most recent geophysical constraints from the MESSENGER spacecraft to model the internal structure of Mercury, including the core, in a iron-sulfur-silicon system. More recently, Chabot et al. conducted a series of metal-silicate partitioning experiments in a iron-sulfur-silicon system. These results showed the core of Mercury has the potential to contain more than 15 wt% silicon. However, with the newest results from MESSENGER's low altitude campaign, carbon is another

  12. Electro-active Polymer Actuator Based on Sulfonated Polyimide with Highly Conductive Silver Electrodes Via Self-metallization.

    PubMed

    Song, Jiangxuan; Jeon, Jin-Han; Oh, Il-Kwon; Park, K C

    2011-10-04

    We report here a facile synthesis of high performance electro-active polymer actuator based on a sulfonated polyimide with well-defined silver electrodes via self-metallization. The proposed method greatly reduces fabrication time and cost, and obviates a cation exchange process required in the fabrication of ionic polymer-metal composite actuators. Also, the self-metallized silver electrodes exhibit outstanding metal-polymer adhesion with high conductivity, resulting in substantially larger tip displacements compared with Nafion-based actuators.

  13. An Organic Metal/Silver Nanoparticle Finish on Copper for Efficient Passivation and Solderability Preservation

    NASA Astrophysics Data System (ADS)

    Wessling, Bernhard; Thun, Marco; Arribas-Sanchez, Carmen; Gleeson, Sussane; Posdorfer, Joerg; Rischka, Melanie; Zeysing, Bjoern

    2007-09-01

    For the first time, a complex formed by polyaniline (in its organic metal form) and silver has been deposited on copper in nanoparticulate form. When depositing on Cu pads of printed circuit boards it efficiently protects against oxidation and preserves its solderability. The deposited layer has a thickness of only nominally 50 nm, containing the Organic Metal (conductive polymer), polyaniline, and silver. With >90% (by volume), polyaniline (PAni) is the major component of the deposited layer, Ag is present equivalent to a 4 nm thickness. The Pani Ag complex is deposited on Cu in form of about 100 nm small particles. Morphology, electrochemical characteristics, anti-oxidation and solderability results are reported.

  14. Bacterial killing by light-triggered release of silver from biomimetic metal nanorods.

    PubMed

    Black, Kvar C L; Sileika, Tadas S; Yi, Ji; Zhang, Ran; Rivera, José G; Messersmith, Phillip B

    2014-01-15

    Illumination of noble metal nanoparticles at the plasmon resonance causes substantial heat generation, and the transient and highly localized temperature increases that result from this energy conversion can be exploited for photothermal therapy by plasmonically heating gold nanorods (NRs) bound to cell surfaces. Here, plasmonic heating is used for the first time to locally release silver from gold core/silver shell (Au@Ag) NRs targeted to bacterial cell walls. A novel biomimetic method of preparing Au@Ag core-shell NRs is employed, involving deposition of a thin organic polydopamine (PD) primer onto Au NR surfaces, followed by spontaneous electroless silver metallization, and conjugation of antibacterial antibodies and passivating polymers for targeting to gram-negative and gram-positive bacteria. Dramatic cytotoxicity of S. epidermidis and E. coli cells targeted with Au@Ag NRs is observed upon exposure to light as a result of the combined antibacterial effects of plasmonic heating and silver release. The antibacterial effect is much greater than with either plasmonic heating or silver alone, implying a strong therapeutic synergy between cell-targeted plasmonic heating and the associated silver release upon irradiation. The findings suggest a potential antibacterial use of Au@Ag NRs when coupled with light irradiation, which has not been previously described.

  15. Bacterial Killing by Light-Triggered Release of Silver from Biomimetic Metal Nanorods

    PubMed Central

    Yi, Ji; Zhang, Ran; Rivera, José G.; Messersmith, Phillip B.

    2014-01-01

    Illumination of noble metal nanoparticles at the plasmon resonance causes substantial heat generation, and the transient and highly localized temperature increases that result from this energy conversion can be exploited for photothermal therapy by plasmonically heating gold nanorods (NRs) bound to cell surfaces. Here, we report the first use of plasmonic heating to locally release silver from gold core/silver shell (Au@Ag) NRs targeted to bacterial cell walls. A novel biomimetic method of preparing Au@Ag core-shell NRs was employed, involving deposition of a thin organic polydopamine (PD) primer onto Au NR surfaces, followed by spontaneous electroless silver metallization, and conjugation of antibacterial antibodies and passivating polymers for targeting to gram-negative and gram-positive bacteria. Dramatic cytotoxicity of S. epidermidis and E. coli cells targeted with Au@Ag NRs was observed upon exposure to light as a result of the combined antibacterial effects of plasmonic heating and silver release. The antibacterial effect was much greater than with either plasmonic heating or silver alone, implying a strong therapeutic synergy between cell-targeted plasmonic heating and the associated silver release upon irradiation. Our findings suggest a potential antibacterial use of Au@Ag NRs when coupled with light irradiation, which was not previously described. PMID:23847147

  16. Time-dependent dielectric breakdown measurements of porous organosilicate glass using mercury and solid metal probes

    SciTech Connect

    Pei, Dongfei; Nichols, Michael T.; Shohet, J. Leon; King, Sean W.; Clarke, James S.; Nishi, Yoshio

    2014-09-01

    Time-dependent dielectric breakdown (TDDB) is one of the major concerns for low-k dielectric materials. During plasma processing, low-k dielectrics are subjected to vacuum ultraviolet photon radiation and charged-particle bombardment. To examine the change of TDDB properties, time-to-breakdown measurements are made to porous SiCOH before and after plasma exposure. Significant discrepancies between mercury and solid-metal probes are observed and have been shown to be attributed to mercury diffusion into the dielectric porosities.

  17. Analysis of metals with luster: Roman brass and silver

    NASA Astrophysics Data System (ADS)

    Fajfar, H.; Rupnik, Z.; Šmit, Ž.

    2015-11-01

    Non-destructive PIXE analysis using in-air proton beam was used for the studies of earliest brass coins issued during the 1st century BC by Greek cities in Asia Minor, Romans and Celts, and for the studies of plated low grade silver coins of the 3rd century AD. The analysis determined the levels of zinc and important trace elements, notably selenium, which confirms spread of selenium-marked copper from the east. For plating, combined tinning and silvering was identified by the mapping technique for the mid 3rd century AD, which evolved into mere plating by 270 AD.

  18. Silver decorated polymer supported semiconductor thin films by UV aided metalized laser printing

    SciTech Connect

    Halbur, Jonathan C.; Padbury, Richard P.; Jur, Jesse S.

    2016-05-15

    A facile ultraviolet assisted metalized laser printing technique is demonstrated through the ability to control selective photodeposition of silver on flexible substrates after atomic layer deposition pretreatment with zinc oxide and titania. The photodeposition of noble metals such as silver onto high surface area, polymer supported semiconductor metal oxides exhibits a new route for nanoparticle surface modification of photoactive enhanced substrates. Photodeposited silver is subsequently characterized using low voltage secondary electron microscopy, x-ray diffraction, and time of flight secondary ion mass spectroscopy. At the nanoscale, the formation of specific morphologies, flake and particle, is highlighted after silver is photodeposited on zinc oxide and titania coated substrates, respectively. The results indicate that the morphology and composition of the silver after photodeposition has a strong dependency on the morphology, crystallinity, and impurity content of the underlying semiconductor oxide. At the macroscale, this work demonstrates how the nanoscale features rapidly coalesce into a printed pattern through the use of masks or an X-Y gantry stage with virtually unlimited design control.

  19. [Mercury poisoning].

    PubMed

    Bensefa-Colas, L; Andujar, P; Descatha, A

    2011-07-01

    Mercury is a widespread heavy metal with potential severe impacts on human health. Exposure conditions to mercury and profile of toxicity among humans depend on the chemical forms of the mercury: elemental or metallic mercury, inorganic or organic mercury compounds. This article aims to reviewing and synthesizing the main knowledge of the mercury toxicity and its organic compounds that clinicians should know. Acute inhalation of metallic or inorganic mercury vapours mainly induces pulmonary diseases, whereas chronic inhalation rather induces neurological or renal disorders (encephalopathy and interstitial or glomerular nephritis). Methylmercury poisonings from intoxicated food occurred among some populations resulting in neurological disorders and developmental troubles for children exposed in utero. Treatment using chelating agents is recommended in case of symptomatic acute mercury intoxication; sometimes it improves the clinical effects of chronic mercury poisoning. Although it is currently rare to encounter situations of severe intoxication, efforts remain necessary to decrease the mercury concentration in the environment and to reduce risk on human health due to low level exposure (dental amalgam, fish contamination by organic mercury compounds…). In case of occupational exposure to mercury and its compounds, some disorders could be compensated in France. Clinicians should work with toxicologists for the diagnosis and treatment of mercury intoxication.

  20. Preparation of Highly Dispersed Conductive Metals for Electronic Applications: Silver and Copper

    NASA Astrophysics Data System (ADS)

    LaPlante, Sylas C.

    This study focuses on the development of different methods to prepare conductive particles for electronic applications. Although it has been shown that metallic particles can be prepared by physical and thermal processes, the most versatile approach remains the chemical precipitation in homogeneous solutions. This preparation route provides an excellent control over key experimental parameters such as type of solvent, reducing species, complexing species and dispersing agents and allows unparalleled ability for tailoring the final particle properties. The metals chosen for this study are silver and copper, as they are the most widely used materials to 'construct' conductive structures in the electronics industry. This dissertation introduces three environmentally friendly methods to prepare conductive particles which are industrially scalable and most notably used in electronic applications. In the first part, we describe a novel method to prepare dispersed crystalline copper particles by reacting aqueous dispersions of CuCl with ferrous citrate. We report that the Fe (II) citrate complex can reduce rapidly and completely cuprous chloride to metallic copper and propose a mechanism for the reaction observed. By changing the precipitation conditions, copper particles with sizes varying from 250 nm to 2.0 microns were obtained. The method described represents a simple and versatile approach for preparing copper powders for electronic applications. In the second part, a novel environmentally friendly solution-based method for preparing dispersed silver particles is described. The simple and convenient approach consists in heating silver oxide particles dispersed in a highly alkaline water/acetone mixture. The data presented clearly show that acetone reduces completely and rapidly Ag2O particles to metallic silver at 60 °C. A mechanism explaining the provenance of the electrons responsible for the reduction of silver is proposed. Finally, in the third part, a strategy

  1. In vivo monitoring of heavy metals in man: cadmium and mercury

    SciTech Connect

    Ellis, K.J.; Vartsky, D.; Cohn, S.H.

    1982-01-01

    Direct in vivo measurements of selected heavy metals is possible by nuclear analytical techniques. In particular, cadmium and mercury are retained in the body in sufficient quantities for their detection by neutron activation analysis. Autopsy data on cadmium of adult male non-smokers living in the US indicates an average body burden of 30 mg by age 50. The distribution of cadmium in the body, however, is nonuniform, approximately 50% being located in the kidneys and liver. The increased concentration of cadmium within these organs has made possible the direct in vivo measurements of this metal by prompt-gamma neutron activation analysis (PGNAA). At present, in vivo determinations of mercury have been performed on phantoms only. These in vivo techniques provide a unique method of obtaining accurate organ burden data in humans that can be related to the toxicological effects of these metals.

  2. Occupational and Community Exposures to Toxic Metals: Lead, Cadmium, Mercury and Arsenic

    PubMed Central

    Landrigan, Philip J.

    1982-01-01

    Lead, cadmium, mercury and arsenic are widely dispersed in the environment. Adults are primarily exposed to these contaminants in the workplace. Children may be exposed to toxic metals from numerous sources, including contaminated air, water, soil and food. The chronic toxic effects of lead include anemia, neuropathy, chronic renal disease and reproductive impairment. Lead is a carcinogen in three animal species. Cadmium causes emphysema, chronic renal disease, cancer of the prostate and possibly of the lung. Inorganic mercury causes gingivitis, stomatitis, neurologic impairment and nephrosis, while organic mercurials cause sensory neuropathy, ataxia, dysarthria and blindness. Arsenic causes dermatitis, skin cancer, sensory neuropathy, cirrhosis, angiosarcoma of the liver, lung cancer and possibly lymphatic cancer. PMID:7164433

  3. Mutagenicity of mercury chloride and mechanisms of cellular defence: the role of metal-binding proteins.

    PubMed

    Schurz, F; Sabater-Vilar, M; Fink-Gremmels, J

    2000-11-01

    The mechanisms of toxicity and, particularly, the potential carcinogenicity of inorganic mercury are still under debate. Results of mutagenicity and genotoxicity testing with mercury have been inconsistent: mercury induces DNA single-strand breaks at low concentrations in mammalian cells but has not proved mutagenic in several bacterial mutagenicity assays. We investigated the mutagenicity of subtoxic concentrations of inorganic mercury and the role of metal-binding proteins and free radicals in this process. A mutagenicity assay using NIH 3T3 cells, transfected with a vector containing lacZ' as a reporter for mutational events, was applied. In this model, inorganic mercury significantly increased the mutation frequency in the lacZ gene, even at the lowest concentration tested. The mutation frequency was greatest at an Hg(2+) concentration of 0.5 microM. To identify the mechanisms involved, different cellular responses to non-cytotoxic concentrations of HgCl(2) were measured. Hg(2+) increased the intracellular amount of reactive oxygen species. This induction of oxidative stress was observed, although the intracellular glutathione (GSH) and metallothionein (MT) concentrations were increased significantly. Mercury-induced MT expression was even more pronounced after GSH depletion. Correspondingly, radical formation was more evident in the presence of the GSH-depleting agent L-buthioneine-[S:,R:]-sulfoximine. These findings suggest that the observed mutations might be a consequence of oxidative processes, rather than due to a direct interaction of mercury with nuclear DNA. The results also indicate that the auto-induction of MT by Hg(2+) fails to prevent these mutational events.

  4. Innate stimulatory capacity of high molecular weight transition metals Au (gold) and Hg (mercury).

    PubMed

    Rachmawati, Dessy; Alsalem, Inás W A; Bontkes, Hetty J; Verstege, Marleen I; Gibbs, Sue; von Blomberg, B M E; Scheper, Rik J; van Hoogstraten, Ingrid M W

    2015-03-01

    Nickel, cobalt and palladium ions can induce an innate immune response by triggering Toll-like receptor (TLR)-4 which is present on dendritic cells (DC). Here we studied mechanisms of action for DC immunotoxicity to gold and mercury. Next to gold (Na3Au (S2O3)2⋅2H2O) and mercury (HgCl2), nickel (NiCl2) was included as a positive control. MoDC activation was assessed by release of the pro-inflammatory mediator IL-8. Also PBMC were studied, and THP-1 cells were used as a substitution for DC for evaluation of cytokines and chemokines, as well as phenotypic, alterations in response to gold and mercury. Our results showed that both Na3Au (S2O3)2⋅2H2O and HgCl2 induce substantial release of IL-8, but not IL-6, CCL2 or IL-10, from MoDc, PBMC, or THP-1 cells. Also gold and, to a lesser extent mercury, caused modest dendritic cell maturation as detected by increased membrane expression of CD40 and CD80. Both metals thus show innate immune response capacities, although to a lower extent than reported earlier for NiCl2, CoCl2 and Na2 [PdCl4]. Importantly, the gold-induced response could be ascribed to TLR3 rather than TLR4 triggering, whereas the nature of the innate mercury response remains to be clarified. In conclusion both gold and mercury can induce innate immune responses, which for gold could be ascribed to TLR3 dependent signalling. These responses are likely to contribute to adaptive immune responses to these metals, as reflected by skin and mucosal allergies.

  5. Label free and high specific detection of mercury ions based on silver nano-liposome

    NASA Astrophysics Data System (ADS)

    Priyadarshini, Eepsita; Pradhan, Nilotpala; Pradhan, Arun K.; Pradhan, Pallavi

    2016-06-01

    Herein, we report an eco-friendly, mild and one-pot approach for synthesis of silver nanoparticles via a lipopeptide biosurfactant - CHBS. The biosurfactant forms liposome vesicles when dispersed in an aqueous medium. The amino acid groups of the biosurfactant assists in the reduction of Ag+ ions leading to the production of homogeneous silver nanoparticles, encapsulated within the liposome vesicle, as confirmed from TEM analysis. Rate of synthesis and size of particle were greatly dependent on pH and reaction temperature. Kinetic analysis suggests the involvement of an autocatalytic reaction and the observed rate constant (kobs) was found to decrease with temperature, suggesting faster reaction with increasing temperature. Furthermore, the silver nanoparticles served as excellent probes for highly selective and sensitive recognition of Hg2 + ions. Interaction with Hg2 + ions results in an immediate change in colour of nanoparticle solution form brownish red to milky white. With increasing Hg2 + ions concentration, a gradual disappearance of SPR peak was observed. A linear relationship (A420/660) with an R2 value of 0.97 was observed in the range of 20 to 100 ppm Hg2 + concentration. Hg2 + ions are reduced to their elemental forms which thereby interact with the vesicles, leading to aggregation and precipitation of particles. The detection method avoids the need of functionalizing ligands and favours Hg2 + detection in aqueous samples by visible range spectrophotometry and hence can be used for simple and rapid analysis.

  6. Label free and high specific detection of mercury ions based on silver nano-liposome.

    PubMed

    Priyadarshini, Eepsita; Pradhan, Nilotpala; Pradhan, Arun K; Pradhan, Pallavi

    2016-06-15

    Herein, we report an eco-friendly, mild and one-pot approach for synthesis of silver nanoparticles via a lipopeptide biosurfactant - CHBS. The biosurfactant forms liposome vesicles when dispersed in an aqueous medium. The amino acid groups of the biosurfactant assists in the reduction of Ag(+) ions leading to the production of homogeneous silver nanoparticles, encapsulated within the liposome vesicle, as confirmed from TEM analysis. Rate of synthesis and size of particle were greatly dependent on pH and reaction temperature. Kinetic analysis suggests the involvement of an autocatalytic reaction and the observed rate constant (kobs) was found to decrease with temperature, suggesting faster reaction with increasing temperature. Furthermore, the silver nanoparticles served as excellent probes for highly selective and sensitive recognition of Hg(2+) ions. Interaction with Hg(2+) ions results in an immediate change in colour of nanoparticle solution form brownish red to milky white. With increasing Hg(2+) ions concentration, a gradual disappearance of SPR peak was observed. A linear relationship (A420/660) with an R(2) value of 0.97 was observed in the range of 20 to 100ppm Hg(2+) concentration. Hg(2+) ions are reduced to their elemental forms which thereby interact with the vesicles, leading to aggregation and precipitation of particles. The detection method avoids the need of functionalizing ligands and favours Hg(2+) detection in aqueous samples by visible range spectrophotometry and hence can be used for simple and rapid analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Corneal trauma from projection of metallic mercury into the eyes.

    PubMed

    Weber, F L; Babel, J

    1979-06-01

    A 24-year-old woman sustained bilateral ocular lesions due to projection of mercury into the eyes during an explosion in a chemical laboratory. A lamellar keratectomy was performed on the right eye four hours after the accident, and 12 days later, the same procedure was performed of the left eye. Studies by light and electron microscopy were done on both specimens. The essential findings were total loss of epithelium, necrosis of keratocytes, absence of inflammatory reaction, and absence of superficial stromal repair in the specimen that was obtained 12 days after the accident. These findings indirectly confirm the importance of epithelium and normally vascularized conjunctiva in healing wounds of the cornea.

  8. Silver

    Integrated Risk Information System (IRIS)

    Silver ; CASRN 7440 - 22 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects )

  9. Mercury (II) reduction and co-precipitation of metallic mercury on hydrous ferric oxide in contaminated groundwater.

    PubMed

    Richard, Jan-Helge; Bischoff, Cornelia; Ahrens, Christian G M; Biester, Harald

    2016-01-01

    Mercury (Hg) speciation and sorption analyses in contaminated aquifers are useful for understanding transformation, retention, and mobility of Hg in groundwater. In most aquifers hydrous ferric oxides (HFOs) are among the most important sorbents for trace metals; however, their role in sorption or mobilization of Hg in aquifers has been rarely analyzed. In this study, we investigated Hg chemistry and Hg sorption to HFO under changing redox conditions in a highly HgCl2-contaminated aquifer (up to 870μgL(-1) Hg). Results from aqueous and solid phase Hg measurements were compared to modeled (PHREEQC) data. Speciation analyses of dissolved mercury indicated that Hg(II) forms were reduced to Hg(0) under anoxic conditions, and adsorbed to or co-precipitated with HFO. Solid phase Hg thermo-desorption measurements revealed that between 55 and 93% of Hg bound to HFO was elemental Hg (Hg(0)). Hg concentrations in precipitates reached more than 4 weight %, up to 7000 times higher than predicted by geochemical models that do not consider unspecific sorption to and co-precipitation of elemental Hg with HFO. The observed process of Hg(II) reduction and Hg(0) formation, and its retention and co-precipitation by HFO is thought to be crucial in HgCl2-contaminated aquifers with variable redox-conditions regarding the related decrease in Hg solubility (factor of ~10(6)), and retention of Hg in the aquifer.

  10. Direct selective oxygen-assisted acylation of amines driven by metallic silver surfaces: dimethylamine with formaldehyde.

    PubMed

    Zhou, Ling; Freyschlag, Cassandra G; Xu, Bingjun; Friend, Cynthia M; Madix, Robert J

    2010-02-07

    Facile, direct acylation of dimethylamine with formaldehyde to N,N-dimethylformamide proceeds with a selectivity approaching 100% at low oxygen concentrations on metallic silver surfaces; the reaction proceeds via nucleophilic attack of adsorbed dimethylamide on formaldehyde with subsequent beta-H elimination from the adsorbed hemiaminal.

  11. Fabrication of metallic microstructures using exposed, developed silver halide-based photographic film

    PubMed

    Deng; Arias; Ismagilov; Kenis; Whitesides

    2000-02-15

    This paper demonstrates that the pattern of silver particles embedded in the gelatin matrix of exposed and developed silver halide-based photographic film can serve as a template in a broadly applicable method for the microfabrication of metallic microstructures. In this method, a CAD file is reproduced in the photographic film by exposure and developing. The resulting pattern of discontinuous silver grains is augmented and made electrically continuous by electroless deposition of silver, and the electrically continuous structure is then used as the cathode for electrochemical deposition of an additional layer of the same or different metal. The overall process can be completed within 2 h, starting from a CAD file, and can generate electrically continuous structures with the smallest dimension in the plane of the film of approximately 30 microns. Structures with aspect ratio of up to 5 can also be obtained by using the metallic structures as photomasks in photolithography using SU-8 photoresist on the top of the electroplated pattern and exposed from the bottom, followed by development and electroplating through the patterned photoresist. This method of fabrication uses readily available equipment and makes it possible to develop prototypes of a wide variety of metallic structures and devices. The resulting structures--either supported on the film backing or freed from it--are appropriate for use as passive, structural materials such as wire frames or meshes and can also be used in microfluidic, microanalytical, and microelectromechanical systems.

  12. The fate and transport of mercury, methylmercury, and other trace metals in Chesapeake Bay tributaries.

    PubMed

    Lawson, N M; Mason, R P; Laporte, J M

    2001-02-01

    Six tributaries to the Chesapeake Bay were analyzed for suspended particulate matter, dissolved organic carbon, particulate organic carbon, mercury, methylmercury, lead, nickel, zinc, cadmium, chromium, and copper. This study examined the importance of flow regime, suspended particulate concentration, and watershed characteristics on the transport of mercury, methylmercury, and other trace metals. Total mercury concentrations were higher under high flow conditions which is consistent with the tendency of this metal to bind strongly to particulate matter. Methylmercury showed less flow rate dependence. Nickel, lead, and zinc concentrations responded strongly to flow rate on the Potomac River, while weaker correlations were found on the other rivers sampled. Cadmium, copper, and chromium concentrations were the least influenced by flow. Partition coefficients calculated in this study were similar to those of other estuaries and overall decreased in the order of Hg > Ni-MMHg > Cr-Pb-Zn > Cd > Cu. Watershed yield estimates and associated retention factors were calculated for the various rivers. These calculations showed that for most of the rivers, mercury was the most strongly retained within the watershed.

  13. Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury.

    PubMed

    De, Jaysankar; Ramaiah, N; Vardanyan, L

    2008-01-01

    Pollution in industrial areas is a serious environmental concern, and interest in bacterial resistance to heavy metals is of practical significance. Mercury (Hg), Cadmium (Cd), and lead (Pb) are known to cause damage to living organisms, including human beings. Several marine bacteria highly resistant to mercury (BHRM) capable of growing at 25 ppm (mg L(-1)) or higher concentrations of mercury were tested during this study to evaluate their potential to detoxify Cd and Pb. Results indicate their potential of detoxification not only of Hg, but also Cd and Pb. Through biochemical and 16S rRNA gene sequence analyses, these bacteria were identified to belong to Alcaligenes faecalis (seven isolates), Bacillus pumilus (three isolates), Bacillus sp. (one isolate), Pseudomonas aeruginosa (one isolate), and Brevibacterium iodinium (one isolate). The mechanisms of heavy metal detoxification were through volatilization (for Hg), putative entrapment in the extracellular polymeric substance (for Hg, Cd and Pb) as revealed by the scanning electron microscopy and energy dispersive x-ray spectroscopy, and/or precipitation as sulfide (for Pb). These bacteria removed more than 70% of Cd and 98% of Pb within 72 and 96 h, respectively, from growth medium that had initial metal concentrations of 100 ppm. Their detoxification efficiency for Hg, Cd and Pb indicates good potential for application in bioremediation of toxic heavy metals.

  14. The cyclic renewable mercury film silver based electrode for determination of molybdenum(VI) traces using adsorptive stripping voltammetry.

    PubMed

    Piech, Robert; Baś, Bogusław; Kubiak, Władysław W

    2008-07-15

    The new cyclic renewable mercury film silver based electrode (Hg(Ag)FE), applied for the determination of molybdenum(VI) traces using differential pulse adsorptive cathodic stripping voltammetry (DP AdSV) is presented. The Hg(Ag)FE electrode is characterized by very good surface reproducibility (

  15. Metal-enhanced fluorescence of chlorophylls in light-harvesting complexes coupled to silver nanowires.

    PubMed

    Kowalska, Dorota; Krajnik, Bartosz; Olejnik, Maria; Twardowska, Magdalena; Czechowski, Nikodem; Hofmann, Eckhard; Mackowski, Sebastian

    2013-01-01

    We investigate metal-enhanced fluorescence of peridinin-chlorophyll protein coupled to silver nanowires using optical microscopy combined with spectrally and time-resolved fluorescence techniques. In particular we study two different sample geometries: first, in which the light-harvesting complexes are deposited onto silver nanowires, and second, where solution of both nanostructures are mixed prior deposition on a substrate. The results indicate that for the peridinin-chlorophyll complexes placed in the vicinity of the silver nanowires we observe higher intensities of fluorescence emission as compared to the reference sample, where no nanowires are present. Enhancement factors estimated for the sample where the light-harvesting complexes are mixed together with the silver nanowires prior deposition on a substrate are generally larger in comparison to the other geometry of a hybrid nanostructure. While fluorescence spectra are identical both in terms of overall shape and maximum wavelength for peridinin-chlorophyll-protein complexes both isolated and coupled to metallic nanostructures, we conclude that interaction with plasmon excitations in the latter remains neutral to the functionality of the biological system. Fluorescence transients measured for the PCP complexes coupled to the silver nanowires indicate shortening of the fluorescence lifetime pointing towards modifications of radiative rate due to plasmonic interactions. Our results can be applied for developing ways to plasmonically control the light-harvesting capability of photosynthetic complexes.

  16. Mod silver metallization: Screen printing and ink-jet printing

    NASA Technical Reports Server (NTRS)

    Vest, R. W.; Vest, G. M.

    1985-01-01

    Basic material efforts have proven to be very successful. Adherent and conductive films were achieved. A silver neodecanoate/bismuth 2-ethylhexanoate mixture has given the best results in both single and double layer applications. Another effort is continuing to examine the feasibility of applying metallo-organic deposition films by use of an ink jet printer. Direct line writing would result in a saving of process time and materials. So far, some well defined lines have been printed.

  17. Notes from the Field: Acute Mercury Poisoning After Home Gold and Silver Smelting--Iowa, 2014.

    PubMed

    Koirala, Samir; Leinenkugel, Kathy

    2015-12-18

    In March 2014, a man, aged 59 years, who lived alone and had been using different smelting techniques viewed on the Internet to recover gold and silver from computer components, was evaluated at a local emergency department for shortness of breath, tremors, anorexia, and generalized weakness. During the smelting processes, he had used hydrogen peroxide, nitric acid, muriatic acid, and sulfuric acid purchased from local stores or Internet retailers. For protection, he wore a military gas mask of unknown type. The mask was used with filter cartridges, but their effectiveness against chemical fumes was not known.

  18. Mercury Induced by Pressure to act as a Transition Metal in Mercury Fluorides

    NASA Astrophysics Data System (ADS)

    Botana, Jorge; Wang, Xiaoli; Hou, Chunju; Yan, Dadong; Lin, Haiqing; Ma, Yanming; Miao, Mao-Sheng

    The question of whether Hg is a transition metal remains open for stable solids. In our work we propose that high-pressure techniques will help prepare unusual oxidation states of Hg in Hg-F compounds. By means of ab initio calculations and an advanced structure-search algorithm we find that under high pressure charge is transferred from the Hg d orbitals to the F, and becomes a transition metal. HgF3 and HgF4 have been found to be stable compounds at high pressure. HgF4 consists of planar molecules, a typical geometry for d8 metallic centers. HgF3 is an example of metallic and ferromagnetic compound, with an electronic structure analogous to transparent conductors due to the Hg d9 configuration.

  19. PHOTOPHORETIC SEPARATION OF METALS AND SILICATES: THE FORMATION OF MERCURY-LIKE PLANETS AND METAL DEPLETION IN CHONDRITES

    SciTech Connect

    Wurm, Gerhard; Trieloff, Mario; Rauer, Heike

    2013-05-20

    Mercury's high uncompressed mass density suggests that the planet is largely composed of iron, either bound within metal (mainly Fe-Ni) or iron sulfide. Recent results from the MESSENGER mission to Mercury imply a low temperature history of the planet which questions the standard formation models of impact mantle stripping or evaporation to explain the high metal content. Like Mercury, the two smallest extrasolar rocky planets with mass and size determination, CoRoT-7b and Kepler-10b, were found to be of high density. As they orbit close to their host stars, this indicates that iron-rich inner planets might not be a nuisance of the solar system but be part of a general scheme of planet formation. From undifferentiated chondrites, it is also known that the metal to silicate ratio is highly variable, which must be ascribed to preplanetary fractionation processes. Due to this fractionation, most chondritic parent bodies-most of them originated in the asteroid belt-are depleted in iron relative to average solar system abundances. The astrophysical processes leading to metal silicate fractionation in the solar nebula are essentially unknown. Here, we consider photophoretic forces. As these forces particularly act on irradiated solids, they might play a significant role in the composition of planetesimals forming at the inner edge of protoplanetary disks. Photophoresis can separate high thermal conductivity materials (iron) from lower thermal conductivity solids (silicate). We suggest that the silicates are preferentially pushed into the optically thick disk. Subsequent planetesimal formation at the edge moving outward leads to metal-rich planetesimals close to the star and metal depleted planetesimals farther out in the nebula.

  20. Heavy metal chelator TPEN attenuates fura-2 fluorescence changes induced by cadmium, mercury and methylmercury.

    PubMed

    Ohkubo, Masato; Miyamoto, Atsushi; Shiraishi, Mitsuya

    2016-06-01

    Stimulation with heavy metals is known to induce calcium (Ca(2+)) mobilization in many cell types. Interference with the measurement of intracellular Ca(2+) concentration by the heavy metals in cells loaded with Ca(2+) indicator fura-2 is an ongoing problem. In this study, we analyzed the effect of heavy metals on the fura-2 fluorescence ratio in human SH-SY5Y neuroblastoma cells by using TPEN, a specific cell-permeable heavy metal chelator. Manganese chloride (30-300 µM) did not cause significant changes in the fura-2 fluorescence ratio. A high concentration (300 µM) of lead acetate induced a slight elevation in the fura-2 fluorescence ratio. In contrast, stimulation with cadmium chloride, mercury chloride or MeHg (3-30 µM) elicited an apparent elevation of the fura-2 fluorescence ratio in a dose-dependent manner. In cells stimulated with 10 or 30 µM cadmium chloride, the addition of TPEN decreased the elevated fura-2 fluorescence ratio to basal levels. In cells stimulated with mercury or MeHg, the addition of TPEN significantly decreased the elevation of the fura-2 fluorescence ratio induced by lower concentrations (10 µM) of mercury or MeHg, but not by higher concentrations (30 µM). Pretreatment with Ca(2+) channel blockers, such as verapamil, 2-APB or lanthanum chloride, resulted in different effects on the fura-2 fluorescence ratio. Our study provides a characterization of the effects of several heavy metals on the mobilization of divalent cations and the toxicity of heavy metals to neuronal cells.

  1. Ink-jet printing of silver metallization for photovoltaics

    NASA Technical Reports Server (NTRS)

    Vest, R. W.

    1986-01-01

    The status of the ink-jet printing program at Purdue University is described. The drop-on-demand printing system was modified to use metallo-organic decomposition (MOD) inks. Also, an IBM AT computer was integrated into the ink-jet printer system to provide operational functions and contact pattern configuration. The integration of the ink-jet printing system, problems encountered, and solutions derived were described in detail. The status of ink-jet printing using a MOD ink was discussed. The ink contained silver neodecanate and bismuth 2-ethylhexanoate dissolved in toluene; the MOD ink decomposition products being 99 wt% AG, and 1 wt% Bi.

  2. Effects of Cadmium Exposure on Metal Accumulation and Energy Metabolism of Silver Carp (Hypophthalmichthys molitrix).

    PubMed

    Li, Deliang; Pi, Jie; Wang, Jianping; Zhu, Pengfei; Liu, Deming; Zhang, Ting

    2017-09-16

    Effects of cadmium (Cd) exposure on metal accumulation and energy metabolism of silver carp (Hypophthalmichthys molitrix) were studied during 14 days. The results showed that Cd accumulated in tissues of silver carp significantly with time and Cd concentration, as the order: liver > kidney > gill > muscle. The levels of muscle glycogen, triglyceride, and plasma triglyceride decreased significantly (p < 0.05). The levels of muscle protein, plasma glucose and lactate significantly increased during the first 8 days, and then all significantly decreased (p < 0.05). No significant alternations were observed in muscle cortisol, ATP and plasma protein (p > 0.05). The results indicate that the tissues' Cd concentrations and energy metabolism were altered by the presence of waterborne Cd, and silver carp mobilizes the muscle energy stores to cope with the increased energy demands for detoxication and repair mechanism induced by the exposure to waterborne Cd.

  3. Neuropsychological function and past exposure to metallic mercury in female dental workers

    PubMed Central

    Sletvold, Helge; Svendsen, Kristin; Aas, Oddfrid; Syversen, Tore; Hilt, Bjørn

    2012-01-01

    The aim of this study was to see if dental personnel with previous exposure to metallic mercury have later developed disturbances in cognitive function. Ninety-one female participants who had been selected from a previous health survey of dental personnel were investigated neuropsychologically within the following domains: motor function, short-term memory, working memory, executive function, mental flexibility, and visual and verbal long-term memory. The scores were mainly within normal ranges. Relationships between an exposure score, the duration of employment before 1990, and previously measured mercury in urine as independent variables and the neuropsychological findings as dependent variables, were analyzed by multiple linear regression controlling for age, general ability, length of education, alcohol consumption, and previous head injuries. The only relationship that was statistically significant in the hypothesized direction was between the previously measured urine mercury values and visual long-term memory, where the urine values explained 30% of the variability. As the study had a low statistical power and also some other methodological limitations, the results have to be interpreted with caution. Even so, we think it is right to conclude that neuropsychological findings indicative of subsequent cognitive injuries are difficult to find in groups of otherwise healthy dental personnel with previous occupational exposure to mercury. PMID:22092046

  4. Chromatic analysis by monitoring unmodified silver nanoparticles reduction on double layer microfluidic paper-based analytical devices for selective and sensitive determination of mercury(II).

    PubMed

    Meelapsom, Rattapol; Jarujamrus, Purim; Amatatongchai, Maliwan; Chairam, Sanoe; Kulsing, Chadin; Shen, Wei

    2016-08-01

    This study demonstrates chromatic analysis based on a simple red green blue (RGB) color model for sensitive and selective determination of mercury(II). The analysis was performed by monitoring the color change of a microfluidic Paper-based Analytical Device (µPAD). The device was fabricated by using alkyl ketene dimer (AKD)-inkjet printing and doped with unmodified silver nanoparticles (AgNPs) which were disintegrated when being exposed to mercury(II). The color intensity was detected by using an apparatus consisting of a digital camera and a homemade light box generating constant light intensity. A progressive increase in color intensity of the tested area on the µPAD (3.0mm) was observed with increasing mercury(II) concentration. The developed system enabled quantification of mercury(II) at low concentration with the detection limit of 0.001mgL(-1) (3 SD blank/slope of the calibration curve) and small sample volume uptake (2µL). The linearity range of the calibration curve in this technique was demonstrated from 0.05 to 7mgL(-1) (r(2)=0.998) with good precision (RSD less than 4.1%). Greater selectivity towards mercury(II) compared with potential interference ions was also observed. Furthermore, the percentage recoveries of spiked water samples were in an acceptable range which was in agreement with the values obtained from the conventional method utilizing cold vapor atomic absorption spectrometer (CVAAS). The proposed technique allows a rapid, simple, sensitive and selective analysis of trace mercury(II) in water samples.

  5. Atomic-absorption determination of mercury in geological materials by flame and carbon-rod atomisation after solvent extraction and using co-extracted silver as a matrix modifier

    USGS Publications Warehouse

    Sanzolone, R.F.; Chao, T.T.

    1983-01-01

    Based on modifications and expansion of the original Tindall's solvent extraction flame atomic-absorption procedure, an atomic-absorption spectrophotometric method has been developed for the determination of mercury in geological materials. The sample is digested with nitric and hydrochloric acids in a boiling water-bath. The solution is made ammoniacal and potassium iodide and silver nitrate are added. The mercury is extracted into isobutyl methyl ketone as the tetraiodomercurate(ll). Added silver is co-extracted with mercury and serves as a matrix modifier in the carbon-rod atomiser. The mercury in the isobutyl methyl ketone extract may be determined by either the flame- or the carbon-rod atomisation method, depending on the concentration level. The limits of determination are 0.05-10 p.p.m. of mercury for the carbon-rod atomisation and 1 -200 p.p.m. of mercury for the flame atomisation. Mercury values for reference samples obtained by replicate analyses are in good agreement with those reported by other workers, with relative standard deviations ranging from 2.3 to 0.9%. Recoveries of mercury spiked at two levels were 93-106%. Major and trace elements commonly found in geological materials do not interfere.

  6. Anomalous concentrations of gold, silver, and other metals in the Mill Canyon area, Cortez quadrangle, Eureka and Lander Counties, Nevada

    USGS Publications Warehouse

    Elliott, James E.; Wells, John David

    1968-01-01

    The Mill Canyon area is in the eastern part of the Cortez window of the Roberts Mountains thrust belt in the Cortez quadrangle, north-central Nevada. Gold and silver ores have been mined from fissure veins in Jurassic quartz monzonite and in the bordering Wenban Limestone of Devonian age. Geochemical data show anomalies of gold, silver, lead, zinc, copper, arsenic, antimony, mercury, and tellurium. Geologic and geochemical studies indicate that a formation favorable for gold deposition, the Roberts Mountains Limestone of Silurian age, may be found at depth near the mouth of Mill Canyon.

  7. Bioactive enzyme-metal composites: the entrapment of acid phosphatase within gold and silver.

    PubMed

    Ben-Knaz, Racheli; Avnir, David

    2009-03-01

    This paper is concerned with the entrapment of an enzyme within an aggregated metallic matrix and the development of a bioactive enzyme-metal composite. Whereas the use of organic polymers and metal oxides for the preparation of enzymatically active materials is well developed, the third principle enzyme-material combination, namely protein-metal bulk, has not yet been reported. A new methodology for the entrapment of organic molecules and polymers within metals has been employed for the preparation of bioactive acid phosphatase@gold and acid phosphatase@silver, according to which room temperature reduction of the metal cation is carried out in the presence of the enzyme to be entrapped. Protectability of the entrapped enzyme against harsh conditions is shown: the acidic enzyme is kept alive under basic conditions.

  8. Pollution by Arsenic, Mercury and other Heavy Metals in Sunchulli mining district of Apolobamba (Bolivia)

    NASA Astrophysics Data System (ADS)

    Terán Mita, Tania; Faz Cano, Angel; Muñoz, Maria Angeles; Millán Gómez, Rocio; Chincheros Paniagua, Jaime

    2010-05-01

    In Bolivia, metal mining activities since historical times have been one of the most important sources of environmental pollution. This is the case of the National Area of Apolobamba Integrated Management (ANMIN of Apolobamba) in La Paz, Bolivia, where intense gold mining activities have been carried out from former times to the present, with very little gold extraction and very primitive mineral processing technology; in fact, mercury is still being used in the amalgam processes of the gold concentration, which is burned outdoors to recover the gold. Sunchullí is a representative mining district in ANMIN of Apolobamba where mining activity is mainly gold extraction and its water effluents go to the Amazonian basin; in this mining district the productivity of extracted mineral is very low but the processes can result in heavy-metal contamination of the air, water, soils and plants. Due to its high toxicity, the contamination by arsenic and mercury create the most critical environmental problems. In addition, some other heavy metals may also be present such as lead, copper, zinc and cadmium. These heavy metals could be incorporated in the trophic chain, through the flora and the fauna, in their bio-available and soluble forms. Inhabitants of this area consume foodcrops, fish from lakes and rivers and use the waters for the livestock, domestic use, and irrigation. The aim of this work was to evaluate the heavy metals pollution by gold mining activities in Sunchullí area. In Sunchullí two representative zones were distinguished and sampled. Zone near the mining operation site was considered as affected by mineral extraction processes, while far away zones represented the non affected ones by the mining operation. In each zone, 3 plots were established; in each plot, 3 soil sampling points were selected in a random manner and analysed separately. In each sampling point, two samples were taken, one at the surface, from 0-5 cm depth (topsoil), and the other between 5

  9. The formation of silver metal nanoparticles by ion implantation in silicate glasses

    NASA Astrophysics Data System (ADS)

    Vytykacova, S.; Svecova, B.; Nekvindova, P.; Spirkova, J.; Mackova, A.; Miksova, R.; Böttger, R.

    2016-03-01

    It has been shown that glasses containing silver metal nanoparticles are promising photonics materials for the fabrication of all-optical components. The resulting optical properties of the nanocomposite glasses depend on the composition and structure of the glass, as well as on the type of metal ion implanted and the experimental procedures involved. The main aim of this article was to study the influence of the conditions of the ion implantation and the composition of the glass on the formation of metal nanoparticles in such glasses. Four various types of silicate glasses were implanted with Ag+ ions with different energy (330 keV, 1.2 MeV and 1.7 MeV), with the fluence being kept constant (1 × 1016 ions cm-2). The as-implanted samples were annealed at 600 °C for 1 h. The samples were characterised in terms of: the nucleation of metal nanoparticles (linear optical absorption), the migration of silver through the glass matrix during the implantation and post-implantation annealing (Rutherford backscattering spectroscopy), and the oxidation state of silver (photoluminescence in the visible region).

  10. Concentrations and distribution of mercury and other heavy metals in surface sediments of the Yatsushiro Sea including Minamata Bay, Japan.

    PubMed

    Nakata, Haruhiko; Shimada, Hideaki; Yoshimoto, Maki; Narumi, Rika; Akimoto, Kazumi; Yamashita, Takayuki; Matsunaga, Tomoya; Nishimura, Keisuke; Tanaka, Masakazu; Hiraki, Kenju; Shimasaki, Hideyuki; Takikawa, Kiyoshi

    2008-01-01

    The concentrations and distribution of heavy metals, such as mercury, zinc, copper, lead, and iron in surface sediments from 234 stations of the Yatsushiro Sea including Minamata bay were investigated. High concentrations of mercury were found in sediments from Minamata bay and its vicinity, but the levels decreased gradually with distance from the bay. The concentrations of mercury in sediments decreased gradually from south to north of the Yatsushiro Sea. These imply the lack of movement of mercury from Minamata bay to the northern Yatsushiro Sea. The geographical profiles of zinc and copper were contrary to that found for mercury, indicating the presence of natural and anthropogenic sources of copper and zinc in the northern Yatsushiro Sea.

  11. Strategies for specifically directing metal functionalization of protein nanotubes: constructing protein coated silver nanowires.

    PubMed

    Carreño-Fuentes, Liliana; Ascencio, Jorge A; Medina, Ariosto; Aguila, Sergio; Palomares, Laura A; Ramírez, Octavio T

    2013-06-14

    Biological molecules that self-assemble in the nanoscale range are useful multifunctional materials. Rotavirus VP6 protein self-assembles into tubular structures in the absence of other rotavirus proteins. Here, we present strategies for selectively directing metal functionalization to the lumen of VP6 nanotubes. The specific in situ metal reduction in the inner surface of nanotube walls was achieved by the simple modification of a method previously reported to functionalize the nanotube outer surface. Silver nanorods and nanowires as long as 1.5 μm were formed inside the nanotubes by coalescence of nanoparticles. Such one-dimensional structures were longer than others previously obtained using bioscaffolds. The interactions between silver ions and the nanotube were simulated to understand the conditions that allowed nanowire formation. Molecular docking showed that a naturally occurring arrangement of aspartate residues enabled the stabilization of silver ions on the internal surface of the VP6 nanotubes. This is the first time that such a spatial arrangement has been proposed for the nucleation of silver nanoparticles, opening the possibility of using such an array to direct functionalization of other biomolecules. These results demonstrate the natural capabilities of VP6 nanotubes to function as a versatile biotemplate for nanomaterials.

  12. Strategies for specifically directing metal functionalization of protein nanotubes: constructing protein coated silver nanowires

    NASA Astrophysics Data System (ADS)

    Carreño-Fuentes, Liliana; Ascencio, Jorge A.; Medina, Ariosto; Aguila, Sergio; Palomares, Laura A.; Ramírez, Octavio T.

    2013-06-01

    Biological molecules that self-assemble in the nanoscale range are useful multifunctional materials. Rotavirus VP6 protein self-assembles into tubular structures in the absence of other rotavirus proteins. Here, we present strategies for selectively directing metal functionalization to the lumen of VP6 nanotubes. The specific in situ metal reduction in the inner surface of nanotube walls was achieved by the simple modification of a method previously reported to functionalize the nanotube outer surface. Silver nanorods and nanowires as long as 1.5 μm were formed inside the nanotubes by coalescence of nanoparticles. Such one-dimensional structures were longer than others previously obtained using bioscaffolds. The interactions between silver ions and the nanotube were simulated to understand the conditions that allowed nanowire formation. Molecular docking showed that a naturally occurring arrangement of aspartate residues enabled the stabilization of silver ions on the internal surface of the VP6 nanotubes. This is the first time that such a spatial arrangement has been proposed for the nucleation of silver nanoparticles, opening the possibility of using such an array to direct functionalization of other biomolecules. These results demonstrate the natural capabilities of VP6 nanotubes to function as a versatile biotemplate for nanomaterials.

  13. The role of mercury and cadmium heavy metals in vascular disease, hypertension, coronary heart disease, and myocardial infarction.

    PubMed

    Houston, Mark C

    2007-01-01

    Mercury, cadmium, and other heavy metals have a high affinity for sulfhydryl (-SH) groups, inactivating numerous enzymatic reactions, amino acids, and sulfur-containing antioxidants (NAC, ALA, GSH), with subsequent decreased oxidant defense and increased oxidative stress. Both bind to metallothionein and substitute for zinc, copper, and other trace metals reducing the effectiveness of metalloenzymes. Mercury induces mitochondrial dysfunction with reduction in ATP, depletion of glutathione, and increased lipid peroxidation; increased oxidative stress is common. Selenium antagonizes mercury toxicity. The overall vascular effects of mercury include oxidative stress, inflammation, thrombosis, vascular smooth muscle dysfunction, endothelial dysfunction, dyslipidemia, immune dysfunction, and mitochondrial dysfunction. The clinical consequences of mercury toxicity include hypertension, CHD, MI, increased carotid IMT and obstruction, CVA, generalized atherosclerosis, and renal dysfunction with proteinuria. Pathological, biochemical, and functional medicine correlations are significant and logical. Mercury diminishes the protective effect of fish and omega-3 fatty acids. Mercury, cadmium, and other heavy metals inactivate COMT, which increases serum and urinary epinephrine, norepinephrine, and dopamine. This effect will increase blood pressure and may be a clinical clue to heavy metal toxicity. Cadmium concentrates in the kidney, particularly inducing proteinuria and renal dysfunction; it is associated with hypertension, but less so with CHD. Renal cadmium reduces CYP4A11 and PPARs, which may be related to hypertension, sodium retention, glucose intolerance, dyslipidemia, and zinc deficiency. Dietary calcium may mitigate some of the toxicity of cadmium. Heavy metal toxicity, especially mercury and cadmium, should be evaluated in any patient with hypertension, CHD, or other vascular disease. Specific testing for acute and chronic toxicity and total body burden using hair

  14. Self-Assembly of Silver Metal Clusters of Small Atomicity on Cyclic Peptide Nanotubes.

    PubMed

    Cuerva, Miguel; García-Fandiño, Rebeca; Vázquez-Vázquez, Carlos; López-Quintela, M Arturo; Montenegro, Javier; Granja, Juan R

    2015-11-24

    Subnanometric noble metal clusters, composed by only a few atoms, behave like molecular entities and display magnetic, luminescent and catalytic activities. However, noncovalent interactions of molecular metal clusters, lacking of any ligand or surfactant, have not been seen at work. Theoretically attractive and experimentally discernible, van der Waals forces and noncovalent interactions at the metal/organic interfaces will be crucial to understand and develop the next generation of hybrid nanomaterials. Here, we present experimental and theoretical evidence of noncovalent interactions between subnanometric metal (0) silver clusters and aromatic rings and their application in the preparation of 1D self-assembled hybrid architectures with ditopic peptide nanotubes. Atomic force microscopy, fluorescence experiments, circular dichroism and computational simulations verified the occurrence of these interactions in the clean and mild formation of a novel peptide nanotube and metal cluster hybrid material. The findings reported here confirmed the sensitivity of silver metal clusters of small atomicity toward noncovalent interactions, a concept that could find multiple applications in nanotechnology. We conclude that induced supramolecular forces are optimal candidates for the precise spatial positioning and properties modulation of molecular metal clusters. The reported results herein outline and generalize the possibilities that noncovalent interactions will have in this emerging field.

  15. Sn-Mn binary metal oxides as non-carbon sorbent for mercury removal in a wide-temperature window.

    PubMed

    Xie, Jiangkun; Xu, Haomiao; Qu, Zan; Huang, Wenjun; Chen, Wanmiao; Ma, Yongpeng; Zhao, Songjian; Liu, Ping; Yan, Naiqiang

    2014-08-15

    A series of Sn-Mn binary metal oxides were prepared through co-precipitation method. The sorbents were characterized by powder X-ray diffraction (powder XRD), transmission electronic microscopy (TEM), H2-temperature-programmed reduction (H2-TPR) and NH3-temperature-programmed desorption (NH3-TPD) methods. The capability of the prepared sorbents for mercury adsorption from simulated flue gas was investigated by fixed-bed experiments. Results showed that mercury adsorption on pure SnO2 particles was negligible in the test temperature range, comparatively, mercury capacity on MnOx at low temperature was relative high, but the capacity would decrease significantly when the temperature was elevated. Interestingly, for Sn-Mn binary metal oxide, mercury capacity increased not only at low temperature but also at high temperature. Furthermore, the impact of SO2 on mercury adsorption capability of Sn-Mn binary metal oxides was also investigated and it was noted that the effect at low temperature was different comparing with that of high temperature. The mechanism was investigated by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTs). Moreover, a mathematic model was built to calculate mercury desorption activation energy from Sn to Mn binary metal oxides.

  16. Susceptibility of halobacteria to heavy metals

    SciTech Connect

    Nieto, J.J.; Ventosa, A.; Ruiz-Berraquero, F.

    1987-05-01

    Sixty-eight halobacteria, including both culture collection strains and fresh isolates from widely differing geographical areas, were tested for susceptibility to arsenate, cadmium, chromium, cobalt, copper, lead, mercury, nickel, silver, and zinc ions by an agar dilution technique. The culture collection strains showed different susceptibilities, clustering into five groups. Halobacterium mediterranei and Halobacterium volcanii were the most metal tolerant, whereas Haloarcula californiae and Haloarcula sinaiiensis had the highest susceptibilities of the culture collection strains. Different patterns of metal susceptibility were found for all the halobacteria tested, and there was a uniform susceptibility to mercury and silver. All strains tested were multiply metal tolerant.

  17. Atmospheric mercury emissions from China's primary nonferrous metal (Zn, Pb and Cu) smelting during 1949-2010

    NASA Astrophysics Data System (ADS)

    Ye, Xuejie; Hu, Dan; Wang, Huanhuan; Chen, Long; Xie, Han; Zhang, Wei; Deng, Chunyan; Wang, Xuejun

    2015-02-01

    Primary nonferrous metal smelting is one of the most significant anthropogenic mercury emission sources. A spatially resolved mercury emission inventory over a long time span is essential for assessment of mercury source attribution and mercury transport modeling. In this study, based on updated technology-based emission factors, the atmospheric mercury emissions originating from primary zinc, lead and copper smelting in China were calculated. The inventory indicated that the total mercury emission from nonferrous metal smelting in China was 14.65 Mg in 2010, lower than the estimations in previous studies. The contributions of point and non-point sources were 23.3% and 76.7%, respectively. In 2010, the mercury emission from primary zinc, lead and copper smelting was 7.49, 6.05 and 1.10 Mg, respectively, and the Hg2+, Hg0 and HgP emissions were 8.10, 6.16 and 0.75 Mg, respectively. Spatially, the province with the largest emission was Sichuan, followed by Henan, Gansu, Shaanxi, Hunan and Yunnan provinces. The historical emissions were estimated based on dynamic emission factors that take the temporal technology changes into consideration. During 1949-2010, the cumulative mercury emission from China's nonferrous metal smelting was 323.0 Mg, of which the emission from lead smelting accounted for 44.6%, followed by zinc smelting (32.8%) and copper smelting (22.6%). From 1949 to 2010, the contribution of mercury emission from zinc smelting increased from 1.4% to 53.7%, while that from lead smelting showed a decreasing trend. For copper smelting, its contribution reached the maximum (40.1%) in 1987.

  18. Understanding the mercury reduction issue: the impact of mercury on the environment and human health.

    PubMed

    Kao, Richard T; Dault, Scott; Pichay, Teresa

    2004-07-01

    Mercury has been used in both medicine and dentistry for centuries. Recent media attention regarding the increased levels of mercury in dietary fish, high levels of mercury in air emissions, and conjecture that certain diseases may be caused by mercury exposure has increased public awareness of the potential adverse health effects of high doses of mercury. Dentistry has been criticized for its continued use of mercury in dental amalgam for both public health and environmental reasons. To address these concerns, dental professionals should understand the impact of the various levels and types of mercury on the environment and human health. Mercury is unique in its ability to form amalgams with other metals. Dental amalgam--consisting of silver, copper, tin, and mercury--has been used as a safe, stable, and cost-effective restorative material for more than 150 years. As a result of this use, the dental profession has been confronted by the public on two separate health issues concerning the mercury content in amalgam. The first issue is whether the mercury amalgamated with the various metals to create dental restorations poses a health issue for patients. The second is whether the scraps associated with amalgam placement and the removal of amalgam restorations poses environmental hazards which may eventually have an impact on human health. Despite the lack of scientific evidence for such hazards, there is growing pressure for the dental profession to address these health issues. In this article, the toxicology of mercury will be reviewed and the impact of amalgam on health and the environment will be examined.

  19. Metal oxide-based silver substrates for surface-enhanced Raman scattering

    SciTech Connect

    Li, Y.S.; Lin, X.

    1995-12-01

    New substrates were prepared by using sol-gel process for metal oxide (MgO and TiO{sub 2}) undercoating and by using chemical reduction method for silver coating. The substrates were found to exhibit strong Surface-Enhanced Raman Scattering (SERS) signals for benzoic acid (BA), terephthalic acid (TPA), p-nitrobenzoic acid (PNBA), p-aminobenzoic acid (PABA), p-nitrophenol (PNP), and p-nitroanaline. Optimization of metal oxide undercoating and silver deposition was conducted to obtain intense SER band of BA. It was shown that the substrates could be reused for the SER investigation of different samples. A study of the solvent effect on the SERS intensity of BA was conducted; an explanation to the result was suggested.

  20. Disorder-induced metal-insulator transition in cooled silver and copper nanoparticles: A statistical study

    NASA Astrophysics Data System (ADS)

    Medrano Sandonas, Leonardo; Landauro, Carlos V.

    2017-08-01

    The existence of a disorder-induced metal-insulator transition (MIT) has been proved in cooled silver and copper nanoparticles by using level spacing statistics. Nanoparticles are obtained by employing molecular dynamics simulations. Results show that structural disorder is not strong enough to affect their electronic character, and it remains in the metallic regime. Whereas, electronic properties cross to the insulating regime after increasing the chemical disorder strength, W / t . Then, based on scaling theory, we have found that the critical chemical disorder WC / t in which MIT happens for silver and copper nanoparticles are 24.0 ± 1.1 and 22.3 ± 0.9 , respectively. Its universality has also been studied.

  1. Photoreduction of mercury metal (Hg) using catalyst of oxalic acid from cellulose of rice husks (Oryza sativa L.)

    SciTech Connect

    Sumiardi, Ade; Novi, Cory; Sukaesih, Esih; Humaedi, Aji

    2016-04-19

    Photoreduction of mercury metal using catalyst of oxalic acid from cellulose of rice husks (Oryza sativa L.) is one of methods to reduce toxicity properties of the mercury metal in the society. The purpose of this research is to enhance photoreduction of mercury metal using catalyst of oxalic acid from cellulose of rice husks (Oryza sativa L.) at various concentrations. Photoreduction process is carried out in a closed reactor equipped with UV light and magnetic stirrer. Analysis of the influence of oxalic acid is determined by adding 25 mL of Hg (II) 5 ppm without oxalic acid, 25 mL of Hg (II) 5 ppm + 25 mL of oxalic acid 3 ppm, 25 mL of Hg (II) 5 ppm + 25 mL of oxalic acid 6 ppm, 25 mL of Hg (II) 5 ppm + 25 mL of oxalic acid 9 ppm, 25 mL of Hg (II) 5 ppm + 25 mL of oxalic acid 12 ppm and 25 mL of Hg (II) 5 ppm + 25 mL of oxalic acid 15 ppm. All treatments are followed by centrifugation for 15 minutes, then the concentration of Hg residual in the solution is measured by mercury analyzer. The research results showed that addition of oxalic acid concentration from the cellulose of rice husks (Oryza sativa L.) can enhance photoreduction of mercury metal. Optimum concentration reduction of mercury metal with addition of oxalic acid is obtained as many as 9-12 ppm. It can reduce the concentration of mercury metal (II) by 68.8% to 88.6%.

  2. Thermal conductivity studies of novel nanofluids based on metallic silver decorated mesoporous silica nanoparticles

    SciTech Connect

    Tadjarodi, Azadeh; Zabihi, Fatemeh

    2013-10-15

    Graphical abstract: - Highlights: • Metallic silver was decorated in mSiO{sub 2} with grafted hemiaminal functional groups. • Synthesized nanoparticles were used for preparation of glycerol based nanofluids. • The effect of temperature, weight fraction of mSiO{sub 2} and concentration of silver nanoparticles on thermal conductivity of nanofluids was investigated. - Abstract: In the present study, the mesoporous structure of silica (mSiO{sub 2}) nanoparticles as well as hemiaminal grafted mSiO{sub 2} decorated by metallic silver (Ag/mSiO{sub 2}) has been used for the preparation of glycerol based nanofluids. Structural and morphological characterization of the synthesized products have been carried out using Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD), UV–vis spectroscopy, inductively coupled plasma (ICP) and N{sub 2} adsorption–desorption isotherms. The thermal conductivity and viscosity of the nanofluids have been measured as a function of temperature for various weight fractions and silver concentrations of mSiO{sub 2} and Ag/mSiO{sub 2} nanoparticles, respectively. The results show that the thermal conductivity of the nanofluids increase up to 9.24% as the weight fraction of mSiO{sub 2} increases up to 4 wt%. Also, increasing the percent of the silver decorated mSiO{sub 2} (Ag/mSiO{sub 2}) up to 2.98% caused an enhancement in the thermal conductivity of the base fluid up to 10.95%. Furthermore, the results show that the nanofluids have Newtonian behavior in the tested temperature range for various concentrations of nanoparticles.

  3. Interaction of gold, mercury, silver, and other ligands with selenium during oxidation of cysteine: relation to arthritis therapy

    SciTech Connect

    Dillard, C.J.; Tappel, A.; Tappel, A.L.

    1986-03-01

    Au, Ag, and Hg are soft-acid metal ligands for Se that inhibit Se-GSH peroxidase. A model system consisting of 100 ..mu..M cysteine, 10..mu..M selenocystine ((SeCys)/sub 2/), 100 ..mu..M acetate-1 mM EDTA buffer, pH 5.8, and various concentrations of metals was used to investigate Se-ligand interactions during 2 h incubations at 37/sup 0/C in an oxygen atmosphere. Cysteine was measured with 5,5'-dithiobis-(2-nitrobenzoic acid). Se-ligand interaction inhibits the catalytic effect of Se on cysteine oxidation. The k/sub i/ for inhibition of Se-catalyzed oxidation of cysteine was 0.13, 0.46, 1.6, and 1.3 ..mu..M HgCl/sub 3/, silver acetate, aurothioglucose, and aurothiomalate, respectively. Cadmium acetate, CdCl/sub 2/, and cis-platinum were weak inhibitors; zinc acetate and CuCl/sub 2/ were ineffective. Seleno-methionine did not catalyze cysteine oxidation, and Na/sub 2/SeO/sub 3/ was twice as effective as (SeCys)/sub 2/. Au inhibited the oxidation of CysSe/sup -/, produced by NaBH/sub 4/ reduction of (CysSe)/sub 2/, and its oxidation in oxygen was first-order. Au-compound inhibition of Se-catalyzed functions may have important implications in human rheumatoid patients during chrysotherapy.

  4. Effects of Silver and Other Metals on the Cytoskeleton

    NASA Technical Reports Server (NTRS)

    Conrad, Gary W.

    1997-01-01

    Directly or indirectly, trace concentrations of silver ion (Ag(+)) stabilize microtubules (Conrad, A.H., et al. Cell Motil. & Cytoskel. 27:117-132), as does taxol (Conrad, A.H., et al. J. Exp. Zool. 262:154-165), an effect with major consequences for cellular shape changes and development. Polymerization of microtubules is gravity-sensitive (Tabony and Job, Proc. Natl. Acad. Sci. USA 89:6948-6952), so trace amounts of Ag(+) may alter cellular ability to respond to gravity. If Ag electrolysis is used to purify water on NASA space vehicles, plants and animals/astronauts will be exposed continuously to Ag(+), a regimen with unknown cellular and developmental consequences. Fertilized eggs of the marine mudsnail, Ilyanassa obsoleta, are the cells in which the effects of A(+) on microtubules were discovered. They distribute visible cytoplasmic contents according to gravity and contain cytoplasmic morphogenetic determinants for heart development. The objectives are to determine if the effects of Ag(+), AU(3+), (of biosensor relevance), or Gd(3+) (inhibitor of some stretch-activated ion channels) on the cytoskeleton (in the presence and absence of mechanical loading) will affect cellular responses to gravity.

  5. Compatibility Study of Silver Biocide in Drinking Water with Candidate Metals for Crew Exploration Vehicle Potable Water System

    NASA Technical Reports Server (NTRS)

    Adam, Niklas M.

    2009-01-01

    The stability of silver biocide, used to keep drinking water on the CEV potable water sterile, is unknown as the system design is still in progress. Silver biocide in water can deplete rapidly when exposed to various metal surfaces. Additionally, silver depletion rates may be affected by the surface-area-to-volume (SA/V) ratios in the water system. Therefore, to facilitate the CEV water system design, it would be advantageous to know the biocide depletion rates in water exposed to the surfaces of these candidate metals at various SA/V ratios. Certain surface treatments can be employed to reduce the depletion rates of silver compared to the base metal. The purpose of this work is to determine the compatibility of specific spaceflight-certified metals that could used in the design of the CEV potable water system with silver biocide as well as understand the effect of surface are to volume ratios of metals used in the construction of the potable water system on the silver concentration.

  6. Compatibility Study of Silver Biocide in Drinking Water with Candidate Metals for Crew Exploration Vehicle Potable Water System

    NASA Technical Reports Server (NTRS)

    Adam, Niklas M.

    2009-01-01

    The stability of silver biocide, used to keep drinking water on the CEV potable water sterile, is unknown as the system design is still in progress. Silver biocide in water can deplete rapidly when exposed to various metal surfaces. Additionally, silver depletion rates may be affected by the surface-area-to-volume (SA/V) ratios in the water system. Therefore, to facilitate the CEV water system design, it would be advantageous to know the biocide depletion rates in water exposed to the surfaces of these candidate metals at various SA/V ratios. Certain surface treatments can be employed to reduce the depletion rates of silver compared to the base metal. The purpose of this work is to determine the compatibility of specific spaceflight-certified metals that could used in the design of the CEV potable water system with silver biocide as well as understand the effect of surface are to volume ratios of metals used in the construction of the potable water system on the silver concentration.

  7. Metal nanoparticles (other than gold or silver) prepared using plant extracts for medical applications

    NASA Astrophysics Data System (ADS)

    Pasca, Roxana-Diana; Santa, Szabolcs; Racz, Levente Zsolt; Racz, Csaba Pal

    2016-12-01

    There are many modalities to prepare metal nanoparticles, but the reducing of the metal ions with plant extracts is one of the most promising because it is considerate less toxic for the environment, suitable for the use of those nanoparticles in vivo and not very expensive. Various metal ions have been already studied such as: cobalt, copper, iron, platinum, palladium, zinc, indium, manganese and mercury and the number of plant extracts used is continuously increasing. The prepared systems were characterized afterwards with a great number of methods of investigation: both spectroscopic (especially UV-Vis spectroscopy) and microscopic (in principal, electron microscopy-TEM) methods. The applications of the metal nanoparticles obtained are diverse and not completely known, but the medical applications of such nanoparticles occupy a central place, due to their nontoxic components, but some diverse industrial applications do not have to be forgotten.

  8. The effect and safety of dressing composed by nylon threads covered with metallic silver in wound treatment.

    PubMed

    Brogliato, Ariane R; Borges, Paula A; Barros, Janaina F; Lanzetti, Manuela; Valença, Samuel; Oliveira, Nesser C; Izário-Filho, Hélcio J; Benjamim, Claudia F

    2014-04-01

    Silver is used worldwide in dressings for wound management. Silver has demonstrated great efficacy against a broad range of microorganisms, but there is very little data about the systemic absorption and toxicity of silver in vivo. In this study, the antimicrobial effect of the silver-coated dressing (SilverCoat(®)) was evaluated in vitro against the most common microorganisms found in wounds, including Pseudomonas aeruginosa, Candida albicans, Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus and Klebsiella pneumoniae. We also performed an excisional skin lesion assay in mice to evaluate wound healing after 14 days of treatment with a silver-coated dressing, and we measured the amount of silver in the blood, the kidneys and the liver after treatment. Our data demonstrated that the nylon threads coated with metallic silver have a satisfactory antimicrobial effect in vitro, and the prolonged use of these threads did not lead to systemic silver absorption, did not induce toxicity in the kidneys and the liver and were not detrimental to the normal wound-healing process.

  9. Silver metal nano-matrixes as high efficiency and versatile catalytic reactors for environmental remediation

    NASA Astrophysics Data System (ADS)

    Dumée, Ludovic F.; Yi, Zhifeng; Tardy, Blaise; Merenda, Andrea; Des Ligneris, Elise; Dagastine, Ray R.; Kong, Lingxue

    2017-03-01

    Nano-porous metallic matrixes (NMMs) offer superior surface to volume ratios as well as enhanced optical, photonic, and electronic properties to bulk metallic materials. Such behaviours are correlated to the nano-scale inter-grain metal domains that favour the presence of electronic vacancies. In this work, continuous 3D NMMs were synthesized for the first time through a simple diffusion-reduction process whereby the aerogel matrix was functionalized with (3-Mercaptopropyl)trimethoxysilane. The surface energy of the silica monolith templates was tuned to improve the homogeneity of the reduction process while thiol functionalization facilitated the formation of a high density of seeding points for metal ions to reduce. The diameter of NMMs was between 2 and 1000 nm, corresponding to a silver loading between 1.23 and 41.16 at.%. A rates of catalytic degradation kinetics of these NMMS which is three orders of magnitude higher than those of the non-functionalized silver-silica structures. Furthermore, the enhancement in mechanical stability at nanoscale which was evaluated by Atomic Force Microscopy force measurements, electronic density and chemical inertness was assessed and critically correlated to their catalytic potential. This strategy opens up new avenues for design of complex architectures of either single or multi-metal alloy NMMs with enhanced surface properties for various applications.

  10. Silver metal nano-matrixes as high efficiency and versatile catalytic reactors for environmental remediation

    PubMed Central

    Dumée, Ludovic F.; Yi, Zhifeng; Tardy, Blaise; Merenda, Andrea; des Ligneris, Elise; Dagastine, Ray R.; Kong, Lingxue

    2017-01-01

    Nano-porous metallic matrixes (NMMs) offer superior surface to volume ratios as well as enhanced optical, photonic, and electronic properties to bulk metallic materials. Such behaviours are correlated to the nano-scale inter-grain metal domains that favour the presence of electronic vacancies. In this work, continuous 3D NMMs were synthesized for the first time through a simple diffusion-reduction process whereby the aerogel matrix was functionalized with (3-Mercaptopropyl)trimethoxysilane. The surface energy of the silica monolith templates was tuned to improve the homogeneity of the reduction process while thiol functionalization facilitated the formation of a high density of seeding points for metal ions to reduce. The diameter of NMMs was between 2 and 1000 nm, corresponding to a silver loading between 1.23 and 41.16 at.%. A rates of catalytic degradation kinetics of these NMMS which is three orders of magnitude higher than those of the non-functionalized silver-silica structures. Furthermore, the enhancement in mechanical stability at nanoscale which was evaluated by Atomic Force Microscopy force measurements, electronic density and chemical inertness was assessed and critically correlated to their catalytic potential. This strategy opens up new avenues for design of complex architectures of either single or multi-metal alloy NMMs with enhanced surface properties for various applications. PMID:28332602

  11. Mercury contamination in agricultural soils from abandoned metal mines classified by geology and mineralization.

    PubMed

    Kim, Han Sik; Jung, Myung Chae

    2012-01-01

    This survey aimed to compare mercury concentrations in soils related to geology and mineralization types of mines. A total of 16,386 surface soils (0~15 cm in depth) were taken from agricultural lands near 343 abandoned mines (within 2 km from each mine) and analyzed for Hg by AAS with a hydride-generation device. To meaningfully compare mercury levels in soils with geology and mineralization types, three subclassification criteria were adapted: (1) five mineralization types, (2) four valuable ore mineral types, and (3) four parent rock types. The average concentration of Hg in all soils was 0.204 mg kg(-1) with a range of 0.002-24.07 mg kg(-1). Based on the mineralization types, average Hg concentrations (mg kg(-1)) in the soils decreased in the order of pegmatite (0.250) > hydrothermal vein (0.208) > hydrothermal replacement (0.166) > skarn (0.121) > sedimentary deposits (0.045). In terms of the valuable ore mineral types, the concentrations decreased in the order of Au-Ag-base metal mines ≈ base metal mines > Au-Ag mines > Sn-W-Mo-Fe-Mn mines. For parent rock types, similar concentrations were found in the soils derived from sedimentary rocks and metamorphic rocks followed by heterogeneous rocks with igneous and metamorphic processes. Furthermore, farmland soils contained relatively higher Hg levels than paddy soils. Therefore, it can be concluded that soils in Au, Ag, and base metal mines derived from a hydrothermal vein type of metamorphic rocks and pegmatite deposits contained relatively higher concentrations of mercury in the surface environment.

  12. Recovery of mercury from acid waste residues

    DOEpatents

    Greenhalgh, Wilbur O.

    1989-01-01

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

  13. Recovery of mercury from acid waste residues

    DOEpatents

    Greenhalgh, W.O.

    1987-02-27

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and thence quenching the reactivity of the nitric acid prior to nitration of the mercury metal. 1 fig.

  14. Recovery of mercury from acid waste residues

    DOEpatents

    Greenhalgh, Wilbur O.

    1989-12-05

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

  15. Mercury toxicity and neurodegenerative effects.

    PubMed

    Carocci, Alessia; Rovito, Nicola; Sinicropi, Maria Stefania; Genchi, Giuseppe

    2014-01-01

    Mercury is among the most toxic heavy metals and has no known physiological role in humans. Three forms of mercury exist: elemental, inorganic and organic. Mercury has been used by man since ancient times. Among the earliest were the Chinese and Romans, who employed cinnabar (mercury sulfide) as a red dye in ink (Clarkson et al. 2007). Mercury has also been used to purify gold and silver minerals by forming amalgams. This is a hazardous practice, but is still widespread in Brazil's Amazon basin, in Laos and in Venezuela, where tens of thousands of miners are engaged in local mining activities to find and purify gold or silver. Mercury compounds were long used to treat syphilis and the element is still used as an antiseptic,as a medicinal preservative and as a fungicide. Dental amalgams, which contain about 50% mercury, have been used to repair dental caries in the U.S. since 1856.Mercury still exists in many common household products around the world.Examples are: thermometers, barometers, batteries, and light bulbs (Swain et al.2007). In small amounts, some organo mercury-compounds (e.g., ethylmercury tiosalicylate(thimerosal) and phenylmercury nitrate) are used as preservatives in some medicines and vaccines (Ballet al. 2001).Each mercury form has its own toxicity profile. Exposure to Hg0 vapor and MeHg produce symptoms in CNS, whereas, the kidney is the target organ when exposures to the mono- and di-valent salts of mercury (Hg+ and Hg++, respectively)occur. Chronic exposure to inorganic mercury produces stomatitis, erethism and tremors. Chronic MeHg exposure induced symptoms similar to those observed in ALS, such as the early onset of hind limb weakness (Johnson and Atchison 2009).Among the organic mercury compounds, MeHg is the most biologically available and toxic (Scheuhammer et a!. 2007). MeHg is neurotoxic, reaching high levels of accumulation in the CNS; it can impair physiological function by disrupting endocrine glands (Tan et a!. 2009).The most

  16. Fundamental and Practical Studies of Metal Contacts on Mercury Zinc Telluride

    DTIC Science & Technology

    1987-12-31

    8217UTW FfR F rnpv_ - Fundamental and Practical Studies of Metal Contacts on Mercury Zinc Telluride 00 Lf Sponsored by M0 The Defense Advanced...three models of Schottky barrier pinning on semiconductors (e.g. see Flores and Tejedor [7]) to extrapolate from CdTe to Hgl.xCdxTe. Two of the models of...the CBM, which is at the F point in the Brillouin zone, decreases faster than other parts of the conduction band and the valence band is only slightly

  17. Selective colorimetric sensors based on the monitoring of an unmodified silver nanoparticles (AgNPs) reduction for a simple and rapid determination of mercury.

    PubMed

    Jarujamrus, Purim; Amatatongchai, Maliwan; Thima, Araya; Khongrangdee, Thatsanee; Mongkontong, Chakrit

    2015-05-05

    In this work, selective colorimetric sensors for simple and rapid detection of Hg(II) ions based on the monitoring of an unmodified silver nanoparticles (AgNPs) reduction were developed. The average diameter of synthesized AgNPs was 8.3±1.4nm which was characterized by transmission electron microscopy (TEM). The abrupt change in absorbance of the unmodified AgNPs was observed which progressively decreased and slightly shifted to the blue wavelength as the concentration of Hg(II) increased, indicating the oxidation of Ag(0) to Ag(I) occurred. It appears that the AgNPs were oxidized by Hg(II), resulting in disintegration of the AgNPs into smaller particles as well as mediating the reduction of Hg(II) to Hg(0) adsorbed onto the surface of AgNPs. The adsorption of Hg(0) resulted in the lack of sufficient charges on AgNPs surfaces due to the decrease in the surface coverage of negatively charged citrate molecules, which then leaded to enlargement of AgNPs. The calibration curve of this technique was demonstrated from 0.5 to 7ppm (r(2)=0.995), the limit of detection (LOD) was 0.06ppm (SDblank/slope of calibration curve) with the precision (RSD, n=4) of 3.24-4.53. Interestingly, the results show a significant enhance in the Hg(II) analytical sensitivity when Cu(II) is doped onto the unmodified AgNPs, which improves the quantitative detection limit to 0.008ppm. In addition, greater selectivity toward Hg(II) compared with the other metal ions tested was observed. Furthermore, the percentage recoveries of spiked drinking water, tap water and SRM1641d (mercury in water) were in acceptable range with a good precision (RSD) which were in agreement with the values obtained from graphite furnace atomic absorption spectrometer (GFAAS). The technique proposed in this study provides a rapid, simple, sensitive and selective detection method for Hg(II) in water samples.

  18. Selective colorimetric sensors based on the monitoring of an unmodified silver nanoparticles (AgNPs) reduction for a simple and rapid determination of mercury

    NASA Astrophysics Data System (ADS)

    Jarujamrus, Purim; Amatatongchai, Maliwan; Thima, Araya; Khongrangdee, Thatsanee; Mongkontong, Chakrit

    2015-05-01

    In this work, selective colorimetric sensors for simple and rapid detection of Hg(II) ions based on the monitoring of an unmodified silver nanoparticles (AgNPs) reduction were developed. The average diameter of synthesized AgNPs was 8.3 ± 1.4 nm which was characterized by transmission electron microscopy (TEM). The abrupt change in absorbance of the unmodified AgNPs was observed which progressively decreased and slightly shifted to the blue wavelength as the concentration of Hg(II) increased, indicating the oxidation of Ag(0) to Ag(I) occurred. It appears that the AgNPs were oxidized by Hg(II), resulting in disintegration of the AgNPs into smaller particles as well as mediating the reduction of Hg(II) to Hg(0) adsorbed onto the surface of AgNPs. The adsorption of Hg(0) resulted in the lack of sufficient charges on AgNPs surfaces due to the decrease in the surface coverage of negatively charged citrate molecules, which then leaded to enlargement of AgNPs. The calibration curve of this technique was demonstrated from 0.5 to 7 ppm (r2 = 0.995), the limit of detection (LOD) was 0.06 ppm (SDblank/slope of calibration curve) with the precision (RSD, n = 4) of 3.24-4.53. Interestingly, the results show a significant enhance in the Hg(II) analytical sensitivity when Cu(II) is doped onto the unmodified AgNPs, which improves the quantitative detection limit to 0.008 ppm. In addition, greater selectivity toward Hg(II) compared with the other metal ions tested was observed. Furthermore, the percentage recoveries of spiked drinking water, tap water and SRM1641d (mercury in water) were in acceptable range with a good precision (RSD) which were in agreement with the values obtained from graphite furnace atomic absorption spectrometer (GFAAS). The technique proposed in this study provides a rapid, simple, sensitive and selective detection method for Hg(II) in water samples.

  19. Systematic review and meta-analysis links autism and toxic metals and highlights the impact of country development status: Higher blood and erythrocyte levels for mercury and lead, and higher hair antimony, cadmium, lead, and mercury.

    PubMed

    Saghazadeh, Amene; Rezaei, Nima

    2017-10-03

    Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder that affects cognitive and higher cognitive functions. Increasing prevalence of ASD and high rates of related comorbidities has caused serious health loss and placed an onerous burden on the supporting families, caregivers, and health care services. Heavy metals are among environmental factors that may contribute to ASD. However, due to inconsistencies across studies, it is still hard to explain the association between ASD and toxic metals. Therefore the objective of this study was to investigate the difference in heavy metal measures between patients with ASD and control subjects. We included observational studies that measured levels of toxic metals (antimony, arsenic, cadmium, lead, manganese, mercury, nickel, silver, and thallium) in different specimens (whole blood, plasma, serum, red cells, hair and urine) for patients with ASD and for controls. The main electronic medical database (PubMed and Scopus) were searched from inception through October 2016. 52 studies were eligible to be included in the present systematic review, of which 48 studies were included in the meta-analyses. The hair concentrations of antimony (standardized mean difference (SMD)=0.24; 95% confidence interval (CI): 0.03 to 0.45) and lead (SMD=0.60; 95% confidence interval (CI): 0.17 to 1.03) in ASD patients were significantly higher than those of control subjects. ASD patients had higher erythrocyte levels of lead (SMD=1.55, CI: 0.2 to 2.89) and mercury (SMD=1.56, CI: 0.42 to 2.70). There were significantly higher blood lead levels in ASD patients (SMD=0.43, CI: 0.02 to 0.85). Sensitivity analyses showed that ASD patients in developed but not in developing countries have lower hair concentrations of cadmium (SMD=-0.29, CI: -0.46 to -0.12). Also, such analyses indicated that ASD patients in developing but not in developed lands have higher hair concentrations of lead (SMD=1.58, CI: 0.80 to 2.36) and mercury (SMD=0

  20. Robust silver-mediated imidazolo-dC base pairs in metal DNA: dinuclear silver bridges with exceptional stability in double helices with parallel and antiparallel strand orientation.

    PubMed

    Jana, Sunit Kumar; Guo, Xiurong; Mei, Hui; Seela, Frank

    2015-12-18

    A new unprecedented metal-mediated base pair was designed that stabilizes reverse Watson-Crick DNA (parallel strand orientation, ps) as well as canonical Watson-Crick DNA (antiparallel strand orientation, aps). This base pair contains two imidazolo-dC units decorated with furan residues. Tm measurements and spectroscopic studies reveal that each silver-mediated furano-imidazolo-dC forms exceptionally stable duplexes with ps and aps chain orientation. This stability increase by a silver-mediated base pair is the highest reported so far for ps and aps DNA helices.

  1. Novel regenerable sorbent based on Zr-Mn binary metal oxides for flue gas mercury retention and recovery.

    PubMed

    Xie, Jiangkun; Qu, Zan; Yan, Naiqiang; Yang, Shijian; Chen, Wanmiao; Hu, Lingang; Huang, Wenjun; Liu, Ping

    2013-10-15

    To capture and recover mercury from coal-fired flue gas, a series of novel regenerable sorbents based on Zr-Mn binary metal oxides were prepared and employed at a relatively low temperature. PXRD, TEM, TPR, XPS, and N2-adsorption methods were employed to characterize the sorbents. The Hg(0) adsorption performance of the sorbents was tested, and the effects of the main operation parameters and the gas components on the adsorption were investigated. Zr significantly improved the sorbent's mercury capacity, which was nearly 5mg/g for Zr0.5Mn0.5Oy. Furthermore, the spent sorbent could be regenerated by heating to 350°C, and the highly concentrated elemental mercury released could be facilely recycled. Therefore, a much greener process for mercury capture and recovery could be anticipated based on this regenerable sorbent. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Silver-copper alloy nanoparticles for metal enhanced luminescence

    NASA Astrophysics Data System (ADS)

    Chowdhury, Sanchari; Bhethanabotla, Venkat R.; Sen, Rajan

    2009-09-01

    Large metal enhanced luminescence was realized at the vicinity of easily fabricated Ag-Cu alloy nanoparticles upon tuning of their surface plasmon resonance spectra by changing only one experimental variable—the annealing temperature, for maximum spectral overlap with the emission and excitation spectra of the luminophores. We observed strong emission enhancement of luminophores (141.48±19.20 times for Alexa Fluor 488 and 23.91±12.37 times for Alexa Fluor 594) at the vicinity of these Ag-Cu nanoparticles, which is significantly larger than for pure Ag nanoparticles. We present theoretical calculations to provide insights into these experimental findings.

  3. Enhanced Emission of Highly Labeled DNA Oligomers near Silver Metallic Surfaces

    PubMed Central

    Malicka, Joanna; Gryczynski, Ignacy; Lakowicz, Joseph R.

    2009-01-01

    Fluorescein is a widely used fluorescent probe in DNA analysis. One difficulty with fluorescein is its self-quenching due to resonance energy transfer between the residues, which results in decreased intensities with increasing labeling density. We examined the emission spectral properties of DNA oligomers labeled with one or five fluorescein residues. The emission intensity of the more highly labeled oligomer was decreased due to self-quenching. The self-quenching was mostly eliminated when this oligomer was held ~90 Å from the surface of metallic silver particles. The intensities increased 7- and 19-fold for the oligomers with one or five fluoresceins, respectively. The increased intensity did not result in increased photobleaching. These results suggest the use of substrates coated with silver particles for increased sensitivity on DNA arrays or for DNA analysis. PMID:14632044

  4. Facile synthesis of gold-silver alloy nanoparticles for application in metal enhanced bioluminescence.

    PubMed

    Abhijith, K S; Sharma, Richa; Ranjan, Rajeev; Thakur, M S

    2014-07-01

    In the present study we explored metal enhanced bioluminescence in luciferase enzymes for the first time. For this purpose a simple and reproducible one pot synthesis of gold-silver alloy nanoparticles was developed. By changing the molar ratio of tri-sodium citrate and silver nitrate we could synthesize spherical Au-Ag colloids of sizes ranging from 10 to 50 nm with a wide range of localized surface plasmon resonance (LSPR) peaks (450-550 nm). The optical tunability of the Au-Ag colloids enabled their effective use in enhancement of bioluminescence in a luminescent bacterium Photobacterium leiognathi and in luciferase enzyme systems from fireflies and bacteria. Enhancement of bioluminescence was 250% for bacterial cells, 95% for bacterial luciferase and 52% for firefly luciferase enzyme. The enhancement may be a result of energy transfer or plasmon induced enhancement. Such an increase can lead to higher sensitivity in detection of bioluminescent signals with potential applications in bio-analysis.

  5. Mercury-based traditional herbo-metallic preparations: a toxicological perspective.

    PubMed

    Kamath, Sushant U; Pemiah, Brindha; Sekar, Rajan K; Krishnaswamy, Sridharan; Sethuraman, Swaminathan; Krishnan, Uma Maheswari

    2012-06-01

    This review aims to explore the toxicological aspects of mercury-based herbo-metallic preparations like cinnabar and "Rasasindura" that are primarily composed of mercuric sulfide (HgS). Cinnabar-containing preparations have been used extensively in Indian and Chinese systems of medicine for treatment of chronic ailments like syphilis, high fever, pneumonia, insomnia, nervous disorders, deafness, and paralysis of the tongue. Contrary to Western medicine, which does not promote the use of mercury due to its toxic effects, Indian and Chinese traditional practitioners believe that mercury-based formulations have potent therapeutic efficacy, while there is no toxicity due to the unique and repeated purification processes employed during preparation. However, lack of proper pharmacovigilance and widespread self-medication has resulted in undesirable effects to certain sections of the consumers of these preparations, which have contributed to the negative publicity for these forms of medicine. Variations in the quality of the preparations coupled with the lack of understanding of the differences in the recommended dosages and treatment strategies adopted by traditional medicine practitioners, further fuels concerns in the Western world on the safety and efficacy of traditional medicine. But in spite of these concerns, concerted efforts to understand the biological interactions and transformations of these preparations are yet to gain momentum. Although scattered reports on the toxicity of these preparations are available in literature, their mechanism of action has not been conclusively established. Long-term pharmacotherapeutic and in-depth toxicity studies are needed to address the apprehensions raised by these herbo-metallic preparations. This review highlights the lacunae in the studies conducted thus far, and assesses the need for further studies to provide significant data to establish the safety and efficacy of such preparations, as well as develop gold standards

  6. A facile route towards large area self-assembled nanoscale silver film morphologies and their applications towards metal enhanced fluorescence

    DOE PAGES

    Hohenberger, Erik; Freitag, Nathan; Rosenmann, Daniel; ...

    2017-04-19

    Here, we present a facile method for fabricating nanostructured silver films containing a high density of nanoscopic gap features through a surface directed phenomenon utilizing nanoporous scaffolds rather than through traditional lithographic patterning processes. This method enables tunability of the silver film growth by simply adjusting the formulation and processing conditions of the nanoporous film prior to metallization. We further demonstrate that this process can produce nanoscopic gaps in thick (100 nm) silver films supporting localized surface plasmon resonance with large field amplification within the gaps while enabling launching of propagating surface plasmons within the silver grains. These enhanced fieldsmore » provide metal enhanced fluorescence with enhancement factors as high as 21 times compared to glass, as well as enable visualization of single fluorophore emission. This work provides a low-cost rapid approach for producing novel nanostructures capable of broadband fluorescence amplification, with potential applications including plasmonic and fluorescence based optical sensing and imaging applications.« less

  7. Got Mercury?

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie E.; McCoy, J. Torin; Garcia, Hector D.; James, John T.

    2009-01-01

    Many of the operational and payload lighting units used in various spacecraft contain elemental mercury. If these devices were damaged on-orbit, elemental mercury could be released into the cabin. Although there are plans to replace operational units with alternate light sources, such as LEDs, that do not contain mercury, mercury-containing lamps efficiently produce high quality illumination and may never be completely replaced on orbit. Therefore, exposure to elemental mercury during spaceflight will remain possible and represents a toxicological hazard. Elemental mercury is a liquid metal that vaporizes slowly at room temperature. However, it may be completely vaporized at the elevated operating temperatures of lamps. Although liquid mercury is not readily absorbed through the skin or digestive tract, mercury vapors are efficiently absorbed through the respiratory tract. Therefore, the amount of mercury in the vapor form must be estimated. For mercury releases from lamps that are not being operated, we utilized a study conducted by the New Jersey Department of Environmental Quality to calculate the amount of mercury vapor expected to form over a 2-week period. For longer missions and for mercury releases occurring when lamps are operating, we conservatively assumed complete volatilization of the available mercury. Because current spacecraft environmental control systems are unable to remove mercury vapors, both short-term and long-term exposures to mercury vapors are possible. Acute exposure to high concentrations of mercury vapors can cause irritation of the respiratory tract and behavioral symptoms, such as irritability and hyperactivity. Chronic exposure can result in damage to the nervous system (tremors, memory loss, insomnia, etc.) and kidneys (proteinurea). Therefore, the JSC Toxicology Group recommends that stringent safety controls and verifications (vibrational testing, etc.) be applied to any hardware that contains elemental mercury that could yield

  8. Got Mercury?

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie E.; McCoy, J. Torin; Garcia, Hector D.; James, John T.

    2009-01-01

    Many of the operational and payload lighting units used in various spacecraft contain elemental mercury. If these devices were damaged on-orbit, elemental mercury could be released into the cabin. Although there are plans to replace operational units with alternate light sources, such as LEDs, that do not contain mercury, mercury-containing lamps efficiently produce high quality illumination and may never be completely replaced on orbit. Therefore, exposure to elemental mercury during spaceflight will remain possible and represents a toxicological hazard. Elemental mercury is a liquid metal that vaporizes slowly at room temperature. However, it may be completely vaporized at the elevated operating temperatures of lamps. Although liquid mercury is not readily absorbed through the skin or digestive tract, mercury vapors are efficiently absorbed through the respiratory tract. Therefore, the amount of mercury in the vapor form must be estimated. For mercury releases from lamps that are not being operated, we utilized a study conducted by the New Jersey Department of Environmental Quality to calculate the amount of mercury vapor expected to form over a 2-week period. For longer missions and for mercury releases occurring when lamps are operating, we conservatively assumed complete volatilization of the available mercury. Because current spacecraft environmental control systems are unable to remove mercury vapors, both short-term and long-term exposures to mercury vapors are possible. Acute exposure to high concentrations of mercury vapors can cause irritation of the respiratory tract and behavioral symptoms, such as irritability and hyperactivity. Chronic exposure can result in damage to the nervous system (tremors, memory loss, insomnia, etc.) and kidneys (proteinurea). Therefore, the JSC Toxicology Group recommends that stringent safety controls and verifications (vibrational testing, etc.) be applied to any hardware that contains elemental mercury that could yield

  9. Bio-functionalized silver nanoparticles for selective colorimetric sensing of toxic metal ions and antimicrobial studies

    NASA Astrophysics Data System (ADS)

    Vinod Kumar, V.; Anbarasan, S.; Christena, Lawrence Rene; SaiSubramanian, Nagarajan; Philip Anthony, Savarimuthu

    2014-08-01

    Hibiscus Sabdariffa (Gongura) plant extracts (leaves (HL) and stem (HS) were used for the first time in the green synthesis of bio-functionalized silver nanoparticles (AgNPs). The bio-functionality of AgNPs has been successfully utilized for selective colorimetric sensing of potentially health and environmentally hazardous Hg2+, Cd2+ and Pb2+ metal ions at ppm level in aqueous solution. Importantly, clearly distinguishable colour for all three metal ions was observed. The influence of extract preparation condition and pH were also explored on the formation of AgNPs. Both selectivity and sensitivity differed for AgNPs synthesized from different parts of the plant. Direct correlation between the stability of green synthesized AgNPs at different pH and its antibacterial effects has been established. The selective colorimetric sensing of toxic metal ions and antimicrobial effect of green synthesized AgNPs demonstrated the multifunctional applications of green nanotechnology.

  10. Metals, Oxidative Stress and Neurodegeneration: A focus on Iron, Manganese and Mercury

    PubMed Central

    Farina, Marcelo; Avila, Daiana Silva; da Rocha, João Batista Teixeira

    2013-01-01

    Essential metals are crucial for the maintenance of cell homeostasis. Among the 23 elements that have known physiological functions in humans, 12 are metals, including iron (Fe) and manganese (Mn). Nevertheless, excessive exposure to these metals may lead to pathological conditions, including neurodegeneration. Similarly, exposure to metals that do not have known biological functions, such as mercury (Hg), also present great health concerns. This reviews focuses on the neurodegenerative mechanisms and effects of Fe, Mn and Hg. Oxidative stress (OS), particularly in mitochondria, is a common feature of Fe, Mn and Hg toxicity. However, the primary molecular targets triggering OS are distinct. Free cationic iron is a potent pro-oxidant and can initiate a set of reactions that form extremely reactive products, such as OH•. Mn can oxidize dopamine (DA), generating reactive species and also affect mitochondrial function, leading to accumulation of metabolites and culminating with OS. Cationic Hg forms have strong affinity for nucleophiles, such as –SH and –SeH. Therefore, they target critical thiol- and selenol-molecules with antioxidant properties. Finally, we address the main sources of exposure to these metals, their transport mechanisms into the brain, and therapeutic modalities to mitigate their neurotoxic effects. PMID:23266600

  11. Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury.

    PubMed

    Farina, Marcelo; Avila, Daiana Silva; da Rocha, João Batista Teixeira; Aschner, Michael

    2013-04-01

    Essential metals are crucial for the maintenance of cell homeostasis. Among the 23 elements that have known physiological functions in humans, 12 are metals, including iron (Fe) and manganese (Mn). Nevertheless, excessive exposure to these metals may lead to pathological conditions, including neurodegeneration. Similarly, exposure to metals that do not have known biological functions, such as mercury (Hg), also present great health concerns. This review focuses on the neurodegenerative mechanisms and effects of Fe, Mn and Hg. Oxidative stress (OS), particularly in mitochondria, is a common feature of Fe, Mn and Hg toxicity. However, the primary molecular targets triggering OS are distinct. Free cationic iron is a potent pro-oxidant and can initiate a set of reactions that form extremely reactive products, such as OH. Mn can oxidize dopamine (DA), generating reactive species and also affect mitochondrial function, leading to accumulation of metabolites and culminating with OS. Cationic Hg forms have strong affinity for nucleophiles, such as -SH and -SeH. Therefore, they target critical thiol- and selenol-molecules with antioxidant properties. Finally, we address the main sources of exposure to these metals, their transport mechanisms into the brain, and therapeutic modalities to mitigate their neurotoxic effects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Effect of heavy metals on the stabilization of mercury(II) by DTCR in desulfurization solutions.

    PubMed

    Hou, Jiaai; Lu, Rongjie; Sun, Mingyang; Baig, Shams Ali; Tang, Tingmei; Cheng, Lihua; Xu, Xinhua

    2012-05-30

    Several heavy metals, including Cu(2+), Ni(2+), Pb(2+), and Zn(2+), were investigated in simulated desulfurization solutions to evaluate their interferences with Hg(2+) during the reaction with dithiocarbamate type chelating resin (DTCR). Appropriate DTCR dosage and the effect of pH were also explored with respect to restoration of high Hg(2+) precipitation efficiency and reduction of mercury concentrations. The experimental results suggested that increasing heavy metal concentration inhibited Hg(2+) precipitation efficiency to a considerable extent and the inhibition order of the four heavy metals was Cu(2+)>Ni(2+)>Pb(2+)>Zn(2+). However, the coordination ability was closely related to the configuration and the orbital hybridization of each metal. In the cases of Cu(2+) and Pb(2+), increased DTCR dosage was beneficial to Hg(2+) precipitation, which could lay the foundation of practical applications of DTCR dosage for industrial wastewater treatment. The enhanced Hg(2+) precipitation performance seen for increasing pH might have come from the deprotonation of sulfur atoms on the DTCR functional groups and the formation of metal hydroxides (M(OH)(2), M=Cu, Pb, Hg).

  13. Contact resistivity decrease at a metal/semiconductor interface by a solid-to-liquid phase transitional metallo-organic silver.

    PubMed

    Shin, Dong-Youn; Seo, Jun-Young; Kang, Min Gu; Song, Hee-eun

    2014-09-24

    We present a new approach to ensure the low contact resistivity of a silver paste at a metal/semiconductor interface over a broad range of peak firing temperatures by using a solid-to-liquid phase transitional metallo-organic silver, that is, silver neodecanoate. Silver nanoclusters, thermally derived from silver neodecanoate, are readily dissolved into the melt of metal oxide glass frit even at low temperatures, at which point the molten metal oxide glass frit lacks the dissociation capability of bulk silver into Ag(+) ions. In the presence of O(2-) ions in the melt of metal oxide glass frit, the redox reaction from Ag(+) to Ag(0) augments the noble-metal-assisted etching capability to remove the passivation layer of silicon nitride. Moreover, during the cooling stage, the nucleated silver atoms enrich the content of silver nanocolloids in the solidified metal oxide glass layer. The resulting contact resistivity of silver paste with silver neodecanoate at the metal/semiconductor interface thus remains low-between 4.12 and 16.08 mΩ cm(2)-whereas without silver neodecanoate, the paste exhibits a contact resistivity between 2.61 and 72.38 mΩ cm(2) in the range of peak firing temperatures from 750 to 810 °C. The advantage of using silver neodecanoate in silver paste becomes evident in that contact resistivity remains low over the broad range of peak firing temperatures, thus providing greater flexibility with respect to the firing temperature required in silicon solar cell applications.

  14. Got Mercury?

    NASA Astrophysics Data System (ADS)

    Meyers, Valerie E.; McCoy, Torin J.; Garcia, Hector D.; James, John T.

    2010-09-01

    Many lamps used in various spacecraft contain elemental mercury, which is efficiently absorbed by the lungs as a vapor. The liquid metal vaporizes slowly at room temperature, but may vaporize completely when lamps are operating. Because current spacecraft environmental control systems are unable to remove mercury vapors, we considered short-term and long-term exposures. We estimated mercury vapor releases from stowed lamps during missions lasting ≤ 30 days, whereas we conservatively assumed complete vaporization from stowed lamps during missions lasting > 30 days and from operating lamps regardless of mission duration. The toxicity of mercury and its lack of removal have led Johnson Space Center’s Toxicology Group to recommend stringent safety controls and verifications for hardware containing elemental mercury that could yield airborne mercury vapor concentrations > 0.1 mg/m3 in the total spacecraft atmosphere for exposures lasting ≤ 30 days, or concentrations > 0.01 mg/m3 for exposures lasting > 30 days.

  15. Effect of chlorine in clay-mineral specimens prepared on silver metal-membrane mounts for X-ray powder diffraction analysis

    USGS Publications Warehouse

    Poppe, L.J.; Commeau, J.A.; Pense, G.M.

    1989-01-01

    Silver metal-membrane filters are commonly used as substrates in the preparation of oriented clay-mineral specimens for X-ray powder diffraction (XRD). The silver metal-membrane filters, however, present some problems after heat treatment if either the filters or the samples contain significant amounts of chlorine. At elevated temperature, the chloride ions react with the silver substrate to form crystalline compounds. These compounds change the mass-absorption coefficient of the sample, reducing peak intensities and areas and, therefore, complicating the semiquantitative estimation of clay minerals. A simple procedure that eliminates most of the chloride from a sample and the silver metal-membrane substrate is presented here.

  16. Structure analysis and models for optical constants of discontinuous metallic silver films

    NASA Astrophysics Data System (ADS)

    Singer, R. R.; Leitner, A.; Aussenegg, F. R.

    1995-02-01

    Existing models for optical properties of metallic particle films differ in their treatment of the mechanisms for particle interaction. For model comparison and improvement we fit the calculated optical spectra to obtained ones experimentally by variation of several structural parameters. The deviation of the model's structure parameters from those obtained experimentally (by analysis of transmission electron microscope pictures) permits comparison of models. We find that for thermally treated silver island films in the mass thickness range 1-6 nm the particle interaction is described best by a quasi-static dipole-dipole interaction, neglecting retardation effects and mirror dipole effects.

  17. Cathodic stripping voltammetry of cysteine using silver and copper solid amalgam electrodes.

    PubMed

    Yosypchuk, B; Novotný, L

    2002-04-01

    Silver and copper solid amalgam electrodes (modified with mercury meniscus and based on amalgamation of fine metallic powder) have been successfully tested for cathodic stripping voltammetry of cysteine. In the case of the silver solid amalgam electrode AgSAE the relative standard deviation (RSD) and the detection limit (3 SD) reached +/-2.3% and 3x10(-9) mol l(-1) cysteine, respectively.

  18. Hydrophilic silver nanoparticles with tunable optical properties: application for the detection of heavy metals in water

    PubMed Central

    Mochi, Federico; Ciotta, Erica; Casalboni, Mauro; De Matteis, Fabio; Fontana, Laura; Testa, Giovanna; Fratoddi, Ilaria

    2016-01-01

    Due their excellent chemo-physical properties and ability to exhibit surface plasmon resonance, silver nanoparticles (AgNPs) have become a material of choice in various applications, such as nanosensors, electronic devices, nanobiotechnology and nanomedicine. In particular, from the environmental monitoring perspective, sensors based on silver nanoparticles are in great demand because of their antibacterial and inexpensive synthetic method. In the present study, we synthesized AgNPs in water phase using silver nitrate as precursor molecules, hydrophilic thiol (3-mercapto-1-propanesulfonic acid sodium salt, 3MPS) and sodium borohydride as capping and reducing agents, respectively. The AgNPs were characterized using techniques such as surface plasmon resonance (SPR) spectroscopy, dynamic light scattering (DLS), zeta potential (ζ-potential) measurements and scanning tunneling microscopy (STM). Further, to demonstrate the environmental application of our AgNPs, we also applied them for heavy metal sensing by detecting visible color modification due to SPR spectral changes. We found that these negatively charged AgNPs show good response to nickel (II) and presented good sensibility properties for the detection of low amount of ions in water in the working range of 1.0–0.1 ppm. PMID:28144514

  19. Hydrophilic silver nanoparticles with tunable optical properties: application for the detection of heavy metals in water.

    PubMed

    Prosposito, Paolo; Mochi, Federico; Ciotta, Erica; Casalboni, Mauro; De Matteis, Fabio; Venditti, Iole; Fontana, Laura; Testa, Giovanna; Fratoddi, Ilaria

    2016-01-01

    Due their excellent chemo-physical properties and ability to exhibit surface plasmon resonance, silver nanoparticles (AgNPs) have become a material of choice in various applications, such as nanosensors, electronic devices, nanobiotechnology and nanomedicine. In particular, from the environmental monitoring perspective, sensors based on silver nanoparticles are in great demand because of their antibacterial and inexpensive synthetic method. In the present study, we synthesized AgNPs in water phase using silver nitrate as precursor molecules, hydrophilic thiol (3-mercapto-1-propanesulfonic acid sodium salt, 3MPS) and sodium borohydride as capping and reducing agents, respectively. The AgNPs were characterized using techniques such as surface plasmon resonance (SPR) spectroscopy, dynamic light scattering (DLS), zeta potential (ζ-potential) measurements and scanning tunneling microscopy (STM). Further, to demonstrate the environmental application of our AgNPs, we also applied them for heavy metal sensing by detecting visible color modification due to SPR spectral changes. We found that these negatively charged AgNPs show good response to nickel (II) and presented good sensibility properties for the detection of low amount of ions in water in the working range of 1.0-0.1 ppm.

  20. Distance-dependent metal enhanced fluorescence by flowerlike silver nanostructures fabricated in liquid crystalline phase

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Yang, Chengliang; Zhang, Guiyang; Peng, Zenghui; Yao, Lishuang; Wang, Qidong; Cao, Zhaoliang; Mu, Quanquan; Xuan, Li

    2017-10-01

    Flowerlike silver nanostructure substrates were fabricated in liquid crystalline phase and the distance dependent property of metal enhanced fluorescence for such substrate was studied for the first time. The distance between silver nanostructures and fluorophore was controlled by the well-established layer-by-layer (LbL) technique constructing alternate layers of poly (allylamine hydrochloride) (PAH) and poly (sodium 4-styrenesulfonate) (PSS). The Rhodamine 6G (R6G) molecules were electrostatically attached to the outmost negative charged PSS layer. The fluorescence enhancement factor of flowerlike nanostructure substrate increased firstly and then decreased with the distance increasing. The best enhanced fluorescence intensity of 71 fold was obtained at a distance of 5.2 nm from the surface of flowerlike silver nanostructure. The distance for best enhancement effect is an instructive parameter for the applications of such substrates and could be used in the practical MEF applications with the flowerlike nanostructure substrates fabricated in such way which is simple, controllable and cost-effective.

  1. Determination of mercurous chloride and total mercury in mercury ores

    USGS Publications Warehouse

    Fahey, J.J.

    1937-01-01

    A method for the determination of mercurous chloride and total mercury on the same sample is described. The mercury minerals are volatilized in a glass tube and brought into intimate contact with granulated sodium carbonate. The chlorine is fixed as sodium chloride, determined with silver nitrate, and computed to mercurous chloride. The mercury is collected on a previously weighed gold coil and weighed.

  2. Materials characterization of silver chalcogenide programmable metallization cells

    NASA Astrophysics Data System (ADS)

    Hilt, Lyndee Lee

    The standardless, quantitative characterization technique of Rutherford Backscattering Spectrometry (RBS) is used to study the photodissolution, thermal diffusion, and materials stability of Ag-chalcogenides ternaries. The photodissolution process of Ag in As2S3 follows the well-known step-like process driven by the chemical potential of Ag with an end solubility of 44.4 at. % Ag. Thermal doping of Ag has a small induction period of 5 minutes before diffusion initiates due to the thermal activation barrier. Both photodissolution and thermal diffusion of Ag in GexSe 1-x show a Gaussian distribution from which the diffusion coefficient is determined by using RBS and solving Fick's diffusion equation. The end Ag solubility for photodissolution and thermal diffusion in GexSe 1-x is 33.3 and 34.8 at. % Ag, respectively. The metastable state that Ag-chalcogenide thin films form upon evaporation contribute to the thermal instability of Ag-As-S and Ag-Ge-Se when annealed at temperatures below the glass transition temperature. Activation energies for As and Ge outdiffusion are obtained from Arrhenius plots of the areal density of material remaining after annealing. The activation energies are less than 0.2 eV for both air and reducing atmosphere ambient, indicating that the thermal barrier is readily overcome. The outdiffusing species are oxides and, at sufficient temperatures, a volatile chalcogenide component. Photodissolution of Ag in chalcogenides create a solid state electrochemical solution. The application of an applied voltage to contacts changes the high impedance state, >100 MO, to a low impedance state, <25 O, by the electrodeposition of Ag creating a programmable metallization cell. The stability of the electrodeposit connection may be further enhanced due to the ability for continued electrodeposition. Ag-Ge-Se device samples show current-voltage characteristic electrochemical curves that are. dependent on the homogeneity of the doping mechanism. In summary

  3. Concentrations of mercury and other metals in black bass (Micropterus spp.) from Whiskeytown Lake, Shasta County, California, 2005

    USGS Publications Warehouse

    May, Jason T.; Hothem, Roger L.; Bauer, Marissa L.; Brown, Larry R.

    2012-01-01

    This report presents the results of a reconnaissance study conducted by the U.S. Geological Survey (USGS) to determine mercury (Hg) and other selected metal concentrations in Black bass (Micropterus spp.) from Whiskeytown Lake, Shasta County, California. Total mercury concentrations were determined by cold-vapor atomic absorption spectroscopy (CVAAS) in fillets and whole bodies of each sampled fish. Selected metals scans were performed on whole bodies (less the fillets) by inductively coupled plasma–mass spectroscopy (ICP-MS) and inductively coupled plasma–optical emission spectroscopy (ICP-OES). Mercury concentrations in fillet samples ranged from 0.06 to 0.52 micrograms per gram (μg/g) wet weight (ww). Total mercury (HgT) in the same fish whole-body samples ranged from 0.04 to 0.37 (μg/g, ww). Mercury concentrations in 17 percent of "legal catch size" (≥305 millimeters in length) were above the U.S. Environmental Protection Agency water-quality criterion for the protection of human health of 0.30 μg/g (ww). These data will serve as a baseline for future monitoring efforts within Whiskeytown Lake.

  4. Medico legal aspects of self-injection of metallic mercury in cases of suicide or self-harming.

    PubMed

    Da Broi, Ugo; Moreschi, Carlo; Colatutto, Antonio; Marcon, Barbara; Zago, Silvia

    2017-08-01

    Metallic mercury may be self-injected for suicidal or self-harm purposes or sometimes for superstitious or other inadvisable reasons. Local tissue or systemic consequences such as mercurialism can frequently occur in cases of subcutaneous or deep injection, while death due to pulmonary embolism and cardiac, brain, hepatic or renal toxicity may occur in cases of high dosage intravenous administration. The aim of this review is to focus on the diagnostic difficulties facing coroners and forensic pathologists when the courts require confirmation that evidence of self-injection of metallic mercury is the result of suicide or self-harming. Forensic examination performed on the corpses of victims who died in or out of hospital or on surviving injured or intoxicated victims showing signs of mercurialism, demands the careful evaluation of the death scene, of all related circumstances and of the clinical and autopsy data. Close interaction between forensic pathologists and toxicologists is also needed to identify and quantify mercury levels in blood, urine and tissue. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  5. Laser brazing of inconel 718 alloy with a silver based filler metal

    NASA Astrophysics Data System (ADS)

    Khorram, A.; Ghoreishi, M.; Torkamany, M. J.; Bali, M. M.

    2014-03-01

    In the presented study laser brazing of an inconel 718 alloy with silver based filler metal using 400 W pulsed Nd:YAG laser is investigated. Laser brazing was performed with varying laser frequency, pulse width, process speed and gap distance. The effect of preheating on wetting and spreading also was studied. Brazing geometrical images were observed using an optical microscope. The composition analysis and microstructure of the filler metal and brazed joints were examined using X-ray diffraction analyzer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Micro-hardness and tensile test were performed for investigation of mechanical properties. The experimental observations show that filler metal consist of α-Ag solid solution, ά-Cu solid solution surround by the α-Ag solid solution and eutectic structure. Phases of the brazed joint are similar to the filler metal. The results indicate that the filler metal has adequate wetting and spreading on inconel 718 and the wetting angle depends on the heat input significantly. Interdiffusion occurs in laser brazing and the average thickness of reaction layer is approximately 2.5 μm. Whenever the gap is big, it is needed to use longer pulse width in order to have a better melting flow. Preheating has significant influence on wetting and spreading of the filler metal.

  6. Predicted energy densitites for nickel-hydrogen and silver-hydrogen cells embodying metallic hydrides for hydrogen storage

    NASA Technical Reports Server (NTRS)

    Easter, R. W.

    1974-01-01

    Simplified design concepts were used to estimate gravimetric and volumetric energy densities for metal hydrogen battery cells for assessing the characteristics of cells containing metal hydrides as compared to gaseous storage cells, and for comparing nickel cathode and silver cathode systems. The silver cathode was found to yield superior energy densities in all cases considered. The inclusion of hydride forming materials yields cells with very high volumetric energy densities that also retain gravimetric energy densities nearly as high as those of gaseous storage cells.

  7. Structure, dynamic and energetic of mixed transition metal clusters. A computational study of mixed clusters of silver and nickel

    NASA Astrophysics Data System (ADS)

    Hewage, J. W.; Rupika, W. L.; Amar, F. G.

    2012-11-01

    Classical molecular dynamics simulation (MD) with Sutton-Chen potential has been used to generate the minimum energy and to study the thermodynamic and dynamic properties of mixed transition metal cluster motifs of Ag n Ni(13- n) for n ≤ 13. Literature results of thirteen particle clusters of neat silver and nickel atoms were first reproduced before the successive replacement of the silver atom by nickel. Calculation was repeated for both silver-centred and nickel-centred clusters. It was found that the nickel-centred clusters were more stable than the silver-centred clusters. Heat capacities and hence the melting points of silver and nickel-centred clusters were determined by using the Histogram method. Species-centric order parameters developed by Hewage and Amar were used to understand the dynamic behaviour in the transition of silver-centred clusters to more stable nickel-centred clusters. This species-centric order parameter calculation further confirmed the stability of nickel-centred clusters over those of silver-centred species.

  8. Release of the self-quenching of fluorescence near silver metallic surfaces

    PubMed Central

    Lakowicz, Joseph R.; Malicka, Joanna; D’Auria, Sabato; Gryczynski, Ignacy

    2009-01-01

    Fluorescein is one of the most widely used fluorescent probes in microscopy, biotechnology, and clinical assays. One dificulty with fluorescein is its self-quenching, which results in decreased intensities with increasing labeling density. In this study we examined human serum albumin (HSA), which contained one to nine covalently linked fluorescein molecules per molecule of HSA. The occurrence of homo resonance energy transfer for labeling ratios greater than 1 were confirmed by decreases in the relative quantum yields, anisotropies, and lifetimes. We found that most of the self-quenching can be partially eliminated by proximity of the labeled protein to metallic silver particles. These results suggest the use of heavily labeled proteins and metallic colloids to obtain ultrabright reagents for use in immunoassays, imaging, and other applications. PMID:12895465

  9. Low-temperature metallic alloying of copper and silver nanoparticles with gold nanoparticles through digestive ripening.

    PubMed

    Smetana, Alexander B; Klabunde, Kenneth J; Sorensen, Christopher M; Ponce, Audaldo A; Mwale, Benny

    2006-02-09

    We describe a remarkable and simple alloying procedure in which noble metal intermetallic nanoparticles are produced in gram quantities via digestive ripening. This process involves mixing of separately prepared colloids of pure Au and pure Ag or Cu particles and then heating in the presence of an alkanethiol under reflux. The result after 1 h is alloy nanoparticles. Particles synthesized according to this procedure were characterized by UV-vis spectroscopy, EDX analysis, and high-resolution electron microscopy, the results of which confirm the formation of alloy particles. The particles of 5.6+/-0.5 nm diameter for Au/Ag and 4.8+/-1.0 nm diameter for Cu/Au undergo facile self-assembly to form 3-D superlattice ordering. It appears that during this digestive ripening process, the organic ligands display an extraordinary chemistry in which atom transfer between atomically pure copper, silver, and gold metal nanoparticles yields monodisperse alloy nanoparticles.

  10. Low-Energy Mechanochemistry Formation of Silver and Copper Metals from Hemioxides

    NASA Astrophysics Data System (ADS)

    Szwarc, H.; Gasgnier, M.

    1998-02-01

    A number of oxides and mixtures of oxides with or without carbon were ball-milled in homemade stainless steel vessels and the resulting compounds examined by X-ray powder diffraction. The expected trend to amorphization was systematically observed. Moreover, chemical action developed in most cases. Copper oxides tend to be reduced from CuO to Cu 2O and metallic copper forms at the surface of the balls and diffuses a few micrometers within the ball steel as revealed by energy-dispersive X-ray spectroscopy. Mixtures of Ag 2O with carbon lead to small nuggets and square platelets of metallic silver, and YBCO superconductor is decomposed into Y 2O 3, Cu 2O, and some unidentified compounds. The behavior of the balls was observed visually: in the powder, an overall rotating motion takes place, revealing a crushing process instead of the expected smashing one.

  11. Morphological evolution of silver nanoparticles and its effect on metal-induced chemical etching of silicon.

    PubMed

    Baek, Seong-Ho; Kong, Bo Hyun; Cho, Hyung Koun; Kim, Jae Hyun

    2013-05-01

    In this report, we have demonstrated the morphological evolution of the silver nanoparticles (AgNPs) by controlling the growth conditions and its effect on morphology of silicon (Si) during metal-induced electroless etching (MICE). Self-organized AgNPs with peculiarly shape were synthesized by an electroless plating method in a conventional aqueous hydrofluoric acid (HF) and silver nitrate (AgNO3) solution. AgNP nuclei were densely created on Si wafer surface, and they had a strong tendency to merge and form continuous metal films with increasing AgNO3 concentrations. Also, we have demonstrated that the fabrication of aligned Si nanowire (SiNW) arrays in large area of p-Si (111) substrates by MICE in a mixture of HF and hydrogen peroxide (H2O2) solution. We have found that the morphology of the initial AgNPs and oxidant concentration (H2O2) greatly influence on the shape of the SiNW etching profile. The morphological results showed that AgNP shapes were closely related to the etching direction of SiNWs, that is, the spherical AgNPs preferred to move vertical to the Si substrate, whereas non-spherical AgNPs changed their movement to the [100] directions. In addition, as the etching activity was increased at higher H2O2 concentrations, AgNPs had a tendency to move from the original [111] direction to the energetically preferred [100] direction.

  12. SERS and DFT study of water on metal cathodes of silver, gold and platinum nanoparticles.

    PubMed

    Li, Jian-Feng; Huang, Yi-Fan; Duan, Sai; Pang, Ran; Wu, De-Yin; Ren, Bin; Xu, Xin; Tian, Zhong-Qun

    2010-03-14

    The observed surface-enhanced Raman scattering (SERS) spectra of water adsorbed on metal film electrodes of silver, gold, and platinum nanoparticles were used to infer interfacial water structures on the basis of the change of the electrochemical vibrational Stark tuning rates and the relative Raman intensity of the stretching and bending modes. To explain the increase of the relative Raman intensity ratio of the bending and stretching vibrations at the very negative potential region, density functional theory calculations provide the conceptual model. The specific enhancement effect for the bending mode was closely associated with the water adsorption structure in a hydrogen bonded configuration through its H-end binding to surface sites with large polarizability due to strong cathodic polarization. The present results allow us to propose that interfacial water molecules exist on these metal cathodes with different hydrogen bonding interactions, i.e., the HO-HH-Pt dihydrogen bond for platinum and the HO-HAg(Au) for silver and gold. This dihydrogen bonding configuration on platinum is further supported from observation of the Pt-H stretching band. Furthermore, the influences of the pH effect on SERS intensity and vibrational Stark effect on the gold electrode indicate that the O-H stretching SERS signals are enhanced in the alkaline solutions because of the hydrated hydroxide surface species adsorbed on the gold cathode.

  13. Transport and transformation of mercury during wet flue gas cleaning process of nonferrous metal smelting.

    PubMed

    Liu, Zhilou; Wang, Dongli; Peng, Bing; Chai, Liyuan; Liu, Hui; Yang, Shu; Yang, Bentao; Xiang, Kaisong; Liu, Cao

    2017-08-12

    Reducing mercury emission is hot topic for international society. The first step for controlling mercury in fuel gas is to investigate mercury distribution and during the flue gas treatment process. The mercury transport and transformation in wet flue gas cleaning process of nonferrous smelting industry was studied in the paper with critical important parameters, such as the solution temperature, Hg(0) concentration, SO2 concentration, and Hg(2+) concentration at the laboratory scale. The mass ratio of the mercury distribution in the solution, flue gas, sludge, and acid fog from the simulated flue gas containing Hg(2+) and Hg(0) was 49.12~65.54, 18.34~35.42, 11.89~14.47, and 1.74~3.54%, respectively. The primary mercury species in the flue gas and acid fog were gaseous Hg(0) and dissolved Hg(2+). The mercury species in the cleaning solution were dissolved Hg(2+) and colloidal mercury, which accounted for 56.56 and 7.34% of the total mercury, respectively. Various mercury compounds, including Hg2Cl2, HgS, HgCl2, HgSO4, and HgO, existed in the sludge. These results for mercury distribution and speciation are highly useful in understanding mercury transport and transformation during the wet flue gas cleaning process. This research is conducive for controlling mercury emissions from nonferrous smelting flue gas and by-products.

  14. Geochemistry, geochronology, mineralogy, and geology suggest sources of and controls on mineral systems in the southern Toquima Range, Nye County, Nevada; with geochemistry maps of gold, silver, mercury, arsenic, antimony, zinc, copper, lead, molybdenum, bismuth, iron, titanium, vanadium, cobalt, beryllium, boron, fluorine, and sulfur; and with a section on lead associations, mineralogy and paragenesis, and isotopes

    USGS Publications Warehouse

    Shawe, Daniel R.; Hoffman, James D.; Doe, Bruce R.; Foord, Eugene E.; Stein, Holly J.; Ayuso, Robert A.

    2003-01-01

    distribution patterns that suggest specific sources and lithologic influences on deposition, as well as multiple episodes of mineralization. Principal episodes of mineralization are Late Cretaceous (molybdenum and tungsten in and near granite; silver at Belmont and Silver Point mines), early Oligocene [tourmaline and base- and precious-metals around the granodiorite of Dry Canyon stock as well as at Manhattan(?)], late Oligocene (gold at Round Mountain and Jefferson), and Miocene (gold at Manhattan). Most likely principal sources of molybdenum, tungsten, silver, and bismuth are Cretaceous granites; of antimony, arsenic, and mercury are intermediate-composition early Oligocene intrusives; and of gold are early and late Oligocene and early Miocene magmas of the volcanic cycle. Lead may have been derived principally from Cretaceous granitic magma and Paleozoic sedimentary rocks. Several areas prospective for undiscovered mineral deposits are suggested by spatial patterns of element distributions related to geologic features. The Manhattan district in the vicinity of the White Caps mine may be underlain by a copper-molybdenum porphyry system related to a buried stock; peripheral high-grade gold veins and skarn deposits may be present below deposits previously mined. The Jefferson district also may be underlain by a copper-molybdenum porphyry system related to a buried stock, it too with peripheral high-grade gold deposits. The Bald Mountain Canyon belt of small gold veins has potential for deeper deposits in buried porous ash-flow tuff similar to the huge Round Mountain low-grade gold-silver deposit. Several other areas have potential for a variety of mineral deposits. Altogether the geochemical, geochronologic, mineralogic, and geologic evidence suggests recurring mineralizing episodes of varied character, from Late Cretaceous to late Tertiary time, related to a long-lived hot spot deep in the crust or in the upper mantle. Granite plutons of Late Cretaceous age were minerali

  15. Organic and inorganic mercurials have distinct effects on cellular thiols, metal homeostasis, and Fe-binding proteins in Escherichia coli

    PubMed Central

    LaVoie, Stephen P.; Mapolelo, Daphne T.; Cowart, Darin M.; Polacco, Benjamin J.; Johnson, Michael K.; Scott, Robert A.; Miller, Susan M.; Summers, Anne O.

    2015-01-01

    The protean chemical properties of the toxic metal mercury (Hg) have made it attractive in diverse applications since antiquity. However, growing public concern has led to an international agreement to decrease its impact on health and the environment. During a recent proteomics study of acute Hg exposure in E. coli, we also examined the effects of inorganic and organic Hg compounds on thiol- and metal- homeostases. On brief exposure, lower concentrations of divalent inorganic mercury Hg(II) blocked bulk cellular thiols and protein-associated thiols more completely than higher concentrations of monovalent organomercurials, phenylmercuric acetate (PMA) and merthiolate (MT). Cells bound Hg(II) and PMA in excess of their available thiol ligands; X-ray absorption spectroscopy indicated nitrogens as likely additional ligands. The mercurials released protein bound iron (Fe) more effectively than common organic oxidants and all disturbed the Na+/K+ electrolyte balance, but none provoked efflux of six essential transition metals including Fe. PMA and MT made stable cysteine monothiol adducts in many Fe-binding proteins, but stable Hg(II) adducts were only seen in CysXxx(n)Cys peptides. We conclude that on acute exposure: (a) the distinct effects of mercurials on thiol- and Fe-homeostases reflected their different uptake and valences; (b) their similar effects on essential metal- and electrolyte-homeostases reflected the energy-dependence of these processes; and (c) peptide phenylmercury-adducts were more stable or detectable in mass spectrometry than Hg(II)-adducts. These first in vivo observations in a well-defined model organism reveal differences upon acute exposure to inorganic and organic mercurials that may underlie their distinct toxicology. PMID:26498643

  16. Organic and inorganic mercurials have distinct effects on cellular thiols, metal homeostasis, and Fe-binding proteins in Escherichia coli.

    PubMed

    LaVoie, Stephen P; Mapolelo, Daphne T; Cowart, Darin M; Polacco, Benjamin J; Johnson, Michael K; Scott, Robert A; Miller, Susan M; Summers, Anne O

    2015-12-01

    The protean chemical properties of the toxic metal mercury (Hg) have made it attractive in diverse applications since antiquity. However, growing public concern has led to an international agreement to decrease its impact on health and the environment. During a recent proteomics study of acute Hg exposure in E. coli, we also examined the effects of inorganic and organic Hg compounds on thiol and metal homeostases. On brief exposure, lower concentrations of divalent inorganic mercury Hg(II) blocked bulk cellular thiols and protein-associated thiols more completely than higher concentrations of monovalent organomercurials, phenylmercuric acetate (PMA) and merthiolate (MT). Cells bound Hg(II) and PMA in excess of their available thiol ligands; X-ray absorption spectroscopy indicated nitrogens as likely additional ligands. The mercurials released protein-bound iron (Fe) more effectively than common organic oxidants and all disturbed the Na(+)/K(+) electrolyte balance, but none provoked efflux of six essential transition metals including Fe. PMA and MT made stable cysteine monothiol adducts in many Fe-binding proteins, but stable Hg(II) adducts were only seen in CysXxx(n)Cys peptides. We conclude that on acute exposure: (a) the distinct effects of mercurials on thiol and Fe homeostases reflected their different uptake and valences; (b) their similar effects on essential metal and electrolyte homeostases reflected the energy dependence of these processes; and (c) peptide phenylmercury-adducts were more stable or detectable in mass spectrometry than Hg(II)-adducts. These first in vivo observations in a well-defined model organism reveal differences upon acute exposure to inorganic and organic mercurials that may underlie their distinct toxicology.

  17. Mercury and mercury compounds toxicology. (Latest citations from the Life Sciences Collection database). Published Search

    SciTech Connect

    Not Available

    1994-04-01

    The bibliography contains citations concerning the toxic effects of mercury and mercury compounds on biological systems. Mercury metal, mercury vapors, organic mercury compounds, mercury halides, and other inorganic mercury compounds are discussed. Citations include acute, chronic, environmental, metabolic, and pathological effects; and clinical biochemistry of mercury exposure. Heavy metal pollution and bioaccumulation are referenced in related bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  18. Comparative study of hematological responses to platinum group metals, antimony and silver nanoparticles in animal models.

    PubMed

    Newkirk, Catherine E; Gagnon, Zofia E; Pavel Sizemore, Ioana E

    2014-01-01

    Research was conducted to examine the hematological effects of heavy metals (platinum (Pt ((IV))), palladium (Pd ((II))), rhodium (Rh ((III))), antimony (Sb ((III)) and Sb ((V))), and silver nanoparticles (AgNPs)) on white blood cells in mammalian (rat) and avian (chick embryo) models. These metals are used in many everyday products and are accumulating in our environment. Six-week old Sprague-Dawley female rats were treated daily by gavage and six-day old, fertile, specific pathogen-free white leghorn strain chick embryos' eggs were injected on days 7 and 14 of incubation with 0.0, 1.0, 5.0 or 10.0 ppm concentrations of Pt ((IV)) and a platinum group metal (PGM) mix of Pt ((IV)), Pd ((II)) and Rh ((III)). Chick embryos were also tested with 1.0 or 5.0 ppm of antimony compounds (Sb ((III)) and Sb ((V))) and 0.0, 15.0, 30.0, 60.0, or 100.0 ppm of silver nanoparticles (AgNPs). After 8 weeks of treatment, blood was obtained from the rats by jugular cut down and from chick embryos on day 20 of incubation by heart puncture. Blood smears were made and stained and a differential white cell count was performed on each. Examination of the smears revealed unconventional dose responses, stimulation of the immune response, and decreases in leukocyte production with various metals and concentrations. Chick embryos responded differently than rats to Pt and the PGM mix; suggesting that species differences and/or stage of development are important components of response to heavy metals. Route of administration of the metals might also influence the response. All of the heavy metals tested affected the immune responses of the tested animals as demonstrated by changes in the types and numbers of leukocytes. Our findings warrant further research to determine the mechanism of these effects and to understand and prevent toxicological effects in humans and other living organisms.

  19. Ink jet printable silver metallization with zinc oxide for front side metallization for micro crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Jurk, Robert; Fritsch, Marco; Eberstein, Markus; Schilm, Jochen; Uhlig, Florian; Waltinger, Andreas; Michaelis, Alexander

    2015-12-01

    Ink jet printable water based inks are prepared by a new silver nanoparticle synthesis and the addition of nanoscaled ZnO particles. For the formation of front side contacts the inks are ink jet printed on the front side of micro crystalline silicon solar cells, and contact the cell directly during the firing step by etching through the wafers’ anti-reflection coating (ARC). In terms of Ag dissolution and precipitation the mechanism of contact formation can be compared to commercial glass containing thick film pastes. This avoids additional processing steps, like laser ablation, which are usually necessary to open the ARC prior to ink jet printing. As a consequence process costs can be reduced. In order to optimize the ARC etching and contact formation during firing, zinc oxide nanoparticles are investigated as an ink additive. By utilization of in situ contact resistivity measurements the mechanism of contacting was explored. Our results show that silver inks containing ZnO particles realize a specific contact resistance below 10 mΩṡcm2. By using a multi-pass ink jet printing and plating process a front side metallization of commercial 6  ×  6 inch2 standard micro crystalline silicone solar cells with emitter resistance of 60 Ω/◽ was achieved and showed an efficiency of 15.7%.

  20. Analysis of mercury and other heavy metals accumulated in lichen Usnea antarctica from James Ross Island, Antarctica.

    PubMed

    Zvěřina, Ondřej; Láska, Kamil; Cervenka, Rostislav; Kuta, Jan; Coufalík, Pavel; Komárek, Josef

    2014-12-01

    The study was designed to investigate the content and distribution of selected heavy metals (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Fe, Pb and Zn) in samples of fruticose macrolichen Usnea antarctica from James Ross Island. A special emphasis was devoted to mercury and its species (elemental mercury and methylmercury). It was found that mercury contents were relatively high (up to 2.73 mg kg(-1) dry weight) compared to other parts of the Antarctic Peninsula region, while the concentrations of most other elements were within reported ranges. Mercury contents in lichens originating from the interior were higher than those from the coast, which is probably the result of local microclimate conditions. Similar trends were observed for Hg(0) and MeHg(+), whose contents were up to 0.14 and 0.098 mg kg(-1) dry weight, respectively. While mercury did not show a significant correlation with any other element, the mutual correlation of some litophile elements probably refers to the influence on thalli of resuspended weathered material. The influence of habitat and environmental conditions could play an essential role in the bioaccumulation of contaminants rather than just the simple presence of sources. Thus, the study of the thalli of this species can bring a new perspective on the interpretation of contaminant accumulation in lichens of the polar region.

  1. Mercury in various tissues of three mustelid species and other trace metals in liver of European otter from Eastern Finland.

    PubMed

    Lodenius, M; Skarén, U; Hellstedt, P; Tulisalo, E

    2014-01-01

    Mercury concentrations were monitored in European otter (Lutra lutra), European polecat (Mustela putorius) and European pine marten (Martes martes) collected in Eastern Finland during the period 1972-2008. Otters mainly eat fish, which is an important reason to monitor the bioaccumulation of mercury in this predator. In this species, the highest concentrations were found in fur followed by liver and kidney, and the mercury concentrations increased with increasing age and body weight. Males showed in general higher concentrations than females of otters. The food of European polecat consists of small mammals, frogs, birds and insects from both aquatic and terrestrial food chains. The mercury concentrations were lower than in otters without significant differences related to body weight or sex. In European pine martens, the concentrations were rather evenly distributed except for two specimens with high concentrations. Also, concentrations of some other metals (Al, Cd, Cu, Fe, Mn, Ni, Pb and Zn) were analysed from liver samples of otter. Possible adverse effects of mercury on the Finnish populations of these mustelids are discussed.

  2. Influence of silver nanoparticles on heavy metals of pore water in contaminated river sediments.

    PubMed

    Tao, Wei; Chen, Guiqiu; Zeng, Guangming; Yan, Ming; Chen, Anwei; Guo, Zhi; Huang, Zhenzhen; He, Kai; Hu, Liang; Wang, Lichao

    2016-11-01

    Despite the increasing knowledge on the discharge of silver nanoparticles (AgNPs) into the environment and their potential toxicity to microorganisms, the interaction of AgNPs with heavy metals remains poorly understood. This study focused on the effect of AgNPs on heavy metal concentration and form in sediment contaminated with heavy metals from the Xiangjiang River. The results showed that the concentration of Cu, Zn, Pb and Cd decreased and then increased with a change in form. The changes in form and concentrations of heavy metals in pore water suggested that Cu and Zn were more likely to be affected compared to Pb and Cd. The concentrations of Hg in sediment pore water in three AgNPs-dosed containers, increased greatly until they reached their peaks at 4.468 ± 0.133, 4.589 ± 0.235, and 5.083 ± 0.084 μg L(-1) in Bare AgNPs, Citrate AgNPs and Tween 80 AgNPs, respectively. The measurements of Hg concentrations in the sediment pore water, combined with SEM and EDX analysis, demonstrated that added AgNPs stabilized in pore water and formed an amalgam with Hg(0), which can affect Hg transportation over long distance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. In vitro cardiotoxicity screening of silver and metal oxide nanoparticles using human induced pluripotent stem cell-derived cardiomyocytes

    EPA Science Inventory

    Exposure risk to silver and metal oxide nanoparticles (NPs) continues to increase due to their widespread use in products and applications. In vivo studies have shown Ag, TiO2 and CeO2 NPs translocate to the heart following various routes of exposure. Thus, it is critical to asse...

  4. In vitro cardiotoxicity screening of silver and metal oxide nanoparticles using human induced pluripotent stem cell-derived cardiomyocytes

    EPA Science Inventory

    Exposure risk to silver and metal oxide nanoparticles (NPs) continues to increase due to their widespread use in products and applications. In vivo studies have shown Ag, TiO2 and CeO2 NPs translocate to the heart following various routes of exposure. Thus, it is critical to asse...

  5. Mercury-199 NMR of the Metal Receptor Site in MerR and Its Protein-DNA Complex

    NASA Astrophysics Data System (ADS)

    Utschig, Lisa M.; Bryson, James W.; O'Halloran, Thomas V.

    1995-04-01

    Structural insights have been provided by mercury-199 nuclear magnetic resonance (NMR) into the metal receptor site of the MerR metalloregulatory protein alone and in a complex with the regulatory target, DNA. The one- and two-dimensional NMR data are consistent with a trigonal planar Hg-thiolate coordination environment consisting only of Cys side chains and resolve structural aspects of both metal ion recognition and the allosteric mechanism. These studies establish 199Hg NMR techniques as useful probes of the metal coordination environment of regulatory proteins, copper enzymes, and zinc transcription factor complexes as large as 50 kilodaltons.

  6. Gold- and silver-induced murine autoimmunity--requirement for cytokines and CD28 in murine heavy metal-induced autoimmunity.

    PubMed

    Havarinasab, S; Pollard, K M; Hultman, P

    2009-03-01

    Treatment with gold in the form of aurothiomaleate, silver or mercury (Hg) in genetically susceptible mouse strains (H-2(s)) induces a systemic autoimmune condition characterized by anti-nuclear antibodies targeting the 34-kDa nucleolar protein fibrillarin, as well as lymphoproliferation and systemic immune-complex (IC) deposits. In this study we have examined the effect of single-gene deletions for interferon (IFN)-gamma, interleukin (IL)-4, IL-6 or CD28 in B10.S (H-2(s)) mice on heavy metal-induced autoimmunity. Targeting of the genes for IFN-gamma, IL-6 or CD28 abrogated the development of both anti-fibrillarin antibodies (AFA) and IC deposits using a modest dose of Hg (130 microg Hg/kg body weight/day). Deletion of IL-4 severely reduced the IgG1 AFA induced by all three metals, left the total IgG AFA response intact, but abrogated the Hg-induced systemic IC deposits. In conclusion, intact IFN-gamma and CD28 genes are necessary for induction of AFA with all three metals and systemic IC deposits using Hg, while lack of IL-4 distinctly skews the metal-induced AFA response towards T helper type 1. In a previous study using a higher dose of Hg (415 microg Hg/kg body weight/day), IC deposits were preserved in IL-4(-/-) and IL-6(-/-) mice, and also AFA in the latter mice. Therefore, the attenuated autoimmunity following loss of IL-4 and IL-6 is dose-dependent, as higher doses of Hg are able to override the attenuation observed using lower doses.

  7. Removal of radioisotopes in solution and bactericidal/bacteriostatic sterilising power in activated carbon and metal silver filters.

    PubMed

    Maioli, Claudio; Bestetti, Alberto; Mauri, Alessandro; Pozzato, Carlo; Paroni, Rita

    2009-01-01

    Activated carbon filters play an important role in water filtration and purification from contaminants of different origin. Their limit consists in bacterial proliferation, which may occur only during prolonged periods of non-use and in their ability to remove radioactive contaminants present in waste water from Industry or Nuclear Medicine departments. In this work we tested a commercially available activated carbon filter for water purification enriched with silver plated parts incubating in static condition at room temperature different micro organisms (Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Salmonella enteritidis, Staphylococcus aureus, Aspergillum niger), up to 78 days. The microbial growth was in general more inhibited in the presence of metal silver into the activated carbon in respect to filters with the activated carbon alone: >4log inhibition of bacterial proliferation after 78 days of incubation the presence of silver vs. 2log without silver. When the filters were incubated empty of carbon, the sterilizing power of silver was confirmed further. The activated carbon filters proved also their ability in removing from water the principal radioisotopes used for residues liquid medical and research purposes ((131)I, (99m)Tc, (201)Tl, (67)Ga). These results contribute useful data for the use of the silver-enriched carbon filters in water filtration both for daily use at home, and professional use in a Nuclear Medicine laboratory.

  8. Studies on the relation between the size and dispersion of metallic silver nanoparticles and morphologies of initial silver(I) coordination polymer precursor

    NASA Astrophysics Data System (ADS)

    Moradi, Zhaleh; Akhbari, Kamran; Phuruangrat, Anukorn; Costantino, Ferdinando

    2017-04-01

    Micro and nano-structures of [Ag2(μ2-dcpa)2]n (1), [Hdcpa = 2,4-dichlorophenoxyacetic acid] which is a one-dimensional coordination polymer with corrugated tape chains, were synthesized as the bulk sample (1B), by sonochemical process (1S) and from mechanochemical reaction (1M). These three samples have been used as new precursors for fabricating silver nanoparticles via direct calcination at 300 °C and also thermal decomposition in oleic acid (OA) as a surfactant at 180 °C. In the presence of OA less agglomerated nanostructures were formed. It seems that the size, dispersion, morphology and agglomeration of initial precursor have direct influence on size, dispersion, morphology and agglomeration of metallic silver. This coordination polymer with various micro and nano morphologies were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). Thermal stability of these samples were studied and compared with each other, too.

  9. Controlled formation of optically reflective and electrically conductive silvered surfaces on polyimide film via a direct ion-exchange self-metallization technique using silver ammonia complex cation as the precursor.

    PubMed

    Qi, Shengli; Wu, Zhanpeng; Wu, Dezhen; Jin, Riguang

    2008-05-08

    Double-surface-silvered polyimide films have been successfully fabricated using silver ammonia complex cation ([Ag(NH3)2]+) as the silver precursor and 3,3',4,4'-benzophenonetetracarboxylic dianhydride/4,4'-oxidianile- (BTDA/ODA-) based poly(amic acid) (PAA) as the polyimide precursor via a direct ion-exchange self-metallization technique. The process has been clarified to involve the loading of silver(I) into PAA via ion exchange, the thermally induced reduction of silver(I) to silver(0) and the concomitant imidization of PAA to polyimide upon thermal treatment, the subsequent silver-catalyzed and oxygen-assisted decomposition of the polyimide overlayer, and the self-accelerated aggregation of silver clusters on the film surface to produce well-defined surface silver layers. By employing [Ag(NH3)2]+ solution with a concentration of only 0.01 M and an ion-exchange time of no more than 10 min, the controlled formation of highly reflective and conductive silver surfaces upon thermal treatment at 300 degrees C for less than 4.5 h indicates that the present work provides an efficient route and an effacious silver species for polyimide surface metallization. Although the alkaline characteristics of [Ag(NH3)2]+ have a strong hydrolysis effect on the polyimide precursor chains, the final metallized films retain the key mechanical and thermal properties of the pure polyimide. Films were characterized by ATR-FTIR, XPS, ICP-AES, SEM, TEM, DSC, TGA, reflectivity, conductivity, and mechanical measurements.

  10. Mercury and health care

    PubMed Central

    Rustagi, Neeti; Singh, Ritesh

    2010-01-01

    Mercury is toxic heavy metal. It has many characteristic features. Health care organizations have used mercury in many forms since time immemorial. The main uses of mercury are in dental amalgam, sphygmomanometers, and thermometers. The mercury once released into the environment can remain for a longer period. Both acute and chronic poisoning can be caused by it. Half of the mercury found in the atmosphere is human generated and health care contributes the substantial part to it. The world has awakened to the harmful effects of mercury. The World Health Organization and United Nations Environmental Programme (UNEP) have issued guidelines for the countries’ health care sector to become mercury free. UNEP has formed mercury partnerships between governments and other stakeholders as one approach to reducing risks to human health and the environment from the release of mercury and its compounds to the environment. Many hospitals are mercury free now. PMID:21120080

  11. Polydopamine as an intermediate layer for silver and hydroxyapatite immobilisation on metallic biomaterials surface.

    PubMed

    Saidin, Syafiqah; Chevallier, Pascale; Abdul Kadir, Mohammed Rafiq; Hermawan, Hendra; Mantovani, Diego

    2013-12-01

    Hydroxyapatite (HA) coated implant is more susceptible to bacterial infection as the micro-structure surface which is beneficial for osseointegration, could also become a reservoir for bacterial colonisation. The aim of this study was to introduce the antibacterial effect of silver (Ag) to the biomineralised HA by utilising a polydopamine film as an intermediate layer for Ag and HA immobilisation. Sufficient catechol groups in polydopamine were required to bind chemically stainless steel 316 L, Ag and HA elements. Different amounts of Ag nanoparticles were metallised on the polydopamine grafted stainless steel by varying the immersion time in silver nitrate solution from 12 to 24 h. Another polydopamine layer was then formed on the metallised film, followed by surface biomineralisation in 1.5 Simulated Body Fluid (SBF) solution for 3 days. Several characterisation techniques including X-Ray Photoelectron Spectroscopy, Atomic Force Microscopy, Scanning Electron Microscopy and Contact Angle showed that Ag nanoparticles and HA agglomerations were successfully immobilised on the polydopamine film through an element reduction process. The Ag metallisation at 24 h has killed the viable bacteria with 97.88% of bactericidal ratio. The Ag was ionised up to 7 days which is crucial to prevent bacterial infection during the first stage of implant restoration. The aged functionalised films were considered stable due to less alteration of its chemical composition, surface roughness and wettability properties. The ability of the functionalised film to coat complex and micro scale metal make it suitable for dental and orthopaedic implants application. © 2013.

  12. The reduction of Ag+ in metallic silver on pseudomelanin films allows for antibacterial activity but does not imply unpaired electrons.

    PubMed

    Ball, Vincent; Nguyen, Isabelle; Haupt, Michael; Oehr, Christian; Arnoult, Claire; Toniazzo, Valérie; Ruch, David

    2011-12-15

    Dopamine-melanin films produced through the oxidation of dopamine in the presence of oxygen as an oxidant allow to reduce silver ions onto silver particles as already described in the paper by Lee et al. (H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Science 318 (2007) 426.). This reduction process has to occur through the oxidation of moieties present in the melanin film. This investigation shows that the free radicals present in the pseudomelanin film, quantified by means of electron spin resonance spectroscopy (ESR) for the first time, are not used in the transformation of Ag(+) cations to deposit silver. The ESR signal is hardly affected by the deposition of silver particles. On the other hand, X-ray photoelectron spectroscopy shows a small increase in the density of quinone groups and a small decrease of catechol groups on the surface of the film during the deposition of silver. This suggests that the deposited pseudomelanin films contain a significant fraction of catechol groups able to trigger reduction processes of metallic cations. These silver nanoparticles remain adherent to the melanin films and allow for a quantitative killing of Escherichia coli over a broad range of bacterial dilutions. However, the presence of the bacteria induces a release of the nanoparticles. The pseudomelanin films cannot be reused again for a silver ion reduction step. Nevertheless, the easy preparation of the pseudomelanin-silver composite and its effective one shot bacterial killing activity renders the strategy presented in this paper attractive. Some fundamental questions about redox process allowed by the pseudomelanin films will also be asked.

  13. Effect of Mercury-Noble Metal Interactions on SRAT Processing of SB3 Simulants (U)

    SciTech Connect

    Koopman, D. C.; Baich, M. A.

    2004-12-31

    Controlling hydrogen generation below the Defense Waste Processing Facility (DWPF) safety basis constrains the range of allowable acid additions in the DWPF Chemical Processing Cell. This range is evaluated in simulant tests at the Savannah River National Laboratory (SRNL). A minimum range of allowable acid additions is needed to provide operational flexibility and to handle typical uncertainties in process and analytical measurements used to set acid additions during processing. The range of allowable acid additions is a function of the composition of the feed to DWPF. Feed changes that lead to a smaller range of allowable acid additions have the potential to impact decisions related to wash endpoint control of DWPF feed composition and to the introduction of secondary waste streams into DWPF. A limited program was initiated in SRNL in 2001 to study the issue of hydrogen generation. The program was reinitiated at the end of fiscal year 2004. The primary motivation for the study is that a real potential exists to reduce the conservatism in the range of allowable acid additions in DWPF. Increasing the allowable range of acid additions can allow decisions on the sludge wash endpoint or the introduction of secondary waste streams to DWPF to be based on other constraints such as glass properties, organic carbon in the melter off-gas, etc. The initial phase of the study consisted of a review of site reports and off-site literature related to catalytic hydrogen generation from formic acid and/or formate salts by noble metals. Many things are already known about hydrogen generation during waste processing. This phase also included the development of an experimental program to improve the understanding of hydrogen generation. This phase is being documented in WSRC-TR-2002-00034. A number of areas were identified where an improved understanding would be beneficial. A phased approach was developed for new experimental studies related to hydrogen generation. The first phase

  14. Metal mercury poisoning in two boys initially treated for brucellosis in Mashhad, Iran.

    PubMed

    Sasan, M S; Hadavi, N; Afshari, R; Mousavi, S R; Alizadeh, A; Balali-Mood, Mahdi

    2012-02-01

    Elemental mercury (Hg) is the only metal which evaporates in room temperature and its inhalation may cause toxicity. Hg poisoning may occur by mishandling the metal, particularly in children who play with it. Wide-spectrum of the clinical presentations of chronic Hg poisoning may cause misdiagnosis, particularly when history of exposure is unknown. We report two cases of accidental Hg poisoning, which initially had been diagnosed and treated for brucellosis. The patients were two brothers (7 and 14 years old) who presented with pain in their lower extremities, sweating, salivation, weight loss, anorexia and mood changes on admission. Meticulous history taking revealed that they had played with a ball of Hg since 3 months before admission. The level of urinary Hg was 125.9 and 54.2 9 g/L in the younger and older brother, respectively (normal ≤25 g/L). The patients were successfully treated by dimercaprol and discharged in good condition 24 days after admission. These cases are being reported to emphasize the importance of acrodynia as a differential diagnosis for brucellosis in endemic areas.

  15. Occurrence of cognitive symptoms in dental assistants with previous occupational exposure to metallic mercury.

    PubMed

    Hilt, B; Svendsen, K; Syversen, T; Aas, O; Qvenild, T; Sletvold, H; Melø, I

    2009-11-01

    Previous investigations have presented evidence for an increased prevalence of late cognitive effects in dental personnel exposed to metallic mercury. We wanted to examine if there was a correlation between mercury exposure and cognitive effects in a Norwegian population of dental workers, and if so, to quantify the occurrence. The study group consisted of 608 female dental assistants from central Norway and 425 female controls from the general population, all under the age of 70. They had responded to a standardized postal questionnaire (Euroquest) inquiring about seven symptoms in regard to neurology, psychosomatics, memory, concentration, mood, sleep disturbances, and fatigue. A score was calculated for each symptom based on 4-15 single questions graded on a scale from 1 (seldom or never) to 4 (very often). Dental assistants and controls had a participation rate of 56.4% and 42.9% respectively. Dental assistants reported more cognitive symptoms than the controls, but on average they reported having each of the symptoms "now and then" or less frequently. There were 4.4% of the dental assistants and 2.8% of the controls who reported having three or more of the seven symptoms "often" or more frequently. The corresponding figures for five or more of the seven symptoms were 1.0% and 0.5% respectively. The occurrence of cognitive malfunction may be moderately increased in dental assistants. For dental assistants there was a relative risk of 1.6 of having three or more symptoms "often" or more frequently, and a relative risk of 2.0 of having five or more symptoms as frequently. It can be assumed from our results that the prevalence of possibly work-related cognitive malfunction in dental assistants is between 0.4% and 2.8%, dependent on the applied severity.

  16. Mercury and other metals in eggs and feathers of glaucous-winged gulls (Larus glaucescens) in the Aleutians

    PubMed Central

    Gochfeld, Michael; Jeitner, Christian; Burke, Sean; Volz, Conrad D.; Snigaroff, Ronald; Snigaroff, Daniel; Shukla, Tara; Shukla, Sheila

    2014-01-01

    Levels of mercury and other contaminants should be lower in birds nesting on isolated oceanic islands and at high latitudes without any local or regional sources of contamination, compared to more urban and industrialized temperate regions. We examined concentrations of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in the eggs, and the feathers of fledgling and adult glaucous-winged gulls (Larus glaucescens) nesting in breeding colonies on Adak, Amchitka, and Kiska Islands in the Aleutian Chain of Alaska in the Bering Sea/North Pacific. We tested the following null hypotheses: 1) There were no differences in metal levels among eggs and feathers of adult and fledgling glaucous-winged gulls, 2) There were no differences in metal levels among gulls nesting near the three underground nuclear test sites (Long Shot 1965, Milrow 1969, Cannikin 1971) on Amchitka, 3) There were no differences in metal levels among the three islands, and 4) There were no gender-related differences in metal levels. All four null hypotheses were rejected at the 0.05 level, although there were few differences among the three test sites on Amchitka. Eggs had the lowest levels of cadmium, lead, and mercury, and the feathers of adults had the lowest levels of selenium. Comparing only adults and fledglings, adults had higher levels of cadmium, chromium, lead and mercury, and fledglings had higher levels of arsenic, manganese and selenium. There were few consistent interisland differences, although levels were generally lower for eggs and feathers from gulls on Amchitka compared to the other islands. Arsenic was higher in both adult feathers and eggs from Amchitka compared to Adak, and chromium and lead were higher in adult feathers and eggs from Adak compared to Amchitka. Mercury and arsenic, and chromium and manganese levels were significantly correlated in the feathers of both adult and fledgling gulls. The feathers of males had significantly higher levels of chromium and

  17. Spectral dependence of nonlinear absorption in ordered silver metallic nanoprism arrays.

    PubMed

    Sánchez-Esquivel, Héctor; Raygoza-Sánchez, Karen Y; Rangel-Rojo, Raúl; Gemo, Emanuele; Michieli, Niccolò; Kalinic, Boris; Reyes-Esqueda, Jorge Alejandro; Cesca, Tiziana; Mattei, Giovanni

    2017-07-13

    Ordered metallic nanoprism arrays have been proposed as novel and versatile systems for the observation of nonlinear effects such as nonlinear absorption. The study of the effect of the local field reinforcement on the fast optical third order nonlinear response around the Surface Plasmon Resonance is of great interest for many plasmonic applications. In this work, silver nanoprism arrays have been synthesized by the nanosphere lithography method. A low repetition rate tunable picosecond laser source was used to study the irradiance and wavelength dependence of the nonlinear absorption properties around the dipolar and quadrupolar resonances of the nanoarray with the use of the z-scan technique. The irradiance dependence of the on-resonance nonlinearity was studied, and a spectral region where nonlinear absorption is negligible was identified. This is important for the possible application of these materials in optical information processing devices.

  18. Silver Nanowire Top Electrodes in Flexible Perovskite Solar Cells using Titanium Metal as Substrate.

    PubMed

    Lee, Minoh; Ko, Yohan; Min, Byoung Koun; Jun, Yongseok

    2016-01-08

    Flexible perovskite solar cells (FPSCs) have various applications such as wearable electronic textiles and portable devices. In this work, we demonstrate FPSCs on a titanium metal substrate employing solution-processed silver nanowires (Ag NWs) as the top electrode. The Ag NW electrodes were deposited on top of the spiro-MeOTAD hole transport layer by a carefully controlled spray-coating method at moderate temperatures. The power conversion efficiency (PCE) reached 7.45 % under AM 1.5 100 mW cm(-2) illumination. Moreover, the efficiency for titanium-based FPSCs decreased only slightly (by 2.6 % of the initial value) after the devices were bent 100 times. With this and other advances, fully solution-based indium-free flexible photovoltaics, advantageous in terms of price and processing, have the potential to be scaled into commercial production. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Adsorption of silver nanoparticles from aqueous solution on copper-based metal organic frameworks (HKUST-1).

    PubMed

    Conde-González, J E; Peña-Méndez, E M; Rybáková, S; Pasán, J; Ruiz-Pérez, C; Havel, J

    2016-05-01

    Silver nanoparticles (AgNP) are emerging pollutants. The use of novel materials such as Cu-(benzene 1,3,5-tricarboxylate, BTC) Metal-Organic Framework (MOFs), for AgNP adsorption and their removal from aqueous solutions has been studied. The effect of different parameters was followed and isotherm model was suggested. MOFs adsorbed fast and efficiently AgNP in the range C0 < 10 mg L(-1), being Freundlich isotherm (R = 0.993) these data fitted to. Among studied parameters a remarkable effect of chloride on sorption was found, thus their possible interactions were considered. The high adsorption efficiency of AgNP was achieved and it was found to be very fast. The feasibility of adsorption on Cu-(BTC) was proved in spiked waters. The results showed the potential interest of new material as adsorbent for removing AgNP from environment.

  20. Characterization of the Metabolically Modified Heavy Metal-Resistant Cupriavidus metallidurans Strain MSR33 Generated for Mercury Bioremediation

    PubMed Central

    Rojas, Luis A.; Yáñez, Carolina; González, Myriam; Lobos, Soledad; Smalla, Kornelia; Seeger, Michael

    2011-01-01

    Background Mercury-polluted environments are often contaminated with other heavy metals. Therefore, bacteria with resistance to several heavy metals may be useful for bioremediation. Cupriavidus metallidurans CH34 is a model heavy metal-resistant bacterium, but possesses a low resistance to mercury compounds. Methodology/Principal Findings To improve inorganic and organic mercury resistance of strain CH34, the IncP-1β plasmid pTP6 that provides novel merB, merG genes and additional other mer genes was introduced into the bacterium by biparental mating. The transconjugant Cupriavidus metallidurans strain MSR33 was genetically and biochemically characterized. Strain MSR33 maintained stably the plasmid pTP6 over 70 generations under non-selective conditions. The organomercurial lyase protein MerB and the mercuric reductase MerA of strain MSR33 were synthesized in presence of Hg2+. The minimum inhibitory concentrations (mM) for strain MSR33 were: Hg2+, 0.12 and CH3Hg+, 0.08. The addition of Hg2+ (0.04 mM) at exponential phase had not an effect on the growth rate of strain MSR33. In contrast, after Hg2+ addition at exponential phase the parental strain CH34 showed an immediate cessation of cell growth. During exposure to Hg2+ no effects in the morphology of MSR33 cells were observed, whereas CH34 cells exposed to Hg2+ showed a fuzzy outer membrane. Bioremediation with strain MSR33 of two mercury-contaminated aqueous solutions was evaluated. Hg2+ (0.10 and 0.15 mM) was completely volatilized by strain MSR33 from the polluted waters in presence of thioglycolate (5 mM) after 2 h. Conclusions/Significance A broad-spectrum mercury-resistant strain MSR33 was generated by incorporation of plasmid pTP6 that was directly isolated from the environment into C. metallidurans CH34. Strain MSR33 is capable to remove mercury from polluted waters. This is the first study to use an IncP-1β plasmid directly isolated from the environment, to generate a novel and stable bacterial strain

  1. Evanescent wave sensing and absorption analysis of herbal tea floral extracts in the presence of silver metal complexes

    NASA Astrophysics Data System (ADS)

    Priyamvada, V. C.; Radhakrishnan, P.

    2017-06-01

    Fiber optic evanescent wave sensors are used for studying the absorption properties of biochemical samples. The studies give precise information regarding the actual ingredients of the samples. Recent studies report the corrosion of silver in the presence glucose dissolved in water and heated to a temperature of 70°C. Based on this report evanescent absorption studies are carried out in hibiscus herbal tea floral extracts in the presence of silver metal complexes. These studies can also lead to the evaluation of the purity of the herbal tea extract.

  2. Mesoscopic constructs of ordered and oriented metal-organic frameworks on plasmonic silver nanocrystals.

    PubMed

    Zhao, Yingbo; Kornienko, Nikolay; Liu, Zheng; Zhu, Chenhui; Asahina, Shunsuke; Kuo, Tsung-Rong; Bao, Wei; Xie, Chenlu; Hexemer, Alexander; Terasaki, Osamu; Yang, Peidong; Yaghi, Omar M

    2015-02-18

    We enclose octahedral silver nanocrystals (Ag NCs) in metal-organic frameworks (MOFs) to make mesoscopic constructs O(h)-nano-Ag⊂MOF in which the interface between the Ag and the MOF is pristine and the MOF is ordered (crystalline) and oriented on the Ag NCs. This is achieved by atomic layer deposition of aluminum oxide on Ag NCs and addition of a tetra-topic porphyrin-based linker, 4,4',4″,4‴-(porphyrin-5,10,15,20-tetrayl)tetrabenzoic acid (H4TCPP), to react with alumina and make MOF [Al2(OH)2TCPP] enclosures around Ag NCs. Alumina thickness is precisely controlled from 0.1 to 3 nm, thus allowing control of the MOF thickness from 10 to 50 nm. Electron microscopy and grazing angle X-ray diffraction confirm the order and orientation of the MOF by virtue of the porphyrin units being perpendicular to the planes of the Ag. We use surface-enhanced Raman spectroscopy to directly track the metalation process on the porphyrin and map the distribution of the metalated and unmetalated linkers on a single-nanoparticle level.

  3. In vitro studies on silver implanted pure iron by metal vapor vacuum arc technique.

    PubMed

    Huang, Tao; Cheng, Yan; Zheng, Yufeng

    2016-06-01

    Pure iron has been verified as a promising biodegradable metal for absorbable cardiovascular stent usage. However, the degradation rate of pure iron is too slow. To accelerate the degradation of the surface of pure iron, silver ions were implanted into pure iron by metal vapor vacuum arc (MEVVA) source at an extracted voltage of 40keV. The implanted influence was up to 2×10(17)ions/cm(2). The composition and depth profiles, corrosion behavior and biocompatibility of Ag ion implanted pure iron were investigated. The implantation depths of Ag was around 60nm. The element Ag existed as Ag2O in the outermost layer, then gradually transited to metal atoms in zero valent state with depth increase. The implantation of Ag ions accelerated the corrosion rate of pure iron matrix, and exhibited much more uniform corrosion behavior. For cytotoxicity assessment, the implantation of Ag ions slightly decreased the viability of all kinds of cell lines used in these tests. The hemolysis rate of Ag ion implanted pure iron was lower than 2%, which was acceptable, whereas the platelet adhesion tests indicated the implantation of Ag ions might increase the risk of thrombosis.

  4. Bio-functionalized silver nanoparticles for selective colorimetric sensing of toxic metal ions and antimicrobial studies.

    PubMed

    Vinod Kumar, V; Anbarasan, S; Christena, Lawrence Rene; SaiSubramanian, Nagarajan; Philip Anthony, Savarimuthu

    2014-08-14

    Hibiscus Sabdariffa (Gongura) plant extracts (leaves (HL) and stem (HS)) were used for the first time in the green synthesis of bio-functionalized silver nanoparticles (AgNPs). The bio-functionality of AgNPs has been successfully utilized for selective colorimetric sensing of potentially health and environmentally hazardous Hg(2+), Cd(2+) and Pb(2+) metal ions at ppm level in aqueous solution. Importantly, clearly distinguishable colour for all three metal ions was observed. The influence of extract preparation condition and pH were also explored on the formation of AgNPs. Both selectivity and sensitivity differed for AgNPs synthesized from different parts of the plant. Direct correlation between the stability of green synthesized AgNPs at different pH and its antibacterial effects has been established. The selective colorimetric sensing of toxic metal ions and antimicrobial effect of green synthesized AgNPs demonstrated the multifunctional applications of green nanotechnology. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Effect of aluminum on the formation of silver metal quantum dots in sol-gel derived alumino-silicate glass film.

    PubMed

    Kim, Bok Hyeon; Son, Dong Hoon; Ju, Seongmin; Jeong, Chaehwan; Boo, Seongjae; Kim, Cheol Jin; Hanl, Won-Taek

    2006-11-01

    The effect of aluminum incorporation on silver metal quantum dots formation in the alumino-silicate glass film processed by sol-gel process was investigated. The sol-gel derived glass was coated onto the silica glass plate by spin coating with the mixture solution of tetraethyl orthosilicate (TEOS), C2H5OH, H2O, AgNO3, Al(NO3)3. 39H2O, and HNO3 with the molar ratios of Ag/Si = 0.12 and Al/Si varying from 0 to 0.12. The formation of the silver metal quantum dots was confirmed by the measurements of the UV/VIS optical spectra, the X-ray diffraction patterns, and the transmission electron microscope images. While the radius of silver metal quantum dots increased with the increase of aluminum concentration, the concentration of the silver metal quantum dots decreased. The formation of the silver metal quantum dots was found strongly suppressed by incorporation of aluminum ions in the glass. The change in the glass structure due to the aluminum incorporation was investigated by the analysis of the Raman spectra. The silver ions in the glass contributed to form stable (Al:Ag)O4 tetrahedra by pairing with aluminum ions and thus clustering of silver metal quantum dots was hindered.

  6. Ultrasensitive and selective detection of copper (II) and mercury (II) ions by dye-coded silver nanoparticle-based SERS probes.

    PubMed

    Li, Feng; Wang, Jing; Lai, Yuming; Wu, Chong; Sun, Shuqing; He, Yonghong; Ma, Hui

    2013-01-15

    A simple and distinctive method for the ultrasensitive detection of Cu(2+) and Hg(2+) based on surface-enhanced Raman scattering (SERS) using cysteine-functionalized silver nanoparticles (AgNPs) attached with Raman-labeling molecules was developed. The glycine residue in a silver nanoparticle-bound cysteine can selectively bind with Cu(2+) and Hg(2+) and form a stable inner complex. Silver nanoparticles co-functionalized with cysteine and 3,5-Dimethoxy-4-(6'-azobenzotriazolyl)phenol (AgNP conjugates) can be used to detect Cu(2+) and Hg(2+) based on aggregation-induced SERS of the Raman tags. The addition of SCN(-) to the analyte can successfully mask Hg(2+) and allow for the selective detection of Cu(2+). This SERS-based assay showed an unprecedented limit of detection (LOD) of 10pM for Cu(2+) and 1pM for Hg(2+); these LODs are a few orders of magnitude more sensitive than the typical colorimetric approach based on the aggregation of noble nanoparticles. The analysis of real water samples diluted with pure water was performed and verified this conclusion. We envisage that this SERS-based assay may provide a general and simple approach for the detection of other metal ions of interest, which can be adopted from their corresponding colorimetric assays that have already been developed with significantly improved sensitivity and thus have wide-range applications in many areas.

  7. Method for the removal and recovery of mercury

    DOEpatents

    Easterly, C.E.; Vass, A.A.; Tyndall, R.L.

    1997-01-28

    The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

  8. Method for the removal and recovery of mercury

    DOEpatents

    Easterly, Clay E.; Vass, Arpad A.; Tyndall, Richard L.

    1997-01-01

    The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

  9. Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein.

    PubMed

    Kinoshita, Hideki; Sohma, Yui; Ohtake, Fumika; Ishida, Mitsuharu; Kawai, Yasushi; Kitazawa, Haruki; Saito, Tadao; Kimura, Kazuhiko

    2013-09-01

    Heavy metals cause various health hazards. Using lactic acid bacteria (LAB), we tested the biosorption of heavy metals e.g. cadmium (Cd) (II), lead (Pb) (II), arsenic (As) (III), and mercury (Hg) (II). Cd (II) sorption was tested in 103 strains using atomic absorption spectrophotometery (AAS). Weissella viridescens MYU 205 (1 × 10(8) cells/ml) decreased Cd (II) levels in citrate buffer (pH 6.0) from one ppm to 0.459 ± 0.016 ppm, corresponding to 10.46 μg of Cd (II). After screening, 11 LAB strains were tested using various pH (pH 4.0, 5.0, 6.0, 7.0) showing the sorption was acid sensitive; and was cell concentration dependent, where the Cd (II) concentration decreased from one ppm to 0.042 (max)/0.255 (min) ppm at 1 × 10(10) cells/ml. Additionally, the biosorption of Pb (II), As (III), and Hg (II) were tested using an inductively coupled plasma mass spectrometer (ICP-MS). The Hg (II) concentration was reduced the most followed by Pb (II) and As (III). Many of the bacterial cell surface proteins of W. viridescens MYU 205 showed binding to Hg (II) using the Hg (II) column assay. Having a CXXC motif, a ∼14 kDa protein may be one of the Hg (II) binding proteins. LAB biosorption may aid the detoxification of people exposed to heavy metals. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  10. New-coated fluorescent silver nanoparticles with a fluorescein thiol esther derivative: fluorescent enhancement upon interaction with heavy metal ions

    NASA Astrophysics Data System (ADS)

    Fernández-Lodeiro, Javier; Nuñez, Cristina; Lodeiro, Adrián Fernández; Oliveira, Elisabete; Rodríguez-González, Benito; Dos Santos, Alcindo A.; Capelo, José Luis; Lodeiro, Carlos

    2014-03-01

    A new fluorescein thiol esther derivative L was successfully synthesized and fully characterized. The interaction of compound L with spherical silver nanoparticles (AgNPs) was explored in toluene, through the exchange of the tetraoctylammonium bromated (TOAB) molecules stabilizing the silver nanoparticle surface (AgNPs@TOAB). A new hybrid system AgNPs@ L was obtained in which an intense metal-enhancement fluorescence phenomenon takes place. The behaviour of the new-coated AgNPs@ L system was explored in the presence of silent toxic metal ions, such as Hg2+, Pb2+ and Tl+ in organic phase. Surprisingly, system AgNPs@ L reveals to be sensitive to Hg2+ ions over the other heavy metal ions studied.

  11. Rapid, selective, and ultrasensitive fluorimetric analysis of mercury and copper levels in blood using bimetallic gold-silver nanoclusters with "silver effect"-enhanced red fluorescence.

    PubMed

    Zhang, Ning; Si, Yanmei; Sun, Zongzhao; Chen, Lijun; Li, Rui; Qiao, Yuchun; Wang, Hua

    2014-12-02

    Bimetallic alloying gold-silver nanoclusters (Au-AgNCs) have been synthesized by a one-pot biomineralization synthesis route at a vital molar ratio of Au/Ag precursors in the protein matrix. Unexpectedly, the prepared Au-AgNCs could exhibit dramatically enhanced red fluorescence, which is about 6.5-fold and 4.7-fold higher than that of common AuNCs and core-shell Au@AgNCs, respectively. A rapid, selective, and ultrasensitive fluorimetric method has thereby been developed using Au-AgNCs as fluorescent probes toward the separate detections of Hg(2+) and Cu(2+) ions in blood. The interactions of Au-AgNCs with Hg(2+) and Cu(2+) ions were systematically characterized by microscopy imaging, UV-vis, and fluorescence measurements. It is demonstrated that the "silver effect" gives the Au-AgNCs probes not only greatly enhanced red fluorescence but also the strong capacity to specifically sense Cu(2+) ions in addition to improved response to Hg(2+) ions. Moreover, aided by a Cu(2+) chelating agent, exclusive detection of Hg(2+) ions could also be expected with the coexistence of a high level of Cu(2+) ions, as well as reversible Cu(2+) analysis by restoring the fluorescence of Au-AgNCs. Additionally, Au-AgNCs with strong red fluorescence could facilitate fluorimetric analysis with minimal interference from blood backgrounds. Such an Au-AgNCs-based fluorimetric method can allow for the selective analysis of Hg(2+) and Cu(2+) ions down to 0.30 nM and 0.60 nM in blood, respectively, promising a novel detection method to be applied in the clinical laboratory.

  12. Distribution of Mercury and Other Trace Metals in the Wabash River, Indiana

    NASA Astrophysics Data System (ADS)

    Neumann, K.; Bonzongo, J.

    2005-12-01

    There is very little information on mercury (Hg) and other trace metals (e.g., Co, Ni, Cu) in streams of central Indiana. Published research has focused mainly on the industrialized northern part of the State, close to Chicago, and on the Ohio River valley at the southern end of the State. For rivers draining the central part of Indiana, including the Wabash River, numerous Hg-based fish advisories are posted; yet, very little to no data on Hg and trace metals in water or sediments exists. We present some of the first Hg and trace metal data for the Wabash River in central Indiana. Water and surface sediment samples were collected in the summers of 2004 and 2005 from the river section that extends from upstream of Lafayette to Terre Haute. In contrast to the Wabash River upstream reaches, this section of the river has no water inputs from tributaries that drain reservoirs, and the above two cities as well as a power plant located upstream of Terre Haute are potential sources for Hg and trace metals to the river. Total-Hg concentrations determined on filtered samples ranged from 0.57 to 1.7ng/L in samples collected in August 2004, with very little change in concentrations a year after (range: 0.61 to 0.83ng/L). Total Hg levels in non-filtered samples ranged from ~1.6 to 5.0ng/L and from 3.31 to 4.17ng/L in August 2004 and 2005, respectively. These values compare to those reported for rivers and streams in neighboring states. Dissolved trace metal concentrations are generally low (e.g., Co, Ni, Cu less than 2μg/L) and show only small increases as the Wabash River passes through Lafayette. We will examine the relationships between aqueous Hg, sedimentary Hg (0.93-16.8μg/g) and Hg in biological tissues in comparison with trends/levels reported for other US rivers with similar land use types within watersheds.

  13. Ancient Maya Mercury

    NASA Astrophysics Data System (ADS)

    Pendergast, David M.

    1982-08-01

    Discovery of mercury in an ancient Maya offering at Lamanai, Belize, has stimulated examination of possible sources of the material in the Maya area. Two zones of cinnabar and native mercury deposits can be defined in the Maya highlands, and the presence of the native metal suggests that the ancient Maya collected rather than extracted the mercury from ore.

  14. Effects of sudden stress due to heavy metal mercury on benthic foraminifer Rosalina leei: laboratory culture experiment.

    PubMed

    Nigam, R; Linshy, V N; Kurtarkar, S R; Saraswat, R

    2009-01-01

    Laboratory culture experiments were carried out to understand the response of benthic foraminifer Rosalina leei to gradual as well as sudden addition of heavy metal mercury into the media. When mercury was added suddenly, specimens did not show any change in morphology during the initial 40 days. However, later on, out of all the specimens subjected to mercury concentrations up to 150 ng/l, 75% developed deformities, whereas all the specimens subjected to 150-275 ng/l Hg concentrations, had deformed chambers. All specimens kept at 300 ng/l Hg concentration died within 20 days. In addition to this, irregularities were also observed in the rate of reproduction, number of juveniles produced and the survival rate of the juveniles. Where as in an earlier experiment where Hg concentration was increased gradually, irregularities in the newly added chambers were noticed only in case of specimens subjected to very high (180 ng/l) Hg concentration. However, during this experiment, growth was found to be inversely proportional to the mercury concentration.

  15. Toxicity of mercury and mercury compounds. (Latest citations from Pollution Abstracts). Published Search

    SciTech Connect

    Not Available

    1993-02-01

    The bibliography contains citations concerning the toxic effects of mercury and mercury compounds on biological systems. The citations examine mercury halides, organic mercury compounds, mercury metal, and mercury vapor. Metabolism, toxicology, occupational exposure, symptoms of exposure, mechanisms of interaction with biological systems, demographics of mercury accumulation and poisoning, and case reports are considered. Heavy metal pollution and bioaccumulation are referenced in related bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  16. What do we know of childhood exposures to metals (arsenic, cadmium, lead, and mercury) in emerging market countries?

    PubMed

    Horton, Lindsey M; Mortensen, Mary E; Iossifova, Yulia; Wald, Marlena M; Burgess, Paula

    2013-01-01

    Arsenic, cadmium, lead, and mercury present potential health risks to children who are exposed through inhalation or ingestion. Emerging Market countries experience rapid industrial development that may coincide with the increased release of these metals into the environment. A literature review was conducted for English language articles from the 21st century on pediatric exposures to arsenic, cadmium, lead, and mercury in the International Monetary Fund's (IMF) top 10 Emerging Market countries: Brazil, China, India, Indonesia, Mexico, Poland, Russia, South Korea, Taiwan, and Turkey. Seventy-six peer-reviewed, published studies on pediatric exposure to metals met the inclusion criteria. The reported concentrations of metals in blood and urine from these studies were generally higher than US reference values, and many studies identified adverse health effects associated with metals exposure. Evidence of exposure to metals in the pediatric population of these Emerging Market countries demonstrates a need for interventions to reduce exposure and efforts to establish country-specific reference values through surveillance or biomonitoring. The findings from review of these 10 countries also suggest the need for country-specific public health policies and clinician education in Emerging Markets.

  17. What Do We Know of Childhood Exposures to Metals (Arsenic, Cadmium, Lead, and Mercury) in Emerging Market Countries?

    PubMed Central

    Horton, Lindsey M.; Mortensen, Mary E.; Iossifova, Yulia; Wald, Marlena M.; Burgess, Paula

    2013-01-01

    Arsenic, cadmium, lead, and mercury present potential health risks to children who are exposed through inhalation or ingestion. Emerging Market countries experience rapid industrial development that may coincide with the increased release of these metals into the environment. A literature review was conducted for English language articles from the 21st century on pediatric exposures to arsenic, cadmium, lead, and mercury in the International Monetary Fund's (IMF) top 10 Emerging Market countries: Brazil, China, India, Indonesia, Mexico, Poland, Russia, South Korea, Taiwan, and Turkey. Seventy-six peer-reviewed, published studies on pediatric exposure to metals met the inclusion criteria. The reported concentrations of metals in blood and urine from these studies were generally higher than US reference values, and many studies identified adverse health effects associated with metals exposure. Evidence of exposure to metals in the pediatric population of these Emerging Market countries demonstrates a need for interventions to reduce exposure and efforts to establish country-specific reference values through surveillance or biomonitoring. The findings from review of these 10 countries also suggest the need for country-specific public health policies and clinician education in Emerging Markets. PMID:23365584

  18. Improvement of corrosion resistance of transparent conductive multilayer coating consisting of silver layers and transparent metal oxide layers

    SciTech Connect

    Koike, Katsuhiko; Yamazaki, Fumiharu; Okamura, Tomoyuki; Fukuda, Shin

    2007-05-15

    An optical filter for plasma display panel (PDP) requires an electromagnetic shield with very high ability. The authors investigated a transparent conductive multilayer coating consisting of silver (Ag) layers and transparent metal oxide layers. The durability of the multilayer sputter coating, including the silver layer, is very sensitive to the surrounding atmosphere. For example, after an exposure test they found discolored points on the multilayer sputter coatings, possibly caused by migration of silver atoms in the silver layers. In their investigation, they modified the top surface of the multilayer sputter coatings with transition metals to improve the corrosion resistance of the multilayer coating. Specifically, they deposited transition metals 0.5-2 nm thick on the top surface of the multilayer coatings by sputtering. They chose indium tin oxide (ITO) as the transparent metal oxide. They applied the multilayer sputter coatings of seven layers to a polyethylene terephthalate (PET) film substrate. A cross-sectional structure of the film with the multilayer coatings is PET film/ITO/Ag/ITO/Ag/ITO/Ag/ITO. They evaluated the corrosion resistance of the films by a salt-water immersion test. In the test, they immersed the film with multilayer coatings into salt water, and then evaluated the appearance, transmittance, and electrical resistance of the multilayer coatings. They investigated several transition metals as the modifying material, and found that titanium and tantalum drastically improved the resistance of the multilayer coatings to the salt-water exposure without a significant decline in transmittance. They also investigated the relation between elapsed time after deposition of the modifying materials and resistance to the salt water. Furthermore, they investigated the effects of a heat treatment and an oxide plasma treatment on resistance to the salt water.

  19. Photocatalytic oxidation of organic dyes with nanostructured zinc dioxide modified with silver metals

    NASA Astrophysics Data System (ADS)

    Zhang, Dongfang

    2011-08-01

    Silver-doped nano-ZnO samples with different Ag loadings were prepared by a one-spot solvothermal method. The structure, physico-chemical and optical properties of the products are characterized by using X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive X-ray analysis (EDS), diffuse reflectance spectroscopy (DRS) and photoluminescence spectra (PL). The photocatalytic activity of the as-prepared samples was examined by using photocatalytic oxidation of methyl orange (MO) as a model reaction, and the effects of the noble metal content on the photocatalytic activity were investigated. The results indicated that the photocatalytic activity of ZnO nanoparticles can be greatly improved by depositing appropriate amount of noble metal on their surface as electron scavengers. In addition, a key mechanism was proposed in order to account for the enhanced activity. The enhancement for the photocatalytic activities can be attributed to the interaction between Ag particles and ZnO, which made Ag particles act as electron traps to effectively separate the excited electron-hole pairs.

  20. Concentration of heavy metals in hair and skin of silver and red foxes (Vulpes vulpes).

    PubMed

    Filistowicz, Andrzej; Dobrzański, Zbigniew; Przysiecki, Piotr; Nowicki, Sławomir; Filistowicz, Aneta

    2011-11-01

    The structure of hair and levels of main chemical elements (C, N, O, S, Cl, Ca, P, Al, Na) in the external layer of hair of silver and red foxes (Vulpes vulpes) in a non-industrialised, typically agricultural region of middle-west Poland was assessed using a scanning microscope. Additionally, analysis of the accumulation of certain heavy metals (Cr, Cu, Ni, Pb and Zn) in hair (washed) and skin (non-tanned) of those foxes was conducted. Heavy metal levels were determined using a spectrophotometric method (ICP-OES), and correlations between these levels in hair and skin were calculated. The microscopic external (morphological) and internal structures (histological) of the hair of farm and wild foxes were not differentiated; however, the hair of farm foxes (external layer) contained higher amounts of C, Na, Al and P. A significantly higher Pb content was noted in non-tanned skin of wild foxes in comparison to farm ones. In the case of farm foxes, a significantly higher Zn content in hair and Zn and Cu in skin was observed in comparison to wild ones. Positive significant correlations between Cr and Ni content (r = 0.622) and Zn and Cu (r = 0.721) in fox skin were noted. A similar relationship between Cr content in hair and Ni in skin (r = 0.643) and between Zn in hair and skin (r = 0.595) was also observed.

  1. Silver cluster formation, dynamics, and chemistry in metal-organic frameworks.

    PubMed

    Houk, Ronald J T; Jacobs, Benjamin W; El Gabaly, Farid; Chang, Noel N; Talin, A Alec; Graham, Dennis D; House, Stephen D; Robertson, Ian M; Allendorf, Mark D

    2009-10-01

    Synthetic methods used to produce metal nanoparticles typically lead to a distribution of particle sizes. In addition, creation of the smallest clusters, with sizes of a few to tens of atoms, remains very challenging. Nanoporous metal-organic frameworks (MOFs) are a promising solution to these problems, since their long-range crystalline order creates completely uniform pore sizes with the potential for both steric and chemical stabilization. We report a systematic investigation of silver nanocluster formation within MOFs using three representative MOF templates. The as-synthesized clusters are spectroscopically consistent with dimensions < or =1 nm, with a significant fraction existing as Ag(3) clusters, as shown by electron paramagnetic resonance. Importantly, we show conclusively that very rapid TEM-induced MOF degradation leads to agglomeration and stable, easily imaged particles, explaining prior reports of particles larger than MOF pores. These results solve an important riddle concerning MOF-based templates and suggest that heterostructures composed of highly uniform arrays of nanoparticles within MOFs are feasible.

  2. Label-free SERS study of galvanic replacement reaction on silver nanorod surface and its application to detect trace mercury ion

    PubMed Central

    Wang, Yaohui; Wen, Guiqing; Ye, Lingling; Liang, Aihui; Jiang, Zhiliang

    2016-01-01

    It is significant to explore a rapid and highly sensitive galvanic replacement reaction (GRR) surface enhanced Raman scattering (SERS) method for detection of trace mercury ions. This article was reported a new GRR SERS analytical platform for detecting Hg(II) with label-free molecular probe Victoria blue B (VBB). In HAc-NaCl-silver nanorod (AgNR) substrate, the molecular probe VBB exhibited a strong SERS peak at 1609 cm−1. Upon addition of Hg(II), the GRR occurred between the AgNR and Hg(II), and formed a weak SERS activity of Hg2Cl2 that deposited on the AgNR surfaces to decrease the SERS intensity at 1609 cm−1. The decreased SERS intensity was linear to Hg(II) concentration in the range of 1.25–125 nmol/L, with a detection limit of 0.2 nmol/L. The GRR was studied by SERS, transmission electron microscopy and other techniques, and the GRR mechanism was discussed. PMID:26792071

  3. Mercurial, metallic and mineral prparations for the ailments of alimentary canal through the perspective of "basavarajiyam".

    PubMed

    Murthy, P H

    1984-07-01

    Basavarajiyam is one of the authoritative works on Ayurvedic treatment widely used in telugu region of India. The work describes the mercurial preparations and its efficacy vividly. The author scans here the work and highlights various mercurial preparations administered for the ailments of alimentary canal.

  4. Mercury in a spanish peat bog: archive of climate change and atmospheric metal deposition

    PubMed

    Martinez-Cortizas; Pontevedra-Pombal; Garcia-Rodeja; Novoa-Munoz; Shotyk

    1999-05-07

    A peat core from a bog in northwest Spain provides a record of the net accumulation of atmospheric mercury since 4000 radiocarbon years before the present. It was found that cold climates promoted an enhanced accumulation and the preservation of mercury with low thermal stability, and warm climates were characterized by a lower accumulation and the predominance of mercury with moderate to high thermal stability. This record can be separated into natural and anthropogenic components. The substantial anthropogenic mercury component began approximately 2500 radiocarbon years before the present, which is near the time of the onset of mercury mining in Spain. Anthropogenic mercury has dominated the deposition record since the Islamic period (8th to 11th centuries A.D.). The results shown here have implications for the global mercury cycle and also imply that the thermal lability of the accumulated mercury can be used not only to quantify the effects of human activity, but also as a new tool for quantitative paleotemperature reconstruction.

  5. Effects of metal-soil contact time on the extraction of mercury from soils.

    PubMed

    Ma, Lan; Zhong, Huan; Wu, Yong-Gui

    2015-03-01

    To investigate the mercury aging process in soils, soil samples were spiked with inorganic mercury (Hg(II)) or methylated mercury (MeHg) and incubated for 2, 7, 14 or 28 days in the laboratory. Potential availability of mercury, assessed by bovine serum albumin (BSA) or calcium chloride (CaCl2) extraction, decreased by 2-19 times for Hg(II) or 2-6 times for MeHg, when the contact time increased from 2 to 28 days. Decreased Hg(II) extraction could be explained by Hg(II) geochemical fractionation, i.e., Hg(II) migrated from more mobile fractions (water soluble and stomach acid soluble fractions) to refractory ones (organo-complexed, strongly complexed and residual fractions) over time, resulting in more stable association of Hg(II) with soils. In addition, decrease of mercury extraction was more evident in soils with lower organic content in most treatments, suggesting that organic matter may potentially play an important role in mercury aging process. In view of the significant decreased Hg(II) or MeHg extraction with prolonged contact time, mercury aging process should be taken into account when assessing risk of mercury in contaminated soils.

  6. Trace-metal concentrations in sediment and water and health of aquatic macroinvertebrate communities of streams near Park City, Summit County, Utah

    USGS Publications Warehouse

    Giddings, Elis M.P.; Hornberger, Michelle I.; Hadley, Heidi K.

    2001-01-01

    The spatial distribution of metals in streambed sediment and surface water of Silver Creek, McLeod Creek, Kimball Creek, Spring Creek, and part of the Weber River, near Park City, Utah, was examined. From the mid-1800s through the 1970s, this region was extensively mined for silver and lead ores. Although some remediation has occurred, residual deposits of tailing wastes remain in place along large sections of Silver Creek. These tailings are the most likely source of metals to this system. Bed sediment samples were collected in 1998, 1999, and 2000 and analyzed using two extraction techniques: a total extraction that completely dissolves all forms of metals in minerals and trace elements associated with the sediment; and a weak-acid extraction that extracts the metals and trace elements that are only weakly adsorbed onto the sediment surface. This latter method is used to determine the more biologically relevant fraction of metal complexed onto the sediment. Water samples were collected in March and August 2000 and were analyzed for total and dissolved trace metals.Concentrations of silver, cadmium, copper, lead, mercury, and zinc in the streambed sediment of Silver Creek greatly exceeded background concentrations. These metals also exceeded established aquatic life criteria at most sites. In the Weber River, downstream of the confluence with Silver Creek, concentrations of cadmium, lead, zinc, and total mercury in streambed sediment also exceeded aquatic life guidelines, however, concentrations of metals in streambed sediment of McLeod and Kimball Creeks were lower than Silver Creek. Water-column concentrations of zinc, total mercury, and methylmercury in Silver Creek were high relative to unimpacted sites, and exceeded water quality criteria for the protection of aquatic organisms. Qualitative measurements of the macroinvertebrate community in Silver Creek were compared to the spatial distribution of metals in streambed sediment. The data indicate that

  7. Partitioning of U, Th and K Between Metal, Sulfide and Silicate, Insights into the Volatile-Content of Mercury

    NASA Technical Reports Server (NTRS)

    Habermann, M.; Boujibar, A.; Righter, K.; Danielson, L.; Rapp, J.; Righter, M.; Pando, K.; Ross, D. K.; Andreasen, R.; Chidester, B.

    2016-01-01

    During the early stages of the Solar System formation, especially during the T-Tauri phase, the Sun emitted strong solar winds, which are thought to have expelled a portion of the volatile elements from the inner solar system. It is therefore usually believed that the volatile depletion of a planet is correlated with its proximity to the Sun. This trend was supported by the K/Th and K/U ratios of Venus, the Earth, and Mars. Prior to the MESSENGER mission, it was expected that Mercury is the most volatile-depleted planet. However, the Gamma Ray Spectrometer of MESSENGER spacecraft revealed elevated K/U and K/Th ratios for the surface of Mercury, much higher than previous expectations. It is possible that the K/Th and K/U ratios on the surface are not a reliable gauge of the bulk volatile content of Mercury. Mercury is enriched in sulfur and is the most reduced of the terrestrial planets, with oxygen fugacity (fO2) between IW-6.3 and IW-2.6 log units. At these particular compositions, U, Th and K behave differently and can become more siderophile or chalcophile. If significant amounts of U and Th are sequestered in the core, the apparent K/U and K/Th ratios measured on the surface may not represent the volatile budget of the whole planet. An accurate determination of the partitioning of these elements between silicate, metal, and sulfide phases under Mercurian conditions is therefore essential to better constrain Mercury's volatile content and assess planetary formation models.

  8. Correlation of photobleaching, oxidation and metal induced fluorescence quenching of DNA-templated silver nanoclusters

    NASA Astrophysics Data System (ADS)

    Morishita, Kiyoshi; Maclean, James L.; Liu, Biwu; Jiang, Hui; Liu, Juewen

    2013-03-01

    Few-atom noble metal nanoclusters have attracted a lot of interest due to their potential applications in biosensor development, imaging and catalysis. DNA-templated silver nanoclusters (AgNCs) are of particular interest as different emission colors can be obtained by changing the DNA sequence. A popular analytical application is fluorescence quenching by Hg2+, where d10-d10 metallophilic interaction has often been proposed for associating Hg2+ with nanoclusters. However, it cannot explain the lack of response to other d10 ions such as Zn2+ and Cd2+. In our effort to elucidate the quenching mechanism, we studied a total of eight AgNCs prepared by different hairpin DNA sequences; they showed different sensitivity to Hg2+, and DNA with a larger cytosine loop size produced more sensitive AgNCs. In all the cases, samples strongly quenched by Hg2+ were also more easily photobleached. Light of shorter wavelengths bleached AgNCs more potently, and photobleached samples can be recovered by NaBH4. Strong fluorescence quenching was also observed with high redox potential metal ions such as Ag+, Au3+, Cu2+ and Hg2+, but not with low redox potential ions. Such metal induced quenching cannot be recovered by NaBH4. Electronic absorption and mass spectrometry studies offered further insights into the oxidation reaction. Our results correlate many important experimental observations and will fuel the further growth of this field.Few-atom noble metal nanoclusters have attracted a lot of interest due to their potential applications in biosensor development, imaging and catalysis. DNA-templated silver nanoclusters (AgNCs) are of particular interest as different emission colors can be obtained by changing the DNA sequence. A popular analytical application is fluorescence quenching by Hg2+, where d10-d10 metallophilic interaction has often been proposed for associating Hg2+ with nanoclusters. However, it cannot explain the lack of response to other d10 ions such as Zn2+ and Cd2+. In

  9. Method and apparatus for sampling atmospheric mercury

    DOEpatents

    Trujillo, Patricio E.; Campbell, Evan E.; Eutsler, Bernard C.

    1976-01-20

    A method of simultaneously sampling particulate mercury, organic mercurial vapors, and metallic mercury vapor in the working and occupational environment and determining the amount of mercury derived from each such source in the sampled air. A known volume of air is passed through a sampling tube containing a filter for particulate mercury collection, a first adsorber for the selective adsorption of organic mercurial vapors, and a second adsorber for the adsorption of metallic mercury vapor. Carbon black molecular sieves are particularly useful as the selective adsorber for organic mercurial vapors. The amount of mercury adsorbed or collected in each section of the sampling tube is readily quantitatively determined by flameless atomic absorption spectrophotometry.

  10. Effect of the metals iron, copper and silver on fluorobenzene biodegradation by Labrys portucalensis.

    PubMed

    Moreira, Irina S; Amorim, Catarina L; Carvalho, Maria F; Ferreira, António C; Afonso, Carlos M; Castro, Paula M L

    2013-04-01

    Organic and metallic pollutants are ubiquitous in the environment. Many metals are reported to be toxic to microorganisms and to inhibit biodegradation. The effect of the metals iron, copper and silver on the metabolism of Labrys portucalensis F11 and on fluorobenzene (FB) biodegradation was examined. The results indicate that the addition of 1 mM of Fe(2+) to the culture medium has a positive effect on bacterial growth and has no impact in the biodegradation of 1 and 2 mM of FB. The presence of 1 mM of Cu(2+) was found to strongly inhibit the growth of F11 cultures and to reduce the biodegradation of 1 and 2 mM of FB to ca. 50 %, with 80 % of stoichiometrically expected fluoride released. In the experiments with resting cells, the FB degraded (from 2 mM supplied) was reduced ca. 20 % whereas the fluoride released was reduced to 45 % of that stoichiometrically expected. Ag(+) was the most potent inhibitor of FB degradation. In experiments with growing cells, the addition of 1 mM of Ag(+) to the culture medium containing 1 and 2 mM of FB resulted in no fluoride release, whereas FB degradation was only one third of that observed in control cultures. In the experiments with resting cells, the addition of Ag(+) resulted in 25 % reduction in substrate degradation and fluoride release was only 20 % of that stoichiometrically expected. The accumulation of catechol and 4-fluorocatechol in cultures supplemented with Cu(2+) or Ag(+) suggest inhibition of the key enzyme of FB metabolism-catechol 1,2-dioxygenase.

  11. The heavy metals cadmium, lead and mercury in raw materials of animal origin: evaluation of data from practice.

    PubMed

    Busch, J; Knödler, M; Kühn, M; Lipinski, A; Steinhoff, B

    2015-01-01

    Raw materials from animal origin are widely used in homoeopathy. Due to the lack of dedicated limits, the quality requirements for herbal drugs of the European Pharmacopoeia (Ph. Eur.) and/or the German Homoeopathic Pharmacopoeia (Homöopathisches Arzneibuch, HAB), including limits for heavy metals such as cadmium, lead and mercury, have been applied. A recent database evaluation shows that for some raw materials of animal origin the Ph. Eur. limits for herbal drugs cannot be met in practice. For this reason proposals for new limits for cadmium, lead and mercury are made based on recent experiences from the companies' daily practice. These specific limits are suggested to be included in the individual monographs of the Ph. Eur. or at least the German HAB, respectively, for Ambra grisea, Euspongia officinalis, Formica rufa and Sepia officinalis.

  12. Recovery of silver residues from dental amalgam.

    PubMed

    Pereira, Heloísa Aparecida Barbosa da Silva; Iano, Flávia Godoy; da Silva, Thelma Lopes; de Oliveira, Rodrigo Cardoso; de Menezes, Manoel Lima; Buzalaf, Marília Afonso Rabelo

    2010-01-01

    Dental amalgam residues are probably the most important chemical residues generated from clinical dental practice because of the presence of heavy metals among its constituents, mainly mercury and silver. The purpose of this study was to develop an alternative method for the recovery of silver residues from dental amalgam. The residue generated after vacuum distillation of dental amalgam for the separation of mercury was initially diluted with 32.5% HNO3, followed by precipitation with 20% NaCl. Sequentially, under constant heating and agitation with NaOH and sucrose, the sample was reduced to metallic silver. However, the processing time was too long, which turned this procedure not viable. In another sequence of experiments, the dilution was accomplished with concentrated HNO3 at 90 degrees C, followed by precipitation with 20% NaCl. After washing, the pellet was diluted with concentrated NH4OH, water and more NaCl in order to facilitate the reaction with the reducer. Ascorbic acid was efficiently used as reducer, allowing a fast reduction, thus making the procedure viable. The proposed methodology is of easy application and does not require sophisticated equipment or expensive reagents.

  13. Synthesis of a Nano-Silver Metal Ink for Use in Thick Conductive Film Fabrication Applied on a Semiconductor Package

    PubMed Central

    Yung, Lai Chin; Fei, Cheong Choke; Mandeep, JS; Binti Abdullah, Huda; Wee, Lai Khin

    2014-01-01

    The success of printing technology in the electronics industry primarily depends on the availability of metal printing ink. Various types of commercially available metal ink are widely used in different industries such as the solar cell, radio frequency identification (RFID) and light emitting diode (LED) industries, with limited usage in semiconductor packaging. The use of printed ink in semiconductor IC packaging is limited by several factors such as poor electrical performance and mechanical strength. Poor adhesion of the printed metal track to the epoxy molding compound is another critical factor that has caused a decline in interest in the application of printing technology to the semiconductor industry. In this study, two different groups of adhesion promoters, based on metal and polymer groups, were used to promote adhesion between the printed ink and the epoxy molding substrate. The experimental data show that silver ink with a metal oxide adhesion promoter adheres better than silver ink with a polymer adhesion promoter. This result can be explained by the hydroxyl bonding between the metal oxide promoter and the silane grouping agent on the epoxy substrate, which contributes a greater adhesion strength compared to the polymer adhesion promoter. Hypotheses of the physical and chemical functions of both adhesion promoters are described in detail. PMID:24830317

  14. Synthesis of a nano-silver metal ink for use in thick conductive film fabrication applied on a semiconductor package.

    PubMed

    Yung, Lai Chin; Fei, Cheong Choke; Mandeep, Js; Binti Abdullah, Huda; Wee, Lai Khin

    2014-01-01

    The success of printing technology in the electronics industry primarily depends on the availability of metal printing ink. Various types of commercially available metal ink are widely used in different industries such as the solar cell, radio frequency identification (RFID) and light emitting diode (LED) industries, with limited usage in semiconductor packaging. The use of printed ink in semiconductor IC packaging is limited by several factors such as poor electrical performance and mechanical strength. Poor adhesion of the printed metal track to the epoxy molding compound is another critical factor that has caused a decline in interest in the application of printing technology to the semiconductor industry. In this study, two different groups of adhesion promoters, based on metal and polymer groups, were used to promote adhesion between the printed ink and the epoxy molding substrate. The experimental data show that silver ink with a metal oxide adhesion promoter adheres better than silver ink with a polymer adhesion promoter. This result can be explained by the hydroxyl bonding between the metal oxide promoter and the silane grouping agent on the epoxy substrate, which contributes a greater adhesion strength compared to the polymer adhesion promoter. Hypotheses of the physical and chemical functions of both adhesion promoters are described in detail.

  15. Metal-Silicate-Sulfide Partitioning of U, Th, and K: Implications for the Budget of Volatile Elements in Mercury

    NASA Technical Reports Server (NTRS)

    Habermann, M.; Boujibar, A.; Righter, K.; Danielson, L.; Rapp, J.; Righter, M.; Pando, K.; Ross, D. K.; Andreasen, R.

    2016-01-01

    During formation of the solar system, the Sun produced strong solar winds, which stripped away a portion of the volatile elements from the forming planets. Hence, it was expected that planets closest to the sun, such as Mercury, are more depleted in volatile elements in comparison to other terrestrial planets. However, the MESSENGER mission detected higher than expected K/U and K/Th ratios on Mercury's surface, indicating a volatile content between that of Mars and Earth. Our experiments aim to resolve this discrepancy by experimentally determining the partition coefficients (D(sup met/sil)) of K, U, and Th between metal and silicate at varying pressure (1 to 5 GPa), temperature (1500 to 1900 C), oxygen fugacity (IW-2.5 to IW-6.5) and sulfur-content in the metal (0 to 33 wt%). Our data show that U, Th, and K become more siderophile with decreasing fO2 and increasing sulfur-content, with a stronger effect for U and Th in comparison to K. Using these results, the concentrations of U, Th, and K in the bulk planet were calculated for different scenarios, where the planet equilibrated at a fO2 between IW-4 and IW-7, assuming the existence of a FeS layer, between the core and mantle, with variable thickness. These models show that significant amounts of U and Th are partitioned into Mercury's core. The elevated superficial K/U and K/Th values are therefore only a consequence of the sequestration of U and Th into the core, not evidence of the overall volatile content of Mercury.

  16. Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic framework

    NASA Astrophysics Data System (ADS)

    Huang, Ren-Wu; Wei, Yong-Sheng; Dong, Xi-Yan; Wu, Xiao-Hui; Du, Chen-Xia; Zang, Shuang-Quan; Mak, Thomas C. W.

    2017-07-01

    Silver(I) chalcogenide/chalcogenolate clusters are promising photofunctional materials for sensing, optoelectronics and solar energy harvesting applications. However, their instability and poor room-temperature luminescent quantum yields have hampered more extensive study. Here, we graft such clusters to adaptable bridging ligands, enabling their interconnection and the formation of rigid metal-organic frameworks. By controlling the spatial separation and orientation of the clusters, they then exhibit enhanced stability (over one year) and quantum yield (12.1%). Ultrafast dual-function fluorescence switching (<1 s) is also achieved, with turn-off triggered by O2 and multicoloured turn-on by volatile organic compounds. Single-crystal X-ray diffraction of the inclusion materials, obtained by single-crystal-to-single-crystal transformation, enables precise determination of the position of the small molecules within the framework, elucidating the switching mechanism. The work enriches the cluster-based metal-organic framework portfolio, bridges the gap between silver chalcogenide/chalcogenolate clusters and metal-organic frameworks, and provides a foundation for further development of functional silver-cluster-based materials.

  17. Atomically precise arrays of fluorescent silver clusters: a modular approach for metal cluster photonics on DNA nanostructures.

    PubMed

    Copp, Stacy M; Schultz, Danielle E; Swasey, Steven; Gwinn, Elisabeth G

    2015-03-24

    The remarkable precision that DNA scaffolds provide for arraying nanoscale optical elements enables optical phenomena that arise from interactions of metal nanoparticles, dye molecules, and quantum dots placed at nanoscale separations. However, control of ensemble optical properties has been limited by the difficulty of achieving uniform particle sizes and shapes. Ligand-stabilized metal clusters offer a route to atomically precise arrays that combine desirable attributes of both metals and molecules. Exploiting the unique advantages of the cluster regime requires techniques to realize controlled nanoscale placement of select cluster structures. Here we show that atomically monodisperse arrays of fluorescent, DNA-stabilized silver clusters can be realized on a prototypical scaffold, a DNA nanotube, with attachment sites separated by <10 nm. Cluster attachment is mediated by designed DNA linkers that enable isolation of specific clusters prior to assembly on nanotubes and preserve cluster structure and spectral purity after assembly. The modularity of this approach generalizes to silver clusters of diverse sizes and DNA scaffolds of many types. Thus, these silver cluster nano-optical elements, which themselves have colors selected by their particular DNA templating oligomer, bring unique dimensions of control and flexibility to the rapidly expanding field of nano-optics.

  18. Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic framework.

    PubMed

    Huang, Ren-Wu; Wei, Yong-Sheng; Dong, Xi-Yan; Wu, Xiao-Hui; Du, Chen-Xia; Zang, Shuang-Quan; Mak, Thomas C W

    2017-07-01

    Silver(i) chalcogenide/chalcogenolate clusters are promising photofunctional materials for sensing, optoelectronics and solar energy harvesting applications. However, their instability and poor room-temperature luminescent quantum yields have hampered more extensive study. Here, we graft such clusters to adaptable bridging ligands, enabling their interconnection and the formation of rigid metal-organic frameworks. By controlling the spatial separation and orientation of the clusters, they then exhibit enhanced stability (over one year) and quantum yield (12.1%). Ultrafast dual-function fluorescence switching (<1 s) is also achieved, with turn-off triggered by O2 and multicoloured turn-on by volatile organic compounds. Single-crystal X-ray diffraction of the inclusion materials, obtained by single-crystal-to-single-crystal transformation, enables precise determination of the position of the small molecules within the framework, elucidating the switching mechanism. The work enriches the cluster-based metal-organic framework portfolio, bridges the gap between silver chalcogenide/chalcogenolate clusters and metal-organic frameworks, and provides a foundation for further development of functional silver-cluster-based materials.

  19. The nature of electronic excitations at the metal-bioorganic interface illustrated on histidine-silver hybrids.

    PubMed

    Sanader, Željka; Mitrić, Roland; Bonačić-Koutecký, Vlasta; Bellina, Bruno; Antoine, Rodolphe; Dugourd, Philippe

    2014-01-21

    We present a joint theoretical and experimental study of the structure selective optical properties of cationic and anionic histidine-silver complexes with Ag and Ag3 which were prepared in the gas phase using mass spectroscopy coupled to electrospray ion source. Our TDDFT calculations provide general insight into the nature of electronic excitations at the metal-bioorganic interface that involve π-π* excitation within bioorganic subunits, charge transfer between two subunits and intrametallic excitations. The binding of silver to histidine, one of the most important amino acids, induces red shift in the optical absorption of protonated histidine particularly for anionic species. The presence of the smallest metallic subunit Ag3 increases the intensity of low energy transitions of histidine illustrating a metal cluster-induced enhancement of absorption of biomolecules in hybrid systems. Comparison of calculated absorption spectra with experimental photofragmentation yield provides structural assignment of the measured spectroscopic patterns. Our findings may serve to establish silver-labeling as the tool for the detection of histidine or histidine-tagged proteins.

  20. Role of surface-bound intermediates in the oxygen-assisted synthesis of amides by metallic silver and gold.

    PubMed

    Siler, Cassandra G F; Xu, Bingjun; Madix, Robert J; Friend, Cynthia M

    2012-08-01

    A general mechanism for the oxygen-assisted synthesis of amides over metallic gold and silver surfaces has been derived from the study of acetaldehyde and dimethylamine in combination with previous work, allowing detailed comparison of the two surfaces' reactivities. Facile acetylation of dimethylamine by acetaldehyde occurs with high selectivity on oxygen-covered silver and gold (111) crystals via a common overall mechanism with different rate-limiting steps on the two metals. Adsorbed atomic oxygen activates the N-H bond of the amine leading to the formation of an adsorbed amide, which attacks the carbonyl carbon of the aldehyde, forming an adsorbed hemiaminal. Because aldehydes are known to form readily from partial oxidation of alcohols, our mechanism also provides insight into the related catalytic coupling of alcohols and amines. The hemiaminal β-H eliminates to form the coupled amide product. On silver, β-H elimination from the hemiaminal is rate-limiting, whereas on gold desorption of the amide is the slow step. Silver exhibits high selectivity for the coupling reaction for adsorbed oxygen concentrations between 0.01 and 0.1 monolayer, whereas gold exhibits selectivity more strongly dependent on oxygen coverage, approaching 100% at 0.03 monolayer. The selectivity trends and difference in rate-limiting steps are likely due to the influence of the relative stability of the adsorbed hydroxyl groups on the two surfaces. Low surface coverages of oxygen lead to the highest selectivity. This study provides a general framework for the oxygen-assisted coupling of alcohols and aldehydes with amines over gold- and silver-based catalysts in either the vapor or the liquid phase.

  1. Effect of cropping systems on heavy metal distribution and mercury fractionation in the Wanshan mining district, China: implications for environmental management.

    PubMed

    Wang, Jianxu; Feng, Xinbin; Anderson, Christopher W N; Qiu, Guangle; Bao, Zhengduo; Shang, Lihai

    2014-09-01

    The authors studied the concentration of heavy metals and mercury fractionation in contaminated soil in 2 agricultural land use systems (paddy rice and dry land) at the Wanshan mercury mine in China. The average concentrations of chromium, lead, copper, nickel, and zinc were generally lower in paddy rice soil relative to corn field soil. Soil under corn field production was slightly contaminated with lead (22-100 mg/kg), copper (31-64 mg/kg), and nickel (22-76 mg/kg) and moderately contaminated with zinc (112-635 mg/kg). In both soils, correlation of these metals with the titanium concentration in the soil indicates a geogenic origin for each metal (lead, r = 0.48; copper, r = 0.63; nickel, r = 0.47; zinc, r = 0.48). The mercury and antimony concentration in soil was high under both cropping systems, and future remediation efforts should consider the potential environmental risk presented by these metals. The concentration of bioavailable mercury in soil ranged from 0.3 ng/g to 11 ng/g across the 2 cropping systems. The majority of mercury (>80%) was associated with organic matter and the residual fraction. However, soil under paddy rice production exhibited a significantly lower concentration of Fe/Mn oxide-bound mercury than that under corn field production. This may be a function of the reduction of Fe/Mn oxides in the paddy rice soil, with the subsequent release of adsorbed metals to the soil solution. Sequential change from corn field to paddy rice production, as practiced in Wanshan, should therefore be avoided. Mercury adsorbed to Fe/Mn oxides in corn field soil potentially could be released into the soil solution and be made available for biomethylation under the flooded water management conditions of a rice paddy. © 2014 SETAC.

  2. Got Mercury?

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie; James, John T.; McCoy, Torin; Garcia, Hector

    2010-01-01

    Many lamps used in various spacecraft contain elemental mercury, which is efficiently absorbed through the lungs as a vapor. The liquid metal vaporizes slowly at room temperature, but may be completely vaporized when lamps are operating. Because current spacecraft environmental control systems are unable to remove mercury vapors, we considered short-term and long-term exposures. Using an existing study, we estimated mercury vapor releases from lamps that are not in operation during missions lasting less than or equal to 30 days; whereas we conservatively assumed complete vaporization from lamps that are operating or being used during missions lasing more than 30 days. Based on mercury toxicity, the Johnson Space Center's Toxicology Group recommends stringent safety controls and verifications for any hardware containing elemental mercury that could yield airborne mercury vapor concentrations greater than 0.1 mg/m3 in the total spacecraft atmosphere for exposures lasting less than or equal to 30 days, or concentrations greater than 0.01 mg/m3 for exposures lasting more than 30 days.

  3. Thermally Stable Silver Nanowires-Embedding Metal Oxide for Schottky Junction Solar Cells.

    PubMed

    Kim, Hong-Sik; Patel, Malkeshkumar; Park, Hyeong-Ho; Ray, Abhijit; Jeong, Chaehwan; Kim, Joondong

    2016-04-06

    Thermally stable silver nanowires (AgNWs)-embedding metal oxide was applied for Schottky junction solar cells without an intentional doping process in Si. A large scale (100 mm(2)) Schottky solar cell showed a power conversion efficiency of 6.1% under standard illumination, and 8.3% under diffused illumination conditions which is the highest efficiency for AgNWs-involved Schottky junction Si solar cells. Indium-tin-oxide (ITO)-capped AgNWs showed excellent thermal stability with no deformation at 500 °C. The top ITO layer grew in a cylindrical shape along the AgNWs, forming a teardrop shape. The design of ITO/AgNWs/ITO layers is optically beneficial because the AgNWs generate plasmonic photons, due to the AgNWs. Electrical investigations were performed by Mott-Schottky and impedance spectroscopy to reveal the formation of a single space charge region at the interface between Si and AgNWs-embedding ITO layer. We propose a route to design the thermally stable AgNWs for photoelectric device applications with investigation of the optical and electrical aspects.

  4. Tunable white light emission in Parallel Tandem OLEDs made with silver metal as interlayer

    NASA Astrophysics Data System (ADS)

    Oliva, Jorge; Papadimitratos, Alexios; Zakhidov, Anvar; UT Dallas Team

    Parallel tandem organic light emitting diodes (OLEDs) which consisted in a top and bottom subunits, and joined with a thin layer of silver (interlayer) were fabricated. In this parallel tandem architecture the Ag metal is an active common anode, which permitted to inject holes into top and bottom subunits. Both subunits of the tandem can thus be connected functionally in a new geometry and addressed separately. Those Tandems had a yellow emitter (a mixture of MEH-PPV and TFB polymers) in the bottom subunit and a blue emitting molecule in the top subunit. The simultaneous combination of the emitted yellow and blue light when both subunits are operating produced white light. We could tune the white light from cool (CIE: 0.33, 0.25) to warm (CIE: 0.38, 0.39) by changing the intensity of the yellow light, that in turn depends on the ratio of MEH-PPV/TFB mixture used to make the emitting layer in the bottom subunit. We also compared the performance of the parallel tandem with these in series and we found additional advantages of the parallel architecture over the configuration for the series tandems such as: tunable chromaticity, lower turn on voltage (4V compared to 7V in the in-series tandem) and higher brightness. The best CIE coordinate we obtained for white light was (0.35, 0.35) which is near the ideal coordinate of (0.33,0.33).

  5. Insights into the electrocatalytic reduction of CO₂ on metallic silver surfaces.

    PubMed

    Hatsukade, Toru; Kuhl, Kendra P; Cave, Etosha R; Abram, David N; Jaramillo, Thomas F

    2014-07-21

    The electrochemical reduction of CO2 could allow for a sustainable process by which renewable energy from wind and solar are used directly in the production of fuels and chemicals. In this work we investigated the potential dependent activity and selectivity of the electrochemical reduction of CO2 on metallic silver surfaces under ambient conditions. Our results deepen our understanding of the surface chemistry and provide insight into the factors important to designing better catalysts for the reaction. The high sensitivity of our experimental methods for identifying and quantifying products of reaction allowed for the observation of six reduction products including CO and hydrogen as major products and formate, methane, methanol, and ethanol as minor products. By quantifying the potential-dependent behavior of all products, we provide insights into kinetics and mechanisms at play, in particular involving the production of hydrocarbons and alcohols on catalysts with weak CO binding energy as well as the formation of a C-C bond required to produce ethanol.

  6. Electrochemiluminescent immunosensing of prostate-specific antigen based on silver nanoparticles-doped Pb (II) metal-organic framework.

    PubMed

    Ma, Hongmin; Li, Xiaojian; Yan, Tao; Li, Yan; Zhang, Yong; Wu, Dan; Wei, Qin; Du, Bin

    2016-05-15

    In this work, silver nanoparticles-doped Pb (II) metal-organic framework (Ag-MOF) was prepared and exploited as a luminescence probe for the development of label-free electrochemiluminescence (ECL) immunosensing scheme for prostate-specific antigen (PSA). The β-cyclodextrin based MOF, Pb-β-cyclodextrin (Pb(II)-β-CD) shows excellent ECL behavior and unexpected reducing capacity towards silver ions. Silver nanoparticles could massively form on the surface of Pb(II)-β-CD (Ag@Pb(II)-β-CD) without use any additional reducing agent, while the ECL behavior of Pb(II)-β-CD still was well retained. The Ag@Pb(II)-β-CD was used as a substrate material to modify glass carbon electrodes and formed a sensing platform for the fabricating ECL immunosensor. The presence of silver nanoparticles enables the facile immobilization of capturing antibody of PSA. The specific binding of PSA onto the electrode surface induces the decrease of ECL signals. A linear range of 0.001-50 ng mL(-1) with a detection limit of 0.34 pg mL(-1) (S/N=3) was obtained after the optimization of experimental conditions. This simply fabricated immunosensor exhibits good stability, accuracy and acceptable reproducibility, which suggesting its potential applications in clinical diagnostics.

  7. Voltammetric determination of trace amounts of diacetyl at a mercury meniscus modified silver solid amalgam electrode following gas-diffusion microextraction.

    PubMed

    Ramos, Rui M; Gonçalves, Luís M; Vyskočil, Vlastimil; Rodrigues, José A

    2017-07-01

    A new approach was developed for the determination of trace amounts of diacetyl in food products using gas-diffusion microextraction (GDME) and subsequent detection by differential pulse voltammetry (DPV) at a mercury meniscus modified silver solid amalgam electrode (m-AgSAE). Diacetyl is a vicinal diketone responsible for the buttery aroma in many fermented foods and beverages. Its determination is important not only for evaluation of the final product quality (note of mention: health related concerns were associated with continuous diacetyl exposure) but also to monitor fermentation. GDME, a technique combining gas-diffusion and microextraction, particularly aimed to volatile and semi-volatile analytes, seemed the best way to selective extract diacetyl. A solution of 0.05% o-phenylenediamine (OPDA) prepared in a Britton-Robinson buffer (pH 5.0) was chosen as the extracting solution. This solution simultaneously extracts, pre-concentrates and derivatizes diacetyl to 2,3-dimethylquinoxaline (DMQ), enhancing the extraction selectivity and making the analyte electroactive. After finding the optimum conditions for the extraction process (10min at 60°C with 1.0mL of OPDA at pH 5.0), the DPV measurements at the m-AgSAE were conducted with a scan rate of 7mVs(-1), a modulation amplitude of 50mV and a modulation time of 100ms. Under these conditions, the resulting DMQ could be easily measured at a potential of -0.6V vs. Ag|AgCl (3molL(-1) KCl). The amalgam electrode keeps the advantages of classic mercury electrodes, like high sensitivity, while being environmentally friendly. The GDME/m-AgSAE produced suitable method features for the determination of low amounts of diacetyl (as DMQ) in alcoholic beverages, and in fact, to the best of our knowledge, the limit of quantification of 0.18µgL(-1) is one of the lowest reported in literature. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Characteristics of some silver-, and base metal-bearing, epithermal deposits of Mexico and Peru

    USGS Publications Warehouse

    Foley, Nora K.

    1984-01-01

    Although many characteristics of the geology and geochemistry of this type of deposit were considered, the most important criterion for choosing these deposits was that they have substantial quantities of precious- and base-metal mineralization. Additional criteria for selecting the deposits were that they be hosted primarily by calc-alkaline volcanic rocks of intermediate to silicic composition and that they be younger than Tertiary in age. Many deposits in Mexico and Peru and other parts of Central and South America were excluded because the literature describing the districts is not readily available. Furthermore, many districts have not been examined in detail or the information available is of limited geological scope. The four districts that are compiled in this report were chosen because they are described in abundant literature dating from early mining reports on the general geology and mineralogy to very recent data on detailed geochemical and mineralogical studies. They were chosen as being fairly typical, classic examples of near-surface, low-temperature vein deposits as described by Lindgren (1928) in his treatise on ore deposits (Mineral deposits, McGraw-Hill, 1049 p.). These deposits are similar in aspects of their geology and geochemistry to many of the famous, epithermal silver mining districts in Colorado and Nevada including Creede, Colorado, Tonapah, Nevada, and the Sunnyside Mine of the Eureka district, Colorado, and, in the special case of Julcani, to Summitville, Colorado, and Goldfield, Nevada. The characteristics that distinguish them include overall size, production and alteration assemblage. The information documented in each summary will be used in a forthcoming series of papers on the comparative anatomy of precious and base metal deposits in North and South America.

  9. Detection of heavy metals (Cu+2, Hg+2) by biosynthesized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Maiti, Swarnali; Barman, Gadadhar; Konar Laha, Jayasree

    2016-04-01

    Here, we are reporting two methods for detection of Cu+2 ion and Hg+2 ions using biosynthesized silver nanoparticles. The detection of Cu+2 ion was based on changes in absorbance resulting from complex formation of the metal ion. Various concentrations of Cu+2 ion were used to test the linearity and sensitivity of the method. A new peak at around 770 nm, in addition to the peak of the AgNP at 406 nm, was observed in each case (above 20 µM). With the increase of concentration of Cu+2 ion solution, the absorbance at 406 nm peak decreased and that of 770 nm increased gradually. The calibration curve obtained from the ratio of the absorption coefficients of these two peaks (Ex770/406) versus concentration of Cu+2 ions enables one to estimate quantitatively the amount of Cu+2 ions present in water in µM levels. This AgNP was further functionalized with 3-mercapto-1, 2-propanediol (MPD) for detection of Hg+2 present in water by colorimetric method. As soon as Hg+2 solution was added in MPD-functionalized AgNP (MPD-AgNP), a new peak at around 606 nm appeared along with the peak at 404 nm. The new peak might be due to the aggregations occurred by the recognition of heavy metal ion Hg+2 by MPD-AgNP through dipropionate ion. A calibration curve between the ratios of the absorption coefficients of these two peaks (Ex404/606) and concentration of Hg+2 was drawn for quantitative estimation of Hg+2 present in water at µM level.

  10. Mercury, monomethyl mercury, and dissolved organic carbon concentrations in surface water entering and exiting constructed wetlands treated with metal-based coagulants, Twitchell Island, California

    USGS Publications Warehouse

    Stumpner, Elizabeth B.; Kraus, Tamara E.C.; Fleck, Jacob A.; Hansen, Angela M.; Bachand, Sandra M.; Horwath, William R.; DeWild, John F.; Krabbenhoft, David P.; Bachand, Philip A.M.

    2015-09-02

    Following coagulation, but prior to passage through the wetland cells, coagulation treatments transferred dissolved mercury and carbon to the particulate fraction relative to untreated source water: at the wetland cell inlets, the coagulation treatments decreased concentrations of filtered total mercury by 59–76 percent, filtered monomethyl mercury by 40–70 percent, and dissolved organic carbon by 65–86 percent. Passage through the wetland cells decreased the particulate fraction of mercury in wetland cells that received coagulant-treated water. Changes in total mercury, monomethyl mercury, and dissolved organic carbon concentrations resulting from wetland passage varied both by treatment and season. Despite increased monomethyl mercury in the filtered fraction during wetland passage between March and August, the coagulation-wetland systems generally decreased total mercury (filtered plus particulate) and monomethyl mercury (filtered plus particulate) concentrations relative to source water. Coagulation—either alone or in association with constructed wetlands—could be an effective way to decrease concentrations of mercury and dissolved organic carbon in surface water as well as the bioavailability of mercury in the Sacramento–San Joaquin Delta.

  11. Electrochemical Reduction of Silver Vanadium Phosphorous Oxide, Ag2VO2PO4: Silver Metal Deposition and Associated Increase in Electrical Conductivity

    PubMed Central

    Marschilok, Amy C.; Kozarsky, Eric S.; Tanzil, Kevin; Zhu, Shali; Takeuchi, Kenneth J.; Takeuchi, Esther S.

    2010-01-01

    This report details the chemical and associated electrical resistance changes of silver vanadium phosphorous oxide (Ag2VO2PO4, SVPO) incurred during electrochemical reduction in a lithium based electrochemical cell over the range of 0 to 4 electrons per formula unit. Specifically the cathode electrical conductivities and associated cell DC resistance and cell AC impedance values vary with the level of reduction, due the changes of the SVPO cathode. Initially, Ag+ is reduced to Ag0 (2 electrons per formula unit, or 50% of the calculated theoretical value of 4 electrons per formula unit), accompanied by significant decreases in the cathode electrical resistance, consistent with the formation of an electrically conductive silver metal matrix within the SVPO cathode. As Ag+ reduction progresses, V5+ reduction initiates; once the SVPO reduction process progresses to where the reduction of V5+ to V4+ is the dominant process, both the cell and cathode electrical resistances then begin to increase. If the discharge then continues to where the dominant cathode reduction process is the reduction of V4+ to V3+, the cathode and cell electrical resistances then begin to decrease. The complex cathode electrical resistance pattern exhibited during full cell discharge is an important subject of this study. PMID:20657813

  12. Toward the self-assembly of metal-organic nanotubes using metal-metal and π-stacking interactions: bis(pyridylethynyl) silver(I) metallo-macrocycles and coordination polymers.

    PubMed

    Kilpin, Kelly J; Gower, Martin L; Telfer, Shane G; Jameson, Geoffrey B; Crowley, James D

    2011-02-07

    Shape-persistent macrocycles and planar organometallic complexes are beginning to show considerable promise as building blocks for the self-assembly of a variety of supramolecular materials including nanofibers, nanowires, and liquid crystals. Here we report the synthesis and characterization of a family of planar di- and tri-silver(I) containing metallo-macrocycles designed to self-assemble into novel metal-organic nanotubes through a combination of π-stacking and metal-metal interactions. The silver(I) complexes have been fully characterized by elemental analysis, high resolution electrospray ionization mass spectrometry (HR-ESI-MS), IR, (1)H and (13)C NMR spectroscopy, and the solution data are consistent with the formation of the metallo-macrocycles. Four of the complexes have been structurally characterized using X-ray crystallography. However, only the di-silver(I) complex formed with 1,3-bis(pyridin-3-ylethynyl)benzene is found to maintain its macrocyclic structure in the solid state. The di-silver(I) shape-persistent macrocycle assembles into a nanoporous chicken-wire like structure, and ClO(4)(-) anions and disordered H(2)O molecules fill the pores. The silver(I) complexes of 2,6-bis(pyridin-3-ylethynyl)pyridine and 1,4-di(3-pyridyl)buta-1,3-diyne ring-open and crystallize as non-porous coordination polymers.

  13. Laser Induced Forward Transfer of High Viscosity Silver Paste for New Metallization Methods in Photovoltaic and Flexible Electronics Industry

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Munoz-Martin, D.; Morales, M.; Molpeceres, C.; Sánchez-Cortezon, E.; Murillo-Gutierrez, J.

    Laser Induced Forward Transfer (LIFT) has been studied in the past as a promising approach for precise metallization in electronics using metallic inks and pastes. In this work we present large area metallization using LIFT of fully commercial silver-based pastes initially designed for solar cell screen-printing. We discuss the mechanisms for the material transfer both in ns and ps regimes of irradiation of these high viscosity materials, and the potential use of this technique in the photovoltaic industry (both in standard c-Si solar cells and thin film technologies) and flexible electronics devices. In particular we summarize the results of our group in this field, demonstrating that our approach is capable of improving the aspect ratio of the standard metallization patterns achieved with screen-printing technologies in those technological fields and, in addition, of fulfilling the requirements imposed by the mechanical properties of the substrates in flexible electronic applications.

  14. Alkenyl/thiol-derived metal-organic frameworks (MOFs) by means of postsynthetic modification for effective mercury adsorption.

    PubMed

    Liu, Tao; Che, Jin-Xin; Hu, Yong-Zhou; Dong, Xiao-Wu; Liu, Xin-Yuan; Che, Chi-Ming

    2014-10-20

    The synthesis of new functionally diverse alkenyl-derived Cr-MIL-101s (MIL=material of Institute Lavoisier) was realized by a novel and convenient postsynthetic modification (PSM) protocol by means of the carbon-carbon bond-forming Mizoroki-Heck reaction. The new PSM protocol demonstrates a broad scope of substrates with excellent tolerance of functionality under mild reaction conditions. Moreover, a new metal-organic framework (MOF) that bears both alkenyl and thiol side chains prepared by means of the tandem PSM method has shown excellent adsorbent ability in removing mercury ions from water.

  15. Ecological and water quality impairment resulting from the New Idria Mercury Mine and natural sources in the San Carlos and Silver Creek watersheds, central California

    NASA Astrophysics Data System (ADS)

    Rytuba, J. J.; Hothem, R.; Goldstein, D.; Brussee, B.

    2011-12-01

    The New Idria Mercury Mine in central California is the second largest mercury (Hg) deposit in North America and has been proposed as a US EPA Superfund Site based on ecological impairment to the San Carlos and Silver Creek watersheds. Water, sediment, and biota were sampled in San Carlos Creek in the mine area and downstream for 25 km into the watershed termed Silver Creek. Release of acid rock drainage (ARD) and erosion of mine tailings have impacted the watershed during 120 years of mining and since the mine was closed in 1972. The watershed can be divided into three segments based on water and sediment composition, Hg sources and concentrations, and biodiversity of aquatic invertebrates. Creek waters in segment no. 1 above the mine area consist of Mg-Ca-CO3 meteoric water with pH 8.73. Hg concentrations are elevated in both sediment (100μg/g), and in waters (60 ng/L) because of erosion of Hg mine tailings in the upper part of the watershed. Invertebrate biodiversity is the highest of the sites sampled in the watershed, with seven families (six orders) of aquatic invertebrates collected and six other families observed. In the mine area isotopically heavy ARD (pH 2.7) with high levels of Fe(II), SO4, and total Hg (HgT: 76.7 ng/L) enters and mixes with meteoric creek water, constituting from 10-15% of the water in the 10-km long second creek segment downstream from the mine. Oxidation of Fe(II) from ARD results in precipitation of FeOOH which is transported and deposited as an Fe precipitate that has high Hg and MMeHg concentration (Hg: 15.7-79 μg/g, MMeHg: 0.31 - 1.06 ng/g). Concentrations of HgT are uniformly high (1530-2890 ng/L) with particulate Hg predominant. MMeHg ranges from 0.21-0.99 ng/L. In the area just downstream from the ARD source, biodiversity of invertebrates was low, with only one taxa (water striders) available in sufficient numbers and mass (> 1 g)_to be sampled. Biodiversity further downstream was also low, with only up to 2 families present

  16. Localized argyria caused by metallic silver aortic grafts: a unique adverse effect.

    PubMed

    Berger, P; Ricco, J B; Liqui Lung, P; Moll, F L

    2013-11-01

    Silver-coated grafts are designed to prevent vascular graft infections. Silver is a safe element but toxic effects have been reported. We describe two cases of possible localized argyria after silver graft implantation. Two patients presented with perigraft groin collections after implantation of silver grafts. During reoperation, an ashen-grey necrotic substance was seen surrounding the grafts. The grafts were explanted and lower limb perfusion restored. Cultures were negative and both patients had uneventful recoveries. Our cases are highly suggestive of a possible unique adverse effect: a combination of localized silver toxicity and neutrophilic mediated tissue destruction. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  17. Processing and properties of Ag/BSCCO PIT tapes containing different proportions of silver metal powder

    NASA Astrophysics Data System (ADS)

    dos Santos, Dayse I.; Rodrigues, Durval; Rubo, Elisabete Ap. A.; Cursino, Eliana

    2004-08-01

    Monofilamentary tapes (150 μm thickness) were prepared by swaging and rolling silver tubes containing the Bi:2212 ceramic (granulation below 20 μm) and the silver powder (about 0.8 μm). The study has been made, among other samples, on tapes with nominal proportions of 0, 10 and 20 wt.% of silver. The samples were characterized by SEM, and by electrical measurements under varying applied magnetic field. The measurements of Jc showed that the addition of 10 wt.% silver powder is very beneficent to this property, doubling the obtained values at 60 K, while the 20 wt.% tape presented very low Jc. The tape with no silver content showed to have a Jc as high as 2.2 × 10 5 A/cm 2, at 4.2 K, zero applied magnetic field.

  18. Mercury from mineral deposits and potential environmental impact

    USGS Publications Warehouse

    Rytuba, J.J.

    2003-01-01

    Mercury deposits are globally distributed in 26 mercury mineral belts. Three types of mercury deposits occur in these belts: silica-carbonate, hot-spring, and Almaden. Mercury is also produced as a by-product from several types of gold-silver and massive sulfide deposits, which account for 5% of the world's production. Other types of mineral deposits can be enriched in mercury and mercury phases present are dependent on deposit type. During processing of mercury ores, secondary mercury phases form and accumulate in mine wastes. These phases are more soluble than cinnabar, the primary ore mineral, and cause mercury deposits to impact the environment more so than other types of ore deposits enriched in mercury. Release and transport of mercury from mine wastes occur primarily as mercury-enriched particles and colloids. Production from mercury deposits has decreased because of environmental concerns, but by-product production from other mercury-enriched mineral deposits remains important.

  19. UV fragmentation and ultrafast dynamics of trinuclear silver/1-methylthymine and silver/1-methyluracil metal-base pairs in an ion trap

    NASA Astrophysics Data System (ADS)

    Nosenko, Yevgeniy; Riehn, Christoph; Klopper, Wim

    2016-08-01

    We report on gas phase UV action spectroscopy and photodynamics of [Ag3(1MT-H/1MU-H)2]+ comprised of a linear silver string and two deprotonated 1-methyl-thymine/uracil (1MT/1MU) ligands. We applied pump-probe femtosecond laser photofragmentation in an electrospray ion trap mass spectrometer and high-level ab initio calculations at the level of approximate coupled-cluster singles-doubles theory. The experimental UV band at 283/275 nm is assigned to a red shifted 1ππ∗ nucleobase located transition. Relaxation of the 1ππ∗ state occurs with time constants of 0.2/1.1 ps and 0.2/4.2 ps for the 1MT and 1MU complexes, respectively, on a similar ultrafast time scale as non-metalated uracil derivatives.

  20. Method for the recovery of silver from silver zeolite

    DOEpatents

    Reimann, George A.

    1986-01-01

    High purity silver is recovered from silver exchanged zeolite used to capture radioactive iodine from nuclear reactor and nuclear fuel reprocessing environments. The silver exchanged zeolite is heated with slag formers to melt and fluidize the zeolite and release the silver, the radioactivity removing with the slag. The silver containing metallic impurities is remelted and treated with oxygen and a flux to remove the metal impurities. About 98% of the silver in the silver exchanged zeolite having a purity of 99% or better is recoverable by the method.

  1. Method for the recovery of silver from silver zeolite

    DOEpatents

    Reimann, G.A.

    1985-03-05

    High purity silver is recovered from silver exchanged zeolite used to capture radioactive iodine from nuclear reactor and nuclear fuel reprocessing environments. The silver exchanged zeolite is heated with slag formers to melt and fluidize the zeolite and release the silver, the radioactivity removing with the slag. The silver containing metallic impurities is remelted and treated with oxygen and a flux to remove the metal impurities. About 98% of the silver in the silver exchanged zeolite having a purity of 99% or better is recoverable by the method.

  2. Detection of mercury ions using silver telluride nanoparticles as a substrate and recognition element through surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Wang, Chia-Wei; Lin, Zong-Hong; Roy, Prathik; Chang, Huan-Tsung

    2013-10-01

    In this paper we unveil a new sensing strategy for sensitive and selective detection of Hg2+ through surface-enhanced Raman scattering (SERS) using Ag2Te nanoparticles (NPs) as a substrate and recognition element and rhodamine 6G (R6G) as a reporter. Ag2Te NPs prepared from tellurium dioxide and silver nitrate and hydrazine in aqueous solution containing sodium dodecyl sulfate at 90ºC with an average size of 26.8 ± 4.1 nm (100 counts) have strong SERS activity. The Ag2Te substrate provides strong SERS signals of R6G with an enhancement factor of 3.6 × 105 at 1360 cm-1, which is comparable to Ag NPs. After interaction of Ag2Te NPs with Hg2+, some HgTe NPs are formed, leading to decreases in the SERS signal of R6G, mainly because HgTe NPs relative to Ag2Te NPs have weaker SERS activity. Under optimum conditions, this SERS approach using Ag2Te as substrates is selective for the detection of Hg2+, with a limit of detection of 3 nM and linearity over 10-150 nM. The practicality of this approach has been validated for the determination of the concentrations of spiked Hg2+ in a pond water sample.

  3. One-step direct-laser metal writing of sub-100 nm 3D silver nanostructures in a gelatin matrix

    NASA Astrophysics Data System (ADS)

    Kang, SeungYeon; Vora, Kevin; Mazur, Eric

    2015-03-01

    Developing an ability to fabricate high-resolution, 3D metal nanostructures in a stretchable 3D matrix is a critical step to realizing novel optoelectronic devices such as tunable bulk metal-dielectric optical devices and THz metamaterial devices that are not feasible with alternative techniques. We report a new chemistry method to fabricate high-resolution, 3D silver nanostructures using a femtosecond-laser direct metal writing technique. Previously, only fabrication of 3D polymeric structures or single-/few-layer metal structures was possible. Our method takes advantage of unique gelatin properties to overcome such previous limitations as limited freedom in 3D material design and short sample lifetime. We fabricate more than 15 layers of 3D silver nanostructures with a resolution of less than 100 nm in a stable dielectric matrix that is flexible and has high large transparency that is well-matched for potential applications in the optical and THz metamaterial regimes. This is a single-step process that does not require any further processing. This work will be of interest to those interested in fabrication methods that utilize nonlinear light-matter interactions and the realization of future metamaterials.

  4. Results from the International Silver Graft Registry for high-risk patients treated with a metallic-silver impregnated vascular graft.

    PubMed

    Zegelman, Max; Guenther, Gisela; Waliszewski, Matthias; Pukacki, Fryderyk; Stanisic, Michal Goran; Piquet, Philippe; Passon, Marius; Halloul, Zuhir; Tautenhahn, Jörg; Claey, Luc; Agostinho, Claudia; Simici, Dragos; Doebrich, Dinah; Mueller, Carsten; Balzer, Kai

    2013-06-01

    The purpose of this postmarket surveillance registry was to document the efficacy of a vascular prosthesis coated with metallic silver in high-risk patients undergoing vascular reconstructions. Patency (primary endpoint) and freedom from graft infection (secondary endpoint) data were assessed at a minimum of 12 months in patients with significant co-morbidity and/or confirmed graft infections or infected native vessels. Between November 2006 and December 2009, 230 patients with high-risk factors underwent aortic,peripheral and/or extra-anatomic reconstructions with Silver Graft® (SG) in six German, one French and one Polish vascular center.All participating centers used the metallic silver-coated polyester graft (SG) in various diameters and lengths including tubular and bifurcate vascular grafts. Doppler ultrasound follow-ups to determine graft patency were planned at 12 months or done at an earlier time in case the patient became symptomatic. A total of 230 patients were studied. Ten of these 230 patients had graft infections at baseline whereas the remaining 220 subjects had significant risk factors such as coronary artery disease (62.7%, 138/220), vascular access in scar tissue (27.3%, 60/220), Fontaine III/IV (38.2%, 84/220), chronic renal insufficiency (26.8%, 59/220) and diabetes (21.0%,46/220). The long-term follow-up at 15.5 ± 8.3 months revealed a secondary patency rate of 93.2% (205/220) and an ‘all cause’ mortality rate of 18.6% (41/220). There was a freedom from de novo graft infection rate of 95.9% (211/220) in the high-risk group without graft infections at baseline. One regraft infection occurred distal of the revisional reconstruction in the 10 patients with graft infection at baseline. The presence of perigraft fluid at follow-up and Fontaine III/IV at baseline were found to be predictors for graft patency whereas perigraft fluid presence was the only predictor for de novo graft infections. This registry revealed favorable patency and

  5. Operando Synchrotron XRD Investigation of Silver Metal Formation upon Electrochemical Reduction of Silver Iron Pyrophosphate (Ag7Fe3(P2O7)4)

    DOE PAGES

    Zhang, Yiman; Kirshenbaum, Kevin C.; Marschilok, Amy C.; ...

    2017-05-11

    The formation of conductive metallic silver upon electrochemical reduction and lithiation of Ag7Fe3(P2O7)4 is investigated. Alternating current impedance spectroscopy measurements show a 34% decrease in charge transfer resistance upon one electron equivalent (ee) of reduction, which is coincident with the formation of a Ag metal conductive network evidenced by both ex situ and operando X-ray diffraction. Quantitative assessment of Ag metal formation derived from operando XRD shows that only Ag+ ions are reduced during the first 3ee, followed by simultaneous reduction of Ag+ and Fe3+ reduction for the next 5ee (3ee to 8ee), culminating in reduction of the remaining Ag+.more » Scanning electron microscopy images show smaller Ag metal crystallite size and shorter nearest neighbor distance between and among Ag particles with higher depth of discharge. A high rate intermittent pulsatile discharge test is conducted where the cell delivers 12 total pulses during full discharge to probe the effect of Ag metal formation on the Li/Ag7Fe3(P2O7)4 cell electrochemistry. The Ohmic resistance is derived from the voltage drop of each pulse. The resistance is 65 Ω initially, reaches its minimum of 26 Ω at 4.5 ee discharge, and levels off at 35 Ω after 7.0 ee reduction. In conclusion, the initial Ag reduction is more significant for the conductive network formation indicated by the decrease of both Rct and Ohmic resistance, which facilitates the high power output of the cell.« less

  6. Birth outcome measures and maternal exposure to heavy metals (lead, cadmium and mercury) in Saudi Arabian population.

    PubMed

    Al-Saleh, Iman; Shinwari, Neptune; Mashhour, Abdullah; Rabah, Abdullah

    2014-03-01

    This cross-sectional study was conducted to assess the association between exposure to heavy metals (lead, cadmium and mercury) during pregnancy and birth outcomes in 1578 women aged 16-50 years who delivered in Al-Kharj hospital, Saudi Arabia, in 2005 and 2006. The levels of lead, cadmium and mercury were measured in umbilical cord blood, maternal blood and the placenta. Outcome variables were anthropometric measures taken at birth, along with the risk of being small-for-gestational age (SGA). We selected the 10th percentile as the cutoff for dichotomizing measures of birth outcome. Cadmium, despite its partial passage through the placenta had the most prominent effect on several measures of birth outcome. After adjustment for potential confounders, logistic regression models revealed that crown-heel length (p=0.034), the Apgar 5-minute score (p=0.004), birth weight (p=0.015) and SGA (p=0.049) were influenced by cadmium in the umbilical cord blood. Significant decreases in crown-heel length (p=0.007) and placental thickness (p=0.022) were seen with higher levels of cadmium in maternal blood. As placental cadmium increased, cord length increased (p=0.012) and placental thickness decreased (p=0.032). Only lead levels in maternal blood influenced placental thickness (p=0.011). Mercury in both umbilical cord and maternal blood was marginally associated with placental thickness and placental weight, respectively. Conversely, placental mercury levels significantly influenced head circumference (p=0.017), the Apgar 5-minute score (p=0.01) and cord length (p=0.026). The predictions of these models were further assessed with the area under the curve (AUC) of the receiver operating curves (ROCs), which were modest (larger than 0.5 and smaller than 0.7). The independence of gestational age or preterm births on the observed effect of metals on some measures of birth outcome, suggested detrimental effects of exposure on fetal development. The magnitude of the estimated effects

  7. Elemental speciation of different stages of silver metal recovery process using PEDXRF

    NASA Astrophysics Data System (ADS)

    Üstündağ, Zafer; Kalfa, Orhan Murat; Erdoğan, Yunus; Kadıoğlu, Yusuf Kağan

    2006-09-01

    The silver ore, anode mud, chimney power, concentrator sample and waste damp samples obtained from the Gümüşköy Silver Plant have been analyzed for their elemental constituents. The prepared samples were analyzed using a polarized energy dispersive X-ray fluorescence (PEDXRF) spectrometer. The result of the analysis shows the presence of many elements including rare earth elements (from Na to Th). The accuracy and precision of the technique for chemical analysis is demonstrated by analyzing USGS standards, GEOL, SILVER, K07-CoO Cobalt oxide, GBW 7109 Ijolite Sy and GBW-7309 Sediment.

  8. 1. View looking south on Montana Street. The Silver Bow ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View looking south on Montana Street. The Silver Bow County Courthouse (1910-1912) is on the left. - Butte Historic District, Bounded by Copper, Arizona, Mercury & Continental Streets, Butte, Silver Bow County, MT

  9. Treatment of Mercury Contaminated Oil from Sandia National Laboratory

    SciTech Connect

    Klasson, KT

    2002-05-28

    First Article Tests of a stabilization method for greater than 260 mg mercury/kg oil were performed under a treatability study. This alternative treatment technology will address treatment of U.S. Department of Energy (DOE) organics (mainly used pump oil) contaminated with mercury and other heavy metals. Some of the oil is also co-contaminated with tritium, other radionuclides, and hazardous materials. The technology is based on contacting the oil with a sorbent powder (Self-Assembled Mercaptan on Mesoporous Support, SAMMS), proven to adsorb heavy metals, followed by stabilization of the oil/powder mixture using a stabilization agent (Nochar N990). Two variations of the treatment technology were included in the treatability study. The SAMMS (Self-Assembled Mercaptan on Mesoporous Silica) technology was developed by the Pacific Northwest National Laboratory for removal and stabilization of RCRA metals (i.e., lead, mercury, cadmium, silver, etc.) and for removal of mercury from organic solvents [1]. The SAMMS material is based on self-assembly of functionalized monolayers on mesoporous oxide surfaces. The unique mesoporous oxide supports provide a high surface area, thereby enhancing the metal-loading capacity. SAMMS material has high flexibility in that it binds with different forms of mercury, including metallic, inorganic, organic, charged, and neutral compounds [1] The material removes mercury from both organic wastes, such as pump oils, and from aqueous wastes. Mercury-loaded SAMMS not only passes TCLP tests, but also has good long-term durability as a waste form because: (1) the covalent binding between mercury and SAMMS has good resistance in ion-exchange, oxidation, and hydrolysis over a wide pH range and (2) the uniform and small pore size of the mesoporous silica prevents bacteria from solubilizing the bound mercury. Nochar's N990 Petrobond (Nochar, Inc., Indianapolis, IN) is an oil stabilization agent, specifically formulated for stabilizing vacuum pump

  10. DNA derived fluorescent bio-dots for sensitive detection of mercury and silver ions in aqueous solution

    NASA Astrophysics Data System (ADS)

    Song, Ting; Zhu, Xuefeng; Zhou, Shenghai; Yang, Guang; Gan, Wei; Yuan, Qunhui

    2015-08-01

    Inspired by the high affinity between heavy metal ions and bio-molecules as well as the low toxicity of carbon-based quantum dots, we demonstrated the first application of a DNA derived carbonaceous quantum dots, namely bio-dots, in metal ion sensing. The present DNA-derived bio-dots contain graphitic carbon layers with 0.242 nm lattice fringes, exhibit excellent fluorescence property and can be obtained via a facile hydrothermal preparation procedure. Hg(II) and Ag(I) are prone to be captured by the bio-dots due to the existence of residual thymine (T) and cytosine (C) groups, resulting in a quenched fluorescence while other heavy metal ions would cause negligible changes on the fluorescent signals of the bio-dots. The bio-dots could be used as highly selective toxic-free biosensors, with two detecting linear ranges of 0-0.5 μM and 0.5-6 μM for Hg(II) and one linear range of 0-10 μM for Ag(I). The detection limits (at a signal-to-noise ratio of 3) were estimated to be 48 nM for Hg(II) and 0.31 μM for Ag(I), respectively. The detection of Hg(II) and Ag(I) could also be realized in the real water sample analyses, with satisfying recoveries ranging from 87% to 100%.

  11. Metal resistance sequences and transgenic plants

    DOEpatents

    Meagher, Richard Brian; Summers, Anne O.; Rugh, Clayton L.

    1999-10-12

    The present invention provides nucleic acid sequences encoding a metal ion resistance protein, which are expressible in plant cells. The metal resistance protein provides for the enzymatic reduction of metal ions including but not limited to divalent Cu, divalent mercury, trivalent gold, divalent cadmium, lead ions and monovalent silver ions. Transgenic plants which express these coding sequences exhibit increased resistance to metal ions in the environment as compared with plants which have not been so genetically modified. Transgenic plants with improved resistance to organometals including alkylmercury compounds, among others, are provided by the further inclusion of plant-expressible organometal lyase coding sequences, as specifically exemplified by the plant-expressible merB coding sequence. Furthermore, these transgenic plants which have been genetically modified to express the metal resistance coding sequences of the present invention can participate in the bioremediation of metal contamination via the enzymatic reduction of metal ions. Transgenic plants resistant to organometals can further mediate remediation of organic metal compounds, for example, alkylmetal compounds including but not limited to methyl mercury, methyl lead compounds, methyl cadmium and methyl arsenic compounds, in the environment by causing the freeing of mercuric or other metal ions and the reduction of the ionic mercury or other metal ions to the less toxic elemental mercury or other metals.

  12. Development of an inhibitive assay using commercial Electrophorus electricus acetylcholinesterase for heavy metal detection.

    PubMed

    Shukor, M Y; Tham, L G; Halmi, M I E; Khalid, I; Begum, Ghousia; Syed, M A

    2013-09-01

    Near-real-ime assay is anassay method that the whole process from sampling until results could be obtained in approximately Iess than one hour. The ElIman assay for acetyl cholinesterase (AChE) has near real-time potential due to its simplicity and fast assay time. The commercial acetylcholinesterase from Electrophorus electricus is well known for its uses in insecticides detection. A lesser known fact is AChE is also sensitive to heavy metals. A near real-time inhibitive assay for heavy metals using AChE from this source showed promising results. Several heavy metals such as copper, silver and mercury could be etected with IC50 values of1.212, 0.1185 and 0.097 mg I-1, respectively. The Limits of Detection (LOD) for copper, silver and mercury were 0.01, 0.015 and 0.01 mg I-1, respectively. TheLimits of quantitation (LOQ) or copper, silver and mercury were 0.196, 0.112 and 0.025 mg I-1, respectively. The LOQvalues for copper, silver and mercury were well below the maximum permissible limit for these metal ions as outlined by Malaysian Department of Environment. A polluted location demonstrated near real-time applicability of the assay with variation oftemporal levels of heavy metals detected. The results show that AChE from Electrophorus electricus has the potential to be used as a near real-time biomonitoring tool for heavy

  13. Volatilization and sorption of dissolved mercury by metallic iron of different particle sizes: implications for treatment of mercury contaminated water effluents.

    PubMed

    Vernon, Julianne D; Bonzongo, Jean-Claude J

    2014-07-15

    Batch experiments were conducted to investigate the interactions between metallic iron particles and mercury (Hg) dissolved in aqueous solutions. The effect of bulk zero valent iron (ZVI) particles was tested by use of (i) granular iron and (ii) iron particles with diameters in the nano-size range and referred to herein as nZVI. The results show that the interactions between Hg(n+) and Fe(0) are dominated by Hg volatilization and Hg adsorption; with Hg adsorption being the main pathway for Hg removal from solution. Hg adsorption kinetic studies using ZVI and nZVI resulted in higher rate constants (k) for nZVI when k values were expressed as a function of mass of iron used (day(-1)g(-1)). In contrast, ZVI showed higher rates of Hg removal from solution when k values were expressed as a function iron particles' specific surface area (gm(-2)day(-1)). Overall, nZVI particles had a higher maximum sorption capacity for Hg than ZVI, and appeared to be an efficient adsorbent for Hg dissolved in aqueous solutions.

  14. A sensitive and selective sensing platform based on CdTe QDs in the presence of l-cysteine for detection of silver, mercury and copper ions in water and various drinks.

    PubMed

    Gong, Tingting; Liu, Junfeng; Liu, Xinxin; Liu, Jie; Xiang, Jinkun; Wu, Yiwei

    2016-12-15

    Water soluble CdTe quantum dots (QDs) have been prepared simply by one-pot method using potassium tellurite as stable tellurium source and thioglycolic acid (TGA) as stabilizer. The fluorescence of CdTe QDs can be improved 1.3-fold in the presence of l-cysteine (Cys), however, highly efficiently quenched in the presence of silver or mercury or copper ions. A sensitive and selective sensing platform for analysis of silver, mercury and copper ions has been simply established based on CdTe QDs in the presence of l-cysteine. Under the optimum conditions, excellent linear relationships exist between the quenching degree of the sensing platform and the concentrations of Ag(+), Hg(2+) and Cu(2+) ranging from 0.5 to 40ngmL(-1). By using masking agents of sodium diethyldithiocarbamate (DDTC) for Ag(+) and Cu(2+), NH4OH for Ag(+) and Hg(2+) and 1-(2-Pyridylazo)-2-naphthol (PAN) for Hg(2+) and Cu(2+), Hg(2+), Cu(2+) and Ag(+) can be exclusively detected in coexistence with other two ions, and the detection limits (3σ) were 0.65, 0.063 and 0.088ngmL(-1) for Ag(+), Hg(2+) and Cu(2+), respectively. This effective sensing platform has been used to detection of Ag(+), Hg(2+) and Cu(2+) in water and various drinks with satisfactory results.

  15. Hierarchically-structured silver nanoflowers for highly conductive metallic inks with dramatically reduced filler concentration

    PubMed Central

    C., Muhammed Ajmal; K. P., Faseela; Singh, Swati; Baik, Seunghyun

    2016-01-01

    Silver has long been employed as an electrically conductive component, and morphology-dependent properties have been actively investigated. Here we present a novel scalable synthesis method of flower-shaped silver nanoparticles (silver nanoflowers, Ag NFs). The preferential affinity of citrate molecules on (111) surface of silver enabled spontaneous anisotropic growth of Ag NFs (bud size: 250~580 nm, single crystalline petal thickness: 9~22 nm) with high reproducibility and a high yield of >99.5%. The unique hierarchical structure resulted in coalescence of petals over 80~120 °C which was practically employed in conductive inks to construct percolation pathways among Ag NFs. The ink with only 3 wt% of Ag NFs provided two orders of magnitude greater conductivity (1.008 × 105 Scm−1), at a low curing temperature of 120 °C, compared with the silver nanoparticle ink with a much higher silver concentration (50 wt%). This extraordinary property may provide an excellent opportunity for Ag NFs for practical applications in printable and flexible electronics. PMID:27713510

  16. Hierarchically-structured silver nanoflowers for highly conductive metallic inks with dramatically reduced filler concentration

    NASA Astrophysics Data System (ADS)

    Muhammed Ajmal, C.; K. P., Faseela; Singh, Swati; Baik, Seunghyun

    2016-10-01

    Silver has long been employed as an electrically conductive component, and morphology-dependent properties have been actively investigated. Here we present a novel scalable synthesis method of flower-shaped silver nanoparticles (silver nanoflowers, Ag NFs). The preferential affinity of citrate molecules on (111) surface of silver enabled spontaneous anisotropic growth of Ag NFs (bud size: 250~580 nm, single crystalline petal thickness: 9~22 nm) with high reproducibility and a high yield of >99.5%. The unique hierarchical structure resulted in coalescence of petals over 80~120 °C which was practically employed in conductive inks to construct percolation pathways among Ag NFs. The ink with only 3 wt% of Ag NFs provided two orders of magnitude greater conductivity (1.008 × 105 Scm‑1), at a low curing temperature of 120 °C, compared with the silver nanoparticle ink with a much higher silver concentration (50 wt%). This extraordinary property may provide an excellent opportunity for Ag NFs for practical applications in printable and flexible electronics.

  17. Hierarchically-structured silver nanoflowers for highly conductive metallic inks with dramatically reduced filler concentration.

    PubMed

    C, Muhammed Ajmal; K P, Faseela; Singh, Swati; Baik, Seunghyun

    2016-10-07

    Silver has long been employed as an electrically conductive component, and morphology-dependent properties have been actively investigated. Here we present a novel scalable synthesis method of flower-shaped silver nanoparticles (silver nanoflowers, Ag NFs). The preferential affinity of citrate molecules on (111) surface of silver enabled spontaneous anisotropic growth of Ag NFs (bud size: 250~580 nm, single crystalline petal thickness: 9~22 nm) with high reproducibility and a high yield of >99.5%. The unique hierarchical structure resulted in coalescence of petals over 80~120 °C which was practically employed in conductive inks to construct percolation pathways among Ag NFs. The ink with only 3 wt% of Ag NFs provided two orders of magnitude greater conductivity (1.008 × 10(5) Scm(-1)), at a low curing temperature of 120 °C, compared with the silver nanoparticle ink with a much higher silver concentration (50 wt%). This extraordinary property may provide an excellent opportunity for Ag NFs for practical applications in printable and flexible electronics.

  18. Distribution of dissolved silver in marine waters

    NASA Astrophysics Data System (ADS)

    Barriada, J. L.; Achterberg, E. P.; Tappin, A.; Truscott, J.

    2003-04-01

    Silver is one of the most toxic heavy metals, surpassed only by mercury [1-3]. Monitoring of dissolved silver concentrations in natural waters is therefore of great importance. The determination of dissolved silver in waters is not without challenges, because of its low (picomolar) concentrations. Consequently, there are only a few reported studies in marine waters, which have been performed in USA [4-6] and Japan [7]. The analytical techniques used in the reported studies for the determination of silver in seawater were Graphite Furnace Atomic Absorption Spectroscopy (GFAAS) after solvent extraction [2,4,5], and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) after solvent extraction or solid phase extraction [7,8]. In this contribution, we will present an optimised Magnetic Sector (MS) ICP-MS technique for the determination of dissolved silver in marine waters. The MS-ICP-MS method used anion exchange column to preconcentrate silver from saline waters, and to remove the saline matrix. The ICP-MS method has been used successfully to determine total dissolved silver in estuarine and oceanic samples. Bibliography 1. H. T. Ratte, Environ. Toxicol. Chem. 1999, 18: p. 89-108. 2. R. T. Herrin, A. W. Andren and D. E. Armstrong, Environ. Sci. Technol. 2001, 35: 1953-1958. 3. D. E. Schildkraut, P. T. Dao, J. P. Twist, A. T. Davis and K. A. Robillard, Environ. Toxicol. Chem. 1998, 17: 642-649. 4. E. Breuer, S. A. Sanudo-Wilhelmy and R. C. Aller, Estuaries. 1999, 22:603-615. 5. A. R. Flegal, S. A. Sanudowilhelmy and G. M. Scelfo, Mar. Chem. 1995, 49: 315-320. 6. S. N. Luoma, Y. B. Ho and G. W. Bryan, Mar. Pollut. Bull. 1995, 31: 44-54. 7. Y. Zhang, H. Amakawa and Y. Nozaki, Mar. Chem. 2001, 75: 151-163. 8. L. Yang and R. E. Sturgeon, J. Anal. At. Spectrom. 2002, 17: 88-93.

  19. Mercury and other metal(oid)s from mining activities in sediments from the Almadén district

    NASA Astrophysics Data System (ADS)

    García-Ordiales, Efrén; Esbrí, José M.; Higueras, Pablo; Loredo, Jorge

    2015-04-01

    Almadén (South Central Spain) is worldwide famous because of mercury mining. But besides, the area has also been the site of other types of mining, in particular exploitation of Pb-Zn sulphides, with variable contents of other economic metals such as Ag, as well as others with high pollution potential such as As, Cd, Sb, etc. These exploitations were in activity in different historic periods, since Romans times to the 20th Century, and most of them were abandoned with no reclamation measures at all, acting as important sources of contamination in surrounding soils. In this work, we present a preliminary assessment of the affection of sediments for the streams of Almadén mine district, considering other potential pollutants in addition to mercury. Sampling was carried out during the period 2010-2013, and involved the collection of 65 samples of stream sediments in the main river of the district (Valdeazogues River) and main subsidiaries. Samples were air-dried, sieved to <2mm to discard gravel fraction, milled to <63μm and analysed in certified laboratory (ACME Labs Canada) by ICP-AES and ICP-MS after hot acid digestion. Results showed that sediments suffer a significant metal accumulation within the district, being specially concern at the areas close to mines. Most studied samples exceed the heavy metals and metalloids reference values for uncontaminated sites as well as those fitted to protect the aquatic life. Element by element, mercury contents are widely disperse in the district because of mining activities and it can be considered as the main pollutant of the district. Concentrations of other potentially harmful elements such as Pb, Zn and As show also important concentrations, which may be attributed to anthropogenic sources, specially to decommissioned mines. Comparing concentrations from the different surveyed areas, two different zones were identified: One located in the upper part of the district, where the intense mining activities related with four

  20. MERCURY IN METAL ORE DEPOSITS: AN UNRECOGNIZED, WIDESPREAD SOURCE TO LAKE SUPERIOR SEDIMENTS, CONTRIBUTION #1072

    EPA Science Inventory

    Mining operations have worked the rich mineral resources of the Lake Superior Basin for over 150 years, leaving industrially impacted regions with tailing piles and smelters. In Lake Superior sediments, mercury and copper inventories increase towards shorelines and are highly cor...

  1. MERCURY IN METAL ORE DEPOSITS: AN UNRECOGNIZED, WIDESPREAD SOURCE TO LAKE SUPERIOR SEDIMENTS, CONTRIBUTION #1072

    EPA Science Inventory

    Mining operations have worked the rich mineral resources of the Lake Superior Basin for over 150 years, leaving industrially impacted regions with tailing piles and smelters. In Lake Superior sediments, mercury and copper inventories increase towards shorelines and are highly cor...

  2. Core-satellites assembly of silver nanoparticles on a single gold nanoparticle via metal ion-mediated complex.

    PubMed

    Choi, Inhee; Song, Hyeon Don; Lee, Suseung; Yang, Young In; Kang, Taewook; Yi, Jongheop

    2012-07-25

    We report core-satellites (Au-Ag) coupled plasmonic nanoassemblies based on bottom-up, high-density assembly of molecular-scale silver nanoparticles on a single gold nanoparticle surface, and demonstrate direct observation and quantification of enhanced plasmon coupling (i.e., intensity amplification and apparent spectra shift) in a single particle level. We also explore metal ion sensing capability based on our coupled plasmonic core-satellites, which enabled at least 1000 times better detection limit as compared to that of a single plasmonic nanoparticle. Our results demonstrate and suggest substantial promise for the development of coupled plasmonic nanostructures for ultrasensitive detection of various biological and chemical analytes.

  3. High-frequency mechanical stirring initiates anisotropic growth of seeds requisite for synthesis of asymmetric metallic nanoparticles like silver nanorods.

    PubMed

    Mahmoud, Mahmoud A; El-Sayed, Mostafa A; Gao, Jianping; Landman, Uzi

    2013-10-09

    High-speed stirring at elevated temperatures is shown to be effective in the symmetry-breaking process needed for the growth of the hard-to-synthesize silver nanorods from the polyol reduction of silver ions. This process competes with the facile formation of more symmetrical, spherical and cubic, nanoparticles. Once the seed is formed, further growth proceeds predominantly along the long axis, with a consequent increase of the particles' aspect ratio (that of the nanorod). When stirring is stopped shortly after seed formation, nanorods with a broad distribution of aspect ratios are obtained, while when the high-frequency stirring continues the distribution narrows significantly. The width of the nanorods can only be increased if the initial concentration of Ag(+) ions increases. Reducing the stirring speeds during seed formation lowers the yield of nanorods. Molecular dynamics simulations reveal that the formation of a nanometer-scale thin boundary region between a solid facet of the nanoparticle and the liquid around it, and the accommodation processes of metal (Ag) atoms transported through this boundary region from the liquid to the solid growth interface, are frustrated by sufficiently fast shear flow caused by high-frequency stirring. This arrests growth on seed facets parallel to the flow, leading, together with the preferential binding of the capping polymer to the (100) facet, to the observed growth in the (110) direction, resulting in silver nanorods capped at the ends by (111) facets and exposing (100) facets on the side walls.

  4. MOD silver metallization for photovoltaics. Quarterly technical report, December 1, 1983-February 29, 1984. [Metallo-organic decomposition

    SciTech Connect

    Vest, G.M.; Vest, R.W.

    1984-03-20

    It was determined that pyrolysis products can produce dark surface films on MOD silver conductors. Improving the purity of all ink ingredients helped this problem. It was established that the existence and nature of the surface film is influenced by the rate of air flow during firing and by the heating rate in the 70 to 225/sup 0/C range, but these processing parameters have not as yet been optimized. Low temperature solvent removal was determined to be of prime importance in obtaining good adhesion between the MOD films and the substrate. For inks developed to date, 15 to 30 minutes at 60 to 70/sup 0/C was required. It was also determined that the adhesion is influenced by the air flow rate during firing, the heating rate in the 100 to 250/sup 0/C range, and the maximum firing temperature. Results during the first 3 months of effort on this project have demonstrated that it is essential to use generic compounds, and that the compounds must be prepared from high purity raw materials. It was also established that the quality and properties of the MOD silver films are intimately dependent on the time-temperature processing. All of the results obtained to date still indicate that MOD silver shows great promise for low temperature metallization of photovoltaic cells.

  5. The development of Ti6Al4V based anti bacterial dental implant modified with TiO2 nanotube arrays doped silver metal (Ag)

    NASA Astrophysics Data System (ADS)

    Slamet, Bachtiar, B. M.; Wulan, P. P. D. K.; Setiadi, Sari, D. P.

    2017-05-01

    The development of Ti6Al4V based anti bacterial dental implant, modified with dopanted silver metal (Ag) TiO2 nanotube arrays (TiNTAs), is studied in this research. The condition inside the mouth is less foton energy, the dental implant material need to be modified with silver metal (Ag) dopanted TiNTAs. Modified TiNTAs used silver metal dopanted with Photo Assisted Deposition (PAD) method can be used as an electron trapper and produced hydroxyl radical, therefore it has antibacterial properties. The verification of antibacterial properties developed with biofilm static test using Streptococcus mutans bacteria model within 3 and 16 hours incubation, was characterized with XRD and SEM-EDX. Properties test result that resisting the biofilm growth effectively is TiNTAs/Ag/0,15, with 97,62 % disinfection bacteria sampel.

  6. Ultrasensitive and highly selective detection of bioaccumulation of methyl-mercury in fish samples via Ag⁰/Hg⁰ amalgamation.

    PubMed

    Deng, Li; Li, Yan; Yan, Xiuping; Xiao, Jun; Ma, Cheng; Zheng, Jing; Liu, Shaojun; Yang, Ronghua

    2015-02-17

    Methylmercury (CH3Hg(+)), the common organic source of mercury, is well-known as one of the most toxic compounds that is more toxic than inorganic or elemental mercury. In seabeds, the deposited Hg(2+) ions are converted into CH3Hg(+) by bacteria, where they are subsequently consumed and bioaccumulated in the tissue of fish, and finally, to enter the human diet, causing severe health problems. Therefore, sensitive and selective detection of bioaccumulation of CH3Hg(+) in fish samples is desirable. However, selective assay of CH3Hg(+) in the mercury-containing samples has been seriously hampered by the difficulty to distinguish CH3Hg(+) from ionic mercury. We report here that metal amalgamation, a natural phenomenon occurring between mercury atoms and certain metal atoms, combining with DNA-protected silver nanoparticles, can be used to detect CH3Hg(+) with high sensitivity and superior selectivity over Hg(2+) and other heavy metals. In our proposed approach, discrimination between CH3Hg(+) and Hg(2+) ions was realized by forming Ag/Hg amalgam with a CH3Hg(+)-specific scaffold. We have found that Ag/Hg amalgam can be formed on a CH3Hg(+)-specific DNA template between silver atoms and mercury atoms but cannot between silver atoms and CH3Hg(+). With a dye-labeled DNA strand, the sensor can detect CH3Hg(+) down to the picomolar level, which is >125-fold sensitive over Hg(2+). Moreover, the presence of 50-fold Hg(2+) and 10(6)-fold other metal ions do not interfere with the CH3Hg(+) detection. The results shown herein have important implications for the fast, easy, and selective detection and monitoring of CH3Hg(+) in environmental and biological samples.

  7. Separation of copper and mercury as heavy metals from aqueous solution using functionalized boron nitride nanosheets: A theoretical study

    NASA Astrophysics Data System (ADS)

    Azamat, Jafar; Khataee, Alireza; Joo, Sang Woo

    2016-03-01

    Molecular dynamics simulations were performed to investigate the separation of copper and mercury ions as heavy metals from aqueous solution through the functionalized pore of a boron nitride nanosheet (BNNS) membrane. The considered system was comprised of a BNNS with a functionalized pore located in the centre of a simulation box containing an aqueous ionic solution of copper chloride and mercuric chloride. An external voltage was applied along the simulated system in order to produce a separation of heavy metals using pore of BNNS. A functionalized pore of BNNS was obtained by passivating each nitrogen and boron atoms at the pore edge with a fluorine and hydrogen atom, respectively. Our results show that the voltage caused the Cu2+ and Hg2+ cations to pass selectively through the functionalized pore of the BNNS. This selective behaviour of the BNNS is due to the potential of the mean force of each ion. The potential of the mean force of the heavy metals shows that the heavy metals ions met an energy barrier and could not pass through the functionalized pores of the BNNS. By applying a voltage to the system, they overcame the energy barrier and crossed the pores. We calculated the radial distribution function of ion-water and its integrations; the ion retention time; the hydrogen bond; and the autocorrelation function of the hydrogen bond. Using these parameters, the structure of the water molecules and ions were investigated in the system.

  8. Silver(I) nitrate complexes of three tetra-kis-thio-ether-substituted pyrazine ligands: metal-organic chain, network and framework structures.

    PubMed

    Assoumatine, Tokouré; Stoeckli-Evans, Helen

    2017-03-01

    The reaction of the ligand 2,3,5,6-tetra-kis-[(methyl-sulfanyl)-meth-yl]pyrazine (L1) with silver(I) nitrate led to {[Ag(C12H20N2S4)](NO3)} n , (I), catena-poly[[silver(I)-μ-2,3,5,6-tetra-kis-[(methyl-sulfan-yl)meth-yl]pyrazine] nitrate], a compound with a metal-organic chain structure. The asymmetric unit is composed of two half ligands, located about inversion centres, with one ligand coordinating to the silver atoms in a bis-tridentate manner and the other in a bis-bidentate manner. The charge on the metal atom is compensated for by a free nitrate anion. Hence, the silver atom has a fivefold S3N2 coordination sphere. The reaction of the ligand 2,3,5,6-tetra-kis-[(phenyl-sulfanyl)-meth-yl]pyrazine (L2) with silver(I) nitrate, led to [Ag2(NO3)2(C32H28N2S4)] n , (II), poly[di-μ-nitrato-bis-{μ-2,3,5,6-tetra-kis-[(phenyl-sulfan-yl)meth-yl]pyrazine}disilver], a compound with a metal-organic network structure. The asymmetric unit is composed of half a ligand, located about an inversion centre, that coordinates to the silver atoms in a bis-tridentate manner. The nitrate anion coordinates to the silver atom in a bidentate/monodentate manner, bridging the silver atoms, which therefore have a sixfold S2NO3 coordination sphere. The reaction of the ligand 2,3,5,6-tetra-kis-[(pyridin-2-yl-sulfanyl)-meth-yl]pyrazine (L3) with silver(I) nitrate led to [Ag3(NO3)3(C28H24N6S4)] n , (III), poly[trinitrato{μ6-2,3,5,6-tetra-kis[(pyri-din-2-ylsulfan-yl)meth-yl]pyrazine}-trisilver(I)], a compound with a metal-organic framework structure. The asymmetric unit is composed of half a ligand, located about an inversion centre, that coordinates to the silver atoms in a bis-tridentate manner. One pyridine N atom bridges the monomeric units, so forming a chain structure. Two nitrate O atoms also coordinate to this silver atom, hence it has a sixfold S2N2O2 coordination sphere. The chains are linked via a second silver atom, located on a twofold rotation axis, coordinated by the second

  9. Incorporation of silver nanoparticles into the bulk of the electrospun ultrafine polyimide nanofibers via a direct ion exchange self-metallization process.

    PubMed

    Han, Enlin; Wu, Dezhen; Qi, Shengli; Tian, Guofeng; Niu, Hongqing; Shang, Gongping; Yan, Xiaona; Yang, Xiaoping

    2012-05-01

    This paper reports our works on the preparation of the silver-nanoparticle-incorporated ultrafine polyimide (PI) ultrafine fibers via a direct ion exchange self-metallization technique using silver ammonia complex cation ([Ag(NH(3))(2)](+)) as the silver precursor and pyromellitic dianhydride (PMDA)/4,4'-oxidianiline (4,4'-ODA) polyimide as the matrix. The polyimide precursor, poly(amic acid) (PAA), was synthesized and then electrospun into ultrafine fibers. By thermally treating the silver(I)-doped PAA ultrafine fibers, where the silver(I) ions were loaded through the ion exchange reactions of the carboxylic acid groups of the PAA macromolecules with the [Ag(NH(3))(2)](+) cations in an aqueous solution, ultrafine polyimide fibers embedded with silver nanoparticles with diameters less than 20 nm were successfully fabricated. The fiber-electrospinning process, the ion exchange process, and various factors influencing the hybrid ultrafine fibers preparation process such as the thermal treatment atmospheres and the thermal catalytic oxidative degradation effect of the reduced silver nanoparticles were discussed. The ultrafine fibers were characterized by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), inductively coupled plasma atomic emission spectroscopy (ICP-AES), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA).

  10. In situ fabrication of silver nanoparticle-filled hydrogen titanate nanotube layer on metallic titanium surface for bacteriostatic and biocompatible implantation.

    PubMed

    Wang, Zheng; Sun, Yan; Wang, Dongzhou; Liu, Hong; Boughton, Robert I

    2013-01-01

    A silver nanoparticle (AgNP)-filled hydrogen titanate nanotube layer was synthesized in situ on a metallic titanium substrate. In the synthesis approach, a layer of sodium titanate nanotubes is first prepared on the titanium surface by using a hydrothermal method. Silver nitrate solution is absorbed into the nanotube channels by immersing a dried nanotube layer in silver nitrate solution. Finally, silver ions are reduced by glucose, leading to the in situ growth of AgNPs in the hydrogen titanate nanotube channels. Long-term silver release and bactericidal experiments demonstrated that the effective silver release and effective antibacterial period of the titanium foil with a AgNP-filled hydrogen titanate nanotube layer on the surface can extend to more than 15 days. This steady and prolonged release characteristic is helpful to promote a long-lasting antibacterial capability for the prevention of severe infection after surgery. A series of antimicrobial and biocompatible tests have shown that the sandwich nanostructure with a low level of silver loading exhibits a bacteriostatic rate as high as 99.99%, while retaining low toxicity for cells and possessing high osteogenic potential. Titanium foil with a AgNP-filled hydrogen titanate nanotube layer on the surface that is fabricated with low-cost surface modification methods is a promising implantable material that will find applications in artificial bones, joints, and dental implants.

  11. In situ fabrication of silver nanoparticle-filled hydrogen titanate nanotube layer on metallic titanium surface for bacteriostatic and biocompatible implantation

    PubMed Central

    Wang, Zheng; Sun, Yan; Wang, Dongzhou; Liu, Hong; Boughton, Robert I

    2013-01-01

    A silver nanoparticle (AgNP)-filled hydrogen titanate nanotube layer was synthesized in situ on a metallic titanium substrate. In the synthesis approach, a layer of sodium titanate nanotubes is first prepared on the titanium surface by using a hydrothermal method. Silver nitrate solution is absorbed into the nanotube channels by immersing a dried nanotube layer in silver nitrate solution. Finally, silver ions are reduced by glucose, leading to the in situ growth of AgNPs in the hydrogen titanate nanotube channels. Long-term silver release and bactericidal experiments demonstrated that the effective silver release and effective antibacterial period of the titanium foil with a AgNP-filled hydrogen titanate nanotube layer on the surface can extend to more than 15 days. This steady and prolonged release characteristic is helpful to promote a long-lasting antibacterial capability for the prevention of severe infection after surgery. A series of antimicrobial and biocompatible tests have shown that the sandwich nanostructure with a low level of silver loading exhibits a bacteriostatic rate as high as 99.99%, while retaining low toxicity for cells and possessing high osteogenic potential. Titanium foil with a AgNP-filled hydrogen titanate nanotube layer on the surface that is fabricated with low-cost surface modification methods is a promising implantable material that will find applications in artificial bones, joints, and dental implants. PMID:23966780

  12. [Accumulation of Mercury in Soil-maize System of Non-ferrous Metals Smelting Area and Its Related Risk Assessment].

    PubMed

    Ji, Xiao-feng; Zheng, Na; Wang, Yang; Liu, Qiang; Zhang, Jing-jing

    2015-10-01

    Soil heavy metal pollution, especially the mercury pollution, has been widespread concern in non-ferrous metallurgical area. This study focused on the content, distribution and pollution status of Hg in maize soil of Huludao city. Meanwhile, Hg contents in the various organs of maize were analyzed. Hg concentration in soil ranged from 0.25 to 3.49 mg x kg(-1) with the average content of 1.78 mg x kg(-1), which was 48 times as high as the background value of Liaoning soil. Around 2-3m range of zinc plant, the pattern of spatial distribution showed that the content of Hg was gradually increased with the increase of the distance to Huludao zinc plant. The result of geoaccumulation index reflected that Hg pollution is up to moderate pollution level on the whole. 54. 6% of the total sample were belonged to the serious pollution level. The potential ecological risk index of Hakanson was applied to assess the ecological risk of Hg. The target hazard quotient method (THQ) was used to assess the health risk for human, the results revealed that there was no significant health risk by consumption corn. Mercury is very difficult to transport in soil-maize system, and there is no obvious health risks to adults. But the risk coefficient of children, which is up to 0.056. is much higher than adults.

  13. Mercury exposure and public health.

    PubMed

    Clifton, Jack C

    2007-04-01

    Mercury is a metal that is a liquid at room temperature. Mercury has a long and interesting history deriving from its use in medicine and industry, with the resultant toxicity produced. In high enough doses, all forms of mercury can produce toxicity. The most devastating tragedies related to mercury toxicity in recent history include Minamata Bay and Niagata, Japan in the 1950s, and Iraq in the 1970s. More recent mercury toxicity issues include the extreme toxicity of the dimethylmercury compound noted in 1998, the possible toxicity related to dental amalgams, and the disproved relationship between vaccines and autism related to the presence of the mercury-containing preservative, thimerosal.

  14. What factors influence the metal-proton spin-spin coupling constants in mercury- and cadmium-substutited rubredoxin?

    PubMed

    Kauch, Małgorzata; Pecul, Magdalena

    2014-06-26

    The indirect metal-proton spin-spin coupling constants between protons in cysteine groups and the mercury or cadmium nucleus have been calculated for a small model of Me-rubredoxin complex (Me = Cd, Hg) by means of density functional theory with zeroth-order regular approximation Hamiltonian (DFT-ZORA). The calculated spin-spin coupling constants, in spite of the moderate size of the model system, are in good agreement with the values measured in NMR experiment, which are in the 0.29-0.56 Hz range for the Cd complex and in the 0.57-2.20 Hz range for the Hg complex. The robustness of the chosen method has been verified by calculations with a number of different exchange-correlation functionals and basis sets. Additionally, it has been shown that the short- and long-distance metal-proton coupling constants are affected mainly by the values of the metal-proton distance and the H-N-C-C dihedral angle.

  15. Temporal characterization of mercury accumulation at different trophic levels and implications for metal biomagnification along a coastal food web.

    PubMed

    Cardoso, P G; Pereira, E; Duarte, A C; Azeiteiro, U M

    2014-10-15

    The main goal of this study was to assess temporal mercury variations along an estuarine food web to evaluate the mercury contamination level of the system and the risks that humans are exposed to, due to mercury biomagnification. The highest mercury concentrations in the sediments and primary producers (macrophytes) were observed during winter sampling. Instead, the highest mercury concentrations in the water, suspended particulate matter as well as in the zooplanktonic and suprabenthic communities were observed during summer sampling. Evidences of mercury biomagnification along the food web were corroborated by the positive biomagnification factors, particularly for omnivorous macrobenthic species. Comparing the mercury levels at distinct components with several environmental quality criteria it suggests that sediments, water and edible species (e.g., bivalve Scrobicularia plana and the crustacean Carcinus maenas) presented higher mercury levels than the values accepted by legislation which represent a matter of concern for the environment and human health.

  16. Stable and sensitive silver surface plasmon resonance imaging sensor using trilayered metallic structures.

    PubMed

    Wang, Zhiyou; Cheng, Zhiqiang; Singh, Vikramjeet; Zheng, Zheng; Wang, Yanmei; Li, Shaopeng; Song, Lusheng; Zhu, Jinsong

    2014-02-04

    The silver surface plasmon resonance (SPR) sensor has long been explored due to its intrinsic sensitivity enhancement over the conventional single-layered gold SPR sensor. However, the silver SPR sensor has not been exploited for practical applications because of pronounced instability problems. We propose a novel gold-silver-gold trilayered SPR sensor chip, in which an extra buffer layer of gold is added between the silver and substrate adhesion layer (i.e., chromium) compared to the previously reported silver-gold bilayered SPR sensors. Subjected to prolonged agitation in phosphate-buffered saline (PBS) solution, the new chip exhibited high integrity according to both optical and atomic force microscopy (AFM) analysis. Having undergone repeated cycles of calibration, binding, and regeneration in various chemical solutions, 25 regions of interest (ROIs) over a 14 mm ×14 mm area were chosen and monitored by large detection area SPR microscopy; the new sensor chip exhibited stability comparable to the single gold layered SPR chip. In terms of sensing performances, over 50% increases in sensitivity and signal-to-noise ratio (S/N) than those of the single gold layered SPR chip were determined by SPR microscopy at 660 nm. Protein arrays of protein A and bovine serum albumin (BSA) on both the new chip and single-layered gold SPR chip were fabricated and underwent biomolecular interactions with human IgG, for the purpose of consistency, comparison on kinetics parameters, values from the microarray trilayered chip showed reasonable consistency with those from the single gold layered SPR chip. This study suggests that the new chip is a viable alternative to the conventional single gold layered SPR chip with improved sensing performances.

  17. A sensitive localized surface plasmon resonance sensor for determining mercury(II) ion using noble metal nanoparticles as probe

    NASA Astrophysics Data System (ADS)

    Bi, Ning; Chen, Yanhua; Qi, Haibo; Zheng, Xia; Chen, Yang; Liao, Xue; Zhang, Hanqi; Tian, Yuan

    2012-09-01

    The noble metal nanoparticles (NPs), including gold nanorods (AuNRs), gold nanospheres (AuNSs) and silver nanoplates (AgNPTs), were synthesized and Tween 20 stabilized NPs (Tween 20-NPs) were used as the probes for determining Hg2+. Hg2+ was determined based on the strong affinity between Au (Ag) and Hg. Hg2+ was reduced to Hg in the presence of sodium borohydride. Hg interacts with the NPs and the diameter of the NPs decreases with the increase of Hg2+ concentration, which causes the shift in absorption peak of Tween 20-NPs. The peak shifts are linearly related to Hg2+ concentrations. Compared with AuNSs and AgNPTs, when the AuNRs was used, the sensitivity for determining Hg2+ was higher. The developed method shows a good selectivity for Hg2+ and can be applied to the determination of Hg2+ in water samples.

  18. The synthesis of reflective and electrically conductive polyimide films via an in situ self-metallization procedure using silver(I) complexes

    NASA Astrophysics Data System (ADS)

    Southward, Robin Elaine

    Optically reflective polyimide films have been prepared by the incorporation of silver(I) acetate and a beta-diketone solubilizing agent, hexafluoroacetylacetone (HFAH), into a dimethylacetamide solution of the poly(amic acid) formed from 3,3sp',4,4sp'-benzophenonetetracarboxylic acid dianhydride (BTDA) and 4,4sp'-oxydianiline (4,4sp'-ODA). Optically reflective and conductive polyimide films have been prepared by replacing the beta-diketone (HFAH), with the less substituted beta-diketone, trifluoroacetylacetone (TFAH). The former system has been both cast directly from the poly(amic acid) resin and cast from the poly(amic acid) resin onto a fully imidized BTDA/4,4sp'-ODA base (forming a metallized topcoat). Thermal curing of the silver(I)-containing poly(amic acid) leads to imidization with concomitant silver(I) reduction, yielding a reflective silver surface, when HFAH is the solubilizing agent, and a reflective and surface-conductive silver surface, when TFAH is the solubilizing agent. The metallized BTDA/4,4sp'-ODA films retain the essential mechanical properties of undoped films and have good thermal stability particularly in nitrogen atmospheres. The system which forms a metallized topcoat also exhibits the essential mechanical and thermal properties of the parent polymer while minimizing the silver required to form the reflective surface, and has outstanding metal-polymer and polymer-polymer adhesion attributed to mechanical interlocking. Films were characterized by X-ray, DSC, TGA, XPS, TEM, SEM, AFM.

  19. Assessment of Hair Aluminum, Lead, and Mercury in a Sample of Autistic Egyptian Children: Environmental Risk Factors of Heavy Metals in Autism.

    PubMed

    Mohamed, Farida El Baz; Zaky, Eman Ahmed; El-Sayed, Adel Bassuoni; Elhossieny, Reham Mohammed; Zahra, Sally Soliman; Salah Eldin, Waleed; Youssef, Walaa Yousef; Khaled, Rania Abdelmgeed; Youssef, Azza Mohamed

    2015-01-01

    The etiological factors involved in the etiology of autism remain elusive and controversial, but both genetic and environmental factors have been implicated. The aim of this study was to assess the levels and possible environmental risk factors and sources of exposure to mercury, lead, and aluminum in children with autism spectrum disorder (ASD) as compared to their matched controls. One hundred ASD children were studied in comparison to 100 controls. All participants were subjected to clinical evaluation and measurement of mercury, lead, and aluminum through hair analysis which reflects past exposure. The mean Levels of mercury, lead, and aluminum in hair of the autistic patients were significantly higher than controls. Mercury, lead, and aluminum levels were positively correlated with maternal fish consumptions, living nearby gasoline stations, and the usage of aluminum pans, respectively. Levels of mercury, lead, and aluminum in the hair of autistic children are higher than controls. Environmental exposure to these toxic heavy metals, at key times in development, may play a causal role in autism.

  20. Assessment of Hair Aluminum, Lead, and Mercury in a Sample of Autistic Egyptian Children: Environmental Risk Factors of Heavy Metals in Autism

    PubMed Central

    Mohamed, Farida El Baz; Zaky, Eman Ahmed; El-Sayed, Adel Bassuoni; Elhossieny, Reham Mohammed; Zahra, Sally Soliman; Salah Eldin, Waleed; Youssef, Walaa Yousef; Khaled, Rania Abdelmgeed; Youssef, Azza Mohamed

    2015-01-01

    Background and Aims. The etiological factors involved in the etiology of autism remain elusive and controversial, but both genetic and environmental factors have been implicated. The aim of this study was to assess the levels and possible environmental risk factors and sources of exposure to mercury, lead, and aluminum in children with autism spectrum disorder (ASD) as compared to their matched controls. Methods. One hundred ASD children were studied in comparison to 100 controls. All participants were subjected to clinical evaluation and measurement of mercury, lead, and aluminum through hair analysis which reflects past exposure. Results. The mean Levels of mercury, lead, and aluminum in hair of the autistic patients were significantly higher than controls. Mercury, lead, and aluminum levels were positively correlated with maternal fish consumptions, living nearby gasoline stations, and the usage of aluminum pans, respectively. Conclusion. Levels of mercury, lead, and aluminum in the hair of autistic children are higher than controls. Environmental exposure to these toxic heavy metals, at key times in development, may play a causal role in autism. PMID:26508811

  1. Nanostructure of silver metal produced photocatalytically in TiO2 films and the mechanism of the resulting photochromic behavior.

    PubMed

    Kelly, K Lance; Yamashita, Koichi

    2006-04-20

    The optical activity of composite films created by the photocatalytic reduction of silver or gold ions in TiO(2) upon irradiation by UV light has up to now been discussed in terms of the formation and light-induced destruction of distinct nanoparticles molded inside the porous nanocrystalline film. We present results from classical light scattering calculations and a logical analysis of experimental observations to add detail to the mechanism. As opposed to large, solid metal nanoparticles, coatings and small particles in heterogeneous external dielectric environments account for observations such as the broad optical spectrum and multiwavelength photochromic responses. For some steps of the photochromic process, we propose that visible light permits an equilibrium promoting the growth of small metal features or suspended particles. We use a new expression for the restricted path length in our size-dependent broadening corrections of metal shells and discuss this briefly. We conclude by discussing the consequence of plasmon absorption in the proximity of the electronically active TiO(2) surrounding matrix, leading to mass transfer and shape change of the metal and photochromic properties of the film.

  2. Electrochemical generation of antimony volatile species, stibine, using gold and silver mercury amalgamated cathodes and determination of Sb by flame atomic absorption spectrometry.

    PubMed

    Ordoñes, Jessenia; Fernández, Lenys; Romero, Hugo; Carrera, Patricio; Alvarado, José

    2015-08-15

    The electrochemical generation of antimony volatile species (stibine) using Au and Ag mercury amalgamated cathodes is described. Compared with some other cathode materials commonly used for electrochemical hydride generation, performance of the amalgamated cathodes is substantially better in the following aspects: higher interference tolerance, higher erosion resistance and longer useful working time. Using the amalgamated cathodes, it could be shown that interferences from major constituents at high concentrations, especially from transition metals, affecting stibine generation are not as significant as they are using other cathode types in regards to sensitivity and useful working time. Results obtained using the Ag/Hg amalgamated cathode showed a slightly higher sensitivity than the corresponding results obtained using the Au/Hg cathode. The Au/Hg cathode, which to our knowledge has not previously been used to generate stibine, showed considerably longer useful working time than the Ag/Hg one. The optimum catholytes for electrolytic generation of stibine (SbH3) from Sb(III) and Sb(V) using the Au/Hg electrode were aqueous solutions containing 0.5mol L(-1) H2SO4 and 0.5mol L(-1)HCl, respectively. Under optimized conditions, using the Au/Hg cathode and comparing to aqueous standards calibration curves, detection limits (3σ) of 0.027µg L(-1) for Sb(III) and 0.056µg L(-1) for Sb(V), were obtained. To check accuracy a marine sediment reference material (PACS-2, NRC) was analyzed using a method purportedly developed for this task. Good agreement, 95% confidence, was found between the certified and the experimental values for Sb. The proposed method was also applied to the determination of Sb in aqueous solutions of marine sediments samples from Comuna de Bajo Alto Provincia de El Oro-Ecuador. Recoveries of five replicate determinations of these samples were in the range of 98-103% thus showing acceptable accuracy in the analysis of real samples.

  3. Enhancement of the Purcell effect for colloidal CdSe/ZnS quantum dots coupled to silver nanowires by a metallic tip

    NASA Astrophysics Data System (ADS)

    Wang, Y. C.; Yuan, C. T.; Kuo, M. Y.; Wu, M. C.; Tang, Jau; Shih, M. H.

    2012-06-01

    In this study, the Purcell effect for CdSe/ZnS quantum dots emission coupled to a silver nanowire cavity was investigated. We manipulated the interaction between colloidal quantum dots (QDs) and an Ag NW in the presence of a metallic tip. When a metal tip approaches the Ag NW, the Ag surface plasmon mode could be lifted away from the metallic NW so that a low optical loss could still be obtained. This work demonstrates enhancement of the spatial coupling between the plasmonic mode and light sources and reduction in metal Ohmic losses, resulting in an enhanced Purcell effect and coupling efficiency accompanied with increased fluorescence intensity.

  4. Trace level voltammetric determination of heavy metals and total mercury in tea matrices (Camellia sinensis).

    PubMed

    Melucci, Dora; Locatelli, Marcello; Locatelli, Clinio

    2013-12-01

    An analytical procedure regarding the voltammetric determination of mercury(II), copper(II), lead(II), cadmium(II) and zinc(II) by square wave anodic stripping voltammetry (SWASV) in matrices involved in food chain is proposed. In particular, tea leaves were analyzed as real samples. The digestion of each matrix was carried out using a concentrated HCl-HNO3-H2SO4 acidic attack mixture; 0.01 mol L(-1) EDTA-Na2+ 0.15 mol L(-1) NaCl + 0.5 mol L(-1) HCl was employed as the supporting electrolyte. The voltammetric measurements were carried out using a conventional three electrode cell, employing, as working electrodes, a gold electrode (GE) and a stationary hanging mercury drop electrode (HMDE). The analytical procedure has been verified on the standard reference materials Spinach Leaves NIST-SRM 1570a, Tomato Leaves NIST-SRM 1573a and Apple Leaves NIST-SRM 1515. For all the elements, the precision as repeatability, expressed as relative standard deviation (sr) was of the order of 3-5%, while the trueness, expressed as relative error (e) was of the order of 3-7%. Once set up on the standard reference materials, the analytical procedure was applied to commercial tea leaves samples. A critical comparison with spectroscopic measurements is also discussed.

  5. TRACE LEVEL VOLTAMMETRIC DETERMINATION OF HEAVY METALS AND TOTAL MERCURY IN TEA MATRICES (Camellia sinensis).

    PubMed

    Melucci, Dora; Locatelli, Marcello; Locatelli, Clinio

    2013-10-24

    An analytical procedure regarding the voltammetric determination of mercury(II), copper(II), lead(II), cadmium(II) and zinc(II) by square wave anodic stripping voltammetry (SWASV) in matrices involved in food chain is proposed. In particular, tea leaves were analysed as real samples. The digestion of each matrix was carried out using a concentrated HCl-HNO3-H2SO4 acidic attack mixture; 0.01 mol L(-1) EDTA-Na2 + 0.15 mol L(-1) NaCl + 0.5 mol L(-1) HCl was employed as the supporting electrolyte. The voltammetric measurements were carried out using a conventional three electrode cell, employing, as working electrodes, a gold electrode (GE) and a stationary hanging mercury drop electrode (HMDE). The analytical procedure has been verified on the standard reference materials Spinach Leaves NIST-SRM 1570a, Tomato Leaves NIST-SRM 1573a and Apple Leaves NIST-SRM 1515. For all the elements, the precision as repeatability, expressed as relative standard deviation (sr) was of the order of 3-5 %, while the trueness, expressed as relative error (e) was of the order of 3-7 %. Once set up on the standard reference materials, the analytical procedure was applied to commercial tea leaves samples. A critical comparison with spectroscopic measurements is also discussed.

  6. Analytical Performances of Nanostructured Gold Supported on Metal Oxide Sorbents for the Determination of Gaseous Mercury

    PubMed Central

    Tessier, Emmanuel; Amouroux, David

    2014-01-01

    Nanostructured gold supported TiO2, ZnO, and Al2O3 materials (1% w/w Au) were tested as sorbents for gaseous mercury (Hg) trapping and preconcentration. Their analytical performances were first compared with the one of traditional gold wool trap for the quantification of Hg standards injected into the argon flow followed by thermal desorption at 600°C and CVAFS detection. Good linearity and reproducibility were obtained, especially for Au/TiO2 material (R 2 = 0.995; slope: 1.39) in the volume range of 10 to 60 µL (132–778 pg Hg). This latter even showed a better performance compared to pure Au in the volume range of 10 to 100 µL (132–1329 pg Hg) when the carrier gas flow was increased from 60 to 100 mL min−1. The method detection limit (MDL) obtained with Au/TiO2 trap (0.10 pg Hg0 L−1) was suitable for total gaseous mercury (TGM) determination. Au/TiO2 was, therefore, used in trapping and determining TGM in collected air samples. TGM values in the samples ranged from 6 to 10 ng m−3. Similar results were obtained with the commercial gold-coated sand trap which showed an average TGM concentration of 7.8 ± 0.9 ng m−3. PMID:24808914

  7. Poly(ester sulphonic acid) coated mercury thin film electrodes: characterization and application in batch injection analysis stripping voltammetry of heavy metal ions.

    PubMed

    Brett, C M; Fungaro, D A

    2000-01-10

    Mercury-thin film electrodes coated with a thin film of poly(ester sulphonic acid) (PESA) have been investigated for application in the analysis of trace heavy metals by square wave anodic stripping voltammetry using the batch injection analysis (BIA) technique. Different polymer dispersion concentrations in water/acetone mixed solvent are investigated and are characterised by electrochemical impedance measurements on glassy carbon and on mercury film electrodes. The influence of electrolyte anion, acetate or nitrate, on polymer film properties is demonstrated, acetate buffer being shown to be preferable for stripping voltammetry applications. Although stripping currents are between 30 and 70% less at the coated than at bare mercury thin film electrodes, the influence of model surfactants on stripping response is shown to be very small. The effect of the composition of the modifier film dispersion on calibration plots is shown; however, detection limits of around 5 nM are found for all modified electrodes tested. This coated electrode is an alternative to Nafion-coated mercury thin film electrodes for the analysis of trace metals in complex matrices, particularly useful when there is a high concentration of non-ionic detergents.

  8. Assessment of metals in down feathers of female common eiders and their eggs from the Aleutians: arsenic, cadmium, chromium, lead, manganese, mercury, and selenium

    PubMed Central

    Burger, Joanna; Gochfeld, Michael; Jeitner, Christian; Snigaroff, Daniel; Snigaroff, Ronald; Stamm, Timothy; Volz, Conrad

    2014-01-01

    Concentrations of arsenic, cadmium, chromium, lead, manganese, mercury and selenium were examined in the down feathers and eggs of female common eiders (Somateria mollissima) from Amchitka and Kiska Islands in the Aleutian Chain of Alaska to determine whether there were (1) differences between levels in feathers and eggs, (2) differences between the two islands, (3) positive correlations between metal levels in females and their eggs, and (4) whether there was more variation within or among clutches. Mean levels in eggs (dry weight) were as follows: arsenic (769 ppb, ng/g), cadmium (1.49 ppb), chromium (414 ppb), lead (306 ppb), manganese (1,470 ppb), mercury (431 ppb) and selenium (1,730 ppb). Levels of arsenic were higher in eggs, while chromium, lead, manganese, and mercury were higher in feathers; there were no differences for selenium. There were no significant interisland differences in female feather levels, except for manganese (eider feathers from Amchitka were four times higher than feathers from Kiska). Levels of manganese in eggs were also higher from Amchitka than Kiska, and eider eggs from Kiska had significantly higher levels of arsenic, but lower levels of selenium. There were no significant correlations between the levels of any metals in down feathers of females and in their eggs. The levels of mercury in eggs were below ecological benchmark levels, and were below human health risk levels. However, Aleuts can seasonally consume several meals of bird eggs a week, suggesting cause for concern for sensitive (pregnant) women. PMID:17934788

  9. Efficient continuous biosynthesis of silver nanoparticles by activated sludge micromycetes with enhanced tolerance to metal ion toxicity.

    PubMed

    Tyupa, Dmitry V; Kalenov, Sergei V; Baurina, Marina M; Yakubovich, Liubov M; Morozov, Alexander N; Zakalyukin, Ruslan M; Sorokin, Vladimir V; Skladnev, Dmitry A

    2016-12-01

    The method for producing AgNPs by granules of activated sludge micromycetes with enhanced tolerance to metal ion toxicity - Penicillium glabrum, Fusarium nivale and Fusarium oxysporum has been developed; the optimum conditions for AgNP biosynthesis being found: the Ag(+) ion concentration, duration of the contact of microbial cells with silver ions, a growth phase of microorganisms, medium composition, a рН value, mixing conditions, and also lighting intensity. The effect of Cl(-), SO4(2-) and HPO4(2-) ions binding Ag(+) ions was eliminated, that brought to significant increase of the yield of NPs. Under batch conditions, silver particles of 60-110 nanometers in size were formed with a 65% yield. It was established that the nanoparticles were covered with microbial cell membrane proteins composed up to 70% by weight of the NPs that prevented their aggregation. In addition, it was the first time stable AgNPs had been formed by continuous AgNP biosynthesis by living cells of F. oxysporum with an 80% yield for a long time. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Measurements of Atmospheric Gaseous Mercury, Aerosol Trace Metals and Stable Lead Isotopes Over the South-Western Indian Ocean

    NASA Astrophysics Data System (ADS)

    Mather, T. A.; Witt, M. L.; Baker, A. R.; de Hoog, C.; Pyle, D. M.

    2008-12-01

    During November 2007, continuous measurements were made of total gaseous mercury (TGM) over the Indian Ocean during a two week cruise aboard the R/V Revelle from the Seychelles to Mauritius. Hg concentrations were consistently low during the cruise (1.0-1.4 ng m -3) similar to concentrations observed between 1994 and 2006 at an observatory in South Africa (Slemr et al., 2008). There was no significant diurnal signal observed during the cruise and the low variability in Hg is consistent with well mixed air masses and a long lifetime of Hg in the atmosphere. During this cruise size segregated and bulk aerosol samples were also collected using a high volume aerosol sampler. The aerosols were analysed for major ions, trace metals (Al, Fe, Ba, Mn, Co, V, Cr, Mo, Sr, Pb, Cd, As, Zn, Cu and Ni) and stable lead isotope ratios. The concentrations of most of the metals were similar to those observed in previous aerosol studies over similar regions of the Indian Ocean in 1986 (Chester et al., 1991) and 2002 (Witt et al., 2006). Aerosols were enriched above crustal and oceanic sources in many trace metals such as Pb, Cd, Ni and Zn although air mass back trajectories suggest air encountered had been over the ocean for at least 5 days prior to collection. Metal concentrations over the remote Indian Ocean appear to be intermediate between values reported for the remote Pacific and Atlantic oceans. Lead isotope ratios (206Pb, 207Pb and 208 Pb) in the aerosols fell into a group with a relatively radiogenic signature different to the Pb characteristic of Australian ores, where trajectories suggest air originated. The isotope ratios also differ to those observed in South African cities and are closer to the lead composition more typical of coals. Chester et al., (1991) Mar. Chem., 34; 261-290 Slemr et al., (2008) GRL, 35 (11) doi:10.1029/2008GL033741 Witt et al., (2006) Atmos. Env., 40; 5435-5451

  11. Influence of catalytic gold and silver metal nanoparticles on structural, optical, and vibrational properties of silicon nanowires synthesized by metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Dawood, M. K.; Tripathy, S.; Dolmanan, S. B.; Ng, T. H.; Tan, H.; Lam, J.

    2012-10-01

    We report on the structural and vibrational characterization of silicon (Si) nanowire arrays synthesized by metal-assisted chemical etching (MACE) of Si deposited with metal nanoparticles. Gold (Au) and silver (Ag) metal nanoparticles were synthesized by glancing angle deposition, and MACE was performed in a mixture of H2O2 and HF solution. We studied the structural differences between Au and Ag-etched Si nanowires. The morphology of the synthesized nanowires was characterized by scanning electron microscopy and transmission electron microscopy. The optical and vibrational properties of the Si nanostructures were studied by photoluminescence and Raman spectroscopy using three different excitation sources (UV, visible, and near-infrared) and are correlated to their microstructures. The structural differences between Au-etched and Ag-etched nanowires are due to the higher degree of hole injection by the Au nanoparticle and diffusion into the Si nanowires, causing enhanced Si etching by HF on the nanowire surface. Au-etched nanowires were observed to be mesoporous throughout the nanowire while Ag-etched nanowires consisted of a thin porous layer around the crystalline core. In addition, the surface-enhanced resonant Raman scattering observed is attributed to the presence of the sunken metal nanoparticles. Such Si nanostructures may be useful for a wide range of applications such as photovoltaic and biological and chemical sensing.

  12. Amperometric determination of cadmium, lead, and mercury metal ions using a novel polymer immobilised horseradish peroxidase biosensor system.

    PubMed

    Silwana, Bongiwe; Van Der Horst, Charlton; Iwuoha, Emmanuel; Somerset, Vernon

    2014-01-01

    This work was undertaken to develop a novel Pt/PANI-co-PDTDA/HRP biosensor system for environmental applications to investigate the inhibition studies by specific heavy metals, to provide data suitable for kinetic studies and further application of the biosensor to environmental samples. The newly constructed biosensor was compared to the data of the well-researched Pt/PANI/HRP biosensor. Optimised experimental conditions, such as the working pH for the biosensor was evaluated. The functionality of the amperometric enzyme sensor system was demonstrated by measuring the oxidation current of hydrogen peroxide followed by the development of an assay for determination of metal concentration in the presence of selected metal ions of Cd(2+), Pb(2+) and Hg(2+). The detection limits were found to be 8 × 10(-4) μg L(-1) for cadmium, 9.38 × 10(-4) μg L(-1) for lead and 7.89 × 10(-4) μg L(-1) for mercury. The World Health Organisation recommended that the maximum safety level of these metals should not exceed 0.005 mg L(-1) of Cd(2+), 0.01 mg L(-1) of Pb(2+) and 0.001 mg L(-1) of Hg(2+.), respectively. The analytical and detection data for the metals investigated were observed to be lower than concentrations recommended by several bodies including World Health Organisation and Environmental Protection Agencies. Therefore the biosensors developed in this study can be used to screen the presence of these metals in water samples because of its low detection limit. The modes of inhibition of horseradish peroxidase by Pb(2+), Cd(2+) and Hg(2+) as analysed using the double reciprocal plots of the Michaelis-Menten equation was found to be reversible and uncompetitive inhibition. Based on the Km(app) and Imax values for both biosensors the results have shown smaller values. These results also proved that the enzyme modified electrode is valuable and can be deployed for the determination or screening of heavy metals.

  13. The role of melano-macrophage aggregates in the storage of mercury and other metals: an example from yelloweye rockfish (Sebastes ruberrimus).

    PubMed

    Barst, Benjamin D; Bridges, Kristin; Korbas, Malgorzata; Roberts, Aaron P; Van Kirk, Kray; McNeel, Kevin; Drevnick, Paul E

    2015-08-01

    Melano-macrophage aggregates, collections of specialized cells of the innate immune system of fish, are considered a general biomarker for contaminant toxicity. To elucidate further the relationship between macrophage aggregates and metals exposure, yelloweye rockfish (Sebastes ruberrimus), a long-lived species, were sampled from the east and west coasts of Prince of Wales Island, Alaska. Metals concentrations in livers (inorganic Hg, methyl mercury, Se, Ni, Cd, Cu, Zn) and spleens (inorganic Hg and methyl mercury) were determined, as well as their correlations with melano-macrophage aggregate area. Sections of liver tissue were analyzed by laser ablation-inductively coupled plasma-mass spectrometry to determine how metals were spatially distributed between hepatocytes and macrophage aggregates. The concentration of inorganic Hg in whole tissue was the best predictor of macrophage area in yelloweye livers and spleens. Macrophage aggregates had higher relative concentrations than most metals compared with the surrounding hepatocytes. However, not all metals were accumulated to the same degree, as evidenced by differences in the ratios of metals in macrophages compared with hepatocytes. Laser ablation data were corroborated with the results of X-ray synchrotron fluorescence imaging of a yelloweye liver section. Hepatic macrophage aggregates in yelloweye rockfish may play an important role in the detoxification and storage of Hg and other metals.

  14. Selective silver atom interaction at β-SiC(100) surfaces: From anisotropic diffusion to metal atomic wires and stripes

    NASA Astrophysics Data System (ADS)

    D'Angelo, M.; Aristov, V. Yu.; Soukiassian, P.

    2007-07-01

    Silver (Ag) atom interaction on β-SiC(100) surface reconstructions is investigated by atom-resolved scanning tunneling microscopy. On the 3×2 (Si-rich) reconstruction, the adsorbate-adsorbate interaction is dominant with no surface wetting, leading to Ag cluster formation. In contrast, on the c(4×2) Si-terminated reconstruction, almost equivalent Ag-Ag and Ag-surface interactions allow selective one dimensional nano-object formation including Ag atomic wires and stripes following the substrate registry. Their orientation is mediated by anisotropic Ag atom diffusion occurring along Si-dimer rows at 25°C and perpendicularly to them at elevated temperatures, suggesting dimer flipping as diffusion barrier. These metal nanowires potentially open up cross-wiring capability in massively parallel Si atomic lines network.

  15. Composite thin film materials on the basis of silver nanostructures on polymer matrix by methods of chemical metallization and self-assembling

    NASA Astrophysics Data System (ADS)

    Skoptsov, Evgeniy; Agabekov, Vladimir; Binhussain, Mohammed A.; Egorov, Dmitriy; Ropot, Piotr

    2014-08-01

    The techniques of formation of thin metallic coatings by deposition of silver nanoparticles (NPs) from solution onto the surface of glass and silicon substrates modified by polyelectrolytes were developed. The possibilities of the adsorption of individual silver particles, as well as creation of continuous films on their basis, were shown. The transmission, absorption and reflection spectra of obtained coatings were investigated. The most promising structure for metamaterials creation from the list of formed one was determined—solid thin film of Ag NPs on a glass substrate modified by polyethylenimine.

  16. Essential oils and metal ions as alternative antimicrobial agents: a focus on tea tree oil and silver.

    PubMed

    Low, Wan-Li; Kenward, Ken; Britland, Stephen T; Amin, Mohd Cim; Martin, Claire

    2017-04-01

    The increasing occurrence of hospital-acquired infections and the emerging problems posed by antibiotic-resistant microbial strains have both contributed to the escalating cost of treatment. The presence of infection at the wound site can potentially stall the healing process at the inflammatory stage, leading to the development of a chronic wound. Traditional wound treatment regimes can no longer cope with the complications posed by antibiotic-resistant strains; hence, there is a need to explore the use of alternative antimicrobial agents. Pre-antibiotic compounds, including heavy metal ions and essential oils, have been re-investigated for their potential use as effective antimicrobial agents. Essential oils have potent antimicrobial, antifungal, antiviral, anti-inflammatory, antioxidant and other beneficial therapeutic properties. Similarly, heavy metal ions have also been used as disinfecting agents because of their broad spectrum activities. Both of these alternative antimicrobials interact with many different intracellular components, thereby resulting in the disruption of vital cell functions and eventually cell death. This review will discuss the application of essential oils and heavy metal ions, particularly tea tree oil and silver ions, as alternative antimicrobial agents for the treatment of chronic, infected wounds. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  17. Release of toxic metals and metalloids from Los Rueldos mercury mine (Asturias, Spain).

    PubMed

    Loredo, J; Alvarez, R; Ordóñez, A

    2005-03-20

    The abandoned mercury mining works of "Los Rueldos" are located 20 km from Oviedo, along the northwestern border of the Asturian Central Coal Basin, in an area with intense tectonization. Hg mainly appears as cinnabar, but occasionally metacinnabar and native Hg are present; associated with Hg ore appear As-rich minerals (arsenopyrite, As-rich pyrite, realgar and scorodite). In the spoil heap, Hg content ranges from 14 to 2224 mg kg(-1), and As from 4746 to 62,196 mg kg(-1). Mine drainage and spoil heap leachates show acidic conditions (pH: 2.43-2.50), 2900-4600 mg l(-1) sulphate, 1.4-9.2 mg l(-1) As, 0.03-0.48 mg l(-1) Pb, and 3.6-14 microg l(-1) Hg. According to the analytical data and characteristics of the site, the application of corrective measurements to avoid the dispersion of contaminants in the environment must be considered.

  18. Mercury in the Carson and Truckee River basins of Nevada

    USGS Publications Warehouse

    Van Denburgh, A.S.

    1973-01-01

    adjacent to areas where stream-bottom sediment is enriched in mercury. Limited data indicate that the Carson River above Lahontan Reservoir and the reservoir itself contain only trace amounts of dissolved arsenic, cyanide, selenium, and silver. Among 17 additional trace metals analysed for on four unfiltered samples from the river above the reservoir, only six of the metals were consistently present in concentrations exceeding detection limits. Maximum measured concentrations for the six metals were: aluminum, >670 ug/1; iron, 2,500 ug/1; manganese, 1,100 ug/1; molybdenum, 15 ug/1; titanium, 110 ug/1; and vanadium, 15 ug/1. Presumably, the detected metals were associated largely or almost entirely with the suspended-sediment phase of the water samples. Selenium and silver concentrations in sampled well waters from the Carson and Truckee basins were uniformly low, with one exception--as elenium concentration of 18 ug/1 for the water of a shallow well southwest of Fallon (Public Health Service limit, 10 ug/1). The arsenic content of 15 sampled well waters ranged from 0 to 1,500 ug/1 (0 to 1.5 ppm), with seven of the values greater than 50 ug/1 (the Public Health Service limit).

  19. Comparative Study of Raw and Boiled Silver Pomfret Fish from Coastal Area and Retail Market in Relation to Trace Metals and Proximate Composition

    PubMed Central

    Huque, Roksana; Munshi, M. Kamruzzaman; Khatun, Afifa; Islam, Mahfuza; Hossain, Afzal; Hossain, Arzina; Akter, Shirin; Kabir, Jamiul; Nahar Jolly, Yeasmin; Islam, Ashraful

    2014-01-01

    Trace metals concentration and proximate composition of raw and boiled silver pomfret (Pampus argenteus) from coastal area and retail market were determined to gain the knowledge of the risk and benefits associated with indiscriminate consumption of marine fishes. The effects of cooking (boiling) on trace metal and proximate composition of silver pomfret fish were also investigated. Trace element results were determined by the Energy Dispersive X-ray Fluorescence (EDXRF) Spectrometer wherein fish samples from both areas exceeded the standard limits set by FAO/WHO for manganese, lead, cadmiumm and chromium and boiling has no significant effects on these three metal concentrations. Long-term intake of these contaminated fish samples can pose a health risk to humans who consume them. PMID:26904650

  20. Temporal trends (1989-2011) in levels of mercury and other heavy metals in feathers of fledgling great egrets nesting in Barnegat Bay, NJ.

    PubMed

    Burger, Joanna

    2013-04-01

    There is an abundance of data for levels of metals from a range of species, but relatively few long-term time series from the same location. In this paper I examine the levels of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in feathers from fledgling great egrets (Ardea alba) collected at nesting colonies in Barnegat Bay, New Jersey from 1989 to 2011. The primary objectives were to test the null hypotheses that (1) There were no temporal differences in metal levels in feathers of fledgling great egrets, and (2) Great egrets nesting in different areas of Barnegat Bay (New Jersey) did not differ in metal levels. There were significant yearly variations in levels of all heavy metals in feathers of fledgling great egret, but levels decreased significantly from 1989 to 2011 only for lead (1,470 ppb to 54.3 ppb), cadmium (277 ppb to 30.5 ppb), and manganese (only since 1996; 2,669 ppb to 329 ppb)). Although mercury levels decreased from 2003-2008 (6,430 ppb to 1,042 ppb), there was no pattern before 2003, and levels increased after 2008 to 2,610 ppb in 2011. Lead, cadmium, chromium, manganese and mercury were higher in feathers from great egrets nesting in the northern part of the bay, and selenium was highest in feathers from mid-bay. The lack of a temporal decline in mercury levels in feathers of great egrets is cause for concern, since the high levels in feathers from some years (means as high as 6,430 ppb) are in the range associated with adverse effects (5,000 ppb for feathers).

  1. Contamination of wild-grown edible mushrooms by heavy metals in a former mercury-mining area.

    PubMed

    Árvay, Július; Tomáš, Ján; Hauptvogl, Martin; Kopernická, Miriama; Kováčik, Anton; Bajčan, Daniel; Massányi, Peter

    2014-01-01

    The aim of this study was to evaluate the contamination of six edible wild species of mushrooms (Boletus pulverulentus, Cantharellus cibarius, Lactarius quietus, Macrolepiota procera, Russula xerampelina and Suillus grevillei) by heavy metals (Hg, Cd, Pb, Zn, Cu, Ni, Cr, Co, Mn and Fe). Mushroom samples were collected from sites contaminated by emissions from mining and processing of polymetallic ores in operation during the period 1969-1993 in Rudňany, southeast Slovakia. The four study sites spanned up to a 5-km distance from the emission source. The collected mushroom samples were analyzed using Flame Atomic Absorption Spectrophotometry and/or Flame Atomic Absorption Spectrophotometry with graphite furnace. Mercury, Cd and, in some samples, also Pb present the highest risks in terms of contamination of the food chain following subsequent consumption. The content of two metals in the dry matter (dm) of the mushrooms exceeded the limits set by the European Union (EU; Cd: 0.5 mg/kg dm, Pb: 1.0 mg/kg dm). The highest mean contents of the eight metals recorded for S. grevillei were 52.2, 2.15, 107, 104, 2.27, 2.49, 81.6 and 434 mg/kg dm for Hg, Pb, Zn, Cu, Ni, Cr, Mn and Fe, respectively. The highest content of Cd was recorded in M. procera (3.05 mg/kg dm) and that of Co in L. quietus (0.90 mg/kg dm). The calculated weekly intake for Hg, Pb and Cd shows that regular consumption of mushrooms from the studied area poses risks to human health.

  2. Morphological, compositional and ultrastructural changes in the Scrobicularia plana shell in response to environmental mercury--an indelible fingerprint of metal exposure?

    PubMed

    Ahmad, Iqbal; Singh, Manoj K; Pereira, Maria L; Pacheco, Mário; Santos, Maria A; Duarte, Armando C; Pereira, Eduarda; Grácio, José

    2013-03-01

    The study aimed to assess morphological, structural and compositional alterations in Scrobicularia plana nacre environmentally exposed to mercury in order to seek out the possibility of the assessed alterations as a monitoring tool to handle complexity and interactions of metals in the environment involving a non-invasive methodology. Bivalves were collected from a mercury contaminated site (Laranjo basin - Ria de Aveiro, Portugal) and a reference site in the same aquatic system. The combination of scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) technique depicted a sheet like morphology of bivalve nacre collected from the reference site. Moreover, EDS plot exhibited the presence of potassium, oxygen, calcium, and carbon elements. Shells collected from the contaminated area depicted lamellar patches like structures with particle like morphology composition. SEM images corresponding to the elemental analysis by EDS plot clearly denoted the presence of mercury. SEM images from the other locations of the contaminated shells depicted large surface area, a broken or ruptured symmetry of organic matrix as well as crack-like gaps. The influence of environmental mercury affecting the surface morphology of S. plana nacre showed dimple like morphology (as proved by transmission electron microscopy, TEM). The possible explanation may be the replacement of calcium elements with other elements or alloys from the nacre composite collected from contaminated region. Therefore, the nacre fingerprint may be useful as innovative knowledge and applicable tool aiming at risk reduction from noxious mercury present in the environment. Overall results suggested the use of shell as an indelible fingerprint of metal exposure.

  3. Temporal trends (1989–2011) in levels of mercury and other heavy metals in feathers of fledgling great egrets nesting in Barnegat Bay, NJ

    SciTech Connect

    Burger, Joanna

    2013-04-15

    There is an abundance of data for levels of metals from a range of species, but relatively few long-term time series from the same location. In this paper I examine the levels of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in feathers from fledgling great egrets (Ardea alba) collected at nesting colonies in Barnegat Bay, New Jersey from 1989 to 2011. The primary objectives were to test the null hypotheses that (1) There were no temporal differences in metal levels in feathers of fledgling great egrets, and (2) Great egrets nesting in different areas of Barnegat Bay (New Jersey) did not differ in metal levels. There were significant yearly variations in levels of all heavy metals in feathers of fledgling great egret, but levels decreased significantly from 1989 to 2011 only for lead (1470 ppb to 54.3 ppb), cadmium (277 ppb to 30.5 ppb), and manganese (only since 1996; 2669 ppb to 329 ppb)). Although mercury levels decreased from 2003–2008 (6430 ppb to 1042 ppb), there was no pattern before 2003, and levels increased after 2008 to 2610 ppb in 2011. Lead, cadmium, chromium, manganese and mercury were higher in feathers from great egrets nesting in the northern part of the bay, and selenium was highest in feathers from mid-bay. The lack of a temporal decline in mercury levels in feathers of great egrets is cause for concern, since the high levels in feathers from some years (means as high as 6430 ppb) are in the range associated with adverse effects (5000 ppb for feathers). -- Highlights: ► Metals were monitored in feathers of great egrets from Barnegat Bay, New Jersey. ► Levels of cadmium and lead decreased significantly from 1989–2011. ► Mercury levels in feathers from great egrets did not decline from 1989–2011. ► Metal levels were generally higher in great egrets and black-crowned night heron feathers than in snowy egrets.

  4. Spectroscopic studies of organometallic compounds on single crystal metal surfaces: Surface acetylides of silver (110)

    NASA Astrophysics Data System (ADS)

    Madix, Robert J.

    The nature of compounds formed by the reaction of organic molecules with metal surfaces can be studied with a battery of analytical methods based on both physicals and chemical understanding. In this paper the application of UPS, XPS, LEED and EELS as well as temperature programmed reaction spectroscopy (TPRS) and chemical titration methods to the characterization of surface complexes is discussed. Particular emphasis is given to the reaction of acetylene with a single crystal surface of silver, Ag(110). Previous work has shown that this surface, when clean, is unreactive to hydrocarbons, alcohols and carboxylic acids under ultra high vacuum conditions. Preadsorption of oxygen, however, renders the surface reactive, and a wide variety of organometallic surface compounds can be formed. As expected then, no stable adsorption state and no reaction was observed with clean Ag(110) following room temperature exposure to acetylene. Following exposure at 150 K, however, a weekly bound chemisorption state was observed to desorb at 195 K, indicating a binding energy to the surface of approximately 12 kcal/gmole. Reaction with preadsorbed oxygen gave water formulation upon dosing and produced surface intermediates which yeilded two acetylene desorption states at 195 and 175 K. Heating above 300 K to completely desorb the higher temperature state produced new, well-defined LEED Features due to residual surface carbon which disappeared when the surface was heated above 550 K. Clearly, there were distinc changes in the nature of the absorbed layer at 195, 300 and 550 K. These changes were reflected in XPS. For the weakly chemisorbed acetylene a large C(ls) peak at 285.6 eV with a small, broad, indistinc shoulder at higher binding energy (288.2) was observed. The spectrum of the species following acetylene desorption at 275 K, however, showed the formulation of a large C(ls) peak at 283.6 eV in addition to peaks characteristics of the weakly chemisorbed state. This result

  5. Effects of remediation train sequence on decontamination of heavy metal-contaminated soil containing mercury.

    PubMed

    Hseu, Zeng-Yei; Huang, Yu-Tuan; Hsi, Hsing-Cheng

    2014-09-01

    When a contaminated site contains pollutants including both nonvolatile metals and Hg, one single remediation technology may not satisfactorily remove all contaminants. Therefore, in this study, chemical extraction and thermal treatment were combined as a remediation train to remove heavy metals, including Hg, from contaminated soil. A 0.2 M solution of ethylenediamine tetraacetic acid (EDTA) was shown to be the most effective reagent for extraction of considerable amounts of Cu, Pb, and Zn (> 50%). Hg removal was ineffective using 0.2 M EDTA, but thermogravimetric analysis suggested that heating to 550 degrees C with a heating rate of 5 degrees C/min for a duration of 1 hr appeared to be an effective approach for Hg removal. With the employment of thermal treatment, up to 99% of Hg could be removed. However executing thermal treatment prior to chemical extraction reduced the effectiveness of the subsequent EDTA extraction because nonvolatile heavy metals were immobilized in soil aggregates after the 550 degrees C treatment. The remediation train of chemical extraction followed by thermal treatment appears to remediate soils that have been contaminated by many nonvolatile heavy metals and Hg. Implications: A remediation train conjoining two or more techniques has been initialized to remove multiple metals. Better understandings of the impacts of treatment sequences, namely, which technique should be employed first on the soil properties and the decontamination efficiency, are in high demand. This study provides a strategy to remove multiple heavy metals including Hg from a contaminated soil. The interactions between thermal treatment and chemical extraction on repartitioning of heavy metals was revealed. The obtained results could offer an integrating strategy to remediate the soil contaminated with both heavy metals and volatile contaminants.

  6. Study on a novel Sn-electroplated silver brazing filler metal

    NASA Astrophysics Data System (ADS)

    Wang, Xingxing; Peng, Jin; Cui, Datian

    2017-08-01

    Novel Sn-electroplated Ag brazing filler metal with a high tin content was prepared by combining the plating and thermal diffusion method. The BAg45CuZn alloy was used as a base filler metal, and a Sn layer was electroplated on it. Then the H62 brass was brazed with the Sn-plated brazing filler metal containing 6.2 wt% of Sn. The results showed that the microstructure of the brazed joints with the Sn-plated filler mainly consisted of the Ag phase, Cu phase, CuZn phase and Cu5Zn8 phase. The tensile strength of the joints brazed with the Sn-plated filler metal was 326 MPa, which was higher than that of the joints with the base filler metal. Fracture analysis showed that the fractures of the joints brazed by the Sn-plated filler metal was mainly ductile fracture mixed with a small quantity of brittle fracture.

  7. Companions and competitors: Joint metal-supply relationships in gold, silver, copper, lead and zinc mines

    DOE PAGES

    Jordan, Brett Watson

    2017-06-03

    Firms that extract and produce multiple metals are an important component of mineral supply. The reaction of such firms to changes in their relevant output prices is tested econometrically for five metals using a panel representing more than 100 mines across the time period 1991-2005. Here, the estimation strategy is drawn from joint production theory, namely a flexible form, dual revenue approach with seemingly unrelated regressions (SUR) estimation. The results indicate that multi-product mines respond (in the short run) to higher prices of a particular metal by reducing output of that metal (indicative of low-grading behavior) and increasing and/or decreasingmore » output of joint metal products (indicative of substitutes and complements in supply). As a result, the price responses are not readily explained by a metal's classification as a by-product or main product based on revenue.« less

  8. Discrete Silver(I)-Palladium(II)-Oxo Nanoclusters, {Ag4 Pd13 } and {Ag5 Pd15 }, and the Role of Metal-Metal Bonding Induced by Cation Confinement.

    PubMed

    Yang, Peng; Xiang, Yixian; Lin, Zhengguo; Lang, Zhongling; Jiménez-Lozano, Pablo; Carbó, Jorge J; Poblet, Josep M; Fan, Linyuan; Hu, Changwen; Kortz, Ulrich

    2016-12-19

    We introduce the class of discrete silver(I)-palladium(II)-oxo nanoclusters with the preparation of {Ag4 Pd13 } and {Ag5 Pd15 }. Both polyanions represent the first examples of noble metal-capped polyoxo-noble-metalates in a fully inorganic assembly, featuring an unprecedented host-guest mode containing hetero- and homometallic Ag-Pd and Ag-Ag bonding interactions. Comprehensive theoretical calculations suggest that the Ag-Pd metallic bonds originate partially from surface confinement of Ag(I) guest ions onto the anionic polyoxopalladate host that is induced by strong electrostatic forces. This work opens the field of fully inorganic silver-palladium-oxo nanoclusters, which can be considered as discrete mixed noble metal precursors for the formation of monodisperse core-shell nanoparticles, with high relevance for catalysis.

  9. MOD silver metallization for photovoltaics. Quarterly technical report, March 1, 1984-May 31, 1984. [Metalloorganic deposition

    SciTech Connect

    Vest, G.M.; Vest, R.W.

    1984-07-16

    It was demonstrated that the nature of the initial solvent used to extract the silver neodecanoate during synthesis or to render it into solution for ink formulation has a profound influence on fired film properties. The lower the boiling point of the initial solvent, the more of it was removed during rotary vacuum evaporation, and the less effect it had on fired film properties. Benzene and tetrahydrofuran were superior to xylene and toluene, and inks which used them in their preparation produced fired films with excellent appearance and adhesion if the proper firing sequence was used. The best films also had electrical resistivities very close to that of pure silver, which indicates that near theoretical density was achieved. Platinum and palladium metallo-organic compounds were investigated so that fired films with good solder leach resistance could be produced. Six metallo-organic compounds were synthesized, four of them were used to make inks, and the properties of films made from these inks were evaluated. The most promising compound evaluated was Pt 2,4 pentane dionate, but additional studies are required.

  10. The silver(I) nitrate complex of the ligand N-(pyridin-2-ylmeth-yl)pyrazine-2-carboxamide: a metal-organic framework (MOF) structure.

    PubMed

    Cati, Dilovan S; Stoeckli-Evans, Helen

    2017-04-01

    The reaction of silver(I) nitrate with the mono-substituted pyrazine carboxamide ligand, N-(pyridin-2-ylmeth-yl)pyrazine-2-carboxamide (L), led to the formation of the title compound with a metal-organic framework (MOF) structure, [Ag(C11H10N4O)(NO3)] n , poly[μ-nitrato-[μ-N-(pyridin-2-ylmethyl-κN)pyrazine-2-carboxamide-κN(4)]silver(I)]. The silver(I) atom is coordinated by a pyrazine N atom, a pyridine N atom, and two O atoms of two symmetry-related nitrate anions. It has a fourfold N2O2 coordination sphere, which can be described as distorted trigonal-pyramidal. The ligands are bridged by the silver atoms forming -Ag-L-Ag-L- zigzag chains along the a-axis direction. The chains are arranged in pairs related by a twofold screw axis. They are linked via the nitrate anions, which bridge the silver(I) atoms in a μ2 fashion, forming the MOF structure. Within the framework there are N-H⋯O and C-H⋯O hydrogen bonds present.

  11. pH tunability and influence of alkali metal basicity on the plasmonic resonance of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Yadav, Vijay D.; Akhil Krishnan, R.; Borade, Lalit; Shirolikar, Seema; Jain, Ratnesh; Dandekar, Prajakta

    2017-07-01

    Localized surface plasmon resonance has been a unique and intriguing feature of silver nanoparticles (AgNPs) that has attracted immense attention. This has led to an array of applications for AgNPs in optics, sensors, plasmonic imaging etc. Although numerous applications have been reported consistently, the importance of buffer and reaction parameters during the synthesis of AgNPs, is still unclear. In the present study, we have demonstrated the influence of parameters like pH, temperature and buffer conditions (0.1 M citrate buffer) on the plasmonic resonance of AgNPs. We found that neutral and basic pH (from alkali metal) provide optimum interaction conditions for nucleation of plasmon resonant AgNPs. Interestingly, this was not observed in the non-alkali metal base (ammonia). Also, when the nanoparticles synthesized from alkali metal base were incorporated in different buffers, it was observed that the nanoparticles dissolved in the acidic buffer and had reduced plasmonic resonance intensity. This, however, was resolved in the basic buffer, increasing the plasmonic resonance intensity and confirming that nucleation of nanoparticles required basic conditions. The above inference has been supported by characterization of AgNPs using UV-Vis spectrophotometer, Fluorimetry analysis, Infrared spectrometer and TEM analysis. The study concluded that the plasmonic resonance of AgNPs occurs due to the interaction of alkali (Na) and transition metal (Ag) salt in basic/neutral conditions, at a specific temperature range, in presence of a capping agent (citric acid), providing a pH tune to the overall system.

  12. Label-free colorimetric detection of mercury via Hg2+ ions-accelerated structural transformation of nanoscale metal-oxo clusters

    PubMed Central

    Chen, Kun; She, Shan; Zhang, Jiangwei; Bayaguud, Aruuhan; Wei, Yongge

    2015-01-01

    Mercury and its compounds are known to be extremely toxic but widely distributed in environment. Although many works have been reported to efficiently detect mercury, development of simple and convenient sensors is still longed for quick analyzing mercury in water. In this work, a nanoscale metal-oxo cluster, (n-Bu4N)2[Mo5NaO13(OCH3)4(NO)], (MLPOM), organically-derivatized from monolacunary Lindqvist-type polyoxomolybdate, is found to specifically react with Hg2+ in methanol/water via structural transformation. The MLPOM methanol solution displays a color change from purple to brown within seconds after being mixed with an aqueous solution containing Hg2+. By comparing the structure of polyoxomolybdate before and after reaction, the color change is revealed to be the essentially structural transformation of MLPOM accelerated by Hg2+. Based on this discovery, MLPOM could be utilized as a colorimetric sensor to sense the existence of Hg2+, and a simple and label-free method is developed to selectively detect aqueous Hg2+. Furthermore, the colorimetric sensor has been applied to indicating mercury contamination in industrial sewage. PMID:26559602

  13. Label-free colorimetric detection of mercury via Hg2+ ions-accelerated structural transformation of nanoscale metal-oxo clusters

    NASA Astrophysics Data System (ADS)

    Chen, Kun; She, Shan; Zhang, Jiangwei; Bayaguud, Aruuhan; Wei, Yongge

    2015-11-01

    Mercury and its compounds are known to be extremely toxic but widely distributed in environment. Although many works have been reported to efficiently detect mercury, development of simple and convenient sensors is still longed for quick analyzing mercury in water. In this work, a nanoscale metal-oxo cluster, (n-Bu4N)2[Mo5NaO13(OCH3)4(NO)], (MLPOM), organically-derivatized from monolacunary Lindqvist-type polyoxomolybdate, is found to specifically react with Hg2+ in methanol/water via structural transformation. The MLPOM methanol solution displays a color change from purple to brown within seconds after being mixed with an aqueous solution containing Hg2+. By comparing the structure of polyoxomolybdate before and after reaction, the color change is revealed to be the essentially structural transformation of MLPOM accelerated by Hg2+. Based on this discovery, MLPOM could be utilized as a colorimetric sensor to sense the existence of Hg2+, and a simple and label-free method is developed to selectively detect aqueous Hg2+. Furthermore, the colorimetric sensor has been applied to indicating mercury contamination in industrial sewage.

  14. In-Situ Ligand Formation-Driven Preparation of a Heterometallic Metal-Organic Framework for Highly Selective Separation of Light Hydrocarbons and Efficient Mercury Adsorption.

    PubMed

    Han, Yi; Zheng, Hao; Liu, Kang; Wang, Hongli; Huang, Hongliang; Xie, Lin-Hua; Wang, Lei; Li, Jian-Rong

    2016-09-07

    By means of the in situ ligand formation strategy and hard-soft acid-base (HSAB) theory, two types of independent In(COO)4 and Cu6S6 clusters were rationally embedded into the heterometallic metal-organic framework (HMOF) {[(CH3)2NH2]InCu4L4·xS}n (BUT-52). BUT-52 exhibits a three-dimensional (3D) anionic framework structure and has sulfur decorating the dumbbell-shaped cages with the external edges of 24 and 14 Å by the internal edges. Remarkably, because of the stronger charge-induced interactions between the charged MOF skeleton and the easily polarized C2 hydrocarbons (C2s), BUT-52 was used for C2s over CH4 and shows both high adsorption heats of C2s and selective separation abilities for C2s/CH4. Furthermore, BUT-52 also displays efficient mercury adsorption resulting from the stronger-binding ability beween the sulfur and the mercury and can remove 92% mercury from methanol solution even with the initial concentration as low as 100 mg/L. The results in this work indicate the feasibility of BUT-52 for the separation of light hydrocarbons and efficient adsorption/removal of mercury.

  15. [Intake of trace elements and heavy metals with the diet of 2-14 years old children. Zinc, manganese, copper, fluoride, iodine, selen; lead, cadmium, mercury (author's transl)].

    PubMed

    Stolley, H; Kersting, M; Droese, W

    1981-04-01

    For 2-14 year old children the intake of the trace elements zinc, manganese, copper, fluoride, iodine, selen, and of the heavy metals, lead, cadmium and mercury is calculated from their food intake. The results give a representative statement of the average supply of trace elements and of the average intake of heavy metals with the diet of children in the Federal Republic of Germany. It is shown that the choice of foodstuffs for the diet has an important influence on the supply of trace elements.

  16. Dosimetry using silver salts

    DOEpatents

    Warner, Benjamin P.

    2003-06-24

    The present invention provides a method for detecting ionizing radiation. Exposure of silver salt AgX to ionizing radiation results in the partial reduction of the salt to a mixture of silver salt and silver metal. The mixture is further reduced by a reducing agent, which causes the production of acid (HX) and the oxidized form of the reducing agent (R). Detection of HX indicates that the silver salt has been exposed to ionizing radiation. The oxidized form of the reducing agent (R) may also be detected. The invention also includes dosimeters employing the above method for detecting ionizing radiation.

  17. Source processes for the alkali metals in the atmosphere of Mercury

    NASA Technical Reports Server (NTRS)

    Shemansky, D. E.; Morgan, T. H.

    1991-01-01

    A large (fivefold) increase in Mercury's potassium (K) column abundance on October 14, 1987, has been reported by Sprague et al. (1990), who attributed the enhancement to diffusion through the surface in the Caloris Basin, from depths of order 10 km. The postulated source rate is much larger than any previously estimated diffusion rate, and, if true, certainly affects consideration of the origin of other atmospheric species. However, Killen et al. (1991) have pointed out that the claim is not supported by the published observations of K or sodium as a whole. Sprague et al. (1991) have responded by further hypothesizing the existence of several other sources of gas diffusing out of the regolith, all of which are time variable. In any case, the Sprague et al. data indicate large variations in abundance, and it is important to understand the cause. With this issue in mind, the available abundance estimates for correlation with possible controlling physical parameters has ben examined. A significant correlation between the average zenith K column abundance and indices of solar activity has been found.

  18. Source processes for the alkali metals in the atmosphere of Mercury

    NASA Technical Reports Server (NTRS)

    Shemansky, D. E.; Morgan, T. H.

    1991-01-01

    A large (fivefold) increase in Mercury's potassium (K) column abundance on October 14, 1987, has been reported by Sprague et al. (1990), who attributed the enhancement to diffusion through the surface in the Caloris Basin, from depths of order 10 km. The postulated source rate is much larger than any previously estimated diffusion rate, and, if true, certainly affects consideration of the origin of other atmospheric species. However, Killen et al. (1991) have pointed out that the claim is not supported by the published observations of K or sodium as a whole. Sprague et al. (1991) have responded by further hypothesizing the existence of several other sources of gas diffusing out of the regolith, all of which are time variable. In any case, the Sprague et al. data indicate large variations in abundance, and it is important to understand the cause. With this issue in mind, the available abundance estimates for correlation with possible controlling physical parameters has ben examined. A significant correlation between the average zenith K column abundance and indices of solar activity has been found.

  19. Review of metal accumulation and toxicity in wild mammals. I. Mercury

    SciTech Connect

    Wren, C.D.

    1986-06-01

    Release of Hg compounds into the environment from point sources has largely been curtailed due to the known impacts of Hg on biological systems. Mercury continues to be released into the environment, however, from nonpoint sources such as combustion of fossil fuels and smelting operations. While the accumulation and toxicity of Hg in aquatic biota, domestic animals, and humans is well documented, relatively little is understood about these processes in wild terrestrial mammals. The purpose of this paper is to review the available literature on Hg levels and toxicity in wild mammals (excluding marine mammals). It is clear that Hg levels are biomagnified within terrestrial food chains, where carnivores greater than omnivores greater than herbivores. Among carnivorous species, Hg levels are generally highest in fish-eating animals. There is usually a high degree of correlation of Hg levels between different animal tissues. The age and sex of an animal appear to influence observed Hg levels, but field data are conflicting for both factors. Tissue Hg levels are affected by location, with significant differences attributable to both local contamination and natural background variability. Experimental studies have shown many mammal species to sensitive to Hg intoxication, but documented incidents of Hg poisoning in wild mammals are rare. Such rarity may be more a function of our inability to observe and demonstrate Hg poisoning in wild populations, rather than an absence of the disease. 78 references.

  20. Mercury Amalgam Diffusion in Human Teeth Probed Using Femtosecond LIBS.

    PubMed

    Bello, Liciane Toledo; da Ana, Patricia Aparecida; Santos, Dário; Krug, Francisco José; Zezell, Denise Maria; Vieira, Nilson Dias; Samad, Ricardo Elgul

    2017-01-01

    In this work the diffusion of mercury and other elements from amalgam tooth restorations through the surrounding dental tissue (dentin) was evaluated using femtosecond laser-induced breakdown spectroscopy (fs-LIBS). To achieve this, seven deciduous and eight permanent extracted human molar teeth with occlusal amalgam restorations were half-sectioned and analyzed using pulses from a femtosecond laser. The measurements were performed from the amalgam restoration along the amalgam/dentin interface to the apical direction. It was possible to observe the presence of metallic elements (silver, mercury, copper and tin) emission lines, as well as dental constituent ones, providing fingerprints of each material and comparable data for checking the consistence of the results. It was also shown that the elements penetration depth values in each tooth are usually similar and consistent, for both deciduous and permanent teeth, indicating that all the metals diffuse into the dentin by the same mechanism. We propose that this diffusion mechanism is mainly through liquid dragging inside the dentin tubules. The mercury diffused further in permanent teeth than in deciduous teeth, probably due to the longer diffusion times due to the age of the restorations. It was possible to conclude that the proposed femtosecond-LIBS system can detect the presence of metals in the dental tissue, among the tooth constituent elements, and map the distribution of endogenous and exogenous chemical elements, with a spatial resolution that can be brought under 100 µm.

  1. Synthesis of silver nanoparticles by chemical reduction method and its metal induced crystallization of poly-Si thin film application

    NASA Astrophysics Data System (ADS)

    Huang, Jung-Jie; Lin, Che-Chun; Wuu, Dong-Sing

    2014-12-01

    Metal induced crystallization (MIC) can be generated by using a silver nanoparticles (AgNPs) solution spin coated on amorphous silicon (a-Si) film, and annealing the sample in a furnace under vacuum. Because nanoscale metal has a large specific surface area, its catalytic effect is enhanced, resulting in a low processing temperature. Thus, a poly-Si thin film with a high crystalline fraction can be obtained by using AgNPs induced crystallization. In this study, the size and annealing time of AgNPs are discussed. According to the results, the grain size of the poly-Si thin film produced using AgNPs induced crystallization was more uniform than that of the film obtained by employing traditional thermally evaporated Ag induced crystallization. Smaller AgNPs size and long annealing time enhance the crystallization of poly-Si thin film. Applying an annealing temperature of 550 °C for 480 min with 10 nm of AgNPs yielded a crystalline fraction of 75%.

  2. Metallic cyanoacetylides of copper, silver and gold: generation and structural characterization.

    PubMed

    Cabezas, Carlos; Barrientos, Carmen; Largo, Antonio; Guillemin, Jean-Claude; Alonso, J L

    2016-10-19

    The metallic cyanoacetylides CuCCCN, AgCCCN, and AuCCCN have been synthesized in the throat of a pulsed supersonic expansion by reaction of metal vapors, produced by laser ablation, and BrCCCN. Their pure rotational spectra in the (X(1)Σ(+)) electronic ground state were observed by Fourier transform microwave spectroscopy in the 2-10 GHz frequency region. Importantly, the rotational spectroscopy constants determined from the analysis of the rotational spectra clearly established the existence of metal-CCCN arrangements for all the mentioned cyanoacetylides. A study of the chemical bonding by means of a topological analysis of the electron density helps to understand the preference for metal-C bonding over metal-N bonding.

  3. Laser-Direct Writing of Silver Metal Electrodes on Transparent Flexible Substrates with High-Bonding Strength.

    PubMed

    Zhou, Weiping; Bai, Shi; Ma, Ying; Ma, Delong; Hou, Tingxiu; Shi, Xiaomin; Hu, Anming

    2016-09-21

    We demonstrate a novel approach to rapidly fabricate conductive silver electrodes on transparent flexible substrates with high-bonding strength by laser-direct writing. A new type of silver ink composed of silver nitrate, sodium citrate, and polyvinylpyrrolidone (PVP) was prepared in this work. The role of PVP was elucidated for improving the quality of silver electrodes. Silver nanoparticles and sintered microstructures were simultaneously synthesized and patterned on a substrate using a focused 405 nm continuous wave laser. The writing was completed through the transparent flexible substrate with a programmed 2D scanning sample stage. Silver electrodes fabricated by this approach exhibit a remarkable bonding strength, which can withstand an adhesive tape test at least 50 times. After a 1500 time bending test, the resistance only increased 5.2%. With laser-induced in-situ synthesis, sintering, and simultaneous patterning of silver nanoparticles, this technology is promising for the facile fabrication of conducting electronic devices on flexible substrates.

  4. Removal of inorganic mercury and methylmercury from surface waters following coagulation of dissolved organic matter with metal-based salts

    USGS Publications Warehouse

    Henneberry, Y.K.; Kraus, T.E.C.; Fleck, J.A.; Krabbenhoft, D.P.; Bachand, P.M.; Horwath, W.R.

    2011-01-01

    The presence of inorganic mercury (IHg) and methylmercury (MeHg) in surface waters is a health concern worldwide. This study assessed the removal potential use of metal-based coagulants as a means to remove both dissolved IHg and MeHg from natural waters and provides information regarding the importance of Hg associations with the dissolved organic matter (DOM) fraction and metal hydroxides. Previous research indicated coagulants were not effective at removing Hg from solution; however these studies used high concentrations of Hg and did not reflect naturally occurring concentrations of Hg. In this study, water collected from an agricultural drain in the Sacramento-San Joaquin Delta was filtered to isolate the dissolved organic matter (DOM) fraction. The DOM was then treated with a range of coagulant doses to determine the efficacy of removing all forms of Hg from solution. Three industrial-grade coagulants were tested: ferric chloride, ferric sulfate, and polyaluminum chloride. Coagulation removed up to 85% of DOM from solution. In the absence of DOM, all three coagulants released IHg into solution, however in the presence of DOM the coagulants removed up to 97% of IHg and 80% of MeHg. Results suggest that the removal of Hg is mediated by DOM-coagulant interactions. There was a preferential association of IHg with the more aromatic, higher molecular weight fraction of DOM but no such relationship was found for MeHg. This study offers new fundamental insights regarding large-scale removal of Hg at environmentally relevant regarding large-scale removal of Hg at environmentally relevant concentrations.

  5. A novel silver-coated solid-phase microextraction metal fiber based on electroless plating technique.

    PubMed

    Feng, Juanjuan; Sun, Min; Li, Jubai; Liu, Xia; Jiang, Shengxiang

    2011-09-09

    A novel silver-coated solid-phase microextraction fiber was prepared based on electroless plating technique. Good extraction performance of the fiber for model compounds including phthalate esters (dibutyl phthalate, dioctyl phthalate, dicyclohexyl phthalate and diallyl phthalate) and polycyclic aromatic hydrocarbons (naphthalene, fluorene, phenanthrene, fluoranthene) in aqueous solution was obtained. Under the optimized conditions (extraction temperature, extraction time, ionic strength and desorption temperature), the proposed SPME-GC method showed wide linear ranges with correlation coefficients (R(2)) ranging from 0.9745 to 0.9984. The limits of detection were at the range of 0.02 to 0.1 μg L(-1). Single fiber repeatability and fiber-to-fiber reproducibility as well as stability to acid, alkali and high temperature were studied and the results were all satisfactory. The method was applied successfully to the aqueous extracts of disposable paper cup and instant noodle barrel. Several kinds of analytes were detected and quantified.

  6. Oxidation-resistant hybrid metal oxides/metal nanodots/silver nanowires for high performance flexible transparent heaters

    NASA Astrophysics Data System (ADS)

    Kim, A.-Young; Kim, Min Kyu; Hudaya, Chairul; Park, Ji Hun; Byun, Dongjin; Lim, Jong Choo; Lee, Joong Kee

    2016-02-01

    Despite its excellent optical, electrical, mechanical, and thermal performances, a silver nanowire (AgNW)-based transparent conducting heater (TCH) still demonstrates several drawbacks such as facile nanowire breakdown on application of a high DC voltage, easy oxidation when exposed to harsh environments, leading to increased surface resistivity, and high resistance among wire junctions causing nonhomogeneous temperature profiles. To overcome these issues, the AgNW was hybridized with other transparent heating materials made of fluorine-doped tin oxide (FTO) thin films and NiCr nanodots (FTO/NiCr/AgNW). The dispersed NiCr nanodots (~50 nm) and FTO thin films (~20 nm) electrically bridge the nanowire junctions leading to a decreased sheet resistance and uniform temperature profiles. The hybrid transparent heater shows excellent optical transmittance (>90%) and high saturation temperature (162 °C) at low applied DC voltage (6 V). Moreover, the FTO/NiCr/AgNW heater exhibits a stable sheet resistance in a hostile environment, hence highlighting the excellent oxidation-resistance of the heating materials. These results indicate that the proposed hybrid transparent heaters could be a promising approach to combat the inherent problems associated with AgNW-based transparent heaters for various functional applications.Despite its excellent optical, electrical, mechanical, and thermal performances, a silver nanowire (AgNW)-based transparent conducting heater (TCH) still demonstrates several drawbacks such as facile nanowire breakdown on application of a high DC voltage, easy oxidation when exposed to harsh environments, leading to increased surface resistivity, and high resistance among wire junctions causing nonhomogeneous temperature profiles. To overcome these issues, the AgNW was hybridized with other transparent heating materials made of fluorine-doped tin oxide (FTO) thin films and NiCr nanodots (FTO/NiCr/AgNW). The dispersed NiCr nanodots (~50 nm) and FTO thin films

  7. MERCURIAL, METALLIC AND MINERAL PRPARATIONS FOR THE AILMENTS OF ALIMENTARY CANAL THROUGH THE PERSPECTIVE OF “BASAVARAJIYAM”

    PubMed Central

    Murthy, P.H.

    1984-01-01

    Basavarajiyam is one of the authoritative works on Ayurvedic treatment widely used in telugu region of India. The work describes the mercurial preparations and its efficacy vividly. The author scans here the work and highlights various mercurial preparations administered for the ailments of alimentary canal. PMID:22557453

  8. 40 CFR 63.10885 - What are my management practices for metallic scrap and mercury switches?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Iron and Steel Foundries Area Sources Pollution Prevention Management Practices for New and Existing... purchase and use of only metal ingots, pig iron, slitter, or other materials that do not include post... scrap exposure to rain. (2) General iron and steel scrap. You must prepare and operate at all times...

  9. 40 CFR 63.10885 - What are my management practices for metallic scrap and mercury switches?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Iron and Steel Foundries Area Sources Pollution Prevention Management Practices for New and Existing... purchase and use of only metal ingots, pig iron, slitter, or other materials that do not include post... scrap exposure to rain. (2) General iron and steel scrap. You must prepare and operate at all times...

  10. 40 CFR 63.10885 - What are my management practices for metallic scrap and mercury switches?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Iron and Steel Foundries Area Sources Pollution Prevention Management Practices for New and Existing... purchase and use of only metal ingots, pig iron, slitter, or other materials that do not include post... scrap exposure to rain. (2) General iron and steel scrap. You must prepare and operate at all times...

  11. 40 CFR 63.10885 - What are my management practices for metallic scrap and mercury switches?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Iron and Steel Foundries Area Sources Pollution Prevention Management Practices for New and Existing... purchase and use of only metal ingots, pig iron, slitter, or other materials that do not include post... scrap exposure to rain. (2) General iron and steel scrap. You must prepare and operate at all times...

  12. 40 CFR 63.10885 - What are my management practices for metallic scrap and mercury switches?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Iron and Steel Foundries Area Sources Pollution Prevention Management Practices for New and Existing... purchase and use of only metal ingots, pig iron, slitter, or other materials that do not include post... scrap exposure to rain. (2) General iron and steel scrap. You must prepare and operate at all times...

  13. Thioxanthone functionalized silver nanorods as smart photoinitiating assemblies to generate photopolymer/metal nano-objects

    NASA Astrophysics Data System (ADS)

    Niu, Songlin; Schneider, Raphaël; Vidal, Loïc; Balan, Lavinia

    2013-06-01

    Silver nanorods (AgNRs) with lengths in the 50-60 nm range were synthesized and functionalized with 2-(2-mercaptoethyl)thioxanthone (C2TX) to generate AgNR@C2TX nanoassemblies. When irradiated at 377 nm in the presence of a diacrylate monomer, these dispersed nanoassemblies initiate radical photopolymerization, indicating that the excited singlet to triplet intersystem crossing process of C2TX in the vicinity of AgNRs was favored while the fluorescence of C2TX was completely quenched at the surface of NRs. SEM and TEM images confirmed the formation of a AgNR-polymer nanocomposite and the homogeneous dispersion of AgNRs in the polymer film. Moreover, under specific experimental conditions allowing the spatial extent of the polymerization to be limited, polymer-capped AgNRs were obtained (polymer diameter of ca. 1 nm).Silver nanorods (AgNRs) with lengths in the 50-60 nm range were synthesized and functionalized with 2-(2-mercaptoethyl)thioxanthone (C2TX) to generate AgNR@C2TX nanoassemblies. When irradiated at 377 nm in the presence of a diacrylate monomer, these dispersed nanoassemblies initiate radical photopolymerization, indicating that the excited singlet to triplet intersystem crossing process of C2TX in the vicinity of AgNRs was favored while the fluorescence of C2TX was completely quenched at the surface of NRs. SEM and TEM images confirmed the formation of a AgNR-polymer nanocomposite and the homogeneous dispersion of AgNRs in the polymer film. Moreover, under specific experimental conditions allowing the spatial extent of the polymerization to be limited, polymer-capped AgNRs were obtained (polymer diameter of ca. 1 nm). Electronic supplementary information (ESI) available: Additional TEM image. See DOI: 10.1039/c3nr01256e

  14. Porewater dynamics of silver, lead and copper in coastal sediments and implications for benthic metal fluxes

    USGS Publications Warehouse

    Kalnejais, Linda H.; Martin, W. R.; Bothner, Michael H.

    2015-01-01

    To determine the conditions that lead to a diffusive release of dissolved metals from coastal sediments, porewater profiles of Ag, Cu, and Pb have been collected over seven years at two contrasting coastal sites in Massachusetts, USA. The Hingham Bay (HB) site is a contaminated location in Boston Harbor, while the Massachusetts Bay (MB) site is 11 km offshore and less impacted. At both sites, the biogeochemical cycles include scavenging by Fe-oxyhydroxides and release of dissolved metals when Fe-oxyhydroxides are reduced. Important differences in the metal cycles at the two sites, however, result from different redox conditions. Porewater sulfide and seasonal variation in redox zone depth is observed at HB, but not at MB. In summer, as the conditions become more reducing at HB, trace metals are precipitated as sulfides and are no longer associated with Fe-oxyhydroxides. Sulfide precipitation close to the sediment–water interface limits the trace metal flux in summer and autumn at HB, while in winter, oxidation of the sulfide phases drives high benthic fluxes of Cu and Ag, as oxic conditions return. The annual diffusive flux of Cu at HB is found to be significant and contributes to the higher than expected water column Cu concentrations observed in Boston Harbor. At MB, due to the lower sulfide concentrations, the association of trace metals with Fe-oxyhydroxides occurs throughout the year, leading to more stable fluxes. A surface enrichment of solid phase trace metals was found at MB and is attributed to the persistent scavenging by Fe-oxyhydroxides. This process is important, particularly at sites that are less reducing, because it maintains elevated metal concentrations at the surface despite the effects of bioturbation and sediment accumulation, and because it may increase the persistence of metal contamination in surface sediments.

  15. Porewater dynamics of silver, lead and copper in coastal sediments and implications for benthic metal fluxes.

    PubMed

    Kalnejais, Linda H; Martin, W R; Bothner, Michael H

    2015-06-01

    To determine the conditions that lead to a diffusive release of dissolved metals from coastal sediments, porewater profiles of Ag, Cu, and Pb have been collected over seven years at two contrasting coastal sites in Massachusetts, USA. The Hingham Bay (HB) site is a contaminated location in Boston Harbor, while the Massachusetts Bay (MB) site is 11 km offshore and less impacted. At both sites, the biogeochemical cycles include scavenging by Fe-oxyhydroxides and release of dissolved metals when Fe-oxyhydroxides are reduced. Important differences in the metal cycles at the two sites, however, result from different redox conditions. Porewater sulfide and seasonal variation in redox zone depth is observed at HB, but not at MB. In summer, as the conditions become more reducing at HB, trace metals are precipitated as sulfides and are no longer associated with Fe-oxyhydroxides. Sulfide precipitation close to the sediment-water interface limits the trace metal flux in summer and autumn at HB, while in winter, oxidation of the sulfide phases drives high benthic fluxes of Cu and Ag, as oxic conditions return. The annual diffusive flux of Cu at HB is found to be significant and contributes to the higher than expected water column Cu concentrations observed in Boston Harbor. At MB, due to the lower sulfide concentrations, the association of trace metals with Fe-oxyhydroxides occurs throughout the year, leading to more stable fluxes. A surface enrichment of solid phase trace metals was found at MB and is attributed to the persistent scavenging by Fe-oxyhydroxides. This process is important, particularly at sites that are less reducing, because it maintains elevated metal concentrations at the surface despite the effects of bioturbation and sediment accumulation, and because it may increase the persistence of metal contamination in surface sediments.

  16. Mercury and Other Heavy Metals Influence Bacterial Community Structure in Contaminated Tennessee Streams▿ †

    PubMed Central

    Vishnivetskaya, Tatiana A.; Mosher, Jennifer J.; Palumbo, Anthony V.; Yang, Zamin K.; Podar, Mircea; Brown, Steven D.; Brooks, Scott C.; Gu, Baohua; Southworth, George R.; Drake, Meghan M.; Brandt, Craig C.; Elias, Dwayne A.

    2011-01-01

    High concentrations of uranium, inorganic mercury [Hg(II)], and methylmercury (MeHg) have been detected in streams located in the Department of Energy reservation in Oak Ridge, TN. To determine the potential effects of the surface water contamination on the microbial community composition, surface stream sediments were collected 7 times during the year, from 5 contaminated locations and 1 control stream. Fifty-nine samples were analyzed for bacterial community composition and geochemistry. Community characterization was based on GS 454 FLX pyrosequencing with 235 Mb of 16S rRNA gene sequence targeting the V4 region. Sorting and filtering of the raw reads resulted in 588,699 high-quality sequences with lengths of >200 bp. The bacterial community consisted of 23 phyla, including Proteobacteria (ranging from 22.9 to 58.5% per sample), Cyanobacteria (0.2 to 32.0%), Acidobacteria (1.6 to 30.6%), Verrucomicrobia (3.4 to 31.0%), and unclassified bacteria. Redundancy analysis indicated no significant differences in the bacterial community structure between midchannel and near-bank samples. Significant correlations were found between the bacterial community and seasonal as well as geochemical factors. Furthermore, several community members within the Proteobacteria group that includes sulfate-reducing bacteria and within the Verrucomicrobia group appeared to be associated positively with Hg and MeHg. This study is the first to indicate an influence of MeHg on the in situ microbial community and suggests possible roles of these bacteria in the Hg/MeHg cycle. PMID:21057024

  17. Mercury and other heavy metals influence bacterial community structure in contaminated Tennessee streams

    SciTech Connect

    Vishnivetskaya, Tatiana A; Mosher, Jennifer J; Palumbo, Anthony Vito; Yang, Zamin; Podar, Mircea; Brown, Steven D; Brooks, Scott C; Gu, Baohua; Southworth, George R; Drake, Meghan M; Brandt, Craig C; Elias, Dwayne A

    2011-01-01

    High concentrations of uranium, inorganic mercury [Hg(II)], and methylmercury (MeHg) have been detected in streams located in the Department of Energy reservation in Oak Ridge, TN. To determine the potential effects of the surface water contamination on the microbial community composition, surface stream sediments were collected 7 times during the year, from 5 contaminated locations and 1 control stream. Fifty-nine samples were analyzed for bacterial community composition and geochemistry. Community characterization was based on GS 454 FLX pyrosequencing with 235 Mb of 16S rRNA gene sequence targeting the V4 region. Sorting and filtering of the raw reads resulted in 588,699 high-quality sequences with lengths of >200 bp. The bacterial community consisted of 23 phyla, including Proteobacteria (ranging from 22.9 to 58.5% per sample), Cyanobacteria (0.2 to 32.0%), Acidobacteria (1.6 to 30.6%), Verrucomicrobia (3.4 to 31.0%), and unclassified bacteria. Redundancy analysis indicated no significant differences in the bacterial community structure between midchannel and near-bank samples. Significant correlations were found between the bacterial community and seasonal as well as geochemical factors. Furthermore, several community members within the Proteobacteria group that includes sulfate-reducing bacteria and within the Verrucomicrobia group appeared to be associated positively with Hg and MeHg. This study is the first to indicate an influence of MeHg on the in situ microbial community and suggests possible roles of these bacteria in the Hg/MeHg cycle.

  18. Modeling Mercury in Proteins.

    PubMed

    Parks, J M; Smith, J C

    2016-01-01

    Mercury (Hg) is a naturally occurring element that is released into the biosphere both by natural processes and anthropogenic activities. Although its reduced, elemental form Hg(0) is relatively nontoxic, other forms such as Hg(2+) and, in particular, its methylated form, methylmercury, are toxic, with deleterious effects on both ecosystems and humans. Microorganisms play important roles in the transformation of mercury in the environment. Inorganic Hg(2+) can be methylated by certain bacteria and archaea to form methylmercury. Conversely, bacteria also demethylate methylmercury and reduce Hg(2+) to relatively inert Hg(0). Transformations and toxicity occur as a result of mercury interacting with various proteins. Clearly, then, understanding the toxic effects of mercury and its cycling in the environment requires characterization of these interactions. Computational approaches are ideally suited to studies of mercury in proteins because they can provide a detailed molecular picture and circumvent issues associated with toxicity. Here, we describe computational methods for investigating and characterizing how mercury binds to proteins, how inter- and intraprotein transfer of mercury is orchestrated in biological systems, and how chemical reactions in proteins transform the metal. We describe quantum chemical analyses of aqueous Hg(II), which reveal critical factors that determine ligand-binding propensities. We then provide a perspective on how we used chemical reasoning to discover how microorganisms methylate mercury. We also highlight our combined computational and experimental studies of the proteins and enzymes of the mer operon, a suite of genes that confer mercury resistance in many bacteria. Lastly, we place work on mercury in proteins in the context of what is needed for a comprehensive multiscale model of environmental mercury cycling. © 2016 Elsevier Inc. All rights reserved.

  19. Modeling Mercury in Proteins

    SciTech Connect

    Smith, Jeremy C; Parks, Jerry M

    2016-01-01

    Mercury (Hg) is a naturally occurring element that is released into the biosphere both by natural processes and anthropogenic activities. Although its reduced, elemental form Hg(0) is relatively non-toxic, other forms such as Hg2+ and, in particular, its methylated form, methylmercury, are toxic, with deleterious effects on both ecosystems and humans. Microorganisms play important roles in the transformation of mercury in the environment. Inorganic Hg2+ can be methylated by certain bacteria and archaea to form methylmercury. Conversely, bacteria also demethylate methylmercury and reduce Hg2+ to relatively inert Hg(0). Transformations and toxicity occur as a result of mercury interacting with various proteins. Clearly, then, understanding the toxic effects of mercury and its cycling in the environment requires characterization of these interactions. Computational approaches are ideally suited to studies of mercury in proteins because they can provide a detailed picture and circumvent issues associated with toxicity. Here we describe computational methods for investigating and characterizing how mercury binds to proteins, how inter- and intra-protein transfer of mercury is orchestrated in biological systems, and how chemical reactions in proteins transform the metal. We describe quantum chemical analyses of aqueous Hg(II), which reveal critical factors that determine ligand binding propensities. We then provide a perspective on how we used chemical reasoning to discover how microorganisms methylate mercury. We also highlight our combined computational and experimental studies of the proteins and enzymes of the mer operon, a suite of genes that confers mercury resistance in many bacteria. Lastly, we place work on mercury in proteins in the context of what is needed for a comprehensive multi-scale model of environmental mercury cycling.

  20. Oxidation-resistant hybrid metal oxides/metal nanodots/silver nanowires for high performance flexible transparent heaters.

    PubMed

    Kim, A-Young; Kim, Min Kyu; Hudaya, Chairul; Park, Ji Hun; Byun, Dongjin; Lim, Jong Choo; Lee, Joong Kee

    2016-02-14

    Despite its excellent optical, electrical, mechanical, and thermal performances, a silver nanowire (AgNW)-based transparent conducting heater (TCH) still demonstrates several drawbacks such as facile nanowire breakdown on application of a high DC voltage, easy oxidation when exposed to harsh environments, leading to increased surface resistivity, and high resistance among wire junctions causing nonhomogeneous temperature profiles. To overcome these issues, the AgNW was hybridized with other transparent heating materials made of fluorine-doped tin oxide (FTO) thin films and NiCr nanodots (FTO/NiCr/AgNW). The dispersed NiCr nanodots (∼50 nm) and FTO thin films (∼20 nm) electrically bridge the nanowire junctions leading to a decreased sheet resistance and uniform temperature profiles. The hybrid transparent heater shows excellent optical transmittance (>90%) and high saturation temperature (162 °C) at low applied DC voltage (6 V). Moreover, the FTO/NiCr/AgNW heater exhibits a stable sheet resistance in a hostile environment, hence highlighting the excellent oxidation-resistance of the heating materials. These results indicate that the proposed hybrid transparent heaters could be a promising approach to combat the inherent problems associated with AgNW-based transparent heaters for various functional applications.

  1. Mercury and other heavy metals in free-ranging mink of the lower Great Lakes basin, Canada, 1998-2006.

    PubMed

    Martin, Pamela A; McDaniel, Tana V; Hughes, Kimberley D; Hunter, Bruce

    2011-10-01

    Mercury concentrations were examined in livers of free-ranging mink (Neovison vison) trapped in the lower Great Lakes basin from 1998 to 2006. Significant geographic variation in total mercury levels was found in mink from 13 Great Lakes locations, many of which are within Great Lakes Areas of Concern (AOCs). Total mercury levels in mink from these locations were generally low to moderate, with means (±SE) ranging from 0.99 (±0.36) μg/g dry weight in mink from inland Lake Erie to 7.31 (±1.52) μg/g in mink from Walpole Island in the St. Clair River AOC. Overall, mercury exposure was highest in mink trapped in locations associated with large riverine wetlands. Total mercury concentrations were negatively related to the percentage of mercury present as methylmercury and positively related to selenium concentrations, consistent with increasing demethylation of methylmercury with increasing total mercury concentrations. One-year old mink had significantly higher levels of mercury and selenium than mink under 1 year but similar to mink 2 years of age and older. Mercury levels were below those associated with mercury toxicity. Concentrations of cadmium, lead and arsenic were low and largely associated with environmental background levels. Significant age and sex effects were found for cadmium. Lead levels were significantly lower in mink infected by the lung nematode parasite compared to uninfected animals. Further studies of biomagnification of methylmercury in wetland environments, where top predators such as mink may be an increased risk of exposure, are warranted.

  2. Metal-Doped Silver Oxide Films as a Mask Layer for the Super-RENS Disk

    NASA Astrophysics Data System (ADS)

    Shima, Takayuki; Buechel, Dorothea; Mihalcea, Christophe; Kim, Jooho; Atoda, Nobufumi; Tominaga, Junji

    Various kinds of metal (Co, Pd, Pt and Au) were doped into Ag2O and AgO sputtered films to study its effect on the thermal decomposition process. The oxygen composition ratio was evaluated by the X-ray fluorescence spectroscopy method after annealing up to 260,oC. The optical transmittance change was measured during heating of the film to 600,oC. Noble metal doping was found to modify the AgO decomposition process, and the oxygen content decreased gradually compared to the undoped case. Super-RENS disks with a metal-doped AgO mask were prepared, and the laser power necessary for super-resolutional readout was evaluated. It slightly shifted to the higher-power side when the noble metal was doped, and this agrees with the modification of the decomposition process.Japan Science and Technology Corporation, Domestic Research Fellow

  3. Cross sections for charge transfer between mercury ions and other metals

    NASA Technical Reports Server (NTRS)

    Vroom, D. A.; Rutherford, J. A.

    1977-01-01

    Cross sections for charge transfer between several ions and metals of interest to the NASA electro propulsion program have been measured. Specifically, the ions considered were Hg(+), Xe(+) and Cs(+) and the metals Mo, Fe, Al, Ti, Ta, and C. Measurements were made in the energy regime from 1 to 5,000 eV. In general, the cross sections for charge transfer were found to be less than 10 to the minus 15 power sq cm for most processes over the total energy range. Exceptions are Hg(+) in collision with Ti and Ta. The results obtained for each reaction are given in both graphical and numerical form in the text. For quick reference, the data at several ion velocities are condensed into one table given in the summary.

  4. Localized surface plasmon induced enhancement of electron-hole generation with silver metal island at n-Al:ZnO/p-Cu{sub 2}O heterojunction

    SciTech Connect

    Kaur, Gurpreet Yadav, K. L.; Mitra, Anirban

    2015-08-03

    Localized surface plasmon induced generation of electron-hole pairs with inclusion of metal islands of noble metal like Ag can enhance the photocurrent. A heterostructure of n-Al:ZnO/p-Cu{sub 2}O with inclusion of Ag metalislands at the junction has been fabricated. I-V characteristic curve of these heterostructures shows a significant enhancement of photocurrent under the illumination (1.5 AMU). This enhancement of photocurrent is attributed to the supply of hot electrons generated in silver metal nanoislands. It has also been shown that inclusion of metal islands increases the absorption of solar spectrum in visible region at 500 nm. Enhancement of photocurrent may also be due to the direct resonance energy transfer from Localized Surface Plasmons of metal islands to Cu{sub 2}O.

  5. Nano-structured silicide formation by focused ion beam implantation and integration of silver metallization with thin film silicide layers

    NASA Astrophysics Data System (ADS)

    Mitan, Martin M.

    Nano-structured silicide formation was mediated through ion implantation. Silicide structures with dimensions of 170 nm were produced on (100) silicon substrates by ion implantation of 200 KeV As++ through a thin cobalt film on SiO2/Si structure. A selective reaction barrier at the Si/Co interface comprising of a thin (˜2 nm) oxide (SiO 2) prevents unwanted reactions. Ion-beam mixing was instrumental in the fracturing of the oxide layer, thereby allowing the migration of metal atoms across the SiO2/Co boundary for the silicidation reaction to proceed during subsequent rapid thermal anneal (RTA) treatments. A threshold dose of 3 x 1015 cm-2 was required for process initiation. Four-terminal resistance test structures were formed for electrical measurements. Resistivity values obtained ranged from 12 to 23 muO-cm, improving with increased ion dose. Application of this method can facilitate a wide variety of silicide structures. Part two of this study focused on the reliability study of silver metalization with silicides. Silicide thin films of CoSi2 and NiSi were prepared by solid phase reactions utilizing the bi-layer technique. Silver thin films were then deposited on the silicides to evaluate the thermal stability of the films during vacuum annealing. Rutherford backscattering spectrometry of annealed films revealed Ag film changes to occur at 700°C. No changes in the silicide thin films could be detected. Scanning electron microscopy of annealed films shows grain coarsening of the Ag film with increasing anneal temperature. At 650°C, voids begin to appear in the film. Increasing anneal temperature up to 700°C agglomerates the film. X-ray diffraction glancing angle scans revealed no phase changes in annealed films. The as-deposited case and 700°C both show the same reflection peaks being present. Secondary ion mass spectroscopy depth profiling revealed trace amounts of Ag at the silicide/silicon interface following a heat treatment. This occurrence appears to

  6. The mechanisms associated with the development of hypertension after exposure to lead, mercury species or their mixtures differs with the metal and the mixture ratio.

    PubMed

    Wildemann, Tanja M; Siciliano, Steven D; Weber, Lynn P

    2016-01-02

    Hypertension is considered to be the most important risk factor for the development of cardiovascular diseases. Beside life-style risk factors, exposure to lead and mercury species are increasingly discussed as potential risk factors. Although there are a few previous studies, the underlying mechanism by which exposure to lead and mercury disturb blood pressure regulation is not currently understood. Potential mechanisms are oxidative stress production, kidney damage and activation of the renin-angiotensin system (RAS), all of which can interact to cause dysregulation of blood pressure. Male rats (Wistar) were exposed to lead, inorganic mercury, methylmercury or two mixtures of all three metals for four weeks through the drinking water. The two mixture ratios were based on ratios of known reference values or environmental exposure from the literature. To investigate the potential mechanism of actions, blood pressure was measured after four weeks and compared to plasma nitrotyrosine or reduced/oxidized glutathione levels in liver as markers for oxidative stress. Plasma renin and angiotensin II levels were used as markers for RAS activation. Finally, kidney function and injury were assessed via urinary and plasma creatinine levels, creatinine clearance and urinary kidney-injury molecule (KIM-1). While exposure to lead by itself increased oxidative stress and kidney damage along with blood pressure, inorganic mercury did not affect blood pressure or any end-point examined. Conversely, methylmercury instead increased RAS activation along with blood pressure. Surprisingly, when administered as mixtures, lead no longer increased oxidative stress or altered kidney function. Moreover, the mixture based on an environmental ratio no longer had an effect on blood pressure, while the reference value ratio still retained an increase in blood pressure. Based on our results, the prominent mechanism of action associated with the development of hypertension seems to be oxidative

  7. Interfacial reactions between sapphire and silver-copper-titanium thin film filler metal

    SciTech Connect

    Suenaga, Seiichi; Nakahashi, Masako; Maruyama, Miho; Fukasawa, Takayuki

    1997-02-01

    Wetting and brazing studies of sputtering-deposited, submicrometer thin film filler metal in an Ag-Cu-Ti/Al{sub 2}O{sub 3} system were performed. The interfacial reaction layer between the filler metal and Al{sub 2}O{sub 3} was investigated. It is possible to make a brazing joint even with a reaction layer of less than 100 nm thickness. Different types of interfacial reaction layers were observed when the Ti content in the filler metal was varied. The Cu-Ti-O system compounds were observed in the samples with high wetting capabilities, but not in the sample with low wetting characteristics. It was found that these compounds are substances that promote effective brazing.

  8. Novel regenerable sorbent for mercury capture from flue gases of coal-fired power plant.

    PubMed

    Liu, Yan; Kelly, David J A; Yang, Hongqun; Lin, Christopher C H; Kuznicki, Steve M; Xu, Zhenghe

    2008-08-15

    A natural chabazite-based silver nanocomposite (AgMC) was synthesized to capture mercury from flue gases of coal-fired power plants. Silver nanoparticles were engineered on zeolite through ion-exchange of sodium ions with silver ions, followed by thermal annealing. Mercury sorption test using AgMC was performed at various temperatures by exposing it to either pulse injection of mercury or continuous mercury flow. A complete capture of mercury by AgMC was achieved up to a capture temperature of 250 degrees C. Nano silver particles were shown to be the main active component for mercury capture by amalgamation mechanism. Compared with activated carbon-based sorbents, the sorbent prepared in this study showed a much higher mercury capture capacity and upper temperature limit for mercury capture. More importantly, the mercury captured by the spent AgMC could be easily released for safe disposal and the sorbent regenerated by simple heating at 400 degrees C. Mercury capture tests performed in real flue gas environment showed a much higher level of mercury capture by AgMC than by other potential mercury sorbents tested. In our mercury capture tests, the AgMC exposed to real flue gases showed an increased mercury capture efficiency than the fresh AgMC.

  9. Site Characterization and Analysis Penetrometer System (SCAPS) Heavy Metal Sensors

    DTIC Science & Technology

    2003-04-01

    bleaches, hydrochloric acid, sulfuric acid, nitric acid, explosive compounds (e.g., lead azide and lead styphnate ), phosphate cleaners, petroleum and...products of these chemicals. Previous investigations have indicated that heavy metals, including arsenic (As), barium (Ba), beryllium (Be), cadmium (Cd...Lake City. It was used by the LCAAP fire department from 1951 to 1967 to burn wooden boxes. Antimony, barium , cadmium, copper, lead, mercury, silver

  10. High thermal conductivity epoxy-silver composites based on self-constructed nanostructured metallic networks

    NASA Astrophysics Data System (ADS)

    Pashayi, Kamyar; Fard, Hafez Raeisi; Lai, Fengyuan; Iruvanti, Sushumna; Plawsky, Joel; Borca-Tasciuc, Theodorian

    2012-05-01

    We demonstrate epoxy-silver nanoparticle composites with high thermal conductivity κ enabled by self-constructed nanostructured networks (SCNN) forming during the curing process at relatively low temperatures (150 °C). The networks formation mechanism involves agglomeration of the polyvinylpyrrolidone (PVP) coated nanoparticles, PVP removal, and sintering of the nanoparticles at suppressed temperatures induced by their small diameters (20-80 nm). Sintering and the SCNN formation are supported by differential scanning calorimetry and electron microscopy investigations. The formation of SCNN with high aspect ratio structures leads to enhancements in the measured thermal conductivity κ of the composite by more than two orders of magnitude versus the pure epoxy. However, κ enhancements are modest if microparticles (1.8-4.2 μm) are employed instead of PVP coated nanoparticles. The κ trends are qualitatively explained using a percolating threshold thermal conductivity model for the microcomposites. For the nanocomposites the measured κ is ˜14% of the upper limit value predicted by the Hashin and Shtrikman (H-S) theory for an ideally connected network, a measure of the non-ideal network inside the nanocomposites.

  11. Conditional pharmacology/toxicology V: ambivalent effects of thiocyanate upon the development and the inhibition of experimental arthritis in rats by aurothiomalate (Myocrysin®) and metallic silver.

    PubMed

    Whitehouse, Michael; Butters, Desley; Vernon-Roberts, Barrie

    2013-08-01

    This article discusses the bizarre and contrary effects of thiocyanate, the major detoxication product of hydrogen cyanide inhaled from tobacco smoke or liberated from cyanogenic foods, e.g. cassava. Thiocyanate both (1) promotes inflammatory disease in rats and (2) facilitates the anti-inflammatory action of historic metal therapies based on gold (Au) or silver (Ag) in three models of chronic polyarthritis in rats. Low doses of nanoparticulate metallic silver (NMS) preparations, i.e. zerovalent silver (Ag°) administered orally, suppressed the mycobacterial ('adjuvant')-induced arthritis (MIA) in rats. Similar doses of cationic silver, Ag(I), administered orally as silver oxide or soluble silver salts were inactive. By contrast, NMS only inhibited the development of the collagen-induced arthritis (CIA) and pristane-induced arthritis (PIA) in rats when thiocyanate was also co-administered in drinking water. These (a) arthritis-selective and (b) thiocyanate-inducible effects of Ag° were also observed in some previous, and now extended, studies with the classic anti-arthritic drug, sodium aurothiomalate (ATM, Myocrisin(®)) and its silver analogue (STM), administered subcutaneously to rats developing the same three forms of polyarthritis. In the absence of either Ag° or ATM, thiocyanate considerably increased the severity of the MIA, CIA and PIA, i.e. acting as a pro-pathogen. Hitherto, thiocyanate was considered relatively harmless. This may not be true in rats/people with immuno-inflammatory stress and concomitant leukocyte activation. Collectively, these findings show how the drug action of a xenobiotic might be determined by the nature (and severity) of the experimental inflammation, as an example of conditional pharmacology. They also suggest that an incipient toxicity, even of normobiotics such as thiocyanate, might likewise be modulated beneficially by well-chosen xenobiotics (drugs, nutritional supplements, etc.), i.e. conditional toxicology (Powanda 1995

  12. Method for high temperature mercury capture from gas streams

    DOEpatents

    Granite, E.J.; Pennline, H.W.

    2006-04-25

    A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

  13. Citrate coated silver nanoparticles change heavy metal toxicities and bioaccumulation of Daphnia magna.

    PubMed

    Kim, Injeong; Lee, Byung-Tae; Kim, Hyun-A; Kim, Kyoung-Woong; Kim, Sang Don; Hwang, Yu-Sik

    2016-01-01

    Citrate-coated AgNPs (c-AgNPs) have negatively charged surfaces and their surface interactions with heavy metals can affect metal toxicity in aquatic environments. This study used Daphnia magna to compare the acute toxicities and bioaccumulation of As(V), Cd, and Cu when they interact with c-AgNPs. The 24-h acute toxicities of As(V) and Cu were not affected by the addition of c-AgNPs, while bioaccumulation significantly decreased in the presence of c-AgNPs. In contrast, both the 24-h acute toxicity and bioaccumulation of Cd increased in the presence of c-AgNPs. These toxicity and bioaccumulation trends can be attributed to the interactions between the AgNP surface and the heavy metals. As(V) and c-AgNPs compete by negative charge, decreasing As(V) toxicity. Copper adheres readily to c-AgNP citrate, decreasing Cu bioavailability, and thus reducing Cu toxicity and bioaccumulation. Citrate complexes with divalent cations such as Ca and Mg reduce the competition between divalent cations and Cd on biotic ligand, increasing toxicity and bioaccumulation of Cd. This study shows that surface properties determine the effect of c-AgNPs on heavy metal toxicities and bioaccumulations; hence, further studies on the effect of nanoparticle by it surface properties are warranted.

  14. Recent Advances in Mercury Research

    PubMed Central

    Martinez-Finley, Ebany J.

    2016-01-01

    Mercury (Hg) is a highly toxic, non-essential, naturally occurring metal with a variety of uses. Mercury is not required for any known biological process and its presence in the human body may be detrimental, especially to the nervous system. Both genetic and behavioral studies suggest that mercury levels, age (both of exposure and at testing), and genetic background determine disease processes and outcome. The metal receptors and genes responsible for mercury metabolism also appear to play a pivotal role in the etiology of mercury-induced pathology. This review presents information about the latest advances in mercury research, with particular focus on low-level exposures and the contribution of genetics to toxic outcome. Future studies should address the contribution of genetics and low-level mercury exposure to disease, namely gene x environment interactions, taking into consideration age of exposure as developing animals are exquisitely more sensitive to this metal. In addition to recent advances in understanding the pathology associated with mercury exposure, the review highlights transport mechanisms, cellular distribution and detoxification of mercury species in the body. PMID:28018837

  15. Silver decorated LaMnO3 nanorod/graphene composite electrocatalysts as reversible metal-air battery electrodes

    NASA Astrophysics Data System (ADS)

    Hu, Jie; Liu, Qiunan; Shi, Lina; Shi, Ziwei; Huang, Hao

    2017-04-01

    Perovskite LaMnO3 nanorod/reduced graphene oxides (LMO-NR/RGO) decorated with Ag nanoparticles are studied as a bifunctional catalyst for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline electrolyte. LMO-NR/RGO composites are synthesized by using cetyltrimethyl ammonium bromide (CTAB) as template via a simple hydrothermal reaction followed by heat treatment; overlaying of Ag nanoparticles is obtained through a traditional silver mirror reaction. Electron microscopy reveals that LMO-NR is embedded between the sheets of RGO, and the material is homogeneously overlaid with Ag nanoparticles. The unique composite morphology of Ag/LMO-NR/RGO not only enhances the electron transport property by increasing conductivity but also facilitates the diffusion of electrolytes and oxygen. As confirmed by electrochemical testing, Ag/LMO-NR/RGO exhibits very strong synergy with Ag nanoparticles, LMO-NR, and RGO, and the catalytic activities of Ag/LMO-NR/RGO during ORR and OER are significantly improved. With the novel catalyst, the homemade zinc-air battery can be reversibly charged and discharged and display a stable cycle performance, indicating the great potential of this composite as an efficient bifunctional electrocatalyst for metal-air batteries.

  16. Silver nanoparticle enhanced Raman scattering-based lateral flow immunoassays for ultra-sensitive detection of the heavy metal chromium

    NASA Astrophysics Data System (ADS)

    Liang, Jiajie; Liu, Hongwu; Lan, Caifeng; Fu, Qiangqiang; Huang, Caihong; Luo, Zhi; Jiang, Tianjiu; Tang, Yong

    2014-12-01

    We report a simple and ultra-sensitive surface enhanced Raman scattering (SERS) strip sensor based on silver nanoparticles (AgNPs) and lateral flow immunoassays (LFIAs). LFIAs are inexpensive, simple, portable and robust, thus making them commonplace in medicine, agriculture and food safety. However, their applications are limited due to the low signal intensity of the color-formation reaction based on the label accumulation. SERS is a powerful molecular spectroscopy technique for ultra-detection, which is based on the enhancement of the inelastic scattering from molecules located near nanostructured metallic surfaces when the molecules are illuminated and the surface plasmons are excited. Because of the rapidity and robustness of LFIAs and the high sensitivity of SERS, we introduce SERS into LFIAs (SERS-LFIA). Our SERS-LFIA demonstrates fast, excellent performance and is suitable for the semiquantitative examination of ultratrace analytes (Cr3+), with the limit of the detection (LOD) as low as 10-5 ng mL-1, which is 105-fold more highly sensitive than those previously used to detect Cr3+ within 15 min.

  17. Metal-Enhanced Fluorescence from Silver Nanowires with High Aspect Ratio on Glass Slides for Biosensing Applications

    PubMed Central

    2015-01-01

    High enhancement of fluorescence emission, improved fluorophore photostability, and significant reduction of fluorescence lifetimes have been obtained from high aspect ratio (>100) silver (Ag) nanowires. These quantities are found to depend on the surface loading of Ag nanowires on glass slides, where the enhancement of fluorescence emission increases with the density of nanowires. The surface loading dependence was attributed to the creation of intense electric fields around the network of Ag nanowires and to the coupling of fluorophore excited states that takes place efficiently at a distance of 10 nm from the surface of nanowires, which was confirmed by theoretical calculations. The enhancement of fluorescence emission of fluorescein isothiocyanate (FITC) was assessed by fluorescence spectroscopy and fluorescence-lifetime imaging microscopy (FLIM) to demonstrate the potential of high aspect ratio Ag nanowires. Fluorescence enhancement factors exceeding 14 were observed on Ag nanowires with high loading by FLIM. The photostability of FITC was the highest on nanowires with medium loading under continuous laser excitation for 10 min because of the significant reduction in the fluorescence lifetime of FITC on these surfaces. These results clearly demonstrate the potential of Ag nanowires in metal-enhanced fluorescence-based applications of biosensing on planar surfaces and cellular imaging. PMID:25598859

  18. Green engineering of biomolecule-coated metallic silver nanoparticles and their potential cytotoxic activity against cancer cell lines

    NASA Astrophysics Data System (ADS)

    Prasannaraj, Govindaraj; Venkatachalam, Perumal

    2017-06-01

    This report describes the synthesis of metallic silver nanoparticles (AgNPs) using extracts of four medicinal plants (Aegle marmelos (A. marmelos), Alstonia scholaris (A. scholaris), Andrographis paniculata (A. paniculata) and Centella asiatica (C. asiatica)). The bio-conjugates were characterized by UV-visible spectroscopy, scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), Fourier transform infrared spectrometry (FTIR), x-ray diffraction (XRD) and zeta potential. This analysis confirmed that UV-Vis spectral peaks at 375 nm, 380 nm, 420 nm and 380 nm are corresponding to A. marmelos, A. scholaris, A. paniculata and C. asiatica mediated AgNPs, respectively. SEM images revealed that all the obtained four AgNPs are predominantly spherical, fibres and rectangle in shape with an average size of 36-97 nm. SEM-EDS and XRD analysis confirmed the presence of elemental AgNPs in crystalline form for all the four nanoparticle samples. The phytochemicals of various medicinal plant extracts with different functional groups were responsible for reduction of Ag+ to AgNPs, which act as capping and stabilizing agent. Among four types of AgNPs tested for anticancer activity, the Ap mediated AgNPs had shown enhanced activity against HepG2 cells (27.01 µg ml-1) and PC3 cells (32.15 µg ml-1).

  19. Osmium isotopes and silver as tracers of anthropogenic metals in sediments from Massachusetts and Cape Cod bays

    USGS Publications Warehouse

    Ravizza, G.E.; Bothner, Michael H.

    1996-01-01

    High concentrations of osmium (Os) and silver (Ag) and low 187Os/186Os ratios in Boston sewage make these elements sensitive tracers of the influence of sewage on marine sediments in Massachusetts and Cape Cod bays. Pristine marine sediments have Ag concentrations more than 200 times lower than sewage sludge, Os concentrations 10-40 times lower, and 187Os/186Os ratios six times higher. Surface sediments from both Massachusetts and Cape Cod bays exhibit both high Ag concentrations and low 187Os/186Os ratios indicating the influence of sewage particles on marine sediments in this region extends some 70 km from the point of sewage release. In detail, the distribution of Os and Ag do not support a model of simple physical mixing of sewage particles with normal marine sediments. Deviations from the mixing model may be the result of fractionation of Os and Ag in the marine environment, and [or] independent temporal variations in the Os and Ag content of the waste stream. The results of this investigation suggest that osmium isotopes may be widely applicable as tracers of the influence of sewage on sediments in estuarine environments and that subtle variations in the isotopic composition of Os in the waste stream may help constrain the sources of Os and other metals delivered to the environment.

  20. Osmium isotopes and silver as tracers of anthropogenic metals in sediments from Massachusetts and Cape Cod bays

    NASA Astrophysics Data System (ADS)

    Ravizza, G. E.; Bothner, M. H.

    1996-08-01

    High concentrations of osmium (Os) and silver (Ag) and low 187Os/ 186Os ratios in Boston sewage make these elements sensitive tracers of the influence of sewage on marine sediments in Massachusetts and Cape Cod bays. Pristine marine sediments have Ag concentrations more than 200 times lower than sewage sludge, Os concentrations 10-40 times lower, and 187OS/ 186Os ratios six times higher. Surface sediments from both Massachusetts and Cape Cod bays exhibit both high Ag concentrations and low 187OS/ 186Os ratios indicating the influence of sewage particles on marine sediments in this region extends some 70 km from the point of sewage release. In detail, the distribution of Os and Ag do not support a model of simple physical mixing of sewage particles with normal marine sediments. Deviations from the mixing model may be the result of fractionation of Os and Ag in the marine environment, and [or] independent temporal variations in the Os and Ag content of the waste stream. The results of this investigation suggest that osmium isotopes may be widely applicable as tracers of the influence of sewage on sediments in estuarine environments and that subtle variations in the isotopic composition of Os in the waste stream may help constrain the sources of Os and other metals delivered to the environment.

  1. Impact of silver nanoparticles on benthic prokaryotes in heavy metal-contaminated estuarine sediments in a tropical environment.

    PubMed

    Antizar-Ladislao, B; Bhattacharya, B D; Ray Chaudhuri, S; Sarkar, S K

    2015-10-15

    Little knowledge is available about the potential impact of commercial silver nanoparticles (Ag-NPs) on estuarine microbial communities. The Hugli river estuary, India, is susceptible to heavy metals pollution through boat traffic, and there is the potential for Ag-NP exposure via effluent discharged from ongoing municipal and industrial activities located in close proximity. This study investigated the effects of commercial Ag-NPs on native microbial communities in estuarine sediments collected from five stations, using terminal restriction fragment length polymorphism (T-RFLP) technique. An increase in the number of bacteria in consortium in sediments was observed following exposure to Ag-NPs. In general microbial communities may be resistant in estuarine systems to the antimicrobial effects of commercial Ag-NPs, but key microorganisms, such as Pelobacter propionicus, disappeared following exposure to Ag-NPs. In conclusion, the T-RFLP analysis indicated that Ag-NPs have the potential to shape estuarine sediment bacterial community structure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Weakly coordinating anions: crystallographic and NQR studies of halogen-metal bonding in silver, thallium, sodium, and potassium halomethanesulfonates.

    PubMed

    Wulfsberg, Gary; Parks, Katherine D; Rutherford, Richard; Jackson, Debra Jones; Jones, Frank E; Derrick, Dana; Ilsley, William; Strauss, Steven H; Miller, Susie M; Anderson, Oren P; Babushkina, T A; Gushchin, S I; Kravchenko, E A; Morgunov, V G

    2002-04-22

    35Cl, (79,81)Br, and (127)I NQR (nuclear quadrupole resonance) spectroscopy in conjunction with X-ray crystallography is potentially one of the best ways of characterizing secondary bonding of metal cations such as Ag(+) to halogen donor atoms on the surfaces of very weakly coordinating anions. We have determined the X-ray crystal structure of Ag(O(3)SCH(2)Cl) (a = 13.241(3) A; b = 7.544(2) A; c = 4.925(2) A; orthorhombic; space group Pnma; Z = 4) and compared it with the known structure of Ag(O(3)SCH(2)Br) (Charbonnier, F.; Faure, R.; Loiseleur, H. Acta Crystallogr., Sect. B 1978, 34, 3598-3601). The halogen atom in each is apical (three-coordinate), being weakly coordinated to two silver ions. (127)I NQR studies on Ag(O(3)SCH(2)I) show the expected NQR consequences of three-coordination of iodine: substantially reduced NQR frequencies nu(1) and nu(2) and a fairly small NQR asymmetry parameter eta. The reduction of the halogen NQR frequency of the coordinating halogen atom in Ag(O(3)SCH(2)X) becomes more substantial in the series X = Cl < Br < I, indicating that the coordination to Ag(+) strengthens in this series, as expected from hard-soft acid-base principles. The numbers of electrons donated by the organic iodine atom to Ag(+) have been estimated; these indicate that the bonding to the cation is weak but not insignificant. We have not found any evidence for the bonding of these organohalogen atoms to another soft-acid metal ion, thallium. A scheme for recycling of thallium halide wastes is included.

  3. Silver nanoparticles and growth factors incorporated hydroxyapatite coatings on metallic implant surfaces for enhancement of osteoinductivity and antibacterial properties.

    PubMed

    Xie, Chao-Ming; Lu, Xiong; Wang, Ke-Feng; Meng, Fan-Zhi; Jiang, Ou; Zhang, Hong-Ping; Zhi, Wei; Fang, Li-Ming

    2014-06-11

    Research on incorporation of both growth factors and silver (Ag) into hydroxyapatite (HA) coatings on metallic implant surfaces for enhancing osteoinductivity and antibacterial properties is a challenging work. Generally, Ag nanoparticles are easy to agglomerate and lead to a large increase in local Ag concentration, which could potentially affect cell activity. On the other hand, growth factors immobilization requires mild processing conditions so as to maintain their activities. In this study, bone morphology protein-2 (BMP-2) and Ag nanoparticle contained HA coatings were prepared on Ti surfaces by combining electrochemical deposition (ED) of Ag and electrostatic immobilization of BMP-2. During the ED process, chitosan (CS) was selected as the stabilizing agent to chelate Ag ions and generate Ag nanoparticles that are uniformly distributed in the coatings. CS also reduces Ag toxicity while retaining its antibacterial activity. Afterwards, a BMP/heparin solution was absorbed on the CS/Ag/HA coatings. Consequently, BMP-2 was immobilized on the coatings by the electrostatic attraction between CS, heparin, and BMP-2. Sustained release of BMP-2 and Ag ions from HA coatings was successfully demonstrated for a long period. Results of antibacterial tests indicate that the CS/Ag/HA coatings have high antibacterial properties against both Staphylococcus epidermidis and Escherichia coli. Osteoblasts (OB) culture reveals that the CS/Ag/HA coatings exhibit good biocompatibility. Bone marrow stromal cells (BMSCs) culture indicates that the BMP/CS/Ag/HA coatings have good osteoinductivity and promote the differentiation of BMSCs. Ti bars with BMP/CS/Ag/HA coatings were implanted into the femur of rabbits to evaluate the osteoinductivity of the coatings. Results indicate that BMP/CS/Ag/HA coatings favor bone formation in vivo. In summary, this study presents a convenient and effective method for the incorporation of growth factors and antibacterial agents into HA coatings. This

  4. Heavy metal toxicity to fiddler crabs, Uca annulipes latreille and Uca triangularis (Milne Edwards): tolerance to copper, mercury, cadmium, and zinc

    SciTech Connect

    Devi, V.U.

    1987-12-01

    The heavy metal pollution in marine and coastal ecosystems have become the focus of attention in recent years. The presence of heavy metals in the harbor waters of Visakhapatnam on the east cost of India deserves a special mention as it almost forms a repository for the industrial effluents and city's sewage. In the present investigation, the fiddler crabs Uca annulipes and Uca triangularis inhabiting this area were selected as the bioassay organisms to study their tolerance to four heavy metals: copper, cadmium, zinc, and mercury. An attempt has also been made to compare the results of the crabs from Harbor area with that of their counterparts from Bhimilipatnam (35 km from Visakhapatnam) where the brackish water does not receive the effluent from any of the industries.

  5. Mercury poisoning: an unusual cause of polyarthritis.

    PubMed

    Karataş, G K; Tosun, A K; Karacehennem, E; Sepici, V

    2002-02-01

    Mercury is a toxic metal that is widely used in everyday life. It has organic and inorganic forms that are both toxic. As acute mercury poisoning is uncommon, diagnosis is difficult if the exposure is not manifest. It has usually a slow onset and non-specific symptoms. In this paper we report a patient who developed polyarthritis after mercury exposure.

  6. Evaluation of Cavitation-Erosion Resistance of 316LN Stainless Steel in Mercury Containing Metallic Solutes

    SciTech Connect

    Pawel, Steven J; Mansur, Louis K

    2006-08-01

    Room temperature cavitation tests of vacuum annealed type 316LN stainless steel were performed in pure Hg and in Hg with various amounts of metallic solute to evaluate potential mitigation of erosion/wastage. Tests were performed using an ultrasonic vibratory horn with specimens attached at the tip. All of the solutes examined, which included 5 wt% In, 10 wt% In, 4.4 wt% Cd, 2 wt% Ga, and a mixture that included 1 wt% each of Pb, Sn, and Zn, were found to increase cavitation-erosion as measured by increased weight loss and/or surface profile development compared to exposures for the same conditions in pure Hg. Qualitatively, each solute appeared to increase the post-test wetting tenacity of the Hg solutions and render the Hg mixture susceptible to manipulation of droplet shape.

  7. Metal-solid interactions controlling the bioavailability of mercury from sediments to clams and sipunculans.

    PubMed

    Zhong, Huan; Wang, Wen-Xiong

    2006-06-15

    The bioavailability of sedimentary Hg(II) and methylmercury (MeHg) was quantified by measuring the assimilation efficiency (AE) in the clam Ruditapes philippinarum and the extraction of the gut juices from the sipunculan Sipunculus nudus. Three factors (Hg concentration in sediment, Hg sediment contact time, and organic content of sediments) were modified to examine metal-solid interactions in controlling Hg bioavailability. The Hg AEs in the clams were strongly correlated with the extraction from the sipunculan gut juices for both Hg species. The bioavailability of both Hg(II) and MeHg generally increased with increased sediment Hg concentration but decreased with sedimentmetal contact time and increasing organic content (except that MeHg was not influenced by organic content). Hg(II) speciation in sediments, quantified by sequential chemical extraction (SCE), was dependent on geochemical conditions and greatly controlled the mobility and bioavailability of Hg(II) in sediments. Most bioavailable Hg(II) originated from the strongly complexed phase (e.g., Hg bound up in Fe/Mn oxide, amorphous organosulfur, or mineral lattice), whereas Hg bound with the organocomplexed phase (Hg humic and Hg2Cl2) was not bioavailable. Hg bound with the other geochemical phases (water soluble, HgO, HgSO4, and HgS) contributed very little to the bioavailable Hg due to their low partitionings. Further, the amount of bioavailable Hg was inversely related to the particle reactivity of Hg with the sediments. Detailed analyses of metal-solid interactions provide a better understanding of how Hg in sediments can predict Hg concentration and therefore bioavailability in benthic invertebrates.

  8. Thermodynamics of phase coexistence and metal-nonmetal transition in mercury: assessment of effective potentials via expanded Wang-Landau simulations.

    PubMed

    Desgranges, Caroline; Delhommelle, Jerome

    2014-03-20

    We present molecular simulation results on the thermodynamics of phase transitions (specifically, the vapor-liquid and metal-nonmetal transitions) in mercury, as predicted by effective potential models. We use a recently developed method, known as Expanded Wang-Landau simulations, to determine the grand-canonical partition function of systems of mercury atoms. Using the statistical mechanics formalism, we are then able to determine all thermodynamic properties of the system, including the Gibbs free energy and entropy. Prior experimental and theoretical work has emphasized the strong interplay between the vapor-liquid coexistence and the metal-nonmetal transition. We therefore start by assessing the accuracy of the effective potentials considered in this work through a comparison to the available experimental data. We then analyze the thermodynamics of the nonmetal liquid-metal liquid transition, characterized by sharp variations in the rate of change of Gibbs free energy and enthalpy as a function of density. We also identify a crossover density (10.5 g/cm(3)) consistent with the results of recent ab initio calculations and with the experiment.

  9. Mercury as a health hazard.

    PubMed

    Curtis, H A; Ferguson, S D; Kell, R L; Samuel, A H

    1987-03-01

    Pink disease has virtually disappeared since teething powders were withdrawn. We describe a case in a boy who was exposed to metallic mercury vapour. We discuss the potential health hazard of spilled elemental mercury in the house and the difficulties of removing it from the environment.

  10. Studies on combined effects of organophosphates and heavy metals in birds. I. Plasma and brain cholinesterase in Coturnix quail fed methyl mercury and orally dosed with parathion

    USGS Publications Warehouse

    Dieter, M.P.; Ludke, J.L.

    1975-01-01

    We found that mercury potentiated the toxicity and biochemical effects of parathion. Male Coturnix quail (Coturnix coturnix japonica) were fed a sublethal concentration of morsodren (4 ppm as methyl mercury) for 18 weeks. This resulted in an accumulation of 21.0 ppm of mercury in the liver and 8.4 ppm in the carcass. Birds fed clean feed and those fed morsodren-treated feed were orally dosed with 2, 4, 6, 8,and 10 mg/kg parathion, and their 48-h survival times compared. The computed LD50 was 5.86mg/kg in birds not fed morsodren and 4.24 in those fed the heavy metal. When challenged with a sublethal, oral dose of parathion (1.0 mg/kg), morsodren-fed birds exhibited significantly greater inhibition of plasma and brain cholinesterase activity than controls dosed with parathion. Brain cholinesterase activity was inhibited 41% in morsodren-fed birds and 26in clean-fed birds dosed with parathion, which suggested that the increase in parathion toxicity in the presence of morsodren was directly related to the inhibitation of brain cholinesterase.

  11. High Temperature Strength of YSZ Joints Brazed with Palladium Silver Copper Oxide Filler Metals

    SciTech Connect

    Darsell, Jens T.; Weil, K. Scott

    2010-06-09

    The Ag-CuOx system is being investigated as potential filler metals for use in air brazing high-temperature electrochemical devices such as solid oxide fuel cells and gas concentrators. The current study examines the effects of palladium addition on the high temperature joint strength of specimens prepared from yttria stabilized zirconia (YSZ) bars brazed with the binary Ag-CuOx, and 15Pd-Ag-CuO. It was found that while the binary Ag-CuOx system exhibits stronger room temperature strength than the 15Pd system the strength is reduced to values equivalent of the 15Pd system at 800°C. The 15Pd system exhibits a lower ambient temperature strength that is retained at 800°C. In both systems the failure mechanism at high temperature appears to be peeling of the noble metal component from the oxide phases and tearing through the noble metal phase whereas sufficient adhesion is retained at lower temperatures to cause fracture of the YSZ substrate.

  12. Mercury Exposure and Heart Diseases.

    PubMed

    Genchi, Giuseppe; Sinicropi, Maria Stefania; Carocci, Alessia; Lauria, Graziantonio; Catalano, Alessia

    2017-01-12

    Environmental contamination has exposed humans to various metal agents, including mercury. It has been determined that mercury is not only harmful to the health of vulnerable populations such as pregnant women and children, but is also toxic to ordinary adults in various ways. For many years, mercury was used in a wide variety of human activities. Nowadays, the exposure to this metal from both natural and artificial sources is significantly increasing. Recent studies suggest that chronic exposure, even to low concentration levels of mercury, can cause cardiovascular, reproductive, and developmental toxicity, neurotoxicity, nephrotoxicity, immunotoxicity, and carcinogenicity. Possible biological effects of mercury, including the relationship between mercury toxicity and diseases of the cardiovascular system, such as hypertension, coronary heart disease, and myocardial infarction, are being studied. As heart rhythm and function are under autonomic nervous system control, it has been hypothesized that the neurotoxic effects of mercury might also impact cardiac autonomic function. Mercury exposure could have a long-lasting effect on cardiac parasympathetic activity and some evidence has shown that mercury exposure might affect heart rate variability, particularly early exposures in children. The mechanism by which mercury produces toxic effects on the cardiovascular system is not fully elucidated, but this mechanism is believed to involve an increase in oxidative stress. The exposure to mercury increases the production of free radicals, potentially because of the role of mercury in the Fenton reaction and a reduction in the activity of antioxidant enzymes, such as glutathione peroxidase. In this review we report an overview on the toxicity of mercury and focus our attention on the toxic effects on the cardiovascular system.

  13. Mercury Exposure and Heart Diseases

    PubMed Central

    Genchi, Giuseppe; Sinicropi, Maria Stefania; Carocci, Alessia; Lauria, Graziantonio; Catalano, Alessia

    2017-01-01

    Environmental contamination has exposed humans to various metal agents, including mercury. It has been determined that mercury is not only harmful to the health of vulnerable populations such as pregnant women and children, but is also toxic to ordinary adults in various ways. For many years, mercury was used in a wide variety of human activities. Nowadays, the exposure to this metal from both natural and artificial sources is significantly increasing. Recent studies suggest that chronic exposure, even to low concentration levels of mercury, can cause cardiovascular, reproductive, and developmental toxicity, neurotoxicity, nephrotoxicity, immunotoxicity, and carcinogenicity. Possible biological effects of mercury, including the relationship between mercury toxicity and diseases of the cardiovascular system, such as hypertension, coronary heart disease, and myocardial infarction, are being studied. As heart rhythm and function are under autonomic nervous system control, it has been hypothesized that the neurotoxic effects of mercury might also impact cardiac autonomic function. Mercury exposure could have a long-lasting effect on cardiac parasympathetic activity and some evidence has shown that mercury exposure might affect heart rate variability, particularly early exposures in children. The mechanism by which mercury produces toxic effects on the cardiovascular system is not fully elucidated, but this mechanism is believed to involve an increase in oxidative stress. The exposure to mercury increases the production of free radicals, potentially because of the role of mercury in the Fenton reaction and a reduction in the activity of antioxidant enzymes, such as glutathione peroxidase. In this review we report an overview on the toxicity of mercury and focus our attention on the toxic effects on the cardiovascular system. PMID:28085104

  14. Mercury in the ecosystem

    SciTech Connect

    Mitra, S.

    1986-01-01

    This treatise on the environmental dispersion of mercury emphasizes the importance of ''mercury-consciousness'' in the present-day world, where rapidly expanding metallurgical, chemical, and other industrial developments are causing widespread contamination of the atmosphere, soil, and water by this metal and its toxic organic derivatives. Concepts concerning the mechanism of mercury dispersion and methyl-mercury formation in the physico-biological ecosystem are discussed in detail and a substantial body of data on the degree and nature of the mercury contamination of various plants, fish, and land animals by industrial and urban effluents is presented. Various analytical methods for the estimation of mercury in inorganic and organic samples are presented. These serve as a ready guide to the selection of the correct method for analyzing environmental samples. This book is reference work in mercury-related studies. It is written to influence industrial policies of governments in their formulation of control measures to avoid the recurrence of human tragedies such as the well-known Minamata case in Japan, and the lesser known cases in Iraq, Pakistan, and Guatamala.

  15. Silver Sulfadiazine

    MedlinePlus

    Silver sulfadiazine, a sulfa drug, is used to prevent and treat infections of second- and third-degree ... Silver sulfadiazine comes in a cream. Silver sulfadiazine usually is applied once or twice a day. Follow ...

  16. Mercury Fluorides under high pressure: Hg as a pressure-induced transition metal

    NASA Astrophysics Data System (ADS)

    Botana, Jorge; Wang, Xiaoli; Yang, Dadong; Ling, Haiqing; Ma, Yangming; Miao, Mao-Sheng

    2014-03-01

    Hg has recently been found experimentally to be capable of forming a chemical compound, HgF4, where it behaves as a transition metal, with an oxidation number of IV, but this molecule is very short lived. In this work we present theoretical evidence obtained through ab initio calculations that higher oxidation states than II can be stabilized in crystalline form for Hg, under extreme pressure. We have performed a structural search and optimization by means of Particle Swarm Optimization and Density Functional Theory for the crystalline series of HgFn (n=3,4,5,6), and then used those data to draw the phase diagram of the equilibrium among those stoichiometries and HgF2 and F2. We have found that from 0 to 38 GPa only the mixture of HgF2 and F2 phases is thermodynamically stable. HgF3 and HgF4 have been found to be thermodynamically stable in different pressure ranges (from 73 GPa to at least 500 GPa and from 38 GPa to 200 GPa , respectively). We have also found that the HgF3 crystal shows a very interesting band structure that suggests it could be a transparent conductor.

  17. Toxicity of heavy metals: 1. Correlation of metal toxicity with in vitro calmodulin inhibition. 2. Interactions of inorganic mercury with red blood cells: Control vs. amyotrophic lateral sclerosis

    SciTech Connect

    Henson, J.L.C.

    1989-01-01

    The toxic effects of metals are examined in two separate in vitro systems. In the first system, the correlation between published mouse LD{sub 50} values and experimentally derived values for calmodulin inhibition was determined. Calmodulin activity was defined as stimulated phosphodiesterase (PDE) activity. The basal PDE activity was determined with each cation and was unaffected by any of the concentrations utilized. The IC{sub 50} was determined from a plot of the log of the cation concentration vs. stimulated PDE activity for each cation. A very strong correlation was obtained when the IC{sub 50} vs. mouse LD{sub 50} curve was examined (p < 0.001). Calmodulin regulates many enzyme systems and processes that affect or are affected by calcium. This study was examined in light of the possible role of calcium in cell damage and death. In the second study, the interactions of erythrocytes (RBCs) and inorganic mercury (Hg) were examined. A broad range of Hg concentrations were utilized to explore the nature of the interactions. Two different mechanisms of RBC Hg accumulation and retention were evident. At lower Hg concentrations (0.001-0.1 {mu}M), the RBC accumulation/retention of Hg was constant (52% of available Hg), reversible, and temperature sensitive. At higher concentrations (1-100 {mu}M), the accumulation increased with Hg concentration, was not reversible, and was not temperature sensitive. A relationship between Hg and amyotrophic lateral sclerosis (ALS) is suggested by several reports in the literature. The accumulation/ retention of Hg by RBCs from control and ALS patients were compared. The RBCs from ALS patients released far more Hg during a two hr incubation 37C at 10 and 100 {mu}M Hg compared to controls.

  18. Phytoremediation of Ionic and Methyl Mercury Pollution

    SciTech Connect

    Meagher, Richard B.

    2005-06-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems. Our current strategy is to engineer plants to

  19. [The toxicity of mercury and/or amalgam].

    PubMed

    Mayer, R

    1980-04-01

    The investigation showed that the main source of error with mercury is the finest distribution of mercury vapor (unfortunately colorless and odorless) and not the metalic distribution. If the development of mercury vapor is hindered, the possibility of mercury intoxication can be almost entirely eliminated. Health hazards due to allergies however are possible.

  20. 21 CFR 862.3600 - Mercury test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Mercury test system. 862.3600 Section 862.3600....3600 Mercury test system. (a) Identification. A mercury test system is a device intended to measure mercury, a heavy metal, in human specimens. Measurements obtained by this device are used in the diagnosis...

  1. 21 CFR 862.3600 - Mercury test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Mercury test system. 862.3600 Section 862.3600....3600 Mercury test system. (a) Identification. A mercury test system is a device intended to measure mercury, a heavy metal, in human specimens. Measurements obtained by this device are used in the diagnosis...

  2. 21 CFR 862.3600 - Mercury test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Mercury test system. 862.3600 Section 862.3600....3600 Mercury test system. (a) Identification. A mercury test system is a device intended to measure mercury, a heavy metal, in human specimens. Measurements obtained by this device are used in the diagnosis...

  3. Mercury toxicity and treatment: a review of the literature.

    PubMed

    Bernhoft, Robin A

    2012-01-01

    Mercury is a toxic heavy metal which is widely dispersed in nature. Most human exposure results from fish consumption or dental amalgam. Mercury occurs in several chemical forms, with complex pharmacokinetics. Mercury is capable of inducing a wide range of clinical presentations. Diagnosis of mercury toxicity can be challenging but can be obtained with reasonable reliability. Effective therapies for clinical toxicity have been described.

  4. Epitaxy of mercury-based high temperature superconducting films on oxide and metal substrates

    NASA Astrophysics Data System (ADS)

    Xie, Yi-Yuan

    High-Tc superconducting (HTS) cuprates are highly anisotropic thus epitaxy along certain crystalline directions is essential to realize high-current-carrying capability at temperatures above 77 K. Hg-based HTS (Hg-HTS) cuprates have the record-high Tc up to 135 K, therefore are of great interest for fundamental research and practical applications. However, growth Of epitaxial Hg-HTS films is extremely difficult in conventional thermal-reaction process since Hg is highly volatile. Motivated by this, we first developed a cation-exchange process for growing epitaxial Hg-HTS films, which involves two steps: selection of precursor matrices with predesigned structure and composition followed by cation-exchange processing. New materials are formed via "atomic surgery" on an existing structure rather than thermal reaction among amorphous oxides in conventional process, thus the structural features of the precursor are inherited by the new material. Using epitaxial Tl-based HTS films as precursor and annealing them in Hg-vapor, epitaxial Hg-HTS films with superior quality have been obtained. This success encouraged us to develop epitaxy on metal tapes for coated conductors and On large-area wafers for electronic devices. For coated conductors, we addressed three critical issues: epitaxy on metal substrates, enhancement of in-field Jcs and scale-up in thickness and length. First, using a fabrication scheme that combines two processes: cation-exchange and fast-temperature-ramping-annealing, epitaxial HgBa2CaCu2O6+delta films were grown on rolling-assisted-biaxially-textured Ni substrates buffered with CeO 2/YSZ/CeO2 for the first time. We fabricated HgBa2CaCu 2O6+delta coated conductors with Tc = 122--124 K and self-field Jc > 1 x 106A/cm2 at 92 K which are record-high for HTS coated conductors. Second, we demonstrated improved in-field J cs via overdoping HgBa2CaCu 2O6+delta films (by means Of charge "overdoped"), heavy-ion-irradiation and substrate engineering. Finally

  5. Mercury and other heavy metals influence bacterial community structure in low-order Tennessee streams

    SciTech Connect

    Vishnivetskaya, Tatiana A; Mosher, Jennifer J; Palumbo, Anthony Vito; Podar, Mircea; Brown, Steven D; Brooks, Scott C; Southworth, George R; Drake, Meghan M; Brandt, Craig C

    2011-01-01

    High concentrations of the heavy metals U(VI) and Hg(II) as well as inorganic compounds including nitrate have contaminated streams located in the Department of Energy reservation in Oak Ridge, TN. Of particular concern is methylmercury (MeHg) as it is more neurotoxic than Hg0. Deltaproteobacteria including sulfate reducing bacteria (SRB) and iron reducing bacteria (IRB) have been generally identified as the primary methylators. In order to determine potential effects on microbial community composition by the contamination, surface stream sediments were collected 7 times during the year from 5 contaminated sites and 1 control site. Sixty samples were analyzed for bacterial community composition and geochemistry. Community characterization used GS 454 FLX pyrosequencing with 235 Mb of 16S rDNA sequence targeting the V4 region. Sorting and filtering of the raw reads resulted in 588,699 high quality sequences with lengths of >200 bp. The bacterial community was represented by 24 phyla and unclassified Bacteria including Proteobacteria (22.9-58.5%), Cyanobacteria (0.2-32.0%), Acidobacteria (1.6-30.6%), and Verrucomicrobia (3.4-31.0%). Redundancy analysis indicated there were no significant differences in the bacterial community structure between midchannel and near bank samples. However, significant correlations existed between the bacterial community and seasonal as well as geochemical variation. Further, several members of the community appear to be positively associated with MeHg including the Proteobacteria group that includes SRBs as well as Verrucomicrobia. This study is the first to indicate the influence of MeHg on an in-situ microbial community and suggests possible roles for each of these phyla in the Hg/MeHg cycle.

  6. Titanium nickel silver and gold die backside metalization for Quad Flat Nolead package thermal resistance reduction

    NASA Astrophysics Data System (ADS)

    Chau, Hung

    Thermal resistance of a Quad Flat Nolead (QFN) package, comprised of the bulk material resistance of a die attach with its two interfaces, is measured by thermal transient technique. Two die attach chemistries (Ag filled and Boron Nitride filled) and three die-backside coatings (TiNiAg, Au, and bare Si) were investigated to understand their contribution to the thermal resistance. Of the tests conducted, the most effective combination was a metalized layer of TiNiAg with the Ag filled epoxy system. In order to further improve the thermal resistance reduction, electron to phonon and phonon to phonon transport must be better understood.

  7. Microchip in situ electrosynthesis of silver metallic oxide clusters for ultra-FAST detection of galactose in galactosemic newborns' urine samples.

    PubMed

    García-Carmona, Laura; Rojas, Daniel; González, María Cristina; Escarpa, Alberto

    2016-10-17

    This work describes for the first time the coupling of microfluidic chips (MC) to electrosynthetized silver metallic oxide clusters (AgMOCs). As an early demonstration of this novel approach, the ultrafast detection of galactose in galactosemic newborns' urine samples is proposed. AgMOCs were in situ electrosynthetized on integrated microchip platinum electrodes using a double pulse technique and characterized in full using scanning electronic microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and electrochemical techniques revealing the presence of silver oxides and electrocatalysis towards galactose as a galactosemia biomarker. Galactose detection in galactosemic newborns' urine samples proceeded in less than 30 s, differentiating between ill and healthy urine samples and requiring negligible urine sample consumption. The significance of the newborns' urine samples confirmed the analytical potency of the MC-AgMOCs approach for future implementation of screening for rare disease diagnosis such as galactosemia.

  8. Localization of mineralization, its age, and relationship to magmatism at the Mogot silver-base-metal deposit, North Stanovoi metallogenic zone in the southeastern framework of the North Asian Craton

    NASA Astrophysics Data System (ADS)

    Buchko, I. V.; Buchko, Ir. V.; Sorokin, A. A.; Ponomarchuk, V. A.; Travin, A. V.

    2014-03-01

    The results of studying the Mogot silver-base-metal deposit located in the Dzhugdzhur-Stanovoi Superterrane are discussed in this paper. The main ore-controlling structural elements of the studied district are near-latitudinal and NE-trending faults, which are accompanied by zones of hydrothermal metasomatic potassic, propylitic, and argillic alterations, breccias with quartz and quartz-carbonate cement replacing metamorphic rocks and granitoids of the Late Stanovoi Complex. The total sulfide content in ore is 2-3%. The high Ag, Pb, and Zn contents in ore allow us to consider the Mogot deposit as silver-base-metal, since except of orebody 4, there are no silver minerals proper. This indicates that silver is incorporated into crystalline lattice of sulfides. The results of 40Ar/39Ar geochronological investigations show that the hydrothermal ore deposition dated at 127-125 Ma was related to emplacement of intrusions pertaining to the Tynda-Bakaran Complex.

  9. The Empirical Formula of Silver Sulfide: An Experiment for Introductory Chemistry

    ERIC Educational Resources Information Center

    Trujillo, Carlos Alexander

    2007-01-01

    An experiment is described that allows students to experimentally determine an empirical formula for silver sulfide. At elevated temperatures, silver sulfide reacts in air to form silver, silver sulfate, and sulfur dioxide. At higher temperatures (960 [degree]C) silver sulfate decomposes to produce metallic silver. (Contains 1 figure and 1 table.)

  10. The Empirical Formula of Silver Sulfide: An Experiment for Introductory Chemistry

    ERIC Educational Resources Information Center

    Trujillo, Carlos Alexander

    2007-01-01

    An experiment is described that allows students to experimentally determine an empirical formula for silver sulfide. At elevated temperatures, silver sulfide reacts in air to form silver, silver sulfate, and sulfur dioxide. At higher temperatures (960 [degree]C) silver sulfate decomposes to produce metallic silver. (Contains 1 figure and 1 table.)

  11. Designing, syntheses, characterization, computational study and biological activities of silver-phenothiazine metal complex

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay; Upadhyay, Niraj; Manhas, Anu

    2015-11-01

    A noble biologically active compound Ag(I)-PTZ metal complex (1) with spherical morphology was synthesized first time. Entire characterization tool (spectral, elemental, mass and thermal analysis) was supported a distorted tetrahedral structure, where two water compounds were coordinated with Ag(I) including one phenothiazine and one nitrate group. For the better insight, obtained spectral/structural results were supported by 3D molecular modeling. Compound 1 had shown excellent activities against the Salmonella typhimurium and Aspergillus fumigatus with minimum inhibitory concentration (MIC) value 20 mg/L and 25 mg/L. The observed antioxidant radical scavenging activity (in %) of compound 1 (62.74%) was more than control ascorbic acid (28.58%). The observed protein (BSA) binding constant of 1 was 8.86 × 104 M-1, which is similar to binding constant of salicylic acid with BSA protein. Initial studies have revealed that synthesized compound 1 may act as multipurpose drug analogue in future.

  12. Hybrid silver nanoparticle/conjugated polyelectrolyte nanocomposites exhibiting controllable metal-enhanced fluorescence

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyu; He, Fang; Zhu, Xi; Tang, Fu; Li, Lidong

    2014-03-01

    Metal-enhanced fluorescence of conjugated polyelectrolytes (CPs) is realized using a simple, green hybrid Ag nanocomposite film. Ag nanoparticles (Ag NPs) are pre-prepared by sodium citrate reduction and incorporated into agarose by mixing to form an Ag-containing agarose film (Ag@agarose). Through variation of the amount of Ag NPs in the Ag@agarose film as well as the thickness of the interlayer between CPs and the Ag@agarose film prepared of layer-by-layer assembly of chitosan and sodium alginate, a maximum 8.5-fold increase in the fluorescence of CPs is obtained. After introducing tyrosinase, this system also can be used to detect phenolic compounds with high sensitivity and good visualization under ultraviolet light.

  13. Dilated cardiomyopathy and left bundle branch block associated with ingestion of colloidal gold and silver is reversed by British antiLewisite and vitamin E: the potential toxicity of metals used as health supplements.

    PubMed

    Archer, Stephen Lawrence

    2008-05-01

    A case of left bundle branch block and a dilated, nonhypertrophic cardiomyopathy associated with ingestion of colloidal gold and silver as an 'energy tonic' is described. The cardiac disease was reversed within two months by a course of dimercaprol (Akorn Inc, USA) (British antiLewisite) and vitamin E. This is the first case of gold and silver cardiomyopathy in humans, and highlights the risks of these colloidal metal 'health supplements'.

  14. Mineral commodity profiles: Silver

    USGS Publications Warehouse

    Butterman, W.C.; Hilliard, Henry E.

    2005-01-01

    Overview -- Silver is one of the eight precious, or noble, metals; the others are gold and the six platinum-group metals (PGM). World mine production in 2001 was 18,700 metric tons (t) and came from mines in 60 countries; the 10 leading producing countries accounted for 86 percent of the total. The largest producer was Mexico, followed by Peru, Australia, and the United States. About 25 percent of the silver mined in the world in 2001 came from silver ores; 15 percent, from gold ores and the remaining 60 percent, from copper, lead, and zinc ores. In the United States, 14 percent of the silver mined in 2001 came from silver ores; 39 percent, from gold ores; 10 percent, from copper and copper-molybdenum ores; and 37 percent, from lead, zinc, and lead-zinc ores. The precious metal ores (gold and silver) came from 30 lode mines and 10 placer mines; the base-metal ores (copper, lead, molybdenum, and zinc) came from 24 lode mines. Placer mines yielded less than 1 percent of the national silver production. Silver was mined in 12 States, of which Nevada was by far the largest producer; it accounted for nearly one-third of the national total. The production of silver at domestic mines generated employment for about 1,100 mine and mill workers. The value of mined domestic silver was estimated to be $290 million. Of the nearly 27,000 t of world silver that was fabricated in 2001, about one-third went into jewelry and silverware, one-fourth into the light-sensitive compounds used in photography, and nearly all the remainder went for industrial uses, of which there were 7 substantial uses and many other small-volume uses. By comparison, 85 percent of the silver used in the United States went to photography and industrial uses, 8 percent to jewelry and silverware, and 7 percent to coins and medals. The United States was the largest consumer of silver followed by India, Japan, and Italy; the 13 largest consuming countries accounted for nearly 90 percent of the world total. In the

  15. Planet Mercury

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Mariner 10's first image of Mercury acquired on March 24, 1974. During its flight, Mariner 10's trajectory brought it behind the lighted hemisphere of Mercury, where this image was taken, in order to acquire important measurements with other instruments.

    This picture was acquired from a distance of 3,340,000 miles (5,380,000 km) from the surface of Mercury. The diameter of Mercury (3,031 miles; 4,878 km) is about 1/3 that of Earth.

    Images of Mercury were acquired in two steps, an inbound leg (images acquired before passing into Mercury's shadow) and an outbound leg (after exiting from Mercury's shadow). More than 2300 useful images of Mercury were taken, both moderate resolution (3-20 km/pixel) color and high resolution (better than 1 km/pixel) black and white coverage.

  16. Kinetics and mechanism for reversible chloride transfer between mercury(II) and square-planar platinum(II) chloro ammine, aqua, and sulfoxide complexes. Stabilities, spectra, and reactivities of transient metal-metal bonded platinum-mercury adducts.

    PubMed

    Gröning, O; Sargeson, A M; Deeth, R J; Elding, L I

    2000-09-18

    The Hg2+aq- and HgCl+aq-assisted aquations of [PtCl4]2- (1), [PtCl3(H2O)]- (2), cis-[PtCl2(H2O)2] (3), trans-[PtCl2(H2O)2] (4), [PtCl(H2O)3]+ (5), [PtCl3Me2SO]- (6), trans-[PtCl2(H2O)Me2SO] (7), cis-[PtCl(H2O)2Me2SO]+ (8), trans-[PtCl(H2O)2M32SO]+ (9), trans-[PtCl2(NH3)2] (10), and cis-[PtCl2(NH3)2] (11) have been studied at 25.0 degrees C in a 1.00 M HClO4 medium buffered with chloride, using stopped-flow and conventional spectrophotometry. Saturation kinetics and instantaneous, large UV/vis spectral changes on mixing solutions of platinum complex and mercury are ascribed to formation of transient adducts between Hg2+ and several of the platinum complexes. Depending on the limiting rate constants, these adducts are observed for a few milliseconds to a few minutes. Thermodynamic and kinetics data together with the UV/vis spectral changes and DFT calculations indicate that their structures are characterized by axial coordination of Hg to Pt with remarkably short metal-metal bonds. Stability constants for the Hg2+ adducts with complexes 1-6, 10, and 11 are (2.1 +/- 0.4) x 10(4), (8 +/- 1) x 10(2), 94 +/- 6, 13 +/- 2, 5 +/- 2, 60 +/- 6, 387 +/- 2, and 190 +/- 3 M-1, respectively, whereas adduct formation with the sulfoxide complexes 7-9 is too weak to be observed. For analogous platinum(II) complexes, the stabilities of the Pt-Hg adducts increase in the order sulfoxide < aqua < ammine complex, reflecting a sensitivity to the pi-acid strength of the Pt ligands. Rate constants for chloride transfer from HgCl+ and HgCl2 to complexes 1-11 have been determined. Second-order rate constants for activation by Hg2+ are practically the same as those for activation by HgCl+ for each of the platinum complexes studied, yet resolved contributions for Hg2+ and HgCl+ reveal that the latter does not form dinuclear adducts of any significant stability. The overall experimental evidence is consistent with a mechanism in which the accumulated Pt(II)-Hg2+ adducts are not reactive

  17. Ion-exchange voltammetry with nafion/poly(sodium 4-styrenesulfonate) mixed coatings on mercury film electrodes: characterization studies and application to the determination of trace metals.

    PubMed

    Rocha, Luciana S; Pinheiro, José Paulo; Carapuça, Helena M

    2006-09-12

    This work aimed to produce improved polymer coatings for the mo