Pheromonal Control of Metamorphosis in the Pacific Sand Dollar, Dendraster excentricus.
Burke, R D
1984-07-27
Competent larvae are induced to undergo metamorphosis by sand from a sand dollar bed or an aqueous extract of the sand. Gel permeation chromatography and high-performance liquid chromatography of the extract yielded a 980-dalton peptide that will induce metamorphosis between 10(-6) and 10(-5) molar. Extracts of whole adults and gonads were also able to induce metamorphosis, and adults can condition substrates to induce metamorphosis. Therefore, the initiation of metamorphosis in Dendraster excentricus is controlled by a pheromone released by adult sand dollars.
Wen, Luan; Shibata, Yuki; Su, Dan; Fu, Liezhen; Luu, Nga; Shi, Yun-Bo
2017-06-01
Thyroid hormone (T3) receptors (TRs) mediate the effects of T3 on organ metabolism and animal development. There are two TR genes, TRα and TRβ, in all vertebrates. During animal development, TRα expression is activated earlier than zygotic T3 synthesis and secretion into the plasma, implicating a developmental role of TRα both in the presence and absence of T3. Using T3-dependent amphibian metamorphosis as a model, we previously proposed a dual-function model for TRs, in particular TRα, during development. That is, unliganded TR represses the expression of T3-inducible genes during premetamorphosis to ensure proper animal growth and prevent premature metamorphosis, whereas during metamorphosis, liganded TR activates target gene transcription to promote the transformation of the tadpole into a frog. To determine if TRα has such a dual function, we generated homozygous TRα-knockout animal lines. We show that, indeed, TRα knockout affects both premetamorphic animal development and metamorphosis. Surprisingly, we observed that TRα is not essential for amphibian metamorphosis, given that homozygous knockout animals complete metamorphosis within a similar time period after fertilization as their wild-type siblings. On the other hand, the timing of metamorphosis for different organs is altered by the knockout; limb metamorphosis occurs earlier, whereas intestinal metamorphosis is completed later than in wild-type siblings. Thus, our studies have demonstrated a critical role of endogenous TRα, not only in regulating both the timing and rate of metamorphosis, but also in coordinating temporal metamorphosis of different organs.
Zhao, Lanying; Liu, Lusha; Wang, Shouhong; Wang, Hongyuan; Jiang, Jianping
2016-06-02
Anuran metamorphosis is an excellent system in which to study postembryonic development. Studies on Xenopus (Mesobatrachia) show that thyroid hormone receptors (TRs) regulate metamorphosis in a ligand-dependent manner by coordinating the action of hundreds of genes. However, whether this mechanism is conserved among amphibians is still unknown. To understand the molecular mechanism of this universal phenomenon, we report the transcriptional profiles of the three key developmental stages in Microhyla fissipes (Neobatrachia): premetamorphosis (PM), metamorphic climax (MC) and completion of metamorphosis (CM). In total, 2,293 differentially expressed genes were identified from comparisons of transcriptomes, and these genes showed stage-specific expression patterns. Unexpectedly, we found that TRα was highly expressed in Xenopus laevis and Bufo gargarizans at premetamorphosis but showed low expression in M. fissipes. In contrast, TRβ was highly expressed during metamorphosis in M. fissipes and X. laevis. This result may imply that TRβ is essential for initiating metamorphosis, at least in M. fissipes. Thus, our work not only identifies genes that are likely to be involved in Neobatrachia metamorphosis but also clarifies the roles of unliganded TRα in regulating tadpole growth and timing of metamorphosis, which may be conserved in anurans, and the role of liganded TRβ in launching metamorphosis.
Zhao, Lanying; Liu, Lusha; Wang, Shouhong; Wang, Hongyuan; Jiang, Jianping
2016-01-01
Anuran metamorphosis is an excellent system in which to study postembryonic development. Studies on Xenopus (Mesobatrachia) show that thyroid hormone receptors (TRs) regulate metamorphosis in a ligand-dependent manner by coordinating the action of hundreds of genes. However, whether this mechanism is conserved among amphibians is still unknown. To understand the molecular mechanism of this universal phenomenon, we report the transcriptional profiles of the three key developmental stages in Microhyla fissipes (Neobatrachia): premetamorphosis (PM), metamorphic climax (MC) and completion of metamorphosis (CM). In total, 2,293 differentially expressed genes were identified from comparisons of transcriptomes, and these genes showed stage-specific expression patterns. Unexpectedly, we found that TRα was highly expressed in Xenopus laevis and Bufo gargarizans at premetamorphosis but showed low expression in M. fissipes. In contrast, TRβ was highly expressed during metamorphosis in M. fissipes and X. laevis. This result may imply that TRβ is essential for initiating metamorphosis, at least in M. fissipes. Thus, our work not only identifies genes that are likely to be involved in Neobatrachia metamorphosis but also clarifies the roles of unliganded TRα in regulating tadpole growth and timing of metamorphosis, which may be conserved in anurans, and the role of liganded TRβ in launching metamorphosis. PMID:27254593
Song, Hao; Wang, Hai-Yan; Zhang, Tao
2016-06-15
Larval metamorphosis of the veined rapa whelk (Rapana venosa) is a pelagic to benthic transition that involves considerable structural and physiological changes. Because metamorphosis plays a pivotal role in R. venosa commercial breeding and natural populations, the endogenous proteins that drive this transition attract considerable interest. This study is the first to perform a comprehensive and quantitative proteomic analysis related to metamorphosis in a marine gastropod. We analyzed the proteomes of competent R. venosa larvae and post-larvae, resulting in the identification of 5312 proteins, including 470 that were downregulated and 668 that were upregulated after metamorphosis. The differentially expressed proteins reflected multiple processes involved in metamorphosis, including cytoskeleton and cell adhesion, ingestion and digestion, stress response and immunity, as well as specific tissue development. Our data improve understanding of the physiological traits controlling R. venosa metamorphosis and provide a solid basis for further study.
Kleinhez, Peter; Boone, Michelle D.; Fellers, Gary
2012-01-01
Chemical contamination may influence host-pathogen interactions, which has implications for amphibian population declines. We examined the effects of four insecticides alone or as a mixture on development and metamorphosis of Pacific Treefrogs (Pseudacris regilla) in the presence or absence of the amphibian chytrid fungus (Batrachochytrium dendrobatidis [Bd]). Bd exposure had a negative impact on tadpole activity, survival to metamorphosis, time to metamorphosis, and time of tail absorption (with a marginally negative effect on mass at metamorphosis); however, no individuals tested positive for Bd at metamorphosis. The presence of sublethal concentrations of insecticides alone or in a mixture did not impact Pacific Treefrog activity as tadpoles, survival to metamorphosis, or time and size to metamorphosis. Insecticide exposure did not influence the effect of Bd exposure. Our study did not support our prediction that effects of Bd would be greater in the presence of expected environmental concentrations of insecticide(s), but it did show that Bd had negative effects on responses at metamorphosis that could reduce the quality of juveniles recruited into the population.
Experimentally induced metamorphosis in axolotls reduces regenerative rate and fidelity
Stier, Adrian C.; Michonneau, François; Smith, Matthew D.; Pasch, Bret; Maden, Malcolm
2014-01-01
Abstract While most tetrapods are unable to regenerate severed body parts, amphibians display a remarkable ability to regenerate an array of structures. Frogs can regenerate appendages as larva, but they lose this ability around metamorphosis. In contrast, salamanders regenerate appendages as larva, juveniles, and adults. However, the extent to which fundamental traits (e.g., metamorphosis, body size, aging, etc.) restrict regenerative ability remains contentious. Here we utilize the ability of normally paedomorphic adult axolotls (Ambystoma mexicanum) to undergo induced metamorphosis by thyroxine exposure to test how metamorphosis and body size affects regeneration in age‐matched paedomorphic and metamorphic individuals. We show that body size does not affect regeneration in adult axolotls, but metamorphosis causes a twofold reduction in regeneration rate, and lead to carpal and digit malformations. Furthermore, we find evidence that metamorphic blastemal cells may take longer to traverse the cell cycle and display a lower proliferative rate. This study identifies the axolotl as a powerful system to study how metamorphosis restricts regeneration independently of developmental stage, body size, and age; and more broadly how metamorphosis affects tissue‐specific changes. PMID:27499857
Inhibition of coral fertilisation and larval metamorphosis by tributyltin and copper.
Negri, A P; Heyward, A J
2001-02-01
Fertilisation and larval metamorphosis of reef-building corals are important life history events leading to recruitment of juvenile corals to reef populations. Little is known of the sensitivity of these early life phases to pollution, or their relative susceptibility to certain toxicants compared with established coral colonies. Inhibition of fertilisation and larval metamorphosis of the coral Acropora millepora (Ehrenberg, 1834) was assessed in response to solutions of the antifoulants tributyltin (TBT) and copper (Cu) using laboratory-based bioassays. Nominal concentrations that inhibited 50% fertilisation and metamorphosis (IC50) were calculated from 4 h fertilisation and 24 h metamorphosis assays and were based on introduced dose. Cu was most potent towards fertilisation with an IC50 of 17.4 micrograms/l. TBT however, proved more toxic to larval metamorphosis having an IC50 of 2.0 micrograms/l. Inert surfaces coated with either Cu- or TBT-based antifouling paint also inhibited fertilisation and metamorphosis. The degree of inhibition was correlated with surface area of the paint coating. These results indicate fertilisation and metamorphosis of coral can be sensitive to active components of antifouling paints.
Cai, Mei-Juan; Liu, Wen; Pei, Xu-Yang; Li, Xiang-Ru; He, Hong-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan
2014-01-01
The steroid hormone 20-hydroxyecdysone (20E) initiates insect molting and metamorphosis. By contrast, juvenile hormone (JH) prevents metamorphosis. However, the mechanism by which JH inhibits metamorphosis remains unclear. In this study, we propose that JH induces the phosphorylation of Broad isoform Z7 (BrZ7), a newly identified protein, to inhibit 20E-mediated metamorphosis in the lepidopteran insect Helicoverpa armigera. The knockdown of BrZ7 in larvae inhibited metamorphosis by repressing the expression of the 20E response gene. BrZ7 was weakly expressed and phosphorylated during larval growth but highly expressed and non-phosphorylated during metamorphosis. JH regulated the rapid phosphorylation of BrZ7 via a G-protein-coupled receptor-, phospholipase C-, and protein kinase C-triggered pathway. The phosphorylated BrZ7 bound to the 5′-regulatory region of calponin to regulate its expression in the JH pathway. Exogenous JH induced BrZ7 phosphorylation to prevent metamorphosis by suppressing 20E-related gene transcription. JH promoted non-phosphorylated calponin interacting with ultraspiracle protein to activate the JH pathway and antagonize the 20E pathway. This study reveals one of the possible mechanisms by which JH counteracts 20E-regulated metamorphosis by inducing the phosphorylation of BrZ7. PMID:25096576
Boomer, Laura A; Bellister, Seth A; Stephenson, Linda L; Hillyard, Stanley D; Khoury, Joseph D; Youson, John H; Gosche, John R
2010-01-01
Research in biliary atresia has been hindered by lack of a suitable animal model. Lampreys are primitive vertebrates with distinct larval and adult life cycle stages. During metamorphosis the biliary system of the larval lamprey disappears. Lamprey metamorphosis has been proposed as a model for biliary atresia. We have begun to explore cellular events during lamprey metamorphosis by assessing for cholangiocyte apoptosis. Sea lamprey larvae were housed under controlled environmental conditions. Premetamorphic larvae were induced to undergo metamorphosis by exposure to 0.01% KClO(4). Animals were photographed weekly, and the stage of metamorphosis was assigned based upon external features. Livers were harvested and processed for routine histology and immunohistochemistry. DNA fragmentation was detected using deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assays and cholangiocytes were identified with antibodies to cytokeratin-19. Percent TUNEL+ cholangiocytes at different stages of metamorphosis was determined. The percentage of TUNEL+ cholangiocytes was 10% in premetamorphic (stage 0) lamprey (n = 6), 51% at stage 1 (n = 6), 40% at stage 2 (n = 5), 18% at stage 3 (n = 5), and 9% stage 4 (n = 4). Routine hemotoxylin and eosin stained paraffin-embedded tissue sections revealed frequent apoptotic bodies at stages 3 and 4 of metamorphosis without histologic evidence of necrosis. DNA fragmentation is identified at the earliest stages of metamorphosis during induced metamorphosis in lampreys. Additional studies are necessary to validate this potentially valuable animal model. Copyright 2010 Elsevier Inc. All rights reserved.
Metamorphosis of a Scleractinian Coral in Response to Microbial Biofilms
Webster, Nicole S.; Smith, Luke D.; Heyward, Andrew J.; Watts, Joy E. M.; Webb, Richard I.; Blackall, Linda L.; Negri, Andrew P.
2004-01-01
Microorganisms have been reported to induce settlement and metamorphosis in a wide range of marine invertebrate species. However, the primary cue reported for metamorphosis of coral larvae is calcareous coralline algae (CCA). Herein we report the community structure of developing coral reef biofilms and the potential role they play in triggering the metamorphosis of a scleractinian coral. Two-week-old biofilms induced metamorphosis in less than 10% of larvae, whereas metamorphosis increased significantly on older biofilms, with a maximum of 41% occurring on 8-week-old microbial films. There was a significant influence of depth in 4- and 8-week biofilms, with greater levels of metamorphosis occurring in response to shallow-water communities. Importantly, larvae were found to settle and metamorphose in response to microbial biofilms lacking CCA from both shallow and deep treatments, indicating that microorganisms not associated with CCA may play a significant role in coral metamorphosis. A polyphasic approach consisting of scanning electron microscopy, fluorescence in situ hybridization (FISH), and denaturing gradient gel electrophoresis (DGGE) revealed that coral reef biofilms were comprised of complex bacterial and microalgal communities which were distinct at each depth and time. Principal-component analysis of FISH data showed that the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Cytophaga-Flavobacterium of Bacteroidetes had the largest influence on overall community composition. A low abundance of Archaea was detected in almost all biofilms, providing the first report of Archaea associated with coral reef biofilms. No differences in the relative densities of each subdivision of Proteobacteria were observed between slides that induced larval metamorphosis and those that did not. Comparative cluster analysis of bacterial DGGE patterns also revealed that there were clear age and depth distinctions in biofilm community structure; however, no difference was detected in banding profiles between biofilms which induced larval metamorphosis and those where no metamorphosis occurred. This investigation demonstrates that complex microbial communities can induce coral metamorphosis in the absence of CCA. PMID:14766608
Stilborn, S Salina M; Manzon, Lori A; Schauenberg, Jennifer D; Manzon, Richard G
2013-03-01
Thyroid hormones (THs) are crucial for normal vertebrate development and are the one obligate morphogen that drives amphibian metamorphosis. However, contrary to other metamorphosing vertebrates, lampreys exhibit a sharp drop in serum TH early in metamorphosis, and anti-thyroid agents such as potassium perchlorate (KClO(4)) induce metamorphosis. The type 2 deiodinase (D2) enzyme is a key regulator of TH availability during amphibian metamorphosis. We set out to determine how D2 may be involved in the regulation of lamprey metamorphosis and thyroid homeostasis. We cloned a 1.8Kb Petromyzon marinus D2 cDNA that includes the entire protein coding region and a selenocysteine (Sec) codon. Northern blotting indicated that the lamprey D2 mRNA is the longest reported to date (>9Kb). Using real-time PCR, we showed that intestinal and hepatic D2 mRNA levels were elevated prior to and during the early stages of metamorphosis and then declined dramatically to low levels that were sustained for the remainder of metamorphosis. These data are consistent with previously reported changes in serum TH levels and deiodinase activity. Treatment of larvae with either TH or KClO(4) significantly affected D2 mRNA levels in the intestine and liver. These D2 mRNA levels during metamorphosis and in response to thyroid challenges suggest that D2 may function in the regulation of TH levels during lamprey metamorphosis and the maintenance of TH homeostasis. Copyright © 2013 Elsevier Inc. All rights reserved.
Orlofske, Sarah A; Belden, Lisa K; Hopkins, William A
2017-01-01
Many organisms face energetic trade-offs between defense against parasites and other host processes that may determine overall consequences of infection. These trade-offs may be particularly evident during unfavorable environmental conditions or energetically demanding life history stages. Amphibian metamorphosis, an ecologically important developmental period, is associated with drastic morphological and physiological changes and substantial energetic costs. Effects of the trematode parasite Echinostoma trivolvis have been documented during early amphibian development, but effects during later development and metamorphosis are largely unknown. Using a laboratory experiment, we examined the energetic costs of late development and metamorphosis coupled with E. trivolvis infection in wood frogs, Lithobates [=Rana] sylvaticus. Echinostoma infection intensity did not differ between tadpoles examined prior to and after completing metamorphosis, suggesting that metacercariae were retained through metamorphosis. Infection with E. trivolvis contributed to a slower growth rate and longer development period prior to the initiation of metamorphosis. In contrast, E. trivolvis infection did not affect energy expenditure during late development or metamorphosis. Possible explanations for these results include the presence of parasites not interfering with pronephros degradation during metamorphosis or the mesonephros compensating for any parasite damage. Overall, the energetic costs of metamorphosis for wood frogs were comparable to other species with similar life history traits, but differed from a species with a much shorter duration of metamorphic climax. Our findings contribute to understanding the possible role of energetic trade-offs between parasite defense and host processes by considering parasite infection with simultaneous energetic demands during a sensitive period of development. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Yanjie; Zhang, Quanqi; Qi, Jie; Wang, Zhigang; Wang, Xubo; Sun, Yeying; Zhong, Qiwang; Li, Shuo; Li, Chunmei
2010-05-01
The symmetrical body of flatfish larvae changes dramatically into an asymmetrical form after metamorphosis. The molecular mechanisms responsible for this change are poorly understood. As an initial step to clarify these mechanisms, we used representational difference analysis of cDNA for the identification of genes active during metamorphosis in the Japanese flounder, Paralichthys olicaceus. One of the up-regulated genes was identified as creatine kinase muscle type 1 (CK-M1). Sequence analysis of CK-M1 revealed that it spanned 1 708 bp and encoded a protein of 382 amino acids. The overall amino acid sequence of the CK-M1 was highly conserved with those of other organisms. CK-M1 was expressed in adult fish tissues, including skeletal muscle, intestine and gill. Whole mount in-situ hybridization showed that the enhanced expression of CK-M1 expanded from the head to the whole body of larvae as metamorphosis progressed. Quantitative analysis revealed stage-specific high expression of CK-M1 during metamorphosis. The expression level of CK-M1 increased initially and peaked at metamorphosis, decreased afterward, and finally returned to the pre-metamorphosis level. This stage-specific expression pattern suggested strongly that CK-M1 was related to metamorphosis in the Japanese flounder. Its specific role in metamorphosis requires further study.
Cai, Mei-Juan; Liu, Wen; Pei, Xu-Yang; Li, Xiang-Ru; He, Hong-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan
2014-09-19
The steroid hormone 20-hydroxyecdysone (20E) initiates insect molting and metamorphosis. By contrast, juvenile hormone (JH) prevents metamorphosis. However, the mechanism by which JH inhibits metamorphosis remains unclear. In this study, we propose that JH induces the phosphorylation of Broad isoform Z7 (BrZ7), a newly identified protein, to inhibit 20E-mediated metamorphosis in the lepidopteran insect Helicoverpa armigera. The knockdown of BrZ7 in larvae inhibited metamorphosis by repressing the expression of the 20E response gene. BrZ7 was weakly expressed and phosphorylated during larval growth but highly expressed and non-phosphorylated during metamorphosis. JH regulated the rapid phosphorylation of BrZ7 via a G-protein-coupled receptor-, phospholipase C-, and protein kinase C-triggered pathway. The phosphorylated BrZ7 bound to the 5'-regulatory region of calponin to regulate its expression in the JH pathway. Exogenous JH induced BrZ7 phosphorylation to prevent metamorphosis by suppressing 20E-related gene transcription. JH promoted non-phosphorylated calponin interacting with ultraspiracle protein to activate the JH pathway and antagonize the 20E pathway. This study reveals one of the possible mechanisms by which JH counteracts 20E-regulated metamorphosis by inducing the phosphorylation of BrZ7. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Changes in the role of the thyroid axis during metamorphosis of the Japanese eel, Anguilla japonica.
Sudo, Ryusuke; Okamura, Akihiro; Kuroki, Mari; Tsukamoto, Katsumi
2014-08-01
To clarify the role of thyroid function during metamorphosis from leptocephalus to glass eel in the Japanese eel, we examined the histology of the thyroid gland and measured whole-body concentrations of thyroid hormones, thyroxine (T4) and triiodothyronine (T3), and thyroid stimulating hormone β-subunit TSH (TSHβ) mRNA expression levels in five stages of artificially hatched eels (leptocephalus, early-metamorphosis, late-metamorphosis, glass eel, and elver). During metamorphosis, the inner colloid of thyroid follicles showed positive immunoreactivity for T4, and both T4 and T3 levels were significantly increased, whereas a small peak of TSHβ mRNA level was observed at the early-metamorphosis stage. Similarly, TSHβ mRNA levels were highest in the glass eel stage, and then decreased markedly in the elver stage. In contrast to TSHβ mRNA expression, thyroid hormones (both T4 and T3) increased further from the glass eel to elver stages. These results indicated that thyroid function in the Japanese eel was active both during and after metamorphosis. Therefore, the thyrotropic axis may play important roles not only in metamorphosis but also in subsequent inshore or upstream migrations. © 2014 Wiley Periodicals, Inc.
The genetic covariance between life cycle stages separated by metamorphosis
Aguirre, J. David; Blows, Mark W.; Marshall, Dustin J.
2014-01-01
Metamorphosis is common in animals, yet the genetic associations between life cycle stages are poorly understood. Given the radical changes that occur at metamorphosis, selection may differ before and after metamorphosis, and the extent that genetic associations between pre- and post-metamorphic traits constrain evolutionary change is a subject of considerable interest. In some instances, metamorphosis may allow the genetic decoupling of life cycle stages, whereas in others, metamorphosis could allow complementary responses to selection across the life cycle. Using a diallel breeding design, we measured viability at four ontogenetic stages (embryo, larval, juvenile and adult viability), in the ascidian Ciona intestinalis and examined the orientation of additive genetic variation with respect to the metamorphic boundary. We found support for one eigenvector of G (gobsmax), which contrasted larval viability against embryo viability and juvenile viability. Target matrix rotation confirmed that while gobsmax shows genetic associations can extend beyond metamorphosis, there is still considerable scope for decoupled phenotypic evolution. Therefore, although genetic associations across metamorphosis could limit that range of phenotypes that are attainable, traits on either side of the metamorphic boundary are capable of some independent evolutionary change in response to the divergent conditions encountered during each life cycle stage. PMID:24966319
Page, Robert B; Voss, Stephen R; Samuels, Amy K; Smith, Jeramiah J; Putta, Srikrishna; Beachy, Christopher K
2008-01-01
Background Thyroid hormones (TH) induce gene expression programs that orchestrate amphibian metamorphosis. In contrast to anurans, many salamanders do not undergo metamorphosis in nature. However, they can be induced to undergo metamorphosis via exposure to thyroxine (T4). We induced metamorphosis in juvenile Mexican axolotls (Ambystoma mexicanum) using 5 and 50 nM T4, collected epidermal tissue from the head at four time points (Days 0, 2, 12, 28), and used microarray analysis to quantify mRNA abundances. Results Individuals reared in the higher T4 concentration initiated morphological and transcriptional changes earlier and completed metamorphosis by Day 28. In contrast, initiation of metamorphosis was delayed in the lower T4 concentration and none of the individuals completed metamorphosis by Day 28. We identified 402 genes that were statistically differentially expressed by ≥ two-fold between T4 treatments at one or more non-Day 0 sampling times. To complement this analysis, we used linear and quadratic regression to identify 542 and 709 genes that were differentially expressed by ≥ two-fold in the 5 and 50 nM T4 treatments, respectively. Conclusion We found that T4 concentration affected the timing of gene expression and the shape of temporal gene expression profiles. However, essentially all of the identified genes were similarly affected by 5 and 50 nM T4. We discuss genes and biological processes that appear to be common to salamander and anuran metamorphosis, and also highlight clear transcriptional differences. Our results show that gene expression in axolotls is diverse and precise, and that axolotls provide new insights about amphibian metamorphosis. PMID:18267027
Page, Robert B; Voss, Stephen R; Samuels, Amy K; Smith, Jeramiah J; Putta, Srikrishna; Beachy, Christopher K
2008-02-11
Thyroid hormones (TH) induce gene expression programs that orchestrate amphibian metamorphosis. In contrast to anurans, many salamanders do not undergo metamorphosis in nature. However, they can be induced to undergo metamorphosis via exposure to thyroxine (T4). We induced metamorphosis in juvenile Mexican axolotls (Ambystoma mexicanum) using 5 and 50 nM T4, collected epidermal tissue from the head at four time points (Days 0, 2, 12, 28), and used microarray analysis to quantify mRNA abundances. Individuals reared in the higher T4 concentration initiated morphological and transcriptional changes earlier and completed metamorphosis by Day 28. In contrast, initiation of metamorphosis was delayed in the lower T4 concentration and none of the individuals completed metamorphosis by Day 28. We identified 402 genes that were statistically differentially expressed by > or = two-fold between T4 treatments at one or more non-Day 0 sampling times. To complement this analysis, we used linear and quadratic regression to identify 542 and 709 genes that were differentially expressed by > or = two-fold in the 5 and 50 nM T4 treatments, respectively. We found that T4 concentration affected the timing of gene expression and the shape of temporal gene expression profiles. However, essentially all of the identified genes were similarly affected by 5 and 50 nM T4. We discuss genes and biological processes that appear to be common to salamander and anuran metamorphosis, and also highlight clear transcriptional differences. Our results show that gene expression in axolotls is diverse and precise, and that axolotls provide new insights about amphibian metamorphosis.
Hsp90 and hepatobiliary transformation during sea lamprey metamorphosis.
Chung-Davidson, Yu-Wen; Yeh, Chu-Yin; Bussy, Ugo; Li, Ke; Davidson, Peter J; Nanlohy, Kaben G; Brown, C Titus; Whyard, Steven; Li, Weiming
2015-12-01
Biliary atresia (BA) is a human infant disease with inflammatory fibrous obstructions in the bile ducts and is the most common cause for pediatric liver transplantation. In contrast, the sea lamprey undergoes developmental BA with transient cholestasis and fibrosis during metamorphosis, but emerges as a fecund adult. Therefore, sea lamprey liver metamorphosis may serve as an etiological model for human BA and provide pivotal information for hepatobiliary transformation and possible therapeutics. We hypothesized that liver metamorphosis in sea lamprey is due to transcriptional reprogramming that dictates cellular remodeling during metamorphosis. We determined global gene expressions in liver at several metamorphic landmark stages by integrating mRNA-Seq and gene ontology analyses, and validated the results with real-time quantitative PCR, histological and immunohistochemical staining. These analyses revealed that gene expressions of protein folding chaperones, membrane transporters and extracellular matrices were altered and shifted during liver metamorphosis. HSP90, important in protein folding and invertebrate metamorphosis, was identified as a candidate key factor during liver metamorphosis in sea lamprey. Blocking HSP90 with geldanamycin facilitated liver metamorphosis and decreased the gene expressions of the rate limiting enzyme for cholesterol biosynthesis, HMGCoA reductase (hmgcr), and bile acid biosynthesis, cyp7a1. Injection of hsp90 siRNA for 4 days altered gene expressions of met, hmgcr, cyp27a1, and slc10a1. Bile acid concentrations were increased while bile duct and gall bladder degeneration was facilitated and synchronized after hsp90 siRNA injection. HSP90 appears to play crucial roles in hepatobiliary transformation during sea lamprey metamorphosis. Sea lamprey is a useful animal model to study postembryonic development and mechanisms for hsp90-induced hepatobiliary transformation.
The cost of metamorphosis in flatfishes
NASA Astrophysics Data System (ADS)
Geffen, A. J.; van der Veer, H. W.; Nash, R. D. M.
2007-07-01
Flatfish development includes a unique physical metamorphosis with morphological and physiological changes associated with eye migration, a 90° rotation in posture and asymmetrical pigmentation. Flatfish larvae also undergo settlement, a behavioural and ecological change associated with a transition from a pelagic to a benthic existence. These processes are often assumed to be critical in determining recruitment in flatfish, through their impact on feeding, growth and survival. The timing of metamorphosis in relation to settlement varies between different flatfish species and this suggests that growth and development are not closely coupled. Existing information on feeding, growth and survival during metamorphosis and settlement is reviewed. Growth during metamorphosis is reduced in some but not all species. Despite the profound internal and external changes, there are no indications that the process of metamorphosis results in an increased mortality or that it might affect recruitment in flatfishes.
Ueda, Nobuo; Richards, Gemma S.; Degnan, Bernard M.; Kranz, Alexandrea; Adamska, Maja; Croll, Roger P.; Degnan, Sandie M.
2016-01-01
In many marine invertebrates, larval metamorphosis is induced by environmental cues that activate sensory receptors and signalling pathways. Nitric oxide (NO) is a gaseous signalling molecule that regulates metamorphosis in diverse bilaterians. In most cases NO inhibits or represses this process, although it functions as an activator in some species. Here we demonstrate that NO positively regulates metamorphosis in the poriferan Amphimedon queenslandica. High rates of A. queenslandica metamorphosis normally induced by a coralline alga are inhibited by an inhibitor of nitric oxide synthase (NOS) and by a NO scavenger. Consistent with this, an artificial donor of NO induces metamorphosis even in the absence of the alga. Inhibition of the ERK signalling pathway prevents metamorphosis in concert with, or downstream of, NO signalling; a NO donor cannot override the ERK inhibitor. NOS gene expression is activated late in embryogenesis and in larvae, and is enriched in specific epithelial and subepithelial cell types, including a putative sensory cell, the globular cell; DAF-FM staining supports these cells being primary sources of NO. Together, these results are consistent with NO playing an activating role in induction of A. queenslandica metamorphosis, evidence of its highly conserved regulatory role in metamorphosis throughout the Metazoa. PMID:27874071
The genetic covariance between life cycle stages separated by metamorphosis.
Aguirre, J David; Blows, Mark W; Marshall, Dustin J
2014-08-07
Metamorphosis is common in animals, yet the genetic associations between life cycle stages are poorly understood. Given the radical changes that occur at metamorphosis, selection may differ before and after metamorphosis, and the extent that genetic associations between pre- and post-metamorphic traits constrain evolutionary change is a subject of considerable interest. In some instances, metamorphosis may allow the genetic decoupling of life cycle stages, whereas in others, metamorphosis could allow complementary responses to selection across the life cycle. Using a diallel breeding design, we measured viability at four ontogenetic stages (embryo, larval, juvenile and adult viability), in the ascidian Ciona intestinalis and examined the orientation of additive genetic variation with respect to the metamorphic boundary. We found support for one eigenvector of G: (gobsmax ), which contrasted larval viability against embryo viability and juvenile viability. Target matrix rotation confirmed that while gobsmax shows genetic associations can extend beyond metamorphosis, there is still considerable scope for decoupled phenotypic evolution. Therefore, although genetic associations across metamorphosis could limit that range of phenotypes that are attainable, traits on either side of the metamorphic boundary are capable of some independent evolutionary change in response to the divergent conditions encountered during each life cycle stage. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Ontogenetic loss of phenotypic plasticity of age at metamorphosis in tadpoles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensley, F.R.
1993-12-01
Amphibian larvae exhibit phenotypic plasticity in size at metamorphosis and duration of the larval period. I used Pseudacris crucifer tadpoles to test two models for predicting tadpole age and size at metamorphosis under changing environmental conditions. The Wilbur-Collins model states that metamorphosis is initiated as a function of a tadpole's size and relative growth rate, and predicts that changes in growth rate throughout the larval period affect age and size at metamorphosis. An alternative model, the fixed-rate model, states that age at metamorphosis is fixed early in larval life, and subsequent changes in growth rate will have no effect onmore » the length of the larval period. My results confirm that food supplies affect both age and size at metamorphosis, but developmental rates became fixed at approximately Gosner (1960) stages 35-37. Neither model completely predicted these results. I suggest that the generally accepted Wilbur-Collins model is improved by incorporating a point of fixed developmental timing. Growth trajectories predicted from this modified model fit the results of this study better than trajectories based on either of the original models. The results of this study suggests a constraint that limits the simultaneous optimization of age and size at metamorphosis. 32 refs., 5 figs., 1 tab.« less
Induction of metamorphosis in the sand dollar Peronella japonica by thyroid hormones.
Saito, M; Seki, M; Amemiya, S; Yamasu, K; Suyemitsu, T; Ishihara, K
1998-06-01
The larva of the sand dollar Peronella japonica lacks a mouth and gut, and undergoes metamorphosis into a juvenile sand dollar without feeding. In the present study, it was found that thyroid hormones accelerate the metamorphosis of P. japonica larvae. The contents of thyroid hormones in larvae increased gradually during development. Thiourea and potassium perchlorate, inhibitors of thyroid hormone synthesis, delayed larval metamorphosis and simultaneously repressed an increase in the content of thyroxine in the larval body. These results suggest that the P. japonica larva has a system for synthesis of thyroid hormones that act as factors for inducing metamorphosis.
Flatfish: an asymmetric perspective on metamorphosis.
Schreiber, Alexander M
2013-01-01
The most asymmetrically shaped and behaviorally lateralized of all the vertebrates, the flatfishes are an endless source of fascination to all fortunate enough to study them. Although all vertebrates undergo left-right asymmetric internal organ placement during embryogenesis, flatfish are unusual in that they experience an additional period of postembryonic asymmetric remodeling during metamorphosis, and thus deviate from a bilaterally symmetrical body plan more than other vertebrates. As with amphibian metamorphosis, all the developmental programs of flatfish metamorphosis are ultimately under the control of thyroid hormone. At least one gene pathway involved in embryonic organ lateralization (nodal-lefty-pitx2) is re-expressed in the larval stage during flatfish metamorphosis. Aspects of modern flatfish ontogeny, such as the gradual translocation of one eye to the opposite side of the head and the appearance of key neurocranial elements during metamorphosis, seem to elegantly recapitulate flatfish phylogeny. This chapter highlights the current state of knowledge of the developmental biology of flatfish metamorphosis with emphases on the genetic, morphological, behavioral, and evolutionary origins of flatfish asymmetry. Copyright © 2013 Elsevier Inc. All rights reserved.
Ohhara, Yuya; Shimada-Niwa, Yuko; Niwa, Ryusuke; Kayashima, Yasunari; Hayashi, Yoshiki; Akagi, Kazutaka; Ueda, Hitoshi; Yamakawa-Kobayashi, Kimiko; Kobayashi, Satoru
2015-02-03
In Drosophila, pulsed production of the steroid hormone ecdysone plays a pivotal role in developmental transitions such as metamorphosis. Ecdysone production is regulated in the prothoracic gland (PG) by prothoracicotropic hormone (PTTH) and insulin-like peptides (Ilps). Here, we show that monoaminergic autocrine regulation of ecdysone biosynthesis in the PG is essential for metamorphosis. PG-specific knockdown of a monoamine G protein-coupled receptor, β3-octopamine receptor (Octβ3R), resulted in arrested metamorphosis due to lack of ecdysone. Knockdown of tyramine biosynthesis genes expressed in the PG caused similar defects in ecdysone production and metamorphosis. Moreover, PTTH and Ilps signaling were impaired by Octβ3R knockdown in the PG, and activation of these signaling pathways rescued the defect in metamorphosis. Thus, monoaminergic autocrine signaling in the PG regulates ecdysone biogenesis in a coordinated fashion on activation by PTTH and Ilps. We propose that monoaminergic autocrine signaling acts downstream of a body size checkpoint that allows metamorphosis to occur when nutrients are sufficiently abundant.
Shikuma, Nicholas J; Antoshechkin, Igor; Medeiros, João M; Pilhofer, Martin; Newman, Dianne K
2016-09-06
Diverse animal taxa metamorphose between larval and juvenile phases in response to bacteria. Although bacteria-induced metamorphosis is widespread among metazoans, little is known about the molecular changes that occur in the animal upon stimulation by bacteria. Larvae of the tubeworm Hydroides elegans metamorphose in response to surface-bound Pseudoalteromonas luteoviolacea bacteria, producing ordered arrays of phage tail-like metamorphosis-associated contractile structures (MACs). Sequencing the Hydroides genome and transcripts during five developmental stages revealed that MACs induce the regulation of groups of genes important for tissue remodeling, innate immunity, and mitogen-activated protein kinase (MAPK) signaling. Using two MAC mutations that block P. luteoviolacea from inducing settlement or metamorphosis and three MAPK inhibitors, we established a sequence of bacteria-induced metamorphic events: MACs induce larval settlement; then, particular properties of MACs encoded by a specific locus in P. luteoviolacea initiate cilia loss and activate metamorphosis-associated transcription; finally, signaling through p38 and c-Jun N-terminal kinase (JNK) MAPK pathways alters gene expression and leads to morphological changes upon initiation of metamorphosis. Our results reveal that the intricate interaction between Hydroides and P. luteoviolacea can be dissected using genomic, genetic, and pharmacological tools. Hydroides' dependency on bacteria for metamorphosis highlights the importance of external stimuli to orchestrate animal development. The conservation of Hydroides genome content with distantly related deuterostomes (urchins, sea squirts, and humans) suggests that mechanisms of bacteria-induced metamorphosis in Hydroides may have conserved features in diverse animals. As a major biofouling agent, insight into the triggers of Hydroides metamorphosis might lead to practical strategies for fouling control.
Helm, Rebecca R; Dunn, Casey W
2017-01-01
Many animals go through one or more metamorphoses during their lives, however, the molecular underpinnings of metamorphosis across diverse species are not well understood. Medusozoa (Cnidaria) is a clade of animals with complex life cycles, these life cycles can include a polyp stage that metamorphoses into a medusa (jellyfish). Medusae are produced through a variety of different developmental mechanisms-in some species polyps bud medusae (Hydrozoa), in others medusae are formed through polyp fission (Scyphozoa), while in others medusae are formed through direct transformation of the polyp (Cubozoa). To better understand the molecular mechanisms that may coordinate these different forms of metamorphosis, we tested two compounds first identified to induce metamorphosis in the moon jellyfish Aurelia aurita (indomethacin and 5-methoxy-2-methylindole) on a broad diversity of medusozoan polyps. We discovered that indole-containing compounds trigger metamorphosis across a broad diversity of species. All tested discomedusan polyps metamorphosed in the presence of both compounds, including species representatives of several major lineages within the clade (Pelagiidae, Cyaneidae, both clades of Rhizostomeae). In a cubozoan, low levels of 5-methoxy-2-methylindole reliably induced complete and healthy metamorphosis. In contrast, neither compound induced medusa metamorphosis in a coronate scyphozoan, or medusa production in either hydrozoan tested. Our results support the hypothesis that metamorphosis is mediated by a conserved induction pathway within discomedusan scyphozoans, and possibly cubozoans. However, failure of these compounds to induce metamorphosis in a coronate suggests this induction mechanism may have been lost in this clade, or is convergent between Scyphozoa and Cubozoa.
Indoles induce metamorphosis in a broad diversity of jellyfish, but not in a crown jelly (Coronatae)
Dunn, Casey W.
2017-01-01
Many animals go through one or more metamorphoses during their lives, however, the molecular underpinnings of metamorphosis across diverse species are not well understood. Medusozoa (Cnidaria) is a clade of animals with complex life cycles, these life cycles can include a polyp stage that metamorphoses into a medusa (jellyfish). Medusae are produced through a variety of different developmental mechanisms—in some species polyps bud medusae (Hydrozoa), in others medusae are formed through polyp fission (Scyphozoa), while in others medusae are formed through direct transformation of the polyp (Cubozoa). To better understand the molecular mechanisms that may coordinate these different forms of metamorphosis, we tested two compounds first identified to induce metamorphosis in the moon jellyfish Aurelia aurita (indomethacin and 5-methoxy-2-methylindole) on a broad diversity of medusozoan polyps. We discovered that indole-containing compounds trigger metamorphosis across a broad diversity of species. All tested discomedusan polyps metamorphosed in the presence of both compounds, including species representatives of several major lineages within the clade (Pelagiidae, Cyaneidae, both clades of Rhizostomeae). In a cubozoan, low levels of 5-methoxy-2-methylindole reliably induced complete and healthy metamorphosis. In contrast, neither compound induced medusa metamorphosis in a coronate scyphozoan, or medusa production in either hydrozoan tested. Our results support the hypothesis that metamorphosis is mediated by a conserved induction pathway within discomedusan scyphozoans, and possibly cubozoans. However, failure of these compounds to induce metamorphosis in a coronate suggests this induction mechanism may have been lost in this clade, or is convergent between Scyphozoa and Cubozoa. PMID:29281657
Shikuma, Nicholas J.; Antoshechkin, Igor; Medeiros, João M.; Pilhofer, Martin; Newman, Dianne K.
2016-01-01
Diverse animal taxa metamorphose between larval and juvenile phases in response to bacteria. Although bacteria-induced metamorphosis is widespread among metazoans, little is known about the molecular changes that occur in the animal upon stimulation by bacteria. Larvae of the tubeworm Hydroides elegans metamorphose in response to surface-bound Pseudoalteromonas luteoviolacea bacteria, producing ordered arrays of phage tail-like metamorphosis-associated contractile structures (MACs). Sequencing the Hydroides genome and transcripts during five developmental stages revealed that MACs induce the regulation of groups of genes important for tissue remodeling, innate immunity, and mitogen-activated protein kinase (MAPK) signaling. Using two MAC mutations that block P. luteoviolacea from inducing settlement or metamorphosis and three MAPK inhibitors, we established a sequence of bacteria-induced metamorphic events: MACs induce larval settlement; then, particular properties of MACs encoded by a specific locus in P. luteoviolacea initiate cilia loss and activate metamorphosis-associated transcription; finally, signaling through p38 and c-Jun N-terminal kinase (JNK) MAPK pathways alters gene expression and leads to morphological changes upon initiation of metamorphosis. Our results reveal that the intricate interaction between Hydroides and P. luteoviolacea can be dissected using genomic, genetic, and pharmacological tools. Hydroides' dependency on bacteria for metamorphosis highlights the importance of external stimuli to orchestrate animal development. The conservation of Hydroides genome content with distantly related deuterostomes (urchins, sea squirts, and humans) suggests that mechanisms of bacteria-induced metamorphosis in Hydroides may have conserved features in diverse animals. As a major biofouling agent, insight into the triggers of Hydroides metamorphosis might lead to practical strategies for fouling control. PMID:27551098
Brodeur, Julie C; Sassone, Alina; Hermida, Gladys N; Codugnello, Nadia
2013-06-01
Despite of the various studies reporting on the subject, anticipating the impacts of the widely-used herbicide atrazine on anuran tadpoles metamorphosis remains complex as increases or decreases of larval period duration are almost as frequently reported as an absence of effect. The aim of the present study was to examine the effects of environmentally-relevant concentrations of atrazine (0.1, 1, 10, 100, and 1000μg/L) on the timings of metamorphosis and body size at metamorphosis in the common South American toad, Rhinella arenarum (Anura: bufonidae). None of the atrazine concentrations tested significantly altered survival. Low atrazine concentrations in the range of 1-100μg/L were found to accelerate developmental rate in a non-monotonic U-shaped concentration-response relationship. This observed acceleration of the metamorphic process occurred entirely between stages 25 and 39; treated tadpoles proceeding through metamorphosis as control animals beyond this point. Together with proceeding through metamorphosis at a faster rate, tadpoles exposed to atrazine concentrations in the range of 1-100μg/L furthermore transformed into significantly larger metamorphs than controls, the concentration-response curve taking the form of an inverted U in this case. The no observed effect concentration (NOEC) was 0.1μg atrazine/L for both size at metamorphosis and timings of metamorphosis. Tadpoles exposed to 100μg/L 17β-estradiol presented the exact same alterations of developmental rate and body size as those treated with 1, 10 and 100μg/L of atrazine. Elements of the experimental design that facilitated the detection of alterations of metamorphosis at low concentrations of atrazine are discussed, together with the ecological significance of those findings. Copyright © 2013 Elsevier Inc. All rights reserved.
Interactive shape metamorphosis
NASA Technical Reports Server (NTRS)
Chen, David T.; State, Andrei; Banks, David
1994-01-01
A technique for controlled metamorphosis between surfaces in 3-space is described. Well-understood techniques to produce shape metamorphosis between models in a 2D parametric space is applied. The user selects morphable features interactively, and the morphing process executes in real time on a high-performance graphics multicomputer.
NASA Astrophysics Data System (ADS)
Wang, Xiaobing; Bai, Yang; Huang, Bo
2010-11-01
Low larval survival, poor settlement, and abnormal metamorphosis are major problems in seed production of donkey-ear abalone Haliotis asinina. We examined the effects of chemical cues including epinephrine, nor-epinephrine, and serotonin on larval survival, settlement, and metamorphosis in order to determine the possibility of using these chemicals to induce the problems. The results show that epinephrine could enhance metamorphosis rate at 10-6 mol/L only but higher concentrations (10-3-10-4 mol/L); and nor-epinephrine could inhibit the performance significantly, and serotonin could increase significantly the performance at a wide-range concentration (10-3-10-6 mol/L). Treatment with serotonin at 10-5 mol/L for 72 hours resulted in the highest settlement rate (42.2%) and survival rate (49.3%), while at 10-4 mol/L for 72 hours resulted in the highest metamorphosis rate (38.8%). Therefore, serotonin may be used as a fast metamorphosis inducer in abalone culture.
NASA Astrophysics Data System (ADS)
Bruguière, Catherine; Perru, Olivier; Charles, Frédéric
2018-03-01
The article examines a number of links between the metaphorical uses of the concept of metamorphosis in literature and the various changes of the meaning of the concept that took place at the beginning of the modern scientific age between the 17th and 19th centuries, a period during which the notion of metamorphosis resurfaced in conflict with evolutionist thinking. We present the extent to which the concept of animal metamorphosis, the object of multiple redefinitions over the course of this historical period, became the vector of a very strong metaphorical meaning, which emerged in the literature of the period and survives to this day in certain children's storybooks belonging to what we term the genre of "realistic fiction". We intend, from a pedagogical standpoint, to identify which specific attributes of these metaphors exist in those storybooks, and to gauge the extent to which those attributes contradict the scientific characteristics and fictional representations of the concept of metamorphosis.
MiR-2 family regulates insect metamorphosis by controlling the juvenile hormone signaling pathway.
Lozano, Jesus; Montañez, Raúl; Belles, Xavier
2015-03-24
In 2009 we reported that depletion of Dicer-1, the enzyme that catalyzes the final step of miRNA biosynthesis, prevents metamorphosis in Blattella germanica. However, the precise regulatory roles of miRNAs in the process have remained elusive. In the present work, we have observed that Dicer-1 depletion results in an increase of mRNA levels of Krüppel homolog 1 (Kr-h1), a juvenile hormone-dependent transcription factor that represses metamorphosis, and that depletion of Kr-h1 expression in Dicer-1 knockdown individuals rescues metamorphosis. We have also found that the 3'UTR of Kr-h1 mRNA contains a functional binding site for miR-2 family miRNAs (for miR-2, miR-13a, and miR-13b). These data suggest that metamorphosis impairment caused by Dicer-1 and miRNA depletion is due to a deregulation of Kr-h1 expression and that this deregulation is derived from a deficiency of miR-2 miRNAs. We corroborated this by treating the last nymphal instar of B. germanica with an miR-2 inhibitor, which impaired metamorphosis, and by treating Dicer-1-depleted individuals with an miR-2 mimic to allow nymphal-to-adult metamorphosis to proceed. Taken together, the data indicate that miR-2 miRNAs scavenge Kr-h1 transcripts when the transition from nymph to adult should be taking place, thus crucially contributing to the correct culmination of metamorphosis.
EVIDENCE FOR FIRST YEAR METAMORPHOSIS OF BULLFROGS IN AN EPHEMERAL POND
It is widely accepted that bullfrog ( R catesbeiana) tadpoles in the Pacific Northwest require more than one year for metamorphosis. Often time to metamorphosis increases along a latitudinal gradient. During our pond surveys at the EE Wilson Reserve, we found evidence of first ...
Yagnik, Arpan Shailesh
2014-01-01
In this study I hypothesize metamorphosis of the menstrual taboo by examining the image and perception shifts of two social taboos-HIV/AIDS and homosexuality-from estranged taboos to embraced social issues. Trends identified in their media framing and respective image shifts were applied to menstruation in India. Based on my understanding of theory, topic, and geographical location, I construct a metamorphosis. I contribute the hypothesized final stage of metamorphosis, and explain how framing is likely instrumental in bringing about these changes.
Kawamoto, K; Kawamoto, T; Shiba, H; Hosono, K
2014-02-01
The fine structures of the whole bodies and the posterior silk glands of Bombyx mori during metamorphosis from larvae to pupae in the cocoon were preserved virtually without damage when frozen sections were prepared using an adhesive plastic film. We used frozen sections for histochemical and enzyme histochemistry to characterize the metamorphosis of the posterior silk glands. Frozen sections were stained with DAPI to observe nuclear changes, examined using the TUNEL method to detect DNA fragments, and investigated using in situ hybridization to detect B. mori caspase expression. Both DNA fragments and expression of B. mori caspase increased with progressing metamorphosis. The degeneration of the posterior silk gland during metamorphosis appears to be an apoptotic event.
UVB Radiation Delays Tribolium castaneum Metamorphosis by Influencing Ecdysteroid Metabolism.
Sang, Wen; Yu, Lin; He, Li; Ma, Wei-Hua; Zhu, Zhi-Hui; Zhu, Fen; Wang, Xiao-Ping; Lei, Chao-Liang
2016-01-01
Ultraviolet B (UVB) radiation is an important environmental factor. It is generally known that UVB exhibits high genotoxicity due to causing DNA damage, potentially leading to skin carcinogenesis and aging in mammals. However, little is known about the effects of UVB on the development and metamorphosis of insects, which are the most abundant terrestrial animals. In the present study, we performed dose-response analyses of the effects UVB irradiation on Tribolium castaneum metamorphosis, assessed the function of the T. castaneum prothoracicotropic hormone gene (Trcptth), and analyzed ecdysteroid pathway gene expression profile and ecdysterone titers post-UVB irradiation. The results showed that UVB not only caused death of T. castaneum larvae, but also delayed larval-pupal metamorphosis and reduced the size and emergence rate of pupae. In addition, we verified the function of Trcptth, which is responsible for regulating metamorphosis. It was also found that the expression profiles of Trcptth as well as ecdysteroidogenesis and response genes were influenced by UVB radiation. Therefore, a disturbance pulse of ecdysteroid may be involved in delaying development under exposure to irradiation. To our knowledge, this is the first report indicating that UVB can influence the metamorphosis of insects. This study will contribute to a better understanding of the impact of UVB on signaling mechanisms in insect metamorphosis.
Faunes, Fernando; Gundermann, Daniel G; Muñoz, Rosana; Bruno, Renzo; Larraín, Juan
2017-05-15
Metamorphosis is a classic example of developmental transition, which involves important morphological and physiological changes that prepare the organism for the adult life. It has been very well established that amphibian metamorphosis is mainly controlled by Thyroid Hormone (TH). Here, we show that the heterochronic gene Lin28 is downregulated during Xenopus laevis metamorphosis. Lin28 overexpression before activation of TH signaling delays metamorphosis and inhibits the expression of TH target genes. The delay in metamorphosis is rescued by incubation with exogenous TH, indicating that Lin28 works upstream or parallel to TH. High-throughput analyses performed before any delay on metamorphosis or change in TH signaling showed that overexpression of Lin28 reduces transcript levels of several hormones secreted by the pituitary, including the Thyroid-Stimulating Hormone (TSH), and regulates the expression of proteins involved in TH transport, metabolism and signaling, showing that Lin28 disrupts TH function at different levels. Our data demonstrates that the role of Lin28 in controlling developmental transitions is evolutionary conserved and establishes a functional interaction between Lin28 and thyroid hormone function introducing a new regulatory step in perinatal development with implications for our understanding of endocrine disorders. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Kaptan, Engin; Bas, Serap Sancar; Inceli, Meliha Sengezer
2013-03-01
This study aimed to investigate the functional relationship of sialic acid in regressing and remodelling organs such as the tail, small intestine and liver during the metamorphosis of Pelophylax ridibundus. For this purpose, four groups were composed according to developmental periods by considering Gosner's criteria (1964). Our findings showed that the sialic acid content of the larval tail has an opposite profile to cell death process. Although the sialic acid content of the small intestine and liver did not change evidently during metamorphosis, it increased after the completion of metamorphosis. Frog tail extensively exhibited cell death process and decreased proliferative activity and underwent complete degeneration during metamorphic climax. In spite of increased apoptotic index, a decreased sialic acid level in the tail tissues during climax can be the indication of a death cell removal process. However, the intestine and the liver included both cell death and proliferative process and remodelling in their adult forms. Thus, their sialic acid profiles during metamorphosis were different from the tail's profile. These data show that sialic acid may be an indicator of the presence of some cellular events during metamorphosis and that it can have different roles in the developmental process depending on the organ's fate throughout metamorphosis. Copyright © 2012 John Wiley & Sons, Ltd.
Yang, Jin-Long; Shen, Pei-Jing; Liang, Xiao; Li, Yi-Feng; Bao, Wei-Yang; Li, Jia-Le
2013-01-01
The effects of bacterial biofilms (BFs) on larval settlement and metamorphosis of the mussel, Mytilus coruscus, were investigated in the laboratory. Of nine different isolates, Shewanella sp.1 BF induced the highest percentage of larval settlement and metamorphosis, whereas seven other isolates had a moderate inducing activity and one isolate, Pseudoalteromonas sp. 4, had a no inducing activity. The inducing activity of individual bacterial isolates was not correlated either with their phylogenetic relationship or with the surfaces from which they were isolated. Among the eight bacterial species that demonstrated inducing activity, bacterial density was significantly correlated with the inducing activity for each strain, with the exception of Vibrio sp. 1. The Shewanella sp. 1 BF cue that was responsible for inducing larval settlement and metamorphosis was further investigated. Treatment of the BFs with formalin, antibiotics, ultraviolet irradiation, heat, and ethanol resulted in a significant decrease in their inducing activities and cell survival. BF-conditioned water (CW) did not induce larval metamorphosis, but it triggered larval settlement behavior. A synergistic effect of CW with formalin-fixed Shewanella sp. 1 BF significantly promoted larval metamorphosis. Thus, a cocktail of chemical cues derived from bacteria may be necessary to stimulate larval settlement and metamorphosis in this species.
Manzon, Lori A; Youson, John H; Holzer, Guillaume; Staiano, Leopoldo; Laudet, Vincent; Manzon, Richard G
2014-08-01
Sea lampreys (Petromyzon marinus) are members of the ancient class Agnatha and undergo a metamorphosis that transforms blind, sedentary, filter-feeding larvae into free-swimming, parasitic juveniles. Thyroid hormones (THs) appear to be important for lamprey metamorphosis, however, serum TH concentrations are elevated in the larval phase, decline rapidly during early metamorphosis and remain low until metamorphosis is complete; these TH fluctuations are contrary to those of other metamorphosing vertebrates. Moreover, thyroid hormone synthesis inhibitors (goitrogens) induce precocious metamorphosis and exogenous TH treatments disrupt natural metamorphosis in P. marinus. Given that THs exert their effects by binding to TH nuclear receptors (TRs) that often act as heterodimers with retinoid X receptors (RXRs), we cloned and characterized these receptors from P. marinus and examined their expression during metamorphosis. Two TRs (PmTR1 and PmTR2) and three RXRs (PmRXRs) were isolated from P. marinus cDNA. Phylogenetic analyses group the PmTRs together on a branch prior to the gnathostome TRα/β split. The three RXRs also group together, but our data indicated that these transcripts are most likely either allelic variants of the same gene locus, or the products of a lamprey-specific duplication event. Importantly, these P. marinus receptors more closely resemble vertebrate as opposed to invertebrate chordate receptors. Functional analysis revealed that PmTR1 and PmTR2 can activate transcription of TH-responsive genes when treated with nanomolar concentrations of TH and they have distinct pharmacological profiles reminiscent of vertebrate TRβ and TRα, respectively. Also similar to other metamorphosing vertebrates, expression patterns of the PmTRs during lamprey metamorphosis suggest that PmTR1 has a dynamic, tissue-specific expression pattern that correlates with tissue morphogenesis and biochemical changes and PmTR2 has a more uniform expression pattern. This TR expression data suggests that THs, either directly or via a metabolite, may function to positively modulate changes at the tissue or organ levels during lamprey metamorphosis. Collectively the results presented herein support the hypothesis that THs have a dual functional role in the lamprey life cycle whereby high levels promote larval feeding, growth and lipogenesis and low levels promote metamorphosis. Copyright © 2014 Elsevier Inc. All rights reserved.
Ma, Xue Yan; Zheng, Bing Qing; Xu, Pao; Xu, Liang; Hua, Dan; Yuan, Xin Hua; Gu, Ruo Bo
2018-01-01
The basal media M199 or MEM was utilized in the classical method of vitro culture of glochidia where 1–5% CO2 was required to maintain stable physiological pH for completion of non-parasitic metamorphosis. The classical method encounters a great challenge to those glochidia which undergo development of visceral tissue but significantly increase in size during metamorphosis. The improved in vitro culture techniques and classical methods were firstly compared for non-parasitic metamorphosis and development of glochidia in pink heelsplitter. Based on the improved method, the optimal vitro culture media was further selected from 14 plasmas or sera, realizing the non-parasitic metamorphosis of axe-head glochidia for the first time. The results showed that addition of different plasma (serum) had significant effect on glochidial metamorphosis in pink heelsplitter. Only glochidia in the skewband grunt and red drum groups could complete metamorphosis, the metamorphosis rate in skewband grunt was 93.3±3.1% at 24±0.5°C, significantly higher than in marine and desalinated red drum. Heat-inactivated treatment on the plasma of yellow catfish and Barbus capito had significant effect on glochidia survival and shell growth. The metamorphosis rate also varied among different gravid period, and generally decreased with gravid time. Further comparison of free amino acid and fatty acid indicated that the taurine of high concentration was the only amino acid that might promote the rapid growth of glochidial shell, and the lack of adequate DPA and DHA might be an important reason leading to the abnormal foot and visceral development. Combined with our results of artificial selection of host fish, we tentatively established the mechanism of its host specialists in pink heelsplitter for the first time. This is the first report on non-parasite metamorphosis of axe-head glochidia based on our improved vitro culture method, which should provide important reference to fundamental theory research of glochidia metamorphosis and also benefit for better understand of mechanism of host specialists and generalists of Unionidae species. PMID:29447194
USDA-ARS?s Scientific Manuscript database
Rearing oxygen level is known to affect final body size in a variety of insects, but the physiological mechanisms by which oxygen affects size are incompletely understood. In Manduca and Drosophila, the larval size at which metamorphosis is initiated largely determines adult size, and metamorphosis ...
USDA-ARS?s Scientific Manuscript database
Body size influences nearly every aspect of organismal performance. Adult body size in holometabolous insects is determined by the size of the insect at metamorphosis. Thus, the mechanisms regulating the onset of metamorphosis have occupied insect physiologists for almost a century. Much of this res...
The Role of Unlearning in Metamorphosis and Strategic Resilience
ERIC Educational Resources Information Center
Morais-Storz, Marta; Nguyen, Nhien
2017-01-01
Purpose: This paper aims to conceptualize what it means to be resilient in the face of our current reality of indisputable turbulence and uncertainty, suggest that continual metamorphosis is key to resilience, demonstrate the role of unlearning in that metamorphosis and suggest that problem formulation is a key deliberate mechanism of driving…
Flatfish metamorphosis: a hypothalamic independent process?
Campinho, Marco A; Silva, Nadia; Roman-Padilla, Javier; Ponce, Marian; Manchado, Manuel; Power, Deborah M
2015-03-15
Anuran and flatfish metamorphosis are tightly regulated by thyroid hormones that are the necessary and sufficient factors that drive this developmental event. In the present study whole mount in situ hybridization (WISH) and quantitative PCR in sole are used to explore the central regulation of flatfish metamorphosis. Central regulation of the thyroid in vertebrates is mediated by the hypothalamus-pituitary-thyroid (HPT) axis. Teleosts diverge from other vertebrates as hypothalamic regulation in the HPT axis is proposed to be through hypothalamic inhibition although the regulatory factor remains enigmatic. The dynamics of the HPT axis during sole metamorphosis revealed integration between the activity of the thyrotrophes in the pituitary and the thyroid follicles. No evidence was found supporting a role for thyroid releasing hormone (trh) or corticotrophin releasing hormone (crh) in hypothalamic control of TH production during sole metamorphosis. Intriguingly the results of the present study suggest that neither hypothalamic trh nor crh expression changes during sole metamorphosis and raises questions about the role of these factors and the hypothalamus in regulation of thyrotrophs. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Metamorphosis of the landlocked sea lamprey, Petromyzon marinus
Manion, Patrick J.; Stauffer, Thomas M.
1970-01-01
The external metamorphosis of the sea lamprey was divided into four stages, based primarily on the condition of the mouth: mouth reduced, mouth fused, mouth enclosed, and mouth elongated. During metamorphosis, the eye enlarged greatly, the snout and mouth region changed from a fleshy hood enclosing a sieve apparatus to a large sucking disc, the nasopore membrane and the branchial area shrank, the branchiopores changed in shape, the general color changed from dark brown and yellow to an intense blue-black dorsally and white ventrally, and the total length increased. Metamorphosis began in early to mid-July and did not take place after August. The duration of external metamorphosis was about 3 months for lampreys transforming under natural conditions. The mean lengths of metamorphosing lampreys from tributaries of lakes Superior and Michigan were 145 and 136 mm, respectively.
Nitric oxide acts as a positive regulator to induce metamorphosis of the ascidian Herdmania momus.
Ueda, Nobuo; Degnan, Sandie M
2013-01-01
Marine invertebrates commonly have a biphasic life cycle in which the metamorphic transition from a pelagic larva to a benthic post-larva is mediated by the nitric oxide signalling pathway. Nitric oxide (NO) is synthesised by nitric oxide synthase (NOS), which is a client protein of the molecular chaperon heat shock protein 90 (HSP90). It is notable, then, that both NO and HSP90 have been implicated in regulating metamorphosis in marine invertebrates as diverse as urochordates, echinoderms, molluscs, annelids, and crustaceans. Specifically, the suppression of NOS activity by the application of either NOS- or HSP90-inhibiting pharmacological agents has been shown consistently to induce the initiation of metamorphosis, leading to the hypothesis that a negative regulatory role of NO is widely conserved in biphasic life cycles. Further, the induction of metamorphosis by heat-shock has been demonstrated for multiple species. Here, we investigate the regulatory role of NO in induction of metamorphosis of the solitary tropical ascidian, Herdmania momus. By coupling pharmacological treatments with analysis of HmNOS and HmHSP90 gene expression, we present compelling evidence of a positive regulatory role for NO in metamorphosis of this species, in contrast to all existing ascidian data that supports the hypothesis of NO as a conserved negative regulator of metamorphosis. The exposure of competent H. momus larvae to a NOS inhibitor or an NO donor results in an up-regulation of NOS and HSP90 genes. Heat shock of competent larvae induces metamorphosis in a temperature dependent manner, up to a thermal tolerance that approaches 35°C. Both larval/post-larval survival and the appearance of abnormal morphologies in H. momus post-larvae reflect the magnitude of up-regulation of the HSP90 gene in response to heat-shock. The demonstrated role of NO as a positive metamorphic regulator in H. momus suggests the existence of inter-specific adaptations of NO regulation in ascidian metamorphosis.
Siboni, Nachshon; Abrego, David; Seneca, Francois; Motti, Cherie A.; Andreakis, Nikos; Tebben, Jan; Blackall, Linda L.; Harder, Tilmann
2012-01-01
Biofilms of the bacterium Pseudoalteromonas induce metamorphosis of acroporid coral larvae. The bacterial metabolite tetrabromopyrrole (TBP), isolated from an extract of Pseudoalteromonas sp. associated with the crustose coralline alga (CCA) Neogoniolithon fosliei, induced coral larval metamorphosis (100%) with little or no attachment (0–2%). To better understand the molecular events and mechanisms underpinning the induction of Acropora millepora larval metamorphosis, including cell proliferation, apoptosis, differentiation, migration, adhesion and biomineralisation, two novel coral gene expression assays were implemented. These involved the use of reverse-transcriptase quantitative PCR (RT-qPCR) and employed 47 genes of interest (GOI), selected based on putative roles in the processes of settlement and metamorphosis. Substantial differences in transcriptomic responses of GOI were detected following incubation of A. millepora larvae with a threshold concentration and 10-fold elevated concentration of TBP-containing extracts of Pseudoalteromonas sp. The notable and relatively abrupt changes of the larval body structure during metamorphosis correlated, at the molecular level, with significant differences (p<0.05) in gene expression profiles of 24 GOI, 12 hours post exposure. Fourteen of those GOI also presented differences in expression (p<0.05) following exposure to the threshold concentration of bacterial TBP-containing extract. The specificity of the bacterial TBP-containing extract to induce the metamorphic stage in A. millepora larvae without attachment, using a robust, low cost, accurate, ecologically relevant and highly reproducible RT-qPCR assay, allowed partially decoupling of the transcriptomic processes of attachment and metamorphosis. The bacterial TBP-containing extract provided a unique opportunity to monitor the regulation of genes exclusively involved in the process of metamorphosis, contrasting previous gene expression studies that utilized cues, such as crustose coralline algae, biofilms or with GLW-amide neuropeptides that stimulate the entire onset of larval metamorphosis and attachment. PMID:22655067
Rahman, M Aminur; Yusoff, Fatimah Md; Arshad, A; Uehara, Tsuyoshi
2014-01-01
We report here, the effects of extended competency on larval survival, metamorphosis, and postlarval juvenile growth of four closely related species of tropical sea urchins, Echinometra sp. A (Ea), E. mathaei (Em), Echinometra sp. C (Ec), and E. oblonga (Eo). Planktotrophic larvae of all four species fed on cultured phytoplankton (Chaetoceros gracilis) attained metamorphic competence within 22-24 days after fertilization. Competent larvae were forced to delay metamorphosis for up to 5 months by preventing them from settling in culture bottles with continuous stirring on a set of 10 rpm rotating rollers and larval survival per monthly intervals was recorded. Larval survival was highest at 24 days, when competence was attained (0 delayed period), and there were no significant differences among the four species. Larvae that had experienced a prolonged delay had reduced survival rate, metamorphosis success, and juvenile survival, but among older larvae, Em had the highest success followed by Ea, Eo, and Ec. Juveniles from larvae of all four species that metamorphosed soon after becoming competent tended to have higher growth rates (test diameter and length of spines) than juveniles from larvae that metamorphosed after a prolonged period of competence with progressively slower growth the longer the prolonged period. Despite the adverse effects of delaying metamorphosis on growth parameters, competent larvae of all four species were able to survive up to 5 months and after metamorphosis grew into 1-month-old juveniles in lab condition. Overall, delayed larvae of Em showed significantly higher larval survival, metamorphosis, and juvenile survival than Ea and Eo, while Ec showed the lowest values in these performances. Em has the most widespread distribution of these species ranging from Africa to Hawaii, while Ec probably has the most restricted distribution. Consequently, differences in distribution may be related to differences in the ability to delay metamorphosis.
Rahman, M. Aminur; Yusoff, Fatimah Md.; Arshad, A.; Uehara, Tsuyoshi
2014-01-01
We report here, the effects of extended competency on larval survival, metamorphosis, and postlarval juvenile growth of four closely related species of tropical sea urchins, Echinometra sp. A (Ea), E. mathaei (Em), Echinometra sp. C (Ec), and E. oblonga (Eo). Planktotrophic larvae of all four species fed on cultured phytoplankton (Chaetoceros gracilis) attained metamorphic competence within 22–24 days after fertilization. Competent larvae were forced to delay metamorphosis for up to 5 months by preventing them from settling in culture bottles with continuous stirring on a set of 10 rpm rotating rollers and larval survival per monthly intervals was recorded. Larval survival was highest at 24 days, when competence was attained (0 delayed period), and there were no significant differences among the four species. Larvae that had experienced a prolonged delay had reduced survival rate, metamorphosis success, and juvenile survival, but among older larvae, Em had the highest success followed by Ea, Eo, and Ec. Juveniles from larvae of all four species that metamorphosed soon after becoming competent tended to have higher growth rates (test diameter and length of spines) than juveniles from larvae that metamorphosed after a prolonged period of competence with progressively slower growth the longer the prolonged period. Despite the adverse effects of delaying metamorphosis on growth parameters, competent larvae of all four species were able to survive up to 5 months and after metamorphosis grew into 1-month-old juveniles in lab condition. Overall, delayed larvae of Em showed significantly higher larval survival, metamorphosis, and juvenile survival than Ea and Eo, while Ec showed the lowest values in these performances. Em has the most widespread distribution of these species ranging from Africa to Hawaii, while Ec probably has the most restricted distribution. Consequently, differences in distribution may be related to differences in the ability to delay metamorphosis. PMID:24624048
Nitric Oxide Acts as a Positive Regulator to Induce Metamorphosis of the Ascidian Herdmania momus
Ueda, Nobuo; Degnan, Sandie M.
2013-01-01
Marine invertebrates commonly have a biphasic life cycle in which the metamorphic transition from a pelagic larva to a benthic post-larva is mediated by the nitric oxide signalling pathway. Nitric oxide (NO) is synthesised by nitric oxide synthase (NOS), which is a client protein of the molecular chaperon heat shock protein 90 (HSP90). It is notable, then, that both NO and HSP90 have been implicated in regulating metamorphosis in marine invertebrates as diverse as urochordates, echinoderms, molluscs, annelids, and crustaceans. Specifically, the suppression of NOS activity by the application of either NOS- or HSP90-inhibiting pharmacological agents has been shown consistently to induce the initiation of metamorphosis, leading to the hypothesis that a negative regulatory role of NO is widely conserved in biphasic life cycles. Further, the induction of metamorphosis by heat-shock has been demonstrated for multiple species. Here, we investigate the regulatory role of NO in induction of metamorphosis of the solitary tropical ascidian, Herdmania momus. By coupling pharmacological treatments with analysis of HmNOS and HmHSP90 gene expression, we present compelling evidence of a positive regulatory role for NO in metamorphosis of this species, in contrast to all existing ascidian data that supports the hypothesis of NO as a conserved negative regulator of metamorphosis. The exposure of competent H. momus larvae to a NOS inhibitor or an NO donor results in an up-regulation of NOS and HSP90 genes. Heat shock of competent larvae induces metamorphosis in a temperature dependent manner, up to a thermal tolerance that approaches 35°C. Both larval/post-larval survival and the appearance of abnormal morphologies in H. momus post-larvae reflect the magnitude of up-regulation of the HSP90 gene in response to heat-shock. The demonstrated role of NO as a positive metamorphic regulator in H. momus suggests the existence of inter-specific adaptations of NO regulation in ascidian metamorphosis. PMID:24019877
Sharma, Bibek; Patino, Reynaldo
2010-01-01
To assess interaction effects between cadmium (Cd, a putative xenoestrogen) and estradiol-17beta (E(2)) on sex differentiation and metamorphosis, Xenopus laevis were exposed to solvent-control (0.005% ethanol), Cd (10microgL(-1)), E(2) (1microgL(-1)), or Cd and E(2) (Cd+E(2)) in FETAX medium from fertilization to 75d postfertilization. Each treatment was applied to four aquaria, each with 30 fertilized eggs. Mortality was recorded and animals were sampled as they completed metamorphosis (Nieuwkoop and Faber stage 66). Gonadal sex of individuals (including >or= tadpoles NF stage 55 at day 75) was determined gross-morphologically and used to compute sex ratios. Time course and percent completion of metamorphosis, snout-vent length (SVL), hindlimb length (HLL) and weight were analyzed for each gender separately. Survival rates did not differ among treatments. The E(2) and Cd+E(2) treatments significantly skewed sex ratios towards females; however, no sex-ratio differences were observed between the control and Cd treatments or between the E(2) and Cd+E(2) treatments. Time course of metamorphosis was generally delayed and percent completion of metamorphosis was generally reduced in males and females exposed to Cd, E(2) or their combination compared to control animals. In males, but not females, the effect of Cd+E(2) was greater than that of individual chemicals. Weight at completion of metamorphosis was reduced only in females and only by the Cd+E(2) treatment. In conclusion, although Cd at an environmentally relevant concentration did not exhibit direct or indirect feminizing effects in Xenopus tadpoles, the metal and E(2) both had similar inhibitory effects on metamorphosis that were of greater magnitude in males than females.
Sharma, Bibek; Patino, Reynaldo
2010-01-01
To assess interaction effects between cadmium (Cd, a putative xenoestrogen) and estradiol-17?? (E2) on sex differentiation and metamorphosis, Xenopus laevis were exposed to solvent-control (0.005% ethanol), Cd (10 ??g L-1), E2 (1 ??g L-1), or Cd and E2 (Cd + E2) in FETAX medium from fertilization to 75 d postfertilization. Each treatment was applied to four aquaria, each with 30 fertilized eggs. Mortality was recorded and animals were sampled as they completed metamorphosis (Nieuwkoop and Faber stage 66). Gonadal sex of individuals (including tadpoles ???NF stage 55 at day 75) was determined gross-morphologically and used to compute sex ratios. Time course and percent completion of metamorphosis, snout-vent length (SVL), hindlimb length (HLL) and weight were analyzed for each gender separately. Survival rates did not differ among treatments. The E2 and Cd + E2 treatments significantly skewed sex ratios towards females; however, no sex-ratio differences were observed between the control and Cd treatments or between the E2 and Cd + E2 treatments. Time course of metamorphosis was generally delayed and percent completion of metamorphosis was generally reduced in males and females exposed to Cd, E2 or their combination compared to control animals. In males, but not females, the effect of Cd + E2 was greater than that of individual chemicals. Weight at completion of metamorphosis was reduced only in females and only by the Cd + E2 treatment. In conclusion, although Cd at an environmentally relevant concentration did not exhibit direct or indirect feminizing effects in Xenopus tadpoles, the metal and E2 both had similar inhibitory effects on metamorphosis that were of greater magnitude in males than females.
Beyeler, Anna; Rao, Guillaume; Ladepeche, Laurent; Jacques, André; Simmers, John; Le Ray, Didier
2013-01-01
During frog metamorphosis, the vestibular sensory system remains unchanged, while spinal motor networks undergo a massive restructuring associated with the transition from the larval to adult biomechanical system. We investigated in Xenopus laevis the impact of a pre- (tadpole stage) or post-metamorphosis (juvenile stage) unilateral labyrinthectomy (UL) on young adult swimming performance and underlying spinal locomotor circuitry. The acute disruptive effects on locomotion were similar in both tadpoles and juvenile frogs. However, animals that had metamorphosed with a preceding UL expressed restored swimming behavior at the juvenile stage, whereas animals lesioned after metamorphosis never recovered. Whilst kinematic and electrophysiological analyses of the propulsive system showed no significant differences in either juvenile group, a 3D biomechanical simulation suggested that an asymmetry in the dynamic control of posture during swimming could account for the behavioral restoration observed in animals that had been labyrinthectomized before metamorphosis. This hypothesis was subsequently supported by in vivo electromyography during free swimming and in vitro recordings from isolated brainstem/spinal cord preparations. Specifically, animals lesioned prior to metamorphosis at the larval stage exhibited an asymmetrical propulsion/posture coupling as a post-metamorphic young adult. This developmental alteration was accompanied by an ipsilesional decrease in propriospinal coordination that is normally established in strict left-right symmetry during metamorphosis in order to synchronize dorsal trunk muscle contractions with bilateral hindlimb extensions in the swimming adult. Our data thus suggest that a disequilibrium in descending vestibulospinal information during Xenopus metamorphosis leads to an altered assembly of adult spinal locomotor circuitry. This in turn enables an adaptive compensation for the dynamic postural asymmetry induced by the vestibular imbalance and the restoration of functionally-effective behavior.
Orchestrating change: The thyroid hormones and GI-tract development in flatfish metamorphosis.
Gomes, A S; Alves, R N; Rønnestad, I; Power, D M
2015-09-01
Metamorphosis in flatfish (Pleuronectiformes) is a late post-embryonic developmental event that prepares the organism for the larval-to-juvenile transition. Thyroid hormones (THs) play a central role in flatfish metamorphosis and the basic elements that constitute the thyroid axis in vertebrates are all present at this stage. The advantage of using flatfish to study the larval-to-juvenile transition is the profound change in external morphology that accompanies metamorphosis making it easy to track progression to climax. This important lifecycle transition is underpinned by molecular, cellular, structural and functional modifications of organs and tissues that prepare larvae for a successful transition to the adult habitat and lifestyle. Understanding the role of THs in the maturation of organs and tissues with diverse functions during metamorphosis is a major challenge. The change in diet that accompanies the transition from a pelagic larvae to a benthic juvenile in flatfish is associated with structural and functional modifications in the gastrointestinal tract (GI-tract). The present review will focus on the maturation of the GI-tract during metamorphosis giving particular attention to organogenesis of the stomach a TH triggered event. Gene transcripts and biological processes that are associated with GI-tract maturation during Atlantic halibut metamorphosis are identified. Gene ontology analysis reveals core biological functions and putative TH-responsive genes that underpin TH-driven metamorphosis of the GI-tract in Atlantic halibut. Deciphering the specific role remains a challenge. Recent advances in characterizing the molecular, structural and functional modifications that accompany the appearance of a functional stomach in Atlantic halibut are considered and future research challenges identified. Copyright © 2014 Elsevier Inc. All rights reserved.
Schmidt, Benedikt R; Hödl, Walter; Schaub, Michael
2012-03-01
Performance in one stage of a complex life cycle may affect performance in the subsequent stage. Animals that start a new stage at a smaller size than conspecifics may either always remain smaller or they may be able to "catch up" through plasticity, usually elevated growth rates. We study how size at and date of metamorphosis affected subsequent performance in the terrestrial juvenile stage and lifetime fitness of spadefoot toads (Pelobates fuscus). We analyzed capture-recapture data of > 3000 individuals sampled during nine years with mark-recapture models to estimate first-year juvenile survival probabilities and age-specific first-time breeding probabilities of toads, followed by model selection to assess whether these probabilities were correlated with size at and date of metamorphosis. Males attained maturity after two years, whereas females reached maturity 2-4 years after metamorphosis. Age at maturity was weakly correlated with metamorphic traits. In both sexes, first-year juvenile survival depended positively on date of metamorphosis and, in males, also negatively on size at metamorphosis. In males, toads that metamorphosed early at a small size had the highest probability to reach maturity. However, because very few toadlets metamorphosed early, the vast majority of male metamorphs had a very similar probability to reach maturity. A matrix projection model constructed for females showed that different juvenile life history pathways resulted in similar lifetime fitness. We found that the effects of date of and size at metamorphosis on different juvenile traits cancelled each other out such that toads that were small or large at metamorphosis had equal performance. Because the costs and benefits of juvenile life history pathways may also depend on population fluctuations, ample phenotypic variation in life history traits may be maintained.
Chai, Lihong; Wang, Hongyuan; Zhao, Hongfeng; Dong, Suiming
2017-04-01
Bufo gargarizans tadpoles were chronically exposed to waterborne fluoride at measured concentrations ranging from 0.4 to 61.2 mg F - /L for 70 days from Gosner stage 26 to completion of metamorphosis. The chronic exposure caused a concentration-dependent mortality in all tested fluoride concentrations. Total length, snout-to-vent length (SVL), body mass, and developmental stage of tadpoles were significantly inhibited at 42.6 mg F - /L. In addition, significant metamorphic delay and increase in size at completion of metamorphosis occurred after exposure to 19.8 mg F - /L. Moreover, 19.8 mg F - /L suppressed the bone mineralization of larvae at completion of metamorphosis. However, the bone mineralization could be enhanced by 4.1 mg F - /L. In conclusion, our results suggested that the presence of high concentrations of fluoride could increase mortality risk, delay metamorphosis, and suppress skeletal ossification in B. gargarizans larvae.
Variation in age at metamorphosis across a latitudinal gradient for the tailed frog, Ascaphus truei
Bury, R. Bruce; Adams, Michael J.
1999-01-01
Tailed frogs (Ascaphus truei) occur in permanent, cold streams in northwestern North America. Their tadpoles reportedly undergo metamorphosis after 2-4 years. Coastal populations that we examined transformed in 2 yr from the Olympic peninsula in Washington to northern Oregon, but in 1 yr from central Oregon to northern California. One inland site in northern California had a 2-yr period. Age at metamorphosis was consistent over different years. We suggest that total length and developmental stage accurately define cohorts for larval Ascaphus. Hind-leg length indicates whether metamorphs are a separate age class from tadpoles. Age at metamorphosis (1-4 yr) appears to reflect broad differences in climatic conditions. However, at a regional scale, variation is low and suggests a lack of sensitivity to local environmental conditions. This may be due to seasonal constraints on the time when metamorphosis occurs (late summer).
McMenamin, Sarah K.; Parichy, David M.
2017-01-01
Teleosts are the largest and most diverse group of vertebrates, and many species undergo morphological, physiological, and behavioral transitions, “metamorphoses,” as they progress between morphologically divergent life stages. The larval metamorphosis that generally occurs as teleosts mature from larva to juvenile involves the loss of embryo-specific features, the development of new adult features, major remodeling of different organ systems, and changes in physical proportions and overall phenotype. Yet, in contrast to anuran amphibians, for example, teleost metamorphosis can entail morphological change that is either sudden and profound, or relatively gradual and subtle. Here, we review the definition of metamorphosis in teleosts, the diversity of teleost metamorphic strategies and the transitions they involve, and what is known of their underlying endocrine and genetic bases. We suggest that teleost metamorphosis offers an outstanding opportunity for integrating our understanding of endocrine mechanisms, cellular processes of morphogenesis and differentiation, and the evolution of diverse morphologies and life histories. PMID:23347518
Mechanisms of tail resorption during anuran metamorphosis.
Nakai, Yuya; Nakajima, Keisuke; Yaoita, Yoshio
2017-09-26
Amphibian metamorphosis has historically attracted a good deal of scientific attention owing to its dramatic nature and easy observability. However, the genetic mechanisms of amphibian metamorphosis have not been thoroughly examined using modern techniques such as gene cloning, DNA sequencing, polymerase chain reaction or genomic editing. Here, we review the current state of knowledge regarding molecular mechanisms underlying tadpole tail resorption.
Henson, Mary P.; Bergstedt, Roger A.; Adams, Jean V.
2003-01-01
The ability to predict when sea lampreys (Petromyzon marinus) will metamorphose from the larval phase to the parasitic phase is essential to the operation of the sea lamprey control program. During the spring of 1994, two populations of sea lamprey larvae from two rivers were captured, measured, weighed, implanted with coded wire tags, and returned to the same sites in the streams from which they were taken. Sea lampreys were recovered in the fall, after metamorphosis would have occurred, and checked for the presence of a tag. When the spring data were compared to the fall data it was found that the minimum requirements (length ≥ 120 mm, weight ≥ 3 g, and condition factor ≥ 1.50) suggested for metamorphosis did define a pool of larvae capable of metamorphosing. However, logistic regressions that relate the probability of metamorphosis to size are necessary to predict metamorphosis in a population. The data indicated, based on cross-validation, that weight measurements alone predicted metamorphosis with greater precision than length or condition factor in both the Marengo and Amnicon rivers. Based on the Akaike Information Criterion, weight alone was a better predictor in the Amnicon River, but length and condition factor combined predicted metamorphosis better in the Marengo River. There would be no additional cost if weight alone were used instead of length. However, if length and weight were measured the gain in predictive power would not be enough to justify the additional cost.
Sasakura, Yasunori; Mita, Kaoru; Ogura, Yosuke; Horie, Takeo
2012-04-01
The swimming larvae of the chordate ascidians possess a dorsal hollowed central nervous system (CNS), which is homologous to that of vertebrates. Despite the homology, the ascidian CNS consists of a countable number of cells. The simple nervous system of ascidians provides an excellent experimental system to study the developmental mechanisms of the chordate nervous system. The neural fate of the cells consisting of the ascidian CNS is determined in both autonomous and non-autonomous fashion during the cleavage stage. The ascidian neural plate performs the morphogenetic movement of neural tube closure that resembles that in vertebrate neural tube formation. Following neurulation, the CNS is separated into five distinct regions, whose homology with the regions of vertebrate CNS has been discussed. Following their larval stage, ascidians undergo a metamorphosis and become sessile adults. The metamorphosis is completed quickly, and therefore the metamorphosis of ascidians is a good experimental system to observe the reorganization of the CNS during metamorphosis. A recent study has shown that the major parts of the larval CNS remain after the metamorphosis to form the adult CNS. In contrast to such a conserved manner of CNS reorganization, most larval neurons disappear during metamorphosis. The larval glial cells in the CNS are the major source for the formation of the adult CNS, and some of the glial cells produce adult neurons. © 2012 The Authors Development, Growth & Differentiation © 2012 Japanese Society of Developmental Biologists.
Yu, Jie; Fu, Yuanshuai; Shi, Zhiyi
2017-04-01
In vertebrates, thyroid hormone receptors (TRs) and deiodinases are essential for developmental events driven by the thyroid hormones (THs). However, the significance of deiodinases during the metamorphosis of the Japanese flounder (Paralichthys olivaceus) remains unclear. Moreover, regulation and response of the TRs and deiodinases to THs in this fish are poorly understood. Therefore, we detected the expression patterns of THs, deiodinases, and TRs in drug-treated larvae and untreated larvae of P. olivaceus by using enzyme-linked immunosorbent assay and quantitative real-time PCR during P. olivaceus metamorphosis. To further understand the roles of these elements, a rescue assay was performed. Our results show the importance of THs, TRs, and deiodinases in flatfish metamorphosis. Our results also confirm that D1 and D2 activate THs and D3 plays the opposite and complementary role. Moreover, we demonstrated that both TRα and TRβ have important but different roles during P. olivaceus metamorphosis.
Cruz, L C; Araújo, V A; Dolder, H; Araújo, A P A; Serrão, J E; Neves, C A
2011-01-01
In Hymenoptera, midgut changes begin in the last instar. At this stage, the larval epithelial digestive cells degenerate, leaving only the basal membrane and the regenerative cells which will develop into a new epithelium during the pupal stage and in the adult. Epithelium renewal is followed by changes in volume and shape of the midgut. Morphometric analysis of digestive cells and total midgut volume of Melipona quadrifasciata anthidioides (Lepeletier) were conducted to verify whether cell volume increase are sufficient to account for the total midgut volume increase that occurs during metamorphosis. An increase in midgut volume was verified in spite of the scarcity of cell proliferation found during metamorphosis. At the end of metamorphosis, the increase in cell volume was not sufficient to explain the increase in volume of the midgut, indicating that an increase in the number of digestive cells is apparently necessary. Nevertheless, the mechanism by which regenerative cells reconstitute the epithelium during metamorphosis remains unknown.
Thyroxine-induced metamorphosis in the axolotl (Ambystoma mexicanum).
Coots, Peggy S; Seifert, Ashley W
2015-01-01
The axolotl (Ambystoma mexicanum) has remained an important model for regeneration and developmental biology for over a century. Although axolotls in captive-bred colonies usually exist in an aquatic form, they retain the ability to undergo metamorphosis following exposure to thyroid hormone. Here we present a robust method for inducing metamorphosis in adult axolotls that results in high survivability and produces terrestrial animals that can be maintained in long-term captivity.
Metamorphosis alters contaminants and chemical tracers in insects: implications for food webs
Kraus, Johanna M.; Walters, David M.; Wesner, Jeff S.; Stricker, Craig A.; Schmidt, Travis S.; Zuellig, Robert E.
2014-01-01
Insects are integral to most freshwater and terrestrial food webs, but due to their accumulation of environmental pollutants they are also contaminant vectors that threaten reproduction, development, and survival of consumers. Metamorphosis from larvae to adult can cause large chemical changes in insects, altering contaminant concentrations and fractionation of chemical tracers used to establish contaminant biomagnification in food webs, but no framework exists for predicting and managing these effects. We analyzed data from 39 studies of 68 analytes (stable isotopes and contaminants), and found that metamorphosis effects varied greatly. δ15N, widely used to estimate relative trophic position in biomagnification studies, was enriched by 1‰ during metamorphosis, while δ13C used to estimate diet, was similar in larvae and adults. Metals and polycyclic aromatic hydrocarbons (PAHs) were predominantly lost during metamorphosis leading to 2 to 125-fold higher larval concentrations and higher exposure risks for predators of larvae compared to predators of adults. In contrast, manufactured organic contaminants (such as polychlorinated biphenyls) were retained and concentrated in adults, causing up to 3-fold higher adult concentrations and higher exposure risks to predators of adult insects. Both food web studies and contaminant management and mitigation strategies need to consider how metamorphosis affects the movement of materials between habitats and ecosystems, with special regard for aquatic-terrestrial linkages.
Tissue-specific profile of DNA replication in the swimming larvae of Ciona intestinalis.
Nakayama, Akie; Satoh, Nori; Sasakura, Yasunori
2005-03-01
The cell cycle is strictly regulated during development and its regulation is essential for organ formation and developmental timing. Here we observed the pattern of DNA replication in swimming larvae of an ascidian, Ciona intestinalis. Usually, Ciona swimming larvae obtain competence for metamorphosis at about 4-5 h after hatching, and these competent larvae initiate metamorphosis soon after they adhere to substrate with their papillae. In these larvae, three major tissues (epidermis, endoderm and mesenchyme) showed extensive DNA replication with distinct pattern and timing, suggesting tissue-specific cell cycle regulation. However, DNA replication did not continue in aged larvae which kept swimming for several days, suggesting that the cell cycle is arrested in these larvae at a certain time to prevent further growth of adult organ rudiments until the initiation of metamorphosis. Inhibition of the cell cycle by aphidicolin during the larval stage affects only the speed of metamorphosis, and not the formation of adult organ rudiments or the timing of the initiation of metamorphosis. However, after the completion of tail resorption, DNA replication is necessary for further metamorphic events. Our data showed that DNA synthesis in the larval trunk is not directly associated with the organization of adult organs, but it contributes to the speed of metamorphosis after settlement.
Artificial Metamorphosis: Evolutionary Design of Transforming, Soft-Bodied Robots.
Joachimczak, Michał; Suzuki, Reiji; Arita, Takaya
2016-01-01
We show how the concept of metamorphosis, together with a biologically inspired model of multicellular development, can be used to evolve soft-bodied robots that are adapted to two very different tasks, such as being able to move in an aquatic and in a terrestrial environment. Each evolved solution defines two pairs of morphologies and controllers, together with a process of transforming one pair into the other. Animats develop from a single cell and grow through cellular divisions and deaths until they reach an initial larval form adapted to a first environment. To obtain the adult form adapted to a second environment, the larva undergoes metamorphosis, during which new cells are added or removed and its controller is modified. Importantly, our approach assumes nothing about what morphologies or methods of locomotion are preferred. Instead, it successfully searches the vast space of possible designs and comes up with complex, surprising, lifelike solutions that are reminiscent of amphibian metamorphosis. We analyze obtained solutions and investigate whether the morphological changes during metamorphosis are indeed adaptive. We then compare the effectiveness of three different types of selective pressures used to evolve metamorphic individuals. Finally, we investigate potential advantages of using metamorphosis to automatically produce soft-bodied designs by comparing the performance of metamorphic individuals with their specialized counterparts and designs that are robust to both environments.
Zhang, Junling; Shi, Zhiyi; Cheng, Qi; Chen, Xiaowu
2011-08-01
Insulin-like growth factor I (IGF-I) is an important regulator of fish growth and development, and its biological actions are initiated by binding to IGF-I receptor (IGF-IR). Our previous study has revealed that IGF-I could play an important role during metamorphosis of Japanese flounder, Paralichthys olivaceus. The analysis of IGF-IR expression thus helps further elucidate the IGF-I regulation of metamorphic processes. In this study, the spatial-temporal expression of two distinct IGF-IR mRNAs was investigated by real-time RT-PCR. The spatial distribution of two IGF-IR mRNAs in adult tissues is largely overlapped, but they exhibit distinct temporal expression patterns during larval development. A remarkable decrease in IGF-IR-2 mRNA was detected during metamorphosis. In contrast, a significant increase in IGF-IR-1 mRNA was determined from pre-metamorphosis to metamorphic completion. These indicate that they may play different function roles during the flounder metamorphosis. The levels and localization of IGF-IR proteins during larval development were further studied by Western blotting and immunohistochemistry. Immunoreactive IGF-IRs were detected throughout larval development, and the IGF-IR proteins displayed a relatively abundant expression during metamorphosis. Moreover, the IGF-IR proteins appeared in key tissues, such as thickened skin beneath the migrating eye, developing intestine, gills and kidney during metamorphosis. These results further suggest that the IGF-I system may be involved in metamorphic development of Japanese flounder. Copyright © 2011 Elsevier Inc. All rights reserved.
Okada, Morihiro; Miller, Thomas C.; Fu, Liezhen
2015-01-01
The T3-dependent anuran metamorphosis resembles postembryonic development in mammals, the period around birth when plasma T3 levels peak. In particular, the remodeling of the intestine during metamorphosis mimics neonatal intestinal maturation in mammals when the adult intestinal epithelial self-renewing system is established. We have been using intestinal metamorphosis to investigate how the organ-specific adult stem cells are formed during vertebrate development. Early studies in Xenopus laevis have shown that this process involves complete degeneration of the larval epithelium and de novo formation of adult stem cells. A tissue-specific microarray analysis of intestinal gene expression during Xenopus laevis metamorphosis has identified a number of candidate stem cell genes. Here we have carried out detailed analyses of one such gene, amidohydrolase domain containing 1 (AMDHD1) gene, which encodes an enzyme in the histidine catabolic pathway. We show that AMDHD1 is exclusively expressed in the proliferating adult epithelial stem cells during metamorphosis with little expression in other intestinal tissues. We further provide evidence that T3 activates AMDHD1 gene expression directly at the transcription level through T3 receptor binding to the AMDHD1 gene in the intestine. In addition, we have reported earlier that histidine ammonia-lyase gene, another gene in histidine catabolic pathway, is similarly regulated by T3 in the intestine. These results together suggest that histidine catabolism plays a critical role in the formation and/or proliferation of adult intestinal stem cells during metamorphosis. PMID:26086244
Okada, Morihiro; Miller, Thomas C; Fu, Liezhen; Shi, Yun-Bo
2015-09-01
The T3-dependent anuran metamorphosis resembles postembryonic development in mammals, the period around birth when plasma T3 levels peak. In particular, the remodeling of the intestine during metamorphosis mimics neonatal intestinal maturation in mammals when the adult intestinal epithelial self-renewing system is established. We have been using intestinal metamorphosis to investigate how the organ-specific adult stem cells are formed during vertebrate development. Early studies in Xenopus laevis have shown that this process involves complete degeneration of the larval epithelium and de novo formation of adult stem cells. A tissue-specific microarray analysis of intestinal gene expression during Xenopus laevis metamorphosis has identified a number of candidate stem cell genes. Here we have carried out detailed analyses of one such gene, amidohydrolase domain containing 1 (AMDHD1) gene, which encodes an enzyme in the histidine catabolic pathway. We show that AMDHD1 is exclusively expressed in the proliferating adult epithelial stem cells during metamorphosis with little expression in other intestinal tissues. We further provide evidence that T3 activates AMDHD1 gene expression directly at the transcription level through T3 receptor binding to the AMDHD1 gene in the intestine. In addition, we have reported earlier that histidine ammonia-lyase gene, another gene in histidine catabolic pathway, is similarly regulated by T3 in the intestine. These results together suggest that histidine catabolism plays a critical role in the formation and/or proliferation of adult intestinal stem cells during metamorphosis.
Sun, Mingyan; Wei, Fen; Li, Hui; Xu, Juan; Chen, Xinye; Gong, Xiaoling; Tian, Yongsheng; Chen, Songlin; Bao, Baolong
2015-05-01
Craniofacial remodeling during flatfish metamorphosis, including eye migration, is perhaps the most striking example of asymmetric postembryonic development in the vertebrate world. The asymmetry of the cranium mainly results from distortion of the frontal bones, which depends on eye migration during metamorphosis. However, it is unclear how the up-migrating eye causes distortion of the frontal bones. In this study, we first show that distortion of the frontal bones during metamorphosis in Paralichthys olivaceus is the result of cell apoptosis, rather than cell autophagy or cell proliferation. Secondly, we report that cell apoptosis in the frontal bones is induced by the mechanical force transferred from the up-migrating eye. The mechanical force from the up-migrating eye signals through FAK to downstream molecules that are integrated into the BMP-2 signal pathway. Finally, it is shown that cell apoptosis in the frontal bones is activated by the intrinsic mitochondrial pathway; the extrinsic death receptor is not involved in this process. Moreover, cell apoptosis in frontal bones is not induced directly by thyroid hormones, which are thought to mediate metamorphosis in flatfishes and directly mediate cell apoptosis during amphibian metamorphosis. These findings help identify the major signaling route used during regulation of frontal bone distortion during metamorphosis in flatfish, and indicate that the asymmetry of the cranium, or at least the distortion of frontal bones, is the result of rather than the reason underlying eye migration. Copyright © 2015. Published by Elsevier Ireland Ltd.
Effects of density on growth, metamorphosis, and survivorship in tadpoles of Scaphiopus holbrooki
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semlitsch, R.D.; Caldwell, J.P.
1982-08-01
Density-dependent aspects of growth, metamorphosis, and survivorship of Scaphiopus holbrooki tadpoles were examined in the laboratory under two experimental regimes. In the first density experiment, the growth index (W) of tadpoles decreased exponentially with density. Mean growth rate varied from 0.023 mL/d at the lowest density to 0.006 mL/d at the highest density. The mean number of days to metamorphic climax was positively associated with the initial density treatment: 27 d at the lowest density to 86 d at the highest density. The body size of tadpoles at metamorphosis showed a concave curvilinear relationship to initial density, indicating tadpoles atmore » the highest densities are apparently capable to growth recovery once released from density stress. The survival of tadpoles decreased exponentially with initial density, from 90% at the lowest density to 20% at the highest initial density. In the second experiment a cross-classified design was used to examine the effects of density and duration of treatment (time) on growth and metamorphosis. Density and time had significant effects on body size at metamorphosis and days to metamorphosis. There was no significant interaction between density and time. These results indicate that the inhibitory effect of density stress varies with the duration of the stress. Scaphiopus holbrooki tadpoles exhibit developmental traits (rapid growth, short larval period, small body size at metamorphosis) that should be favored by natural selection in high density habitats. Dispersability may be a mechanism whereby S. holbrooki can minimize the detrimental effects of density stress.« less
Gomes, Ana S; Kamisaka, Yuko; Harboe, Torstein; Power, Deborah M; Rønnestad, Ivar
2014-02-19
Flatfish metamorphosis is a hormone regulated post-embryonic developmental event that transforms a symmetric larva into an asymmetric juvenile. In altricial-gastric teleost fish, differentiation of the stomach takes place after the onset of first feeding, and during metamorphosis dramatic molecular and morphological modifications of the gastrointestinal (GI-) tract occur. Here we present the functional ontogeny of the developing GI-tract from an integrative perspective in the pleuronectiforme Atlantic halibut, and test the hypothesis that the multiple functions of the teleost stomach develop synchronously during metamorphosis. Onset of gastric function was determined with several approaches (anatomical, biochemical, molecular and in vivo observations). In vivo pH analysis in the GI-tract lumen combined with quantitative PCR (qPCR) of α and β subunits of the gastric proton pump (H+/K+-ATPase) and pepsinogen A2 indicated that gastric proteolytic capacity is established during the climax of metamorphosis. Transcript abundance of ghrelin, a putative orexigenic signalling molecule produced in the developing stomach, correlated (p < 0.05) with the emergence of gastric proteolytic activity, suggesting that the stomach's role in appetite regulation occurs simultaneously with the establishment of proteolytic function. A 3D models series of the GI-tract development indicated a functional pyloric sphincter prior to first feeding. Observations of fed larvae in vivo confirmed that stomach reservoir function was established before metamorphosis, and was thus independent of this event. Mechanical breakdown of food and transportation of chyme through the GI-tract was observed in vivo and resulted from phasic and propagating contractions established well before metamorphosis. The number of contractions in the midgut decreased at metamorphic climax synchronously with establishment of the stomach's proteolytic capacity and its increased peristaltic activity. Putative osmoregulatory competence of the GI-tract, inferred by abundance of Na+/K+-ATPase α transcripts, was already established at the onset of exogenous feeding and was unmodified by metamorphosis. The functional specialization of the GI-tract was not exclusive to metamorphosis, and its osmoregulatory capacity and reservoir function were established before first feeding. Nonetheless, acid production and the proteolytic capacity of the stomach coincided with metamorphic climax, and also marked the onset of the stomach's involvement in appetite regulation via ghrelin.
Rose, Christopher S; Murawinski, Danny; Horne, Virginia
2015-06-01
Understanding skeletal diversification involves knowing not only how skeletal rudiments are shaped embryonically, but also how skeletal shape changes throughout life. The pharyngeal arch (PA) skeleton of metamorphosing amphibians persists largely as cartilage and undergoes two phases of development (embryogenesis and metamorphosis) and two phases of growth (larval and post-metamorphic). Though embryogenesis and metamorphosis produce species-specific features of PA cartilage shape, the extents to which shape and size change during growth and metamorphosis remain unaddressed. This study uses allometric equations and thin-plate spline, relative warp and elliptic Fourier analyses to describe shape and size trajectories for the ventral PA cartilages of the frog Xenopus laevis in tadpole and frog growth and metamorphosis. Cartilage sizes scale negatively with body size in both growth phases and cartilage shapes scale isometrically or close to it. This implies that most species-specific aspects of cartilage shape arise in embryogenesis and metamorphosis. Contributions from growth are limited to minor changes in lower jaw (LJ) curvature that produce relative gape narrowing and widening in tadpoles and frogs, respectively, and most cartilages becoming relatively thinner. Metamorphosis involves previously unreported decreases in cartilage size as well as changes in cartilage shape. The LJ becomes slightly longer, narrower and more curved, and the adult ceratohyal emerges from deep within the resorbing tadpole ceratohyal. This contrast in shape and size changes suggests a fundamental difference in the underlying cellular pathways. The observation that variation in PA cartilage shape decreases with tadpole growth supports the hypothesis that isometric growth is required for the metamorphic remodeling of PA cartilages. It also supports the existence of shape-regulating mechanisms that are specific to PA cartilages and that resist local adaptation and phenotypic plasticity. © 2015 Anatomical Society.
Rose, Christopher S; Murawinski, Danny; Horne, Virginia
2015-01-01
Understanding skeletal diversification involves knowing not only how skeletal rudiments are shaped embryonically, but also how skeletal shape changes throughout life. The pharyngeal arch (PA) skeleton of metamorphosing amphibians persists largely as cartilage and undergoes two phases of development (embryogenesis and metamorphosis) and two phases of growth (larval and post-metamorphic). Though embryogenesis and metamorphosis produce species-specific features of PA cartilage shape, the extents to which shape and size change during growth and metamorphosis remain unaddressed. This study uses allometric equations and thin-plate spline, relative warp and elliptic Fourier analyses to describe shape and size trajectories for the ventral PA cartilages of the frog Xenopus laevis in tadpole and frog growth and metamorphosis. Cartilage sizes scale negatively with body size in both growth phases and cartilage shapes scale isometrically or close to it. This implies that most species-specific aspects of cartilage shape arise in embryogenesis and metamorphosis. Contributions from growth are limited to minor changes in lower jaw (LJ) curvature that produce relative gape narrowing and widening in tadpoles and frogs, respectively, and most cartilages becoming relatively thinner. Metamorphosis involves previously unreported decreases in cartilage size as well as changes in cartilage shape. The LJ becomes slightly longer, narrower and more curved, and the adult ceratohyal emerges from deep within the resorbing tadpole ceratohyal. This contrast in shape and size changes suggests a fundamental difference in the underlying cellular pathways. The observation that variation in PA cartilage shape decreases with tadpole growth supports the hypothesis that isometric growth is required for the metamorphic remodeling of PA cartilages. It also supports the existence of shape-regulating mechanisms that are specific to PA cartilages and that resist local adaptation and phenotypic plasticity. PMID:25913729
Alves, Ricardo N; Sundell, Kristina S; Anjos, Liliana; Sundh, Henrik; Harboe, Torstein; Norberg, Birgitta; Power, Deborah M
2018-06-01
To establish if the developmental changes in the primary barrier and osmoregulatory capacity of Atlantic halibut skin are modified during metamorphosis, histological, histochemical, gene expression and electrophysiological measurements were made. The morphology of the ocular and abocular skin started to diverge during the metamorphic climax and ocular skin appeared thicker and more stratified. Neutral mucins were the main glycoproteins produced by the goblet cells in skin during metamorphosis. Moreover, the number of goblet cells producing neutral mucins increased during metamorphosis and asymmetry in their abundance was observed between ocular and abocular skin. The increase in goblet cell number and their asymmetric abundance in skin was concomitant with the period that thyroid hormones (THs) increase and suggests that they may be under the control of these hormones. Several mucin transcripts were identified in metamorphosing halibut transcriptomes and Muc18 and Muc5AC were characteristic of the body skin. Na + , K + -ATPase positive (NKA) cells were observed in skin of all metamorphic stages but their number significantly decreased with the onset of metamorphosis. No asymmetry was observed between ocular and abocular skin in NKA cells. The morphological changes observed were linked to modified skin barrier function as revealed by modifications in its electrophysiological properties. However, the maturation of the skin functional characteristics preceded structural maturation and occurred at stage 8 prior to the metamorphic climax. Treatment of Atlantic halibut with the THs disrupter methimazole (MMI) affected the number of goblet cells producing neutral mucins and the NKA cells. The present study reveals that the asymmetric development of the skin in Atlantic halibut is TH sensitive and is associated with metamorphosis and that this barrier's functional properties mature earlier and are independent of metamorphosis.
Heyes, Andrew; Rowe, Christopher L; Conrad, Phillip
2014-01-01
We performed an experiment in which larval gray tree frogs (Hyla chrysoscelis) were raised through metamorphosis on diets increased with a suite of elements associated with coal combustion residues (silver [Ag], arsenic [As], cadmium [Cd], chromium [Cr], copper [Cu], mercury [Hg], lead [Pb], selenium [Se], vanadium [V], and zinc [Zn]) at "low" and "high" concentrations. We quantified accumulation of metals at three life stages (mid-larval development, initiation of metamorphosis, and completion of metamorphosis) as well as effects on survival, metabolic rate, size at metamorphosis, and duration and loss of weight during metamorphosis. Most elements were accumulated in a dose-dependent pattern by some or all life stages, although this was not the case for Hg. For most elements, larval body burdens exceeded those of later life stages in some or all treatments (control, low, or high). However for Se, As, and Hg, body burdens in control and low concentrations were increased in later compared with earlier life stages. A lack of dose-dependent accumulation of Hg suggests that the presence of high concentrations of other elements (possibly Se) either inhibited accumulation or increased depuration of Hg. The duration of metamorphosis (forelimb emergence through tail resorption) was lengthened in individuals exposed to the highest concentrations of elements, but there were no other statistically significant biological effects. This study shows that patterns of accumulation and possibly depuration of metals and trace elements are complex in animals possessing complex life cycles. Further study is required to determine specific interactions affecting these patterns, in particular which elements may be responsible for affecting accumulation or retention of Hg when organisms are exposed to complex mixtures of elements.
Itoh, Kae; Watanabe, Kohei; Wu, Xiaoming; Suzuki, Tohru
2010-07-01
Flounder metamorphosis, marked by eye migration, lateralized pigmentation, and tissue differentiation in the stomach and skeletal muscle, is stimulated by thyroid hormone (TH). It is known that tri-iodothyronine (T3) produced by iodothyronine deiodinase type-1 (Dio1) from thyroxine (T4) enters the blood, whereas T3 produced by Dio2 penetrates into the nucleus of the Dio2-expressing cells, and then Dio3 inactivates both T4 and T3. To better understand the distinct functions of these three deiodinases in T3 regulation during flounder metamorphosis, we examined the tissue expression patterns of dio1, dio2, and dio3 in larvae of the Japanese flounder, Paralichthys olivaceus, by section in situ hybridization (SISH). We found that each deiodinase is expressed in a spatially and temporally specific pattern. dio1 is expressed in liver parenchymal cells from pro-metamorphosis to early climax, while dio2 is expressed in limited regions of the eyes, tectum, and skeletal muscles from pro-metamorphosis to post-climax. Considering these findings together with reports on other vertebrates, we predict that the liver cells expressing dio1 supply T3 to the blood, and that this systemic T3 synchronizes metamorphosis of differentiating tissues throughout the larval body, whereas the eyes, tectum, and skeletal muscles autonomously produce additional T3 for local tissue differentiation. Finally, dio3 expression is detected in skeletal muscle and gastric gland blastemas, which both undergo marked tissue differentiation at metamorphic climax. We hypothesize that dio3 expression protects these tissues from basal T3 levels early in metamorphosis, ensuring, together with the T3 surge from the liver, the synchronization of tissue differentiation at metamorphic climax.
Gaietto, Kristina M; Rumschlag, Samantha L; Boone, Michelle D
2014-10-01
Pesticides are detectable in most aquatic habitats and have the potential to alter host-pathogen interactions. The amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), has been associated with amphibian declines around the world. However, Bd-associated declines are more prominent in some areas, despite nearly global distribution of Bd, suggesting other factors contribute to disease outbreaks. In a laboratory study, the authors examined the effects of 6 different isolates of Bd in the presence or absence of a pesticide (the insecticide carbaryl or the fungicide copper sulfate) to recently hatched Cope's gray treefrog (Hyla chrysoscelis) tadpoles reared through metamorphosis. The authors found the presence or absence of pesticides differentially altered the mass at metamorphosis of tadpoles exposed to different Bd isolates, suggesting that isolate could influence metamorphosis but not in ways expected based on origin of the isolate. Pesticide exposure had the strongest impact on metamorphosis of all treatment combinations. Whereas copper sulfate exposure reduced the length of the larval period, carbaryl exposure had apparent positive effects by increasing mass at metamorphosis and lengthening larval period, which adds to evidence that carbaryl can stimulate development in counterintuitive ways. The present study provides limited support to the hypothesis that pesticides can alter the response of tadpoles to isolates of Bd and that the insecticide carbaryl can alter developmental decisions. © 2014 SETAC.
Metamorphosis alters contaminants and chemical tracers in insects: implications for food webs.
Kraus, Johanna M; Walters, David M; Wesner, Jeff S; Stricker, Craig A; Schmidt, Travis S; Zuellig, Robert E
2014-09-16
Insects are integral to most freshwater and terrestrial food webs, but due to their accumulation of environmental pollutants they are also contaminant vectors that threaten reproduction, development, and survival of consumers. Metamorphosis from larvae to adult can cause large chemical changes in insects, altering contaminant concentrations and fractionation of chemical tracers used to establish contaminant biomagnification in food webs, but no framework exists for predicting and managing these effects. We analyzed data from 39 studies of 68 analytes (stable isotopes and contaminants), and found that metamorphosis effects varied greatly. δ(15)N, widely used to estimate relative trophic position in biomagnification studies, was enriched by ∼ 1‰ during metamorphosis, while δ(13)C used to estimate diet, was similar in larvae and adults. Metals and polycyclic aromatic hydrocarbons (PAHs) were predominantly lost during metamorphosis leading to ∼ 2 to 125-fold higher larval concentrations and higher exposure risks for predators of larvae compared to predators of adults. In contrast, manufactured organic contaminants (such as polychlorinated biphenyls) were retained and concentrated in adults, causing up to ∼ 3-fold higher adult concentrations and higher exposure risks to predators of adult insects. Both food web studies and contaminant management and mitigation strategies need to consider how metamorphosis affects the movement of materials between habitats and ecosystems, with special regard for aquatic-terrestrial linkages.
Cell tracking supports secondary gastrulation in the moon jellyfish Aurelia.
Gold, David A; Nakanishi, Nagayasu; Hensley, Nicholai M; Hartenstein, Volker; Jacobs, David K
2016-11-01
The moon jellyfish Aurelia exhibits a dramatic reorganization of tissue during its metamorphosis from planula larva to polyp. There are currently two competing hypotheses regarding the fate of embryonic germ layers during this metamorphosis. In one scenario, the original endoderm undergoes apoptosis and is replaced by a secondary endoderm derived from ectodermal cells. In the second scenario, both ectoderm and endoderm remain intact through development. In this study, we performed a pulse-chase experiment to trace the fate of larval ectodermal cells. We observed that prior to metamorphosis, ectodermal cells that proliferated early in larval development concentrate at the future oral end of the polyp. During metamorphosis, these cells migrate into the endoderm, extending all the way to the aboral portion of the gut. We therefore reject the hypothesis that larval endoderm remains intact during metamorphosis and provide additional support for the "secondary gastrulation" hypothesis. Aurelia appears to offer the first and only described case where a cnidarian derives its endoderm twice during normal development, adding to a growing body of evidence that germ layers can be dramatically reorganized in cnidarian life cycles.
Metamorphosis in solitary ascidians.
Karaiskou, Anthi; Swalla, Billie J; Sasakura, Yasunori; Chambon, Jean-Philippe
2015-01-01
Embryonic and postembryonic development in ascidians have been studied for over a century, but it is only in the last 10 years that the complex molecular network involved in coordinating postlarval development and metamorphosis has started to emerge. In most ascidians, the transition from the larval to the sessile juvenile/adult stage, or metamorphosis, requires a combination of environmental and endogenous signals and is characterized by coordinated global morphogenetic changes that are initiated by the adhesion of the larvae. Cloney was the first to describe cellular events of ascidians' metamorphosis in 1978 and only recently elements of the molecular regulation of this crucial developmental step have been revealed. This review aims to present a thorough view of this crucial developmental step by combining recent molecular data to the already established cellular events. © 2014 Wiley Periodicals, Inc.
Bender, Melissa Cui; Hu, Caroline; Pelletier, Chris; Denver, Robert J
2018-03-28
Many animal life histories entail changing feeding ecology, but the molecular bases for these transitions are poorly understood. The amphibian tadpole is typically a growth and dispersal life-history stage. Tadpoles are primarily herbivorous, and they capitalize on growth opportunities to reach a minimum body size to initiate metamorphosis. During metamorphic climax, feeding declines, at which time the gastrointestinal (GI) tract remodels to accommodate the carnivorous diet of the adult frog. Here we show that anorexigenic hypothalamic feeding controls are absent in the tadpole, but develop during metamorphosis concurrent with the production of the satiety signal leptin. Before metamorphosis there is a large increase in leptin mRNA in fat tissue. Leptin receptor mRNA increased during metamorphosis in the preoptic area/hypothalamus, the key brain region involved with the control of food intake and metabolism. This corresponded with an increase in functional leptin receptor, as evidenced by induction of socs3 mRNA and phosphorylated STAT3 immunoreactivity, and suppression of feeding behaviour after injection of recombinant frog leptin. Furthermore, we found that immunoneutralization of leptin in tadpoles at metamorphic climax caused them to resume feeding. The absence of negative regulation of food intake in the tadpole allows the animal to maximize growth prior to metamorphosis. Maturation of leptin-responsive neural circuits suppresses feeding during metamorphosis to facilitate remodelling of the GI tract. © 2018 The Author(s).
Smads and insect hemimetabolan metamorphosis.
Santos, Carolina G; Fernandez-Nicolas, Ana; Belles, Xavier
2016-09-01
In contrast with Drosophila melanogaster, practically nothing is known about the involvement of the TGF-β signaling pathway in the metamorphosis of hemimetabolan insects. To partially fill this gap, we have studied the role of Smad factors in the metamorphosis of the German cockroach, Blattella germanica. In D. melanogaster, Mad is the canonical R-Smad of the BMP branch of the TGF-β signaling pathway, Smox is the canonical R-Smad of the TGF-β/Activin branch and Medea participates in both branches. In insects, metamorphosis is regulated by the MEKRE93 pathway, which starts with juvenile hormone (JH), whose signal is transduced by Methoprene-tolerant (Met), which stimulates the expression of Krüppel homolog 1 (Kr-h1) that acts to repress E93, the metamorphosis trigger. In B. germanica, metamorphosis is determined at the beginning of the sixth (final) nymphal instar (N6), when JH production ceases, the expression of Kr-h1 declines, and the transcription of E93 begins to increase. The RNAi of Mad, Smox and Medea in N6 of B. germanica reveals that the BMP branch of the TGF-β signaling pathway regulates adult ecdysis and wing extension, mainly through regulating the expression of bursicon, whereas the TGF-β/Activin branch contributes to increasing E93 and decreasing Kr-h1 at the beginning of N6, crucial for triggering adult morphogenesis, as well as to regulating the imaginal molt timing. Copyright © 2016 Elsevier Inc. All rights reserved.
In Situ Observations of Snow Metamorphosis Acceleration Induced by Dust and Black Carbon
NASA Astrophysics Data System (ADS)
Schneider, A. M.; Flanner, M.
2017-12-01
Previous studies demonstrate the dependence of shortwave infrared (SWIR) reflectance on snow specific surface area (SSA) and others examine the direct darkening effect dust and black carbon (BC) deposition has on snow and ice-covered surfaces. The extent to which these light absorbing aerosols (LAAs) accelerate snow metamorphosis, however, is challenging to assess in situ as measurement techniques easily disturb snowpack. Here, we use two Near-Infrared Emitting Reflectance Domes (NERDs) to measure 1300 and 1550nm bidirectional reflectance factors (BRFs) of natural snow and experimental plots with added dust and BC. We obtain NERD measurements and subsequently collect and transport snow samples to the nearby U.S. Army Corps of Engineers' Cold Regions Research and Engineering Lab for micro computed tomography (micro-CT) analysis. Snow 1300 (1550) nm BRFs evolve from 0.6 (0.15) in fresh snow to 0.2 (0.03) after metamorphosis. Hourly-scale time evolving snow surface BRFs and SSA estimates from micro-CT reveal more rapid SWIR darkening and snow metamorphosis in contaminated versus natural plots. Cloudiness and high wind speeds can completely obscure these results if LAAs mobilize before absorbing enough radiant energy. These findings verify experimentally that dust and BC deposition can accelerate snow metamorphosis and enhance snow albedo feedback in sunny, calm weather conditions. Although quantifying the enhancement of snow albedo feedback induced by LAAs requires further surface temperature, solar irradiance, and impurity concentration measurements, this study provides experimental verification of positive feedback occurring where dust and BC accelerate snow metamorphosis.
Eto, Ko; Iwama, Tomoyuki; Tajima, Tatsuya; Abe, Shin-ichi
2012-10-01
Frog metamorphosis induced by thyroid hormone (TH) involves not only cell proliferation and differentiation in reconstituted organs such as limbs, but also apoptotic cell death in degenerated organs such as tails. However, the molecular mechanisms directing the TH-dependent cell fate determination remain unclear. We have previously identified from newts an RNA-binding protein (nRBP) acting as the regulator governing survival and death in germ cells during spermatogenesis. To investigate the molecular events leading the tail resorption during metamorphosis, we analyzed the expression, the functional role in apoptosis, and the regulation of xCIRP2, a frog homolog of nRBP, in tails of Xenopus laevis tadpoles. At the prometamorphic stage, xCIRP2 protein is expressed in fibroblast, epidermal, nerve, and muscular cells and localized in their cytoplasm. When spontaneous metamorphosis progressed, the level of xCIRP2 mRNA remained unchanged but the amount of the protein decreased. In organ cultures of tails at the prometamorphic stage, xCIRP2 protein decreased before their lengths shortened during TH-dependent metamorphosis. The inhibition of calpain or proteasome attenuated the TH-induced decrease of xCIRP2 protein in tails, impairing their regression. These results suggest that xCIRP2 protein is downregulated through calpain- and proteasome-mediated proteolysis in response to TH at the onset of metamorphosis, inducing apoptosis in tails and thereby degenerating them. Copyright © 2012 Elsevier Inc. All rights reserved.
A role for Lin-28 in growth and metamorphosis in Drosophila melanogaster.
González-Itier, Sergio; Contreras, Esteban G; Larraín, Juan; Glavic, Álvaro; Faunes, Fernando
2018-06-13
Insect metamorphosis has been a classic model to understand the role of hormones in growth and timing of developmental transitions. In addition to hormones, transitions in some species are regulated by genetic programs, such as the heterochronic gene network discovered in C. elegans. However, the functional link between hormones and heterochronic genes is not clear. The heterochronic gene lin-28 is involved in the maintenance of stem cells, growth and developmental timing in vertebrates. In this work, we used gain-of-function and loss-of-function experiments to study the role of Lin-28 in larval growth and the timing of metamorphosis of Drosophila melanogaster. During the late third instar stage, Lin-28 is mainly expressed in neurons of the central nervous system and in the intestine. Loss-of-function lin-28 mutant larvae are smaller and the larval-to-pupal transition is accelerated. This faster transition correlates with increased levels of ecdysone direct target genes such as Broad-Complex (BR-C) and Ecdysone Receptor (EcR). Overexpression of Lin-28 does not affect the timing of pupariation but most animals are not able to eclose, suggesting defects in metamorphosis. Overexpression of human Lin-28 results in delayed pupariation and the death of animals during metamorphosis. Altogether, these results suggest that Lin-28 is involved in the control of growth during larval development and in the timing and progression of metamorphosis. Copyright © 2017. Published by Elsevier B.V.
Whalan, Steve; Webster, Nicole S.; Negri, Andrew P.
2012-01-01
In sessile marine invertebrates, larval settlement is fundamental to population maintenance and persistence. Cues contributing to the settlement choices and metamorphosis of larvae have important implications for the success of individuals and populations, but cues mediating larval settlement for many marine invertebrates are largely unknown. This study assessed larval settlement in two common Great Barrier Reef sponges, Coscinoderma matthewsi and Rhopaloeides odorabile, to cues that enhance settlement and metamorphosis in various species of scleractinian coral larvae. Methanol extracts of the crustose coralline algae (CCA), Porolithon onkodes, corresponding to a range of concentrations, were used to determine the settlement responses of sponge larvae. Cnidarian neuropeptides (GLW-amide neuropeptides) were also tested as a settlement cue. Settlement in both sponge species was approximately two-fold higher in response to live chips of CCA and optimum concentrations of CCA extract compared to 0.2 µm filtered sea water controls. Metamorphosis also increased when larvae were exposed to GLW-amide neuropeptides; R. odorabile mean metamorphosis reached 42.0±5.8% compared to 16.0±2.4% in seawater controls and in C. matthewsi mean metamorphosis reached 68.3±5.4% compared to 36.7±3.3% in seawater controls. These results demonstrate the contributing role chemosensory communication plays in the ability of sponge larvae to identify suitable habitat for successful recruitment. It also raises the possibility that larvae from distinct phyla may share signal transduction pathways involved in metamorphosis. PMID:22295083
Metamorphosis of two amphibian species after chronic cadmium exposure in outdoor aquatic mesocosms
James, S.M.; Little, E.E.; Semlitsch, R.D.
2005-01-01
Amphibian larvae at contaminated sites may experience an alteration of metamorphic traits and survival compared to amphibians in uncontaminated conditions. Effects of chronic cadmium (Cd) exposure on the metamorphosis of American toads (Bufo americanus) and southern leopard frogs (Rana sphenocephala) were determined. The two species were reared separately from shortly after hatching through metamorphosis in outdoor mesocosms (1,325-L polyethylene cattle tanks) that simulated natural ponds and enhanced environmental realism relative to the laboratory. Both species exhibited a decrease in survival with increasing initial nominal aqueous Cd concentration. Cadmium treatment did not influence mass at metamorphosis for either species when survival was included as a covariate, but increased the age at metamorphosis for the American toads. The whole body Cd content of metamorphs increased with aqueous Cd treatment level for both species, and the American toads tended to possess more elevated residues. Cadmium quickly partitioned out of the water column and accumulated in and altered the abundance of the tadpoles' diet. Cadmium-contaminated sites may produce fewer metamorphs, and those that survive will metamorphose later and contain Cd. Interspecific differences in the response variables illustrate the importance of testing multiple species when assessing risk.
Dynamic mechanical oscillations during metamorphosis of the monarch butterfly
Pelling, Andrew E; Wilkinson, Paul R; Stringer, Richard; Gimzewski, James K
2008-01-01
The mechanical oscillation of the heart is fundamental during insect metamorphosis, but it is unclear how morphological changes affect its mechanical dynamics. Here, the micromechanical heartbeat with the monarch chrysalis (Danaus plexippus) during metamorphosis is compared with the structural changes observed through in vivo magnetic resonance imaging (MRI). We employ a novel ultra-sensitive detection approach, optical beam deflection, in order to measure the microscale motions of the pupae during the course of metamorphosis. We observed very distinct mechanical contractions occurring at regular intervals, which we ascribe to the mechanical function of the heart organ. Motion was observed to occur in approximately 15 min bursts of activity with frequencies in the 0.4–1.0 Hz range separated by periods of quiescence during the first 83 per cent of development. In the final stages, the beating was found to be uninterrupted until the adult monarch butterfly emerged. Distinct stages of development were characterized by changes in frequency, amplitude, mechanical quality factor and de/repolarization times of the mechanical pulsing. The MRI revealed that the heart organ remains functionally intact throughout metamorphosis but undergoes morphological changes that are reflected in the mechanical oscillation. PMID:18682363
Amphibian Population Sensitivity to Environmental and ...
Anticipating chronic effects of contaminant exposure on amphibian species is complicated both by toxicological and ecological uncertainty. Data for both chemical exposures and amphibian vital rates, including altered growth, are sparse. Developmental plasticity in amphibians further complicates evaluation of chemical impacts as metamorphosis is also influenced by other biotic and abiotic stressors, such as temperature, hydroperiod, predation, and conspecific density. Determining the effect of delayed tadpole development on survival through metamorphosis and subsequent recruitment must include possible effects of pond drying accelerating metamorphosis near the end of the larval stage. This model considers the combined influence of delayed onset of metamorphosis in a cohort as well as accelerated metamorphosis toward the end of the hydroperiod and determines the net influence of counteracting forces on tadpole development and survival. Amphibian populations with greater initial density dependence have less capacity for developmental plasticity and are therefore more vulnerable to delayed development and reduced hydroperiod. The consequential reduction in larval survival has a relatively greater impact on species with a shorter lifespan, allowing for fewer breeding seasons during which to successfully produce offspring. In response to risk assessment approaches that consider only survival and reproductive endpoints in population evaluation, we calculate conta
Zhou, Ying-Ying; Shao, Ran; Liang, Chuan-Cheng; Wang, Yong; Wang, Li-Wen
2009-08-01
To investigate the telencephalon developmental characteristics of Hynobius leehii, and enrich the research data of comparable neurobiology and nervous system development of amphibian. HE staining and Nissl staining methods were used to study the telencephalon histological structure of Hynobius leechii at both the metamorphosis and the adult phases, and to explore the developmental phases of telencephalon. The olfactory bulb could be roughly divided into 6 layers from lateral to medial. The lateral cerebral ventricles at the metamorphosis phase were smaller than those at the adult phase, and there were no clear borderlines between the primordial pallium and the primordial hippocampus, or between the primordial pallium and the primordial piriform area. Moreover, the cells in the primordial piriform area were more closely distributed than those in the primordial hippocampus or the primordial pallium. Compared with those at the adult phase, cells in nucleuses at the metamorphosis phase were larger in number and more closely distributed. The telencephalon of Hynobius leehii at the metamorphosis phase has generally formed the adult structure. However, it is still at a transition state of differentiation to maturity during the development of Hynobius leehii.
Precocious Metamorphosis in the Juvenile Hormone–Deficient Mutant of the Silkworm, Bombyx mori
Daimon, Takaaki; Kozaki, Toshinori; Niwa, Ryusuke; Kobayashi, Isao; Furuta, Kenjiro; Namiki, Toshiki; Uchino, Keiro; Banno, Yutaka; Katsuma, Susumu; Tamura, Toshiki; Mita, Kazuei; Sezutsu, Hideki; Nakayama, Masayoshi; Itoyama, Kyo; Shimada, Toru; Shinoda, Tetsuro
2012-01-01
Insect molting and metamorphosis are intricately governed by two hormones, ecdysteroids and juvenile hormones (JHs). JHs prevent precocious metamorphosis and allow the larva to undergo multiple rounds of molting until it attains the proper size for metamorphosis. In the silkworm, Bombyx mori, several “moltinism” mutations have been identified that exhibit variations in the number of larval molts; however, none of them have been characterized molecularly. Here we report the identification and characterization of the gene responsible for the dimolting (mod) mutant that undergoes precocious metamorphosis with fewer larval–larval molts. We show that the mod mutation results in complete loss of JHs in the larval hemolymph and that the mutant phenotype can be rescued by topical application of a JH analog. We performed positional cloning of mod and found a null mutation in the cytochrome P450 gene CYP15C1 in the mod allele. We also demonstrated that CYP15C1 is specifically expressed in the corpus allatum, an endocrine organ that synthesizes and secretes JHs. Furthermore, a biochemical experiment showed that CYP15C1 epoxidizes farnesoic acid to JH acid in a highly stereospecific manner. Precocious metamorphosis of mod larvae was rescued when the wild-type allele of CYP15C1 was expressed in transgenic mod larvae using the GAL4/UAS system. Our data therefore reveal that CYP15C1 is the gene responsible for the mod mutation and is essential for JH biosynthesis. Remarkably, precocious larval–pupal transition in mod larvae does not occur in the first or second instar, suggesting that authentic epoxidized JHs are not essential in very young larvae of B. mori. Our identification of a JH–deficient mutant in this model insect will lead to a greater understanding of the molecular basis of the hormonal control of development and metamorphosis. PMID:22412378
Matsuura, Kazuo; Shi, Yun-Bo
2012-01-01
Background The formation and/or maturation of adult organs in vertebrates often takes place during postembryonic development, a period around birth in mammals when thyroid hormone (T3) levels are high. The T3-dependent anuran metamorphosis serves as a model to study postembryonic development. Studies on the remodeling of the intestine during Xenopus (X.) laevis metamorphosis have shown that the development of the adult intestine involves de novo formation of adult stem cells in a process controlled by T3. On the other hand, X. tropicalis, highly related to X. laevis, offers a number of advantages for studying developmental mechanisms, especially at genome-wide level, over X. laevis, largely due to its shorter life cycle and sequenced genome. To establish X. tropicalis intestinal metamorphosis as a model for adult organogenesis, we analyzed the morphological and cytological changes in X. tropicalis intestine during metamorphosis. Methodology/Principal Findings We observed that in X. tropicalis, the premetamorphic intestine was made of mainly a monolayer of larval epithelial cells surrounded by little connective tissue except in the single epithelial fold, the typhlosole. During metamorphosis, the larval epithelium degenerates and adult epithelium develops to form a multi-folded structure with elaborate connective tissue and muscles. Interestingly, typhlosole, which is likely critical for adult epithelial development, is present along the entire length of the small intestine in premetamorphic tadpoles, in contrast to X. laevis, where it is present only in the anterior 1/3. T3-treatment induces intestinal remodeling, including the shortening of the intestine and the typhlosole, just like in X. laevis. Conclusions/Significance Our observations indicate that the intestine undergoes similar metamorphic changes in X. laevis and X. tropicalis, making it possible to use the large amount of information available on X. laevis intestinal metamorphosis and the genome sequence information and genetic advantages of X. tropicalis to dissect the pathways governing adult intestinal development. PMID:23071801
Thyroid hormones determine developmental mode in sand dollars (Echinodermata: Echinoidea).
Heyland, Andreas; Reitzel, Adam M; Hodin, Jason
2004-01-01
Evolutionary transitions in larval nutritional mode have occurred on numerous occasions independently in many marine invertebrate phyla. Although the evolutionary transition from feeding to nonfeeding development has received considerable attention through both experimental and theoretical studies, mechanisms underlying the change in life history remain poorly understood. Facultative feeding larvae (larvae that can feed but will complete metamorphosis without food) presumably represent an intermediate developmental mode between obligate feeding and nonfeeding. Here we show that an obligatorily feeding larva can be transformed into a facultative feeding larva when exposed to the thyroid hormone thyroxine. We report that larvae of the subtropical sand dollar Leodia sexiesperforata (Echinodermata: Echinoidea) completed metamorphosis without exogenous food when treated with thyroxine, whereas the starved controls (no thyroxine added) did not. Leodia sexiesperforata juveniles from the thyroxine treatment were viable after metamorphosis but were significantly smaller and contained less energy than sibling juveniles reared with exogenous food. In a second starvation experiment, using an L. sexiesperforata female whose eggs were substantially larger than in the first experiment (202+/-5 vs. 187+/-5 microm), a small percentage of starved L. sexiesperforata larvae completed metamorphosis in the absence of food. Still, thyroxine-treated larvae in this experiment completed metamorphosis faster and in much higher numbers than in the starved controls. Furthermore, starved larvae of the sand dollar Mellita tenuis, which developed from much smaller eggs (100+/-2 microm), did not complete metamorphosis either with or without excess thyroxine. Based on these data, and from recent experiments with other echinoids, we hypothesize that thyroxine plays a major role in echinoderm metamorphosis and the evolution of life history transitions in this group. We discuss our results in the context of current life history models for marine invertebrates, emphasizing the role of egg size, juvenile size, and endogenous hormone production for the evolution of nonfeeding larval development.
Boone, M.D.; Little, E.E.; Semlitsch, R.D.
2004-01-01
We examined the interactive effects of overwintered Bullfrog (Rana catesbeiana) tadpoles and pond hydroperiod on a community of larval amphibians in outdoor mesocosms including American Toads (Bufo americanus), Southern Leopard Frogs (Rana sphenocephala), and Spotted Salamanders (Ambystoma maculatum) - species within the native range of Bullfrogs. Spotted Salamanders and Southern Leopard Frogs were negatively influenced by the presence of overwintered Bullfrogs. Spotted Salamanders had shorter larval periods and slightly smaller masses at metamorphosis, and Southern Leopard Frogs had smaller masses at metamorphosis when reared with Bullfrogs than without. Presence of overwintered Bullfrogs, however, did not significantly affect American Toads. Longer pond hydroperiods resulted in greater survival, greater size at metamorphosis, longer larval periods, and later time until emergence of the first metamorphs for Southern Leopard Frog tadpoles and Spotted Salamander larvae. Our study demonstrated that overwintered Bullfrog tadpoles can respond to changing pond hydroperiods and can negatively impact metamorphosis of native amphibians.
Host and Symbiont Jointly Control Gut Microbiota during Complete Metamorphosis
Johnston, Paul R.; Rolff, Jens
2015-01-01
Holometabolous insects undergo a radical anatomical re-organisation during metamorphosis. This poses a developmental challenge: the host must replace the larval gut but at the same time retain symbiotic gut microbes and avoid infection by opportunistic pathogens. By manipulating host immunity and bacterial competitive ability, we study how the host Galleria mellonella and the symbiotic bacterium Enterococcus mundtii interact to manage the composition of the microbiota during metamorphosis. Disenabling one or both symbiotic partners alters the composition of the gut microbiota, which incurs fitness costs: adult hosts with a gut microbiota dominated by pathogens such as Serratia and Staphylococcus die early. Our results reveal an interaction that guarantees the safe passage of the symbiont through metamorphosis and benefits the resulting adult host. Host-symbiont “conspiracies” as described here are almost certainly widespread in holometobolous insects including many disease vectors. PMID:26544881
Effects of an insecticide on amphibians in large-scale experimental ponds
Boone, M.D.; Semlitsch, R.D.; Fairchild, J.F.; Rothermel, B.B.
2004-01-01
We examined the effects of the insecticide carbaryl on larval amphibian communities in large-scale experimental ponds. Tadpoles of two anurans, Woodhouse's toad (Bufo woodhousii) and southern leopard Frog (Rana sphenocephala), were reared in ponds (800 m3 volume) to determine the effects of tadpole density and carbaryl exposure on mass at metamorphosis and on time and survival to metamorphosis. Exposure to carbaryl significantly affected toads at metamorphosis, but not leopard frogs. Carbaryl exposure nearly doubled toad survival compared to controls; this effect may be attributable to an indirect effect of earbaryl increasing algal food resources. The competitive environment (i.e., density) and carbaryl exposure significantly affected the trade-off between mass and time to metamorphosis for toads. Our study is the first to demonstrate that in pond communities where predation and competition may be strong, short-lived insecticides can significantly alter the community dynamics of amphibians.
Niu, Donghong; Wang, Fei; Xie, Shumei; Sun, Fanyue; Wang, Ze; Peng, Maoxiao; Li, Jiale
2016-04-01
The razor clam Sinonovacula constricta is an important commercial species. The deficiency of developmental transcriptomic data is becoming the bottleneck of further researches on the mechanisms underlying settlement and metamorphosis in early development. In this study, de novo transcriptome sequencing was performed for S. constricta at different early developmental stages by using Illumina HiSeq 2000 paired-end (PE) sequencing technology. A total of 112,209,077 PE clean reads were generated. De novo assembly generated 249,795 contigs with an average length of 585 bp. Gene annotation resulted in the identification of 22,870 unigene hits against the NCBI database. Eight unique sequences related to metamorphosis were identified and analyzed using real-time PCR. The razor clam reference transcriptome would provide useful information on early developmental and metamorphosis mechanisms and could be used in the genetic breeding of shellfish.
Niethammer, Marc; Hart, Gabriel L.; Pace, Danielle F.; Vespa, Paul M.; Irimia, Andrei; Van Horn, John D.; Aylward, Stephen R.
2013-01-01
Standard image registration methods do not account for changes in image appearance. Hence, metamorphosis approaches have been developed which jointly estimate a space deformation and a change in image appearance to construct a spatio-temporal trajectory smoothly transforming a source to a target image. For standard metamorphosis, geometric changes are not explicitly modeled. We propose a geometric metamorphosis formulation, which explains changes in image appearance by a global deformation, a deformation of a geometric model, and an image composition model. This work is motivated by the clinical challenge of predicting the long-term effects of traumatic brain injuries based on time-series images. This work is also applicable to the quantification of tumor progression (e.g., estimating its infiltrating and displacing components) and predicting chronic blood perfusion changes after stroke. We demonstrate the utility of the method using simulated data as well as scans from a clinical traumatic brain injury patient. PMID:21995083
Novikov, V V; Sheĭman, I M; Iablokova, E V; Fesenko, E E
2014-01-01
It is shown that an exposure of pupae of the mealworm beetle Tenebrio molitor to the combined static (42 μT) and very weak alternating (250 nT) magnetic fields exerts different influence, depending on the frequency of the alternating magnetic field, on duration of metamorphosis processes in these insects. For instance, an exposure of pupae to weak combined magnetic fields, adjusted to the frequency of ion cyclotron resonance for glutaminic acid (4,4 Hz), stimulates metamorphosis process--a transitional stage from pupae to imago lasts shorter. An inhibiting effect was observed when adjusted to the frequency of ion cyclotron resonance for Ca2 (32,2 Hz). At some frequencies this effect is not seen. For instance, an exposure at a frequency of ion cyclotron resonance for K+ (16,5 Hz) exerts no noticeable effect on the duration of the pupal metamorphosis stage.
Indermaur, Lukas; Schmidt, Benedikt R; Tockner, Klement; Schaub, Michael
2010-07-01
Body size at metamorphosis is a critical trait in the life history of amphibians. Despite the wide-spread use of amphibians as experimental model organisms, there is a limited understanding of how multiple abiotic and biotic factors affect the variation in metamorphic traits under natural conditions. The aim of our study was to quantify the effects of abiotic and biotic factors on spatial variation in the body size of tadpoles and size at metamorphosis of the European common toad (Bufo b. spinosus). Our study population was distributed over the riverbed (active tract) and the fringing riparian forest of a natural floodplain. The riverbed had warm ponds with variable hydroperiod and few predators, whereas the forest had ponds with the opposite characteristics. Spatial variation in body size at metamorphosis was governed by the interactive effects of abiotic and biotic factors. The particular form of the interaction between water temperature and intraspecific tadpole density suggests that abiotic factors laid the foundation for biotic factors: intraspecific density decreased growth only at high temperature. Predation and intraspecific density jointly reduced metamorphic size. Interspecific density had a negligible affect on body size at metamorphosis, suggesting weak inter-anuran interactions in the larval stage. Population density at metamorphosis was about one to two orders of magnitudes higher in the riverbed ponds than in the forest ponds, mainly because of lower tadpole mortality. Based on our results, we conclude that ponds in the riverbed appear to play a pivotal role for the population because tadpole growth and survival is best in this habitat.
The Next Decade in Career Counseling: Cocoon Maintenance or Metamorphosis?
ERIC Educational Resources Information Center
Parmer, Twinet; Rush, Lee Covington
2003-01-01
Articulates the strengths, weaknesses, opportunities, threats, and future vision for career counseling using a cocoon maintenance or metamorphosis metaphor. Concludes with a vision for the future for the discipline and profession of career counseling. (Contains 40 references.) (GCP)
Debecker, Sara; Dinh, Khuong V; Stoks, Robby
2017-02-21
As contaminants are often more toxic at higher temperatures, predicting their impact under global warming remains a key challenge for ecological risk assessment. Ignoring delayed effects, synergistic interactions between contaminants and warming, and differences in sensitivity across species' ranges could lead to an important underestimation of the risks. We addressed all three mechanisms by studying effects of larval exposure to zinc and warming before, during, and after metamorphosis in Ischnura elegans damselflies from high- and low-latitude populations. By integrating these mechanisms into a single study, we could identify two novel patterns. First, during exposure zinc did not affect survival, whereas it induced mild to moderate postexposure mortality in the larval stage and at metamorphosis, and very strongly reduced adult lifespan. This severe delayed effect across metamorphosis was especially remarkable in high-latitude animals, as they appeared almost insensitive to zinc during the larval stage. Second, the well-known synergism between metals and warming was manifested not only during the larval stage but also after metamorphosis, yet notably only in low-latitude damselflies. These results highlight that a more complete life-cycle approach that incorporates the possibility of delayed interactions between contaminants and warming in a geographical context is crucial for a more realistic risk assessment in a warming world.
Kühn, Eduard R; De Groef, Bert; Grommen, Sylvia V H; Van der Geyten, Serge; Darras, Veerle M
2004-06-01
Entanglement of functions between the adrenal (or interrenal) and thyroid axis has been well described for all vertebrates and can be tracked down up to the level of gene expression. Both thyroid hormones and corticosteroids may induce morphological changes leading to metamorphosis climax in the neotenic Mexican axolotl (Ambystoma mexicanum). In a first series of experiments, metamorphosis was induced with an injection of 25 microg T(4) on three alternate days as judged by a decrease in body weight and tail height together with complete gill resorption. This injection also resulted in elevated plasma concentrations of T(3) and corticosterone. Previous results have indicated that the same dose of dexamethasone (DEX) is ineffective in this regard (Gen. Comp. Endocrinol. 127 (2002) 157). In a second series of experiments low doses of T(4) (0.5 microg) or DEX (5 microg) were ineffective to induce morphological changes. However, when these submetamorphic doses were injected together, morphological changes were observed within one week leading to complete metamorphosis. It is concluded that thyroid hormones combined with corticosteroids are essential for metamorphosis in the axolotl and that only high doses of either thyroid hormone or corticosteroid can induce morphological changes when injected separately.
Kühn, Eduard R; De Groef, Bert; Van der Geyten, Serge; Darras, Veerle M
2005-08-01
In the present study, morphological changes leading to complete metamorphosis have been induced in the neotenic axolotl Ambystoma mexicanum using a submetamorphic dose of T(4) together with an injection of corticotropin-releasing hormone (CRH). An injection of CRH alone is ineffective in this regard presumably due to a lack of thyrotropic stimulation. Using this low hormone profile for induction of metamorphosis, the deiodinating enzymes D2 and D3 known to be present in amphibians were measured in liver and brain 24h following an intraperitoneal injection. An injection of T(4) alone did not influence liver nor brain D2 and D3, but dexamethasone (DEX) or CRH alone or in combination with T(4) decreased liver D2 and D3. Brain D2 activity was slightly increased with a higher dose of DEX, though CRH did not have this effect. A profound synergistic effect occurred when T(4) and DEX or CRH were injected together, in the dose range leading to metamorphosis, increasing brain D2 activity more than fivefold. This synergistic effect was not found in the liver. It is concluded that brain T(3) availability may play an important role for the onset of metamorphosis in the neotenic axolotl.
2014-01-01
Anuran metamorphosis involves a complex series of tissue transformations that change an aquatic tadpole to a terrestrial frog and resembles the postembryonic perinatal period in mammals. Thyroid hormone (TH) plays a causative role in amphibian metamorphosis and its effect is mediated by TH receptors (TRs). Molecular analyses during Xenopus development have shown that unliganded TR recruits histone deacetylase (HDAC)-containing N-CoR/SMRT complexes and causes histone deacetylation at target genes while liganded TR leads to increased histone acetylations and altered histone methylations at target genes. Transgenic studies involving mutant TR-cofactors have shown that corepressor recruitment by unliganded TR is required to ensure proper timing of the onset of metamorphosis while coactivator levels influence the rate of metamorphic progression. In addition, a number of factors that can influence cellular free TH levels appear to contribute the timing of metamorphic transformations of different organs by regulating the levels of unliganded vs. liganded TR in an organ-specific manner. Thus, the recruitment of HDAC-containing corepressor complexes by unliganded TR likely controls both the timing of the initiation of metamorphosis and the temporal regulation of organ-specific transformations. Similar mechanisms likely mediate TR function in mammals as the maturation of many organs during postembryonic development is dependent upon TH and resembles organ metamorphosis in amphibians. PMID:23962846
Xu, Juan; Ke, Zhonghe; Xia, Jianhong; He, Fang; Bao, Baolong
2016-09-15
Flatfishes with more body height after metamorphosis should be better adapted to a benthic lifestyle. In this study, we quantified the changes in body height during metamorphosis in two flatfish species, Paralichthys olivaceus and Platichthys stellatus. The specific pattern of cell proliferation along the dorsal and ventral edge of the body to allow fast growth along the dorsal/ventral axis might be related to the change of body height. Thyroid hormone (T4 and T3) and its receptors showed distribution or gene expression patterns similar to those seen for the cell proliferation. 2-Mercapto-1-methylimidazole, an inhibitor of endogenous thyroid hormone synthesis, inhibited cell proliferation and decreased body height, suggesting that the change in body shape was dependent on the local concentration of thyroid hormone to induce cell proliferation. In addition, after treatment with 2-mercapto-1-methylimidazole, zebrafish larvae were also shown to develop a slimmer body shape. These findings enrich our knowledge of the role of thyroid hormone during flatfish metamorphosis, and the role of thyroid hormone during the change of body height during post-hatching development should help us to understand better the biology of metamorphosis in fishes. Copyright © 2016 Elsevier Inc. All rights reserved.
Metamorphosis enhances the effects of metal exposure on the mayfly, Centroptilum triangulifer
Wesner, Jeff S.; Kraus, Johanna M.; Schmidt, Travis S.; Walters, David M.; Clements, William H.
2014-01-01
The response of larval aquatic insects to stressors such as metals is used to assess the ecological condition of streams worldwide. However, nearly all larval insects metamorphose from aquatic larvae to winged adults, and recent surveys indicate that adults may be a more sensitive indicator of stream metal toxicity than larvae. One hypothesis to explain this pattern is that insects exposed to elevated metal in their larval stages have a reduced ability to successfully complete metamorphosis. To test this hypothesis we exposed late-instar larvae of the mayfly, Centroptilum triangulifer, to an aqueous Zn gradient (32–476 μg/L) in the laboratory. After 6 days of exposure, when metamorphosis began, larval survival was unaffected by zinc. However, Zn reduced wingpad development at concentrations above 139 μg/L. In contrast, emergence of subimagos and imagos tended to decline with any increase in Zn. At Zn concentrations below 105 μg/L (hardness-adjusted aquatic life criterion), survival between the wingpad and subimago stages declined 5-fold across the Zn gradient. These results support the hypothesis that metamorphosis may be a survival bottleneck, particularly in contaminated streams. Thus, death during metamorphosis may be a key mechanism explaining how stream metal contamination can impact terrestrial communities by reducing aquatic insect emergence.
Robin, Nicolas
2011-01-01
This paper demonstrates the importance of the reception and development of Goethe's metamorphosis of plants as a methodological and philosophical framework in the history of botanical theories. It proposes a focus on the textbooks written by the German botanist Ludwig Reichenbach and his first attempt to use Goethe's idea of metamorphosis of plants as fundamental to his natural system of plants published under the title 'Botany for Women', in German Botanik für Damen (1828). In this book, Reichenbach paid particular attention to Goethe's sensitive views on the essence of nature; he regarded Goethe's idea of metamorphosis in the plant kingdom as an ideal model to interpret connections of natural phenomena, in particular as a conceptual frame for a natural system. Furthermore, he aimed to develop the philosophical statement of the metamorphosis, in which he called for nature-philosophical conceptions in order to materialize his representation of plant "affinities," and of a kind of "ontogeny" of the whole plant kingdom. This paper demonstrates that, between speculative views and empirical attempts, the extent to which Reichenbach actually belonged to a new "school" of thought, which left its mark on the history and philosophy of botany.
Ligand binding pocket function of drosophila USP is necessary for metamorphosis
USDA-ARS?s Scientific Manuscript database
The widely accepted paradigm that epoxidized methyl farnesoates (“juvenile hormones,” JHs) are the principle sesquiterpenoid hormones regulating insect metamorphosis was assessed in Drosophila melanogaster. GC-MS analysis showed that methyl farnesoate, rather than methyl epoxyfarnesoate (= JH III), ...
Organizational Metamorphosis in Space Research and Development.
ERIC Educational Resources Information Center
Tompkins, Phillip K.
1978-01-01
The communicative, and therefore organizational and managerial, aspects of the Marshall Space Flight Center's (MSFC) metamorphosis from Saturn V to Skylab are analyzed. MSFC's consistent successes are attributed to the organization's commitment to communication systems, its technical integrity, and its single-minded purpose. (JMF)
Hwang, Dae-Sik; Han, Jeonghoon; Won, Eun-Ji; Kim, Duck-Hyun; Jeong, Chang-Bum; Hwang, Un-Ki; Zhou, Bingsheng; Choe, Joonho; Lee, Jae-Seong
2016-08-01
2,2',4,4'-Tetrabromodiphenyl ether (BDE-47) is a persistent organic pollutant (POP) in marine environments. Despite its adverse effects (e.g. developmental retardation) in ecdysozoa, the effects of BDE-47 on transcription of ecdysteroid signaling pathway-involved-nuclear receptor (NR) genes and metamorphosis-related genes have not been examined in copepods. To examine the deleterious effect of BDE-47 on copepod molting and metamorphosis, BDE-47 was exposed to the harpacticoid copepod Tigriopus japonicus, followed by monitoring developmental retardation and transcriptional alteration of NR genes. The developmental rate was significantly inhibited (P<0.05) in response to BDE-47 and the agricultural insecticide gamma-hexachlorocyclohexane. Conversely, the ecdysteroid agonist ponasterone A (PoA) led to decreased molting and metamorphosis time (P<0.05) from the nauplius stage to the adult stage. In particular, expression profiles of all NR genes were the highest at naupliar stages 5-6 except for SVP, FTZ-F1, and HR96 genes. Nuclear receptor USP, HR96, and FTZ-F1 genes also showed significant sex differences (P<0.05) in gene expression levels over different developmental stages, indicating that these genes may be involved in vitellogenesis. NR gene expression patterns showed significant decreases (P<0.05) in response to BDE-47 exposure, implying that molting and metamorphosis retardation is likely associated with NR gene expression. In summary, BDE-47 leads to molting and metamorphosis retardation and suppresses transcription of NR genes. This information will be helpful in understanding the molting and metamorphosis delay mechanism in response to BDE-47 exposure. Copyright © 2016 Elsevier B.V. All rights reserved.
DEVELOPMENT OF AN AMPHIBIAN METAMORPHOSIS MODEL FOR DETECTING THYROID AXIS DISRUPTION
Metamorphosis in Xenopus laevis represents an elaborate process of post-embryonic development which is thyroid hormone (TH) dependent. The development of a functional thyroid axis and the responses of tissues to different TH concentrations are well defined in this species, provid...
In support of an Organization for Economic Cooperation and Development (OECD) Amphibian Metamorphosis Assay (AMA) Test Guideline for the detection of substances that interact with the hypothalamic-pituitary-thyroid axis, a document was developed that provides a standardized appro...
Dong, Yifei; Zhang, Xiaona; Tian, Hua; Li, Xiang; Wang, Wei; Ru, Shaoguo
2017-06-15
This study examined the influence of environmental concentrations of Aroclor 1254 (10, 100, and 1000ng/L) on metamorphosis of Paralichthys olivaceus, and analyzed the mechanisms in relation to thyroid disruption. Results showed that 100 and 1000ng/L Aroclor 1254 delayed metamorphosis and that 1000ng/L Aroclor 1254 caused abnormal morphology. Thyroxine and triiodothyronine levels in the control group were significantly elevated at metamorphic climax, but treatment with 100 and 1000ng/L delayed the increase in thyroid hormones (THs) and retarded metamorphic processes. In larvae exposed to 1000ng/L Aroclor 1254, TH levels at metamorphic climax were significantly lower than those of the control group at the same metamorphic stage. We suggest that the effects of Aroclor 1254 on larval metamorphosis can be explained by disruption of thyroid homeostasis. These findings provide a new perspective and biological model for thyroid-disrupting chemicals (TDCs) screening and investigating interference of thyroid function by TDCs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Yongxin; Kikuchi, Mani; Li, Xueyan; Gao, Qionghua; Xiong, Zijun; Ren, Yandong; Zhao, Ruoping; Mao, Bingyu; Kondo, Mariko; Irie, Naoki; Wang, Wen
2018-01-01
Sea cucumbers, one main class of Echinoderms, have a very fast and drastic metamorphosis process during their development. However, the molecular basis under this process remains largely unknown. Here we systematically examined the gene expression profiles of Japanese common sea cucumber (Apostichopus japonicus) for the first time by RNA sequencing across 16 developmental time points from fertilized egg to juvenile stage. Based on the weighted gene co-expression network analysis (WGCNA), we identified 21 modules. Among them, MEdarkmagenta was highly expressed and correlated with the early metamorphosis process from late auricularia to doliolaria larva. Furthermore, gene enrichment and differentially expressed gene analysis identified several genes in the module that may play key roles in the metamorphosis process. Our results not only provide a molecular basis for experimentally studying the development and morphological complexity of sea cucumber, but also lay a foundation for improving its emergence rate. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hirose, M.; Yamamoto, H.; Nonaka, M.
2008-06-01
Coral planulae settle, then metamorphose and form polyps. This study examined the morphological process of metamorphosis from planulae into primary polyps in the scleractinian corals Acropora nobilis and Acropora microphthalma, using the cnidarian neuropeptide Hym-248 . These two species release eggs that do not contain Symbiodinium. The mode of acquisition of freshly isolated Symbiodinium (zooxanthellae) (FIZ) by the non-symbiotic polyp was also examined. Non-Hym-248 treated swimming Acropora planulae did not develop blastopore, mesenteries or coelenteron until the induction of metamorphosis 16 days after fertilization. The oral pore was formed by invagination of the epidermal layer after formation of the coelenteron in metamorphosing polyps. At 3 days after settlement and metamorphosis, primary polyps exposed to FIZ established symbioses with the Symbiodinium. Two-four days after exposure to FIZ, the distribution of Symbiodinium was limited to the gastrodermis of the pharynx and basal part of the polyps. Eight-ten days after exposure to FIZ, Symbiodinium were present in gastrodermal cells throughout the polyps.
Exogenous stress hormones alter energetic and nutrient costs of development and metamorphosis.
Kirschman, Lucas J; McCue, Marshall D; Boyles, Justin G; Warne, Robin W
2017-09-15
Variation in environmental conditions during larval life stages can shape development during critical windows and have lasting effects on the adult organism. Changes in larval developmental rates in response to environmental conditions, for example, can trade off with growth to determine body size and condition at metamorphosis, which can affect adult survival and fecundity. However, it is unclear how use of energy and nutrients shape trade-offs across life-stage transitions because no studies have quantified these costs of larval development and metamorphosis. We used an experimental approach to manipulate physiological stress in larval amphibians, along with respirometry and 13 C-breath testing to quantify the energetic and nutritional costs of development and metamorphosis. Central to larval developmental responses to environmental conditions is the hypothalamic-pituitary-adrenal/interrenal (HPA/I) axis, which regulates development, as well as energy homeostasis and stress responses across many taxa. Given these pleiotropic effects of HPA/I activity, manipulation of the HPA/I axis may provide insight into costs of metamorphosis. We measured the energetic and nutritional costs across the entire larval period and metamorphosis in a larval amphibian exposed to exogenous glucocorticoid (GC) hormones - the primary hormone secreted by the HPA/I axis. We measured metabolic rates and dry mass across larval ontogeny, and quantified lipid stores and nutrient oxidation via 13 C-breath testing during metamorphosis, under control and GC-exposed conditions. Changes in dry mass match metamorphic states previously reported in the literature, but dynamics of metabolism were influenced by the transition from aquatic to terrestrial respiration. GC-treated larvae had lower dry mass, decreased fat stores and higher oxygen consumption during stages where controls were conserving energy. GC-treated larvae also oxidized greater amounts of 13 C-labelled protein stores. These results provide evidence for a proximate cause of the physiological trade-off between larval growth and development, and provide insight into the energetic and nutrient costs that shape fitness trade-offs across life stages. © 2017. Published by The Company of Biologists Ltd.
USDA-ARS?s Scientific Manuscript database
Metamorphosis is an important developmental stage for holometabolous insects, during which adult morphology and physiology are established. Proper development relies on optimal body temperatures, and natural ambient temperature (Ta) fluctuations, especially in spring or in northern latitudes, could ...
Amphibian Metamorphosis: A Sensitive Life Stage to Chemical and Non-chemical Stressors
Amphibian metamorphosis is a dynamic period of post-embryonic development which transforms the larval anuran into the juvenile. The body structure is remodeled through a variety of processes which may be perturbed by exposure to chemicals as well as other environmental stressors....
Serum thyroid hormone (TH) concentrations in anuran larvae rise rapidly during metamorphosis. Such a rise in an adult anuran would inevitably trigger a negative feedback response resulting in decreased synthesis and secretion of thyroid-stimulating hormone (TSH) by the pituitary....
Wesner, Jeff S.; Walters, David; Schmidt, Travis S.; Kraus, Johanna M.; Stricker, Craig A.; Clements, William H.; Wolf, Ruth E.
2017-01-01
Insect metamorphosis often results in substantial chemical changes that can alter contaminant concentrations and fractionate isotopes. We exposed larval mayflies (Baetis tricaudatus) and their food (periphyton) to an aqueous zinc gradient (3-340 µg Zn/l) and measured zinc concentrations at different stages of metamorphosis: larval, subimago, and imago. We also measured changes in stable isotopes (δ15N and δ13C) in unexposed mayflies. Larval zinc concentrations were positively related to aqueous zinc, increasing 9-fold across the exposure gradient. Adult zinc concentrations were also positively related to aqueous zinc, but were 7-fold lower than larvae. This relationship varied according to adult substage and sex. Tissue concentrations in female imagoes were not related to exposure concentrations, but the converse was true for all other stage-by-sex combinations. Metamorphosis also increased δ15N by ~0.8‰, but not δ13C. Thus, the main effects of metamorphosis on insect chemistry were large declines in zinc concentrations coupled with increased δ15N signatures. For zinc, this change was largely consistent across the aqueous exposure gradient. However, differences among sexes and stages suggest that caution is warranted when using nitrogen isotopes or metal concentrations measured in one insect stage (e.g. larvae) to assess risk to wildlife that feed on subsequent life stages (e.g. adults).
Wesner, Jeff S; Walters, David M; Schmidt, Travis S; Kraus, Johanna M; Stricker, Craig A; Clements, William H; Wolf, Ruth E
2017-02-21
Insect metamorphosis often results in substantial chemical changes that can alter contaminant concentrations and fractionate isotopes. We exposed larval mayflies (Baetis tricaudatus) and their food (periphyton) to an aqueous zinc gradient (3-340 μg Zn/l) and measured zinc concentrations at different stages of metamorphosis: larval, subimago, and imago. We also measured changes in stable isotopes (δ 15 N and δ 13 C) in unexposed mayflies. Larval zinc concentrations were positively related to aqueous zinc, increasing 9-fold across the exposure gradient. Adult zinc concentrations were also positively related to aqueous zinc, but were 7-fold lower than larvae. This relationship varied according to adult substage and sex. Tissue concentrations in female imagoes were not related to exposure concentrations, but the converse was true for all other stage-by-sex combinations. Metamorphosis also increased δ 15 N by ∼0.8‰, but not δ 13 C. Thus, the main effects of metamorphosis on insect chemistry were large declines in zinc concentrations coupled with increased δ 15 N signatures. For zinc, this change was largely consistent across the aqueous exposure gradient. However, differences among sexes and stages suggest that caution is warranted when using nitrogen isotopes or metal concentrations measured in one insect stage (e.g., larvae) to assess risk to wildlife that feed on subsequent life stages (e.g., adults).
USDA-ARS?s Scientific Manuscript database
his study was undertaken to determine the retention of Salmonella through Alphitobius diaperinus metamorphosis and the contribution of defecation to external contamination. Adults and larvae were exposed to a tagged Salmonella enterica and evaluated for external elimination. Each day for three wee...
Metamorphosis: Play, Spirituality and the Animal
ERIC Educational Resources Information Center
Bone, Jane
2010-01-01
Animal- and bird-becoming is an aspect of play as metamorphosis connected to spirituality in early childhood settings. The reconceptualisation of play presented here is supported by research that explored the spiritual experiences of young children in different early childhood contexts. Qualitative case study research carried out in Aotearoa New…
EVIDENCE FOR ACCELERATED METAMORPHOSIS IN BULLFROG (RANA CATESBIEANA) TADPOLES IN AN EPHEMERAL POND
It has been widely accepted that time to metamorphosis for non-native bullfrog tadpoles in the Pacific Northwest is greater than one year. We surveyed 22 ponds within the EE Wilson Reserve (Benton County, Oregon) for bullfrog tadpoles and metamorphs from April through September, ...
USDA-ARS?s Scientific Manuscript database
Ecologists use stable isotopes to infer diets and trophic levels of animals in food webs, yet some assumptions underlying these inferences have not been thoroughly tested. We used laboratory-reared colonies of Solenopsis invicta Buren (Formicidae: Solenopsidini) to test the effects of metamorphosis,...
USDA-ARS?s Scientific Manuscript database
The alfalfa leafcutting bee, Megachile rotundata, undergoes metamorphosis in the spring when temperatures can be highly variable. It is unknown how cold tolerance varies across metamorphosis. We found earlier stages were more tolerant to cold exposure than later stages. Furthermore, we found exposur...
ERIC Educational Resources Information Center
Mahmoudi, Yazdan
2016-01-01
The present paper is supposed to compare and contrast three of these masterpieces written the Renaissance period. The epyllions under study are Christopher Marlowe's "Hero and Leander," Thomas Lodge's "Scylla's Metamorphosis" and Francis Beaumont's "Salmacis and Hermaphroditus." Bush believes that "the influence…
Micro-computed tomography of pupal metamorphosis in the solitary bee Megachile rotundata
USDA-ARS?s Scientific Manuscript database
Insect metamorphosis involves a complex change in form and function, but most of these changes are internal and treated as a black box. In this study, we examined development of the solitary bee, Megachile rotundata, using micro-computed tomography (µCT) and digital volume analysis. We describe deve...
Evidence for early metamorphosis of sea lampreys in the Chippewa River, Michigan
Morkert, Sidney B.; Swink, William D.; Seelye, James G.
1998-01-01
We determined age at metamorphosis to the juvenile or parasitic phase for sea lampreysPetromyzon marinus in a highly productive Great Lakes tributary to determine if the age at metamorphosis was earlier than expected. Ages determined from statoliths, a structure analogous to otoliths in teleost fishes, indicated that many sea lampreys collected from the Chippewa River, Michigan, in September 1995 were undergoing metamorphosis at age 2, at least 1 year earlier than previously observed. In all, 141 newly metamorphosed lampreys were examined, and 81% were estimated to be only 2 years old. The length-frequency distribution of newly metamorphosed sea lampreys in the Chippewa River also indicated the possibility of metamorphsis at age 2, but to a lesser extent than indicated by statolith aging. The Chippewa River is a highly productive stream that might require more frequent treatment than previously suspected. More careful examination of other highly productive streams is needed to determine if, and to what extent, sea lampreys metamorphose at age 2 in the Chippewa River and other Great Lakes tributaries.
Nonreproductive role of gonadotropin-releasing hormone in the control of ascidian metamorphosis.
Kamiya, Chisato; Ohta, Naoyuki; Ogura, Yosuke; Yoshida, Keita; Horie, Takeo; Kusakabe, Takehiro G; Satake, Honoo; Sasakura, Yasunori
2014-12-01
Gonadotropin-releasing hormones (GnRHs) are neuropeptides that play central roles in the reproduction of vertebrates. In the ascidian Ciona intestinalis, GnRHs and their receptors are expressed in the nervous systems at the larval stage, when animals are not yet capable of reproduction, suggesting that the hormones have non-reproductive roles. We showed that GnRHs in Ciona are involved in the animal's metamorphosis by regulating tail absorption and adult organ growth. Absorption of the larval tail and growth of the adult organs are two major events in the metamorphosis of ascidians. When larvae were treated with GnRHs, they completed tail absorption more frequently than control larvae. cAMP was suggested to be a second messenger for the induction of tail absorption by GnRHs. tGnRH-3 and tGnRH-5 (the "t" indicates "tunicate") inhibited the growth of adult organs by arresting cell cycle progression in parallel with the promotion of tail absorption. This study provides new insights into the molecular mechanisms of ascidian metamorphosis conducted by non-reproductive GnRHs. © 2014 Wiley Periodicals, Inc.
Kuleesha, Yadav; Puah, Wee Choo; Wasser, Martin
2016-02-01
Genes controlling muscle size and survival play important roles in muscle wasting diseases. In Drosophila melanogaster metamorphosis, larval abdominal muscles undergo two developmental fates. While a doomed population is eliminated by cell death, another persistent group is remodelled and survives into adulthood. To identify and characterize genes involved in the development of remodelled muscles, we devised a workflow consisting of in vivo imaging, targeted gene perturbation and quantitative image analysis. We show that inhibition of TOR signalling and activation of autophagy promote developmental muscle atrophy in early, while TOR and yorkie activation are required for muscle growth in late pupation. We discovered changes in the localization of myonuclei during remodelling that involve anti-polar migration leading to central clustering followed by polar migration resulting in localization along the midline. We demonstrate that the Cathepsin L orthologue Cp1 is required for myonuclear clustering in mid, while autophagy contributes to central positioning of nuclei in late metamorphosis. In conclusion, studying muscle remodelling in metamorphosis can provide new insights into the cell biology of muscle wasting.
A model of muscle atrophy based on live microscopy of muscle remodelling in Drosophila metamorphosis
Kuleesha, Yadav; Puah, Wee Choo; Wasser, Martin
2016-01-01
Genes controlling muscle size and survival play important roles in muscle wasting diseases. In Drosophila melanogaster metamorphosis, larval abdominal muscles undergo two developmental fates. While a doomed population is eliminated by cell death, another persistent group is remodelled and survives into adulthood. To identify and characterize genes involved in the development of remodelled muscles, we devised a workflow consisting of in vivo imaging, targeted gene perturbation and quantitative image analysis. We show that inhibition of TOR signalling and activation of autophagy promote developmental muscle atrophy in early, while TOR and yorkie activation are required for muscle growth in late pupation. We discovered changes in the localization of myonuclei during remodelling that involve anti-polar migration leading to central clustering followed by polar migration resulting in localization along the midline. We demonstrate that the Cathepsin L orthologue Cp1 is required for myonuclear clustering in mid, while autophagy contributes to central positioning of nuclei in late metamorphosis. In conclusion, studying muscle remodelling in metamorphosis can provide new insights into the cell biology of muscle wasting. PMID:26998322
NASA Astrophysics Data System (ADS)
Zhang, Xiangjing; Yang, Zhihui; Cai, Zhonghua
2008-08-01
Abalone Haliotis diversicolor supertexta is an important economic mollusk. The settlement and metamorphosis are two critical stages during its development period, which has direct influence on abalone survival and production. The influence of reactive oxygen species (hydrogen peroxide) on abalone embryo and juvenile development were examined in this study. Larvae of Haliotis diversicolor supertexta were induced to settlement and metamorphose by exposure to seawater supplemented with hydrogen peroxide. They had the best performance at 800 μmol/L. The concentration of 1 000 μmol/L or higher was toxic to the larvae, as the larvae could settle down only at benthic diatom plates without complete metamorphosis. In addition, H2O2 adding time was critical to the larval performance. 24h after two-day post-fertilization was proved to be the optimal adding time. In this paper, two action mechanisms of hydrogen peroxide are discussed: (1) hydrogen peroxide has direct toxicity to ciliated cells, thus cause apoptosis; (2) hydrogen peroxide, as a product from catecholamines’ autoxidation process in vivo, can reverse this process to produce neuro-transmitters to induce abalone metamorphosis.
Boone, M.D.; Bridges, C.M.
2003-01-01
The majority of studies on pesticide impacts have evaluated the effects of single exposures. However, multiple exposures to a pesticide may be more prevalent. The objective of our study was to determine how multiple exposures versus single exposure at different times during development affected survival to metamorphosis, tadpole survival, tadpole mass, and tadpole developmental stage of green frog (Rana clamitans) tadpoles reared at low and high density in outdoor cattle tank ponds. Tadpoles were exposed to carbaryl zero, one, two, or three times at 14-d intervals. We applied single doses of carbaryl at one of three times, specifically during early, mid, or late development. Overall, we found that multiple exposures had a greater impact than single exposures during development. More individuals reached metamorphosis in ponds exposed to multiple doses of carbaryl compared with controls, indicating that the presence of carbaryl stimulated metamorphosis. The presence of carbaryl in the aquatic environment also resulted in more developed tadpoles compared with controls. Tadpoles in control ponds did not reach metamorphosis and were less developed than individuals exposed to carbaryl; this effect indicates that, under ideal conditions, green frogs could overwinter in ponds so that greater size could be attained before metamorphosis in the following spring or summer. Our study demonstrated the importance of including realistic application procedures when evaluating the effects of a pesticide and that multiple exposures to a short-lived pesticide are more likely to affect an amphibian population.
Denver, R J
1997-04-01
Environmentally induced phenotypic plasticity allows developing organisms to respond adaptively to changes in their habitat. Desert amphibians have evolved traits which allow successful development in unpredictable environments. Tadpoles of these species can accelerate metamorphosis as their pond dries, thus escaping mortality in the larval habitat. This developmental response can be replicated in the laboratory, which allows elucidation of the underlying physiological mechanisms. Here I demonstrate a link between a classical neurohormonal stress pathway (involving corticotropin-releasing hormone, CRH) and the developmental response to habitat desiccation. Injections of CRH-like peptides accelerated metamorphosis in western spadefoot toad tadpoles. Conversely, treatment with two CRH antagonists, the CRH receptor antagonist alpha-helical CRH(9-41) and anti-CRH serum, attenuated the developmental acceleration induced by habitat desiccation. Tadpoles subjected to habitat desiccation exhibited elevated hypothalamic CRH content at the time when they responded developmentally to the declining water level. CRH injections elevated whole-body thyroxine, triiodothyronine, and corticosterone content, the primary hormonal regulators of metamorphosis. In contrast, alpha-helical CRH(9-41) reduced thyroid activity. These results support a central role for CRH as a neurohormonal transducer of environmental stimuli into the endocrine response which modulates the rate of metamorphosis. Because in mammals, increased fetal/placental CRH production may initiate parturition, and CRH has been implicated in precipitating preterm birth arising from fetal stress, this neurohormonal pathway may represent a phylogenetically ancient developmental regulatory system that allows the organism to escape an unfavorable larval/fetal habitat.
Shiba, Hajime; Yabu, Takeshi; Sudayama, Makoto; Mano, Nobuhiro; Arai, Naoto; Nakanishi, Teruyuki; Hosono, Kuniaki
2016-04-15
To elucidate the degradation process of the posterior silk gland during metamorphosis of the silkworm ITALIC! Bombyx mori, tissues collected on the 6th day after entering the 5th instar (V6), prior to spinning (PS), during spinning (SP) and after cocoon formation (CO) were used to analyze macroautophagy, chaperone-mediated autophagy (CMA) and the adenosine triphosphate (ATP)-dependent ubiquitin proteasome. Immediately after entering metamorphosis stage PS, the levels of ATP and phosphorylated p70S6 kinase protein decreased spontaneously and continued to decline at SP, followed by a notable restoration at CO. In contrast, phosphorylated AMP-activated protein kinase α (AMPKα) showed increases at SP and CO. Most of the Atg8 protein was converted to form II at all stages. The levels of ubiquitinated proteins were high at SP and CO, and low at PS. The proteasome activity was high at V6 and PS but low at SP and CO. In the isolated lysosome fractions, levels of Hsc70/Hsp70 protein began to increase at PS and continued to rise at SP and CO. The lysosomal cathepsin B/L activity showed a dramatic increase at CO. Our results clearly demonstrate that macroautophagy occurs before entering the metamorphosis stage and strongly suggest that the CMA pathway may play an important role in the histolysis of the posterior silk gland during metamorphosis. © 2016. Published by The Company of Biologists Ltd.
Corticosteroid signaling in frog metamorphosis.
Kulkarni, Saurabh S; Buchholz, Daniel R
2014-07-01
Stress in fetal and larval life can impact later health and fitness in humans and wildlife. Long-term effects of early life stress are mediated by altered stress physiology induced during the process of relaying environmental effects on development. Amphibian metamorphosis has been an important model system to study the role of hormones in development in an environmental context. Thyroid hormone (TH) is necessary and sufficient to initiate the dramatic morphological and physiological changes of metamorphosis, but TH alone is insufficient to complete metamorphosis. Other hormones, importantly corticosteroid hormones (CSs), influence the timing and nature of post-embryonic development. Stressors or treatments with CSs delay or accelerate metamorphic change, depending on the developmental stage of treatment. Also, TH and CSs have synergistic, antagonistic, and independent effects on gene regulation. Importantly, the identity of the endogenous corticosteroid hormone or receptor underlying any gene induction or remodeling event has not been determined. Levels of both CSs, corticosterone and aldosterone, peak at metamorphic climax, and the corticosteroid receptors, glucocorticoid and mineralocorticoid receptors, have wide expression distribution among tadpole tissues. Conclusive experiments to identify the endogenous players have been elusive due to difficulties in experimental control of corticosteroid production and signaling. Current data are consistent with the hypothesis that the two CSs and their receptors serve largely overlapping functions in regulating metamorphosis and synergy with TH. Knowledge of the endogenous players is critical to understanding the basic mechanisms and significance of corticosteroid action in regulating post-embryonic development in environmental contexts. Copyright © 2014 Elsevier Inc. All rights reserved.
Fong, Peter P; Thompson, Lucas B; Carfagno, Gerardo L F; Sitton, Andrea J
2016-09-01
Nanoparticles are environmental contaminants of emerging concern. Exposure to engineered nanoparticles has been shown to have detrimental effects on aquatic organisms. The authors synthesized gold nanoparticles (18.1 ± 3.5 nm) and tested their effects on time to and weight at metamorphosis in wood frog (Lithobates sylvaticus) tadpoles, a species known to be sensitive to environmental stressors. Continuous exposure to all concentrations of gold nanoparticles (0.05 pM, 0.5 pM, and 5 pM in particles) for up to 55 d significantly reduced time to metamorphosis by as much as an average of 3 d (p < 0.05). However, exposure to gold nanoparticles had no effect on tadpole mass at metamorphosis. The approximately 18-nm gold nanoparticles used were metastable in dechlorinated tap water, resulting in a change in surface charge and aggregation over time, leading to negatively charged aggregates that were on the order of 60 nm to 110 nm. Nanoparticle aggregation could exacerbate the effect on time to metamorphosis. To the authors' knowledge, the present study is the first report on the effect of engineered nanoparticles of any kind on life-history variables in an amphibian, a taxonomic group that has been declining globally for at least 25 yr. Environ Toxicol Chem 2016;35:2304-2310. © 2016 SETAC. © 2016 SETAC.
Effects of copper on growth, metamorphosis and endocrine disruption of Bufo gargarizans larvae.
Wang, Chao; Liang, Gang; Chai, Lihong; Wang, Hongyuan
2016-01-01
Chinese toad (Bufo gargarizans) tadpoles were exposed to copper (1, 6.4, 32 and 64μgL(-1) copper) from the beginning of larval period through completion of metamorphosis. We examined the effects of chronic copper exposure on mortality, growth, time to metamorphosis, tail resorption time, body size at the metamorphic climax (Gs 42) and completion of metamorphosis (Gs 46) and thyroid gland histology. In addition, type 2 and 3 iodothyronine deiodinase (Dio2 and Dio3), thyroid hormone receptors (TRα and TRβ) mRNA levels were also measured to assess disruption of TH synthesis. Our result showed that 6.4-64μgL(-1) copper concentration increased the mortality and inhibited the growth of B. gargarizans tadpoles. In addition, significant reduction in size at Gs 42 and a time delay to Gs 42 were observed at 6.4-64μgL(-1) copper treatments. Moreover, histological examinations have clearly revealed that 64μgL(-1) copper caused follicular cell hyperplasia in thyroid gland. According to real-time PCR results, exposure to 32 and 64μgL(-1) copper significantly up-regulated mRNA expression of Dio3, but down-regulated mRNA expression of TRα and TRβ mRNA level. We concluded that copper delayed amphibian metamorphosis through changing mRNA expression of Dio3, TRα and TRβ, which suggests that copper might have the endocrine-disrupting effect. Copyright © 2015 Elsevier B.V. All rights reserved.
Reed, Mitchell D; Iceman, Kimberly E; Harris, Michael B; Taylor, Barbara E
2018-06-08
The development of amphibian breathing provides insight into vertebrate respiratory control mechanisms. Neural oscillators in the rostral and caudal medulla drive ventilation in amphibians, and previous reports describe ventilatory oscillators and CO 2 sensitive regions arise during different stages of amphibian metamorphosis. However, inconsistent findings have been enigmatic, and make comparisons to potential mammalian counterparts challenging. In the current study we assessed amphibian central CO 2 responsiveness and respiratory rhythm generation during two different developmental stages. Whole-nerve recordings of respiratory burst activity in cranial and spinal nerves were made from intact or transected brainstems isolated from tadpoles during early or late stages of metamorphosis. Brainstems were transected at the level of the trigeminal nerve, removing rostral structures including the nucleus isthmi, midbrain, and locus coeruleus, or transected at the level of the glossopharyngeal nerve, removing the putative buccal oscillator and caudal medulla. Removal of caudal structures stimulated the frequency of lung ventilatory bursts and revealed a hypercapnic response in normally unresponsive preparations derived from early stage tadpoles. In preparations derived from late stage tadpoles, removal of rostral or caudal structures reduced lung burst frequency, while CO 2 responsiveness was retained. Our results illustrate that structures within the rostral medulla are capable of sensing CO 2 throughout metamorphic development. Similarly, the region controlling lung ventilation appears to be contained in the rostral medulla throughout metamorphosis. This work offers insight into the consistency of rhythmic respiratory and chemosensitive capacities during metamorphosis. Copyright © 2018. Published by Elsevier Inc.
Smith, Frank W; Jockusch, Elizabeth L
2014-11-01
The establishment of segment identity is a key developmental process that allows for divergence along the anteroposterior body axis in arthropods. In Drosophila, the identity of a segment is determined by the complement of Hox genes it expresses. In many contexts, Hox transcription factors require the protein products of extradenticle (exd) and homothorax (hth) as cofactors to perform their identity specification functions. In holometabolous insects, segment identity may be specified twice, during embryogenesis and metamorphosis. To glean insight into the relationship between embryonic and metamorphic segmental identity specification, we have compared these processes in the flour beetle Tribolium castaneum, which develops ventral appendages during embryogenesis that later metamorphose into adult appendages with distinct morphologies. At metamorphosis, comparisons of RNAi phenotypes indicate that Hox genes function jointly with Tc-hth and Tc-exd to specify several region-specific aspects of the adult body wall. On the other hand, Hox genes specify appendage identities along the anteroposterior axis independently of Tc-hth/Tc-exd and Tc-hth/Tc-exd specify proximal vs. distal identity within appendages independently of Hox genes during this stage. During embryogenesis, Tc-hth and Tc-exd play a broad role in the segmentation process and are required for specification of body wall identities in the thorax; however, contrasting with results from other species, we did not obtain homeotic transformations of embryonic appendages in response to Tc-hth or Tc-exd RNAi. In general, the homeotic effects of interference with the function of Hox genes and Tc-hth/Tc-exd during metamorphosis did not match predictions based on embryonic roles of these genes. Comparing metamorphic patterning in T. castaneum to embryonic and post-embryonic development in hemimetabolous insects suggests that holometabolous metamorphosis combines patterning processes of both late embryogenesis and metamorphosis of the hemimetabolous life cycle. Copyright © 2014 Elsevier Inc. All rights reserved.
Sensory Flask Cells in Sponge Larvae Regulate Metamorphosis via Calcium Signaling.
Nakanishi, Nagayasu; Stoupin, Daniel; Degnan, Sandie M; Degnan, Bernard M
2015-12-01
The Porifera (sponges) is one of the earliest phyletic lineages to branch off the metazoan tree. Although the body-plan of sponges is among the simplest in the animal kingdom and sponges lack nervous systems that communicate environmental signals to other cells, their larvae have sensory systems that generate coordinated responses to environmental cues. In eumetazoans (Cnidaria and Bilateria), the nervous systems of larvae often regulate metamorphosis through Ca(2+)-dependent signal transduction. In sponges, neither the identity of the receptor system that detects an inductive environmental cue (hereafter "metamorphic cues") nor the signaling system that mediates settlement and metamorphosis are known. Using a combination of behavioral assays and surgical manipulations, we show here that specialized epithelial cells-referred to as flask cells-enriched in the anterior third of the Amphimedon queenslandica larva are most likely to be the sensory cells that detect the metamorphic cues. Surgical removal of the region enriched in flask cells in a larva inhibits the initiation of metamorphosis. The flask cell has an apical sensory apparatus with a cilium surrounded by an apical F-actin-rich protrusion, and numerous vesicles, hallmarks of eumetazoan sensory-neurosecretory cells. We demonstrate that these flask cells respond to metamorphic cues by elevating intracellular Ca(2+) levels, and that this elevation is necessary for the initiation of metamorphosis. Taken together, these analyses suggest that sponge larvae have sensory-secretory epithelial cells capable of converting exogenous cues into internal signals via Ca(2+)-mediated signaling, which is necessary for the initiation of metamorphosis. Similarities in the morphology, physiology, and function of the sensory flask cells in sponge larvae with the sensory/neurosecretory cells in eumetazoan larvae suggest this sensory system predates the divergence of Porifera and Eumetazoa. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Fong, Peter P; Lambert, Olivia J; Hoagland, Margot L; Kurtz, Emily R
2018-05-05
Antifouling chemicals are legacy contaminants in aquatic ecosystems. Previous experiments have shown that a 14-day exposure to the antifouling chemical medetomidine delays metamorphosis and reduces body mass in wood frog tadpoles. In the present study, we exposed wood frog tadpoles to medetomidine for 3, 7, and 10 days at 100 nM, 1 μM, and 10 μM. We also exposed American toad tadpoles to medetomidine for 3 days at four concentrations (10 nM, 100 nM, 1 μM, and 10 μM) in static renewal experiments. In each experiment, we measured growth, frequency and time to metamorphosis, and mass at metamorphosis. In both species, medetomidine significantly slowed development as measured by the Gosner stage. After 34 days in culture, wood frog tadpoles exposed to 1 and 10 μM medetomidine for as few as 3 days were significantly less developed compared to controls. Toads exposed to 1 μM medetomidine for 3 days were also significantly less developed on day 27, but by day 34, there was no difference from controls. For wood frogs, medetomidine significantly affected time to metamorphosis with a trend for tadpoles at lower concentrations metamorphosing sooner than those at higher concentrations. While medetomidine affected time to metamorphosis in wood frogs, it did not affect fresh mass, dry mass, or mortality compared to controls. Wood frog tadpoles that did not metamorphose after over 90 days in culture were more frequent in high-concentration groups than in the control. In toads, 10 μM medetomidine was 100% lethal within 23 days, but at the same concentration and duration, no wood frog tadpoles died. Lower concentrations were also significantly lethal to toads compared to controls, but tadpoles that survived in 10 and 100 nM metamorphosed sooner than those in 1 μM. Fresh mass of toad tadpoles exposed to 1 μm was significantly smaller at metamorphosis compared to that of controls. Medetomidine also affected the behavior of tadpoles. In toads, medetomidine significantly reduced both percent activity and startle response. In wood frogs, medetomidine significantly reduced percent activity, but increased startle response. We discuss our finding of low-dose stimulation and high-dose inhibition of different life history endpoints in terms of hormetic mechanisms. The differential sensitivity between species in terms of mortality, frequency of metamorphosis, and behavior highlights the potential negative environmental effects of medetomidine to amphibians.
Caring about Strangers: A Lingisian Reading of Kafka's "Metamorphosis"
ERIC Educational Resources Information Center
Hung, Ruyu
2013-01-01
This article explores a significant question, implicit in Kafka's novel "Metamorphosis," explicitly asked by Rorty: "Can I care about a stranger?" Alphonso Lingis's view is adopted to overcome a mainstream belief that there is a distinction between my community and the stranger's community, or us community and…
Boone, M.D.
2005-01-01
I reared four species of anurans (Rana sphenocephala [Southern Leopard Frog], Rana blairi [Plains Leopard Frog], Rana clamitans [Green Frog], and Bufo woodhousii [Woodhouse's Toad]) for seven to 12 months in small, outdoor terrestrial enclosures (1 x 2 m) to examine the consequences of larval competition (via density) and contaminant exposure (via the insecticide carbaryl). I added six Rana clamitans, eight Rana sphenocephala, eight Rana blairi, and 10 Bufo woodhousii to terrestrial enclosures shortly after metamorphosis and recaptured them during the following spring. All anurans from low-density ponds were significantly larger than those from high-density ponds, but these size differences did not significantly affect survival to or size at spring emergence. However, R. sphenocephala, R. blairi, and R. clamitans that survived to spring had been larger at metamorphosis on average than those that did not survive; in contrast, B. woodhousii that survived the winter were smaller at metamorphosis on average than those that did not survive. Carbaryl exposure affected mass at metamorphosis of R. clamitans and B. woodhousii that were added to enclosures, but this difference disappeared or did not increase by spring emergence. Overall, exposure to carbaryl during the larval period did not have any apparent effects on survival or growth during the terrestrial phase. In my study, anurans were able to offset small size at metamorphosis with terrestrial growth, although there was a trend of reduced overwinter survival for ranid species that metamorphosed at a smaller size. Copyright 2005 Society for the Study of Amphibians and Reptiles.
Time course for tail regression during metamorphosis of the ascidian Ciona intestinalis.
Matsunobu, Shohei; Sasakura, Yasunori
2015-09-01
In most ascidians, the tadpole-like swimming larvae dramatically change their body-plans during metamorphosis and develop into sessile adults. The mechanisms of ascidian metamorphosis have been researched and debated for many years. Until now information on the detailed time course of the initiation and completion of each metamorphic event has not been described. One dramatic and important event in ascidian metamorphosis is tail regression, in which ascidian larvae lose their tails to adjust themselves to sessile life. In the present study, we measured the time associated with tail regression in the ascidian Ciona intestinalis. Larvae are thought to acquire competency for each metamorphic event in certain developmental periods. We show that the timing with which the competence for tail regression is acquired is determined by the time since hatching, and this timing is not affected by the timing of post-hatching events such as adhesion. Because larvae need to adhere to substrates with their papillae to induce tail regression, we measured the duration for which larvae need to remain adhered in order to initiate tail regression and the time needed for the tail to regress. Larvae acquire the ability to adhere to substrates before they acquire tail regression competence. We found that when larvae adhered before they acquired tail regression competence, they were able to remember the experience of adhesion until they acquired the ability to undergo tail regression. The time course of the events associated with tail regression provides a valuable reference, upon which the cellular and molecular mechanisms of ascidian metamorphosis can be elucidated. Copyright © 2015 Elsevier Inc. All rights reserved.
Wang, Ming; Chai, Lihong; Zhao, Hongfeng; Wu, Minyao; Wang, Hongyuan
2015-11-01
Chinese toad (Bufo gargarizans) tadpoles were exposed to nitrate (10, 50 and 100mg/L NO3-N) from the beginning of the larval period through metamorphic climax. We examined the effects of chronic nitrate exposure on metamorphosis, mortality, body size and thyroid gland. In addition, thyroid hormone (TH) levels, type II iodothyronine deiodinase (Dio2) and type III iodothyronine deiodinase (Dio3) mRNA levels were also measured to assess disruption of TH synthesis. Results showed that significant metamorphic delay and mortality increased were caused in larvae exposed to 100mg/L NO3-N. The larvae exposed to 100mg/L NO3-N clearly exhibited a greater reduction in thyroxine (T4) and 3,5,3'-triiodothyronine (T3) levels. Moreover, treatment with NO3-N induced down-regulation of Dio2 mRNA levels and up-regulation of Dio3 mRNA levels, reflecting the disruption of thyroid endocrine. It seems that increased mass and body size may be correlated with prolonged metamorphosis. Interestingly, we observed an exception that exposure to 100mg/L NO3-N did not exhibit remarkable alterations of thyroid gland size. Compared with control groups, 100mg/L NO3-N caused partial colloid depletion in the thyroid gland follicles. These results suggest that nitrate can act as a chemical stressor inducing retardation in development and metamorphosis. Therefore, we concluded that the presence of high concentrations nitrate can influence the growth, decline the survival, impair TH synthesis and induce metamorphosis retardation of B. gargarizans larvae. Copyright © 2015 Elsevier Ltd. All rights reserved.
Metamorphosis Is Ancestral for Crown Euarthropods, and Evolved in the Cambrian or Earlier.
Wolfe, Joanna M
2017-09-01
Macroevolutionary developmental biology employs fossilized ontogenetic data and phylogenetic comparative methods to probe the evolution of development at ancient nodes. Despite the prevalence of ecologically differentiated larval forms in marine invertebrates, it has been frequently presumed that the ancestors of arthropods were direct developers, and that metamorphosis may not have evolved until the Ordovician or later. Using fossils and new dated phylogenies, I infer that metamorphosis was likely ancestral for crown arthropods, contradicting this assumption. Based on a published morphological dataset encompassing 217 exceptionally preserved fossil and 96 extant taxa, fossils were directly incorporated into both the topology and age estimates, as in "tip dating" analyses. Using data from post-embryonic fossils representing 25 species throughout stem and crown arthropod lineages (as well as most of the 96 extant taxa), characters for metamorphosis were assigned based on inferred ecological changes in development (e.g., changes in habitat and adaptive landscape). Under all phylogenetic hypotheses, metamorphosis was supported as most likely ancestral to both ecdysozoans and euarthropods. Care must be taken to account for potential drastic post-embryonic morphological changes in evolutionary analyses. Many stem group euarthrpods may have had ecologically differentiated larval stages that did not preserve in the fossil record. Moreover, a complex life cycle and planktonic ecology may have evolved in the Ediacaran or earlier, and may have typified the pre-Cambrian explosion "wormworld" prior to the origin of crown group euarthropods. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Dinh, Khuong Van; Janssens, Lizanne; Therry, Lieven; Bervoets, Lieven; Bonte, Dries; Stoks, Robby
2016-11-01
How exposure to contaminants may interfere with the widespread poleward range expansions under global warming is largely unknown. Pesticide exposure may negatively affect traits shaping the speed of range expansion, including traits related to population growth rate and dispersal-related traits. Moreover, rapid evolution of growth rates during poleward range expansions may come at a cost of a reduced investment in detoxification and repair thereby increasing the vulnerability to contaminants at expanding range fronts. We tested effects of a sublethal concentration of the widespread pesticide chlorpyrifos on traits related to range expansion in replicated edge and core populations of the poleward moving damselfly Coenagrion scitulum reared at low and high food levels in a common garden experiment. Food limitation in the larval stage had strong negative effects both in the larval stage and across metamorphosis in the adult stage. Exposure to chlorpyrifos during the larval stage did not affect larval traits but caused delayed effects across metamorphosis by increasing the incidence of wing malformations during metamorphosis and by reducing a key component of the adult immune response. There was some support for an evolutionary trade-off scenario as the faster growing edge larvae suffered a higher mortality during metamorphosis. Instead, there was no clear support for the faster growing edge larvae being more vulnerable to chlorpyrifos. Our data indicate that sublethal delayed effects of pesticide exposure, partly in association with the rapid evolution of faster growth rates, may slow down range expansions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Miranda, L A; Affanni, J M; Paz, D A
2000-04-01
The actions of several neuropeptides as hypothalamic mediators in the regulation of Bufo arenarum metamorphosis were investigated. Prometamorphic larvae were injected with 1.5 microg thyrotropin-releasing hormone (TRH), 2 microg ovine corticotropin-releasing factor (oCRF), 2 microg mammalian gonadotropin-releasing hormone (mGnRH), 2 microg human growth hormone-releasing hormone (hGHRH), or Holtfreter solution (control group). Larvae received two injections with the same dose: one at the beginning of the experiment and the other 7 days later. Several morphologic parameters (total length, tail length, wet weight, hind limb length, and metamorphic stages) were measured as indicators of growth and metamorphic development. These measurements were taken in 20 larvae per treatment or control group at the beginning of the experiment, at day 7 and at day 14 when the experiment ended. We observed that only the administration of exogenous CRF stimulated resorption of the tail and accelerated the rate of metamorphosis. In the pituitary of CRF-treated larvae we observed that thyrotropin (TSH) and adrenocorticotropic hormone (ACTH) producing cells showed a weaker immunoreactivity, a decrease in cell number and a reduction of volume density when compared with normal larvae. In conclusion, the results obtained indicate a possible role for CRF in Bufo arenarum metamorphosis. CRF may regulate interrenal and thyroid activity by acting directly upon TSH and ACTH cells. On the other hand, TRH, GnRH and GHRH were inactive in stimulating growth or metamorphosis of Bufo arenarum. J. Exp. Zool. 286:473-480, 2000. Copyright 2000 Wiley-Liss, Inc.
Heimeier, Rachel A; Shi, Yun-Bo
2010-09-01
Thyroid hormone (TH) is essential for proper development in vertebrates. TH deficiency during gestation and early postnatal development produces severe neurological, skeletal, metabolism and growth abnormalities. It is therefore important to consider environmental chemicals that may interfere with TH signaling. Exposure to environmental contaminants that disrupt TH action may underlie the increasing incidence of human developmental disorders worldwide. One contaminant of concern is the xenoestrogen bisphenol A (BPA), a chemical widely used to manufacture polycarbonate plastics and epoxy resins. The difficulty in studying uterus-enclosed mammalian embryos has hampered the analysis on the direct effects of BPA during vertebrate development. As TH action at the cellular level is highly conserved across vertebrate species, amphibian metamorphosis serves as an important TH-dependent in vivo vertebrate model for studying potential contributions of BPA toward human developmental disorders. Using Xenopus laevis as a model, we and others have demonstrated the inhibitory effects of BPA exposure on metamorphosis. Genome-wide gene expression analysis revealed that surprisingly, BPA primarily targets the TH-signaling pathway essential for metamorphosis in Xenopus laevis. Given the importance of the genomic effects of TH during metamorphosis and the conservation in its regulation in higher vertebrates, these observations suggest that the effect of BPA in human embryogenesis is through the inhibition of the TH pathway and warrants further investigation. Our findings further argue for the critical need to use in vivo animal models coupled with systematic molecular analysis to determine the developmental effects of endocrine disrupting compounds. Published by Elsevier Inc.
THE METAMORPHOSIS OF VISUAL SYSTEMS IN THE SEA LAMPREY
Wald, George
1957-01-01
The life cycle of the sea lamprey, Petromyzon marinus, includes two metamorphoses. At the end of a period spent as a blind larva, buried in the mud of streams, a first metamorphosis prepares it to migrate downstream to the sea or a lake for its growth phase. Then, following a second metamorphosis, it migrates upstream as a sexually mature adult to spawn and die. The downstream migrants have a visual system based upon rhodopsin and vitamin A1, whereas that of the upstream migrants is based upon porphyropsin and vitamin A2. The livers contain vitamin A1 at all stages. The sea lamprey therefore exhibits a metamorphosis of visual systems, like those observed earlier among amphibia. The presence of porphyropsin in this member of the most primitive living group of vertebrates, as in fishes and amphibia, supports the notion that porphyropsin may have been the primitive vertebrate visual pigment. Its association with fresh water existence throughout this range of organisms also is consistent with the view that the vertebrate stock originated in fresh water. The observation that in the life cycle of the lamprey rhodopsin precedes porphyropsin is not at variance with the idea that porphyropsin is the more primitive pigment, since this change is part of the second metamorphosis, marking the return to the original environment. The observation that in lampreys, fishes, and amphibia, porphyropsin maintains the same general association with fresh water, and rhodopsin with marine and terrestrial habit, suggests that a single genetic mechanism may govern this association throughout this wide span of organisms. PMID:13439167
Kim, Jiwan; Hepat, Rahul; Lee, Daeweon; Kim, Yonggyun
2013-09-01
Parasitization by an endoparasitoid wasp, Cotesia plutellae, inhibits a larva-to-pupa metamorphosis of the diamondback moth, Plutella xylostella. This study tested an inhibitory effect of C. plutellae bracovirus (CpBV) on the metamorphosis of P. xylostella. Parasitized P. xylostella exhibited significantly reduced prothoracic gland (PTG) development at the last instar compared to nonparasitized larvae. Expression of the ecdysone receptor (EcR) was markedly suppressed during the last instar larvae parasitized by C. plutellae. By contrast, expression of the insulin receptor (InR) significantly increased in the parasitized larvae. Microinjection of CpBV significantly inhibited the larva-to-pupa metamorphosis of nonparasitized larvae in a dose-dependent manner. Injection of CpBV also inhibited the expression of the EcR and increased the expression of the InR. Individual CpBV segments were transiently expressed in its encoded genes in nonparasitized larvae and screened to determine antimetamorphic viral gene(s). Out of 21 CpBV segments, two viral segments (CpBV-S22 and CpBV-S27) were proved to inhibit larva-to-pupa metamorphosis by transient expression assay. RNA interference of each gene encoded in the viral segments was applied to determine antimetamorphic gene(s). Protein tyrosine phosphatase, early expressed gene, and four hypothetical genes were selected to be associated with the antimetamorphic activity of CpBV. These results suggest that antimetamorphosis of P. xylostella parasitized by C. plutellae is induced by inhibiting PTG development and subsequent ecdysteroid signaling with viral factors of CpBV. Copyright © 2013 Elsevier Inc. All rights reserved.
Tariq, K; Noor, M; Hori, M; Ali, A; Hussain, A; Peng, W; Chang, C-J; Zhang, H
2017-12-01
Detrimental effects of ultraviolet (UV) light on living organisms are well understood, little is known about the effects of blue light irradiation. Although a recent study revealed that blue light caused more harmful effects on insects than UV light and blue light irradiation killed insect pests of various orders including Diptera, the effects of blue light on physiology of insects are still largely unknown. Here we studied the effects of blue light irradiation on cuticular melanin in larval and the immune response in adult stage of Bactrocera dorsalis. We also evaluated the effects of blue light exposure in larval stage on various age and mass at metamorphosis and the mediatory role of cuticular melanin in carryover effects of larval stressors across metamorphosis. We found that larvae exposed to blue light decreased melanin contents in their exoskeleton with smaller mass and delayed metamorphosis than insects reared without blue light exposure. Across metamorphosis, lower melanotic encapsulation response and higher susceptibility to Beauveria bassiana was detected in adults that had been exposed to blue light at their larval stage, thereby constituting the first evidence that blue light impaired adult immune function in B. dorsalis as a carryover effect of larval exposure.
Effects of dietary exposure of polycyclic musk HHCB on the metamorphosis of Xenopus laevis.
Pablos, María Victoria; Jiménez, María Ángeles; San Segundo, Laura; Martini, Federica; Beltrán, Eulalia; Fernández, Carlos
2016-06-01
The compound 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-[γ]-2-benzopyrane (HHCB; galaxolide, Chemical Abstracts Service number 1222-05-5) is a synthetic musk used extensively as a fragrance in many consumer products and classified as an emerging pollutant. The ecotoxicological information available for HHCB addresses exposure via water, but this compound is frequently adsorbed into particulate matter. The goal of the present study was to assess the effects of dietary exposure to several environmentally relevant HHCB concentrations adsorbed in food during Xenopus laevis metamorphosis. The authors sought to determine if such exposure to this synthetic musk resulted in histological changes in the thyroid gland in conjunction with changes in development (staging, timing to metamorphosis), body weight, and length. Developmental acceleration on day 14, together with hypertrophy of the thyroid follicular epithelium in tadpoles, suggested a possible agonistic effect of HHCB, which would have been compensated after metamorphosis by regulatory mechanisms to maintain homeostasis. Further research into the potential thyroid-related mechanisms of action of HHCB should be conducted. Environ Toxicol Chem 2016;35:1428-1435. © 2015 SETAC. © 2015 SETAC.
Boone, M.D.; Bridges, C.M.; Rothermel, B.B.
2001-01-01
Our objective was to determine how green frogs (Rana clamitans) are affected by multiple exposures to a sublethal level of the carbamate insecticide, carbaryl, in outdoor ponds. Tadpoles were added to 1,000-1 ponds at a low or high density which were exposed to carbaryl 0, 1, 2, or 3 times. Length of the larval period, mass, developmental stage, tadpole survival, and proportion metamorphosed were used to determine treatment effects. The frequency of dosing affected the proportion of green frogs that reached metamorphosis and the developmental stage of tadpoles. Generally, exposure to carbaryl increased rates of metamorphosis and development. The effect of the frequency of carbaryl exposure on development varied with the density treatment; the majority of metamorphs and the most developed tadpoles came from high-density ponds exposed to carbaryl 3 times. This interaction suggests that exposure to carbaryl later in the larval period stimulated metamorphosis, directly or indirectly, under high-density conditions. Our study indicates that exposure to a contaminant can lead to early initiation of metamorphosis and that natural biotic factors can mediate the effects of a contaminant in the environment.
Yorkie Facilitates Organ Growth and Metamorphosis in Bombyx.
Liu, Shumin; Zhang, Panli; Song, Hong-Sheng; Qi, Hai-Sheng; Wei, Zhao-Jun; Zhang, Guozheng; Zhan, Shuai; Liu, Zhihong; Li, Sheng
2016-01-01
The Hippo pathway, which was identified from genetic screens in the fruit fly, Drosophila melanogaster, has a major size-control function in animals. All key components of the Hippo pathway, including the transcriptional coactivator Yorkie that is the most critical substrate and downstream effector of the Hippo kinase cassette, are found in the silkworm, Bombyx mori. As revealed by microarray and quantitative real-time PCR, expression of Hippo pathway genes is particularly enriched in several mitotic tissues, including the ovary, testis, and wing disc. Developmental profiles of Hippo pathway genes are generally similar (with the exception of Yorkie) within each organ, but vary greatly in different tissues showing nearly opposing expression patterns in the wing disc and the posterior silk gland (PSG) on day 2 of the prepupal stage. Importantly, the reduction of Yorkie expression by RNAi downregulated Yorkie target genes in the ovary, decreased egg number, and delayed larval-pupal-adult metamorphosis. In contrast, baculovirus-mediated Yorkie(CA) overexpression upregulated Yorkie target genes in the PSG, increased PSG size, and accelerated larval-pupal metamorphosis. Together the results show that Yorkie potentially facilitates organ growth and metamorphosis, and suggest that the evolutionarily conserved Hippo pathway is critical for size control, particularly for PSG growth, in the silkworm.
Yang, Bingye; Pu, Fei; Qin, Ji; You, Weiwei; Ke, Caihuan
2014-03-10
During a large-scale screen of the larval transcriptome library of the Portuguese oyster, Crassostrea angulata, the oyster gene RACK, which encodes a receptor of activated protein kinase C protein was isolated and characterized. The cDNA is 1,148 bp long and has a predicted open reading frame encoding 317 aa. The predicted protein shows high sequence identity to many RACK proteins of different organisms including molluscs, fish, amphibians and mammals, suggesting that it is conserved during evolution. The structural analysis of the Ca-RACK1 genomic sequence implies that the Ca-RACK1 gene has seven exons and six introns, extending approximately 6.5 kb in length. It is expressed ubiquitously in many oyster tissues as detected by RT-PCR analysis. The Ca-RACK1 mRNA expression pattern was markedly increased at larval metamorphosis; and was further increased along with Ca-RACK1 protein synthesis during epinephrine-induced metamorphosis. These results indicate that the Ca-RACK1 plays an important role in tissue differentiation and/or in cell growth during larval metamorphosis in the oyster, C. angulata. Copyright © 2013 Elsevier B.V. All rights reserved.
Maria Sibylla Merian and the metamorphosis of natural history.
Etheridge, Kay
2011-03-01
Known primarily for creating beautiful images of butterflies and flowers, Maria Sibylla Merian (German, 1647-1717) has remained largely unappreciated for her seminal contribution to early modern natural history. Merian was indeed a talented artist, but she clearly thought of herself as a naturalist, and employed both text and images to depict lepidopteran metamorphosis and behavior with unprecedented accuracy and detail. Merian documented larvae and adult insects feeding not only on plants, but also on other animals, and she depicted other creatures preying on insects. An image of battling spiders and ants and the accompanying text in her 1705 Metamorphosis insectorum surinamensium illuminated the world of tropical arthropods in a way that was groundbreaking, and set the stage for a new way to envision nature. Copyright © 2010 Elsevier Ltd. All rights reserved.
Lockard, Laura; Rowe, Christopher L; Heyes, Andrew
2013-04-01
Selenium (Se) is an essential micronutrient with a narrow therapeutic concentration range. The relative toxicity of Se increases as it is biotransformed into organic compounds, primarily selenomethionine (SeMet), within the aquatic food chain. Effects of aquatic Se contamination are well quantified for many freshwater fish and aquatic bird species, but impacts on amphibians are not well known. This study investigated the responses of larval Cope's gray tree frogs (Hyla chrysoscelis) fed a diet enriched with one of two concentrations of SeMet (50.1 and 489.9 μg Se g(-1) dw [low and high groups, respectively]) by way of a food-limited (ration) or ad libitum (ad lib) feeding regimen. The high dose caused 100 % mortality during the larval period independent of resource provision levels. Regardless of feeding regimen, the low dose decreased larval survival and successful metamorphosis relative to control treatments. The low dose also induced rear limb deformities in ≤73 % of individuals initiating metamorphosis. Providing low-dose food by way of a rationed feeding regimen decreased observed toxicity, likely because of decreased dietary exposure to SeMet relative to the low ad lib treatment. Individuals from the low ration treatment had decreased wet mass at initiation and completion of metamorphic climax (Gosner stages 42 through 46) compared with those from the control ad lib treatment, indicating that resource limitation combined with Se exposure might negatively affect energy stores after metamorphosis. However, lipid content analyses of recently metamorphosed individuals did not reveal any influence of treatment or resource provision on energy stored as lipids. The mean tissue Se concentration of individuals that received the low dose and completed metamorphosis was significantly greater than that of control ad lib or ration individuals at the same developmental stage. This study demonstrates that larval exposure to dietary SeMet can decrease growth and survival and induce deformities in a developing amphibian. Furthermore, retention of Se body burdens through metamorphosis suggests that surviving individuals can transport Se accumulated from contaminated aquatic environments into terrestrial food webs.
Martín-Vega, Daniel; Simonsen, Thomas J; Hall, Martin J R
2017-05-01
Metamorphosis of cyclorrhaphous flies takes place inside a barrel-like puparium, formed by the shrinking, hardening and darkening of the third-instar larval cuticle. The opacity of this structure hampers the visualization of the morphological changes occurring inside and therefore a full understanding of the metamorphosis process. Here, we use micro-computed tomography (micro-CT) to describe the internal morphological changes that occur during metamorphosis of the blow fly, Calliphora vicina Robineau-Desvoidy 1830 (Diptera: Calliphoridae) at a greater temporal resolution than anything hitherto published. The morphological changes were documented at 10% intervals of the total intra-puparial period, and down to 2.5% intervals during the first 20% interval, when the most dramatic morphological changes occur. Moreover, the development of an internal gas bubble, which plays an essential role during early metamorphosis, was further investigated with X-ray images and micro-CT virtual sections. The origin of this gas bubble has been largely unknown, but micro-CT virtual sections show that it is connected to one of the main tracheal trunks. Micro-CT virtual sections also provided enough resolution for determining the completion of the larval-pupal and pupal-adult apolyses, thus enabling an accurate timing of the different intra-puparial life stages. The prepupal, pupal, and pharate adult stages last for 7.5%, 22.5%, and 70% of the total intra-puparial development, respectively. Furthermore, we provide for the first time quantitative data on the development of two organ systems of the blow fly: the alimentary canal and the indirect flight muscles. There is a significant and negative correlation between the volume of the indirect flight muscles and the pre-helicoidal region of the midgut during metamorphosis. The latter occupies a large portion of the thorax during the pupal stage but narrows progressively as the indirect flight muscles increase in volume during the development of the pharate adult. © 2017 The Authors Journal of Morphology Published by Wiley Periodicals, Inc.
Simonsen, Thomas J.; Hall, Martin J. R.
2017-01-01
Abstract Metamorphosis of cyclorrhaphous flies takes place inside a barrel‐like puparium, formed by the shrinking, hardening and darkening of the third‐instar larval cuticle. The opacity of this structure hampers the visualization of the morphological changes occurring inside and therefore a full understanding of the metamorphosis process. Here, we use micro‐computed tomography (micro‐CT) to describe the internal morphological changes that occur during metamorphosis of the blow fly, Calliphora vicina Robineau‐Desvoidy 1830 (Diptera: Calliphoridae) at a greater temporal resolution than anything hitherto published. The morphological changes were documented at 10% intervals of the total intra‐puparial period, and down to 2.5% intervals during the first 20% interval, when the most dramatic morphological changes occur. Moreover, the development of an internal gas bubble, which plays an essential role during early metamorphosis, was further investigated with X‐ray images and micro‐CT virtual sections. The origin of this gas bubble has been largely unknown, but micro‐CT virtual sections show that it is connected to one of the main tracheal trunks. Micro‐CT virtual sections also provided enough resolution for determining the completion of the larval‐pupal and pupal‐adult apolyses, thus enabling an accurate timing of the different intra‐puparial life stages. The prepupal, pupal, and pharate adult stages last for 7.5%, 22.5%, and 70% of the total intra‐puparial development, respectively. Furthermore, we provide for the first time quantitative data on the development of two organ systems of the blow fly: the alimentary canal and the indirect flight muscles. There is a significant and negative correlation between the volume of the indirect flight muscles and the pre‐helicoidal region of the midgut during metamorphosis. The latter occupies a large portion of the thorax during the pupal stage but narrows progressively as the indirect flight muscles increase in volume during the development of the pharate adult. PMID:28182298
FMAj: a tool for high content analysis of muscle dynamics in Drosophila metamorphosis.
Kuleesha, Yadav; Puah, Wee Choo; Lin, Feng; Wasser, Martin
2014-01-01
During metamorphosis in Drosophila melanogaster, larval muscles undergo two different developmental fates; one population is removed by cell death, while the other persistent subset undergoes morphological remodeling and survives to adulthood. Thanks to the ability to perform live imaging of muscle development in transparent pupae and the power of genetics, metamorphosis in Drosophila can be used as a model to study the regulation of skeletal muscle mass. However, time-lapse microscopy generates sizeable image data that require new tools for high throughput image analysis. We performed targeted gene perturbation in muscles and acquired 3D time-series images of muscles in metamorphosis using laser scanning confocal microscopy. To quantify the phenotypic effects of gene perturbations, we designed the Fly Muscle Analysis tool (FMAj) which is based on the ImageJ and MySQL frameworks for image processing and data storage, respectively. The image analysis pipeline of FMAj contains three modules. The first module assists in adding annotations to time-lapse datasets, such as genotypes, experimental parameters and temporal reference points, which are used to compare different datasets. The second module performs segmentation and feature extraction of muscle cells and nuclei. Users can provide annotations to the detected objects, such as muscle identities and anatomical information. The third module performs comparative quantitative analysis of muscle phenotypes. We applied our tool to the phenotypic characterization of two atrophy related genes that were silenced by RNA interference. Reduction of Drosophila Tor (Target of Rapamycin) expression resulted in enhanced atrophy compared to control, while inhibition of the autophagy factor Atg9 caused suppression of atrophy and enlarged muscle fibers of abnormal morphology. FMAj enabled us to monitor the progression of atrophic and hypertrophic phenotypes of individual muscles throughout metamorphosis. We designed a new tool to visualize and quantify morphological changes of muscles in time-lapse images of Drosophila metamorphosis. Our in vivo imaging experiments revealed that evolutionarily conserved genes involved in Tor signalling and autophagy, perform similar functions in regulating muscle mass in mammals and Drosophila. Extending our approach to a genome-wide scale has the potential to identify new genes involved in muscle size regulation.
Temereva, Elena N; Tsitrin, Eugeni B
2013-04-24
The phoronid larva, which is called the actinotrocha, is one of the most remarkable planktotrophic larval types among marine invertebrates. Actinotrochs live in plankton for relatively long periods and undergo catastrophic metamorphosis, in which some parts of the larval body are consumed by the juvenile. The development and organization of the muscular system has never been described in detail for actinotrochs and for other stages in the phoronid life cycle. In Phoronopsis harmeri, muscular elements of the preoral lobe and the collar originate in the mid-gastrula stage from mesodermal cells, which have immigrated from the anterior wall of the archenteron. Muscles of the trunk originate from posterior mesoderm together with the trunk coelom. The organization of the muscular system in phoronid larvae of different species is very complex and consists of 14 groups of muscles. The telotroch constrictor, which holds the telotroch in the larval body during metamorphosis, is described for the first time. This unusual muscle is formed by apical myofilaments of the epidermal cells. Most larval muscles are formed by cells with cross-striated organization of myofibrils. During metamorphosis, most elements of the larval muscular system degenerate, but some of them remain and are integrated into the juvenile musculature. Early steps of phoronid myogenesis reflect the peculiarities of the actinotroch larva: the muscle of the preoral lobe is the first muscle to appear, and it is important for food capture. The larval muscular system is organized in differently in different phoronid larvae, but always exhibits a complexity that probably results from the long pelagic life, planktotrophy, and catastrophic metamorphosis. Degeneration of the larval muscular system during phoronid metamorphosis occurs in two ways, i.e., by complete or by incomplete destruction of larval muscular elements. The organization and remodeling of the muscular system in phoronids exhibits the combination of protostome-like and deuterostome-like features. This combination, which has also been found in the organization of some other systems in phoronids, can be regarded as an important characteristic and one that probably reflects the basal position of phoronids within the Lophotrochozoa.
2013-01-01
Background The phoronid larva, which is called the actinotrocha, is one of the most remarkable planktotrophic larval types among marine invertebrates. Actinotrochs live in plankton for relatively long periods and undergo catastrophic metamorphosis, in which some parts of the larval body are consumed by the juvenile. The development and organization of the muscular system has never been described in detail for actinotrochs and for other stages in the phoronid life cycle. Results In Phoronopsis harmeri, muscular elements of the preoral lobe and the collar originate in the mid-gastrula stage from mesodermal cells, which have immigrated from the anterior wall of the archenteron. Muscles of the trunk originate from posterior mesoderm together with the trunk coelom. The organization of the muscular system in phoronid larvae of different species is very complex and consists of 14 groups of muscles. The telotroch constrictor, which holds the telotroch in the larval body during metamorphosis, is described for the first time. This unusual muscle is formed by apical myofilaments of the epidermal cells. Most larval muscles are formed by cells with cross-striated organization of myofibrils. During metamorphosis, most elements of the larval muscular system degenerate, but some of them remain and are integrated into the juvenile musculature. Conclusion Early steps of phoronid myogenesis reflect the peculiarities of the actinotroch larva: the muscle of the preoral lobe is the first muscle to appear, and it is important for food capture. The larval muscular system is organized in differently in different phoronid larvae, but always exhibits a complexity that probably results from the long pelagic life, planktotrophy, and catastrophic metamorphosis. Degeneration of the larval muscular system during phoronid metamorphosis occurs in two ways, i.e., by complete or by incomplete destruction of larval muscular elements. The organization and remodeling of the muscular system in phoronids exhibits the combination of protostome-like and deuterostome-like features. This combination, which has also been found in the organization of some other systems in phoronids, can be regarded as an important characteristic and one that probably reflects the basal position of phoronids within the Lophotrochozoa. PMID:23617418
FMAj: a tool for high content analysis of muscle dynamics in Drosophila metamorphosis
2014-01-01
Background During metamorphosis in Drosophila melanogaster, larval muscles undergo two different developmental fates; one population is removed by cell death, while the other persistent subset undergoes morphological remodeling and survives to adulthood. Thanks to the ability to perform live imaging of muscle development in transparent pupae and the power of genetics, metamorphosis in Drosophila can be used as a model to study the regulation of skeletal muscle mass. However, time-lapse microscopy generates sizeable image data that require new tools for high throughput image analysis. Results We performed targeted gene perturbation in muscles and acquired 3D time-series images of muscles in metamorphosis using laser scanning confocal microscopy. To quantify the phenotypic effects of gene perturbations, we designed the Fly Muscle Analysis tool (FMAj) which is based on the ImageJ and MySQL frameworks for image processing and data storage, respectively. The image analysis pipeline of FMAj contains three modules. The first module assists in adding annotations to time-lapse datasets, such as genotypes, experimental parameters and temporal reference points, which are used to compare different datasets. The second module performs segmentation and feature extraction of muscle cells and nuclei. Users can provide annotations to the detected objects, such as muscle identities and anatomical information. The third module performs comparative quantitative analysis of muscle phenotypes. We applied our tool to the phenotypic characterization of two atrophy related genes that were silenced by RNA interference. Reduction of Drosophila Tor (Target of Rapamycin) expression resulted in enhanced atrophy compared to control, while inhibition of the autophagy factor Atg9 caused suppression of atrophy and enlarged muscle fibers of abnormal morphology. FMAj enabled us to monitor the progression of atrophic and hypertrophic phenotypes of individual muscles throughout metamorphosis. Conclusions We designed a new tool to visualize and quantify morphological changes of muscles in time-lapse images of Drosophila metamorphosis. Our in vivo imaging experiments revealed that evolutionarily conserved genes involved in Tor signalling and autophagy, perform similar functions in regulating muscle mass in mammals and Drosophila. Extending our approach to a genome-wide scale has the potential to identify new genes involved in muscle size regulation. PMID:25521203
Okada, Morihiro; Miller, Thomas C; Wen, Luan; Shi, Yun-Bo
2017-05-11
The Myc/Mad/Max network has long been shown to be an important factor in regulating cell proliferation, death and differentiation in diverse cell types. In general, Myc-Max heterodimers activate target gene expression to promote cell proliferation, although excess of c-Myc can also induce apoptosis. In contrast, Mad competes against Myc to form Mad-Max heterodimers that bind to the same target genes to repress their expression and promote differentiation. The role of the Myc/Mad/Max network during vertebrate development, especially, the so-called postembryonic development, a period around birth in mammals, is unclear. Using thyroid hormone (T3)-dependent Xenopus metamorphosis as a model, we show here that Mad1 is induced by T3 in the intestine during metamorphosis when larval epithelial cell death and adult epithelial stem cell development take place. More importantly, we demonstrate that Mad1 is expressed in the larval cells undergoing apoptosis, whereas c-Myc is expressed in the proliferating adult stem cells during intestinal metamorphosis, suggesting that Mad1 may have a role in cell death during development. By using transcription activator-like effector nuclease-mediated gene-editing technology, we have generated Mad1 knockout Xenopus animals. This has revealed that Mad1 is not essential for embryogenesis or metamorphosis. On the other hand, consistent with its spatiotemporal expression profile, Mad1 knockout leads to reduced larval epithelial apoptosis but surprisingly also results in increased adult stem cell proliferation. These findings not only reveal a novel role of Mad1 in regulating developmental cell death but also suggest that a balance of Mad and Myc controls cell fate determination during adult organ development.
Okada, Morihiro; Miller, Thomas C; Wen, Luan; Shi, Yun-Bo
2017-01-01
The Myc/Mad/Max network has long been shown to be an important factor in regulating cell proliferation, death and differentiation in diverse cell types. In general, Myc–Max heterodimers activate target gene expression to promote cell proliferation, although excess of c-Myc can also induce apoptosis. In contrast, Mad competes against Myc to form Mad–Max heterodimers that bind to the same target genes to repress their expression and promote differentiation. The role of the Myc/Mad/Max network during vertebrate development, especially, the so-called postembryonic development, a period around birth in mammals, is unclear. Using thyroid hormone (T3)-dependent Xenopus metamorphosis as a model, we show here that Mad1 is induced by T3 in the intestine during metamorphosis when larval epithelial cell death and adult epithelial stem cell development take place. More importantly, we demonstrate that Mad1 is expressed in the larval cells undergoing apoptosis, whereas c-Myc is expressed in the proliferating adult stem cells during intestinal metamorphosis, suggesting that Mad1 may have a role in cell death during development. By using transcription activator-like effector nuclease-mediated gene-editing technology, we have generated Mad1 knockout Xenopus animals. This has revealed that Mad1 is not essential for embryogenesis or metamorphosis. On the other hand, consistent with its spatiotemporal expression profile, Mad1 knockout leads to reduced larval epithelial apoptosis but surprisingly also results in increased adult stem cell proliferation. These findings not only reveal a novel role of Mad1 in regulating developmental cell death but also suggest that a balance of Mad and Myc controls cell fate determination during adult organ development. PMID:28492553
Liu, Yan; Lin, Jingjing; Zhang, Minjie; Chen, Kai; Yang, Shengxi; Wang, Qun; Yang, Hongqin; Xie, Shusen; Zhou, Yongjian; Zhang, Xi; Chen, Fei; Yang, Yufeng
2016-11-15
Mitophagy is the selective degradation of mitochondria by autophagy, which is an important mitochondrial quality and quantity control process. During Drosophila metamorphosis, the degradation of midgut involves a large change in length and organization, which is mediated by autophagy. Here we noticed a cell-type specific mitochondrial clearance process that occurs in enterocytes (ECs), while most mitochondria remain in intestinal stem cells (ISCs) during metamorphosis. Although PINK1/PARKIN represent the canonical pathway for the elimination of impaired mitochondria in varied pathological conditions, their roles in developmental processes or normal physiological conditions have been less studied. To examine the potential contribution of PINK1 in developmental processes, we monitored the dynamic expression pattern of PINK1 in the midgut development by taking advantage of a newly CRISPR/Cas9 generated knock-in fly strain expressing PINK1-mCherry fusion protein that presumably recapitulates the endogenous expression pattern of PINK1. We disclosed a spatiotemporal correlation between the expression pattern of PINK1 and the mitochondrial clearance or persistence in ECs or ISCs respectively. By mosaic genetic analysis, we then demonstrated that PINK1 and PARKIN function epistatically to mediate the specific timely removal of mitochondria, and are involved in global autophagy in ECs during Drosophila midgut metamorphosis, with kinase-dead PINK1 exerting dominant negative effects. Taken together, our studies concluded that the PINK1/PARKIN is crucial for timely cell-type specific mitophagy under physiological conditions and demonstrated again that Drosophila midgut metamorphosis might serve as an elegant in vivo model to study autophagy. Copyright © 2016 Elsevier Inc. All rights reserved.
Kulkarni, P S; Gramapurohit, N P
2017-09-15
Corticosterone (CORT), a principal glucocorticoid in amphibians, is known to regulate diverse physiological processes including growth and metamorphosis of anuran tadpoles. Environmental stressors activate the neuroendocrine stress axis (hypothalamus-pituitary-interrenal axis, HPI) leading to an acute increase in CORT, which in turn, helps in coping with particular stress. However, chronic increase in CORT can negatively affect other physiological processes such as growth and metamorphosis. Herein, we studied the effect of exogenous CORT on larval growth, antipredator behaviour and metamorphic traits of Hylarana indica. Embryonic exposure to 5 or 20μg/L CORT did not affect their development, hatching duration as well as larval growth and metamorphosis. Exposure of tadpoles to 10 or 20μg/L CORT throughout larval development caused slower growth and development leading to increased body mass at stage 37. However, body and tail morphology of tadpoles was not affected. Interestingly, larval exposure to 5, 10 or 20μg/L CORT enhanced their antipredator response against kairomones in a concentration-dependent manner. Further, larval exposure to increasing concentrations of CORT resulted in the emergence of heavier froglets at 10 and 20μg/L while, delaying metamorphosis at all concentrations. Interestingly, the heavier froglets had shorter hindlimbs and consequently shorter jump distances. Tadpoles exposed to 20μg/L CORT during early, mid or late larval stages grew and developed slowly but tadpole morphology was not altered. Interestingly, exposure during early or mid-larval stages resulted in an enhanced antipredator response. These individuals metamorphosed later but at higher body mass while SVL was unaffected. Copyright © 2016 Elsevier Inc. All rights reserved.
Pillard, David A; Eck, William S; Johnson, Mark S; Packard, Stephanie
2017-11-01
New explosive formulations are being developed to be less sensitive to impact and inadvertent explosion, increasing safety for the warfighter. Since testing and training make environmental releases imminent, the toxicity of 3-nitro-1,2,4-triazol-5-one (NTO), a component of Insensitive Munitions eXplosive (IMX) formulations, was assessed in a one-generation study to the northern leopard frog (Lithobates ( = Rana) pipiens). Because NTO in water creates acidic conditions, acute studies were conducted with non-pH-adjusted NTO, while a long-term (70-d) study was conducted with neutralized NTO. In the acute study, 48-h and 7-d LC 50 s were ~250 mg NTO/L. In the long-term study, tadpoles were dead by day 2 in 11,350 mg/L NTO, and by day 63 in 8382 mg/L. The 70-d LC 50 was 3670 mg (neutralized) NTO/L. The number of organisms reaching complete metamorphosis was reduced by NTO; the lowest IC 25 was 1999 mg NTO/L for the Number Completing Metamorphosis. The NOECs for Time to Front Limb Eruption or Time to Metamorphosis were the same at 1346 mg/L. Histopathology did not significantly distinguish between NTO-exposed and unexposed animals, although possible effects on the density of spermatogonia in NTO-exposed males was suggested. The test data indicate that acute toxicity to ambient NTO can be attributed primarily to its acidic nature; relatively low chronic toxicity of neutralized NTO is due to delays in metamorphosis. The consequence from this latter observation may be ecologically significant as delays of even a few days could increase mortality through predation and/or loss of the aquatic medium in temporary water bodies.
Chaieb, Leila; Koyama, Takashi; Sarwar, Prioty; Mirth, Christen K.; Smith, Wendy A.; Suzuki, Yuichiro
2014-01-01
Although endocrine changes are known to modulate the timing of major developmental transitions, the genetic mechanisms underlying these changes remain poorly understood. In insects, two developmental hormones, juvenile hormone (JH) and ecdysteroids, are coordinated with each other to induce developmental changes associated with metamorphosis. However, the regulation underlying the coordination of JH and ecdysteroid synthesis remains elusive. Here, we examined the function of a homolog of the vertebrate POU domain protein, Ventral veins lacking (Vvl)/Drifter, in regulating both of these hormonal pathways in the red flour beetle, Tribolium castaneum (Tenebrionidae). RNA interference-mediated silencing of vvl expression led to both precocious metamorphosis and inhibition of molting in the larva. Ectopic application of a JH analog on vvl knockdown larvae delayed the onset of metamorphosis and led to a prolonged larval stage, indicating that Vvl acts upstream of JH signaling. Accordingly, vvl knockdown also reduced the expression of a JH biosynthesis gene, JH acid methyltransferase 3 (jhamt3). In addition, ecdysone titer and the expression of the ecdysone response gene, hormone receptor 3 (HR3), were reduced in vvl knockdown larvae. The expression of the ecdysone biosynthesis gene phantom (phm) and spook (spo) were reduced in vvl knockdown larvae in the anterior and posterior halves, respectively, indicating that Vvl might influence ecdysone biosynthesis in both the prothoracic gland and additional endocrine sources. Injection of 20-hydroxyecdysone (20E) into vvl knockdown larvae could restore the expression of HR3 although molting was never restored. These findings suggest that Vvl coordinates both JH and ecdysteroid biosynthesis as well as molting behavior to influence molting and the timing of metamorphosis. Thus, in both vertebrates and insects, POU factors modulate the production of major neuroendocrine regulators during sexual maturation. PMID:24945490
Ureña, Enric; Chafino, Silvia; Manjón, Cristina; Franch-Marro, Xavier; Martín, David
2016-01-01
Complete metamorphosis (Holometaboly) is a key innovation that underlies the spectacular success of holometabolous insects. Phylogenetic analyses indicate that Holometabola form a monophyletic group that evolved from ancestors exhibiting hemimetabolous development (Hemimetaboly). However, the nature of the changes underlying this crucial transition, including the occurrence of the holometabolan-specific pupal stage, is poorly understood. Using the holometabolous beetle Tribolium castaneum as a model insect, here we show that the transient up-regulation of the anti-metamorphic Krüppel-homolog 1 (TcKr-h1) gene at the end of the last larval instar is critical in the formation of the pupa. We find that depletion of this specific TcKr-h1 peak leads to the precocious up-regulation of the adult-specifier factor TcE93 and, hence, to a direct transformation of the larva into the adult form, bypassing the pupal stage. Moreover, we also find that the TcKr-h1-dependent repression of TcE93 is critical to allow the strong up-regulation of Broad-complex (TcBr-C), a key transcription factor that regulates the correct formation of the pupa in holometabolous insects. Notably, we show that the genetic interaction between Kr-h1 and E93 is also present in the penultimate nymphal instar of the hemimetabolous insect Blattella germanica, suggesting that the evolution of the pupa has been facilitated by the co-option of regulatory mechanisms present in hemimetabolan metamorphosis. Our findings, therefore, contribute to the molecular understanding of insect metamorphosis, and indicate the evolutionary conservation of the genetic circuitry that controls hemimetabolan and holometabolan metamorphosis, thereby shedding light on the evolution of complete metamorphosis. PMID:27135810
Freeman, Gary
2012-01-01
During anticipatory development in lecithotrophic larvae that delay metamorphosis, the growth and differentiation of features of the adult action system continue to develop at a slow pace even though they do not become functional. After metamorphosis occurs, the larger size and advanced development of these components may allow juveniles to initially grow at a faster rate than they normally would. Anticipatory development has been demonstrated in archeogastropods, some solitary ascidians and a hydrozoan. In the gastropod Haliotis and the hydrozoan Phialidium anticipatory development increases the initial growth rate of juveniles. In Haliotis and ascidians all of the larvae of a given female that live long enough exhibit anticipatory development. In Phialidium, the ability of a given female to produce larvae that can exhibit anticipatory development is a maternal polymorphic character. In Haliotis and solitary ascidians that exhibit anticipatory development, it appears to be a slower version of the rapid developmental changes that occur in parts of the adult action system at metamorphosis. In Phialidium, developmental changes in relative sizes of the different presumptive regions of the polyp are slowly altered prior to and independently of metamorphosis. Anticipatory development is not linked to the decrease in the size or nutrient reserves of older larvae but to the length of their larval period. From an evolutionary perspective, the mechanisms that operate during anticipatory development are probably of adaptive significance for lecithotrophic larvae of species that spend variable amounts of time in the water column because of a patchy distribution of appropriate settlement cues. The developmental mechanisms that underlie anticipatory development may have been used during the transition from lecithotrophy to planktotrophy. © 2012 Wiley Periodicals, Inc.
Langlois, Valérie S; Carew, Amanda C; Pauli, Bruce D; Wade, Michael G; Cooke, Gerard M; Trudeau, Vance L
2010-04-01
There are conflicting reports regarding the effects of atrazine (ATZ) on amphibian development. Therefore, further studies are needed to examine the potential mechanisms of action of ATZ in amphibians. Our aim in this study was to determine whether low concentrations of ATZ affect gonadal development and metamorphosis in the Northern leopard frog, Rana pipiens. Tadpoles were exposed in outdoor mesocosms to nominal concentrations of 0.1 and 1.8 microg/L of formulated ATZ from Gosner stage 27 (G27) to metamorphic climax (G42). Exposure to 17alpha-ethinylestradiol (EE2; 1.5 microg/L) provided a positive control for induction of testicular oocytes in males. Endocrine-related gene expression and gonadal histopathology were examined at G42 and in a subset of premetamorphic G34 tadpoles that failed to metamorphose. Gonadal gross morphology revealed that the 1.8-microg/L ATZ treatment produced 20% more females compared with the control. Histologic analysis revealed that 22% of EE2-treated males had testicular oocytes, whereas none were observed in any animals from the control or either ATZ groups. ATZ increased brain estrogen receptor alpha mRNA to 2.5 times that of the control at premetamorphosis and altered liver levels of 5beta-reductase activity at metamorphosis. In contrast, brain aromatase mRNA level and activity did not change. ATZ treatments significantly reduced metamorphic success (number of animals reaching metamorphosis) without affecting body weight, snout-vent length, or age at metamorphosis. Gene expression analysis indicated that ATZ decreased the expression of deiodinase type 3 in the tail at premetamorphosis. Our study indicates that exposure to low concentrations of ATZ in experimental mesocosms alters gonadal differentiation and metamorphosis in developing R. pipiens.
Cothran, Rickey D; Gervasi, Stephanie S; Murray, Cindy; French, Beverly J; Bradley, Paul W; Urbina, Jenny; Blaustein, Andrew R; Relyea, Rick A
2015-01-01
Abstract Carotenoids are considered beneficial nutrients because they provide increased immune capacity. Although carotenoid research has been conducted in many vertebrates, little research has been done in amphibians, a group that is experiencing global population declines from numerous causes, including disease. We raised two amphibian species through metamorphosis on three carotenoid diets to quantify the effects on life-history traits and post-metamorphic susceptibility to a fungal pathogen (Batrachochytrium dendrobatidis; Bd). Increased carotenoids had no effect on survival to metamorphosis in gray treefrogs (Hyla versicolor) but caused lower survival to metamorphosis in wood frogs [Lithobates sylvaticus (Rana sylvatica)]. Increased carotenoids caused both species to experience slower development and growth. When exposed to Bd after metamorphosis, wood frogs experienced high mortality, and the carotenoid diets had no mitigating effects. Gray treefrogs were less susceptible to Bd, which prevented an assessment of whether carotenoids could mitigate the effects of Bd. Moreover, carotenoids had no effect on pathogen load. As one of only a few studies examining the effects of carotenoids on amphibians and the first to examine potential interactions with Bd, our results suggest that carotenoids do not always serve amphibians in the many positive ways that have become the paradigm in other vertebrates. PMID:27293690
Cothran, Rickey D; Gervasi, Stephanie S; Murray, Cindy; French, Beverly J; Bradley, Paul W; Urbina, Jenny; Blaustein, Andrew R; Relyea, Rick A
2015-01-01
Carotenoids are considered beneficial nutrients because they provide increased immune capacity. Although carotenoid research has been conducted in many vertebrates, little research has been done in amphibians, a group that is experiencing global population declines from numerous causes, including disease. We raised two amphibian species through metamorphosis on three carotenoid diets to quantify the effects on life-history traits and post-metamorphic susceptibility to a fungal pathogen (Batrachochytrium dendrobatidis; Bd). Increased carotenoids had no effect on survival to metamorphosis in gray treefrogs (Hyla versicolor) but caused lower survival to metamorphosis in wood frogs [Lithobates sylvaticus (Rana sylvatica)]. Increased carotenoids caused both species to experience slower development and growth. When exposed to Bd after metamorphosis, wood frogs experienced high mortality, and the carotenoid diets had no mitigating effects. Gray treefrogs were less susceptible to Bd, which prevented an assessment of whether carotenoids could mitigate the effects of Bd. Moreover, carotenoids had no effect on pathogen load. As one of only a few studies examining the effects of carotenoids on amphibians and the first to examine potential interactions with Bd, our results suggest that carotenoids do not always serve amphibians in the many positive ways that have become the paradigm in other vertebrates.
Ventura, Tomer; Fitzgibbon, Quinn P.; Battaglene, Stephen C.; Elizur, Abigail
2015-01-01
The molecular understanding of crustacean metamorphosis is hindered by small sized individuals and inability to accurately define molt stages. We used the spiny lobster Sagmariasus verreauxi where the large, transparent larvae enable accurate tracing of the transition from a leaf-shaped phyllosoma to an intermediate larval-juvenile phase (puerulus). Transcriptomic analysis of larvae at well-defined stages prior to, during, and following this transition show that the phyllosoma-puerulus metamorphic transition is accompanied by vast transcriptomic changes exceeding 25% of the transcriptome. Notably, genes previously identified as regulating metamorphosis in other crustaceans do not fluctuate during this transition but in the later, morphologically-subtle puerulus-juvenile transition, indicating that the dramatic phyllosoma-puerulus morphological shift relies on a different, yet to be identified metamorphic mechanism. We examined the change in expression of domains and gene families, with focus on several key genes. Our research implies that the separation in molecular triggering systems between the phyllosoma-puerulus and puerulus-juvenile transitions might have enabled the extension of the oceanic phase in spiny lobsters. Study of similar transitions, where metamorphosis is uncoupled from the transition into the benthic juvenile form, in other commercially important crustacean groups might show common features to point on the evolutionary advantage of this two staged regulation. PMID:26311524
Hou, Yong; Zhang, Yan; Gong, Jing; Tian, Sha; Li, Jianwei; Dong, Zhaoming; Guo, Chao; Peng, Li; Zhao, Ping; Xia, Qingyou
2016-05-01
The silkworm is a lepidopteran insect that has an open circulatory system with hemolymph consisting of blood and lymph fluid. Hemolymph is not only considered as a depository of nutrients and energy, but it also plays a key role in substance transportation, immunity response, and proteolysis. In this study, we used LC-MS/MS to analyze the hemolymph proteins of four developmental stages during metamorphosis. A total of 728 proteins were identified from the hemolymph of the second day of wandering stage, first day of pupation, ninth day of pupation, and first day as an adult moth. GO annotations and categories showed that silkworm hemolymph proteins were enriched in carbohydrate metabolism, proteolysis, protein binding, and antibacterial humoral response. The levels of nutrient, immunity-related, and structural proteins changed significantly during development and metamorphosis. Some, such as cuticle, odorant-binding, and chemosensory proteins, showed stage-specific expression in the hemolymph. In addition, the expression of several antimicrobial peptides exhibited their highest level of abundance in the hemolymph of the early pupal stage. These findings provide a comprehensive proteomic insight of the silkworm hemolymph and suggest additional molecular targets for studying insect metamorphosis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Computational modeling of the amphibian thyroid axis ...
In vitro screening of chemicals for bioactivity together with computational modeling are beginning to replace animal toxicity testing in support of chemical risk assessment. To facilitate this transition, an amphibian thyroid axis model has been developed to describe thyroid homeostasis during Xenopus laevis pro-metamorphosis. The model simulates the dynamic relationships of normal thyroid biology throughout this critical period of amphibian development and includes molecular initiating events (MIEs) for thyroid axis disruption to allow in silico simulations of hormone levels following chemical perturbations. One MIE that has been formally described using the adverse outcome pathway (AOP) framework is thyroperoxidase (TPO) inhibition. The goal of this study was to refine the model parameters and validate model predictions by generating dose-response and time-course biochemical data following exposure to three TPO inhibitors, methimazole, 6-propylthiouracil and 2-mercaptobenzothiazole. Key model variables including gland and blood thyroid hormone (TH) levels were compared to empirical values measured in biological samples at 2, 4, 7 and 10 days following initiation of exposure at Nieuwkoop and Faber (NF) stage 54 (onset of pro-metamorphosis). The secondary objective of these studies was to relate depleted blood TH levels to delayed metamorphosis, the adverse apical outcome. Delayed metamorphosis was evaluated by continuing exposure with a subset of larvae until a
Santos, Douglas Elias; Azevedo, Dihego Oliveira; Campos, Lúcio Antônio Oliveira; Zanuncio, José Cola; Serrão, José Eduardo
2015-03-01
Fat body, typically comprising trophocytes, provides energy during metamorphosis. The fat body can be renewed once the larval phase is complete or recycled and relocated to form the fat body of the adult insect. This study aims to identify the class of programmed cell death that occurs within the fat body cells during the metamorphosis of the stingless bee Melipona quadrifasciata. Using immunodetection techniques, the fat body of the post-defecating larvae and the white-, pink-, brown-, and black-eyed pupae were tested for cleaved caspase-3 and DNA integrity, followed by ultrastructural analysis and identification of autophagy using RT-PCR for the Atg1 gene. The fat body of M. quadrifasciata showed some apoptotic cells positive for cleaved caspase-3, although without DNA fragmentation. During development, the fat body cells revealed an increased number of mitochondria and free ribosomes, in addition to higher amounts of autophagy Atg1 mRNA, than that of the pupae. The fat body of M. quadrifasciata showed few cells which underwent apoptosis, but there was evidence of increased autophagy at the completion of the larval stage. All together, these data show that some fat body cells persist during metamorphosis in the stingless bee M. quadrifasciata.
Ventura, Tomer; Fitzgibbon, Quinn P; Battaglene, Stephen C; Elizur, Abigail
2015-08-27
The molecular understanding of crustacean metamorphosis is hindered by small sized individuals and inability to accurately define molt stages. We used the spiny lobster Sagmariasus verreauxi where the large, transparent larvae enable accurate tracing of the transition from a leaf-shaped phyllosoma to an intermediate larval-juvenile phase (puerulus). Transcriptomic analysis of larvae at well-defined stages prior to, during, and following this transition show that the phyllosoma-puerulus metamorphic transition is accompanied by vast transcriptomic changes exceeding 25% of the transcriptome. Notably, genes previously identified as regulating metamorphosis in other crustaceans do not fluctuate during this transition but in the later, morphologically-subtle puerulus-juvenile transition, indicating that the dramatic phyllosoma-puerulus morphological shift relies on a different, yet to be identified metamorphic mechanism. We examined the change in expression of domains and gene families, with focus on several key genes. Our research implies that the separation in molecular triggering systems between the phyllosoma-puerulus and puerulus-juvenile transitions might have enabled the extension of the oceanic phase in spiny lobsters. Study of similar transitions, where metamorphosis is uncoupled from the transition into the benthic juvenile form, in other commercially important crustacean groups might show common features to point on the evolutionary advantage of this two staged regulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diana, S.; Hansen, L.; Foley, G.
1995-12-31
Ortho-substituted polychlorinated biphenyls are known to exhibit estrogenic activity and, in some cases, to enhance excretion of tetraiodothyronine (T4), resulting in hypothyroxinemia in mammals. Since thyroxine activity is essential for amphibian metamorphosis, and amphibian sex determination can be altered or reversed by exposure to exogenous estrogens or androgens, the effects of exposure of larvae of the African clawed frog (Xenopus laevis) to 2,2{prime},4,4{prime}-tetrachlorobiphenyl (CB 47) were investigated. Eggs and larvae of X. laevis were exposed to nominal concentrations of CB 47 of 0.05 or 0.25 ppm (1 ppm was found to result in 100% mortality) throughout the period of larvalmore » development, and effects on rates of metamorphosis and body growth and on gonad morphology were determined. Stage of metamorphosis, body length and body weight did not differ between treatment and control groups, following exposure to these sub-lethal concentrations, at any time during larval development. Effects of exposure on gonad morphology will be discussed. The failure of CB 47 to delay or prevent metamorphosis under these conditions may be due to poor responsiveness of hepatic UDP-glucuronyl transferases to induction, or novel systems of thyroxine and/or PCB transport, metabolism and excretion in larval amphibians.« less
A cytosolic carbonic anhydrase molecular switch occurs in the gills of metamorphic sea lamprey
Ferreira-Martins, D.; McCormick, Stephen; Campos, A.; Lopes-Marques, M.; Osorio, H.; Coimbra, J.; Castro, L.F.C.; Wilson, Jonthan M
2016-01-01
Carbonic anhydrase plays a key role in CO2 transport, acid-base and ion regulation and metabolic processes in vertebrates. While several carbonic anhydrase isoforms have been identified in numerous vertebrate species, basal lineages such as the cyclostomes have remained largely unexamined. Here we investigate the repertoire of cytoplasmic carbonic anhydrases in the sea lamprey (Petromyzon marinus), that has a complex life history marked by a dramatic metamorphosis from a benthic filter-feeding ammocoete larvae into a parasitic juvenile which migrates from freshwater to seawater. We have identified a novel carbonic anhydrase gene (ca19) beyond the single carbonic anhydrase gene (ca18) that was known previously. Phylogenetic analysis and synteny studies suggest that both carbonic anhydrase genes form one or two independent gene lineages and are most likely duplicates retained uniquely in cyclostomes. Quantitative PCR of ca19 and ca18 and protein expression in gill across metamorphosis show that the ca19 levels are highest in ammocoetes and decrease during metamorphosis while ca18 shows the opposite pattern with the highest levels in post-metamorphic juveniles. We propose that a unique molecular switch occurs during lamprey metamorphosis resulting in distinct gill carbonic anhydrases reflecting the contrasting life modes and habitats of these life-history stages.
Yorkie Facilitates Organ Growth and Metamorphosis in Bombyx
Liu, Shumin; Zhang, Panli; Song, Hong-Sheng; Qi, Hai-Sheng; Wei, Zhao-Jun; Zhang, Guozheng; Zhan, Shuai; Liu, Zhihong; Li, Sheng
2016-01-01
The Hippo pathway, which was identified from genetic screens in the fruit fly, Drosophila melanogaster, has a major size-control function in animals. All key components of the Hippo pathway, including the transcriptional coactivator Yorkie that is the most critical substrate and downstream effector of the Hippo kinase cassette, are found in the silkworm, Bombyx mori. As revealed by microarray and quantitative real-time PCR, expression of Hippo pathway genes is particularly enriched in several mitotic tissues, including the ovary, testis, and wing disc. Developmental profiles of Hippo pathway genes are generally similar (with the exception of Yorkie) within each organ, but vary greatly in different tissues showing nearly opposing expression patterns in the wing disc and the posterior silk gland (PSG) on day 2 of the prepupal stage. Importantly, the reduction of Yorkie expression by RNAi downregulated Yorkie target genes in the ovary, decreased egg number, and delayed larval-pupal-adult metamorphosis. In contrast, baculovirus-mediated YorkieCA overexpression upregulated Yorkie target genes in the PSG, increased PSG size, and accelerated larval-pupal metamorphosis. Together the results show that Yorkie potentially facilitates organ growth and metamorphosis, and suggest that the evolutionarily conserved Hippo pathway is critical for size control, particularly for PSG growth, in the silkworm. PMID:27489496
Individual variation affects departure rate from the natal pond in an ephemeral pond-breeding anuran
Chelgren, N.D.; Rosenberg, D.K.; Heppell, S.S.; Gitelman, A.I.
2008-01-01
Frogs exhibit extreme plasticity and individual variation in growth and behavior during metamorphosis, driven by interactions of intrinsic state factors and extrinsic environmental factors. In northern red-legged frogs (Rana aurora Baird and Girard, 1852), we studied the timing of departure from the natal pond as it relates to date and size of individuals at metamorphosis in the context of environmental uncertainty. To affect body size at metamorphosis, we manipulated food availability during the larval stage for a sample (317) of 1045 uniquely marked individuals and released them at their natal ponds as newly metamorphosed frogs. We recaptured 34% of marked frogs in pitfall traps as they departed and related the timing of their initial terrestrial movements to individual properties using a time-to-event model. Median age at first capture was 4 and 9 days postmetamorphosis at two sites. The rate of departure was positively related to body size and to date of metamorphosis. Departure rate was strongly negatively related to time elapsed since rainfall, and this effect was diminished for smaller and later metamorphosing frogs. Individual variation in metamorphic traits thus affects individuals' responses to environmental variability, supporting a behavioral link with variation in survival associated with these same metamorphic traits. ?? 2008 NRC.
Host fish suitability for glochidia of Ligumia recta
Khym, J.R.; Layzer, J.B.
2000-01-01
In the early 1900s several hosts were identified for the black sandshell Ligumia recta. Recent attempts to propagate juvenile L. recta with two of the reported hosts (bluegill Lepomis macrochirus and largemouth bass Micropterus salmoides) have produced inconsistent results and few juveniles. We conducted this study to determine which of the reported hosts or other fish hosts were the most suitable for glochidial metamorphosis. The duration of glochidial metamorphosis varied among seasons. Despite similar water temperatures, juveniles metamorphosed sooner and over a shorter period of time in the spring than early fall; the modal day of metamorphosis differed by 78 d. Relatively few juveniles were recovered from bluegill and largemouth bass in three trials. White crappie Pomoxis annularis and black crappie P. nigromaculatus were marginally suitable hosts. Although glochidia encysted on all hosts, >10x more juveniles metamorphosed on sauger Stizostedion canadense compared to other hosts tested.
MicroRNAs and the Evolution of Insect Metamorphosis.
Belles, Xavier
2017-01-31
MicroRNAs (miRNAs) are involved in the regulation of a number of processes associated with metamorphosis, either in the less modified hemimetabolan mode or in the more modified holometabolan mode. The miR-100/let-7/miR-125 cluster has been studied extensively, especially in relation to wing morphogenesis in both hemimetabolan and holometabolan species. Other miRNAs also participate in wing morphogenesis, as well as in programmed cell and tissue death, neuromaturation, neuromuscular junction formation, and neuron cell fate determination, typically during the pupal stage of holometabolan species. A special case is the control of miR-2 over Kr-h1 transcripts, which determines adult morphogenesis in the hemimetabolan metamorphosis. This is an elegant example of how a single miRNA can control an entire process by acting on a crucial mediator; however, this is a quite exceptional mechanism that was apparently lost during the transition from hemimetaboly to holometaboly.
Mitchell, S.E.; Caldwell, C.A.; Gonzales, G.; Gould, W.R.; Arimoto, R.
2005-01-01
Embryos (stage 8-47, Nieuwkoop and Faber) of the African clawed frog (Xenopus laevis) were subjected to water-borne depleted uranium (DU) concentrations that ranged from 4.8 to 77.7 mg/Lusing an acute 96-h frog embryo teratogenesis assay-Xenopus (FETAX). In a chronic 64-d assay, X. laevis (from embryo through metamorphosis; stages 8-66) were subjected to concentrations of DU that ranged from 6.2 to 54.3 mg/L Our results indicate DU is a non teratogenic metal. No effects on mortality, malformations, or growth were observed in the 96-h FETAX with concentrations of DU that ranged from 4.8 to 77.7 mg/L From stage 8 to stage 47, X. laevis tadpoles do not actively feed and the gills are not well developed. Thus, uptake of DU was reduced despite exposure to elevated concentrations. The 64-d assay resulted in no concentration response for either mortality or malformations; however, a delay in metamorphosis was observed in tadpoles subjected to elevated DU concentrations (from 13.1 to 54.3 mg/L) compared to tadpoles in both the well-water control and reference. The delay in metamorphosis was likely due to increasing body burden of DU that ranged from 0.98 to 2.82 mg/kg. Copyright?? Taylor & Francis Inc.
Midgut morphological changes and autophagy during metamorphosis in sand flies.
Malta, Juliana; Heerman, Matthew; Weng, Ju Lin; Fernandes, Kenner M; Martins, Gustavo Ferreira; Ramalho-Ortigão, Marcelo
2017-06-01
During metamorphosis, holometabolous insects undergo significant remodeling of their midgut and become able to cope with changes in dietary requirements between larval and adult stages. At this stage, insects must be able to manage and recycle available food resources in order to develop fully into adults, especially when no nutrients are acquired from the environment. Autophagy has been previously suggested to play a crucial role during metamorphosis of the mosquito. Here, we investigate the overall morphological changes of the midgut of the sand fly during metamorphosis and assess the expression profiles of the autophagy-related genes ATG1, ATG6, and ATG8, which are associated with various steps of the autophagic process. Morphological changes in the midgut start during the fourth larval instar, with epithelial degeneration followed by remodeling via the differentiation of regenerative cells in pre-pupal and pupal stages. The changes in the midgut epithelium are paired with the up-regulation of ATG1, ATG6 and ATG8 during the larva-adult transition. Vein, a putative epidermal growth factor involved in regulating epithelial midgut regeneration, is also up-regulated. Autophagy has further been confirmed in sand flies via the presence of autophagosomes residing within the cytoplasmic compartment of the pupal stages. An understanding of the underlying mechanisms of this process should aid the future management of this neglected tropical vector.
Metamorphosis in the Cirripede Crustacean Balanus amphitrite
Maruzzo, Diego; Aldred, Nick; Clare, Anthony S.; Høeg, Jens T.
2012-01-01
Stalked and acorn barnacles (Cirripedia Thoracica) have a complex life cycle that includes a free-swimming nauplius larva, a cypris larva and a permanently attached sessile juvenile and adult barnacle. The barnacle cyprid is among the most highly specialized of marine invertebrate larvae and its settlement biology has been intensively studied. By contrast, surprisingly few papers have dealt with the critical series of metamorphic events from cementation of the cyprid to the substratum until the appearance of a suspension feeding juvenile. This metamorphosis is both ontogenetically complex and critical to the survival of the barnacle. Here we use video microscopy to present a timeline and description of morphological events from settled cyprid to juvenile barnacle in the model species Balanus amphitrite, representing an important step towards both a broader understanding of the settlement ecology of this species and a platform for studying the factors that control its metamorphosis. Metamorphosis in B. amphitrite involves a complex sequence of events: cementation, epidermis separation from the cypris cuticle, degeneration of cypris musculature, rotation of the thorax inside the mantle cavity, building of the juvenile musculature, contraction of antennular muscles, raising of the body, shedding of the cypris cuticle, shell plate and basis formation and, possibly, a further moult to become a suspension feeding barnacle. We compare these events with developmental information from other barnacle species and discuss them in the framework of barnacle settlement ecology. PMID:22666355
Hu, D; Luo, W; Fan, L F; Liu, F L; Gu, J; Deng, H M; Zhang, C; Huang, L H; Feng, Q L
2016-04-01
Significant changes usually take place in the internal metabolism of insects during metamorphosis. The glycolysis-tricarboxylic acid (glycolysis-TCA) pathway is important for energy metabolism. To elucidate its dynamics, the mRNA levels of genes involved in this pathway were examined in the midgut of Spodoptera litura during metamorphosis, and the pyruvate content was quantified. The expression patterns of these genes in response to starvation were examined, and the interaction between protein phosphatase 1 (PP1) and phosphofructokinase (PFK) was studied. The results revealed that the expression or activities of most glycolytic enzymes was down-regulated in prepupae and then recovered in some degree in pupae, and all TCA-related genes were remarkably suppressed in both the prepupae and pupae. Pyruvate was enriched in the pupal midgut. Taken together, these results suggest that insects decrease both glycolysis and TCA in prepupae to save energy and then up-regulate glycolysis but down-regulate TCA in pupae to increase the supply of intermediates for construction of new organs. The expression of all these genes were down-regulated by starvation, indicating that non-feeding during metamorphosis may be a regulator of glycolysis-TCA pathway in the midgut. Importantly, interaction between PP1 and PFK was identified and is suggested to be involved in the regulation of glycolysis. © 2015 The Royal Entomological Society.
Heyland, Andreas; Reitzel, Adam M; Price, David A; Moroz, Leonid L
2006-01-01
Critical roles of hormones in metamorphic life history transitions are well documented in amphibians, lampreys, insects, and many plant species. Recent evidence suggests that thyroid hormones (TH) or TH-like compounds can regulate development to metamorphosis in echinoids (sea urchins, sand dollars, and their relatives). Moreover, previous research has provided evidence for endogenous hormone synthesis in both feeding and nonfeeding echinoderm larvae. However, the mechanisms for endogenous synthesis remain largely unknown. Here, we show that facultatively planktotrophic larvae (larvae that reach metamorphosis in the absence of food but have the ability to feed) from the subtropical sea biscuit Clypeaster rosaceus can synthesize thyroxine endogenously from incorporated iodine (I(125)). When treated with the goitrogen thiourea (a peroxidase inhibitor), iodine incorporation, thyroxine synthesis, and metamorphosis are all blocked in a dose-dependent manner. The inhibitory effect on metamorphosis can be rescued by administration of exogenous thyroxine. Finally, we demonstrate that thiourea induces morphological changes in feeding structures comparable to the phenotypic plastic response of larval structures to low food conditions, further supporting a signaling role of thyroxine in regulating larval morphogenesis and phenotypic plasticity. We conclude that upregulation of endogenous hormone synthesis might have been associated with the evolution of nonfeeding development, subsequently leading to morphological changes characteristic of nonfeeding development.
Heyland, Andreas; Reitzel, Adam M.; Price, David A.; Moroz, Leonid L.
2014-01-01
SUMMARY Critical roles of hormones in metamorphic life history transitions are well documented in amphibians, lampreys, insects, and many plant species. Recent evidence suggests that thyroid hormones (TH) or TH-like compounds can regulate development to metamorphosis in echinoids (sea urchins, sand dollars, and their relatives). Moreover, previous research has provided evidence for endogenous hormone synthesis in both feeding and nonfeeding echinoderm larvae. However, the mechanisms for endogenous synthesis remain largely unknown. Here, we show that facultatively planktotrophic larvae (larvae that reach metamorphosis in the absence of food but have the ability to feed) from the subtropical sea biscuit Clypeaster rosaceus can synthesize thyroxine endogenously from incorporated iodine (I125). When treated with the goitrogen thiourea (a peroxidase inhibitor), iodine incorporation, thyroxine synthesis, and metamorphosis are all blocked in a dose-dependent manner. The inhibitory effect on metamorphosis can be rescued by administration of exogenous thyroxine. Finally, we demonstrate that thiourea induces morphological changes in feeding structures comparable to the phenotypic plastic response of larval structures to low food conditions, further supporting a signaling role of thyroxine in regulating larval morphogenesis and phenotypic plasticity. We conclude that upregulation of endogenous hormone synthesis might have been associated with the evolution of nonfeeding development, subsequently leading to morphological changes characteristic of nonfeeding development. PMID:17073939
Effects of hatching time for larval ambystomatid salamanders
Boone, M.D.; Scott, D.E.; Niewiarowski, P.H.
2002-01-01
In aquatic communities, the phenology of breeding may influence species interactions. In the early-breeding marbled salamander, Ambystoma opacum, timing of pond filling may determine whether interactions among larvae are competitive or predatory. The objectives of our studies were to determine how time of egg hatching affected size, larval period, and survival to metamorphosis in A. opacum, and if early-hatching in A. opacum influenced the competitive and predator-prey relationships with smaller larvae of the mole salamander, Ambystoma talpoideum. Salamander larvae were reared from hatching through metamorphosis in large, outdoor enclosures located in a natural temporary pond in Aiken County, South Carolina, in two experiments. In study 1, we reared early- and late-hatching A. opacum larvae separately from hatching through metamorphosis. In study 2, we examined how early- versus late-hatching A. opacum affected a syntopic species, A. talpoideum. In general, early-hatching A. opacum were larger and older at metamorphosis, had greater survival, and left the pond earlier than late-hatching larvae. Ambystoma talpoideum reared in the presence of early-hatching A. opacum had lower survival than in controls, suggesting that A. opacum may predate upon A. talpoideum when they gain a growth advantage over later-hatching larvae. Our studies demonstrate that time of pond filling and phenology of breeding may influence population dynamics and alter the nature of relationships that develop among species.
Meyer, Axel; Begemann, Gerrit
2013-01-01
In poeciliid fish the male anal fin has been transformed into a gonopodium, an intromittent organ required for internal fertilization. Elevated testosterone levels induce metamorphosis of a subset of anal fin rays to grow and form the specialized terminal structures of the gonopodium. The molecular mechanisms underlying these processes are largely unknown. Here, we investigated whether retinoic acid (RA) signaling is involved in gonopodium development in the swordtail Xiphophorus hellerii. We showed that aldh1a2, a RA synthesizing enzyme, and the RA receptors, rar-ga and rar-gb, are expressed in anal fins during metamorphosis. aldh1a2 expression is regulated by testosterone in a concentration-dependent manner and is up-regulated in both hormone-induced and naturally developing gonopodia. Androgen receptor (ar), a putative regulator of gonopodial development, is co-expressed with aldh1a2 and the RA receptors in gonopodial rays. Importantly, experimental increase of RA signaling promoted growth of the gonopodium and increased the number of new segments. Based on gene expression analyses and pharmacological manipulation of gonopodium development, we show that the RA signaling pathway is activated in response to androgen signaling and promotes fin ray growth and development during the metamorphosis of the anal fin into the gonopodium. PMID:24204880
Pradeep Kumar, Ravindrannair; John, Anil; Kumar, Praveen; Dinesh Babu, Kaleekkal Vasupillai; Evans, Dasammal Asirvadam
2018-02-02
Oryctes rhinoceros Linn. (Coleoptera: Scarabaeidae) is a serious pest of coconuts and other palms. Symbiotic gut bacteria play significant roles in the digestion of cellulosic materials as well as in some other physiological processes essential for the existence of O. rhinoceros larvae. The study was undertaken to isolate a compound with antibacterial and larvicidal activities from the leaves of Adiantum latifolium Lam. following a bioassay-guided method. Methanol extract (ME) of dry leaf powder of A. latifolium showed larvicidal activity against third-instar O. rhinoceros (LD 50 , 5018 mg/kg) with antibacterial activity on its gut microbiota. An in vitro study showed the bacteria Bacillus cereus, Micrococcus lylae, Stenotrophomonas maltophilia, Kocuria rosea, Burkholderia mallei, Staphylococcus epidermidis, S. arlettae and Corynebacterium afermentans identified from the larval gut were sensitive to ME. Bioactivity-guided isolation of the compound by liquid-liquid extraction and column chromatography resulted in Adiantobischrysene which showed antibacterial and larvicidal activity (LD 50 , 8.4 mg/kg) and led to weight loss and precocious metamorphosis in larvae. An enzyme immunoassay showed a large peak in 20-hydroxyecdysone that commits larvae to precocious metamorphosis. This study demonstrated that the antibacterial and metamorphosis disrupting activity of Adiantobischrysene make it a natural pesticidal compound against O. rhinoceros. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Pujolar, J M; Jacobsen, M W; Bekkevold, D; Lobón-Cervià, J; Jónsson, B; Bernatchez, L; Hansen, M M
2015-08-13
Species showing complex life cycles provide excellent opportunities to study the genetic associations between life cycle stages, as selective pressures may differ before and after metamorphosis. The European eel presents a complex life cycle with two metamorphoses, a first metamorphosis from larvae into glass eels (juvenile stage) and a second metamorphosis into silver eels (adult stage). We tested the hypothesis that different genes and gene pathways will be under selection at different life stages when comparing the genetic associations between glass eels and silver eels. We used two sets of markers to test for selection: first, we genotyped individuals using a panel of 80 coding-gene single nucleotide polymorphisms (SNPs) developed in American eel; second, we investigated selection at the genome level using a total of 153,423 RAD-sequencing generated SNPs widely distributed across the genome. Using the RAD approach, outlier tests identified a total of 2413 (1.57%) potentially selected SNPs. Functional annotation analysis identified signal transduction pathways as the most over-represented group of genes, including MAPK/Erk signalling, calcium signalling and GnRH (gonadotropin-releasing hormone) signalling. Many of the over-represented pathways were related to growth, while others could result from the different conditions that eels inhabit during their life cycle. The observation of different genes and gene pathways under selection when comparing glass eels vs. silver eels supports the adaptive decoupling hypothesis for the benefits of metamorphosis. Partitioning the life cycle into discrete morphological phases may be overall beneficial since it allows the different life stages to respond independently to their unique selection pressures. This might translate into a more effective use of food and niche resources and/or performance of phase-specific tasks (e.g. feeding in the case of glass eels, migrating and reproducing in the case of silver eels).
Carryover aquatic effects on survival of metamorphic frogs during pond emigration
Chelgren, N.D.; Rosenberg, D.K.; Heppell, S.S.; Gitelman, A.I.
2006-01-01
In organisms with complex life cycles, physiological stressors during early life stages may have fitness-level impacts that are delayed into later stages or habitats. We tested the hypothesis that body size and date of metamorphosis, which are highly responsive to aquatic stressors, influence post-metamorphic survival and movement patterns in the terrestrial phase of an ephemeral pond-breeding frog by examining these traits in two populations of northern red-legged frogs (Rana aurora aurora). To increase variation of body size at metamorphosis, we manipulated food availability for 314 of 1045 uniquely marked tadpoles and estimated the probability that frogs survived and emigrated using concentric rings of drift fencing surrounding ponds and Bayesian capture-recapture modeling. The odds of surviving and emigrating from the ponds to the innermost drift fences, ???12 m, increased by factors of 2.20 (95% credibility intervals 1.39-4.23) and 2.54 (0.94-4.91) with each millimeter increase in snout-vent length and decreased by factors of 0.91 (0.85-0.96) and 0.89 (0.80-1.00) with each day's delay in metamorphosis for the two ponds. The odds of surviving and moving to the next ring of fencing, 12 m to ???40 m from the ponds, increased by a factor of 1.20 (0.45-4.06) with each millimeter increase in size. Our results demonstrated that body size and timing of metamorphosis relate strongly to the performance of newly metamorphosed frogs during their initial transition into terrestrial habitat. Carryover effects of aquatic stressors that reduce size and delay metamorphosis may have population-level impacts that are not expressed until terrestrial stages. Since changes in both aquatic and terrestrial systems are implicated in many amphibian declines, quantifying both immediate and delayed effects of stressors on demographic rates is critical to sound management. ?? 2006 by the Ecological Society of America.
The cell biology of Drosophila wing metamorphosis in vitro.
Milner, Martin J; Muir, Jonathan
1987-03-01
We have examined the metamorphosis of the wing imaginal disc of Drosophila during culture in vitro in the continuous presence of 20-hydroxy ecdysone (0.1 μg/ ml). We find that the sequence of cellular changes in the wing blade during culture closely match those occurring in situ, involving two periods at which the dorsal and ventral surfaces are joined only by cell processes containing trans-alar microtubule arrays. Good pupal and imaginal cuticle secretion is found in this system.
[Morphological fibroblastic changes in cytomegalovirus infection].
Parkhomenko, Iu V; Solnyshkova, T G; Tishkivich, O A; Shakhgil'dian, V I; Nikonova, E A
2006-01-01
Cytomegalovirus (CMV) infection is widely spread among population. While immunocompetent patients suffer rarely from this virus, it can lead to a lethal outcome in immunocompromised patients. An electron microscopic study has detected fibroblastic morphological changes of a definite cytodestructive character. The nuclei of some fibroblasts have chromatine condensation. A clear zone arising due to vacuolization near this inclusion may reflect nuclear rearrangement leading to further CMV metamorphosis of the cell. This metamorphosis is characteristic of the changes developing in the cells of different parenchymatous organs.
Clarkson, Pamela M; Beachy, Christopher K
2015-12-01
We tested the hypothesis that salamanders growing at different rates would have allocation patterns that differ among male and female metamorphic and larval salamanders. We raised individual axolotls, Ambystoma mexicanum , on four food regimes: constant high growth (throughout the experiment), constant low growth (restricted throughout the experiment), high growth switched to low growth (ad libitum switched after 140 d to restricted), and low growth switched to high growth (restricted switched after 140 d to ad libitum). Because axolotls are obligate paedomorphs, we exposed half of the salamanders to thyroid hormone to induce metamorphosis. We assayed growth and dissected and weighed gonads and fat bodies. Salamanders that were switched from restricted to ad libitum food regime delayed metamorphosis. In all treatment groups, females had larger gonads than males and males had larger fat bodies than females. The association between storage and reproduction differed between larvae and metamorphs and depended on sex.
Mori, Junpei; Sanoh, Seigo; Kashiwagi, Keiko; Hanada, Hideki; Shigeta, Mitsuki; Suzuki, Ken-Ichi T; Yamamoto, Takashi; Kotake, Yaichiro; Sugihara, Kazumi; Kitamura, Shigeyuki; Kashiwagi, Akihiko; Ohta, Shigeru
2017-01-01
A large number of chemicals are routinely detected in aquatic environments, and these chemicals may adversely affect aquatic organisms. Accurate risk assessment requires understanding drug-metabolizing systems in aquatic organisms because metabolism of these chemicals is a critical determinant of chemical bioaccumulation and related toxicity. In this study, we evaluated mRNA expression levels of nuclear receptors and drug-metabolizing enzymes as well as cytochrome P450 (CYP) activities in pro-metamorphic tadpoles, froglets, and adult frogs to determine how drug-metabolizing systems are altered at different life stages. We found that drug-metabolizing systems in tadpoles were entirely immature, and therefore, tadpoles appeared to be more susceptible to chemicals compared with metamorphosed frogs. On the other hand, cyp1a mRNA expression and CYP1A-like activity were higher in tadpoles. We found that thyroid hormone (TH), which increases during metamorphosis, induced CYP1A-like activity. Because endogenous TH concentration is significantly increased during metamorphosis, endogenous TH would induce CYP1A-like activity in tadpoles.
Muscle segmentation in time series images of Drosophila metamorphosis.
Yadav, Kuleesha; Lin, Feng; Wasser, Martin
2015-01-01
In order to study genes associated with muscular disorders, we characterize the phenotypic changes in Drosophila muscle cells during metamorphosis caused by genetic perturbations. We collect in vivo images of muscle fibers during remodeling of larval to adult muscles. In this paper, we focus on the new image processing pipeline designed to quantify the changes in shape and size of muscles. We propose a new two-step approach to muscle segmentation in time series images. First, we implement a watershed algorithm to divide the image into edge-preserving regions, and then, we classify these regions into muscle and non-muscle classes on the basis of shape and intensity. The advantage of our method is two-fold: First, better results are obtained because classification of regions is constrained by the shape of muscle cell from previous time point; and secondly, minimal user intervention results in faster processing time. The segmentation results are used to compare the changes in cell size between controls and reduction of the autophagy related gene Atg 9 during Drosophila metamorphosis.
The metamorphosis of 'culture-bound' syndromes.
Jilek, W G; Jilek-Aall, L
1985-01-01
Starting from a critical review of the concept of 'culture-bound' disorders and its development in comparative psychiatry, the authors present the changing aspects of two so-called culture-bound syndromes as paradigms of transcultural metamorphosis (koro) and intra-cultural metamorphosis (Salish Indian spirit sickness), respectively. The authors present recent data on epidemics of koro, which is supposedly bound to Chinese culture, in Thailand and India among non-Chinese populations. Neither the model of Oedipal castration anxiety nor the model of culture-specific pathogenicity, commonly adduced in psychiatric and ethnological literature, explain these phenomena. The authors' data on Salish Indian spirit sickness describes the contemporary condition as anomic depression, which is significantly different from its traditional namesake. The traditional concept was redefined by Salish ritual specialists in response to current needs imposed by social changes. The stresses involved in creating the contemporary phenomena of koro and spirit sickness are neither culture-specific nor culture-inherent, as postulated for 'culture-bound' syndromes, rather they are generated by a feeling of powerlessness caused by perceived threats to ethnic survival.
Shi, Huahong; Zhu, Pan; Guo, Suzhen
2014-05-01
Tributyltin (TBT), a well known endocrine disruptor, has high teratogenicity to embryos of amphibian (Xenopus tropicalis). An amphibian metamorphosis assay (AMA) and a complete AMA (CAMA) were conducted for TBT. In AMA, the body weight, the snout-to-vent length and the hind limb length of X. laevis tadpoles were decreased in tributyltin chloride (TBTCl; 12.5-200 ng/L) treatment groups after 7 days exposure. TBT greatly retarded the development of tadpoles, decreased the number of follicle and induced thyroid follicle cell hyperplasia after 19 days exposure. In CAMA, 10 and 100 ng/L TBTCl led to various malformations of gonad, including intersex, segmental aplasia and multiple ovary cavities of X. laevis following exposure from stages 46 to stage 66. The sex ratio was male-biased in TBT treatment groups. These results suggest that TBT delayed the metamorphosis, inhibited the growth of tadpoles and disrupted the gonadal differentiation of X. laevis at environmentally relevant concentrations.
Location, location, location: finding a suitable home among the noise
Stanley, Jenni A.; Radford, Craig A.; Jeffs, Andrew G.
2012-01-01
While sound is a useful cue for guiding the onshore orientation of larvae because it travels long distances underwater, it also has the potential to convey valuable information about the quality and type of the habitat at the source. Here, we provide, to our knowledge, the first evidence that settlement-stage coastal crab species can interpret and show a strong settlement and metamorphosis response to habitat-related differences in natural underwater sound. Laboratory- and field-based experiments demonstrated that time to metamorphosis in the settlement-stage larvae of common coastal crab species varied in response to different underwater sound signatures produced by different habitat types. The megalopae of five species of both temperate and tropical crabs showed a significant decrease in time to metamorphosis, when exposed to sound from their optimal settlement habitat type compared with other habitat types. These results indicate that sounds emanating from specific underwater habitats may play a major role in determining spatial patterns of recruitment in coastal crab species. PMID:22673354
Gujar, Hemant; Palli, Subba Reddy
2016-05-17
The common bed bug is an obligate hematophagous parasite of humans. We studied the regulation of molting and metamorphosis in bed bugs with a goal to identify key players involved. qRT-PCR studies on the expression of genes known to be involved in molting and metamorphosis showed high levels of Krüppel homolog 1 [Kr-h1, a transcription factor that plays key roles in juvenile hormone (JH) action] mRNA in the penultimate nymphal stage (N4). However, low levels of Kr-h1 mRNA were detected in the fifth and last nymphal stage (N5). Knockdown of Kr-h1 in N4 resulted in a precocious development of adult structures. Kr-h1 maintains the immature stage by suppressing E93 (early ecdysone response gene) in N4. E93 expression increases during the N5 in the absence of Kr-h1 and promotes the development of adult structures. Knockdown of E93 in N5 results in the formation of supernumerary nymphs. The role of JH in the suppression of adult structures through interaction with Kr-h1 and E93 was also studied by the topical application of JH analog, methoprene, to N5. Methoprene induced Kr-h1 and suppressed E93 and induced formation of the supernumerary nymph. These data show interactions between Kr-h1, E93 and JH in the regulation of metamorphosis in the bed bugs.
Park, Chan Jin; Kang, Han Seung; Gye, Myung Chan
2010-11-01
Nonylphenol (NP) is an estrogenic endocrine disruptor in many aquatic species. In an effort to highlight the developmental toxicity of NP in amphibians, we examined the effects of NP on the embryonic survival, tadpole growth, melanophore development and metamorphosis of a native Korean amphibian species, Bombina orientalis (Anura). When treated to fertilized eggs, 1 μM NP significantly decreased embryonic survival at 48 h post fertilization (p.f.), suggesting that 1 μM NP can exert systemic toxicity in B. orientalis embryos. In the surviving embryos, there were no significant differences in malformation rates between NP-treated embryos and controls at 240 h p.f., suggesting no or low teratogenicity of NP in B. orientalis embryos. Below LC(50) NP significantly decreased body growth and development of melanophores at 0.1 μM, suggesting that NP far below the LC(50) targets multiple developmental events in tadpoles of this frog species. In metamorphosis assay using the premetamorphic tadpoles (corresponding to Nieuwkoop Faber stage 53 in Xenopus laevis) exogenous 3,5,3'-triiodothyronine (T3)-induced tail resorption was significantly decreased by 1 μM NP. However, NP (0.1 and 1 μM)-only treatment did not affected total body T3 and T4 levels, suggesting that NP at tested concentrations inhibits thyroid hormones action but not the synthesis of hormones during metamorphosis. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trapido-Rosenthal, H.G.
1985-01-01
Larvae of the marine gastropod mollusc Haliotis refescens are induced to undergo metamorphosis by ..gamma..-aminobutyric acid (GABA) and stereochemically related compounds. The most potent of these inducers is (-)-..beta..-(parachlorophenyl)-GABA (baclofen). The inductive response exhibits positive cooperatively, and is subject to both facilitation (up-regulation) and habituation (down-regulation). Facilitation is brought about by diamino acids such as L-diaminopropionic acid (L-DAPA), and is characterized by decreased Hill coefficients (n/sub H/) and concentration requirements (EC/sub 50/) for inducers. Facilitation does not require the simultaneous presence of facilitating and inducing compounds, and the facilitated state is persistent. Larvae are capable of being up-regulated 2 daysmore » before they are capable of undergoing settlement and metamorphosis. Habituation can be brought about by exposure of pre-competent larvae to GABA 4 days prior to the attainment of competence; it is then slowly reversible. Larvae specifically bind tritiated (-)-baclofen in a manner that is saturable with both increasing time of exposure of larvae to, and with increasing concentration of, this compound. Specific binding can be competed for by unlabeled GABA-mimetic inducing molecules; the order of effectiveness of these molecules as competitors for specific binding correlates well with their effectiveness as inducers of metamorphosis. Facilitation of larvae by exposure to diamino acids does not alter their specific binding of tritiated (-)-baclofen. It is concluded from these findings that Haliotis larvae possess receptors for GABA-mimetic compounds.« less
Covelo-Soto, Lara; Saura, María; Morán, Paloma
2015-07-01
Lampreys represent one of the most ancient vertebrate lineages enclosing a special interest for genetic and epigenetic studies. The sea lamprey (Petromyzon marinus) is an anadromous species that experiences metamorphosis all the way up to the adult stage. Although representing a gradual process, metamorphosis in this species involves dramatic conversions with regard to physiological together with structural body changes preparing individuals for a marine and parasitic life; in consequence, multiple gene expression modifications are expected. The implications of thyroid hormones and HOX gene expression changes have previously been reported in this species and also in other vertebrate species. Nonetheless, information lacks on how these genes are regulated in lampreys. We here report about the existence of methylation pattern differences between the adult and the larvae sea lamprey life cycle stages making use of the Methylation-Sensitive Amplified Polymorphism (MSAP) technique. Differentially methylated fragment sequencing allowed to establish homologous identities with HOX genes involved in morphogenesis, along with genes related to the water balance and to the osmotic homoeostasis, all associated to a marine environment adaptation. These results provide evidences revealing that DNA methylation plays a role in the epigenetic regulation of the P. marinus post-natal development representing a starting point for future studies. To the best of our knowledge, this is the first study which detects DNA methylation changes associated with metamorphosis in lampreys. Copyright © 2015 Elsevier Inc. All rights reserved.
Dineshram, Ramadoss; Chandramouli, Kondethimmanahalli; Ko, Ginger Wai Kuen; Zhang, Huoming; Qian, Pei-Yuan; Ravasi, Timothy; Thiyagarajan, Vengatesen
2016-06-01
The metamorphosis of planktonic larvae of the Pacific oyster (Crassostrea gigas) underpins their complex life-history strategy by switching on the molecular machinery required for sessile life and building calcite shells. Metamorphosis becomes a survival bottleneck, which will be pressured by different anthropogenically induced climate change-related variables. Therefore, it is important to understand how metamorphosing larvae interact with emerging climate change stressors. To predict how larvae might be affected in a future ocean, we examined changes in the proteome of metamorphosing larvae under multiple stressors: decreased pH (pH 7.4), increased temperature (30 °C), and reduced salinity (15 psu). Quantitative protein expression profiling using iTRAQ-LC-MS/MS identified more than 1300 proteins. Decreased pH had a negative effect on metamorphosis by down-regulating several proteins involved in energy production, metabolism, and protein synthesis. However, warming switched on these down-regulated pathways at pH 7.4. Under multiple stressors, cell signaling, energy production, growth, and developmental pathways were up-regulated, although metamorphosis was still reduced. Despite the lack of lethal effects, significant physiological responses to both individual and interacting climate change related stressors were observed at proteome level. The metamorphosing larvae of the C. gigas population in the Yellow Sea appear to have adequate phenotypic plasticity at the proteome level to survive in future coastal oceans, but with developmental and physiological costs. © 2016 John Wiley & Sons Ltd.
E-Model for Online Learning Communities.
Rogo, Ellen J; Portillo, Karen M
2015-10-01
The purpose of this study was to explore the students' perspectives on the phenomenon of online learning communities while enrolled in a graduate dental hygiene program. A qualitative case study method was designed to investigate the learners' experiences with communities in an online environment. A cross-sectional purposive sampling method was used. Interviews were the data collection method. As the original data were being analyzed, the researchers noted a pattern evolved indicating the phenomenon developed in stages. The data were re-analyzed and validated by 2 member checks. The participants' experiences revealed an e-model consisting of 3 stages of formal learning community development as core courses in the curriculum were completed and 1 stage related to transmuting the community to an informal entity as students experienced the independent coursework in the program. The development of the formal learning communities followed 3 stages: Building a Foundation for the Learning Community, Building a Supportive Network within the Learning Community and Investing in the Community to Enhance Learning. The last stage, Transforming the Learning Community, signaled a transition to an informal network of learners. The e-model was represented by 3 key elements: metamorphosis of relationships, metamorphosis through the affective domain and metamorphosis through the cognitive domain, with the most influential element being the affective development. The e-model describes a 4 stage process through which learners experience a metamorphosis in their affective, relationship and cognitive development. Synergistic learning was possible based on the interaction between synergistic relationships and affective actions. Copyright © 2015 The American Dental Hygienists’ Association.
Gujar, Hemant; Palli, Subba Reddy
2016-01-01
The common bed bug is an obligate hematophagous parasite of humans. We studied the regulation of molting and metamorphosis in bed bugs with a goal to identify key players involved. qRT-PCR studies on the expression of genes known to be involved in molting and metamorphosis showed high levels of Krüppel homolog 1 [Kr-h1, a transcription factor that plays key roles in juvenile hormone (JH) action] mRNA in the penultimate nymphal stage (N4). However, low levels of Kr-h1 mRNA were detected in the fifth and last nymphal stage (N5). Knockdown of Kr-h1 in N4 resulted in a precocious development of adult structures. Kr-h1 maintains the immature stage by suppressing E93 (early ecdysone response gene) in N4. E93 expression increases during the N5 in the absence of Kr-h1 and promotes the development of adult structures. Knockdown of E93 in N5 results in the formation of supernumerary nymphs. The role of JH in the suppression of adult structures through interaction with Kr-h1 and E93 was also studied by the topical application of JH analog, methoprene, to N5. Methoprene induced Kr-h1 and suppressed E93 and induced formation of the supernumerary nymph. These data show interactions between Kr-h1, E93 and JH in the regulation of metamorphosis in the bed bugs. PMID:27185064
Food availability determines the response to pond desiccation in anuran tadpoles.
Enriquez-Urzelai, Urtzi; San Sebastián, Olatz; Garriga, Núria; Llorente, Gustavo A
2013-09-01
Food availability and pond desiccation are two of the most studied factors that condition amphibian metamorphosis. It is well known that, when food is abundant, organisms undergo metamorphosis early and when they are relatively large. The capability of anurans to accelerate their developmental rate in response to desiccation is also common knowledge. These two variables must act together in nature, since we know that, as a pond dries, the per capita resources decrease. We conduct an experiment to evaluate the effects of desiccation and food availability separately and in combination in tadpoles of the painted frog (Discoglossus pictus). We demonstrate that food deprivation leads to slow growth rates, which delay metamorphosis and produce smaller size and weight. The capability to accelerate metamorphosis when facing a drying pond is also confirmed, but, nevertheless, with factor interaction (when the pool is drying and resources are scarce) the capacity to respond to desiccation is lost. In addition, slow drying rates are shown to be stressful situations, but not enough to provoke a shortening of the larval period; in fact, the larval period becomes longer. We also demonstrate that the interaction of these factors changes the allometric relationship of different parts of the hind limb, which has implications for the biomechanics of jumping. Due to low mortality rates and an adequate response to both environmental factors, we expect D. pictus to have a great invasive potential in its new Mediterranean distribution area, where lots of temporary and ephemeral ponds are present.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plyushchay, Mikhail S., E-mail: mikhail.plyushchay@usach.cl
A canonical quantization scheme applied to a classical supersymmetric system with quadratic in momentum supercharges gives rise to a quantum anomaly problem described by a specific term to be quadratic in Planck constant. We reveal a close relationship between the anomaly and the Schwarzian derivative, and specify a quantization prescription which generates the anomaly-free supersymmetric quantum system with second order supercharges. We also discuss the phenomenon of a coupling-constant metamorphosis that associates quantum systems with the first-order supersymmetry to the systems with the second-order supercharges.
Deluca, Ellen K
2005-08-01
This qualitative phenomenologic study explores the meaning of crossing cultures as experienced by Jordanian graduate students in nursing. Seven male and female students participated in conversations and journals regarding their experiences in the academic, social and professional realms of an American culture at a private, mid-Atlantic university. An analysis of the text revealed an overarching theme, "metamorphosis of self." Events leading to the metamorphosis included being chosen, experiencing a time full of memories, feeling bombarded with stimuli and "looking to do something" as professional nurses in Jordan.
Aghajanian, Patrick; Takashima, Shigeo; Paul, Manash; Younossi-Hartenstein, Amelia; Hartenstein, Volker
2016-12-01
The visceral musculature of the Drosophila intestine plays important roles in digestion as well as development. Detailed studies investigating the embryonic development of the visceral muscle exist; comparatively little is known about postembryonic development and metamorphosis of this tissue. In this study we have combined the use of specific markers with electron microscopy to follow the formation of the adult visceral musculature and its involvement in gut development during metamorphosis. Unlike the adult somatic musculature, which is derived from a pool of undifferentiated myoblasts, the visceral musculature of the adult is a direct descendant of the larval fibers, as shown by activating a lineage tracing construct in the larval muscle and obtaining labeled visceral fibers in the adult. However, visceral muscles undergo a phase of remodeling that coincides with the metamorphosis of the intestinal epithelium. During the first day following puparium formation, both circular and longitudinal syncytial fibers dedifferentiate, losing their myofibrils and extracellular matrix, and dissociating into mononuclear cells ("secondary myoblasts"). Towards the end of the second day, this process is reversed, and between 48 and 72h after puparium formation, a structurally fully differentiated adult muscle layer has formed. We could not obtain evidence that cells apart from the dedifferentiated larval visceral muscle contributed to the adult muscle, nor does it appear that the number of adult fibers (or nuclei per fiber) is increased over that of the larva by proliferation. In contrast to the musculature, the intestinal epithelium is completely renewed during metamorphosis. The adult midgut epithelium rapidly expands over the larval layer during the first few hours after puparium formation; in case of the hindgut, replacement takes longer, and proceeds by the gradual caudad extension of a proliferating growth zone, the hindgut proliferation zone (HPZ). The subsequent elongation of the hindgut and midgut, as well as the establishment of a population of intestinal stem cells active in the adult midgut and hindgut, requires the presence of the visceral muscle layer, based on the finding that ablation of this layer causes a severe disruption of both processes. Copyright © 2016 Elsevier Inc. All rights reserved.
Amburgey, Staci; Funk, W. Chris; Murphy, Melanie; Muths, Erin
2012-01-01
Understanding the relationship between climate-driven habitat conditions and survival is key to preserving biodiversity in the face of rapid climate change. Hydroperiod—the length of time water is in a wetland—is a critical limiting habitat variable for amphibians as larvae must metamorphose before ponds dry. Changes in precipitation and temperature patterns are affecting hydroperiod globally, but the impact of these changes on amphibian persistence is poorly understood. We studied the responses of Boreal Chorus Frog (Pseudacris maculata) tadpoles to simulated hydroperiods (i.e., water level reductions) in the laboratory using individuals collected from ponds spanning a range of natural hydroperiods (Colorado Front Range, USA). To assess the effects of experimental hydroperiod reduction, we measured mortality, time to metamorphosis, and size at metamorphosis. We found that tadpoles grew at rates reflecting the hydroperiods of their native ponds, regardless of experimental treatment. Tadpoles from permanent ponds metamorphosed faster than those from ephemeral ponds across all experimental treatments, a pattern which may represent a predation selection gradient or countergradient variation in developmental rates. Size at metamorphosis did not vary across experimental treatments. Mortality was low overall but varied with pond of origin. Our results suggest that adaptation to local hydroperiod and/or predation and temperature conditions is important in P. maculata. Moreover, the lack of a plastic response to reduced hydroperiods suggests that P. maculata may not be able to metamorphose quickly enough to escape drying ponds. These results have important implications for amphibian persistence in ponds predicted to dry more quickly due to rapid climate change.
Spontaneous heterosis in larval life-history traits of hemiclonal frog hybrids
Hotz, Hansjürg; Semlitsch, Raymond D.; Gutmann, Eva; Guex, Gaston-Denis; Beerli, Peter
1999-01-01
European water frog hybrids Rana esculenta (Rana ridibunda × Rana lessonae) reproduce hemiclonally, transmitting only their ridibunda genome to gametes. We compared fitness-related larval life-history traits of natural R. esculenta from Poland with those of the two sympatric parental species and of newly generated F1 hybrids. Compared with either parental species, F1 hybrid offspring had higher survival, higher early growth rates, a more advanced developmental stage by day 49, and earlier metamorphosis, but similar mass at metamorphosis. R. esculenta from natural lineages had trait values intermediate between those of F1 offspring and of the two parental species. The data support earlier observations on natural R. esculenta that had faster larval growth, earlier metamorphosis, and higher resistance to hypoxic conditions compared with either parental species. Observing larval heterosis in F1 hybrids in survival, growth rate, and time to metamorphosis, however, at an even higher degree than in hybrids from natural lineages, demonstrates that heterosis is spontaneous and results from hybridity per se rather than from subsequent interclonal selection; in natural lineages the effects of hybridity and of clonal history are confounded. This is compelling evidence for spontaneous heterosis in hybrid clonals. Results on hemiclonal fish hybrids (Poeciliopsis) showed no spontaneous heterosis; thus, our frog data are not applicable to all hybrid clonals. Our data do show, however, that heterosis is an important potential source for the extensively observed ecological success of hybrid clonals. We suggest that heterosis and interclonal selection together shape fitness of natural R. esculenta lineages. PMID:10051613
Bishop, Cory D.; Pires, Anthony; Norby, Shong-Wan; Boudko, Dmitri; Moroz, Leonid L.; Hadfield, Michael G.
2014-01-01
SUMMARY The gas nitric oxide (NO), and in some cases its downstream second messenger, cyclic guanosine monophosphate (cGMP) function in different taxa to regulate the timing of life-history transitions. Increased taxonomic sampling is required to foster conclusions about the evolution and function of NO/cGMP signaling during life-history transitions. We report on the function and localization of NO and cGMP signaling during metamorphosis of the nudibranch Phestilla sibogae. Pharmacological manipulation of NO or cGMP production in larvae modulated responses to a natural settlement cue from the coral Porites compressa in a manner that suggest inhibitory function for NO/cGMP signaling. However, these treatments were not sufficient to induce metamorphosis in the absence of cue, a result unique to this animal. We show that induction of metamorphosis in response to the settlement cue is associated with a reduction in NO production. We documented the expression of putative NO synthase (NOS) and the production of cGMP during larval development and observed no larval cells in which NOS and cGMP were both detected. The production of cGMP in a bilaterally symmetrical group of cells fated to occupy the distal tip of rhinophores is correlated with competence to respond to the coral settlement cue. These results suggest that endogenous NO and cGMP are involved in modulating responses of P. sibogae to a natural settlement cue. We discuss these results with respect to habitat selection and larval ecology. PMID:18460091
Impacts of weathered tire debris on the development of Rana sylvatica larvae
Camponelli, K.M.; Casey, R.E.; Snodgrass, J.W.; Lev, S.M.; Landa, E.R.
2009-01-01
Highway runoff has the potential to negatively impact receiving systems including stormwater retention ponds where highway particulate matter can accumulate following runoff events. Tire wear particles, which contain about 1% Zn by mass, make up approximately one-third of the vehicle derived particulates in highway runoff and therefore may serve as a stressor to organisms utilizing retention ponds as habitat. In this study, we focused on the potential contribution of tire debris to Zn accumulation by Rana sylvatica larvae and possible lethal or sublethal impacts resulting from exposure to weathered tire debris during development. Eggs and larvae were exposed to aged sediments (containing either ZnCl2 or tire particulate matter, both providing nominal concentrations of 1000 mg Zn kg-1) through metamorphosis. Water column Zn was elevated in both the ZnCl2 and tire treatments relative to the control treatment, indicating that aging allowed Zn leaching from tire debris to occur. Tissue Zn was also elevated for the ZnCl2 and tire treatments indicating that Zn in the treatments was available for uptake by the amphibians. Exposure to both ZnCl2 and tire treatments increased the time for larvae to complete metamorphosis in comparison with controls. We also observed that the longer the organisms took to complete metamorphosis, the smaller their mass at metamorphosis. Our results indicate that Zn leached from aged tire debris is bioavailable to developing R. sylvatica larvae and that exposure to tire debris amended sediments can result in measurable physiological outcomes to wood frogs that may influence population dynamics. ?? 2008 Elsevier Ltd.
Johnson, Nicholas S.; Brenden, Travis O.; Swink, William D.; Lipps, Mathew A.
2016-01-01
Although population demographics of larval lampreys in streams have been studied extensively, demographics in lake environments have not. Here, we estimated survival and rates of metamorphosis for larval sea lamprey (Petromyzon marinus) populations residing in the Great Lakes near river mouths (hereafter termed lentic areas). Tagged larvae were stocked and a Bayesian multi-state tag-recovery model was used to investigate population parameters associated with tag recovery, including survival and metamorphosis probabilities. Compared to previous studies of larvae in streams, larval growth in lentic areas was substantially slower (Brody growth coefficient = 0.00132; estimate based on the recovery of six tagged larvae), survival was slightly greater (annual survival = 63%), and the length at which 50% of the larvae would be expected to metamorphose was substantially shorter (126 mm). Stochastic simulations were used to estimate the production of parasitic stage (juvenile) sea lamprey from a hypothetical population of larvae in a lentic environment. Production of juvenile sea lamprey was substantial because, even though larval growth in these environments was slow relative to stream environments, survival was high and length at metamorphosis was less. However, estimated production of juvenile sea lamprey was less for the lentic environment than for similar simulations for river environments where larvae grew faster. In circumstances where the cost to kill a larva with lampricide was equal and control funds are limited, sea lamprey control effort may be best directed toward larvae in streams with fast-growing larvae, because stream-produced larvae will most likely contribute to juvenile sea lamprey populations.
Tebben, Jan; Tapiolas, Dianne M.; Motti, Cherie A.; Abrego, David; Negri, Andrew P.; Blackall, Linda L.; Steinberg, Peter D.; Harder, Tilmann
2011-01-01
The induction of larval attachment and metamorphosis of benthic marine invertebrates is widely considered to rely on habitat specific cues. While microbial biofilms on marine hard substrates have received considerable attention as specific signals for a wide and phylogenetically diverse array of marine invertebrates, the presumed chemical settlement signals produced by the bacteria have to date not been characterized. Here we isolated and fully characterized the first chemical signal from bacteria that induced larval metamorphosis of acroporid coral larvae (Acropora millepora). The metamorphic cue was identified as tetrabromopyrrole (TBP) in four bacterial Pseudoalteromonas strains among a culture library of 225 isolates obtained from the crustose coralline algae Neogoniolithon fosliei and Hydrolithon onkodes. Coral planulae transformed into fully developed polyps within 6 h, but only a small proportion of these polyps attached to the substratum. The biofilm cell density of the four bacterial strains had no influence on the ratio of attached vs. non-attached polyps. Larval bioassays with ethanolic extracts of the bacterial isolates, as well as synthetic TBP resulted in consistent responses of coral planulae to various doses of TBP. The lowest bacterial density of one of the Pseudoalteromonas strains which induced metamorphosis was 7,000 cells mm−2 in laboratory assays, which is on the order of 0.1 –1% of the total numbers of bacteria typically found on such surfaces. These results, in which an actual cue from bacteria has been characterized for the first time, contribute significantly towards understanding the complex process of acroporid coral larval settlement mediated through epibiotic microbial biofilms on crustose coralline algae. PMID:21559509
Mai, Taoyi; Chen, Shuna; Lin, Xianyu; Zhang, Xiaojuan; Zou, Xiaopeng; Feng, Qili; Zheng, Sichun
2017-09-01
Metamorphosis is an essential physiological process in insects. This process is triggered by 20-hydroxyecydsone (20E). Lebocin, an antimicrobial peptide of Lepidoptera insects, was significantly up-regulated in the midgut, but not in the fat body of Bombyx mori during metamorphosis. In this study, the expression regulation of lebocin in B. mori midgut was studied. The results showed that B. mori lebocin and its activator BmEts were not responsive to bacterial infection in the midgut, instead, the expression of both genes was up-regulated by 20E treatment. The transcription factor BR-C Z4 in the 20E signal pathway enhanced lebocin promoter activity by directly binding to an upstream cis-response element of the promoter. In the fat body, the mRNA level of B. mori lebocin was decreased when the insect transformed from larval to pupal stage and was increased by immune challenge. The expression profiles of lebocin in Lepidopteran Spodoptera litura was also analyzed and the similar results were observed, S. litura lebocin was significantly up-regulated during midgut regeneration and mainly present in the new-formed intestinal cells of the midgut. All results together suggest that during metamorphosis 20E may activate lebocin expression via BmBR-C Z4 and BmEts in the midgut, where the antimicrobial peptide was produced to protect the midgut from infection. Copyright © 2017 Elsevier Ltd. All rights reserved.
Impacts of weathered tire debris on the development of Rana sylvatica larvae.
Camponelli, Kimberly M; Casey, Ryan E; Snodgrass, Joel W; Lev, Steven M; Landa, Edward R
2009-02-01
Highway runoff has the potential to negatively impact receiving systems including stormwater retention ponds where highway particulate matter can accumulate following runoff events. Tire wear particles, which contain about 1% Zn by mass, make up approximately one-third of the vehicle derived particulates in highway runoff and therefore may serve as a stressor to organisms utilizing retention ponds as habitat. In this study, we focused on the potential contribution of tire debris to Zn accumulation by Rana sylvatica larvae and possible lethal or sublethal impacts resulting from exposure to weathered tire debris during development. Eggs and larvae were exposed to aged sediments (containing either ZnCl2 or tire particulate matter, both providing nominal concentrations of 1000 mg Zn kg(-1)) through metamorphosis. Water column Zn was elevated in both the ZnCl2 and tire treatments relative to the control treatment, indicating that aging allowed Zn leaching from tire debris to occur. Tissue Zn was also elevated for the ZnCl2 and tire treatments indicating that Zn in the treatments was available for uptake by the amphibians. Exposure to both ZnCl2 and tire treatments increased the time for larvae to complete metamorphosis in comparison with controls. We also observed that the longer the organisms took to complete metamorphosis, the smaller their mass at metamorphosis. Our results indicate that Zn leached from aged tire debris is bioavailable to developing R. sylvatica larvae and that exposure to tire debris amended sediments can result in measurable physiological outcomes to wood frogs that may influence population dynamics.
Die Metamorphose des Polypen von Tripedalia cystophora (Cubozoa, Carybdeidae) in die Meduse
NASA Astrophysics Data System (ADS)
Werner, B.
1983-09-01
The life cycle of the Cubozoa is unique due to the complete metamorphosis of the sessible solitary polyp into one single medusa which starts a pelagic way of life. Contrary to the other metagenetic classes of Scyphozoa and Hydrozoa, the cubozoan polyp terminates its polypoid existence definitely when it metamorphosizes. Generally, the metamorphosis of the cubopolyp is characterized by the transformation of its simple, sac-like multiradial body into the tetraradial structures of the much more complicated medusa. The macroscopic phases of the metamorphosis of Tripedalia cystophora Conant are reviewed, and the internal developmental processes which effect and underlie the transformation are described in detail from new histological investigations. Only the oral pole of the polyp is involved in the active processes of transformation whereas the basal pole follows in a more passive way. The most important process is the invagination of a quadrangular furrow around the hypostome of the polyp by which (a) the subumbrellar room (bell cavity) of the developing medusa is formed, and (b) the four gastric pockets within the wall of the bell are folded off from the polyp's simple stomach. The description of the metamorphosis on the whole and the detailed comparison of the principal developmental processes provide evidence that medusa formation of Cubozoa is different from that of the other metagenetic classes of Scyphozoa and Hydrozoa. The systematic and evolutionary consequences as well as general aspects of medusa formation in the phylum Cnidaria are discussed in detail. In conclusion, the pelagic medusa generation has been “invented” by the ancestors of the recent metagenetic cnidarian classes three times independently.
NASA Astrophysics Data System (ADS)
Chen, Yanjie; Zhang, Quanqi; Qi, Jie; Sun, Yeying; Zhong, Qiwang; Wang, Xubo; Wang, Zhigang; Li, Shuo; Li, Chunmei
2009-02-01
Flatfish or flounder moves one eye to change body proportion into vertebral asymmetry during metamorphosis, during which some become sinistral while others dextral. However, the mechanism behinds the eye-position has not been well understood. In this research, hybrids between Japanese flounder(♀) and stone flounder (♂) show mixed eye-location in both dextral type and sinistral type, and thus become good samples for studying the eye-migration. mRNAs from pro-metamorphosis sinistral and dextral hybrids larvae were screened with classical differential display RT-PCR (DD-RT-PCR) and representational difference analysis of cDNA (cDNA-RDA); 30 and 47 putative fragments were isolated, respectively. The cDNA fragments of creatine kinase and trypsinogen 2 precursor genes isolated by cDNA-RDA exhibited eye-position expression patterns during metamorphosis. However, none of the fragments was proved to be related to flatfishes’ eye-position specifically. Therefore, further studies and more sensitive gene isolated methods are needed to solve the problems.
Forever young: Endocrinology of paedomorphosis in the Mexican axolotl (Ambystoma mexicanum).
De Groef, Bert; Grommen, Sylvia V H; Darras, Veerle M
2018-05-16
The Mexican axolotl (Ambystoma mexicanum) is a salamander species that does not undergo metamorphosis, resulting in the retention of juvenile characteristics in the mature breeding stage (paedomorphosis). Here we review the endocrinological studies investigating the proximate cause of axolotl paedomorphosis with a focus on the hypothalamo-pituitary-thyroid (HPT) axis. It is well established that axolotl paedomorphosis is a consequence of low activity of the HPT axis. The pituitary hormone thyrotropin (TSH) is capable of inducing metamorphosis in the axolotl, which indicates that all processes and interactions in the HPT axis below the pituitary level are functional, but that TSH release is impaired. In metamorphosing species, TSH secretion is largely controlled by the hypothalamic neuropeptide corticotropin-releasing hormone (CRH), which seems to have lost its thyrotropic activity in the axolotl. However, preliminary experiments have not yet confirmed a role for faulty CRH signalling in axolotl paedomorphosis. Other hypothalamic factors and potential pituitary inhibitors need to be investigated to identify their roles in amphibian metamorphosis and axolotl paedomorphosis. Copyright © 2018 Elsevier Inc. All rights reserved.
Reyes-Bermudez, Alejandro; Desalvo, Michael K; Voolstra, Christian R; Sunagawa, Shinichi; Szmant, Alina M; Iglesias-Prieto, Roberto; Medina, Mónica
2009-01-01
Similar to many marine invertebrates, scleractinian corals experience a dramatic morphological transformation, as well as a habitat switch, upon settlement and metamorphosis. At this time, planula larvae transform from non-calcifying, demersal, motile organisms into sessile, calcifying, benthic juvenile polyps. We performed gene expression microarray analyses between planulae, aposymbiotic primary polyps, and symbiotic adult tissue to elucidate the molecular mechanisms underlying coral metamorphosis and early stages of calcification in the Robust/Short clade scleractinian coral Montastraea faveolata. Among the annotated genes, the most abundant upregulated transcripts in the planula stage are involved in protein synthesis, chromatin assembly and mitochondrial metabolism; the polyp stage, morphogenesis, protein catabolism and organic matrix synthesis; and the adult stage, sexual reproduction, stress response and symbiosis. We also present evidence showing that the planula and adult transcriptomes are more similar to each other than to the polyp transcriptome. Our results also point to a large number of uncharacterized adult coral-specific genes likely involved in coral-specific functions such as symbiosis and calcification.
Faunes, Fernando; Larraín, Juan
2016-08-01
Developmental transitions include molting in some invertebrates and the metamorphosis of insects and amphibians. While the study of Caenorhabditis elegans larval transitions was crucial to determine the genetic control of these transitions, Drosophila melanogaster and Xenopus laevis have been classic models to study the role of hormones in metamorphosis. Here we review how heterochronic genes (lin-4, let-7, lin-28, lin-41), hormones (dafachronic acid, ecdysone, thyroid hormone) and the environment regulate developmental transitions. Recent evidence suggests that some heterochronic genes also regulate transitions in higher organisms that they are controlled by hormones involved in metamorphosis. We also discuss evidence demonstrating that heterochronic genes and hormones regulate the proliferation and differentiation of embryonic and neural stem cells. We propose the hypothesis that developmental transitions are regulated by an evolutionary conserved mechanism in which heterochronic genes and hormones interact to control stem/progenitor cells proliferation, cell cycle exit, quiescence and differentiation and determine the proper timing of developmental transitions. Finally, we discuss the relevance of these studies to understand post-embryonic development, puberty and regeneration in humans. Copyright © 2016 Elsevier Inc. All rights reserved.
Embryonic multipotent progenitors remodel the Drosophila airways during metamorphosis
Pitsouli, Chrysoula; Perrimon, Norbert
2010-01-01
Adult structures in holometabolous insects such as Drosophila are generated by groups of imaginal cells dedicated to the formation of different organs. Imaginal cells are specified in the embryo and remain quiescent until the larval stages, when they proliferate and differentiate to form organs. The Drosophila tracheal system is extensively remodeled during metamorphosis by a small number of airway progenitors. Among these, the spiracular branch tracheoblasts are responsible for the generation of the pupal and adult abdominal airways. To understand the coordination of proliferation and differentiation during organogenesis of tubular organs, we analyzed the remodeling of Drosophila airways during metamorphosis. We show that the embryonic spiracular branch tracheoblasts are multipotent cells that express the homeobox transcription factor Cut, which is necessary for their survival and normal development. They give rise to three distinct cell populations at the end of larval development, which generate the adult tracheal tubes, the spiracle and the epidermis surrounding the spiracle. Our study establishes the series of events that lead to the formation of an adult tubular structure in Drosophila. PMID:20940225
Harper, Matthew P; Peckarsky, Barbara L
2006-04-01
To understand the consequences of human accelerated environmental change, it is important to document the effects on natural populations of an increasing frequency of extreme climatic events. In stream ecosystems, recent climate change has resulted in extreme variation in both thermal and hydrological regimes. From 2001 to 2004, a severe drought in western United States corresponded with earlier emergence of the adult stage of the high-altitude stream mayfly, Baetis bicaudatus. Using a long-term database from a western Colorado stream, the peak emergence date of this mayfly population was predicted by both the magnitude and date of peak stream flow, and by the mean daily water temperature, suggesting that Baetis may respond to declining stream flow or increasing water temperature as proximate cues for early metamorphosis. However, in a one-year survey of multiple streams from the same drainage basin, only water temperature predicted spatial variation in the onset of emergence of this mayfly. To decouple the effects of temperature and flow, we separately manipulated these factors in flow-through microcosms and measured the timing of B. bicaudatus metamorphosis to the adult stage. Mayflies emerged sooner in a warmed-water treatment than an ambient-water treatment; but reducing flow did not accelerate the onset of mayfly emergence. Nonetheless, using warming temperatures to cue metamorphosis enables mayflies to time their emergence during the descending limb of the hydrograph when oviposition sites (protruding rocks) are becoming available. We speculate that large-scale climate changes involving warming and stream drying could cause significant shifts in the timing of mayfly metamorphosis, thereby having negative effects on populations that play an important role in stream ecosystems.
TGF-β signaling in insects regulates metamorphosis via juvenile hormone biosynthesis
Ishimaru, Yoshiyasu; Tomonari, Sayuri; Matsuoka, Yuji; Watanabe, Takahito; Miyawaki, Katsuyuki; Bando, Tetsuya; Tomioka, Kenji; Ohuchi, Hideyo; Noji, Sumihare; Mito, Taro
2016-01-01
Although butterflies undergo a dramatic morphological transformation from larva to adult via a pupal stage (holometamorphosis), crickets undergo a metamorphosis from nymph to adult without formation of a pupa (hemimetamorphosis). Despite these differences, both processes are regulated by common mechanisms that involve 20-hydroxyecdysone (20E) and juvenile hormone (JH). JH regulates many aspects of insect physiology, such as development, reproduction, diapause, and metamorphosis. Consequently, strict regulation of JH levels is crucial throughout an insect’s life cycle. However, it remains unclear how JH synthesis is regulated. Here, we report that in the corpora allata of the cricket, Gryllus bimaculatus, Myoglianin (Gb’Myo), a homolog of Drosophila Myoglianin/vertebrate GDF8/11, is involved in the down-regulation of JH production by suppressing the expression of a gene encoding JH acid O-methyltransferase, Gb’jhamt. In contrast, JH production is up-regulated by Decapentaplegic (Gb’Dpp) and Glass-bottom boat/60A (Gb’Gbb) signaling that occurs as part of the transcriptional activation of Gb’jhamt. Gb’Myo defines the nature of each developmental transition by regulating JH titer and the interactions between JH and 20E. When Gb’myo expression is suppressed, the activation of Gb’jhamt expression and secretion of 20E induce molting, thereby leading to the next instar before the last nymphal instar. Conversely, high Gb’myo expression induces metamorphosis during the last nymphal instar through the cessation of JH synthesis. Gb’myo also regulates final insect size. Because Myo/GDF8/11 and Dpp/bone morphogenetic protein (BMP)2/4-Gbb/BMP5–8 are conserved in both invertebrates and vertebrates, the present findings provide common regulatory mechanisms for endocrine control of animal development. PMID:27140602
Development and infectious disease in hosts with complex life cycles.
Searle, Catherine L; Xie, Gisselle Yang; Blaustein, Andrew R
2013-01-01
Metamorphosis is often characterized by profound changes in morphology and physiology that can affect the dynamics of species interactions. For example, the interaction between a pathogen and its host may differ depending on the life stage of the host or pathogen. One pathogen that infects hosts with complex life cycles is the emerging fungal pathogen of amphibians, Batrachochytrium dendrobatidis (Bd). We sought to determine how conditions at the larval stage can affect variation in development and patterns of Bd infection across amphibian life stages. We used outdoor experimental mesocosms to simulate natural pond habitats and manipulated the presence of Bd, the larval density, and the number of host species in larvae of two co-occurring amphibian species (Rana cascadae and Pseudacris regilla). We found that infection differed between species throughout development; P. regilla consistently had higher infection severity compared to R. cascadae. Additionally, while up to 100% of larvae were infected, only 18.2% of R. cascadae and 81.5% of P. regilla were infected after metamorphosis. This indicates that amphibians have the ability to recover from Bd infection as they undergo metamorphosis. Higher larval densities in P. regilla led to a shorter larval period, and individuals with a shorter larval period had lower infection severity. This led to a trend where P. regilla larvae reared at high densities tended to have lower infection prevalence after metamorphosis. We also found that exposure to Bd increased larval mortality and prolonged the larval period in P. regilla, indicating that P. regilla are susceptible to the negative effects of Bd as larvae. This study demonstrates that host density, species composition, and pathogen exposure may all interact to influence development and infection in hosts with complex life cycles.
Remodeling of peripheral nerve ensheathment during the larval-to-adult transition in Drosophila.
Subramanian, Aswati; Siefert, Matthew; Banerjee, Soumya; Vishal, Kumar; Bergmann, Kayla A; Curts, Clay C M; Dorr, Meredith; Molina, Camillo; Fernandes, Joyce
2017-10-01
Over the course of a 4-day period of metamorphosis, the Drosophila larval nervous system is remodeled to prepare for adult-specific behaviors. One example is the reorganization of peripheral nerves in the abdomen, where five pairs of abdominal nerves (A4-A8) fuse to form the terminal nerve trunk. This reorganization is associated with selective remodeling of four layers that ensheath each peripheral nerve. The neural lamella (NL), is the first to dismantle; its breakdown is initiated by 6 hours after puparium formation, and is completely removed by the end of the first day. This layer begins to re-appear on the third day of metamorphosis. Perineurial glial (PG) cells situated just underneath the NL, undergo significant proliferation on the first day of metamorphosis, and at that stage contribute to 95% of the glial cell population. Cells of the two inner layers, Sub-Perineurial Glia (SPG) and Wrapping Glia (WG) increase in number on the second half of metamorphosis. Induction of cell death in perineurial glia via the cell death gene reaper and the Diptheria toxin (DT-1) gene, results in abnormal bundling of the peripheral nerves, suggesting that perineurial glial cells play a role in the process. A significant number of animals fail to eclose in both reaper and DT-1 targeted animals, suggesting that disruption of PG also impacts eclosion behavior. The studies will help to establish the groundwork for further work on cellular and molecular processes that underlie the co-ordinated remodeling of glia and the peripheral nerves they ensheath. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1144-1160, 2017. © 2017 Wiley Periodicals, Inc.
Molecular mechanisms of corticosteroid synergy with thyroid hormone during tadpole metamorphosis
Bonett, Ronald M.; Hoopfer, Eric D.; Denver, Robert J.
2010-01-01
Corticosteroids (CS) act synergistically with thyroid hormone (TH) to accelerate amphibian metamorphosis. Earlier studies showed that CS increase nuclear 3,5,3′-triiodothyronine (T3) binding capacity in tadpole tail, and 5′ deiodinase activity in tadpole tissues, increasing the generation of T3 from thyroxine (T4). In the present study we investigated CS synergy with TH by analyzing expression of key genes involved in TH and CS signaling using tadpole tail explant cultures, prometamorphic tadpoles, and frog tissue culture cells (XTC-2 and XLT-15). Treatment of tail explants with T3 at 100 nM, but not at 10 nM caused tail regression. Corticosterone (CORT) at three doses (100, 500, 3400 nM) had no effect or increased tail size. T3 at 10 nM plus CORT caused tails to regress similar to 100 nM T3. Thyroid hormone receptor beta (TRβ) mRNA was synergistically upregulated by T3 plus CORT in tail explants, tail and brain in vivo, and tissue culture cells. The activating 5′ deiodinase type 2 (D2) mRNA was induced by T3 and CORT in tail explants and tail in vivo. Thyroid hormone increased expression of glucocorticoid (GR) and mineralocorticoid receptor (MR) mRNAs. Our findings support that the synergistic actions of TH and CS in metamorphosis occur at the level of expression of genes for TRβ and D2, enhancing tissue sensitivity to TH. Concurrently, TH enhances tissue sensitivity to CS by upregulating GR and MR. Environmental stressors can modulate the timing of tadpole metamorphosis in part by CS enhancing the response of tadpole tissues to the actions of TH. PMID:20338173
Zhang, X; Zheng, S
2017-04-01
Insect chitinases are hydrolytic enzymes required for the degradation of chitin. They are essential for insect moulting and metamorphosis. In this study, the regulation mechanism of a chitinase gene, Bombyx mori chitinase 5 (BmCHT5), was studied. Quantitative reverse transcription PCR (qRT-PCR) analysis showed that BmCHT5 was up-regulated during the larval-larval and larval-pupa transitions and notably induced by 20-hydroxyecdysone (20E). Analysis of the BmCHT5 promoter revealed the presence of one Bombyx mori Broad-Complex Zinc-Finger Isoform 4 (BR-C Z4), two BR-C Z2 and two ecdysone-induced protein 74A (E74A) cis-regulatory elements (CREs) that are related to 20E. qRT-PCR showed that the expression of both BmBR-C Z4 and BmBR-C Z2 during metamorphosis, and when induced by 20E, was anastomotic with the variations in BmCHT5 mRNA level. In contrast, BmE74A did not follow this trend. An electrophoretic mobility shift assay did not retrieve a binding partner for the two BR-C Z2 CREs in the BmN cell line nuclear extract, whereas BR-C Z4 CRE specifically bound to BmBR-C Z4. Besides, luciferase activity analysis confirmed that BmBR-C Z4 could enhance the activity of the BmCHT5 promoter with BR-C Z4 CRE and could not enhance the promoter activity by mutating BR-C Z4 CRE. Taken together, these data suggest that the transcription factor BmBR-C Z4 enhances the expression of BmCHT5 during metamorphosis. © 2016 The Royal Entomological Society.
TGF-β signaling in insects regulates metamorphosis via juvenile hormone biosynthesis.
Ishimaru, Yoshiyasu; Tomonari, Sayuri; Matsuoka, Yuji; Watanabe, Takahito; Miyawaki, Katsuyuki; Bando, Tetsuya; Tomioka, Kenji; Ohuchi, Hideyo; Noji, Sumihare; Mito, Taro
2016-05-17
Although butterflies undergo a dramatic morphological transformation from larva to adult via a pupal stage (holometamorphosis), crickets undergo a metamorphosis from nymph to adult without formation of a pupa (hemimetamorphosis). Despite these differences, both processes are regulated by common mechanisms that involve 20-hydroxyecdysone (20E) and juvenile hormone (JH). JH regulates many aspects of insect physiology, such as development, reproduction, diapause, and metamorphosis. Consequently, strict regulation of JH levels is crucial throughout an insect's life cycle. However, it remains unclear how JH synthesis is regulated. Here, we report that in the corpora allata of the cricket, Gryllus bimaculatus, Myoglianin (Gb'Myo), a homolog of Drosophila Myoglianin/vertebrate GDF8/11, is involved in the down-regulation of JH production by suppressing the expression of a gene encoding JH acid O-methyltransferase, Gb'jhamt In contrast, JH production is up-regulated by Decapentaplegic (Gb'Dpp) and Glass-bottom boat/60A (Gb'Gbb) signaling that occurs as part of the transcriptional activation of Gb'jhamt Gb'Myo defines the nature of each developmental transition by regulating JH titer and the interactions between JH and 20E. When Gb'myo expression is suppressed, the activation of Gb'jhamt expression and secretion of 20E induce molting, thereby leading to the next instar before the last nymphal instar. Conversely, high Gb'myo expression induces metamorphosis during the last nymphal instar through the cessation of JH synthesis. Gb'myo also regulates final insect size. Because Myo/GDF8/11 and Dpp/bone morphogenetic protein (BMP)2/4-Gbb/BMP5-8 are conserved in both invertebrates and vertebrates, the present findings provide common regulatory mechanisms for endocrine control of animal development.
More similar than you think: Frog metamorphosis as a model of human perinatal endocrinology.
Buchholz, Daniel R
2015-12-15
Hormonal control of development during the human perinatal period is critically important and complex with multiple hormones regulating fetal growth, brain development, and organ maturation in preparation for birth. Genetic and environmental perturbations of such hormonal control may cause irreversible morphological and physiological impairments and may also predispose individuals to diseases of adulthood, including diabetes and cardiovascular disease. Endocrine and molecular mechanisms that regulate perinatal development and that underlie the connections between early life events and adult diseases are not well elucidated. Such mechanisms are difficult to study in uterus-enclosed mammalian embryos because of confounding maternal effects. To elucidate mechanisms of developmental endocrinology in the perinatal period, Xenopus laevis the African clawed frog is a valuable vertebrate model. Frogs and humans have identical hormones which peak at birth and metamorphosis, have conserved hormone receptors and mechanisms of gene regulation, and have comparable roles for hormones in many target organs. Study of molecular and endocrine mechanisms of hormone-dependent development in frogs is advantageous because an extended free-living larval period followed by metamorphosis (1) is independent of maternal endocrine influence, (2) exhibits dramatic yet conserved developmental effects induced by thyroid and glucocorticoid hormones, and (3) begins at a developmental stage with naturally undetectable hormone levels, thereby facilitating endocrine manipulation and interpretation of results. This review highlights the utility of frog metamorphosis to elucidate molecular and endocrine actions, hormone interactions, and endocrine disruption, especially with respect to thyroid hormone. Knowledge from the frog model is expected to provide fundamental insights to aid medical understanding of endocrine disease, stress, and endocrine disruption affecting the perinatal period in humans. Copyright © 2015 Elsevier Inc. All rights reserved.
Optimizing larval assessment to support sea lamprey control in the Great Lakes
Hansen, Michael J.; Adams, Jean V.; Cuddy, Douglas W.; Richards, Jessica M.; Fodale, Michael F.; Larson, Geraldine L.; Ollila, Dale J.; Slade, Jeffrey W.; Steeves, Todd B.; Young, Robert J.; Zerrenner, Adam
2003-01-01
Elements of the larval sea lamprey (Petromyzon marinus) assessment program that most strongly influence the chemical treatment program were analyzed, including selection of streams for larval surveys, allocation of sampling effort among stream reaches, allocation of sampling effort among habitat types, estimation of daily growth rates, and estimation of metamorphosis rates, to determine how uncertainty in each element influenced the stream selection program. First, the stream selection model based on current larval assessment sampling protocol significantly underestimated transforming sea lam-prey abundance, transforming sea lampreys killed, and marginal costs per sea lamprey killed, compared to a protocol that included more years of data (especially for large streams). Second, larval density in streams varied significantly with Type-I habitat area, but not with total area or reach length. Third, the ratio of larval density between Type-I and Type-II habitat varied significantly among streams, and that the optimal allocation of sampling effort varied with the proportion of habitat types and variability of larval density within each habitat. Fourth, mean length varied significantly among streams and years. Last, size at metamorphosis varied more among years than within or among regions and that metamorphosis varied significantly among streams within regions. Study results indicate that: (1) the stream selection model should be used to identify streams with potentially high residual populations of larval sea lampreys; (2) larval sampling in Type-II habitat should be initiated in all streams by increasing sampling in Type-II habitat to 50% of the sampling effort in Type-I habitat; and (3) methods should be investigated to reduce uncertainty in estimates of sea lamprey production, with emphasis on those that reduce the uncertainty associated with larval length at the end of the growing season and those used to predict metamorphosis.
Transcription factor E93 specifies adult metamorphosis in hemimetabolous and holometabolous insects.
Ureña, Enric; Manjón, Cristina; Franch-Marro, Xavier; Martín, David
2014-05-13
All immature animals undergo remarkable morphological and physiological changes to become mature adults. In winged insects, metamorphic changes either are limited to a few tissues (hemimetaboly) or involve a complete reorganization of most tissues and organs (holometaboly). Despite the differences, the genetic switch between immature and adult forms in both types of insects relies on the disappearance of the antimetamorphic juvenile hormone (JH) and the transcription factors Krüppel-homolog 1 (Kr-h1) and Broad-Complex (BR-C) during the last juvenile instar. Here, we show that the transcription factor E93 is the key determinant that promotes adult metamorphosis in both hemimetabolous and holometabolous insects, thus acting as the universal adult specifier. In the hemimetabolous insect Blattella germanica, BgE93 is highly expressed in metamorphic tissues, and RNA interference (RNAi)-mediated knockdown of BgE93 in the nymphal stage prevented the nymphal-adult transition, inducing endless reiteration of nymphal development, even in the absence of JH. We also find that BgE93 down-regulated BgKr-h1 and BgBR-C expression during the last nymphal instar of B. germanica, a key step necessary for proper adult differentiation. This essential role of E93 is conserved in holometabolous insects as TcE93 RNAi in Tribolium castaneum prevented pupal-adult transition and produced a supernumerary second pupa. In this beetle, TcE93 also represses expression of TcKr-h1 and TcBR-C during the pupal stage. Similar results were obtained in the more derived holometabolous insect Drosophila melanogaster, suggesting that winged insects use the same regulatory mechanism to promote adult metamorphosis. This study provides an important insight into the understanding of the molecular basis of adult metamorphosis.
Kayukawa, Takumi; Jouraku, Akiya; Ito, Yuka; Shinoda, Tetsuro
2017-01-31
Juvenile hormone (JH) represses precocious metamorphosis of larval to pupal and adult transitions in holometabolous insects. The early JH-inducible gene Krüppel homolog 1 (Kr-h1) plays a key role in the repression of metamorphosis as a mediator of JH action. Previous studies demonstrated that Kr-h1 inhibits precocious larval-pupal transition in immature larva via direct transcriptional repression of the pupal specifier Broad-Complex (BR-C). JH was recently reported to repress the adult specifier gene Ecdysone-induced protein 93F (E93); however, its mechanism of action remains unclear. Here, we found that JH suppressed ecdysone-inducible E93 expression in the epidermis of the silkworm Bombyx mori and in a B. mori cell line. Reporter assays in the cell line revealed that the JH-dependent suppression was mediated by Kr-h1. Genome-wide ChIP-seq analysis identified a consensus Kr-h1 binding site (KBS, 14 bp) located in the E93 promoter region, and EMSA confirmed that Kr-h1 directly binds to the KBS. Moreover, we identified a C-terminal conserved domain in Kr-h1 essential for the transcriptional repression of E93 Based on these results, we propose a mechanism in which JH-inducible Kr-h1 directly binds to the KBS site upstream of the E93 locus to repress its transcription in a cell-autonomous manner, thereby preventing larva from bypassing the pupal stage and progressing to precocious adult development. These findings help to elucidate the molecular mechanisms regulating the metamorphic genetic network, including the functional significance of Kr-h1, BR-C, and E93 in holometabolous insect metamorphosis.
Turbine Sound May Influence the Metamorphosis Behaviour of Estuarine Crab Megalopae
Pine, Matthew K.; Jeffs, Andrew G.; Radford, Craig A.
2012-01-01
It is now widely accepted that a shift towards renewable energy production is needed in order to avoid further anthropogenically induced climate change. The ocean provides a largely untapped source of renewable energy. As a result, harvesting electrical power from the wind and tides has sparked immense government and commercial interest but with relatively little detailed understanding of the potential environmental impacts. This study investigated how the sound emitted from an underwater tidal turbine and an offshore wind turbine would influence the settlement and metamorphosis of the pelagic larvae of estuarine brachyuran crabs which are ubiquitous in most coastal habitats. In a laboratory experiment the median time to metamorphosis (TTM) for the megalopae of the crabs Austrohelice crassa and Hemigrapsus crenulatus was significantly increased by at least 18 h when exposed to either tidal turbine or sea-based wind turbine sound, compared to silent control treatments. Contrastingly, when either species were subjected to natural habitat sound, observed median TTM decreased by approximately 21–31% compared to silent control treatments, 38–47% compared to tidal turbine sound treatments, and 46–60% compared to wind turbine sound treatments. A lack of difference in median TTM in A. crassa between two different source levels of tidal turbine sound suggests the frequency composition of turbine sound is more relevant in explaining such responses rather than sound intensity. These results show that estuarine mudflat sound mediates natural metamorphosis behaviour in two common species of estuarine crabs, and that exposure to continuous turbine sound interferes with this natural process. These results raise concerns about the potential ecological impacts of sound generated by renewable energy generation systems placed in the nearshore environment. PMID:23240063
Izaguirre, M F; García-Sancho, M N; Miranda, L A; Tomas, J; Casco, V H
2008-08-01
Cell adhesion molecules act as signal transducers from the extracellular environment to the cytoskeleton and the nucleus and consequently induce changes in the expression pattern of structural proteins. In this study, we showed the effect of thyroid hormone (TH) inhibition and arrest of metamorphosis on the expression of E-cadherin, beta-and alpha-catenin in the developing kidney of Bufo arenarum. Cell adhesion molecules have selective temporal and spatial expression during development suggesting a specific role in nephrogenesis. In order to study mechanisms controlling the expression of adhesion molecules during renal development, we blocked the B. arenarum metamorphosis with a goitrogenic substance that blocks TH synthesis. E-cadherin expression in the proximal tubules is independent of thyroid control. However, the blockage of TH synthesis causes up-regulation of E-cadherin in the collecting ducts, the distal tubules and the glomeruli. The expression of beta-and alpha-catenin in the collecting ducts, the distal tubules, the glomeruli and the mesonephric mesenchyme is independent of TH. TH blockage causes up-regulation of beta-and alpha-catenin in the proximal tubules. In contrast to E-cadherin, the expression of the desmosomal cadherin desmoglein 1 (Dsg-1) is absent in the control of the larvae kidney during metamorphosis and is expressed in some interstitial cells in the KClO4 treated larvae. According to this work, the Dsg-1 expression is down-regulated by TH. We demonstrated that the expression of E-cadherin, Dsg-1, beta-catenin and alpha-catenin are differentially affected by TH levels, suggesting a hormone-dependent role of these proteins in the B. arenarum renal metamorphosis.
De Loof, Arnold; De Haes, Wouter; Janssen, Tom; Schoofs, Liliane
2014-04-01
In holometabolous insects the fall to zero of the titer of Juvenile Hormone ends its still poorly understood "status quo" mode of action in larvae. Concurrently it initiates metamorphosis of which the programmed cell death of all internal tissues that actively secrete proteins, such as the fat body, midgut, salivary glands, prothoracic glands, etc. is the most drastic aspect. These tissues have a very well developed rough endoplasmic reticulum, a known storage site of intracellular Ca(2+). A persistent high [Ca(2+)]i is toxic, lethal and causal to apoptosis. Metamorphosis becomes a logical phenomenon if analyzed from: (1) the causal link between calcium toxicity and apoptosis; (2) the largely overlooked fact that at least some isoforms of Ca(2+)-ATPases have a binding site for farnesol-like endogenous sesquiterpenoids (FRS). The Ca(2+)-ATPase blocker thapsigargin, like JH a sesquiterpenoid derivative, illustrates how absence of JH might work. The Ca(2+)-homeostasis system is concurrently extremely well conserved in evolution and highly variable, enabling tissue-, developmental-, and species specificity. As long as JH succeeds in keeping [Ca(2+)]i low by keeping the Ca(2+)-ATPases pumping, it acts as "the status quo" hormone. When it disappears, its various inhibitory effects are lifted. The electrical wiring system of cells, in particular in the regenerating tissues, is subject to change during metamorphosis. The possibility is discussed that in vertebrates an endogenous farnesol-like sesquiterpenoid, probably farnesol itself, acts as a functional, but hitherto completely overlooked Juvenile anti-aging "Inbrome", a novel concept in signaling. Copyright © 2014 Elsevier Inc. All rights reserved.
Sources of genetic and phenotypic variance in fertilization rates and larval traits in a sea urchin.
Evans, Jonathan P; García-González, Francisco; Marshall, Dustin J
2007-12-01
In nonresource based mating systems females are thought to derive indirect genetic benefits by mating with high-quality males. Such benefits can be due either to the intrinsic genetic quality of sires or to beneficial interactions between maternal and paternal haplotypes. Animals with external fertilization and no parental care offer unrivaled opportunities to address these hypotheses. With these systems, cross-classified breeding designs and in vitro fertilization can be used to disentangle sources of genetic and environmental variance in offspring fitness. Here, we employ these approaches in the Australian sea urchin Heliocidaris erythrogramma and explore how sire-dam identities influence fertilization rates, embryo viability (survival to hatching), and metamorphosis, as well as the interrelationships between these potential fitness traits. We show that fertilization is influenced by a combination of strong maternal effects and intrinsic male effects. Our subsequent analysis of embryo viability, however, revealed a highly significant interaction between parental genotypes, indicating that partial incompatibilities can severely limit offspring survival at this life-history stage. Importantly, we detected no significant relationship between fertilization rates and embryo viability. This finding suggests that fertilization rates should not be inferred from hatching rates, which is commonly practiced in species in which it is not possible to estimate fertilization at conception. Finally, we detected significant additive genetic variance due to sires in rates of juvenile metamorphosis, and a positive correlation between fertilization rates and metamorphosis. This latter finding indicates that the performance of a male's ejaculate in noncompetitive IVF trials predicts heritable offspring traits, although the fitness implications of variance in rates of spontaneous juvenile metamorphosis have yet to be determined.
Turbine sound may influence the metamorphosis behaviour of estuarine crab megalopae.
Pine, Matthew K; Jeffs, Andrew G; Radford, Craig A
2012-01-01
It is now widely accepted that a shift towards renewable energy production is needed in order to avoid further anthropogenically induced climate change. The ocean provides a largely untapped source of renewable energy. As a result, harvesting electrical power from the wind and tides has sparked immense government and commercial interest but with relatively little detailed understanding of the potential environmental impacts. This study investigated how the sound emitted from an underwater tidal turbine and an offshore wind turbine would influence the settlement and metamorphosis of the pelagic larvae of estuarine brachyuran crabs which are ubiquitous in most coastal habitats. In a laboratory experiment the median time to metamorphosis (TTM) for the megalopae of the crabs Austrohelice crassa and Hemigrapsus crenulatus was significantly increased by at least 18 h when exposed to either tidal turbine or sea-based wind turbine sound, compared to silent control treatments. Contrastingly, when either species were subjected to natural habitat sound, observed median TTM decreased by approximately 21-31% compared to silent control treatments, 38-47% compared to tidal turbine sound treatments, and 46-60% compared to wind turbine sound treatments. A lack of difference in median TTM in A. crassa between two different source levels of tidal turbine sound suggests the frequency composition of turbine sound is more relevant in explaining such responses rather than sound intensity. These results show that estuarine mudflat sound mediates natural metamorphosis behaviour in two common species of estuarine crabs, and that exposure to continuous turbine sound interferes with this natural process. These results raise concerns about the potential ecological impacts of sound generated by renewable energy generation systems placed in the nearshore environment.
Vaissi, Somaye; Sharifi, Mozafar
2016-11-01
In this study, we examined cannibalistic behavior, growth, metamorphosis, and survival in larval and post-metamorph endangered yellow spotted mountain newts Neurergus microspilotus hatched and reared in a captive breeding facility. We designed a 2 × 2 factorial experiment, crossing two levels of food with two levels of density including high food/high density, high food/low density, low food/high density, and low food/low density. The level of cannibalistic behavior (including the loss of fore and hind limbs, missing toes, tail, gills, body damage, and whole body consumption) changed as the larvae grew, from a low level during the first 4 weeks, peaking from weeks 7 to 12, and then dropped during weeks 14-52. Both food level and density had a significant effect on cannibalism. The highest frequency of cannibalism was recorded for larvae reared in the low food/high density and lowest in high food/low density treatments. Growth, percent of larval metamorphosed, and survival were all highest in the high food/low density and lowest in low food/high density treatment. Food level had a significant effect on growth, metamorphosis, and survival. However, the two levels of density did not influence growth and metamorphosis but showed a significant effect on survival. Similarly, combined effects of food level and density showed significant effects on growth, metamorphosis, and survival over time. Information obtained from current experiment could improve productivity of captive breeding facilities to ensure the release of adequate numbers of individuals for reintroduction programs. Zoo Biol. 35:513-521, 2016. © 2016 The Authors. Zoo Biology published by Wiley Periodicals, Inc. © 2016 The Authors. Zoo Biology published by Wiley Periodicals, Inc.
Sharma, Bibek; Patino, R.
2009-01-01
Xenopus laevis larvae were exposed to cadmium (Cd) at 0, 1, 8, 85 or 860 ??g L-1 in FETAX medium from 0 to 86 d postfertilization. Premetamorphic tadpoles were sampled on day 31; pre and prometamorphic tadpoles on day 49; and frogs (NF stage 66) between days 50 and 86. Survival, snout-vent length (SVL), tail length, total length, hindlimb length (HLL), initiation of metamorphic climax, size at and completion of metamorphosis, and gonadal condition and sex ratio (assessed histologically) were determined. Survival was unaffected by Cd until day 49, but increased mortality was observed after day 49 at 860 ??g Cd L-1. On day 31, when tadpoles were in early premetamorphosis, inhibitory effects on tadpole growth were observed only at 860 ??g Cd L-1. On day 49, when most tadpoles where in late premetamorphosis/early prometamorphosis, reductions in SVL, HLL and total length were observed at 8 and 860 but not 85 ??g L-1, thus creating a U-shaped size distribution at 0-85 ??g Cd L-1. However, this U-shaped size pattern was not evident in postmetamorphic individuals. In fact, frog size at completion of metamorphosis was slightly smaller at 85 ??g Cd L-1relative to control animals. These observations confirmed a recent report of a Cd concentration-dependent bimodal growth pattern in late-premetamorphic Xenopus tadpoles, but also showed that growth responses to varying Cd concentrations change with development. The fraction of animals initiating or completing metamorphosis during days 50-86 was reduced in a Cd concentration-dependent manner. Testicular histology and population sex ratios were unaffected by Cd suggesting that, unlike mammals, Cd is not strongly estrogenic in Xenopus tadpoles. ?? 2009 Elsevier Ltd.
Sharma, Bibek; Patino, Reynaldo
2009-01-01
Xenopus laevis larvae were exposed to cadmium (Cd) at 0, 1, 8. 85 or 860 mu g L(-1) in FETAX medium from 0 to 86 d postfertilization. Premetamorphic tadpoles were sampled on day 3 1; pre and prometamorphic tadpoles on day 49; and frogs (NF stage 66) between days 50 and 86. Survival, snout-vent length (SVL), tail length, total length, hindlimb length (HLL), initiation of metamorphic climax, size at and completion of metamorphosis, and gonadal condition and sex ratio (assessed histologically) were determined. Survival was unaffected by Cd until day 49, but increased mortality was observed after day 49 at 860 mu g Cd L(-1). On day 31, when tadpoles were in early premetamorphosis, inhibitory effects on tadpole growth were observed only at 860 mu g Cd L(-1). On day 49, when most tadpoles where in late premetamorphosis/early prometamorphosis, reductions in SVL, HLL and total length were observed at 8 and 860 but not 85 mu g L(-1), thus creating a U-shaped size distribution at 0-85 mu g Cd L(-1). However, this U-shaped size pattern was not evident in postmetamorphic individuals. In fact, frog size at completion of metamorphosis was slightly smaller at 85 mu g Cd L(-1) relative to control animals. These observations confirmed a recent report of a Cd concentration-dependent bimodal growth pattern in late-premetamorphic Xenopus tadpoles, but also showed that growth responses to varying Cd concentrations change with development. The fraction of animals initiating or completing metamorphosis during days 50-86 was reduced in a Cd concentration-dependent manner. Testicular histology and population sex ratios were unaffected by Cd suggesting that, unlike mammals, Cd is not strongly estrogenic in Xenopus tadpoles.
Interaction between perchlorate and iodine in the metamorphosis of Hyla versicolor
Sparling, D.; Harvey, G.; Nzengung, V.; ,
2003-01-01
Perchlorate (ClO4-) is a water-soluble, inorganic anion that is often combined with ammonium, potassium or other cations for use in industry and agriculture. Ammonium perchlorate, for example, is a potent oxidizer and is used in various military applications including rocket fuel. It has also been found in an historically widely used fertilizer, Chilean nitrate and in other fertilizers. It has been found in ground and surface waters of over 30 states and is considered a human health risk. Because of its similar atomic radius and volume, perchlorate competes with iodide for thyroid uptake and storage and thereby inhibits production of thyroid hormones. Amphibians may be particularly affected by perchlorate because they rely on the thyroid for metamorphosis. This study exposed early larval Hyla versicolor to concentrations of perchlorate ranging from 2.2 to 50 ppm to determine the effects of perchlorate on a native amphibian. In addition, three controls, 0 perchlorate, 0 perchlorate with 0.10 ppm iodide (C + I) and 50 ppm perchlorate + 0.10 ppm iodide (50 + I) were tested. Mortality (< 11% with all treatments) and growth appeared to be unaffected by perchlorate. Inhibition of development started with 2.2 ppm perchlorate and little or no development occurred at 22.9 ppm and above. This inhibition was particularly apparent at the latter stages of development including hindlimb formation and metamorphosis. The estimated EC50 for total inhibition of metamorphosis at 70 days of treatment was 3.63 ppm. There was no evidence of inhibition of development with the 50 + I, C + I, or controls, indicating that the presence of small concentrations of iodide could counter the effects of perchlorate. When tadpoles that had been inhibited by perchlorate were subsequently treated with iodide, development through prometamorphosis progressed but mortality was very high.
Interaction between perchlorate and iodine in the metamorphosis of Hyla versicolor
Sparling, D.W.; Harvey, G.; Nzengung, V.; Linder, Gregory L.; Krest, Sherry K.; Sparling, Donald W.; Little, Edward E.
2003-01-01
Perchlorate (ClO4-) is a water-soluble, inorganic anion that is often combined with ammonium, potassium or other cations for use in industry and agriculture. Ammonium perchlorate, for example, is a potent oxidizer and is used in various military applications including rocket fuel. It has also been found in an historically widely used fertilizer, Chilean nitrate and in other fertilizers. It has been found in ground and surface waters of over 30 states and is considered a human health risk. Because of its similar atomic radius and volume, perchlorate competes with iodide for thyroid uptake and storage and thereby inhibits production of thyroid hormones. Amphibians may be particularly affected by perchlorate because they rely on the thyroid for metamorphosis. This study exposed early larval Hyla versicolor to concentrations of perchlorate ranging from 2.2 to 50 ppm to determine the effects of perchlorate on a native amphibian. In addition, three controls, 0 perchlorate, 0 perchlorate with 0.10 ppm iodide (C + I) and 50 ppm perchlorate + 0.10 ppm iodide (50 + I) were tested. Mortality (<11% with all treatments) and growth appeared to be unaffected by perchlorate. Inhibition of development started with 2.2 ppm perchlorate and little or no development occurred at 22.9 ppm and above. This inhibition was particularly apparent at the latter stages of development including hindlimb formation and metamorphosis. The estimated EC50 for total inhibition of metamorphosis at 70 days of treatment was 3.63 ppm. There was no evidence of inhibition of development with the 50 + I, C + I, or controls, indicating that the presence of small concentrations of iodide could counter the effects of perchlorate. When tadpoles that had been inhibited by perchlorate were subsequently treated with iodide, development through prometamorphosis progressed but mortality was very high.
Hogan, Natacha S; Duarte, Paula; Wade, Michael G; Lean, David R S; Trudeau, Vance L
2008-05-01
During the transformation from larval tadpole to juvenile frog, there are critical periods of metamorphic development and sex differentiation that may be particularly sensitive to endocrine disruption. The aim of the present study was to identify sensitive developmental periods for estrogenic endocrine disruption in the northern leopard frog (Rana pipiens) using short, targeted exposures to the synthetic estrogen, ethinylestradiol (EE2). Post-hatch tadpoles (Gosner stage 27) were exposed over five distinct periods of metamorphosis: early (stage 27-30), mid (stage 30-36), early and mid (stage 27-36), late (stage 36-42), and the entire metamorphic period (chronic; stage 27-42). For each period, animals were sampled immediately following the EE2 exposure and at metamorphic climax (stage 42). The effects of EE2 on metamorphic development and sex differentiation were assessed through measures of length, weight, developmental stage, days to metamorphosis, sex ratios and incidence of gonadal intersex. Our results show that tadpoles exposed to EE2 during mid-metamorphosis were developmentally delayed immediately following exposure and took 2 weeks longer to reach metamorphic climax. In the unexposed groups, there was low proportion (0.15) of intersex tadpoles at stage 30 and gonads appeared to be morphologically distinct (male and female) in all individuals by stage 36. Tadpoles exposed early in development displayed a strong female-biased sex ratio compared to the controls. Moreover, these effects were also seen at metamorphic climax, approximately 2-3 months after the exposure period, demonstrating that transient early life-stage exposure to estrogen can induce effects on the reproductive organs that persist into the beginning of adult life-stages.
Manion, Patrick J.; McLain, Alberton L.
1971-01-01
The capture of four recently metamorphosed sea lampreys (two males and two females), 152-172 mm long, in the fall of 1965, established the minimum age at transformation for larvae in the Big Garlic River at 5 years. Age and length (with the exception of a possible minimum length) were determined not to be critical factors in metamorphosis. The presence of larvae 65-176 mm long (mean, 107 mm) in the river in 1965 indicated that metamorphosis of lampreys in a single year class takes place over a period of years.
Mathiron, Anthony G. E.; Lena, Jean-Paul; Baouch, Sarah
2017-01-01
Paedomorphosis is a major evolutionary process that bypasses metamorphosis and allows reproduction in larvae. In newts and salamanders, it can be facultative with paedomorphs retaining gills and metamorphs dispersing. The evolution of these developmental processes is thought to have been driven by the costs and benefits of inhabiting aquatic versus terrestrial habitats. In this context, we aimed at testing the hypothesis that climatic drivers affect phenotypic transition and the difference across sexes because sex-ratio is biased in natural populations. Through a replicated laboratory experiment, we showed that paedomorphic palmate newts (Lissotriton helveticus) metamorphosed at a higher frequency when water availability decreased and metamorphosed earlier when temperature increased in these conditions. All responses were sex-biased, and males were more prone to change phenotype than females. Our work shows how climatic variables can affect facultative paedomorphosis and support theoretical models predicting life on land instead of in water. Moreover, because males metamorphose and leave water more often and earlier than females, these results, for the first time, give an experimental explanation for the rarity of male paedomorphosis (the ‘male escape hypothesis’) and suggest the importance of sex in the evolution of paedomorphosis versus metamorphosis. PMID:28424346
Wu, Wei; Xiong, Wenfeng; Li, Chengjun; Zhai, Mengfan; Li, Yao; Ma, Fei; Li, Bin
2017-10-01
To date, although some microRNAs (miRNAs) have been discovered in the holometabolism insect Tribolium castaneum, large numbers of miRNAs still require investigation. Knocking down Dicer-1 (Dcr-1) and Argonaute-1 (Ago-1) in late larvae impaired miRNA synthesis, affected the juvenile hormone pathway by up-regulating Methoprene-tolerant (Met) and Krüppel-homolog1 (Kr-h1) transcript levels, and resulted in a series of defects in T. castaneum development and metamorphosis. Thus, high-throughput Illumina/Solexa sequencing was performed with a mixed sample of eight key developmental stages of T. castaneum. In total, 1154 unique miRNAs were discovered containing 274 conserved miRNAs belong to 68 miRNA families, 108 known candidate miRNAs and 772 novel miRNAs. Genome locus analysis showed that miRNA clusters are more abundant in T. castaneum than other species. The results indicated that RNAi of Dcr-1 and Ago-1 in T. castaneum resulted in miRNA-induced metamorphosis defects. Furthermore, large numbers of novel miRNAs were discovered in T. castaneum and localized to T. castaneum genome loci. Copyright © 2017 Elsevier Inc. All rights reserved.
Alves, R N; Cardoso, J C R; Harboe, T; Martins, R S T; Manchado, M; Norberg, B; Power, D M
2017-05-15
Deiodinase 3 (Dio3) plays an essential role during early development in vertebrates by controlling tissue thyroid hormone (TH) availability. The Atlantic halibut (Hippoglossus hippoglossus) possesses duplicate dio3 genes (dio3a and dio3b). Expression analysis indicates that dio3b levels change in abocular skin during metamorphosis and this suggests that this enzyme is associated with the divergent development of larval skin to the juvenile phenotype. In larvae exposed to MMI, a chemical that inhibits TH production, expression of dio3b in ocular skin is significantly up-regulated suggesting that THs normally modulate this genes expression during this developmental event. The molecular basis for divergent dio3a and dio3b expression and responsiveness to MMI treatment is explained by the multiple conserved TREs in the proximal promoter region of teleost dio3b and their absence from the promoter of dio3a. We propose that the divergent expression of dio3 in ocular and abocular skin during halibut metamorphosis contributes to the asymmetric pigment development in response to THs. Copyright © 2017 Elsevier Inc. All rights reserved.
Molecular metamorphosis in polcalcin allergens by EF-hand rearrangements and domain swapping.
Magler, Iris; Nüss, Dorota; Hauser, Michael; Ferreira, Fatima; Brandstetter, Hans
2010-06-01
Polcalcins such as Bet v 4 and Phl p 7 are pollen allergens that are constructed from EF-hand motifs, which are very common and well characterized helix-loop-helix motifs with calcium-binding functions, as elementary building blocks. Being members of an exceptionally well-characterized protein superfamily, these allergens highlight the fundamental challenge in explaining what features distinguish allergens from nonallergenic proteins. We found that Bet v 4 and Phl p 7 undergo oligomerization transitions with characteristics that are markedly different from those typically found in proteins: transitions from monomers to dimers and to distinct higher oligomers can be induced by increasing temperature; similarly, low concentrations of destabilizing agents, e.g. SDS, induce oligomerization transitions of Bet v 4. The changes in the quaternary structure, termed molecular metamorphosis, are induced and controlled by a combination of EF-hand rearrangements and domain swapping rather than by the classical law of mass action. Using an EF-hand-pairing model, we provide a two-step model that consistently explains and substantiates the observed metamorphosis. Moreover, the unusual oligomerization behavior suggests a straightforward explanation of how allergens can accomplish the crosslinking of IgE on mast cells, a hallmark of allergens.
How do changes in parental investment influence development in echinoid echinoderms?
Alcorn, Nicholas J; Allen, Jonathan D
2009-01-01
Understanding the relationship between egg size, development time, and juvenile size is critical to explaining patterns of life-history evolution in marine invertebrates. Currently there is conflicting information about the effects of changes in egg size on the life histories of echinoid echinoderms. We sought to resolve this conflict by manipulating egg size and food level during the development of two planktotrophic echinoid echinoderms: the green sea urchin, Strongylocentrotus droebachiensis and the sand dollar, Echinarachnius parma. Based on comparative datasets, we predicted that decreasing food availability and egg size would increase development time and reduce juvenile size. To test our prediction, blastomere separations were performed in both species at the two-cell stage to reduce egg volume by 50%, producing whole- and half-size larvae that were reared to metamorphosis under high or low food levels. Upon settlement, age at metamorphosis, juvenile size, spine number, and spine length were measured. As predicted, reducing egg size and food availability significantly increased age at metamorphosis and reduced juvenile quality. Along with previous egg size manipulations in other echinoids, this study suggests that the relationship between egg size, development time, and juvenile size is strongly dependent upon the initial size of the egg.
Dynamics of DNA methylomes underlie oyster development
Sourdaine, Pascal; Guo, Ximing; Favrel, Pascal
2017-01-01
DNA methylation is a critical epigenetic regulator of development in mammals and social insects, but its significance in development outside these groups is not understood. Here we investigated the genome-wide dynamics of DNA methylation in a mollusc model, the oyster Crassostrea gigas, from the egg to the completion of organogenesis. Large-scale methylation maps reveal that the oyster genome displays a succession of methylated and non methylated regions, which persist throughout development. Differentially methylated regions (DMRs) are strongly regulated during cleavage and metamorphosis. The distribution and levels of methylated DNA within genomic features (exons, introns, promoters, repeats and transposons) show different developmental lansdscapes marked by a strong increase in the methylation of exons against introns after metamorphosis. Kinetics of methylation in gene-bodies correlate to their transcription regulation and to distinct functional gene clusters, and DMRs at cleavage and metamorphosis bear the genes functionally related to these steps, respectively. This study shows that DNA methylome dynamics underlie development through transcription regulation in the oyster, a lophotrochozoan species. To our knowledge, this is the first demonstration of such epigenetic regulation outside vertebrates and ecdysozoan models, bringing new insights into the evolution and the epigenetic regulation of developmental processes. PMID:28594821
Dynamics of DNA methylomes underlie oyster development.
Riviere, Guillaume; He, Yan; Tecchio, Samuele; Crowell, Elizabeth; Gras, Michaël; Sourdaine, Pascal; Guo, Ximing; Favrel, Pascal
2017-06-01
DNA methylation is a critical epigenetic regulator of development in mammals and social insects, but its significance in development outside these groups is not understood. Here we investigated the genome-wide dynamics of DNA methylation in a mollusc model, the oyster Crassostrea gigas, from the egg to the completion of organogenesis. Large-scale methylation maps reveal that the oyster genome displays a succession of methylated and non methylated regions, which persist throughout development. Differentially methylated regions (DMRs) are strongly regulated during cleavage and metamorphosis. The distribution and levels of methylated DNA within genomic features (exons, introns, promoters, repeats and transposons) show different developmental lansdscapes marked by a strong increase in the methylation of exons against introns after metamorphosis. Kinetics of methylation in gene-bodies correlate to their transcription regulation and to distinct functional gene clusters, and DMRs at cleavage and metamorphosis bear the genes functionally related to these steps, respectively. This study shows that DNA methylome dynamics underlie development through transcription regulation in the oyster, a lophotrochozoan species. To our knowledge, this is the first demonstration of such epigenetic regulation outside vertebrates and ecdysozoan models, bringing new insights into the evolution and the epigenetic regulation of developmental processes.
Zeng, Zhenshun; Guo, Xing-Pan; Li, Baiyuan; Wang, Pengxia; Cai, Xingsheng; Tian, Xinpeng; Zhang, Si; Yang, Jin-Long; Wang, Xiaoxue
2015-12-01
Pseudoalteromonas is widespread in various marine environments, and most strains can affect invertebrate larval settlement and metamorphosis by forming biofilms. However, the impact and the molecular basis of population diversification occurring in Pseudoalteromonas biofilms are poorly understood. Here, we show that morphological diversification is prevalent in Pseudoalteromonas species during biofilm formation. Two types of genetic variants, wrinkled (frequency of 12±5%) and translucent (frequency of 5±3%), were found in Pseudoalteromonas lipolytica biofilms. The inducing activities of biofilms formed by the two variants on larval settlement and metamorphosis of the mussel Mytilus coruscus were significantly decreased, suggesting strong antifouling activities. Using whole-genome re-sequencing combined with genetic manipulation, two genes were identified to be responsible for the morphology alternations. A nonsense mutation in AT00_08765 led to a wrinkled morphology due to the overproduction of cellulose, whereas a point mutation in AT00_17125 led to a translucent morphology via a reduction in capsular polysaccharide production. Taken together, the results suggest that the microbial behavior on larval settlement and metamorphosis in marine environment could be affected by the self-generated variants generated during the formation of marine biofilms, thereby rendering potential application in biocontrol of marine biofouling.
The ontogeny of allorecognition in a colonial hydroid and the fate of early established chimeras.
Fuchs, Marc-Aurel; Mokady, Ofer; Frank, Uri
2002-08-01
Colonies of the marine hydroid, Hydractinia, are able to discriminate between their own tissues and those belonging to unrelated conspecifics. We have studied the ontogeny of this allorecognition system by a series of allogeneic transplantations along a developmental gradient, including two-cell-stage embryos, 8 h morulae, planula larvae and metamorphosed polyps. Allograft acceptance of incompatible tissue was observed in all embryonic and larval stages, whereas metamorphosed polyps rejected incompatible transplanted allografts. Most of the chimeras established at the two-cell-stage, although composed of two allogeneic, incompatible entities with mismatching allorecognition loci, developed normally and remained stable through metamorphosis. The results of post metamorphic transplantation assays among the chimeras and the naive ramets, suggested that both incompatible genotypes were still represented in the chimera despite the onset of alloimmune maturation. The naive colonies always rejected each other. Chimeras established from later embryonic and larval stages did not develop into adult chimeric entities, but rather separated immediately post metamorphosis. We thus show that (1) allorecognition in this species matures during metamorphosis and (2) genetically incompatible entities may coexist in one immunologically mature, chimeric soma, provided that they were grafted early enough in ontogeny.
Chung-Davidson, Yu-Wen; Davidson, Peter J.; Scott, Anne M.; Walaszczyk, Erin J.; Brant, Cory O.; Buchinger, Tyler; Johnson, Nicholas S.; Li, Weiming
2014-01-01
Biliary atresia is a rare disease of infancy, with an estimated 1 in 15,000 frequency in the southeast United States, but more common in East Asian countries, with a reported frequency of 1 in 5,000 in Taiwan. Although much is known about the management of biliary atresia, its pathogenesis is still elusive. The sea lamprey (Petromyzon marinus) provides a unique opportunity to examine the mechanism and progression of biliary degeneration. Sea lamprey develop through three distinct life stages: larval, parasitic, and adult. During the transition from larvae to parasitic juvenile, sea lamprey undergo metamorphosis with dramatic reorganization and remodeling in external morphology and internal organs. In the liver, the entire biliary system is lost, including the gall bladder and the biliary tree. A newly-developed method called “CLARITY” was modified to clarify the entire liver and the junction with the intestine in metamorphic sea lamprey. The process of biliary degeneration was visualized and discerned during sea lamprey metamorphosis by using laser scanning confocal microscopy. This method provides a powerful tool to study biliary atresia in a unique animal model.
Spatial pattern analysis of nuclear migration in remodelled muscles during Drosophila metamorphosis.
Kuleesha; Feng, Lin; Wasser, Martin
2017-07-10
Many human muscle wasting diseases are associated with abnormal nuclear localization. During metamorphosis in Drosophila melanogaster, multi-nucleated larval dorsal abdominal muscles either undergo cell death or are remodeled to temporary adult muscles. Muscle remodeling is associated with anti-polar nuclear migration and atrophy during early pupation followed by polar migration and muscle growth during late pupation. Muscle remodeling is a useful model to study genes involved in myonuclear migration. Previously, we showed that loss of Cathepsin-L inhibited anti-polar movements, while knockdown of autophagy-related genes affected nuclear positioning along the medial axis in late metamorphosis. To compare the phenotypic effects of gene perturbations on nuclear migration more objectively, we developed new descriptors of myonuclear distribution. To obtain nuclear pattern features, we designed an algorithm to detect and track nuclear regions inside live muscles. Nuclear tracks were used to distinguish between fast moving nuclei associated with fragments of dead muscles (sarcolytes) and slow-moving nuclei inside remodelled muscles. Nuclear spatial pattern features, such as longitudinal (lonNS) and lateral nuclear spread (latNS), allowed us to compare nuclear migration during muscle remodelling in different genetic backgrounds. Anti-polar migration leads to a lonNS decrease. As expected, lack of myonuclear migration caused by the loss of Cp1 was correlated with a significantly lower lonNS decrease. Unexpectedly, the decrease in lonNS was significantly enhanced by Atg9, Atg5 and Atg18 silencing, indicating that the loss of autophagy promotes the migration and clustering of nuclei. Loss of autophagy also caused a scattering of nuclei along the lateral axis, leading to a two-row as opposed to single row distribution in control muscles. Increased latNS resulting from knockdown of Atg9 and Atg18 was correlated with increased muscle diameter, suggesting that the wider muscle fibre promotes lateral displacement of nuclei from the medial axis during polar migration. We developed new nuclear features to characterize the dynamics of nuclear distribution in time-lapse images of Drosophila metamorphosis. Image quantification improved our understanding of phenotypic abnormalities in nuclear distribution resulting from gene perturbations. Therefore, in vivo imaging and quantitative image analysis of Drosophila metamorphosis promise to provide novel insights into the relationship between muscle wasting and myonuclear positioning.
Effects of freshwater petroleum contamination on amphibian hatching and metamorphosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahaney, P.A.
1994-02-01
This study examined the effects of freshwater petroleum contamination on amphibian reproduction. The primary objectives were to assess the potential environmental and physiological impacts of runoff petroleum products on amphibians, using the green tree frog (Hyla cinerea) as a target species and engine crankcase oil as a contaminant. Egg hatching success, tadpole growth, and successful metamorphosis were measured in four concentrations of oil. The effects of oil on food source was also studied. Hatching success was not measurably influenced by the presence of oil. Tadpole and alga growth were negatively associated with the presence of oil. No tadpoles from themore » high concentration of oil treatments successfully metamorphosed.« less
Effects of fluoride on development and growth of Rana chensinensis embryos and larvae.
Chai, Lihong; Dong, Suiming; Zhao, Hongfeng; Deng, Hongzhang; Wang, Hongyuan
2016-04-01
The present study examined the adverse effects of fluoride exposure on embryos and larvae of Rana chensinensis. Survival, morphological abnormalities, growth and development, time to metamorphosis and size at metamorphic climax of R. chensinensis were examined. Our results showed that embryos malformation occurred in all fluoride treatments. Morphological abnormalities of embryos are characterized by axial flexures, the extrusion of fin axis, edema, and ruffled dorsal and ventral fin. Additionally, 4.1mg F(-)/L and above could significantly inhibit embryos growth and development. On day 15, total length and weight of tadpole were significantly lower in 19.6 and 42.4 mg F(-)/L treatments compared to control. However, significant reductions in total length and weight were observed only at 42.4 mg F(-)/L on day 30. Moreover, significant metamorphic delay and decrease in the size at metamorphic climax were found in larvae exposed to 42.4 mg F(-)/L. Taken together, embryos of R. chensinensis are more vulnerable to fluoride exposure than their tadpoles. Our results suggested that the presence of high concentrations fluoride might increase mortality risk and a reduction in juvenile recruitment in the field by increasing embryos malformation, delaying metamorphosis and decreasing size at metamorphosis. Copyright © 2015 Elsevier Inc. All rights reserved.
Su, Yuan; Shi, Yufang; Stolow, Melissa A.; Shi, Yun-Bo
1997-01-01
Thyroid hormone (T3 or 3,5,3′-triiodothyronine) plays a causative role during amphibian metamorphosis. To investigate how T3 induces some cells to die and others to proliferate and differentiate during this process, we have chosen the model system of intestinal remodeling, which involves apoptotic degeneration of larval epithelial cells and proliferation and differentiation of other cells, such as the fibroblasts and adult epithelial cells, to form the adult intestine. We have established in vitro culture conditions for intestinal epithelial cells and fibroblasts. With this system, we show that T3 can enhance the proliferation of both cell types. However, T3 also concurrently induces larval epithelial apoptosis, which can be inhibited by the extracellular matrix (ECM). Our studies with known inhibitors of mammalian cell death reveal both similarities and differences between amphibian and mammalian cell death. These, together with gene expression analysis, reveal that T3 appears to simultaneously induce different pathways that lead to specific gene regulation, proliferation, and apoptotic degeneration of the epithelial cells. Thus, our data provide an important molecular and cellular basis for the differential responses of different cell types to the endogenous T3 during metamorphosis and support a role of ECM during frog metamorphosis. PMID:9396758
Mathiron, Anthony G E; Lena, Jean-Paul; Baouch, Sarah; Denoël, Mathieu
2017-04-26
Paedomorphosis is a major evolutionary process that bypasses metamorphosis and allows reproduction in larvae. In newts and salamanders, it can be facultative with paedomorphs retaining gills and metamorphs dispersing. The evolution of these developmental processes is thought to have been driven by the costs and benefits of inhabiting aquatic versus terrestrial habitats. In this context, we aimed at testing the hypothesis that climatic drivers affect phenotypic transition and the difference across sexes because sex-ratio is biased in natural populations. Through a replicated laboratory experiment, we showed that paedomorphic palmate newts ( Lissotriton helveticus ) metamorphosed at a higher frequency when water availability decreased and metamorphosed earlier when temperature increased in these conditions. All responses were sex-biased, and males were more prone to change phenotype than females. Our work shows how climatic variables can affect facultative paedomorphosis and support theoretical models predicting life on land instead of in water. Moreover, because males metamorphose and leave water more often and earlier than females, these results, for the first time, give an experimental explanation for the rarity of male paedomorphosis (the 'male escape hypothesis') and suggest the importance of sex in the evolution of paedomorphosis versus metamorphosis. © 2017 The Author(s).
Sun, Guihong; Fu, Liezhen; Wen, Luan
2014-01-01
The maturation of the intestine into the adult form involves the formation of adult stem cells in a thyroid hormone (T3)-dependent process in vertebrates. In mammals, this takes place during postembryonic development, a period around birth when the T3 level peaks. Due to the difficulty of manipulating late-stage, uterus-enclosed embryos, very little is known about the development of the adult intestinal stem cells. Interestingly, the remodeling of the intestine during the T3-dependent amphibian metamorphosis mimics the maturation of mammalian intestine. Our earlier microarray studies in Xenopus laevis revealed that the transcription factor SRY (sex-determining region Y)-box 3 (Sox3), well known for its involvement in neural development, was upregulated in the intestinal epithelium during metamorphosis. Here, we show that Sox3 is highly and specifically expressed in the developing adult intestinal progenitor/stem cells. We further show that its induction by T3 is independent of new protein synthesis, suggesting that Sox3 is directly activated by liganded T3 receptor. Thus, T3 activates Sox3 as one of the earliest changes in the epithelium, and Sox3 in turn may facilitate the dedifferentiation of the larval epithelial cells into adult stem cells. PMID:25211587
Hasebe, Takashi; Fu, Liezhen; Heimeier, Rachel A.; Das, Biswajit; Ishizuya-Oka, Atsuko; Shi, Yun-Bo
2013-01-01
Background Intestinal remodeling during amphibian metamorphosis resembles the maturation of the adult intestine during mammalian postembryonic development when the adult epithelial self-renewing system is established under the influence of high concentrations of plasma thyroid hormone (T3). This process involves de novo formation and subsequent proliferation and differentiation of the adult stem cells. Methodology/Principal Findings The T3-dependence of the formation of adult intestinal stem cell during Xenopus laevis metamorphosis offers a unique opportunity to identify genes likely important for adult organ-specific stem cell development. We have cloned and characterized the ectopic viral integration site 1 (EVI) and its variant myelodysplastic syndrome 1 (MDS)/EVI generated via transcription from the upstream MDS promoter and alternative splicing. EVI and MDS/EVI have been implicated in a number of cancers including breast, leukemia, ovarian, and intestinal cancers. We show that EVI and MDS/EVI transcripts are upregulated by T3 in the epithelium but not the rest of the intestine in Xenopus laevis when adult stem cells are forming in the epithelium. Conclusions/Significance Our results suggest that EVI and MDS/EVI are likely involved in the development and/or proliferation of newly forming adult intestinal epithelial cells. PMID:23383234
NASA Astrophysics Data System (ADS)
Leonard, N. E.
2005-05-01
As wetlands are invaded by Chinese tallow trees (Triadica sebifera), native trees are displaced and detrital inputs to amphibian breeding ponds are altered. I used a mesocosm experiment to examine the effect of Chinese tallow leaf litter on the survival to, size at, and time to metamorphosis of amphibian larvae. Fifty 1000-L cattle watering tanks were treated with 1500 g dry weight of one of five leaf litter treatments: Chinese tallow, laurel oak (Quercus laurifolia), water tupelo (Nyssa aquatica), slash pine (Pinus elliottii), or a 3:1:1:1 mixture. Each tank received 45 tadpoles of Pseudacris feriarum, Bufo terrestris, and Hyla cinerea in sequence according to their natural breeding phonologies. Every Pseudacris feriarum and Bufo terrestris tadpole exposed to Chinese tallow died prior to metamorphosis. Hyla cinerea survival in tanks with tallow-only was significantly lower than that observed for all other leaf treatments. Hyla cinerea tadpoles from tallow-only and mixed-leaf treatments were larger at metamorphosis and transformed faster than those in tanks with native leaves only. These results suggest that Chinese tallow leaf litter may negatively affect tadpoles of early breeding frogs and that Chinese tallow invasion may change the structure of amphibian communities in temporary ponds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, J.D.; Peterson, V.A.; Mendonca, M.T.
2008-09-15
The effects of aquatic deposition of coal combustion residues (CCRs) on amphibian life histories have been the focus of many recent studies. In summer 2005, we raised larval Southern Leopard Frogs, Rana sphenocephala, on either sand or CCR substrate (approximately 1 cm deep within plastic bins) and documented effects of sediment type on oral disc condition, as well as time to, mass at, and total body length at key developmental stages, including metamorphosis (Gosner stages (GS) 37, 42, and 46). We found no significant difference in mortality between the two treatments and mortality was relatively low (eight of 48 inmore » the control group and four of 48 in the CCR group). Ninety percent of exposed tadpoles displayed oral disc abnormalities, while no control individuals displayed abnormalities. Tadpoles raised on CCR-contaminated sediment had decreased developmental rates and weighed significantly less at all developmental stages, on average, when compared to controls. The CCR treatment group was also significantly shorter In length than controls at the completion of metamorphosis (GS 46). Collectively, these findings are the most severe sub-lethal effects noted for any amphibian exposed to CCRs to date. More research is needed to understand how these long term effects may contribute to the dynamics of local amphibian populations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, J.D.; Peterson, V.A.; Mendonca, M.T.
Coal combustion residues (CCRs) are documented to negatively impact oral morphology, growth, and development in larval amphibians. It is currently unclear what physiological mechanisms may mediate these effects. Corticosterone, a glucocorticoid hormone, is a likely mediator because when administered exogenously it, like CCRs, also negatively influences oral morphology, growth, and development in larval amphibians. In an attempt to identify if corticosterone mediates these effects, we raised larval Southern Leopard Frogs, Rana sphenocephala, on either sand or CCR substrate and documented effects of sediment type on whole body corticosterone, oral morphology, and time to and mass at key metamorphic stages. Coalmore » combustion residue treated tadpoles contained significantly more corticosterone than controls throughout metamorphosis. However, significantly more oral abnormalities occurred early in metamorphosis when differences in corticosterone levels between treatments were minimal. Overall, CCR-treated tadpoles took significantly more time to transition between key stages and gained less mass between stages than controls, but these differences between treatments decreased during later stages when corticosterone differences between treatments were greatest. Our results suggest endogenous increase in corticosterone content and its influence on oral morphology, growth and development is more complex than previously thought.« less
A histological atlas of the tissues and organs of neotenic and metamorphosed axolotl.
Demircan, Turan; İlhan, Ayşe Elif; Aytürk, Nilüfer; Yıldırım, Berna; Öztürk, Gürkan; Keskin, İlknur
2016-09-01
Axolotl (Ambystoma Mexicanum) has been emerging as a promising model in stem cell and regeneration researches due to its exceptional regenerative capacity. Although it represents lifelong lasting neoteny, induction to metamorphosis with thyroid hormones (THs) treatment advances the utilization of Axolotl in various studies. It has been reported that amphibians undergo anatomical and histological remodeling during metamorphosis and this transformation is crucial for adaptation to terrestrial conditions. However, there is no comprehensive histological investigation regarding the morphological alterations of Axolotl organs and tissues throughout the metamorphosis. Here, we reveal the histological differences or resemblances between the neotenic and metamorphic axolotl tissues. In order to examine structural features and cellular organization of Axolotl organs, we performed Hematoxylin & Eosin, Luxol-Fast blue, Masson's trichrome, Alcian blue, Orcein and Weigart's staining. Stained samples from brain, gallbladder, heart, intestine, liver, lung, muscle, skin, spleen, stomach, tail, tongue and vessel were analyzed under the light microscope. Our findings contribute to the validation of the link between newly acquired functions and structural changes of tissues and organs as observed in tail, skin, gallbladder and spleen. We believe that this descriptive work provides new insights for a better histological understanding of both neotenic and metamorphic Axolotl tissues. Copyright © 2016 Elsevier GmbH. All rights reserved.
Fatty metamorphosis and other patterns in fibrous dysplasia
Shidham, Vinod B; Chavan, Ashwini; Rao, R Nagarjun; Komorowski, Richard A; Asma, Zeenath
2003-01-01
Background Interpretation of small biopsy fragments from suspected lesions of fibrous dysplasia with unusual clinical and / or radiological features may be challenging due to wide histomorphological spectrum of stromal appearances. Awareness of these variations should improve diagnostic confidence. Methods We retrospectively studied 26 cases of fibrous dysplasia (F- 19, M- 7; Ages ranged from 10 to 53 years) with confirmed diagnosis. The sites of the lesions were skull bones (9), humerus (1), femur (8), tibia (2), fibula (3), talus (1), mandible (1), and maxilla (1). Results Different stromal patterns, variably admixed with the classical pattern, were observed in 58%(15/26) of the cases. 20%(3/15) of these had more than one pattern. Focal fatty metamorphosis as groups of fat cells in the central portion of the lesion in the stroma of fibrous dysplasia between osseous trabeculae was observed in 23%(6/26) cases. Other patterns included myxoid stroma in 16%(4/26), collagenization of stroma in 12%(3/26), stroma rich pattern (with paucity of trabeculae) in 12%(3/26), foci of few foam cells in 23% (6/26), and calcified spherules in 12%(3/26). Focal osteoblastic rimming of trabeculae was observed only in 4%(1/26). Conclusions Various stromal variations and previously unreported fatty metamorphosis were frequently observed in fibrous dysplasia. PMID:12946277
The trade-off between maturation and growth during accelerated development in frogs.
Mueller, Casey A; Augustine, Starrlight; Kooijman, Sebastiaan A L M; Kearney, Michael R; Seymour, Roger S
2012-09-01
Developmental energetics are crucial to a species' life history and ecology but are poorly understood from a mechanistic perspective. Traditional energy and mass budgeting does not distinguish between costs of growth and maturation, making it difficult to account for accelerated development. We apply a metabolic theory that uniquely considers maturation costs (Dynamic Energy Budget theory, DEB) to interpret empirical data on the energetics of accelerated development in amphibians. We measured energy use until metamorphosis in two related frogs, Crinia georgiana and Pseudophryne bibronii. Mass and energy content of fresh ova were comparable between the species. However, development to metamorphosis was 1.7 times faster in C. georgiana while P. bibronii produced nine times the dry biomass at metamorphosis and had lower mass-specific oxygen requirements. DEB theory explained these patterns through differences in ontogenetic energy allocation to maturation. P. bibronii partitioned energy in the same (constant) way throughout development whereas C. georgiana increased the fraction of energy allocated to maturation over growth between hatching and the onset of feeding. DEB parameter estimation for additional, direct-developing taxa suggests that a change in energy allocation during development may result from a selective pressure to increase development rate, and not as a result of development mode. Published by Elsevier Inc.
ERIC Educational Resources Information Center
Green, Douglas W.; Lowenstein, Tim
1994-01-01
Describes activities that take advantage of heavy snowfalls to study numerous geological concepts including sedimentation, precipitation, morphology and metamorphosis of crystals, compaction and cementation, fossilization, and erosion. (JRH)
NASA Astrophysics Data System (ADS)
Ritson-Williams, R.; Paul, Valerie J.; Arnold, S. N.; Steneck, R. S.
2010-03-01
The settlement specificity of two threatened Caribbean corals, Acropora palmata and A. cervicornis, was tested by measuring their rates of larval metamorphosis in response to crustose coralline algae (CCA) and other substrata. In the no-choice experiments, the coral larvae were placed in six treatments: filtered seawater (FSW), a fragment of biofilmed dead skeleton of A. palmata, or a fragment of one of four species of CCA ( Hydrolithon boergesenii, Porolithon pachydermum, Paragoniolithon solubile, and Titanoderma prototypum). Within each CCA treatment, there were three different substrata on which to settle and metamorphose: (1) the CCA surface, (2) the rock under the CCA, or (3) the plastic dish. The 5-day-old larvae of both A. palmata and A. cervicornis had similar rates of total metamorphosis (all substrata combined) in every treatment (excluding FSW) even in the absence of CCA. However, there were differences in larval behavior among the CCA species since the larvae settled and metamorphosed on different substrata in the presence of different CCA species. In the no-choice experiments the larvae of both corals had higher rates of metamorphosis on the top surfaces of H. boergesenii and/or T. prototypum than on P. pachydermum. In the choice experiments, the coral larvae were offered two species of CCA in the same dish. When given a choice, both species of coral larvae had more settlement and metamorphosis on the surface of H. boergesenii or T. prototypum or clean rock than onto the surface of P. solubile. After 6 weeks in the field, transplanted A. palmata recruits had approximately 15% survival on both T. prototypum and H. boergesenii, but A. cervicornis recruits only survived on T. prototypum (13%). Some, but not all, CCA species facilitated the larval settlement and post-settlement survival of these two threatened corals, highlighting the importance of benthic community composition for successful coral recruitment.
Kayukawa, Takumi; Murata, Mika; Kobayashi, Isao; Muramatsu, Daisuke; Okada, Chieko; Uchino, Keiro; Sezutsu, Hideki; Kiuchi, Makoto; Tamura, Toshiki; Hiruma, Kiyoshi; Ishikawa, Yukio; Shinoda, Tetsuro
2014-04-01
Juvenile hormone (JH) has an ability to repress the precocious metamorphosis of insects during their larval development. Krüppel homolog 1 (Kr-h1) is an early JH-inducible gene that mediates this action of JH; however, the fine hormonal regulation of Kr-h1 and the molecular mechanism underlying its antimetamorphic effect are little understood. In this study, we attempted to elucidate the hormonal regulation and developmental role of Kr-h1. We found that the expression of Kr-h1 in the epidermis of penultimate-instar larvae of the silkworm Bombyx mori was induced by JH secreted by the corpora allata (CA), whereas the CA were not involved in the transient induction of Kr-h1 at the prepupal stage. Tissue culture experiments suggested that the transient peak of Kr-h1 at the prepupal stage is likely to be induced cooperatively by JH derived from gland(s) other than the CA and the prepupal surge of ecdysteroid, although involvement of unknown factor(s) could not be ruled out. To elucidate the developmental role of Kr-h1, we generated transgenic silkworms overexpressing Kr-h1. The transgenic silkworms grew normally until the spinning stage, but their development was arrested at the prepupal stage. The transgenic silkworms from which the CA were removed in the penultimate instar did not undergo precocious pupation or larval-larval molt but fell into prepupal arrest. This result demonstrated that Kr-h1 is indeed involved in the repression of metamorphosis but that Kr-h1 alone is incapable of implementing normal larval molt. Moreover, the expression profiles and hormonal responses of early ecdysone-inducible genes (E74, E75, and Broad) in transgenic silkworms suggested that Kr-h1 is not involved in the JH-dependent modulation of these genes, which is associated with the control of metamorphosis. Copyright © 2014 Elsevier Inc. All rights reserved.
Lorenz, Claudia; Krüger, Angela; Schöning, Viola; Lutz, Ilka
2018-04-15
Previously, levonorgestrel (LNG) has been shown to be an endocrine disruptor of the amphibian thyroid system. In the present study, we investigated whether anti-thyroidal effects are a common property of progestins other than LNG. Premetamorphic Xenopus laevis tadpoles were exposed to norethisterone (NET) and dienogest DIE (each at 0.1-10nM) and LNG (10nM) until completion of metamorphosis. LNG and NET at all concentrations caused a significant developmental retardation whereas DIE did not impair time to metamorphosis. In LNG and 10nM NET exposed animals, tsh mRNA levels increased considerably later than the developmental delay occurred and thyroid histopathology showed no signs of TSH-hyperstimulation. Instead, thyroid glands from these treatments appeared inactive in producing thyroid hormones. Thyroidal transcript levels of dio2 and dio3 were increased by treatments with LNG and NET at 1nM and 10nM, whereas iyd mRNA was reduced by LNG and 10nM NET. Expression of slc5α5 was not changed by any treatment. Effects of DIE differed from those induced by LNG and NET. No developmental delay was measurable; however, tshβ and dio2 mRNAs were increased in pituitary glands of tadpoles exposed to 1.0nM and 10nM DIE. Thyroid histopathology displayed no abnormalities and thyroidal mRNA expression of the genes analyzed (slc5α5, iyd, dio2, dio3) was not changed by DIE. Overall, our results provide evidence that the anti-thyroidal effects already known from LNG are also present in another progestin, namely NET, even at environmentally relevant concentrations. In conclusion we suggest that progestins do not only pose an environmental risk in terms of their impact on reproductive success of aquatic vertebrates, but also with respect to their anti-thyroidal properties affecting amphibian metamorphosis. Copyright © 2017 Elsevier Inc. All rights reserved.
Behavioural Response Thresholds in New Zealand Crab Megalopae to Ambient Underwater Sound
Stanley, Jenni A.; Radford, Craig A.; Jeffs, Andrew G.
2011-01-01
A small number of studies have demonstrated that settlement stage decapod crustaceans are able to detect and exhibit swimming, settlement and metamorphosis responses to ambient underwater sound emanating from coastal reefs. However, the intensity of the acoustic cue required to initiate the settlement and metamorphosis response, and therefore the potential range over which this acoustic cue may operate, is not known. The current study determined the behavioural response thresholds of four species of New Zealand brachyuran crab megalopae by exposing them to different intensity levels of broadcast reef sound recorded from their preferred settlement habitat and from an unfavourable settlement habitat. Megalopae of the rocky-reef crab, Leptograpsus variegatus, exhibited the lowest behavioural response threshold (highest sensitivity), with a significant reduction in time to metamorphosis (TTM) when exposed to underwater reef sound with an intensity of 90 dB re 1 µPa and greater (100, 126 and 135 dB re 1 µPa). Megalopae of the mud crab, Austrohelice crassa, which settle in soft sediment habitats, exhibited no response to any of the underwater reef sound levels. All reef associated species exposed to sound levels from an unfavourable settlement habitat showed no significant change in TTM, even at intensities that were similar to their preferred reef sound for which reductions in TTM were observed. These results indicated that megalopae were able to discern and respond selectively to habitat-specific acoustic cues. The settlement and metamorphosis behavioural response thresholds to levels of underwater reef sound determined in the current study of four species of crabs, enables preliminary estimation of the spatial range at which an acoustic settlement cue may be operating, from 5 m to 40 km depending on the species. Overall, these results indicate that underwater sound is likely to play a major role in influencing the spatial patterns of settlement of coastal crab species. PMID:22163314
Sarasquete, Carmen; Úbeda-Manzanaro, Maria; Ortiz-Delgado, Juan Bosco
2017-09-01
This study examines the effects induced by environmentally relevant concentrations of the isoflavone genistein (3mg/L and 10mg/L) during early life stages of the Senegalese sole. Throughout the hypothalamus-pituitary-thyroid (HPT) axis, several neurohormonal regulatory thyroid signalling patterns (thyroglobulin/Tg, thyroid peroxidase/TPO, transthyretin/TTR, thyroid receptors/TRβ, and iodothrynonine deiodinases, Dio2 and Dio3) were analysed. Furthermore, the expression patterns of estrogen receptor ERβ and haemoprotein Cyp1a were also evaluated. In the control larvae, progressive increases of constitutive hormonal signalling pathways have been evidenced from the pre-metamorphosis phase onwards, reaching the highest expression basal levels at the metamorphosis (Tg, TPO, Dio2) and/or during post-metamorphosis (TTR, TRβ, ERβ). When the early larvae were exposed to both genistein concentrations (3mg/L and 10mg/L), a statistically significant down-regulation of TPO, TTR and Tg mRNA levels was clearly detected at the metamorphic stages. In addition, the Dio2 and Dio3 transcript expression levels were also down and up-regulated when exposed to both genistein concentrations. In the larvae exposed to genistein, no statistically significant responses were recorded for the TRβ expression patterns. Nevertheless, the ERβ and Cyp1a transcript levels were up-regulated at the middle metamorphic stage (S2, at 16 dph) in the larvae exposed to high genistein concentrations and, only the ERβ was down-regulated (S1, at 12dph) at the lower doses. Finally, all these pointed out imbalances were only temporarily disrupted by exposure to genistein, since most of the modulated transcriptional signals (i.e. up or down-regulation) were quickly restored to the baseline levels. Additionally, the control and genistein-exposed Senegalese sole specimens showed characteristic ontogenetic patterns and completely suitable for an optimal development, metamorphosis, and growth. Copyright © 2017. Published by Elsevier Inc.
Kirschman, Lucas J; Crespi, Erica J; Warne, Robin W
2018-01-01
Ubiquitous environmental stressors are often thought to alter animal susceptibility to pathogens and contribute to disease emergence. However, duration of exposure to a stressor is likely critical, because while chronic stress is often immunosuppressive, acute stress can temporarily enhance immune function. Furthermore, host susceptibility to stress and disease often varies with ontogeny; increasing during critical developmental windows. How the duration and timing of exposure to stressors interact to shape critical windows and influence disease processes is not well tested. We used ranavirus and larval amphibians as a model system to investigate how physiological stress and pathogenic infection shape development and disease dynamics in vertebrates. Based on a resource allocation model, we designed experiments to test how exposure to stressors may induce resource trade-offs that shape critical windows and disease processes because the neuroendocrine stress axis coordinates developmental remodelling, immune function and energy allocation in larval amphibians. We used wood frog larvae (Lithobates sylvaticus) to investigate how chronic and acute exposure to corticosterone, the dominant amphibian glucocorticoid hormone, mediates development and immune function via splenocyte immunohistochemistry analysis in association with ranavirus infection. Corticosterone treatments affected immune function, as both chronic and acute exposure suppressed splenocyte proliferation, although viral replication rate increased only in the chronic corticosterone treatment. Time to metamorphosis and survival depended on both corticosterone treatment and infection status. In the control and chronic corticosterone treatments, ranavirus infection decreased survival and delayed metamorphosis, although chronic corticosterone exposure accelerated rate of metamorphosis in uninfected larvae. Acute corticosterone exposure accelerated metamorphosis increased survival in infected larvae. Interactions between stress exposure (via glucocorticoid actions) and infection impose resource trade-offs that shape optimal allocation between development and somatic function. As a result, critical disease windows are likely shaped by stress exposure because any conditions that induce changes in differentiation rates will alter the duration and susceptibility of organisms to stressors or disease. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Nguyen, Nguyen H; Fitzgibbon, Quinn P; Quinn, Jane; Smith, Greg; Battaglene, Stephen; Knibb, Wayne
2018-05-04
One of the major impediments to spiny lobster aquaculture is the high cost of hatchery production due to the long and complex larval cycle and poor survival during the many moult stages, especially at metamorphosis. We examined if the key trait of larval survival can be improved through selection by determining if genetic variance exists for this trait. Specifically, we report, for the first time, genetic parameters (heritability and correlations) for early survival rates recorded at five larval phases; early-phyllosoma stages (instars 1-6; S1), mid-phyllosoma stages (instars; 7-12; S2), late-phyllosoma stages (instars 13-17; S3), metamorphosis (S4) and puerulus stage (S5) in hatchery-reared spiny lobster Sagmariasus verreauxi. The data were collected from a total of 235,060 larvae produced from 18 sires and 30 dams over nine years (2006 to 2014). Parentage of the offspring and full-sib families was verified using ten microsatellite markers. Analysis of variance components showed that the estimates of heritability for all the five phases of larval survival obtained from linear mixed model were generally similar to those obtained from threshold logistic generalised models (0.03-0.47 vs. 0.01-0.50). The heritability estimates for survival traits recorded in the early larval phases (S1 and S2) were higher than those estimated in later phases (S3, S4 and S5). The existence of the additive genetic component in larval survival traits indicate that they could be improved through selection. Both phenotypic and genetic correlations among the five survival measures studied were moderate to high and positive. The genetic associations between successive rearing periods were stronger than those that are further apart. Our estimates of heritability and genetic correlations reported here in a spiny lobster species indicate that improvement in the early survival especially during metamorphosis can be achieved through genetic selection in this highly economic value species.
Teaching and Learning with Butterflies.
ERIC Educational Resources Information Center
Weisberg, Saul
1996-01-01
Presents butterflies as an introduction to natural history. Describes observation tips and metamorphosis of butterflies in the classroom. Includes butterfly resources for naturalists and educators. (AIM)
Healthcare architecture in metamorphosis--observations in Hong Kong's heuristic experience.
Lai, M
2001-01-01
Healthcare Architecture in Hong Kong is in an on-going process of metamorphosis in response to the social, economical and technological developments in the territory. In the process of transformation, universal problems like obsolescence, growth and expansion, and advances in science and technology as well as problems unique to Hong Kong like population growth, scarcity in land supply and high density development all call for special solutions. With the turn of the century, new forces of change have also begun to take shape, and in anticipation of the hyper-turbulent changes ahead, we need to shift our paradigm to allow revolutionary new perspectives and innovate, shape and create the future healing space which is sustainable, adaptable, flexible and humane.
Yajima, Mamiko
2007-01-01
Peronella japonica, an intermediate type of direct-developing sand dollar, forms an abbreviated pluteus, followed by metamorphosis within 3 days without feeding. In this species, ingression of mesenchyme cells starts before hatching and continues until gastrulation, but no typical secondary mesenchyme cells (SMCs) migrate from the tip of the archenteron. Here, I investigated the cell lineage of mesenchyme cells through metamorphosis in P. japonica and found that mesenchyme cells migrating before hatching (early mesenchyme cells [EMCs]) were exclusively derived from micromeres and became larval skeletogenic cells, whereas cells migrating after hatching (late mesenchyme cells [LMCs]) appeared to contain several nonskeletogenic cells. Thus, it is likely that EMCs are homologous to primary mesenchyme cells (PMCs) and LMCs are similar to the SMCs of typical indirect developers, suggesting that heterochrony in the timing of mesenchyme cell ingression may have occurred in this species. EMCs disappeared after metamorphosis and LMCs were involved in adult skeletogenesis. Embryos from which micromeres were removed at the 16-cell stage formed armless plutei that went on to form adult skeletons and resulted in juveniles with normal morphology. These results suggest that in P. japonica, LMCs form adult skeletal elements, whereas EMCs are specialized for larval spicule formation. The occurrence of evolutionary modifications in mesenchyme cells in the transition from indirect to direct development of sand dollars is discussed.
Toxicity of Naphthalene and Benzene on Tribollium castaneum Herbst.
Pajaro-Castro, Nerlis; Caballero-Gallardo, Karina; Olivero-Verbel, Jesus
2017-06-21
Naphthalene and benzene are widely-used volatile organic compounds. The aim of this research was to examine the toxicological effects of naphthalene and benzene against Tribolium castaneum as an animal model. Adult insects were exposed to these aromatic compounds to assess mortality after 4-48 h of exposure. The lethal concentration 50 (LC 50 ) for naphthalene, naphthalin, and benzene were 63.6 µL/L, 20.0 µL/L, and 115.9 µL/L in air, respectively. Real-time polymerase chain reaction (PCR) analysis revealed expression changes in genes related to oxidative stress and metabolism [Glutathione S-Transferase (Gst), and Cytochrome P450 6BQ8 (Cyp6bq8)]; reproduction and metamorphosis [Hormone receptor in 39-like protein (Hr39), Ecdysone receptor: (Ecr), and Chitin synthase 2 (Chs2)]; and neurotransmission [Histamine-gated chloride channel 2 (Hiscl2)] in insects exposed for 4 h to 70.2 µL/L naphthalene. Adults exposed to benzene (80 µL/L; 4 h) overexpressed genes related to neurotransmission [GABA-gated anion channel (Rdl), Hiscl2, and GABA-gated ion channel (Grd)]; reproduction and metamorphosis [Ultraspiracle nuclear receptor (USP), Ecr; and Hr39]; and development (Chs2). The data presented here provides evidence that naphthalene and benzene inhalation are able to induce alterations on reproduction, development, metamorphosis, oxidative stress, metabolism, neurotransmission, and death of the insect.
Liu, Feiling; Guo, Dianhao; Yuan, Zhuting; Chen, Chen; Xiao, Huamei
2017-11-20
Long non-coding RNA (lncRNA) is a class of noncoding RNA >200 bp in length that has essential roles in regulating a variety of biological processes. Here, we constructed a computational pipeline to identify lncRNA genes in the diamondback moth (Plutella xylostella), a major insect pest of cruciferous vegetables. In total, 3,324 lncRNAs corresponding to 2,475 loci were identified from 13 RNA-Seq datasets, including samples from parasitized, insecticide-resistant strains and different developmental stages. The identified P. xylostella lncRNAs had shorter transcripts and fewer exons than protein-coding genes. Seven out of nine randomly selected lncRNAs were validated by strand-specific RT-PCR. In total, 54-172 lncRNAs were specifically expressed in the insecticide resistant strains, among which one lncRNA was located adjacent to the sodium channel gene. In addition, 63-135 lncRNAs were specifically expressed in different developmental stages, among which three lncRNAs overlapped or were located adjacent to the metamorphosis-associated genes. These lncRNAs were either strongly or weakly co-expressed with their overlapping or neighboring mRNA genes. In summary, we identified thousands of lncRNAs and presented evidence that lncRNAs might have key roles in conferring insecticide resistance and regulating the metamorphosis development in P. xylostella.
Fossil evidence for key innovations in the evolution of insect diversity.
Nicholson, David B; Ross, Andrew J; Mayhew, Peter J
2014-10-22
Explaining the taxonomic richness of the insects, comprising over half of all described species, is a major challenge in evolutionary biology. Previously, several evolutionary novelties (key innovations) have been posited to contribute to that richness, including the insect bauplan, wings, wing folding and complete metamorphosis, but evidence over their relative importance and modes of action is sparse and equivocal. Here, a new dataset on the first and last occurrences of fossil hexapod (insects and close relatives) families is used to show that basal families of winged insects (Palaeoptera, e.g. dragonflies) show higher origination and extinction rates in the fossil record than basal wingless groups (Apterygota, e.g. silverfish). Origination and extinction rates were maintained at levels similar to Palaeoptera in the more derived Polyneoptera (e.g. cockroaches) and Paraneoptera (e.g. true bugs), but extinction rates subsequently reduced in the very rich group of insects with complete metamorphosis (Holometabola, e.g. beetles). Holometabola show evidence of a recent slow-down in their high net diversification rate, whereas other winged taxa continue to diversify at constant but low rates. These data suggest that wings and complete metamorphosis have had the most effect on family-level insect macroevolution, and point to specific mechanisms by which they have influenced insect diversity through time. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Imaginal discs secrete insulin-like peptide 8 to mediate plasticity of growth and maturation.
Garelli, Andres; Gontijo, Alisson M; Miguela, Veronica; Caparros, Esther; Dominguez, Maria
2012-05-04
Developing animals frequently adjust their growth programs and/or their maturation or metamorphosis to compensate for growth disturbances (such as injury or tumor) and ensure normal adult size. Such plasticity entails tissue and organ communication to preserve their proportions and symmetry. Here, we show that imaginal discs autonomously activate DILP8, a Drosophila insulin-like peptide, to communicate abnormal growth and postpone maturation. DILP8 delays metamorphosis by inhibiting ecdysone biosynthesis, slowing growth in the imaginal discs, and generating normal-sized animals. Loss of dilp8 yields asymmetric individuals with an unusually large variation in size and a more varied time of maturation. Thus, DILP8 is a fundamental element of the hitherto ill-defined machinery governing the plasticity that ensures developmental stability and robustness.
Visual implant elastomer mark retention through metamorphosis in amphibian larvae
Campbell Grant, Evan H.
2008-01-01
Questions in population ecology require the study of marked animals, and marks are assumed to be permanent and not overlooked by observers. I evaluated retention through metamorphosis of visual implant elastomer marks in larval salamanders and frogs and assessed error in observer identification of these marks. I found 1) individual marks were not retained in larval wood frogs (Rana sylvatica), whereas only small marks were likely to be retained in larval salamanders (Eurycea bislineata), and 2) observers did not always correctly identify marked animals. Evaluating the assumptions of marking protocols is important in the design phase of a study so that correct inference can be made about the population processes of interest. This guidance should be generally useful to the design of mark–recapture studies, with particular application to studies of larval amphibians.
Formation of neuronal pathways in the imaginal discs of Drosophila melanogaster.
Jan, Y N; Ghysen, A; Christoph, I; Barbel, S; Jan, L Y
1985-09-01
We have followed the formation of neuronal pathways in different imaginal discs of Drosophila. The pattern is highly reproducible for a given disc type but distinct for each type of discs: in leg discs, several neurons are present before metamorphosis and provide two major pathways that are joined by later neurons; in the wing and haltere discs, a few pairs of neurons appear after the onset of metamorphosis and pioneer the major pathways; in antenna discs, no pioneers are detected before massive neuronal differentiation begins. The mechanisms used for axonal guidance seem common to all discs, and the differences between discs can be accounted for simply by differences in the arrangement and birth time of pioneer neurons. Different subsets of pioneer neurons are deleted by mutations such as scute and engrailed.
Hasebe, T; Oshima, H; Kawamura, K; Kikuyama, S
1999-10-01
Mechanisms of hemoglobin transition during bullfrog metamorphosis were investigated by labeling red blood cells from larvae (L-RBC) and from froglets (A-RBC) with a fluorescent dye, PKH26. The life span of the labeled L-RBC in systemic circulation was significantly shorter when they were injected into the animals at the metamorphic climax, compared to injection into pre- or postmetamorphic animals. The A-RBC had a long life span regardless of the metamorphic stage of the recipient animal. Therefore, L-RBC were selectively removed from the systemic circulation at the time of metamorphic climax. During climax, the labeled L-RBC were ingested by hepatic and splenic macrophages, indicating that macrophages are involved in the specific elimination of L-RBC.
NASA Astrophysics Data System (ADS)
Rey, Felisa; Silva Neto, Gina M.; Rosa, Rui; Queiroga, Henrique; Calado, Ricardo
2015-03-01
Meteorological forcing can impact planktonic communities, with extreme raining events promoting salinity decreases and triggering larval mortality in estuarine plankton. The present study evaluated how exposure to low salinities prior to metamorphosis of Carcinus maenas megalopae (last larval stage) may affect its ability to metamorphose and the post-metamorphosis performance of juvenile crabs. An extreme raining event that promoted a generalized decrease in salinity (from 25 to 10) in the whole water column of one of the main channels of a coastal lagoon was mimicked in the laboratory. Wild megalopae of C. maenas were collected and kept individually without any food at salinities of 10 or 25 (S10 or S25) until they either died or metamorphosed to the first crab instar (C1). Specimens metamorphosing in 5 days or less following their collection were labeled as early settlers (ES10 and ES25), while those taking more than 5 days were labeled as late settlers (LS10 and LS25). All newly metamorphosed crabs were kept individually until C5 at a salinity of 25 and fed ad libitum, with their intermolt periods and carapace width (CW) being recorded. Osmotic stress did not affect the survival or ability to metamorphose of C. maenas megalopae, with 89% of all larvae in both salinities being able to metamorphose. This result is supported by the ability of this larval stage to hyper-regulate. Nonetheless, an exposure of late settling megalopae to low salinities prior to metamorphosis promotes the occurrence of juvenile crabs with a smaller CW. The deleterious effects of exposing late settling megalopae to low salinities appears to be magnified during early benthic life, with C5 originating from treatment LS10 displaying a significantly smaller CW (4.87 ± 0.28 mm) and lower wet weight (WW) (28.95 ± 4.62 mg). On the other side, C5 originating from ES25 exhibited a significantly higher CW (5.90 ± 0.33 mm) and WW (50.89 ± 8.14 mg). The nutritional vulnerability experienced by megalopae starved for longer periods (late settlers) may have been magnified for specimens exposed to a lower salinity, with the energetic costs associated with hyper-regulation negatively affecting the growth performance of juvenile crabs. Osmotic stress experienced by late settling megalopae can shape adult populations of C. maenas by promoting the occurrence of smaller juveniles, thus more vulnerable to predation and cannibalism. Phenotypic links must be incorporated in the study of marine invertebrates, namely when life stages are vulnerable to metereological forcing (e.g., extreme rainfall) at critical periods of their life-cycle (e.g., metamorphosis).
2010-01-01
Background The Mexican axolotl (Ambystoma mexicanum) is considered a hopeful monster because it exhibits an adaptive and derived mode of development - paedomorphosis - that has evolved rapidly and independently among tiger salamanders. Unlike related tiger salamanders that undergo metamorphosis, axolotls retain larval morphological traits into adulthood and thus present an adult body plan that differs dramatically from the ancestral (metamorphic) form. The basis of paedomorphic development was investigated by comparing temporal patterns of gene transcription between axolotl and tiger salamander larvae (Ambystoma tigrinum tigrinum) that typically undergo a metamorphosis. Results Transcript abundances from whole brain and pituitary were estimated via microarray analysis on four different days post hatching (42, 56, 70, 84 dph) and regression modeling was used to independently identify genes that were differentially expressed as a function of time in both species. Collectively, more differentially expressed genes (DEGs) were identified as unique to the axolotl (n = 76) and tiger salamander (n = 292) than were identified as shared (n = 108). All but two of the shared DEGs exhibited the same temporal pattern of expression and the unique genes tended to show greater changes later in the larval period when tiger salamander larvae were undergoing anatomical metamorphosis. A second, complementary analysis that directly compared the expression of 1320 genes between the species identified 409 genes that differed as a function of species or the interaction between time and species. Of these 409 DEGs, 84% exhibited higher abundances in tiger salamander larvae at all sampling times. Conclusions Many of the unique tiger salamander transcriptional responses are probably associated with metamorphic biological processes. However, the axolotl also showed unique patterns of transcription early in development. In particular, the axolotl showed a genome-wide reduction in mRNA abundance across loci, including genes that regulate hypothalamic-pituitary activities. This suggests that an axolotls failure to undergo anatomical metamorphosis late in the larval period is indirectly associated with a mechanism(s) that acts earlier in development to broadly program transcription. The axolotl hopeful monster provides a model to identify mechanisms of early brain development that proximally and ultimately affect the expression of adult phenotypes. PMID:20584293
2012-01-01
Background A metamorphic life-history is present in the majority of animal phyla. This developmental mode is particularly prominent among marine invertebrates with a bentho-planktonic life cycle, where a pelagic larval form transforms into a benthic adult. Metamorphic competence (the stage at which a larva is capable to undergo the metamorphic transformation and settlement) is an important adaptation both ecologically and physiologically. The competence period maintains the larval state until suitable settlement sites are encountered, at which point the larvae settle in response to settlement cues. The mechanistic basis for metamorphosis (the morphogenetic transition from a larva to a juvenile including settlement), i.e. the molecular and cellular processes underlying metamorphosis in marine invertebrate species, is poorly understood. Histamine (HA), a neurotransmitter used for various physiological and developmental functions among animals, has a critical role in sea urchin fertilization and in the induction of metamorphosis. Here we test the premise that HA functions as a developmental modulator of metamorphic competence in the sea urchin Strongylocentrotus purpuratus. Results Our results provide strong evidence that HA leads to the acquisition of metamorphic competence in S. purpuratus larvae. Pharmacological analysis of several HA receptor antagonists and an inhibitor of HA synthesis indicates a function of HA in metamorphic competence as well as programmed cell death (PCD) during arm retraction. Furthermore we identified an extensive network of histaminergic neurons in pre-metamorphic and metamorphically competent larvae. Analysis of this network throughout larval development indicates that the maturation of specific neuronal clusters correlates with the acquisition of metamorphic competence. Moreover, histamine receptor antagonist treatment leads to the induction of caspase mediated apoptosis in competent larvae. Conclusions We conclude that HA is a modulator of metamorphic competence in S. purpuratus development and hypothesize that HA may have played an important role in the evolution of settlement strategies in echinoids. Our findings provide novel insights into the evolution of HA signalling and its function in one of the most important and widespread life history transitions in the animal kingdom - metamorphosis. PMID:22541006
Duarte-Guterman, Paula; Trudeau, Vance L
2010-01-01
Amphibian metamorphosis is an excellent example of hormone-dependent control of development. Thyroid hormones (THs) regulate almost all aspects of metamorphosis, including brain development and larval neuroendocrine function. Sex steroids are also important for early brain function, although little is known about interactions between the two hormonal systems. In the present study, we established brain developmental profiles for thyroid hormone receptors (tralpha and trbeta), deiodinases (dio1, dio2 and dio3), aromatase (cyp19) mRNA and activity, oestrogen receptors (eralpha and erbeta), androgen receptor (ar) and 5α-reductases (srd5alpha1 and srd5alpha2) mRNA during Silurana (Xenopus) tropicalis metamorphosis. Real-time reverse transcriptase-polymerase chain reaction analyses revealed that all of the genes were expressed in the brain and for most of the genes expression increased during development, with the exception of dio2, srd5alpha1 and srd5alpha2. The ability of premetamorphic tadpoles to respond to exogenous THs was used to investigate the regulation of TH- and sex steroid-related genes in the brain during development. Exposure of premetamorphic tadpoles to triiodothyronine (T3; 0, 0.5, 5 and 50 nm) for 48 h resulted in concentration-dependent increases in trbeta, dio2, dio3, eralpha and erbeta. Expression of srd5alpha2 showed large increases (six- to 7.5-fold) for all three concentrations of T3. No changes were detected in dio1, ar and cyp19 transcript levels; however, cyp19 activity increased significantly at 50 nm T3. The results obtained suggest that expression of TH-related genes and er during development could be regulated by rising levels of THs, as previously documented in Lithobates (Rana) pipiens. The positive regulation of srd5alpha by T3 in the brain suggests that endogenous TH levels help maintain or control the rate at which srd5alpha mRNA levels decrease as metamorphosis progresses. Finally, we have identified sex steroid-related genes that are responsive to T3, providing additional evidence of crosstalk between THs and sex steroids in the tadpole brain. PMID:20626568
Alvarez, Guillermo; Caldwell, Colleen A.; Kruse, Carter G.
2017-01-01
Amphibians may experience collateral effects if exposed to CFT Legumine (5% rotenone), a piscicide that is used to remove invasive fish. A series of 48-h static toxicity tests assessed the acute effects of CFT Legumine on multi-aged tadpoles of the federally listed Chiricahua leopard frog Lithobates chiricahuensis, the widespread northern leopard frog L. pipiens, and the increasingly invasive American bullfrog L. catesbeianus. At the earliest Gosner stages (GS 21–25), Chiricahua leopard frogs were more sensitive to CFT Legumine (median lethal concentration [LC50] = 0.41–0.58 mg/L) than American bullfrogs (LC50 = 0.63–0.69 mg/L) and northern leopard frogs (LC50 = 0.91 and 1.17 mg/L). As tadpoles developed (i.e., increase in GS), their sensitivity to rotenone decreased. In a separate series of 48-h static nonrenewal toxicity tests, tadpoles (GS 21–25 and GS 31–36) of all three species were exposed to piscicidal concentrations of CFT Legumine (0.5, 1.0, and 2.0 mg/L) to assess postexposure effects on metamorphosis. In survivors of all three species at both life stages, the time to tail resorption was nearly doubled in comparison with that of controls. For example, mid-age (GS 31–36) Chiricahua leopard frog tadpoles required 210.7 h to complete tail resorption, whereas controls required 108.5 h. However, because tail resorption is a relatively short period in metamorphosis, the total duration of development (days from posthatch to complete metamorphosis) and the final weight did not differ in either age-group surviving nominal concentrations of 0.5-, 1.0-, and 2.0-mg/L CFT Legumine relative to controls. This research demonstrates that the CFT Legumine concentrations commonly used in field applications to remove unwanted fish could result in considerable mortality of the earliest stages of Lithobates species. In addition to acute lethality, piscicide treatments may result in delayed tail resorption, which places the tadpoles at risk by increasing their vulnerability to predation and pathogens.
Ando, Toshiya; Fujiwara, Haruhiko; Kojima, Tetsuya
2018-01-25
Antennae are multi-segmented appendages and main odor-sensing organs in insects. In Lepidoptera (moths and butterflies), antennal morphologies have diversified according to their ecological requirements. While diurnal butterflies have simple, rod-shaped antennae, nocturnal moths have antennae with protrusions or lateral branches on each antennal segment for high-sensitive pheromone detection. A previous study on the Bombyx mori (silk moth) antenna, forming two lateral branches per segment, during metamorphosis has revealed the dramatic change in expression of antennal patterning genes to segmentally reiterated, branch-associated pattern and abundant proliferation of cells contributing almost all the dorsal half of the lateral branch. Thus, localized cell proliferation possibly controlled by the branch-associated expression of antennal patterning genes is implicated in lateral branch formation. Yet, actual gene function in lateral branch formation in Bombyx mori and evolutionary mechanism of various antennal morphologies in Lepidoptera remain elusive. We investigated the function of several genes and signaling specifically in lateral branch formation in Bombyx mori by the electroporation-mediated incorporation of siRNAs or morpholino oligomers. Knock down of aristaless, a homeobox gene expressed specifically in the region of abundant cell proliferation within each antennal segment, during metamorphosis resulted in missing or substantial shortening of lateral branches, indicating its importance for lateral branch formation. aristaless expression during metamorphosis was lost by knock down of Distal-less and WNT signaling but derepressed by knock down of Notch signaling, suggesting the strict determination of the aristaless expression domain within each antennal segment by the combinatorial action of them. In addition, analyses of pupal aristaless expression in antennae with various morphologies of several lepidopteran species revealed that the aristaless expression pattern has a striking correlation with antennal shapes, whereas the segmentally reiterated expression pattern was observed irrespective of antennal morphologies. Our results presented here indicate the significance of aristaless function in lateral branch formation in B. mori and imply that the diversification in the aristaless expression pattern within each antennal segment during metamorphosis is one of the significant determinants of antennal morphologies. According to these findings, we propose a mechanism underlying development and evolution of lepidopteran antennae with various morphologies.
Diaz, Jairo A; Murillo, Mauricio F; Mendoza, Jhonan A; Barreto, Ana M; Poveda, Lina S; Sanchez, Lina K; Poveda, Laura C; Mora, Katherine T
2016-01-01
Emergent biological responses develop via unknown processes dependent on physical collision. In hypoxia, when the tissue architecture collapses but the geometric core is stable, actin cytoskeleton filament components emerge, revealing a hidden internal order that identifies how each molecule is reassembled into the original mold, using one common connection, i.e., a fractal self-similarity that guides the system from the beginning in reverse metamorphosis, with spontaneous self-assembly of past forms that mimics an embryoid phenotype. We captured this hidden collective filamentous assemblage in progress: Hypoxic deformed cells enter into intercellular collisions, generate migratory ejected filaments, and produce self-assembly of triangular chiral hexagon complexes; this dynamic geometry guides the microenvironment scaffold in which this biological process is incubated, recapitulating embryonic morphogenesis. In all injured tissues, especially in damaged skeletal (striated) muscle cells, visibly hypertrophic intercalated actin-myosin filaments are organized in zebra stripe pattern along the anterior-posterior axis in the interior of the cell, generating cephalic-caudal polarity segmentation, with a high selective level of immunopositivity for Actin, Alpha Skeletal Muscle antibody and for Neuron-Specific Enolase expression of ectodermal differentiation. The function of actin filaments in emergent responses to tissue injury is to reconstitute, reactivate and orchestrate cellular metamorphosis, involving the re-expression of fetal genes, providing evidence of the reverse flow of genetic information within a biological system. The resultant embryoid phenotype emerges as a microscopic fractal template copy of the organization of the whole body, likely allowing the modification and reprogramming of the phenotype of the tumor in which these structures develop, as well as establishing a reverse primordial microscopic mold to collectively re-form cellular building blocks to regenerate injured tissues. Tumorigenesis mimics a self-organizing process of early embryo development. All malignant tumors produce fetal proteins, we now know from which these proteins proceed. Embryoid-like metamorphosis phenomena would represent the anatomical and functional entity of the injury stem cell niche. The sufficiently fast identification, isolation, culture, and expansion of these self-organized structures or genetically derived products could, in our opinion, be used to develop new therapeutic strategies against cancer and in regenerative medicine.
Diaz, Jairo A; Murillo, Mauricio F; Mendoza, Jhonan A; Barreto, Ana M; Poveda, Lina S; Sanchez, Lina K; Poveda, Laura C; Mora, Katherine T
2016-01-01
Emergent biological responses develop via unknown processes dependent on physical collision. In hypoxia, when the tissue architecture collapses but the geometric core is stable, actin cytoskeleton filament components emerge, revealing a hidden internal order that identifies how each molecule is reassembled into the original mold, using one common connection, i.e., a fractal self-similarity that guides the system from the beginning in reverse metamorphosis, with spontaneous self-assembly of past forms that mimics an embryoid phenotype. We captured this hidden collective filamentous assemblage in progress: Hypoxic deformed cells enter into intercellular collisions, generate migratory ejected filaments, and produce self-assembly of triangular chiral hexagon complexes; this dynamic geometry guides the microenvironment scaffold in which this biological process is incubated, recapitulating embryonic morphogenesis. In all injured tissues, especially in damaged skeletal (striated) muscle cells, visibly hypertrophic intercalated actin-myosin filaments are organized in zebra stripe pattern along the anterior-posterior axis in the interior of the cell, generating cephalic-caudal polarity segmentation, with a high selective level of immunopositivity for Actin, Alpha Skeletal Muscle antibody and for Neuron-Specific Enolase expression of ectodermal differentiation. The function of actin filaments in emergent responses to tissue injury is to reconstitute, reactivate and orchestrate cellular metamorphosis, involving the re-expression of fetal genes, providing evidence of the reverse flow of genetic information within a biological system. The resultant embryoid phenotype emerges as a microscopic fractal template copy of the organization of the whole body, likely allowing the modification and reprogramming of the phenotype of the tumor in which these structures develop, as well as establishing a reverse primordial microscopic mold to collectively re-form cellular building blocks to regenerate injured tissues. Tumorigenesis mimics a self-organizing process of early embryo development. All malignant tumors produce fetal proteins, we now know from which these proteins proceed. Embryoid-like metamorphosis phenomena would represent the anatomical and functional entity of the injury stem cell niche. The sufficiently fast identification, isolation, culture, and expansion of these self-organized structures or genetically derived products could, in our opinion, be used to develop new therapeutic strategies against cancer and in regenerative medicine. PMID:27725917
ERIC Educational Resources Information Center
Roth, Charles
1991-01-01
A lesson plan, directed at middle school students and older, describes using snow to study the geological processes of solidification of molten material, sedimentation, and metamorphosis. Provides background information on these geological processes. (MCO)
Attending to insects: Francis Willughby and John Ray
Ogilvie, Brian W.
2012-01-01
Francis Willughby and John Ray were at the forefront of the natural history of insects in the second half of the seventeenth century. Willughby in particular had a deep interest in insects' metamorphosis, behaviour and diversity, an interest that he passed on to his friend and mentor Ray. By examining Willughby's contributions to John Wilkins's Essay towards a Real Character (1668) and Ray's Methodus insectorum (1705) and Historia insectorum (1710), which contained substantial material from Willughby's manuscript history of insects, one may reconstruct how the two naturalists studied insects, their innovative use of metamorphosis in insect classification, and the sheer diversity of insect forms that they described on the basis of their own collections and those of London and Oxford virtuosi. Imperfect as it was, Historia insectorum was recognized by contemporaries as a significant contribution to the emerging field of entomology.
Activation of Drosophila hemocyte motility by the ecdysone hormone
Sampson, Christopher J.; Amin, Unum; Couso, Juan-Pablo
2013-01-01
Summary Drosophila hemocytes compose the cellular arm of the fly's innate immune system. Plasmatocytes, putative homologues to mammalian macrophages, represent ∼95% of the migratory hemocyte population in circulation and are responsible for the phagocytosis of bacteria and apoptotic tissues that arise during metamorphosis. It is not known as to how hemocytes become activated from a sessile state in response to such infectious and developmental cues, although the hormone ecdysone has been suggested as the signal that shifts hemocyte behaviour from quiescent to migratory at metamorphosis. Here, we corroborate this hypothesis by showing the activation of hemocyte motility by ecdysone. We induce motile behaviour in larval hemocytes by culturing them with 20-hydroxyecdysone ex vivo. Moreover, we also determine that motile cell behaviour requires the ecdysone receptor complex and leads to asymmetrical redistribution of both actin and tubulin cytoskeleton. PMID:24285708
Isolation and characterization of the metamorphic inducer of the common mud crab, Panopeus herbstii.
Andrews, W R.; Targett, N M.; Epifanio, C E.
2001-06-15
Several items from the natural habitat of adult Panopeus herbstii were examined to determine if they had the ability to produce a metamorphic cue. These included adult conspecifics, natural rock/shell substratum, the co-occurring species Hemigrapsus sanguineus and bacterial biofilms. Adult conspecifics, H. sangineus and natural rock/shell all accelerated metamorphosis. However, adult conspecifics accelerated metamorphosis to the greatest extent. The cue associated with adult conspecifics was found to be water-soluble, stable following boiling and freezing, and of relatively small molecular size (<1 kDa). Furthermore, the cue appears to be produced from the conspecifics themselves, rather than from biofilms colonizing the surfaces of the crabs. The results of this experiment suggest that postlarvae of P. herbstii are able to distinguish suitable habitat through chemical signals, thus greatly increasing their chances for survival.
Tutter, Adele
2011-04-01
The myth of Apollo and Daphne, as told in Ovid's Metamorphoses, is viewed through the self-referential eye of the seicento painter, Nicolas Poussin. Collectively, the tree-metaphoric myths are argued to metaphorically represent, mourn, and negate unbearable realities, including the developmental challenges of adolescence and adulthood - in particular, loss. Examined in the context of their aesthetic precedents and a close reading of Ovid 's text, the two Apollo and Daphne paintings that bracket Poussin's oeuvre are interpreted as conveying the conflict and ambiguity inherent to Ovid, as well as connotations more personal to the artist. The poetic and aesthetic reworking of the regressive, magical experience of metamorphosis restores it to the symbolic world of metaphor: for reparation, remembrance, and return. Copyright © 2011 Institute of Psychoanalysis.
NASA Astrophysics Data System (ADS)
Sommer, C.
1990-09-01
The morphology and histology of the planula larva of Eudendrium racemosum (Cavolini) and its metamorphosis into the primary polyp are described from light microscopic observations. The planula hatches as a differentiated gastrula. During the lecithotrophic larval period, large ectodermal mucous cells, embedded between epitheliomuscular cells, secrete a sticky slime. Two granulated cell types occur in the ectoderm that are interpreted as secretory and sensorynervous cells, but might also be representatives of only one cell type with a multiple function. The entoderm consists of yolk-storing gastrodermal cells, digestive gland cells, interstitial cells, cnidoblasts, and premature cnidocytes. The larva starts metamorphosis by affixing its blunt aboral pole to a substratum. While the planula flattens down, the mucous cells penetrate the mesolamella and migrate through the entoderm into the gastral cavity where they are lysed. Subsequently, interstitial cells, cnidoblasts, and premature cnidocytes migrate in the opposite direction, i.e. from entoderm to ectoderm. Then, the polypoid body organization, comprising head (hydranth), stem and foot, all covered by peridermal secretion, becomes recognisable. An oral constriction divides the hypostomal portion of the gastral cavity from the stomachic portion. Within the hypostomal entoderm, cells containing secretory granules differentiate. Following growth and the multiplication of tentacles, the head periderm disappears. A ring of gland cells differentiates at the hydranth's base. The positioning of cnidae in the tentacle ectoderm, penetration of the mouth opening and the multiplication of digestive gland cells enable the polyp to change from lecithotrophic to planktotrophic nutrition.
Goto-Inoue, Naoko; Sato, Tomohiko; Morisasa, Mizuki; Kashiwagi, Akihiko; Kashiwagi, Keiko; Sugiura, Yuki; Sugiyama, Eiji; Suematsu, Makoto; Mori, Tsukasa
2018-02-01
Thyroid hormones are not only responsible for thermogenesis and energy metabolism in animals, but also have an important role in cell differentiation and development. Amphibian metamorphosis provides an excellent model for studying the remodeling of the body. This metamorphic organ remodeling is induced by thyroid hormones, and a larval body is thus converted into an adult one. The matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry (MS) imaging technology is expected to be a suitable tool for investigating small bioreactive molecules. The present study describes the distribution of the thyroid hormones, i.e., triiodothyronine (T3) and thyroxine (T4) and their inactive form reverse T3 (rT3) in Xenopus tropicalis tadpoles using two different types of imaging techniques, MS/MS and Fourier transform (FT)-MS imaging. As a result of MS/MS imaging, we demonstrated that T3 was mainly distributed in the gills. T4 was faintly localized in the eyes, inner gills, and intestine during metamorphosis. The intensity of T3 in the gills and the intensity of T4 in the body fluids were increased during metamorphosis. Moreover, the localization of the inactive form rT3 was demonstrated to be separate from T3, namely in the intestine and muscles. In addition, FT-MS imaging could utilize simultaneous imaging including thyroid hormone. This is the first report to demonstrate the molecular distribution of thyroid hormones themselves and to discriminate T3, T4, and rT3 in animal tissues.
Knockout silkworms reveal a dispensable role for juvenile hormones in holometabolous life cycle
Daimon, Takaaki; Uchibori, Miwa; Nakao, Hajime; Sezutsu, Hideki; Shinoda, Tetsuro
2015-01-01
Insect juvenile hormones (JHs) prevent precocious metamorphosis and allow larvae to undergo multiple rounds of status quo molts. However, the roles of JHs during the embryonic and very early larval stages have not been fully understood. We generated and characterized knockout silkworms (Bombyx mori) with null mutations in JH biosynthesis or JH receptor genes using genome-editing tools. We found that embryonic growth and morphogenesis are largely independent of JHs in Bombyx and that, even in the absence of JHs or JH signaling, pupal characters are not formed in first- or second-instar larvae, and precocious metamorphosis is induced after the second instar at the earliest. We also show by mosaic analysis that a pupal specifier gene broad, which is dramatically up-regulated in the late stage of the last larval instar, is essential for pupal commitment in the epidermis. Importantly, the mRNA expression level of broad, which is thought to be repressed by JHs, remained at very low basal levels during the early larval instars of JH-deficient or JH signaling-deficient knockouts. Therefore, our study suggests that the long-accepted paradigm that JHs maintain the juvenile status throughout larval life should be revised because the larval status can be maintained by a JH-independent mechanism in very early larval instars. We propose that the lack of competence for metamorphosis during the early larval stages may result from the absence of an unidentified broad-inducing factor, i.e., a competence factor. PMID:26195792
Ko, Ginger W K; Dineshram, R; Campanati, Camilla; Chan, Vera B S; Havenhand, Jon; Thiyagarajan, Vengatesen
2014-09-02
Ocean acidification (OA) effects on larvae are partially attributed for the rapidly declining oyster production in the Pacific Northwest region of the United States. This OA effect is a serious concern in SE Asia, which produces >80% of the world's oysters. Because climate-related stressors rarely act alone, we need to consider OA effects on oysters in combination with warming and reduced salinity. Here, the interactive effects of these three climate-related stressors on the larval growth of the Pacific oyster, Crassostrea gigas, were examined. Larvae were cultured in combinations of temperature (24 and 30 °C), pH (8.1 and 7.4), and salinity (15 psu and 25 psu) for 58 days to the early juvenile stage. Decreased pH (pH 7.4), elevated temperature (30 °C), and reduced salinity (15 psu) significantly delayed pre- and post-settlement growth. Elevated temperature lowered the larval lipid index, a proxy for physiological quality, and negated the negative effects of decreased pH on attachment and metamorphosis only in a salinity of 25 psu. The negative effects of multiple stressors on larval metamorphosis were not due to reduced size or depleted lipid reserves at the time of metamorphosis. Our results supported the hypothesis that the C. gigas larvae are vulnerable to the interactions of OA with reduced salinity and warming in Yellow Sea coastal waters now and in the future.
Cathepsin O is involved in the innate immune response and metamorphosis of Antheraea pernyi.
Sun, Yu-Xuan; Zhu, Bao-Jian; Tang, Lin; Sun, Yu; Chen, Chen; Nadeem Abbas, Muhammad; Wang, Lei; Qian, Cen; Wei, Guo-Qing; Liu, Chao-Liang
2017-11-01
Cathepsins are key members of mammalian papain-like cysteine proteases that play an important role in the immune response. In this study, a fragment of cDNA encoding cathepsin O proteinase (ApCathepsin O) was cloned from Antheraea pernyi. It contains an open reading frame of 1170bp and encodes a protein with 390 amino acid residues, including a conserved I29 inhibitor domain and a peptidase C1A (clan CA of cysteine proteases, papain family C1 subfamily) domain. Comparison with other previously reported cathepsin O proteins showed identity ranging from 45% to 79%. Quantitative real-time PCR (qRT-PCR) and Western blot analysis revealed that ApCathepsin O was highly expressed in the fat body; furthermore, the high expression during the pupal stage indicated that it might be involved during metamorphosis. After exposure to four different heat-killed pathogens (Escherichia coli, Beauveria bassiana, Micrococcus luteus, and A. pernyi nucleopolyhedrovirus), the expression levels of ApCathepsin O mRNA significantly increased and showed variable expression patterns. This indicates that ApCathepsin O is potentially involved in the innate immune system of A. pernyi. Interestingly, ApCathepsin O expression was upregulated after 20-hydroxyecdysone (20E) injection, which suggested that it might be regulated by 20E. In conclusion, ApCathepsin O is a protease that may play an important role in the innate immune response and metamorphosis of A. pernyi. Copyright © 2017. Published by Elsevier Inc.
Frank, Henrique Oliveira; Sanchez, Danilo Garcia; de Freitas Oliveira, Lucas; Kobarg, Jörg; Monesi, Nadia
2017-11-01
The DNA puff BhC4-1 gene of Bradysia hygida (Diptera, Sciaridae) is amplified and expressed in the salivary glands at the end of the last larval instar. Even though there are no BhC4-1 orthologs in Drosophila melanogaster, the mechanisms that regulate BhC4-1 gene expression in B. hygida are for the most part conserved in D. melanogaster. The BhC4-1 promoter contains a 129bp (-186/-58) cis-regulatory module (CRM) that drives developmentally regulated expression in transgenic salivary glands at the onset of metamorphosis. Both in the sciarid and in transgenic D. melanogaster, BhC4-1 gene expression is induced by the increase in ecdysone titers that triggers metamorphosis. Genetic interaction experiments revealed that in the absence of the Eip74EF-PA early gene isoform BhC4-1-lacZ levels of expression in the salivary gland are severely reduced. Here we show that the overexpression of the Eip74EF-PA transcription factor is sufficient to anticipate BhC4-1-lacZ expression in transgenic D. melanogaster. Through yeast one-hybrid assays we confirm that the Eip74EF-PA transcription factor directly binds to the 129 bp sciarid CRM. Together, these results contribute to the characterization of an insect CRM and indicate that the ecdysone gene regulatory network that promotes metamorphosis is conserved between D. melanogaster and the sciarid B. hygida. © 2017 Wiley Periodicals, Inc.
Knockout silkworms reveal a dispensable role for juvenile hormones in holometabolous life cycle.
Daimon, Takaaki; Uchibori, Miwa; Nakao, Hajime; Sezutsu, Hideki; Shinoda, Tetsuro
2015-08-04
Insect juvenile hormones (JHs) prevent precocious metamorphosis and allow larvae to undergo multiple rounds of status quo molts. However, the roles of JHs during the embryonic and very early larval stages have not been fully understood. We generated and characterized knockout silkworms (Bombyx mori) with null mutations in JH biosynthesis or JH receptor genes using genome-editing tools. We found that embryonic growth and morphogenesis are largely independent of JHs in Bombyx and that, even in the absence of JHs or JH signaling, pupal characters are not formed in first- or second-instar larvae, and precocious metamorphosis is induced after the second instar at the earliest. We also show by mosaic analysis that a pupal specifier gene broad, which is dramatically up-regulated in the late stage of the last larval instar, is essential for pupal commitment in the epidermis. Importantly, the mRNA expression level of broad, which is thought to be repressed by JHs, remained at very low basal levels during the early larval instars of JH-deficient or JH signaling-deficient knockouts. Therefore, our study suggests that the long-accepted paradigm that JHs maintain the juvenile status throughout larval life should be revised because the larval status can be maintained by a JH-independent mechanism in very early larval instars. We propose that the lack of competence for metamorphosis during the early larval stages may result from the absence of an unidentified broad-inducing factor, i.e., a competence factor.
Sparling, D.W.; Fellers, G.M.
2009-01-01
Contaminants have been associated with population declines of several amphibian species in California (USA). Pesticides from the Central Valley of California are transported by winds into the Sierra Nevada Mountains and precipitate into wet meadows where amphibians breed. The present study examined the chronic toxicity of two of the insecticides most commonly used in the Central Valley and found in the mountains, chlorpyrifos and endosulfan, to larval Pacific treefrogs (Pseudacris regilla) and foothill yellow-legged frogs (Rana boylii) and discusses the implications of this toxicity to declining amphibian populations. Larvae were exposed to the pesticides from Gosner stages 25 to 26 through metamorphosis. The estimated median lethal concentration (LC50) for chlorpyrifos was 365 ??g/L in P. regilla and 66.5 ??g/L for R. boylii. Time to metamorphosis increased with concentration of chlorpyrifos in both species, and cholinesterase activity declined with exposure concentration in metamorphs of both species at Gosner stages 42 to 46. For endosulfan, the estimated LC50 was 15.6 ??g/L for P. regilla and 0.55 ??g/L for R. boylii. All R. boylii exposed to concentrations of greater than 0.8 ??g/L died before they entered metamorphosis. Pseudacris regilla remains relatively abundant and is broadly distributed throughout California. In contrast, R. boylii is among the species experiencing severe population declines. The present study adds to the increasing evidence that pesticides are very harmful to amphibians living in areas that are miles from sources of pesticide application. ?? 2009 SETAC.
Changes in mitochondrial electron transport chain activity during insect metamorphosis.
Chamberlin, M E
2007-02-01
The midgut of the tobacco hornworm (Manduca sexta) is a highly aerobic tissue that is destroyed by programmed cell death during larval-pupal metamorphosis. The death of the epithelium begins after commitment to pupation, and the oxygen consumption of isolated midgut mitochondria decreases soon after commitment. To assess the role of the electron transport chain in this decline in mitochondrial function, the maximal activities of complexes I-IV of the respiratory chain were measured in isolated midgut mitochondria. Whereas there were no developmental changes in the activity of complex I or III, activities of complexes II and IV [cytochrome c oxidase (COX)] were higher in mitochondria from precommitment than postcommitment larvae. This finding is consistent with a higher rate of succinate oxidation in mitochondria isolated from precommitment larvae and reveals that the metamorphic decline in mitochondrial respiration is due to the targeted destruction or inactivation of specific sites within the mitochondria, rather than the indiscriminate destruction of the organelles. The COX turnover number (e- x s(-1) x cytochrome aa3(-1)) was greater for the enzyme from precommitment than postcommitment larvae, indicating a change in the enzyme structure and/or its lipid environment during the early stages of metamorphosis. The turnover number of COX in the intact mitochondria (in organello COX) was also lower in postcommitment larvae. In addition to changes in the protein or membrane phospholipids, the metamorphic decline in this rate constant may be a result of the observed loss of endogenous cytochrome c.
Tech Time: Ramona and the Fruit Flies: An Interdisciplinary Approach.
ERIC Educational Resources Information Center
Mason, Marguerite; Lloyd, April K.
1995-01-01
Reports on how a school-university partnership used Virginia's Public Education Network to help third graders learn about metamorphosis in insects and the scientific method of experimentation, observation, and data collection. (MKR)
Using Literature to Enhance Course Content in Education Classes.
ERIC Educational Resources Information Center
Dunn, Sheila
1995-01-01
Focuses attention on the kinds of literature that are helpful in fostering thoughtful reflection in special education graduate courses. Discusses several specific examples, such as Franz Kafka's "Metamorphosis" and John Steinbeck's "Of Mice and Men." (PA)
IS COPPER REQUIRED FOR EASTERN OYSTER SETTING AND METAMORPHOSIS?
Recent field research with eastern oysters demonstrated higher defense activities, including hemocyte numbers, locomotion and bactericidal ability, associated with locations exhibiting relatively high contamination. Copper and zinc, found in high concentrations in tissues of oyst...
Roles of insulin-like growth factors in metamorphic development of turbot (Scophthalmus maximus).
Jia, Yudong
2018-01-31
Larval turbot (Scophthalmus maximus) undergo metamorphosis, a late post-embryonic developmental event that precedes juvenile transition. Insulin-like growth factors (IGFs) are important endocrine/autocrine/paracrine factors that provide essential signals to control of the embryonic and postnatal development of vertebrate species, including fish. Accumulating evidence suggests that IGFs are involved in regulating the metamorphic development of flatfish. This mini review focus on the functions of all known IGFs (IGF-I and IGF-II) during the metamorphic development of turbot. Information about IGFs and insulin-like growth factors binding proteins (IGFBPs) from other teleosts is also included in this review to provide an overview of IGFs functions in the metamorphic development of turbot. These findings may enhance our understanding of the potential roles of the IGFs system in controlling of flatfish metamorphosis and contributing to the improvement of broodstock management strategies for larval turbot. Copyright © 2018 Elsevier Inc. All rights reserved.
Scudeler, Elton Luiz; Garcia, Ana Silvia Gimenes; Padovani, Carlos Roberto; Santos, Daniela Carvalho
2013-11-01
Neem oil is a biopesticide that disturbs the endocrine and neuroendocrine systems of pests and may interfere with molting, metamorphosis and cocoon spinning. The cocoon serves protective functions for the pupa during metamorphosis, and these functions are dependent on cocoon structure. To assess the changes in cocoon spinning caused by neem oil ingestion, Ceraeochrysa claveri larvae, a common polyphagous predator, were fed with neem oil throughout the larval period. When treated with neem oil, changes were observed on the outer and inner surfaces of the C. claveri cocoon, such as decreased wall thickness and impaired ability to attach to a substrate. These negative effects may reduce the effectiveness of the mechanical and protective functions of cocoons during pupation, which makes the specimen more vulnerable to natural enemies and environmental factors. © 2013 Elsevier Inc. All rights reserved.
Transgenerational effects of ocean warming on the sea urchin Strongylocentrotus intermedius.
Zhao, Chong; Zhang, Lisheng; Shi, Dongtao; Ding, Jingyun; Yin, Donghong; Sun, Jiangnan; Zhang, Baojing; Zhang, Lingling; Chang, Yaqing
2018-04-30
Transgenerational effects, which involve both selection and plasticity, are important for the evolutionary adaptation of echinoderms in the changing ocean. Here, we investigated the effects of breeding design and water temperature for offspring on fertilization, hatchability, larval survival, size, abnormality and metamorphosis of the sea urchin Strongylocentrotus intermedius, whose dams and sires were exposed to long-term (~15 months) elevated temperature (~3°C above ambient) or ambient temperature. There was no transgenerational effect on fertilization and metamorphosis of S. intermedius, while negative transgenerational effects were found in hatchability and most traits of larval size. Dam and sire effects were highly trait and developmental stage dependent. Interestingly, we found S. intermedius probably cannot achieve transgenerational acclimation to long-term elevated temperature for survival provided their offspring were exposed to an elevated temperature. The present study enriches our understanding of transgenerational effects of ocean warming on sea urchins. Copyright © 2018 Elsevier Inc. All rights reserved.
Effects of Weightlessness of Aurelia Ephyra Differentiation and Statolith Synthesis
NASA Technical Reports Server (NTRS)
Spangenberg, D. B.
1985-01-01
Aurelia polyps are especially suited for space flight experiments because they are very small (2 to 4 mm), form ephyrae with gravity sensing structures in 6 to 7 days, and can be reared easily and inexpensively in the laboratory. During iodine-induced metamorphosis ephyrae develop in sequential order from the oral to the aboral end of the polyps. Eight sites of gravity receptors (rhopalia) form per ephyra. These structures have sacs of statoliths at their distal end, which are composed of calcium sulfate dihydrate. Only one statolith forms per cell (statocyte) and the cells collect at the distal end of the rhopalia forming statocysts. Rhopalia with statocysts are necessary for the righting reflex of swimming medusae. Using the Aurelia Metamorphosis Test System (Spangenberg, 1984) for the past eight months, the effects of clinostat rotation in the horizontal and verticall planes on the development of ephyrae and the synthesis of their statoliths were investigated.
Development of contractile and energetic capacity in anuran hindlimb muscle during metamorphosis.
Park, Jin Cheol; Kim, Han Suk; Yamashita, Masamichi; Choi, Inho
2003-01-01
Anuran larvae undergo water-to-land transition during late metamorphosis. We investigated the development of the iliofibularis muscle in bullfrog tadpoles (Rana catesbeiana) between Gosner's stage 37 and stage 46 (the last stage). The tadpoles began staying in shallow water at least as early as stage 37, kicking from stage 39, active hindlimb swimming from stage 41, and emerging onto shore from stage 42. For control tadpoles kept in water throughout metamorphosis, muscle mass and length increased two- to threefold between stages 37 and 46, with rapid increases at stage 40. Large, steady increases were found in femur mass, tetanic tension, contraction rate, and power between stages 37 and 46. Concentrations of ATP and creatine phosphate and rates of the phosphagen depletion and the activity of creatine kinase increased significantly, mainly after stage 43. Shortening velocity, tetanic rise time, and half-relaxation time varied little. Energy charge (the amount of metabolically available energy stored in the adenine nucleotide pool) remained unchanged until stage 43 but decreased at stage 46. Compared with the control, experimental tadpoles that were allowed access to both water and land exhibited 1.2- to 1.8-fold greater increases in femur mass, tetanic tension, power, phosphagen depletion rates, and creatine kinase activities at late metamorphic stages but no significant differences for other parameters measured. In sum, most hindlimb development proceeds on the basis of the increasingly active use of limbs for locomotion in water. The further increases in tension, mechanical power, and "chemical power" on emergence would be advantageous for terrestrial antigravity performance.
Road Salts as Environmental Constraints in Urban Pond Food Webs
Van Meter, Robin J.; Swan, Christopher M.
2014-01-01
Freshwater salinization is an emerging environmental filter in urban aquatic ecosystems that receive chloride road salt runoff from vast expanses of impervious surface cover. Our study was designed to evaluate the effects of chloride contamination on urban stormwater pond food webs through changes in zooplankton community composition as well as density and biomass of primary producers and consumers. From May – July 2009, we employed a 2×2×2 full-factorial design to manipulate chloride concentration (low = 177 mg L−1 Cl−/high = 1067 mg L−1 Cl−), gray treefrog (Hyla versicolor) tadpoles (presence/absence) and source of stormwater pond algae and zooplankton inoculum (low conductance/high conductance urban ponds) in 40, 600-L mesocosms. Road salt did serve as a constraint on zooplankton community structure, driving community divergence between the low and high chloride treatments. Phytoplankton biomass (chlorophyll [a] µg L−1) in the mesocosms was significantly greater for the high conductance inoculum (P<0.001) and in the high chloride treatment (P = 0.046), whereas periphyton biomass was significantly lower in the high chloride treatment (P = 0.049). Gray treefrog tadpole time to metamorphosis did not vary significantly between treatments. However, mass at metamorphosis was greater among tadpoles that experienced a faster than average time to metamorphosis and exposure to high chloride concentrations (P = 0.039). Our results indicate differential susceptibility to chloride salts among algal resources and zooplankton taxa, and further suggest that road salts can act as a significant environmental constraint on urban stormwater pond communities. PMID:24587259
Effects of lead-contaminated sediment on Rana sphenocephala tadpoles.
Sparling, Donald W; Krest, Sherry; Ortiz-Santaliestra, Manuel
2006-10-01
We exposed larval southern leopard frogs (Rana sphenocephala) to lead-contaminated sediments to determine the lethal and sublethal effects of this metal. Tadpoles were laboratory-raised from early free-swimming stage through metamorphosis at lead concentrations of 45, 75, 180, 540, 2360, 3940, 5520, and 7580 mg/kg dry weight in sediment. Corresponding pore water lead concentrations were 123, 227, 589, 1833, 8121, 13,579, 19,038, and 24,427 microg/L. Tadpoles exposed to lead concentrations in sediment of 3940 mg/kg or higher died within 2 to 5 days of exposure. At lower concentrations, mortality through metamorphosis ranged from 3.5% at 45 mg/kg lead to 37% at 2360 mg/kg lead in sediment. The LC50 value for lead in sediment was 3728 mg/kg (95% CI = 1315 to 72,847 mg/kg), which corresponded to 12,539 microg/L lead in pore water (95% CI = 4000 to 35,200 microg/L). Early growth and development were depressed at 2,360 mg/kg lead in sediment (8100 microg/L in pore water) but differences were not evident by the time of metamorphosis. The most obvious effect of lead was its pronounced influence on skeletal development. Whereas tadpoles at 45 mg/kg lead in sediment did not display permanent abnormalities, skeletal malformations increased in frequency and severity at all higher lead concentrations. By 2360 mg/kg, 100% of surviving metamorphs displayed severe spinal problems, reduced femur and humerus lengths, deformed digits, and other bone malformations. Lead concentrations in tissues correlated positively with sediment and pore water concentrations.
Kolesová, Hana; Lametschwandtner, Alois; Roček, Zbyněk
2007-01-01
In order to gain insights into how the aortic arches changed during the transition of vertebrates to land, transformations of the aortic arches during the metamorphosis of Pelobates fuscus were investigated and compared with data from the early development of a recent ganoid fish Amia calva and a primitive caudate amphibian Salamandrella keyserlingi. Although in larval Pelobates, as in other non-pipid anurans, the gill arches serve partly as a filter-feeding device, their aortic arches maintain the original piscine-like arrangement, except for the mandibular and hyoid aortic arches which were lost. As important pre-adaptations for breathing of atmospheric oxygen occur in larval Pelobates (which have well-developed, though non-respiratory lungs and pulmonary artery), transformation of aortic arches during metamorphosis is fast. The transformation involves disappearance of the ductus Botalli, which results in a complete shunting of blood into the lungs and skin, disappearance of the ductus caroticus, which results in shunting of blood into the head through the arteria carotis interna, and disappearance of arch V, which results in shunting blood to the body through arch IV (systemic arch). It is supposed that the branching pattern of the aortic arches of permanently water-dwelling piscine ancestors, of intermediate forms which occasionally left the water and of primitive tetrapods capable of spending longer periods of time on land had been the same as in the prematamorphic anuran larvae or in some metamorphosed caudates in which the ductus caroticus and ductus Botalli were not interrupted, and arch V was still complete. PMID:17367494
Kolesová, Hana; Lametschwandtner, Alois; Rocek, Zbynek
2007-04-01
In order to gain insights into how the aortic arches changed during the transition of vertebrates to land, transformations of the aortic arches during the metamorphosis of Pelobates fuscus were investigated and compared with data from the early development of a recent ganoid fish Amia calva and a primitive caudate amphibian Salamandrella keyserlingi. Although in larval Pelobates, as in other non-pipid anurans, the gill arches serve partly as a filter-feeding device, their aortic arches maintain the original piscine-like arrangement, except for the mandibular and hyoid aortic arches which were lost. As important pre-adaptations for breathing of atmospheric oxygen occur in larval Pelobates (which have well-developed, though non-respiratory lungs and pulmonary artery), transformation of aortic arches during metamorphosis is fast. The transformation involves disappearance of the ductus Botalli, which results in a complete shunting of blood into the lungs and skin, disappearance of the ductus caroticus, which results in shunting of blood into the head through the arteria carotis interna, and disappearance of arch V, which results in shunting blood to the body through arch IV (systemic arch). It is supposed that the branching pattern of the aortic arches of permanently water-dwelling piscine ancestors, of intermediate forms which occasionally left the water and of primitive tetrapods capable of spending longer periods of time on land had been the same as in the prematamorphic anuran larvae or in some metamorphosed caudates in which the ductus caroticus and ductus Botalli were not interrupted, and arch V was still complete.
Effects of lead-contaminated sediment on Rana sphenocephala tadpoles
Sparling, D.W.; Krest, S.K.; Ortiz-Santaliestra, M.
2006-01-01
We exposed larval southern leopard frogs (Rana sphenocephala) to lead-contaminated sediments to determine the lethal and sublethal effects of this metal. Tadpoles were laboratory-raised from early free-swimming stage through metamorphosis at lead concentrations of 45, 75, 180, 540, 2360, 3940, 5520, and 7580 mg/kg dry weight in sediment. Corresponding pore water lead concentrations were 123, 227, 589, 1833, 8121, 13,579, 19,038, and 24,427 ug/L. Tadpoles exposed to lead concentrations in sediment of 3940 mg/kg or higher died within 2 to 5 days of exposure. At lower concentrations, mortality through metamorphosis ranged from 3.5% at 45 mg/kg lead to 37% at 2360 mg/kg lead in sediment. The LC50 value for lead in sediment was 3728 mg/kg (95% CI=1315 to 72,847 mg/kg), which corresponded to 12,539 ug/L lead in pore water (95% CI= 4000 to 35,200 ug/L). Early growth and development were depressed at 2,360 mg/kg lead in sediment (8100 ug/L in pore water) but differences were not evident by the time of metamorphosis. The most obvious effect of lead was its pronounced influence on skeletal development. Whereas tadpoles at 45 mg/kg lead in sediment did not display permanent abnormalities, skeletal malformations increased in frequency and severity at all higher lead concentrations. By 2360 mg/kg, 100% of surviving metamorphs displayed severe spinal problems, reduced femur and humerus lengths, deformed digits, and other bone malformations. Lead concentrations in tissues correlated positively with sediment and pore water concentrations.
Does corticosterone mediate predator-induced responses of larval Hylarana indica?
Joshi, A M; Wadekar, N V; Gramapurohit, N P
2017-09-15
Prey-predator interactions have been studied extensively in terms of morphological and behavioural responses of prey to predation risk using diverse model systems. However, the underlying physiological changes associated with morphological, behavioural or life historical responses have been rarely investigated. Herein, we studied the effect of chronic predation risk on larval growth and metamorphosis of Hylarana indica and the underlying physiological changes in prey tadpoles. In the first experiment, tadpoles were exposed to a caged predator from Gosner stage 25-42 to record growth and metamorphosis. Further, whole body corticosterone (CORT) was measured to determine the physiological changes underlying morphological and life historical responses of these prey tadpoles. Surprisingly, tadpoles experiencing continuous predation risk grew and developed faster and metamorphosed at a larger size. Interestingly, these tadpoles had significantly lower CORT levels. In the second experiment, tadpoles were exposed to predation risk (PR) or PR+CORT from stage 25-42 to determine the role of CORT in mediating predator-induced responses of H. indica. Tadpoles facing continuous predation risk grew and developed faster and metamorphosed at a larger size reinforcing the results of the first experiment. However, when CORT was administered along with predation risk, tadpoles grew and developed slowly leading to delayed metamorphosis. Interestingly, growth and metamorphic traits of tadpoles exposed to PR+CORT were comparable to those of the control group indicating that exogenous CORT nullified the positive effect of predation risk. Apparently, CORT mediates predator-induced morphological responses of H. indica tadpoles by regulating their physiology. Copyright © 2016 Elsevier Inc. All rights reserved.
Discovery of fossil lamprey larva from the Lower Cretaceous reveals its three-phased life cycle
Chang, Mee-mann; Wu, Feixiang; Miao, Desui; Zhang, Jiangyong
2014-01-01
Lampreys are one of the two surviving jawless vertebrate groups and one of a few vertebrate groups with the best exemplified metamorphosis during their life cycle, which consists of a long-lasting larval stage, a peculiar metamorphosis, and a relatively short adulthood with a markedly different anatomy. Although the fossil records have revealed that many general features of extant lamprey adults were already formed by the Late Devonian (ca. 360 Ma), little is known about the life cycle of the fossil lampreys because of the lack of fossilized lamprey larvae or transformers. Here we report the first to our knowledge discovery of exceptionally preserved premetamorphic and metamorphosing larvae of the fossil lamprey Mesomyzon mengae from the Lower Cretaceous of Inner Mongolia, China. These fossil ammocoetes look surprisingly modern in having an eel-like body with tiny eyes, oral hood and lower lip, anteriorly positioned branchial region, and a continuous dorsal skin fin fold and in sharing a similar feeding habit, as judged from the detritus left in the gut. In contrast, the larger metamorphosing individuals have slightly enlarged eyes relative to large otic capsules, thickened oral hood or pointed snout, and discernable radials but still anteriorly extended branchial area and lack a suctorial oral disk, which characterize the early stages of the metamorphosis of extant lampreys. Our discovery not only documents the larval conditions of fossil lampreys but also indicates the three-phased life cycle in lampreys emerged essentially in their present mode no later than the Early Cretaceous. PMID:25313060
Kawasaki, Hideki; Manickam, Asaithambi; Shahin, Rima; Ote, Manabu; Iwanaga, Masashi
2018-01-05
The present study was conducted to clarify the involvement of the basement membrane (BM) in insect metamorphosis through analysis of the expression profile of two types of metalloproteinase (MMP and ADAMTS) genes in several organs, their ecdysone involvement, and the histological change of BM. BM was observed around wing sac and in the wing cavity and around fat bodies at the W0 stage but disappeared after the W3 stage, and wing discs evaginated and fat body cells scattered after the W3 stage. The disappearance of the BM of midgut and silk glands was not observed after the W3 stage, but degenerated epithelium cells in the midgut and shrunken cells in the silk gland were observed after the W3 stage. BmMMP1 showed a peak at P0 in the wing discs, fat bodies, midgut, and silk gland. BmMMP2 showed a broad peak around pupation in the wing discs, fat bodies, midgut, and silk gland. BmADAMTS-1 showed enhanced expression at W2 in the wing discs, fat bodies, midgut, and hemocyte, while BmADAMTS-L showed enhanced expression at W3 in the fat bodies, midgut, silk gland, and hemocyte. After pupation, they showed a different expression in different organs. All of four genes were induced by 20-hydroxyecdysone in wing discs in vitro. The present results suggested the involvement of MMPs and ADAMTS in the BM digestion and the morphogenesis of organs during Bombyx metamorphosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Burns, Robert T.; Pechenik, Jan A.; Biggers, William J.; Scavo, Gia; Lehman, Christopher
2014-01-01
Marine sediments can contain B vitamins, presumably incorporated from settled, decaying phytoplankton and microorganisms associated with decomposition. Because B vitamins may be advantageous for the energetically intensive processes of metamorphosis, post-metamorphic growth, and reproduction, we tested several B vitamins to determine if they would stimulate larvae of the deposit-feeding polychaete Capitella teleta to settle and metamorphose. Nicotinamide and riboflavin individually stimulated larvae of C. teleta to settle and metamorphose, generally within 1–2 hours at nicotinamide concentrations as low as 3 µM and riboflavin concentrations as low as 50 µM. More than 80% of the larvae metamorphosed within 30 minutes at a nicotinamide concentration of 7 µM. The pyridine channel agonist pyrazinecarboxamide also stimulated metamorphosis at very low concentrations. In contrast, neither lumichrome, thiamine HCl, pyridoxine HCl, nor vitamin B12 stimulated larvae of C. teleta to metamorphose at concentrations as high as 500 µM. Larvae also did not metamorphose in response to either nicotinamide or pyrazinecarboxamide in calcium-free seawater or with the addition of 4-acetylpyridine, a competitive inhibitor of the pyridine receptor. Together, these results suggest that larvae of C. teleta are responding to nicotinamide and riboflavin via a chemosensory pyridine receptor similar to that previously reported to be present on crayfish chela and involved with food recognition. Our data are the first to implicate B vitamins as possible natural chemical settlement cues for marine invertebrate larvae. PMID:25390040
Liu, Xi; Dai, Fangyin; Guo, Enen; Li, Kang; Ma, Li; Tian, Ling; Cao, Yang; Zhang, Guozheng; Palli, Subba R.; Li, Sheng
2015-01-01
As revealed in a previous microarray study to identify genes regulated by 20-hydroxyecdysone (20E) and juvenile hormone (JH) in the silkworm, Bombyx mori, E93 expression in the fat body was markedly low prior to the wandering stage but abundant during larval-pupal metamorphosis. Induced by 20E and suppressed by JH, E93 expression follows this developmental profile in multiple silkworm alleles. The reduction of E93 expression by RNAi disrupted 20E signaling and the 20E-induced autophagy, caspase activity, and cell dissociation in the fat body. Reducing E93 expression also decreased the expression of the 20E-induced pupal-specific cuticle protein genes and prevented growth and differentiation of the wing discs. Importantly, the two HTH domains in E93 are critical for inducing the expression of a subset of 20E response genes, including EcR, USP, E74, Br-C, and Atg1. By contrast, the LLQHLL and PLDLSAK motifs in E93 inhibit its transcriptional activity. E93 binds to the EcR-USP complex via a physical association with USP through its LLQHLL motif; and this association is enhanced by 20E-induced EcR-USP interaction, which attenuates the transcriptional activity of E93. E93 acts through the two HTH domains to bind to GAGA-containing motifs present in the Atg1 promoter region for inducing gene expression. In conclusion, E93 transcriptionally modulates 20E signaling to promote Bombyx larval-pupal metamorphosis. PMID:26378227
Liu, Xi; Dai, Fangyin; Guo, Enen; Li, Kang; Ma, Li; Tian, Ling; Cao, Yang; Zhang, Guozheng; Palli, Subba R; Li, Sheng
2015-11-06
As revealed in a previous microarray study to identify genes regulated by 20-hydroxyecdysone (20E) and juvenile hormone (JH) in the silkworm, Bombyx mori, E93 expression in the fat body was markedly low prior to the wandering stage but abundant during larval-pupal metamorphosis. Induced by 20E and suppressed by JH, E93 expression follows this developmental profile in multiple silkworm alleles. The reduction of E93 expression by RNAi disrupted 20E signaling and the 20E-induced autophagy, caspase activity, and cell dissociation in the fat body. Reducing E93 expression also decreased the expression of the 20E-induced pupal-specific cuticle protein genes and prevented growth and differentiation of the wing discs. Importantly, the two HTH domains in E93 are critical for inducing the expression of a subset of 20E response genes, including EcR, USP, E74, Br-C, and Atg1. By contrast, the LLQHLL and PLDLSAK motifs in E93 inhibit its transcriptional activity. E93 binds to the EcR-USP complex via a physical association with USP through its LLQHLL motif; and this association is enhanced by 20E-induced EcR-USP interaction, which attenuates the transcriptional activity of E93. E93 acts through the two HTH domains to bind to GAGA-containing motifs present in the Atg1 promoter region for inducing gene expression. In conclusion, E93 transcriptionally modulates 20E signaling to promote Bombyx larval-pupal metamorphosis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Siboni, Nachshon; Abrego, David; Motti, Cherie A.; Tebben, Jan; Harder, Tilmann
2014-01-01
The morphogenetic transition of motile coral larvae into sessile primary polyps is triggered and genetically programmed upon exposure to environmental biomaterials, such as crustose coralline algae (CCA) and bacterial biofilms. Although the specific chemical cues that trigger coral larval morphogenesis are poorly understood there is much more information available on the genes that play a role in this early life phase. Putative chemical cues from natural biomaterials yielded defined chemical samples that triggered different morphogenetic outcomes: an extract derived from a CCA-associated Pseudoalteromonas bacterium that induced metamorphosis, characterized by non-attached metamorphosed juveniles; and two fractions of the CCA Hydrolithon onkodes (Heydrich) that induced settlement, characterized by attached metamorphosed juveniles. In an effort to distinguish the genes involved in these two morphogenetic transitions, competent larvae of the coral Acropora millepora were exposed to these predictable cues and the expression profiles of 47 coral genes of interest (GOI) were investigated after only 1 hour of exposure using multiplex RT–qPCR. Thirty-two GOI were differentially expressed, indicating a putative role during the early regulation of morphogenesis. The most striking differences were observed for immunity-related genes, hypothesized to be involved in cell recognition and adhesion, and for fluorescent protein genes. Principal component analysis of gene expression profiles resulted in separation between the different morphogenetic cues and exposure times, and not only identified those genes involved in the early response but also those which influenced downstream biological changes leading to larval metamorphosis or settlement. PMID:24632854
Development of oral and branchial muscles in lancelet larvae of Branchiostoma japonicum.
Yasui, Kinya; Kaji, Takao; Morov, Arseniy R; Yonemura, Shigenobu
2014-04-01
The perforated pharynx has generally been regarded as a shared characteristic of chordates. However, there still remains phylogenetic ambiguity between the cilia-driven system in invertebrate chordates and the muscle-driven system in vertebrates. Giant larvae of the genus Asymmetron were reported to develop an orobranchial musculature similar to that of vertebrates more than 100 years ago. This discovery might represent an evolutionary link for the chordate branchial system, but few investigations of the lancelet orobranchial musculature have been completed since. We studied staged larvae of a Japanese population of Branchiostoma japonicum to characterize the developmental property of the orobranchial musculature. The larval mouth and the unpaired primary gills develop well-organized muscles. These muscles function only as obturators of the openings without antagonistic system. As the larval mouth enlarged posteriorly to the level of the ninth myomere, the oral musculature was fortified accordingly without segmental patterning. In contrast, the iterated branchial muscles coincided with the dorsal myomeric pattern before metamorphosis, but the pharynx was remodeled dynamically irrespective of the myomeric pattern during metamorphosis. The orobranchial musculature disappeared completely during metamorphosis, and adult muscles in the oral hood and velum, as well as on the pterygial coeloms developed independently. The lancelet orobranchial musculature is apparently a larval adaptation to prevent harmful intake. However, vestigial muscles appeared transiently with the secondary gill formation suggest a bilateral ancestral state of muscular gills, and a segmental pattern of developing branchial muscles without neural crest and placodal contributions is suggestive of a precursor of vertebrate branchiomeric pattern. Copyright © 2013 Wiley Periodicals, Inc.
Multiple stressors in amphibian communities: Effects of chemical contamination, bullfrogs, and fish
Boone, M.D.; Semlitsch, R.D.; Little, E.E.; Doyle, M.C.
2007-01-01
A leading hypothesis of amphibian population declines is that combinations of multiple stressors contribute to declines. We examined the role that chemical contamination, competition, and predation play singly and in combination in aquatic amphibian communities. We exposed larvae of American toads (Bufo americanus), southern leopard frogs (Rana sphenocephala), and spotted salamanders (Ambystoma maculatum) to overwintered bullfrog tadpoles (R. catesbeiana), bluegill sunfish (Lepomis macrochirus), the insecticide carbaryl, and ammonium nitrate fertilizer in 1000-L mesocosms. Most significantly, our study demonstrated that the presence of multiple factors reduced survival of B. americanus and A. maculatum and lengthened larval periods of R. sphenocephala. The presence of bluegill had the largest impact on the community; it eliminated B. americanus and A. maculatum and reduced the abundance of R. sphenocephala. Chemical contaminants had the second strongest effect on the community with the insecticide, reducing A. maculatum abundance by 50% and increasing the mass of anurans (frogs and toads) at metamorphosis; the fertilizer positively influenced time and mass at metamorphosis for both anurans and A. maculatum. Presence of overwintered bullfrogs reduced mass and increased time to metamorphosis of anurans. While both bluegill and overwintered bullfrog tadpoles had negative effects on the amphibian community, they performed better in the presence of one another and in contaminated habitats. Our results indicate that predicting deleterious combinations from single-factor effects may not be straightforward. Our research supports the hypothesis that combinations of factors can negatively impact some amphibian species and could contribute to population declines. ?? 2007 by the Ecological Society of America.
Where have all the tadpoles gone? Individual genetic tracking of amphibian larvae until adulthood
RINGLER, EVA; MANGIONE, ROSANNA; RINGLER, MAX
2015-01-01
Reliably marking larvae and reidentifying them after metamorphosis is a challenge that has hampered studies on recruitment, dispersal, migration and survivorship of amphibians for a long time, as conventional tags are not reliably retained through metamorphosis. Molecular methods allow unique genetic fingerprints to be established for individuals. Although microsatellite markers have successfully been applied in mark–recapture studies on several animal species, they have never been previously used in amphibians to follow individuals across different life cycle stages. Here, we evaluate microsatellites for genetic across-stages mark–recapture studies in amphibians and test the suitability of available software packages for genotype matching. We sampled tadpoles of the dendrobatid frog Allobates femoralis, which we introduced on a river island in the Nature Reserve ‘Les Nouragues’ in French Guiana. In two subsequent recapture sessions, we searched for surviving juveniles and adults, respectively. All individuals were genotyped at 14 highly variable microsatellite loci, which yielded unique genetic fingerprints for all individuals. We found large differences in the identification success of the programs tested. The pairwise-relatedness-based approach, conducted with the programs kingroup or ML-Relate, performed best with our data set. Matching ventral patterns of juveniles and adult individuals acted as a control for the reliability of the genetic identification. Our results demonstrate that microsatellite markers are a highly powerful tool for studying amphibian populations on an individual basis. The ability to individually track amphibian tadpoles throughout metamorphosis until adulthood will be of substantial value for future studies on amphibian population ecology and evolution. PMID:25388775
Lee, Gyunghee; Wang, Zixing; Sehgal, Ritika; Chen, Chun-Hong; Kikuno, Keiko; Hay, Bruce; Park, Jae H
2011-01-01
A great number of obsolete larval neurons in the Drosophila central nervous system are eliminated by developmentally programmed cell death (PCD) during early metamorphosis. To elucidate the mechanisms of neuronal PCD occurring during this period, we undertook genetic dissection of seven currently known Drosophila caspases in the PCD of a group of interneurons (vCrz) that produce corazonin (Crz) neuropeptide in the ventral nerve cord. The molecular death program in the vCrz neurons initiates within 1 hour after pupariation, as demonstrated by the cytological signs of cell death and caspase activation. PCD was significantly suppressed in dronc-null mutants, but not in null mutants of either dredd or strica. A double mutation lacking both dronc and strica impaired PCD phenotype more severely than did a dronc mutation alone, but comparably to a triple dredd/strica/dronc mutation, indicating that dronc is a main initiator caspase, while strica plays a minor role that overlaps with dronc's. As for effector caspases, vCrz PCD requires both ice and dcp-1 functions, as they work cooperatively for a timely removal of the vCrz neurons. Interestingly, the activation of the Ice and Dcp-1 is not solely dependent on Dronc and Strica, implying an alternative pathway to activate the effectors. Two remaining effector caspase genes, decay and damm, found no apparent functions in the neuronal PCD, at least during early metamorphosis. Overall, our work revealed that vCrz PCD utilizes dronc, strica, dcp-1, and ice wherein the activation of Ice and Dcp-1 requires a novel pathway in addition to the initiator caspases.
Where have all the tadpoles gone? Individual genetic tracking of amphibian larvae until adulthood.
Ringler, Eva; Mangione, Rosanna; Ringler, Max
2015-07-01
Reliably marking larvae and reidentifying them after metamorphosis is a challenge that has hampered studies on recruitment, dispersal, migration and survivorship of amphibians for a long time, as conventional tags are not reliably retained through metamorphosis. Molecular methods allow unique genetic fingerprints to be established for individuals. Although microsatellite markers have successfully been applied in mark-recapture studies on several animal species, they have never been previously used in amphibians to follow individuals across different life cycle stages. Here, we evaluate microsatellites for genetic across-stages mark-recapture studies in amphibians and test the suitability of available software packages for genotype matching. We sampled tadpoles of the dendrobatid frog Allobates femoralis, which we introduced on a river island in the Nature Reserve 'Les Nouragues' in French Guiana. In two subsequent recapture sessions, we searched for surviving juveniles and adults, respectively. All individuals were genotyped at 14 highly variable microsatellite loci, which yielded unique genetic fingerprints for all individuals. We found large differences in the identification success of the programs tested. The pairwise-relatedness-based approach, conducted with the programs kingroup or ML-Relate, performed best with our data set. Matching ventral patterns of juveniles and adult individuals acted as a control for the reliability of the genetic identification. Our results demonstrate that microsatellite markers are a highly powerful tool for studying amphibian populations on an individual basis. The ability to individually track amphibian tadpoles throughout metamorphosis until adulthood will be of substantial value for future studies on amphibian population ecology and evolution. © 2014 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.
Binary Cell Fate Decisions and Fate Transformation in the Drosophila Larval Eye
Rister, Jens; Ng, June; Celik, Arzu; Sprecher, Simon G.
2013-01-01
The functionality of sensory neurons is defined by the expression of specific sensory receptor genes. During the development of the Drosophila larval eye, photoreceptor neurons (PRs) make a binary choice to express either the blue-sensitive Rhodopsin 5 (Rh5) or the green-sensitive Rhodopsin 6 (Rh6). Later during metamorphosis, ecdysone signaling induces a cell fate and sensory receptor switch: Rh5-PRs are re-programmed to express Rh6 and become the eyelet, a small group of extraretinal PRs involved in circadian entrainment. However, the genetic and molecular mechanisms of how the binary cell fate decisions are made and switched remain poorly understood. We show that interplay of two transcription factors Senseless (Sens) and Hazy control cell fate decisions, terminal differentiation of the larval eye and its transformation into eyelet. During initial differentiation, a pulse of Sens expression in primary precursors regulates their differentiation into Rh5-PRs and repression of an alternative Rh6-cell fate. Later, during the transformation of the larval eye into the adult eyelet, Sens serves as an anti-apoptotic factor in Rh5-PRs, which helps in promoting survival of Rh5-PRs during metamorphosis and is subsequently required for Rh6 expression. Comparably, during PR differentiation Hazy functions in initiation and maintenance of rhodopsin expression. Hazy represses Sens specifically in the Rh6-PRs, allowing them to die during metamorphosis. Our findings show that the same transcription factors regulate diverse aspects of larval and adult PR development at different stages and in a context-dependent manner. PMID:24385925
Effects of metal and predator stressors in larval southern toads (Anaxyrus terrestris).
Rumrill, Caitlin T; Scott, David E; Lance, Stacey L
2016-08-01
Natural and anthropogenic stressors typically do not occur in isolation; therefore, understanding ecological risk of contaminant exposure should account for potential interactions of multiple stressors. Realistically, common contaminants can also occur chronically in the environment. Because parental exposure to stressors may cause transgenerational effects on offspring, affecting their ability to cope with the same or novel environmental stressors, the exposure histories of generations preceding that being tested should be considered. To examine multiple stressor and parental exposure effects we employed a 2 × 2 × 2 factorial design in outdoor 1000-L mesocosms (n = 24). Larval southern toads (Anaxyrus terrestris), bred from parents collected from reference and metal-contaminated sites, were exposed to two levels of both an anthropogenic (copper-0, 30 µg/L Cu) and natural (predator cue - present/absent) stressor and reared to metamorphosis. Toads from the metal-contaminated parental source population were smaller at metamorphosis and had delayed development; i.e., a prolonged larval period. Similarly, larval Cu exposure also reduced size at metamorphosis and prolonged the larval period. We, additionally, observed a significant interaction between larval Cu and predator-cue exposure on larval period, wherein delayed emergence was only present in the 30-µg/L Cu treatments in the absence of predator cues. The presence of parental effects as well as an interaction between aquatic stressors on commonly measured endpoints highlight the importance of conducting multistressor studies across generations to obtain data that are more relevant to field conditions in order to determine population-level effects of contaminant exposure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenshield, M.L.; Jofre, M.B.; Karasov, W.H.
1999-11-01
Although increasing evidence links plana chlorinated hydrocarbons, such as polychlorinated biphenyls (PCBs), to decreases in survival and reproduction of fish, mammals, and birds near Green Bay, Wisconsin, and the Great Lakes, USA, relatively little is known of their bioaccumulation or of their possible effects in amphibians. The authors exposed embryos and larvae of two ranid species commonly occurring in the Green Bay ecosystem, the green frog (Rana clamitans) and the leopard frog (Rana pipiens), to PCB 126, a model coplanar PCB compound. Nominal concentrations ranged from 0.005 to 50 {micro}g/L, and exposure lasted through metamorphosis. Tissue concentrations of PCB 126more » in tadpoles that did not metamorphose by the end of the experiment ranged from 1.2 to 9,600 ng/g wet mass. No significant mortality of embryos occurred before hatching; however, survival of larvae was significantly reduced at the highest concentration for both species. Few deformities were observed, but the incidence of edema was significantly higher in tadpoles exposed to 50 {micro}g/L. Swimming speed and growth of tadpoles was also significantly reduced in this treatment. The percent of tadpoles that reached metamorphosis was significantly lower in green frogs at the highest concentration, and no leopard frogs survived past day 47 of the experiment in this treatment. At high concentrations, PCB 126 affected both ranid species; however, sublethal effects were not apparent for the parameters the authors measured at concentrations that occur in water in the Green Bay ecosystem.« less
Binary cell fate decisions and fate transformation in the Drosophila larval eye.
Mishra, Abhishek Kumar; Tsachaki, Maria; Rister, Jens; Ng, June; Celik, Arzu; Sprecher, Simon G
2013-01-01
The functionality of sensory neurons is defined by the expression of specific sensory receptor genes. During the development of the Drosophila larval eye, photoreceptor neurons (PRs) make a binary choice to express either the blue-sensitive Rhodopsin 5 (Rh5) or the green-sensitive Rhodopsin 6 (Rh6). Later during metamorphosis, ecdysone signaling induces a cell fate and sensory receptor switch: Rh5-PRs are re-programmed to express Rh6 and become the eyelet, a small group of extraretinal PRs involved in circadian entrainment. However, the genetic and molecular mechanisms of how the binary cell fate decisions are made and switched remain poorly understood. We show that interplay of two transcription factors Senseless (Sens) and Hazy control cell fate decisions, terminal differentiation of the larval eye and its transformation into eyelet. During initial differentiation, a pulse of Sens expression in primary precursors regulates their differentiation into Rh5-PRs and repression of an alternative Rh6-cell fate. Later, during the transformation of the larval eye into the adult eyelet, Sens serves as an anti-apoptotic factor in Rh5-PRs, which helps in promoting survival of Rh5-PRs during metamorphosis and is subsequently required for Rh6 expression. Comparably, during PR differentiation Hazy functions in initiation and maintenance of rhodopsin expression. Hazy represses Sens specifically in the Rh6-PRs, allowing them to die during metamorphosis. Our findings show that the same transcription factors regulate diverse aspects of larval and adult PR development at different stages and in a context-dependent manner.
Banerjee, Soumya; Toral, Marcus; Siefert, Matthew; Conway, David; Dorr, Meredith; Fernandes, Joyce
2016-12-01
The Drosophila larval nervous system is radically restructured during metamorphosis to produce adult specific neural circuits and behaviors. Genesis of new neurons, death of larval neurons and remodeling of those neurons that persistent collectively act to shape the adult nervous system. Here, we examine the fate of a subset of larval motor neurons during this restructuring process. We used a dHb9 reporter, in combination with the FLP/FRT system to individually identify abdominal motor neurons in the larval to adult transition using a combination of relative cell body location, axonal position, and muscle targets. We found that segment specific cell death of some dHb9 expressing motor neurons occurs throughout the metamorphosis period and continues into the post-eclosion period. Many dHb9 > GFP expressing neurons however persist in the two anterior hemisegments, A1 and A2, which have segment specific muscles required for eclosion while a smaller proportion also persist in A2-A5. Consistent with a functional requirement for these neurons, ablating them during the pupal period produces defects in adult eclosion. In adults, subsequent to the execution of eclosion behaviors, the NMJs of some of these neurons were found to be dismantled and their muscle targets degenerate. Our studies demonstrate a critical continuity of some larval motor neurons into adults and reveal that multiple aspects of motor neuron remodeling and plasticity that are essential for adult motor behaviors. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1387-1416, 2016. © 2016 Wiley Periodicals, Inc.
ELASTICITY ANALYSIS OF AMPHIBIAN LIFE HISTORIES
By comparing life history parameters (e.g., age at metamorphosis, age at sexual maturation, egg number, longevity) and phenology of different species, we gain valuable insight into why growth rates differ across populations. Although the demography of most amphibians is lacking, ...
SYSTEMS APPROACH TO CHARACTERIZING AND PREDICTING THYROID TOXICITY
A systems approach is being undertaken in which in vivo and in vitro assays are integrated to understand the mechanisms of thyroid hormone mediated pathways controlling frog metamorphosis, and more generally the regulation and control of the HPT axis.
Inquiry, Investigation, and Communication in the Student-Directed Laboratory.
ERIC Educational Resources Information Center
Janners, Martha Y.
1988-01-01
Describes how to organize a student-directed laboratory investigation which is based on amphibian metamorphosis, lasts for nearly a term, and involves extensive group effort. Explains the assignment, student response and opinion, formal paper, and instructor responsibilities. (RT)
Ventegodt, Søren; Hermansen, Tyge Dahl; Nielsen, Maj Lyck; Clausen, Birgitte; Merrick, Joav
2006-07-06
For almost a decade, we have experimented with supporting the philosophical development of severely ill patients to induce recovery and spontaneous healing. Recently, we have observed a new pattern of extremely rapid, spontaneous healing that apparently can facilitate even the spontaneous remission of cancer and the spontaneous recovery of mental diseases like schizophrenia and borderline schizophrenia. Our working hypothesis is that the accelerated healing is a function of the patient's brain-mind and body-mind coming closer together due to the development of what we call "deep" cosmology. To understand and describe what happens at a biological level, we have suggested naming the process adult human metamorphosis, a possibility that is opened by the human genome showing full generic equipment for metamorphosis. To understand the mechanistic details in the complicated interaction between consciousness and biology, we need an adequate theory for biological information. In a series of papers, we propose what we call "holistic biology for holistic medicine". We suggest that a relatively simple model based on interacting wholenesses instead of isolated parts can shed a new light on a number of difficult issues that we need to explain and understand in biology and medicine in order to understand and use metamorphosis in the holistic medical clinic. We aim to give a holistic theoretical interpretation of biological phenomena at large, morphogenesis, evolution, immune system regulation (self-nonself discrimination), brain function, consciousness, and health in particular. We start at the most fundamental problem: what is biological information at the subcellular, cellular, and supracellular levels if we presume that it is the same phenomenon on all levels (using Occam's razor), and how can this be described scientifically? The problems we address are all connected to the information flow in the functioning, living organism: function of the brain and consciousness, the regulations of the immune system and cell growth, the dynamics of health and disease. We suggest that life utilizes an unseen fine structure of the physical energy of the universe at a subparticular or quantum level to give information-directed self-organization; we give a first sketch of a possible fractal structure of the energy able to both contain and communicate biological information and carry individual and collective consciousness. Finally, thorough our analysis, we put up a model for adult human metamorphosis.
The Mexican Axolotl in Schools
ERIC Educational Resources Information Center
Thomas, R. M.
1976-01-01
Suggests and describes laboratory activities in which the Mexican axolotl (Ambystoma mexicanum Shaw) is used, including experiments in embryology and early development, growth and regeneration, neoteny and metamorphosis, genetics and coloration, anatomy and physiology, and behavior. Discusses care and maintenance of animals. (CS)
ERIC Educational Resources Information Center
Balch, Stephen H.
2012-01-01
One thing history's torrent appears to be sweeping away is, ironically, the study of its most productive wellspring, Western civilization. "The Vanishing West", a report the National Association of Scholars released in May 2011, documents the extent of this vanishing. The traditional Western civilization survey requirement, commonplace only…
Metamorphosis of cisgenic insect resistance research in the transgenic crop era
USDA-ARS?s Scientific Manuscript database
The biotechnological revolution has forever changed agricultural research and crop production worldwide. Commercial agriculture now includes plants that produce enhanced yield and quality, survival in hostile environmental conditions, manufacture and express defensive toxins, and yield grains with ...
Comparative developmental and reproductive studies were performed on several species of estuarine crustaceans in response to three juvenile hormone agonists (JHAs) (methoprene, fenoxycarb, and pyriproxyfen). Larval development of the grass shrimp, Palaemonetes pugio, was greater ...
Reproductive Maturation of the Tropical Clawed Frog, Xenopus tropicalis
The model species Xenopus tropicalis is being widely used in developmental biology and amphibian toxicology studies. In order to increase our understanding of the role of steroid hormones in maturation in this species, we collected baseline reproductive data from metamorphosis t...
ESTIMATING THE TIMING OF DIET SHIFTS USING STABLE ISOTOPES
Stable isotope analysis has become an important tool in studies of trophic food webs and animal feeding patterns. When animals undergo rapid dietary shifts due to migration, metamorphosis, or other reasons, the isotopic composition of their tissues begins changing to reflect tha...
Inhibition of the Thyroid Hormone Pathway in Xenopus by Mercaptobenzothiazole
Amphibian metamorphosis is a thyroid hormone-dependent process that provides a potential model system to assess chemicals for their ability to disrupt the hypothalamic-pituitary-thyroid (HPT) axis. Several studies have demonstrated the sensitivity of this system to a variety of ...
Hu, Fang; Knoedler, Joseph R.
2016-01-01
Thyroid hormone (TH) receptor (TR)-β (trb) is induced by TH (autoinduced) in Xenopus tadpoles during metamorphosis. We previously showed that Krüppel-like factor 9 (Klf9) is rapidly induced by TH in the tadpole brain, associates in chromatin with the trb upstream region in a developmental stage and TH-dependent manner, and forced expression of Klf9 in the Xenopus laevis cell line XTC-2 accelerates and enhances trb autoinduction. Here we investigated whether Klf9 can promote trb autoinduction in tadpole brain in vivo. Using electroporation-mediated gene transfer, we transfected plasmids into premetamorphic tadpole brain to express wild-type or mutant forms of Klf9. Forced expression of Klf9 increased baseline trb mRNA levels in thyroid-intact but not in goitrogen-treated tadpoles, supporting that Klf9 enhances liganded TR action. As in XTC-2 cells, forced expression of Klf9 enhanced trb autoinduction in tadpole brain in vivo and also increased TH-dependent induction of the TR target genes klf9 and thbzip. Consistent with our previous mutagenesis experiments conducted in XTC-2 cells, the actions of Klf9 in vivo required an intact N-terminal region but not a functional DNA binding domain. Forced expression of TRβ in tadpole brain by electroporation-mediated gene transfer increased baseline and TH-induced TR target gene transcription, supporting a role for trb autoinduction during metamorphosis. Our findings support that Klf9 acts as an accessory transcription factor for TR at the trb locus during tadpole metamorphosis, enhancing trb autoinduction and transcription of other TR target genes, which increases cellular responsivity to further TH action on developmental gene regulation programs. PMID:26886257
Shepherd, David; Harris, Robin; Williams, Darren W; Truman, James W
2016-09-01
During larval life most of the thoracic neuroblasts (NBs) in Drosophila undergo a second phase of neurogenesis to generate adult-specific neurons that remain in an immature, developmentally stalled state until pupation. Using a combination of MARCM and immunostaining with a neurotactin antibody, Truman et al. (2004; Development 131:5167-5184) identified 24 adult-specific NB lineages within each thoracic hemineuromere of the larval ventral nervous system (VNS), but because of the neurotactin labeling of lineage tracts disappearing early in metamorphosis, they were unable extend the identification of these lineages into the adult. Here we show that immunostaining with an antibody against the cell adhesion molecule neuroglian reveals the same larval secondary lineage projections through metamorphosis and bfy identifying each neuroglian-positive tract at selected stages we have traced the larval hemilineage tracts for all three thoracic neuromeres through metamorphosis into the adult. To validate tract identifications we used the genetic toolkit developed by Harris et al. (2015; Elife 4) to preserve hemilineage-specific GAL4 expression patterns from larval into the adult stage. The immortalized expression proved a powerful confirmation of the analysis of the neuroglian scaffold. This work has enabled us to directly link the secondary, larval NB lineages to their adult counterparts. The data provide an anatomical framework that 1) makes it possible to assign most neurons to their parent lineage and 2) allows more precise definitions of the neuronal organization of the adult VNS based in developmental units/rules. J. Comp. Neurol. 524:2677-2695, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.
Hasebe, Takashi; Fujimoto, Kenta; Kajita, Mitsuko; Fu, Liezhen; Shi, Yun-Bo; Ishizuya-Oka, Atsuko
2017-04-01
In Xenopus laevis intestine during metamorphosis, the larval epithelial cells are removed by apoptosis, and the adult epithelial stem (AE) cells appear concomitantly. They proliferate and differentiate to form the adult epithelium (Ep). Thyroid hormone (TH) is well established to trigger this remodeling by regulating the expression of various genes including Notch receptor. To study the role of Notch signaling, we have analyzed the expression of its components, including the ligands (DLL and Jag), receptor (Notch), and targets (Hairy), in the metamorphosing intestine by real-time reverse transcription-polymerase chain reaction and in situ hybridization or immunohistochemistry. We show that they are up-regulated during both natural and TH-induced metamorphosis in a tissue-specific manner. Particularly, Hairy1 is specifically expressed in the AE cells. Moreover, up-regulation of Hairy1 and Hairy2b by TH was prevented by treating tadpoles with a γ-secretase inhibitor (GSI), which inhibits Notch signaling. More importantly, TH-induced up-regulation of LGR5, an adult intestinal stem cell marker, was suppressed by GSI treatment. Our results suggest that Notch signaling plays a role in stem cell development by regulating the expression of Hairy genes during intestinal remodeling. Furthermore, we show with organ culture experiments that prolonged exposure of tadpole intestine to TH plus GSI leads to hyperplasia of secretory cells and reduction of absorptive cells. Our findings here thus provide evidence for evolutionarily conserved role of Notch signaling in intestinal cell fate determination but more importantly reveal, for the first time, an important role of Notch pathway in the formation of adult intestinal stem cells during vertebrate development. Stem Cells 2017;35:1028-1039. © 2016 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Sugahara, Ryohei; Tanaka, Seiji; Shiotsuki, Takahiro
2017-09-01
The Halloween gene SPOOK (SPO) is involved in the production of the active metabolite of ecdysteroid, 20-hydroxyecdysone (20E), in insects. A previous study showed that RNAi-mediated knockdown of SPO in Schistocerca gregaria last instar nymphs markedly reduced the hemolymph 20E titer, but did not affect metamorphosis. In the present study, the effects of SPO interference on development were re-examined in this locust. Injections of SPO double-stranded RNA (dsSPO) into nymphs at mid and late instars significantly delayed nymphal development and interfered with molting. The 20E levels of dsSPO-treated nymphs were generally low, with a delayed, small peak, suggesting that disturbance of the 20E levels caused the above developmental abnormalities. A small proportion of the dsSPO-injected nymphs metamorphosed precociously, producing adults and adultoids. Precocious adults were characterized by small body size, short wings with abbreviated venation, and normal reproductive activity. Fourth instar nymphs that precociously metamorphosed at the following instar exhibited temporal expression patterns of ecdysone-induced protein 93F and the juvenile hormone (JH) early-inducible gene Krüppel homolog 1 similar to those observed at the last instar in normal nymphs. Adultoids displayed mating behavior and adultoid females developed eggs, but never laid eggs. JH injection around the expected time of the 20E peak in the dsSPO-injected nymphs completely inhibited the appearance of adultoids, suggesting that appearance of adultoids might be due to a reduced titer of JH rather than of 20E. These results suggest that SPO plays an important role in controlling morphogenesis, metamorphosis, and reproduction in S. gregaria. Copyright © 2017 Elsevier Inc. All rights reserved.
Puah, Wee Choo; Wasser, Martin
2016-03-01
Time-lapse microscopy in developmental biology is an emerging tool for functional genomics. Phenotypic effects of gene perturbations can be studied non-invasively at multiple time points in chronological order. During metamorphosis of Drosophila melanogaster, time-lapse microscopy using fluorescent reporters allows visualization of alternative fates of larval muscles, which are a model for the study of genes related to muscle wasting. While doomed muscles enter hormone-induced programmed cell death, a smaller population of persistent muscles survives to adulthood and undergoes morphological remodeling that involves atrophy in early, and hypertrophy in late pupation. We developed a method that combines in vivo imaging, targeted gene perturbation and image analysis to identify and characterize genes involved in muscle development. Macrozoom microscopy helps to screen for interesting muscle phenotypes, while confocal microscopy in multiple locations over 4-5 days produces time-lapse images that are used to quantify changes in cell morphology. Performing a similar investigation using fixed pupal tissues would be too time-consuming and therefore impractical. We describe three applications of our pipeline. First, we show how quantitative microscopy can track and measure morphological changes of muscle throughout metamorphosis and analyze genes involved in atrophy. Second, our assay can help to identify genes that either promote or prevent histolysis of abdominal muscles. Third, we apply our approach to test new fluorescent proteins as live markers for muscle development. We describe mKO2 tagged Cysteine proteinase 1 (Cp1) and Troponin-I (TnI) as examples of proteins showing developmental changes in subcellular localization. Finally, we discuss strategies to improve throughput of our pipeline to permit genome-wide screens in the future. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Harris, Robin; Williams, Darren W.; Truman, James W.
2016-01-01
During larval life most of the thoracic neuroblasts (NBs) in Drosophila undergo a second phase of neurogenesis to generate adult‐specific neurons that remain in an immature, developmentally stalled state until pupation. Using a combination of MARCM and immunostaining with a neurotactin antibody, Truman et al. (2004; Development 131:5167–5184) identified 24 adult‐specific NB lineages within each thoracic hemineuromere of the larval ventral nervous system (VNS), but because of the neurotactin labeling of lineage tracts disappearing early in metamorphosis, they were unable extend the identification of these lineages into the adult. Here we show that immunostaining with an antibody against the cell adhesion molecule neuroglian reveals the same larval secondary lineage projections through metamorphosis and bfy identifying each neuroglian‐positive tract at selected stages we have traced the larval hemilineage tracts for all three thoracic neuromeres through metamorphosis into the adult. To validate tract identifications we used the genetic toolkit developed by Harris et al. (2015; Elife 4) to preserve hemilineage‐specific GAL4 expression patterns from larval into the adult stage. The immortalized expression proved a powerful confirmation of the analysis of the neuroglian scaffold. This work has enabled us to directly link the secondary, larval NB lineages to their adult counterparts. The data provide an anatomical framework that 1) makes it possible to assign most neurons to their parent lineage and 2) allows more precise definitions of the neuronal organization of the adult VNS based in developmental units/rules. J. Comp. Neurol. 524:2677–2695, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26878258
Yamane, Hitomi; Ihara, Setsunosuke; Kuroda, Masaaki; Nishikawa, Akio
2011-08-01
Larval-to-adult myogenic conversion occurs in the dorsal muscle but not in the tail muscle during Xenopus laevis metamorphosis. To know the mechanism for tail-specific suppression of adult myogenesis, response character was compared between adult myogenic cells (Ad-cells) and larval tail myogenic cells (La-cells) to a Sonic hedgehog (Shh) inhibitor, notochord (Nc) cells, and spinal cord (SC) cells in vitro. Cyclopamine, an Shh inhibitor, suppressed the differentiation of cultured Ad (but not La) cells, suggesting the significance of Shh signaling in promoting adult myogenesis. To test the possibility that Shh-producing axial elements (notochord and spinal cord) regulate adult myogenesis, Ad-cells or La-cells were co-cultured with Nc or SC cells. The results showed that differentiation of Ad-cells were strongly inhibited by Nc cells but promoted by SC cells. If Ad-cells were "separately" co-cultured with Nc cells without direct cell-cell interactions, adult differentiation was not inhibited but rather promoted, suggesting that Nc cells have two roles, one is a short-range suppression and another is a long-range promotion for adult myogenesis. Immunohistochemical analysis showed both notochord and spinal cord express the N-terminal Shh fragment throughout metamorphosis. The "spinal cord-promotion" and long-range effect by Nc cells on adult myogenesis is thus involved in Shh signaling, while the signaling concerning the short-range "Nc suppression" will be determined by future studies. Interestingly, these effects, "Nc suppression" and "SC promotion" were not observed for La-cells. Situation where the spinal cord/notochord cross-sectional ratio is quite larger in tadpole trunk than in the tail seems to contribute to trunk-specific promotion and tail-specific suppression of adult myogenesis during Xenopus metamorphosis.
Hayward, David C.; Hetherington, Suzannah; Behm, Carolyn A.; Grasso, Lauretta C.; Forêt, Sylvain; Miller, David J.; Ball, Eldon E.
2011-01-01
Background A successful metamorphosis from a planktonic larva to a settled polyp, which under favorable conditions will establish a future colony, is critical for the survival of corals. However, in contrast to the situation in other animals, e.g., frogs and insects, little is known about the molecular basis of coral metamorphosis. We have begun to redress this situation with previous microarray studies, but there is still a great deal to learn. In the present paper we have utilized a different technology, subtractive hybridization, to characterize genes differentially expressed across this developmental transition and to compare the success of this method to microarray. Methodology/Principal Findings Suppressive subtractive hybridization (SSH) was used to identify two pools of transcripts from the coral, Acropora millepora. One is enriched for transcripts expressed at higher levels at the pre-settlement stage, and the other for transcripts expressed at higher levels at the post-settlement stage. Virtual northern blots were used to demonstrate the efficacy of the subtractive hybridization technique. Both pools contain transcripts coding for proteins in various functional classes but transcriptional regulatory proteins were represented more frequently in the post-settlement pool. Approximately 18% of the transcripts showed no significant similarity to any other sequence on the public databases. Transcripts of particular interest were further characterized by in situ hybridization, which showed that many are regulated spatially as well as temporally. Notably, many transcripts exhibit axially restricted expression patterns that correlate with the pool from which they were isolated. Several transcripts are expressed in patterns consistent with a role in calcification. Conclusions We have characterized over 200 transcripts that are differentially expressed between the planula larva and post-settlement polyp of the coral, Acropora millepora. Sequence, putative function, and in some cases temporal and spatial expression are reported. PMID:22065994
Reis-Santos, P.; McCormick, S.D.; Wilson, J.M.
2008-01-01
Ammocoetes of the anadromous sea lamprey Petromyzon marinus L. spend many years in freshwater before metamorphosing and migrating to sea. Metamorphosis involves the radical transformation from a substrate-dwelling, filter feeder into a free-swimming, parasitic feeder. In the present work we examined osmoregulatory differences between ammocoetes and transformers (metamorphic juveniles), and the effects of salinity acclimation. We measured the expression of key ion-transporting proteins [Na+/K+-ATPase, vacuolar (V)-type H+-ATPase and carbonic anhydrase (CA)] as well as a number of relevant blood parameters (hematocrit, [Na+] and [Cl -]). In addition, immunofluorescence microscopy was used to identify and characterize the distributions of Na+/K+-ATPase, V-type H+-ATPase and CA immunoreactive cells in the gill. Ammocoetes did not survive in the experiments with salinities greater than 10???, whereas survival in high salinity (???25-35???) increased with increased degree of metamorphosis in transformers. Plasma [Na+] and [Cl -] of ammocoetes in freshwater was lower than transformers and increased markedly at 10???. In transformers, plasma ions increased only at high salinity (>25???). Branchial Na+/K+-ATPase levels were ??? tenfold higher in transformers compared to ammocoetes and salinity did not affect expression in either group. However, branchial H +-ATPase expression showed a negative correlation with salinity in both groups. Na+/K+-ATPase immunoreactivity was strongest in transformers and associated with clusters of cells in the interlamellar spaces. H+-ATPase (B subunit) immunoreactivity was localized to epithelial cells not expressing high Na+/K+-ATPase immunoreactivity and having a similar tissue distribution as carbonic anhydrase. The results indicate that branchial Na+/K+-ATPase and salinity tolerance increase in metamorphosing lampreys, and that branchial H+-ATPase is downregulated by salinity.
Thieme, Claudia; Hofmann, Dietrich Kurt
2003-04-01
Scyphopolyps of Cassiopea andromeda propagate asexually by forming larva-like buds which separate from the parent in a developmentally quiescent state. These buds metamorphose into sessile polyps when exposed to specific biogenic, chemical inducers. Morphogenesis of transversely dissected buds indicates the presence of pattern-determining signals; whereas the basal bud fragments may still form a complete scyphistoma the apical bud fragments develop spontaneously in the absence of an inducer into a polyp head without stalk and foot. Based on these findings Neumann (dissertation, Cologne University, 1980) postulated a head-inhibiting signal which is released at the basal pole and inhibits head formation at the apical end. Contrary to this hypothesis dissection itself might induce the development of head structures. The present study deals with the control of polyp head formation in C. andromeda. It concentrates on two points, namely the postulated head inhibitor and the involvement of compounds known to act during metamorphosis (the enzyme protein kinase C and the specific metamorphosis inducer Z-GPGGPA). We found that compared to intact buds and apical bud fragments transversely incised buds reached an intermediate stage of head development. This confirms Neumann's hypothesis. Consequently we focused on the mode of action and the chemical nature of the head-inhibiting signal in C. andromeda. Our results indicate that the head inhibitor may be included in one of six pooled fractions isolated from bud homogenate via gel filtration on a Sephadex G-50 column. The inhibitor is supposed to be water-soluble and to have a molecular weight of 850-1,500 Da. Furthermore we prove that head formation is not promoted by the metamorphosis-inducer Z-GPGGPA but is prevented by the inhibitors psychosine, chelerythrine and RO-32-0432 showing the involvement of protein kinase C in this process.
NASA Astrophysics Data System (ADS)
Fedewa, Erin J.; Miller, Jessica A.; Hurst, Thomas P.; Jiang, Duo
2017-04-01
Early life history traits in marine fish such as growth, size, and timing of life history transitions often vary in response to environmental conditions. Identifying the potential effects of trait variation across life history stages is critical to understanding growth, recruitment, and survival. Juvenile northern rock sole (Lepidopsetta polyxystra) were collected (2005, 2007, 2009-2011) from two coastal nurseries in the Gulf of Alaska during the early post-settlement period (July-August) to examine variation in early life history traits in relation to water temperature and juvenile densities in nurseries as well as to evaluate the potential for carry-over effects. Size-at-hatch, larval growth, metamorphosis size and timing, and post-metamorphic and recent growth of juveniles were quantified using otolith structural analysis and compared across years and sites. Additionally, traits of fish caught in July and August were compared for evidence of selective mortality. Post-metamorphic and recent growth were related to temperatures in nurseries as well as temperatures during the larval period, indicating a direct influence of concurrent nursery temperatures and a potential indirect effect of thermal conditions experienced by larvae. Correlations between metamorphic traits and fish size at capture demonstrated that interannual variation in size persisted across life history stages regardless of post-settlement growth patterns. No evidence of density-dependent growth or growth-selective mortality were detected during the early post-settlement period; however, differences in hatch size and metamorphosis timing between fish collected in July and August indicate a selective loss of individuals although the pattern varied across years. Overall, variation in size acquired early in life and temperature effects on the phenology of metamorphosis may influence the direction of selection and survival of northern rock sole.
Azizi, Emanuel; Landberg, Tobias
2002-03-01
Although numerous studies have described the escape kinematics of fishes, little is known about the aquatic escape responses of salamanders. We compare the escape kinematics of larval and adult Eurycea bislineata, the two-lined salamander, to examine the effects of metamorphosis on aquatic escape performance. We hypothesize that shape changes associated with resorption of the larval tail fin at metamorphosis will affect aquatic locomotor performance. Escape responses were recorded using high-speed video, and the effects of life stage and total length on escape kinematics were analyzed statistically using analysis of covariance. Our results show that both larval and adult E. bislineata use a two-stage escape response (similar to the C-starts of fishes) that consists of a preparatory (stage 1) and a propulsive (stage 2) stroke. The duration of both kinematic stages and the distance traveled during stage 2 increased with total length. Both larval and adult E. bislineata had final escape trajectories that were directed away from the stimulus. The main kinematic difference between larvae and adults is that adults exhibit significantly greater maximum curvature during stage 1. Total escape duration and the distance traveled during stage 2 did not differ significantly between larvae and adults. Despite the significantly lower tail aspect ratio of adults, we found no significant decrease in the overall escape performance of adult E. bislineata. Our results suggest that adults may compensate for the decrease in tail aspect ratio by increasing their maximum curvature. These findings do not support the hypothesis that larvae exhibit better locomotor performance than adults as a result of stronger selective pressures on early life stages.
Fujimoto, Kenta; Kajita, Mitsuko; Fu, Liezhen; Shi, Yun‐Bo; Ishizuya‐Oka, Atsuko
2016-01-01
Abstract In Xenopus laevis intestine during metamorphosis, the larval epithelial cells are removed by apoptosis, and the adult epithelial stem (AE) cells appear concomitantly. They proliferate and differentiate to form the adult epithelium (Ep). Thyroid hormone (TH) is well established to trigger this remodeling by regulating the expression of various genes including Notch receptor. To study the role of Notch signaling, we have analyzed the expression of its components, including the ligands (DLL and Jag), receptor (Notch), and targets (Hairy), in the metamorphosing intestine by real‐time reverse transcription‐polymerase chain reaction and in situ hybridization or immunohistochemistry. We show that they are up‐regulated during both natural and TH‐induced metamorphosis in a tissue‐specific manner. Particularly, Hairy1 is specifically expressed in the AE cells. Moreover, up‐regulation of Hairy1 and Hairy2b by TH was prevented by treating tadpoles with a γ‐secretase inhibitor (GSI), which inhibits Notch signaling. More importantly, TH‐induced up‐regulation of LGR5, an adult intestinal stem cell marker, was suppressed by GSI treatment. Our results suggest that Notch signaling plays a role in stem cell development by regulating the expression of Hairy genes during intestinal remodeling. Furthermore, we show with organ culture experiments that prolonged exposure of tadpole intestine to TH plus GSI leads to hyperplasia of secretory cells and reduction of absorptive cells. Our findings here thus provide evidence for evolutionarily conserved role of Notch signaling in intestinal cell fate determination but more importantly reveal, for the first time, an important role of Notch pathway in the formation of adult intestinal stem cells during vertebrate development. Stem Cells 2017;35:1028–1039 PMID:27870267
Du, Ming-Hui; Yan, Zheng-Wen; Hao, You-Jin; Yan, Zhen-Tian; Si, Feng-Ling; Chen, Bin; Qiao, Liang
2017-04-04
Phenol oxidases (POs) catalyze the oxidation of dopa and dopamine to melanin, which is crucial for cuticle formation and innate immune maintenance in insects. Although, Laccase 2, a member of the PO family, has been reported to be a requirement for melanin-mediated cuticle tanning in the development stages of some insects, whether it participates in cuticle construction and other physiological processes during the metamorphosis of mosquito pupae is unclear. The association between the phenotype and the expression profile of Anopheles sinensis Laccase 2 (AsLac2) was assessed from pupation to adult eclosion. Individuals showing an expression deficiency of AsLac2 that was produced by RNAi and their phenotypic defects and physiological characterizations were compared in detail with the controls. During the dominant expression period, knockdown of AsLac2 in pupae caused the cuticle to be unpigmented, and produced thin and very soft cuticles, which further impeded the eclosion rate of adults as well as their fitness. Moreover, melanization immune responses in the pupae were sharply decreased, leading to poor resistance to microorganism infection. Both the high conservation among Laccase 2 homologs and a very similar genomic synteny of the neighborhood in Anopheles genus implies a conservative function in the pupal stage. To our knowledge, this is the first study to report the serious phenotypic defects in mosquito pupae caused by the dysfunction of Laccase 2. Our findings strongly suggest that Laccase 2 is crucial for Anopheles cuticle construction and melanization immune responses to pathogen infections during pupal metamorphosis. This irreplaceability provides valuable information on the application of Lacccase 2 and/or other key genes in the melanin metabolism pathway for developing mosquito control strategies.
Kikuchi, Mani; Omori, Akihito; Kurokawa, Daisuke; Akasaka, Koji
2015-09-01
The presence of an anteroposterior body axis is a fundamental feature of bilateria. Within this group, echinoderms have secondarily evolved pentameral symmetric body plans. Although all echinoderms present bilaterally symmetric larval stages, they dramatically rearrange their body axis and develop a pentaradial body plan during metamorphosis. Therefore, the location of their anteroposterior body axis in adult forms remains a contentious issue. Unlike other echinoderms, sea cucumbers present an obvious anteroposterior axis not rearranged during metamorphosis, thus representing an interesting group to study their anteroposterior axis patterning. Hox genes are known to play a broadly conserved role in anteroposterior axis patterning in deuterostomes. Here, we report the expression patterns of Hox genes from early development to pentactula stage in sea cucumber. In early larval stages, five Hox genes (AjHox1, AjHox7, AjHox8, AjHox11/13a, and AjHox11/13b) were expressed sequentially along the archenteron, suggesting that the role of anteroposterior patterning of the Hox genes is conserved in bilateral larvae of echinoderms. In doliolaria and pentactula stages, eight Hox genes (AjHox1, AjHox5, AjHox7, AjHox8, AjHox9/10, AjHox11/13a, AjHox11/13b, and AjHox11/13c) were expressed sequentially along the digestive tract, following a similar expression pattern to that found in the visceral mesoderm of other bilateria. Unlike other echinoderms, pentameral expression patterns of AjHox genes were not observed in sea cucumber. Altogether, we concluded that AjHox genes are involved in the patterning of the digestive tract in both larvae and metamorphosis of sea cucumbers. In addition, the anteroposterior axis in sea cucumbers might be patterned like that of other bilateria.
Thyroid hormone (TH) induces the dramatic morphological and physiological changes that together comprise amphibian metamorphosis. TH-responsive tissues vary widely with developmental timing of TH-induced changes. How larval tadpole tissues are able to employ distinct metamorphi...
This study accentuates the need to examine multiple tissues and provides critical information required for optimization of exposure regimens and endpoint assessments that focus on the detection of disruption in TH-regulatory systems.
The Metamorphosis of an Introduction to Computer Science.
ERIC Educational Resources Information Center
Ben-Jacob, Marion G.
1997-01-01
Introductory courses in computer science at colleges and universities have undergone significant changes in 20 years. This article provides an overview of the history of introductory computer science (FORTRAN, ANSI flowchart symbols, BASIC, data processing concepts, and PASCAL) and its future (robotics and C++). (PEN)
Fish endpoints measured in early life stage toxicity tests are often used as representative of larval amphibian sensitivity in Ecological Risk Assessment (ERA). This application potentially overlooks the impact of developmental delays on amphibian metamorphosis, and thereby red...
Cubism and the Medical School Curriculum.
ERIC Educational Resources Information Center
Wear, Delese
1991-01-01
Presents cubism as metaphor to think about medical humanities curriculum in medical school curriculum. Uses Kafka's "The Metamorphosis," Tolstoy's "The Death of Ivan Ilych," and Olsen's "Tell Me a Riddle" to illustrate how literary inquiry might enable medical students and other health care providers to think about…
Specification of regional intestinal stem cell identity during Drosophila metamorphosis.
Driver, Ian; Ohlstein, Benjamin
2014-05-01
In the adult Drosophila midgut the bone morphogenetic protein (BMP) signaling pathway is required to specify and maintain the acid-secreting region of the midgut known as the copper cell region (CCR). BMP signaling is also involved in the modulation of intestinal stem cell (ISC) proliferation in response to injury. How ISCs are able to respond to the same signaling pathway in a regionally different manner is currently unknown. Here, we show that dual use of the BMP signaling pathway in the midgut is possible because BMP signals are only capable of transforming ISC and enterocyte identity during a defined window of metamorphosis. ISC heterogeneity is established prior to adulthood and then maintained in cooperation with regional signals from surrounding tissue. Our data provide a conceptual framework for how other tissues maintained by regional stem cells might be patterned and establishes the pupal and adult midgut as a novel genetic platform for identifying genes necessary for regional stem cell specification and maintenance.
Oxidation promotes insertion of the CLIC1 chloride intracellular channel into the membrane.
Goodchild, Sophia C; Howell, Michael W; Cordina, Nicole M; Littler, Dene R; Breit, Samuel N; Curmi, Paul M G; Brown, Louise Jennifer
2009-12-01
Members of the chloride intracellular channel (CLIC) family exist primarily as soluble proteins but can also auto-insert into cellular membranes to form ion channels. While little is known about the process of CLIC membrane insertion, a unique feature of mammalian CLIC1 is its ability to undergo a dramatic structural metamorphosis between a monomeric glutathione-S-transferase homolog and an all-helical dimer upon oxidation in solution. Whether this oxidation-induced metamorphosis facilitates CLIC1 membrane insertion is unclear. In this work, we have sought to characterise the role of oxidation in the process of CLIC1 membrane insertion. We examined how redox conditions modify the ability of CLIC1 to associate with and insert into the membrane using fluorescence quenching studies and a sucrose-loaded vesicle sedimentation assay to measure membrane binding. Our results suggest that oxidation of monomeric CLIC1, in the presence of membranes, promotes insertion into the bilayer more effectively than the oxidised CLIC1 dimer.
Ohhara, Yuya; Kobayashi, Satoru
2017-01-01
Many animals have an intrinsic growth checkpoint during juvenile development, after which an irreversible decision is made to upregulate steroidogenesis, triggering the metamorphic juvenile-to-adult transition. However, a molecular process underlying such a critical developmental decision remains obscure. Here we show that nutrient-dependent endocycling in steroidogenic cells provides the machinery necessary for irreversible activation of metamorphosis in Drosophila melanogaster. Endocycle progression in cells of the prothoracic gland (PG) is tightly coupled with the growth checkpoint, and block of endocycle in PG cells causes larval developmental arrest due to reduction in biosynthesis of the steroid hormone ecdysone. Moreover, inhibition of the nutrient sensor target of rapamycin (TOR) in the PG during the checkpoint period causes endocycle inhibition and developmental arrest, which can be rescued by inducing additional rounds of endocycles by Cyclin E. We propose that a TOR-mediated cell cycle checkpoint in steroidogenic tissue provides a systemic growth checkpoint for reproductive maturation. PMID:28121986
Apoptosis: Focus on sea urchin development.
Agnello, Maria; Roccheri, Maria Carmela
2010-03-01
It has been proposed that the apoptosis is an essential requirement for the evolution of all animals, in fact the apoptotic program is highly conserved from nematodes to mammals. Throughout development, apoptosis is employed by multicellular organisms to eliminate damaged or unnecessary cells. Here, we will discuss both developmental programmed cell death (PCD) under normal conditions and stress induced apoptosis, in sea urchin embryos. Sea urchin represent an excellent model system for studying embryogenesis and cellular processes involved in metamorphosis. PCD plays an essential role in sculpting and remodelling the embryos and larvae undergoing metamorphosis. Moreover, this marine organism directly interacts with its environment, and is susceptible to effects of several aquatic contaminants. Apoptosis can be adopted as a defence mechanism against any environmental chemical, physical and mechanical stress, for removing irreversibly damaged cells. This review, while not comprehensive in its reporting, aims to provide an overview of current knowledge on mechanisms to regulate physiological and the induced apoptotic program in sea urchin embryos.
Schweickert, Richard; Xi, Zhuangzhuang
2010-05-01
Dream reports from 21 dreamers in which a metamorphosis of a person-like entity or animal occurred were coded for characters and animals and for inner states attributed to them (Theory of Mind). In myths and fairy tales, Kelly and Keil (1985) found that conscious beings (people, gods) tend to be transformed into entities nearby in the conceptual structure of Keil (1979). This also occurred in dream reports, but perceptual nearness seemed more important than conceptual nearness. In dream reports, most inanimate objects involved in metamorphoses with person-like entities were objects such as statues that ordinarily resemble people physically, and moreover represent people. A metamorphosis of a person-like entity or animal did not lead to an increase in the amount of Theory of Mind attribution. We propose that a character-line starts when a character enters a dream; properties and Theory of Mind attributions tend to be preserved along the line, regardless of whether, metamorphoses occur on it. Copyright © 2009 Cognitive Science Society, Inc.
Albedo Drop on the Greenland Ice Sheet: Relative Impacts of Wet and Dry Snow Processes
NASA Astrophysics Data System (ADS)
Chen, J.; Polashenski, C.
2014-12-01
The energy balance of the Greenland Ice Sheet (GIS) is strongly impacted by changes in snow albedo. MODIS (Moderate Resolution Imaging Spectroradiometer) observations indicate that the GIS albedo has dropped since the early part of this century. We analyze data from the MODIS products MOD10A1 for broadband snow albedo and MOD09A1 for surface spectral reflectance since 2001 to better explain the physical mechanisms driving these changes. The MODIS products are filtered, and the data is masked using microwave-derived surface melt maps to isolate albedo changes due to dry snow processes from those driven by melt impacts. Results show that the majority of recent changes in the GIS albedo - even at high elevations - are driven by snow wetting rather than dry snow processes such as grain metamorphosis and aerosol impurity deposition. The spectral signature of the smaller changes occurring within dry snow areas suggests that grain metamorphosis dominates the albedo decline in these regions.
Reyes-Bermudez, Alejandro; Miller, David J.; Sprungala, Susanne
2012-01-01
To understand the calcium-mediated signalling pathways underlying settlement and metamorphosis in the Scleractinian coral Acropora millepora, a predicted protein set derived from larval cDNAs was scanned for the presence of EF-hand domains (Pfam Id: PF00036). This approach led to the identification of a canonical calmodulin (AmCaM) protein and an uncharacterised member of the Neuronal Calcium Sensor (NCS) family of proteins known here as Acrocalcin (AmAC). While AmCaM transcripts were present throughout development, AmAC transcripts were not detected prior to gastrulation, after which relatively constant mRNA levels were detected until metamorphosis and settlement. The AmAC protein contains an internal CaM-binding site and was shown to interact in vitro with AmCaM. These results are consistent with the idea that AmAC is a target of AmCaM in vivo, suggesting that this interaction may regulate calcium-dependent processes during the development of Acropora millepora. PMID:23284743
Experimental control and characterization of autophagy in Drosophila.
Juhasz, Gabor; Neufeld, Thomas P
2008-01-01
Insects such as the fruit fly Drosophila melanogaster, which fundamentally reorganize their body plan during metamorphosis, make extensive use of autophagy for their normal development and physiology. In the fruit fly, the hepatic/adipose organ known as the fat body accumulates nutrient stores during the larval feeding stage. Upon entering metamorphosis, as well as in response to starvation, these nutrients are mobilized through a massive induction of autophagy, providing support to other tissues and organs during periods of nutrient deprivation. High levels of autophagy are also observed in larval tissues destined for elimination, such as the salivary glands and larval gut. Drosophila is emerging as an important system for studying the functions and regulation of autophagy in an in vivo setting. In this chapter we describe reagents and methods for monitoring autophagy in Drosophila, focusing on the larval fat body. We also describe methods for experimentally activating and inhibiting autophagy in this system and discuss the potential for genetic analysis in Drosophila to identify novel genes involved in autophagy.
Gu, Xiaojun; Kumar, Sunil; Kim, Eunjin; Kim, Yonggyun
2015-09-01
Juvenile hormone (JH) plays a crucial role in preventing precocious metamorphosis and stimulating reproduction. Thus, its hemolymph titer should be under a tight control. As a negative controller, juvenile hormone esterase (JHE) performs a rapid breakdown of residual JH in the hemolymph during last instar to induce a larval-to-pupal metamorphosis. A whole genome of the diamondback moth (DBM), Plutella xylostella, has been annotated and proposed 11 JHE candidates. Sequence analysis using conserved motifs commonly found in other JHEs proposed a putative JHE (Px004817). Px004817 (64.61 kDa, pI=5.28) exhibited a characteristic JHE expression pattern by showing high peak at the early last instar, at which JHE enzyme activity was also at a maximal level. RNA interference of Px004817 reduced JHE activity and interrupted pupal development with a significant increase of larval period. This study identifies Px004817 as a JHE-like gene of P. xylostella. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Molecular View of Autophagy in Lepidoptera
2014-01-01
Metamorphosis represents a critical phase in the development of holometabolous insects, during which the larval body is completely reorganized: in fact, most of the larval organs undergo remodeling or completely degenerate before the final structure of the adult insect is rebuilt. In the past, increasing evidence emerged concerning the intervention of autophagy and apoptosis in the cell death processes that occur in larval organs of Lepidoptera during metamorphosis, but a molecular characterization of these pathways was undertaken only in recent years. In addition to developmentally programmed autophagy, there is growing interest in starvation-induced autophagy. Therefore we are now entering a new era of research on autophagy that foreshadows clarification of the role and regulatory mechanisms underlying this self-digesting process in Lepidoptera. Given that some of the most important lepidopteran species of high economic importance, such as the silkworm, Bombyx mori, belong to this insect order, we expect that this information on autophagy will be fully exploited not only in basic research but also for practical applications. PMID:25143951
Hou, Yong; Li, Jianwei; Li, Yi; Dong, Zhaoming; Xia, Qingyou; Yuan, Y Adam
2014-01-01
In holometabolous insects, the accumulation and utilization of storage proteins (SPs), including arylphorins and methionine-rich proteins, are critical for the insect metamorphosis. SPs function as amino acids reserves, which are synthesized in fat body, secreted into the larval hemolymph and taken up by fat body shortly before pupation. However, the detailed molecular mechanisms of digestion and utilization of SPs during development are largely unknown. Here, we report the crystal structure of Bombyx mori arylphorins at 2.8 Å, which displays a heterohexameric structural arrangement formed by trimerization of dimers comprising two structural similar arylphorins. Our limited proteolysis assay and microarray data strongly suggest that papain-like proteases are the major players for B. mori arylphorins digestion in vitro and in vivo. Consistent with the biochemical data, dozens of papain cleavage sites are mapped on the surface of the heterohexameric structure of B. mori arylphorins. Hence, our results provide the insightful information to understand the metamorphosis of holometabolous insects at molecular level. PMID:24639361
Flight biomechanics of developmentally-induced size variation in the solitary bee Osmia lignaria
USDA-ARS?s Scientific Manuscript database
Body size covaries with morphology, functional performance, and fitness. For insects, variation in adult phenotypies are derived from developmental variation in larval growth and metamorphosis. In this study, we asked how larval growth impacted adult morphology in Osmia lignaria—especially traits th...
Exposure of the estuarine shrimp, Ptiaemonetes pugio, to a juvenile hormone analogue (> 3 ug methoprene-1) throughout larval development inhibited successful completion of metamorphosis. Methoprene exposure retarded growth in early larval stages and postlarvae enhanced growth in ...
Laboratory for a New Form of Democracy.
ERIC Educational Resources Information Center
Heelan, Cynthia; Redwine, Judith A.; Black, Antonia
2000-01-01
Demonstrates how community colleges create a laboratory for the metamorphosis of democracy into synocracy, which is associated with participative leadership and a capacity to form and sustain synergistic partnership. The community college, through its leadership, student and service learning, and by involving its communities in dialogues of…
ERIC Educational Resources Information Center
Libbee, Kristin Sheridan; Libbee, Michael
1979-01-01
Human relations skills are more widely taught and used, and inevitably misused. This aritcle is intended as a brief self-defense course identifying those who undergo this usually temporary, metamorphosis into "turkeys." It provides a rough categorization of subspecies with their identifying characteristics and a proposal for return to personhood.…
ERIC Educational Resources Information Center
D'Souza, Henry
1980-01-01
The author defines African culture in a Kenyan context and proposes a tri-polar cultural paradigm to chart the metamorphosis of Kenyan culture from a traditional through a national to an international focus. He makes suggestions for the role of the school in promoting an international cultural standard. (Author/SJL)
Xenopus laevis deiodinase 3 expression for in vitro screening of potential chemical inhibitors
Thyroid hormones are essential for normal sequential development and metamorphosis of amphibian tissues and organs. Critical to this process are the deiodinase (DIO) enzymes which catalyze the removal of an iodine from thyroid hormones to either activate or inactivate the hormone...
Transformation & Metamorphosis
ERIC Educational Resources Information Center
Lott, Debra
2009-01-01
The sculptures of Canadian artist Brian Jungen are a great inspiration for a lesson on creating new forms. Jungen transforms found objects into unique creations without fully concealing their original form or purpose. Frank Stella's sculpture series, including "K.132,2007" made of stainless steel and spray paint, is another great example of…
Environmentally-relevant chemicals such as perchlorate have the ability to disrupt the hypothalamo-pituitary-thyroid (HPT) axis of exposed individuals. Larval anurans are a particularly suitable model species for studying the effects of thyroid-disrupting chemicals (TDCs) becaus...
Agricultural production and urban development in Puerto Rico have increased the rate of sedimentation to the marine coastal environment, which has the potential to adversely affect coral-reef ecosystems. Settlement and metamorphosis of coral larvae are integral to the maintenance...
Exploring a Metamorphosis: Identity Formation for an Emerging Conductor
ERIC Educational Resources Information Center
Ponchione, Cayenna
2013-01-01
Exploring the manner in which professional identity formation in emerging conductors is entangled with the cultural context of orchestras, I focus on the amorphous evolution from a student identity to that of a professional, illuminating some underlying social conditions of the ever-elusive profession of conducting. Prevailing assumptions about…
Chameleon or Phoenix: The Metamorphosis of TAFE.
ERIC Educational Resources Information Center
Anderson, Damon
1998-01-01
Examines aspects of the history of technical and vocational education (TAFE) in Australia: technical education system in Victoria; dissolution of the binary system in higher education; and new instructional discourses and practices shaping TAFE. Speculates on the potential reemergence of the binary system and future prospects for TAFE. (SK)
Activities of natural methyl farnesoids on pupariation and metamorphosis of Drosophila melanogaster
USDA-ARS?s Scientific Manuscript database
Methyl farnesoate (MF) and juvenile hormone (JH III), which respectively bind to the receptors USP and MET, and bisepoxy JH III (bisJHIII) were assessed for several activities during Drosophila larval development, and during prepupal development to eclosed adults. Dietary MF and JH III were similar...
Revisiting the University Front
ERIC Educational Resources Information Center
Lock, Grahame; Lorenz, Chris
2007-01-01
The article argues that the most important trends in the recent metamorphosis of higher education, especially of university teaching and research, cannot be understood without placing them in the context of general developments in political life. Both processes reveal alarming features and there is a link between them. In recent decades a religion…
Metamorphosis: How Missouri Rehabilitates Juvenile Offenders
ERIC Educational Resources Information Center
Dubin, Jennifer
2012-01-01
Juveniles convicted of serious offenses usually end up in large correctional facilities that focus on punishment--not rehabilitation. The state of Missouri, however, has found a better way to help end the cycle of crime: by creating a network of small facilities that provide therapy and educational opportunities, it has dramatically reduced…
"The Metamorphosis"; or a Phenomenology of Teaching
ERIC Educational Resources Information Center
Goldsmith, Jason N.
2010-01-01
Can we creatively bring our intellectual interests to bear on how we talk about teaching? Can our teaching shape how we understand and go about our scholarship? This article addresses and attempts to bridge the scholarly and the pedagogical imperatives of our profession through the methodically unmethodical process that Theodor Adorno identified…
The Old University and the New
ERIC Educational Resources Information Center
Kernan, Alvin B.
2002-01-01
Alvin Kernan describes with some regret the metamorphosis of the familiar research university into something fundamentally different. This new institution is buffeted by technological change and governed by market economics; it admits for reasons other than merit; it can't tell the ants from the grasshoppers; and it has abandoned its traditional…
Metamorphosis of the amphibian tadpole is a thyroid hormone (TH)-dependent developmental process. For this reason, the tadpole is considered to be an ideal bioassay system to identify disruption of thyroid function by environmental contaminants. Here we provide an in-depth review...
ERIC Educational Resources Information Center
Fernandes, Tania; Kolinsky, Regine; Ventura, Paulo
2009-01-01
This study combined artificial language learning (ALL) with conventional experimental techniques to test whether statistical speech segmentation outputs are integrated into adult listeners' mental lexicon. Lexicalization was assessed through inhibitory effects of novel neighbors (created by the parsing process) on auditory lexical decisions to…
USDA-ARS?s Scientific Manuscript database
Nutrition intake during the larval stage of holometabolous insect’s influences and fuels growth throughout metamorphosis. In social insects, differences in larval nutrition can regulate a profound reproductive division of labor. Provisioning by nurse bees differs between worker-destined and queen-de...
Sedimentation has been reported to adversely affect coral ecosystems, but the precise effects of sediment on coral larval settlement and metamorphosis are not well understood. Planulae from laboratory-cultured Favia fragum colonies were collected and exposed to sediment collected...
Self-Efficacy, an Oriental Twist
ERIC Educational Resources Information Center
Jack, Brady M.; Liu, Chia-Ju; Chiu, Hoan-Lin
2005-01-01
This paper presents the results of a case study involving Taiwanese elementary teachers who teach science at the elementary grade school level. It advocates the position that a teacher's personal science efficacy belief influences his or her science teaching outcome expectations. It also points to an important metamorphosis that is taking place…
Group-Advantaged Training of Research (GATOR): A Metamorphosis of Mentorship
ERIC Educational Resources Information Center
Edwards, Thea M.; Smith, Barbara K.; Watts, Danielle L.; Germain-Aubrey, Charlotte C.; Roark, Alison M.; Bybee, Seth M.; Cox, Clayton E.; Hamlin, Heather J.; Guillette, Louis J., Jr.
2011-01-01
We describe Group-Advantaged Training of Research (GATOR), a yearlong structured program at the University of Florida that guided graduate student mentors and their undergraduate mentees through the mentored research process. Using the national Survey of Undergraduate Research Experiences for an academic year, we found that outcomes for our…
Knowledge of endocrine control of the complex larval developmental processes in insects (metamorphosis) has led to the introduction of insect hormones and their analogues as insecticides known as insect growth regulators (IGRs) with the largest group being juvenile hormone analog...
Three experiments investigating larval stocking densities of summer flounder from hatch to metamorphosis, Paralichthys dentatus, were conducted at laboratory-scale (75-L aquaria) and at commercial scale (1,000-L tanks). Experiments 1 and 2 at commercial scale tested the densities...
CONSUMPTIONS RATES OF SUMMER FLOUNDER LARVAE ON ROTIFER AND BRINE SHRIMP PREY DURING LARVAL REARING
Larval summer flounder Paralichthys dentatus were hatched and reared through metamorphosis in the laboratory. At several points in the rearing cycle, larvae were removed from their rearing chambers and placed in small bowls, where they were fed known quantities of the rotifer Bra...
ERIC Educational Resources Information Center
Kramsch, Claire, Ed.
The papers in this volume fall into five categories. After "Introduction: Making the Invisible Visible" (Claire Kramsch), Part 1, "Theoretical Boundaries," includes "The Metamorphosis of the Foreign Language Director, or: Waking Up to Theory" (Mark Webber) and "Subjects-in-Process: Revisioning TA Development…
Household and Structural Pests. MEP 307.
ERIC Educational Resources Information Center
Wood, F. E.
This pamphlet is a non-technical description of common household arthropod pests in Maryland. Since most of the pests can be found in houses throughout North America, this publication has a wide geographic range of use. General discussions of arthropod structure, growth and development, and metamorphosis are given before the pages on specific…
ERIC Educational Resources Information Center
Evans, Patricia
2008-01-01
The study was conducted in response to the need for an increased understanding of the aging experiences of women transitioning midlife. The purpose of the research was to explore the personal understanding of the changes that occur during the midlife period. A qualitative case study was implemented to ascertain how women of the Latter-day Saint…
Center for Instructional Technology: A Strategic Imperative
ERIC Educational Resources Information Center
Volzer, Debra; Weaver, Mark
2004-01-01
Ohio Dominican University, a small traditional Catholic Liberal Arts University steeped in the Dominican tradition, is in the midst of a technological metamorphosis. At the forefront of the change is the Center for Instructional Technology. Charged with supporting the development of technology enhanced, hybrid, and totally online curriculum, the…
Physiological and molecular regulation of metamorphic commitment in the solitary bee Osmia lignaria
USDA-ARS?s Scientific Manuscript database
The insect body size model hypothesizes that larval growth and metamorphosis are the developmental basis for adult size variation. Recent studies have suggested that these mechanisms may hold common elements among different taxa, while also diversifying as life histories evolve. However, the mechani...
Quality as Transformation: Educational Metamorphosis
ERIC Educational Resources Information Center
Cheng, Ming
2014-01-01
The notion of "quality as transformation" has been widely used in the higher education sector. However, both quality and transformation are elusive terms. There is little research exploring how quality could be equated to transformation in the learning process. This paper will provide an insight into the relationship between quality and…
A basic understanding of the endocrinology of the hypothalamic-pituitary-thyroid (HPT) axis of anuran larvae is necessary for predicting the consequences of HPT perturbation by thyroid-disrupting chemicals (TDCs) on the whole organism. This project examined negative feedback con...
The US EPA has been charged to evaluate chemicals for their ability to disrupt endocrine pathways including estrogen, androgen, and thyroid hormone. Amphibian metamorphosis, which is regulated by thyroid hormone, is an ideal model system for investigating disruption of the thyroi...
Deiodinase (DIO) enzymes activate, deactivate and catabolize thyroid hormones (THs) and play an important role in thyroid-mediated amphibian metamorphosis. DIOs have been implicated as putative targets of xenobiotics leading to thyroid disruption. In an effort to characterize bi...
Project Metamorphosis. Life Skills for State and Local Prisoners.
ERIC Educational Resources Information Center
Atkinson, Rhonda Holt; Cook, Frank J.; Goux, Carol
This curriculum of life skills is designed to reduce recidivism, increase post-release employment and wage rates, and successfully integrate released inmates back into families and communities. It uses a newsletter format, with newsletters arranged into eight volumes. Each volume concerns a unit of related information, including an instructor…
Drosophila Kruppel homolog 1 represses lipolysis through interactions with dFOXO
USDA-ARS?s Scientific Manuscript database
Juvenile hormone (JH) is a key endocrine signal involved in insect molting and metamorphosis. Recent studies suggest that JH is involved in not only development programming, but also in metabolic control. However, how JH modulates metabolism remains largely unknown. It has been shown that JH induces...
Winging It: Using Digital Imaging To Investigate Butterfly Metamorphosis
ERIC Educational Resources Information Center
Bowen, Anne; Bell, Randy L.
2004-01-01
One of the best ways to inspire interest in biology is through observations of living things. Unfortunately, this important component of science methodology is often left out because of the difficulty of including it in the classroom. Additionally, amazing processes occur in nature that few have the chance to observe. This article reviews a…
The Larval Amphibian Growth and Development Assay (LAGDA) is one of a series of Tier 2 test guidelines developed by the US EPA under the Endocrine Disruptor Screening Program. The LAGDA was designed to evaluate effects on growth, thyroid-mediated amphibian metamorphosis and repr...
"Metamorphosis": A Collaborative Leadership Model to Promote Educational Change
ERIC Educational Resources Information Center
Gialamas, Stefanos; Pelonis, Peggy; Medeiros, Steven
2014-01-01
A school that holds as a central belief that knowledge is individually and socially constructed by learners who are active observers of the world, active questioners, agile problem posers and critical and creative problem solvers must evolve leadership models and organizational patterns that mirror this model of genuine and meaningful learning as…
USDA-ARS?s Scientific Manuscript database
A long-unresolved question in the developmental biology of Drosophila melanogaster has been whether methyl farnesoid hormones secreted by the ring gland are necessary for larval maturation and metamorphosis. In this study, we have used RNAi techniques to inhibit 3-Hydroxy-3-Methylglutaryl CoA Reduct...
From Apprentice to Colleague: The Metamorphosis of Early Career Researchers
ERIC Educational Resources Information Center
Laudel, Grit; Glaser, Jochen
2008-01-01
While the studies of Early Career Researchers (ECRs) have contributed politically important insights into factors hindering ECRs, they have not yet achieved a theoretical understanding of the causal mechanisms that are at work in the transition from dependent to independent research. This paper positions the early career phase in a theoretical…
The Metamorphosis of Industrial Designers from Novices to Experts
ERIC Educational Resources Information Center
Wong, Ju-Joan; Chen, Po-Yu; Chen, Chun-Di
2016-01-01
Professional training for designers is crucial in the field of design studies. The characteristics of novices versus those of expert designers have been identified in the literature; however, studies exploring the issue of professional training processes in the actual workplace are not well developed. Our study addresses the topic by using…
The coffee berry borer, Hypothenemus hampei: how many instars are there?
USDA-ARS?s Scientific Manuscript database
After more than a century since the description of the coffee berry borer, Hypothenemus hampei (Ferrari), and dozens of scientific articles on the basic biology of the insect, there is still debate on the number of female larval instars. This paper analyzes the metamorphosis of H. hampei females thr...
ERIC Educational Resources Information Center
White, Heather
2007-01-01
The metamorphosis of glass when heated is a magical process to students, yet teachers are often reluctant to try it in class. The biggest challenge in working with glass in the classroom is to simplify procedures just enough to ensure student success while maintaining strict safety practices so no students are injured. Project concepts and safety…
Gestalt Revisited: Spin-Offs and Assessment in International University Co-Operation
ERIC Educational Resources Information Center
Denman, Brian D.
2004-01-01
International university co-operation is in a constant state of metamorphosis. Its future rests upon extraneous forces such as globalization and internationalization and also upon those who make policy decisions. Many international university organizations are auditing their programs and initiatives to such a degree that the cost effectiveness of…
Becoming Butterflies: Making Metamorphosis Meaningful for Young Children
ERIC Educational Resources Information Center
Giles, Rebecca M.; Baggett, Paige V.; Shaw, Edward L., Jr.
2010-01-01
Although butterflies are a common topic of study in many early childhood classrooms, integrating art production broadens the scope of the study and allows children to deepen their knowledge and understanding through creative self-expression. This article presents a set of integrated activities that focus on helping children fully grasp the process…
ERIC Educational Resources Information Center
Locke, Debbie
2006-01-01
In this paper, the author reflects on the activities of her previous year with her second-grade students, focusing on a spring butterfly project that she believes helped her students "take flight." Her second graders had anxiously awaited the arrival of the Painted Lady caterpillars. They had studied metamorphosis in the fall and as what she had…
ERIC Educational Resources Information Center
Heidt, Irene
2015-01-01
In this article, I endeavor to explore the historical dimensions of "Bildung" by first focusing on the German linguist and philosopher Wilhelm von Humboldt and his theory of "Bildung." The article then addresses the transformation of Humboldt's neo-humanistic ideal into a governmentrun institutionalized "Bildung"…
It is well known that the competent larvae of many marine invertebrate species can be stimulated to metamorphose by exposing them to elevated concentrations of certain ions, neuroactive substances, and pharmacological agents. In this study we report that larvae of the euryhaline ...
Goethe's "Metamorphosis of the Plants" and the Art of Education.
ERIC Educational Resources Information Center
Cottrell, Alan P.
1982-01-01
Johann Wolfgang von Goethe's views on children, adults, and nature complement and redeem the one-sided attitude of our present-day habits of thought. Goethe's writings about natural history and the relationship between the individual and society illustrate how teaching can be less a branch of technology than an art. (PP)
The Rich Get Richer: International Doctoral Candidates and Scholarly Identity
ERIC Educational Resources Information Center
Cotterall, Sara
2015-01-01
Identity lies at the heart of doctoral study--a mysterious learning process which culminates in Ph.D. students' metamorphosis into doctors. This paper explores the identity-related experiences of six international Ph.D. students enrolled at an Australian university by examining how different individuals, events and interactions contributed to (or…
Barbara J. Bentz; Diana L. Six
2006-01-01
Insects require sterols for normal growth, metamorphosis, and reproduction, yet they are unable to synthesize these organic compounds and are therefore dependent upon a dietary source. For phloephagous species, such as Dendroctonus bark beetles, whose food does not necessarily contain appropriate types or adequate quantities of sterols, fungal...
Educating Future Therapists about the Controversy Surrounding Managed Behavioral Healthcare.
ERIC Educational Resources Information Center
Chambliss, Catherine
The mental health care delivery system is undergoing a metamorphosis of unprecedented proportion as managed care covers more and more patients. This dramatic change has its critics (many mental health professionals) and its enthusiastics (the managed behavioral health care companies). Some of these issues are presented in this paper. There is…
USDA-ARS?s Scientific Manuscript database
The varroa mite, Varroa destructor, is a honeybee ectoparasite considered the most important pest in apiaries throughout the US. Ecdysone receptor is a hormone secreted by the prothoracic gland of insects that controls ecdysis and stimulates metamorphosis. The ecdysone receptor is a nuclear receptor...
The Metamorphosis of a Football Stadium.
ERIC Educational Resources Information Center
van der Have, Pieter J.
1999-01-01
Examines the planning, renovation and enlargement, and funding of a new University of Utah football stadium that would also be used in the 2002 Winter Olympics. Contractor selection, solutions to construction challenges, and the steps taken to minimize risk and guarantee success of the projects are discussed, including the fact that the stadium is…
Metamorphosis in Two Novels by Melvin Burgess: Denying and Disguising "Deviant" Desire
ERIC Educational Resources Information Center
Kokkola, Lydia
2011-01-01
Melvin Burgess has gained a reputation as an "enfant terrible," whose writing tackles topics and presents attitudes which are controversial in literature for adolescents. Kimberley Reynolds cites him as an author whose work demonstrates that "writing about sex, sexuality and relationships between the sexes [is] one of the most radically changed…
2007-07-01
Systems, Ciudad Real, Spain, 2002. [Ame00] "Metamorphosis," in American Heritage Dictionary of the English Language Fourth ed: Houghton Mifflin Company...Beyond Fear: Thinking Sensibly About Security in an Uncertain World. New York: Copernicus Books, 2003. [Sch99] Schneier, B. "Modeling Security
Sneed, Jennifer M.; Sharp, Koty H.; Ritchie, Kimberly B.; Paul, Valerie J.
2014-01-01
Microbial biofilms induce larval settlement for some invertebrates, including corals; however, the chemical cues involved have rarely been identified. Here, we demonstrate the role of microbial biofilms in inducing larval settlement with the Caribbean coral Porites astreoides and report the first instance of a chemical cue isolated from a marine biofilm bacterium that induces complete settlement (attachment and metamorphosis) of Caribbean coral larvae. Larvae settled in response to natural biofilms, and the response was eliminated when biofilms were treated with antibiotics. A similar settlement response was elicited by monospecific biofilms of a single bacterial strain, Pseudoalteromonas sp. PS5, isolated from the surface biofilm of a crustose coralline alga. The activity of Pseudoalteromonas sp. PS5 was attributed to the production of a single compound, tetrabromopyrrole (TBP), which has been shown previously to induce metamorphosis without attachment in Pacific acroporid corals. In addition to inducing settlement of brooded larvae (P. astreoides), TBP also induced larval settlement for two broadcast-spawning species, Orbicella (formerly Montastraea) franksi and Acropora palmata, indicating that this compound may have widespread importance among Caribbean coral species. PMID:24850918
Tadpoles balance foraging and predator avoidance: Effects of predation, pond drying, and hunger
Bridges, C.M.
2002-01-01
Organisms are predicted to make trade-offs when foraging and predator avoidance behaviors present conflicting demands. Balancing conflicting demands is important to larval amphibians because adult fitness can be strongly influenced by size at metamorphosis and duration of the larval period. Larvae in temporary ponds must maximize growth within a short time period to achieve metamorphosis before ponds dry, while simultaneously avoiding predators. To determine whether tadpoles trade off between conflicting demands, I examined tadpole (Pseudacris triseriata) activity and microhabitat use in the presence of red-spotted newts (Notopthalmus viridescens) under varying conditions of pond drying and hunger. Tadpoles significantly decreased activity and increased refuge use when predators were present. The proportion of active time tadpoles spent feeding was significantly greater in predator treatments, suggesting tadpoles adaptively balance the conflicting demands of foraging and predator avoidance without making apparent trade-offs. Tadpoles responded to simulated drying conditions by accelerating development. Pond drying did not modify microhabitat use or activity in the presence of predators, suggesting tadpoles perceived predation and hunger as greater immediate threats than desiccation, and did not take more risks.
Huang, Min-Yi; Duan, Ren-Yan; Ji, Xiang
2014-06-01
Lead (Pb) is a common heavy metal in the natural environment, but its concentration has been increasing alongside widespread industrial and agricultural development in China. The dark-spotted frog Pelophylax (formerly Rana) nigromaculata (Anura: Ranidae) is distributed across East Asia and inhabits anthropogenic habitats such as farmland. Here, P. nigromaculata tadpoles (Gosner stage 19-46) were exposed to Pb at different concentrations (0, 40, 80, 160, 320, 640 and 1280µg/L) and Pb-induced survival, metamorphosis time, development, malformations, mobility and gonad structure were monitored. The results showed that above the threshold concentration of Pb, adverse effects were obvious. As the concentration of Pb increased, the adverse effects on different traits followed different patterns: the effects on hindlimb length, survival rate, metamorphosis rate, total malformation rate, swimming speed and jumping speed largely exhibited a linear pattern; the effects on snout-vent length, body mass and forelimb length largely exhibited a bimodal pattern. Sex ratio and gonadal histology were not affected by Pb, suggesting that Pb is not strongly estrogenic in P. nigromaculata. Copyright © 2014 Elsevier Inc. All rights reserved.
Morphology and metamorphosis of Eupsophus calcaratus tadpoles (Anura: Leptodactylidae).
Vera Candioti, M F; Ubeda, C; Lavilla, E O
2005-05-01
Eupsophus calcaratus, a leptodactyloid frog from the austral Andean forests of Argentina and Chile, has endotrophic, nidicolous tadpoles. We studied a metamorphic series from Stages 31 to 46 of Gosner's developmental table (1960). Other than the scarce pigmentation, proportionately large eyes, and massive developing hindlimbs, the remaining external characters are similar to those of generalized, exotrophic larvae. At the same time, internal morphology does not reveal any character state attributable to the endotrophic-nidicolous way of life; conversely, structures such as the hyobranchial skeleton and the mandibular cartilages are similar to those of exotrophic-macrophagous tadpoles. The metamorphic process is characterized by the delayed development of diverse structures (e.g., ethmoid region, palatoquadrate, and hyobranchial apparatus), and the retention of some larval characters (e.g., parietal fenestrae, overall absence of ossification) with the absence of development of some "juvenile" characters (e.g., adult otic process, several bones) in metamorphosed individuals. These heterochronic processes and truncation of larval development are related to a shorter larval life (when compared to other species of the austral Andean region) and to the small size at metamorphosis. 2004 Wiley-Liss, Inc.
Lambert, Anne; François, Loïc; Barth, Paul; Gillet, Benjamin; Hughes, Sandrine; Piganeau, Gwenaël; Leulier, Francois; Viriot, Laurent
2017-01-01
Larval recruitment, the transition of pelagic larvae into reef-associated juveniles, is a critical step for the resilience of marine fish populations but its molecular control is unknown. Here, we investigate whether thyroid-hormones (TH) and their receptors (TR) coordinate the larval recruitment of the coral-reef-fish Acanthurus triostegus. We demonstrate an increase of TH-levels and TR-expressions in pelagic-larvae, followed by a decrease in recruiting juveniles. We generalize these observations in four other coral reef-fish species. Treatments with TH or TR-antagonist, as well as relocation to the open-ocean, disturb A. triostegus larvae transformation and grazing activity. Likewise, chlorpyrifos, a pesticide often encountered in coral-reefs, impairs A. triostegus TH-levels, transformation, and grazing activity, hence diminishing this herbivore’s ability to control the spread of reef-algae. Larval recruitment therefore corresponds to a TH-controlled metamorphosis, sensitive to endocrine disruption. This provides a framework to understand how larval recruitment, critical to reef-ecosystems maintenance, is altered by anthropogenic stressors. PMID:29083300
Dong, Du-Juan; Jing, Yu-Pu; Liu, Wen; Wang, Jin-Xing; Zhao, Xiao-Fan
2015-01-01
The steroid hormone 20-hydroxyecdysone (20E) and the serine/threonine Ste20-like kinase Hippo signal promote programmed cell death (PCD) during development, although the interaction between them remains unclear. Here, we present evidence that 20E up-regulates Hippo to induce PCD during the metamorphic development of insects. We found that Hippo is involved in 20E-induced metamorphosis via promoting the phosphorylation and cytoplasmic retention of Yorkie (Yki), causing suppressed expression of the inhibitor of apoptosis (IAP), thereby releasing its inhibitory effect on caspase. Furthermore, we show that 20E induced the expression of Hippo at the transcriptional level through the ecdysone receptor (EcR), ultraspiracle protein (USP), and hormone receptor 3 (HR3). We also found that Hippo suppresses the binding of Yki complex to the HR3 promoter. In summary, 20E up-regulates the transcription of Hippo via EcRB1, USP1, and HR3 to induce PCD, and Hippo has negative feedback effects on HR3 expression. These two signaling pathways coordinate PCD during insect metamorphosis. PMID:26272745
The interactive effects of UV-B and insecticide exposure on tadpole survival, growth and development
Bridges, Christine M.; Boone, Michelle D.
2003-01-01
Because declines within amphibian populations can seldom be attributed to a single cause, it is important to focus on multiple stressors, both natural and anthropogenic. Variables such as UV-B radiation and chemical contamination can interact with one another in ways that might not be predicted from single-factor studies. We exposed southern leopard frog (Rana sphenocephala) tadpoles to the insecticide carbaryl and varying intensities of UV-B radiation in artificial ponds and examined their effects on survival, size at metamorphosis, and the duration of the larval period. Tadpole survival to metamorphosis was positively influenced by UV-B intensity. Tadpoles in ponds exposed to carbaryl contained over three times more algae and yielded larger metamorphs than control ponds. Although previous laboratory studies have indicated carbaryl becomes more toxic in the presence of UV-B, we did not find such an effect, perhaps because of the protection afforded by dissolved organic carbon within the ponds. Our research emphasizes the importance of conducting field studies to more accurately predict what occurs under a natural setting. Published by Elsevier Science Ltd.
Effects of coded-wire-tagging on stream-dwelling Sea Lamprey larvae
Johnson, Nicholas; Swink, William D.; Dawson, Heather A.; Jones, Michael L.
2016-01-01
The effects of coded wire tagging Sea Lamprey Petromyzon marinus larvae from a known-aged stream-dwelling population were assessed. Tagged larvae were significantly shorter on average than untagged larvae from 3 to 18 months after tagging. However, 30 months after tagging, the length distribution of tagged and untagged larvae did not differ and tagged Sea Lampreys were in better condition (i.e., higher condition factor) and more likely to have undergone metamorphosis than the untagged population. The reason why tagged larvae were more likely to metamorphose is not clear, but the increased likelihood of metamorphosis could have been a compensatory response to the period of slower growth after tagging. Slower growth after tagging was consistent across larval size-classes, so handling and displacement from quality habitat during the early part of the growing season was likely the cause rather than the tag burden. The tag effects observed in this study, if caused by displacement and handling, may be minimized in future studies if tagging is conducted during autumn after growth has concluded for the year.
How do coral barnacles start their life in their hosts?
Liu, Jennie Chien Wen; Høeg, Jens Thorvald; Chan, Benny K K
2016-06-01
Coral-associated invertebrates are the most significant contributors to the diversity of reef ecosystems, but no studies have examined how larvae manage to settle and grow in their coral hosts. Video recordings were used to document this process in the coral barnacle Darwiniella angularis associated with the coral Cyphastrea chalcidicum Settlement and metamorphosis in feeding juveniles lasted 8-11 days and comprised six phases. The settling cyprid starts by poking its antennules into the tissue of the prospective host (I: probing stage). The coral releases digestive filaments for defence, but tolerating such attack the cyprid penetrates further (II: battling stage). Ecdysis is completed 2 days after settlement (III: carapace detachment). The barnacle becomes embedded deep in the coral tissue while completing metamorphosis between 4 and 6 days (IV: embedding stage), but reappears as a feeding juvenile 8-11 days after settlement (V: emerging stage; VI: feeding stage). Cyprids preferably settle in areas between the coral polyps, where they have a much higher survival rate than on the polyp surfaces. © 2016 The Author(s).
Electromagnetic heating of minor planets in the early solar system
NASA Technical Reports Server (NTRS)
Herbert, F.; Sonett, C. P.
1979-01-01
Electromagnetic processes occurring in the primordial solar system are likely to have significantly affected planetary evolution. In particular, electrical coupling of the kinetic energy of a dense T-Tauri-like solar wind into the interior of the smaller planets could have been a major driver of thermal metamorphism. Accordingly a grid of asteroid models of various sizes and solar distances was constructed using dc transverse magnetic induction theory. Plausible parameterizations with no requirement for a high environmental temperature led to complete melting for Vesta with no melting for Pallas and Ceres. High temperatures were reached in the Pallas model, perhaps implying nonmelting thermal metamorphosis as a cause of its anomalous spectrum. A reversal of this temperature sequence seems implausible, suggesting that the Ceres-Pallas-Vesta dichotomy is a natural outcome of the induction mechanism. Highly localized heating is expected to arise due to an instability in the temperature-controlled current distribution. Localized metamorphosis resulting from this effect may be relevant to the production and evolution of pallasites, the large presumed metal component of S object spectra, and the formation of the lunar magma ocean.
miR-11 regulates pupal size of Drosophila melanogaster via directly targeting Ras85D.
Li, Yao; Li, Shengjie; Jin, Ping; Chen, Liming; Ma, Fei
2017-01-01
MicroRNAs play diverse roles in various physiological processes during Drosophila development. In the present study, we reported that miR-11 regulates pupal size during Drosophila metamorphosis via targeting Ras85D with the following evidences: pupal size was increased in the miR-11 deletion mutant; restoration of miR-11 in the miR-11 deletion mutant rescued the increased pupal size phenotype observed in the miR-11 deletion mutant; ectopic expression of miR-11 in brain insulin-producing cells (IPCs) and whole body shows consistent alteration of pupal size; Dilps and Ras85D expressions were negatively regulated by miR-11 in vivo; miR-11 targets Ras85D through directly binding to Ras85D 3'-untranslated region in vitro; removal of one copy of Ras85D in the miR-11 deletion mutant rescued the increased pupal size phenotype observed in the miR-11 deletion mutant. Thus, our current work provides a novel mechanism of pupal size determination by microRNAs during Drosophila melanogaster metamorphosis. Copyright © 2017 the American Physiological Society.
Strader, Marie E; Aglyamova, Galina V; Matz, Mikhail V
2018-01-04
Molecular mechanisms underlying coral larval competence, the ability of larvae to respond to settlement cues, determine their dispersal potential and are potential targets of natural selection. Here, we profiled competence, fluorescence and genome-wide gene expression in embryos and larvae of the reef-building coral Acropora millepora daily throughout 12 days post-fertilization. Gene expression associated with competence was positively correlated with transcriptomic response to the natural settlement cue, confirming that mature coral larvae are "primed" for settlement. Rise of competence through development was accompanied by up-regulation of sensory and signal transduction genes such as ion channels, genes involved in neuropeptide signaling, and G-protein coupled receptor (GPCRs). A drug screen targeting components of GPCR signaling pathways confirmed a role in larval settlement behavior and metamorphosis. These results gives insight into the molecular complexity underlying these transitions and reveals receptors and pathways that, if altered by changing environments, could affect dispersal capabilities of reef-building corals. In addition, this dataset provides a toolkit for asking broad questions about sensory capacity in multicellular animals and the evolution of development.
Life cycle of the taiga tick Ixodes persulcatus (Acari: Ixodidae) in the North-West of Russia.
Grigoryeva, L A; Stanyukovich, M K
2016-07-01
The life cycle of Ixodes persulcatus lasts 3 years in the conditions of the Leningrad province (North-West Russia), the development of each phase taking a year. The normal age of the taiga tick is 3 years. The calendar age of larvae and nymphs reaches 11-12 months under favorable abiotic and biotic factors, while the calendar age of adults does not exceed 11 months. At the preimaginal phases of development the ticks that breed in August can feed before or after winter. However, their metamorphosis begins and reaches completion within the same timeframes (from late June to early August) and lasts for about 30-50 (60) days. The survival rate of hungry and engorged larvae and nymphs after wintering is quite high (88.6-100 %). We explain the low activity of larvae and nymphs in late summer and autumn by incomplete development. Morphogenetic diapause of engorged larvae and nymphs interrupts digestion but not metamorphosis which starts only in late June and July after the complete absorption of blood from the gut cavity.
Zinc finger protein rotund deficiency affects development of the thoracic leg in Bombyx mori.
Zhou, Chun-Yan; Zha, Xing-Fu; Liu, Hua-Wei; Xia, Qing-You
2017-06-01
The insect limb develops from the imaginal disc or larval leg during metamorphosis. The molecular mechanisms involved in the development from the larval to the adult leg are poorly understood. Herein, we cloned the full length of a zinc finger gene rotund from Bombyx mori (Bmrn), which contained a 1419 bp open reading frame, and encoded a 473 amino acid protein. Reverse transcription polymerase chain reaction and Western blot analyses demonstrated that Bmrn was expressed at higher levels in the epidermis than in other tissues tested, and it showed a very high expression level during metamorphosis. Knock-down of Bmrn produced defects in the tarsus and pretarsus, including the fusion and reduction of tarsomeres, and the developmental arrest of pretarsus. Our data showed that Bmrn is involved in the formation of the tarsus and pretarsus, whereas its homologous gene in Drosophila has been shown to affect three tarsal segments (t2-t4), suggesting that the remodeling of the leg has involved changes in the patterning of gene regulation during evolution. © 2016 Institute of Zoology, Chinese Academy of Sciences.
Phytoextract-induced developmental deformities in malaria vector.
Sharma, Preeti; Mohan, Lalit; Srivastava, C N
2006-09-01
Larvicidal potential of petroleum ether (Pee), carbon tetrachloride (Cte) and methanol extract (Mee) of Artemisia annua, Chenopodium album and Sonchus oleraceus was observed against malaria vector, Anopheles stephensi Liston. The Pee of A. annua with LC50 16.85 ppm after 24 h and 11.45 ppm after 48 h of treatment was found most effective, followed by Cte of A. annua and Ch. album, Pee of Ch. album and Mee of A. annua. However, no significant larvicidal activity was observed in Mee of Ch. album and all the three extracts of S. oleraceous. The Pee of A. annua was further investigated for its effect on the metamorphosis and the development of the malaria vector. It influenced the early life cycle of An. stephensi by reducing the percentage of hatching, larval, pupal and adult emergence and also lengthening the larval and pupal periods. The growth index was also reduced significantly. As the extract has remarkable effect on the metamorphosis and high larvicidal potential, it could, therefore, be used as an effective biocontrol agent against the highly nuisant malaria vector.
Hossain, Monwar; Shimizu, Sakiko; Fujiwara, Haruhiko; Sakurai, Sho; Iwami, Masafumi
2006-08-01
The steroid hormone 20-hydroxyecdysone (20E) initiates insect molting and metamorphosis through binding with a heterodimer of two nuclear receptors, the ecdysone receptor (EcR) and ultraspiracle (USP). Expression of the specific isoforms EcR-A and EcR-B1 governs steroid-induced responses in the developing cells of the silkworm Bombyx mori. Here, analysis of EcR-A and EcR-B1 expression during larval-pupal development showed that both genes were up-regulated by 20E in the B. mori brain. Whole-mount in situ hybridization and immunohistochemistry revealed that EcR-A and EcR-B1 mRNAs and proteins were exclusively located in two pairs of lateral neurosecretory cells in the larval brain known as the prothoracicotropic hormone (PTTH)- producing cells (PTPCs). In the pupal brain, EcR-A and EcR-B1 expression was detected in tritocerebral cells and optic lobe cells in addition to PTPCs. As PTTH controls ecdysone secretion by the prothoracic gland, these results indicate that 20E-responsive PTPCs are the master cells of insect metamorphosis.
Live imaging of muscle histolysis in Drosophila metamorphosis.
Kuleesha, Yadav; Puah, Wee Choo; Wasser, Martin
2016-05-04
The contribution of programmed cell death (PCD) to muscle wasting disorders remains a matter of debate. Drosophila melanogaster metamorphosis offers the opportunity to study muscle cell death in the context of development. Using live cell imaging of the abdomen, two groups of larval muscles can be observed, doomed muscles that undergo histolysis and persistent muscles that are remodelled and survive into adulthood. To identify and characterize genes that control the decision between survival and cell death of muscles, we developed a method comprising in vivo imaging, targeted gene perturbation and time-lapse image analysis. Our approach enabled us to study the cytological and temporal aspects of abnormal cell death phenotypes. In a previous genetic screen for genes controlling muscle size and cell death in metamorphosis, we identified gene perturbations that induced cell death of persistent or inhibit histolysis of doomed larval muscles. RNA interference (RNAi) of the genes encoding the helicase Rm62 and the lysosomal Cathepsin-L homolog Cysteine proteinase 1 (Cp1) caused premature cell death of persistent muscle in early and mid-pupation, respectively. Silencing of the transcriptional co-repressor Atrophin inhibited histolysis of doomed muscles. Overexpression of dominant-negative Target of Rapamycin (TOR) delayed the histolysis of a subset of doomed and induced ablation of all persistent muscles. RNAi of AMPKα, which encodes a subunit of the AMPK protein complex that senses AMP and promotes ATP formation, led to loss of attachment and a spherical morphology. None of the perturbations affected the survival of newly formed adult muscles, suggesting that the method is useful to find genes that are crucial for the survival of metabolically challenged muscles, like those undergoing atrophy. The ablation of persistent muscles did not affect eclosion of adult flies. Live imaging is a versatile approach to uncover gene functions that are required for the survival of muscle undergoing remodelling, yet are dispensable for other adult muscles. Our approach promises to identify molecular mechanisms that can explain the resilience of muscles to PCD.
Regan, Jennifer C.; Brandão, Ana S.; Leitão, Alexandre B.; Mantas Dias, Ângela Raquel; Sucena, Élio; Jacinto, António; Zaidman-Rémy, Anna
2013-01-01
Coupling immunity and development is essential to ensure survival despite changing internal conditions in the organism. Drosophila metamorphosis represents a striking example of drastic and systemic physiological changes that need to be integrated with the innate immune system. However, nothing is known about the mechanisms that coordinate development and immune cell activity in the transition from larva to adult. Here, we reveal that regulation of macrophage-like cells (hemocytes) by the steroid hormone ecdysone is essential for an effective innate immune response over metamorphosis. Although it is generally accepted that steroid hormones impact immunity in mammals, their action on monocytes (e.g. macrophages and neutrophils) is still not well understood. Here in a simpler model system, we used an approach that allows in vivo, cell autonomous analysis of hormonal regulation of innate immune cells, by combining genetic manipulation with flow cytometry, high-resolution time-lapse imaging and tissue-specific transcriptomic analysis. We show that in response to ecdysone, hemocytes rapidly upregulate actin dynamics, motility and phagocytosis of apoptotic corpses, and acquire the ability to chemotax to damaged epithelia. Most importantly, individuals lacking ecdysone-activated hemocytes are defective in bacterial phagocytosis and are fatally susceptible to infection by bacteria ingested at larval stages, despite the normal systemic and local production of antimicrobial peptides. This decrease in survival is comparable to the one observed in pupae lacking immune cells altogether, indicating that ecdysone-regulation is essential for hemocyte immune functions and survival after infection. Microarray analysis of hemocytes revealed a large set of genes regulated at metamorphosis by EcR signaling, among which many are known to function in cell motility, cell shape or phagocytosis. This study demonstrates an important role for steroid hormone regulation of immunity in vivo in Drosophila, and paves the way for genetic dissection of the mechanisms at work behind steroid regulation of innate immune cells. PMID:24204269
He, Peixin; Wang, Ke; Cai, Yingli; Hu, Xiaolong; Zheng, Yan; Zhang, Junjie; Liu, Wei
2018-06-01
Sclerotial formation is a key phase of the morel life cycle and lipids have been recorded as the main cytoplasmic reserves in sclerotia of Morchella fungi without any experimental verification. In this study, the ultrastructural features of the undifferentiated mycelia stage (MS) and three main sclerotial differentiation states (sclerotial initial [SI], sclerotial development [SD] and sclerotial maturation [SM]) were compared by transmission electron microscopy. The nature of the energy-rich substance in hypha and sclerotium of Morchella importuna was qualitatively investigated by confocal laser scanning microscopy and quantitatively studied by extraction of lipids. Sclerotia were observed to form from the repeated branching and enlargement of either terminal hyphae or subordinate hyphal branches, indicating a complex type of sclerotial development. Autophagy and apoptosis were involved in the sclerotial metamorphosis of the cultivated strain of M. importuna. During the SI phase, the characteristic features of autophagy (vacuolation, coalescence of small vacuoles, existence of autophagosomes and engulfment of autophagosomes by vacuoles) were observed. At the SD phase, apoptotic characteristics (condensation of the cytoplasm and nucleus, shrinkage of plasma membrane, extensive plasma membrane blebbing and existence of phagosomes) could be seen in some developing sclerotial cells. In the final stage of sclerotial morphogensis, the sclerotial cells showed a necrotic mode of cell death. In addition, confocal laser imaging studies of live cells indicated that the energy-rich substance in morel hyphae and sclerotia was lipid. The lipid content in sclerotia was significantly more than that in hyphal cells. To the best of our knowledge, this is the first detailed ultrastructural description highlighting the involvement of autophagy and apoptosis in sclerotial metamorphosis of Morchella species and lipid accumulation during morel sclerotial development was also first experimentally verified. This work will promote a better understanding of the mechanism of morel sclerotial metamorphosis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Settlement induction of Acropora palmata planulae by a GLW-amide neuropeptide
NASA Astrophysics Data System (ADS)
Erwin, P. M.; Szmant, A. M.
2010-12-01
Complex environmental cues dictate the settlement of coral planulae in situ; however, simple artificial cues may be all that is required to induce settlement of ex situ larval cultures for reef re-seeding and restoration projects. Neuropeptides that transmit settlement signals and initiate the metamorphic cascade have been isolated from hydrozoan taxa and shown to induce metamorphosis of reef-building Acropora spp. in the Indo-Pacific, providing a reliable and efficient settlement cue. Here, the metamorphic activity of six GLW-amide cnidarian neuropeptides was tested on larvae of the Caribbean corals Acropora palmata, Montastraea faveolata and Favia fragum. A. palmata planulae were induced to settle by the exogenous application of the neuropeptide Hym-248 (concentrations ≥1 × 10-6 M), achieving 40-80% attachment and 100% metamorphosis of competent planulae (≥6 days post-fertilization) during two spawning seasons; the remaining neuropeptides exhibited no activity. Hym-248 exposure rapidly altered larval swimming behavior (<1 h) and resulted in >96% metamorphosis after 6 h. In contrast , M. faveolata and F. fragum planulae did not respond to any GLW-amides tested, suggesting a high specificity of neuropeptide activators on lower taxonomic scales in corals. Subsequent experiments for A. palmata revealed that (1) the presence of a biofilm did not enhance attachment efficiency when coupled with Hym-248 treatment, (2) neuropeptide-induced settlement had no negative effects on early life-history developmental processes: zooxanthellae acquisition and skeletal secretion occurred within 12 days, colonial growth occurred within 36 days, and (3) Hym-248 solutions maintained metamorphic activity following storage at room temperature (10 days), indicating its utility in remote field settings. These results corroborate previous studies on Indo-Pacific Acropora spp. and extend the known metamorphic activity of Hym-248 to Caribbean acroporids. Hym-248 allows for directed and reliable settlement of larval cultures and has broad applications to the study and rehabilitation of threatened Acropora populations in the Caribbean.
ERIC Educational Resources Information Center
Kazamias, Andreas M.
2001-01-01
Since the 1960s, the epistemological-cum-methodological orientations of American and British comparative education changed from being historical to being social scientific. This metamorphosis has impoverished the field, and a return to a re-invented historical mode of comparative analysis would help to humanize comparative education in a cosmos of…
ERIC Educational Resources Information Center
Belbase, Shashidhar
2006-01-01
This dissertation depicts my paradigmatic shift from traditionalist approach to constructivist approach of teaching and learning of mathematics. I have used autoethnography as the genre of writing and research that connects the personal to the cultural placing the self within a social context (Reed-Danahay, 1997). Employing autoethnography, I have…
From Policy to Guidelines: Metamorphosis of Lifelong Learning in India
ERIC Educational Resources Information Center
Mandal, Sayantan
2013-01-01
In this era of globalisation, the present perception of lifelong learning (LLL) in the Indian policy domain has been going through major changes in an attempt to make it nationally realistic yet globally viable. In this process, all facets of the concept of LLL are constantly metamorphosing, and this in many ways outperforms the older perception…
A critical evaluation of the insect body size model and causes of metamorphosis in solitary bees
USDA-ARS?s Scientific Manuscript database
The insect body size model posits that adult size is determined by growth rate and the duration of growth during the larval stage of development. Within the model, growth rate is regulated by many mechanistic elements that are influenced by both internal and external factors. However, the duration o...
ERIC Educational Resources Information Center
Banta, Trudy W., Ed.
2012-01-01
This issue of "Assessment Update" presents the following articles: (1) Accreditation and Assessment: The Root of My Teaching Metamorphosis (Barbara June Rodriguez); (2) Editor's Notes: Addressing a Question of Credibility (Trudy W. Banta); (3) Do We Practice What We Preach? The Accountability of an Assessment Office (Keston H. Fulcher…
Philosophy of Education in a Poor Historical Moment: A Personal Account
ERIC Educational Resources Information Center
Gur-Zeev, Ilan
2011-01-01
Under the post-metaphysical sky "old" humanistic-oriented education is possible solely at the cost of its transformation into its negative, into a power that is determined to diminish human potentials for self-exaltation. Nothing less than total metamorphosis is needed to rescue the core of humanistic genesis: the quest for edifying Life and…
ERIC Educational Resources Information Center
Park, Jae
2011-01-01
This paper opens with a critical analysis of a paradox in contemporary educational research in and about Confucian Heritage Culture (CHC): the assumption that national boundaries coincide with those of a distinct and homogeneous culture, which consistently renders a rather homogenous set of educational phenomena, and collides against a more widely…
Discursive Power and the New Labor Force: The Metamorphosis of a Speech Community
ERIC Educational Resources Information Center
Miles, Christopher
2010-01-01
This article describes the results of a six-month ethnographic case study of a French immigrant of Senegalese descent and how he recreates the culture of an American company's speech community. Data were collected through interviews, field notes, and shadowing the participant at his place of employment. The transcribed interviews and field notes…
Metamorphosis and the Management of Change
ERIC Educational Resources Information Center
Smith, Richard
2016-01-01
Talk of educational reform and of the importance of "the management of change" in education and elsewhere is still in vogue. However it often seems concerned to persuade us that if we engage fully with change rather than resisting it we will find our lives more meaningful, thus omitting the important matter of the goal of the change in…
"A Dance with the Butterflies:" A Metamorphosis of Teaching and Learning through Technology
ERIC Educational Resources Information Center
McPherson, Sarah
2009-01-01
This paper describes a web-based collaborative project called "A Dance with the Butterflies" that applied the brain-based research of the Center for Applied Special Technologies (CAST) and principles of Universal Design for Learning (UDL) to Pre-K-4 science curriculum. Learning experiences were designed for students to invoke the Recognition,…
Counting a Culture of Mealworms
ERIC Educational Resources Information Center
Ashbrook, Peggy
2007-01-01
Math is not the only topic that will be discussed when young children are asked to care for and count "mealworms," a type of insect larvae (just as caterpillars are the babies of butterflies, these larvae are babies of beetles). The following activity can take place over two months as the beetles undergo metamorphosis from larvae to adults. As the…
Delayed metamorphosis and short-term food limitation reduce juvenile or adult fitness in a number of marine invertebrate species. In this study, we tested the ability of pollutant and salinity stress to bring about similar effects on juvenile or adult performance. Larvae of the p...
La Metamorfosis de la Escuela. (The Metamorphosis of the School)
ERIC Educational Resources Information Center
Illich, Ivan
1970-01-01
The author attacks present school systems as hindrances to education, arguing that everyone has a right to an equal part of a nation's educational budget. One solution he proposes is to offer everyone an equal share of public resources by providing both children and adults with one month of intensive education each year, and supplementing this…
From Typology to Topography in Clarence King's "Mountaineering in the Sierra Nevada."
ERIC Educational Resources Information Center
Hoekzema, Loren
The book "Mountaineering in the Sierra Nevada" by Clarence King, a late-ninteenth-century American geologist, writer, art critic, and romantic, is discussed in this paper. In the writing and revision of this book, King was attempting a metamorphosis of landscape description into popular reading as he moved from being a symbolic writer to…
ERIC Educational Resources Information Center
de Castro, Belinda V.; de Guzman, Allan B.
2014-01-01
Although there is considerable anecdotal evidence that the scale of private tutoring is substantial in the Philippines, attempts to document its existence is limited. Using phenomenological inquiry, this study aimed to provide a more eidetic portrait of private tutoring transformation in the Philippines from the perspectives and collective…
2008-04-01
Nursing Older People is the proud sponsor of a fringe event at this year's annual RCN congress which opens in Bournemouth this month. The title of the seminar is Angels and demons - dignity at the heart of nursing* and it aims to discuss the metamorphosis of nurses from 'angels' to 'demons' in the eyes of the media and the public over the past year.
Space for Performing Teacher Identity: Through the Lens of Kafka and Hegel
ERIC Educational Resources Information Center
Parkison, Paul
2008-01-01
Franz Kafka's 1912 novella "The Metamorphosis" provides an analogy for a consideration of the process of teacher identity formation and performance. Gregor Samsa awoke to find himself transformed into a giant beetle. He faced a complete loss of identity as he lost connection with the micro-political space that formed the context of his former role…
Cultural Language Study: Grade 7.
ERIC Educational Resources Information Center
Schwartz, Betty L.; Tappenden, Jacqueline W.
This course guide, the first in a two-year sequence, is designed to give students an overview of Greek and Roman culture and language from the era of the early Aegean civilizations in Greece and Asia Minor to the Augustan Age in Rome. Six units of study are concerned with the growth and development of Greece and with the metamorphosis of Rome from…
Isolation and characterization of juvenile hormone esterase from gypsy moth (Lymantria dispar)
Algimantas P. Valaitis; Joan Jolliff
1991-01-01
Insect metamorphosis is under precise hormonal control. During the last larval stadium, the degradation of juvenile hormone by juvenile hormone esterase (JHE) is essential for the initiation of pupation. Therefore, we have targeted this system for disruption with a strategy to produce a recombinant gypsy moth virus which expresses JHE. In order to clone and insert the...
ERIC Educational Resources Information Center
Palit, Sukanchan
2016-01-01
Scientific vision and scientific understanding in today's world are in the path of new glory. Chemical Engineering science is witnessing drastic and rapid changes. The metamorphosis of human civilization in this century is faced with vicious challenges. Progress of Chemical Engineering science, the vision of technology and the broad chemical…
Metamorphosis: Texas District Opts for Learner-Centered Professional Learning
ERIC Educational Resources Information Center
Ellinger, Alan; Launius, Keri; Scott, Annette
2017-01-01
Like many districts across the United States, Galveston, Texas, is focused on building a culture of excellence. The district is a study in contrasts. On one hand, it is laced with opulent vacation homes and resort hotels used by out-of-town owners. On the other, the median household income level is $28,895, with 22% of the population living below…
ERIC Educational Resources Information Center
Zeringo, Thomas A.; Baldwin-LeClair, Jack
The past 20 years have witnessed a significant metamorphosis with regard to clinical gender neutrality within the classrooms of public schools. However, the beginning and formative years of a child's formal entry into public school are overseen by female teachers. Men comprise only 12% of the teaching force in elementary school, and this 12% of…
Duchcherer, Maryana; Baghdadwala, Mufaddal I; Paramonov, Jenny; Wilson, Richard J A
2013-12-01
Frog metamorphosis includes transition from water breathing to air breathing but the extent to which such a momentous change in behavior requires fundamental changes in the organization of the brainstem respiratory circuit is unknown. Here, we combine a vertically mounted isolated brainstem preparation, "the Sheep Dip," with a search algorithm used in computer science, to identify essential rhombomeres for generation of ventilatory motor bursts in metamorphosing bullfrog tadpoles. Our data suggest that rhombomere 7, which in mammals hosts the PreBötC (PreBötzinger Complex; the likely inspiratory oscillator), is essential for gill and buccal bursts. Whereas rhombomere 5, in close proximity to a brainstem region associated with the mammalian expiratory oscillator, is essential for lung bursts at both stages. Therefore, we conclude there is no rhombomeric translocation of respiratory oscillators in bullfrogs as previously suggested. In premetamorphic tadpoles, functional ablation of rhombomere 7 caused ectopic expression of precocious lung bursts, suggesting the gill oscillator suppresses an otherwise functional lung oscillator in early development. Copyright © 2013 Wiley Periodicals, Inc.
Tulachan, Brindan; Srivastava, Shivansh; Kusurkar, Tejas Sanjeev; Sethy, Niroj Kumar; Bhargava, Kalpana; Singh, Sushil Kumar; Philip, Deepu; Bajpai, Alok; Das, Mainak
2016-01-01
Silkworm metamorphosis is governed by the intrinsic and extrinsic factors. One key intrinsic factor is the temporal electrical firing of the neuro-secretory cells of the dormant pupae residing inside the silk cocoon membrane (SCM). Extrinsic factors are environmental like temperature, humidity and light. The firing pattern of the cells is a function of the environmental factors that eventually controls the pupal development. How does the nervous organization of the dormant pupae sense the environment even while enclosed inside the cocoon shell? We propose that the SCM does this by capturing the incident light and converting it to electricity in addition to translating the variation in temperature and humidity as an electrical signal. The light to electricity conversion is more pronounced with ultraviolet (UV) frequency. We discovered that a UV sensitive fluorescent quercetin derivative that is present on the SCM and pupal body surface is responsible for generating the observed photo current. Based on these results, we propose an equivalent circuit model of the SCM where an overall electrical output transfers the weather information to pupae, directing its growth. We further discuss the implication of this electrical energy conversion and its utility for consumable electricity. PMID:26907586
Tulachan, Brindan; Srivastava, Shivansh; Kusurkar, Tejas Sanjeev; Sethy, Niroj Kumar; Bhargava, Kalpana; Singh, Sushil Kumar; Philip, Deepu; Bajpai, Alok; Das, Mainak
2016-02-24
Silkworm metamorphosis is governed by the intrinsic and extrinsic factors. One key intrinsic factor is the temporal electrical firing of the neuro-secretory cells of the dormant pupae residing inside the silk cocoon membrane (SCM). Extrinsic factors are environmental like temperature, humidity and light. The firing pattern of the cells is a function of the environmental factors that eventually controls the pupal development. How does the nervous organization of the dormant pupae sense the environment even while enclosed inside the cocoon shell? We propose that the SCM does this by capturing the incident light and converting it to electricity in addition to translating the variation in temperature and humidity as an electrical signal. The light to electricity conversion is more pronounced with ultraviolet (UV) frequency. We discovered that a UV sensitive fluorescent quercetin derivative that is present on the SCM and pupal body surface is responsible for generating the observed photo current. Based on these results, we propose an equivalent circuit model of the SCM where an overall electrical output transfers the weather information to pupae, directing its growth. We further discuss the implication of this electrical energy conversion and its utility for consumable electricity.