Science.gov

Sample records for metastable nonequilibrium phases

  1. Discontinuous non-equilibrium phase transition in a threshold Schloegl model for autocatalysis: Generic two-phase coexistence and metastability.

    PubMed

    Wang, Chi-Jen; Liu, Da-Jiang; Evans, James W

    2015-04-28

    Threshold versions of Schloegl's model on a lattice, which involve autocatalytic creation and spontaneous annihilation of particles, can provide a simple prototype for discontinuous non-equilibrium phase transitions. These models are equivalent to so-called threshold contact processes. A discontinuous transition between populated and vacuum states can occur selecting a threshold of N ≥ 2 for the minimum number, N, of neighboring particles enabling autocatalytic creation at an empty site. Fundamental open questions remain given the lack of a thermodynamic framework for analysis. For a square lattice with N = 2, we show that phase coexistence occurs not at a unique value but for a finite range of particle annihilation rate (the natural control parameter). This generic two-phase coexistence also persists when perturbing the model to allow spontaneous particle creation. Such behavior contrasts both the Gibbs phase rule for thermodynamic systems and also previous analysis for this model. We find metastability near the transition corresponding to a non-zero effective line tension, also contrasting previously suggested critical behavior. Mean-field type analysis, extended to treat spatially heterogeneous states, further elucidates model behavior.

  2. Discontinuous non-equilibrium phase transition in a threshold Schloegl model for autocatalysis: Generic two-phase coexistence and metastability

    SciTech Connect

    Wang, Chi -Jen; Liu, Da -Jiang; Evans, James W.

    2015-04-28

    Threshold versions of Schloegl’s model on a lattice, which involve autocatalytic creation and spontaneous annihilation of particles, can provide a simple prototype for discontinuous non-equilibrium phase transitions. These models are equivalent to so-called threshold contact processes. A discontinuous transition between populated and vacuum states can occur selecting a threshold of N ≥ 2 for the minimum number, N, of neighboring particles enabling autocatalytic creation at an empty site. Fundamental open questions remain given the lack of a thermodynamic framework for analysis. For a square lattice with N = 2, we show that phase coexistence occurs not at a unique value but for a finite range of particle annihilation rate (the natural control parameter). This generic two-phase coexistence also persists when perturbing the model to allow spontaneous particle creation. Such behavior contrasts both the Gibbs phase rule for thermodynamic systems and also previous analysis for this model. We find metastability near the transition corresponding to a non-zero effective line tension, also contrasting previously suggested critical behavior. As a result, mean-field type analysis, extended to treat spatially heterogeneous states, further elucidates model behavior.

  3. Discontinuous non-equilibrium phase transition in a threshold Schloegl model for autocatalysis: Generic two-phase coexistence and metastability

    SciTech Connect

    Wang, Chi-Jen; Liu, Da-Jiang; Evans, James W.

    2015-04-28

    Threshold versions of Schloegl’s model on a lattice, which involve autocatalytic creation and spontaneous annihilation of particles, can provide a simple prototype for discontinuous non-equilibrium phase transitions. These models are equivalent to so-called threshold contact processes. A discontinuous transition between populated and vacuum states can occur selecting a threshold of N ≥ 2 for the minimum number, N, of neighboring particles enabling autocatalytic creation at an empty site. Fundamental open questions remain given the lack of a thermodynamic framework for analysis. For a square lattice with N = 2, we show that phase coexistence occurs not at a unique value but for a finite range of particle annihilation rate (the natural control parameter). This generic two-phase coexistence also persists when perturbing the model to allow spontaneous particle creation. Such behavior contrasts both the Gibbs phase rule for thermodynamic systems and also previous analysis for this model. We find metastability near the transition corresponding to a non-zero effective line tension, also contrasting previously suggested critical behavior. Mean-field type analysis, extended to treat spatially heterogeneous states, further elucidates model behavior.

  4. Discontinuous non-equilibrium phase transition in a threshold Schloegl model for autocatalysis: Generic two-phase coexistence and metastability

    DOE PAGES

    Wang, Chi -Jen; Liu, Da -Jiang; Evans, James W.

    2015-04-28

    Threshold versions of Schloegl’s model on a lattice, which involve autocatalytic creation and spontaneous annihilation of particles, can provide a simple prototype for discontinuous non-equilibrium phase transitions. These models are equivalent to so-called threshold contact processes. A discontinuous transition between populated and vacuum states can occur selecting a threshold of N ≥ 2 for the minimum number, N, of neighboring particles enabling autocatalytic creation at an empty site. Fundamental open questions remain given the lack of a thermodynamic framework for analysis. For a square lattice with N = 2, we show that phase coexistence occurs not at a unique valuemore » but for a finite range of particle annihilation rate (the natural control parameter). This generic two-phase coexistence also persists when perturbing the model to allow spontaneous particle creation. Such behavior contrasts both the Gibbs phase rule for thermodynamic systems and also previous analysis for this model. We find metastability near the transition corresponding to a non-zero effective line tension, also contrasting previously suggested critical behavior. As a result, mean-field type analysis, extended to treat spatially heterogeneous states, further elucidates model behavior.« less

  5. Metastable Phases in Ice Clouds

    NASA Astrophysics Data System (ADS)

    Weiss, Fabian; Baloh, Philipp; Kubel, Frank; Hoelzel, Markus; Parker, Stewart; Grothe, Hinrich

    2014-05-01

    Polar Stratospheric Clouds and Cirrus Clouds contain both, pure water ice and phases of nitric acid hydrates. Preferentially for the latter, the thermodynamically stable phases have intensively been investigated in the past (e.g. nitric acid trihydrate, beta-NAT). As shown by Peter et al. [1] the water activity inside clouds is higher than expected, which might be explained by the presence of metastable stable phases (e.g. cubic ice). However, also metastable nitric acid hydrates might be important due to the inherent non-equilibrium freezing conditions in the upper atmosphere. The delta ice theory of Gao et al. [2] presents a model approach to solve this problem by involving both metastable ice and NAT as well. So it is of high interest to investigate the metastable phase of NAT (i.e. alpha-NAT), the structure of which was unknown up to the presence. In our laboratory a production procedure for metastable alpha-NAT has been developed, which gives access to neutron diffraction and X-ray diffraction measurements, where sample quantities of several Gramm are required. The diffraction techniques were used to solve the unknown crystalline structure of metastable alpha-NAT, which in turn allows the calculation of the vibrational spectra, which have also been recorded by us in the past. Rerefences [1] Peter, T., C. Marcolli, P. Spichtinger, T. Corti, M. B. Baker, and T. Koop. When dry air is too humid. Science, 314:1399-1402, 2006. [2] Gao, R., P. Popp, D. Fahey, T. Marcy, R. L. Herman, E. Weinstock, D. Baumgardener, T. Garrett, K. Rosenlof, T. Thompson, T. P. Bui, B. Ridley, S. C. Wofsy, O. B. Toon, M. Tolbert, B. Kärcher, Th. Peter, P. K. Hudson, A. Weinheimer, and A. Heymsfield. Evidence That Nitric Acid Increases Relative Humidity in Low-Temperature Cirrus Clouds, Science, 303:516-520, 2004. [3] Tizek, H., E. Knözinger, and H. Grothe. Formation and phase distribution of nitric acid hydrates in the mole fraction range xHNO3<0.25: A combined XRD and IR study, PCCP, 6

  6. Formation of metastable phases by spinodal decomposition

    PubMed Central

    Alert, Ricard; Tierno, Pietro; Casademunt, Jaume

    2016-01-01

    Metastable phases may be spontaneously formed from other metastable phases through nucleation. Here we demonstrate the spontaneous formation of a metastable phase from an unstable equilibrium by spinodal decomposition, which leads to a transient coexistence of stable and metastable phases. This phenomenon is generic within the recently introduced scenario of the landscape-inversion phase transitions, which we experimentally realize as a structural transition in a colloidal crystal. This transition exhibits a rich repertoire of new phase-ordering phenomena, including the coexistence of two equilibrium phases connected by two physically different interfaces. In addition, this scenario enables the control of sizes and lifetimes of metastable domains. Our findings open a new setting that broadens the fundamental understanding of phase-ordering kinetics, and yield new prospects of applications in materials science. PMID:27713406

  7. Formation of metastable phases by spinodal decomposition

    NASA Astrophysics Data System (ADS)

    Alert, Ricard; Tierno, Pietro; Casademunt, Jaume

    2016-10-01

    Metastable phases may be spontaneously formed from other metastable phases through nucleation. Here we demonstrate the spontaneous formation of a metastable phase from an unstable equilibrium by spinodal decomposition, which leads to a transient coexistence of stable and metastable phases. This phenomenon is generic within the recently introduced scenario of the landscape-inversion phase transitions, which we experimentally realize as a structural transition in a colloidal crystal. This transition exhibits a rich repertoire of new phase-ordering phenomena, including the coexistence of two equilibrium phases connected by two physically different interfaces. In addition, this scenario enables the control of sizes and lifetimes of metastable domains. Our findings open a new setting that broadens the fundamental understanding of phase-ordering kinetics, and yield new prospects of applications in materials science.

  8. Phase metastability and supercooled metastable state of diundecanoylphosphatidylethanolamine bilayers.

    PubMed

    Xu, H; Stephenson, F A; Lin, H N; Huang, C H

    1988-08-04

    Aqueous dispersons of L-alpha-phosphatidylethanolamine (PE) with identical saturated acyl chains are known to exhibit gel-state metastability. It is also known that the metastability in PE becomes more pronounced with decreasing acyl chain-length. In an attempt to study the metastable phase behavior of PE, we have synthesized diundecanoylphosphatidylethanolamine (diC11PE) and examined its polymorphic phase behavior. A single endothermic transition at 38 degrees C is detected between 10 and 55 degrees C by DSC for the nonheated sample of diC11PE in excess water. An immediate second heating scan done after cooling slowly of the same sample from the liquid-crystalline state shows a smaller endothermic transition at a lower temperature, 18 degrees C. However, the high-temperature transition at 38 degrees C can be detected, if the sample which has been heated above 38 degrees C is quench cooled from the liquid-crystalline to a temperature between 18 and 38 degrees C. Furthermore, two endothermic transitions at 18 and 38 degrees C and an exothermic transition at 19 degrees C are recorded for diC11PE after quench supercooling of the sample from the liquid-crystalline state to an appropriate temperature below 10 degrees C. The gel-state metastability of diC11PE can be most appropriately explained in terms of changes in interbilayer headgroup-headgroup interactions. It is suggested that the kinetically trapped supercooled metastable state may be a multilamellar structure with melted acyl chains but with strong interbilayer headgroup-headgroup interactions.

  9. Metastable Phase Evolution in Oxide Systems

    NASA Astrophysics Data System (ADS)

    Levi, Carlos G.

    2005-03-01

    Multi-component ceramics are often synthesized by routes that facilitate mixing at the molecular scale and subsequently generate a solid product at low homologous temperatures. Examples include chemical and physical vapor deposition, thermal spray, and pyrolytic decomposition of precursor solutions. In these processes the solid evolves rapidly from a highly energized state, typically in a temperature regime wherein long-range diffusion is largely constrained and the equilibrium configuration can be kinetically suppressed. The resulting product may exhibit various forms of metastability such as amorphization, nanocrystallinity, extended solid solubility and alternate crystalline forms. The approach allows access to novel combinations of structure and composition with unprecedented defect structures that, if reasonably durable, could have properties of potential technological interest. Understanding phase selection and evolution is facilitated by having a suitable reference framework depicting the thermodynamic hierarchy of the phases available to the system under the relevant processing conditions. When transformations are partitionless the phase menu and hierarchy can be readily derived from the relative position of the T0 curves/surfaces for the different pairs of phases. The result is a phase hierarchy map, which is an analog of the phase diagram for partitionless equilibrium. Such maps can then be used to assess the kinetic effects on the selection of metastable states and their subsequent evolution. This presentation will discuss the evolution of metastable phases in oxides, with emphasis on systems involving fluorite phases and their ordered or distorted derivatives. The concepts will be illustrated primarily with zirconia-based systems, notably those of interest in thermal barrier coatings, fuel cells and ferroelectrics (ZrO2-MO3/2, where M = Y, Sc, the lanthanides and combinations thereof, as well as ZrO2-YO3/2-TiO2, ZrO2-TiO2-PbO, etc.). Of particular

  10. The interaction of the theophylline metastable phase with water vapor

    NASA Astrophysics Data System (ADS)

    Matvienko, A. A.; Boldyrev, V. V.; Sidel'Nikov, A. A.; Chizhik, S. A.

    2008-07-01

    The conditions of hydration of the stable and metastable theophylline phases were determined. Two-phase metastable phase/monohydrate and stable phase/monohydrate equilibrium pressures were measured at 25, 30, and 35°C. The metastable phase began to react with water vapor at lower relative humidities than the stable phase. Processes that occurred with the metastable and stable theophylline phases over various water pressure ranges were considered. The metastable phase exhibited an unusual behavior at 25°C and relative humidity 47%. At constant water vapor pressure and temperature, theophylline was initially hydrated and then lost water and again became anhydrous. Two consecutive processes occurred in the system, the formation of theophylline monohydrate from the metastable phase and its decomposition to the stable phase. The ratio between the rates of these processes determined the content of the monohydrate at the given time moment.

  11. Effectively explore metastable states of proteins by adaptive nonequilibrium driving simulations

    NASA Astrophysics Data System (ADS)

    Wan, Biao; Xu, Shun; Zhou, Xin

    2017-03-01

    Nonequilibrium drivings applied in molecular dynamics (MD) simulations can efficiently extend the visiting range of protein conformations, but might compel systems to go far away from equilibrium and thus mainly explore irrelevant conformations. Here we propose a general method, called adaptive nonequilibrium simulation (ANES), to automatically adjust the external driving on the fly, based on the feedback of the short-time average response of system. Thus, the ANES approximately keeps the local equilibrium but efficiently accelerates the global motion. We illustrate the capability of the ANES in highly efficiently exploring metastable conformations in the deca-alanine peptide and find that the 0.2 -μ s ANES approximately captures the important states and folding and unfolding pathways in the HP35 solution by comparing with the result of the recent 398 -μ s equilibrium MD simulation on Anton [S. Piana et al., Proc. Natl. Acad. Sci. USA 109, 17845 (2012), 10.1073/pnas.1201811109].

  12. Phase transitions in metastable phases of silicon

    NASA Astrophysics Data System (ADS)

    Zeng, Zhidan; Zeng, Qiaoshi; Mao, Wendy L.; Qu, Shaoxing

    2014-03-01

    Phase transitions in indentation induced Si-III/XII phases were investigated using a diamond anvil cell and nanoindentation combined with micro-Raman spectroscopy. The in situ high pressure Raman results demonstrate that the Si-III and Si-XII phases have very similar Raman spectra, indicating their relative amount cannot be determined if they are both present in a sample. The Si-III and Si-XII phases coexist in the indentations produced by a nanoindenter on a single crystalline silicon wafer as a result of the local residual compressive stresses near 1 GPa. High power laser annealing on the indentations can initiate a rapid Si-III/XII → Si-I phase transition. The newly formed polycrystalline Si-I phase initially has very small grain size, and the grains grow when the annealing time is extended. Si-IV phase was not observed in our experiment.

  13. The non-equilibrium phase diagrams of flow-induced crystallization and melting of polyethylene

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Ju, Jianzhu; Yang, Junsheng; Ma, Zhe; Liu, Dong; Cui, Kunpeng; Yang, Haoran; Chang, Jiarui; Huang, Ningdong; Li, Liangbin

    2016-09-01

    Combining extensional rheology with in-situ synchrotron ultrafast x-ray scattering, we studied flow-induced phase behaviors of polyethylene (PE) in a wide temperature range up to 240 °C. Non-equilibrium phase diagrams of crystallization and melting under flow conditions are constructed in stress-temperature space, composing of melt, non-crystalline δ, hexagonal and orthorhombic phases. The non-crystalline δ phase is demonstrated to be either a metastable transient pre-order for crystallization or a thermodynamically stable phase. Based on the non-equilibrium phase diagrams, nearly all observations in flow-induced crystallization (FIC) of PE can be well understood. The interplay of thermodynamic stabilities and kinetic competitions of the four phases creates rich kinetic pathways for FIC and diverse final structures. The non-equilibrium flow phase diagrams provide a detailed roadmap for precisely processing of PE with designed structures and properties.

  14. The non-equilibrium phase diagrams of flow-induced crystallization and melting of polyethylene

    PubMed Central

    Wang, Zhen; Ju, Jianzhu; Yang, Junsheng; Ma, Zhe; Liu, Dong; Cui, Kunpeng; Yang, Haoran; Chang, Jiarui; Huang, Ningdong; Li, Liangbin

    2016-01-01

    Combining extensional rheology with in-situ synchrotron ultrafast x-ray scattering, we studied flow-induced phase behaviors of polyethylene (PE) in a wide temperature range up to 240 °C. Non-equilibrium phase diagrams of crystallization and melting under flow conditions are constructed in stress-temperature space, composing of melt, non-crystalline δ, hexagonal and orthorhombic phases. The non-crystalline δ phase is demonstrated to be either a metastable transient pre-order for crystallization or a thermodynamically stable phase. Based on the non-equilibrium phase diagrams, nearly all observations in flow-induced crystallization (FIC) of PE can be well understood. The interplay of thermodynamic stabilities and kinetic competitions of the four phases creates rich kinetic pathways for FIC and diverse final structures. The non-equilibrium flow phase diagrams provide a detailed roadmap for precisely processing of PE with designed structures and properties. PMID:27609305

  15. Discovery of a metastable Al20Sm4 phase

    NASA Astrophysics Data System (ADS)

    Ye, Z.; Zhang, F.; Sun, Y.; Mendelev, M. I.; Ott, R. T.; Park, E.; Besser, M. F.; Kramer, M. J.; Ding, Z.; Wang, C.-Z.; Ho, K.-M.

    2015-03-01

    We present an efficient genetic algorithm, integrated with experimental diffraction data, to solve a nanoscale metastable Al20Sm4 phase that evolves during crystallization of an amorphous magnetron sputtered Al90Sm10 alloy. The excellent match between calculated and experimental X-ray diffraction patterns confirms an accurate description of this metastable phase. Molecular dynamic simulations of crystal growth from the liquid phase predict the formation of disordered defects in the devitrified crystal.

  16. Discovery of a metastable Al20Sm4 phase

    DOE PAGES

    Ye, Z.; Zhang, F.; Sun, Y.; ...

    2015-03-09

    In this study, we present an efficient genetic algorithm, integrated with experimental diffraction data, to solve a nanoscale metastable Al20Sm4 phase that evolves during crystallization of an amorphous magnetron sputtered Al90Sm10 alloy. The excellent match between calculated and experimental X-ray diffraction patterns confirms an accurate description of this metastable phase. Molecular dynamic simulations of crystal growth from the liquid phase predict the formation of disordered defects in the devitrified crystal.

  17. Modeling of metastable phase formation diagrams for sputtered thin films

    PubMed Central

    Chang, Keke; Music, Denis; to Baben, Moritz; Lange, Dennis; Bolvardi, Hamid; Schneider, Jochen M.

    2016-01-01

    Abstract A method to model the metastable phase formation in the Cu–W system based on the critical surface diffusion distance has been developed. The driver for the formation of a second phase is the critical diffusion distance which is dependent on the solubility of W in Cu and on the solubility of Cu in W. Based on comparative theoretical and experimental data, we can describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation. Metastable phase formation diagrams for Cu–W and Cu–V thin films are predicted and validated by combinatorial magnetron sputtering experiments. The correlative experimental and theoretical research strategy adopted here enables us to efficiently describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation during magnetron sputtering. PMID:27877871

  18. Modeling of metastable phase formation diagrams for sputtered thin films.

    PubMed

    Chang, Keke; Music, Denis; To Baben, Moritz; Lange, Dennis; Bolvardi, Hamid; Schneider, Jochen M

    2016-01-01

    A method to model the metastable phase formation in the Cu-W system based on the critical surface diffusion distance has been developed. The driver for the formation of a second phase is the critical diffusion distance which is dependent on the solubility of W in Cu and on the solubility of Cu in W. Based on comparative theoretical and experimental data, we can describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation. Metastable phase formation diagrams for Cu-W and Cu-V thin films are predicted and validated by combinatorial magnetron sputtering experiments. The correlative experimental and theoretical research strategy adopted here enables us to efficiently describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation during magnetron sputtering.

  19. Metastable Mesoscopic Phases in Concentrated Protein Solutions

    NASA Astrophysics Data System (ADS)

    Vekilov, P. G.; Pan, W.; Gliko, O.; Katsonis, P.; Galkin, O.

    It is sometimes claimed that the cytosol around the organelles, tubules, and other cellular structures represents a liquid phase. On the other hand, almost all protein molecules in the cytosol participate in complexes with other proteins, nucleic acids, small molecules, etc. The two pictures of a homogeneous liquid and a granular multiscale mixture appear incompatible. Thus, an important question in physical biology is whether the protein complexes represent a property of the protein solutions, or are the result of complex specific interaction involving multiple biological molecules. We apply light scattering, atomic force microscopy, and other techniques to demonstrate that even solutions of a single protein of moderate concentration do not comply with Gibbs's definition of phase. In such solutions clusters of sizes from several tens to several hundred nanometers exist and have limited lifetimes. These clusters have a higher free energy than the protein solution, and their lifetime is determined by a barrier for their decay. The clusters affect the viscous and visco-elastic behavior of the solution and are an essential part of potential condensation and aggregation pathways. Since the clusters are observed in solutions of single proteins, they indicate that the proteins have an intrinsic propensity to form mesoscopic structures, which likely is utilized in the formation of the protein complexes in the cytosol. Cluster theories developed for colloid systems appear inapplicable to proteins due to the high level of implied Coulombic repulsion. A Monte Carlo model with protein-like potentials reproduces the metastable clusters of dense liquid with limited lifetimes and variable sizes, and suggests that the clusters' sizes are determined by the kinetics of growth and decay, and not by thermodynamics. A microscopic theory, which should account for stabilizing and destabilizing factors involving protein molecules and solvent inside the clusters, is still to be developed.

  20. The effect of non-equilibrium δ/γ transition on the formation of metastable “dendrite core” in undercooled Fe-Cu alloy

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Liu, F.; Yang, X. Q.; Liu, N.; Shen, C. J.

    2012-09-01

    The effect of non-equilibrium δ/γ transition on the formation of metastable “dendrite core” in undercooled Fe-Cu alloy was studied. Three kinds of solidified paths were adopted following recalescence, i.e., quenching at recalescence moment, quenching after recalescence plateau and natural cooling. In comparison of the three paths, it was evidenced that the metastable “dendrite core” resulted in the incomplete transition of the primary δ dendrite to γ phase. In combination with the JMA solid-state transition kinetic theory, the formation of “dendrite core” was dominated by volume diffusion controlled-δ/γ transition. Two typical morphologies, i.e., small granules and dendrite trucks in “dendrite cores”, have been detected. It may be attributed to the volume fraction of δ/γ transition.

  1. Non-equilibrium phase transitions of aqueous starch systems.

    PubMed

    Biliaderis, C G

    1991-01-01

    Experimental data on phase transitions of aqueous starch systems, obtained by thermal analysis (TA) methods, are often indicative of irreversible (non-equilibrium) processes involving various metastable states. The thermal responses usually reflect composite effects from contributions of several opposing processes [e.g. annealing, melting, and (re)crystallization] taking place concurrently during TA. It is important, therefore, to recognize the temperature- and time-dependence of the structure of starch materials, if non-isothermal techniques are used for their characterization. Identifying the pertinent morphological features (supermolecular structure) of each particular system, as well as recognizing the role of water as a plasticizer which depresses the Tg of the amorphous domains, is essential to predict heat/moisture-mediated transformations of this biopolymer. The phase transition behaviour of granular starch and amylose-lipid complexes, as revealed by Differential Scanning Calorimetry and Thermomechanical Analysis, and the metastability of these materials are considered herein with respect to the effects of water and low molecular weight solutes.

  2. A nonequilibrium phase transition in immune response

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Qi, An-Shen

    2004-07-01

    The dynamics of immune response correlated to signal transduction in immune thymic cells (T cells) is studied. In particular, the problem of the phosphorylation of the immune-receptor tyrosine-based activation motifs (ITAM) is explored. A nonlinear model is established on the basis of experimental observations. The behaviours of the model can be well analysed using the concepts of nonequilibrium phase transitions. In addition, the Riemann-Hugoniot cusp catastrophe is demonstrated by the model. Due to the application of the theory of nonequilibrium phase transitions, the biological phenomena can be clarified more precisely. The results can also be used to further explain the signal transduction and signal discrimination of an important type of immune T cell.

  3. Metastable phase formation in Be-Nb intermetallic compounds

    SciTech Connect

    Brimhall, J.L.; Charlot, L.A.; Bruemmer, S.M.

    1990-11-01

    Amorphous structures or metastable crystalline phases are produced in sputter-deposited Beryllium-Niobium (Be-Nb) alloys (5-15 at. % Nb) depending on the substrate temperature. The metastable phases transform to the stable Be{sub 12}Nb, Be{sub 17}Nb{sub 2}Nb phases on annealing at temperatures >800{degree}C. No Be{sub 5}Nb phase was found and the Be{sub 17}Nb{sub 2} phase is stable to low temperature. The Be{sub 12}Nb phase appeared to have a stoichiometric range of about 5.5 to 7.7 at. % Nb. The formation of the metastable phases is consistent with current models and theories. 17 refs., 1 fig., 2 tabs.

  4. Research on Sources of Gas Phase Metastable Atoms and Molecules

    DTIC Science & Technology

    1982-05-01

    PAGI(Whi DeE# WA..teod) -systems of interest to such diverse areas as gas discharge physics, chemical physics, flame chemistry and plasma physics. "A...second task involved a literature review of prior basic research meta- stable sources followed by the development and experimental testing of appro...appropriate for this phase of the program. The operation of this type of metastable source wab investigated and tested for the production of metastable argon

  5. Random fields at a nonequilibrium phase transition.

    PubMed

    Barghathi, Hatem; Vojta, Thomas

    2012-10-26

    We study nonequilibrium phase transitions in the presence of disorder that locally breaks the symmetry between two equivalent macroscopic states. In low-dimensional equilibrium systems, such random-field disorder is known to have dramatic effects: it prevents spontaneous symmetry breaking and completely destroys the phase transition. In contrast, we show that the phase transition of the one-dimensional generalized contact process persists in the presence of random-field disorder. The ultraslow dynamics in the symmetry-broken phase is described by a Sinai walk of the domain walls between two different absorbing states. We discuss the generality and limitations of our theory, and we illustrate our results by large-scale Monte Carlo simulations.

  6. Nonequilibrium Phase Chemistry in High Temperature Structure Alloys

    NASA Technical Reports Server (NTRS)

    Wang, R.

    1991-01-01

    Titanium and nickel aluminides of nonequilibrium microstructures and in thin gauge thickness were identified, characterized and produced for potential high temperature applications. A high rate sputter deposition technique for rapid surveillance of the microstructures and nonequilibrium phase is demonstrated. Alloys with specific compositions were synthesized with extended solid solutions, stable dispersoids, and specific phase boundaries associated with different heat treatments. Phase stability and mechanical behavior of these nonequilibrium alloys were investigated and compared.

  7. Selective crystallization of metastable phase of acetaminophen by ultrasonic irradiation

    NASA Astrophysics Data System (ADS)

    Mori, Yoichiro; Maruyama, Mihoko; Takahashi, Yoshinori; Ikeda, Kenji; Fukukita, Suguru; Yoshikawa, Hiroshi Y.; Okada, Shino; Adachi, Hiroaki; Sugiyama, Shigeru; Takano, Kazufumi; Murakami, Satoshi; Matsumura, Hiroyoshi; Inoue, Tsuyoshi; Yoshimura, Masashi; Mori, Yusuke

    2015-06-01

    A new method for selective crystallization of the metastable phase (form II) of acetaminophen is described. To obtain form II, we prepared a highly supersaturated solution (σI = 3.7) and then applied ultrasonic irradiation at different frequencies. Without ultrasonic irradiation, spontaneous crystallization did not occur within one month in the highly supersaturated condition (σI = 3.7). When ultrasonic irradiation at 28 kHz was applied, form II preferentially crystallized. Therefore, we conclude that ultrasonic irradiation can be an effective technique for selectively crystallizing the metastable phase.

  8. Metastable bcc phase formation in the Nb-Cr system

    SciTech Connect

    Thoma, D.J.; Schwarz, R.B.; Perepezko, J.H.; Plantz, D.H.

    1993-08-01

    Extended metastable bcc solid solutions of Nb-Xat.%Cr (X = 35, 50, 57, 77, 82, and 94) were synthesized by two-anvil splat-quenching. In addition, bcc (Nb-67at.%Cr) was prepared by mechanically alloying mixtures of niobium and chromium powders. The lattice parameters were measured by X-ray diffraction and the Young`s moduli were measured by low-load microindentation. The composition dependence of the lattice parameters and elastic moduli show a positive deviation with respect to a rule of mixtures. During continuous heating at 15C/min., the metastable precursor bcc phases decomposed at temperatures above 750C to uniformly refined microstructures.

  9. Metastability in the phase behavior of dimyristoylphosphatidylethanolamine bilayers.

    PubMed

    Wilkinson, D A; Nagle, J F

    1984-03-27

    A new subgel phase is demonstrated to occur in hydrated dimyristoylphosphatidylethanolamine ( DMPE ) by using dilatometric and calorimetric techniques. The formation of the subgel phase takes place very slowly at temperatures near 0 degree C, but it can still be observed at 25 degrees C. Once formed, the subgel phase melts (delta Hh = 16.0 +/- 0.6 kcal/mol and delta V = 0.085 +/- 0.014 mL/g) directly into the liquid-crystalline phase at a temperature, Th = 56.3 degrees C, that is higher than the gel to liquid-crystalline transition temperature, Tm = 49.6 degrees C. Thus, the gel phase appears to be metastable over its entire temperature range. In this regard, DMPE behaves differently from dipalmitoylphosphatidylcholine and distearoylphosphatidylcholine but similarly to dilaurylphosphatidylethanolamine . This unusual long-lived metastability provides cells an additional option in determining the properties of membranes.

  10. Cooperative photoinduced metastable phase control in strained manganite films.

    PubMed

    Zhang, Jingdi; Tan, Xuelian; Liu, Mengkun; Teitelbaum, S W; Post, K W; Jin, Feng; Nelson, K A; Basov, D N; Wu, Wenbin; Averitt, R D

    2016-09-01

    A major challenge in condensed-matter physics is active control of quantum phases. Dynamic control with pulsed electromagnetic fields can overcome energetic barriers, enabling access to transient or metastable states that are not thermally accessible. Here we demonstrate strain-engineered tuning of La2/3Ca1/3MnO3 into an emergent charge-ordered insulating phase with extreme photo-susceptibility, where even a single optical pulse can initiate a transition to a long-lived metastable hidden metallic phase. Comprehensive single-shot pulsed excitation measurements demonstrate that the transition is cooperative and ultrafast, requiring a critical absorbed photon density to activate local charge excitations that mediate magnetic-lattice coupling that, in turn, stabilize the metallic phase. These results reveal that strain engineering can tune emergent functionality towards proximal macroscopic states to enable dynamic ultrafast optical phase switching and control.

  11. Cooperative photoinduced metastable phase control in strained manganite films

    NASA Astrophysics Data System (ADS)

    Zhang, Jingdi; Tan, Xuelian; Liu, Mengkun; Teitelbaum, S. W.; Post, K. W.; Jin, Feng; Nelson, K. A.; Basov, D. N.; Wu, Wenbin; Averitt, R. D.

    2016-09-01

    A major challenge in condensed-matter physics is active control of quantum phases. Dynamic control with pulsed electromagnetic fields can overcome energetic barriers, enabling access to transient or metastable states that are not thermally accessible. Here we demonstrate strain-engineered tuning of La2/3Ca1/3MnO3 into an emergent charge-ordered insulating phase with extreme photo-susceptibility, where even a single optical pulse can initiate a transition to a long-lived metastable hidden metallic phase. Comprehensive single-shot pulsed excitation measurements demonstrate that the transition is cooperative and ultrafast, requiring a critical absorbed photon density to activate local charge excitations that mediate magnetic-lattice coupling that, in turn, stabilize the metallic phase. These results reveal that strain engineering can tune emergent functionality towards proximal macroscopic states to enable dynamic ultrafast optical phase switching and control.

  12. In Situ Observations of Phase Transitions in Metastable Nickel (Carbide)/Carbon Nanocomposites

    PubMed Central

    2016-01-01

    Nanocomposite thin films comprised of metastable metal carbides in a carbon matrix have a wide variety of applications ranging from hard coatings to magnetics and energy storage and conversion. While their deposition using nonequilibrium techniques is established, the understanding of the dynamic evolution of such metastable nanocomposites under thermal equilibrium conditions at elevated temperatures during processing and during device operation remains limited. Here, we investigate sputter-deposited nanocomposites of metastable nickel carbide (Ni3C) nanocrystals in an amorphous carbon (a-C) matrix during thermal postdeposition processing via complementary in situ X-ray diffractometry, in situ Raman spectroscopy, and in situ X-ray photoelectron spectroscopy. At low annealing temperatures (300 °C) we observe isothermal Ni3C decomposition into face-centered-cubic Ni and amorphous carbon, however, without changes to the initial finely structured nanocomposite morphology. Only for higher temperatures (400–800 °C) Ni-catalyzed isothermal graphitization of the amorphous carbon matrix sets in, which we link to bulk-diffusion-mediated phase separation of the nanocomposite into coarser Ni and graphite grains. Upon natural cooling, only minimal precipitation of additional carbon from the Ni is observed, showing that even for highly carbon saturated systems precipitation upon cooling can be kinetically quenched. Our findings demonstrate that phase transformations of the filler and morphology modifications of the nanocomposite can be decoupled, which is advantageous from a manufacturing perspective. Our in situ study also identifies the high carbon content of the Ni filler crystallites at all stages of processing as the key hallmark feature of such metal–carbon nanocomposites that governs their entire thermal evolution. In a wider context, we also discuss our findings with regard to the much debated potential role of metastable Ni3C as a catalyst phase in graphene and

  13. In Situ Observations of Phase Transitions in Metastable Nickel (Carbide)/Carbon Nanocomposites.

    PubMed

    Bayer, Bernhard C; Bosworth, David A; Michaelis, F Benjamin; Blume, Raoul; Habler, Gerlinde; Abart, Rainer; Weatherup, Robert S; Kidambi, Piran R; Baumberg, Jeremy J; Knop-Gericke, Axel; Schloegl, Robert; Baehtz, Carsten; Barber, Zoe H; Meyer, Jannik C; Hofmann, Stephan

    2016-10-06

    Nanocomposite thin films comprised of metastable metal carbides in a carbon matrix have a wide variety of applications ranging from hard coatings to magnetics and energy storage and conversion. While their deposition using nonequilibrium techniques is established, the understanding of the dynamic evolution of such metastable nanocomposites under thermal equilibrium conditions at elevated temperatures during processing and during device operation remains limited. Here, we investigate sputter-deposited nanocomposites of metastable nickel carbide (Ni3C) nanocrystals in an amorphous carbon (a-C) matrix during thermal postdeposition processing via complementary in situ X-ray diffractometry, in situ Raman spectroscopy, and in situ X-ray photoelectron spectroscopy. At low annealing temperatures (300 °C) we observe isothermal Ni3C decomposition into face-centered-cubic Ni and amorphous carbon, however, without changes to the initial finely structured nanocomposite morphology. Only for higher temperatures (400-800 °C) Ni-catalyzed isothermal graphitization of the amorphous carbon matrix sets in, which we link to bulk-diffusion-mediated phase separation of the nanocomposite into coarser Ni and graphite grains. Upon natural cooling, only minimal precipitation of additional carbon from the Ni is observed, showing that even for highly carbon saturated systems precipitation upon cooling can be kinetically quenched. Our findings demonstrate that phase transformations of the filler and morphology modifications of the nanocomposite can be decoupled, which is advantageous from a manufacturing perspective. Our in situ study also identifies the high carbon content of the Ni filler crystallites at all stages of processing as the key hallmark feature of such metal-carbon nanocomposites that governs their entire thermal evolution. In a wider context, we also discuss our findings with regard to the much debated potential role of metastable Ni3C as a catalyst phase in graphene and carbon

  14. New metastable phases in a trititanium pentoxide compound

    NASA Astrophysics Data System (ADS)

    Vallejo, E.; Olguín, D.

    2015-12-01

    New metastable triclinic phases in the trititanium pentoxide Ti3O5 compound were obtained using an evolutionary algorithm and density functional theory. Structural, electronic and magnetic properties were studied. The most stable triclinic structure was identified as P1 with a space group number of 1. The magnetic structure of this phase looks like zigzag lines of ferromagnetic Ti ions in a y-direction antiferromagnetic background. Additionally, an orthorhombic Amm2 structure and a monoclinic Cm metastable phase were found. To our best knowledge these phases have not been reported in literature. Additionally, an orthorhombic-monoclinic structural transition was observed, where a Jahn-Teller like effect was proposed as an explanation of this transition.

  15. Electrostatic levitation studies of supercooled liquids and metastable solid phases

    NASA Astrophysics Data System (ADS)

    Rustan, Gustav Errol

    been carried out to study the metastable phase formation in an Fe83B17 near eutectic alloy. Initial supercooling measurements using the ISU-ESL identified the formation of three metastable phases: a precipitate phase that shows stable coexistence with the deeply supercooled liquid, and two distinct bulk solidification phases. To identify the structure of the metastable phases, the Washington University Beamline ESL (WU-BESL) has been used to perform in-situ high energy x-ray diffraction measurements of the metastable phases. Based on the x-ray results, the precipitate phase has been identified as bcc-Fe, and the more commonly occurring bulk solidification product has been found to be a two-phase mixture of Fe23B6 plus fcc-Fe, which appears, upon cooling, to transform into a three phase mixture of Fe23B6, bcc-Fe, and an as-yet unidentified phase, with the transformation occurring at approximately the expected fcc-to-bcc transformation temperature of pure Fe. To further characterize the multi-phase metastable alloy, the ISU-ESL has been used to perform measurements of volume thermal expansion via the videographic technique, as well as RF susceptibility via the TDO technique. The results of the thermal expansion and susceptibility data have been found to be sensitive indicators of additional structural changes that may be occurring in the metastable solid at temperatures below 1000 K, and the susceptibility data has revealed that three distinct ferromagnetic phase transitions take place within the multi-phase mixture. Based on these results, it has been hypothesized that there may be an additional transformation taking place that leads to the formation of either bct- or o-Fe3B in addition to the Fe23B6 phase, although further work is required to test this hypothesis.

  16. Nonequilibrium quantum phase transitions in the Dicke model.

    PubMed

    Bastidas, V M; Emary, C; Regler, B; Brandes, T

    2012-01-27

    We establish a set of nonequilibrium quantum phase transitions in the Dicke model by considering a monochromatic nonadiabatic modulation of the atom-field coupling. For weak driving the system exhibits a set of sidebands which allow the circumvention of the no-go theorem which otherwise forbids the occurrence of superradiant phase transitions. At strong driving we show that the system exhibits a rich multistable structure and exhibits both first- and second-order nonequilibrium quantum phase transitions.

  17. Metastable mesoscopic phases in concentrated protein solutions.

    PubMed

    Vekilov, Peter G

    2009-04-01

    The Gibbs's definition of a phase assumes completely homogeneous composition, with fluctuations bringing about local variations of less than a few percent. We apply light scattering, atomic force microscopy, and other techniques to demonstrate that even solutions of a single protein of moderate concentration do not comply with Gibbs's definition of phase. In such solutions clusters of sizes from several tens to several hundred nanometers exist and have limited lifetimes. These clusters have a higher free energy than the protein solution, and their lifetime is determined by the barrier for their decay. The clusters affect the viscous and viscoelastic behavior of the solution and are an essential part of potential condensation and aggregation pathways. Since the clusters are observed in solutions of single proteins, they indicate that the proteins have an intrinsic propensity to form mesoscopic structures, which is probably utilized in the formation of the protein complexes in the cytosol. Cluster theories developed for colloid systems appear inapplicable to proteins due to the high level of implied Coulomb repulsion. The experimental evidence on the clusters suggests that their sizes are determined by the kinetics of growth and decay, and not by thermodynamics. A microscopic theory to account for stabilizing and destabilizing factors involving protein molecules and solvent inside the clusters has not yet been developed.

  18. A new nanoscale metastable iron phase in carbon steels

    NASA Astrophysics Data System (ADS)

    Liu, Tianwei; Zhang, Danxia; Liu, Qing; Zheng, Yanjun; Su, Yanjing; Zhao, Xinqing; Yin, Jiang; Song, Minghui; Ping, Dehai

    2015-10-01

    Metastable ω phase is common in body-centred cubic (bcc) metals and alloys, including high-alloying steels. Recent theoretical calculations also suggest that the ω structure may act as an intermediate phase for face-centred cubic (fcc)-to-bcc transformation. Thus far, the role of the ω phase played in fcc-bcc martensitic transformation in carbon steels has not been reported. In previous investigations on martensitic carbon steels, extra electron diffraction spots were frequently observed by transmission electron microscopy (TEM), and these spots were historically ascribed to the diffraction arising from either internal twins or carbides. In this paper, an intensive TEM investigation revealed that the extra spots are in fact attributed to the metastable ω phase in particle-like morphology with an overall size of several or dozens of nanometres. The strict orientation relationships between the ω phase and the ferrite matrix are in good agreement with those of the hexagonal (P6/mmm) ω phase in other bcc metals and alloys. The identification of the ω phase as well as the extra diffraction spots might provide a clue to help understand the physical mechanism of martensitic transformation in steels.

  19. A new nanoscale metastable iron phase in carbon steels.

    PubMed

    Liu, Tianwei; Zhang, Danxia; Liu, Qing; Zheng, Yanjun; Su, Yanjing; Zhao, Xinqing; Yin, Jiang; Song, Minghui; Ping, Dehai

    2015-10-27

    Metastable ω phase is common in body-centred cubic (bcc) metals and alloys, including high-alloying steels. Recent theoretical calculations also suggest that the ω structure may act as an intermediate phase for face-centred cubic (fcc)-to-bcc transformation. Thus far, the role of the ω phase played in fcc-bcc martensitic transformation in carbon steels has not been reported. In previous investigations on martensitic carbon steels, extra electron diffraction spots were frequently observed by transmission electron microscopy (TEM), and these spots were historically ascribed to the diffraction arising from either internal twins or carbides. In this paper, an intensive TEM investigation revealed that the extra spots are in fact attributed to the metastable ω phase in particle-like morphology with an overall size of several or dozens of nanometres. The strict orientation relationships between the ω phase and the ferrite matrix are in good agreement with those of the hexagonal (P6/mmm) ω phase in other bcc metals and alloys. The identification of the ω phase as well as the extra diffraction spots might provide a clue to help understand the physical mechanism of martensitic transformation in steels.

  20. A new nanoscale metastable iron phase in carbon steels

    PubMed Central

    Liu, Tianwei; Zhang, Danxia; Liu, Qing; Zheng, Yanjun; Su, Yanjing; Zhao, Xinqing; Yin, Jiang; Song, Minghui; Ping, Dehai

    2015-01-01

    Metastable ω phase is common in body-centred cubic (bcc) metals and alloys, including high-alloying steels. Recent theoretical calculations also suggest that the ω structure may act as an intermediate phase for face-centred cubic (fcc)-to-bcc transformation. Thus far, the role of the ω phase played in fcc-bcc martensitic transformation in carbon steels has not been reported. In previous investigations on martensitic carbon steels, extra electron diffraction spots were frequently observed by transmission electron microscopy (TEM), and these spots were historically ascribed to the diffraction arising from either internal twins or carbides. In this paper, an intensive TEM investigation revealed that the extra spots are in fact attributed to the metastable ω phase in particle-like morphology with an overall size of several or dozens of nanometres. The strict orientation relationships between the ω phase and the ferrite matrix are in good agreement with those of the hexagonal (P6/mmm) ω phase in other bcc metals and alloys. The identification of the ω phase as well as the extra diffraction spots might provide a clue to help understand the physical mechanism of martensitic transformation in steels. PMID:26503890

  1. Metastable phases in mechanically alloyed aluminum germanium powders

    SciTech Connect

    Yvon, P.J.; Schwarz, R.B.

    1993-03-01

    Aluminum and germanium form a simple eutectic system with no stable intermetallic phase, and limited mutual solubility. We report the formation of a metastable rhombohedral,{gamma}{sub 1} phase by mechanically alloying aluminum and germanium powders. This phase, which appears for compositions between 20 and 50 at. % germanium, has also been observed in rapidly quenched alloys, but there is disagreement as to its composition. By measuring the heat of crystallization as a function of composition, we determined the composition of the {gamma}{sub 1} phase to be Al{sub 70}Ge{sub 30}. We also produced Al{sub 70}Ge{sub 30} by arc melting the pure elements, followed by splat-quenching at a cooling rate in the range of 10{sup 8} K s{sup {minus}1}. This method produced two metastable phases, one of which was found to be the {gamma}{sub 1} phase obtained by mechanical alloying. The other was a monoclinic phase reported earlier in the literature as {gamma}{sub 2}.

  2. Metastable Amyloid Phases and their Conversion to Mature Fibrils

    NASA Astrophysics Data System (ADS)

    Muschol, Martin; Miti, Tatiana; Mulaj, Mentor; Schmit, Jeremy

    Self-assembly of proteins into amyloid fibrils plays a key role in both functional biological responses and pathogenic disorders which include Alzheimer's disease and type II diabetes. Amyloid fibril assembly frequently generates compact oligomeric and curvilinear polymeric intermediates which are implicated to be toxic to cells. Yet, the relation between these early-stage oligomeric aggregates and late-stage rigid fibrils, which are the hallmark structure of amyloid plaques, has remained unclear. Our measurements indicate that lysozyme amyloid oligomers and their curvilinear fibrils only form after crossing a salt and protein concentration dependent threshold. These oligomeric aggregates are structurally distinct from rigid fibrils and are metastable against nucleation and growth of rigid fibrils. Our experimental transition boundaries match well with colloidal model predictions accounting for salt-modulated charge repulsion. We also report our preliminary findings on the mechanism by which these metastable oligomeric phases are converted into stable amyloid fibrils.

  3. Non-equilibrium quantum phase transition via entanglement decoherence dynamics

    PubMed Central

    Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min

    2016-01-01

    We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained. PMID:27713556

  4. Non-equilibrium quantum phase transition via entanglement decoherence dynamics.

    PubMed

    Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min

    2016-10-07

    We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained.

  5. Metastable states in calcium phosphate - aqueous phase equilibrations

    NASA Astrophysics Data System (ADS)

    Driessens, F. C. M.; Verbeeck, R. M. H.

    1981-05-01

    A critical evaluation of the literature reveals that during equilibration of well crystallized hydroxyapatite in aqueous solutions metastable states can occur. They are characterized by a persistent supersaturation with respect to hydroxyapatite and a systematical dependence of the ion activity product of this compound on the solution composition. For products synthesized by thermal treatment it is known that they are transformed into oxyhydroxyapatite so that the theoretical solubility behaviour could be predicted from the extrapolated value of the free energy of oxyapatite at room temperature: the negative logarithm of the ionic product for hydroxyapatite should become close to that of oxyapatite during equilibration. The discrepancy with experimental data is probably due to the formation of thin layers seeming dicalcium phosphate dihydrate, octocalcium phosphate or defective hydroxyapatite as coatings on the apatite crystals. This is derived from the apparent Ca/P ratio of the solubility controlling phase. According to chemical potential plots this apparent Ca/P ratio can have values close to 1, 1.33, 1.50 or 1.67. The aqueous solutions are clearly undersaturated with respect to the more acidic calcium phosphates so that the coatings must deviate from the compositions of these compounds in their pure state. The formation of these metastable states during equilibration of oxyhydroxyapatites is compared with others occuring during precipitation and crystal growth of calcium phosphates. A model is proposed which explains the observations qualitatively.

  6. Nonequilibrium and nonhomogeneous phenomena around a first-order quantum phase transition

    NASA Astrophysics Data System (ADS)

    Del Re, Lorenzo; Fabrizio, Michele; Tosatti, Erio

    2016-03-01

    We consider nonequilibrium phenomena in a very simple model that displays a zero-temperature first-order phase transition. The quantum Ising model with a four-spin exchange is adopted as a general representative of first-order quantum phase transitions that belong to the Ising universality class, such as for instance the order-disorder ferroelectric transitions, and possibly first-order T =0 Mott transitions. In particular, we address quantum quenches in the exactly solvable limit of infinite connectivity and show that, within the coexistence region around the transition, the system can remain trapped in a metastable phase, as long as it is spatially homogeneous so that nucleation can be ignored. Motivated by the physics of nucleation, we then study in the same model static but inhomogeneous phenomena that take place at surfaces and interfaces. The first-order nature implies that both phases remain locally stable across the transition, and with that the possibility of a metastable wetting layer showing up at the surface of the stable phase, even at T =0 . We use mean-field theory plus quantum fluctuations in the harmonic approximation to study quantum surface wetting.

  7. Formation of a metastable phase due to the presence of impurities.

    PubMed

    Sear, Richard P

    2005-06-29

    Phase transitions into a new phase that is itself metastable are common; instead of the equilibrium phase nucleating, a metastable phase does so. When this occurs the system is sometimes said to be obeying Ostwald's rule. We show how this can happen when there are impurities present that reduce the barrier to heterogeneous nucleation of the metastable phase. We do so by studying a Potts lattice model using Monte Carlo simulation. Thus, which phase forms depends not only on the properties of the different phases but also on the impurities present. Understanding why systems obey Ostwald's rule may therefore require a study of the impurities present.

  8. High polarizability and pyroelectric effect in nonequilibrium nonpolar phases of rubidium dihydroarsenate and potash alum

    SciTech Connect

    Gavrilova, N.D.; Lotonov, A.M.

    1994-08-01

    In this work, the authors studied the thermodynamically nonequilibrium ferroelectriclike state formed under certain conditions in the nonpolar phases of dielectric crystals with hydrogen bonds. This state forms upon fast cooling of a crystal to temperature at which protons can move from their positions into interstices. Studied were the crystals of a ferroelectric: rubidium dihydroarsenate (RDA) with T{sub c}=110 Kelvin, potash alum, and a linear pyroelectric (barium nitrite monohydrate) over the temperature range 245-303 Kelvin. It was found that rapid cooling of some dielectric crystals with hydrogen bonds results in the formation of a metastable, ferroelectric-like state, which is likely to be associated with the formation and self-organization of a system of flickering dipoles caused by interstitial proton vacancies. Upon rapid cooling, the nonpolar phases of the crystals exhibit anomalous pyroelectric and dielectric properties resembling those of ferroelectrics below the Curie point.

  9. Thermally driven metastable solid-solution Li(0.5)FePO4 in nanosized particles and its phase separation behaviors.

    PubMed

    Yoo, Sunyoung; Kang, Byoungwoo

    2013-10-25

    Nanosized LiFePO4 particles easily show a fast electrochemical response that can be achieved via a non-equilibrium pathway. To understand this intriguing phase transition behavior in nanosized LiFePO4 particles, the metastable solid-solution phase was prepared by thermal treatment with a chemically delithiated nanosized Li0.5FePO4 sample. Thermal treatment makes all the nanosized particles transform easily to the metastable solid-solution phase because of the large thermal energy while an electrochemical reaction does not. The phase separation behavior of the metastable solid-solution sample (Li0.5FePO4) was investigated under various kinetic conditions to understand critical factors affecting the phase separation behavior of nanosized LiFePO4 particles. The main findings in this study are as follows. The first finding is that the depressed phase separation behavior of the metastable phase may originate from the nanoparticle effect, in which the formation of a second phase inside a nanosized particle is not energetically favored because of the large interfacial energy. Therefore, phase separation in nanosized particles occurs between particles rather than inside a particle. If there was no over-potential, such as in the relaxed pellet experiment or in the relaxed electrode experiment in the electrolyte, the metastable phase was quite stable showing no phase separation behavior even though efficient pathways for lithium ions and electrons were well developed. The second finding is that the phase separation behavior of the metastable phase actually depends on the over-potential. Under open circuit voltage (OCV) conditions, the metastable phase started to exhibit a slight structural change during a long relaxation time, about ten days. The slow change of the metastable phase may be due to the low driving force, less than 10 mV, which comes from the energetic difference between the two-phase state and the metastable phase. This indicates that the phase separation

  10. Thermally driven metastable solid-solution Li0.5FePO4 in nanosized particles and its phase separation behaviors

    NASA Astrophysics Data System (ADS)

    Yoo, Sunyoung; Kang, Byoungwoo

    2013-10-01

    Nanosized LiFePO4 particles easily show a fast electrochemical response that can be achieved via a non-equilibrium pathway. To understand this intriguing phase transition behavior in nanosized LiFePO4 particles, the metastable solid-solution phase was prepared by thermal treatment with a chemically delithiated nanosized Li0.5FePO4 sample. Thermal treatment makes all the nanosized particles transform easily to the metastable solid-solution phase because of the large thermal energy while an electrochemical reaction does not. The phase separation behavior of the metastable solid-solution sample (Li0.5FePO4) was investigated under various kinetic conditions to understand critical factors affecting the phase separation behavior of nanosized LiFePO4 particles. The main findings in this study are as follows. The first finding is that the depressed phase separation behavior of the metastable phase may originate from the nanoparticle effect, in which the formation of a second phase inside a nanosized particle is not energetically favored because of the large interfacial energy. Therefore, phase separation in nanosized particles occurs between particles rather than inside a particle. If there was no over-potential, such as in the relaxed pellet experiment or in the relaxed electrode experiment in the electrolyte, the metastable phase was quite stable showing no phase separation behavior even though efficient pathways for lithium ions and electrons were well developed. The second finding is that the phase separation behavior of the metastable phase actually depends on the over-potential. Under open circuit voltage (OCV) conditions, the metastable phase started to exhibit a slight structural change during a long relaxation time, about ten days. The slow change of the metastable phase may be due to the low driving force, less than 10 mV, which comes from the energetic difference between the two-phase state and the metastable phase. This indicates that the phase separation

  11. Optimization of crystal nucleation close to a metastable fluid-fluid phase transition.

    PubMed

    Wedekind, Jan; Xu, Limei; Buldyrev, Sergey V; Stanley, H Eugene; Reguera, David; Franzese, Giancarlo

    2015-06-22

    The presence of a metastable fluid-fluid critical point is thought to dramatically influence the crystallization pathway, increasing the nucleation rate by many orders of magnitude over the predictions of classical nucleation theory. We use molecular dynamics simulations to study the kinetics of crystallization in the vicinity of this metastable critical point and throughout the metastable fluid-fluid phase diagram. To quantitatively understand how the fluid-fluid phase separation affects the crystal nucleation, we evaluate accurately the kinetics and reconstruct the thermodynamic free-energy landscape of crystal formation. Contrary to expectations, we find no special advantage of the proximity of the metastable critical point on the crystallization rates. However, we find that the ultrafast formation of a dense liquid phase causes the crystallization to accelerate both near the metastable critical point and almost everywhere below the fluid-fluid spinodal line. These results unveil three different scenarios for crystallization that could guide the optimization of the process in experiments.

  12. Phase diagram with a region of liquid carbon-diamond metastable states

    NASA Astrophysics Data System (ADS)

    Basharin, A. Yu.; Dozhdikov, V. S.; Kirillin, A. V.; Turchaninov, M. A.; Fokin, L. R.

    2010-06-01

    Metastable cubic diamond has been found in the structure of solid carbon obtained by quenching of a liquid phase at a pressure (0.012 GPa) much lower than that corresponding to the existence of stable diamond. It is suggested that this metastable diamond is formed as a result of the recalescence of supercooled liquid carbon to the melting point ( T dm) of metastable diamond due to a lower energy barrier for the formation of diamond as compared to that of graphite. A comparison between the calculated Gibbs energies of metastable phases provided an estimate of T dm = 4160 ± 50 K. For the first time, metastable continuations of the curve of diamond melting at pressures of up to 0.012 GPa are constructed on the phase diagrams of carbon (according to various published data) using analytical curves described by a two-parametric Simon equation.

  13. THE ROLE OF METASTABLE STATES IN POLYMER PHASE TRANSITIONS: Concepts, Principles, and Experimental Observations

    NASA Astrophysics Data System (ADS)

    Cheng, Stephen Z. D.; Keller, Andrew

    1998-08-01

    Polymer phases can be described in the same way as phases in other condensed matter using a number density operator and its correlation functions. This description requires the understanding of symmetry operations and order at different atomic and molecular levels. Statistical mechanics provides a link between the microscopic description of the structure and motion and the macroscopic thermodynamic properties. Within the limits of the laws of thermodynamics, polymers exhibit a rich variety of phase transition behaviors. By definition, a first-order phase transition describes a transformation that involves a sudden change of thermodynamic properties at its transition temperature, whereas higher-order phase transitions are classified as critical phenomena. Of special interest is the role of metastability in phase and phase transition behaviors. Although a metastable state possesses a local free energy minimum, it is not at the global equilibrium. Furthermore, metastable states can also be associated with phase sizes. Metastable behavior is also observed in phase transformations that are impeded by kinetic limitations along the pathway to thermodynamic equilibrium. This is illustrated in structural and morphological investigations of crystallization and mesophase transitions, liquid-liquid phase separation, vitrification, and gel formation, as well as combinations of transformation processes. In these cases, the metastable state often becomes the dominant state for the entire system and is observed over a range of time and size scales. This review describes the general principles of metastability in polymer phases and phase transitions and provides illustrations from current experimental works in selected areas.

  14. Discovery of a metastable Al{sub 20}Sm{sub 4} phase

    SciTech Connect

    Ye, Z. E-mail: kmh@ameslab.gov; Zhang, F.; Mendelev, M. I.; Ott, R. T.; Park, E.; Besser, M. F.; Kramer, M. J.; Wang, C.-Z.; Sun, Y.; Ding, Z.; Ho, K.-M. E-mail: kmh@ameslab.gov

    2015-03-09

    We present an efficient genetic algorithm, integrated with experimental diffraction data, to solve a nanoscale metastable Al{sub 20}Sm{sub 4} phase that evolves during crystallization of an amorphous magnetron sputtered Al{sub 90}Sm{sub 10} alloy. The excellent match between calculated and experimental X-ray diffraction patterns confirms an accurate description of this metastable phase. Molecular dynamic simulations of crystal growth from the liquid phase predict the formation of disordered defects in the devitrified crystal.

  15. Nonequilibrium phase transition in a driven Potts model with friction.

    PubMed

    Iglói, Ferenc; Pleimling, Michel; Turban, Loïc

    2011-04-01

    We consider magnetic friction between two systems of q-state Potts spins which are moving along their boundaries with a relative constant velocity ν. Due to the interaction between the surface spins there is a permanent energy flow and the system is in a steady state, which is far from equilibrium. The problem is treated analytically in the limit ν=∞ (in one dimension, as well as in two dimensions for large-q values) and for v and q finite by Monte Carlo simulations in two dimensions. Exotic nonequilibrium phase transitions take place, the properties of which depend on the type of phase transition in equilibrium. When this latter transition is of first order, a sequence of second- and first-order nonequilibrium transitions can be observed when the interaction is varied. ©2011 American Physical Society

  16. Nonequilibrium phase transitions in cuprates observed by ultrafast electron crystallography.

    PubMed

    Gedik, Nuh; Yang, Ding-Shyue; Logvenov, Gennady; Bozovic, Ivan; Zewail, Ahmed H

    2007-04-20

    Nonequilibrium phase transitions, which are defined by the formation of macroscopic transient domains, are optically dark and cannot be observed through conventional temperature- or pressure-change studies. We have directly determined the structural dynamics of such a nonequilibrium phase transition in a cuprate superconductor. Ultrafast electron crystallography with the use of a tilted optical geometry technique afforded the necessary atomic-scale spatial and temporal resolutions. The observed transient behavior displays a notable "structural isosbestic" point and a threshold effect for the dependence of c-axis expansion (Deltac) on fluence (F), with Deltac/F = 0.02 angstrom/(millijoule per square centimeter). This threshold for photon doping occurs at approximately 0.12 photons per copper site, which is unexpectedly close to the density (per site) of chemically doped carriers needed to induce superconductivity.

  17. Nonequilibrium phase transition on a randomly diluted lattice.

    PubMed

    Vojta, Thomas; Lee, Man Young

    2006-01-27

    We show that the interplay between geometric criticality and dynamical fluctuations leads to a novel universality class of the contact process on a randomly diluted lattice. The nonequilibrium phase transition across the percolation threshold of the lattice is characterized by unconventional activated (exponential) dynamical scaling and strong Griffiths effects. We calculate the critical behavior in two and three space dimensions, and we also relate our results to the recently found infinite-randomness fixed point in the disordered one-dimensional contact process.

  18. Antiferromagnetic phase transition in a nonequilibrium lattice of Rydberg atoms

    SciTech Connect

    Lee, Tony E.; Cross, M. C.; Haeffner, H.

    2011-09-15

    We study a driven-dissipative system of atoms in the presence of laser excitation to a Rydberg state and spontaneous emission. The atoms interact via the blockade effect, whereby an atom in the Rydberg state shifts the Rydberg level of neighboring atoms. We use mean-field theory to study how the Rydberg population varies in space. As the laser frequency changes, there is a continuous transition between the uniform and antiferromagnetic phases. The nonequilibrium nature also leads to a novel oscillatory phase and bistability between the uniform and antiferromagnetic phases.

  19. Broadening of a nonequilibrium phase transition by extended structural defects.

    PubMed

    Vojta, Thomas

    2004-08-01

    We study the effects of quenched extended impurities on nonequilibrium phase transitions in the directed percolation universality class. We show that these impurities have a dramatic effect: they completely destroy the sharp phase transition by smearing. This is caused by rare strongly coupled spatial regions which can undergo the phase transition independently from the bulk system. We use extremal statistics to determine the stationary state as well as the dynamics in the tail of the smeared transition, and we illustrate the results by computer simulations.

  20. Nonequilibrium Phase Behavior from Minimization of Free Power Dissipation

    NASA Astrophysics Data System (ADS)

    Krinninger, Philip; Schmidt, Matthias; Brader, Joseph M.

    2016-11-01

    We develop a general theory for describing phase coexistence between nonequilibrium steady states in Brownian systems, based on power functional theory [M. Schmidt and J. M. Brader, J. Chem. Phys. 138, 214101 (2013)]. We apply the framework to the special case of fluid-fluid phase separation of active soft sphere swimmers. The central object of the theory, the dissipated free power, is calculated via computer simulations and compared to a simple analytical approximation. The theory describes well the simulation data and predicts motility-induced phase separation due to avoidance of dissipative clusters.

  1. Nonequilibrium phase transitions and a nonequilibrium critical point from anti-de Sitter space and conformal field theory correspondence.

    PubMed

    Nakamura, Shin

    2012-09-21

    We find novel phase transitions and critical phenomena that occur only outside the linear-response regime of current-driven nonequilibrium states. We consider the strongly interacting (3+1)-dimensional N = 4 large-N(c) SU(N(c)) supersymmetric Yang-Mills theory with a single flavor of fundamental N = 2 hypermultiplet as a microscopic theory. We compute its nonlinear nonballistic quark-charge conductivity by using the AdS/CFT correspondence. We find that the system exhibits a novel nonequilibrium first-order phase transition where the conductivity jumps and the sign of the differential conductivity flips at finite current density. A nonequilibrium critical point is discovered at the end point of the first-order regime. We propose a nonequilibrium steady-state analogue of thermodynamic potential in terms of the gravity-dual theory in order to define the transition point. Nonequilibrium analogues of critical exponents are proposed as well. The critical behavior of the conductivity is numerically confirmed on the basis of these proposals. The present work provides a new example of nonequilibrium phase transitions and nonequilibrium critical points.

  2. Nonequilibrium Phase Transitions. Appendix A-F

    DTIC Science & Technology

    1988-09-20

    equilibrium whereas the dissipation of energy goes to zero as the excess energy vanishes at equilibrium. In a system that is not isolated the dissipation...polymer molecule cannot undergo a phase transition with zero change in free energy unless it does so with no change in conformation. This is the...solidification can never occur with a zero change in free energy . Only when the polymer molecule has a reasonable probability of occupying the same conformation

  3. Metastable phase of lead phthalocyanine films on graphite: Correlation between geometrical and electronic structures

    NASA Astrophysics Data System (ADS)

    Kawakita, N.; Yamada, T.; Meissner, M.; Forker, R.; Fritz, T.; Munakata, T.

    2017-01-01

    The geometrical and electronic structures of a metastable phase of lead phthalocyanine (PbPc) films on graphite have been studied by combined use of low energy electron diffraction (LEED) and two-photon photoemission (2PPE) spectroscopy. In submonolayer (sub-ML) PbPc films on graphite, islands in a metastable phase are formed just after deposition, as we reported previously by use of photoelectron emission microscopy (PEEM) [I. Yamamoto, N. Matsuura, M. Mikamori, R. Yamamoto, T. Yamada, K. Miyakubo, N. Ueno, and T. Munakata, Surf. Sci. 602, 2232 (2008), 10.1016/j.susc.2008.04.037]. On single crystalline graphite substrates, the metastable islands produce clearly discernible LEED spots. By comparing the unit cell with that of annealed 1 ML films, molecules in the metastable islands are standing upright with a molecular density 1.8 times higher than that in the well-ordered 1 ML films. The LEED spots for the sub-ML films disappear after annealing. The islands in the metastable phase are surrounded by areas of a two-dimensional (2D) gaslike phase composed of flat-lying molecules. The metastable islands melt into the 2D gas phase, consistent with the PEEM results. In 2PPE spectroscopy, the lowest unoccupied molecular orbital (LUMO) derived level of the metastable phase is clearly distinguishable from that of flat-lying molecules. By tracking the thermal annealing process of the films by 2PPE spectroscopy, we clarify the decay of the LUMO derived peak intensity, the work function shift, and the energy shifts of molecular states associated with the transition from the metastable phase to the 2D gas phase. With this, we demonstrate the complementary capabilities of LEED and 2PPE spectroscopy to probe phase transitions of organic films in a nondestructive manner.

  4. Infinite-noise criticality: Nonequilibrium phase transitions in fluctuating environments

    NASA Astrophysics Data System (ADS)

    Vojta, Thomas; Hoyos, José A.

    2015-11-01

    We study the effects of time-varying environmental noise on nonequilibrium phase transitions in spreading and growth processes. Using the examples of the logistic evolution equation as well as the contact process, we show that such temporal disorder gives rise to a distinct type of critical points at which the effective noise amplitude diverges on long time scales. This leads to enormous density fluctuations characterized by an infinitely broad probability distribution at criticality. We develop a real-time renormalization-group theory that provides a general framework for the effects of temporal disorder on nonequilibrium processes. We also discuss how general this exotic critical behavior is, we illustrate the results by computer simulations, and we touch upon experimental applications of our theory.

  5. Infinite-noise criticality: Nonequilibrium phase transitions in fluctuating environments

    NASA Astrophysics Data System (ADS)

    Vojta, Thomas; Hoyos, Jose

    We study the effects of time-varying environmental noise on nonequilibrium phase transitions in spreading and growth processes. Using the examples of the logistic evolution equation as well as the contact process, we show that such temporal disorder gives rise to a distinct type of critical points at which the effective noise amplitude diverges on long time scales. This leads to enormous density fluctuations characterized by an infinitely broad probability distribution at criticality. We develop a real-time renormalization-group theory that provides a general framework for the effects of temporal disorder on nonequilibrium processes. We also discuss how general this exotic critical behavior is, we illustrate the results by computer simulations, and we touch upon experimental applications of our theory. Supported by the NSF under Grant No. DMR-1205803, by Simons Foundation, by FAPESP under Grant No. 2013/09850-7, and by CNPq under Grant Nos. 590093/2011-8 and 305261/2012-6.

  6. Metastable bcc phase formation in the Nb-Cr-Ti system

    SciTech Connect

    Thoma, D.J.; Perepezko, J.H.

    1994-08-01

    Metastable disordered bcc phases have been formed from the melt in the Nb-Cr-Ti system where primary Laves phases would develop under equilibrium solidification conditions. Three vertical temperature-composition sections in the ternary system incorporating NbCr, were evaluated: the Nb-Cr binary, the TiCr{sub 2}-NbCr{sub 2} isoplethal section, and the NbCr{sub 2}-Ti plethal section. In the rapid solidification of NbCr{sub 2}, metastable bcc phase formation was not observed, but deviations from NbCr{sub 2} stoichiometry or alloying with Ti was found to promote bcc phase formation by decreasing the required liquid undercooling to reach the metastable bcc liquidus and solidus. The metastable phases were characterized through x-ray diffraction (XRD), and systematic deviations from Vegard`s Rule have been defined in the three plethal sections. The metastable bcc phases decompose at temperatures >800{degrees}C to uniformly refined microstructures. As a result, novel microstructural tailoring schemes are possible through the metastable precursor microstructures.

  7. Quantitative Phase-Change Thermodynamics and Metastability of Perovskite-Phase Cesium Lead Iodide.

    PubMed

    Dastidar, Subham; Hawley, Christopher J; Dillon, Andrew D; Gutierrez-Perez, Alejandro D; Spanier, Jonathan E; Fafarman, Aaron T

    2017-03-16

    The perovskite phase of cesium lead iodide (α-CsPbI3 or "black" phase) possesses favorable optoelectronic properties for photovoltaic applications. However, the stable phase at room temperature is a nonfunctional "yellow" phase (δ-CsPbI3). Black-phase polycrystalline thin films are synthesized above 330 °C and rapidly quenched to room temperature, retaining their phase in a metastable state. Using differential scanning calorimetry, it is shown herein that the metastable state is maintained in the absence of moisture, up to a temperature of 100 °C, and a reversible phase-change enthalpy of 14.2 (±0.5) kJ/mol is observed. The presence of atmospheric moisture hastens the black-to-yellow conversion kinetics without significantly changing the enthalpy of the transition, indicating a catalytic effect, rather than a change in equilibrium due to water adduct formation. These results delineate the conditions for trapping the desired phase and highlight the significant magnitude of the entropic stabilization of this phase.

  8. Direct determination of metastable phase diagram by synchrotron radiation experiments on undercooled metallic melts.

    PubMed

    Notthoff, C; Feuerbacher, B; Franz, H; Herlach, D M; Holland-Moritz, D

    2001-02-05

    The phase selection process during the crystallization of undercooled metallic melts is studied in situ by combining the electromagnetic levitation technique with energy dispersive x-ray diffraction of synchrotron radiation. The crystallization of metastable bcc phase in binary Ni-V alloys was identified. A metastable phase diagram of Ni-V alloy is constructed, which shows the primarily solidifying phase as a function of composition and undercooling. The analysis within nucleation theory emphasizes the important role of metal oxide as a heterogeneous nucleation site controlling the phase selection.

  9. Biological Implications of Dynamical Phases in Non-equilibrium Networks

    NASA Astrophysics Data System (ADS)

    Murugan, Arvind; Vaikuntanathan, Suriyanarayanan

    2016-03-01

    Biology achieves novel functions like error correction, ultra-sensitivity and accurate concentration measurement at the expense of free energy through Maxwell Demon-like mechanisms. The design principles and free energy trade-offs have been studied for a variety of such mechanisms. In this review, we emphasize a perspective based on dynamical phases that can explain commonalities shared by these mechanisms. Dynamical phases are defined by typical trajectories executed by non-equilibrium systems in the space of internal states. We find that coexistence of dynamical phases can have dramatic consequences for function vs free energy cost trade-offs. Dynamical phases can also provide an intuitive picture of the design principles behind such biological Maxwell Demons.

  10. Optical Properties in Non-equilibrium Phase Transitions

    SciTech Connect

    Ao, T; Ping, Y; Widmann, K; Price, D F; Lee, E; Tam, H; Springer, P T; Ng, A

    2006-01-05

    An open question about the dynamical behavior of materials is how phase transition occurs in highly non-equilibrium systems. One important class of study is the excitation of a solid by an ultrafast, intense laser. The preferential heating of electrons by the laser field gives rise to initial states dominated by hot electrons in a cold lattice. Using a femtosecond laser pump-probe approach, we have followed the temporal evolution of the optical properties of such a system. The results show interesting correlation to non-thermal melting and lattice disordering processes. They also reveal a liquid-plasma transition when the lattice energy density reaches a critical value.

  11. High speed, high temperature electrical characterization of phase change materials: metastable phases, crystallization dynamics, and resistance drift

    NASA Astrophysics Data System (ADS)

    Dirisaglik, Faruk; Bakan, Gokhan; Jurado, Zoila; Muneer, Sadid; Akbulut, Mustafa; Rarey, Jonathan; Sullivan, Lindsay; Wennberg, Maren; King, Adrienne; Zhang, Lingyi; Nowak, Rebecca; Lam, Chung; Silva, Helena; Gokirmak, Ali

    2015-10-01

    During the fast switching in Ge2Sb2Te5 phase change memory devices, both the amorphous and fcc crystalline phases remain metastable beyond the fcc and hexagonal transition temperatures respectively. In this work, the metastable electrical properties together with crystallization times and resistance drift behaviour of GST are studied using a high-speed, device-level characterization technique in the temperature range of 300 K to 675 K.During the fast switching in Ge2Sb2Te5 phase change memory devices, both the amorphous and fcc crystalline phases remain metastable beyond the fcc and hexagonal transition temperatures respectively. In this work, the metastable electrical properties together with crystallization times and resistance drift behaviour of GST are studied using a high-speed, device-level characterization technique in the temperature range of 300 K to 675 K. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05512a

  12. Observation of Well-ordered Metastable Vortex Lattice Phases in Superconducting MgB2 Using Small-Angle Neutron Scattering

    SciTech Connect

    Das, Pinaki; Rastovski, Catherine; O'Brien, Timothy; Schlesinger, Kimberly; Dewhurst, Charles; Debeer-Schmitt, Lisa M; Zhigadlo, Nikolai; Karpinski, Janusz; Eskildsen, Morten

    2012-01-01

    The vortex lattice (VL) symmetry and orientation in clean type-II superconductors depends sensitively on the host material anisotropy, vortex density and temperature, frequently leading to rich phase diagrams. Typically, a well-ordered VL is taken to imply a ground-state configuration for the vortex-vortex interaction. Using neutron scattering we studied the VL in MgB2 for a number of field-temperature histories, discovering an unprecedented degree of metastability in connection with a known, second-order rotation transition. This allows, for the first time, structural studies of a well-ordered, nonequilibrium VL. While the mechanism responsible for the longevity of the metastable states is not resolved, we speculate it is due to a jamming of VL domains, preventing a rotation to the ground-state orientation.

  13. High speed, high temperature electrical characterization of phase change materials: metastable phases, crystallization dynamics, and resistance drift.

    PubMed

    Dirisaglik, Faruk; Bakan, Gokhan; Jurado, Zoila; Muneer, Sadid; Akbulut, Mustafa; Rarey, Jonathan; Sullivan, Lindsay; Wennberg, Maren; King, Adrienne; Zhang, Lingyi; Nowak, Rebecca; Lam, Chung; Silva, Helena; Gokirmak, Ali

    2015-10-28

    During the fast switching in Ge2Sb2Te5 phase change memory devices, both the amorphous and fcc crystalline phases remain metastable beyond the fcc and hexagonal transition temperatures respectively. In this work, the metastable electrical properties together with crystallization times and resistance drift behaviour of GST are studied using a high-speed, device-level characterization technique in the temperature range of 300 K to 675 K.

  14. Metastable extensions of phase equilibrium lines and singular points of simple substance

    SciTech Connect

    Baidakov, V. G. Protsenko, S. P.

    2006-12-15

    The thermodynamic properties of crystal, liquid, and gas in the stable and metastable states have been determined by molecular dynamics simulation of a system of 2048 Lennard-Jones particles. The spinodals of a superheated crystal, a superheated liquid, and a supersaturated vapor have been approximated; the spinodal for a supercooled liquid turns out to be nonexistent. The liquid-vapor, liquid-crystal, and crystal-vapor equilibrium curves and their extensions beyond the triple point have been calculated. It has been shown that, as distinct from the metastable extension of the saturation curve, which terminates at the zero isotherm, the metastable melting and sublimation curves terminate at, respectively, the stretched liquid and superheated crystal spinodals. The properties of the critical end points of metastable equilibrium of extended phases are considered.

  15. Discovery of a metastable Al20Sm4 phase

    SciTech Connect

    Ye, Z.; Zhang, F.; Sun, Y.; Mendelev, M. I.; Ott, R. T.; Park, E.; Besser, M. F.; Kramer, M. J.; Ding, Z.; Wang, C. -Z.; Ho, K. -M.

    2015-03-09

    In this study, we present an efficient genetic algorithm, integrated with experimental diffraction data, to solve a nanoscale metastable Al20Sm4 phase that evolves during crystallization of an amorphous magnetron sputtered Al90Sm10 alloy. The excellent match between calculated and experimental X-ray diffraction patterns confirms an accurate description of this metastable phase. Molecular dynamic simulations of crystal growth from the liquid phase predict the formation of disordered defects in the devitrified crystal.

  16. Understanding metastable phase transformation during crystallization of RDX, HMX and CL-20: experimental and DFT studies.

    PubMed

    Ghosh, Mrinal; Banerjee, Shaibal; Shafeeuulla Khan, Md Abdul; Sikder, Nirmala; Sikder, Arun Kanti

    2016-09-14

    Multiphase growth during crystallization severely affects deliverable output of explosive materials. Appearance and incomplete transformation of metastable phases are a major source of polymorphic impurities. This article presents a methodical and molecular level understanding of the metastable phase transformation mechanism during crystallization of cyclic nitramine explosives, viz. RDX, HMX and CL-20. Instantaneous reverse precipitation yielded metastable γ-HMX and β-CL-20 which undergo solution mediated transformation to the respective thermodynamic forms, β-HMX and ε-CL-20, following 'Ostwald's rule of stages'. However, no metastable phase, anticipated as β-RDX, was evidenced during precipitation of RDX, which rather directly yielded the thermodynamically stable α-phase. The γ→β-HMX and β→ε-CL-20 transformations took 20 and 60 minutes respectively, whereas formation of α-RDX was instantaneous. Density functional calculations were employed to identify the possible transition state conformations and to obtain activation barriers for transformations at wB97XD/6-311++G(d,p)(IEFPCM)//B3LYP/6-311G(d,p) level of theory. The computed activation barriers and lattice energies responsible for transformation of RDX, HMX and CL-20 metastable phases to thermodynamic ones conspicuously supported the experimentally observed order of phase stability. This precise result facilitated an understanding of the occurrence of a relatively more sensitive and less dense β-CL-20 phase in TNT based melt-cast explosive compositions, a persistent and critical problem unanswered in the literature. The crystalline material recovered from such compositions revealed a mixture of β- and ε-CL-20. However, similar compositions of RDX and HMX never showed any metastable phase. The relatively long stability with the highest activation barrier is believed to restrict complete β→ε-CL-20 transformation during processing. Therefore a method is suggested to overcome this issue.

  17. Competitive nucleation and the Ostwald rule in a generalized Potts model with multiple metastable phases

    NASA Astrophysics Data System (ADS)

    Sanders, David P.; Larralde, Hernán; Leyvraz, François

    2007-04-01

    We introduce a simple nearest-neighbor spin model with multiple metastable phases, the number and decay pathways of which are explicitly controlled by the parameters of the system. With this model, we can construct, for example, a system which evolves through an arbitrarily long succession of metastable phases. We also construct systems in which different phases may nucleate competitively from a single initial phase. For such a system, we present a general method to extract from numerical simulations the individual nucleation rates of the nucleating phases. The results show that the Ostwald rule, which predicts which phase will nucleate, must be modified probabilistically when the new phases are almost equally stable. Finally, we show that the nucleation rate of a phase depends, among other things, on the number of other phases accessible from it.

  18. Non-equilibrium phase transitions in a liquid crystal

    NASA Astrophysics Data System (ADS)

    Dan, K.; Roy, M.; Datta, A.

    2015-09-01

    The present manuscript describes kinetic behaviour of the glass transition and non-equilibrium features of the "Nematic-Isotropic" (N-I) phase transition of a well known liquid crystalline material N-(4-methoxybenzylidene)-4-butylaniline from the effects of heating rate and initial temperature on the transitions, through differential scanning calorimetry (DSC), Fourier transform infrared and fluorescence spectroscopy. Around the vicinity of the glass transition temperature (Tg), while only a change in the baseline of the ΔCp vs T curve is observed for heating rate (β) > 5 K min-1, consistent with a glass transition, a clear peak for β ≤ 5 K min-1 and the rapid reduction in the ΔCp value from the former to the latter rate correspond to an order-disorder transition and a transition from ergodic to non-ergodic behaviour. The ln β vs 1000/T curve for the glass transition shows convex Arrhenius behaviour that can be explained very well by a purely entropic activation barrier [Dan et al., Eur. Phys. Lett. 108, 36007 (2014)]. Fourier transform infrared spectroscopy indicates sudden freezing of the out-of-plane distortion vibrations of the benzene rings around the glass transition temperature and a considerable red shift indicating enhanced coplanarity of the benzene rings and, consequently, enhancement in the molecular ordering compared to room temperature. We further provide a direct experimental evidence of the non-equilibrium nature of the N-I transition through the dependence of this transition temperature (TNI) and associated enthalpy change (ΔH) on the initial temperature (at fixed β-values) for the DSC scans. A plausible qualitative explanation based on Mesquita's extension of Landau-deGennes theory [O. N. de Mesquita, Braz. J. Phys. 28, 257 (1998)] has been put forward. The change in the molecular ordering from nematic to isotropic phase has been investigated through fluorescence anisotropy measurements where the order parameter, quantified by the

  19. Non-equilibrium phase transitions in a liquid crystal.

    PubMed

    Dan, K; Roy, M; Datta, A

    2015-09-07

    The present manuscript describes kinetic behaviour of the glass transition and non-equilibrium features of the "Nematic-Isotropic" (N-I) phase transition of a well known liquid crystalline material N-(4-methoxybenzylidene)-4-butylaniline from the effects of heating rate and initial temperature on the transitions, through differential scanning calorimetry (DSC), Fourier transform infrared and fluorescence spectroscopy. Around the vicinity of the glass transition temperature (Tg), while only a change in the baseline of the ΔCp vs T curve is observed for heating rate (β) > 5 K min(-1), consistent with a glass transition, a clear peak for β ≤ 5 K min(-1) and the rapid reduction in the ΔCp value from the former to the latter rate correspond to an order-disorder transition and a transition from ergodic to non-ergodic behaviour. The ln β vs 1000/T curve for the glass transition shows convex Arrhenius behaviour that can be explained very well by a purely entropic activation barrier [Dan et al., Eur. Phys. Lett. 108, 36007 (2014)]. Fourier transform infrared spectroscopy indicates sudden freezing of the out-of-plane distortion vibrations of the benzene rings around the glass transition temperature and a considerable red shift indicating enhanced coplanarity of the benzene rings and, consequently, enhancement in the molecular ordering compared to room temperature. We further provide a direct experimental evidence of the non-equilibrium nature of the N-I transition through the dependence of this transition temperature (TNI) and associated enthalpy change (ΔH) on the initial temperature (at fixed β-values) for the DSC scans. A plausible qualitative explanation based on Mesquita's extension of Landau-deGennes theory [O. N. de Mesquita, Braz. J. Phys. 28, 257 (1998)] has been put forward. The change in the molecular ordering from nematic to isotropic phase has been investigated through fluorescence anisotropy measurements where the order parameter, quantified by the

  20. Formation and Stabilization of Single-Crystalline Metastable AuGe Phases in Ge Nanowires

    SciTech Connect

    Sutter, E.; Sutter, P.

    2011-07-22

    We use in situ observations by variable temperature transmission electron microscopy on AuGe alloy drops at the tips of Ge nanowires (NWs) with systematically varying composition to demonstrate the controlled formation of metastable solid phases integrated in NWs. The process, which operates in the regime of vapor-liquid-solid growth, involves a size-dependent depression of the alloy liquidus at the nanoscale that leads to extremely Ge-rich AuGe melts at low temperatures. During slow cooling, these liquid AuGe alloy drops show pronounced departures from equilibrium, i.e., a frustrated phase separation of Ge into the adjacent solid NW, and ultimately crystallize as single-crystalline segments of metastable {gamma}-AuGe. Our findings demonstrate a general avenue for synthesizing NW heterostructures containing stable and metastable solid phases, applicable to a wide range of materials of which NWs form by the vapor-liquid-solid method.

  1. Optimization of crystal nucleation close to a metastable fluid-fluid phase transition

    PubMed Central

    Wedekind, Jan; Xu, Limei; Buldyrev, Sergey V.; Stanley, H. Eugene; Reguera, David; Franzese, Giancarlo

    2015-01-01

    The presence of a metastable fluid-fluid critical point is thought to dramatically influence the crystallization pathway, increasing the nucleation rate by many orders of magnitude over the predictions of classical nucleation theory. We use molecular dynamics simulations to study the kinetics of crystallization in the vicinity of this metastable critical point and throughout the metastable fluid-fluid phase diagram. To quantitatively understand how the fluid-fluid phase separation affects the crystal nucleation, we evaluate accurately the kinetics and reconstruct the thermodynamic free-energy landscape of crystal formation. Contrary to expectations, we find no special advantage of the proximity of the metastable critical point on the crystallization rates. However, we find that the ultrafast formation of a dense liquid phase causes the crystallization to accelerate both near the metastable critical point and almost everywhere below the fluid-fluid spinodal line. These results unveil three different scenarios for crystallization that could guide the optimization of the process in experiments PMID:26095898

  2. Phase Transition and Dynamics in Imidazolium-Based Ionic Liquid Crystals through a Metastable Highly Ordered Smectic Phase.

    PubMed

    Nozaki, Yoko; Yamaguchi, Keito; Tomida, Kenji; Taniguchi, Natsumi; Hara, Hironori; Takikawa, Yoshinori; Sadakane, Koichiro; Nakamura, Kenji; Konishi, Takashi; Fukao, Koji

    2016-06-16

    The phase transition behavior and dynamics of ionic liquid crystals, 1-methyl-3-alkylimidazolium tetrafluoroborate with various alkyl chain lengths, were investigated by X-ray scattering, differential scanning calorimetry, optical microscopy, and dielectric relaxation spectroscopy to elucidate the mechanism of their structural and phase changes. A metastable phase was found to appear via a supercooled smectic phase on cooling. In the metastable phase, disorder in the smectic phase is partially frozen; thus, the phase has order higher than that of the smectic phase but lower than that of the crystalline phase. During the subsequent heating process, the frozen disorder activates, and a crystalline phase appears in the supercooled smectic phase before entering the smectic phase. The relationship between the phase behavior and the dynamics of charge carriers such as ions is also discussed.

  3. Phase behavior of metastable liquid silicon at negative pressure: Ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Zhao, G.; Yu, Y. J.; Yan, J. L.; Ding, M. C.; Zhao, X. G.; Wang, H. Y.

    2016-04-01

    Extensive first-principle molecular dynamics simulations are performed to study the phase behavior of metastable liquid Si at negative pressure. Our results show that the high-density liquid (HDL) and HDL-vapor spinodals indeed form a continuous reentrant curve and the liquid-liquid critical point seems to just coincide with its minimum. The line of density maxima also has a strong tendency to pass through this minimum. The phase behaviour of metastable liquid Si therefore tends to be a critical-point-free scenario rather than a second-critical-point one based on SW potential.

  4. Photochemical solution processing of films of metastable phases for flexible devices: the β-Bi2O3 polymorph.

    PubMed

    Pérez-Mezcua, Dulce; Bretos, Iñigo; Jiménez, Ricardo; Ricote, Jesús; Jiménez-Rioboó, Rafael J; da Silva, Cosmelina Gonçalves; Chateigner, Daniel; Fuentes-Cobas, Luis; Sirera, Rafael; Calzada, M Lourdes

    2016-12-20

    The potential of UV-light for the photochemical synthesis and stabilization of non-equilibrium crystalline phases in thin films is demonstrated for the β-Bi2O3 polymorph. The pure β-Bi2O3 phase is thermodynamically stable at high temperature (450-667 °C), which limits its applications in devices. Here, a tailored UV-absorbing bismuth(III)-N-methyldiethanolamine complex is selected as an ideal precursor for this phase, in order to induce under UV-light the formation of a -Bi-O-Bi- continuous network in the deposited layers and the further conversion into the β-Bi2O3 polymorph at a temperature as low as 250 °C. The stabilization of the β-Bi2O3 films is confirmed by their conductivity behavior and a thorough characterization of their crystal structure. This is also supported by their remarkable photocatalytic activity. Besides, this processing method has allowed us for the first time the preparation of β-Bi2O3 films on flexible plastic substrates, which opens new opportunities for using these materials in potential applications not available until now (e.g., flexible photocatalytic reactors, self-cleaning surfaces or wearable antimicrobial fabrics). Therefore, photochemical solution deposition (PCSD) demonstrates to be not only an efficient approach for the low temperature processing of oxide films, but also an excellent alternative for the stabilization of metastable phases.

  5. Photochemical solution processing of films of metastable phases for flexible devices: the β-Bi2O3 polymorph

    PubMed Central

    Pérez-Mezcua, Dulce; Bretos, Iñigo; Jiménez, Ricardo; Ricote, Jesús; Jiménez-Rioboó, Rafael J.; da Silva, Cosmelina Gonçalves; Chateigner, Daniel; Fuentes-Cobas, Luis; Sirera, Rafael; Calzada, M. Lourdes

    2016-01-01

    The potential of UV-light for the photochemical synthesis and stabilization of non-equilibrium crystalline phases in thin films is demonstrated for the β-Bi2O3 polymorph. The pure β-Bi2O3 phase is thermodynamically stable at high temperature (450–667 °C), which limits its applications in devices. Here, a tailored UV-absorbing bismuth(III)-N-methyldiethanolamine complex is selected as an ideal precursor for this phase, in order to induce under UV-light the formation of a –Bi–O–Bi– continuous network in the deposited layers and the further conversion into the β-Bi2O3 polymorph at a temperature as low as 250 °C. The stabilization of the β-Bi2O3 films is confirmed by their conductivity behavior and a thorough characterization of their crystal structure. This is also supported by their remarkable photocatalytic activity. Besides, this processing method has allowed us for the first time the preparation of β-Bi2O3 films on flexible plastic substrates, which opens new opportunities for using these materials in potential applications not available until now (e.g., flexible photocatalytic reactors, self-cleaning surfaces or wearable antimicrobial fabrics). Therefore, photochemical solution deposition (PCSD) demonstrates to be not only an efficient approach for the low temperature processing of oxide films, but also an excellent alternative for the stabilization of metastable phases. PMID:27996042

  6. Photochemical solution processing of films of metastable phases for flexible devices: the β-Bi2O3 polymorph

    NASA Astrophysics Data System (ADS)

    Pérez-Mezcua, Dulce; Bretos, Iñigo; Jiménez, Ricardo; Ricote, Jesús; Jiménez-Rioboó, Rafael J.; da Silva, Cosmelina Gonçalves; Chateigner, Daniel; Fuentes-Cobas, Luis; Sirera, Rafael; Calzada, M. Lourdes

    2016-12-01

    The potential of UV-light for the photochemical synthesis and stabilization of non-equilibrium crystalline phases in thin films is demonstrated for the β-Bi2O3 polymorph. The pure β-Bi2O3 phase is thermodynamically stable at high temperature (450–667 °C), which limits its applications in devices. Here, a tailored UV-absorbing bismuth(III)-N-methyldiethanolamine complex is selected as an ideal precursor for this phase, in order to induce under UV-light the formation of a –Bi–O–Bi– continuous network in the deposited layers and the further conversion into the β-Bi2O3 polymorph at a temperature as low as 250 °C. The stabilization of the β-Bi2O3 films is confirmed by their conductivity behavior and a thorough characterization of their crystal structure. This is also supported by their remarkable photocatalytic activity. Besides, this processing method has allowed us for the first time the preparation of β-Bi2O3 films on flexible plastic substrates, which opens new opportunities for using these materials in potential applications not available until now (e.g., flexible photocatalytic reactors, self-cleaning surfaces or wearable antimicrobial fabrics). Therefore, photochemical solution deposition (PCSD) demonstrates to be not only an efficient approach for the low temperature processing of oxide films, but also an excellent alternative for the stabilization of metastable phases.

  7. Nonequilibrium photons as a signature of quark-hadron phase transition

    NASA Astrophysics Data System (ADS)

    Lee, Da-Shin; Ng, Kin-Wang

    1999-03-01

    We study the nonequilibrium photon production in the quark-hadron phase transition, using the Friedberg-Lee type solitons as a working model for quark-hadron physics. We propose that to search for nonequilibrium photons in the direct photon measurements of heavy-ion collisions may be a characteristic test of the transition from the quark-gluon to hadronic phases.

  8. Limit of metastability for liquid and vapor phases of water.

    PubMed

    Cho, Woo Jong; Kim, Jaegil; Lee, Joonho; Keyes, Thomas; Straub, John E; Kim, Kwang S

    2014-04-18

    We report the limits of superheating of water and supercooling of vapor from Monte Carlo simulations using microscopic models with configurational enthalpy as the order parameter. The superheating limit is well reproduced. The vapor is predicted to undergo spinodal decomposition at a temperature of Tspvap=46±10 °C (0 °C≪Tspvap≪100 °C) under 1 atm. The water-water network begins to form at the supercooling limit of the vapor. Three-dimensional water-water and cavity-cavity unbroken networks are interwoven at critically superheated liquid water; if either network breaks, the metastable state changes to liquid or vapor.

  9. Phase diagram of KHF2 and non-equilibrium effects

    NASA Technical Reports Server (NTRS)

    Hobson, M. C.; Kellner, J. D.

    1978-01-01

    The equilibrium diagram for the KHF2-H2O system was constructed from cooling and heating curves for the compositions between 5 wt% and 40 wt% KHF2 and the results are shown. The phase diagrams shown is typical of that of a two component system with miscible liquid phases and whole solid phases consist of pure components. A eutectic point was found at approximately 15% KHF2 which remains completely liquid down to a temperature of -9.0 C. No hydrate formation was observed and no anomalous behavior such as the occurrence of solid transitions or metastable states was observed. The effect of rapid freezing on the equilibrium diagram did not appear, and cooling curves exhibited only one halt. Also, at rapid freezing rates, the supercooling of the solutions was smaller than those observed at the slow cooling rates. The existence of a eutectic composition and the slow rate of dissolution of the salt are used to interpret heat absorption behavior in practical applications of the KHF2-H2O system.

  10. Metastable phases in Zr-Excel alloy and their stability under heavy ion (Kr2+) irradiation

    NASA Astrophysics Data System (ADS)

    Yu, Hongbing; Zhang, Ken; Yao, Zhongwen; Kirk, Mark A.; Long, Fei; Daymond, Mark R.

    2016-02-01

    Zr-Excel alloy (Zr-3.5Sn-0.8Nb-0.8Mo, wt.%) has been proposed as a candidate material of pressure tubes in the CANDU-SCWR design. It is a dual-phase alloy containing primary hcp α-Zr and metastable bcc β-Zr. Metastable hexagonal ω-Zr phase could form in β-Zr as a result of aging during the processing of the tube. A synchrotron X-ray study was employed to study the lattice properties of the metastable phases in as-received Zr-Excel pressure tube material. In situ heavy ion (1 MeV Kr2+) irradiations were carried out at 200 °C and 450 °C to emulate the stability of the metastable phase under a reactor environment. Quantitative Chemi-STEM EDS analysis was conducted on both un-irradiated and irradiated samples to investigate alloying element redistribution induced by heavy ion irradiation. It was found that no decomposition of β-Zr was observed under irradiation at both 200 °C and 450 °C. However, ω-Zr particles experienced shape changes and shrinkage associated with enrichment of Fe at the β/ω interface during 200 °C irradiation but not at 450 °C. There is a noticeable increase in the level of Fe in the α matrix after irradiation at both 200 °C and 450 °C. The concentrations of Nb, Mo and Fe are increased in the ω phase but decreased in the β phase at 200 °C. The stability of metastable phases under heavy ion irradiation associated with elemental redistribution is discussed.

  11. Unstable dynamics, nonequilibrium phases, and criticality in networked excitable media.

    PubMed

    de Franciscis, S; Torres, J J; Marro, J

    2010-10-01

    Excitable systems are of great theoretical and practical interest in mathematics, physics, chemistry, and biology. Here, we numerically study models of excitable media, namely, networks whose nodes may occasionally be dormant and the connection weights are allowed to vary with the system activity on a short-time scale, which is a convenient and realistic representation. The resulting global activity is quite sensitive to stimuli and eventually becomes unstable also in the absence of any stimuli. Outstanding consequences of such unstable dynamics are the spontaneous occurrence of various nonequilibrium phases--including associative-memory phases and one in which the global activity wanders irregularly, e.g., chaotically among all or part of the dynamic attractors--and 1/f noise as the system is driven into the phase region corresponding to the most irregular behavior. A net result is resilience which results in an efficient search in the model attractor space that can explain the origin of some observed behavior in neural, genetic, and ill-condensed matter systems. By extensive computer simulation we also address a previously conjectured relation between observed power-law distributions and the possible occurrence of a "critical state" during functionality of, e.g., cortical networks, and describe the precise nature of such criticality in the model which may serve to guide future experiments.

  12. Unstable dynamics, nonequilibrium phases, and criticality in networked excitable media

    SciTech Connect

    Franciscis, S. de; Torres, J. J.; Marro, J.

    2010-10-15

    Excitable systems are of great theoretical and practical interest in mathematics, physics, chemistry, and biology. Here, we numerically study models of excitable media, namely, networks whose nodes may occasionally be dormant and the connection weights are allowed to vary with the system activity on a short-time scale, which is a convenient and realistic representation. The resulting global activity is quite sensitive to stimuli and eventually becomes unstable also in the absence of any stimuli. Outstanding consequences of such unstable dynamics are the spontaneous occurrence of various nonequilibrium phases--including associative-memory phases and one in which the global activity wanders irregularly, e.g., chaotically among all or part of the dynamic attractors--and 1/f noise as the system is driven into the phase region corresponding to the most irregular behavior. A net result is resilience which results in an efficient search in the model attractor space that can explain the origin of some observed behavior in neural, genetic, and ill-condensed matter systems. By extensive computer simulation we also address a previously conjectured relation between observed power-law distributions and the possible occurrence of a ''critical state'' during functionality of, e.g., cortical networks, and describe the precise nature of such criticality in the model which may serve to guide future experiments.

  13. Super-stable ultrafine beta-tungsten nanocrystals with metastable phase and related magnetism.

    PubMed

    Xiao, J; Liu, P; Liang, Y; Li, H B; Yang, G W

    2013-02-07

    Ultrafine tungsten nanocrystals (average size of 3 nm) with a metastable phase (beta-tungsten with A15 structure, β-W) have been prepared by laser ablation of tungsten in liquid nitrogen. The as-prepared metastable nanocrystals exhibited super-stablity, and can keep the same metastable structure over a period of 6 months at room temperature. This super-stability is attributed to the nanosized confinement effect of ultrafine nanocrystals. The magnetism measurements showed that the β-W nanocrystals have weak ferromagnetic properties at 2 K, which may arise from surface defects and unpaired electrons on the surface of the ultrafine nanocrystals. These findings provided useful information for the application of ultrafine β-W nanocrystals in microelectronics and spintronics.

  14. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere

    USGS Publications Warehouse

    Kirby, S.H.; Stein, S.; Okal, E.A.; Rubie, David C.

    1996-01-01

    Earth's deepest earthquakes occur as a population in subducting or previously subducted lithosphere at depths ranging from about 325 to 690 km. This depth interval closely brackets the mantle transition zone, characterized by rapid seismic velocity increases resulting from the transformation of upper mantle minerals to higher-pressure phases. Deep earthquakes thus provide the primary direct evidence for subduction of the lithosphere to these depths and allow us to investigate the deep thermal, thermodynamic, and mechanical ferment inside slabs. Numerical simulations of reaction rates show that the olivine ??? spinel transformation should be kinetically hindered in old, cold slabs descending into the transition zone. Thus wedge-shaped zones of metastable peridotite probably persist to depths of more than 600 km. Laboratory deformation experiments on some metastable minerals display a shear instability called transformational faulting. This instability involves sudden failure by localized superplasticity in thin shear zones where the metastable host mineral transforms to a denser, finer-grained phase. Hence in cold slabs, such faulting is expected for the polymorphic reactions in which olivine transforms to the spinel structure and clinoenstatite transforms to ilmenite. It is thus natural to hypothesize that deep earthquakes result from transformational faulting in metastable peridotite wedges within cold slabs. This consideration of the mineralogical states of slabs augments the traditional largely thermal view of slab processes and explains some previously enigmatic slab features. It explains why deep seismicity occurs only in the approximate depth range of the mantle transition zone, where minerals in downgoing slabs should transform to spinel and ilmenite structures. The onset of deep shocks at about 325 km is consistent with the onset of metastability near the equilibrium phase boundary in the slab. Even if a slab penetrates into the lower mantle, earthquakes

  15. Interplay between structure and superconductivity: Metastable phases of phosphorus under pressure

    NASA Astrophysics Data System (ADS)

    Flores-Livas, José A.; Sanna, Antonio; Drozdov, Alexander P.; Boeri, Lilia; Profeta, Gianni; Eremets, Mikhail; Goedecker, Stefan

    2017-07-01

    Pressure-induced superconductivity and structural phase transitions in phosphorus (P) are studied by resistivity measurements under pressures up to 170 GPa and by fully ab initio crystal structure exploration and superconductivity calculations up to 350 GPa. Two distinct superconducting transition temperature (TC) vs pressure (P ) trends at low pressure have been reported more than 30 years ago, and we are able to devise a consistent explanation founded on thermodynamically metastable phases of black phosphorus. Our experimental and theoretical results form a single, consistent picture which not only provides a clear understanding of elemental P under pressure but also sheds light on the longstanding and unsolved anomalous superconductivity trends. Moreover, at higher pressures we predict a similar scenario of multiple metastable structures which coexist beyond their thermodynamical stability range. We observe that all the metastable structures systematically exhibit larger transition temperatures than the ground-state structures, indicating that the exploration of metastable phases represents a promising route to design materials with improved superconducting properties.

  16. A metastable cubic phase of sodium niobate nanoparticles stabilized by chemically bonded solvent molecules.

    PubMed

    Gu, Qilin; Zhu, Kongjun; Sun, Qiaomei; Liu, Jinsong; Wang, Jing; Qiu, Jinhao; Wang, John

    2016-12-07

    Structural modification, especially the stabilization of metastable phases at room temperature, has emerged as an effective strategy to understand their stabilization mechanism and improve their functional properties. In this work, a facile solvothermal approach is developed to synthesize metastable sodium niobate (NaNbO3) crystals with the cubic symmetry. XRD, Raman and TEM results all confirmed the selective synthesis of cubic and orthorhombic NaNbO3via adjustment of the reaction medium. The fact that traditional hydrothermal synthesis often yields orthorhombic NaNbO3 inspires us to elucidate the formation mechanism of cubic NaNbO3 with respect to the solvent effect. With the increasing post-calcination temperature, the as-synthesized cubic NaNbO3 gradually transforms into the orthorhombic structure, which is understood to be a recrystallization behavior, as evidenced by the XRD and TEM results. The organic molecules retained in the NaNbO3 nanocrystals, as suggested by UV-vis, FT-IR and TGA-MS results, have contributed to the stabilization of the metastable structure, demonstrated by the different temperature-induced phase transition behaviors in air and argon atmospheres, where the phase transition from cubic to orthorhombic would take place at a relatively higher temperature in argon. This work provides an alternative approach to synthesize cubic NaNbO3 nanocrystals, and the understanding of the stabilization mechanism could pave a new pathway for fabricating metastable materials.

  17. Nonequilibrium phase transformations in bcc titanium and niobium alloys

    NASA Astrophysics Data System (ADS)

    Doherty, Kevin James

    The major goal throughout this entire study was to find a bulk beta-titanium amorphous system. In this case, the feasibility of bulk amorphization by destabilizing the crystalline phase in bcc titanium alloys is developed. The binary Ti-Cr system was previously reported, by others, to undergo spontaneous vitrification. This work was later proven to be irreproducible by several other groups. With the proper alloying additions to the Ti-Cr system, the resultant bcc matrix is extremely unstable, however, the formation of alpha, o, and intermetallics is inhibited. Powders of the complex system Ti65Cr13Cu 16Mn4Fe2 transform to a fully amorphous structure after just 3 to 4 hours of mechanical milling. In bulk, this system forms nanoscale disordered regions, totaling 20 to 30% of the microstructure, upon annealing of the metastable bcc phase. The phase separation, beta → beta + beta' accompanies this transformation and induces strain into the matrix. Analytical high resolution transmission electron microscopy (TEM) is used to characterize the decomposition behavior by obtaining physical measurements of the microstructure and chemistry, and to determine the mechanism of the phase separation. High resolution and analytical TEM data map the development of successive chromium rich (copper poor) and chromium poor (copper rich) regions formed in <100> directions during heat treatment. This reaction is shown to occur by spinodal decomposition. A known bcc, binary spinodal decomposition system, Nb-Zr, was chosen as a reference system to verify the spinodal mechanism in the 5-component titanium system and to validate the use of analytical TEM to characterize spinodal decomposition. The Ti-Cr system is also investigated for comparison with the complex Ti-Cr-Cu-Mn-Fe system and to resolve some of the issues presented during the earlier spontaneous vitrification studies. Finally, a combination of high resolution TEM and chemical analysis is utilized to differentiate between the

  18. Non-equilibrium fluctuations and metastability arising from non-additive interactions in dissipative multi-component Rydberg gases

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Ricardo; Garrahan, Juan P.; Lesanovsky, Igor

    2016-09-01

    We study the out-of-equilibrium dynamics of dissipative gases of atoms excited to two or more high-lying Rydberg states. This situation bears interesting similarities to classical binary (in general p-ary) mixtures of particles. The effective forces between the components are determined by the inter-level and intra-level interactions of Rydberg atoms. These systems permit to explore new parameter regimes which are physically inaccessible in a classical setting, for example one in which the mixtures exhibit non-additive interactions. In this situation the out-of-equilibrium evolution is characterized by the formation of metastable domains that reach partial equilibration long before the attainment of stationarity. In experimental settings with mesoscopic sizes, this collective behavior may in fact take the appearance of dynamic symmetry breaking.

  19. Metastability in an open quantum Ising model.

    PubMed

    Rose, Dominic C; Macieszczak, Katarzyna; Lesanovsky, Igor; Garrahan, Juan P

    2016-11-01

    We apply a recently developed theory for metastability in open quantum systems to a one-dimensional dissipative quantum Ising model. Earlier results suggest this model features either a nonequilibrium phase transition or a smooth but sharp crossover, where the stationary state changes from paramagnetic to ferromagnetic, accompanied by strongly intermittent emission dynamics characteristic of first-order coexistence between dynamical phases. We show that for a range of parameters close to this transition or crossover point the dynamics of the finite system displays pronounced metastability, i.e., the system relaxes first to long-lived metastable states before eventual relaxation to the true stationary state. From the spectral properties of the quantum master operator we characterize the low-dimensional manifold of metastable states, which are shown to be probability mixtures of two, paramagnetic and ferromagnetic, metastable phases. We also show that for long times the dynamics can be approximated by a classical stochastic dynamics between the metastable phases that is directly related to the intermittent dynamics observed in quantum trajectories and thus the dynamical phases.

  20. Metastability in an open quantum Ising model

    NASA Astrophysics Data System (ADS)

    Rose, Dominic C.; Macieszczak, Katarzyna; Lesanovsky, Igor; Garrahan, Juan P.

    2016-11-01

    We apply a recently developed theory for metastability in open quantum systems to a one-dimensional dissipative quantum Ising model. Earlier results suggest this model features either a nonequilibrium phase transition or a smooth but sharp crossover, where the stationary state changes from paramagnetic to ferromagnetic, accompanied by strongly intermittent emission dynamics characteristic of first-order coexistence between dynamical phases. We show that for a range of parameters close to this transition or crossover point the dynamics of the finite system displays pronounced metastability, i.e., the system relaxes first to long-lived metastable states before eventual relaxation to the true stationary state. From the spectral properties of the quantum master operator we characterize the low-dimensional manifold of metastable states, which are shown to be probability mixtures of two, paramagnetic and ferromagnetic, metastable phases. We also show that for long times the dynamics can be approximated by a classical stochastic dynamics between the metastable phases that is directly related to the intermittent dynamics observed in quantum trajectories and thus the dynamical phases.

  1. Giant atomic displacement at a magnetic phase transition in metastable Mn3O4

    SciTech Connect

    Hirai, Shigeto; Moreira Dos Santos, Antonio F; Shapiro, Max C; Molaison, Jamie J; Pradhan, Neelam; Guthrie, Malcolm; Tulk, Christopher A; Fisher, Ian R; Mao, Wendy

    2013-01-01

    We present x-ray, neutron scattering, and heat capacity data that reveal a coupled first-order magnetic and structural phase transition of the metastable mixed-valence postspinel compound Mn3O4 at 210 K. Powder neutron diffraction measurements reveal a magnetic structure in which Mn3+ spins align antiferromagnetically along the edge-sharing a axis, with a magnetic propagation vector k = [1/2,0,0]. In contrast, the Mn2+ spins, which are geometrically frustrated, do not order until a much lower temperature. Although the Mn2+ spins do not directly participate in the magnetic phase transition at 210 K, structural refinements reveal a large atomic shift at this phase transition, corresponding to a physical motion of approximately 0.25 angstrom, even though the crystal symmetry remains unchanged. This "giant" response is due to the coupled effect of built-in strain in the metastable postspinel structure with the orbital realignment of the Mn3+ ion.

  2. Crystallographic Stability of Metastable Phase Formed by Containerless Processing in REFeO3 (RE: Rare-Earth Element)

    NASA Technical Reports Server (NTRS)

    Kuribayashi, Kazuhiko; Kumar, M. S. Vijaya

    2012-01-01

    Undercooling a melt often facilitates a metastable phase to nucleate preferentially. Although the classical nucleation theory shows that the most critical factor for forming a metastable phase is the interface free energy, the crystallographic stability is also indispensable for the phase to be frozen at ambient temperature. In compound materials such as oxides, authors have suggested that the decisive factors for forming a critical nucleus are not only the free energy difference but also the difference of the entropy of fusion between stable and metastable phases. In the present study, using REFeO3 (RE: rare-earth element) as a model material, we investigate the formation of a metastable phase from undercooled melts with respect to the competitive nucleation and crystallographical stabilities of both phases.

  3. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off.

    PubMed

    Li, Zhiming; Pradeep, Konda Gokuldoss; Deng, Yun; Raabe, Dierk; Tasan, Cemal Cem

    2016-06-09

    Metals have been mankind's most essential materials for thousands of years; however, their use is affected by ecological and economical concerns. Alloys with higher strength and ductility could alleviate some of these concerns by reducing weight and improving energy efficiency. However, most metallurgical mechanisms for increasing strength lead to ductility loss, an effect referred to as the strength-ductility trade-off. Here we present a metastability-engineering strategy in which we design nanostructured, bulk high-entropy alloys with multiple compositionally equivalent high-entropy phases. High-entropy alloys were originally proposed to benefit from phase stabilization through entropy maximization. Yet here, motivated by recent work that relaxes the strict restrictions on high-entropy alloy compositions by demonstrating the weakness of this connection, the concept is overturned. We decrease phase stability to achieve two key benefits: interface hardening due to a dual-phase microstructure (resulting from reduced thermal stability of the high-temperature phase); and transformation-induced hardening (resulting from the reduced mechanical stability of the room-temperature phase). This combines the best of two worlds: extensive hardening due to the decreased phase stability known from advanced steels and massive solid-solution strengthening of high-entropy alloys. In our transformation-induced plasticity-assisted, dual-phase high-entropy alloy (TRIP-DP-HEA), these two contributions lead respectively to enhanced trans-grain and inter-grain slip resistance, and hence, increased strength. Moreover, the increased strain hardening capacity that is enabled by dislocation hardening of the stable phase and transformation-induced hardening of the metastable phase produces increased ductility. This combined increase in strength and ductility distinguishes the TRIP-DP-HEA alloy from other recently developed structural materials. This metastability-engineering strategy should

  4. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off

    NASA Astrophysics Data System (ADS)

    Li, Zhiming; Pradeep, Konda Gokuldoss; Deng, Yun; Raabe, Dierk; Tasan, Cemal Cem

    2016-06-01

    Metals have been mankind’s most essential materials for thousands of years; however, their use is affected by ecological and economical concerns. Alloys with higher strength and ductility could alleviate some of these concerns by reducing weight and improving energy efficiency. However, most metallurgical mechanisms for increasing strength lead to ductility loss, an effect referred to as the strength-ductility trade-off. Here we present a metastability-engineering strategy in which we design nanostructured, bulk high-entropy alloys with multiple compositionally equivalent high-entropy phases. High-entropy alloys were originally proposed to benefit from phase stabilization through entropy maximization. Yet here, motivated by recent work that relaxes the strict restrictions on high-entropy alloy compositions by demonstrating the weakness of this connection, the concept is overturned. We decrease phase stability to achieve two key benefits: interface hardening due to a dual-phase microstructure (resulting from reduced thermal stability of the high-temperature phase); and transformation-induced hardening (resulting from the reduced mechanical stability of the room-temperature phase). This combines the best of two worlds: extensive hardening due to the decreased phase stability known from advanced steels and massive solid-solution strengthening of high-entropy alloys. In our transformation-induced plasticity-assisted, dual-phase high-entropy alloy (TRIP-DP-HEA), these two contributions lead respectively to enhanced trans-grain and inter-grain slip resistance, and hence, increased strength. Moreover, the increased strain hardening capacity that is enabled by dislocation hardening of the stable phase and transformation-induced hardening of the metastable phase produces increased ductility. This combined increase in strength and ductility distinguishes the TRIP-DP-HEA alloy from other recently developed structural materials. This metastability-engineering strategy should

  5. Formation of a metastable crystalline phase during ion irradiation of spinel

    SciTech Connect

    Devanathan, R.; Yu, Ning; Sickafus, K.; Nastasi, M.

    1995-12-31

    We have examined the radiation resistance of magnesio-aluminate spinel by irradiating single crystals of MgAl{sub 2}O{sub 4} with 400 keV Xe++ions at 100 K. At low irradiation doses, the material transformed into a metastable crystalline phase with half the lattice spacing of the original crystal. Electron diffraction analysis revealed that this structural change can be explained in terms of the redistribution of cations among octahedral, tetrahedral, and three- fold coordinated interstitial sites of the close-packed anion lattice. Corresponding to this transformation, the hardness and elastic modulus increased with dose to values about 10% greater than those of unirradiated spinel. We believe that the formation of this metastable phase plays an important role in determining the radiation resistance of spinel.

  6. Non-equilibrium phase behavior and friction of confined molecular films under shear: A non-equilibrium molecular dynamics study.

    PubMed

    Maćkowiak, Sz; Heyes, D M; Dini, D; Brańka, A C

    2016-10-28

    The phase behavior of a confined liquid at high pressure and shear rate, such as is found in elastohydrodynamic lubrication, can influence the traction characteristics in machine operation. Generic aspects of this behavior are investigated here using Non-equilibrium Molecular Dynamics (NEMD) simulations of confined Lennard-Jones (LJ) films under load with a recently proposed wall-driven shearing method without wall atom tethering [C. Gattinoni et al., Phys. Rev. E 90, 043302 (2014)]. The focus is on thick films in which the nonequilibrium phases formed in the confined region impact on the traction properties. The nonequilibrium phase and tribological diagrams are mapped out in detail as a function of load, wall sliding speed, and atomic scale surface roughness, which is shown can have a significant effect. The transition between these phases is typically not sharp as the external conditions are varied. The magnitude of the friction coefficient depends strongly on the nonequilibrium phase adopted by the confined region of molecules, and in general does not follow the classical friction relations between macroscopic bodies, e.g., the frictional force can decrease with increasing load in the Plug-Slip (PS) region of the phase diagram owing to structural changes induced in the confined film. The friction coefficient can be extremely low (∼0.01) in the PS region as a result of incommensurate alignment between a (100) face-centered cubic wall plane and reconstructed (111) layers of the confined region near the wall. It is possible to exploit hysteresis to retain low friction PS states well into the central localization high wall speed region of the phase diagram. Stick-slip behavior due to periodic in-plane melting of layers in the confined region and subsequent annealing is observed at low wall speeds and moderate external loads. At intermediate wall speeds and pressure values (at least) the friction coefficient decreases with increasing well depth of the LJ potential

  7. Non-equilibrium phase behavior and friction of confined molecular films under shear: A non-equilibrium molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Maćkowiak, Sz.; Heyes, D. M.; Dini, D.; Brańka, A. C.

    2016-10-01

    The phase behavior of a confined liquid at high pressure and shear rate, such as is found in elastohydrodynamic lubrication, can influence the traction characteristics in machine operation. Generic aspects of this behavior are investigated here using Non-equilibrium Molecular Dynamics (NEMD) simulations of confined Lennard-Jones (LJ) films under load with a recently proposed wall-driven shearing method without wall atom tethering [C. Gattinoni et al., Phys. Rev. E 90, 043302 (2014)]. The focus is on thick films in which the nonequilibrium phases formed in the confined region impact on the traction properties. The nonequilibrium phase and tribological diagrams are mapped out in detail as a function of load, wall sliding speed, and atomic scale surface roughness, which is shown can have a significant effect. The transition between these phases is typically not sharp as the external conditions are varied. The magnitude of the friction coefficient depends strongly on the nonequilibrium phase adopted by the confined region of molecules, and in general does not follow the classical friction relations between macroscopic bodies, e.g., the frictional force can decrease with increasing load in the Plug-Slip (PS) region of the phase diagram owing to structural changes induced in the confined film. The friction coefficient can be extremely low (˜0.01) in the PS region as a result of incommensurate alignment between a (100) face-centered cubic wall plane and reconstructed (111) layers of the confined region near the wall. It is possible to exploit hysteresis to retain low friction PS states well into the central localization high wall speed region of the phase diagram. Stick-slip behavior due to periodic in-plane melting of layers in the confined region and subsequent annealing is observed at low wall speeds and moderate external loads. At intermediate wall speeds and pressure values (at least) the friction coefficient decreases with increasing well depth of the LJ potential

  8. A genetic algorithm to determine metastable MS1 phase of the Al-Sm system

    NASA Astrophysics Data System (ADS)

    Ye, Zhuo; Zhang, Feng; Sun, Yang; Nguyen, Manh Cuong; Mendelev, Mikhail; Kramer, Matthew; Wang, Cai-Zhuang; Ho, Kai-Ming; Ames Lab Team

    2014-03-01

    An efficient genetic algorithm (GA) was used to determine a metastable Al60Sm11 phase [termed MS1 in Mater. Sci. Eng. A179-A180, 600 (1994)] that evolves during rapid solidification of an amorphous melt-spun Al-10%Sm alloy. The MS1 phase is of particular interest as it is the 1st observed phase during devitrification and is believed to possess a strong connection to the undercooled liquids. It also presents a severe challenge to theoretical crystal structure prediction methods since it 1) has a big unit cell with a ~1.4 nm, 2) is metastable and not necessarily the ground state, and 3) contains site-occupancy and anti-site defects. A GA combined with experimental characterization of phase transitions and Rietveld refinements provides the necessary identification of the MS1 crystal structure. Calculated X-ray diffraction patterns of the MS1 phase match perfectly with experiments. Interestingly, the MS1 phase shares the same motif as undercooled Al-10%Sm liquids. The topological connection between undercooled liquid and crystal structures is worth further investigation, to understand how the topological order in the starting amorphous phase correlates with phase selection during devitrification.

  9. A strategy to explore stable and metastable ordered phases of block copolymers.

    PubMed

    Xu, Weiquan; Jiang, Kai; Zhang, Pingwen; Shi, An-Chang

    2013-05-02

    Block copolymers with their rich phase behavior and ordering transitions have become a paradigm for the study of structured soft materials. A major challenge in the study of the phase behavior of block copolymers is to obtain different stable and metastable phases of the system. A strategy to discover complex ordered phases of block copolymers within the self-consistent field theory framework is developed by a combination of fast algorithms and novel initialization procedures. This strategy allows the generation of a large number of candidate structures, which can then be used to construct phase diagrams. Application of the strategy is illustrated using ABC star triblock copolymers as an example. A large number of candidate structures, including many three-dimensionally ordered phases, of the system are obtained and categorized. A phase diagram is constructed for symmetrically interacting ABC star triblock copolymers.

  10. Ultra-fine grained microstructure of metastable beta Ti-15Mo alloy and its effects on the phase transformations

    NASA Astrophysics Data System (ADS)

    Václavová, K.; Stráský, J.; Zháňal, P.; Veselý, J.; Polyakova, V.; Semenova, I.; Janeček, M.

    2017-05-01

    Processing of metastable titanium alloys by severe plastic deformation provides an opportunity to achieve exceptional grain refinement, to enhance the strength and to affect phase transformations occurring during thermal treatment. The main aim of this study is to investigate the microstructure of ultra-fine grained (UFG) material and effect of microstructural changes on phase transformations in metastable β-Ti alloy Ti-15Mo. Metastable β-Ti alloys are currently the most studied Ti-based materials with prospective use in medicine. Ti-15Mo alloy after solution treatment contains metastable β-phase. Metastable ω-phase and stable α-phase particles are formed upon annealing,. Solution treated Ti-15Mo alloy was deformed by high pressure torsion (HPT) at room temperature. Severely deformed structure after HPT with grain size of ~200 nm was studied by transmission electron microscopy. In-situ electrical resistance measurements showed significant changes in undergoing phase transformations when compared to coarse-grained (CG) material. Scanning electron microscopy revealed heterogeneous precipitation of α-particles at grain boundaries (GB). Due to the high density of GBs in UFG structure, these precipitates are very fine and equiaxed. The study demonstrates that SPD is capable of enhancing mechanical properties due to grain refinement and via affecting precipitation processes in metastable β-Ti alloys.

  11. Titanium α-ω phase transformation pathway and a predicted metastable structure

    DOE PAGES

    Zarkevich, Nickolai A.; Johnson, Duane D.

    2016-01-15

    A titanium is a highly utilized metal for structural lightweighting and its phases, transformation pathways (transition states), and structures have scientific and industrial importance. Using a proper solid-state nudged elastic band method employing two climbing images combined with density functional theory DFT + U methods for accurate energetics, we detail the pressure-induced α (ductile) to ω (brittle) transformation at the coexistence pressure. We also find two transition states along the minimal-enthalpy path and discover a metastable body-centered orthorhombic structure, with stable phonons, a lower density than the end-point phases, and decreasing stability with increasing pressure.

  12. Titanium α-ω phase transformation pathway and a predicted metastable structure

    SciTech Connect

    Zarkevich, Nickolai A.; Johnson, Duane D.

    2016-01-15

    A titanium is a highly utilized metal for structural lightweighting and its phases, transformation pathways (transition states), and structures have scientific and industrial importance. Using a proper solid-state nudged elastic band method employing two climbing images combined with density functional theory DFT + U methods for accurate energetics, we detail the pressure-induced α (ductile) to ω (brittle) transformation at the coexistence pressure. We also find two transition states along the minimal-enthalpy path and discover a metastable body-centered orthorhombic structure, with stable phonons, a lower density than the end-point phases, and decreasing stability with increasing pressure.

  13. Plasma-enhanced chemical vapor deposition of β-tungsten, a metastable phase

    NASA Astrophysics Data System (ADS)

    Tang, C. C.; Hess, D. W.

    1984-09-01

    Plasma-enhanced chemical vapor deposition of a metastable phase of tungsten ( β-W) is performed using tungsten hexafluoride and hydrogen as source gases. At 350 °C, the as-deposited resistivity of these films is ˜50 μΩ cm. After heat treatments between 650 and 750 °C in forming gas, the resistivity drops below 11 μΩ cm. Concomitant with this resistivity change is a phase change to α-W, the equilibrium, body-centered-cubic form.

  14. Metastable crystal growth of acetaminophen using solution-mediated phase transformation

    NASA Astrophysics Data System (ADS)

    Mori, Yoichiro; Maruyama, Mihoko; Takahashi, Yoshinori; Yoshikawa, Hiroshi Y.; Okada, Shino; Adachi, Hiroaki; Sugiyama, Shigeru; Takano, Kazufumi; Murakami, Satoshi; Matsumura, Hiroyoshi; Inoue, Tsuyoshi; Yoshimura, Masashi; Mori, Yusuke

    2017-01-01

    We report a new method of obtaining the metastable phase form II crystals of acetaminophen. Solution-mediated phase transformation (SMPT) from trihydrate into form II is utilized to obtain form II crystals. SMPT is triggered by seeding form II crystals into a saturated solution including trihydrate crystals, which are less stable than form II crystals. Form II seed crystals gradually grew at the expense of the dissolving trihydrate crystals, and finally, all the trihydrate crystals in solution were transformed into form II crystals in about 4 h. Thus, we conclude that SMPT is effective for the production of form II crystals.

  15. Containerless Solidification of Hexagonal Metastable Phases from an Undercooled R3Fe5O12 Melt

    NASA Astrophysics Data System (ADS)

    Kumar, Vijaya; Kentei Yu, Yu; Kameko, Masashi; Ishikawa, Takehiko; Kuribayashi, Kazuhiko; Yoda, Shinichi

    Containerless processing is a promising technique to explore the technologically important materials using rapid solidification of an undercooled melt because it provides large undercooling prior to nucleation. In the R-Fe-O system (R=Rare-earth element), rare-earth iron garnet (R3 Fe5 O12 ) can be formed through a peritectic reaction between RFeO3 , which is a primary phase, and a melt, which contains more Fe2 O3 than the R3 Fe5 O12 composition. The iron garnet is know to become unstable with increasing ionic radius of the rare-earth ion from Lu to Sm and does not exist in a stable form in La, Pr, and Nd [1,2]. Recently, we investigated the effect of oxygen partial pressure Po2 on metastable phase formation from an undercooled RFeO3 melt through containerless solidification. On the other hand, Po2 was considered to be one of the most important thermodynamic parameters which control phase constituents during containerless processing. In the R-Fe-O system, multiferroic hexagonal RFeO3 (P63 cm) and Fe2+ -containing ferroelectric phases such as RFe2 O4 (r-R3m) and new hexagonal R3 Fe2 O7 (P63 /mmc) phases were obtained metastably with decreasing Po2 from 105 to 10-1 Pa [3,4]. However, in the R3 Fe5 O12 system, the effect of Po2 during rapid solidification has not been studied yet. The purpose of this study is to elucidate the effect of Po2 on the formation of metastable phases from an undercooled R3 Fe5 O12 melt under controlled Po2 using gas-jet levitation technique. In order to undercool the melt deeply below the melting temperature under a precisely con-trolled oxygen partial pressure, an aerodynamic levitator (ADL) combined with ZrO2 oxygen sensor was designed. A spherical R3 Fe5 O12 sample was levitated by an ADL and completely melted by a CO2 laser in an atmosphere with predetermined Po2 . The surface temperature of the levitated droplet was monitored by a two-color pyrometer. Then, the droplet was cooled by turning off the CO2 laser. Meanwhile, the recalescence

  16. Study the formation of metastable crystalline phases from amorphous metallic systems with an integrated approach

    NASA Astrophysics Data System (ADS)

    Ye, Zhuo; Zhang, Feng; Sun, Yang; Mendelev, Mikhail; Ott, Ryan; Park, Eun-Soo; Besser, Matt; Kramer, Matt; Wang, Cai-Zhuang; Ho, Kai-Ming

    2015-03-01

    An efficient genetic algorithm (GA) is integrated with experimental diffraction data to solve a metastable Al20Sm4 phase that evolves during rapid solidification of an amorphous Al-10%Sm alloy produced by magnetron sputtering. The excellent match between calculated and experimental X-ray diffraction patterns confirms that this new phase appeared in the crystallization of the alloy. We discover the strong similarity of the underlying atomic structure between the amorphous alloy and this phase. Both phases share the same Sm-centered motif, providing a low-barrier pathway to form this Al20Sm4phase in the glass matrix at low temperatures. Molecular dynamic simulations of crystal growth from the liquid phase predict the formation of disordered anti-site defects in the devitrified crystal.

  17. Kinetic-arrest-induced phase coexistence and metastability in (Mn,Fe ) 2(P ,Si )

    NASA Astrophysics Data System (ADS)

    Miao, X. F.; Mitsui, Y.; Dugulan, A. Iulian; Caron, L.; Thang, N. V.; Manuel, P.; Koyama, K.; Takahashi, K.; van Dijk, N. H.; Brück, E.

    2016-09-01

    Neutron diffraction, Mössbauer spectroscopy, magnetometry, and in-field x-ray diffraction are employed to investigate the magnetoelastic phase transition in hexagonal (Mn,Fe ) 2(P ,Si ) compounds. (Mn,Fe ) 2(P ,Si ) compounds undergo for certain compositions a second-order paramagnetic (PM) to a spin-density-wave (SDW) phase transition before further transforming into a ferromagnetic (FM) phase via a first-order phase transition. The SDW-FM transition can be kinetically arrested, causing the coexistence of FM and untransformed SDW phases at low temperatures. Our in-field x-ray diffraction and magnetic relaxation measurements clearly reveal the metastability of the untransformed SDW phase. This unusual magnetic configuration originates from the strong magnetoelastic coupling and the mixed magnetism in hexagonal (Mn,Fe ) 2(P ,Si ) compounds.

  18. Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: a review

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Olson Reichhardt, C. J.

    2017-02-01

    We review the depinning and nonequilibrium phases of collectively interacting particle systems driven over random or periodic substrates. This type of system is relevant to vortices in type-II superconductors, sliding charge density waves, electron crystals, colloids, stripe and pattern forming systems, and skyrmions, and could also have connections to jamming, glassy behaviors, and active matter. These systems are also ideal for exploring the broader issues of characterizing transient and steady state nonequilibrium flow phases as well as nonequilibrium phase transitions between distinct dynamical phases, analogous to phase transitions between different equilibrium states. We discuss the differences between elastic and plastic depinning on random substrates and the different types of nonequilibrium phases which are associated with specific features in the velocity-force curves, fluctuation spectra, scaling relations, and local or global particle ordering. We describe how these quantities can change depending on the dimension, anisotropy, disorder strength, and the presence of hysteresis. Within the moving phase we discuss how there can be a transition from a liquid-like state to dynamically ordered moving crystal, smectic, or nematic states. Systems with periodic or quasiperiodic substrates can have multiple nonequilibrium second or first order transitions in the moving state between chaotic and coherent phases, and can exhibit hysteresis. We also discuss systems with competing repulsive and attractive interactions, which undergo dynamical transitions into stripes and other complex morphologies when driven over random substrates. Throughout this work we highlight open issues and future directions such as absorbing phase transitions, nonequilibrium work relations, inertia, the role of non-dissipative dynamics such as Magnus effects, and how these results could be extended to the broader issues of plasticity in crystals, amorphous solids, and jamming phenomena.

  19. Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: a review.

    PubMed

    Reichhardt, C; Olson Reichhardt, C J

    2017-02-01

    We review the depinning and nonequilibrium phases of collectively interacting particle systems driven over random or periodic substrates. This type of system is relevant to vortices in type-II superconductors, sliding charge density waves, electron crystals, colloids, stripe and pattern forming systems, and skyrmions, and could also have connections to jamming, glassy behaviors, and active matter. These systems are also ideal for exploring the broader issues of characterizing transient and steady state nonequilibrium flow phases as well as nonequilibrium phase transitions between distinct dynamical phases, analogous to phase transitions between different equilibrium states. We discuss the differences between elastic and plastic depinning on random substrates and the different types of nonequilibrium phases which are associated with specific features in the velocity-force curves, fluctuation spectra, scaling relations, and local or global particle ordering. We describe how these quantities can change depending on the dimension, anisotropy, disorder strength, and the presence of hysteresis. Within the moving phase we discuss how there can be a transition from a liquid-like state to dynamically ordered moving crystal, smectic, or nematic states. Systems with periodic or quasiperiodic substrates can have multiple nonequilibrium second or first order transitions in the moving state between chaotic and coherent phases, and can exhibit hysteresis. We also discuss systems with competing repulsive and attractive interactions, which undergo dynamical transitions into stripes and other complex morphologies when driven over random substrates. Throughout this work we highlight open issues and future directions such as absorbing phase transitions, nonequilibrium work relations, inertia, the role of non-dissipative dynamics such as Magnus effects, and how these results could be extended to the broader issues of plasticity in crystals, amorphous solids, and jamming phenomena.

  20. Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: A review

    DOE PAGES

    Reichhardt, Charles; Olson Reichhardt, Cynthia Jane

    2016-12-20

    Here, we review the depinning and nonequilibrium phases of collectively interacting particle systems driven over random or periodic substrates. This type of system is relevant to vortices in type-II superconductors, sliding charge density waves, electron crystals, colloids, stripe and pattern forming systems, and skyrmions, and could also have connections to jamming, glassy behaviors, and active matter. These systems are also ideal for exploring the broader issues of characterizing transient and steady state nonequilibrium flow phases as well as nonequilibrium phase transitions between distinct dynamical phases, analogous to phase transitions between different equilibrium states. We discuss the differences between elastic andmore » plastic depinning on random substrates and the different types of nonequilibrium phases which are associated with specific features in the velocity-force curves, fluctuation spectra, scaling relations, and local or global particle ordering. We describe how these quantities can change depending on the dimension, anisotropy, disorder strength, and the presence of hysteresis. Within the moving phase we discuss how there can be a transition from a liquid-like state to dynamically ordered moving crystal, smectic, or nematic states. Systems with periodic or quasiperiodic substrates can have multiple nonequilibrium second or first order transitions in the moving state between chaotic and coherent phases, and can exhibit hysteresis. We also discuss systems with competing repulsive and attractive interactions, which undergo dynamical transitions into stripes and other complex morphologies when driven over random substrates. Throughout this work we highlight open issues and future directions such as absorbing phase transitions, nonequilibrium work relations, inertia, the role of non-dissipative dynamics such as Magnus effects, and how these results could be extended to the broader issues of plasticity in crystals, amorphous solids, and jamming

  1. Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: A review

    SciTech Connect

    Reichhardt, Charles; Olson Reichhardt, Cynthia Jane

    2016-12-20

    Here, we review the depinning and nonequilibrium phases of collectively interacting particle systems driven over random or periodic substrates. This type of system is relevant to vortices in type-II superconductors, sliding charge density waves, electron crystals, colloids, stripe and pattern forming systems, and skyrmions, and could also have connections to jamming, glassy behaviors, and active matter. These systems are also ideal for exploring the broader issues of characterizing transient and steady state nonequilibrium flow phases as well as nonequilibrium phase transitions between distinct dynamical phases, analogous to phase transitions between different equilibrium states. We discuss the differences between elastic and plastic depinning on random substrates and the different types of nonequilibrium phases which are associated with specific features in the velocity-force curves, fluctuation spectra, scaling relations, and local or global particle ordering. We describe how these quantities can change depending on the dimension, anisotropy, disorder strength, and the presence of hysteresis. Within the moving phase we discuss how there can be a transition from a liquid-like state to dynamically ordered moving crystal, smectic, or nematic states. Systems with periodic or quasiperiodic substrates can have multiple nonequilibrium second or first order transitions in the moving state between chaotic and coherent phases, and can exhibit hysteresis. We also discuss systems with competing repulsive and attractive interactions, which undergo dynamical transitions into stripes and other complex morphologies when driven over random substrates. Throughout this work we highlight open issues and future directions such as absorbing phase transitions, nonequilibrium work relations, inertia, the role of non-dissipative dynamics such as Magnus effects, and how these results could be extended to the broader issues of plasticity in crystals, amorphous solids, and jamming phenomena.

  2. Directing the self-assembly of block copolymers into a metastable complex network phase via a deep and rapid quench.

    PubMed

    Müller, Marcus; Sun, De-Wen

    2013-12-27

    The free-energy landscape of self-assembling block copolymer systems is characterized by a multitude of metastable minima. Using particle-based simulations of a soft, coarse-grained model, we explore opportunities to reproducibly direct the spontaneous ordering of these self-assembling systems into a metastable complex network morphology--specifically, Schoen's I-WP periodic minimal surface--starting from a highly unstable state that is generated by a rapid expansion. This process-directed self-assembly provides an alternative to fine-tuning molecular architecture or blending for fabricating complex network structures. Comparing our particle-based simulation results to recently developed free-energy techniques, we critically assess their ability to predict spontaneous formation and highlight the importance of nonequilibrium molecular conformations in the starting state and the local conservation of density.

  3. Magnetic properties of a metastable Sm-Fe phase synthesized by selectively thermalized sputtering

    NASA Astrophysics Data System (ADS)

    Cadieu, F. J.; Cheung, T. D.; Wickramasekara, L.; Aly, S. H.

    1984-03-01

    Samples of the Sm-Fe system have been directly crystallized onto heated substrates by selectively thermalized sputtering. Films of the pure Sm-Fe system exhibit only the 1-2, 1-3, and 2-17 phases which correspond to the bulk system. But samples synthesized with certain third element additions of oxygen and titanium exhibit a metastable phase at a composition corresponding to a 1-5 Sm-Fe compound. These samples exhibit well defined and reasonable sharp X-ray diffraction patterns. Room-temperature intrinsic coercive forces of 6.2 kOe and static energy products of 5.5 MG Oe have been observed. These results are for the demagnetizing field in the plane of the thin film samples and no demagnetizing factor has been used in obtaining the inplane B field. Samples synthesized in the presence of an inplane magnetic field at 600 C exhibit an inplane anisotropy which indicates the Curie point of this Ti-stabilized SmFe5 phase should be greater than 600 C. Film samples of the pure Sm-Fe system which do not show a metastable phase generally have low intrinsic coercive forces and consequently low energy products.

  4. Optical phase information writing and storage in populations of metastable quantum states

    SciTech Connect

    Djotyan, G. P.; Sandor, N.; Bakos, J. S.; Soerlei, Zs.

    2009-10-15

    We propose a scheme for robust writing and storage of optical phase information in populations of metastable states of the atoms with a tripod structure of levels by using frequency-chirped laser pulses. The method provides much longer storage times compared with the schemes based on the collective atomic spin coherences. A negligible excitation of the atom provides immunity to decoherence induced by decay of the excited states. The method is robust against small-to-medium variations in the laser pulse intensity and speed of the chirp and, being insensitive to resonance conditions, it is effective both in homogeneously and inhomogeneously broadened media.

  5. Generic finite size scaling for discontinuous nonequilibrium phase transitions into absorbing states

    NASA Astrophysics Data System (ADS)

    de Oliveira, M. M.; da Luz, M. G. E.; Fiore, C. E.

    2015-12-01

    Based on quasistationary distribution ideas, a general finite size scaling theory is proposed for discontinuous nonequilibrium phase transitions into absorbing states. Analogously to the equilibrium case, we show that quantities such as response functions, cumulants, and equal area probability distributions all scale with the volume, thus allowing proper estimates for the thermodynamic limit. To illustrate these results, five very distinct lattice models displaying nonequilibrium transitions—to single and infinitely many absorbing states—are investigated. The innate difficulties in analyzing absorbing phase transitions are circumvented through quasistationary simulation methods. Our findings (allied to numerical studies in the literature) strongly point to a unifying discontinuous phase transition scaling behavior for equilibrium and this important class of nonequilibrium systems.

  6. Metastable phase formation in the Au-Si system via ultrafast nanocalorimetry

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Wen, J. G.; Efremov, M. Y.; Olson, E. A.; Zhang, Z. S.; Hu, L.; de la Rama, L. P.; Kummamuru, R.; Kavanagh, K. L.; Ma, Z.; Allen, L. H.

    2012-05-01

    We have investigated the stability and solidification of nanometer size Au-Si droplets using an ultrafast heating/cooling nanocalorimetry and in situ growth techniques. The liquid can be supercooled to very low temperatures for both Au-rich (ΔT ˜ 95 K) and Si-rich (ΔT ˜ 220 K) samples. Solidification of a unique metastable phase δ1 is observed with a composition of 74 ± 4 at. % Au and a b-centered orthorhombic structure (a = 0.92, b = 0.72, and c = 1.35 nm; body-center in the a-c plane), which grows heteroepitaxially to Aus. Its melting temperature Tm is 305 ± 5 °C. There is competition during formation between the eutectic and δ1 phases but δ1 is the only metastable alloy observed. For small size droplets, both the δ1 and eutectic phases show considerable depression of the melting point (size-dependent melting).

  7. The temperature-composition phase diagram of monomyristolein in water: equilibrium and metastability aspects.

    PubMed

    Briggs, J; Caffrey, M

    1994-03-01

    The temperature-composition phase diagram of monomyristolein in water was constructed using x-ray diffraction. Low- and wide-angle diffraction patterns were collected from samples of fixed hydration as a function of temperature in the heating direction on x-ray-sensitive film and/or image plates. The phases identified in the system include the lamellar crystalline phase, the lamellar liquid crystalline phase, the fluid isotropic phase, and two inverted cubic phases. Particular attention has been devoted to the issues of phase equilibrium and phase boundary verification. Cubic phase undercooling was examined by adjusting the temperature of several samples in the cubic phase to a value where the lamellar liquid crystalline phase represents equilibrium behavior. Cooling-induced structure and phase changes were monitored continuously over a 30-min period by recording low-angle diffraction patterns from the samples using a streak camera. The cubic-to-lamellar transition rate decreased with increasing sample hydration. Additionally, the transition proceeded more rapidly at an incubation temperature of 25 degrees C compared to that at 0 degrees C. A mechanism is proposed that accounts for the hydration and temperature sensitivity of the phase transition under nonequilibrium conditions.

  8. The temperature-composition phase diagram of monomyristolein in water: equilibrium and metastability aspects.

    PubMed Central

    Briggs, J; Caffrey, M

    1994-01-01

    The temperature-composition phase diagram of monomyristolein in water was constructed using x-ray diffraction. Low- and wide-angle diffraction patterns were collected from samples of fixed hydration as a function of temperature in the heating direction on x-ray-sensitive film and/or image plates. The phases identified in the system include the lamellar crystalline phase, the lamellar liquid crystalline phase, the fluid isotropic phase, and two inverted cubic phases. Particular attention has been devoted to the issues of phase equilibrium and phase boundary verification. Cubic phase undercooling was examined by adjusting the temperature of several samples in the cubic phase to a value where the lamellar liquid crystalline phase represents equilibrium behavior. Cooling-induced structure and phase changes were monitored continuously over a 30-min period by recording low-angle diffraction patterns from the samples using a streak camera. The cubic-to-lamellar transition rate decreased with increasing sample hydration. Additionally, the transition proceeded more rapidly at an incubation temperature of 25 degrees C compared to that at 0 degrees C. A mechanism is proposed that accounts for the hydration and temperature sensitivity of the phase transition under nonequilibrium conditions. Images FIGURE 1 FIGURE 7 PMID:8011891

  9. Nonequilibrium optical conductivity: General theory and application to transient phases

    NASA Astrophysics Data System (ADS)

    Kennes, D. M.; Wilner, E. Y.; Reichman, D. R.; Millis, A. J.

    2017-08-01

    A nonequilibrium theory of optical conductivity of dirty-limit superconductors and commensurate charge density wave is presented. We discuss the current response to different experimentally relevant light-field probe pulses and show that a single frequency definition of the optical conductivity σ (ω )≡j (ω )/E (ω ) is difficult to interpret out of the adiabatic limit. We identify characteristic time-domain signatures distinguishing between superconducting, normal-metal, and charge density wave states. We also suggest a route to directly address the instantaneous superfluid stiffness of a superconductor by shaping the probe light field.

  10. Genetic algorithm prediction of crystal structure of metastable Si-IX phase

    SciTech Connect

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Yangang; Wang, Cai-Zhuang; Ho, Kai-Ming

    2013-12-14

    We performed genetic algorithm search for the atomic structure of the long Lime unsolved Si-IX phase. We found two new structures with space groups of P4(2)/m and P-4, respectively, which have lattice parameters in excellent agreement with the experimental data. The phonon calculations showed that the P4(2)/m structure exhibits a soft phonon mode, while the P-4 structure is dynamically stable. Our calculation also showed that the P-4 structure is a meta-stable structure in a pressure range from 0 to 40 GPa, The Si-IX phase could be a mixed phase consisting of the P4(2)/m and the P-4 structures. Published by Elsevier Ltd.

  11. Formation of a metastable ferromagnetic tau phase during containerless melt processing in Mn-Al-C alloys

    NASA Technical Reports Server (NTRS)

    Kim, Y. J.; Perepezko, J. H.

    1993-01-01

    This paper reports the production of a metastable ferromagnetic tau phase directly from the melt in Mn(0.55)Al(0.433)C(0.017), using a containerless processing method involving levitation melting followed by quenching. Using the results from differential thermal analysis measurements and an analysis of the phase equilibria, it was found that the minimum amount of undercooling level required for ferromagnetic metastable tau phase formation in this alloy was Delta T = 87 K. The attainment of this undercooling may be facilitated by the application of containerless melt processing.

  12. Non-equilibrium model of two-phase porous media flow with phase change

    NASA Astrophysics Data System (ADS)

    Cueto-Felgueroso, L.; Fu, X.; Juanes, R.

    2014-12-01

    The efficient simulation of multi-phase multi-component flow through geologic porous media is challenging and computationally intensive, yet quantitative modeling of these processes is essential in engineering and the geosciences. Multiphase flow with phase change and complex phase behavior arises in numerous applications, including enhanced oil recovery, steam injection in groundwater remediation, geologic CO2 storage and enhanced geothermal energy systems. A challenge of multiphase compositional simulation is that the number of existing phases varies with position and time, and thus the number of state variables in the saturation-based conservation laws is a function of space and time. The tasks of phase-state identification and determination of the composition of the different phases are performed assuming local thermodynamic equilibrium. Here we investigate a thermodynamically consistent formulation for non-isothermal two-phase flow, in systems where the hypothesis of instantaneous local equilibrium does not hold. Non-equilibrium effects are important in coarse-scale simulations where the assumption of complete mixing in each gridblock is not realistic. We apply our model to steam injection in water-saturated porous media.

  13. A Thermodynamic Study of Metastable Al-Fe Phase Formation in Direct Chill (DC)-Cast Aluminum Alloy Ingots

    NASA Astrophysics Data System (ADS)

    Aliravci, Celil A.; Gruzleski, John E.; Pekgüleryüz, Mihriban Ö.

    In direct-chill (DC)-cast lxxx-and 5xxx-series Al sheet-ingots, the presence of mainly Fe and some Si, and cooling rates increasing from metastable intermetallic Al6Fe and AlmFe compounds in addition to the stable Al3Fe, and hence the fir-tree defect. Since the Al-Fe and Al-Fe-Si phase diagrams are not useful in predicting the metastable phase formation, a binary phase diagram study was conducted to calculate the Al-Al6Fe and Al-AlmFe metastable phase equilibria using a thermodynamic software and an Al-alloy database. The Al-Al3Fe phase diagram was calculated using the existing Gibbs energy data which gives the eutectic point at 1.85wt% Fe and the eutectic temperature as 654°C. The missing Gibbs energy data for the metastable phases were estimated using substitutional and graphical methods and the phase diagrams were calculated. In the Al-Al6Fe phase diagram, the eutectic temperature is depressed from 654°C (equilibrium) to 648°C and the eutectic point is shifted from 1.85wt% Fe to 3.4wt% Fe. In the Al-AlmFe phase

  14. Metastability in spin-polarized Fermi gases.

    PubMed

    Liao, Y A; Revelle, M; Paprotta, T; Rittner, A S C; Li, Wenhui; Partridge, G B; Hulet, R G

    2011-09-30

    We study the role of particle transport and evaporation on the phase separation of an ultracold, spin-polarized atomic Fermi gas. We show that the previously observed deformation of the superfluid paired core is a result of evaporative depolarization of the superfluid due to a combination of enhanced evaporation at the center of the trap and the inhibition of spin transport at the normal-superfluid phase boundary. These factors contribute to a nonequilibrium jump in the chemical potentials at the phase boundary. Once formed, the deformed state is highly metastable, persisting for times of up to 2 s.

  15. The phase diagram of the monoolein/water system: metastability and equilibrium aspects.

    PubMed

    Qiu, H; Caffrey, M

    2000-02-01

    Interest in the liquid crystal structure, transport and membrane protein crystallizing properties of the monoolein/water system has grown in the recent past. Monoolein is also an important homolog in a series of monoacylglycerols used to decipher how lipid molecular structure relates to liquid crystal phase behavior--information needed for rational design applications and for understanding the origin of membrane lipid diversity. To make intelligent use of the monoolein/water system, a reliable and detailed temperature-composition phase diagram is needed. The phase diagram of Briggs et al. (J Phys II France 1996;6:723-51) was constructed for this purpose. However, we have established that the liquid crystal phases in the latter below ca. 20 degrees C are metastable. By implementing a sub-zero degree (degrees C) sample incubation prior to data collection in the heating direction, we can reset the system into the lamellar crystal phase which we assume represents equilibrium behavior. We have re-examined the low-temperature part of the phase diagram and characterized structurally the new 'equilibrium' phases by static and time-resolved low- and wide-angle X-ray diffraction and by differential scanning calorimetry. A more complete phase diagram that incorporates the new equilibrium behavior at low temperatures is reported.

  16. Calculation of the solvus temperature of metastable phases in the Al-Mg-Si alloys

    NASA Astrophysics Data System (ADS)

    Vasilyev, A. A.; Gruzdev, A. S.; Kuz'min, N. L.

    2011-09-01

    A procedure has been proposed for the self-consistent calculation of the solvus temperatures of metastable phase precipitates in Al-Mg-Si alloys and the specific energy of their interface with the aluminum matrix. The procedure is based on the results of experimental studies on the kinetics of formation of these precipitates during decomposition of supersaturated solid solutions of quenched Al-Mg-Si alloys, which were carried out by measuring the Young's modulus and electrical resistivity. On the basis of the obtained set of solvus temperatures of the β″-phase, an empirical formula has been proposed for calculating this temperature as a function of the chemical composition of the initial solid solution.

  17. Metastable titanium dioxide B-phase nanowire prepared by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Makal, Pronay; Das, Debajyoti

    2017-05-01

    TiO2-Bronze phase nanowires have been synthesized by hydrothermal method. The influence of post hydrothermal annealing temperature on the formation of TiO2-B NWs has been explored. X-ray diffraction results indicate that the TiO2 NWs consist of Bronze phase (B) only. Transmission electron microscope (TEM) images further confirm the formation of TiO2-B nanowire structure oriented towards dominant <001> and <110> directions. The optical study reveals that the absorption edge red shifted towards longer wavelength with increase in annealing temperature. Band gap narrowing enhances absorption of solar spectrum and oriented growth towards dominant <001> and <110> directions. Coupling of intrinsic channels and the preferentially exposed [010] facets introduces open channels in metastable TiO2-B which may enhance photocatalytic activity due to large surface area creating adsorptive and reactive sites to accelerate the reactions.

  18. A novel series of isoreticular metal organic frameworks: realizing metastable structures by liquid phase epitaxy

    PubMed Central

    Liu, Jinxuan; Lukose, Binit; Shekhah, Osama; Arslan, Hasan Kemal; Weidler, Peter; Gliemann, Hartmut; Bräse, Stefan; Grosjean, Sylvain; Godt, Adelheid; Feng, Xinliang; Müllen, Klaus; Magdau, Ioan-Bogdan; Heine, Thomas; Wöll, Christof

    2012-01-01

    A novel class of metal organic frameworks (MOFs) has been synthesized from Cu-acetate and dicarboxylic acids using liquid phase epitaxy. The SURMOF-2 isoreticular series exhibits P4 symmetry, for the longest linker a channel-size of 3 × 3 nm2 is obtained, one of the largest values reported for any MOF so far. High quality, ab-initio electronic structure calculations confirm the stability of a regular packing of (Cu++)2- carboxylate paddle-wheel planes with P4 symmetry and reveal, that the SURMOF-2 structures are in fact metastable, with a fairly large activation barrier for the transition to the bulk MOF-2 structures exhibiting a lower, twofold (P2 or C2) symmetry. The theoretical calculations also allow identifying the mechanism for the low-temperature epitaxial growth process and to explain, why a synthesis of this highly interesting, new class of high-symmetry, metastable MOFs is not possible using the conventional solvothermal process. PMID:23213357

  19. Searching for high magnetization density in bulk Fe: the new metastable Fe6 phase

    NASA Astrophysics Data System (ADS)

    Umemoto, Koichiro; Himmetoglu, Burak; Wang, Jian-Ping; Wentzcovitch, Renata M.; Cococcioni, Matteo

    2015-01-01

    We report the discovery of a new allotrope of iron by first principles calculations. This phase has Pmn21 symmetry, a six-atom unit cell (hence the name Fe6), and the highest magnetization density (Ms) among all the known crystalline phases of iron. Obtained from the structural optimizations of the Fe3C-cementite crystal upon carbon removal, Pmn21 Fe6 is shown to result from the stabilization of a ferromagnetic FCC phase, further strained along the Bain path. Although metastable from 0 to 50 GPa, the new phase is more stable at low pressures than the other well-known HCP and FCC allotropes and smoothly transforms into the FCC phase under compression. If stabilized to room temperature, for example, by interstitial impurities, Fe6 could become the basis material for high Ms rare-earth-free permament magnets and high-impact applications such as light-weight electric engine rotors or high-density recording media. The new phase could also be key to explaining the enigmatic high Ms of Fe16N2, which is currently attracting intense research activity.

  20. Searching for high magnetization density in bulk Fe: the new metastable Fe-6 phase

    SciTech Connect

    Umemoto, K; Himmetoglu, B; Wang, JP; Wentzcovitch, RM; Cococcioni, M

    2014-11-26

    We report the discovery of a new allotrope of iron by first principles calculations. This phase has Pmn2(1) symmetry, a six-atom unit cell (hence the name Fe-6), and the highest magnetization density (M-s) among all the known crystalline phases of iron. Obtained from the structural optimizations of the Fe3C-cementite crystal upon carbon removal, Pmn2(1) Fe-6 is shown to result from the stabilization of a ferromagnetic FCC phase, further strained along the Bain path. Although metastable from 0 to 50 GPa, the new phase is more stable at low pressures than the other well-known HCP and FCC allotropes and smoothly transforms into the FCC phase under compression. If stabilized to room temperature, for example, by interstitial impurities, Fe-6 could become the basis material for high M-s rare-earth-free permament magnets and high-impact applications such as light-weight electric engine rotors or high-density recording media. The new phase could also be key to explaining the enigmatic high M-s of Fe16N2, which is currently attracting intense research activity.

  1. S-shaped motor learning and nonequilibrium phase transitions.

    PubMed

    Liu, Yeou-Teh; Newell, Karl M

    2015-04-01

    S-Shaped change in performance outcome has long been considered to be a pathway of motor learning, but there is little or no evidence for it. The experiment investigated the hypothesis that S-shaped motor learning as reflected in the task outcome is a product of a transition in the movement coordination dynamics as a function of practice acting as a control parameter. Young adult participants practiced the roller ball task that required learning the transition of a coordination mode to preserve and enhance the motion of a rotating ball to transition from task failure to success. There were 50 practice trials per day for as many practice days (3-20) as required for each participant to reach the task criterion of success that was followed 1 week later by a retention test. All participants improved their task performance with practice but there were subgroups of patterns of change including S-shaped learning. The enhanced variability during the transition supported the interpretation that the S-shaped learning outcome is reflective of a saddle-node bifurcation or first-order nonequilibrium transition. The learning of a new pattern of movement coordination is a different process from learning to scale an already producible coordination mode to new task demands. (c) 2015 APA, all rights reserved.

  2. The nature of photoinduced phase transition and metastable states in vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Tao, Zhensheng; Zhou, Faran; Han, Tzong-Ru T.; Torres, David; Wang, Tongyu; Sepulveda, Nelson; Chang, Kiseok; Young, Margaret; Lunt, Richard R.; Ruan, Chong-Yu

    2016-12-01

    Photoinduced threshold switching processes that lead to bistability and the formation of metastable phases in photoinduced phase transition of VO2 are elucidated through ultrafast electron diffraction and diffusive scattering techniques with varying excitation wavelengths. We uncover two distinct regimes of the dynamical phase change: a nearly instantaneous crossover into an intermediate state and its decay led by lattice instabilities over 10 ps timescales. The structure of this intermediate state is identified to be monoclinic, but more akin to M2 rather than M1 based on structure refinements. The extinction of all major monoclinic features within just a few picoseconds at the above-threshold-level (~20%) photoexcitations and the distinct dynamics in diffusive scattering that represents medium-range atomic fluctuations at two photon wavelengths strongly suggest a density-driven and nonthermal pathway for the initial process of the photoinduced phase transition. These results highlight the critical roles of electron correlations and lattice instabilities in driving and controlling phase transformations far from equilibrium.

  3. The nature of photoinduced phase transition and metastable states in vanadium dioxide

    PubMed Central

    Tao, Zhensheng; Zhou, Faran; Han, Tzong-Ru T.; Torres, David; Wang, Tongyu; Sepulveda, Nelson; Chang, Kiseok; Young, Margaret; Lunt, Richard R.; Ruan, Chong-Yu

    2016-01-01

    Photoinduced threshold switching processes that lead to bistability and the formation of metastable phases in photoinduced phase transition of VO2 are elucidated through ultrafast electron diffraction and diffusive scattering techniques with varying excitation wavelengths. We uncover two distinct regimes of the dynamical phase change: a nearly instantaneous crossover into an intermediate state and its decay led by lattice instabilities over 10 ps timescales. The structure of this intermediate state is identified to be monoclinic, but more akin to M2 rather than M1 based on structure refinements. The extinction of all major monoclinic features within just a few picoseconds at the above-threshold-level (~20%) photoexcitations and the distinct dynamics in diffusive scattering that represents medium-range atomic fluctuations at two photon wavelengths strongly suggest a density-driven and nonthermal pathway for the initial process of the photoinduced phase transition. These results highlight the critical roles of electron correlations and lattice instabilities in driving and controlling phase transformations far from equilibrium. PMID:27982066

  4. Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb

    SciTech Connect

    Kalkan, B.; Edwards, T. G.; Sen, S.; Raoux, S.

    2013-08-28

    The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the β-Sn crystal structure near ∼5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA ↔ HDA transition. The amorphous →β-Sn phase transition is found to be hysteretically reversible as the β-Sn phase undergoes decompressive amorphization near ∼2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression.

  5. Measurements on Melting Pressure, Metastable Solid Phases, and Molar Volume of Univariant Saturated Helium Mixture

    NASA Astrophysics Data System (ADS)

    Rysti, J.; Manninen, M. S.; Tuoriniemi, J.

    2014-06-01

    A concentration-saturated helium mixture at the melting pressure consists of two liquid phases and one or two solid phases. The equilibrium system is univariant, whose properties depend uniquely on temperature. Four coexisting phases can exist on singular points, which are called quadruple points. As a univariant system, the melting pressure could be used as a thermometric standard. It would provide some advantages compared to the current reference, namely pure He, especially at the lowest temperatures below 1 mK. We have extended the melting pressure measurements of the concentration-saturated helium mixture from 10 to 460 mK. The density of the dilute liquid phase was also recorded. The effect of the equilibrium crystal structure changing from hcp to bcc was clearly seen at mK at the melting pressure MPa. We observed the existence of metastable solid phases around this point. No evidence was found for the presence of another, disputed, quadruple point at around 400 mK. The experimental results agree well with our previous calculations at low temperatures, but deviate above 200 mK.

  6. The nature of photoinduced phase transition and metastable states in vanadium dioxide

    DOE PAGES

    Tao, Zhensheng; Zhou, Faran; Han, Tzong-Ru T.; ...

    2016-12-16

    Photoinduced threshold switching processes that lead to bistability and the formation of metastable phases in photoinduced phase transition of VO2 are elucidated through ultrafast electron diffraction and diffusive scattering techniques with varying excitation wavelengths. We uncover two distinct regimes of the dynamical phase change: a nearly instantaneous crossover into an intermediate state and its decay led by lattice instabilities over 10 ps timescales. The structure of this intermediate state is identified to be monoclinic, but more akin to M2 rather than M1 based on structure refinements. The extinction of all major monoclinic features within just a few picoseconds at themore » above-threshold-level (~20%) photoexcitations and the distinct dynamics in diffusive scattering that represents medium-range atomic fluctuations at two photon wavelengths strongly suggest a density-driven and nonthermal pathway for the initial process of the photoinduced phase transition. These results highlight the critical roles of electron correlations and lattice instabilities in driving and controlling phase transformations far from equilibrium.« less

  7. The nature of photoinduced phase transition and metastable states in vanadium dioxide

    SciTech Connect

    Tao, Zhensheng; Zhou, Faran; Han, Tzong-Ru T.; Torres, David; Wang, Tongyu; Sepulveda, Nelson; Chang, Kiseok; Young, Margaret; Lunt, Richard R.; Ruan, Chong-Yu

    2016-12-16

    Photoinduced threshold switching processes that lead to bistability and the formation of metastable phases in photoinduced phase transition of VO2 are elucidated through ultrafast electron diffraction and diffusive scattering techniques with varying excitation wavelengths. We uncover two distinct regimes of the dynamical phase change: a nearly instantaneous crossover into an intermediate state and its decay led by lattice instabilities over 10 ps timescales. The structure of this intermediate state is identified to be monoclinic, but more akin to M2 rather than M1 based on structure refinements. The extinction of all major monoclinic features within just a few picoseconds at the above-threshold-level (~20%) photoexcitations and the distinct dynamics in diffusive scattering that represents medium-range atomic fluctuations at two photon wavelengths strongly suggest a density-driven and nonthermal pathway for the initial process of the photoinduced phase transition. These results highlight the critical roles of electron correlations and lattice instabilities in driving and controlling phase transformations far from equilibrium.

  8. Phase-Transformation Ductilization of Brittle High-Entropy Alloys via Metastability Engineering

    DOE PAGES

    Huang, Hailong; Wu, Yuan; He, Junyang; ...

    2017-06-07

    High-entropy alloys (HEAs) in which interesting physical, chemical, and structural properties are being continuously revealed have recently attracted extensive attention. Body-centered cubic (bcc) HEAs, particularly those based on refractory elements are promising for high-temperature application but generally fail by early cracking with limited plasticity at room temperature, which limits their malleability and widespread uses. In this paper, the “metastability-engineering” strategy is exploited in brittle bcc HEAs via tailoring the stability of the constituent phases, and transformation-induced ductility and work-hardening capability are successfully achieved. Finally, this not only sheds new insights on the development of HEAs with excellent combination of strengthmore » and ductility, but also has great implications on overcoming the long-standing strength–ductility tradeoff of metallic materials in general.« less

  9. Phase transformations and the spectral reflectance of solid sulfur - Can metastable sulfur allotropes exist on Io?

    NASA Technical Reports Server (NTRS)

    Moses, Julianne I.; Nash, Douglas B.

    1991-01-01

    Laboratory investigations have been conducted on the effects of variations in sulfur sample histories on their solid-state transformation rate and the corresponding spectral variation of freshly frozen sulfur. The temporal variations in question may be due to differences in the amount and type of metastable allotropes present in the sulfur after solidification, as well as to the physics of the phase-transformation process itself. The results obtained are pertinent to the physical behavior and spectral variation of such freshly solidified sulfur as may exist on the Jupiter moon Io; this would initially solidify into a glassy solid or monoclinic crystalline lattice, then approach ambient dayside temperatures. Laboratory results imply that the monoclinic or polymeric allotropes can in these circumstances be maintained, and will take years to convert to the stable orthorhombic crystalline form.

  10. Phase transformations and the spectral reflectance of solid sulfur - Can metastable sulfur allotropes exist on Io

    SciTech Connect

    Moses, J.I.; Nash, D.B. San Juan Capistrano Research Institute, CA )

    1991-02-01

    Laboratory investigations have been conducted on the effects of variations in sulfur sample histories on their solid-state transformation rate and the corresponding spectral variation of freshly frozen sulfur. The temporal variations in question may be due to differences in the amount and type of metastable allotropes present in the sulfur after solidification, as well as to the physics of the phase-transformation process itself. The results obtained are pertinent to the physical behavior and spectral variation of such freshly solidified sulfur as may exist on the Jupiter moon Io; this would initially solidify into a glassy solid or monoclinic crystalline lattice, then approach ambient dayside temperatures. Laboratory results imply that the monoclinic or polymeric allotropes can in these circumstances be maintained, and will take years to convert to the stable orthorhombic crystalline form. 114 refs.

  11. Phase transformations and the spectral reflectance of solid sulfur - Can metastable sulfur allotropes exist on Io?

    NASA Astrophysics Data System (ADS)

    Moses, J. I.; Nash, D. B.

    1991-02-01

    Laboratory investigations have been conducted on the effects of variations in sulfur sample histories on their solid-state transformation rate and the corresponding spectral variation of freshly frozen sulfur. The temporal variations in question may be due to differences in the amount and type of metastable allotropes present in the sulfur after solidification, as well as to the physics of the phase-transformation process itself. The results obtained are pertinent to the physical behavior and spectral variation of such freshly solidified sulfur as may exist on the Jupiter moon Io; this would initially solidify into a glassy solid or monoclinic crystalline lattice, then approach ambient dayside temperatures. Laboratory results imply that the monoclinic or polymeric allotropes can in these circumstances be maintained, and will take years to convert to the stable orthorhombic crystalline form.

  12. Curvature-dependent metastability of the solid phase and the freezing-melting hysteresis in pores.

    PubMed

    Petrov, Oleg; Furó, István

    2006-01-01

    We recapitulate and generalize the concept of the freezing-melting hysteresis that attributes this phenomenon to a free-energy barrier between metastable and stable states of pore-filling material. In a phenomenological description, we show that under commonly encountered conditions, this renders the freezing-point depression DeltaTf defined by the surface-to-volume ratio S/V, whereas the melting-point depression DeltaTm, by the mean curvature kappa of the pore surface, with DeltaTm/DeltaTf =2kappa(V/S). Employing 1H NMR cryoporometry, we experimentally demonstrate the linear correlation between DeltaTm and DeltaTf for several liquids with different DeltaTf,m imbibed in controlled pore glasses. The results compare favorably to the morphological properties of the glasses determined by other techniques. Our findings suggest a simple method for analyzing the pore morphology from the observed phase transition temperatures.

  13. Phase-Transformation Ductilization of Brittle High-Entropy Alloys via Metastability Engineering.

    PubMed

    Huang, Hailong; Wu, Yuan; He, Junyang; Wang, Hui; Liu, Xiongjun; An, Ke; Wu, Wei; Lu, Zhaoping

    2017-08-01

    High-entropy alloys (HEAs) in which interesting physical, chemical, and structural properties are being continuously revealed have recently attracted extensive attention. Body-centered cubic (bcc) HEAs, particularly those based on refractory elements are promising for high-temperature application but generally fail by early cracking with limited plasticity at room temperature, which limits their malleability and widespread uses. Here, the "metastability-engineering" strategy is exploited in brittle bcc HEAs via tailoring the stability of the constituent phases, and transformation-induced ductility and work-hardening capability are successfully achieved. This not only sheds new insights on the development of HEAs with excellent combination of strength and ductility, but also has great implications on overcoming the long-standing strength-ductility tradeoff of metallic materials in general. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Solidification and fcc to metastable hcp phase transition in krypton under variable compression rates

    NASA Astrophysics Data System (ADS)

    Chen, Jing-Yin; Yoo, Choong-Shik; Evans, William J.; Liermann, Hanns-Peter; Cynn, Hyunchae; Kim, Minseob; Jenei, Zsolt

    2014-10-01

    We present time-resolved synchrotron x-ray diffraction measurements to study kinetics associated with the liquid-solid and solid-solid high-pressure phase transitions in Kr under dynamic loading in a dynamic-diamond anvil cell. The results show a strong compression-rate dependence of the solidification/melting process in liquid Kr. The analysis of the compression-rate dependent melting/solidification, using an Avrami equation with the parameter n =1, indicates a spontaneous nucleation and one-dimensional growth mechanism. In contrast, the face-centered-cubic to metastable hexagonal close-packed transition in solid Kr occurs rapidly at ˜0.8 GPa near the melting line, which has negligible compression-rate dependence within the range of compression rates studied (0.004-13 GPa /s).

  15. Phase transitions and metastability in the distribution of the bipartite entanglement of a large quantum system

    SciTech Connect

    De Pasquale, A.; Facchi, P.; Parisi, G.; Pascazio, S.; Scardicchio, A.

    2010-05-15

    We study the distribution of the Schmidt coefficients of the reduced density matrix of a quantum system in a pure state. By applying general methods of statistical mechanics, we introduce a fictitious temperature and a partition function and translate the problem in terms of the distribution of the eigenvalues of random matrices. We investigate the appearance of two phase transitions, one at a positive temperature, associated with very entangled states, and one at a negative temperature, signaling the appearance of a significant factorization in the many-body wave function. We also focus on the presence of metastable states (related to two-dimensional quantum gravity) and study the finite size corrections to the saddle point solution.

  16. Phase transformations and the spectral reflectance of solid sulfur - Can metastable sulfur allotropes exist on Io?

    NASA Technical Reports Server (NTRS)

    Moses, Julianne I.; Nash, Douglas B.

    1991-01-01

    Laboratory investigations have been conducted on the effects of variations in sulfur sample histories on their solid-state transformation rate and the corresponding spectral variation of freshly frozen sulfur. The temporal variations in question may be due to differences in the amount and type of metastable allotropes present in the sulfur after solidification, as well as to the physics of the phase-transformation process itself. The results obtained are pertinent to the physical behavior and spectral variation of such freshly solidified sulfur as may exist on the Jupiter moon Io; this would initially solidify into a glassy solid or monoclinic crystalline lattice, then approach ambient dayside temperatures. Laboratory results imply that the monoclinic or polymeric allotropes can in these circumstances be maintained, and will take years to convert to the stable orthorhombic crystalline form.

  17. Nonequilibrium thermodynamics of nucleation

    SciTech Connect

    Schweizer, M.; Sagis, L. M. C.

    2014-12-14

    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a metastable phase and a nucleating phase, we derive the fundamental dynamics for this phenomenon, based on continuous Fokker-Planck equations. We are readily able to treat non-isothermal nucleation even when the nucleating cores cannot be attributed intensive thermodynamic properties. In addition, we capture the dynamics of the time-dependent metastable phase being continuously expelled from the nucleating phase, and keep rigorous track of the volume corrections to the dynamics. Within our framework the definition of a thermodynamic nuclei temperature is manifest. For the special case of nucleation of a gas phase towards its vapor-liquid coexistence, we illustrate that our approach is capable of reproducing recent literature results obtained by more microscopic considerations for the suppression of the nucleation rate due to nonisothermal effects.

  18. Nonequilibrium thermodynamics of nucleation.

    PubMed

    Schweizer, M; Sagis, L M C

    2014-12-14

    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a metastable phase and a nucleating phase, we derive the fundamental dynamics for this phenomenon, based on continuous Fokker-Planck equations. We are readily able to treat non-isothermal nucleation even when the nucleating cores cannot be attributed intensive thermodynamic properties. In addition, we capture the dynamics of the time-dependent metastable phase being continuously expelled from the nucleating phase, and keep rigorous track of the volume corrections to the dynamics. Within our framework the definition of a thermodynamic nuclei temperature is manifest. For the special case of nucleation of a gas phase towards its vapor-liquid coexistence, we illustrate that our approach is capable of reproducing recent literature results obtained by more microscopic considerations for the suppression of the nucleation rate due to nonisothermal effects.

  19. Nonequilibrium thermodynamics of nucleation

    NASA Astrophysics Data System (ADS)

    Schweizer, M.; Sagis, L. M. C.

    2014-12-01

    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a metastable phase and a nucleating phase, we derive the fundamental dynamics for this phenomenon, based on continuous Fokker-Planck equations. We are readily able to treat non-isothermal nucleation even when the nucleating cores cannot be attributed intensive thermodynamic properties. In addition, we capture the dynamics of the time-dependent metastable phase being continuously expelled from the nucleating phase, and keep rigorous track of the volume corrections to the dynamics. Within our framework the definition of a thermodynamic nuclei temperature is manifest. For the special case of nucleation of a gas phase towards its vapor-liquid coexistence, we illustrate that our approach is capable of reproducing recent literature results obtained by more microscopic considerations for the suppression of the nucleation rate due to nonisothermal effects.

  20. Exploration of metastability and hidden phases in correlated electron crystals visualized by femtosecond optical doping and electron crystallography

    PubMed Central

    Han, Tzong-Ru T.; Zhou, Faran; Malliakas, Christos D.; Duxbury, Phillip M.; Mahanti, Subhendra D.; Kanatzidis, Mercouri G.; Ruan, Chong-Yu

    2015-01-01

    Characterizing and understanding the emergence of multiple macroscopically ordered electronic phases through subtle tuning of temperature, pressure, and chemical doping has been a long-standing central issue for complex materials research. We report the first comprehensive studies of optical doping–induced emergence of stable phases and metastable hidden phases visualized in situ by femtosecond electron crystallography. The electronic phase transitions are triggered by femtosecond infrared pulses, and a temperature–optical density phase diagram is constructed and substantiated with the dynamics of metastable states, highlighting the cooperation and competition through which the macroscopic quantum orders emerge. These results elucidate key pathways of femtosecond electronic switching phenomena and provide an important new avenue to comprehensively investigate optical doping–induced transition states and phase diagrams of complex materials with wide-ranging applications. PMID:26601190

  1. Exploration of metastability and hidden phases in correlated electron crystals visualized by femtosecond optical doping and electron crystallography.

    PubMed

    Han, Tzong-Ru T; Zhou, Faran; Malliakas, Christos D; Duxbury, Phillip M; Mahanti, Subhendra D; Kanatzidis, Mercouri G; Ruan, Chong-Yu

    2015-06-01

    Characterizing and understanding the emergence of multiple macroscopically ordered electronic phases through subtle tuning of temperature, pressure, and chemical doping has been a long-standing central issue for complex materials research. We report the first comprehensive studies of optical doping-induced emergence of stable phases and metastable hidden phases visualized in situ by femtosecond electron crystallography. The electronic phase transitions are triggered by femtosecond infrared pulses, and a temperature-optical density phase diagram is constructed and substantiated with the dynamics of metastable states, highlighting the cooperation and competition through which the macroscopic quantum orders emerge. These results elucidate key pathways of femtosecond electronic switching phenomena and provide an important new avenue to comprehensively investigate optical doping-induced transition states and phase diagrams of complex materials with wide-ranging applications.

  2. Formation of a metastable ferromagnetic tau phase during containerless melt processing and rapid quenching in Mn-Al-C alloys

    NASA Technical Reports Server (NTRS)

    Kim, Y. J.; Perepezko, J. H.

    1992-01-01

    Solidification of selected Mn-Al-C alloys during containerless levitation and rapid quenching has yielded the first report for a ferromagnetic metastable tau phase formed directly from the melt. Complete solidification to tau phase was interrupted by the competitive evolution of an equilibrium epsilon phase during recalescence. The amount of undercooling required to produce the metastable ferromagnetic tau phase in a Mn(0.55)Al(0.433)C(0.017) alloy during solidification was estimated as approximately 470 K based on differential thermal analysis results. When the alloy carbon content was increased to 3.4 at. pct, transition in structure development occurred so that the samples exhibited gamma 2 phase formation as well as tau and epsilon phases.

  3. Infinite-mode squeezed coherent states and non-equilibrium statistical mechanics (phase-space-picture approach)

    NASA Technical Reports Server (NTRS)

    Yeh, Leehwa

    1993-01-01

    The phase-space-picture approach to quantum non-equilibrium statistical mechanics via the characteristic function of infinite-mode squeezed coherent states is introduced. We use quantum Brownian motion as an example to show how this approach provides an interesting geometrical interpretation of quantum non-equilibrium phenomena.

  4. Equilibrium sampling by reweighting nonequilibrium simulation trajectories.

    PubMed

    Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin

    2016-03-01

    Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems.

  5. Equilibrium sampling by reweighting nonequilibrium simulation trajectories

    NASA Astrophysics Data System (ADS)

    Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin

    2016-03-01

    Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems.

  6. Nonequilibrium phase coexistence and criticality near the second explosion limit of hydrogen combustion.

    PubMed

    Newcomb, Lucas B; Alaghemandi, Mohammad; Green, Jason R

    2017-07-21

    While hydrogen is a promising source of clean energy, the safety and optimization of hydrogen technologies rely on controlling ignition through explosion limits: pressure-temperature boundaries separating explosive behavior from comparatively slow burning. Here, we show that the emergent nonequilibrium chemistry of combustible mixtures can exhibit the quantitative features of a phase transition. With stochastic simulations of the chemical kinetics for a model mechanism of hydrogen combustion, we show that the boundaries marking explosive domains of kinetic behavior are nonequilibrium critical points. Near the pressure of the second explosion limit, these critical points terminate the transient coexistence of dynamical phases-one that autoignites and another that progresses slowly. Below the critical point temperature, the chemistry of these phases is indistinguishable. In the large system limit, the pseudo-critical temperature converges to the temperature of the second explosion limit derived from mass-action kinetics.

  7. Nonequilibrium phase transition in a model for the propagation of innovations among economic agents.

    PubMed

    Llas, Mateu; Gleiser, Pablo M; López, Juan M; Díaz-Guilera, Albert

    2003-12-01

    We characterize the different morphological phases that occur in a simple one-dimensional model of propagation of innovations among economic agents [X. Guardiola et al., Phys. Rev E 66, 026121 (2002)]. We show that the model can be regarded as a nonequilibrium surface growth model. This allows us to demonstrate the presence of a continuous roughening transition between a flat (system size independent fluctuations) and a rough phase (system size dependent fluctuations). Finite-size scaling studies at the transition strongly suggest that the dynamic critical transition does not belong to directed percolation and, in fact, critical exponents do not seem to fit in any of the known universality classes of nonequilibrium phase transitions. Finally, we present an explanation for the occurrence of the roughening transition and argue that avalanche driven dynamics is responsible for the novel critical behavior.

  8. Nonequilibrium phase transition in a model for the propagation of innovations among economic agents

    NASA Astrophysics Data System (ADS)

    Llas, Mateu; Gleiser, Pablo M.; López, Juan M.; Díaz-Guilera, Albert

    2003-12-01

    We characterize the different morphological phases that occur in a simple one-dimensional model of propagation of innovations among economic agents [X. Guardiola et al., Phys. Rev E 66, 026121 (2002)]. We show that the model can be regarded as a nonequilibrium surface growth model. This allows us to demonstrate the presence of a continuous roughening transition between a flat (system size independent fluctuations) and a rough phase (system size dependent fluctuations). Finite-size scaling studies at the transition strongly suggest that the dynamic critical transition does not belong to directed percolation and, in fact, critical exponents do not seem to fit in any of the known universality classes of nonequilibrium phase transitions. Finally, we present an explanation for the occurrence of the roughening transition and argue that avalanche driven dynamics is responsible for the novel critical behavior.

  9. Ordered phases in coupled nonequilibrium systems: Static properties

    NASA Astrophysics Data System (ADS)

    Chakraborty, Shauri; Chatterjee, Sakuntala; Barma, Mustansir

    2017-08-01

    We study a coupled driven system in which two species of particles are advected by a fluctuating potential energy landscape. While the particles follow the potential gradient, each species affects the local shape of the landscape in different ways. As a result of this two-way coupling between the landscape and the particles, the system shows interesting new phases, characterized by different sorts of long-ranged order in the particles and in the landscape. In all these ordered phases, the two particle species phase separate completely from each other, but the underlying landscape may either show complete ordering, with macroscopic regions with distinct average slopes, or may show coexistence of ordered and disordered regions, depending on the differential nature of effect produced by the particle species on the landscape. We discuss several aspects of static properties of these phases in this paper, and we discuss the dynamics of these phases in the sequel.

  10. Quantitative analysis of non-equilibrium phase transition process by the catastrophe theory

    NASA Astrophysics Data System (ADS)

    Liang, Xiao; Wu, Jiu Hui; Zhong, H. B.

    2017-08-01

    Catastrophe theory is a highly generalized mathematical theory that summarizes the rules of non-equilibrium phase transition by several catastrophe models. This paper investigates the general non-equilibrium phase transition process quantitatively using catastrophe theory for the first time, to our knowledge. First, a new approach is proposed by combining the catastrophe theory with dimensionless analysis. Second, the new approach is applied to two classic examples: one is the turbulent phase transition and the other is the bottleneck effect of particle flow. For the turbulence phase transition process, the quantitative relationships are obtained. Comparing with Kolmogorov's turbulent theory, the new method proposed in this paper is able to evaluate not only the complete turbulence condition but also the development of turbulence, and Kolmogorov's turbulent theory is only a special case of our results by this new approach. For the particle flow bottleneck effect, the results obtained by this new method correspond with the empirical formulated results. Therefore, the proposed method can solve non-equilibrium phase transition process problems and has the potential to extend to fluid, aerodynamics, and so forth.

  11. Nonequilibrium phase transitions in isotropic Ashkin-Teller model

    NASA Astrophysics Data System (ADS)

    Akıncı, Ümit

    2017-03-01

    Dynamic behavior of an isotropic Ashkin-Teller model in the presence of a periodically oscillating magnetic field has been analyzed by means of the mean field approximation. The dynamic equation of motion has been constructed with the help of a Glauber type stochastic process and solved for a square lattice. After defining the possible dynamical phases of the system, phase diagrams have been given and the behavior of the hysteresis loops has been investigated in detail. The hysteresis loop for specific order parameter of isotropic Ashkin-Teller model has been defined and characteristics of this loop in different dynamical phases have been given.

  12. Nonequilibrium Phase Transition in a Periodically Driven XY Spin Chain

    NASA Astrophysics Data System (ADS)

    Prosen, Tomaž; Ilievski, Enej

    2011-08-01

    We present a general formulation of Floquet states of periodically time-dependent open Markovian quasifree fermionic many-body systems in terms of a discrete Lyapunov equation. Illustrating the technique, we analyze periodically kicked XY spin-(1)/(2) chain which is coupled to a pair of Lindblad reservoirs at its ends. A complex phase diagram is reported with reentrant phases of long range and exponentially decaying spin-spin correlations as some of the system’s parameters are varied. The structure of phase diagram is reproduced in terms of counting nontrivial stationary points of Floquet quasiparticle dispersion relation.

  13. Phase transformation of the A15 metastable phase of Fe-Cr thin films prepared by ion-beam sputtering

    NASA Astrophysics Data System (ADS)

    Al-Khoury, W.; Eymery, J.-P.; Goudeau, Ph.

    2007-08-01

    Thermal stability of metastable A15 Fe-Cr phase is investigated through the study of its magnetic and structural properties. This phase presents very interesting mechanical properties suggesting that A15-structured films might be of great interest for tribological applications when considering the hardness H over Young's modulus E ratio i.e., a description in terms of "elastic strain to failure" for wear resistance. Indeed, H is multiplied by a factor 2 with respect to the value measured for the bulk cubic centered α phase whereas E remains identical. Then, an improvement by a factor 8 of resistance to plastic deformation may be expected since predictive models stand that this quantity is proportional to the H3/E2 ratio. However, heating problems due to sliding during tribological tests may lead to structural transformation in the film and then a loose of mechanical performance. The formation and the stability of the A15 cubic structure (δ phase) in centered-cubic refractory metals are generally attributed to the presence of oxygen atoms in the unit cell. For equiatomic Fe-Cr thin films elaborated by physical vapor deposition techniques, residual oxygen atoms present in the deposition chamber would be absorbed during the deposition process. In this work, the δ-phase transformation has been studied ex situ in the temperature range 400-650 °C; structural changes have been accurately investigated thanks to the combination of x-ray diffraction and Mössbauer spectroscopy techniques. Thin films were deposited onto quartz substrates and then annealed ex situ under secondary vacuum. From 400 °C, a "structural relaxation" occurring in the δ phase precedes and accompanies the beginning of the phase transformation. Finally, the partially ordered metastable δ-phase transforms into a stable α-phase presenting the precipitation phenomenon at temperature above 550 °C and the presence of a τ-carbide phase is clearly visible from 600 °C. The δ-phase transformation is

  14. New metastable phases in an oxyborate compound obtained by an evolutionary algorithm and Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Vallejo, E.; Avignon, M.

    2017-08-01

    New metastable phases in the Fe homometallic ludwigite compound are obtained and studied using an evolutionary algorithm and Density Functional Theory. Our lowest energy monoclinic structure is identified as P21/m with space group number of 11. This structure evolves towards the monoclinic structure as the result of the spin orbit coupling and a particular zigzag magnetic structure. A zigzag distortion in a class of three-leg ladders follows similar to the experimental one observed below the transition temperature of Tc = 283 K. In this distortion long and short bonds inside rungs alternating in a zigzag way along the ladder legs. Furthermore, a new type of zigzag structural ordering is observed in other two low-energy phases analyzed. In this case, the magnetic ordering behaves qualitatively similar to the experimental structure at 82 K, with antiferromagnetically coupled ferromagnetic rungs. Our calculations show that magnetic symmetry is not favorable for zigzag structural ordering. Finally, structural and magnetic properties will be discussed in comparison with the experimentally known phases.

  15. Nonequilibrium phenomena in the phase separation of a two-component lipid bilayer.

    PubMed Central

    de Almeida, Rodrigo F M; Loura, Luís M S; Fedorov, Aleksandre; Prieto, Manuel

    2002-01-01

    Lipid bilayers composed of two phospholipids with significant acyl-chain mismatch behave as nonideal mixtures. Although many of these systems are well characterized from the equilibrium point of view, studies concerning their nonequilibrium dynamics are still rare. The kinetics of lipid demixing (phase separation) was studied in model membranes (large unilamellar vesicles of 1:1 dilauroylphosphatidylcholine (C(12) acyl chain) and distearoylphosphatidylcholine (C(18) acyl chain)). For this purpose, photophysical techniques (fluorescence intensity, anisotropy, and fluorescence resonance energy transfer) were applied using suitable probes (gel phase probe trans-parinaric acid and fluid phase probe N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-dilauroylphosphatidylethanolamine). The nonequilibrium situation was induced by a sudden thermal quench from a one-fluid phase equilibrium situation (higher temperature) to the gel/fluid coexistence range (lower temperature). We verified that the attainment of equilibrium is a very slow process (occurs in a time scale of hours), leading to large domains at infinite time. The nonequilibrium structure stabilization is due essentially to temporarily rigidified C(12) chains in the interface between gel/fluid domains, which decrease the interfacial tension by acting as surfactants. The relaxation process becomes faster with the increase of the temperature drop. In addition, heterogeneity is already present in the supposed homogeneous fluid mixture at the higher temperature. PMID:11806924

  16. Metastable Phases of Dross Particles Formed in a Molten Zinc Bath and Prediction of Soluble Aluminum During Galvannealing Processes

    NASA Astrophysics Data System (ADS)

    Paik, Doo-Jin; Hong, Moon-Hi; Huh, Yoon; Park, Joo Hyun; Chae, Hong-Kook; Park, Seok-Ho; Choun, Si-Youl

    2012-06-01

    The morphology, chemistry, and crystallographic characteristics of metastable dross particles were identified. These particles are formed during the initial stage of precipitation. The particles had aluminum concentrations of 15 to 80 mass pct, with values that decreased gradually as particle size increased. These metastable dross particles were a mixture of the crystalline phase of FeZn10, which is called the "delta phase," and the high-aluminum amorphous phase, which covered the surface of the crystalline phase. The new "meta Q" concept was proposed to predict the amount of soluble aluminum in the zinc bath by considering nucleation kinetics and particle growth. The results calculated using the "meta Q" concept were compared with the values measured by the aluminum sensor, which were taken during the same period at the commercial galvanizing line. The mean of the absolute values of the differences between the calculated and measured values was 9.7 ppm.

  17. Distribution of current in nonequilibrium diffusive systems and phase transitions

    NASA Astrophysics Data System (ADS)

    Bodineau, T.; Derrida, B.

    2005-12-01

    We consider diffusive lattice gases on a ring and analyze the stability of their density profiles conditionally to a current deviation. Depending on the current, one observes a phase transition between a regime where the density remains constant and another regime where the density becomes time dependent. Numerical data confirm this phase transition. This time dependent profile persists in the large drift limit and allows one to understand on physical grounds the results obtained earlier for the totally asymmetric exclusion process on a ring.

  18. Distribution of current in nonequilibrium diffusive systems and phase transitions.

    PubMed

    Bodineau, T; Derrida, B

    2005-12-01

    We consider diffusive lattice gases on a ring and analyze the stability of their density profiles conditionally to a current deviation. Depending on the current, one observes a phase transition between a regime where the density remains constant and another regime where the density becomes time dependent. Numerical data confirm this phase transition. This time dependent profile persists in the large drift limit and allows one to understand on physical grounds the results obtained earlier for the totally asymmetric exclusion process on a ring.

  19. Phase ordering kinetics of a nonequilibrium exciton-polariton condensate

    NASA Astrophysics Data System (ADS)

    Kulczykowski, Michał; Matuszewski, Michał

    2017-02-01

    We investigate the process of coarsening via annihilation of vortex-antivortex pairs, following the quench to the condensate phase in a nonresonantly pumped polariton system. We find that the late-time dynamics is an example of universal phase-ordering kinetics, characterized by scaling of correlation functions in time. Depending on the parameters of the system, the evolution of the characteristic length scale L (t ) can be the same as for the two-dimensional X Y model, described by a power law with the dynamical exponent z ≈2 and a logarithmic correction, or z ≈1 which agrees with previous studies of conservative superfluids.

  20. Nonequilibrium phase coexistence and criticality near the second explosion limit of hydrogen combustion

    NASA Astrophysics Data System (ADS)

    Newcomb, Lucas B.; Alaghemandi, Mohammad; Green, Jason R.

    2017-07-01

    While hydrogen is a promising source of clean energy, the safety and optimization of hydrogen technologies rely on controlling ignition through explosion limits: pressure-temperature boundaries separating explosive behavior from comparatively slow burning. Here, we show that the emergent nonequilibrium chemistry of combustible mixtures can exhibit the quantitative features of a phase transition. With stochastic simulations of the chemical kinetics for a model mechanism of hydrogen combustion, we show that the boundaries marking explosive domains of kinetic behavior are nonequilibrium critical points. Near the pressure of the second explosion limit, these critical points terminate the transient coexistence of dynamical phases—one that autoignites and another that progresses slowly. Below the critical point temperature, the chemistry of these phases is indistinguishable. In the large system limit, the pseudo-critical temperature converges to the temperature of the second explosion limit derived from mass-action kinetics.

  1. Non-equilibrium one-dimensional two-phase flow in variable area channels

    NASA Technical Reports Server (NTRS)

    Rohatgi, U. S.; Reshotko, E.

    1975-01-01

    A one-dimensional nonequilibrium flow analysis has been formulated for a one component two phase flow. The flow is considered homogeneous and essentially isothermal. Phase change is assumed to occur at heterogeneous nucleation sites and the growth of the vapor bubbles is governed by heat conduction from the liquid to the bubble. The analysis adjusted for friction is applied to liquid nitrogen flow in a venturi and comparison is made with the NASA experimental results of Simoneau. Good agreement with the experiments is obtained when one assumes the effective activation energy for nucleus formation to be small but nonzero. The computed pressure distributions deviate from the experimental results in the throat region of the venturi in a manner consistent with centrifugal effects not accounted for in the one-dimensional theory. The results are shown to depend not only on cavitation number but on additional dimensionless parameters governing the nonequilibrium production and subsequent growth of nuclei.

  2. Standing magnetic wave on Ising ferromagnet: Nonequilibrium phase transition

    NASA Astrophysics Data System (ADS)

    Halder, Ajay; Acharyya, Muktish

    2016-12-01

    The dynamical response of an Ising ferromagnet to a plane polarised standing magnetic field wave is modelled and studied here by Monte Carlo simulation in two dimensions. The amplitude of standing magnetic wave is modulated along the direction x. We have detected two main dynamical phases namely, pinned and oscillating spin clusters. Depending on the value of field amplitude the system is found to undergo a phase transition from oscillating spin cluster to pinned as the system is cooled down. The time averaged magnetisation over a full cycle of magnetic field oscillations is defined as the dynamic order parameter. The transition is detected by studying the temperature dependences of the variance of the dynamic order parameter, the derivative of the dynamic order parameter and the dynamic specific heat. The dependence of the transition temperature on the magnetic field amplitude and on the wavelength of the magnetic field wave is studied at a single frequency. A comprehensive phase boundary is drawn in the plane described by the temperature and field amplitude for two different wavelengths of the magnetic wave. The variation of instantaneous line magnetisation during a period of magnetic field oscillation for standing wave mode is compared to those for the propagating wave mode. Also the probability that a spin at any site, flips, is calculated. The above mentioned variations and the probability of spin flip clearly distinguish between the dynamical phases formed by propagating magnetic wave and by standing magnetic wave in an Ising ferromagnet.

  3. Nonequilibrium dynamic phases in driven vortex lattices with periodic pinning

    NASA Astrophysics Data System (ADS)

    Reichhardt, Charles Michael

    1998-12-01

    We present the results of an extensive series of simulations of flux-gradient and current driven vortices interacting with either random or periodically arranged pinning sites. First, we consider flux-gradient-driven simulations of superconducting vortices interacting with strong randomly-distributed columnar pinning defects, as an external field H(t) is quasi-statically swept from zero through a matching field Bsb{phi}. Here, we find significant changes in the behavior of the local flux density B(x, y, H(t)), magnetization M(H(t)), critical current Jsb{c}(B(t)), and the individual vortex flow paths, as the local flux density crosses Bsb{phi}. Further, we find that for a given pin density, Jsb{c}(B) can be enhanced by maximizing the distance between the pins for B < Bsb{phi}. For the case of periodic pinning sites as a function of applied field, we find a rich variety of ordered and partially-ordered vortex lattice configurations. We present formulas that predict the matching fields at which commensurate vortex configurations occur and the vortex lattice orientation with respect to the pinning lattice. Our results are in excellent agreement with recent imaging experiments on square pinning arrays (K. Harada et al., Science 274, 1167 (1996)). For current driven simulations with periodic pinning we find a remarkable number of dynamical plastic flow phases. Signatures of the transitions between these different dynamical phases include sudden jumps in the current-voltage curves, hysteresis, as well as marked changes in the vortex trajectories and vortex lattice order. These phases are outlined in a series of dynamic phase diagrams. We show that several of these phases and their phase-boundaries can be understood in terms of analytical arguments. Finally, when the vortex lattice is driven at varying angles with respect to the underlying periodic pinning array, the transverse voltage-current V(I) curves show a series of mode-locked plateaus with the overall V(I) forming

  4. Finite-size scaling analysis of a nonequilibrium phase transition in the naming game model

    NASA Astrophysics Data System (ADS)

    Brigatti, E.; Hernández, A.

    2016-11-01

    We realize an extensive numerical study of the naming game model with a noise term which accounts for perturbations. This model displays a nonequilibrium phase transition between an absorbing ordered consensus state, which occurs for small noise, and a disordered phase with fragmented clusters characterized by heterogeneous memories, which emerges at strong noise levels. The nature of the phase transition is studied by means of a finite-size scaling analysis of the moments. We observe a scaling behavior typical of a discontinuous transition and we are able to estimate the thermodynamic limit. The scaling behavior of the clusters size seems also compatible with this kind of transition.

  5. Unusual dileptions at RHIC a field theoretic approach based on a non-equilibrium chiral phase transition

    SciTech Connect

    Cooper, F.

    1997-09-22

    This paper contains viewgraphs on unusual dileptons at Brookhaven RHIC. A field theory approach is used based on a non-equilibrium chiral phase transformation utilizing the schroedinger and Heisenberg picture.

  6. Nonequilibrium phase transition in compact stars through a violent shock

    NASA Astrophysics Data System (ADS)

    Mishustin, Igor; Mallick, Ritam; Nandi, Rana; Satarov, Leonid

    2015-05-01

    In this article we study the dynamics of a first-order phase transition from nucleonic to quark matter in neutron stars. Using standard equations of state for these two phases we find the density range where such a transition is possible. Then we study the transformation of the star assuming that the quark core is formed via a spherical shock wave. The thermodynamical conditions in the quark core are found from the conservation laws across the transition region. Their dependence on the density and velocity of the incoming nuclear matter are studied. It is found that the shock is especially violent in the beginning of the conversion process when the velocity of the in-falling matter is especially high. As the shock propagates further from the center, the front velocity first increases and reaches a maximum value when the incoming velocity is around 0.2 . Finally, the front velocity quickly goes to zero when incoming matter velocity approaches zero. We have shown that the density and pressure jumps are especially large in the beginning of the transition process. Such a shocklike phase transition in the compact star can manifest a neutrino burst and gravitational waves.

  7. Fatigue properties of a metastable beta-type titanium alloy with reversible phase transformation.

    PubMed

    Li, S J; Cui, T C; Hao, Y L; Yang, R

    2008-03-01

    Due to recent concern about allergic and toxic effects of Ni ions released from TiNi alloy into human body, much attention has been focused on the development of new Ni-free, metastable beta-type biomedical titanium alloys with a reversible phase transformation between the beta phase and the alpha'' martensite. This study investigates the effect of the stress-induced alpha'' martensite on the mechanical and fatigue properties of Ti-24Nb-4Zr-7.6Sn (wt.%) alloy. The results show that the as-forged alloy has a low dynamic Young's modulus of 55GPa and a recoverable tensile strain of approximately 3%. Compared with Ti-6Al-4V ELI, the studied alloy has quite a high low-cycle fatigue strength because of the effective suppression of microplastic deformation by the reversible martensitic transformation. Due to the low critical stress required to induce the martensitic transformation, it has low fatigue endurance comparable to that of Ti-6Al-4V ELI. Cold rolling produces a beta+alpha'' two-phase microstructure that is characterized by regions of nano-size beta grains interspersed with coarse grains containing alpha'' martensite plates. Cold rolling increases fatigue endurance by approximately 50% while decreasing the Young's modulus to 49GPa along the rolling direction but increasing it to 68GPa along the transverse direction. Due to the effective suppression of the brittle isothermal omega phase, balanced properties of high strength, low Young's modulus and good ductility can be achieved through ageing treatment at intermediate temperature.

  8. Preparation of meta-stable phases of barium titanate by Sol-hydrothermal method

    SciTech Connect

    Selvaraj, Mahalakshmi; Venkatachalapathy, V.; Karazhanov, S.; Pearce, J. M. E-mail: jeyanthinath@yahoo.co.in

    2015-11-15

    Two low-cost chemical methods of sol–gel and the hydrothermal process have been strategically combined to fabricate barium titanate (BaTiO{sub 3}) nanopowders. This method was tested for various synthesis temperatures (100 °C to 250 °C) employing barium dichloride (BaCl{sub 2}) and titanium tetrachloride (TiCl{sub 4}) as precursors and sodium hydroxide (NaOH) as mineralizer for synthesis of BaTiO{sub 3} nanopowders. The as-prepared BaTiO{sub 3} powders were investigated for structural characteristics using x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The overall analysis indicates that the hydrothermal conditions create a gentle environment to promote the formation of crystalline phase directly from amorphous phase at the very low processing temperatures investigated. XRD analysis showed phase transitions from cubic - tetragonal - orthorhombic - rhombohedral with increasing synthesis temperature and calculated grain sizes were 34 – 38 nm (using the Scherrer formula). SEM and TEM analysis verified that the BaTiO{sub 3} nanopowders synthesized by this method were spherical in shape and about 114 - 170 nm in size. The particle distribution in both SEM and TEM shows that as the reaction temperature increases from 100 °C to 250 °C, the particles agglomerate. Selective area electron diffraction (SAED) shows that the particles are crystalline in nature. The study shows that choosing suitable precursor and optimizing pressure and temperature; different meta-stable (ferroelectric) phases of undoped BaTiO{sub 3} nanopowders can be stabilized by the sol-hydrothermal method.

  9. Ultra-Low Power Cross-Phase Shifts using Metastable Xenon in a High-Finesse Cavity

    NASA Astrophysics Data System (ADS)

    Hickman, Garrett; Pittman, Todd; Franson, James

    Many important applications in quantum information and quantum communications make use of weak single-photon nonlinearities. These nonlinearities have been produced using a number of methods, but they generally require a complicated experimental setup. We demonstrate a relatively simple system for producing ultra-low power cross-phase modulation, by using metastable xenon as the nonlinear medium within an optical cavity. Using metastable xenon prevents the degradation of optical surfaces which typically occurs with the use of alkali vapors such as rubidium. We produce phase shifts of up to 10 mrad using 4.5-fJ control pulses. We discuss the performance of this system and outline the planned improvements that will allow the cavity to produce single-photon phase shifts on the order of 1 mrad. This work was supported in part by DARPA DSO Grant No. W31P4Q-12-1-0015 and by NSF Grant No. PHY-1402708.

  10. Phenomena at the QCD phase transition in nonequilibrium chiral fluid dynamics (Nχ FD)

    NASA Astrophysics Data System (ADS)

    Nahrgang, Marlene; Herold, Christoph

    2016-08-01

    Heavy-ion collisions performed in the beam energy range accessible by the NICA collider facility are expected to produce systems of extreme net-baryon densities and can thus reach yet unexplored regions of the QCD phase diagram. Here, one expects the phase transition between the plasma of deconfined quarks and gluons and the hadronic matter to be of first order. A discovery of the first-order phase transition would as well prove the existence of the QCD critical point, a landmark in the phase diagram. In order to understand possible signals of the first-order phase transition in heavy-ion collision experiments it is very important to develop dynamical models of the phase transition. Here, we discuss the opportunities of studying dynamical effects at the QCD first-order phase transition within our model of nonequilibrium chiral fluid dynamics.

  11. Dynamic scaling at classical phase transitions approached through nonequilibrium quenching

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Wei; Polkovnikov, Anatoli; Sandvik, Anders W.

    2014-02-01

    We use Monte Carlo simulations to demonstrate generic scaling aspects of classical phase transitions approached through a quench (or annealing) protocol where the temperature changes as a function of time with velocity v. Using a generalized Kibble-Zurek ansatz, we demonstrate dynamic scaling for different types of stochastic dynamics (Metropolis, Swendsen-Wang, and Wolff) on Ising models in two and higher dimensions. We show that there are dual scaling functions governing the dynamic scaling, which together describe the scaling behavior in the entire velocity range v ∈[0,∞). These functions have asymptotics corresponding to the adiabatic and diabatic limits, and close to these limits they are perturbative in v and 1/v, respectively. Away from their perturbative domains, both functions cross over into the same universal power-law scaling form governed by the static and dynamic critical exponents (as well as an exponent characterizing the quench protocol). As a by-product of the scaling studies, we obtain high-precision estimates of the dynamic exponent z for the two-dimensional Ising model subject to the three variants of Monte Carlo dynamics: for single-spin Metropolis updates zM=2.1767(5), for Swendsen-Wang multicluster updates zSW=0.297(3), and for Wolff single-cluster updates zW=0.30(2). For Wolff dynamics, we find an interesting behavior with a nonanalytic breakdown of the quasiadiabatic and diabatic scalings, instead of the generic smooth crossover described by a power law. We interpret this disconnect between the two scaling regimes as a dynamic phase transition of the Wolff algorithm, caused by an effective sudden loss of ergodicity at high velocity.

  12. Atomic loss and gain as a resource for nonequilibrium phase transitions in optical lattices

    NASA Astrophysics Data System (ADS)

    Everest, B.; Marcuzzi, M.; Lesanovsky, I.

    2016-02-01

    Recent breakthroughs in the experimental manipulation of strongly interacting atomic Rydberg gases in lattice potentials have opened an avenue for the study of many-body phenomena. Considerable efforts are currently being undertaken to achieve clean experimental settings that show a minimal amount of noise and disorder and are close to zero temperature. A complementary direction investigates the interplay between coherent and dissipative processes. Recent experiments have revealed a glimpse into the emergence of a rich nonequilibrium behavior stemming from the competition of laser excitation, strong interactions, and radiative decay of Rydberg atoms. The aim of the present theoretical work is to show that local incoherent loss and gain of atoms can in fact be the source of interesting out-of-equilibrium dynamics. This perspective opens up paths for the exploration of nonequilibrium critical phenomena and, more generally, phase transitions, some of which so far have been rather difficult to study. To demonstrate the richness of the encountered dynamical behavior we consider here three examples. The first two feature local atom loss and gain together with an incoherent excitation of Rydberg states. In this setting either a continuous or a discontinuous phase transition emerges with the former being reminiscent of genuine nonequilibrium transitions of stochastic processes with multiple absorbing states. The third example considers the regime of coherent laser excitation. Here the many-body dynamics is dominated by an equilibrium transition of the "model A" universality class.

  13. Punishment in public goods games leads to meta-stable phase transitions and hysteresis.

    PubMed

    Hintze, Arend; Adami, Christoph

    2015-06-02

    The evolution of cooperation has been a perennial problem in evolutionary biology because cooperation can be undermined by selfish cheaters who gain an advantage in the short run, while compromising the long-term viability of the population. Evolutionary game theory has shown that under certain conditions, cooperation nonetheless evolves stably, for example if players have the opportunity to punish cheaters that benefit from a public good yet refuse to pay into the common pool. However, punishment has remained enigmatic because it is costly and difficult to maintain. On the other hand, cooperation emerges naturally in the public goods game if the synergy of the public good (the factor multiplying the public good investment) is sufficiently high. In terms of this synergy parameter, the transition from defection to cooperation can be viewed as a phase transition with the synergy as the critical parameter. We show here that punishment reduces the critical value at which cooperation occurs, but also creates the possibility of meta-stable phase transitions, where populations can 'tunnel' into the cooperating phase below the critical value. At the same time, cooperating populations are unstable even above the critical value, because a group of defectors that are large enough can 'nucleate' such a transition. We study the mean-field theoretical predictions via agent-based simulations of finite populations using an evolutionary approach where the decisions to cooperate or to punish are encoded genetically in terms of evolvable probabilities. We recover the theoretical predictions and demonstrate that the population shows hysteresis, as expected in systems that exhibit super-heating and super-cooling. We conclude that punishment can stabilize populations of cooperators below the critical point, but it is a two-edged sword: it can also stabilize defectors above the critical point.

  14. Punishment in public goods games leads to meta-stable phase transitions and hysteresis

    NASA Astrophysics Data System (ADS)

    Hintze, Arend; Adami, Christoph

    2015-07-01

    The evolution of cooperation has been a perennial problem in evolutionary biology because cooperation can be undermined by selfish cheaters who gain an advantage in the short run, while compromising the long-term viability of the population. Evolutionary game theory has shown that under certain conditions, cooperation nonetheless evolves stably, for example if players have the opportunity to punish cheaters that benefit from a public good yet refuse to pay into the common pool. However, punishment has remained enigmatic because it is costly and difficult to maintain. On the other hand, cooperation emerges naturally in the public goods game if the synergy of the public good (the factor multiplying the public good investment) is sufficiently high. In terms of this synergy parameter, the transition from defection to cooperation can be viewed as a phase transition with the synergy as the critical parameter. We show here that punishment reduces the critical value at which cooperation occurs, but also creates the possibility of meta-stable phase transitions, where populations can ‘tunnel’ into the cooperating phase below the critical value. At the same time, cooperating populations are unstable even above the critical value, because a group of defectors that are large enough can ‘nucleate’ such a transition. We study the mean-field theoretical predictions via agent-based simulations of finite populations using an evolutionary approach where the decisions to cooperate or to punish are encoded genetically in terms of evolvable probabilities. We recover the theoretical predictions and demonstrate that the population shows hysteresis, as expected in systems that exhibit super-heating and super-cooling. We conclude that punishment can stabilize populations of cooperators below the critical point, but it is a two-edged sword: it can also stabilize defectors above the critical point.

  15. Discovery of a meta-stable Al-Sm phase with unknown stoichiometry using a genetic algorithm

    SciTech Connect

    Zhang, Feng; McBrearty, Ian; Ott, R. T.; Park, E.; Mendelev, Mikhail I.; Kramer, M. J.; Wang, Cai-Zhuang; Ho, Kai-Ming

    2014-07-10

    Unknown crystalline phases observed during the devitrification process of glassy metal alloys significantly limit our ability to understand and control phase selection in these systems driven far from equilibrium. Here, we report a new meta-stable Al5Sm phase identified by simultaneously searching Al-rich compositions of the Al–Sm system, using an efficient genetic algorithm. The excellent match between calculated and experimental X-ray diffraction patterns confirms that this new phase appeared in the crystallization of melt-spun Al90Sm10 alloys.

  16. Discovery of a meta-stable Al–Sm phase with unknown stoichiometry using a genetic algorithm

    SciTech Connect

    Zhang, Feng; McBrearty, Ian; Ott, R T; Park, E; Mendelev, Mikhail I; Kramer, M J; Wang, Cai-Zhuang; Ho, Kai-Ming

    2014-06-01

    Unknown crystalline phases observed during the devitrification process of glassy metal alloys significantly limit our ability to understand and control phase selection in these systems driven far from equilibrium. Here, we report a new meta-stable Al5Sm phase identified by simultaneously searching Al-rich compositions of the Al-Sm system, using an efficient genetic algorithm. The excellent match between calculated and experimental X-ray diffraction patterns confirms that this new phase appeared in the crystallization of melt-spun Al90Sm10 alloys. Published by Elsevier Ltd. on behalf of Acta Materialia Inc.

  17. High Precision Density Measurements of Single Particles: The Density of Metastable Phases

    SciTech Connect

    Zelenyuk, Alla; Cai, Yong; Chieffo, Logan; Imre, Dan G.

    2005-10-01

    We describe a system designed to measure the size, composition and density of individual particles in real-time. It uses a DMA to select a monodisperse particle population and the single particle mass spectrometer to measure individual particle mass spectrometer to measure individual particle aerodynamic diameter and composition. Mobility and aerodynamic diameters are used to extract particle density. The addition of individual particle density to the mass spectrum is intended to improve the data classification process. In the present paper we demonstrate that the system has the requisite accuracy and resolution to make this approach practicable. We also present a high precision variant that uses an internal calibrant to remove any of the systematic errors and significantly improves the measurement quality. The high precision scheme is most suitable for laboratory studies making it possible to follow slight changes in particle density. An application of the system to measure the density of hygroscopic particles of atmospheric importance in metastable phases near zero relative humidity is presented. The density data are consistent with conclusions reached in a number of other studies that some particle systems of atmospheric significance once deliquesced persist as droplets down to near zero relative humidity.

  18. Brain coordination dynamics: true and false faces of phase synchrony and metastability.

    PubMed

    Tognoli, Emmanuelle; Kelso, J A Scott

    2009-01-12

    Understanding the coordination of multiple parts in a complex system such as the brain is a fundamental challenge. We present a theoretical model of cortical coordination dynamics that shows how brain areas may cooperate (integration) and at the same time retain their functional specificity (segregation). This model expresses a range of desirable properties that the brain is known to exhibit, including self-organization, multi-functionality, metastability and switching. Empirically, the model motivates a thorough investigation of collective phase relationships among brain oscillations in neurophysiological data. The most serious obstacle to interpreting coupled oscillations as genuine evidence of inter-areal coordination in the brain stems from volume conduction of electrical fields. Spurious coupling due to volume conduction gives rise to zero-lag (inphase) and antiphase synchronization whose magnitude and persistence obscure the subtle expression of real synchrony. Through forward modeling and the help of a novel colorimetric method, we show how true synchronization can be deciphered from continuous EEG patterns. Developing empirical efforts along the lines of continuous EEG analysis constitutes a major response to the challenge of understanding how different brain areas work together. Key predictions of cortical coordination dynamics can now be tested thereby revealing the essential modus operandi of the intact living brain.

  19. Brain coordination dynamics: True and false faces of phase synchrony and metastability

    PubMed Central

    Tognoli, Emmanuelle; Kelso, J.A. Scott

    2009-01-01

    Understanding the coordination of multiple parts in a complex system such as the brain is a fundamental challenge. We present a theoretical model of cortical coordination dynamics that shows how brain areas may cooperate (integration) and at the same time retain their functional specificity (segregation). This model expresses a range of desirable properties that the brain is known to exhibit, including self-organization, multi-functionality, metastability and switching. Empirically, the model motivates a thorough investigation of collective phase relationships among brain oscillations in neurophysiological data. The most serious obstacle to interpreting coupled oscillations as genuine evidence of inter-areal coordination in the brain stems from volume conduction of electrical fields. Spurious coupling due to volume conduction gives rise to zero-lag (inphase) and antiphase synchronization whose magnitude and persistence obscure the subtle expression of real synchrony. Through forward modeling and the help of a novel colorimetric method, we show how true synchronization can be deciphered from continuous EEG patterns. Developing empirical efforts along the lines of continuous EEG analysis constitutes a major response to the challenge of understanding how different brain areas work together. Key predictions of cortical coordination dynamics can now be tested thereby revealing the essential modus operandi of the intact living brain. PMID:18938209

  20. From phase transitions to the topological renaissance. Comment on "Topodynamics of metastable brains" by Arturo Tozzi et al.

    NASA Astrophysics Data System (ADS)

    Somogyvári, Zoltán; Érdi, Péter

    2017-07-01

    The neural topodynamics theory of Tozzi et al. [13] has two main foci: metastable brain dynamics and the topological approach based on the Borsuk-Ulam theorem (BUT). Briefly, metastable brain dynamics theory hypothesizes that temporary stable synchronization and desynchronization of large number of individual dynamical systems, formed by local neural circuits, are responsible for coding of complex concepts in the brain and sudden changes of these synchronization patterns correspond to operational steps. But what dynamical network could form the substrate for this metastable dynamics, capable of entering into a combinatorially high number of metastable synchronization patterns and exhibit rapid transient changes between them? The general problem is related to the discrimination between ;Black Swans; and ;Dragon Kings;. While BSs are related to the theory of self-organized criticality, and suggests that high-impact extreme events are unpredictable, Dragon-kings are associated with the occurrence of a phase transition, whose emergent organization is based on intermittent criticality [9]. Widening the limits of predictability is one of the big open problems in the theory and practice of complex systems (Sect. 9.3 of Érdi [2]).

  1. Nonequilibrium phase transition of interacting bosons in an intra-cavity optical lattice.

    PubMed

    Bakhtiari, M Reza; Hemmerich, A; Ritsch, H; Thorwart, M

    2015-03-27

    We investigate the nonlinear light-matter interaction of a Bose-Einstein condensate trapped in an external periodic potential inside an optical cavity which is weakly coupled to vacuum radiation modes and driven by a transverse pump field. Based on a generalized Bose-Hubbard model which incorporates a single cavity mode, we include the collective backaction of the atoms on the cavity light field and determine the nonequilibrium quantum phases within the nonperturbative bosonic dynamical mean-field theory. With the system parameters adapted to recent experiments, we find a quantum phase transition from a normal phase to a self-organized superfluid phase, which is related to the Hepp-Lieb-Dicke superradiance phase transition. For even stronger pumping, a self-organized Mott insulator phase arises.

  2. Characterization of Cr-rich Cr-Sb multilayer films: Syntheses of a new metastable phase using modulated elemental reactants

    SciTech Connect

    Regus, Matthias; Mankovsky, Sergiy; Polesya, Svitlana; Kuhn, Gerhard; Ditto, Jeffrey; Schürmann, Ulrich; Jacquot, Alexandre; Bartholomé, Kilian; Näther, Christian; Winkler, Markus; König, Jan D.; Böttner, Harald; Kienle, Lorenz; Johnson, David C.; Ebert, Hubert; Bensch, Wolfgang

    2015-10-15

    The new metastable compound Cr{sub 1+x}Sb with x up to 0.6 has been prepared via a thin film approach using modulated elemental reactants and investigated by in-situ X-ray reflectivity, X-ray diffraction, differential scanning calorimetry, energy dispersive X-ray analysis as well as transmission electron microscopy and atomic force microscopy. The new Cr-rich antimonide crystallizes in a structure related to the Ni{sub 2}In-type structure, where the crystallographic position (1/3, 2/3, 3/4) is partially occupied by excess Cr. The elemental layers of the pristine material interdiffused significantly before Cr{sub 1+x}Sb crystallized. A change in the activation energy was observed for the diffusion process when crystal growth starts. First-principles electronic structure calculations provide insight into the structural stability, magnetic properties and resistivity of Cr{sub 1+x}Sb. - Graphical abstract: 1 amorphous multilayered film 2 interdiffused amorphous film 3 metastable crystalline phase 4 thermodynamic stable phase (and by-product). - Highlights: • Interdiffusion of amorphous Cr and Sb occurs before crystallization. • Crystallization of a new metastable phase Cr{sub 1.6}Sb in Ni{sub 2}In-type structure. • The new Cr-rich phase shows half-metallic behavior.

  3. Computer simulation study of metastable ice VII and amorphous phases obtained by its melting

    NASA Astrophysics Data System (ADS)

    Slovák, Jan; Tanaka, Hideki

    2005-05-01

    Molecular dynamics simulations of metastable ice VII and cubic ice Ic are carried out in order to examine (1) the ability of commonly used water interaction potentials to reproduce the properties of ices, and (2) the possibility of generating low-density amorphous (LDA) structures by heating ice VII, which is known to transform to LDA at ˜135K at normal pressure [S. Klotz, J. M. Besson, G. Hamel, R. J. Nelmes, J. S. Loveday, and W. G. Marshall, Nature (London) 398, 681 (1999)]. We test four simple empirical interaction potentials of water: TIP4P [W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983)], SPC/E [H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. B 91, 6269 (1987)], TIP5P [M. W. Mahoney and W. L. Jorgensen, J. Chem. Phys. 112, 8910 (2000)], and ST2 [F. H. Stillinger and A. Rahman, J. Chem. Phys. 60, 1545 (1974)]. We have found that TIP5P ice VII melts at 210 K, TIP4P at 90 K, and SPC/E at 70 K. Only TIP5P water after transition has a structure similar to that of LDA. TIP4P and SPC/E have almost identical structures, dissimilar to any known water or amorphous phases, but upon heating both slowly evolve towards LDA-like structure. ST2 ice VII is remarkably stable up to 430 K. TIP4P and SPC/E predict correctly the cubic ice collapse into a high-density amorphous ice (HDA) at ˜1GPa whereas TIP5P remains stable up to ˜5GPa. The densities of the simulated ice phases differ significantly, depending on the potential used, and are generally higher than experimental values. The importance of proper treatment of long-range electrostatic interactions is also discussed.

  4. Computer simulation study of metastable ice VII and amorphous phases obtained by its melting.

    PubMed

    Slovák, Jan; Tanaka, Hideki

    2005-05-22

    Molecular dynamics simulations of metastable ice VII and cubic ice Ic are carried out in order to examine (1) the ability of commonly used water interaction potentials to reproduce the properties of ices, and (2) the possibility of generating low-density amorphous (LDA) structures by heating ice VII, which is known to transform to LDA at approximately 135 K at normal pressure [S. Klotz, J. M. Besson, G. Hamel, R. J. Nelmes, J. S. Loveday, and W. G. Marshall, Nature (London) 398, 681 (1999)]. We test four simple empirical interaction potentials of water: TIP4P [W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983)], SPC/E [H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. B 91, 6269 (1987)], TIP5P [M. W. Mahoney and W. L. Jorgensen, J. Chem. Phys. 112, 8910 (2000)], and ST2 [F. H. Stillinger and A. Rahman, J. Chem. Phys. 60, 1545 (1974)]. We have found that TIP5P ice VII melts at 210 K, TIP4P at 90 K, and SPC/E at 70 K. Only TIP5P water after transition has a structure similar to that of LDA. TIP4P and SPC/E have almost identical structures, dissimilar to any known water or amorphous phases, but upon heating both slowly evolve towards LDA-like structure. ST2 ice VII is remarkably stable up to 430 K. TIP4P and SPC/E predict correctly the cubic ice collapse into a high-density amorphous ice (HDA) at approximately 1 GPa whereas TIP5P remains stable up to approximately 5 GPa. The densities of the simulated ice phases differ significantly, depending on the potential used, and are generally higher than experimental values. The importance of proper treatment of long-range electrostatic interactions is also discussed.

  5. Equilibrium and non-equilibrium cluster phases in colloids with competing interactions.

    PubMed

    Mani, Ethayaraja; Lechner, Wolfgang; Kegel, Willem K; Bolhuis, Peter G

    2014-07-07

    The phase behavior of colloids that interact via competing interactions - short-range attraction and long-range repulsion - is studied by computer simulation. In particular, for a fixed strength and range of repulsion, the effect of the strength of an attractive interaction (ε) on the phase behavior is investigated at various colloid densities (ρ). A thermodynamically stable equilibrium colloidal cluster phase, consisting of compact crystalline clusters, is found below the fluid-solid coexistence line in the ε-ρ parameter space. The mean cluster size is found to linearly increase with the colloid density. At large ε and low densities, and at small ε and high densities, a non-equilibrium cluster phase, consisting of elongated Bernal spiral-like clusters, is observed. Although gelation can be induced either by increasing ε at constant density or vice versa, the gelation mechanism is different in either route. While in the ρ route gelation occurs via a glass transition of compact clusters, gelation in the ε route is characterized by percolation of elongated clusters. This study both provides the location of equilibrium and non-equilibrium cluster phases with respect to the fluid-solid coexistence, and reveals the dependencies of the gelation mechanism on the preparation route.

  6. Theoretical and experimental study of metastable solid solutions and phase stability within the immiscible Ag-Mo binary system

    NASA Astrophysics Data System (ADS)

    Sarakinos, K.; Greczynski, G.; Elofsson, V.; Magnfält, D.; Högberg, H.; Alling, B.

    2016-03-01

    Metastable solid solutions are phases that are synthesized far from thermodynamic equilibrium and offer a versatile route to design materials with tailor-made functionalities. One of the most investigated classes of metastable solid solutions with widespread technological implications is vapor deposited ternary transition metal ceramic thin films (i.e., nitrides, carbides, and borides). The vapor-based synthesis of these ceramic phases involves complex and difficult to control chemical interactions of the vapor species with the growing film surface, which often makes the fundamental understanding of the composition-properties relations a challenging task. Hence, in the present study, we investigate the phase stability within an immiscible binary thin film system that offers a simpler synthesis chemistry, i.e., the Ag-Mo system. We employ magnetron co-sputtering to grow Ag1-xMox thin films over the entire composition range along with x-ray probes to investigate the films structure and bonding properties. Concurrently, we use density functional theory calculations to predict phase stability and determine the effect of chemical composition on the lattice volume and the electronic properties of Ag-Mo solid solutions. Our combined theoretical and experimental data show that Mo-rich films (x ≥ ˜0.54) form bcc Mo-Ag metastable solid solutions. Furthermore, for Ag-rich compositions (x ≤ ˜0.21), our data can be interpreted as Mo not being dissolved in the Ag fcc lattice. All in all, our data show an asymmetry with regards to the mutual solubility of Ag and Mo in the two crystal structures, i.e., Ag has a larger propensity for dissolving in the bcc-Mo lattice as compared to Mo in the fcc-Ag lattice. We explain these findings in light of isostructural short-range clustering that induces energy difference between the two (fcc and bcc) metastable phases. We also suggest that the phase stability can be explained by the larger atomic mobility of Ag atoms as compared to that

  7. Silver nanoplates with ground or metastable structures obtained from template-free two-phase aqueous/organic synthesis

    SciTech Connect

    Zhelev, Doncho V. Zheleva, Tsvetanka S.

    2014-01-28

    Silver has unique electrical, catalytic, and plasmonic characteristics and has been widely sought for fabrication of nanostructures. The properties of silver nanostructures are intimately coupled to the structure of silver crystals. Two crystal structures are known for silver: the stable (ground) state cubic face centered 3C-Ag structure and the metastable hexagonal 4H-Ag structure. Recently, Chackraborty et al. [J. Phys.: Condens. Matter 23, 325401 (2011)] discovered a low density, highly reactive metastable hexagonal 2H-Ag structure accessible during electrodeposition of silver nanowires in porous anodic alumina templates. This 2H-Ag structure has enhanced electrical and catalytic characteristics. In the present work we report template-free synthesis of silver nanoplates with the metastable 2H-Ag crystal structure, which appears together with the ground 3C-Ag and the metastable 4H-Ag structures in a two-phase solution synthesis with citric acid as the capping agent. The capacity of citric acid to stabilize both the stable and the metastable structures is explained by its preferential binding to the close packed facets of Ag crystals, which are the (111) planes for 3C-Ag and the (0001) planes for 4H-Ag and 2H-Ag. Nanoplate morphology and structure are characterized using scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. The synthesized nanoplates have thickness from 15 to 17 nm and edge length from 1 to 10 μm. Transmission electron microscopy selected area electron diffraction is used to uniquely identify and distinguish between nanoplates with 2H-Ag or 4H-Ag or 3C-Ag structures.

  8. Ageing characteristics of the metastable gamma phase in U-9 wt.% Mo alloy: experimental observations and thermodynamic validation

    NASA Astrophysics Data System (ADS)

    Neogy, S.; Saify, M. T.; Jha, S. K.; Srivastava, D.; Dey, G. K.

    2015-09-01

    Ageing characteristics of the metastable bcc γ-phase in U-9 wt.% Mo alloy, a candidate for high uranium density nuclear fuel for research and test reactors, have been investigated in this study. Analyses of the aged microstructures, employing X-ray diffraction and various microscopy techniques, revealed the decomposition mechanism of the metastable γ-phase to the stable α-U and γ‧ (U2Mo) phases. A discontinuous precipitation reaction, leading to the generation of partially transformed cellular colonies with lamellae comprising of either the α-phase or the γ‧-phase in γ-phase matrix, was found to be operative. The in situ transformation of γ interlamellar regions to the γ‧-phase was noticed occasionally within the γ + α lamellar colonies. Thermodynamic analysis of the U-Mo system, using free energy-composition diagrams, could associate the observed attributes of the decomposition of γ-phase to the extent of Mo segregation and the chemical driving force required for the nucleation of α- and γ‧-phases in the γ-matrix.

  9. Characterization of the α phase nucleation in a two-phase metastable β titanium alloy

    NASA Astrophysics Data System (ADS)

    Lenain, A.; Clément, N.; Jacques, P. J.; Véron, M.

    2005-12-01

    Beta titanium alloys are increasingly the best choice for automotive and aerospace applications due to their high performance-to-density ratio. Among these alloys, the TIMETAL Ti-LCB is already used in the automotive industry because it presents excellent mechanical properties and a lower cost compared with other Ti alloys. The current study deals with the characterization of the nucleation and growth of the α phase in several thermomechanical processes, because the distribution and size of the α phase strongly influence the mechanical properties of the resulting microstructures. Several heat treatments were conducted after either cold rolling or annealing. The resulting microstructures were characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction, or electron backscatter diffraction. It was observed that the morphology and the volume fraction of the α phase are strongly dependent on the holding temperature, on the heating or cooling rate, and on the β grain size.

  10. Computational studies of thermal and quantum phase transitions approached through non-equilibrium quenching

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Wei

    Phase transitions and their associated critical phenomena are of fundamental importance and play a crucial role in the development of statistical physics for both classical and quantum systems. Phase transitions embody diverse aspects of physics and also have numerous applications outside physics, e.g., in chemistry, biology, and combinatorial optimization problems in computer science. Many problems can be reduced to a system consisting of a large number of interacting agents, which under some circumstances (e.g., changes of external parameters) exhibit collective behavior; this type of scenario also underlies phase transitions. The theoretical understanding of equilibrium phase transitions was put on a solid footing with the establishment of the renormalization group. In contrast, non-equilibrium phase transition are relatively less understood and currently a very active research topic. One important milestone here is the Kibble-Zurek (KZ) mechanism, which provides a useful framework for describing a system with a transition point approached through a non-equilibrium quench process. I developed two efficient Monte Carlo techniques for studying phase transitions, one is for classical phase transition and the other is for quantum phase transitions, both are under the framework of KZ scaling. For classical phase transition, I develop a non-equilibrium quench (NEQ) simulation that can completely avoid the critical slowing down problem. For quantum phase transitions, I develop a new algorithm, named quasi-adiabatic quantum Monte Carlo (QAQMC) algorithm for studying quantum quenches. I demonstrate the utility of QAQMC quantum Ising model and obtain high-precision results at the transition point, in particular showing generalized dynamic scaling in the quantum system. To further extend the methods, I study more complex systems such as spin-glasses and random graphs. The techniques allow us to investigate the problems efficiently. From the classical perspective, using the

  11. Nonequilibrium Dynamical Mean-Field Theory for the Charge-Density-Wave Phase of the Falicov-Kimball Model

    SciTech Connect

    Matveev, O. P.; Shvaika, A. M.; Devereaux, T. P.; Freericks, J. K.

    2015-12-08

    Nonequilibrium dynamical mean-field theory (DMFT) is developed for the case of the charge-density-wave ordered phase. We consider the spinless Falicov-Kimball model which can be solved exactly. This strongly correlated system is then placed in an uniform external dc electric field. We present a complete derivation for nonequilibrium dynamical mean-field theory Green’s functions defined on the Keldysh-Schwinger time contour. We also discuss numerical issues involved in solving the coupled equations.

  12. Influence of Temperature on Fatigue-Induced Martensitic Phase Transformation in a Metastable CrMnNi-Steel

    NASA Astrophysics Data System (ADS)

    Biermann, Horst; Glage, Alexander; Droste, Matthias

    2016-01-01

    Metastable austenitic steels can exhibit a fatigue-induced martensitic phase transformation during cyclic loading. It is generally agreed that a certain strain amplitude and a threshold of the cumulated plastic strain must be exceeded to trigger martensitic phase transformation under cyclic loading. With respect to monotonic loading, the martensitic phase transformation takes place up to a critical temperature—the so-called M d temperature. The goal of the present investigation is to determine an M d,c temperature which would be the highest temperature at which a fatigue-induced martensitic phase transformation can take place. For this purpose, fatigue tests controlled by the total strain were performed at different temperatures. The material investigated was a high-alloy metastable austenitic steel X3CrMnNi16.7.7 (16.3Cr-7.2Mn-6.6Ni-0.03C-0.09N-1.0Si) produced using the hot pressing technique. The temperatures were set in the range of 283 K (10 °C) ≤ T ≤ 473 K (200 °C). Depending on the temperature and strain amplitude, the onset of the martensitic phase transformation shifted to different values of the cumulated plastic strain, or was inhibited completely. Moreover, it is known that metastable austenitic CrMnNi steels with higher nickel contents can exhibit the deformation-induced twinning effect. Thus, at higher temperatures and strain amplitudes, a transition from the deformation-induced martensitic transformation to deformation-induced twinning takes place. The fatigue-induced martensitic phase transformation was monitored during cyclic loading using a ferrite sensor. The microstructure after the fatigue tests was examined using the back-scattered electrons, the electron channeling contrast imaging and the electron backscatter diffraction techniques to study the temperature-dependent dislocation structures and phase transformations.

  13. Pulsed Nd:YAG deposition of nanostructured FeS1-x containing meta-stable phases

    NASA Astrophysics Data System (ADS)

    Křenek, T.; Karatodorov, S.; Medlín, R.; Mihailov, V.; Savková, J.

    2017-02-01

    Pulsed near-IR laser irradiation of ferrous sulfide (FeS) in a vacuum allows a non-congruent ablation and deposition of nanostructured FeS1-x thin films. Deposition has been performed on Al, Ta and Cu unheated substrate and analyzed by scanning (SEM) and high resolution transmission electron microscopy (HRTEM) and electron diffraction. Morphologically, the similar homogeneous, dark, metallic and adhesive appearanceshave been revealed for all the coats deposited on various substrates (by SEM). However, using HRTEM in agreement with electron diffraction, different phase composition on various substrates has been detected. Cubic pyrite phase (FeS2) has been detected on Ta substrate. Cubic pyrite (FeS2) and metastable rhomboedric smythite Fe9S11 have been found in case of Al substrate. Cubic pyrite (FeS2), metastable rhomboedric smythite Fe9S11 and metastable orthorhombic marcasite (FeS2m) revealed HRTEM analysis of the film on Cu substrate. In case of all deposits the detected crystalline nanograins were surrounded by amorphous matrix.

  14. Phase Space Analysis of a Gravitationally-Induced, Steady-State Nonequilibrium

    NASA Astrophysics Data System (ADS)

    Sheehan, D. P.; Glick, J.; Duncan, T.; Langton, J. A.; Gagliardi, M.; Tobe, R.

    Recently a new type of pressure gradient was introduced, a gravitationally-induced, dynamically-maintained, steady-state pressure gradient (GDSPG) [D. P. Sheehan and J. Glick, Physica Scripta 61, 635 (2000)]. In this paper, three dimensional numerical test particle simulations detail its phase space structure. These verify the underlying physical mechanism originally hypothesized for its operation and support key assumptions upon which it is based. The GDSPG appears to be a member of a more general class of steady-state nonequilibrium systems that arise under extreme thermodynamic conditions [D. P. Sheehan, Phys. Rev. E57, 6660 (1998)].

  15. Effect of thermomechanical treatment modes on structural-phase states and mechanical properties of metastable austenitic steel

    NASA Astrophysics Data System (ADS)

    Akkuzin, S. A.; Litovchenko, I. Yu.; Polekhina, N. A.; Tyumentsev, A. N.

    2016-11-01

    The features of the structural-phase states and mechanical properties of metastable austenitic steel after thermomechanical treatments have been investigated. It is shown that low-temperature and subsequent deformation in the temperature range 300-773 K contributes to the direct (γ → α')-martensitic transformation. The combination of low-temperature, subsequent warm deformation at 873 K and annealing at 1073 K leads to the direct (γ → α')- and reverse (α' → γ)-martensitic transformations. As a result of thermomechanical treatments submicrocrystalline two-phase structural states with high strength properties (σ0.1 ≈ 1160-1350 MPa) are formed.

  16. Exploration of a Metastable Normal Spinel Phase Diagram for the Quaternary Li–Ni–Mn–Co–O System

    DOE PAGES

    Kan, Wang Hay; Huq, Ashfia; Manthiram, Arumugam

    2016-02-27

    In an attempt to enlarge the normal spinel phase diagram for the quaternary Li-Ni-Mn-Co-O system, the transformation at moderate temperatures (150-210 °C) of layered Li0.5(Ni1-y-zMnyCoz)O2 (Rmore » $$\\bar{3}$$m), which were obtained by an ambient-temperature extraction of lithium from Li0.5(Ni1-y-zMnyCoz)O2, into normal spinel-like (Fd$$\\bar{3}$$m) Li(Ni1-y-zMnyCoz)2O4 has been investigated. The phase-conversion mechanism has been studied by joint time-of-flight (TOF) neutron and X-ray diffractions, thermogravimetric analysis, and bond valence sum map. The ionic diffusion of lithium (3a, 6c) and nickel (3a, 3b) ions has been quantified as a function of temperature. The investigated spinel phases are metastable, and they are subject to change into rock-salt phases at higher temperatures. The phases have been characterized as cathodes in lithium-ion cells. Finally, the study may serve as a strategic model to access other metastable phases by low-temperature synthesis approaches.« less

  17. Exploration of a Metastable Normal Spinel Phase Diagram for the Quaternary Li–Ni–Mn–Co–O System

    SciTech Connect

    Kan, Wang Hay; Huq, Ashfia; Manthiram, Arumugam

    2016-02-27

    In an attempt to enlarge the normal spinel phase diagram for the quaternary Li-Ni-Mn-Co-O system, the transformation at moderate temperatures (150-210 °C) of layered Li0.5(Ni1-y-zMnyCoz)O2 (R$\\bar{3}$m), which were obtained by an ambient-temperature extraction of lithium from Li0.5(Ni1-y-zMnyCoz)O2, into normal spinel-like (Fd$\\bar{3}$m) Li(Ni1-y-zMnyCoz)2O4 has been investigated. The phase-conversion mechanism has been studied by joint time-of-flight (TOF) neutron and X-ray diffractions, thermogravimetric analysis, and bond valence sum map. The ionic diffusion of lithium (3a, 6c) and nickel (3a, 3b) ions has been quantified as a function of temperature. The investigated spinel phases are metastable, and they are subject to change into rock-salt phases at higher temperatures. The phases have been characterized as cathodes in lithium-ion cells. Finally, the study may serve as a strategic model to access other metastable phases by low-temperature synthesis approaches.

  18. The voltage limitation for phase coherence experiments: non-equilibrium effects versus Joule heating

    NASA Astrophysics Data System (ADS)

    Linke, H.; Omling, P.; Xu, Hongqi; Lindelof, P. E.

    1996-12-01

    The breaking of phase coherence of electrons by a finite bias voltage is studied in a quasi-one-dimensional electron gas. Although the wire is longer than the energy relaxation length we find that Joule heating in the wire is not important for dephasing of non-equilibrium electrons. Instead, phase breaking occurs by electron-electron interaction due to the excess energy of the injected electrons with respect to the Fermi energy. The relevant limiting parameter for phase coherence is, therefore, the bias voltage, rather than the dissipated power. A model calculation suggests that our results are of general relevance for coherence experiments in one-dimensional geometry on length scales of the same order of magnitude as the energy relaxation length.

  19. Locating topological phase transitions using nonequilibrium signatures in local bulk observables

    NASA Astrophysics Data System (ADS)

    Roy, Sthitadhi; Moessner, Roderich; Das, Arnab

    2017-01-01

    Topological quantum phases cannot be characterized by local order parameters in the bulk. In this work, however, we show that nonanalytic signatures of a topological quantum critical point do remain in local observables in the bulk, and manifest themselves as nonanalyticities in their expectation values taken over a family of nonequilibrium states generated using a quantum quench protocol. The signature can be used for precisely locating the critical points in parameter space. A large class of initial states can be chosen for the quench, including finite temperature states. We demonstrate these results in tractable models of noninteracting fermions exhibiting topological phase transitions in one and two spatial dimensions. We also show that the nonanalyticities can be absent if the gap closing is nontopological, i.e., when it corresponds to no phase transition.

  20. Entropy analysis on non-equilibrium two-phase flow models

    SciTech Connect

    Karwat, H.; Ruan, Y.Q.

    1995-09-01

    A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships.

  1. Nonequilibrium interband phase textures induced by vortex splitting in two-band superconductors

    NASA Astrophysics Data System (ADS)

    Mosquera Polo, A. S.; da Silva, R. M.; Vagov, A.; Shanenko, A. A.; Deluque Toro, C. E.; Aguiar, J. Albino

    2017-08-01

    We demonstrate that in a weak-coupled two-band superconducting slab the interaction between vortices penetrating the sample and its boundaries leads to the phenomenon of vortex splitting, which divides composite vortices and creates fractional ones. The interaction between vortices, attractive for different bands and repulsive for the same band, which is controlled by the electric current density flowing through the system, leads to an ordered alternating arrangement of the vortices. This arrangement creates nonequilibrium interband phase textures or domains with different signs of the Josephson energy of the interaction between the band condensates. Such phase textures have a significant effect on the dissipation caused by the vortex motion. In particular, in the phase-texture regime the onset of the dissipation is shifted to higher current densities.

  2. Modeling nonequilibrium dynamics of phase transitions at the nanoscale: Application to spin-crossover

    PubMed Central

    Park, Sang Tae; van der Veen, Renske M.

    2017-01-01

    In this article, we present a continuum mechanics based approach for modeling thermally induced single-nanoparticle phase transitions studied in ultrafast electron microscopy. By using coupled differential equations describing heat transfer and the kinetics of the phase transition, we determine the major factors governing the time scales and efficiencies of thermal switching in individual spin-crossover nanoparticles, such as the thermal properties of the (graphite) substrate, the particle thickness, and the interfacial thermal contact conductance between the substrate and the nanoparticle. By comparing the simulated dynamics with the experimental single-particle diffraction time profiles, we demonstrate that the proposed non-equilibrium phase transition model can fully account for the observed switching dynamics. PMID:28653019

  3. Formation and evolution of metastable bcc phase during solidification of liquid Ag: a molecular dynamics simulation study.

    PubMed

    Tian, Ze-An; Liu, Rang-Su; Zheng, Cai-Xing; Liu, Hai-Rong; Hou, Zhao-Yang; Peng, Ping

    2008-12-04

    On the basis of the quantum Sutton-Chen potential, the rapid solidification processes of liquid silver have been studied by molecular dynamics simulation for four cooling rates. By means of several analysis methods, the competitions and transitions between microstructures during the cooling processes have been analyzed intensively. It is found that there are two phase transitions in all simulation processes. The first one is from liquid state to metastable (transitional) body-centered cubic (bcc) phase. The initial crystallization temperature T(ic) increases with the decrease of the cooling rate. The second one is from the transitional bcc phase to the final solid phase. This study validates the Ostwald's step rule and provides evidence for the prediction that the metastable bcc phase forms first from liquid. Further analyses reveal that the final solid at 273 K can be a mixture of hexagonal close-packed (hcp) and face-centered cubic (fcc) microstructures with various proportions of the two, and the slower the cooling rate is, the higher proportion the fcc structure occupies.

  4. Metastability of anatase: size dependent and irreversible anatase-rutile phase transition in atomic-level precise titania

    PubMed Central

    Satoh, Norifusa; Nakashima, Toshio; Yamamoto, Kimihisa

    2013-01-01

    Since crystal phase dominantly affects the properties of nanocrystals, phase control is important for the applications. To demonstrate the size dependence in anatase-rutile phase transition of titania, we used quantum-size titania prepared from the restricted number of titanium ions within dendrimer templates for size precision purposes and optical wave guide spectroscopy for the detection. Contrary to some theoretical calculations, the observed irreversibility in the transition indicates the metastablity of anatase; thermodynamics cannot explain the formation of metastable states. Therefore, we take into account the kinetic control polymerization of TiO6 octahedral units to explain how the crystal phase of the crystal-nucleus-size titania is dependent on which coordination sites, cis- or trans-, react in the TiO6 octahedra, suggesting possibilities for the synthetic phase control of nanocrystals. In short, the dendrimer templates give access to crystal nucleation chemistry. The paper will also contribute to the creation of artificial metastable nanostructures with atomic-level precision. PMID:23743571

  5. Metastability of anatase: size dependent and irreversible anatase-rutile phase transition in atomic-level precise titania.

    PubMed

    Satoh, Norifusa; Nakashima, Toshio; Yamamoto, Kimihisa

    2013-01-01

    Since crystal phase dominantly affects the properties of nanocrystals, phase control is important for the applications. To demonstrate the size dependence in anatase-rutile phase transition of titania, we used quantum-size titania prepared from the restricted number of titanium ions within dendrimer templates for size precision purposes and optical wave guide spectroscopy for the detection. Contrary to some theoretical calculations, the observed irreversibility in the transition indicates the metastablity of anatase; thermodynamics cannot explain the formation of metastable states. Therefore, we take into account the kinetic control polymerization of TiO6 octahedral units to explain how the crystal phase of the crystal-nucleus-size titania is dependent on which coordination sites, cis- or trans-, react in the TiO6 octahedra, suggesting possibilities for the synthetic phase control of nanocrystals. In short, the dendrimer templates give access to crystal nucleation chemistry. The paper will also contribute to the creation of artificial metastable nanostructures with atomic-level precision.

  6. Order Parameter and Kinetics of Non-Equilibrium Phase Transition Stimulated by the Impact of Volumetric Heat Source

    NASA Astrophysics Data System (ADS)

    Slyadnikov, E. E.; Turchanovskii, I. Yu.

    2017-01-01

    The authors formulated an understanding of the order parameter and built a kinetic model for the nonequilibrium first-order "solid body - liquid" phase transition stimulated by the impact of the volumetric heat source. Analytical solutions for kinetic equations were found, and it was demonstrated that depending on the phase transition rate "surface" and "bulk" melting mechanisms are implemented.

  7. Phase-field investigation on the non-equilibrium interface dynamics of rapid alloy solidification

    SciTech Connect

    Choi, Jeong

    2011-01-01

    The research program reported here is focused on critical issues that represent conspicuous gaps in current understanding of rapid solidification, limiting our ability to predict and control microstructural evolution (i.e. morphological dynamics and microsegregation) at high undercooling, where conditions depart significantly from local equilibrium. More specifically, through careful application of phase-field modeling, using appropriate thin-interface and anti-trapping corrections and addressing important details such as transient effects and a velocity-dependent (i.e. adaptive) numerics, the current analysis provides a reasonable simulation-based picture of non-equilibrium solute partitioning and the corresponding oscillatory dynamics associated with single-phase rapid solidification and show that this method is a suitable means for a self-consistent simulation of transient behavior and operating point selection under rapid growth conditions. Moving beyond the limitations of conventional theoretical/analytical treatments of non-equilibrium solute partitioning, these results serve to substantiate recent experimental findings and analytical treatments for single-phase rapid solidification. The departure from the equilibrium solid concentration at the solid-liquid interface was often observed during rapid solidification, and the energetic associated non-equilibrium solute partitioning has been treated in detail, providing possible ranges of interface concentrations for a given growth condition. Use of these treatments for analytical description of specific single-phase dendritic and cellular operating point selection, however, requires a model for solute partitioning under a given set of growth conditions. Therefore, analytical solute trapping models which describe the chemical partitioning as a function of steady state interface velocities have been developed and widely utilized in most of the theoretical investigations of rapid solidification. However, these

  8. Nonequilibrium Phase Transition in an Atomistic Glassformer: The Connection to Thermodynamics

    NASA Astrophysics Data System (ADS)

    Turci, Francesco; Royall, C. Patrick; Speck, Thomas

    2017-07-01

    Tackling the low-temperature fate of supercooled liquids is challenging because of the immense time scales involved, which prevent equilibration and lead to the operational glass transition. Relating glassy behavior to an underlying, thermodynamic phase transition is a long-standing open question in condensed matter physics. Like experiments, computer simulations are limited by the small time window over which a liquid can be equilibrated. Here, we address the challenge of low-temperature equilibration using trajectory sampling in a system undergoing a nonequilibrium phase transition. This transition occurs in trajectory space between the normal supercooled liquid and a glassy state rich in low-energy geometric motifs. Our results indicate that this transition might become accessible in equilibrium configurational space at a temperature close to the so-called Kauzmann temperature, and they provide a possible route to unify dynamical and thermodynamical theories of the glass transition.

  9. Nonequilibrium hydrogen combustion in one- and two-phase supersonic flow

    SciTech Connect

    Chang, H.T.; Hourng, L.W.; Chien, L.C.

    1997-05-01

    A time-splitting method for the numerical simulation of stiff nonequilibrium combustion problem was developed. The algorithm has been applied to simulate the shock-induced combustion and to investigate a supersonic one-and two-phase flowfield. The results are physically reasonable and demonstrate that the presence of particles has a dramatic effect on the nozzle flowfield and the thrust. Supersonic combustion usually happens in high speed flying aerodynamic problems, such as supersonic combustion ramjet (scramjet) engine for hypersonic airbreathing vehicles. Particularly for the scramjet engine, due to short residence time in the combustion chamber, it still contains incomplete combustion fuel as it enters the nozzle. For solid propellant rocket motors, the exhaust stream contains particles of aluminum oxide. In these two-phase nozzle flows, transfer of momentum and heat between gas particles often result in a decrease of nozzle efficiency.

  10. Cortical Phase Transitions, Nonequilibrium Thermodynamics and the Time-Dependent Ginzburg-Landau Equation

    NASA Astrophysics Data System (ADS)

    Freeman, Walter J.; Livi, Roberto; Obinata, Masashi; Vitiello, Giuseppe

    The formation of amplitude modulated and phase modulated assemblies of neurons is observed in the brain functional activity. The study of the formation of such structures requires that the analysis has to be organized in hierarchical levels, microscopic, mesoscopic, macroscopic, each with its characteristic space-time scales and the various forms of energy, electric, chemical, thermal produced and used by the brain. In this paper, we discuss the microscopic dynamics underlying the mesoscopic and the macroscopic levels and focus our attention on the thermodynamics of the nonequilibrium phase transitions. We obtain the time-dependent Ginzburg-Landau equation for the nonstationary regime and consider the formation of topologically nontrivial structures such as the vortex solution. The power laws observed in functional activities of the brain is also discussed and related to coherent states characterizing the many-body dissipative model of brain.

  11. Modeling multiphase, multicomponent flows at the pore scale: Wetting phenomena and non-equilibrium phase behavior

    NASA Astrophysics Data System (ADS)

    Cueto-Felgueroso, L.; Fu, X.; Juanes, R.

    2016-12-01

    The description of multicomponent flows with complex phase behavior remains an open challenge in pore-scale modeling. Darcy-scale general purpose simulators assume local thermodynamic equilibrium, and perform equation-of-state-based calculations to make phase equilibrium predictions; that is, to determine the phase volume fractions and their compositions from overall component mole fractions. What remains unclear is whether the thermodynamic equilibrium assumption is valid given the flow conditions, complex structure of the pore space and characteristic time scales for flow. Diffuse-interface theories of multiphase flow have recently emerged as promising tools to understand and simulate complex processes involving the simultaneous flow of two or more immiscible fluid phases. The common goal in these approaches is to formulate thermodynamically consistent stress tensors and mesoscale balance laws, including the impact of surface tension on the momentum balance, as well as properly tracking interfacial dynamics and mass transfer. We propose a phase-field model of multiphase, multicomponent flow, which we use to address the following research questions: What is the impact of the wetting conditions at the pore scale on upscaled descriptions of multiphase flow? What is the impact of the displacement dynamics, pore space structure and wetting conditions on the phase behavior of multicomponent mixtures? We finally investigate upscaling procedures to incorporate non-equilibrium phase behavior at the continuum scale.

  12. Metastable phase transformation and hcp-ω transformation pathways in Ti and Zr under high hydrostatic pressures

    SciTech Connect

    Gao, Lei; Ding, Xiangdong E-mail: ekhard@esc.cam.ac.uk; Sun, Jun; Lookman, Turab; Salje, E. K. H. E-mail: ekhard@esc.cam.ac.uk

    2016-07-18

    The energy landscape of Zr at high hydrostatic pressure suggests that its transformation behavior is strongly pressure dependent. This is in contrast to the known transition mechanism in Ti, which is essentially independent of hydrostatic pressure. Generalized solid-state nudged elastic band calculations at constant pressure shows that α-Zr transforms like Ti only at the lowest pressure inside the stability field of ω-phase. Different pathways apply at higher pressures where the energy landscape contains several high barriers so that metastable states are expected, including the appearance of a transient bcc phase at ca. 23 GPa. The global driving force for the hcp-ω transition increases strongly with increasing pressure and reaches 23.7 meV/atom at 23 GPa. Much of this energy relates to the excess volume of the hcp phase compared with its ω phase.

  13. Metastable quantum phase transitions in a periodic one-dimensional Bose gas. II. Many-body theory

    SciTech Connect

    Kanamoto, R.; Carr, L. D.; Ueda, M.

    2010-02-15

    We show that quantum solitons in the Lieb-Liniger Hamiltonian are precisely the yrast states. We identify such solutions with Lieb's type II excitations from weak to strong interactions, clarifying a long-standing question of the physical meaning of this excitation branch. We demonstrate that the metastable quantum phase transition previously found in mean-field analysis of the weakly interacting Lieb-Liniger Hamiltonian [Phys. Rev. A 79, 063616 (2009)] extends into the medium- to strongly interacting regime of a periodic one-dimensional Bose gas. Our methods are exact diagonalization, finite-size Bethe ansatz, and the boson-fermion mapping in the Tonks-Girardeau limit.

  14. Strong correlation and multi-phase solution in nonequilibrium lattice systems coupled to dissipation medium

    NASA Astrophysics Data System (ADS)

    Han, Jong; Li, Jiajun; Aron, Camille; Kotliar, Gabriel

    2014-03-01

    How does a strongly correlated electronic solid evolve continuously out of equilibrium when an electric field is applied? While this question may seem deceptively simple, it requires rigorous understanding of dissipation. We formulate the nonequilibrium steady-state lattice coupled to fermion baths in the Coulomb gauge. We demonstrate that the Hubbard model solved using the iterative perturbation theory within the dynamical mean-field approximation recovers the DC conductivity independent of the Coulomb interaction in a very narrow linear response regime. Due to the singular dependence of the effective temperature on the damping in the steady-state [2], systems with damping have dramatic field-dependent effect, very different from dissipationless systems. We conclude that the dominant physics in lattice nonequilibrium is not the field vs quasi-particle energy, but rather the Joule heat vs the quasi-particle energy. Furthermore, we show that, in the vicinity of the Mott-insulator transition, the solution supports mixed-phase state scenario which indicates that the electron transport in solids under high-field can be spatially inhomogeneous leading to filamentary conducting paths, as suggested by experiments. Supported by NSF DMR-0907150, NSF DMR-1308141

  15. Equilibrium and nonequilibrium partition coefficients of volatile fission products between liquid sodium and the gas phase

    SciTech Connect

    Haga, K.; Nishizawa, Y.; Watanabe, T.; Miyahara, S.; Himeno, Y. )

    1992-02-01

    Two series of experiments have been conducted to obtain the gas-liquid equilibrium partition coefficient K{sub d} and the nonequilibrium partition coefficient K{prime}{sub d} of volatile fission products such as cesium, iodine, and tellurium between liquid sodium and the gas phase. In the equilibrium experiment, a sodium pool mixed with a fission product simulant was heated by a n electric furnace, and the solvent of the vapors and aerosols trapped by filters was quantitatively analyzed. The results provided in this paper are as follows: Cesium shows the largest K{sub d} (20 to 100). The K{sub d} values of cesium and iodine agree well with the theoretical ones reported by Castleman and Tang. If sodium telluride, which is harder to vaporize than pure tellurium, is assumed, the measured K{sub d} value of tellurium agrees with the theoretical. The nonequilibrium experiment in which the temperature dropped relatively sharply in the cover-gas region shows that K{prime}{sub d} was not larger than K{sub d}.

  16. On the effect of confined fluid molecular structure on nonequilibrium phase behaviour and friction.

    PubMed

    Ewen, J P; Gattinoni, C; Zhang, J; Heyes, D M; Spikes, H A; Dini, D

    2017-07-21

    A detailed understanding of the behaviour of confined fluids is critical to a range of industrial applications, for example to control friction in engineering components. In this study, a combination of tribological experiments and confined nonequilibrium molecular dynamics simulations has been used to investigate the effect of base fluid molecular structure on nonequilibrium phase behaviour and friction. An extensive parameter study, including several lubricant and traction fluid molecules subjected to pressures (0.5-2.0 GPa) and strain rates (10(4)-10(10) s(-1)) typical of the elastohydrodynamic lubrication regime, reveals clear relationships between the friction and flow behaviour. Lubricants, which are flexible, broadly linear molecules, give low friction coefficients that increase with strain rate and pressure in both the experiments and the simulations. Conversely, traction fluids, which are based on inflexible cycloaliphatic groups, give high friction coefficients that only weakly depend on strain rate and pressure. The observed differences in friction behaviour can be rationalised through the stronger shear localisation which is observed for the traction fluids in the simulations. Higher pressures lead to more pronounced shear localisation, whilst increased strain rates lead to a widening of the sheared region. The methods utilised in this study have clarified the physical mechanisms of important confined fluid behaviour and show significant potential in both improving the prediction of elastohydrodynamic friction and developing new molecules to control it.

  17. An introduction to the Ginzburg-Landau theory of phase transitions and nonequilibrium patterns

    NASA Astrophysics Data System (ADS)

    Hohenberg, P. C.; Krekhov, A. P.

    2015-04-01

    This paper presents an introduction to phase transitions and critical phenomena on the one hand, and nonequilibrium patterns on the other, using the Ginzburg-Landau theory as a unified language. In the first part, mean-field theory is presented, for both statics and dynamics, and its validity tested self-consistently. As is well known, the mean-field approximation breaks down below four spatial dimensions, where it can be replaced by a scaling phenomenology. The Ginzburg-Landau formalism can then be used to justify the phenomenological theory using the renormalization group, which elucidates the physical and mathematical mechanism for universality. In the second part of the paper it is shown how near pattern forming linear instabilities of dynamical systems, a formally similar Ginzburg-Landau theory can be derived for nonequilibrium macroscopic phenomena. The real and complex Ginzburg-Landau equations thus obtained yield nontrivial solutions of the original dynamical system, valid near the linear instability. Examples of such solutions are plane waves, defects such as dislocations or spirals, and states of temporal or spatiotemporal (extensive) chaos.

  18. Nonequilibrium phase transitions in lattice systems with random-field competing kinetics

    NASA Astrophysics Data System (ADS)

    López-Lacomba, A. I.; Marro, J.

    1992-10-01

    We study a class of lattice interacting-spin systems evolving stochastically under the simultaneous operation of several spin-flip mechanisms, each acting independently and responding to a different applied magnetic field. This induces an extra randomness which may occur in real systems, e.g., a magnetic system under the action of a field varying with a much shorter period than the mean time between successive transitions. Such a situation-in which one may say in some sense that frustration has a dynamical origin- may also be viewed as a nonequilibrium version of the random-field Ising model. By following a method of investigating stationary probability distributions in systems with competing kinetics [P. L. Garrido and J. Marro, Phys. Rev. Lett. 62, 1929 (1989)], we solve one-dimensional lattices supporting different field distributions and transition rates for the elementary kinetical processes, thus revealing a rich variety of phase transitions and critical phenomena. Some exact results for lattices of arbitrary dimension, and comparisons with the standard quenched and annealed random-field models, and with a nonequilibrium diluted antiferromagnetic system, are also reported.

  19. High-resolution and analytical TEM investigation of metastable-tetragonal phase stabilization in undoped nanocrystalline zirconia.

    PubMed

    Oleshko, Vladimir P; Howe, James M; Shukla, Satyajit; Seal, Sudipta

    2004-09-01

    Submicron and nano-sized nanocrystalline pure zirconia (ZrO2) powders having metastable tetragonal and tetragonal-plus-monoclinic crystal structures, respectively, were synthesized using the sol-gel technique. The as-precipitated and the calcinated ZrO2 powders were analyzed for their morphology, nanocrystallite size and structures, aggregation tendency, local electronic properties, and elemental compositions by conventional and high-resolution transmission electron microscopy and field-emission analytical electron microscopy, including energy-dispersive X-ray and electron energy-loss spectroscopies. The results from this study indicate that a combination of nanocrystallite size, strain-induced grain-growth confinement, and the simultaneous presence of the monoclinic phase can lead to stabilization of the metastable tetragonal-phase in undoped ZrO2. As a result, the tetragonal phase is stabilized within ZrO2 nanocrystallites up to 100 nm in size, which is 16 times larger than the previously reported critical size of 6 nm.

  20. Stable and metastable phase relationships in the system ZrO sub 2 -ErO sub 1. 5

    SciTech Connect

    Yashima, M.; Ishizawa, N.; Noma, T.; Yoshimura, M. )

    1991-03-01

    Stable and metastable phase relationships in the system ZrO{sub 2}-ErO{sub 1.5} were investigated using homogeneous samples prepared by rapid quenching of melts and by arc melting. The rapidly quenched samples were annealed in air for 48 h at 1680{degrees}C or for 8 months at 1315{degrees}C. Two tetragonal phases (t- and t{prime}-phases) were observed after quenching samples heated at 1690{degrees}C to a room temperature, whereas one t-phase and cubic (c-) phase were found in those treated at 1315{degrees}C. Since the t{prime}- phase is obtained through a diffusionless transformation during cooling from a high-temperature c-phase, t- and c- phases can coexist at high temperature. The t- and c-phases field spans from 4 to 10 mol% ErO{sub 1.5} at 1690{degrees}C and from 3 to 15 mol% ErO{sub 1.5} at 1315{degrees}C. The equilibrium temperature T{sub 0} {sup t{minus}m} between the t- and monoclinic (m-) phases estimated from A{sub s} and M{sub s} temperatures decreased with increasing ErO{sub 1.5} contents.

  1. One-Dimensional Self-Organization and Nonequilibrium Phase Transition in a Hamiltonian System

    NASA Astrophysics Data System (ADS)

    Wang, Jiao; Casati, Giulio

    2017-01-01

    Self-organization and nonequilibrium phase transitions are well known to occur in two- and three-dimensional dissipative systems. Here, instead, we provide numerical evidence that these phenomena also occur in a one-dimensional Hamiltonian system. To this end, we calculate the heat conductivity by coupling the two ends of our system to two heat baths at different temperatures. It is found that when the temperature difference is smaller than a critical value, the heat conductivity increases with the system size in power law with an exponent considerably smaller than 1. However, as the temperature difference exceeds the critical value, the system's behavior undergoes a transition and the heat conductivity tends to diverge linearly with the system size. Correspondingly, an ordered structure emerges. These findings suggest a new direction for exploring the transport problems in one dimension.

  2. Impurity-tuned non-equilibrium phase transition in a bacterial carpet

    NASA Astrophysics Data System (ADS)

    Hsiao, Yi-Teng; Wu, Kuan-Ting; Uchida, Nariya; Woon, Wei-Yen

    2016-05-01

    The effects of impurity on the non-equilibrium phase transition in Vibrio alginolyticus bacterial carpets are investigated through a position-sensitive-diode implemented optical tweezers-microsphere assay. The collective flow increases abruptly as we increase the rotation rate of flagella via Na+ concentration. The effects of impurities on the transition behavior are examined by mixing cells of a wild type strain (VIO5) with cells of a mutant strain (NMB136) in different swimming patterns. For dilute impurities, the transition point is shifted toward higher Na+ concentration. Increasing the impurities' ratio to over 0.25 leads to a significant drop in the collective force, suggesting a partial orientational order with a smaller correlation length.

  3. Hydrodynamic computational models for nonequilibrium fluid dynamics and issues of projecting their solutions into phase space

    NASA Astrophysics Data System (ADS)

    Myong, Rho Shin; Eu, Byung Chan

    2007-11-01

    There exist growing interests in developing proper mathematical models of the physical process in the mesoscopic regime. Notable examples can be found in micro- and nano-scale fluid flows and rarefied hypersonic gas flows. In this work, a method to derive high-order hydrodynamic equations for nonequilibrium fluid dynamics is presented. In addition, a slip model based on Langmuir's theory of adsorption of gases on solids is developed in order to describe the gas-surface molecular interaction in micro- and nano-scale system. Finally, issues of reconstructing a solution in phase space from information available in thermodynamic space will be discussed through the investigation of a one-dimensional shock wave flow of monatomic gases.

  4. Damage of Honeybee Colonies and Non-Equilibrium Percolation Phase Transition

    NASA Astrophysics Data System (ADS)

    Zhang, Peipei; Su, Beibei; He, Da-Ren

    Recently the mechanism of the damage caused by invasion of Apis mellifera capensis honeybee into the normal A. M. Scutellata colonies became interesting for scientists due to the fact that the mechanism may resemble those of cancer vicious hyperplasia, spreading of some epidemic, and turbulence of society induced by some bad society groups. We suggest a new guess that losing control of self-reproduction disturbs and throws information structure of the society into confuse. We simulate the damage process with a cellular automata based on the guess. The simulation shows that the process is equivalent to a non-equilibrium percolation phase transition. This discussion remind us that the management and monitor on the information network between society members may be a more effective way for avoiding the overflow of the destructor sub-colonies.

  5. In Situ X-ray Diffraction Studies of Metastable Phase Formation in Fe83B17 using Electrostatic Levitation

    NASA Astrophysics Data System (ADS)

    Quirinale, Dante G.; Rustan, Gustav E.; Kreyssig, Andreas; Goldman, Alan I.

    2015-03-01

    The Fe-B system has been broadly studied for its use in magnetic materials as well as its ready glass forming ability, yet the nature of the metastable structures commonly resulting from devitrification is not well understood. The solidification of eutectic Fe83B17 into both the metastable Fe23B6 and the stable Fe2B phases was probed in situ at Beamline 6-ID-D, Advanced Photon Source. Using a combination of high-energy x-ray diffraction and containerless processing via electrostatic levitation and laser heating, high-framerate structural information was obtained from the undercooled liquid through solidification and solid-solid phase transitions during cooling. The results of quantitative sequential Rietveld refinements will be presented and compared with observations in similar materials. This work was supported by the National Science Foundation under Grants No. DMR-1308099 and DMR-0817157. The work at Ames Laboratory was supported by the US DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering through Contract No. DE-AC02-07CH11358. This research used resources of the Advanced Photon Source, a US DOE Office of Science User Facility.

  6. Characterization of Cr-rich Cr-Sb multilayer films: Syntheses of a new metastable phase using modulated elemental reactants

    NASA Astrophysics Data System (ADS)

    Regus, Matthias; Mankovsky, Sergiy; Polesya, Svitlana; Kuhn, Gerhard; Ditto, Jeffrey; Schürmann, Ulrich; Jacquot, Alexandre; Bartholomé, Kilian; Näther, Christian; Winkler, Markus; König, Jan D.; Böttner, Harald; Kienle, Lorenz; Johnson, David C.; Ebert, Hubert; Bensch, Wolfgang

    2015-10-01

    The new metastable compound Cr1+xSb with x up to 0.6 has been prepared via a thin film approach using modulated elemental reactants and investigated by in-situ X-ray reflectivity, X-ray diffraction, differential scanning calorimetry, energy dispersive X-ray analysis as well as transmission electron microscopy and atomic force microscopy. The new Cr-rich antimonide crystallizes in a structure related to the Ni2In-type structure, where the crystallographic position (1/3, 2/3, 3/4) is partially occupied by excess Cr. The elemental layers of the pristine material interdiffused significantly before Cr1+xSb crystallized. A change in the activation energy was observed for the diffusion process when crystal growth starts. First-principles electronic structure calculations provide insight into the structural stability, magnetic properties and resistivity of Cr1+xSb. 2 interdiffused amorphous film 3 metastable crystalline phase 4 thermodynamic stable phase (and by-product)

  7. First principles prediction of the metastability of the Ge2Mn phase and its synthesis pathways

    NASA Astrophysics Data System (ADS)

    Arras, E.; Slipukhina, I.; Torrent, M.; Caliste, D.; Deutsch, T.; Pochet, P.

    2010-06-01

    In this letter, we performed first principles calculations to investigate the stability of a [100]-compatible Ge2Mn compound. Based on a thermodynamical approach, we propose and assess the C16 structure (Al2Cu prototype) to be only slightly metastable as compared to the other Ge-Mn compounds. The reported structural and magnetic properties of this Ge2Mn compound make it a potentially interesting compound for spintronic applications, all the more since a simple way to stabilize it as a bulk film is proposed.

  8. Diffusion, Absorbing States, and Nonequilibrium Phase Transitions in Range Expansions and Evolution

    NASA Astrophysics Data System (ADS)

    Lavrentovich, Maxim Olegovich

    The spatial organization of a population plays a key role in its evolutionary dynamics and growth. In this thesis, we study the dynamics of range expansions, in which populations expand into new territory. Focussing on microbes, we first consider how nutrients diffuse and are absorbed in a population, allowing it to grow. These nutrients may be absorbed before reaching the population interior, and this "nutrient shielding'' can confine the growth to a thin region on the population periphery. A thin population front implies a small local effective population size and enhanced number fluctuations (or genetic drift). We then study evolutionary dynamics under these growth conditions. In particular, we calculate the survival probability of mutations with a selective advantage occurring at the population front for two-dimensional expansions (e.g., along the surface of an agar plate), and three-dimensional expansions (e.g., an avascular tumor). We also consider the effects of irreversible, deleterious mutations which can lead to the loss of the advantageous mutation in the population via a "mutational meltdown,'' or non-equilibrium phase transition. We examine the effects of an inflating population frontier on the phase transition. Finally, we discuss how spatial dimension and frontier roughness influence range expansions of mutualistic, cross-feeding variants. We find here universal features of the phase diagram describing the onset of a mutualistic phase in which the variants remain mixed at long times.

  9. Radial Distribution of Martensitic Phase Transformation in a Metastable Stainless Steel under Torsional Deformation: A Synchrotron X-ray Diffraction Study

    SciTech Connect

    Cakmak, Ercan; Choo, Hahn; An, Ke; Ren, Yang

    2011-01-01

    The strain-induced martensitic phase transformation in a metastable 304 L stainless steel under torsional deformation was investigated using synchrotron X-ray diffraction. The measured radial distribution of the martensite phase fraction in a solid cylindrical specimen agrees well with the prediction based on a combination of transformation kinetics and a radial plastic strain distribution equation.

  10. Diffusion relaxation times of nonequilibrium isolated small bodies and their solid phase ensembles to equilibrium states

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2017-08-01

    The possibility of obtaining analytical estimates in a diffusion approximation of the times needed by nonequilibrium small bodies to relax to their equilibrium states based on knowledge of the mass transfer coefficient is considered. This coefficient is expressed as the product of the self-diffusion coefficient and the thermodynamic factor. A set of equations for the diffusion transport of mixture components is formulated, characteristic scales of the size of microheterogeneous phases are identified, and effective mass transfer coefficients are constructed for them. Allowing for the developed interface of coexisting and immiscible phases along with the porosity of solid phases is discussed. This approach can be applied to the diffusion equalization of concentrations of solid mixture components in many physicochemical systems: the mutual diffusion of components in multicomponent systems (alloys, semiconductors, solid mixtures of inert gases) and the mass transfer of an absorbed mobile component in the voids of a matrix consisting of slow components or a mixed composition of mobile and slow components (e.g., hydrogen in metals, oxygen in oxides, and the transfer of molecules through membranes of different natures, including polymeric).

  11. Nonequilibrium quantum phase transition of Bose-Einstein condensates in an optical cavity

    NASA Astrophysics Data System (ADS)

    Liu, Ni; Li, Jiangdan; Liang, J.-Q.

    2013-05-01

    A link to the Dicke-model type quantum phase transition (QPT) is established by considering a time-dependent driving of the atom-field coupling and nonlinear atom-photon interaction as well, which make a notable impact on the ground-state properties. Motivated by the recent pioneer experiment [K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, Nature (London)10.1038/nature09009 464, 1301 (2010)], in this paper we demonstrate theoretically a rich multistable structure and nonequilibrium QPTs in terms of the Floquet theory and generalized rotating wave approximation. The positive nonlinear interaction does not lead to the change of the order-parameter curve except for a slight shift of the critical point. However, an additional full atomic population of the excited state is generated by the negative interaction resulting in the coexistence region of normal and superradiant phases. When both driving and nonlinear interaction exist the single order-parameter curve of the superradiant phase spreads out and a wide area of multiple local minima emerges in addition.

  12. Observation of nonequilibrium behavior near the Lifshitz point in ferroelectrics with incommensurate phase

    NASA Astrophysics Data System (ADS)

    Rushchanskii, K. Z.; Molnar, A.; Bilanych, R.; Yevych, R.; Kohutych, A.; Vysochanskii, Yu. M.; Samulionis, V.; Banys, J.

    2016-01-01

    We have investigated nonequilibrium properties of proper uniaxial Sn2P2(SexS1-x) 6 ferroelectrics with the type II incommensurate phase above Lifshitz point xLP˜0.28 . We performed measurements of dielectric susceptibility in cooling and heating regimes with the rate ranging 0.002-0.1 K/min, as well as high-resolution ultrasound investigation and hypersound Brillouin scattering experiments. For samples with x ≥0.28 clear anomalies are observed at incommensurate second-order transition (Ti) and at first-order lock-in transition (Tc) in the regime of very slow cooling rate, whereas the intermediate incommensurate phase is not observed when the rate is faster than 0.1 K/min. In general, increasing the cooling rate leads to smearing of the anomaly at Tc. We relate this effect to cooling rate dependence of domain-wall concentration and their size: domain width decreases when cooling rate increases. At certain conditions, the size of domain is comparable to the incommensurate phase modulation period, which is in the micrometer range in the vicinity of Lifshitz point and leads to pinning of the modulation period by domain walls.

  13. Amorphous Aggregation of Cytochrome c with Inherently Low Amyloidogenicity Is Characterized by the Metastability of Supersaturation and the Phase Diagram.

    PubMed

    Lin, Yuxi; Kardos, József; Imai, Mizue; Ikenoue, Tatsuya; Kinoshita, Misaki; Sugiki, Toshihiko; Ishimori, Koichiro; Goto, Yuji; Lee, Young-Ho

    2016-03-01

    Despite extensive studies on the folding and function of cytochrome c, the mechanisms underlying its aggregation remain largely unknown. We herein examined the aggregation behavior of the physiologically relevant two types of cytochrome c, metal-bound cytochrome c, and its fragment with high amyloidogenicity as predicted in alcohol/water mixtures. Although the aggregation propensity of holo cytochrome c was low due to high solubility, markedly unfolded apo cytochrome c, lacking the heme prosthetic group, strongly promoted the propensity for amorphous aggregation with increases in hydrophobicity. Silver-bound apo cytochrome c increased the capacity of fibrillar aggregation (i.e., protofibrils or immature fibrils) due to subtle structural changes of apo cytochrome c by strong binding of silver. However, mature amyloid fibrils were not detected for any of the cytochrome c variants or its fragment, even with extensive ultrasonication, which is a powerful amyloid inducer. These results revealed the intrinsically low amyloidogenicity of cytochrome c, which is beneficial for its homeostasis and function by facilitating the folding and minimizing irreversible amyloid formation. We propose that intrinsically low amyloidogenicity of cytochrome c is attributed to the low metastability of supersaturation. The phase diagram constructed based on solubility and aggregate type is useful for a comprehensive understanding of protein aggregation. Furthermore, amorphous aggregation, which is also viewed as a generic property of proteins, and amyloid fibrillation can be distinguished from each other by the metastability of supersaturation.

  14. Thermally activated phase slips from metastable states in mesoscopic superconducting rings

    NASA Astrophysics Data System (ADS)

    Petkovic, Ivana; Lollo, Anthony; Harris, Jack

    In equilibrium, a flux-biased superconducting ring at low temperature can occupy any of several metastable states. The particular state that the ring occupies depends on the history of the applied flux, as different states are separated from each other by flux-dependent energy barriers. There is a critical value of the applied flux at which a given barrier goes to zero, the state becomes unstable, and the system transition into another state. In recent experiments performed on arrays of rings we showed that this transition occurs close to the critical flux predicted by Ginzburg-Landau theory. Here, we will describe experiments in which we have extended these measurements to an individual ring in order to study the thermal activation of the ring over a barrier that has been tuned close to zero. We measure the statistics of transitions as function of temperature and ramp rate.

  15. Suppressed Release of Clarithromycin from Tablets by Crystalline Phase Transition of Metastable Polymorph Form I.

    PubMed

    Fujiki, Sadahiro; Watanabe, Narumi; Iwao, Yasunori; Noguchi, Shuji; Mizoguchi, Midori; Iwamura, Takeru; Itai, Shigeru

    2015-08-01

    The pharmaceutical properties of clarithromycin (CAM) tablets containing the metastable form I of crystalline CAM were investigated. Although the dissolution rate of form I was higher than that of stable form II, the release of CAM from form I tablet was delayed. Disintegration test and liquid penetration test showed that the disintegration of the tablet delayed because of the slow penetration of an external solution into form I tablet. Investigation by scanning electron microscopy revealed that the surface of form I tablet was covered with fine needle-shaped crystals following an exposure to the external solution. These crystals were identified as form IV crystals by powder X-ray diffraction. The phenomenon that CAM releases from tablet was inhibited by fine crystals spontaneously formed on the tablet surface could be applied to the design of sustained-release formulation systems with high CAM contents by minimizing the amount of functional excipients. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Metastable phases in the aluminum-germanium alloy system: Synthesis by mechanical alloying and pressure induced transformations

    SciTech Connect

    Yvon, Pascal

    1994-01-01

    Al and Ge form a simple equilibrium eutectic with limited mutual solubility and no intermetallic intermediate phases. We used a regular solution approach to model effects of pressure on Al-Ge. Effects of pressure are to extend solubility of Ge in Al, to displace the eutectic composition towards the Ge rich side, and to slightly decrease the eutectic temperature. We designed thermobaric treatments to induce crystal-to-glass transformations in fine grain mixtures of Al and Ge. We used Merrill-Bassett diamond anvil cells to perform experiments at high pressures. We built an x-ray apparatus to determine the structure of alloys at pressure and from cryogenic temperatures to 400C. Two-phase Al-Ge samples with fine microstructures were prepared by splat-quenching and mechanical alloying. We observed a crystal-to-glass transformation at about 80 kbar. The amorphous phase formed was metastable at ambient temperature after pressure release. This was confirmed by TEM. The amorphous phase obtained by pressurization was found to have a liquid-like structure and was metallic. In the TEM samples we also observed the presence of a second amorphous phase formed upon release of the pressure. This second phase had a tetrahedrally-bonded continuous random network structure, similar to that of semi-conducting amorphous germanium.

  17. Phase transformation near the classical limit of stability

    SciTech Connect

    Maibaum, Lutz

    2008-11-06

    Successful theories of phase transformation processes include classical nucleation theory (CNT), which envisions a local equilibrium between coexisting phases, and non--equilibrium kinetic cluster theories. Using computer simulations of the magnetization reversal of the Ising model in three different ensembles we make quantitative connections between these physical pictures. We show that the critical nucleus size of CNT is strongly correlated with a dynamical measure of metastability, and that the metastable phase persists to thermodynamic conditions previously thought of as unstable.

  18. Anomalous long-range correlations at a non-equilibrium phase transition

    NASA Astrophysics Data System (ADS)

    Gerschenfeld, A.; Derrida, B.

    2012-02-01

    Non-equilibrium diffusive systems are known to exhibit long-range correlations, which decay like the inverse 1/L of the system size L in one dimension. Here, taking the example of the ABC model, we show that this size dependence becomes anomalous (the decay becomes a non-integer power of L) when the diffusive system approaches a second-order phase transition. This power-law decay as well as the L-dependence of the time-time correlations can be understood in terms of the dynamics of the amplitude of the first Fourier mode of the particle densities. This amplitude evolves according to a Langevin equation in a quartic potential, which was introduced in a previous work to explain the anomalous behavior of the cumulants of the current near this second-order phase transition. Here we also compute some of these cumulants away from the transition and show that they become singular as the transition is approached, matching with what we already knew in the critical regime.

  19. Nonequilibrium dynamics of spin-boson models from phase-space methods

    NASA Astrophysics Data System (ADS)

    Piñeiro Orioli, Asier; Safavi-Naini, Arghavan; Wall, Michael L.; Rey, Ana Maria

    2017-09-01

    An accurate description of the nonequilibrium dynamics of systems with coupled spin and bosonic degrees of freedom remains theoretically challenging, especially for large system sizes and in higher than one dimension. Phase-space methods such as the truncated Wigner approximation (TWA) have the advantage of being easily scalable and applicable to arbitrary dimensions. In this work we adapt the TWA to generic spin-boson models by making use of recently developed algorithms for discrete phase spaces [J. Schachenmayer, A. Pikovski, and A. M. Rey, Phys. Rev. X 5, 011022 (2015), 10.1103/PhysRevX.5.011022]. Furthermore we go beyond the standard TWA approximation by applying a scheme based on the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy of equations to our coupled spin-boson model. This allows us, in principle, to study how systematically adding higher-order corrections improves the convergence of the method. To test various levels of approximation we study an exactly solvable spin-boson model, which is particularly relevant for trapped-ion arrays. Using TWA and its BBGKY extension we accurately reproduce the time evolution of a number of one- and two-point correlation functions in several dimensions and for an arbitrary number of bosonic modes.

  20. Metastability and polymorphism in the gel and fluid bilayer phases of dilauroylphosphatidylethanolamine. Two crystalline forms in excess water.

    PubMed

    Seddon, J M; Harlos, K; Marsh, D

    1983-03-25

    The phase behavior of 1,2-dilauroyl-sn-glycero-3-phosphoethanolamine (DLPE) in excess water has been studied by differential scanning calorimetry and x-ray diffraction. In addition to the usual gel phase L beta of lamellar periodicity 5.07 nm and the fluid bilayer phase L alpha of periodicity 4.5 nm, two distinct crystalline forms may also be spontaneously adopted. The L beta phase is only produced by cooling from L alpha and is metastable, relaxing to one of the crystalline forms on incubation. One crystalline polymorph, designated beta 2, has a lamellar periodicity of 4.55 nm and corresponds to the structure of DLPE crystallized from a variety of organic solvents. The other crystalline polymorph, designated beta 1, has a lamellar periodicity of 3.78 nm, which implies that in this form the hydrocarbon chains are tilted at approximately 40 degrees to the bilayer normal. The beta 2 polymorph is obtained on dispersing crystalline DLPE directly in water at T less than 43 degrees C, on incubation in the L alpha phase at 30 degrees C less than T less than 43 degrees C, or on heating the beta 1 form slowly to T greater than 35 degrees C. The beta 1 polymorph is obtained on incubating the L beta phase at T less than 30 degrees C. By calorimetry, the L beta phase undergoes an endothermic transition (delta H = 15.5 kJ X mol-1 (3.7 kcal X mol-1)) at 30.6 degrees C to the fluid bilayer phase L alpha. The beta 1 phase undergoes an endothermic transition (delta H congruent to 50 kJ X mol-1 (12 kcal X mol-1)) to L alpha at 35 degrees C. The beta 2 phase undergoes an endothermic transition (delta H = 57 kJ X mol-1 (13.7 kcal X mol-1)) to L alpha at 43 degrees C.

  1. On the metastability of the hexatic phase during the melting of two-dimensional charged particle solids

    SciTech Connect

    Derzsi, Aranka; Kovács, Anikó Zs.; Donkó, Zoltán; Hartmann, Peter

    2014-02-15

    For two-dimensional many-particle systems, first-order, second-order, single step continuous, as well as two-step continuous (KTHNY-like) melting transitions have been found in previous studies. Recent computer simulations, using particle numbers in the ≥10{sup 5} range, as well as a few experimental studies, tend to support the two-step scenario, where the solid and liquid phases are separated by a third, so called hexatic phase. We have performed molecular dynamics simulations on Yukawa (Debye-Hückel) systems at conditions earlier predicted to belong to the hexatic phase. Our simulation studies on the time needed for the equilibration of the systems conclude that the hexatic phase is metastable and disappears in the limit of long times. We also show that simply increasing the particle number in particle simulations does not necessarily result in more accurate conclusions regarding the existence of the hexatic phase. The increase of the system size has to be accompanied with the increase of the simulation time to ensure properly thermalized conditions.

  2. ScGaN alloy growth by molecular beam epitaxy: Evidence for a metastable layered hexagonal phase

    SciTech Connect

    Constantin, Costel; Al-Brithen, Hamad; Haider, Muhammad B.; Ingram, David; Smith, Arthur R.

    2004-11-15

    Alloy formation in ScGaN is explored using rf molecular beam epitaxy over the Sc fraction range x=0-100%. Optical and structural analysis show separate regimes of growth, namely (I) wurtzitelike but having local lattice distortions in the vicinity of the Sc{sub Ga} substitutions for small x (x{<=}0.17) (II) a transitional regime for intermediate x, and (III) cubic, rocksaltlike for large x(x{>=}0.54). In regimes I and III, the direct optical transition decreases approximately linearly with increasing x but with an offset over region II. Importantly, it is found that for regime I, an anisotropic lattice expansion occurs with increasing x in which a increases much more than c. These observations support the prediction of Farrer and Bellaiche [Phys. Rev. B 66, 201203-1 (2002)] of a metastable layered hexagonal phase of ScN, denoted h-ScN.

  3. Connecting the Water Phase Diagram to the Metastable Domain: High-Pressure Studies in the Supercooled Regime.

    PubMed

    Fanetti, Samuele; Pagliai, Marco; Citroni, Margherita; Lapini, Andrea; Scandolo, Sandro; Righini, Roberto; Bini, Roberto

    2014-11-06

    Pressure is extremely efficient to tune intermolecular interactions, allowing the study of the mechanisms regulating, at the molecular level, the structure and dynamics of condensed phases. Among the simplest molecules, water represents in many respects a mystery despite its primary role in ruling most of the biological, physical, and chemical processes occurring in nature. Here we report a careful characterization of the dynamic regime change associated with low-density and high-density forms of liquid water by measuring the line shape of the OD stretching mode of HOD in liquid water along different isotherms as a function of pressure. Remarkably, the high-pressure studies have been here extended down to 240 K, well inside the supercooled regime. Supported by molecular dynamics simulations, a correlation among amorphous and crystalline solids and the two different liquid water forms is attempted to provide a unified picture of the metastable and thermodynamic regimes of water.

  4. Metastability in pixelation patterns of coexisting fluid lipid bilayer phases imposed by e-beam patterned substrates.

    PubMed

    Ogunyankin, Maria O; Longo, Marjorie L

    2013-02-14

    We study the dynamic evolution of pixilation patterns of the liquid-ordered (Lo) phase in coexistence with the liquid-disordered phase in lipid multibilayers. The pixilation patterns were formed by imposing lattice patterns of localized high curvature on phase-separating multibilayers using curvature-patterned regions of an underlying support. The projected radius of underlying hemisphere-like features, that provided the local curvature, was varied from 60 nm to 100 nm and the square lattice spacing between the features was varied between 200 nm and 400 nm using standard electron (e) -beam lithography. Over time, the area fraction of the Lo phase on the patterned regions of the substrate decreased toward zero at room temperature. This apparent metastability of the pattern derives from the high line energy of a pixelation pattern where a Boltzmann distribution shows near zero equilibrium partitioning of the Lo phase in the patterned regions. Kinetic rate analysis identifies two pattern-dependent mechanisms that dominate the transition to zero Lo area fraction; diffusion limited dissolution of the Lo phase driven by an Ostwald ripening-type process or the cooperative formation of vesicles containing Lo phase lipids. Interestingly, we observed the spontaneous formation of tubules in the corners of the array due to the high local curvature applied to the membrane. Furthermore we show that it is possible to regenerate pixilation patterns on the curvature-patterned regions by cooling below room temperature. Regenerated area fractions are in agreement with a room-temperature composition of primarily Ld phase and the high degree of overlap with the original patterns is suggestive of fixed nucleation sites.

  5. Metastability in pixelation patterns of coexisting fluid lipid bilayer phases imposed by e-beam patterned substrates

    PubMed Central

    Ogunyankin, Maria O.; Longo, Marjorie L.

    2013-01-01

    We study the dynamic evolution of pixilation patterns of the liquid-ordered (Lo) phase in coexistence with the liquid-disordered phase in lipid multibilayers. The pixilation patterns were formed by imposing lattice patterns of localized high curvature on phase-separating multibilayers using curvature-patterned regions of an underlying support. The projected radius of underlying hemisphere-like features, that provided the local curvature, was varied from 60 nm to 100 nm and the square lattice spacing between the features was varied between 200 nm and 400 nm using standard electron (e) -beam lithography. Over time, the area fraction of the Lo phase on the patterned regions of the substrate decreased toward zero at room temperature. This apparent metastability of the pattern derives from the high line energy of a pixelation pattern where a Boltzmann distribution shows near zero equilibrium partitioning of the Lo phase in the patterned regions. Kinetic rate analysis identifies two pattern-dependent mechanisms that dominate the transition to zero Lo area fraction; diffusion limited dissolution of the Lo phase driven by an Ostwald ripening-type process or the cooperative formation of vesicles containing Lo phase lipids. Interestingly, we observed the spontaneous formation of tubules in the corners of the array due to the high local curvature applied to the membrane. Furthermore we show that it is possible to regenerate pixilation patterns on the curvature-patterned regions by cooling below room temperature. Regenerated area fractions are in agreement with a room-temperature composition of primarily Ld phase and the high degree of overlap with the original patterns is suggestive of fixed nucleation sites. PMID:23483871

  6. Non-equilibrium phase map, optical and electrical properties of Cu-Zn-O alloys

    NASA Astrophysics Data System (ADS)

    Subramaniyan, Archana; Perkins, John; O'Hayre, Ryan; Ginley, David; Lany, Stephan; Zakutayev, Andriy

    2014-03-01

    Cuprous oxide (Cu2O) is a candidate p-type solar cell absorber material that has been spotlighted recently due to its low cost, earth abundant and non-toxic nature. The maximum reported efficiency of Cu2O based solar cells is rather low (5. 38%) and it can in part be attributed its forbidden direct band gap (2.1 eV) and higher absorption threshold (2.6 eV). Here, we alloy Cu2O with ZnO via combinatorial RF magnetron sputtering as a function of temperature (T) and composition at fixed 20 mTorr Ar pressure to modify the electronic band structure and reduce its absorption threshold, which can potentially enhance the solar cell performance. A non-equilibrium Cu-Zn-O phase map was generated in the T range 100 - 400 °C and Zn composition 0 - 37 at%. Highly crystalline Cu2O structured Cu-Zn-O alloys with Zn content of 0 to 17 at% were synthesized in the T range 200 - 270 °C. With increasing Zn at%, the preferential orientation in Cu-Zn-O alloy changes from (200) to (111) direction. At lower T (<200 °C), either amorphous or poor crystalline Cu2O structured alloys were observed, whereas at higher T (>270 ° C) and higher Zn composition (>25 at%), CuO or ZnO second phases were observed. The absorption coefficient of all Cu-Zn-O alloys was higher than that of phase pure Cu2O. The absorption threshold () was also reduced significantly, for example, at = 2*104 cm-1 the absorption threshold of Cu-Zn-O alloy with 10 at% Zn reduced from 2.4 eV to 2.1 eV. The electrical conductivity of all Cu-Zn-O alloys was measured to be within 2 - 5 mS/cm.

  7. Driving force for a nonequilibrium phase transition in three-dimensional complex plasmas

    NASA Astrophysics Data System (ADS)

    Zhukhovitskii, D. I.

    2017-03-01

    An example of the non-equilibrium phase transition is the formation of lanes when one kind of particle is driven against the other. According to experimental observation, lane formation in binary complex plasmas occurs when the smaller particles are driven through the stationary dust cloud of the larger particles. We calculate the driving force acting on a probe particle that finds itself in a quiescent cloud of particles in complex plasma of the low-pressure radio frequency discharge under microgravity conditions. It is shown that the nonzero driving force is a result of the dependence of the ion mean free path on the particle number density. If this effect is properly included in the model of similar complex plasmas, then one arrives at the driving force that changes its sign at the point where the probe and the dust particles have equal radii. If the probe is smaller than the dust particle, then the driving force is directed toward the discharge center and vice versa, in accordance with the experiment. The obtained results can serve as the ansatz for future investigation of the lane formation in complex plasmas.

  8. Traction and nonequilibrium phase behavior of confined sheared liquids at high pressure

    NASA Astrophysics Data System (ADS)

    Gattinoni, Chiara; Heyes, David M.; Lorenz, Christian D.; Dini, Daniele

    2013-11-01

    Nonequilibrium molecular dynamics simulations of confined model liquids under pressure and sheared by the relative sliding of the boundary walls have been carried out. The relationship between the time-dependent traction coefficient, μ(t), and the state of internal structure of the film is followed from commencement of shear for various control parameters, such as applied load, global shear rate, and solid-liquid atom interaction parameters. Phase diagrams, velocity and temperature profiles, and traction coefficient diagrams are analyzed for pure Lennard-Jones (LJ) liquids and a binary LJ mixture. A single component LJ liquid is found to form semicrystalline arrangements with high-traction coefficients, and stick-slip behavior is observed for high pressures and low-shear velocities, which is shown to involve periodic deformation and stress release of the wall atoms and slip in the solid-liquid boundary region. A binary mixture, which discourages crystallization, gives a more classical tribological response with the larger atoms preferentially adsorbing commensurate with the wall. The results obtained are analyzed in the context of tribology: the binary mixture behaves like a typical lubricant, whereas the monatomic system behaves like a traction fluid. It is discussed how this type of simulation can give insights on the tribological behavior of realistic systems.

  9. Kinetic simulation of thermally induced metastability in the tungsten-carbon system

    NASA Astrophysics Data System (ADS)

    Demetriou, Marios Demetri

    2001-11-01

    A dynamic computational model is developed within the context of classical nucleation theory for thermally induced non-equilibrium phase transitions. The conditions for this model are those encountered in rapid thermal processing of invariantly nucleating compound phases. The kinetic variables used in the model were directly obtained from the free energy formulations that characterize the stable and metastable equilibria amongst participating phases. The isothermal as well as non-isothermal kinetics were simulated by means of stochastic equations which model the fluctuational process of crystal nucleation along with the deterministic process of crystal growth. A strategy to evaluate the static (isothermal) and dynamic (non-isothermal) effects of nucleation transience based on time scale analogy is outlined and validated by contrasting the results of the dynamic model against those obtained from a steady state model. The developed model was applied to the W-C compound-forming binary system. The stable phase equilibria were reproduced using free energy data obtained from literature, while the metastable ones were obtained by extrapolating the stable equilibria into regions of metastability. The model was utilized to simulate the kinetics of graphitization during non-equilibrium peritectic melting of WC. The isothermal kinetic analysis suggests that graphitization becomes extremely rapid when annealing at large superheatings, while the highest crystallization rate was found to occur at the metastable congruent melting point of WC (˜3107 K) where 1-ppm crystallize in ˜2 nanoseconds. The non-isothermal kinetic analysis suggests that increasing the heating rate suppresses graphitization, while graphitization may be completely bypassed by the rapidly forming metastable liquid when processing under extreme rapid heating (˜108 K/s) beyond the metastable congruent melting point of WC. The model was also utilized to simulate the kinetics of phase selection during non-equilibrium

  10. Tuning Phase Composition of Polymer Nanocomposites toward High Energy Density and High Discharge Efficiency by Nonequilibrium Processing.

    PubMed

    Jiang, Jianyong; Zhang, Xin; Dan, Zhenkang; Ma, Jing; Lin, Yuanhua; Li, Ming; Nan, Ce-Wen; Shen, Yang

    2017-09-06

    Polymer nanocomposite dielectrics with high energy density and low loss are major enablers for a number of applications in modern electronic and electrical industry. Conventional fabrication of nanocomposites by solution routes involves equilibrium process, which is slow and results in structural imperfections, hence high leakage current and compromised reliability of the nanocomposites. We propose and demonstrate that a nonequilibrium process, which synergistically integrates electrospinning, hot-pressing and thermal quenching, is capable of yielding nanocomposites of very high quality. In the nonequilibrium nanocomposites of poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) and BaTiO3 nanoparticles (BTO_nps), an ultrahigh Weibull modulus β of ∼30 is achieved, which is comparable to the quality of the bench-mark biaxially oriented polypropylene (BOPP) fabricated with melt-extrusion process by much more sophisticated and expensive industrial apparatus. Favorable phase composition and small crystalline size are also induced by the nonequilibrium process, which leads to concomitant enhancement of electric displacement and breakdown strength of the nanocomposite hence a high energy density of ∼21 J/cm(3). Study on the polarization behavior and phase transformation at high electric field indicates that BTO_nps could facilitate the phase transformation from α- to β-polymorph at low electric field.

  11. Metastable Phases of Rapidly Solidified Al-Rich Al-Fe Alloys

    DTIC Science & Technology

    1984-01-01

    same contrast. 20 FIGURE 9. Convergent beam diffraction pattern taken from a single crystal globular "S" phase. 21 FIGURE 10. The flower -like phase. 21...FIGURE 11. Convergent beam diffraction pattern obtained from the flower -like phase. 21 iii "- "’., % i ’ % " PAGE FIGURE 12. At-i wt.% Fe. Cellular...any of the previously reported aluminum-rich phases (Al3Fe, AlxFe, AI6Fe, A19Fe2, or AlmFe) [2,3]. An additional flower - shaped phase was detected in

  12. The Nonequilibrium Phase and Glass Transition Behavior of β-Lactoglobulin

    PubMed Central

    Parker, Roger; Noel, Timothy R.; Brownsey, Geoffrey J.; Laos, Katrin; Ring, Stephen G.

    2005-01-01

    Concentrated solutions of bovine β-lactoglobulin were studied using osmotic stress and rheological techniques. At pH 6.0 and 8.0, the osmotic pressure was largely independent of NaCl concentration and could be described by a hard sphere equation of state. At pH 5.1, close to the isoelectric point, the osmotic pressure was lower at the lower NaCl concentrations (0 mM, 100 mM) and was fitted by an adhesive hard sphere model. Liquid-liquid phase separation was observed at pH 5.1 at ionic strengths of 13 mM and below. Comparison of the liquid-liquid and literature solid-liquid coexistence curves showed these solutions to be supersaturated and the phase separation to be nonequilibrium in nature. In steady shear, the zero shear viscosity of concentrated solutions at pH 5.1 was observed at shear rates above 50 s−1. With increasing concentration, the solution viscosity showed a progressive increase, a behavior interpreted as the approach to a colloidlike glass transition at ∼60% w/w. In oscillatory shear experiments, the storage modulus crossed the loss modulus at concentrations of 54% w/w, an indication of the approaching glass transition. Comparison of the viscous behavior with predictions from the Krieger-Dougherty equation indicates the hydrodynamic size of the protein decreases with increasing concentration, resulting in a slower approach to the glass transition than a hard sphere system. PMID:15923230

  13. Entropic screening preserves non-equilibrium nature of nematic phase while enthalpic screening destroys it

    NASA Astrophysics Data System (ADS)

    Dan, K.; Roy, M.; Datta, A.

    2016-02-01

    The present manuscript describes the role of entropic and enthalpic forces mediated by organic non-polar (hexane) and polar (methanol) solvents on the bulk and microscopic phase transition of a well known nematic liquid crystalline material MBBA (N-(4-methoxybenzylidene)-4-butylaniline) through Differential Scanning calorimetry (DSC), UV-Visible (UV-Vis), and Fourier Transform Infrared (FTIR) spectroscopy. DSC study indicates continuous linear decreases in both nematic-isotropic (N-I) phase transition temperature and enthalpy of MBBA in presence of hexane while both these parameters show a saturation after an initial decay in methanol. These distinct transitional behaviours were explained in terms of the "depletion force" model for entropic screening in hexane and "screening-self-screening" model for methanol. Heating rate dependent DSC studies find that non-Arrhenius behaviour, characteristic of pristine MBBA and a manifestation of non-equilibrium nature [Dan et al., J. Chem. Phys. 143, 094501 (2015)], is preserved in presence of entropic screening in the hexane solution, while it changes to Arrhenius behaviour (signifying equilibrium behaviour) in presence of enthalpic screening in methanol solution. FTIR spectra show similar dependence on the solvent induced screening in the intensities of the imine (—C = N) stretch and the out-of-plane distortion vibrations of the benzene rings of MBBA with hexane and methanol as in DSC, further establishing our entropic and enthalpic screening models. UV-Vis spectra of the electronic transitions in MBBA as a function of temperature also exhibit different dependences of intensities on the solvent induced screening, and an exponential decrease is observed in presence of hexane while methanol completely changes the nature of interaction to follow a linear dependence.

  14. Entropic screening preserves non-equilibrium nature of nematic phase while enthalpic screening destroys it

    SciTech Connect

    Dan, K.; Roy, M.; Datta, A.

    2016-02-14

    The present manuscript describes the role of entropic and enthalpic forces mediated by organic non-polar (hexane) and polar (methanol) solvents on the bulk and microscopic phase transition of a well known nematic liquid crystalline material MBBA (N-(4-methoxybenzylidene)-4-butylaniline) through Differential Scanning calorimetry (DSC), UV-Visible (UV–Vis), and Fourier Transform Infrared (FTIR) spectroscopy. DSC study indicates continuous linear decreases in both nematic-isotropic (N-I) phase transition temperature and enthalpy of MBBA in presence of hexane while both these parameters show a saturation after an initial decay in methanol. These distinct transitional behaviours were explained in terms of the “depletion force” model for entropic screening in hexane and “screening-self-screening” model for methanol. Heating rate dependent DSC studies find that non-Arrhenius behaviour, characteristic of pristine MBBA and a manifestation of non-equilibrium nature [Dan et al., J. Chem. Phys. 143, 094501 (2015)], is preserved in presence of entropic screening in the hexane solution, while it changes to Arrhenius behaviour (signifying equilibrium behaviour) in presence of enthalpic screening in methanol solution. FTIR spectra show similar dependence on the solvent induced screening in the intensities of the imine (—C = N) stretch and the out-of-plane distortion vibrations of the benzene rings of MBBA with hexane and methanol as in DSC, further establishing our entropic and enthalpic screening models. UV–Vis spectra of the electronic transitions in MBBA as a function of temperature also exhibit different dependences of intensities on the solvent induced screening, and an exponential decrease is observed in presence of hexane while methanol completely changes the nature of interaction to follow a linear dependence.

  15. Equilibrium sampling by re-weighting non-equilibrium simulation trajectories

    NASA Astrophysics Data System (ADS)

    Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting

    2015-12-01

    With the traditional equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space in complex systems, which are separated into some metastable conformational regions by high free energy barriers. The applied non-equilibrium process in simulations could enhance the transitions among these conformational regions, and the associated non-equilibrium effects can be removed by employing the Jarzynski equality (JE), then the global equilibrium distribution can be reproduced. However, the original JE requires the initial distribution of the non-equilibrium process is equilibrium, which largely limits the application of the non-equilibrium method in equilibrium sampling. By extending the previous method, the reweighted ensemble dynamics (RED), which re-weights many equilibrium simulation trajectories from arbitrary initial distribution to reproduce the global equilibrium, to non-equilibrium simulations, we present a method, named as re-weighted non-equilibrium ensemble dynamics (RNED), to generalize the JE in the non-equilibrium trajectories started from an arbitrary initial distribution, thus provide an efficient method to reproduce the equilibrium distribution based on multiple independent (short) non-equilibrium trajectories. We have illustrated the validity of the RNED in a one-dimensional toy model and in a Lennard-Jones system to detect the liquid-solid phase coexistence.

  16. Oxygen Evolution Catalyzed by Nickel-Iron Oxide Nanocrystals with a Nonequilibrium Phase.

    PubMed

    Bau, Jeremy A; Luber, Erik J; Buriak, Jillian M

    2015-09-09

    Mixed nickel-iron oxides are of great interest as electrocatalysts for the oxygen evolution reaction (OER), the kinetically challenging half-reaction required for the generation of hydrogen gas from water via electrolysis. Previously, we had reported the synthesis of single crystal, soluble nickel-iron oxide nanoparticles over a wide range of nickel:iron compositions, with a metastable cubic rock salt phase ([Ni,Fe]O) that can be isolated despite the low solubility of iron in cubic nickel oxide at ambient temperatures. Here, activity for OER was examined, catalyzed by these [Ni,Fe]O nanoparticles integrated with indium tin oxide (ITO) electrodes. Because the as-prepared [Ni,Fe]O nanoparticles are oleate-capped, the surface ligands needed to be removed to induce adherence to the ITO substrate, and to enable charge transfer and contact with water to enable OER catalysis. Two different approaches were taken to reduce or eliminate the coverage of oleate ligands in these films: UV irradiation (254 nm) and air plasma. UV irradiation proved to lead to better results in terms of stable and OER-active films at pH 13. Kinetic analysis revealed that the Tafel slopes of these nanoparticle [Ni,Fe]O OER electrodes were limited by the electrochemical surface area and were found to be within the range of 30 to 50 mV/decade. Across the four compositions of Ni:Fe studied, from 24:76 to 88:12, the observed overpotential at 10 mA/cm2 for the OER in basic conditions decreased from 0.47 to 0.30 V as the proportion of nickel increased from 24% to 88%.

  17. On the Influence of Athermal ω and α Phase Instabilities on the Scale of Precipitation of the α Phase in Metastable β-Ti Alloys

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Sosa, John M.; Fraser, Hamish L.

    2016-05-01

    In the presentation and manuscript in the International Conference on Solid-Solid Phase Transformations in Inorganic Materials (PTM 2015 conference), the authors presented the preliminary results showing that the nano-scale compositional and structural instabilities in the parent β phase in titanium alloys have significant influence on the subsequent phase transformations, such as α phase precipitation, by a combination of advanced electron microscopy and phase field simulation. The aim of the current research described in this paper has been to develop an understanding of the role of two instabilities in metastable β Ti alloys which may influence the scale of refined distributions of the α phase. The first of these involves the role of athermal ω phase on the nucleation of the α phase, and the second is the stability of the α phase itself during up-quenching experiments performed as a part of heat-treatment schedules that lead to refined distributions of this phase. The first investigation has involved heat treatments designed to ensure that the athermal ω phase is present at a temperature at which α nucleation is known, from previous research, to occur. It was found that the scale of α precipitation produced was "refined", rather than "super-refined". Hence, it is concluded that athermal ω plays no role in the nucleation of the α phase. The second investigation involves up-quenching of samples already containing an incipient "super-refined" distribution of the α phase to determine the stability of these distributions against such up-quenching. It has been found that the stability of the α phase is dependent on the composition, C 0( T), i.e., the alloy composition where, for a given temperature, T, the free energies of the α and β phases are equal.

  18. Metastable liquid-liquid phase transition in a single-component system with only one crystal phase and no density anomaly

    NASA Astrophysics Data System (ADS)

    Franzese, G.; Malescio, G.; Skibinsky, A.; Buldyrev, S. V.; Stanley, H. E.

    2002-11-01

    We investigate the phase behavior of a single-component system in three dimensions with spherically-symmetric, pairwise-additive, soft-core interactions with an attractive well at a long distance, a repulsive soft-core shoulder at an intermediate distance, and a hard-core repulsion at a short distance, similar to potentials used to describe liquid systems such as colloids, protein solutions, or liquid metals. We showed [Nature (London) 409, 692 (2001)] that, even with no evidence of the density anomaly, the phase diagram has two first-order fluid-fluid phase transitions, one ending in a gas-low-density-liquid (LDL) critical point, and the other in a gas-high-density-liquid (HDL) critical point, with a LDL-HDL phase transition at low temperatures. Here we use integral equation calculations to explore the three-parameter space of the soft-core potential and perform molecular dynamics simulations in the interesting region of parameters. For the equilibrium phase diagram, we analyze the structure of the crystal phase and find that, within the considered range of densities, the structure is independent of the density. Then, we analyze in detail the fluid metastable phases and, by explicit thermodynamic calculation in the supercooled phase, we show the absence of the density anomaly. We suggest that this absence is related to the presence of only one stable crystal structure.

  19. Suppression of metastable-phase inclusion in N-polar (0001{sup ¯}) InGaN/GaN multiple quantum wells grown by metalorganic vapor phase epitaxy

    SciTech Connect

    Shojiki, Kanako Iwabuchi, Takuya; Kuboya, Shigeyuki; Choi, Jung-Hun; Tanikawa, Tomoyuki; Hanada, Takashi; Katayama, Ryuji; Matsuoka, Takashi; Usami, Noritaka

    2015-06-01

    The metastable zincblende (ZB) phase in N-polar (0001{sup ¯}) (−c-plane) InGaN/GaN multiple quantum wells (MQWs) grown by metalorganic vapor phase epitaxy is elucidated by the electron backscatter diffraction measurements. From the comparison between the −c-plane and Ga-polar (0001) (+c-plane), the −c-plane MQWs were found to be suffered from the severe ZB-phase inclusion, while ZB-inclusion is negligible in the +c-plane MQWs grown under the same growth conditions. The ZB-phase inclusion is a hurdle for fabricating the −c-plane light-emitting diodes because the islands with a triangular shape appeared on a surface in the ZB-phase domains. To improve the purity of stable wurtzite (WZ)-phase, the optimum conditions were investigated. The ZB-phase is dramatically eliminated with decreasing the V/III ratio and increasing the growth temperature. To obtain much-higher-quality MQWs, the thinner InGaN wells and the hydrogen introduction during GaN barriers growth were tried. Consequently, MQWs with almost pure WZ phase and with atomically smooth surface have been demonstrated.

  20. Metastability and sol phases: two keys for the future of molecular gels?

    PubMed

    Terech, P

    2009-08-04

    The future of molecular gels may rely on a deeper theoretical understanding of the gel-to-solid phase-separation process that usually limits the lifetime of molecular gels. Stable sol phases, when available, can be the appropriate vectors to transfer the 1D self-assembled and functional morphologies to solid substrates that may be used for technological devices.

  1. In Situ Observation of the Competition Between Metastable and Stable Phases in Solidification of Undercooled Fe-17at. pctB Alloy Melt

    NASA Astrophysics Data System (ADS)

    Zhang, Di; Xu, Junfeng; Liu, Feng

    2015-11-01

    High-speed video (HSV) technique was used to investigate the solidification behavior of undercooled Fe-17at. pctB alloy melt. Competitive growth between Fe/Fe3B (metastable eutectic) and Fe/Fe2B (stable eutectic) was captured, which is correlated with the critical nucleation undercooling Δ Tn^{*} [=104 K (104 °C)] and the critical growth undercooling Δ T_{g}^{*} [=151 K 183 K (151 °C 183 °C)]. For the initial undercooling, Δ T < Δ Tn^{*} , only the stable eutectic reaction (L → Fe/Fe2B) occurs during solidification, whereas, for Δ T > Δ Tn^{*} , the metastable eutectic reaction (L → Fe/Fe3B) occurs firstly, followed by the stable eutectic reaction. Nevertheless, Δ T > Δ Tn^{*} does not guarantee that the metastable phase (Fe3B) appears finally. Only if Δ T > Δ T_{g}^{*} , Fe3B phase can be found in the room microstructure, as the growth velocity of metastable eutectic (Fe/Fe3B) is larger than stable eutectic (Fe/Fe2B) from HSV results; otherwise, the final structure consists of Fe2B and α-Fe. Accordingly, not only the competitive nucleation, but the competitive growth also determines the final microstructure of Fe-17at. pctB alloy.

  2. Discontinuous precipitation with metastable ζ phase in a Cu-8.6% Sn alloy

    NASA Astrophysics Data System (ADS)

    Wang, Zeng-Jie; Konno, Toyohiko J.

    2013-03-01

    Discontinuous precipitation (DP) in Cu-8.6 at% Sn alloy at 573 K has been studied using transmission electron microscopy and electron back scattered diffraction techniques. DP reactions occur only sporadically at grain boundaries after prolonged aging, giving rise to a cellular morphology. The supersaturated α‧ phase (face-centred cubic) phase decomposes not into the equilibrium α and ε phases as reported to date, but into the α and ζ (space group P63, a = 0.733, c = 0.786 nm) phases, the latter being stable above 835 K. These two phases possess the following orientation relationship (OR): ? . Well-defined habit planes do not exist. However, broad faces of ζ lamellae are often parallel to the ? ζ plane. The observed OR and cellular morphology have been interpreted by matching atomic rows across the phase boundaries in two perpendicular directions. Namely, the spacings of (110)α and (0001)ζ planes, which match across the broad faces of the ζ lamellae, are nearly the same, while, in a perpendicular direction, mismatch between (111)α and ? spacings amounts to 0.5%. The facing (111)α and ? planes form a coincidence site lattice, and atomic configurations in these planes both contain similar triangular atomic networks. It was also found that the orientation of the depleted α phase is often correlated with that of the adjoining α‧ grain. This correlation indicated that the OR hold successively upon α‧ → ζ → α transformation. Possible orientations of the α phase have been enumerated, as supervariants to the adjoining α‧ grains mediated by the ζ phase.

  3. Metastable phases of 2D boron sheets on Ag(1 1 1)

    NASA Astrophysics Data System (ADS)

    Zhong, Qing; Zhang, Jin; Cheng, Peng; Feng, Baojie; Li, Wenbin; Sheng, Shaoxiang; Li, Hui; Meng, Sheng; Chen, Lan; Wu, Kehui

    2017-03-01

    Two reproducible new phases of 2D boron sheets have been found on Ag(1 1 1). One of them shares the identical atomic structure of the previously reported S1 phase (β 12 sheet) but has a different rotational relationship with the substrate, and thus exhibits very different features in scanning tunneling microscopy (STM) images. The other new phase has a hexagonal symmetry and is proposed to be the long-expected α-sheet. Both of these two boron sheets are confirmed to be metallic by scanning tunneling spectroscopy.

  4. Simple models for heterogeneous catalysis: Phase transition-like behavior in nonequilibrium systems

    NASA Astrophysics Data System (ADS)

    Meakin, Paul; Scalapino, Douglas J.

    1987-07-01

    A simple model for heterogeneous catalysis, recently introduced by Ziff, Gulari, and Barshad (ZGB), has been explored using computer simulation. This is a nonequilibrium model which exhibits phase transition-like behavior. The only parameter in this model (Y) sets the ratio with which two reactive species (A and B2) are fed to the surface (lattice). On the square lattice, ZGB found a range of values of this parameter for which steady states with nonzero A and B concentrations occur. Outside of this range, the surface becomes completely covered with A or B sites. The range of Y values corresponding to steady state with nonzero A and B concentrations is bounded by two ``critical'' values Y1 and Y2. For values of Y close to but above Y1 we have obtained approximate values for the exponents which describe the dependence of the steady-state densities of A and B sites on (Y-Y1). These exponents both seem to have the same value independent of lattice details. We have extended the work of ZGB to the hexagonal lattice, one-dimensional lattice, and narrow strips. The results obtained for the hexagonal lattice are qualitatively similar to those obtained for the square lattice. For the 1D lattice and strips with a width of 2 lattice units, steady states with nonzero A and B site concentrations are not found. For widths of 3 or more lattice units, such steady states are found and the range of the relative probability parameter over which this behavior occurs grows steadily with increasing strip width. We have also obtained new results for the more simple C+D product reaction. Here C and D occupy single lattice sites and react immediately if they are nearest neighbors.

  5. Superconductivity in metastable phases of phosphorus-hydride compounds under high pressure

    NASA Astrophysics Data System (ADS)

    Flores Livas, Jose; Amsler, Maximilian; Sanna, Antonio; Heil, Christoph; Boeri, Lilia; Profeta, Gianni; Wolverton, Crhis; Goedecker, Stefan; Gross, E. K. U.

    Recently, compressed phosphine was reported to metallize at pressures above 45 GPa, reaching a superconducting transition temperature (Tc) of 100 K at 200 GPa. However, neither the exact composition nor the crystal structure of the superconducting phase have been conclusively determined. In this work the phase diagram of PHn (n = 1 , 2 , 3 , 4 , 5 , 6) was extensively explored by means of ab initio crystal structure prediction methods. The results do not support the existence of thermodynamically stable PHn compounds, which exhibit a tendency for elemental decomposition at high pressure even when vibrational contributions to the free energies are taken into account. Although the lowest energy phases of PH1 , 2 , 3 display Tc's comparable to experiments, it remains questionable if the measured values of Tc can be fully attributed to a phase-pure compound of PHn. This work was done within the NCCR MARVEL project.

  6. Plasma-Enhanced Chemical Vapor Deposition of Beta-Tungsten, a Metastable Phase,

    DTIC Science & Technology

    the resistivity drops below 11 micron omega cm. Concomitant with this resistivity change is a phase change to alpha-W, the equilibrium, body - centered - cubic form. Additional keywords: reprint; and Army research.

  7. Phase field theory of interfaces and crystal nucleation in a eutectic system of fcc structure: II. Nucleation in the metastable liquid immiscibility region.

    PubMed

    Tóth, Gyula I; Gránásy, László

    2007-08-21

    In the second part of our paper, we address crystal nucleation in the metastable liquid miscibility region of eutectic systems that is always present, though experimentally often inaccessible. While this situation resembles the one seen in single component crystal nucleation in the presence of a metastable vapor-liquid critical point addressed in previous works, it is more complex because of the fact that here two crystal phases of significantly different compositions may nucleate. Accordingly, at a fixed temperature below the critical point, six different types of nuclei may form: two liquid-liquid nuclei: two solid-liquid nuclei; and two types of composite nuclei, in which the crystalline core has a liquid "skirt," whose composition falls in between the compositions of the solid and the initial liquid phases, in addition to nuclei with concentric alternating composition shells of prohibitively high free energy. We discuss crystalline phase selection via exploring/identifying the possible pathways for crystal nucleation.

  8. Modeling substorm dynamics of the magnetosphere: from self-organization and self-organized criticality to nonequilibrium phase transitions.

    PubMed

    Sitnov, M I; Sharma, A S; Papadopoulos, K; Vassiliadis, D

    2002-01-01

    Earth's magnetosphere during substorms exhibits a number of characteristic features such as the signatures of low effective dimension, hysteresis, and power-law spectra of fluctuations on different scales. The largest substorm phenomena are in reasonable agreement with low-dimensional magnetospheric models and in particular those of inverse bifurcation. However, deviations from the low-dimensional picture are also quite considerable, making the nonequilibrium phase transition more appropriate as a dynamical analog of the substorm activity. On the other hand, the multiscale magnetospheric dynamics cannot be limited to the features of self-organized criticality (SOC), which is based on a class of mathematical analogs of sandpiles. Like real sandpiles, during substorms the magnetosphere demonstrates features, that are distinct from SOC and are closer to those of conventional phase transitions. While the multiscale substorm activity resembles second-order phase transitions, the largest substorm avalanches are shown to reveal the features of first-order nonequilibrium transitions including hysteresis phenomena and a global structure of the type of a temperature-pressure-density diagram. Moreover, this diagram allows one to find a critical exponent, that reflects the multiscale aspect of the substorm activity, different from the power-law frequency and scale spectra of autonomous systems, although quite consistent with second-order phase transitions. In contrast to SOC exponents, this exponent relates input and output parameters of the magnetosphere. Using an analogy to the dynamical Ising model in the mean-field approximation, we show the connection between the data-derived exponent of nonequilibrium transitions in the magnetosphere and the standard critical exponent beta of equilibrium second-order phase transitions.

  9. Control of protein crystal nucleation around the metastable liquid–liquid phase boundary

    PubMed Central

    Galkin, Oleg; Vekilov, Peter G.

    2000-01-01

    The capability to enhance or suppress the nucleation of protein crystals opens opportunities in various fundamental and applied areas, including protein crystallography, production of protein crystalline pharmaceuticals, protein separation, and treatment of protein condensation diseases. Herein, we show that the rate of homogeneous nucleation of lysozyme crystals passes through a maximum in the vicinity of the liquid–liquid phase boundary hidden below the liquidus (solubility) line in the phase diagram of the protein solution. We found that glycerol and polyethylene glycol (which do not specifically bind to proteins) shift this phase boundary and significantly suppress or enhance the crystal nucleation rates, although no simple correlation exists between the action of polyethylene glycol on the phase diagram and the nucleation kinetics. The control mechanism does not require changes in the protein concentration, acidity, and ionicity of the solution. The effects of the two additives on the phase diagram strongly depend on their concentration, which provides opportunities for further tuning of nucleation rates. PMID:10823898

  10. Quench dynamics and nonequilibrium phase diagram of the bose-hubbard model.

    PubMed

    Kollath, Corinna; Läuchli, Andreas M; Altman, Ehud

    2007-05-04

    We investigate the time evolution of correlations in the Bose-Hubbard model following a quench from the superfluid to the Mott insulator. For large values of the final interaction strength the system approaches a distinctly nonequilibrium steady state that bears strong memory of the initial conditions. In contrast, when the final interaction strength is comparable to the hopping, the correlations are rather well approximated by those at thermal equilibrium. The existence of two distinct nonequilibrium regimes is surprising given the nonintegrability of the Bose-Hubbard model. We relate this phenomenon to the role of quasiparticle interactions in the Mott insulator.

  11. Non-equilibrium processes by a gas phase synthesis of diamond

    NASA Astrophysics Data System (ADS)

    Rebrov, A. K.; Yudin, I. B.

    2016-11-01

    The analysis of influence of heterogeneous reactions in rarefied gas flows with dissociation and recombination is carried on for the first time, at least for hydrogen and methane flows. The flow in channels with heterogeneous reaction can be equilibrium and non-equilibrium, depending on a flow rate. Non-equilibrium effects are pronounced as a rule in the space between channel exit and substrate, where the activated gas flow to the surface of diamond deposition is formed. The gas dynamic analysis of gas jet deposition of diamond facilitates the optimization of experiments and their analysis.

  12. Synthesis, characterization and formation mechanism of metastable phase VO{sub 2}(A) nanorods

    SciTech Connect

    Cheng, X.H.; Xu, H.F.; Wang, Z.Z.; Zhu, K.R.; Li, G.; Jin, Shaowei

    2013-09-01

    Graphical abstract: - Highlights: • Pure phases of VO{sub 2}(B) and VO{sub 2}(A) were prepared by a facile hydrothermal method. • Belt-like particles prepared at 180 °C was indexed as monoclinic VO{sub 2}(B) phase. • Rod-like particles prepared at 230 °C was indexed as tetragonal VO{sub 2}(A) phase. • VO{sub 2}(A) nanorods resulted from VO{sub 2}(B) nanobelts by assembly and crystal adjustment. - Abstract: Pure phase VO{sub 2}(A) nanorods were synthesized via the reduction of V{sub 2}O{sub 5} by oxalic acid during the hydrothermal treatment. Two sets of samples were prepared by varying both system temperature and reaction time under a filling ratio of 0.40 for observing the formation and evolution of VO{sub 2}(A) nanorods. Structures were characterized by X-ray diffraction, scanning and transmission electron microscopies, respectively. It was found that VO{sub 2}(B) was firstly formed and then transformed into VO{sub 2}(A) as the increasing system temperature or extending reaction time. An assembling and following crystal adjustment was proposed for explanation the formation process of VO{sub 2}(A) from VO{sub 2}(B). For VO{sub 2}(A) nanorods, the phase transition temperature of 169.7 °C was higher than that of the VO{sub 2}(A) bulk, it might be ascribed to the lower crystallinity or nonstoichiometry in VO{sub 2}(A) nanorods. VO{sub 2} nanostructures with controllable phases and properties should find their promising applications in a single VO{sub 2} nanodevice.

  13. Superconductivity in metastable phases of phosphorus-hydride compounds under high pressure

    NASA Astrophysics Data System (ADS)

    Flores-Livas, José A.; Amsler, Maximilian; Heil, Christoph; Sanna, Antonio; Boeri, Lilia; Profeta, Gianni; Wolverton, Chris; Goedecker, Stefan; Gross, E. K. U.

    2016-01-01

    Hydrogen-rich compounds have been extensively studied both theoretically and experimentally in the quest for novel high-temperature superconductors. Reports on sulfur hydride attaining metallicity under pressure and exhibiting superconductivity at temperatures as high as 200 K have spurred an intense search for room-temperature superconductors in hydride materials. Recently, compressed phosphine was reported to metallize at pressures above 45 GPa, reaching a superconducting transition temperature (TC) of 100 K at 200 GPa. However, neither the exact composition nor the crystal structure of the superconducting phase have been conclusively determined. In this work, the phase diagram of PHn (n =1 ,2 ,3 ,4 ,5 ,6 ) was extensively explored by means of ab initio crystal structure predictions using the minima hopping method (MHM). The results do not support the existence of thermodynamically stable PHn compounds, which exhibit a tendency for elemental decomposition at high pressure even when vibrational contributions to the free energies are taken into account. Although the lowest energy phases of PH1 ,2 ,3 display TC's comparable to experiments, it remains uncertain if the measured values of TC can be fully attributed to a phase-pure compound of PHn.

  14. Condensation of N bosons. II. Nonequilibrium analysis of an ideal Bose gas and the laser phase-transition analogy

    NASA Astrophysics Data System (ADS)

    Kocharovsky, V. V.; Scully, Marlan O.; Zhu, Shi-Yao; Suhail Zubairy, M.

    2000-02-01

    A nonequilibrium approach to the dynamics and statistics of the condensate of an ideal N-atom Bose gas cooling via interaction with a thermal reservoir using the canonical ensemble is developed. We derive simple analytical expressions for the canonical partition function and equilibrium distribution of the number of atoms in the ground state of a trap under different approximations, and compare them with exact numerical results. The N-particle constraint associated with the canonical ensemble is usually a burden. In the words of Kittel, ``in the investigation of the Bose-Einstein...laws it is very inconvenient to impose the restriction that the number of particles in the subsystem shall be held constant.'' But in the present approach, based on the analogy between a second-order phase transition and laser threshold behavior, the N-particle constraint makes the problem easier. We emphasize that the present work provides another example of a case in which equilibrium (detailed balance) solutions to nonequilibrium equations of motion provide a useful supplementary approach to conventional statistical mechanics. We also discuss some dynamical and mesoscopic aspects of Bose-Einstein condensation. The conclusion is that the present analytical (but approximate) results, based on a nonequilibrium approach, are in excellent agreement with exact (but numerical) results. The present analysis has much in common with the quantum theory of the laser.

  15. Toward a Multi-scale Phase Transition Kinetics Methodology: From Non-Equilibrium Statistical Mechanics to Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Belof, Jonathan; Orlikowski, Daniel; Wu, Christine; McLaughlin, Keith

    2013-06-01

    Shock and ramp compression experiments are allowing us to probe condensed matter under extreme conditions where phase transitions and other non-equilibrium aspects can now be directly observed, but first principles simulation of kinetics remains a challenge. A multi-scale approach is presented here, with non-equilibrium statistical mechanical quantities calculated by molecular dynamics (MD) and then leveraged to inform a classical nucleation and growth kinetics model at the hydrodynamic scale. Of central interest is the free energy barrier for the formation of a critical nucleus, with direct NEMD presenting the challenge of relatively long timescales necessary to resolve nucleation. Rather than attempt to resolve the time-dependent nucleation sequence directly, the methodology derived here is built upon the non-equilibrium work theorem in order to bias the formation of a critical nucleus and thus construct the nucleation and growth rates. Having determined these kinetic terms from MD, a hydrodynamics implementation of Kolmogorov-Johnson-Mehl-Avrami (KJMA) kinetics and metastabilty is applied to the dynamic compressive freezing of water and compared with recent ramp compression experiments [Dolan et al., Nature (2007)] Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.

  16. Pressure Processing of Nanocube Assemblies Toward Harvesting of a Metastable PbS Phase.

    PubMed

    Wang, Tie; Li, Ruipeng; Quan, Zewei; Loc, Welley Siu; Bassett, William A; Xu, Hongwu; Cao, Y Charles; Fang, Jiye; Wang, Zhongwu

    2015-08-19

    This materials-by-design approach combines nanocrystal assembly with pressure processing to drive the attachment and coalescence of PbS nanocubes along directed crystallographic dimensions to form a large 3D porous architecture. This quenchable and strained mesostructure holds the storage of large internal stress, which stabilizes the high-pressure PbS phase in atmospheric conditions. Nanocube fusion enhances the structural stability; the large surface area maintains the size-dependent properties.

  17. Mathematical modeling of gas-condensate mixture filtration in porous media taking into account non-equilibrium of phase transitions

    NASA Astrophysics Data System (ADS)

    Kachalov, V. V.; Molchanov, D. A.; Sokotushchenko, V. N.; Zaichenko, V. M.

    2016-11-01

    At the present time, a considerable part of the largest dry gas reservoirs in Russia are found in the stage of declining production, therefore active exploitation of gas-condensate fields will begin in the coming decades. There is a significant discrepancy between the project and the actual value of condensate recovery factor while producing reservoir of this type, which is caused by insufficient knowledge about non-equilibrium filtration mechanisms of gas-condensate mixtures in reservoir conditions. A system of differential equations to describe filtration process of two-phase multicomponent mixture for one-, two- and three-dimensional cases is presented in this work. The solution of the described system was made by finite-element method in the software package FlexPDE. Comparative distributions of velocities, pressures, saturations and phase compositions of three-component mixture along the reservoir model and in time in both cases of equilibrium and non-equilibrium filtration processes were obtained. Calculation results have shown that system deviation from the thermodynamic equilibrium increases gas phase flow rate and reduces liquid phase flow rate during filtration process of gas-condensate mixture.

  18. High-Rate Intercalation without Nanostructuring in Metastable Nb2O5 Bronze Phases.

    PubMed

    Griffith, Kent J; Forse, Alexander C; Griffin, John M; Grey, Clare P

    2016-07-20

    Nanostructuring and nanosizing have been widely employed to increase the rate capability in a variety of energy storage materials. While nanoprocessing is required for many materials, we show here that both the capacity and rate performance of low-temperature bronze-phase TT- and T-polymorphs of Nb2O5 are inherent properties of the bulk crystal structure. Their unique "room-and-pillar" NbO6/NbO7 framework structure provides a stable host for lithium intercalation; bond valence sum mapping exposes the degenerate diffusion pathways in the sites (rooms) surrounding the oxygen pillars of this complex structure. Electrochemical analysis of thick films of micrometer-sized, insulating niobia particles indicates that the capacity of the T-phase, measured over a fixed potential window, is limited only by the Ohmic drop up to at least 60C (12.1 A·g(-1)), while the higher temperature (Wadsley-Roth, crystallographic shear structure) H-phase shows high intercalation capacity (>200 mA·h·g(-1)) but only at moderate rates. High-resolution (6/7)Li solid-state nuclear magnetic resonance (NMR) spectroscopy of T-Nb2O5 revealed two distinct spin reservoirs, a small initial rigid population and a majority-component mobile distribution of lithium. Variable-temperature NMR showed lithium dynamics for the majority lithium characterized by very low activation energies of 58(2)-98(1) meV. The fast rate, high density, good gravimetric capacity, excellent capacity retention, and safety features of bulk, insulating Nb2O5 synthesized in a single step at relatively low temperatures suggest that this material not only is structurally and electronically exceptional but merits consideration for a range of further applications. In addition, the realization of high rate performance without nanostructuring in a complex insulating oxide expands the field for battery material exploration beyond conventional strategies and structural motifs.

  19. Synthesis and catalytic activity of the metastable phase of gold phosphide

    SciTech Connect

    Fernando, Deshani; Nigro, Toni A. E.; Dyer, I. D.; Alia, Shaun M.; Pivovar, Bryan S.; Vasquez, Yolanda

    2016-10-01

    Recently, transition metal phosphides have found new applications as catalysts for the hydrogen evolution reaction that has generated an impetus to synthesize these materials at the nanoscale. In this work, Au2P3 was synthesized utilizing the high temperature decomposition of tri-n-octylphosphine as a source of elemental phosphorous. Gold nanorods were used as morphological templates with the aim of controlling the shape and size of the resulting gold phosphide particles. We demonstrate that the surface capping ligand of the gold nanoparticle precursors can influence the purity and extent to which the gold phosphide phase will form. Gold nanorods functionalized with 1-dodecanethiol undergo digestive ripening to produce discrete spherical particles that exhibit reduced reactivity towards phosphorous, resulting in low yields of the gold phosphide. In contrast, gold phosphide was obtained as a phase pure product when cetyltrimethylammonium bromide functionalized gold nanorods are used instead. The Au2P3 nanoparticles exhibited higher activity than polycrystalline gold towards the hydrogen evolution reaction.

  20. Crystallization, metastable phases, and demixing in a hafnia-titania nanolaminate annealed at high temperature

    SciTech Connect

    Cisneros-Morales, Massiel Cristina; Rubin Aita, Carolyn

    2010-09-15

    Nanolaminate films with a nominal 5 nm HfO{sub 2}-4 nm TiO{sub 2} bilayer architecture are sputter deposited on unheated fused silica and Au-coated glass substrates. Films on fused silica are postdeposition annealed from 573 to 1273 K and characterized by x-ray diffraction, scanning electron microscopy, Raman microscopy, and UV-visible-near IR spectrophotometry. The films show weak but progressive crystallization into orthorhombic (o) HfTiO{sub 4} when annealed up to 973 K. o-HfTiO{sub 4} is expected to form under bulk thermodynamic equilibrium conditions in the case of complete mixing of the bilayer components. Annealing above 973 K produces a crystallization sequence that is not predicted by bulk thermodynamics, ultimately involving o-HfTiO{sub 4} demixing to form monoclinic HfO{sub 2} doped with Ti and rutile TiO{sub 2} doped with Hf. These phases have a higher atomic density than o-HfTiO{sub 4} and segregate into discrete mesoscopic features. The authors propose that o-HfTiO{sub 4} demixing into higher density phases is a mechanism for thermal stress relief at high temperature. Demixing results in a major loss of optical transparency in the visible and ultraviolet spectral regions.

  1. Formation and stability of metastable structures and amorphous phases in PU-V, PU-TA, and PU-YB systems with positive heats of mixing

    NASA Astrophysics Data System (ADS)

    Rizzo, H. F.; Zocco, T.; Massalski, T. B.; Nastasi, M.; Echeverria, A.

    1994-08-01

    The triode sputtering technique with a “split-target” arrangement was used to obtain metastable crystalline and amorphous phases in the Pu-V, Pu-Ta, and Pu-Yb systems. The proposed phase diagrams for these systems all exhibit liquid immiscibility. The heats of mixing are estimated to be highly positive, and the atomic radii of the component atoms differ by at least 10 pct. Extended amorphous and body-centered cubic (bcc) solid-solution regions were observed in the Pu-V and Pu-Ta systems. The corresponding lattice parameters appear to follow in each case an assumed Vegard’s Law extension. In the Pu-Yb system, no amorphous phase was obtained, but an extended face-centered cubic (fcc) solid-solution region (24 to 78 at. pct Yb) was observed with a large positive deviation of the lattice parameter (˜9 pct at 40 at. pct Yb) from a linear Vegard’s Law between the pure fcc components. The observed ranges of amorphous and metastable solid-solution phases have been interpreted in terms of predicated heats of formation for these phases using Miedema’s thermodynamic approximations that include chemical, elastic, and structural contributions. The effect of the high deposition rates on the formation of amorphous and metastable phases has also been considered. Thermal annealing of Pu-Ta amorphous alloys brings about a rapid diffusion of Pu to the free surface of the amorphous phase without crystallization of the remaining Ta-rich amorphous phase. Microhardness measurements indicate that amorphous Pu-V and Pu-Ta alloys are softer than the crystalline bcc solid-solution alloys in the same composition range. Several similarities in the formation of mixed phase regions (amorphous and solid solutions), microhardness, and resistance to decomposition on heating were noted between the Pu-Ta and Pu-V systems and the Cu-W system studied previously.

  2. Theoretical investigation of the long-lived metastable AlO2+ dication in gas phase

    NASA Astrophysics Data System (ADS)

    Sghaier, Onsi; Abdallah, Hassan H.; Abdullah, Hewa Y.; Jaidane, Nejm Eddine; Al Mogren, Muneerah Mogren; Hochlaf, Majdi

    2016-09-01

    We report the results of a detailed theoretical study of the electronic ground and excited states of the gas-phase doubly charged ion AlO2+ using high-level ab initio computer calculations. Both standard and explicitly correlated methods were used to calculate their potential energy curves and spectroscopic parameters. These computations show that the ground state of AlO2+ is X2Π. The internuclear equilibrium distance of AlO2+(X2Π) is computed 1.725 Å. We also deduced the adiabatic double ionization and charge stripping energies of AlO to be about 27.45 eV and 17.80 eV, respectively.

  3. Metastability in Markov processes

    NASA Astrophysics Data System (ADS)

    Larralde, H.; Leyvraz, F.; Sanders, D. P.

    2006-08-01

    We present a formalism for describing slowly decaying systems in the context of finite Markov chains obeying detailed balance. We show that phase space can be partitioned into approximately decoupled regions, in which one may introduce restricted Markov chains which are close to the original process but do not leave these regions. Within this context, we identify the conditions under which the decaying system can be considered to be in a metastable state. Furthermore, we show that such metastable states can be described in thermodynamic terms and define their free energy. This is accomplished, showing that the probability distribution describing the metastable state is indeed proportional to the equilibrium distribution, as is commonly assumed. We test the formalism numerically in the case of the two-dimensional kinetic Ising model, using the Wang-Landau algorithm to show this proportionality explicitly, and confirm that the proportionality constant is as derived in the theory. Finally, we extend the formalism to situations in which a system can have several metastable states.

  4. Synthesis of metastable phases in Al-Nb powders by mechanical alloying

    SciTech Connect

    Peng, Z.; Suryanarayana, C.; Froes, F.H. )

    1992-08-15

    Recently there have been many investigations on the synthesis and properties of transition metal trialuminides based on titanium, zirconium, vanadium, niobium and tantalum for use as structural materials in an elevated temperature environment. This interest is due to their high strength-to-density ratios, high melting points and excellent oxidation resistance. Amongst these, niobium trialuminide (NbAl{sub 3}) has a high melting point (1605{degrees} C), possesses adequate oxidation resistance (a result of the formation of a protective alumina over-layer and a density (4.54 g/cc) which is lower than that of advanced Ni{sub 3}Al-based compounds (7.6 g/cc). However, NbAl{sub 3} melts congruently and since it has an extremely limited homogeneity range, it is difficult to ensure that the chemistry falls in this desired narrow range. Further, due to the intrinsic brittleness, niobium aluminide ingots crack during solidification. Some of these problems can be overcome by producing the NbAl{sub 3} compound through the powder metallurgy route. This paper reports on the successful synthesis of homogeneous NbAl{sub 3} and amorphous phases by mechanical alloying starting from elemental powders.

  5. Unconventional Luminescent Centers in Metastable Phases Created by Topochemical Reduction Reactions.

    PubMed

    Liu, Bo-Mei; Zhang, Zhi-Gang; Zhang, Kai; Kuroiwa, Yoshihiro; Moriyoshi, Chikako; Yu, Hui-Mei; Li, Chao; Zheng, Li-Rong; Li, Li-Na; Yang, Guang; Zhou, Yang; Fang, Yong-Zheng; Hou, Jing-Shan; Matsushita, Yoshitaka; Sun, Hong-Tao

    2016-04-11

    A low-temperature topochemical reduction strategy is used herein to prepare unconventional phosphors with luminescence covering the biological and/or telecommunications optical windows. This approach is demonstrated by using Bi(III)-doped Y2O3 (Y(2-x)Bi(x)O3) as a model system. Experimental results suggest that topochemical treatment of Y(2-x)Bi(x)O3 using CaH2 creates randomly distributed oxygen vacancies in the matrix, resulting in the change of the oxidation states of Bi to lower oxidation states. The change of the Bi coordination environments from the [BiO6] octahedra in Y(2-x)Bi(x)O3 to the oxygen-deficient [BiO(6-z)] polyhedra in reduced phases leads to a shift of the emission maximum from the visible to the near-infrared region. The generality of this approach was further demonstrated with other phosphors. Our findings suggest that this strategy can be used to explore Bi-doped or other classes of luminescent systems, thus opening up new avenues to develop novel optical materials.

  6. Non-equilibrium deposition of phase pure Cu{sub 2}O thin films at reduced growth temperature

    SciTech Connect

    Subramaniyan, Archana; Perkins, John D.; Lany, Stephan; Stevanovic, Vladan; Ginley, David S.; Zakutayev, Andriy; O’Hayre, Ryan P.

    2014-02-01

    Cuprous oxide (Cu{sub 2}O) is actively studied as a prototypical material for energy conversion and electronic applications. Here we reduce the growth temperature of phase pure Cu{sub 2}O thin films to 300 °C by intentionally controlling solely the kinetic parameter (total chamber pressure, P{sub tot}) at fixed thermodynamic condition (0.25 mTorr pO{sub 2}). A strong non-monotonic effect of P{sub tot} on Cu-O phase formation is found using high-throughput combinatorial-pulsed laser deposition. This discovery creates new opportunities for the growth of Cu{sub 2}O devices with low thermal budget and illustrates the importance of kinetic effects for the synthesis of metastable materials with useful properties.

  7. Complete suppression of metastable phase and significant enhancement of magnetic properties of B-rich PrFeB nanocomposites prepared by devitrifying amorphous ribbons

    NASA Astrophysics Data System (ADS)

    Zhang, W. Y.; Chiu, C. H.; Zhang, L. C.; Biswas, K.; Ehrenberg, H.; Chang, W. C.; Eckert, J.

    2007-01-01

    The effect of refractory element addition on phase transformation, crystallization behavior and magnetic properties of Pr 8.5Fe 81.5B 10 (addition-free) and Pr 8.5Fe 81.5M 2B 10 (M=V, Cr, Nb, Zr, Ti) ribbons has been investigated. The annealed addition-free ribbon as well as the samples with V or Cr additions are mainly composed of the metastable Pr 2Fe 23B 3 phase, whereas annealed ribbons with Nb, Zr or Ti additions primarily consist of Pr 2Fe 14B and a minor amount of Fe 3B/boride. The complete suppression of the metastable Pr 2Fe 23B 3 phase due to Nb, Zr or Ti additions leads to a significant enhancement of the magnetic properties. For example, the remanence, the coercivity and the energy product are remarkably increased from 2.5 kG, 0.4 kOe and 0.2 MG Oe for the addition-free material to 9.2 kG, 4.7 kOe and 7.6 MG Oe for the specimens with Nb addition. The successful elimination of the metastable Pr 2Fe 23B 3 phase is believed to profit from two factors: (a) Nb, Zr or Ti atoms substitute the Pr site, comparatively increase the Pr content, and thus inhibit the nucleation of Pr-lean Pr 2Fe 23B 3 phases, and (b) the formation of Nb, Zr, or Ti borides consumes some part of B, which hinders the generation of the B-rich Pr 2Fe 23B 3 phase.

  8. Appearance of metastable B2 phase during solidification of Ni50Zr50 alloy: electrostatic levitation and molecular dynamics simulation studies.

    PubMed

    Quirinale, D G; Rustan, G E; Wilson, S R; Kramer, M J; Goldman, A I; Mendelev, M I

    2015-03-04

    High-energy x-ray diffraction measurements of undercooled, electrostatically levitated Ni50Zr50 liquid droplets were performed. The observed solidification pathway proceeded through the nucleation and growth of the metastable B2 phase, which persisted for several seconds before the rapid appearance of the stable B33 phase. This sequence is shown to be consistent with predictions from classical nucleation theory using data obtained from molecular dynamics (MD) simulations. A plausible mechanism for the B2-B33 transformation is proposed and investigated through further MD simulations.

  9. Appearance of metastable B2 phase during solidification of Ni 50 Zr 50 alloy: electrostatic levitation and molecular dynamics simulation studies

    SciTech Connect

    Quirinale, D. G.; Rustan, G. E.; Wilson, S. R.; Kramer, M. J.; Goldman, A. I.; Mendelev, M. I.

    2015-02-04

    High-energy x-ray diffraction measurements of undercooled, electrostatically levitated Ni50Zr50 liquid droplets were performed. The observed solidification pathway proceeded through the nucleation and growth of the metastable B2 phase, which persisted for several seconds before the rapid appearance of the stable B33 phase. This sequence is shown to be consistent with predictions from classical nucleation theory using data obtained from molecular dynamics (MD) simulations. A plausible mechanism for the B2–B33 transformation is proposed and investigated through further MD simulations.

  10. A phase-field approach to nonequilibrium phase transformations in elastic solids via an intermediate phase (melt) allowing for interface stresses.

    PubMed

    Momeni, Kasra; Levitas, Valery I

    2016-04-28

    A phase-field approach for phase transformations (PTs) between three different phases at nonequilibrium temperatures is developed. It includes advanced mechanics, thermodynamically consistent interfacial stresses, and interface interactions. A thermodynamic Landau-Ginzburg potential developed in terms of polar order parameters satisfies the desired instability and equilibrium conditions for homogeneous phases. The interfacial stresses were introduced with some terms from large-strain formulation even though the small-strain assumption was utilized. The developed model is applied to study the PTs between two solid phases via a highly disordered intermediate phase (IP) or an intermediate melt (IM) hundreds of degrees below the melting temperature. In particular, the β ↔ δ PTs in HMX energetic crystals via IM are analyzed. The effects of various parameters (temperature, ratios of widths and energies of solid-solid (SS) to solid-melt (SM) interfaces, elastic energy, and interfacial stresses) on the formation, stability, and structure of the IM within a propagating SS interface are studied. Interfacial and elastic stresses within a SS interphase and their relaxation and redistribution with the appearance of a partial or complete IM are analyzed. The energy and structure of the critical nucleus (CN) of the IM are studied as well. In particular, the interfacial stresses increase the aspect-ratio of the CN. Although including elastic energy can drastically reduce the energy of the CN of the IM, the activation energy of the CN of the IM within the SS interface increases when interfacial tension is taken into account. The developed thermodynamic potential can also be modified to model other multiphase physical phenomena, such as multi-variant martensitic PTs, grain boundary and surface-induced pre-melting and PTs, as well as developing phase diagrams for IPs.

  11. Stable and Metastable High Pressure Phases of the Sulfuric Acid - Magnesium Sulfate - Water System: Applications to Europa

    NASA Astrophysics Data System (ADS)

    Hogenboom, D. L.; Kargel, J. S.; Daly, M. E.

    2001-03-01

    Experimental study of the pressure dependence of eutectic melting and metastable transitions in the H2SO4-H2O system and H2SO4-MgSO4-H2O system. Eutectic shifts toward water-rich compositions with increased P to 200 MPa much like MgSO4-H2O system.

  12. Fundamental Physics and Engineering of Nanosecond-Pulsed Nonequilibrium Microplasma in Liquid Phase without Bubbles

    DTIC Science & Technology

    2013-01-04

    performed for discharges ignited in water with the application of +15.5kV to the pin electrode across a 5mm gap and the anode was the 2μm Ir tip. Pulse...the dynamics of excitation and quenching of non-equilibrium MPD in liquid water : the dynamics of the high-voltage nanosecond and subnanosecond pulsed...discharge in water without bubbles was investigated; liquid plasma generation without formation of gas bubbles was demonstrated; up to 5000 km/s

  13. Metastable tetragonal Cu2Se hyperbranched structures: large-scale preparation and tunable electrical and optical response regulated by phase conversion.

    PubMed

    Zhu, Jinbao; Li, Qiuyang; Bai, Liangfei; Sun, Yongfu; Zhou, Min; Xie, Yi

    2012-10-08

    Despite the promising applications of copper selenide nanoparticles, an in-depth elucidation of the inherent properties of tetragonal Cu(2)Se (β-Cu(2)Se) has not been performed because of the lack of a facile synthesis on the nanoscale and an energy-intensive strategy is usually employed. In this work, a facile wet-chemical strategy, employing HCOOH as reducing agent, has been developed to access single-crystalline metastable β-Cu(2)Se hyperbranched architectures for the first time. The process avoids hazardous chemistry and high temperatures, and thus opens up a facile approach to the large-scale low-cost preparation of metastable β-Cu(2)Se hyperbranched architectures. A possible growth mechanism to explain the formation of the β-Cu(2)Se dendritic morphology has been proposed based on time-dependent shape evolution. Further investigations revealed that the metastable β-Cu(2)Se can convert into the thermodynamically more stable cubic α-Cu(2-x)Se maintaining the dendritic morphology. An increase in electrical conductivity and a tunable optical response were observed under ambient conditions. This behavior can be explained by the oxidation of the surface of the β-Cu(2)Se hyperbranched structures, ultimately leading to solid-state phase conversion from β-Cu(2)Se into superionic conductor α-Cu(1.8)Se, which has potential applications in energy-related devices and sensors.

  14. Solubility limits in quaternary SnTe-based alloys [Metastability and solubility limits in quaternary SnTe-based alloys guided by combinatorial sputtering

    DOE PAGES

    Siol, Sebastian; Holder, Aaron; Ortiz, Brenden R.; ...

    2017-05-09

    Here, the controlled decomposition of metastable alloys is an attractive route to form nanostructured thermoelectric materials with reduced thermal conductivity. The ternary SnTe–MnTe and SnTe–SnSe heterostructural alloys have been demonstrated as promising materials for thermoelectric applications. In this work, the quaternary Sn1–yMnyTe1–xSex phase space serves as a relevant model system to explore how a combination of computational and combinatorial-growth methods can be used to study equilibrium and non-equilibrium solubility limits. Results from first principle calculations indicate low equilibrium solubility for x,y < 0.05 that are in good agreement with results obtained from bulk equilibrium synthesis experiments and predict significantly highermore » spinodal limits. An experimental screening using sputtered combinatorial thin film sample libraries showed a remarkable increase in non-equilibrium solubility for x,y > 0.2. These theoretical and experimental results were used to guide the bulk synthesis of metastable alloys. The ability to reproduce the non-equilibrium solubility levels in bulk materials indicates that such theoretical calculations and combinatorial growth can inform bulk synthetic routes. Further, the large difference between equilibrium and non-equilibrium solubility limits in Sn1–yMnyTe1–xSex indicates these metastable alloys are attractive in terms of nano-precipitate formation for potential thermoelectric applications.« less

  15. New metastable hybrid phase, Zn 2(OH) 2(C 8H 4O 4), exhibiting unique oxo-penta-coordinated Zn(II) atoms

    NASA Astrophysics Data System (ADS)

    Carton, Anne; Mesbah, Adel; Aranda, Lionel; Rabu, Pierre; François, Michel

    2009-04-01

    The metastable phase ( phase 1) Zn(OH) 2(tp) 2 (tp = C 8H 4O 42-) was found to be an intermediate forming during the hydrothermal synthesis of Zn 3(OH) 4tp ( phase 2). Its structure has been determined ab initio from synchrotron powder diffraction data and refined with the Rietveld method: space group P2 1/ c, a = 3.48856(2) Å, b = 5.84645(2) Å, c = 22.1331(1) Å, β = 103.46(1)°, Dx = 2.488 g/cm 3, Rp = 0.10, RB = 0.095 (402 independent reflections). The structures of the two analogues were compared. Whereas a mixed coordination of the zinc atoms was found in phase 2, phase 1 exhibits only penta-coordinated Zn(II). Moreover, different optical properties were observed, Zn 2(OH) 2(tp) showing photoluminescence at 378 nm under λex = 316 nm.

  16. Tunable hydrodynamics: a field-frequency phase diagram of a non-equilibrium order-to-disorder transition.

    PubMed

    Khajehpour Tadavani, Somayeh; Yethiraj, Anand

    2017-09-29

    We present experiments on a model system consisting of dielectric (silicone oil) drops in a "leaky dielectric" (castor oil) carrier fluid that exhibits dynamic non-equilibrium phases as a function of the amplitude and frequency of an external AC electric field. At high frequencies, the dielectric drops are pinned to a periodic lattice by dielectrophoretic forces induced by a patterned bottom electrode. Beginning with this state of imposed order, we examine the processes that take this system from order to disorder, with decreasing frequency corresponding to an increase in the range of the hydrodynamic forces. We find two kinds of disorder, shape- and translational disorder, that occur in frequency-amplitude space. We also find regimes where drop breakup is dominant, and where order/disorder of large drops can be probed without significant drop breakup. With decreasing frequency (i.e., increasing hydrodynamic coupling between drops) and on timescales from seconds to minutes, the drops exhibit motion that resembles Brownian motion of particles in a crystal, with an effective temperature that increases with the strength of the electrohydrodynamic driving force. In this limit, the system behaves like a thermal system and the lattice is seen to melt at an effective Lindemann parameter of Leff ∼ 0.08. This non-equilibrium thermodynamics, probed on timescales from seconds to minutes, likely arises from the pseudo-random velocity fields in the carrier fluid, as evidenced by the fractional, t(3/2), super-diffusive tracer dynamics at shorter timescales.

  17. Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces

    PubMed Central

    Spezia, Riccardo; Martínez-Nuñez, Emilio; Vazquez, Saulo; Hase, William L.

    2017-01-01

    In this Introduction, we show the basic problems of non-statistical and non-equilibrium phenomena related to the papers collected in this themed issue. Over the past few years, significant advances in both computing power and development of theories have allowed the study of larger systems, increasing the time length of simulations and improving the quality of potential energy surfaces. In particular, the possibility of using quantum chemistry to calculate energies and forces ‘on the fly’ has paved the way to directly study chemical reactions. This has provided a valuable tool to explore molecular mechanisms at given temperatures and energies and to see whether these reactive trajectories follow statistical laws and/or minimum energy pathways. This themed issue collects different aspects of the problem and gives an overview of recent works and developments in different contexts, from the gas phase to the condensed phase to excited states. This article is part of the themed issue ‘Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces’. PMID:28320909

  18. Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces.

    PubMed

    Spezia, Riccardo; Martínez-Nuñez, Emilio; Vazquez, Saulo; Hase, William L

    2017-04-28

    In this Introduction, we show the basic problems of non-statistical and non-equilibrium phenomena related to the papers collected in this themed issue. Over the past few years, significant advances in both computing power and development of theories have allowed the study of larger systems, increasing the time length of simulations and improving the quality of potential energy surfaces. In particular, the possibility of using quantum chemistry to calculate energies and forces 'on the fly' has paved the way to directly study chemical reactions. This has provided a valuable tool to explore molecular mechanisms at given temperatures and energies and to see whether these reactive trajectories follow statistical laws and/or minimum energy pathways. This themed issue collects different aspects of the problem and gives an overview of recent works and developments in different contexts, from the gas phase to the condensed phase to excited states.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'.

  19. Metastable bcc phase formation in 3d ferromagnetic transition metal thin films sputter-deposited on GaAs(100) substrates

    SciTech Connect

    Minakawa, Shigeyuki Ohtake, Mitsuru; Futamoto, Masaaki; Kirino, Fumiyoshi; Inaba, Nobuyuki

    2015-05-07

    Co{sub 100−x}Fe{sub x} and Ni{sub 100−y}Fe{sub y} (at. %, x = 0–30, y = 0–60) films of 10 nm thickness are prepared on GaAs(100) substrates at room temperature by using a radio-frequency magnetron sputtering system. The detailed growth behavior is investigated by in-situ reflection high-energy electron diffraction. (100)-oriented Co and Ni single-crystals with metastable bcc structure are formed in the early stage of film growth, where the metastable structure is stabilized through hetero-epitaxial growth. With increasing the thickness up to 2 nm, the Co and the Ni films start to transform into more stable hcp and fcc structures through atomic displacements parallel to bcc(110) slide planes, respectively. The stability of bcc phase is improved by adding a small volume of Fe atoms into a Co film. The critical thickness of bcc phase formation is thicker than 10 nm for Co{sub 100−x}Fe{sub x} films with x ≥ 10. On the contrary, the stability of bcc phase for Ni-Fe system is less than that for Co-Fe system. The critical thicknesses for Ni{sub 100−y}Fe{sub y} films with y = 20, 40, and 60 are 1, 3, and 5 nm, respectively. The Co{sub 100−x}Fe{sub x} single-crystal films with metastable bcc structure formed on GaAs(100) substrates show in-plane uniaxial magnetic anisotropies with the easy direction along GaAs[011], similar to the case of Fe film epitaxially grown on GaAs(100) substrate. A Co{sub 100−x}Fe{sub x} film with higher Fe content shows a higher saturation magnetization and a lower coercivity.

  20. Theory of Metastable State Relaxation in a Gravitational Field for Non-Critical Binary Systems with Non-Conserved Order Parameter

    NASA Technical Reports Server (NTRS)

    Izmailov, Alexander F.; Myerson, Allan S.

    1993-01-01

    A new mathematical ansatz is developed for solution of the time-dependent Ginzburg-Landau nonlinear partial differential equation describing metastable state relaxation in binary (solute+solvent) non-critical solutions with non-conserved scalar order parameter in presence of a gravitational field. It has been demonstrated analytically that in such systems metastability initiates heterogeneous solute redistribution which results in the formation of a non-equilibrium singly-periodic spatial solute structure in the new solute-rich phase. The critical radius of nucleation and the induction time in these systems are gravity-dependent. It has also been proved that metastable state relaxation in vertical columns of supersaturated non-critical binary solutions leads to formation of the solute concentration gradient. Analytical expression for this concentration gradient is found and analysed. It is concluded that gravity can initiate phase separation (nucleation or spinodal decomposition).

  1. Metastable coupled-growth kinetics between primary and peritectic phases of undercooled hypoperitectic Fe54.5Ti45.5 alloy

    NASA Astrophysics Data System (ADS)

    Wu, Y. H.; Chang, J.; Wang, W. L.; Wei, B.

    2016-10-01

    The metastable coupled-growth kinetics between the primary Fe2Ti and peritectic FeTi phases of undercooled Fe54.5Ti45.5 alloy was systematically investigated by both electromagnetic levitation and drop tube techniques. Employing a high-speed camera, the rapid crystallization processes of levitated bulk alloy were recorded in the undercooling range of 34-187 K. In small undercooling regime below 143 K, peritectic solidification proceeded and the dependence of primary Fe2Ti dendritic growth velocity V on the bulk undercooling ΔT satisfied a power relation of V = 2.43 × 10-14 × ΔT7.72 (mm s-1). Once liquid undercooling increased beyond 143 K, the metastable coupled-growth was induced and the microstructure was characterized by the Fe2Ti rods embedded in FeTi phase. Furthermore, the coupled-growth velocity decreased linearly with the rise in undercooling according to V = 1.47 × 103-7.44ΔT (mm s-1). In drop tube experiment, peritectic solidification characteristics of small alloy droplets disappeared and the primary and peritectic phases directly nucleated from undercooled liquid and grew cooperatively to form spherical coupled-growth cells if droplet diameter decreased below 481 μm.

  2. Nucleation of lamellar domains from a sponge phase under shear flow: Shape selection of nuclei in a nonequilibrium steady state.

    PubMed

    Miyazawa, Hideyuki; Tanaka, Hajime

    2007-07-01

    It is a fundamental physical problem how a state is selected in a nonequilibrium steady state where the energy is continuously dissipated. This problem is common to phase transitions in liquids under shear flow and those in solids under deformation or electric current. In particular, soft matter often exhibits a strong nonlinear response to an external field, since its structural susceptibility to the external field is extremely large due to its softness and flexibility. Here we study the nucleation and growth process of the lamellar phase from the sponge phase under shear flow in a bilayer-forming surfactant system. We found an interesting shape selection of lamellar nuclei under shear flow between multilamellar vesicles (onions) and cylinders (leeks). These two types of behavior are separated sharply at a critical shear rate: a slight change of the shear rate is enough to switch one behavior to the other. We also found that, under a sufficiently strong shear flow, nucleated onions decrease their size with time, and eventually transform into leeks. This suggests that leeks may be the stable morphology under steady shear flow. However, the stability is limited only to the lamellar-sponge coexistence region. When a system enters into the lamellar phase region by further cooling, leeks lose their stability and break up into rather monodisperse onions, presumably via Rayleigh-like instability of a fluid tube. On the basis of these results, we draw a dynamic state diagram of smectic membrane organization under shear flow.

  3. The thermodynamic scale of inorganic crystalline metastability.

    PubMed

    Sun, Wenhao; Dacek, Stephen T; Ong, Shyue Ping; Hautier, Geoffroy; Jain, Anubhav; Richards, William D; Gamst, Anthony C; Persson, Kristin A; Ceder, Gerbrand

    2016-11-01

    The space of metastable materials offers promising new design opportunities for next-generation technological materials, such as complex oxides, semiconductors, pharmaceuticals, steels, and beyond. Although metastable phases are ubiquitous in both nature and technology, only a heuristic understanding of their underlying thermodynamics exists. We report a large-scale data-mining study of the Materials Project, a high-throughput database of density functional theory-calculated energetics of Inorganic Crystal Structure Database structures, to explicitly quantify the thermodynamic scale of metastability for 29,902 observed inorganic crystalline phases. We reveal the influence of chemistry and composition on the accessible thermodynamic range of crystalline metastability for polymorphic and phase-separating compounds, yielding new physical insights that can guide the design of novel metastable materials. We further assert that not all low-energy metastable compounds can necessarily be synthesized, and propose a principle of 'remnant metastability'-that observable metastable crystalline phases are generally remnants of thermodynamic conditions where they were once the lowest free-energy phase.

  4. Trapping a Metastable Ferroelectric Phase by Size Reduction in Semiconducting Ferroelectric BiFeO3-PbTiO3 and Its Implications for Photocatalytic Response

    NASA Astrophysics Data System (ADS)

    Narayan, Bastola; Adhikari, Sangeeta; Madras, Giridhar; Ranjan, Rajeev

    2017-02-01

    We show that the large elastostatic and electrostatic energies associated with the supertetragonal spontaneous strain and polarization of a semiconducting ferroelectric (1 -x )BiFe O3-(x )PbTiO3 forces the ground state to switch to the rhombohedral (R ) ferroelectric phase on reduction of crystallite size. The continuity of the pinned tetragonal domain walls, however, prevents a direct tetragonal-to-rhombohedral transformation as the size is gradually reduced by physical means at room temperature. The trapped metastable tetragonal phase in the small crystallites is found to show significantly enhanced photocatalytic activity as compared to its stable tetragonal- or rhombohedral-phase counterparts. Our study suggests that the size effect in multidomain ferroelectrics can be exploited as an effective strategy for the manipulation of functional properties.

  5. Superconducting Metastable Compounds.

    PubMed

    Luo, H L; Merriam, M F; Hamilton, D C

    1964-08-07

    A number of metastable phases, germanides and tellurides of gold and silver, have been prepared, analyzed by x-ray diffraction, and investigated for superconductivity. The new superconductors and their transition temperatures are AgTe(3) (2.6 degrees K), Ag(4)Ge (0.85 degrees K), Au(3)Te(5) (1.62 degrees K), and Au(1-x)Ge(x) (0.99 degrees K-1.63 degrees K) where (0.27

  6. Metastable ClO2+ and ClO3+ ions in the gas phase: a combined theoretical and mass spectrometric investigation.

    PubMed

    Brites, V; Franzreb, K; Hochlaf, M

    2011-11-07

    We have performed a detailed theoretical study applying large ab initio computations of the low lying electronic states of ClO(2+) and ClO(3+) and an experimental search for these ClO(2+) and ClO(3+) gas-phase species. For both species, we have found electronic states with potential barriers with respect to dissociation, where these multiply positively charged diatomic ions can exist in the gas phase as long-lived metastable molecules. Our potential energy curves are used to predict the double-ionization spectrum of ClO and to derive a set of spectroscopic parameters for the metastable bound states of these species. At the MRCI + Q/aug-cc-pV5Z level, the adiabatic double and triple ionization energies of ClO are computed to be 32.4 eV and 65.0 eV, respectively. Experimentally, we confirm the existence of ClO(2+) using mass spectrometry. ClO(2+) could be produced by energetic, high-current oxygen ((16)O(-)) ion beam sputtering of PdCl(2) and NH(4)Cl powders and survived a flight time of ~9 μs. We report also the experimental observation of the ClN(2+), PdCl(2+) and InO(2+) diatomic doubly charged ions.

  7. Exploration of the phase diagram of liquid water in the low-temperature metastable region using synthetic fluid inclusions.

    PubMed

    Qiu, C; Krüger, Y; Wilke, M; Marti, D; Rička, J; Frenz, M

    2016-10-12

    We present new experimental data of the low-temperature metastable region of liquid water derived from high-density synthetic fluid inclusions (996-916 kg m(-3)) in quartz. Microthermometric measurements include: (i) prograde (upon heating) and retrograde (upon cooling) liquid-vapour homogenisation. We used single ultrashort laser pulses to stimulate vapour bubble nucleation in initially monophase liquid inclusions. Water densities were calculated based on prograde homogenisation temperatures using the IAPWS-95 formulation. We found retrograde liquid-vapour homogenisation temperatures in excellent agreement with IAPWS-95. (ii) Retrograde ice nucleation. Raman spectroscopy was used to determine the nucleation of ice in the absence of the vapour bubble. Our ice nucleation data in the doubly metastable region are inconsistent with the low-temperature trend of the spinodal predicted by IAPWS-95, as liquid water with a density of 921 kg m(-3) remains in a homogeneous state during cooling down to a temperature of -30.5 °C, where it is transformed into ice whose density corresponds to zero pressure. (iii) Ice melting. Ice melting temperatures of up to 6.8 °C were measured in the absence of the vapour bubble, i.e. in the negative pressure region. (iv) Spontaneous retrograde and, for the first time, prograde vapour bubble nucleation. Prograde bubble nucleation occurred upon heating at temperatures above ice melting. The occurrence of prograde and retrograde vapour bubble nucleation in the same inclusions indicates a maximum of the bubble nucleation curve in the ϱ-T plane at around 40 °C. The new experimental data represent valuable benchmarks to evaluate and further improve theoretical models describing the p-V-T properties of metastable water in the low-temperature region.

  8. Metastable and equilibrium phase diagrams of unconjugated bilirubin IXα as functions of pH in model bile systems: Implications for pigment gallstone formation.

    PubMed

    Berman, Marvin D; Carey, Martin C

    2015-01-01

    Metastable and equilibrium phase diagrams for unconjugated bilirubin IXα (UCB) in bile are yet to be determined for understanding the physical chemistry of pigment gallstone formation. Also, UCB is a molecule of considerable biomedical importance because it is a potent antioxidant and an inhibitor of atherogenesis. We employed principally a titrimetric approach to obtain metastable and equilibrium UCB solubilities in model bile systems composed of taurine-conjugated bile salts, egg yolk lecithin (mixed long-chain phosphatidylcholines), and cholesterol as functions of total lipid concentration, biliary pH values, and CaCl2 plus NaCl concentrations. Metastable and equilibrium precipitation pH values were obtained, and average pKa values of the two carboxyl groups of UCB were calculated. Added lecithin and increased temperature decreased UCB solubility markedly, whereas increases in bile salt concentrations and molar levels of urea augmented solubility. A wide range of NaCl and cholesterol concentrations resulted in no specific effects, whereas added CaCl2 produced large decreases in UCB solubilities at alkaline pH values only. UV-visible absorption spectra were consistent with both hydrophobic and hydrophilic interactions between UCB and bile salts that were strongly influenced by pH. Reliable literature values for UCB compositions of native gallbladder biles revealed that biles from hemolytic mice and humans with black pigment gallstones are markedly supersaturated with UCB and exhibit more acidic pH values, whereas biles from nonstone control animals and patients with cholesterol gallstone are unsaturated with UCB. Copyright © 2015 the American Physiological Society.

  9. Metastable and equilibrium phase diagrams of unconjugated bilirubin IXα as functions of pH in model bile systems: Implications for pigment gallstone formation

    PubMed Central

    Berman, Marvin D.

    2014-01-01

    Metastable and equilibrium phase diagrams for unconjugated bilirubin IXα (UCB) in bile are yet to be determined for understanding the physical chemistry of pigment gallstone formation. Also, UCB is a molecule of considerable biomedical importance because it is a potent antioxidant and an inhibitor of atherogenesis. We employed principally a titrimetric approach to obtain metastable and equilibrium UCB solubilities in model bile systems composed of taurine-conjugated bile salts, egg yolk lecithin (mixed long-chain phosphatidylcholines), and cholesterol as functions of total lipid concentration, biliary pH values, and CaCl2 plus NaCl concentrations. Metastable and equilibrium precipitation pH values were obtained, and average pKa values of the two carboxyl groups of UCB were calculated. Added lecithin and increased temperature decreased UCB solubility markedly, whereas increases in bile salt concentrations and molar levels of urea augmented solubility. A wide range of NaCl and cholesterol concentrations resulted in no specific effects, whereas added CaCl2 produced large decreases in UCB solubilities at alkaline pH values only. UV-visible absorption spectra were consistent with both hydrophobic and hydrophilic interactions between UCB and bile salts that were strongly influenced by pH. Reliable literature values for UCB compositions of native gallbladder biles revealed that biles from hemolytic mice and humans with black pigment gallstones are markedly supersaturated with UCB and exhibit more acidic pH values, whereas biles from nonstone control animals and patients with cholesterol gallstone are unsaturated with UCB. PMID:25359538

  10. The metastable HCl · 6H2O phase - IR spectroscopy, phase transitions and kinetic/thermodynamic properties in the range 170-205 K

    NASA Astrophysics Data System (ADS)

    Chiesa, S.; Rossi, M. J.

    2013-07-01

    In this laboratory study, 1 to 2 μm thick polycrystalline ice films have been grown under stirred flow reactor (SFR) conditions and subsequently doped with metered amounts of HCl under static conditions. A multidiagnostic approach including FTIR absorption spectroscopy in transmission, residual gas mass spectrometry (MS) and total pressure measurement was employed. Depending on the growth protocol controlling both temperature and partial pressure of HCl (PHCl), either amorphous HCl/H2O or crystalline HCl hexahydrate (HCl · 6H2O) have been obtained. After controlled doping with HCl and evaporation of excess H2O from the ice film, transmission FTIR of pure HCl · 6H2O films and use of calibrated residual gas MS enabled the measurement of differential (peak) IR cross sections at several mid-IR frequencies (σ = (6.5 ± 1.9) × 10-19 cm2 molec-1 at 1635 cm-1 as an example). Two types of kinetic experiments on pure HCl · 6H2O have been performed under SFR conditions: (a) evaporation of HCl · 6H2O under H2O-poor conditions over a narrow T range, and (b) observation of the phase transition from crystalline HCl · 6H2O to amorphous HCl/H2O under H2O-rich conditions at increasing T. The temperature dependence of the zero-order evaporation flux of HCl in pure HCl · 6H2O monitored at 3426 cm-1 led to log(Jev) molec cm-2s-1= (36.34 ± 3.20) - (80 810 ± 5800)/2.303RT with R=8.312 JK-1 mol-1. HCl · 6H2O has a significant intrinsic kinetic barrier to HCl evaporation of 15.1 kJ mol-1 in excess of the HCl sublimation enthalpy of 65.8 kJ mol-1 at 200 K but is kinetically unstable (metastable) at typical UT/LS conditions of HCl partial pressure (P(HCl)) and temperature. Water-rich HCl · 6H2O undergoes a facile phase transition from crystalline to the amorphous/ supercooled/disordered state easily observable at T≥ 195 K under both static and SFR conditions. This corresponds to low P(HCl) in the neighborhood of 10-7 Torr that also prevails at the Upper Troposphere

  11. Signature of a continuous quantum phase transition in non-equilibrium energy absorption: Footprints of criticality on higher excited states.

    PubMed

    Bhattacharyya, Sirshendu; Dasgupta, Subinay; Das, Arnab

    2015-11-16

    Understanding phase transitions in quantum matters constitutes a significant part of present day condensed matter physics. Quantum phase transitions concern ground state properties of many-body systems, and hence their signatures are expected to be pronounced in low-energy states. Here we report signature of a quantum critical point manifested in strongly out-of-equilibrium states with finite energy density with respect to the ground state and extensive (subsystem) entanglement entropy, generated by an external pulse. These non-equilibrium states are evidently completely disordered (e.g., paramagnetic in case of a magnetic ordering transition). The pulse is applied by switching a coupling of the Hamiltonian from an initial value (λI) to a final value (λF) for sufficiently long time and back again. The signature appears as non-analyticities (kinks) in the energy absorbed by the system from the pulse as a function of λF at critical-points (i.e., at values of λF corresponding to static critical-points of the system). As one excites higher and higher eigenstates of the final Hamiltonian H(λF) by increasing the pulse height (|λF - λI|), the non-analyticity grows stronger monotonically with it. This implies adding contributions from higher eigenstates help magnifying the non-analyticity, indicating strong imprint of the critical-point on them. Our findings are grounded on exact analytical results derived for Ising and XY chains in transverse field.

  12. On the possibility to develop an advanced non-equilibrium model of depressurisation in two-phase fluids

    NASA Astrophysics Data System (ADS)

    Duc, Linh Do; Horák, Vladimír; Kulish, Vladimir; Lukáč, Tomáš

    2017-01-01

    Carbon dioxide is widely used as the power gas in the gas guns community due to its ease of handling, storability at room temperature, and high vapor pressure depending only upon temperature, but not a tank size, as long as some liquid carbon dioxide remains in the tank. This high vapor pressure can be used as the pressurant, making it what is referred to as a self-pressurising propellant. However, as a two-phase substance, carbon dioxide does have its drawbacks: (1) vaporization of liquefied CO2 inside a tank when shooting rapidly or a lot causes the tank to get cool, resulting in pressure fluctuations that makes the gun's performance and accuracy worse, (2) solid carbon dioxide that is also known as dry ice can appear on the output valve of the tank while shooting and it can cause damage or slow the gun's performance down, if it works its way into some control components, including the barrel of the gun. Hence, it is crucial to obtain a scientific understanding of carbon dioxide behavior and further the discharge characteristics of a wide range of pressure-tank configurations. For the purpose of satisfying this goal, a comprehensive discharge mathematical model for carbon dioxide tank dynamics is required. In this paper, the possibility to develop an advanced non-equilibrium model of depressurization in two-phase fluids is discussed.

  13. Signature of a continuous quantum phase transition in non-equilibrium energy absorption: Footprints of criticality on higher excited states

    PubMed Central

    Bhattacharyya, Sirshendu; Dasgupta, Subinay; Das, Arnab

    2015-01-01

    Understanding phase transitions in quantum matters constitutes a significant part of present day condensed matter physics. Quantum phase transitions concern ground state properties of many-body systems, and hence their signatures are expected to be pronounced in low-energy states. Here we report signature of a quantum critical point manifested in strongly out-of-equilibrium states with finite energy density with respect to the ground state and extensive (subsystem) entanglement entropy, generated by an external pulse. These non-equilibrium states are evidently completely disordered (e.g., paramagnetic in case of a magnetic ordering transition). The pulse is applied by switching a coupling of the Hamiltonian from an initial value (λI) to a final value (λF) for sufficiently long time and back again. The signature appears as non-analyticities (kinks) in the energy absorbed by the system from the pulse as a function of λF at critical-points (i.e., at values of λF corresponding to static critical-points of the system). As one excites higher and higher eigenstates of the final Hamiltonian H(λF) by increasing the pulse height , the non-analyticity grows stronger monotonically with it. This implies adding contributions from higher eigenstates help magnifying the non-analyticity, indicating strong imprint of the critical-point on them. Our findings are grounded on exact analytical results derived for Ising and XY chains in transverse field. PMID:26568306

  14. Metastability and polymorphism in the gel phase of 1,2-dipalmitoyl-3-SN-phosphatidylcholine. A Fourier transform infrared study of the subtransition.

    PubMed Central

    Cameron, D G; Mantsch, H H

    1982-01-01

    Fourier transform infrared spectroscopy was used to study the metastability of 1,2-dipalmitoyl-3-sn-phosphatidylcholine (DPPC) at temperatures near 0 degrees C. It was found that when DPPC is incubated at 2 degrees C for three days the two-dimensional acyl chain packing changes from one resulting in spectra typical of an orthorhombic subcell to one resembling that found in triclinically packed acyl systems. This transition proceeds in two stages. The first step, requiring less than one day, approximates first-order kinetics; the second stage proceeds with second- or higher-order kinetics. Comparison of spectra recorded at -36 degrees C with and without prior incubation at 2 degrees C shows that there are two stable low temperature forms of DPPC; that is, DPPC is metastable only within a narrow temperature range. A study of the thermotropic behavior in the range 0-45 degrees C shows that the subtransition near 15 degrees C is a transition from the alternate form to one with orthorhombic characteristics. Spectral changes at the pretransition and the main phase transition demonstrate that there are differences in behavior that are related to the thermal history of the sample. PMID:6896464

  15. Non-equilibrium phase distribution in an Al-SiC composite

    NASA Technical Reports Server (NTRS)

    Nutt, S. R.; Carpenter, R. W.

    1985-01-01

    The phase distribution in an Al-SiC composite has been investigated using high resolution analytical electron microscopy. Particular attention was focused on Al-SiC interfaces, matrix boundaries and impurity phases which would impede the easy glide of dislocations. Small crystallites of MgO were distributed singly and in clusters along Al-SiC interfaces in all specimens. Interfacial segregation and precipitation involving alloy species apparently affected precipitation in the matrix, where the distribution of phases was found to be very heterogeneous. Matrix phases also included unusually large constituent particles and dispersoids, a consequence of the composite processing methods. The relationship between the observed microstructure and the composite mechanical behavior reported by others is discussed. The heterogeneous distribution of matrix phases is expected to result in a wide variaiton in local yield stress and local work-hardening rate within the composite.

  16. Nonequilibrium phase transition for a heavy particle in a granular fluid.

    PubMed

    Santos, A; Dufty, J W

    2001-11-01

    It is shown that the homogeneous cooling state (HCS) for a heavy impurity particle in a granular fluid supports two distinct phases. The order parameter straight phi;(s) is the mean square velocity of the impurity particle relative to that of a fluid particle, and the control parameter xi* is the fluid cooling rate relative to the impurity collision rate. For xi*<1 there is a "normal" phase for which straight phi;(s) scales as the fluid/impurity mass ratio, just as for a system with elastic collisions. For xi*>1 an "ordered" phase occurs in which straight phi;(s) is finite even for vanishingly small mass ratio, representing an extreme violation of energy equipartition. The phenomenon can be described in terms of a Landau-like free energy for a second order phase transition. The dynamics leading to the HCS is studied in detail using an asymptotic analysis of the Enskog-Lorentz kinetic equation near each phase and the critical domain. Critical slowing is observed with a divergent relaxation time at the critical point. The stationary velocity distributions are determined in each case, showing a crossover from Maxwellian in the normal phase to an exponential quartic function of the velocity that is sharply peaked about the nonzero straight phi;(s) for the ordered phase. It is shown that the diffusion coefficient in the normal phase diverges at the critical point and remains so in the ordered phase. This is interpreted as a transition from diffusive to ballistic dynamics between the normal and ordered phases.

  17. Nonequilibrium molecular dynamics simulation study on the orientation transition in the amphiphilic lamellar phase under shear flow.

    PubMed

    Guo, Hongxia

    2006-12-07

    By the extensive large-scale nonequilibrium molecular dynamics simulation on an effective generic model-A2B2 tetramer for amphiphiles, we investigate the shear-induced parallel to perpendicular orientation transition in the lamellar phase as a function of segregation degree and shear rate. Under low rate shear flow the evolution of parallel lamellar configurations at different segregation strengths shows a similar kinetic pathway independent of the segregation degree. While under high rate shear flow in which the lifetime of undulation instability exceeds the characteristic time of the applied shear flow, the kinetic pathway of the shear-induced parallel-to-perpendicular orientation transition in lamellar systems is the segregation degree dependent. Comparing the temporal mesoscopic domain morphology, the microscopic chain conformation, and macroscopic observable-viscosity changes with the experimentally proposed mechanisms, we find that the undulation instability, partial breakup of monodomain, grain rotation, and recombination combined with defect migration and annihilation are the kinetic pathway for the parallel-to-perpendicular orientation transition in the lamellar phase in or near the intermediate segregation limit, and that the undulation instability, domain dissolution, and reformation along the preferred direction combined with defect migration and annihilation are the kinetic pathway for the parallel-to-perpendicular orientation transition in the lamellar phase close to the order-to-disorder phase transition point. A detailed underlying microscopic picture of the alignment process illustrates that the orientation transition is driven by the alignment of molecules with shear flow. The orientation diagram that characterizes the steady-state orientations as a function of shear rate and attractive potential depth is built, in which the attractive potential depth takes the role of an inverse temperature, somewhat like the Flory-Huggins interaction parameter

  18. Cosmological QCD phase transition in steady non-equilibrium dissipative Hořava–Lifshitz early universe

    SciTech Connect

    Khodadi, M. Sepangi, H.R.

    2014-07-15

    We study the phase transition from quark–gluon plasma to hadrons in the early universe in the context of non-equilibrium thermodynamics. According to the standard model of cosmology, a phase transition associated with chiral symmetry breaking after the electro-weak transition has occurred when the universe was about 1–10 μs old. We focus attention on such a phase transition in the presence of a viscous relativistic cosmological background fluid in the framework of non-detailed balance Hořava–Lifshitz cosmology within an effective model of QCD. We consider a flat Friedmann–Robertson–Walker universe filled with a non-causal and a causal bulk viscous cosmological fluid respectively and investigate the effects of the running coupling constants of Hořava–Lifshitz gravity, λ, on the evolution of the physical quantities relevant to a description of the early universe, namely, the temperature T, scale factor a, deceleration parameter q and dimensionless ratio of the bulk viscosity coefficient to entropy density (ξ)/s . We assume that the bulk viscosity cosmological background fluid obeys the evolution equation of the steady truncated (Eckart) and full version of the Israel–Stewart fluid, respectively. -- Highlights: •In this paper we have studied quark–hadron phase transition in the early universe in the context of the Hořava–Lifshitz model. •We use a flat FRW universe with the bulk viscosity cosmological background fluid obeying the evolution equation of the steady truncated (Eckart) and full version of the Israel–Stewart fluid, respectively.

  19. The thermodynamic scale of inorganic crystalline metastability

    PubMed Central

    Sun, Wenhao; Dacek, Stephen T.; Ong, Shyue Ping; Hautier, Geoffroy; Jain, Anubhav; Richards, William D.; Gamst, Anthony C.; Persson, Kristin A.; Ceder, Gerbrand

    2016-01-01

    The space of metastable materials offers promising new design opportunities for next-generation technological materials, such as complex oxides, semiconductors, pharmaceuticals, steels, and beyond. Although metastable phases are ubiquitous in both nature and technology, only a heuristic understanding of their underlying thermodynamics exists. We report a large-scale data-mining study of the Materials Project, a high-throughput database of density functional theory–calculated energetics of Inorganic Crystal Structure Database structures, to explicitly quantify the thermodynamic scale of metastability for 29,902 observed inorganic crystalline phases. We reveal the influence of chemistry and composition on the accessible thermodynamic range of crystalline metastability for polymorphic and phase-separating compounds, yielding new physical insights that can guide the design of novel metastable materials. We further assert that not all low-energy metastable compounds can necessarily be synthesized, and propose a principle of ‘remnant metastability’—that observable metastable crystalline phases are generally remnants of thermodynamic conditions where they were once the lowest free-energy phase. PMID:28138514

  20. Open problems in non-equilibrium physics

    SciTech Connect

    Kusnezov, D.

    1997-09-22

    The report contains viewgraphs on the following: approaches to non-equilibrium statistical mechanics; classical and quantum processes in chaotic environments; classical fields in non-equilibrium situations: real time dynamics at finite temperature; and phase transitions in non-equilibrium conditions.

  1. Formation of metastable cubic phase in Ce100-xAlx (x=45, 50) alloys and their thermal and magnetic properties

    NASA Astrophysics Data System (ADS)

    Idzikowski, Bogdan; Śniadecki, Zbigniew; Puźniak, Roman; Kaczorowski, Dariusz

    2017-01-01

    Ce100-xAlx (x=45 and 50) alloys were synthesized by rapid quenching technique in the form of ribbons composed of nanocrystalline phase of CeAl with the ClCs-type structure (Pm-3m space group) embedded in an amorphous matrix. The cubic CeAl phase is known as metastable with random distribution of Ce and Al atoms in the unit cell. The crystalline volume fraction is about 7.5% in Ce55Al45 and 3% in Ce50Al50. The alloy Ce55Al45 shows better thermal stability than Ce50Al50, indicated by higher effective activation energy and higher crystallization temperature. Small off-stoichiometry in Ce55Al45 results in degrading the glass forming ability and promotes formation of the cubic CeAl phase, as confirmed by magnetic measurements. In both alloys, the Ce ions are in stable trivalent state and order magnetically near 20 K. Another magnetic phase transition close to 10 K was found for Ce50Al50 and was attributed to the presence of the well-known stable orthorhombic CeAl phase. To the best of our knowledge, the magnetic behavior of the CeAl cubic phase is reported here for the first time.

  2. Thermodynamic nonequilibrium phase change behavior and thermal properties of biological solutions for cryobiology applications.

    PubMed

    Han, Bumsoo; Bischof, John C

    2004-04-01

    Understanding the phase change behavior of biomaterials during freezing/thawing including their thermal properties at low temperatures is essential to design and improve cryobiology applications such as cryopreservation and cryosurgery. However, knowledge of phase change behavior and thermal properties of various biomaterials is still incomplete, especially at cryogenic temperatures (< or = -40 degrees C). Moreover, in these applications, chemicals are often added to improve their outcome, which can result in significant variation in the phase change behavior and thermal properties from those of the original biomaterials. These chemical additives include cryoprotective agents (CPAs), antifreeze protein (AFP), or cryosurgical adjuvants like sodium chloride (NaCl). In the present study, phase change behavior and thermal properties of saline solutions--either water-NaCl or phosphate buffered saline (PBS)--with various chemical additives were investigated. The chemical additives studied are glycerol and raffinose as CPAs, an AFP (Type III, molecular weight = 6500), and NaCl as a cryosurgical adjuvant. The phase change behavior was investigated using a differential scanning calorimeter (DSC) and a cryomicroscope. The specific and latent heat of these solutions were also measured with the DSC. The saline solutions have two distinct phase changes--water/ice and eutectic phase changes. During freezing, eutectic solidification of both water-NaCl and PBS are significantly supercooled below their thermodynamic equilibrium eutectic temperatures. However, their melting temperatures are close to thermodynamic equilibrium during thawing. These eutectic phase changes disappear when even a small amount (0.1 M glycerol) of CPA was added, but they are still observed after the addition of an AFP. The specific heats of these solutions are close to that of ice at very low temperatures (< or = -100 degrees C) regardless of the additives, but they increase between -100 degrees C and -30

  3. Topodynamics of metastable brains

    NASA Astrophysics Data System (ADS)

    Tozzi, Arturo; Peters, James F.; Fingelkurts, Andrew A.; Fingelkurts, Alexander A.; Marijuán, Pedro C.

    2017-07-01

    The brain displays both the anatomical features of a vast amount of interconnected topological mappings as well as the functional features of a nonlinear, metastable system at the edge of chaos, equipped with a phase space where mental random walks tend towards lower energetic basins. Nevertheless, with the exception of some advanced neuro-anatomic descriptions and present-day connectomic research, very few studies have been addressing the topological path of a brain embedded or embodied in its external and internal environment. Herein, by using new formal tools derived from algebraic topology, we provide an account of the metastable brain, based on the neuro-scientific model of Operational Architectonics of brain-mind functioning. We introduce a ;topodynamic; description that shows how the relationships among the countless intertwined spatio-temporal levels of brain functioning can be assessed in terms of projections and mappings that take place on abstract structures, equipped with different dimensions, curvatures and energetic constraints. Such a topodynamical approach, apart from providing a biologically plausible model of brain function that can be operationalized, is also able to tackle the issue of a long-standing dichotomy: it throws indeed a bridge between the subjective, immediate datum of the naïve complex of sensations and mentations and the objective, quantitative, data extracted from experimental neuro-scientific procedures. Importantly, it opens the door to a series of new predictions and future directions of advancement for neuroscientific research.

  4. Formation and magnetic properties of metastable phases observed in the Fe50(HfxTa1-x)50 films by ion beam mixing

    NASA Astrophysics Data System (ADS)

    Li, Nan; Li, JiaHao; Liu, JianBo; Liu, BaiXin

    2014-01-01

    Metastable phase formation and magnetic properties of the Fe50(HfxTa1-x)50 (x = 0, 0.2, …, and 1) thin films induced by ion beam mixing are studied. The results show that unique amorphous phases could be formed in all the six multilayered films. Interestingly, preferred orientations and formation of BCC-Hf phase were observed in the Fe50Hf50 multilayered films at as-deposited state and after irradiated to doses less than 6 × 1014 Xe+/cm2. In addition, good soft magnetic properties were obtained in the formed amorphous phases. The Fe50Hf40Ta10 amorphous phase owns the maximum magnetization of 45 emu/g (i.e., 1.21 μB per Fe atom) at 5 K, with a saturate magnetization of 7.5 emu/g and a small coercivity Hc = 7 Oe at room temperature. The possible mechanisms responsible for the observations are discussed in terms of atomic collision theory and crystallography.

  5. Neutron powder thermo-diffraction: a very useful tool for the study of crystallisation kinetics and phase segregation in metastable materials

    NASA Astrophysics Data System (ADS)

    Gorria, P.; Martínez-Blanco, D.; Blanco, J. A.; Garitaonandia, J. S.; Campo, J.; Smith, R. I.

    2004-05-01

    This paper gives an overview of what kind of information and how deep can we go into the structure determination of materials, in metastable states, using neutron powder thermo-diffraction, whether temperature induced crystallisation and phase segregation processes have to be completely understood. We have obtained, by means of high energy ball milling technique, four different Fe-based compounds, showing unique characteristics (nanostructured Fe, FeNi alloys, FeCu solid solutions and FeZr amorphous alloys). In situ neutron diffraction experiments have been carried out in the temperature range between 300 and 1220 K in order to study the great variety of structural changes that takes place in these compounds.

  6. Long Range Correlations and Phase Transitions in Non-equilibrium Diffusive Systems

    NASA Astrophysics Data System (ADS)

    Bodineau, T.; Derrida, B.; Lecomte, V.; van Wijland, F.

    2008-12-01

    We obtain explicit expressions for the long range correlations in the ABC model and in diffusive models conditioned to produce an atypical current of particles. In both cases, the two-point correlation functions allow one to detect the occurrence of a phase transition as they become singular when the system approaches the transition.

  7. Non-equilibrium Simulation of CO­2-hydrate Phase Transitions from Mixtures of CO2 and N2 Gases

    NASA Astrophysics Data System (ADS)

    Qorbani Nashaqi, K.

    2015-12-01

    Storage of CO2 in aquifers is one of several options for reducing the emissions of CO2 to the atmosphere. Generally this option requires sealing integrity through layers of clay or shale. Many reservoirs have regions of temperature and pressure inside hydrate formation conditions. Whether hydrate formation can provide long term extra sealing still remains unverified in view of all co-existing phases that affect hydrate stability. Yet another storage option for CO2 is in the form of hydrate through exchange of in situ CH4 hydrate. Injection of CO2 into hydrate filled sediments is challenging due to the partial filling of pores with hydrate which results in low porosity and low permeability. Formation of new hydrate from injected CO2 will enhance these problems, Mixing N2 gas with the CO2 will increase permeability and will reduce driving forces for formation of new hydrate from pore water and injection gas. Hydrate can generally not reach thermodynamic equilibrium due to Gibbs' phase rule and the combined first and second laws of thermodynamics. These thermodynamic constraints on distribution of masses over co-existing phases are dynamically coupled to local mass- and heat-transport. Reservoir simulations are one possible method for investigation of possible scenarios related to injection of CO2 with N2 into aquifers containing CH4 hydrate. In this work we have developed prevoiusly modified RetrasoCodeBrite (RCB) simulator to handle injection of CO2/N2 gas mixtures. Hydrate formation and dissociation were determined by investigating Gibbs free energy differences between hydrate and hydrate formers. Gibbs free energy differences were calculated from changes in chemical potentials, which were obtained using non-equilibrium thermodynamic approach. Further extension of RCB has been implemented in this work through adding on-the-fly thermodynamic calculations. Correspondingly, hydrate phase transitions are calculated directly inside the code as a result of super

  8. Strong Pinning in Thick YBa2Cu3O7 Layers Mediated by Catalysis of a New Long-period Metastable Cuprate Phase

    SciTech Connect

    V Solovyov; D Develos-Bagarinao; Q Li; W Si; L Wu; J Zhou; H Wiesmann; J Qing

    2011-12-31

    Catalysts are widely utilized to promote reactions in liquid and gaseous phases but are rarely encountered in solid state synthesis. Here we use catalytically active (001) ceria buffers to modify the structure of the epitaxial high temperature superconductor YBa{sub 2}Cu{sub 3}O{sub 7}. The modification is achieved by catalytically-assisted synthesis of a previously unknown metastable phase. The new phase, a long-period (3.5 nm) perovskite, intercalates into the YBa{sub 2}Cu{sub 3}O{sub 7} matrix without negatively affecting the critical temperature of the film. Analysis of electron microscopy and synchrotron x-ray diffraction data allow identification of the phase as a long-period YBa{sub 2}Cu{sub 3}O{sub 7} derivative formed through short-range cation displacement. The 0.8 {micro}m thick films exhibit strong enhancement of the critical current density, reaching a maximum of 4.2 MA/cm{sup 2} at 77 K. The result emphasizes the critical role of catalysis for synthesis of novel complex materials.

  9. Li-ion storage dynamics in metastable nanostructured Li2FeSiO4 cathode: Antisite-induced phase transition and lattice oxygen participation

    NASA Astrophysics Data System (ADS)

    Lu, Xia; Chiu, Hsien-Chieh; Arthur, Zachary; Zhou, Jigang; Wang, Jian; Chen, Ning; Jiang, De-Tong; Zaghib, Karim; Demopoulos, George P.

    2016-10-01

    Li2FeSiO4 (LFS) has drawn much attention as cathode for high capacity Li-ion batteries. Even though significant volume of study has been devoted to its crystal chemistry and electrochemistry, many questions relating to its Li-ion storage dynamics remain yet to be fully elucidated. In this context, synchrotron-based X-ray diffraction and absorption spectroscopies are employed to characterize the phase stability and charge compensation mechanism in a metastable Li2FeSiO4 nanostructured cathode as a function of state-of-charge (Li2-xFeSiO4, x = 0, 0.25, 0.50, 0.75, 1.0) and cycling at very low current. The results demonstrate (i) no detectable phase transition from monoclinic to orthorhombic phase during the first charge-discharge cycle but rather formation of antisite defects that progressively induce phase transformation after several electrochemical cycles; (ii) characteristics of solid solution Li-ion storage (Li2-xFeSiO4, x = 0-1); and (iii) the charge compensation for the first Li extraction does not come solely from the ferrous to ferric conversion, but interestingly from prominent participation of lattice oxygen as well that appears to destabilize the cycled LFS structure with significant performance implications.

  10. Prediction of stable C7 /12 and metastable C4 /7 commensurate solid phases for 4He on graphite

    NASA Astrophysics Data System (ADS)

    Ahn, Jeonghwan; Lee, Hoonkyung; Kwon, Yongkyung

    2016-02-01

    Using a substrate potential described by a pairwise sum of empirical 4He-C interatomic potentials, we have performed path-integral Monte Carlo calculations for 4He adatoms on graphite. It is found that a second-layer commensurate structure is not stable above an incommensurate first-layer triangular solid. This is consistent with the conclusion of the previous theoretical study of Corboz et al. [Phys. Rev. B 78, 245414 (2008), 10.1103/PhysRevB.78.245414] that was based on a laterally averaged one-dimensional potential. On the other hand, we observe a new stable C7 /12 commensurate solid in the first 4He layer at the areal density of 0.111 Å-2, which is close to the second-layer promotion density. This high-density commensurate solid exhibits a √{12 }×√{12 } structure registered to the graphite surface that is not disrupted by the development of the second 4He layer. Furthermore, a second-layer 4/7 commensurate structure relative to the first-layer C7 /12 solid is found to be at least metastable, opening the possibility of two-dimensional supersolidity.

  11. Causality and non-equilibrium second-order phase transitions in inhomogeneous systems.

    PubMed

    del Campo, A; Kibble, T W B; Zurek, W H

    2013-10-09

    When a second-order phase transition is crossed at a finite rate, the evolution of the system stops being adiabatic as a result of the critical slowing down in the neighborhood of the critical point. In systems with a topologically nontrivial vacuum manifold, disparate local choices of the ground state lead to the formation of topological defects. The universality class of the transition imprints a signature on the resulting density of topological defects: it obeys a power law in the quench rate, with an exponent dictated by a combination of the critical exponents of the transition. In inhomogeneous systems the situation is more complicated, as the spontaneous symmetry breaking competes with bias caused by the influence of the nearby regions that already chose the new vacuum. As a result, the choice of the broken symmetry vacuum may be inherited from the neighboring regions that have already entered the new phase. This competition between the inherited and spontaneous symmetry breaking enhances the role of causality, as the defect formation is restricted to a fraction of the system where the front velocity surpasses the relevant sound velocity and phase transition remains effectively homogeneous. As a consequence, the overall number of topological defects can be substantially suppressed. When the fraction of the system is small, the resulting total number of defects is still given by a power law related to the universality class of the transition, but exhibits a more pronounced dependence on the quench rate. This enhanced dependence complicates the analysis but may also facilitate experimental testing of defect formation theories.

  12. Phase transitions and damage spreading in a nonequilibrium lattice gas model with mixed dynamic rules

    NASA Astrophysics Data System (ADS)

    Rubio Puzzo, M. Leticia; Saracco, Gustavo P.; Bab, Marisa A.

    2016-02-01

    Phase transitions and damage spreading for a lattice gas model with mixed driven lattice gas (DLG)-Glauber dynamics are studied by means of Monte Carlo simulations. In order to control the number of sites updated according to the nonconservative Glauber dynamics, a parameter pɛ [ 0 , 1 ] is defined. In this way, for p = 0 the system corresponds to the DLG model with biased Kawasaki conservative dynamics, while for p = 1 it corresponds to the Ising model with Glauber dynamics. The results obtained show that the introduction of nonconservative dynamics dramatically affects the behavior of the DLG model, leading to the existence of Ising-like phase transitions from fully occupied to disordered states. The short-time dynamics results suggest that this transition is second order for values of p = 0.1 and p > 0.6 and first order for 0.1 < p ≤ 0.6. On the other hand, damage always spreads within the investigated temperature range and reaches a saturation value Dsat that depends on the system size, the temperature, and p. The value of Dsat in the thermodynamic limit is estimated by performing a finite-size analysis. For p < 0.6 the results show a change in the behavior of Dsat with temperature, similar to those reported for the pure (p = 0) DLG model. However, for p ≥ 0.6 the data remind us of the Ising (p = 1) curves. In each case, a damage temperature TD(p) can be defined as the value where either Dsat reaches a maximum or it becomes nonzero. This temperature is, within error bars, similar to the reported values of the temperatures that characterize the mentioned phase transitions.

  13. Causality and non-equilibrium second-order phase transitions in inhomogeneous systems

    NASA Astrophysics Data System (ADS)

    del Campo, A.; Kibble, T. W. B.; Zurek, W. H.

    2013-10-01

    When a second-order phase transition is crossed at a finite rate, the evolution of the system stops being adiabatic as a result of the critical slowing down in the neighborhood of the critical point. In systems with a topologically nontrivial vacuum manifold, disparate local choices of the ground state lead to the formation of topological defects. The universality class of the transition imprints a signature on the resulting density of topological defects: it obeys a power law in the quench rate, with an exponent dictated by a combination of the critical exponents of the transition. In inhomogeneous systems the situation is more complicated, as the spontaneous symmetry breaking competes with bias caused by the influence of the nearby regions that already chose the new vacuum. As a result, the choice of the broken symmetry vacuum may be inherited from the neighboring regions that have already entered the new phase. This competition between the inherited and spontaneous symmetry breaking enhances the role of causality, as the defect formation is restricted to a fraction of the system where the front velocity surpasses the relevant sound velocity and phase transition remains effectively homogeneous. As a consequence, the overall number of topological defects can be substantially suppressed. When the fraction of the system is small, the resulting total number of defects is still given by a power law related to the universality class of the transition, but exhibits a more pronounced dependence on the quench rate. This enhanced dependence complicates the analysis but may also facilitate experimental testing of defect formation theories.

  14. Nonequilibrium processes.

    PubMed

    Polanyi, J C

    1971-08-01

    Nonequilibrium phenomena have been studied for over half a century, particularly as a means to understanding the mechanism of energy transfer. Application of the insights and techniques of molecular physics to chemistry has resulted in a view of chemistry as constituting an aspect of the study of strong collisions, and chemical reaction as a special type of energy transfer. Increasing use has been made in experimental work of nonequilibrium environments for the study of chemical processes. The nature and purpose of such experiments are reviewed here, very briefly, and an attempt is made to point to areas that appear ripe for development over the coming decade.

  15. Metastable solid metallic hydrogen

    SciTech Connect

    Nellis, W. J.

    1999-04-01

    Hydrogen reaches the mimimum electrical conductivity of a metal at 140 GPa (1.4 Mbar), 0.6 g/cm3 (ninefold compression of initial liquid-H2 density), and 3000 K in the fluid phase. The quest for metallic hydrogen over the past 100 years is reviewed briefly. Possible scientific and technological uses of metastable solid metallic hydrogen (MSMH) are speculated upon in the unlikely event that the metallic fluid can be quenched to MSMH at ambient pressure and temperature: a quantum, metallic solid with novel physical properties, including room-temperature superconductivity; a very light-weight structural material; a fuel, propellant, and explosive, depending on the rate of release of stored energy; a dense fuel for higher energy yields in inertial confinement fusion; and an aid in the synthesis of novel hard materials. Some of the formidable difficulties to synthesize MSMH are discussed.

  16. Phase separation of {beta}-Sn in strained, compositionally metastable Ge{sub 1{minus}x}Sn{sub x} alloys

    SciTech Connect

    Kriesel, J.W. |; Lee, S.M.

    1996-12-31

    A wide variety of scientific fields ranging from medicine to astronomy need sensitive, inexpensive far infrared (IR) photodetectors. Using rf sputtering and post-deposition annealing in a differential scanning calorimeter (DSC), the authors manufactured bulk (4,000 nm) films of crystalline Ge{sub 0.83}Sn{sub 0.17}. This Sn concentration is much greater than the solid solubility limit of Sn in Ge (x {le} 0.01). Continued annealing thermally induces Sn phase separation from the alloy, limiting the ultimate attainable grain size in the metastable crystals. The authors examine, here, the mechanisms and kinetics of the processes limiting the size of the Ge{sub 0.83}Sn{sub 0.17} polycrystals. From a combination of DSC, electron microprobe, and x-ray diffraction (XRD) measurements, they propose phase transformation mechanisms corresponding to crystallization of amorphous Ge{sub 0.83}Sn{sub 0.17}, crystallization of an as-yet unidentified phase of Sn, and phase separation of Sn from the Ge{sub 1{minus}x}Sn{sub x} crystals. They were unable to observe the unidentified phase of Sn in XRD, but the phase must be present in the material to account for the quantitative discrepancies (as much as 8 at.%) in Sn percentages determined from each of the DSC, XRD, and electron microprobe measurements. The models for the various transformation kinetics were corroborated by the subsequent phase-separated Sn melting behavior observed in the DSC: two Sn melting endotherms, one of which was 20--100 C lower than the bulk melting temperature of Sn. This depressed temperature endotherm they speculate represents liquefaction of nanometer-sized {beta}-Sn clusters.

  17. Metastable phases determination of U-2.5Zr-7.5Nb and U-3.0Zr-9.0Nb alloys by Rietveld method

    SciTech Connect

    Dias Pais, R. W.; Dos Santos, A. M. M.; Lameiras, F. S.; Cantagalli, N. M.; De Paula, R. G.; Ferraz, W. B.

    2012-07-01

    The Rietveld refinement has been employed for study of metastable phase of alloys U-2.5Zr-7.5Nb(wt%) and U-3Zr-9Nb(wt%). The ingots of both alloys were produced in vacuum induction furnace at temperature of about 1500 deg.C followed by cooling to room temperature. The samples with 2.5 cm in diameter and 0.3 cm of thickness was homogenized at 1000 deg.C/16 hours and treated isothermally at (i) 600 deg.C for 0.5, 3 and 24 hours and (ii) 300 deg.C for 4 minutes, 20 minutes and 17.5 hours. At the end of each treatment the samples were water quenched. Data from X-ray diffraction were collected at room temperature with a Rigaku diffractometer D Max-RAPID radiation Cuk{alpha} using steps of 0.02 deg. (2{theta}) with scan angle in the range of 20-80 deg. (2{theta}). The full diffraction pattern was analyzed by the Rietveld method using the GSAS program. The result shows that the non-resolved appearance of the XRD patterns added to the proximity of the Bragg reflections of the transition phase makes the refinement of alloys a challenging task. For the isothermal treatment at 600 deg.C during 0.5 and 3 hours both alloys showed the majority presence of {gamma}{sup S} phase fallow by {gamma}{sup 0} phase in minor amounts. For 24 hours at 600 deg.C occurred the decomposition of phases with the presence of {gamma}{sup S} + {alpha}. Isothermal treatment at 300 deg.C for both alloys is characterized by the presence of phases {gamma}{sup 0} + {alpha}'' where the concentration of the {alpha}'' phase increases with time of heat treatment. (authors)

  18. Nonequilibrium Physics and Phase-Field Modeling of Multiphase Flow in Porous Media

    SciTech Connect

    Juanes, Ruben

    2016-09-01

    The overarching goal of this project was to develop a new continuum theory of multiphase flow in porous media. The theory follows a phase-field modeling approach, and therefore has a sound thermodynamical basis. It is a phenomenological theory in the sense that its formulation is driven by macroscopic phenomena, such as viscous instabilities during multifluid displacement. The research agenda was organized around a set of hypothesis on hitherto unexplained behavior of multiphase flow. All these hypothesis are nontrivial, and testable. Indeed, a central aspect of the project was testing each hypothesis by means of carefully-designed laboratory experiments, therefore probing the validity of the proposed theory. The proposed research places an emphasis on the fundamentals of flow physics, but is motivated by important energy-driven applications in earth sciences, as well as microfluidic technology.

  19. (Global and local) fluctuations of phase space contraction in deterministic stationary nonequilibrium.

    PubMed

    Bonetto, F.; Chernov, N. I.; Lebowitz, J. L.

    1998-12-01

    We studied numerically the validity of the fluctuation relation introduced in Evans et al. [Phys. Rev. Lett. 71, 2401-2404 (1993)] and proved under suitable conditions by Gallavotti and Cohen [J. Stat. Phys. 80, 931-970 (1995)] for a two-dimensional system of particles maintained in a steady shear flow by Maxwell demon boundary conditions [Chernov and Lebowitz, J. Stat. Phys. 86, 953-990 (1997)]. The theorem was found to hold if one considers the total phase space contraction sigma occurring at collisions with both walls: sigma=sigma( upward arrow )+sigma( downward arrow ). An attempt to extend it to more local quantities sigma( upward arrow ) and sigma( downward arrow ), corresponding to the collisions with the top or bottom wall only, gave negative results. The time decay of the correlations in sigma( upward arrow, downward arrow ) was very slow compared to that of sigma. (c) 1998 American Institute of Physics.

  20. Disorder trapping by rapidly moving phase interface in an undercooled liquid

    NASA Astrophysics Data System (ADS)

    Galenko, Peter; Danilov, Denis; Nizovtseva, Irina; Reuther, Klemens; Rettenmayr, Markus

    2017-08-01

    Non-equilibrium phenomena such as the disappearance of solute drag, the origin of solute trapping and evolution of disorder trapping occur during fast transformations with originating metastable phases [D.M. Herlach, P.K. Galenko, D. Holland-Moritz, Metastable solids from undrercooled melts (Elsevier, Amsterdam, 2007)]. In the present work, a theoretical investigation of disorder trapping by a rapidly moving phase interface is presented. Using a model of fast phase transformations, a system of governing equations for the diffusion of atoms, and the evolution of both long-range order parameter and phase field variable is formulated. First numerical solutions are carried out for a congruently melting binary alloy system.

  1. Theory of Metastable State Relaxation for Non-Critical Binary Systems with Non-Conserved Order Parameter

    NASA Technical Reports Server (NTRS)

    Izmailov, Alexander; Myerson, Allan S.

    1993-01-01

    A new mathematical ansatz for a solution of the time-dependent Ginzburg-Landau non-linear partial differential equation is developed for non-critical systems such as non-critical binary solutions (solute + solvent) described by the non-conserved scalar order parameter. It is demonstrated that in such systems metastability initiates heterogeneous solute redistribution which results in formation of the non-equilibrium singly-periodic spatial solute structure. It is found how the time-dependent period of this structure evolves in time. In addition, the critical radius r(sub c) for solute embryo of the new solute rich phase together with the metastable state lifetime t(sub c) are determined analytically and analyzed.

  2. Theory of Metastable State Relaxation for Non-Critical Binary Systems with Non-Conserved Order Parameter

    NASA Technical Reports Server (NTRS)

    Izmailov, Alexander; Myerson, Allan S.

    1993-01-01

    A new mathematical ansatz for a solution of the time-dependent Ginzburg-Landau non-linear partial differential equation is developed for non-critical systems such as non-critical binary solutions (solute + solvent) described by the non-conserved scalar order parameter. It is demonstrated that in such systems metastability initiates heterogeneous solute redistribution which results in formation of the non-equilibrium singly-periodic spatial solute structure. It is found how the time-dependent period of this structure evolves in time. In addition, the critical radius r(sub c) for solute embryo of the new solute rich phase together with the metastable state lifetime t(sub c) are determined analytically and analyzed.

  3. Equilibrium and non-equilibrium dynamics of the dilute lamellar phase

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Sriram

    1992-07-01

    A model for the dynamics of the sterically stabilized dilute lamellar phase is constructed and studied. The model consists of a stack of flexible fluid sheets, with excluded volume, separated by macroscopic layers of solvent. The dynamics of small fluctuations of the sheets about their mean positions is found to have two distinct short-wavelength regimes in which the frequency ω depends on the wavenumber q in an unusual manner. One is a single-membrane Zimm mode, ω ≈ - iq3, while the other is a “red-blood-cell mode”, ω ≈ - iq6. These modes give rise to fluctuation corrections for the viscosities of the system, going as ω {-1}/{3} and ω {-2}/{3}, respectively. In addition, it is shown that a sufficiently rapid shear flow with velocity and gradient in the plane of the layers causes a transition into a state where regions of reduced layer spacing co-exist with regions devoid of any layer material. The critical shear-rate for this transition should go as (layer spacing) -3. Possible experimental tests of these predictions are discussed.

  4. Nonequilibrium effective field theory for absorbing state phase transitions in driven open quantum spin systems

    NASA Astrophysics Data System (ADS)

    Buchhold, Michael; Everest, Benjamin; Marcuzzi, Matteo; Lesanovsky, Igor; Diehl, Sebastian

    2017-01-01

    Phase transitions to absorbing states are among the simplest examples of critical phenomena out of equilibrium. The characteristic feature of these models is the presence of a fluctuationless configuration which the dynamics cannot leave, which has proved a rather stringent requirement in experiments. Recently, a proposal to seek such transitions in highly tunable systems of cold-atomic gases offers to probe this physics and, at the same time, to investigate the robustness of these transitions to quantum coherent effects. Here, we specifically focus on the interplay between classical and quantum fluctuations in a simple driven open quantum model which, in the classical limit, reproduces a contact process, which is known to undergo a continuous transition in the "directed percolation" universality class. We derive an effective long-wavelength field theory for the present class of open spin systems and show that, due to quantum fluctuations, the nature of the transition changes from second to first order, passing through a bicritical point which appears to belong instead to the "tricritical directed percolation" class.

  5. Complexity, Metastability and Nonextensivity

    NASA Astrophysics Data System (ADS)

    Beck, C.; Benedek, G.; Rapisarda, A.; Tsallis, C.

    Work and heat fluctuations in systems with deterministic and stochastic forces / E. G. D. Cohen and R. Van Zon -- Is the entropy S[symbol] extensive or nonextensive? / C. Tsallis -- Superstatistics: recent developments and applications / C. Beck -- Two stories outside Boltzmann-Gibbs statistics: Mori's Q-phase transitions and glassy dynamics at the onset of chaos / A. Robledo, F. Baldovin and E. Mayoral -- Time-averages and the heat theorem / A. Carati -- Fundamental formulae and numerical evidences for the central limit theorem in Tsallis statistics / H. Suyari -- Generalizing the Planck distribution / A. M. C. Soma and C. Tsallis -- The physical roots of complexity: renewal or modulation? / P. Grigolini -- Nonequivalent ensembles and metastability / H. Touchette and R. S. Ellis -- Statistical physics for cosmic structures / L. Pietronero and F. Sylos Labini -- Metastability and anomalous behavior in the HMF model: connections to nonextensive thermodynamics and glassy dynamics / A. Pluchino, A. Rapisarda and V. Latora -- Vlasov analysis of relaxation and meta-equilibrium / C. Anteneodo and R. O. Vallejos -- Weak chaos in large conservative systems - infinite-range coupled standard maps / L. G. Moyano, A. P. Majtey and C. Tsallis -- Deterministc aging / E. Barkai -- Edge of chaos of the classical kicked top map: sensitivity to initial conditions / S. M. Duarte Queirós and C. Tsallis -- What entropy at the edge of chaos? / M. Lissia, M. Coraddu and R. Tonelli -- Fractal growth of carbon schwarzites / G. Benedek ... [et al.] -- Clustering and interface propagation in interacting particle dynamics / A. Provata and V. K. Noussiou -- Resonant activation and noise enhanced stability in Josephson junctions / A. L. Pankratov and B. Spagnolo -- Symmetry breaking induced directed motions / C.-H. Chang and T. Y. Tsong -- General theory of Galilean-invariant entropic lattic Boltzmann models / B. M. Boghosian -- Unifying approach to the jamming transition in granular media and

  6. BiNb{sub 3}O{sub 9}, a metastable perovskite phase with Bi/vacancy ordering: Crystal structure and dielectric properties

    SciTech Connect

    Mumme, William G.; Grey, Ian E.; Edwards, Bryce; Turner, Christopher; Nino, Juan; Vanderah, Terrell A.

    2013-04-15

    The perovskite, BiNb{sub 3}O{sub 9}, is a metastable phase in the Bi{sub 2}O{sub 3}:Nb{sub 2}O{sub 5} system that forms only when cooled from a liquid phase. Crystals of BiNb{sub 3}O{sub 9} prepared in this way display pseudocubic 2a×2a×2a diffraction patterns, due to non-merohedral twinning of a tetragonal a×a×2a cell, with the doubled axis oriented along all three pseudocubic axes. The structure was refined using data collected on a twinned crystal to R{sub 1}=0.034 for 318 observed reflections. BiNb{sub 3}O{sub 9} has tetragonal symmetry, P4/mmm with a=3.9459(3) Å, c=7.8919(6) Å. Partial ordering of Bi atoms and vacancies occurs, with alternate (0 0 1) planes having 28% and 42% Bi occupancies. The Bi atoms are displaced from the A-site special positions by up to 0.4 Å. The compound exhibits a relatively high permittivity value of ∼230 at room temperature, and shows a sharp increase with increasing temperature towards an apparent diffuse phase transition above ∼180 °C, with an associated frequency dependent peak in the dielectric loss. - Graphical abstract: Structure for BiNb{sub 3}O{sub 9}, showing split Bi atoms. Highlights: ► First characterisation of a new perovskite phase with potentially useful dielectric properties. ► Solving of the structure using single crystal data on a multiply twinned crystal. ► Measurement of dielectric properties that show the phase has a high dielectric permittivity.

  7. Hydrothermal synthesis and characterization of a two-dimensional piperazinium cobalt–zinc phosphate via a metastable one-dimensional phase

    SciTech Connect

    Torre-Fernández, Laura; Khainakova, Olena A.; Espina, Aránzazu; Amghouz, Zakariae; Khainakov, Sergei A.; Alfonso, Belén F.; Blanco, Jesús A.; García, José R.; García-Granda, Santiago

    2015-05-15

    A two-dimensional piperazinium cobalt–zinc phosphate, formulated as (C{sub 4}N{sub 2}H{sub 12}){sub 1.5}(Co{sub 0.6}Zn{sub 0.4}){sub 2}(HPO{sub 4}){sub 2}(PO{sub 4})·H{sub 2}O (2D), was synthesized under hydrothermal conditions. The crystal structure was determined using single-crystal X-ray diffraction data (monoclinic P2{sub 1}/c, a=8.1165(3) Å, b=26.2301(10) Å, c=8.3595(4) Å, and β=110.930(5)°) and the hydrogen atom positions were optimized by DFT calculations. A single-crystal corresponding to one-dimensional metastable phase, (C{sub 4}N{sub 2}H{sub 12})Co{sub 0.3}Zn{sub 0.7}(HPO{sub 4}){sub 2}·H{sub 2}O (1D), was also isolated and the crystal structure was determined (monoclinic P2{sub 1}/c, a=8.9120(6) Å, b=14.0290(1) Å, c=12.2494(5) Å, and β=130.884(6)°). The bulk was characterized by chemical (C–H–N) analysis, powder X-ray diffraction (PXRD), powder X-ray thermodiffractometry (HT-XRD), transmission electron microscopy (STEM(DF)-EDX and EFTEM), and thermal analysis (TG/SDTA-MS), including activation energy data of its thermal decomposition. The magnetic susceptibility and magnetization measurements show no magnetic ordering down to 4 K. - Graphical abstract: Hydrothermal synthesis and structural characterization of a two-dimensional piperazinium cobalt–zinc phosphate, (C{sub 4}N{sub 2}H{sub 12}){sub 1.5}(Co{sub 0.6}Zn{sub 0.4}){sub 2}(HPO{sub 4}){sub 2}(PO{sub 4})·H{sub 2}O (2D), have been reported. The crystal structure of a one-dimensional piperazinium cobalt–zinc phosphate, (C{sub 4}N{sub 2}H{sub 12})Co{sub 0.3}Zn{sub 0.7}(HPO{sub 4}){sub 2}·H{sub 2}O (1D) a metastable phase during the hydrothermal synthesis, was also determined. The thermal behavior of 2D compound is strongly dependent on the selected heating rate and the magnetic susceptibility and magnetization measurements show no magnetic ordering down to 4 K. - Highlights: • A 2D piperazinium cobalt–zinc phosphate has been synthesized and characterized. • Crystal

  8. Activity mediated phase separation: Can we understand phase behavior of the nonequilibrium problem from an equilibrium approach?

    NASA Astrophysics Data System (ADS)

    Trefz, Benjamin; Das, Subir K.; Egorov, Sergei A.; Virnau, Peter; Binder, Kurt

    2016-04-01

    We present results for structure and dynamics of mixtures of active and passive particles, from molecular dynamics (MD) simulations and integral equation theory (IET) calculations, for a physically motivated model. The perfectly passive limit of the model corresponds to the phase-separating Asakura-Oosawa model for colloid-polymer mixtures in which, for the present study, the colloids are made self-propelling by introducing activity in accordance with the well known Vicsek model. Such activity facilitates phase separation further, as confirmed by our MD simulations and IET calculations. Depending upon the composition of active and passive particles, the diffusive motion of the active species can only be realized at large time scales. Despite this, we have been able to construct an equilibrium approach to obtain the structural properties of such inherently out-of-equilibrium systems. In this method, effective inter-particle potentials were constructed via IET by taking structural inputs from the MD simulations of the active system. These potentials in turn were used in passive MD simulations, results from which are observed to be in fair agreement with the original ones.

  9. Metastability and Delta-Phase Retention in Plutonium Alloys Final Report of LDRD Project 01-ERD-029

    SciTech Connect

    Wong, J; Schwartz, A J; Blobaum, K M; Krenn, C R; Wall, M A; Wolfer, W G; Haslam, J J; Moore, K T

    2004-02-11

    The {delta} to {alpha}' phase transformation in Pu-Ga alloys is intriguing for both scientific and technological reasons. On cooling, the ductile fcc {delta}-phase transforms martensitically to the brittle monoclinic {alpha}'-phase at approximately -120 C (depending on composition). This exothermic transformation involves a 20% volume contraction and a significant increase in resistivity. The reversion of {alpha}' to {delta} involves a large temperature hysteresis beginning just above room temperature. In an attempt to better understand the underlying thermodynamics and kinetics responsible for these unusual features, we have investigated the {delta} {leftrightarrow} {alpha}' phase transformations in a Pu-0.6 wt% Ga alloy using a combination of experimental and modeling techniques.

  10. Dependence of stress-induced omega transition and mechanical twinning on phase stability in metastable β Ti–V alloys

    SciTech Connect

    Wang, X.L.; Li, L.; Mei, W.; Wang, W.L.; Sun, J.

    2015-09-15

    Tensile properties and deformation microstructures of a series of binary β Ti–16–22V alloys have been investigated. The results show that the plastic deformation mode changes from the plate-like stress-induced ω phase transformation with a special habit plane of (− 5052){sub ω}//(3 − 3 − 2){sub β} to (332)<113> type deformation twinning with increasing the content of vanadium in the β Ti–16–22 wt.% V alloys. The plate-like stress-induced ω phase has a special orientation relationship with the β phase matrix, i.e., [110]{sub β}//[− 12 − 10]{sub ω}, (3 − 3 − 2){sub β}//(− 5052){sub ω} and (− 55 − 4){sub β}//(30 − 31){sub ω}. The alloys plastically deformed by stress-induced ω phase transformation exhibit relatively higher yield strength than those deformed via (332)<113> type deformation twinning. It can be concluded that the stability of β phase plays a significant role in plastic deformation mode, i.e., stress-induced ω phase transformation or (332)<113> type deformation twinning, which governs the mechanical property of the β Ti–16–22 wt.% V alloys. - Highlights: • Tensile properties and deformed microstructures of β Ti–16–22V alloys were studied. • Stress-induced ω phase transformation and (332)<113> twinning occur in the alloys. • Stability of β phase plays a significant role in plastic deformation mode. • Plastic deformation mode governs the mechanical property of the alloys.

  11. Direct evidence of concurrent solid-solution and two-phase reactions and the nonequilibrium structural evolution of LiFePO4.

    PubMed

    Sharma, Neeraj; Guo, Xianwei; Du, Guodong; Guo, Zaiping; Wang, Jiazhou; Wang, Zhaoxiang; Peterson, Vanessa K

    2012-05-09

    Lithium-ion batteries power many portable devices and in the future are likely to play a significant role in sustainable-energy systems for transportation and the electrical grid. LiFePO(4) is a candidate cathode material for second-generation lithium-ion batteries, bringing a high rate capability to this technology. LiFePO(4) functions as a cathode where delithiation occurs via either a solid-solution or a two-phase mechanism, the pathway taken being influenced by sample preparation and electrochemical conditions. The details of the delithiation pathway and the relationship between the two-phase and solid-solution reactions remain controversial. Here we report, using real-time in situ neutron powder diffraction, the simultaneous occurrence of solid-solution and two-phase reactions after deep discharge in nonequilibrium conditions. This work is an example of the experimental investigation of nonequilibrium states in a commercially available LiFePO(4) cathode and reveals the concurrent occurrence of and transition between the solid-solution and two-phase reactions.

  12. Phosphate-water interplay tunes amorphous calcium carbonate metastability: spontaneous phase separation and crystallization vs stabilization viewed by solid state NMR.

    PubMed

    Kababya, Shifi; Gal, Assaf; Kahil, Keren; Weiner, Steve; Addadi, Lia; Schmidt, Asher

    2015-01-21

    Organisms tune the metastability of amorphous calcium carbonates (ACC), often by incorporation of additives such as phosphate ions and water molecules, to serve diverse functions, such as modulating the availability of calcium reserves or constructing complex skeletal scaffolds. Although the effect of additive distribution on ACC was noted for several biogenic and synthetic systems, the molecular mechanisms by which additives govern ACC stability are not well understood. By precipitating ACC in the presence of different PO4(3-) concentrations and regulating the initial water content, we identify conditions yielding either kinetically locked or spontaneously transforming coprecipitates. Solid state NMR, supported by FTIR, XRD, and electron microscopy, define the interactions of phosphate and water within the initial amorphous matrix, showing that initially the coprecipitates are homogeneous molecular dispersions of structural water and phosphate in ACC, and a small fraction of P-rich phases. Monitoring the transformations of the homogeneous phase shows that PO4(3-) and waters are extracted first, and they phase separate, leading to solid-solid transformation of ACC to calcite; small part of ACC forms vaterite that subsequently converts to calcite. The simultaneous water-PO4(3-) extraction is the key for the subsequent water-mediated accumulation and crystallization of hydroxyapatite (HAp) and carbonated hydroxyapatite. The thermodynamic driving force for the transformations is calcite crystallization, yet it is gated by specific combinations of water-phosphate levels in the initial amorphous coprecipitates. The molecular details of the spontaneously transforming ACC and of the stabilized ACC modulated by phosphate and water at ambient conditions, provide insight into biogenic and biomimetic pathways.

  13. Hydrothermal synthesis and characterization of a two-dimensional piperazinium cobalt-zinc phosphate via a metastable one-dimensional phase

    NASA Astrophysics Data System (ADS)

    Torre-Fernández, Laura; Khainakova, Olena A.; Espina, Aránzazu; Amghouz, Zakariae; Khainakov, Sergei A.; Alfonso, Belén F.; Blanco, Jesús A.; García, José R.; García-Granda, Santiago

    2015-05-01

    A two-dimensional piperazinium cobalt-zinc phosphate, formulated as (C4N2H12)1.5(Co0.6Zn0.4)2(HPO4)2(PO4)·H2O (2D), was synthesized under hydrothermal conditions. The crystal structure was determined using single-crystal X-ray diffraction data (monoclinic P21/c, a=8.1165(3) Å, b=26.2301(10) Å, c=8.3595(4) Å, and β=110.930(5)°) and the hydrogen atom positions were optimized by DFT calculations. A single-crystal corresponding to one-dimensional metastable phase, (C4N2H12)Co0.3Zn0.7(HPO4)2·H2O (1D), was also isolated and the crystal structure was determined (monoclinic P21/c, a=8.9120(6) Å, b=14.0290(1) Å, c=12.2494(5) Å, and β=130.884(6)°). The bulk was characterized by chemical (C-H-N) analysis, powder X-ray diffraction (PXRD), powder X-ray thermodiffractometry (HT-XRD), transmission electron microscopy (STEM(DF)-EDX and EFTEM), and thermal analysis (TG/SDTA-MS), including activation energy data of its thermal decomposition. The magnetic susceptibility and magnetization measurements show no magnetic ordering down to 4 K.

  14. Metastable γ-Bi2O3 tetrahedra: Phase-transition dominated by polyethylene glycol, photoluminescence and implications for internal structure by etch.

    PubMed

    Wang, Yi; Li, Yunling

    2015-09-15

    Metastable γ-Bi2O3 tetrahedra have been fabricated by a facile polyethylene glycol-assistance (PEG, Mw=400) one-step precipitation method at 70°C. The tetrahedra of 8μm are built up of ultrathin nanosheets via layer-by-layer self-assembly. X-ray powder diffraction, scanning electron microscopy, UV-visible spectrometer and fluorescence spectrophotometer were employed to characterize the obtained γ-Bi2O3. The morphology of the γ-Bi2O3 is significantly influenced by the feeding concentration of NaOH solution. Tetrahedra and incomplete tetrahedra whose edges are clipped in various degrees of γ-Bi2O3 can be obtained with different concentrations of NaOH solution. The uniform and ordered chains of PEG play a crucial role not only in the morphology, even more important in phase-transition of Bi2O3. The photoluminescence (PL) characteristic of the sample was investigated.

  15. Totally solution-processed CuInS2 solar cells based on chloride inks: reduced metastable phases and improved current density

    NASA Astrophysics Data System (ADS)

    Dehghani, Mehdi; Behjat, Abbas; Tajabadi, Fariba; Taghavinia, Nima

    2015-03-01

    Planar superstrate CuInS2 (CIS) solar cell devices are fabricated using totally solution-processed deposition methods. These Cd-free devices are structured by FTO/TiO2/In2S3/CIS/carbon, where TiO2 and In2S3 are deposited by spray pyrolysis, and a CIS film is deposited using spin-coating followed by annealing at 250 °C. The pasted carbon layer is utilized as the anode. No further sulfurization or selenization is employed. The Cu/In ratio in the ink is found as a critical factor affecting the morphology and crystallinity of the film as well as the photovoltaic performance of the device. An optimum Cu/In = 1.05 results in large-grain films with sharp diffraction peaks and, subsequently, optimal series resistance and shunt conductance. It is also found that the chloride-based ink results in CIS films with considerably reduced metastable phases, compared to the conventional acetate-based inks. A current density of 23.6 mA cm-2 is obtained for the best devices, leading to a conversion efficiency of 4.1%.

  16. A statics-dynamics equivalence through the fluctuation-dissipation ratio provides a window into the spin-glass phase from nonequilibrium measurements.

    PubMed

    Baity-Jesi, Marco; Calore, Enrico; Cruz, Andres; Fernandez, Luis Antonio; Gil-Narvión, José Miguel; Gordillo-Guerrero, Antonio; Iñiguez, David; Maiorano, Andrea; Marinari, Enzo; Martin-Mayor, Victor; Monforte-Garcia, Jorge; Muñoz Sudupe, Antonio; Navarro, Denis; Parisi, Giorgio; Perez-Gaviro, Sergio; Ricci-Tersenghi, Federico; Ruiz-Lorenzo, Juan Jesus; Schifano, Sebastiano Fabio; Seoane, Beatriz; Tarancón, Alfonso; Tripiccione, Raffaele; Yllanes, David

    2017-02-21

    We have performed a very accurate computation of the nonequilibrium fluctuation-dissipation ratio for the 3D Edwards-Anderson Ising spin glass, by means of large-scale simulations on the special-purpose computers Janus and Janus II. This ratio (computed for finite times on very large, effectively infinite, systems) is compared with the equilibrium probability distribution of the spin overlap for finite sizes. Our main result is a quantitative statics-dynamics dictionary, which could allow the experimental exploration of important features of the spin-glass phase without requiring uncontrollable extrapolations to infinite times or system sizes.

  17. A statics-dynamics equivalence through the fluctuation–dissipation ratio provides a window into the spin-glass phase from nonequilibrium measurements

    PubMed Central

    Baity-Jesi, Marco; Calore, Enrico; Cruz, Andres; Fernandez, Luis Antonio; Gil-Narvión, José Miguel; Gordillo-Guerrero, Antonio; Iñiguez, David; Maiorano, Andrea; Marinari, Enzo; Martin-Mayor, Victor; Monforte-Garcia, Jorge; Muñoz Sudupe, Antonio; Navarro, Denis; Parisi, Giorgio; Perez-Gaviro, Sergio; Ricci-Tersenghi, Federico; Ruiz-Lorenzo, Juan Jesus; Schifano, Sebastiano Fabio; Tarancón, Alfonso; Tripiccione, Raffaele; Yllanes, David

    2017-01-01

    We have performed a very accurate computation of the nonequilibrium fluctuation–dissipation ratio for the 3D Edwards–Anderson Ising spin glass, by means of large-scale simulations on the special-purpose computers Janus and Janus II. This ratio (computed for finite times on very large, effectively infinite, systems) is compared with the equilibrium probability distribution of the spin overlap for finite sizes. Our main result is a quantitative statics-dynamics dictionary, which could allow the experimental exploration of important features of the spin-glass phase without requiring uncontrollable extrapolations to infinite times or system sizes. PMID:28174274

  18. Metastability of a Supercompressed Fluid Monolayer

    PubMed Central

    Smith, Ethan C.; Crane, Jonathan M.; Laderas, Ted G.; Hall, Stephen B.

    2003-01-01

    Previous studies showed that monomolecular films of extracted calf surfactant collapse at the equilibrium spreading pressure during quasi-static compressions but become metastable at much higher surface pressures when compressed faster than a threshold rate. To determine the mechanism by which the films become metastable, we studied single-component films of 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC). Initial experiments confirmed similar metastability of POPC if compressed above a threshold rate. Measurements at different surface pressures then showed that rates of collapse, although initially increasing above the equilibrium spreading pressure, reached a sharply defined maximum and then slowed considerably. When heated, rapidly compressed films recovered their ability to collapse with no discontinuous change in area, arguing that the metastability does not reflect transition of the POPC film to a new phase. These observations indicate that in several respects, the supercompression of POPC monolayers resembles the supercooling of three-dimensional liquids toward a glass transition. PMID:14581205

  19. Structural properties and relative stability of (meta)stable ordered, partially ordered, and disordered Al-Li alloy phases

    NASA Astrophysics Data System (ADS)

    Alam, Aftab; Johnson, D. D.

    2012-04-01

    We resolve issues that have plagued reliable prediction of relative phase stability for solid solutions and compounds. Due to its commercially important phase diagram, we showcase the Al-Li system because historically density-functional theory (DFT) results show large scatter and limited success in predicting the structural properties and stability of solid solutions relative to ordered compounds. Using recent advances in an optimal basis-set representation of the topology of electronic charge density (and, hence, atomic size), we present DFT results that agree reasonably well with all known experimental data for the structural properties and formation energies of ordered, off-stoichiometric partially ordered, and disordered alloys, opening the way for reliable study in complex alloys.

  20. Phase diagram and structural evolution of tin/indium (Sn/In) nanosolder particles: from a non-equilibrium state to an equilibrium state.

    PubMed

    Shu, Yang; Ando, Teiichi; Yin, Qiyue; Zhou, Guangwen; Gu, Zhiyong

    2017-08-31

    A binary system of tin/indium (Sn/In) in the form of nanoparticles was investigated for phase transitions and structural evolution at different temperatures and compositions. The Sn/In nanosolder particles in the composition range of 24-72 wt% In were synthesized by a surfactant-assisted chemical reduction method under ambient conditions. The morphology and microstructure of the as-synthesized nanoparticles were analyzed by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and X-ray diffraction (XRD). HRTEM and SAED identified InSn4 and In, with some Sn being detected by XRD, but no In3Sn was observed. The differential scanning calorimetry (DSC) thermographs of the as-synthesized nanoparticles exhibited an endothermic peak at around 116 °C, which is indicative of the metastable eutectic melting of InSn4 and In. When the nanosolders were subjected to heat treatment at 50-225 °C, the equilibrium phase In3Sn appeared while Sn disappeared. The equilibrium state was effectively attained at 225 °C. A Tammann plot of the DSC data of the as-synthesized nanoparticles indicated that the metastable eutectic composition is about 62% In, while that of the DSC data of the 225 °C heat-treated nanoparticles yielded a eutectic composition of 54% In, which confirmed the attainment of the equilibrium state at 225 °C. The phase boundaries estimated from the DSC data of heat-treated Sn/In nanosolder particles matched well with those in the established Sn-In equilibrium phase diagram. The phase transition behavior of Sn/In nanosolders leads to a new understanding of binary alloy particles at the nanoscale, and provides important information for their low temperature soldering processing and applications.

  1. Apparent mismatch between extended x-ray absorption fine structure and diffraction structures of crystalline metastable WO3 phases.

    PubMed

    Moscovici, J; Rougier, A; Laruelle, S; Michalowicz, A

    2006-09-28

    The local structure of monoclinic, monohydrate, hexagonal, and pyrochlore WO3 phases was investigated by the extended x-ray absorption fine structure spectroscopy as preliminary studies of model compounds of amorphous and thin film WO3 based electrochromic species. In the four cases, we found a large W-O distribution of distances ranging from 1.70 to 2.35 A. The apparent discrepancy of these results and previously published crystal structures are discussed and interpreted as the detection of vacancies and local distortion disorder.

  2. Rare earth ferrites LuFe2O4±x polymorphism, polytypism and metastable phases

    NASA Astrophysics Data System (ADS)

    Hervieu, M.; Damay, F.; Maignan, A.; Martin, C.

    2015-10-01

    This work is a compendium of the structural properties of layered LnFe2O4±x ferrites, focussed on recently discovered polymorphs and their transitions through five complex commensurate and incommensurate modulated structures. These phases are obtained varying the oxygen content (reversibly from O4.0 to O4.5) or applying high pressure (up to 15 GPa). The relationships between the different structures are discussed and models are proposed. These ferrites, which contain magnetic cations and exhibit remarkable 3D flexibility, open the road for magnetic, electric, catalytic or energy materials.

  3. Formation, structure and magnetism of the metastable defect fluorite phases AVO{sub 3.5+x} (A=In, Sc)

    SciTech Connect

    Shafi, Shahid P.; Lundgren, Rylan J.; Cranswick, Lachlan M.D.; Bieringer, Mario

    2007-12-15

    We report the preparation and stability of ScVO{sub 3.5+x} and the novel phase InVO{sub 3.5+x}. AVO{sub 3.5+x} (A=Sc, In) defect fluorite structures are formed as metastable intermediates during the topotactic oxidation of AVO{sub 3} bixbyites. The oxidation pathway has been studied in detail by means of thermogravimetric/differential thermal analysis and in-situ powder X-ray diffraction. The oxidation of the bixbyite phase follows a topotactic pathway at temperatures between 300 and 400 deg. C in air/carbon dioxide. The range of accessible oxygen stoichiometries for the AVO{sub 3.5+x} structures following this pathway are 0.00{<=}x{<=}0.22. Rietveld refinements against powder X-ray and neutron data revealed that InVO{sub 3.54} and ScVO{sub 3.70} crystallize in the defect fluorite structure in space group Fm-3 m (227) with a=4.9863(5) and 4.9697(3)A, respectively with A{sup 3+}/V{sup 4+} disorder on the (4a) cation site. Powder neutron diffraction experiments indicate clustering of oxide defects in all samples. Bulk magnetic measurements showed the presence of V{sup 4+} and the absence of magnetic ordering at low temperatures. Powder neutron diffraction experiments confirmed the absence of a long range ordered magnetic ground state. - Graphical abstract: Topotactic oxidation of AVO{sub 3} bixbyite to AVO{sub 3.5} defect fluorite structure followed by in-situ powder X-ray diffraction. The upper structural diagram shows a six coordinated (A/V)-O{sub 6} fragment in bixbyite, the lower structure illustrates the same seven-fold coordinated (A/V)-O{sub 7} cubic environment in the defect fluorite structure.

  4. Incompatible Sets of Gradients and Metastability

    NASA Astrophysics Data System (ADS)

    Ball, J. M.; James, R. D.

    2015-12-01

    We give a mathematical analysis of a concept of metastability induced by incompatibility. The physical setting is a single parent phase, just about to undergo transformation to a product phase of lower energy density. Under certain conditions of incompatibility of the energy wells of this energy density, we show that the parent phase is metastable in a strong sense, namely it is a local minimizer of the free energy in an L 1 neighbourhood of its deformation. The reason behind this result is that, due to the incompatibility of the energy wells, a small nucleus of the product phase is necessarily accompanied by a stressed transition layer whose energetic cost exceeds the energy lowering capacity of the nucleus. We define and characterize incompatible sets of matrices, in terms of which the transition layer estimate at the heart of the proof of metastability is expressed. Finally we discuss connections with experiments and place this concept of metastability in the wider context of recent theoretical and experimental research on metastability and hysteresis.

  5. The Free Action of Nonequilibrium Dynamics

    NASA Astrophysics Data System (ADS)

    Li, Qianxiao; E, Weinan

    2015-10-01

    In general nonequilibrium steady states, directly replacing the canonical ensemble by the nonequilibrium invariant distribution yields a free energy function that is insufficient in characterizing the dynamical landscape. We address the problem by defining the free action, which is like a free energy on path space. Through a representative example, we demonstrate the conceptual and practical usefulness of the free action for quantifying the dynamics of nonequilibrium steady states, including those exhibiting phase transitions.

  6. Metastable Eutectic Equilibrium in Natural Environments: Recent Development and Research Opportunities

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.; Nuth, Joseph A., III; Jablonska, Mariola; Karner, James M.

    2000-01-01

    Chemical ordering at metastable eutectics was recognized in non-equilibrium gas-to- solid condensation experiments to constrain 'silicate' dust formation in O-rich circumstellar environments. The predictable metastable eutectic behavior successfully predicted the observed ferromagnesiosilica compositions of circumstellar dust presolar and solar nebula grains in the matrix of the collected aggregate IDPs (Interplanetary Dust Particles). Many of the experimentally determined metastable eutectic solids match the fundamental building blocks of common rock-forming layer silicates: this could have implications for the origin of Life. The physical conditions conducive to metastable eutectic behavior, i.e. high temperature and (ultra) fast quenching, lead to unique amorphous, typically nano- to micrometer-sized, materials. The new paradigm of metastable eutectic behavior opens the door to new and exciting research opportunities in uncovering the many implications of these unique amorphous, and typically nano-to micrometer-sized, metastable eutectic materials.

  7. Metastable Eutectic Equilibrium in Natural Environments: Recent Developments and Research Opportunities

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Fans J. M.; Nuth, Joseph A., II; Jablonska, Mariola; Karner, James M.

    2000-01-01

    Chemical ordering at metastable eutectics was recognized in non-equilibrium gas-to- solid condensation experiments to constrain 'silicate' dust formation in O-rich circumstellar environments. The predictable metastable eutectic behavior successfully predicted the observed ferromagnesiosilica, compositions of circumstellar dust, presolar and solar nebula grains in the matrix of the collected aggregate IDPs. Many of the experimentally determined metastable eutectic solids match the fundamental building blocks of common rock-forming layer silicates: this could have implications for the origin of Life. The physical conditions conducive to metastable eutectic behavior, i.e. high temperature and (ultra)fast quenching, lead to unique amorphous, typically nano- to micrometer-sized, materials. The new paradigm of metastable eutectic behavior opens the door to new and exciting research opportunities in uncovering the many implications of these unique amorphous and typically nano- to micrometer-sized, metastable eutectic materials.

  8. Non-equilibrium origin of high electrical conductivity in gallium zinc oxide thin films

    SciTech Connect

    Zakutayev, Andriy Ginley, David S.; Lany, Stephan; Perry, Nicola H.; Mason, Thomas O.

    2013-12-02

    Non-equilibrium state defines physical properties of materials in many technologies, including architectural, metallic, and semiconducting amorphous glasses. In contrast, crystalline electronic and energy materials, such as transparent conductive oxides (TCO), are conventionally thought to be in equilibrium. Here, we demonstrate that high electrical conductivity of crystalline Ga-doped ZnO TCO thin films occurs by virtue of metastable state of their defects. These results imply that such defect metastability may be important in other functional oxides. This finding emphasizes the need to understand and control non-equilibrium states of materials, in particular, their metastable defects, for the design of novel functional materials.

  9. The Metastable Brain

    PubMed Central

    Tognoli, Emmanuelle; Kelso, J. A. Scott

    2014-01-01

    Neural ensembles oscillate across a broad range of frequencies and are transiently coupled or “bound” together when people attend to a stimulus, perceive, think and act. This is a dynamic, self-assembling process, with parts of the brain engaging and disengaging in time. But how is it done? The theory of Coordination Dynamics proposes a mechanism called metastability, a subtle blend of integration and segregation. Tendencies for brain regions to express their individual autonomy and specialized functions (segregation, modularity) coexist with tendencies to couple and coordinate globally for multiple functions (integration). Although metastability has garnered increasing attention, it has yet to be demonstrated and treated within a fully spatiotemporal perspective. Here, we illustrate metastability in continuous neural and behavioral recordings, and we discuss theory and experiments at multiple scales suggesting that metastable dynamics underlie the real-time coordination necessary for the brain's dynamic cognitive, behavioral and social functions. PMID:24411730

  10. Polarization of metastable 129Xe

    NASA Astrophysics Data System (ADS)

    Xia, Tian; Morgan, Steven; Jau, Yuan-Yu; Happer, William

    2008-05-01

    We have measured atomic polarization of metastable 129Xe in a pyrex cell by optical pumping, while metastability exchange optical pumping of 3He is routinely done. The atomic polarization of metastable Xe is on the order of 10%. Metastable xenon is created by electrodeless rf discharge. The hyperfine transition of metastable 129Xe is observed by microwave excitation. Atomic polarization can be demonstrated by comparison of the intensities of the transitions between different Zeeman sublevels, while pumping a specific optical transition of metastable Xe with circularly polarized light. This work offers insight into attempts to polarize 129Xe nuclei by metastability exchange optical pumping.

  11. Suppression of Twinning and Phase Transformation in an Ultrafine Grained 2 GPa Strong Metastable Austenitic Steel: Experiment and Simulation

    SciTech Connect

    Shen, Yongfeng; Jia, Nan; Wang, Y. D.; Sun, Xin; Zuo, Liang; Raabe, Dierk

    2015-07-17

    An ultrafine-grained 304 austenitic 18 wt.%Cr-8 wt.%Ni stainless steel with a grain size of ~270 nm was synthesized by accumulative rolling (67 % total reduction) and annealing (550 °C, 150s). Uniaxial tensile testing at room temperature reveals an extremely high yield strength of 1890 ± 50MPa and a tensile strength of 2050 ± 30MPa, while the elongation reaches 6 ± 1%. Experimental characterization on samples with different grain sizes between 270 nm and 35 μm indicates that both, deformation twinning and martensitic phase transformation are significantly retarded with increasing grain refinement. A crystal plasticity finite element model incorporating a constitutive law reflecting the grain size-controlled dislocation slip and deformation twinning captures the micromechanical behavior of the steels with different grain sizes. Comparison of simulation and experiment shows that the deformation of ultrafine-grained 304 steels is dominated by the slip of partial dislocations, whereas for coarse-grained steels dislocation slip, twinning and martensite formation jointly contribute to the shape change.

  12. Metastable crystalline and amorphous structures formed in the Cu-W system by vapor deposition

    NASA Astrophysics Data System (ADS)

    Rizzo, H. F.; Massalski, T. B.; Nastasi, M.

    1993-05-01

    The possibility of producing nonequilibrium amorphous and crystalline phases in the Cu-W system is of interest because, under equilibrium conditions, no mutual solubility is expected between Cu and W. Triode sputtered coatings (45 to 150 μm thick, produced at deposition rates between 20 and 150 Å/s) consisted of amorphous and metastable crystalline phases. The latter remained decomposition-resistant on heating to various temperatures between 340 °C and 600 °C (the maximum temperature of exposure). The amorphous phase in such coatings crystallized on heating into a metastable body-centered cubic (bcc) phase, and the crystallization temperature T x was found to decrease across the phase diagram from 450 °C to 340 °C as the percentage of W increased from 26 to 60 at. pct. Samples containing amorphous phase regions, when subjected to heating between 150 °C and 250 °C, showed an unusual rapid precipitation of Cu at the sample surface, indicating an easy diffusion of the Cu component. This occurred without crystallization of the remaining slightly tungsten-enriched amorphous matrix. Microhardness measurements in sputtered two-phase amorphous and bcc regions have shown that in alloys of the same composition, the amorphous phase was always softer than the bcc solid solution phase. X-ray, microprobe, and optical evidence suggests that the amorphous films deposited at very low temperatures (i.e., at liquid N2) may subsequently undergo a phase separation upon heating to room temperature and prior to crystallization. Earlier work and present studies of vapordeposited alloys in this system confirm that the observed phases and microstructures can be related to free energy trends estimated from thermodynamic considerations and to specific deposition parameters, such as the substrate temperature and the deposition rates, which influence the kinetics.

  13. Critical nonequilibrium relaxation in the Swendsen-Wang algorithm in the Berezinsky-Kosterlitz-Thouless and weak first-order phase transitions

    NASA Astrophysics Data System (ADS)

    Nonomura, Yoshihiko; Tomita, Yusuke

    2015-12-01

    Recently we showed that the critical nonequilibrium relaxation in the Swendsen-Wang algorithm is widely described by the stretched-exponential relaxation of physical quantities in the Ising or Heisenberg models. Here we make a similar analysis in the Berezinsky-Kosterlitz-Thouless phase transition in the two-dimensional (2D) X Y model and in the first-order phase transition in the 2D q =5 Potts model and find that these phase transitions are described by the simple exponential relaxation and power-law relaxation of physical quantities, respectively. We compare the relaxation behaviors of these phase transitions with those of the second-order phase transition in the three- and four-dimensional X Y models and in the 2D q -state Potts models for 2 ≤q ≤4 and show that the species of phase transitions can be clearly characterized by the present analysis. We also compare the size dependence of relaxation behaviors of the first-order phase transition in the 2D q =5 and 6 Potts models and propose a quantitative criterion on "weakness" of the first-order phase transition.

  14. Thermodynamic properties of metastable Ag-Cu alloys

    NASA Astrophysics Data System (ADS)

    Najafabadi, R.; Srolovitz, D. J.; Ma, E.; Atzmon, M.

    1993-09-01

    The enthalpies of formation of metastable fcc Ag-Cu solid solutions, produced by ball milling of elemental powders, were determined by differential scanning calorimetry. Experimental thermodynamic data for these metastable alloys and for the equilibrium phases are compared with both calculation of phase diagrams (CALPHAD) and atomistic simulation predictions. The atomistic simulations were performed using the free-energy minimization method (FEMM). The FEMM determination of the equilibrium Ag-Cu phase diagram and the enthalpy of formation and lattice parameters of the metastable solid solutions are in good agreement with the experimental measurements. CALPHAD calculations made in the same metastable regime, however, significantly overestimate the enthalpy of formation. Thus, the FEMM is a viable alternative approach for the calculation of thermodynamic properties of equilibrium and metastable phases, provided reliable interatomic potentials are available. The FEMM is also capable of determining such properties as the lattice parameter which are not available from CALPHAD calculations.

  15. One. Phase transformations and the spectral reflectance of solid sulfur: Possible metastable sulfur allotropes on Io's surface. 2. Photochemistry and aerosol formation in Neptune's atmosphere

    NASA Astrophysics Data System (ADS)

    Moses, Julianne Ives

    Two papers are presented, and in the first one the spectral reflectance of elemental sulfur is examined in a set of laboratory experiments to determine the factors that affect the transformation rate of monoclinic (beta) sulfur and various other sulfur allotropes into orthorhombic (alpha) sulfur. The laboratory data have implications for the spectral variation and physical behavior of freshly solidified sulfur, if any exists, on Jupiter's satellite Io. Depending on its thermal history, molten sulfur on Io would initially solidify into a glassy solid or a monoclinic crystalline lattice; these forms might contain polymeric sulfur molecules as well as the more abundant S8 molecules. If freshly frozen sulfur on Io could lose heat rapidly and approach ambient dayside Io temperatures within several hours, then some of the metastable sulfur allotropes could be maintained on Io virtually indefinitely. Small droplets of sulfur ejected during plume eruptions might cool quickly enough to preserve these allotropes, but sulfur in large volcanic flows or lakes would probably remain warm long enough for phase transformations to proceed at a visible rate. The second paper involves the photodissociation of methane at high levels in Neptune's atmosphere leads to the production of more complex hydrocarbon species such as ethane, acetylene, methylacetylene, propane, diacetylene, ethylacetylene, and butane. These gases diffuse to the lower stratosphere where temperatures are low enough to allow all seven of the aforementioned species to condense. Particle formation may not occur readily, however, as the vapor species become supersaturated. We present a theoretical analysis of particle formation mechanisms at conditions relevant to Neptune's troposphere and stratosphere and show that hydrocarbon nucleation is very inefficient under Neptunian conditions: saturation ratios much greater than unity are required for aerosol formation by either heterogeneous, ion-induced, or homogeneous

  16. Metastability at the nanometer scale

    SciTech Connect

    Desre, P.J.

    1996-12-31

    Under constraints and at the nanometer scale, transitory metastable states can be generated in multicomponents materials. Examples illustrating such specific states are presented. They concern (1) the crystalline nucleation in a growing undercooled liquid droplet formed from a liquid parent phase; (2) the suppression of intermetallic nucleation in solid solutions or glasses subjected to sharp concentration gradients; (3) the nanocrystalline transitory state preceding amorphization by ball milling. In connection with this latter example, a thermodynamic model for the nanocrystal to glass transition, based on a hypothesis of a topological disorder wetting at the nanograin boundaries, is proposed.

  17. Introducing the mean field approximation to CDFT/MMpol method: Statistically converged equilibrium and nonequilibrium free energy calculation for electron transfer reactions in condensed phases

    NASA Astrophysics Data System (ADS)

    Nakano, Hiroshi; Sato, Hirofumi

    2017-04-01

    A new theoretical method to study electron transfer reactions in condensed phases is proposed by introducing the mean-field approximation into the constrained density functional theory/molecular mechanical method with a polarizable force field (CDFT/MMpol). The method enables us to efficiently calculate the statistically converged equilibrium and nonequilibrium free energies for diabatic states in an electron transfer reaction by virtue of the mean field approximation that drastically reduces the number of CDFT calculations. We apply the method to the system of a formanilide-anthraquinone dyad in dimethylsulfoxide, in which charge recombination and cis-trans isomerization reactions can take place, previously studied by the CDFT/MMpol method. Quantitative agreement of the driving force and the reorganization energy between our results and those from the CDFT/MMpol calculation and the experimental estimates supports the utility of our method. The calculated nonequilibrium free energy is analyzed by its decomposition into several contributions such as those from the averaged solute-solvent electrostatic interactions and the explicit solvent electronic polarization. The former contribution is qualitatively well described by a model composed of a coarse-grained dyad in a solution in the linear response regime. The latter contribution reduces the reorganization energy by more than 10 kcal/mol.

  18. Reflection of processes of non-equilibrium two-phase filtration in oil-saturated hierarchical medium in data of active wave geophysical monitoring

    NASA Astrophysics Data System (ADS)

    Hachay, Olga; Khachay, Andrey; Khachay, Oleg

    2016-04-01

    The processes of oil extraction from deposit are linked with the movement of multi-phase multi-component media, which are characterized by non-equilibrium and non-linear rheological features. The real behavior of layered systems is defined by the complexity of the rheology of moving fluids and the morphology structure of the porous medium, and also by the great variety of interactions between the fluid and the porous medium [Hasanov and Bulgakova, 2003]. It is necessary to take into account these features in order to informatively describe the filtration processes due to the non-linearity, non-equilibrium and heterogeneity that are features of real systems. In this way, new synergetic events can be revealed (namely, a loss of stability when oscillations occur, and the formation of ordered structures). This allows us to suggest new methods for the control and management of complicated natural systems that are constructed on account of these phenomena. Thus the layered system, from which it is necessary to extract the oil, is a complicated dynamical hierarchical system. A comparison is provided of non-equilibrium effects of the influence of independent hydrodynamic and electromagnetic induction on an oil layer and the medium which it surrounds. It is known that by drainage and steeping the hysteresis effect on curves of the relative phase permeability in dependence on the porous medium's water saturation in some cycles of influence (drainage-steep-drainage) is observed. Using the earlier developed 3D method of induction electromagnetic frequency geometric monitoring, we showed the possibility of defining the physical and structural features of a hierarchical oil layer structure and estimating the water saturation from crack inclusions. This effect allows managing the process of drainage and steeping the oil out of the layer by water displacement. An algorithm was constructed for 2D modeling of sound diffraction on a porous fluid-saturated intrusion of a hierarchical

  19. Energetic Metastable Oxygen and Nitrogen Atoms in the Terrestrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Kharchenko, Vasili

    2004-01-01

    We have investigated the impact of hot metastable oxygen atoms on the product yields and rate coefficients of atmospheric reactions involving O( (sup 1)D). The contribution of the metastable oxygen atoms to the thermal balance of the terrestrial atmosphere between 50 and 200 km has been determined. We found that the presence of hot O((sup l)D) atoms in the mesosphere and lower thermosphere significantly increases the production rate of the rotationally-vibrationally excited NO molecules. The computed yield of the NO molecules in N2O+ O((sup 1)D) atmospheric collisions, involving non-Maxwellian distributions of the metastable oxygen atoms, is more than two times larger than the NO-yield at a thermal equilibrium. The calculated non-equilibrium rate and yield functions are important for ozone and nitrous oxide modeling in the stratosphere, mesosphere and lower thermosphere.

  20. Metastability in Schloegl's second model for autocatalysis: Lattice-gas realization with particle diffusion.

    PubMed

    Guo, Xiaofang; De Decker, Y; Evans, J W

    2010-08-01

    We analyze metastability associated with a discontinuous nonequilibrium phase transition in a stochastic lattice-gas realization of Schloegl's second model for autocatalysis. This model realization involves spontaneous annihilation, autocatalytic creation, and diffusion of particles on a square lattice, where creation at empty sites requires an adjacent diagonal pair of particles. This model, also known as the quadratic contact process, exhibits discontinuous transition between a populated active state and a particle-free vacuum or "poisoned" state, as well as generic two-phase coexistence. The poisoned state exists for all particle annihilation rates p>0 and hop rates h≥0 and is an absorbing state in the sense of Markovian processes. The active or reactive steady state exists only for p below a critical value, p{e}=p{e}(h) , but a metastable extension appears for a range of higher p up to an effective upper spinodal point, p{s+}=p{s+}(h) (i.e., p{s+}>p{e} ). For selected h , we assess the location of p{s+}(h) by characterizing both the poisoning kinetics and the propagation of interfaces separating vacuum and active states as a function of p .

  1. Anisotropy of the thermal conductivity in a crystalline polymer: Reverse nonequilibrium molecular dynamics simulation of the δ phase of syndiotactic polystyrene

    NASA Astrophysics Data System (ADS)

    Rossinsky, Eddie; Müller-Plathe, Florian

    2009-04-01

    The thermal conductivity of the crystalline δ phase of syndiotactic polystyrene has been investigated by reverse nonequilibrium molecular dynamics simulations. The results are in the expected range. An anisotropy is found for the thermal conductivity, with the component in chain direction being 2.5-3 larger than perpendicular to it. Any increase in the density causes an increase also in the thermal conductivity, particularly in the perpendicular directions. As side results, the simulations confirm an earlier finding on the force field dependence of the thermal conductivity: The thermal conductivity has a tendency to decrease when the number of active degrees of freedom in the system is reduced by the introduction of constraints. This dependence is, however, weaker and more erratic than previously found for molecular liquids and amorphous polymers.

  2. Dynamic consolidation of metastable nanocrystalline powders

    SciTech Connect

    Korth, G.E.; Williamson, R.L.

    1995-10-01

    Nanocrystalline metal powders synthesized by mechanical alloying in a ball mill resulted in micron-sized powder particles with a nanosized (5 to 25 nm) substructure. Conventional consolidation methods resulted in considerable coarsening of the metastable nanometer crystallites, but dynamic consolidation of these powders using explosive techniques produced fully dense monoliths while retaining the 5- to 25-nm substructure. Numerical modeling used to guide the experimental phase, revealed that the compression wave necessary for suitable consolidation was of order of 10 GPa for a few tenths of a microsecond. The consolidation process is described, and the retention of the metastable nanostructure is illustrated.

  3. Experimental and first-principles calculation study of the pressure-induced transitions to a metastable phase in GaP O4 and in the solid solution AlP O4-GaP O4

    NASA Astrophysics Data System (ADS)

    Angot, E.; Huang, B.; Levelut, C.; Le Parc, R.; Hermet, P.; Pereira, A. S.; Aquilanti, G.; Frapper, G.; Cambon, O.; Haines, J.

    2017-08-01

    α -Quartz-type gallium phosphate and representative compositions in the AlP O4-GaP O4 solid solution were studied by x-ray powder diffraction and absorption spectroscopy, Raman scattering, and by first-principles calculations up to pressures of close to 30 GPa. A phase transition to a metastable orthorhombic high-pressure phase along with some of the stable orthorhombic C m c m CrV O4 -type material is found to occur beginning at 9 GPa at 320 ∘C in GaP O4 . In the case of the AlP O4-GaP O4 solid solution at room temperature, only the metastable orthorhombic phase was obtained above 10 GPa. The possible crystal structures of the high-pressure forms of GaP O4 were predicted from first-principles calculations and the evolutionary algorithm USPEX. A predicted orthorhombic structure with a P m n 21 space group with the gallium in sixfold and phosphorus in fourfold coordination was found to be in the best agreement with the combined experimental data from x-ray diffraction and absorption and Raman spectroscopy. This method is found to very powerful to better understand competition between different phase transition pathways at high pressure.

  4. Metastable structure of Li13Si4

    NASA Astrophysics Data System (ADS)

    Gruber, Thomas; Bahmann, Silvia; Kortus, Jens

    2016-04-01

    The Li13Si4 phase is one out of several crystalline lithium silicide phases, which is a potential electrode material for lithium ion batteries and contains a high theoretical specific capacity. By means of ab initio methods like density functional theory (DFT) many properties such as heat capacity or heat of formation can be calculated. These properties are based on the calculation of phonon frequencies, which contain information about the thermodynamical stability. The current unit cell of "Li13Si4" given in the ICSD database is unstable with respect to DFT calculations. We propose a modified unit cell that is stable in the calculations. The evolutionary algorithm EVO found a structure very similar to the ICSD one with both of them containing metastable lithium positions. Molecular dynamic simulations show a phase transition between both structures where these metastable lithium atoms move. This phase transition is achieved by a very fast one-dimensional lithium diffusion and stabilizes this phase.

  5. Nonequilibrium thermodynamics of an interface

    NASA Astrophysics Data System (ADS)

    Schweizer, Marco; Öttinger, Hans Christian; Savin, Thierry

    2016-05-01

    Interfacial thermodynamics has deep ramifications in understanding the boundary conditions of transport theories. We present a formulation of local equilibrium for interfaces that extends the thermodynamics of the "dividing surface," as introduced by Gibbs, to nonequilibrium settings such as evaporation or condensation. By identifying the precise position of the dividing surface in the interfacial region with a gauge degree of freedom, we exploit gauge-invariance requirements to consistently define the intensive variables for the interface. The model is verified under stringent conditions by employing high-precision nonequilibrium molecular-dynamics simulations of a coexisting vapor-liquid Lennard-Jones fluid. We conclude that the interfacial temperature is determined using the surface tension as a "thermometer," and it can be significantly different from the temperatures of the adjacent phases. Our findings lay foundations for nonequilibrium interfacial thermodynamics.

  6. Reversible transition between coherently strained BiFeO3 and the metastable pseudotetragonal phase on (LaAlO3)0.3(Sr2AlTaO6)0.7 (001)

    NASA Astrophysics Data System (ADS)

    Fu, Z.; Yin, Z. G.; Zhang, X. W.; Chen, N. F.; Zhao, Y. J.; Bai, Y. M.; Zhao, D. Y.; Zhang, H. F.; Yuan, Y. D.; Chen, Y. N.; Wu, J. L.; You, J. B.

    2017-02-01

    Coherently strained BiFeO3 epitaxial films deposited on (001)-oriented (LaAlO3)0.3(Sr2AlTaO6)0.7 have a tetragonal crystal form, a stress-distorted version of the rhombohedral phase. A conversion from coherent BiFeO3 to a new, tilted pseudotetragonal phase with the c/a ratio exceeding 1.2 is observed beyond the critical thickness of 60 nm. X-ray reciprocal space maps display that this highly elongated metastable structure is monoclinically distorted by ˜0.2° and exhibits an out-of-plane tilt of ˜3°. These observations are at odds with traditional understandings that a coherent epilayer should turn into its parent structure upon increasing the thickness, providing a new insight into the strain relaxation mechanism of epitaxial films. We show that in the heating and cooling cycles, the transition between these two phases is completely reversible and is associated with the alleviation of thermal stress. Our results reveal that the coherent BiFeO3 epilayer with tetragonal symmetry stabilized by moderate compressive strain behaves as a structural bridge that links the thermally stable rhombohedral phase and the metastable tetragonal-like phase with a giant axial ratio. Moreover, the finding of a BiFeO3 phase mixture in our study extends the threshold in-plane strain of the stress-driven morphotropic phase boundary to a value as low as -2.3%.

  7. Landau superfluids as nonequilibrium stationary states

    SciTech Connect

    Wreszinski, Walter F.

    2015-01-15

    We define a superfluid state to be a nonequilibrium stationary state (NESS), which, at zero temperature, satisfies certain metastability conditions, which physically express that there should be a sufficiently small energy-momentum transfer between the particles of the fluid and the surroundings (e.g., pipe). It is shown that two models, the Girardeau model and the Huang-Yang-Luttinger (HYL) model, describe superfluids in this sense and, moreover, that, in the case of the HYL model, the metastability condition is directly related to Nozières’ conjecture that, due to the repulsive interaction, the condensate does not suffer fragmentation into two (or more) parts, thereby assuring its quantum coherence. The models are rigorous examples of NESS in which the system is not finite, but rather a many-body system.

  8. Metastable isomers - A new class of interstellar molecules

    NASA Technical Reports Server (NTRS)

    Green, S.; Herbst, E.

    1979-01-01

    The abundances of a variety of metastable isomers of small organic molecules, analogous to HNC/HCN, in dense interstellar clouds are considered. These metastable species, some of which are thought to exist as intermediates in laboratory organic chemical reactions, are of considerable interest to chemists. Current ideas of gas-phase, ion-molecule chemistry are utilized to demonstrate that such metastable species should often be present in dense clouds in sufficient abundance to be observed. Unfortunately, the spectral constants of metastable isomers have rarely been determined in the laboratory, and quantum chemical calculations of a varying degree of accuracy must be utilized; results are included of some new quantum chemical calculations. The interstellar chemistry and expected microwave spectra of a representative sample of possibly important interstellar metastable isomers are discussed.

  9. Metastable nematic hedgehogs

    NASA Astrophysics Data System (ADS)

    Rosso, Riccardo; Virga, Epifanio G.

    1996-07-01

    For nematic liquid crystals, we study the local stability of a radial hedgehog against biaxial perturbations. Our analysis employs the Landau - de Gennes functional to describe the free energy stored in a ball, whose radius is a parameter of the model. We find that a radial hedgehog may be either unstable or metastable, depending on the values of the elastic constants. For unstable hedgehogs, we give an explicit expression for the radius of the ball within which the instability manifests itself: it can be interpreted as the size of the biaxial core of the defect; it is of the same order of magnitude as the radius of the disclination ring predicted by Penzenstadler and Trebin's model. The metastable hedgehogs predicted by our model are the major novelty of the paper. They tell us that we may also expect truly uniaxial point defects, whose core contains no biaxial structure.

  10. Metastable dark energy

    NASA Astrophysics Data System (ADS)

    Landim, Ricardo G.; Abdalla, Elcio

    2017-01-01

    We build a model of metastable dark energy, in which the observed vacuum energy is the value of the scalar potential at the false vacuum. The scalar potential is given by a sum of even self-interactions up to order six. The deviation from the Minkowski vacuum is due to a term suppressed by the Planck scale. The decay time of the metastable vacuum can easily accommodate a mean life time compatible with the age of the universe. The metastable dark energy is also embedded into a model with SU(2)R symmetry. The dark energy doublet and the dark matter doublet naturally interact with each other. A three-body decay of the dark energy particle into (cold and warm) dark matter can be as long as large fraction of the age of the universe, if the mediator is massive enough, the lower bound being at intermediate energy level some orders below the grand unification scale. Such a decay shows a different form of interaction between dark matter and dark energy, and the model opens a new window to investigate the dark sector from the point-of-view of particle physics.

  11. Preparation and topotactical oxidation of ScVO3 with bixbyte structure: a low-temperature route to stabilize the new defect fluorite ScVO(3.5) metastable phase.

    PubMed

    Alonso, José Antonio; Casais, María Teresa; Martínez-Lope, María Jesús

    2004-05-07

    ScVO3 has been prepared by controlled reduction of a ScVO4 precursor under an H2/N2 flow at 1250 degrees C. The crystal structure of this material has been studied at room temperature by Rietveld refinement of high-resolution neutron powder diffraction (NPD) data. Sc3+ and V3+ are distributed at random over the metal sites of a C-M2O3 bixbyite-type structure, space group Ia3, a = 9.6182(1) Angstroms. The thermal analysis of ScVO3 in an air flow shows two subsequent oxidation processes, with a final reversal to ScVO4 above 600 degrees C. An intermediate phase of composition ScVO(3.5), containing V4+ cations, can be isolated by isothermal annealing at 350 degrees C in air. This metastable phase has been identified by X-ray diffraction (XRD) as a fluorite-type oxide (space group Fm3m, a = 4.947(2) Angstroms), also showing a random distribution of Sc and V cations over the metal positions. The Rietveld refinement of the ScVO(3.5) structure from powder XRD data in a fluorite structural model yields abnormally high thermal factors for the oxygen atoms, suggesting oxygen mobility in this metastable material.

  12. Critical speeding up of nonequilibrium electronic relaxation near nematic phase transition in unstrained Ba(Fe1 -xCox)2As2

    NASA Astrophysics Data System (ADS)

    Patz, A.; Li, T.; Luo, L.; Yang, X.; Bud'ko, S.; Canfield, P. C.; Perakis, I. E.; Wang, J.

    2017-04-01

    The origin of the anisotropic, paramagnetic phase associated with electronic nematicity in the iron pnictides is yet to be resolved. Furthermore, the detwinning technique used to study the nematic order in single crystals is known to introduce extra anisotropy into the sample, which can smear out the transition and even modify intrinsic characteristics associated with "spontaneous" Ising, Z2, symmetry breaking. Here we use a strain- and stress-free twinned sample to show that there is a significant reduction in the energy relaxation times of the hot electrons following nonequilibrium femtosecond laser excitation on both the high- and low-temperature sides of the nematic phase transition. This femtosecond critical speeding-up behavior provides an alternative way to study complex, electronically driven nematicity, neither invoking external strain nor measuring a small anisotropy in twinned crystals. Particularly, a detailed analysis of the observed ultrafast decay time and the amplitude associated with an initial electronic relaxation provides compelling implications on the physical origin of nematicity in iron pnictides: (1) nematic fluctuations strongly influence the dynamics of electron cooling, and (2) spin fluctuations determine the part of amplitude arising from the nematicity. Finally, we discuss ultrafast coherent phonon generation which may contribute to the measured transition temperature in our ultrafast measurements.

  13. Metastable metallic hydrogen glass

    SciTech Connect

    Nellis, W J

    2001-02-06

    The quest for metallic hydrogen has been going on for over one hundred years. Before hydrogen was first condensed into a liquid in 1898, it was commonly thought that condensed hydrogen would be a metal, like the monatomic alkali metals below hydrogen in the first column of the Periodic Table. Instead, condensed hydrogen turned out to be transparent, like the diatomic insulating halogens in the seventh column of the Periodic Table. Wigner and Huntington predicted in 1935 that solid hydrogen at 0 K would undergo a first-order phase transition from a diatomic to a monatomic crystallographically ordered solid at {approx}25 GPa. This first-order transition would be accompanied by an insulator-metal transition. Though searched for extensively, a first-order transition from an ordered diatomic insulator to a monatomic metal is yet to be observed at pressures up to 120 and 340 GPa using x-ray diffraction and visual inspection, respectively. On the other hand, hydrogen reaches the minimum electrical conductivity of a metal at 140 GPa, 0.6 g/cm{sup 3}, and 3000 K. These conditions were achieved using a shock wave reverberating between two stiff sapphire anvils. The shock wave was generated with a two-stage light-gas gun. This temperature exceeds the calculated melting temperature at 140 GPa by a factor of {approx}2, indicating that this metal is in the disordered fluid phase. The disorder permits hydrogen to become metallic via a Mott transition in the liquid at a much smaller pressure than in the solid, which has an electronic bandgap to the highest pressures reached to date. Thus, by using the finite temperature achieved with shock compression to achieve a disordered melt, metallic hydrogen can be achieved at a much lower pressure in a fluid than in a solid. It is not known how, nor even whether, metallic hydrogen can be quenched from a fluid at high pressures to a disordered solid metallic glass at ambient pressure and temperature. Because metallization occurs by simply

  14. Magnetic BiMn-α phase synthesis prediction: First-principles calculation, thermodynamic modeling and nonequilibrium chemical partitioning

    SciTech Connect

    Zhou, S. H.; Liu, C.; Yao, Y. X.; Du, Y.; Zhang, L. J.; Wang, C. -Z.; Ho, K. -M.; Kramer, M. J.

    2016-04-29

    BiMn-α is promising permanent magnet. Due to its peritectic formation feature, there is a synthetic challenge to produce single BiMn-α phase. The objective of this study is to assess driving force for crystalline phase pathways under far-from-equilibrium conditions. First-principles calculations with Hubbard U correction are performed to provide a robust description of the thermodynamic behavior. The energetics associated with various degrees of the chemical partitioning are quantified to predict temperature, magnetic field, and time dependence of the phase selection. By assessing the phase transformation under the influence of the chemical partitioning, temperatures, and cooling rate from our calculations, we suggest that it is possible to synthesize the magnetic BiMn-α compound in a congruent manner by rapid solidification. The external magnetic field enhances the stability of the BiMn-α phase. In conclusion, the compositions of the initial compounds from these highly driven liquids can be far from equilibrium.

  15. A general unified non-equilibrium model for predicting saturated and subcooled critical two-phase flow rates through short and long tubes

    SciTech Connect

    Fraser, D.W.H.; Abdelmessih, A.H.

    1995-09-01

    A general unified model is developed to predict one-component critical two-phase pipe flow. Modelling of the two-phase flow is accomplished by describing the evolution of the flow between the location of flashing inception and the exit (critical) plane. The model approximates the nonequilibrium phase change process via thermodynamic equilibrium paths. Included are the relative effects of varying the location of flashing inception, pipe geometry, fluid properties and length to diameter ratio. The model predicts that a range of critical mass fluxes exist and is bound by a maximum and minimum value for a given thermodynamic state. This range is more pronounced at lower subcooled stagnation states and can be attributed to the variation in the location of flashing inception. The model is based on the results of an experimental study of the critical two-phase flow of saturated and subcooled water through long tubes. In that study, the location of flashing inception was accurately controlled and adjusted through the use of a new device. The data obtained revealed that for fixed stagnation conditions, the maximum critical mass flux occurred with flashing inception located near the pipe exit; while minimum critical mass fluxes occurred with the flashing front located further upstream. Available data since 1970 for both short and long tubes over a wide range of conditions are compared with the model predictions. This includes test section L/D ratios from 25 to 300 and covers a temperature and pressure range of 110 to 280{degrees}C and 0.16 to 6.9 MPa. respectively. The predicted maximum and minimum critical mass fluxes show an excellent agreement with the range observed in the experimental data.

  16. Nonequilibrium solidification in undercooled Ti{sub 45}Al{sub 55} melts

    SciTech Connect

    Hartmann, H.; Galenko, P. K.; Holland-Moritz, D.; Kolbe, M.; Herlach, D. M.; Shuleshova, O.

    2008-04-01

    Ti-Al alloys are of high technological interest as light-weight high-performance materials. When produced by solidification from the liquid state, the material properties of as-solidified materials are strongly dependent on the conditions governing the solidification process. Nonequilibrium solidification from the state of an undercooled liquid may result to the formation of metastable solid materials. On the one hand undercooling under special cases may influence the phase selection behavior during solidification, and on the other hand during rapid growth of solid phases in undercooled melts nonequilibrium effects such as solute trapping and disorder trapping may occur. In the present work containerless processing by electromagnetic levitation is used to undercool Ti{sub 45}Al{sub 55} melts deeply below the liquidus temperature. The dendrite growth velocity during the solidification is measured as a function of undercooling by application of a high-speed video camera. In situ diffraction experiments at ESRF in Grenoble and microstructure investigations are performed in order to identify the primary solidified phases. The experimental findings are interpreted within current theoretical models for dendritic growth and solute trapping.

  17. Blume-Capel ferromagnet driven by propagating and standing magnetic field wave: Dynamical modes and nonequilibrium phase transition

    NASA Astrophysics Data System (ADS)

    Acharyya, Muktish; Halder, Ajay

    2017-03-01

    The dynamical responses of Blume-Capel (S=1) ferromagnet to the plane propagating (with fixed frequency and wavelength) and standing magnetic field waves are studied separately in two dimensions by extensive Monte Carlo simulation. Depending on the values of temperature, amplitude of the propagating magnetic field and the strength of anisotropy, two different dynamical phases are observed. For a fixed value of anisotropy and the amplitude of the propagating magnetic field, the system undergoes a dynamical phase transition from a driven spin wave propagating phase to a pinned or spin frozen state as the system is cooled down. The time averaged magnetisation over a full cycle of the propagating magnetic field plays the role of the dynamic order parameter. A comprehensive phase diagram is plotted in the plane formed by the amplitude of the propagating wave and the temperature of the system. It is found that the phase boundary shrinks inward as the anisotropy increases. The phase boundary, in the plane described by the strength of the anisotropy and temperature, is also drawn. This phase boundary was observed to shrink inward as the field amplitude increases.

  18. Non-equilibrium transitions in multiscale systems with a bifurcating slow manifold

    NASA Astrophysics Data System (ADS)

    Grafke, Tobias; Vanden-Eijnden, Eric

    2017-09-01

    Noise-induced transitions between metastable fixed points in systems evolving on multiple time scales are analyzed in situations where the time scale separation gives rise to a slow manifold with bifurcation. This analysis is performed within the realm of large deviation theory. It is shown that these non-equilibrium transitions make use of a reaction channel created by the bifurcation structure of the slow manifold, leading to vastly increased transition rates. Several examples are used to illustrate these findings, including an insect outbreak model, a system modeling phase separation in the presence of evaporation, and a system modeling transitions in active matter self-assembly. The last example involves a spatially extended system modeled by a stochastic partial differential equation.

  19. Magnetic BiMn-α phase synthesis prediction: First-principles calculation, thermodynamic modeling and nonequilibrium chemical partitioning

    DOE PAGES

    Zhou, S. H.; Liu, C.; Yao, Y. X.; ...

    2016-04-29

    BiMn-α is promising permanent magnet. Due to its peritectic formation feature, there is a synthetic challenge to produce single BiMn-α phase. The objective of this study is to assess driving force for crystalline phase pathways under far-from-equilibrium conditions. First-principles calculations with Hubbard U correction are performed to provide a robust description of the thermodynamic behavior. The energetics associated with various degrees of the chemical partitioning are quantified to predict temperature, magnetic field, and time dependence of the phase selection. By assessing the phase transformation under the influence of the chemical partitioning, temperatures, and cooling rate from our calculations, we suggestmore » that it is possible to synthesize the magnetic BiMn-α compound in a congruent manner by rapid solidification. The external magnetic field enhances the stability of the BiMn-α phase. In conclusion, the compositions of the initial compounds from these highly driven liquids can be far from equilibrium.« less

  20. A direct liquid, non-equilibrium solid-phase micro-extraction application for analysing chemical variation of single peltate trichomes on leaves of Salvia officinalis.

    PubMed

    Grassi, Paolo; Novak, Johannes; Steinlesberger, Heidi; Franz, Chlodwig

    2004-01-01

    A non-equilibrium solid phase micro-extraction application was tested for the rapid extraction of essential oil from single oil glands of sage and the oil components compared with those determined by solvent extract and distillation. Oil glands were directly ruptured with a polydimethylsiloxane-coated fused silica fibre and the essential oil was sorbed. Three insertion levels of an individual plant of Salvia officinalis involving an immature apical young leaf, an expanding and a fully developed leaf, respectively, were used to determine the applicability of this method. Thirty-eight components in the oil could be identified by GC-MS. The method only showed small semi-quantitative differences compared with conventional methods. Chemical variation of single oil glands within the immature and premature leaf was higher than within the homogeneous mature leaf. The intermediary, still-expanding leaf was used to carry out a detailed study of the glands. The basal region of the intermediary leaf contained compounds in high conformity with the young leaf trichomes. The remaining oil glands of this leaf showed inconsistent accumulation patterns.

  1. Energetic Metastable Oxygen and Nitrogen Atoms in the Terrestrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Kharchenko, Vasili; Dalgarno, A.

    2005-01-01

    This report summarizes our research performed under NASA Grant NAG5-11857. The three-year grant have been supported by the Geospace Sciences SR&T program. We have investigated the energetic metastable oxygen and nitrogen atoms in the terrestrial stratosphere, mesosphere and thermosphere. Hot atoms in the atmosphere are produced by solar radiation, the solar wind and various ionic reactions. Nascent hot atoms arise in ground and excited electronic states, and their translational energies are larger by two - three orders of magnitude than the thermal energies of the ambient gas. The relaxation kinetics of hot atoms determines the rate of atmospheric heating, the intensities of aeronomic reactions, and the rate of atom escape from the planet. Modeling of the non-Maxwellian energy distributions of metastable oxygen and nitrogen atoms have been focused on the determination of their impact on the energetics and chemistry of the terrestrial atmosphere between 25 and 250 km . At this altitudes, we have calculated the energy distribution functions of metastable O and N atoms and computed non-equilibrium rates of important aeronomic reactions, such as destruction of the water molecules by O(1D) atoms and production of highly excited nitric oxide molecules. In the upper atmosphere, the metastable O(lD) and N(2D) play important role in formation of the upward atomic fluxes. We have computed the upward fluxes of the metastable and ground state oxygen atoms in the upper atmosphere above 250 km. The accurate distributions of the metastable atoms have been evaluated for the day and night-time conditions.

  2. Digital Synchronizer without Metastability

    NASA Technical Reports Server (NTRS)

    Simle, Robert M.; Cavazos, Jose A.

    2009-01-01

    A proposed design for a digital synchronizing circuit would eliminate metastability that plagues flip-flop circuits in digital input/output interfaces. This metastability is associated with sampling, by use of flip-flops, of an external signal that is asynchronous with a clock signal that drives the flip-flops: it is a temporary flip-flop failure that can occur when a rising or falling edge of an asynchronous signal occurs during the setup and/or hold time of a flip-flop. The proposed design calls for (1) use of a clock frequency greater than the frequency of the asynchronous signal, (2) use of flip-flop asynchronous preset or clear signals for the asynchronous input, (3) use of a clock asynchronous recovery delay with pulse width discriminator, and (4) tying the data inputs to constant logic levels to obtain (5) two half-rate synchronous partial signals - one for the falling and one for the rising edge. Inasmuch as the flip-flop data inputs would be permanently tied to constant logic levels, setup and hold times would not be violated. The half-rate partial signals would be recombined to construct a signal that would replicate the original asynchronous signal at its original rate but would be synchronous with the clock signal.

  3. Radiation-sustained nanocluster metastability in oxide dispersion strengthened materials

    NASA Astrophysics Data System (ADS)

    Ribis, J.; Bordas, E.; Trocellier, P.; Serruys, Y.; de Carlan, Y.; Legris, A.

    2015-12-01

    ODS materials constitute a new promising class of structural materials for advanced fission and fusion energy application. These Fe-Cr based ferritic steels contain ultra-high density of dispersion-strengthening nanoclusters conferring excellent mechanical properties to the alloy. Hence, guarantee the nanocluster stability under irradiation remain a critical issue. Nanoclusters are non-equilibrium multicomponent compounds (YTiCrO) forming through a complex nucleation pathway during the elaboration process. In this paper, it is proposed to observe the response of these nanoclusters when the system is placed far from equilibrium by means of ion beam. The results indicate that the Y, Ti, O and Cr atoms self-organized so that nanoclusters coarsened but maintain their non-equilibrium chemical composition. It is discussed that the radiation-sustained nanocluster metastability emerges from cooperative effects: radiation-induced Ostwald ripening, permanent creation of vacancies in the clusters, and fast Cr diffusion mediated by interstitials.

  4. Dynamic metastability in the two-dimensional Potts ferromagnet.

    PubMed

    Ibáñez Berganza, Miguel; Petri, Alberto; Coletti, Pietro

    2014-05-01

    We investigate the nonequilibrium dynamics of the two-dimensional (2D) Potts model on the square lattice after a quench below the discontinuous transition point. By means of numerical simulations of systems with q=12, 24, and 48, we observe the onset of a stationary regime below the temperature-driven transition, in a temperature interval decreasing with the system size and increasing with q. These results obtained dynamically agree with those obtained from the analytical continuation of the free energy [J. L. Meunier and A. Morel, Eur. Phys. J. B 13, 341 (2000)], from which metastability in the 2D Potts model results to be a finite-size effect.

  5. Desensitization of metastable intermolecular composites

    SciTech Connect

    Busse, James R.; Dye, Robert C.; Foley, Timothy J.; Higa, Kelvin T.; Jorgensen, Betty S.; Sanders, Victor E.; Son, Steven F.

    2011-04-26

    A method to substantially desensitize a metastable intermolecular composite material to electrostatic discharge and friction comprising mixing the composite material with an organic diluent and removing enough organic diluent from the mixture to form a mixture with a substantially putty-like consistency, as well as a concomitant method of recovering the metastable intermolecular composite material.

  6. Method optimization for non-equilibrium solid phase microextraction sampling of HAPs for GC/MS analysis

    NASA Astrophysics Data System (ADS)

    Zawadowicz, M. A.; Del Negro, L. A.

    2010-12-01

    Hazardous air pollutants (HAPs) are usually present in the atmosphere at pptv-level, requiring measurements with high sensitivity and minimal contamination. Commonly used evacuated canister methods require an overhead in space, money and time that often is prohibitive to primarily-undergraduate institutions. This study optimized an analytical method based on solid-phase microextraction (SPME) of ambient gaseous matrix, which is a cost-effective technique of selective VOC extraction, accessible to an unskilled undergraduate. Several approaches to SPME extraction and sample analysis were characterized and several extraction parameters optimized. Extraction time, temperature and laminar air flow velocity around the fiber were optimized to give highest signal and efficiency. Direct, dynamic extraction of benzene from a moving air stream produced better precision (±10%) than sampling of stagnant air collected in a polymeric bag (±24%). Using a low-polarity chromatographic column in place of a standard (5%-Phenyl)-methylpolysiloxane phase decreased the benzene detection limit from 2 ppbv to 100 pptv. The developed method is simple and fast, requiring 15-20 minutes per extraction and analysis. It will be field-validated and used as a field laboratory component of various undergraduate Chemistry and Environmental Studies courses.

  7. Solar-blind Photodetector with High Avalanche Gains and Bias-tunable Detecting Functionality Based on Metastable Phase α-Ga2O3/ZnO Isotype Heterostructures.

    PubMed

    Chen, Xuanhu; Xu, Yang; Zhou, Dong; Yang, Sen; Ren, Fang-Fang; Lu, Hai; Tang, Kun; Gu, Shulin; Zhang, Rong; Zheng, Youdou; Ye, Jiandong

    2017-10-04

    The metastable α phase Ga2O3 is an emerging material for developing solar-blind photodetectors and power electronic devices towards civil and military applications. Despite of its superior physical properties, high quality epitaxy of metastable phase α-Ga2O3 remains challenging. To this end, single crystalline α-Ga2O3 epilayers are achieved on nonpolar ZnO (11-20) substrates for the first time and a high performance Au/α-Ga2O3/ZnO isotype heterostructures based Schottky barrier avalanche diode is demonstrated. The device exhibits self-powered functions with a dark current lower than 1 pA, a UV/visible rejection ratio of 10^3 and a detectivity of 7.83×10^13 cm Hz1/2/W. Dual responsivity bands with cutoff wavelengths at 255 nm and 375 nm are observed with their peak responsivities of 0.5 and 0.071A/W at -5V, respectively. High photoconductive gains at low bias is governed by barrier lowing effect at Au/Ga2O3 and Ga2O3/ZnO hetero-interfaces. The device also allows avalanche multiplication processes initiated by pure electron and hole injections under different illumination conditions. High avalanche gains over 10^3 and a low ionization coefficient ratio of electrons and holes are yielded, leading to a total gain over 10^5 and a record high responsivity of 1.10×10^4 A/W. Such avalanche heterostructures with ultra-high gains and bias-tunable UV detecting functionality holds the promise for developing high performance solar-blind photodetectors.

  8. Nonequilibrium molecular dynamics: The first 25 years

    SciTech Connect

    Hoover, W.G. |

    1992-08-01

    Equilibrium Molecular Dynamics has been generalized to simulate Nonequilibrium systems by adding sources of thermodynamic heat and work. This generalization incorporates microscopic mechanical definitions of macroscopic thermodynamic and hydrodynamic variables, such as temperature and stress, and augments atomistic forces with special boundary, constraint, and driving forces capable of doing work on, and exchanging heat with, an otherwise Newtonian system. The underlying Lyapunov instability of these nonequilibrium equations of motion links microscopic time-reversible deterministic trajectories to macroscopic time-irreversible hydrodynamic behavior as described by the Second Law of Thermodynamics. Green-Kubo linear-response theory has been checked. Nonlinear plastic deformation, intense heat conduction, shockwave propagation, and nonequilibrium phase transformation have all been simulated. The nonequilibrium techniques, coupled with qualitative improvements in parallel computer hardware, are enabling simulations to approximate real-world microscale and nanoscale experiments.

  9. Ion mixing and phase diagrams

    NASA Astrophysics Data System (ADS)

    Lau, S. S.; Liu, B. X.; Nicolet, M.-A.

    1983-05-01

    Interactions induced by ion irradiation are generally considered to be non-equilibrium processes, whereas phase diagrams are determined by phase equilibria. These two entities are seemingly unrelated. However, if one assumes that quasi-equilibrium conditions prevail after the prompt events, subsequent reactions are driven toward equilibrium by thermodynamical forces. Under this assumption, ion-induced reactions are related to equilibrium and therefore to phase diagrams. This relationship can be seen in the similarity that exists in thin films between reactions induced by ion irradiation and reactions induced by thermal annealing. In the latter case, phase diagrams have been used to predict the phase sequence of stable compound formation, notably so in cases of silicide formation. Ion-induced mixing not only can lead to stable compound formation, but also to metastable alloy formation. In some metal-metal systems, terminal solubilities can be greatly extended by ion mixing. In other cases, where the two constituents of the system have different crystal structures, extension of terminal solubility from both sides of the phase diagram eventually becomes structurally incompatible and a glassy (amorphous) mixture can form. The composition range where this bifurcation is likely to occur is in the two-phase regions of the phase diagram. These concepts are potentially useful guides in selecting metal pairs that from metallic glasses by ion mixing. In this report, phenomenological correlation between stable (and metastable) phase formation and phase diagram is discussed in terms of recent experimental data.

  10. Metastability in Senescence.

    PubMed

    Naik, Shruti; Banerjee, Arpan; Bapi, Raju S; Deco, Gustavo; Roy, Dipanjan

    2017-07-01

    The brain during healthy aging exhibits gradual deterioration of structure but maintains a high level of cognitive ability. These structural changes are often accompanied by reorganization of functional brain networks. Existing neurocognitive theories of aging have argued that such changes are either beneficial or detrimental. Despite numerous empirical investigations, the field lacks a coherent account of the dynamic processes that occur over our lifespan. Taking advantage of the recent developments in whole-brain computational modeling approaches, we hypothesize that the continuous process of aging can be explained by the concepts of metastability - a theoretical framework that gives a systematic account of the variability of the brain. This hypothesis can bridge the gap between existing theories and the empirical findings on age-related changes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Nonequilibrium dynamics of language games on complex networks

    NASA Astrophysics Data System (ADS)

    Dall'Asta, Luca; Baronchelli, Andrea; Barrat, Alain; Loreto, Vittorio

    2006-09-01

    The naming game is a model of nonequilibrium dynamics for the self-organized emergence of a linguistic convention or a communication system in a population of agents with pairwise local interactions. We present an extensive study of its dynamics on complex networks, that can be considered as the most natural topological embedding for agents involved in language games and opinion dynamics. Except for some community structured networks on which metastable phases can be observed, agents playing the naming game always manage to reach a global consensus. This convergence is obtained after a time generically scaling with the population’s size N as tconv˜N1.4±0.1 , i.e., much faster than for agents embedded on regular lattices. Moreover, the memory capacity required by the system scales only linearly with its size. Particular attention is given to heterogenous networks, in which the dynamical activity pattern of a node depends on its degree. High-degree nodes have a fundamental role, but require larger memory capacity. They govern the dynamics acting as spreaders of (linguistic) conventions. The effects of other properties, such as the average degree and the clustering, are also discussed.

  12. Nonequilibrium thermodynamics of an interface

    NASA Astrophysics Data System (ADS)

    Savin, Thierry; Schweizer, Marco; Öttinger, Hans Christian

    Interfacial thermodynamics has deep ramifications in understanding the boundary conditions of transport theories. We present a formulation of local equilibrium for interfaces that extends the thermodynamics of the ``dividing surface,'' as introduced by Gibbs, to nonequilibrium settings such as evaporation or condensation. By identifying the precise position of the dividing surface in the interfacial region with a gauge degree of freedom, we exploit gauge-invariance requirements to consistently define the intensive variables for the interface. The model is verified under stringent conditions by employing high-precision nonequilibrium molecular dynamics simulations of a coexisting vapor-liquid Lennard-Jones fluid. We conclude that the interfacial temperature is determined using the surface tension as a ``thermometer,'' and can be significantly different from the temperatures of the adjacent phases.

  13. Superstructure in the Metastable Intermediate-Phase Li2/3 FePO4 Accelerating the Lithium Battery Cathode Reaction.

    PubMed

    Nishimura, Shin-ichi; Natsui, Ryuichi; Yamada, Atsuo

    2015-07-27

    LiFePO4 is an important cathode material for lithium-ion batteries. Regardless of the biphasic reaction between the insulating end members, Lix FePO4 , x≈0 and x≈1, optimization of the nanostructured architecture has substantially improved the power density of positive LiFePO4 electrode. The charge transport that occurs in the interphase region across the biphasic boundary is the primary stage of solid-state electrochemical reactions in which the Li concentrations and the valence state of Fe deviate significantly from the equilibrium end members. Complex interactions among Li ions and charges at the Fe sites have made understanding stability and transport properties of the intermediate domains difficult. Long-range ordering at metastable intermediate eutectic composition of Li2/3 FePO4 has now been discovered and its superstructure determined, which reflected predominant polaron crystallization at the Fe sites followed by Li(+) redistribution to optimize the Li-Fe interactions.

  14. Nonequilibrium is different

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, T. R.; Dorfman, J. R.

    2015-08-01

    Nonequilibrium and equilibrium fluid systems differ due to the existence of long-range correlations in nonequilibrium that are not present in equilibrium, except at critical points. Here we examine fluctuations of the temperature, of the pressure tensor, and of the heat current in a fluid maintained in a nonequilibrium stationary state (NESS) with a fixed temperature gradient, a system in which the nonequilibrium correlations are especially long-ranged. For this particular NESS, our results show that (i) the mean-squared fluctuations in nonequilibrium differ markedly in their system-size scaling compared to their equilibrium counterparts, and (ii) there are large, nonlocal correlations of the normal stress in this NESS. These terms provide important corrections to the fluctuating normal stress in linearized Landau-Lifshitz fluctuating hydrodynamics.

  15. Relaxation and thermalization of nonequilibrium quantum systems in the semiclassical limit

    NASA Astrophysics Data System (ADS)

    Hipolito, Rafael Stockschneider

    We discuss the development and application of semiclassical techniques to study dynamics and relaxation in quantum mechanical systems out of equilibrium, relevant to ultracold atomic gases. Due to the unprecedented amount of control in these systems, experimentalists have a lot of freedom in designing Hamiltonians, including the spatial dimension. Another advantage present in these systems is the fact that time scales are slow enough, in contradistinction with usual condensed matter systems, so that it is possible to follow nonequilibrium dynamics and relaxation after quantum quenches. The advent of these experiments has motivated us to further understand these systems. With this goal in mind, we apply a semiclassical phase space technique called Truncated Wigner Approximation (TWA) to study dynamics in the weakly interacting, semiclassical limit. In our study, we will further confine ourselves to one dimensional systems where thermalization is poorly understood due to the fact that generic one dimensional Hamiltonians lie close to integrable models. Due to the peculiarity of systems in low dimensions, such as the prohibition of true long range order, these systems relax in an interesting way, and we generically find the emergence of long-lived metastable states. In particular, we find it is possible to design Hamiltonians that share features with the Fermi-Pasta-Ulam model, and these systems relax to a metastable state where different momentum mode energies live at different temperatures.

  16. Non-equilibrium nanosecond-pulsed plasma generation in the liquid phase (water, PDMS) without bubbles: fast imaging, spectroscopy and leader-type model

    NASA Astrophysics Data System (ADS)

    Dobrynin, Danil; Seepersad, Yohan; Pekker, Mikhail; Shneider, Mikhail; Friedman, Gary; Fridman, Alexander

    2013-03-01

    In this paper we report the results on study of the non-equilibrium nanosecond discharge generation in liquid media. Here we studied the discharge in both water and silicon transformer oil, and present our findings on discharge behaviour depending on global (applied) electric, discharge emission spectrum and shadow imaging of the discharge. We also discuss possible scenarios of non-equilibrium nanosecond discharge development and suggest that the discharge operates in a leader-type regime supported by the electrostriction effect—creation of nano-sized pores in liquid due to high local electric field.

  17. Quasicritical brain dynamics on a nonequilibrium Widom line

    NASA Astrophysics Data System (ADS)

    Williams-García, Rashid V.; Moore, Mark; Beggs, John M.; Ortiz, Gerardo

    2014-12-01

    Is the brain really operating at a critical point? We study the nonequilibrium properties of a neural network which models the dynamics of the neocortex and argue for optimal quasicritical dynamics on the Widom line where the correlation length and information transmission are optimized. We simulate the network and introduce an analytical mean-field approximation, characterize the nonequilibrium phase transitions, and present a nonequilibrium phase diagram, which shows that in addition to an ordered and disordered phase, the system exhibits a "quasiperiodic" phase corresponding to synchronous activity in simulations, which may be related to the pathological synchronization associated with epilepsy.

  18. Quasicritical brain dynamics on a nonequilibrium Widom line.

    PubMed

    Williams-García, Rashid V; Moore, Mark; Beggs, John M; Ortiz, Gerardo

    2014-12-01

    Is the brain really operating at a critical point? We study the nonequilibrium properties of a neural network which models the dynamics of the neocortex and argue for optimal quasicritical dynamics on the Widom line where the correlation length and information transmission are optimized. We simulate the network and introduce an analytical mean-field approximation, characterize the nonequilibrium phase transitions, and present a nonequilibrium phase diagram, which shows that in addition to an ordered and disordered phase, the system exhibits a "quasiperiodic" phase corresponding to synchronous activity in simulations, which may be related to the pathological synchronization associated with epilepsy.

  19. Modulated voltage metastable ionization detector

    NASA Technical Reports Server (NTRS)

    Carle, G. C.; Kojiro, D. R.; Humphrey, D. E. (Inventor)

    1985-01-01

    The output current from a metastable ionization detector (MID) is applied to a modulation voltage circuit. An adjustment is made to balance out the background current, and an output current, above background, is applied to an input of a strip chart recorder. For low level concentrations, i.e., low detected output current, the ionization potential will be at a maximum and the metastable ionization detector will operate at its most sensitive level. When the detected current from the metastable ionization detector increases above a predetermined threshold level, a voltage control circuit is activated which turns on a high voltage transistor which acts to reduce the ionization potential. The ionization potential applied to the metastable ionization detector is then varied so as to maintain the detected signal level constant. The variation in ionization potential is now related to the concentration of the constituent and a representative amplitude is applied to another input of said strip chart recorder.

  20. Modeling hydrodynamic nonequilibrium in cavitating flows

    SciTech Connect

    Chen, Y.; Heister, S.D.

    1996-03-01

    A nonlinear numerical model has been developed to assess nonequilibrium effects in cavitating flows. The numerical implementation involves a two-phase treatment with the use of a pseudo-density which varies between the liquid and gas/vapor extremes. A new constitutive equation for the pseudo-density is derived based on the bubble response described by a modified form of the Rayleigh-Plesset equation. Use of this constitutive equation in a numerical procedure permits the assessment of nonequilibrium effects. This scheme provides a quantitative description of scaling effects in cavitated flows. With minimal modifications, the model can also be used for bubbly two-phase flows.

  1. Nonequilibrium interfaces in colloidal fluids

    NASA Astrophysics Data System (ADS)

    Bier, Markus; Arnold, Daniel

    2013-12-01

    The time-dependent structure, interfacial tension, and evaporation of an oversaturated colloid-rich (liquid) phase in contact with an undersaturated colloid-poor (vapor) phase of a colloidal dispersion is investigated theoretically during the early-stage relaxation, where the interface is relaxing towards a local equilibrium state while the bulk phases are still out of equilibrium. Since systems of this type exhibit a clear separation of colloidal and solvent relaxation time scales with typical times of interfacial tension measurements in between, they can be expected to be suitable for analogous experimental studies, too. The major finding is that, irrespective of how much the bulk phases differ from two-phase coexistence, the interfacial structure and the interfacial tension approach those at two-phase coexistence during the early-stage relaxation process. This is a surprising observation since it implies that the relaxation towards global equilibrium of the interface is not following but preceding that of the bulk phases. Scaling forms for the local chemical potential, the flux, and the dissipation rate exhibit qualitatively different leading order contributions depending on whether an equilibrium or a nonequilibrium system is considered. The degree of nonquilibrium between the bulk phases is found to not influence the qualitative relaxation behavior (i.e., the values of power-law exponents), but to determine the quantitative deviation of the observed quantities from their values at two-phase coexistence. Whereas the underlying dynamics differs between colloidal and molecular fluids, the behavior of quantities such as the interfacial tension approaching the equilibrium values during the early-stage relaxation process, during which nonequilibrium conditions of the bulk phases are not changed, can be expected to occur for both types of systems.

  2. The stability of thermodynamically metastable phases in a Zr-Sn-Nb-Mo alloy: Effects of alloying elements, morphology and applied stress/strain

    NASA Astrophysics Data System (ADS)

    Yu, Hongbing; Yao, Zhongwen; Daymond, Mark R.

    2017-09-01

    In this paper, a dual phase Zr-Sn-Nb-Mb alloy was studied with TEM after thermal treatment and high-temperature tensile deformation. Plate and pressure tube material, manufactured through different processing routes, were used in this study. The overall average concentrations of Mo and Nb in the β phase are higher in the pressure tube than in the plate. It was revealed that these concentrations have significant effects on the subsequent stability of the β and ω phases as well as on the precipitation behavior of the α phase from the β phase. That is, the higher the concentrations, the more stable the β and ω phases are, and hence there is a reduced tendency for precipitation of α phase. Aging treatments cause the transformation of athermal ω to isothermal ω, as expected. The most striking finding is the product of the decomposition of the isothermal ω particles during aging treatment is determined as not being α phase, even though the structure of it is, as-yet, not fully determined. The non-uniform morphology of the β grains in the plate material provides us a unique opportunity to investigate the effects of morphology on the aging response of the β phase. It was found that thin β filaments suppress the precipitation of isothermal ω particles but enhance the precipitation of α phase at α/β interfaces. The effect of the Burgers orientation relationship between α and β grains on the precipitation of the α phase at the α/β interface is discussed. Applied high-temperature stress/strain has been found to enhance the decomposition of isothermal ω phase but suppress α precipitation inside the β grains. The suppression of α precipitation by applied stress/strain is discussed in terms of the ω assisted α precipitation. Implications of these findings for the in-service application of the alloy are discussed.

  3. Nonequilibrium molecular dynamics

    SciTech Connect

    Hoover, W.G. . Dept. of Applied Science Lawrence Livermore National Lab., CA )

    1990-11-01

    The development of nonequilibrium molecular dynamics is described, with emphasis on massively-parallel simulations involving the motion of millions, soon to be billions, of atoms. Corresponding continuum simulations are also discussed. 14 refs., 8 figs.

  4. Stabilization of a Metastable Fibrous Bi21.2(1)(Mn1–xCox )20 Phase with Pseudo-Pentagonal Symmetry Prepared Using a Bi Self-Flux

    DOE PAGES

    Thimmaiah, Srinivasa; Taufour, Valentin; Iowa State Univ., Ames, IA; ...

    2016-11-15

    Bi21.2(1)(Mn1–xCox )20 is a new metastable phase which is synthesized via Bi self-flux, adopts a highly fibrous morpholo-gy, and decomposes endothermically near 168 °C. It crystallizes in the orthorhombic space group Imma with unit cell parameters α = 19.067(4) Å, $b$ = 4.6071(10) Å and c = 11.583(4) Å, adopting a low-temperature modification of BiNi-type structure by forming columns along the b-axis. Wave-length-dispersive X-ray spectroscopy (WDS) confirms the presence of Co in the structure, which is found to be 7 at.%. In each column, the transition metal (T) and Bi atoms construct a double-walled nanotubular arrangement of atoms around themore » disordered central Bi atoms. Electronic structure calculations (LMTO-ASA, LSDA) show that the calculated Fermi level falls into a pseudogap and also indicate a possible low-temperature magnetic ordering in the phase.« less

  5. Particle energy distributions and metastable atoms in transient low pressure interpulse microwave plasma

    NASA Astrophysics Data System (ADS)

    Pandey, Shail; Nath Patel, Dudh; Ram Baitha, Anuj; Bhattacharjee, Sudeep

    2015-12-01

    The electron energies and its distribution function are measured in non-equilibrium transient pulsed microwave plasmas in the interpulse regime using a retarding field electron energy analyzer. The plasmas are driven to different initial conditions by varying the electromagnetic (EM) wave pulse duration, peak power, or the wave frequency. Two cases of wave excitation are investigated: (i) short-pulse (pulse duration, t w ~ 1 μs), high-power (~60 kW) waves of 9.45 GHz and (ii) medium-pulse (t w ~ 20 μs), and moderate power waves of ~3 kW at 2.45 GHz. It is found that high-power, short-duration pulses lead to a significantly different electron energy probability function (EEPF) in the interpulse phase—a Maxwellian with a bump on the tail, although the average energy per pulse (~60 mJ) is maintained the same in the two modes of wave excitation. Electrons with energies  >250 eV are found to exist in the discharge in the both cases. Another subset of experiments is performed to delineate the effect of the wave frequency and the peak power on EEPF. A traveling wave tube (TWT) amplifier based microwave source for generating pulsed plasma (t w  =  230 μs) in a wide frequency range (6-18 GHz) is employed for this purpose. Further experiments on measurements of metastable density using optical emission spectroscopy and ion energy analyzer have been carried out. By tailoring the EEPF of the transient plasma and metastable densities, new applications in plasma processing, chemistry and biology can be realized in the interpulse phase of the discharge.

  6. Radiation-induced solid-state polymerization in an acrylamide-water system: The effect of phase transformations of metastable high-pressure ice VIII

    SciTech Connect

    Kiryukhin, D.P.; Barkalov, I.M.; Barkalov, O.I.

    1995-07-01

    A drastic suppression of the chain post polymerization process in the quenched high-pressure phase of an acrylamide-water eutectic mixture was observed upon warming of the samples irradiated with {gamma}-rays at 77 K. This effect is explained by dispersion of the samples in the temperature region of the transition of the quenched high-pressure phase into the equilibrium phase ({approximately}150K). The size of the resulting microcrystals of monomer was estimated to be approximately 0.1 {mu}m.

  7. Persistence of Metastability after Expansion of a Supercompressed Fluid Monolayer

    PubMed Central

    Smith, Ethan C.; Laderas, Ted G.; Crane, Jonathan M.; Hall, Stephen B.

    2012-01-01

    Fluid monolayers of 1-palmitoyl-2-oleoyl-phosphatidylcholine collapse from an air/water interface to form a three-dimensional bulk phase at the equilibrium spreading pressure (πe) of ~47 mN/m. This phase transition limits access to higher surface pressures under equilibrium conditions or during slow continuous compressions. We have shown previously that these films avoid collapse and become metastable when compressed on a captive bubble to surface pressures above 60 mN/m and that the metastability persists during expansion at least to πe. Here, we first documented the extent of this persistent metastability. Rates of isobaric collapse during expansion of the metastable films were up to 3 orders of magnitude slower than those during the initial compression to high surface pressures. Recovery of the ability to collapse depended on the surface pressure to which the films were expanded and how long they were held there. Films reverted after brief exposure to 20 mN/m and after 1 h at 35 mN/m. At πe, films remained capable of reaching high surface pressures during slow compressions after 65 h, although an increase in compressibility above 55 mN/m suggested somewhat increased rates of collapse. We also determined if the films remained metastable when they acquired sufficient free area to allow reinsertion of collapsed material. Faster isobaric expansion in the presence of more collapsed material and with further deviation below πe supported the existence of reinsertion. The persistence of metastability to πe shows that films with sufficient free area to allow reinsertion remain resistant to collapse. Observations that suggest heterogeneous reinsertion, however, argue that free area may be distributed heterogeneously and leave open the possibility that metastability persists because significant regions retain a restricted free area. PMID:15984255

  8. Persistence of metastability after expansion of a supercompressed fluid monolayer.

    PubMed

    Smith, Ethan C; Laderas, Ted G; Crane, Jonathan M; Hall, Stephen B

    2004-06-08

    Fluid monolayers of 1-palmitoyl-2-oleoyl-phosphatidylcholine collapse from an air/water interface to form a three-dimensional bulk phase at the equilibrium spreading pressure (pie) of approximately 47 mN/m. This phase transition limits access to higher surface pressures under equilibrium conditions or during slow continuous compressions. We have shown previously that these films avoid collapse and become metastable when compressed on a captive bubble to surface pressures above 60 mN/m and that the metastability persists during expansion at least to pie. Here, we first documented the extent of this persistent metastability. Rates of isobaric collapse during expansion of the metastable films were up to 3 orders of magnitude slower than those during the initial compression to high surface pressures. Recovery of the ability to collapse depended on the surface pressure to which the films were expanded and how long they were held there. Films reverted after brief exposure to 20 mN/m and after 1 h at 35 mN/m. At pie, films remained capable of reaching high surface pressures during slow compressions after 65 h, although an increase in compressibility above 55 mN/m suggested somewhat increased rates of collapse. We also determined if the films remained metastable when they acquired sufficient free area to allow reinsertion of collapsed material. Faster isobaric expansion in the presence of more collapsed material and with further deviation below pie supported the existence of reinsertion. The persistence of metastability to pie shows that films with sufficient free area to allow reinsertion remain resistant to collapse. Observations that suggest heterogeneous reinsertion, however, argue that free area may be distributed heterogeneously and leave open the possibility that metastability persists because significant regions retain a restricted free area.

  9. Metastable zirconia-yttria-alumina ceramics: Structure, processing and properties

    NASA Astrophysics Data System (ADS)

    Zhou, Xinzhang

    2002-09-01

    Metastable phases of zirconia-yttria-alumina produced by atmospheric plasma spray and subsequent quenching were studied. Two kinds of quenching methods were used: water quenching and splat quenching. Quenching rates were estimated to be 104°C/s for water quenching and between 105--107°C/s for splat quenching. Five compositions of sprayed dried powders (pure alumina, TZ3Y20A, TZ3Y57A, TZ3Y80A and pure zirconia) were plasma sprayed and quenched. The phases and microstructures of the plasma sprayed powders and thin films were investigated by XRD and FESEM. It was found that at different compositions and quenching rates, different high temperature phases formed. These phases are metastable at room temperature and can be in the form of an extended solid solution phase, an intermediate phase, or an amorphous structure. The grain sizes of the metastable phases are below 50 nm, as determined by XRD peak broadening. At the eutectic composition, zirconia-rich fibers (50 nm in diameter) uniformly distributed in an alumina-rich matrix were observed. 2-D and 3-D metastable phase diagrams were constructed to explain the metastable phase formation. Plasma spraying can be used to fabricate ceramic nanocomposites either by pressure-assisted sintering or spray forming of the metastable powders. Mechanical properties of TZ3Y20A specimens produced by plasma spray forming on steel substrates were studied. The dependence of the 4-point bend strength on plasma spray parameters was studied by a 26-2 statistical experimental design. It was found that the bend strength was sensitive to both standoff distance and scanning speed. The results of study show much promise in applications of the metastable ceramics. Firstly, homogeneous nucleation and growth of stable phases during sintering and high creep rate at elevated temperatures will result in uniformly dense nanoceramic composites. Secondly, extended solid solutions of rare earth elements in glass will greatly enhance the optical

  10. A metastable liquid melted from a crystalline solid under decompression

    DOE PAGES

    Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; ...

    2017-01-23

    A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid–solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. Themore » decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure–temperature region similar to where the supercooled liquid Bi is observed. Finally, akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought.« less

  11. A metastable liquid melted from a crystalline solid under decompression

    PubMed Central

    Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kono, Yoshio; Park, Changyong; Kenney-Benson, Curtis; Shen, Guoyin

    2017-01-01

    A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid–solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. The decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure–temperature region similar to where the supercooled liquid Bi is observed. Akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought. PMID:28112152

  12. A metastable liquid melted from a crystalline solid under decompression

    NASA Astrophysics Data System (ADS)

    Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kono, Yoshio; Park, Changyong; Kenney-Benson, Curtis; Shen, Guoyin

    2017-01-01

    A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid-solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. The decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure-temperature region similar to where the supercooled liquid Bi is observed. Akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought.

  13. Stability and metastability of bromine clathrate polymorphs.

    PubMed

    Nguyen, Andrew H; Molinero, Valeria

    2013-05-23

    Clathrate hydrates are crystals in which water forms a network of fully hydrogen-bonded polyhedral cages that contain small guests. Clathrate hydrates occur mostly in two cubic crystal polymorphs, sI and sII. Bromine is one of two guests that yield a hydrate with the tetragonal structure (TS), the topological dual of the Frank-Kasper σ phase. There has been a long-standing disagreement on whether bromine hydrate also forms metastable sI and sII crystals. To date there are no data on the thermodynamic range of stability (e.g., the melting temperatures) of the metastable polymorphs. Here we use molecular dynamics simulations with the coarse-grained model of water mW to (i) investigate the thermodynamic stability of the empty and guest-filled the sI, sII, TS, and HS-I hydrate polymorphs, (ii) develop a coarse-grained model of bromine compatible with mW water, and (iii) evaluate the stability of the bromine hydrate polymorphs. The mW model predicts the same relative energy of the empty clathrate polymorphs and the same phase diagram as a function of water-guest interaction than the fully atomistic TIP4P water model. There is a narrow region in water-guest parameter space for which TS is marginally more stable than sI or sII. We parametrize a coarse-grained model of bromine compatible with mW water and use it to determine the order of stability of the bromine hydrate polymorphs. The melting temperatures of the bromine hydrate polymorphs predicted by the coarse-grained model are 281 ± 1 K for TS, 279 ± 1 K for sII, and 276 ± 1 K for sI. The closeness of the melting temperatures supports the plausibility of formation of metastable sII and sI bromine hydrates.

  14. Equilibrium and nonequilibrium properties of synthetic metamagnetic films: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Mayberry, James; Tauscher, Keith; Pleimling, Michel

    2014-07-01

    Synthetic antiferromagnets with strong perpendicular anisotropy can be modeled by layered Ising antiferromagnets. Accounting for the fact that in the experimental systems the ferromagnetic layers, coupled antiferromagnetically via spacers, are multilayers, we propose a description through Ising films where ferromagnetic stacks composed of multiple layers are coupled antiferromagnetically. We study the equilibrium and nonequilibrium properties of these systems where we vary the number of layers in each stack. Using numerical simulations, we construct equilibrium-temperature-magnetic-field phase diagrams for a variety of cases. We find the same dominant features (three stable phases, where one phase boundary ends in a critical end point, whereas the other phase boundary shows a tricritical point at which the transition changes from first to second order) for all studied cases. Using time-dependent quantities, we also study the ordering processes that take place after a temperature quench. The nature of long-lived metastable states are discussed for thin films, whereas for thick films we compute the surface autocorrelation exponent.

  15. Metastable Phase Relations in the System Ca(sub O)-Al2(sub O)3-MgO-TiO(sub 2): Applications to Ca- And Al-Rich Inclusions

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Han, J.

    2017-01-01

    Introduction: High temperature phases such as corundum, hibonite, grossite, and perovskite are among the earliest phases that condensed in the early solar nebula. Recent work has shown that defect-structured phases occur in some ultrarefractory inclusions as metastable, possibly more kinetically-favored alternatives to the thermodynamically predicted stable phase assemblages [1-4]. For example, Han et al. have shown that non-stoichiometry in hibonite is accommodated by extra "spinel" blocks in the structure instead of the equilibrium assemblages hibonite+corundum or hibonite+spinel. To explore these relations, we have conducted a series of experiments in the system CaO-Al2O3- MgO-TiO2. Here we discuss the compositions and mineralogy of the experimental samples and how they relate to phases in refractory inclusions with a focus on perovskite and spinel. Methods: For the series of annealing studies, a CaO-Al2O3 eutectic melt is allowed to react with a pure alumina crucible at 1,530degC for either 4 hours or 5 days, followed by quenching in air. Later experiments were similar except that additions of 5 wt% MgO, and CaTiO(sub 3) were used to explore the effect of minor elements on the phase assemblages. The experimental conditions resulted in reaction zones approximately 100-300 ?m wide consisting of a hibonite layer immediately adjacent to the corundum, followed by a grossite layer, and finally krotite with residual quenched melt. For the experiments with Mg, spinel is distributed in all layers but is mainly concentrated in the krotite layer. In the Ti-bearing experiments, perovskite precipitated in association with the krotite and residual melt. In addition to the experiments, we also analyzed perovskite grains in the FUN inclusion SHAL [5] and a large compact type A CAI from Allende. The experiments and refractory inclusions were analyzed using a JEOL 7600F SEM and quantitative analyses were obtained using the JEOL 8530F field-emission electron microprobe.

  16. Metastable states of plasma particles close to a charged surface

    SciTech Connect

    Shavlov, A. V.; Dzhumandzhi, V. A.

    2015-09-15

    The free energy of the plasma particles and the charged surface that form an electroneutral system is calculated on the basis of the Poisson-Boltzmann equation. It is shown that, owing to correlation of light plasma particles near the charged surface and close to heavy particles of high charge, there can be metastable states in plasma. The corresponding phase charts of metastable states of the separate components of plasma, and plasma as a whole, are constructed. These charts depend on temperature, the charge magnitude, the size of the particles, and the share of the charge of the light carriers out of the total charge of the plasma particles.

  17. Metastable innershell molecular state (MIMS)

    NASA Astrophysics Data System (ADS)

    Bae, Young K.

    2008-07-01

    We propose that the existence of Metastable innershell molecular state (MIMS) was experimentally discovered by Bae et al. in hypervelocity ( v>100 km/s) impact of nanoparticles. The decay of MIMS resulted in the observed intense soft x-rays in the range of 75-100 eV in agreement with Winterberg's recent prediction.

  18. Ultracold collisions in metastable helium

    NASA Astrophysics Data System (ADS)

    Peach, G.; Cocks, D. G.; Whittingham, I. B.

    2017-02-01

    Photoassociation processes are studied in ultracold collisions between different isotopes of metastable He(23S) and He(23P) atoms; Penning and associative ionization rates for collisions between two He(23S) atoms are also obtained. Comparisons are made with data from existing experiments.

  19. Stochastic optimal velocity model and its long-lived metastability.

    PubMed

    Kanai, Masahiro; Nishinari, Katsuhiro; Tokihiro, Tetsuji

    2005-09-01

    In this paper, we propose a stochastic cellular automaton model of traffic flow extending two exactly solvable stochastic models, i.e., the asymmetric simple exclusion process and the zero range process. Moreover, it is regarded as a stochastic extension of the optimal velocity model. In the fundamental diagram (flux-density diagram), our model exhibits several regions of density where more than one stable state coexists at the same density in spite of the stochastic nature of its dynamical rule. Moreover, we observe that two long-lived metastable states appear for a transitional period, and that the dynamical phase transition from a metastable state to another metastable/stable state occurs sharply and spontaneously.

  20. Metastable Lennard-Jones fluids. III. Bulk viscosity.

    PubMed

    Baidakov, Vladimir G; Protsenko, Sergey P

    2014-09-21

    The method of equilibrium molecular-dynamics simulation in combination with the Green-Kubo formula has been used to calculate the bulk viscosity of a Lennard-Jones fluid. Calculations have been made at temperatures 0.4 ≤ k(B)T/ɛ ≤ 2.0 and densities 0.0075 ≤ ρσ(3) ≤ 1.2 at 116 stable and 106 metastable states of liquid and gas. The depth of penetration into the region of metastable states was limited by spontaneous nucleation. In the region of stable states the data obtained are compared with the results of previous investigations. It has been established that the system transition across the lines of liquid-gas and liquid-crystal phase equilibrium and penetration into the metastable regions of liquid and gas are connected with increasing bulk viscosity. The behavior of bulk viscosity close to the spinodal of a superheated liquid and supersaturated vapor is discussed.

  1. Metastable phase formation during α2(D019) to γ(L10) transformation in as-atomized γ-TiAl alloy powders

    NASA Astrophysics Data System (ADS)

    Karadge, M.; Gouma, P. I.

    2004-11-01

    α2(D019) to γ(L10) transformation during heating of as-atomized γ-TiAl powder was investigated by differential scanning calorimetry and x-ray diffraction. The as-atomized coarse powder particles (γ-TiAl powder: Ti -45Al-2Nb-0.7Mo-0.1W-2Cr-0.27O-0.2Si) with large amounts of retained α2 are a perfect candidate to investigate this transformation. It was observed that α2 to γ transformation is a two-step process involving the formation of a disordered face-centered-cubic γ 'TiAl [with a (γ')=c(γ)] as an intermediate phase followed by ordering.

  2. Nonequilibrium evolution of window overlaps in spin glasses

    NASA Astrophysics Data System (ADS)

    Manssen, Markus; Hartmann, Alexander K.; Young, A. P.

    2015-03-01

    We investigate numerically the time dependence of "window" overlaps in a three-dimensional Ising spin glass below its transition temperature after a rapid quench. Using an efficient GPU implementation, we are able to study large systems up to lateral length L =128 and up to long times of t =108 sweeps. We find that the data scales according to the ratio of the window size W to the nonequilibrium coherence length ξ (t ) . We also show a substantial change in behavior if the system is run for long enough that it globally equilibrates, i.e., ξ (t )≈L /2 , where L is the lattice size. This indicates that the local behavior of a spin glass depends on the spin configurations (and presumably also the bonds) far away. We compare with similar simulations for the Ising ferromagnet. Based on these results, we speculate on a connection between the nonequilibrium dynamics discussed here and averages computed theoretically using the "metastate."

  3. Condition for the appearance of the metastable P beta' phase in fully hydrated phosphatidylcholines as studied by small-angle x-ray diffraction.

    PubMed

    Matuoka, S; Yao, H; Kato, S; Hatta, I

    1993-05-01

    In the ripple phase of fully hydrated multilamellar vesicles of dipalmitoylphosphatidylcholine (DPPC), two kinds of small-angle x-ray diffraction profiles are observed on cooling through the main transition. One is a seemingly normal profile similar to that observed on heating and the other is the superposition of the diffraction profiles for the primary (normal) and the secondary ripple structures. We found that the profile obtained depended on the cooling rate. Increasing the cooling rate from 0.1 degrees C/min to 1 degrees C/min caused the peaks originating from the secondary ripple structure to diminish. After a cooling scan at 43 degrees C/min, the profile became similar to that of the normal ripple structure, although a trace of the secondary ripple structure remains. The results are interpreted in terms of the rise and fall of three-dimensional correlated domains composed of both primary and secondary ripple structures. At slow cooling rates, correlated domains of both kinds of ripple structures develop. As the cooling rate is increased, the domain of the primary ripple structure remains correlated, while that of the secondary ripple structure becomes less correlated. In addition, the multipeak profile appears even at rapid cooling rates, if the final low temperature lies just below the Tm for the main transition. This results suggests that formation of the correlated domains of the secondary ripple structure requires a certain time interval during which the DPPC vesicles experience the temperature just below the main transition. The secondary ripple structure takes place in phosphatidylcholines having more than 15 carbons in each hydrocarbon chain upon cooling through the main transition.

  4. Charge metastability and hysteresis in the quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Pollanen, J.; Eisenstein, J. P.; Pfeiffer, L. N.; West, K. W.

    2016-12-01

    We report simultaneous quasi-dc magnetotransport and high-frequency surface acoustic wave measurements on bilayer two-dimensional electron systems in GaAs. Near strong integer quantized Hall states, a strong magnetic-field-sweep hysteresis in the velocity of the acoustic waves is observed at low temperatures. This hysteresis indicates the presence of a metastable state with anomalously high conductivity in the interior of the sample. This nonequilibrium state is not revealed by conventional low-frequency transport measurements which are dominated by dissipationless transport at the edge of the two-dimensional system. We find that a field-cooling technique allows the equilibrium charge configuration within the interior of the sample to be established. A simple model for this behavior is discussed.

  5. Corrigendum to “Laboratory studies of perchlorate phase transitions: Support for metastable aqueous perchlorate solutions on Mars” [Earth Planet. Sci. Lett. 312 (3-4) (2011) 371-377

    NASA Astrophysics Data System (ADS)

    Gough, R. V.; Chevrier, V. F.; Baustian, K. J.; Wise, M. E.; Tolbert, M. A.

    2014-02-01

    Perchlorate salts, recently discovered on Mars, are known to readily absorb water vapor from the atmosphere and deliquesce into the aqueous phase at room temperature. Here we study the deliquescence (crystalline solid to liquid transition) and efflorescence (liquid to crystalline solid transition) of perchlorate salts at low temperatures relevant to Mars. A Raman microscope and environmental cell were used to determine the deliquescence relative humidity (DRH) and efflorescence relative humidity (ERH) of NaClO4 and Mg(ClO4)2 as a function of temperature and hydration state. We find that the deliquescence of anhydrous NaClO4 is only slightly dependent on temperature and occurs at ∼38% RH. The DRH of NaClO4ṡH2O increases with decreasing temperature from 51% at 273 K to 64% at 228 K. The DRH of Mg(ClO4)2ṡ6H2O also increases with decreasing temperature from 42% at 273 K to 55% at 223 K. The efflorescence of both NaClO4 and Mg(ClO4)2 salt solutions occurs at a lower RH than deliquescence due to the kinetic inhibition of crystallization. For all temperatures studied, the ERH values of NaClO4 and Mg(ClO4)2 are 13% and 19%, respectively. These results indicate perchlorate salts can exist as metastable, supersaturated solutions over a wide range of RH and temperature conditions. Summer diurnal temperature and relative humidity cycles at low latitudes on Mars could allow the surface salts to be aqueous for several hours per day.

  6. Sequential evolution of different phases in metastable Gd(2-x)Ce(x)Zr(2-x)Al(x)O7 (0.0 ≤ x ≤ 2.0) system: crucial role of reaction conditions.

    PubMed

    Shukla, Rakesh; Sayed, Farheen N; Phapale, Suhas; Mishra, Ratikant; Tyagi, Avesh K

    2013-07-15

    The Gd(2-x)Ce(x)Zr(2-x)Al(x)O7 (0.0 ≤ x ≤ 2.0) series was synthesized by the gel combustion method. This system exhibited the presence of a fluorite-type phase, along with a narrow biphasic region, depending upon the Ce/Gd content in the sample. Thermal stability of these new compounds under oxidizing and reducing conditions has been investigated. The products obtained on decomposition of Gd(2-x)Ce(x)Zr(2-x)Al(x)O7 in oxidizing and reducing conditions were found to be entirely different. It was observed that in air the fluorite-type solid solutions of Gd(2-x)Ce(x)Zr(2-x)Al(x)O7 composition undergo phase separation into perovskite GdAlO3 and fluorite-type solid solutions of Gd-Ce-Zr-O or Ce-Zr-Al-O depending upon the extent of Ce and Al substitution. On the other hand, Gd(2-x)Ce(x)Zr(2-x)Al(x)O7 samples on heating under reducing conditions show a phase separation to CeAlO3 perovskite and a defect-fluorite of Gd2Zr2O7. The extent of metastability for a typical composition of Gd(1.2)Ce(0.8)Zr(1.2)Al(0.8)O7 (nano), Gd(1.2)Ce(0.8)Zr(1.2)Al(0.8)O(6.6) (heated under reduced conditions), Gd(1.2)Ce(0.8)Zr(1.2)Al(0.8)O7 (heated in air at 1200 °C) has been experimentally determined employing a high temperature Calvet calorimeter. On the basis of thermodynamic stability data, it could be inferred that the formation of a more stable compound in the presence of two competing cations (i.e., Gd(3+) and Ce(3+)) is guided by the crystallographic stability.

  7. Combined effect of non-equilibrium solidification and thermal annealing on microstructure evolution and hardness behavior of AZ91 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Zhou, Z. Z.; Yang, W.; Chen, S. H.; Yu, H.; Xu, Z. F.

    2014-06-01

    Non-equilibrium solidification of commercial AZ91 magnesium alloy was performed by copper mold spray-casting technique and the thermal stability property of as-formed meta-stable microstructure was investigated by subsequent annealing at different temperatures and times. Remarkable grain refinement appears with increasing cooling rate during solidification process, which is accompanied by a visible cellular/dendrite transition for the grain morphology of primary phase. Moreover, the non-equilibrium solidified alloy exhibits obvious precipitation hardening effect upon annealing at 200 °C, and the precipitation mode of β-Mg17Al12 phase changes from discontinuous to continuous with extending isothermal time from 4 h to 16 h, which generates an increase of resultant micro-hardness value. After solid solution treatment at the elevated temperature of 420 °C, the volume fraction of β-Mg17Al12 phase decreases and a notable grain growth phenomenon occurs, which give rise to a reduction of hardness in comparison with that of as-quenched alloy.

  8. Metastability of the atomic structures of size-selected gold nanoparticles.

    PubMed

    Wells, Dawn M; Rossi, Giulia; Ferrando, Riccardo; Palmer, Richard E

    2015-04-21

    All nanostructures are metastable--but some are more metastable than others. Here we employ aberration-corrected electron microscopy and atomistic computer simulations to demonstrate the hierarchy of metastability in deposited, size-selected gold nanoparticles (clusters), an archetypal class of nanomaterials well known for the catalytic activity which only appears on the nanometer-scale. We show that the atomic structures presented by "magic number" Au561, Au742 and Au923 clusters are "locked". They are in fact determined by the solidification which occurs from the liquid state early in their growth (by assembly from atoms in the gas phase) followed by template growth. It is quite likely that transitions from a locked, metastable configuration to a more stable (but still metastable) structure, as observed here under the electron beam, will occur during catalytic reactions, for example.

  9. Gauge mediation in metastable vacua

    SciTech Connect

    Dine, Michael; Mason, John

    2008-01-01

    Until recently, dynamical supersymmetry breaking seemed an exceptional phenomenon, involving chiral gauge theories with a special structure. Recently it has become clear that requiring only metastable states with broken supersymmetry leads to a far broader class of theories. In this paper, we extend these constructions still further, finding new classes which, unlike earlier theories, do not have unbroken, approximate R symmetries. This allows construction of new models with low energy gauge mediation.

  10. Cyclic cosmology, conformal symmetry and the metastability of the Higgs

    NASA Astrophysics Data System (ADS)

    Bars, Itzhak; Steinhardt, Paul J.; Turok, Neil

    2013-10-01

    Recent measurements at the LHC suggest that the current Higgs vacuum could be metastable with a modest barrier (height ( GeV)4) separating it from a ground state with negative vacuum density of order the Planck scale. We note that metastability is problematic for standard bang cosmology but is essential for cyclic cosmology in order to end one cycle, bounce, and begin the next. In this Letter, motivated by the approximate scaling symmetry of the standard model of particle physics and the primordial large-scale structure of the universe, we use our recent formulation of the Weyl-invariant version of the standard model coupled to gravity to track the evolution of the Higgs in a regularly bouncing cosmology. We find a band of solutions in which the Higgs field escapes from the metastable phase during each big crunch, passes through the bang into an expanding phase, and returns to the metastable vacuum, cycle after cycle after cycle. We show that, due to the effect of the Higgs, the infinitely cycling universe is geodesically complete, in contrast to inflation.

  11. Thermodynamic Routes to Novel Metastable Nitrogen-Rich Nitrides

    DOE PAGES

    Sun, Wenhao; Holder, Aaron; Orvañanos, Bernardo; ...

    2017-07-17

    Compared to oxides, the nitrides are relatively unexplored, making them a promising chemical space for novel materials discovery. Of particular interest are nitrogen-rich nitrides, which often possess useful semiconducting properties for electronic and optoelectronic applications. However, such nitrogen-rich compounds are generally metastable, and the lack of a guiding theory for their synthesis has limited their exploration. Here, we review the remarkable metastability of observed nitrides, and examine the thermodynamics of how reactive nitrogen precursors can stabilize metastable nitrogen-rich compositions during materials synthesis. We map these thermodynamic strategies onto a predictive computational search, training a data-mined ionic substitution algorithm specifically formore » nitride discovery, which we combine with grand-canonical DFT-SCAN phase stability calculations to compute stabilizing nitrogen chemical potentials. We identify several new nitrogen-rich binary nitrides for experimental investigation, notably the transition metal nitrides Mn3N4, Cr3N4, V3N4, and Nb3N5, the main group nitride SbN, and the pernitrides FeN2, CrN2, and Cu2N2. By formulating rational thermodynamic routes to metastable compounds, we expand the search space for functional technological materials beyond equilibrium phases and compositions.« less

  12. Extinction of metastable stochastic populations

    NASA Astrophysics Data System (ADS)

    Assaf, Michael; Meerson, Baruch

    2010-02-01

    We investigate the phenomenon of extinction of a long-lived self-regulating stochastic population, caused by intrinsic (demographic) noise. Extinction typically occurs via one of two scenarios depending on whether the absorbing state n=0 is a repelling (scenario A) or attracting (scenario B) point of the deterministic rate equation. In scenario A the metastable stochastic population resides in the vicinity of an attracting fixed point next to the repelling point n=0 . In scenario B there is an intermediate repelling point n=n1 between the attracting point n=0 and another attracting point n=n2 in the vicinity of which the metastable population resides. The crux of the theory is a dissipative variant of WKB (Wentzel-Kramers-Brillouin) approximation which assumes that the typical population size in the metastable state is large. Starting from the master equation, we calculate the quasistationary probability distribution of the population sizes and the (exponentially long) mean time to extinction for each of the two scenarios. When necessary, the WKB approximation is complemented (i) by a recursive solution of the quasistationary master equation at small n and (ii) by the van Kampen system-size expansion, valid near the fixed points of the deterministic rate equation. The theory yields both entropic barriers to extinction and pre-exponential factors, and holds for a general set of multistep processes when detailed balance is broken. The results simplify considerably for single-step processes and near the characteristic bifurcations of scenarios A and B.

  13. Local non-equilibrium thermodynamics.

    PubMed

    Jinwoo, Lee; Tanaka, Hajime

    2015-01-16

    Local Shannon entropy lies at the heart of modern thermodynamics, with much discussion of trajectory-dependent entropy production. When taken at both boundaries of a process in phase space, it reproduces the second law of thermodynamics over a finite time interval for small scale systems. However, given that entropy is an ensemble property, it has never been clear how one can assign such a quantity locally. Given such a fundamental omission in our knowledge, we construct a new ensemble composed of trajectories reaching an individual microstate, and show that locally defined entropy, information, and free energy are properties of the ensemble, or trajectory-independent true thermodynamic potentials. We find that the Boltzmann-Gibbs distribution and Landauer's principle can be generalized naturally as properties of the ensemble, and that trajectory-free state functions of the ensemble govern the exact mechanism of non-equilibrium relaxation.

  14. Local non-equilibrium thermodynamics

    PubMed Central

    Jinwoo, Lee; Tanaka, Hajime

    2015-01-01

    Local Shannon entropy lies at the heart of modern thermodynamics, with much discussion of trajectory-dependent entropy production. When taken at both boundaries of a process in phase space, it reproduces the second law of thermodynamics over a finite time interval for small scale systems. However, given that entropy is an ensemble property, it has never been clear how one can assign such a quantity locally. Given such a fundamental omission in our knowledge, we construct a new ensemble composed of trajectories reaching an individual microstate, and show that locally defined entropy, information, and free energy are properties of the ensemble, or trajectory-independent true thermodynamic potentials. We find that the Boltzmann-Gibbs distribution and Landauer's principle can be generalized naturally as properties of the ensemble, and that trajectory-free state functions of the ensemble govern the exact mechanism of non-equilibrium relaxation. PMID:25592077

  15. Metastability of Subducted Slabs in the Mantle Transition Zone: A Collaborative Geodynamic, Petrologic, and Seismological Approach

    NASA Astrophysics Data System (ADS)

    Garber, J. M.; Billen, M. I.; Duncan, M. S.; Roy, C.; Ibourichene, A. S.; Olugboji, T.; Celine, C.; Rodríguez-González, J.; Grand, S. P.; Madrigal, P.; Sandiford, D.; Valencia-Cardona, J. J.

    2016-12-01

    Subducted slabs exhibit a range of geometries in the mantle transition zone. Studies of this phenomenon suggest that olivine and/or pyroxene metastability may profoundly alter the slab density profile, leading to slab flattening (e.g., King et al., 2015) and potentially yielding a resolvable seismological signature (e.g., Kawakatsu and Yoshioka, 2011; Yoshioka et al., 2015). Such metastability may also be critical for deep earthquake generation. Geodynamic modelling of this process is typically done with a simplified petrologic model of the downgoing slab, whereas petrologic studies of phase assemblages in subducted slabs typically impose an idealized geodynamic model with an unrealistic thermal structure. Connecting these two approaches should lead to a better understanding of the consequences of metastable assemblages on subducting slabs. Here, we present a new methodology that combines geodynamic, seismic and petrologic approaches to assess the impact of mineral metastability on dynamic subduction models, developed in a collaborative effort begun at the 2016 NSF CIDER summer program in Santa Barbara, CA. We use two parallel approaches to extrapolate equilibrium rock properties to metastable regions and impose these data on extracted time-slices from robust thermo-mechanical geodynamic models, allowing us to quantify the density and buoyancy changes in the slab that result from considering metastable phase assemblages. Our preliminary results suggest that metastable assemblages can yield a 10-30% density decrease over the subducted slab relative to an equilibrium reference model. We then generate a seismic velocity profile of the slab, and compute waveforms based on the 2D finite-difference method (e.g., Vidale & Helmberger, 1987) to determine whether metastable phases could reasonably be detected by different seismic approaches. Continuing analyses will be aimed at coupling the evolution of geodynamic models with phase metastability to model the feedback between

  16. Supersonic Jet Mixing with Vibrational Non-Equilibrium

    NASA Astrophysics Data System (ADS)

    Reising, Heath H.; Kc, Utsav; Varghese, Philip L.; Clemens, Noel T.

    2013-11-01

    A new study has been initiated to study the effect of vibrational non-equilibrium on turbulent mixing and combustion. This work is relevant to high-speed, high-temperature environments, such as scramjet combustors, where shocks and mixing can lead to high degrees of vibrational non-equilibrium. In this experimental study, a new facility has been developed that consists of a perfectly-expanded axisymmetric Mach 1.5 turbulent air jet issuing into an electrically heated co-flow of air for precise control of the temperature and thus vibrationally-active population. This hot flow can be brought into non-equilibrium when the co-flow fluid is rapidly mixed with the colder supersonic jet fluid. Effects of the non-equilibrium can be isolated by replacing the nitrogen in the flow with argon. The degree of non-equilibrium in the jet shear layers is quantified by using high-spectral resolution time-averaged spontaneous Raman scattering centered on the Stokes-shifted Q branch line of N2 at 607 nm. In this first phase of the study, the effect of non-equilibrium on the mixing field will be investigated, but future work will focus on H2-air combustion. Planar Rayleigh thermometry is utilized to investigate the effects of vibrational non-equilibrium on the turbulent structures and thermal dissipation field. This work was funded by the Air Force Office of Scientific Research under BRI grant FA9550-12-0460.

  17. Nucleation of metastable aragonite CaCO3 in seawater

    PubMed Central

    Sun, Wenhao; Jayaraman, Saivenkataraman; Chen, Wei; Persson, Kristin A.; Ceder, Gerbrand

    2015-01-01

    Predicting the conditions in which a compound adopts a metastable structure when it crystallizes out of solution is an unsolved and fundamental problem in materials synthesis, and one which, if understood and harnessed, could enable the rational design of synthesis pathways toward or away from metastable structures. Crystallization of metastable phases is particularly accessible via low-temperature solution-based routes, such as chimie douce and hydrothermal synthesis, but although the chemistry of the solution plays a crucial role in governing which polymorph forms, how it does so is poorly understood. Here, we demonstrate an ab initio technique to quantify thermodynamic parameters of surfaces and bulks in equilibrium with an aqueous environment, enabling the calculation of nucleation barriers of competing polymorphs as a function of solution chemistry, thereby predicting the solution conditions governing polymorph selection. We apply this approach to resolve the long-standing “calcite–aragonite problem”––the observation that calcium carbonate precipitates as the metastable aragonite polymorph in marine environments, rather than the stable phase calcite––which is of tremendous relevance to biomineralization, carbon sequestration, paleogeochemistry, and the vulnerability of marine life to ocean acidification. We identify a direct relationship between the calcite surface energy and solution Mg–Ca ion concentrations, showing that the calcite nucleation barrier surpasses that of metastable aragonite in solutions with Mg:Ca ratios consistent with modern seawater, allowing aragonite to dominate the kinetics of nucleation. Our ability to quantify how solution parameters distinguish between polymorphs marks an important step toward the ab initio prediction of materials synthesis pathways in solution. PMID:25739963

  18. Nucleation of metastable aragonite CaCO3 in seawater.

    PubMed

    Sun, Wenhao; Jayaraman, Saivenkataraman; Chen, Wei; Persson, Kristin A; Ceder, Gerbrand

    2015-03-17

    Predicting the conditions in which a compound adopts a metastable structure when it crystallizes out of solution is an unsolved and fundamental problem in materials synthesis, and one which, if understood and harnessed, could enable the rational design of synthesis pathways toward or away from metastable structures. Crystallization of metastable phases is particularly accessible via low-temperature solution-based routes, such as chimie douce and hydrothermal synthesis, but although the chemistry of the solution plays a crucial role in governing which polymorph forms, how it does so is poorly understood. Here, we demonstrate an ab initio technique to quantify thermodynamic parameters of surfaces and bulks in equilibrium with an aqueous environment, enabling the calculation of nucleation barriers of competing polymorphs as a function of solution chemistry, thereby predicting the solution conditions governing polymorph selection. We apply this approach to resolve the long-standing "calcite-aragonite problem"--the observation that calcium carbonate precipitates as the metastable aragonite polymorph in marine environments, rather than the stable phase calcite--which is of tremendous relevance to biomineralization, carbon sequestration, paleogeochemistry, and the vulnerability of marine life to ocean acidification. We identify a direct relationship between the calcite surface energy and solution Mg:Ca [corrected] ion concentrations, showing that the calcite nucleation barrier surpasses that of metastable aragonite in solutions with Mg:Ca ratios consistent with modern seawater, allowing aragonite to dominate the kinetics of nucleation. Our ability to quantify how solution parameters distinguish between polymorphs marks an important step toward the ab initio prediction of materials synthesis pathways in solution.

  19. Phase-change behavior and nonlinear optical second and third harmonic generation of the one-dimensional K{sub (1-x)}Cs{sub x}PSe{sub 6} and metastable {beta}-CsPSe{sub 6}.

    SciTech Connect

    Haynes, Alyssa S.; Saouma, Felix O.; Otieno, Calford O.; Clark, Daniel J.; Shoemaker, Daniel P.; Jang, Joon I.; Kanatzidis, Mercouri G.

    2015-03-10

    The APSe(6) (A = K, K(1-x)Csx, Cs) family of one-dimensional (1D) materials was studied to examine the effects of the cation size on the nonlinear optical (NLO) response. The family has high-performing NLO properties with the noncentrosymmetric parent material, KPSe6, having infinite 1D chains of 1/(infinity)[PSe6-]. This structure has been successfully substituted with cesium up to K0.6Cs0.4PSe6 while retaining the polar character. All compounds crystallize in the space group Pca2(1) and have band gaps of 2.1 eV. In situ powder X-ray diffraction experiments using synchrotron radiation were used to determine the specifics of the amorphous to crystalline behavior and the crystallization and melting kinetics of the APSe(6) system. These measurements revealed a new phase, beta-CsPSe6, which is metastable and crystallizes in the noncentrosymmetric tetragonal space group P (4) over bar2(1)c with a = 12.526(2) angstrom, c = 12.781(3) angstrom, V = 2005.3(6) angstrom(3), and Z = 8. The structure is composed of 2 sets of mutually perpendicular 1/8[PSe6-] chains charge-balanced by Cs cations, and the band gap of beta-CsPSe6 is 1.9 eV. Second harmonic generation (SHG) measurements demonstrate that substitution of Cs into KPSe6 maintains the strong NLO signal with a very high SHG coefficient (chi((2))) of similar to 150 pm/V for K(1-x)CsxPSe6 and 30 pm/V for beta-CsPSe6. Laser-induced damage threshold analysis reveals APSe(6) exhibits two-photon absorption (2PA) at 1064 nm with input laser intensity greater than 1 GW/cm(2) and optical damage from 2PA at similar to 2 GW/cm(2). The materials also exhibit strong third harmonic generation (THG) with THG coefficients (chi((3)) x 10(5)) for KPSe6, K0.6Cs0.4PSe6, alpha-CsPSe6, and beta-CsPSe6 to be 2.6, 3.1, 1.8, and 1.1 pm(2)/V-2, respectively.

  20. Metastability for Markov processes with detailed balance.

    PubMed

    Larralde, Hernán; Leyvraz, François

    2005-04-29

    We present a definition for metastable states applicable to arbitrary finite state Markov processes satisfying detailed balance. In particular, we identify a crucial condition that distinguishes metastable states from other slow decaying modes and which allows us to show that our definition has several desirable properties similar to those postulated in the restricted ensemble approach. The intuitive physical meaning of this condition is simply that the total equilibrium probability of finding the system in the metastable state is negligible.

  1. Metastability for Markov Processes with Detailed Balance

    NASA Astrophysics Data System (ADS)

    Larralde, Hernán; Leyvraz, François

    2005-04-01

    We present a definition for metastable states applicable to arbitrary finite state Markov processes satisfying detailed balance. In particular, we identify a crucial condition that distinguishes metastable states from other slow decaying modes and which allows us to show that our definition has several desirable properties similar to those postulated in the restricted ensemble approach. The intuitive physical meaning of this condition is simply that the total equilibrium probability of finding the system in the metastable state is negligible.

  2. Vacuum metastability with black holes

    NASA Astrophysics Data System (ADS)

    Burda, Philipp; Gregory, Ruth; Moss, Ian G.

    2015-08-01

    We consider the possibility that small black holes can act as nucleation seeds for the decay of a metastable vacuum, focussing particularly on the Higgs potential. Using a thin-wall bubble approximation for the nucleation process, which is possible when generic quantum gravity corrections are added to the Higgs potential, we show that primordial black holes can stimulate vacuum decay. We demonstrate that for suitable parameter ranges, the vacuum decay process dominates over the Hawking evaporation process. Finally, we comment on the application of these results to vacuum decay seeded by black holes produced in particle collisions.

  3. Geometrically induced metastability and holography

    SciTech Connect

    Aganagic, Mina; Aganagic, Mina; Beem, Christopher; Seo, Jihye; Vafa, Cumrun

    2006-10-23

    We construct metastable configurations of branes and anti-branes wrapping 2-spheres inside local Calabi-Yau manifolds and study their large N duals. These duals are Calabi-Yau manifolds in which the wrapped 2-spheres have been replaced by 3-spheres with flux through them, and supersymmetry is spontaneously broken. The geometry of the non-supersymmetric vacuum is exactly calculable to all orders of the't Hooft parameter, and to the leading order in 1/N. The computation utilizes the same matrix model techniques that were used in the supersymmetric context. This provides a novel mechanism for breaking supersymmetry in the context of flux compactifications.

  4. Non-equilibrium proteins.

    PubMed

    Klonowski, W

    2001-07-01

    There exist no methodical studies concerning non-equilibrium systems in cellular biology. This paper is an attempt to partially fill this shortcoming. We have undertaken an extensive data-mining operation in the existing scientific literature to find scattered information about non-equilibrium subcellular systems, in particular concerning fast proteins, i.e. those with short turnover half-time. We have advanced the hypothesis that functionality in fast proteins emerges as a consequence of their intrinsic physical instability that arises due to conformational strains resulting from co-translational folding (the interdependence between chain elongation and chain folding during biosynthesis on ribosomes). Such intrinsic physical instability, a kind of conformon (Klonowski-Klonowska conformon, according to Ji, (Molecular Theories of Cell Life and Death, Rutgers University Press, New Brunswick, 1991)) is probably the most important feature determining functionality and timing in these proteins. If our hypothesis is true, the turnover half-time of fast proteins should be positively correlated with their molecular weight, and some experimental results (Ames et al., J. Neurochem. 35 (1980) 131) indeed demonstrated such a correlation. Once the native structure (and function) of a fast protein macromolecule is lost, it may not be recovered--denaturation of such proteins will always be irreversible; therefore, we searched for information on irreversible denaturation. Only simulation and modeling of protein co-translational folding may answer the questions concerning fast proteins (Ruggiero and Sacile, Med. Biol. Eng. Comp. 37 (Suppl. 1) (1999) 363). Non-equilibrium structures may also be built up of protein subunits, even if each one taken by itself is in thermodynamic equilibrium (oligomeric proteins; sub-cellular sol-gel dissipative network structures).

  5. Impact of phase change kinetics on the Mariana slab within the framework of 2-D mantle convection

    NASA Astrophysics Data System (ADS)

    Yoshioka, Shoichi; Torii, Yoku; Riedel, Michael R.

    2015-03-01

    Recent high-pressure and high-temperature experiments indicate that metastable olivine might persist in the cold core of a slab due to the low reaction rate of the olivine-wadsleyite phase transformation. Recent seismological observations detected a metastable olivine wedge that survives to a depth of 630 km in the Mariana slab. To consider the problem of non-equilibrium phase transformation, we developed a two-dimensional (2-D) Cartesian numerical code that incorporates the effects of kinetics into a thermal convection model. We consider the kinetics of the 410-km olivine-wadsleyite and the 660-km ringwoodite-Pv + Mw phase transformations, including the effects of water content at the 410-km phase boundary. The latent heat release of the 410-km non-equilibrium phase transformations inside the slab is also considered. The results show positive correlations between some of the controlling parameters and the length of the metastable olivine wedge: the faster the subducting velocity, and the lower the water content, the deeper is the metastable olivine wedge. With increasing depth of phase transformation, the effect of latent heat release is enhanced: heating of, at most, 100 °C occurs if olivine transforms into wadsleyite at a depth of approximately 570 km in our model setting. Temperature increase due to the latent heat released stimulates further phase transformation, resulting in further temperature increase, acting as a positive feedback effect. We also attempt to explain the seismological observations by calculating the temperature and phase structures in the Mariana slab. If we assume that the age of the Mariana slab is 150 Myr, the subduction velocity is 9.5 cm/yr, phase transformation occurs from the grain boundary of the parental phase, and the water content is 250 wt. ppm for a grain size of 1 mm, 300 wt. ppm for one of 5 mm, and 100 wt. ppm for intracrystalline transformation, then the metastable olivine wedge survives to a depth of 630 km, which is in

  6. Metastability on the hierarchical lattice

    NASA Astrophysics Data System (ADS)

    den Hollander, Frank; Jovanovski, Oliver

    2017-07-01

    We study metastability for Glauber spin-flip dynamics on the N-dimensional hierarchical lattice with n hierarchical levels. Each vertex carries an Ising spin that can take the values -1 or +1 . Spins interact with an external magnetic field h>0 . Pairs of spins interact with each other according to a ferromagnetic pair potential J=\\{J_i\\}i=1n , where J_i>0 is the strength of the interaction between spins at hierarchical distance i. Spins flip according to a Metropolis dynamics at inverse temperature β. In the limit as β\\to∞ , we analyse the crossover time from the metastable state \\boxminus (all spins -1 ) to the stable state \\boxplus (all spins +1 ). Under the assumption that J is non-increasing, we identify the mean transition time up to a multiplicative factor 1+o_β(1) . On the scale of its mean, the transition time is exponentially distributed. We also identify the set of configurations representing the gate for the transition. For the special case where Ji = \\tilde{J}/Ni , 1 ≤slant i ≤slant n , with \\tilde{J}>0 the relevant formulas simplify considerably. Also the hierarchical mean-field limit N\\to∞ can be analysed in detail.

  7. Nonequilibrium quantum dynamics in optomechanical systems

    NASA Astrophysics Data System (ADS)

    Patil, Yogesh Sharad; Cheung, Hil F. H.; Shaffer, Airlia; Wang, Ke; Vengalattore, Mukund

    2016-05-01

    The thermalization dynamics of isolated quantum systems has so far been explored in the context of cold atomic systems containing a large number of particles and modes. Quantum optomechanical systems offer prospects of studying such dynamics in a qualitatively different regime - with few individually addressable modes amenable to continuous quantum measurement and thermalization times that vastly exceed those observed in cold atomic systems. We have experimentally realized a dynamical continuous phase transition in a quantum compatible nondegenerate mechanical parametric oscillator. This system is formally equivalent to the optical parametric amplifiers whose dynamics have been a subject of intense theoretical study. We experimentally verify its phase diagram and observe nonequilibrium behavior that was only theorized, but never directly observed, in the context of optical parametric amplifiers. We discuss prospects of using nonequilibrium protocols such as quenches in optomechanical systems to amplify weak nonclassical correlations and to realize macroscopic nonclassical states. This work was supported by the DARPA QuASAR program through a Grant from the ARO and the ARO MURI on non-equilibrium manybody dynamics.

  8. Quench-Condensed Microalloyed Particles: a Microscopic View of Solid Solubility and Metastability

    NASA Astrophysics Data System (ADS)

    Lamberti, Vincent Edward

    Solid solubility and metastability in noble-metal and iron-silver alloys have been studied from the perspective of microalloyed particles. Samples were obtained through a novel, gram-scale technique that consisted of cocondensation of two elemental metal vapors with a large excess of inert gas on the reaction surface of a rotating cryostat at 77 K. This technique permitted greater control of both particle size and composition than conventional gas aggregation methods. The chemical and physical characteristics of the microalloys have been elaborated through chemical analysis, x-ray diffraction, electron microscopy, temperature-programmed mass spectrometry, EXAFS, XPS and Moessbauer spectroscopy. Electron microscopy indicated the microstructures of copper-gold and copper-silver microalloys prepared in sulfur hexafluoride to consist of discrete collections of crystallites suspended in amorphous "baths". The average dimensions of the crystallites were <100 A, while the aggregates spanned hundreds of nanometers. The microstructures of both systems were metastable. The EXAFS of a copper-silver microalloy showed it to be stiffer, as well as more disordered, than a homometallic copper product. The EXAFS also showed no detectable Cu-Ag contacts, but suggested the existence (through a "missing-atom" effect) of a large number of disordered copper sites. Moessbauer spectra of an iron -silver microalloy prepared in xenon revealed the presence of a superparamagnetic alloy phase characterized by a blocking temperature of approximately 45 K. Cocondensations of iron vapor with excess sulfur hexafluoride produced ultrafine (dimensions ~ 100 A), amorphous particles that were decorated with a -CF_{2^-} polymer. The formation of the polymer was attributed to reaction of the iron with the matrix and adventitious organic compounds--that is, to activation of S-F and C-H bonds. Matrix isolation experiments indicated that, although inert in their ground-state configuration, photoexcited (4p

  9. Combined physical and chemical nonequilibrium transport model for solution conduits.

    PubMed

    Field, Malcolm S; Leij, Feike J

    2014-02-01

    Solute transport in karst aquifers is primarily constrained to relatively complex and inaccessible solution conduits where transport is often rapid, turbulent, and at times constrictive. Breakthrough curves generated from tracer tests in solution conduits are typically positively-skewed with long tails evident. Physical nonequilibrium models to fit breakthrough curves for tracer tests in solution conduits are now routinely employed. Chemical nonequilibrium processes are likely important interactions, however. In addition to partitioning between different flow domains, there may also be equilibrium and nonequilibrium partitioning between the aqueous and solid phases. A combined physical and chemical nonequilibrium (PCNE) model was developed for an instantaneous release similar to that developed by Leij and Bradford (2009) for a pulse release. The PCNE model allows for partitioning open space in solution conduits into mobile and immobile flow regions with first-order mass transfer between the two regions to represent physical nonequilibrium in the conduit. Partitioning between the aqueous and solid phases proceeds either as an equilibrium process or as a first-order process and represents chemical nonequilibrium for both the mobile and immobile regions. Application of the model to three example breakthrough curves demonstrates the applicability of the combined physical and chemical nonequilibrium model to tracer tests conducted in karst aquifers, with exceptionally good model fits to the data. The three models, each from a different state in the United States, exhibit very different velocities, dispersions, and other transport properties with most of the transport occurring via the fraction of mobile water. Fitting the model suggests the potentially important interaction of physical and chemical nonequilibrium processes.

  10. Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multilayer model ADCHAM

    SciTech Connect

    Roldin, P.; Eriksson, A. C.; Nordin, E. Z.; Hermansson, E.; Mogensen, Ditte; Rusanen, A.; Boy, Michael; Swietlicki, E.; Svenningsson, Birgitta; Zelenyuk, Alla; Pagels, J.

    2014-08-11

    We have developed the novel Aerosol Dynamics, gas- and particle- phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas phase Master Chemical Mechanism version 3.2, an aerosol dynamics and particle phase chemistry module (which considers acid catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study: 1) the mass transfer limited uptake of ammonia (NH3) and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), 2) the slow and almost particle size independent evaporation of α-pinene secondary organic aerosol (SOA) particles, and 3) the influence of chamber wall effects on the observed SOA formation in smog chambers.

  11. INTRODUCTION: Nonequilibrium Processes in Plasmas

    NASA Astrophysics Data System (ADS)

    Petrović, Zoran; Marić, Dragana; Malović, Gordana

    2009-07-01

    lead to new fundamental understanding is illustrated well in the paper by Uwe Czarnetzki which describes a new method for separate control of flux and energy of ions reaching the surface of electrodes. Deborah O'Connell from Belfast has shown space and phase resolved mode transitions in rf inductively coupled plasmas obtained by optical emission measurements. At the same time an application of a similar rf discharge for the treatment of paper was presented by Irina Filatova from Belarus. Many applications of non-equilibrium plasmas depend on the development of plasma sources operating at atmospheric pressure and one such source that promises to be prominent in medicine is described by Timo Gans. In a similar way, practical considerations require studies of the injection of liquids into plasmas and progress on the development of one such source is described by Mathew Goeckner and his colleagues from Dallas. From the Institute Jožef Štefan in Slovenia and the group of Miran Mozetič we have a detailed review of their work on functionalization of organic materials by oxygen plasmas. Even higher density plasmas, where the collective phenomena dominate, show different degrees of non-equilibrium and one example presented here by Zoltan Donko deals with two dimensional plasma dust crystals and liquids, while the lecture by Jovo Vranješ from Belgium deals with the treatment of collisions in multicomponent plasmas. Finally we have papers on the transport of pollutants. The association of the two fields started initially through joint interest in some of the methods for removal of NOx and SOx, from electrostatic precipitation of industrial dust to dielectric barrier discharges. The joint work continued on the application of flowing afterglow plasma combined with a hollow cathode discharge in order to achieve a proton transfer mass analysis of organic volatile compounds and also on the possibilities of applying similar methods for solving transport equations. In this volume we

  12. Metastable Supersymmetry Breaking in a Cooling Universe

    SciTech Connect

    Kaplunovsky, Vadim S.

    2007-11-20

    I put metastable supersymmetry breaking in a cosmological context. I argue that under reasonable assumptions, the cooling down early Universe favors metastable SUSY-breaking vacua over the stable supersymmetric vacua. To illustrate the general argument, I analyze the early-Universe history of the Intriligator-Seiberg-Shih model.

  13. Desensitization and recovery of metastable intermolecular composites

    DOEpatents

    Busse, James R [South Fork, CO; Dye, Robert C [Los Alamos, NM; Foley, Timothy J [Los Alamos, NM; Higa, Kelvin T [Ridgecrest, CA; Jorgensen, Betty S [Jemez Springs, NM; Sanders, Victor E [White Rock, NM; Son, Steven F [Los Alamos, NM

    2010-09-07

    A method to substantially desensitize a metastable intermolecular composite material to electrostatic discharge and friction comprising mixing the composite material with an organic diluent and removing enough organic diluent from the mixture to form a mixture with a substantially putty-like consistency, as well as a concomitant method of recovering the metastable intermolecular composite material.

  14. Sum of exit times in a series of two metastable states

    NASA Astrophysics Data System (ADS)

    Cirillo, Emilio N. M.; Nardi, Francesca R.; Spitoni, Cristian

    2017-07-01

    The problem of not degenerate in energy metastable states forming a series in the framework of reversible finite state space Markov chains is considered. Metastability has been widely studied both in the mathematical and physical literature. Metastable states arises close to a first order phase transition, when the system can be trapped for a long time (exponentially long with respect to the inverse of the temperature) before switching to the thermodynamically stable phase. In this paper, under rather general conditions, we give a sharp estimate of the exit time from a metastable state in a presence of a second metastable state that must be necessarily visited by the system before eventually reaching the stable phase. In this framework we give a sharp estimate of the exit time from the metastable state at higher energy and, on the proper exponential time scale, we prove an addition rule. As an application of the theory, we study the Blume-Capel model in the zero chemical potential case.

  15. Persistence of metastable vortex lattice domains in MgB2 in the presence of vortex motion.

    PubMed

    Rastovski, C; Schlesinger, K J; Gannon, W J; Dewhurst, C D; DeBeer-Schmitt, L; Zhigadlo, N D; Karpinski, J; Eskildsen, M R

    2013-09-06

    Recently, extensive vortex lattice metastability was reported in MgB2 in connection with a second-order rotational phase transition. However, the mechanism responsible for these well-ordered metastable vortex lattice phases is not well understood. Using small-angle neutron scattering, we studied the vortex lattice in MgB2 as it was driven from a metastable to the ground state through a series of small changes in the applied magnetic field. Our results show that metastable vortex lattice domains persist in the presence of substantial vortex motion and directly demonstrate that the metastability is not due to vortex pinning. Instead, we propose that it is due to the jamming of counterrotated vortex lattice domains which prevents a rotation to the ground state orientation.

  16. Persistence of Metastable Vortex Lattice Domains in MgB2 in the Presence of Vortex Motion

    SciTech Connect

    Rastovski, Catherine; Schlesinger, Kimberly; Gannon, William J; Dewhurst, Charles; Debeer-Schmitt, Lisa M; Zhigadlo, Nikolai; Karpinski, Janusz; Eskildsen, Morten

    2013-01-01

    Recently, extensive vortex lattice metastability was reported in MgB2 in connection with a second-order rotational phase transition. However, the mechanism responsible for these well-ordered metastable vortex lattice phases is not well understood. Using small-angle neutron scattering, we studied the vortex lattice in MgB2 as it was driven from a metastable to the ground state through a series of small changes in the applied magnetic field. Our results show that metastable vortex lattice domains persist in the presence of substantial vortex motion and directly demonstrate that the metastability is not due to vortex pinning. Instead, we propose that it is due to the jamming of counterrotated vortex lattice domains which prevents a rotation to the ground state orientation.

  17. Ratchets, red cells, and metastability.

    PubMed

    Ferrone, Frank A; Aprelev, Alexey

    2013-06-01

    Sickle cell disease is a genetic disorder in which a negatively charged glutamic acid is replaced by a hydrophobic valine on the surface of the hemoglobin molecule, leading to polymerization of the deoxygenated form, and resulting in microvascular obstruction. Because of the high volume occupancy under which polymerization occurs physiologically, this process has been an exemplar in the study of excluded volume effects on assembly. More recently, we have identified yet another type of crowding effect involving the obstruction of the ends at which the polymers grow as a consequence of the dense arrays in which these polymers form. This makes such solutions metastable, and leads to Brownian ratchet behavior in which pressure is exerted outward when the gel occupies a finite volume, as in an emulsion or red cell. Such behavior is capable of holding sickled cells in place in the microcirculation against weak pressure differentials (hundreds of Pa), but not against the typical pressures found in vivo.

  18. Instability of colliding metastable strings

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Takashi; Eto, Minoru; Kamada, Kohei; Kobayashi, Tatsuo; Ookouchi, Yutaka

    2014-01-01

    The breaking of U(1) R symmetry plays a crucial role in modeling the breaking of supersymmetry (SUSY). In the models that possess both SUSY preserving and SUSY breaking vacua, tube-like cosmic strings called R-tubes, whose surfaces are constituted by domain walls interpolating a false and a true vacuum with some winding numbers, can exist. Their (in)stability can strongly constrain SUSY breaking models theirselves. In the present study, we investigate the dynamical (in)stability of two colliding metastable tube-like strings by field-theoretic simulations. From them, we find that the strings become unstable, depending on the relative collision angle and speed of two strings, and the false vacuum is eventually filled out by the true vacuum owing to rapid expansion of the strings or unstable bubbles created as remnants of the collision.

  19. Metastable Tight Knots in DNA

    NASA Astrophysics Data System (ADS)

    Dai, Liang; Renner, C. Benjamin; Doyle, Patrick

    2015-03-01

    Knotted structures can spontaneously occur in polymers such as DNA and proteins, and the formation of knots affects biological functions, mechanical strength and rheological properties. In this work, we calculate the equilibrium size distribution of trefoil knots in linear DNA using off-lattice simulations. We observe metastable knots on DNA, as predicted by Grosberg and Rabin. Furthermore, we extend their theory to incorporate the finite width of chains and show an agreement between our simulations and the modified theory for real chains. Our results suggest localized knots spontaneously occur in long DNA and the contour length in the knot ranges from 600 to 1800 nm. This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's research program in BioSystems and Micromechanics, the National Science Foundation (Grant No. 1335938).

  20. Atom lithography with metastable helium

    SciTech Connect

    Allred, Claire S.; Reeves, Jason; Corder, Christopher; Metcalf, Harold

    2010-02-15

    A bright metastable helium (He*) beam is collimated sequentially with the bichromatic force and three optical molasses velocity compression stages. Each He* atom in the beam has 20 eV of internal energy that can destroy a molecular resist assembled on a gold coated silicon wafer. Patterns in the resist are imprinted onto the gold layer with a standard selective etch. Patterning of the wafer with the He{sup *} was demonstrated with two methods. First, a mesh was used to protect parts of the wafer making an array of grid lines. Second, a standing wave of {lambda}=1083 nm light was used to channel and focus the He* atoms into lines separated by {lambda}/2. The patterns were measured with an atomic force microscope establishing an edge resolution of 80 nm. Our results are reliable and repeatable.